Skip to main content
Log in

Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mammalian two-pore channels (TPCs) are activated by the low-abundance membrane lipid phosphatidyl-(3,5)-bisphosphate (PI(3,5)P2) present in the endo-lysosomal system. Malfunction of human TPC1 or TPC2 (hTPC) results in severe organellar storage diseases and membrane trafficking defects. Here, we compared the lipid-binding characteristics of hTPC2 and of the PI(3,5)P2-insensitive TPC1 from the model plant Arabidopsis thaliana. Combination of simulations with functional analysis of channel mutants revealed the presence of an hTPC2-specific lipid-binding pocket mutually formed by two channel regions exposed to the cytosolic side of the membrane. We showed that PI(3,5)P2 is simultaneously stabilized by positively charged amino acids (K203, K204, and K207) in the linker between transmembrane helices S4 and S5 and by S322 in the cytosolic extension of S6. We suggest that PI(3,5)P2 cross links two parts of the channel, enabling their coordinated movement during channel gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PI(3,5)P2 :

Phosphatidylinositol-(3,5)-bisphosphate

POPC:

1-Palmitoyl-2-oleoyl phosphatidylcholine

MD:

Molecular dynamics

CG:

Coarse-grained

References

  1. Hansen SB (2015) Lipid agonism: the PIP2 paradigm of ligand-gated ion channels. Biochim Biophys Acta 1851(5):620–628. https://doi.org/10.1016/j.bbalip.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195. https://doi.org/10.1146/annurev.biophys.37.032807.125859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hille B, Dickson EJ, Kruse M, Vivas O (1851) Suh BC (2015) Phosphoinositides regulate ion channels. Biochim Biophys Acta 6:844–856. https://doi.org/10.1016/j.bbalip.2014.09.010

    Article  CAS  Google Scholar 

  4. Diaz-Franulic I, Poblete H, Mino-Galaz G, Gonzalez C, Latorre R (2016) Allosterism and structure in thermally activated transient receptor potential channels. Annu Rev Biophys 45:371–398. https://doi.org/10.1146/annurev-biophys-062215-011034

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151(2):372–383. https://doi.org/10.1016/j.cell.2012.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cang C, Zhou Y, Navarro B, Seo YJ, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham DE, Ren D (2013) mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell 152(4):778–790. https://doi.org/10.1016/j.cell.2013.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cang C, Bekele B, Ren D (2014) The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 10(6):463–469. https://doi.org/10.1038/nchembio.1522

    Article  CAS  PubMed  Google Scholar 

  8. Lagostena L, Festa M, Pusch M, Carpaneto A (2017) The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Sci Rep 7:43900. https://doi.org/10.1038/srep43900

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kintzer AF, Stroud RM (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531(7593):258–262. https://doi.org/10.1038/nature17194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531(7593):196–201. https://doi.org/10.1038/nature16446

    Article  CAS  PubMed  Google Scholar 

  11. Boccaccio A, Scholz-Starke J, Hamamoto S, Larisch N, Festa M, Gutla PV, Costa A, Dietrich P, Uozumi N, Carpaneto A (2014) The phosphoinositide PI(3,5)P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cell Mol Life Sci 71(21):4275–4283. https://doi.org/10.1007/s00018-014-1623-2

    Article  CAS  PubMed  Google Scholar 

  12. Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434(7031):404–408

    Article  CAS  PubMed  Google Scholar 

  13. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80. https://doi.org/10.1146/annurev-physiol-021014-071649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Favia A, Desideri M, Gambara G, D’Alessio A, Ruas M, Esposito B, Del Bufalo D, Parrington J, Ziparo E, Palombi F, Galione A, Filippini A (2014) VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2 + signaling. Proc Natl Acad Sci USA 111(44):E4706–E4715. https://doi.org/10.1073/pnas.1406029111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grimm C, Holdt LM, Chen CC, Hassan S, Müler C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C (2014) High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun 5:4699. https://doi.org/10.1038/ncomms5699

    Article  CAS  PubMed  Google Scholar 

  17. Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, Klugbauer N, Grimm C, Wahl-Schott C, Biel M, Davey RA (2015) Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347(6225):995–998. https://doi.org/10.1126/science.1258758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen ON, Grimm C, Schneider LS, Chao YK, Atzberger C, Bartel K, Watermann A, Ulrich M, Mayr D, Wahl-Schott C, Biel M, Vollmar AM (2017) Two-pore channel function is crucial for the migration of invasive cancer cells. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-16-0852

    Article  PubMed  PubMed Central  Google Scholar 

  19. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237(4816):749–753

    Article  CAS  PubMed  Google Scholar 

  20. Guo J, Zeng W, Jiang Y (2017) Tuning the ion selectivity of two-pore channels. Proc Natl Acad Sci USA 114(5):1009–1014. https://doi.org/10.1073/pnas.1616191114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedrich R, Marten I (2011) TPC1—SV channels gain shape. Mol Plant 4(3):428–441. https://doi.org/10.1093/mp/ssr017

    Article  CAS  PubMed  Google Scholar 

  22. Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J 68(3):424–432. https://doi.org/10.1111/j.1365-313X.2011.04697.x

    Article  CAS  PubMed  Google Scholar 

  23. Larisch N, Kirsch SA, Schambony A, Studtrucker T, Böckmann RA, Dietrich P (2016) The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cell Mol Life Sci 73(13):2565–2581. https://doi.org/10.1007/s00018-016-2131-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruas M, Davis LC, Chen CC, Morgan AJ, Chuang KT, Walseth TF, Grimm C, Garnham C, Powell T, Platt N, Platt FM, Biel M, Wahl-Schott C, Parrington J, Galione A (2015) Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J 34(13):1743–1758. https://doi.org/10.15252/embj.201490009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rötzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflügers Arch 458(5):891–899. https://doi.org/10.1007/s00424-009-0690-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brailoiu E, Hooper R, Cai X, Brailoiu GC, Keebler MV, Dun NJ, Marchant JS, Patel S (2009) An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J Biol Chem 285(5):2897–2901

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pluhackova K, Böckmann RA (2015) Biomembranes in atomistic and coarse-grained simulations. J Phys Condens Matter 27(32):323103. https://doi.org/10.1088/0953-8984/27/32/323103

    Article  CAS  PubMed  Google Scholar 

  28. Pluhackova K, Wassenaar TA, Böckmann RA (2013) Molecular dynamics simulations of membrane proteins. Methods Mol Biol 1033:85–101. https://doi.org/10.1007/978-1-62703-487-6_6

    Article  CAS  PubMed  Google Scholar 

  29. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. https://doi.org/10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  30. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acid Res 37:D387–D392. https://doi.org/10.1093/nar/gkn750

    Article  CAS  PubMed  Google Scholar 

  31. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–S173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  32. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30(17):i505–i511. https://doi.org/10.1093/bioinformatics/btu457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Jong DH, Singh G, Bennett WF, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9(1):687–697. https://doi.org/10.1021/ct300646g

    Article  CAS  PubMed  Google Scholar 

  35. Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11(5):2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  PubMed  Google Scholar 

  36. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6(6):e1000810. https://doi.org/10.1371/journal.pcbi.1000810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sánchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Suppl 1:50–58

    Article  Google Scholar 

  38. Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10(2):676–690. https://doi.org/10.1021/ct400617g

    Article  CAS  PubMed  Google Scholar 

  39. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  40. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  41. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  42. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  43. López CA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ (2013) Martini Force field parameters for glycolipids. J Chem Theory Comput 9(3):1694–1708. https://doi.org/10.1021/ct3009655

    Article  CAS  PubMed  Google Scholar 

  44. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760. https://doi.org/10.1021/jp036508g

    Article  CAS  Google Scholar 

  45. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  46. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8(9):3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mallajosyula SS, Guvench O, Hatcher E, Mackerell AD Jr (2012) CHARMM additive all-atom force field for phosphate and sulfate linked to carbohydrates. J Chem Theory Comput 8(2):759–776. https://doi.org/10.1021/ct200792v

    Article  CAS  PubMed  Google Scholar 

  48. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843. https://doi.org/10.1021/jp101759q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatcher E, Guvench O, Mackerell AD Jr (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates and inositol. J Chem Theory Comput 5(5):1315–1327. https://doi.org/10.1021/ct9000608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pluhackova K, Kirsch SA, Han J, Sun L, Jiang Z, Unruh T, Böckmann RA (2016) A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers. J Phys Chem B 120(16):3888–3903. https://doi.org/10.1021/acs.jpcb.6b01870

    Article  CAS  PubMed  Google Scholar 

  51. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun L, Bertelshofer F, Greiner G, Böckmann RA (2016) Characteristics of sucrose transport through the sucrose-specific porin ScrY studied by molecular dynamics simulations. Front Bioeng Biotechnol 4:9. https://doi.org/10.3389/fbioe.2016.00009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bertelshofer F, Sun L, Greiner G, Böckmann RA (2015) GroPBS: fast solver for implicit electrostatics of biomolecules. Front Bioeng Biotechnol 3:186. https://doi.org/10.3389/fbioe.2015.00186

    Article  PubMed  PubMed Central  Google Scholar 

  54. Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95(4):1837–1850. https://doi.org/10.1529/biophysj.108.129437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57(4):503–516. https://doi.org/10.1007/s11103-005-0340-5

    Article  CAS  PubMed  Google Scholar 

  56. Edelheit O, Hanukoglu A, Hanukoglu I (2009) Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9:61. https://doi.org/10.1186/1472-6750-9-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53(2):287–299

    Article  CAS  PubMed  Google Scholar 

  58. Larisch N, Schulze C, Galione A, Dietrich P (2012) An N-terminal dileucine motif directs two-pore channels to the tonoplast of plant cells. Traffic 13(7):1012–1022. https://doi.org/10.1111/j.1600-0854.2012.01366.x

    Article  CAS  PubMed  Google Scholar 

  59. Costa A, Gutla PV, Boccaccio A, Scholz-Starke J, Festa M, Basso B, Zanardi I, Pusch M, Schiavo FL, Gambale F, Carpaneto A (2012) The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl-/H+ exchanger CLC-7. J Physiol 590(15):3421–3430. https://doi.org/10.1113/jphysiol.2012.230227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2 +) release channels in the endolysosome. Nat Commun 1:38. https://doi.org/10.1038/ncomms1037

    Article  CAS  PubMed  Google Scholar 

  61. Li X, Wang X, Zhang X, Zhao M, Tsang WL, Zhang Y, Yau RG, Weisman LS, Xu H (2013) Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proc Natl Acad Sci USA 110(52):21165–21170. https://doi.org/10.1073/pnas.1311864110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cang C, Aranda K, Ren D (2014) A non-inactivating high-voltage-activated two-pore Na(+) channel that supports ultra-long action potentials and membrane bistability. Nat Commun 5:5015. https://doi.org/10.1038/ncomms6015

    Article  CAS  PubMed  Google Scholar 

  63. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477(7365):495–498. https://doi.org/10.1038/nature10370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147(1):199–208. https://doi.org/10.1016/j.cell.2011.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodriguez-Menchaca AA, Adney SK, Tang QY, Meng XY, Rosenhouse-Dantsker A, Cui M, Logothetis DE (2012) PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker. Proc Natl Acad Sci USA 109(36):E2399–E2408. https://doi.org/10.1073/pnas.1207901109

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang Q, Zhou P, Chen Z, Li M, Jiang H, Gao Z, Yang H (2013) Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating. Proc Natl Acad Sci USA 110(50):20093–20098. https://doi.org/10.1073/pnas.1312483110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Training Group 1962 (to RAB and PD) from the Deutsche Forschungsgemeinschaft and by 2015795S5W funding to AC from the Italian Ministry of Education, University and Research. We would like to thank Joachim Scholz-Starke and Margherita Festa (Genova) for supervision of AK during part of his experiments.

Author information

Authors and Affiliations

Authors

Contributions

RAB and PD designed and directed research of the simulations and functional analysis, respectively. SAK set up the homology model, and performed CG and atomistic simulations and the related analysis. AK performed cloning, site-directed mutagenesis, functional expression and patch-clamp analysis in plant vacuoles and analyzed the data; AC hosted AK during a laboratory stay to conduct part of the experiments and helped analyzing the data. SAK, PD, RAB, AK, and AC wrote the manuscript.

Corresponding authors

Correspondence to Rainer A. Böckmann or Petra Dietrich.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Sonja A. Kirsch and Andreas Kugemann contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsch, S.A., Kugemann, A., Carpaneto, A. et al. Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cell. Mol. Life Sci. 75, 3803–3815 (2018). https://doi.org/10.1007/s00018-018-2829-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2829-5

Keywords

Navigation