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Bullshit . . . is everywhere.

— Jon Stewart, in his final Daily Show



Zusammenfassung

Der Bereich der Datenbankforschung auf moderner Hardware beschäftigt sich mit
der Frage, wie wir neuartige Hardware effizient zur Datenverarbeitung einsetzen
können. Forscher und Entwickler haben hierzu in den letzten Jahren wichtige Beiträge
geleistet und Ansätze sowie Systeme zur Datenverarbeitung auf verschiedensten Kate-
gorien von Prozessoren vorgestellt. Ein wichtiger Aspekt wurde dabei jedoch häufig
übergangen: Obwohl wir heute sehr gut mit einzelnen (oder mehreren) Prozessoren
der selben Art umgehen können, ist es noch relativ unklar, wie ein Datenbanksystem
entworfen werden sollte, das auch verschiedene Prozessoren effizient verwenden kann.
Dieses Problem der Hardwareheterogenität wird zunehmend relevant: Bereits heute
verfügen Computer häufig über eine Vielzahl von verschiedenen Prozessoren, wie
zum Beispiel CPUs, Grafikkarten, FPGAs oder Vektorprozessoren. Experten sind
sich einig, dass diese Vielfalt weiter anwachsen wird, und dass wir auf dem Weg in
ein neues Zeitalter der Heterogenität sind. Um mit den wachsenden Anforderungen
der modernen Informationsgesellschaft Schritt zu halten, wird es daher zunehmend
wichtig werden, dass wir neuartige Verfahren entwickeln um Hardwareheterogenität
in Datenbanksystemen ausnutzen und verwalten zu können.

In dieser Arbeit stellen wir unsere Forschungsbeiträge zu diesem Bereich vor. Dies
umfasst insbesondere die folgenden zwei Themen:

1. Im ersten Teil dieser Arbeit besprechen wir Ansätze zur Verwaltung von Hard-
wareheterogenität in Datenbanksystemen. Insbesondere führen wir das Konzept
von hardwareunabhängigen Datenbankoperatoren ein. Dies zielt darauf ab, den
Entwicklungsaufwand zu reduzieren, der normalerweise bei der Portierung eines
Datenbanksystems auf eine neue Hardwarearchitektur anfällt: Anstelle von
speziell angepassten Algorithmen werden hierbei abstrakte Operatordefinitio-
nen verwendet, welche vom System erst zur Laufzeit automatisch auf die vorhan-
dene Hardware abgebildet werden. Zudem stellen wir mit Ocelot ein protoyp-
isches System vor um die Machbarkeit des Konzepts hardwareunabhängiger
Datenbanken zu belegen.

2. Im zweiten Teil der Arbeit führen wir mit GPU-unterstützter Anfrageopti-
mierung einen neuen Ansatz zur Verwendung von heterogener Hardware in
Datenbanksystemen ein. Hierauf aufbauend stellen wir anschließend einen sich
selbst optimierenden, multivariaten Selektivitätsschätzer vor, welcher von uns
speziell an die Eigenschaften moderner Grafikkarten und CPUs angepasst
wurde. Der Schätzer ist hochskalierbar, passt sich selbstständig an Änderungen
der Datenbank und Anfragen an und erzielt eine Genauigkeit, die in der Regel
deutlich über dem aktuellen Stand der Technik liegt.

Für beide Themen leiten wir eine ausführliche Motivation her, präsentieren und
diskutieren die Ergebnisse unserer experimentellen Auswertung, stellen unsere Quell-
texte und Skripte zur Verfügung um es anderen Autoren zu ermöglichen, unsere
Ergebnisse nachzuvollziehen, und skizzieren mögliche Themen und Richtungen für
anschließende Forschungsarbeiten.



Abstract

The primary objective of data processing research on modern hardware is to under-
stand how to utilize emerging technology to process data efficiently. Over the last
decades, Software Engineers and Computer Scientists have made significant progress
towards this goal, providing highly-tuned algorithms, systems & mechanisms for a
wide variety of different device types. However, while we mostly understand how to
exploit multiple identical devices, the question of how to build database engines that
can deal with a diverse number of them remains open. Already today, with multi-core
CPUs, graphics cards, FPGAs, and vector processors, we have access to a stagger-
ing variety of different architectures, and experts agree that hardware diversity will
continue to grow. As we enter this era of heterogeneity, developing new approaches
to deal with a multitude of different hardware architectures is becoming increasingly
important. Tomorrow’s database systems will need to exploit and embrace this trend
towards increased hardware heterogeneity to meet the performance requirements of
the modern information society.

In this thesis, we present our contributions to the area of data processing on hetero-
geneous hardware. In particular, we discuss the following two major topics:

1. In the first part of this thesis, we discuss how to manage hardware hetero-
geneity by reducing the development overhead to implement a database engine
that can run on different hardware architectures. For this, we propose an
alternative system design, based on a single set of hardware-oblivious opera-
tors which are compiled down to the actual hardware at runtime. Relying on
hardware abstraction, learning mechanisms and self-tuning algorithms, this
approach can drastically reduce the enormous development overhead that typ-
ically comes with supporting a variety of architectures, while still achieving
competitive performance to hand-tuned code. We also present Ocelot, a pro-
totypical hardware-oblivious database engine to demonstrate the feasibility of
this concept.

2. In the second part of this thesis, we introduce a novel approach to exploit
hardware heterogeneity in a relational database engine by utilizing graphics
processing units to assist the query optimizer. Based on this idea of GPU-
Assisted Query Optimization, we then introduce a self-tuning, multivariate
selectivity estimator based on Kernel Density Estimation that is specifically
designed to exploit the properties of modern graphics cards and multi-core
CPUs. This approach enables us to develop a novel estimator that is highly
scalable, that can adapt itself to changes in both the database and the query
workload, and that can typically outperform the accuracy of established state-
of-the-art methods.

For both topics, we motivate our decisions, present and discuss experimental evalua-
tions, provide both the source code and scripts to allow other authors to reproduce
our results, and outline potential directions for future work.
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Chapter 1

A Short History of Integrated
Circuits

On April 19th, 1965 Gordon Moore, the director of research and development at
Fairfield Semiconductors, published an article for the 35th-anniversary issue of Elec-
tronics magazine. In this article, he laid out his predictions for the future of the
semiconductor industry, which back then was still in its infancy but started to show
signs of rapid growth. The following observation was the centerpiece of this article:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years [Moo65].

Back in 1965, no one anticipated that this observation would become one of the
most influential and well-known technical statements of the modern world. Even
Moore himself, who had just wanted to bring attention to an interesting local trend
in the semiconductor business, later admitted to being amazed by the correctness
and impact of his prediction [M+11]. Today, more than fifty years after its original
publication, the common interpretation of Moore’s Law is that it is predicting a
doubling of the number of transistors in integrated circuits every eighteen months.
And — as we can see in Figure 1.1 —, the industry followed this prediction like
clockwork. For the past fifty years, Moore’s Law has been one of the primary drivers
behind the ongoing digital revolution, and — in a way — it has even become a
self-fulfilling prophecy, motivating engineers and scientists to continuously push for
innovations, technological advances, and manufacturing improvements.

A typical misconception about Moore’s Law is that it also predicts a doubling of the
chip performance1. Looking back at Figure 1.1, we can see where this belief came
from: The compute performance of integrated circuits, measured in instructions per
second, has indeed been growing at a similar exponential pace as the number of
transistors. Moore himself tried to explain this somewhat non-obvious correlation for
a 1975 IEEE bulletin article in which he identified three primary factors that enabled

1While inspired by Moore’s Law, this prediction was actually made by an Intel executive named
David House in 1975.
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Figure 1.1: Development of the number of transistors and instructions per
second in commercially available integrated circuits since the 1970s. Data was
taken from en.wikipedia.org/wiki/transistor_count and en.wikipedia.org/

wiki/instructions_per_second. Note the logarithmic y-axis.

the ongoing increase in transistor counts [Moo75]: Increased chip sizes, improved chip
designs that reduce unused real-estate, and shrinking transistor sizes. Out of these
three, he identified the last one as the most important factor to explain the ongoing
exponential increases in compute performance.

Figure 1.2 shows the schematics of a modern Metal-Oxide-Semiconductor Field Effect
Transistor (MOSFET), which is the base technology behind virtually all modern
integrated circuits. MOSFET-style transistors exploit the electrical field created
by a voltage between the Gate and the Source to control a conducting channel
in the underlying semiconductor substrate that allows a current to flow from the
Source to the Drain. As shown in Figure 1.2, MOSFET-style transistors have a
planar layout, consisting of layers of differently doped semiconductor materials within

Figure 1.2: Simplified schematic of a (n-type) MOSFET transistor. Picture Lateral
mosfet by Cyril Buttay is licensed under CC BY-SA 3.0.
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an underlying substrate. This design allowed manufacturers to produce integrated
circuits in an efficient mass process that essentially prints the individual layers
of the transistors onto the underlying substrate [Kae08]. Over the last fifty years,
manufacturers continuously improved the accuracy of this process, enabling the
production of dramatically smaller transistors. In particular, they were able to reduce
the gate length — which is the distance between the transistor’s Source and Drain —
by several orders of magnitude, coming from 10 µm in the early 1970s down to 10 nm
as of 2016. Now, interestingly, reducing the gate length of a MOSFET-style transistor
has some non-obvious benefits besides just enabling higher transistor densities. In
particular — as was described in 1974 by Robert Dennard, an IBM researcher on
integrated circuit design —, reducing the gate length by a factor of λ reduces both
the voltage required to control the transistor and the time the transistor needs to
react to voltage changes by the same factor [DGY+74]. In other words, shrinking
transistors to half their size allowed manufacturers to build integrated circuits that
were twice as complex while staying within the same power and real-estate budgets.

This Dennard Scaling effect was a godsend for the IT industry in general, and
the semiconductor industry in particular: With each new generation of transistors,
processors almost automatically2 got faster and more versatile without requiring
more power or larger — and thus more expensive — chip sizes. As can be seen
in Figure 1.3, this development resulted in an ongoing exponential increase of both
single-core performance and clock frequencies. This development was a massive driver
behind the growth of the IT industry, given that software developers could rely on
new CPU generations continuously bringing extensive improvements to the available
compute power and thus enabling applications that had been unthinkable just a few
years earlier. But, like Q once said: “All good things must come to an end,” and after
more than thirty years of driving the digital revolution, the “golden age of scaling”
eventually came to an end in the early 2000s, with clock frequencies apparently
hitting a wall at around 3 GHz.

So, what happened? Essentially, what we are observing since the early 2000s is the
break-down of Dennard Scaling: As transistors continued to shrink, they eventually
reached dimensions where fundamental physical limitations took over and prohibited
manufacturers from continuing to scale voltages and clock rates. The primary example
for this breakdown is the exponential increase in subthreshold leakage across the
transistor’s shrinking gate. A great way to visualize this effect is to imagine a big
river that people want to cross, and the only way for them to do so is via a retractable
drawbridge. Opening and closing the bridge takes time, so there is an upper bound
on how often the bridge can be operated in a day. Now, if the river dries up and
becomes thinner, a shorter and lighter bridge could be built as a replacement. This
smaller bridge is quicker to open and close, and thus can be operated more frequently.
An analogous effect occurs when we shrink a MOSFET-style transistor: As the
gate gets smaller, the threshold voltage required to open the conducting channel
drops, allowing us to drive the transistor at a higher frequency. However, if the river
continues to dry up, we will eventually reach a point where athletic people could

2This is obviously a simplification: Manufacturers also managed to dramatically improve perfor-
mance by continuously improving their microarchitectures, for instance through performance-critical
features like superscalar instruction pipelining, out-of-order execution, SIMD instruction sets, and
increasingly smarter caching and prefetching architectures.
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Figure 1.3: Forty-two years of processor trends. Illustration by Karl Rupp [Rup18].

simply jump across it, bypassing the bridge altogether. And the thinner the river
becomes, the more people will be physically capable of doing so. This effect also
occurs in transistors: Thinner gate lengths and lower threshold potentials make it
easier for high-energy electrons to punch through the closed gate, creating a leaking
current. This ssubthreshold leakage is inversely exponentially proportional to the
threshold voltage, meaning that the smaller a transistor becomes, the more power it
evaporates due to leaking currents [KAB+03]. Ultimately, this growing power leakage
forced manufacturers to start controlling the threshold voltage of their transistors,
relying on design changes, manufacturing improvements, and revised semiconductor
materials to stop it from dropping further. And, since voltage and frequency are
closely related to each other, this development also meant that the time of growing
clock frequencies had come to an end3 [MF95].

The end of Dennard Scaling marks a significant inflection point in the history of
integrated circuit design. With clock frequencies topping out, manufacturers could
no longer rely on their most crucial performance driver. Instead, single-thread per-
formance now had to come from architectural improvements like increasing the
instructions per cycle through better pipelining, prefetching & branch prediction
mechanisms, adding specialized instruction sets to accelerate common operations,
or growing and improving the caching infrastructure. And while these measures did
indeed help to keep improving performance, they were also much more work- and
time-intensive to implement and typically resulted in smaller improvements than
frequency scaling did. Figure 1.3 shows the effects of these developments: Starting
from the mid-2000s, we can see both the flattening-out of clock frequencies as well
as a drop in the growth rate of single-thread performance. At the same time, we
can also see an increase in the number of logical cores per processor: With single-
thread performance growing much slower than required, manufacturers began to

3This is, again, somewhat simplified: While subthreshold leakage has indeed played a fundamental
role in the end of Dennard Scaling, there were also many other technical reasons at play. For a good
overview, the interested reader is referred to the following two excellent articles by Intel Senior
Fellow Mark Bohr: [Boh07, BCGM07].
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focus on spending the still increasing number of transistors on parallelization to
satisfy the ever-growing demand for compute performance. And thus, fueled by the
end of Dennard Scaling, began the era of multi-core processors [Gee05].

Increasing the number of instructions that processors can run in parallel, be it
through multi-core designs, through simultaneous multi-threading (SMT) technologies
like Intel’s HyperThreading, or through SIMD instruction sets like SSE or AVX,
quickly became the go-to solution for Post-Dennard performance scaling [Gee05,
BC11]. For a practical example of this development, let us take a look at IBM’s
POWER line of server processors. After struggling with their old design to keep
power consumption in check with growing frequencies, IBM decided in 2010 to move
to a new multi-core design that favored parallelization and power efficiency over
single-thread performance. POWER7, the first chip from this new line, was released
in 2010 and offered an eight-core processor, with each core supporting four-way SMT,
making the chip capable of running 32 hardware threads simultaneously [SKS+11].
Its successor, POWER8, was released in 2014 and featured twelve eight-way SMT
cores [SVNE+15]. And POWER9, the next chip generation as of the writing of this
thesis, will be released in 2017 and will feature 24 eight-way SMT cores, bringing the
number of hardware threads up to 192. While parallelism grew by a factor of six in
the seven years between POWER7 and POWER9, single-thread performance only
improved by around a factor of two [SVNE+15]. In other words, IBM only managed
to meet the expectation of doubling chip performance every 18 to 24 months by
exploiting multi-core scaling and other forms of parallelism.

Initially, manufacturers focused on building parallel processors that followed the so-
called symmetric multiprocessor (SMP) design pattern, meaning that they combined
multiple identical processor cores, typically with a shared infrastructure for memory
access and caching. This design has the advantage of being relatively easy to scale
through “copy & paste”, which enabled the rapid increase in the number of available
cores since the mid-2000s. However, there are some fundamental limitations to the
scalability of SMP designs. First of all, there is Amdahl’s Law, which states that the
achievable speedup through parallelization for any given task is bound by its serial
portion [Amd67]. In other words, for most real-world applications the usefulness
of SMP processors with ultra-high numbers of cores is inherently limited [HM08,
WL08, Mar12, YMG14]4. Second, as the number of cores grows, so does the portion
of the chip that is required for interconnect and synchronization mechanisms. For
larger multi-core designs, the size and power requirements for these parts is already
significant and poses a clear engineering barrier to scaling SMP designs towards a
higher number of cores [KZT05]. And finally, last but certainly not least, there is the
so-called Power Wall.

The term “Power Wall” refers to the increasing amount of power and cooling that
large chip designs require. According to Moore’s Law, the number of transistors,
and thus power consumers, per processor still keeps doubling every 18 to 24 months.
Without improving the efficiency of individual transistors at a similar pace, this
growing number causes the processor to require more and more power. Historically,
Dennard Scaling allowed manufacturers to keep this from happening since the power
consumption of individual transistors shrank proportional to their area [DGY+74].

4It should be noted that this argument is only strictly true for fixed workloads [SC10].
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Figure 1.4: Comparing the chip layouts of a modern eight-core CPU (left, AMD
Ryzen 7) and a modern GPU (right, AMD Radeon RX 480). Areas of the chip that
are used to run instructions are highlighted in red.

However, today, this is no longer the case: While the power efficiency is still improv-
ing, it does so at a much slower pace than the growth in transistor counts would
warrant [HP11]. This trend increasingly forces manufactureres to limit the number of
transistors that can be active at the same time to control the overall power consump-
tion of their processors – an effect that is also called Dark Silicon. On average, for an
integrated circuit that is manufactured using the current 22 nm process, around 20%
of its transistors must be powered off at any given time. Moreover, for the upcoming
8 nm process, this fraction is expected to increase to almost 50% [EBA+11], making
it imperative to react.

It should be clear that SMP designs are inherently incompatible with Dark Silicon:
There is little point in packaging more and more identical cores if we are limited to
using only a fraction of them at the same time [Mär14]. Because of this, manufac-
turers are increasingly turning towards heterogeneity and specialization as design
dimensions to improve chip performance [CMHM10, BC11, ZPFH13]. Graphics pro-
cessing units (GPUs) are probably the best-known example for such specialized cores.
They were originally introduced in the early 1990s as fixed integrated circuits to
accelerate the rendering of 3D graphics. Over time, fueled by the growing demand
for more sophisticated visuals, manufacturers evolved these fixed circuits into fully
programmable, massively parallel SIMD-style cores, whose peak computational per-
formance is orders of magnitude higher than that of comparable CPUs. Figure 1.4
illustrates how this is possible: Modern CPUs spend billions of transistors on caches,
branch prediction logic, pipelining, prefetching, and further complex support logic
that is not directly evaluating instructions. Modern GPUs, on the other hand, use
a much larger fraction of their transistors to actually run instructions by stripping
down support logic to the bare minimum and packaging as many parallel SIMD
units as possible. These architectural differences lead to CPUs and GPUs being
optimal for different types of problems: While CPUs are designed to run complex,
single-threaded code with various conditional branches, GPUs achieve their peak
performance on embarrassingly parallel problems whose individual computations
are comparably simple [LKC+10]. By packaging both types of cores, the processor
can selectively choose the one that best fits the current workload [Tay13]. Various
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authors have demonstrated that such heterogeneous designs that exploit special-
ized cores can be both faster and more energy-efficient than homogeneous SMP
multi-core chips, in particular when considering the constraints imposed by Dark
Silicon [HM08, WL08, Mar12, VT14].

Today, virtually all major hardware manufacturers are either working on or are al-
ready offering heterogeneous processor architectures: AMD is aggressively pushing
coupled CPU-GPU designs through its Heterogeneous System Architecture [Kyr12].
Intel is moving to integrate FPGA technology into their Xeon line of server proces-
sors to allow customers to configure highly specialized circuitry at runtime [SH16].
Samsung and Qualcomm are building heterogeneous systems-on-a-chip based on
ARM’s big.LITTLE architecture that incorporates cores of different sizes and shapes
to offer flexible and power-efficient performance scaling on mobile and embedded
devices [MWK+06, Gre11]. IBM is introducing its coherent accelerator processor
interface (CAPI), which allows external accelerators to seamlessly integrate with
the latest Power8 server processor [SBJS15]. Moreover, besides the trend towards
increasingly heterogeneous processors, there is also a growing number of specialized
external accelerator cards like Nvidia’s GPU-derived Tesla series [LNOM08] or Intel’s
massively parallel Xeon Phi co-processors [Chr14].

So, how will the future of microprocessor designs look like, and how will their evolution
affect us as Software Engineers and Computer Scientists? Experts agree that we
are just witnessing the beginning of a whole era of heterogeneity, and that future
processor architectures will become increasingly diverse [Boh11, BC11, ZPFH13,
Mär14]. And similar to how the emergence of multi-core architectures forced us to
revisit established design patterns and to begin relying on threads & parallelization,
this development will have a profound effect on the way we think about developing
software. With hardware becoming increasingly diverse, it will become vital for
software not merely to tolerate heterogeneity but to be actively able to exploit the
advantages and disadvantages of a wide variety of different processors [BRUL05].
Just like Nobel laureate Bob Dylan once said: “The times they are a-changin’, ”
and finding the novel programming paradigms, design strategies, and best practices
to build heterogeneity-aware software efficiently will soon be one of the primary
challenges for Software Engineers and Computer Scientists. If we want to stay ahead
of the curve and be ready to meet the ever-growing demand for efficient and ubiquitous
computing that the modern information society requires, we will have to react to
the changes caused by increasing hardware heterogeneity.
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Chapter 2

Tackling Heterogeneity: The
Whys, The Whats, and The Hows

In this thesis, we will cover a small aspect of the overall problem of how to design
heterogeneity-aware software. In particular, we will discuss the question of how the
trend towards increased hardware heterogeneity affects the field of relational database
systems, and present our research into how we as database researchers and practi-
tioners could react to this development. Originally introduced by E.F. Codd in the
early 1970s as a sound mathematical way to express and query data based on the re-
lational algebra [Cod70], the relational model has become one of the most influential
technological developments of the 20th century. Today, relational database systems
like Oracle, SQL Server, Postgres, MySQL or DB2 are a fundamental cornerstone of
the modern information society. Virtually all fields — including Medicine, Finance,
Manufacturing, Logistics, Telecommunication, Science, and Military — rely on rela-
tional databases to store, organize, query, process & analyze the massive amounts of
data that the modern information society produces and requires to operate.

Because of their interdisciplinary importance, improving the performance of rela-
tional database systems has always been a topic of great interest. From early on,
the research literature on database systems has presented specific algorithms, adap-
tations, and design considerations to avoid resource bottlenecks. Traditionally, this
work has focused primarily on reducing the impact of disk operations, with CPU effi-
ciency being considered more of an afterthought: Constrained by main memory sizes
that were far too small to store any significant amounts of data, ancestral relational
database systems like System R [ABC+76] or Ingres [HSW75] and their successors
were naturally designed based on the assumption of disk-IOs being the dominant
performance factor. This led to the development of several sophisticated technolo-
gies to efficiently utilize the disk and to effectively mask IO latencies, including the
B-Tree index structure [BM72, Com79], the Hybrid Hash Join algorithm [DKO+84],
the Volcano tuple-at-a-time query execution model [Gra94], and the ARIES trans-
action management method [MHL+92]. For an excellent overview of some of these
fundamental database technologies, many of which are still used by modern systems
today, we refer the interested reader to the 1993 survey paper by Graefe [Gra93].
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Things started to change around the turn of the millennium when growing main mem-
ory sizes and increasing customer demand for compute-intensive analytical workloads
brought the CPU-efficiency of databases into the limelight. As it turned out, the
disk-optimized system architectures, query execution models, and data processing al-
gorithms of the 1980s and 1990s often caused severe performance problems when they
were used to process memory-resident data on newer processors [SKN94, BMK+99,
ADHW99]. Spurred by this discovery, researchers began to rethink key design aspects
of traditional database architectures with a primary focus on improving CPU effi-
ciency and reducing memory latencies. This led to several important developments,
including the increased reliance on cache-efficient columnar (or semi-columnar) data
storage layouts [CK85, BMK+99, ADHS01, SAB+05, AMH08, ABH09], the move to-
wards CPU-efficient query execution models like column-at-a-time [BMK+99], vector-
at-a-time [BZN05], or query compilation [KVC10, Neu11, Vig14a], as well as the devel-
opment of novel lightweight transaction and isolation mechanisms [LBD+11, KN11].
For further information on the topic of in-memory data processing, we refer to Zhang
et al., who prepared a great survey paper that provides an overview of some of these
developments [ZCO+15].

Today, database performance research that does not take computational efficiency into
account would be unthinkable. Accordingly, it should come as no surprise that there
is a close relationship between the worlds of integrated circuit design and database
performance research. A great example for this relationship is the impact that the end
of Dennard Scaling had on the database research community: Before the mid-2000s,
research papers that discussed CPU-efficient query processing were primarily focused
on improving single-thread performance by optimizing data & instruction cache ef-
ficiency [SKN94, ADHW99, RR00, MBK02]. With the end of Dennard Scaling this
began to change, as researchers were forced to branch out into novel topics like ex-
ploiting SIMD vectorization [ZR02, JRSS08, WPB+09, KCS+10], relying on lock-free
data processing algorithms and data structures [Mic02, LBD+11, Hor13, TZK+13],
or using multi-core parallelization [CNL+08, KKL+09, KKG+11, BLP11, AKN12,
BATÖ13]. Obviously, this close relationship also meant that the database com-
munity did not ignore the move towards increasingly heterogeneous hardware. In
fact, looking through the last decade of literature on query processing on special-
ized hardware1, we can find articles that discuss how to write efficient data pro-
cessing algorithms for virtually any available processor architecture. This includes
graphics cards [GLW+04, GGKM06, HYF+08, HLY+09, BS10, HY11, DWLW12,
KLMV12, SR13, BAM13, Bre14, HZH14, PMK14, WDS+14, WZY+14, KML15],
runtime-configurable circuits like FPGAs [MTA09, KT11, MT10, MTA10, MTA12,
TW13, WCP+16], vector processors [HNZB07, BF10, JHL+15, PMS15], heteroge-
neous CPUs [CR07, HLH13, KHSL13, MRS+14], and even network processing equip-
ment [GAHF05, BBHHHO15].

1Interestingly, this can hardly be called a new research direction: The idea to exploit specialized
hardware to accelerate databases has been floating around since almost forty years, often subsumed
under the umbrella term of database machines [DeW79, Nec83, DGS+90]. However, despite im-
pressive technical achievements, the idea of database machines never really took off: Back when
Dennard Scaling still reliably delivered exponentially growing compute performance every two years,
it simply made much more economic sense to wait for the next generation of general-purpose CPUs
than to invest in expensive specialized hardware [BD83].
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Now, if we already know how to process data on most modern processor architectures
efficiently, then why do we feel that the topic of databases on heterogeneous hard-
ware still warrants further discussion? Essentially, this boils down to one major point:
While we do know how to accelerate individual operators on selected processors, we
do not yet fully understand how the increasing hardware heterogeneity should affect
database architectures themselves. In a way, the situation is similar to when growing
memory sizes forced us to redesign the traditional disk-based architectures of the
1980s and 90s: With hardware becoming increasingly heterogeneous, we are facing
the question of how to adapt existing database technology to a world where the as-
sumption of having a single processor type does not hold anymore. And this goes far
beyond “simply” porting database operators to multiple different processors. In fact,
this is a fascinating research problem that spans several areas and includes topics
such as improved data and operator placement mechanisms, adapted query execution
models, novel co-processing strategies, query optimizers that take hardware hetero-
geneity into account, as well as operator programming models to reduce development
overheads. Also, we are not the only ones who think this way: Heterogeneity-aware
databases are currently under heavy investigation, and several of our colleagues, in-
cluding — in no particular order and without any claim to completeness — Sebastian
Breß, David Broneske, Bingshen He, Tomas Karnagel, Holger Pirk, Hannes Rauhe,
Kaibo Wang, Haicheng Wu, Yuan Yuan, Steffen Zeuch, and Shuhao Zhang have all
made significant contributions to this field.

This is the basic context of this thesis. In the following chapters, we will discuss the
following two selected problems that derive from the fundamental question of how
to design a heterogeneity-aware database system:

1. How can we manage the development overhead incurred by increased
hardware heterogeneity in a relational database system?
One of the primary challenges of building heterogeneity-aware database sys-
tems is how to deal with the development and maintenance overhead that is
caused by hardware-specific code paths: Since most processor architectures
require, at the very least, specific code adjustments or — in the worst case —
even a complete redesign of several core components, supporting highly het-
erogeneous hardware typically causes a severe explosion of code volume and
complexity. From an economic point of view, this means that adding support
for a new processor architecture comes with a hefty price tag. Accordingly,
vendors are usually slow to embrace modern hardware, as can be seen from
the lagging commercial adoption of GPU-accelerated databases. This makes
managing code complexity and reducing development costs one of the primary
research goals on the way to enabling databases that can genuinely exploit
heterogeneous hardware.

In Chapter 3, we discuss this problem in the context of relational database sys-
tems. The general idea behind our presented approach is to rely on a hardware-
oblivious programming model that allows developers to specify relational oper-
ators on an abstract level without having to fine-tune them to the underlying
hardware manually. At runtime, a hardware-conscious runtime component then
maps this abstract operator code to the underlying hardware. By offloading as
much of the hardware-specific adaptations as possible to an automated system,
this approach can dramatically reduce the development and maintenance over-
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head for building a heterogeneity-aware database system. We demonstrate the
general feasibility of this approach via a prototypical execution engine called
Ocelot that uses OpenCL as its hardware-oblivious programming model and
vendor-provided drivers as its runtime component. Despite only having a single
implementation of the relational operators at its disposal, Ocelot still manages
to achieve competitive performance compared to state-of-the-art systems on
both CPUs and GPUs.

Now, sadly, abstraction seldom comes without regret, and there will always
be a performance gap between hardware-oblivious and hand-tuned operator
implementations. The question of feasibility is just how significant this gap
is in relation to the achieved reduction in development overhead. To further
close this gap, we then present two methods to adapt the operator implemen-
tations automatically at runtime. The first method relies on self-learning cost
models to select the optimal algorithm to implement a given operator on the
current hardware architecture. The second method, variant tuning, uses proba-
bilistic methods to fine-tune the operator implementations based on collected
performance feedback.

2. Besides query processing, what are useful ways to exploit heteroge-
neous processing hardware in a relational database system?
As we have seen, the database literature is filled with publications that discuss
highly optimized data processing algorithms for almost any available processor
architecture. One of the most active research areas from this field is GPU-
accelerated data processing, which has been under investigation for more than
a decade [GLW+04, BHS+14b]. However, despite this ongoing research interest,
and despite several publications demonstrating clear benefits of using GPU
acceleration, there has been surprisingly little commercial adoption. As it turns
out, it is relatively challenging to achieve consistent performance improvements
from using GPUs for SQL workloads: Small device memory sizes, expensive data
transfers, high operational latencies, and limited applicability to transactional
workloads, make it challenging to exploit their potential.

Because of these limitations, it is not necessarily clear that general-purpose
query processing is the optimal way to exploit graphics cards in a database
system. Several authors have suggested alternative applications for graphics
cards that are not directly related to query processing and do not suffer from
these problems, including data visualization [GKV05], data exploration [HH15],
or approximate query answering [GRM05]. One example of such an alternative
application that also benefits general-purpose query processing is the bitwise
decomposition method introduced by Pirk et al. [PMK14]. In a nutshell, this
method stores a low-resolution copy of the data on a graphics card and uses
it to support the main query execution engine on the CPU, for instance by
quickly filtering out rows that are irrelevant for the query result.

In Chapter 4, we present a method that similarly applies graphics cards in a sup-
porting role by using them as statistical co-processors to assist the query opti-
mizer. Relational query optimizers require accurate estimates of intermediate re-
sult cardinalities to construct optimal plans. By exploiting the massive raw com-
putational power of graphics cards for this estimation process, we can use more
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complex methods that produce more accurate results. Since better estimates of-
ten lead to improved — and thus faster — plans [Chr84, IC91, RH05, LGM+15],
this approach can indirectly accelerate most SQL workloads while avoiding the
typical pitfalls of GPU-accelerated query processing. Based on this general
idea, we then introduce a novel selectivity estimator based on Kernel Den-
sity Estimation that is specifically designed to exploit the massive parallelism
found on modern GPUs and multi-core CPUs. By doing so, we arrive at an
estimator that is highly scalable, that can adapt itself to changes in both the
database and the query workload, and that typically outperforms the accuracy
of state-of-the-art methods by up to a few orders of magnitude.

Finally, it should be noted that we do not claim to fully answer these two questions,
or for that matter, that we even come close to doing so. Solving the problem of
building a genuinely heterogeneity-aware database system is a challenging task that
will undoubtedly require the ongoing collaboration of many smart people over the
next several years to come. Furthermore, it should be noted that there are several
interesting aspects of the overall topic that we did not cover in this thesis. For
instance, the question of what impact the diversification of the memory hierarchy,
the ongoing maturation of flash storage, and the introduction of various classes of
non-volatile memory will have on database architectures [KV08, LMP+08, AAC+10,
PWGB13, PGH15, Vig15, ZCD+15], the question of how to optimally choose which
processing device should run which operation [HLY+09, BS13, KHH+14, WZY+14,
BFT16, KHL17], or the question of how to exploit specialized hardware to improve
the energy-efficiency of databases [HSMR09, BBZT14, CHL15, UHK+15]. However,
at the very least, we hope that our work has introduced a few novel ideas into the
field and that it may spark new research directions and interesting developments.
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Chapter 3

Managing Heterogeneity:
Hardware-Oblivious Database
Engines

Developing a database engine is an expensive undertaking that requires a signif-
icant investment of expertise, workforce, and resources. Accordingly, besides the
traditional restrictions due to memory, CPU cycles, IO bandwidth, and power con-
sumption, database designs are also restricted by development and maintenance costs.
This restriction is particularly valid for data processing on heterogeneous hardware:
Porting an existing engine to a new hardware architecture is a tedious, resource-
intensive, and error-prone task that requires a deep understanding of the targeted
hardware as well as the fundamentals of data processing. This development overhead
can quickly become the primary bottleneck for how many processing architectures
a database engine can reasonably support. Tackling the challenge of increased hard-
ware heterogeneity therefore also requires us to simplify and automate the process
of porting database operators fundamentally, ideally without incurring severe per-
formance penalties. Developing such mechanisms for abstraction without regret is
currently one of the hottest topics in modern database research [ZHHL13, HSP+13,
KKRC14, Koc14, BBHS14, AKK+15, CGD+15, PMZM16].

In this chapter, we present our work on exploiting hardware abstraction and self-
learning mechanisms to reduce the development & tuning overhead incurred by
porting a database to a new processing architecture. In particular, we present Ocelot,
a prototypical hardware-oblivious database that we implemented against OpenCL.
Ocelot’s engine is highly portable, yet achieves competitive performance to hand-
tuned code. We then discuss further methods to close the performance gap between
hardware-oblivious and hand-tuned operators, including learning cost models for
algorithm selection, and automatic variant tuning for operator implementations.
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3.1. Introduction: The Development Bottleneck of Heterogeneous Hardware

This chapter is based in parts on material from the following four publications:

1. Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, Volker
Markl
Hardware-Oblivious Parallelism for In-Memory Column Stores [HSP+13]
In: Proceedings of the 2013 VLDB Conference.

2. Max Heimel, Filip Haase, Martin Meinke, Sebastian Breß, Michael
Saecker, Volker Markl
Demonstrating Self-Learning Algorithm Adaptivity in a Hardware-Oblivious
Database Engine [HHM+14]
In: Proceedings of the 2014 EDBT Conference.

3. Sebastian Breß, Max Heimel, Michael Saecker, Bastian Köcher, Volker
Markl, Gunter Saake
Ocelot/HyPE: Optimized Data Processing on Heterogeneous Hardware [BHS+14a]
In: Proceedings of the 2014 VLDB Conference.

4. Viktor Rosenfeld, Max Heimel, Christoph Viebig, Volker Markl
The Operator Variant Selection Problem on Heterogeneous Hardware [RHVM15]
In: Proceedings of the 2015 ADMS workshop at VLDB.

3.1 Introduction: The Development Bottleneck

of Heterogeneous Hardware

Modern relational database engines are sophisticated pieces of software that are
finely tuned towards the underlying hardware to achieve optimal performance. This
high level of code specialization means that it is typically non-trivial or even out-
right impossible to port existing database code to a new hardware architecture. In
particular, when porting engines to “non-traditional” hardware like graphics cards
or FPGAs, substantial changes to the code are often a necessity [HNZB07, HLY+09,
MTA09, BHS+14b]. Implementing these changes requires vendors to spend a lot
of money hiring expert engineers who are knowledgeable in both the intricacies of
relational data processing and the targeted hardware, causing a sharp increase in
development costs. Furthermore, adding support for new architectures also causes
the development process itself to become more complex. For instance, while modern
database engines are typically written in C or C++, GPUs have to be programmed
using frameworks like CUDA or OpenCL, and FPGAs require developers to use
a hardware-design language like VHDL. Finally, there is the problem of having to
maintain a new branch of the engine’s code for each additional hardware architecture.
This causes a massive growth in code volume and design complexity, which directly
increases the required maintenance overhead [Zha09]. In other words, it is a massive
investment — and also a significant risk — for database vendors to support multi-
ple hardware architectures, in particular when some of them are “non-traditional”.
This inherent development bottleneck for supporting multiple architectures is a pri-
mary reason that is preventing database vendors from fully endorsing heterogeneous
hardware [HSP+13, ZHHL13].
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In practice, this development bottleneck of heterogeneous hardware forces vendors
to pick a primary hardware architecture for which they design their engine. Due
to their general-purpose nature and their historical relevance, CPUs are naturally
the first choice here. Data processing on CPUs is well-understood, and we know
how to run all types of different workload scenarios on them. Unsurprisingly, all
of the established database vendors focus on CPUs, with alternative hardware ar-
chitectures being, at best, investigated in the course of internal research projects.
However, while they are usually not a good foundation to build upon for a general-
purpose engine, non-traditional hardware architectures can dramatically improve
query performance when used to accelerate specific workload scenarios. For instance,
graphics cards are well-suited for analytical (OLAP) workloads that can benefit
from their massively parallel, throughput-optimized architectures. FPGAs, on the
other hand, are highly beneficial for streaming and latency-critical workloads, where
their capability to enable hardware-accelerated deep pipeline parallelism for com-
plex, static data processing tasks becomes crucial [MT10, BHS+14b, CWFH13]. And
while these advantages are apparently not incentive enough for established vendors to
warrant spending development resources, several smaller companies — including Je-
dox (www.jedox.com), Kinectica (www.kinectica.com), MapD (www.mapd.com), and
Sqream (www.sqream.com) — are filling the niche of special-purpose database sys-
tems and data applications that exploit non-traditional hardware. However, by doing
so, these companies inherently focus their products on a narrow band of selected
workload scenarios that can benefit from their choice of target architecture. Obviously,
our ultimate goal should preferably be a “best of both worlds” scenario, where the
data processing engine is capable of automatically exploiting all available hardware
resources across all types of query workloads. Building such a heterogeneity-aware
database engine can be considered as the holy grail of data processing on heteroge-
neous hardware.

So, how could we approach the task of building a heterogeneity-aware database
engine? Due to the inherent complexity of manually identifying which device is
optimal for which class of problems, the central component of any such system would
always have to be some kind of — and the reader may please excuse the usage of
this rather hand-wavy term — “learning heterogeneity-aware runtime”. Now, while
building such a component is already a monumental task by itself [HLY+09, BHS+14a,
BBHS14, RHVM15], let’s ignore this and assume for the sake of the argument that
we had access to it. The next step would then consist of us having to provide
this runtime with efficient implementations of relational operators for all targeted
hardware architectures, which is a significant amount of work. Take for instance the
original list of operators as suggested by Codd and Chamberlin, which comprises set
operations, permutation, projection, join, composition, restriction [Cod70], grouping,
aggregation, sorting [CB74, CAE+76], and outer operations [Cod79]. While this is
already a sizable number of operators to implement, we would need to provide several
more if our engine should support anything resembling modern SQL. For instance,
MonetDB [BKM08] requires almost 70 different operators to implement the TPC-H
benchmark, which can be considered the bare minimum for reasonable (analytical)
SQL support [Tra14]. Furthermore, for real-world scenarios that use more recent
SQL constructs, or to exploit modern hybrid engine designs that can operate on data
in various formats (row-wise/columnar, compressed/uncompressed), the number of
operators we have to provide grows even larger [FKN12].
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3.1. Introduction: The Development Bottleneck of Heterogeneous Hardware

Even just implementing a single relational operator for a new hardware architecture
can already require a lot of work, and the amount of research literature published
on this topic is a testament to its difficulty: Over the last 40 years, researchers
made considerable efforts to figure out how to efficiently process data stored on
disks [SAC+79, ME92, Gra93, GLS94], stored in memory [DKO+84, GMS92, MBK02,
BKM08, LP13], kept in distributed systems [DGS+90, Kos00, ÖV11], on multi-
core CPUs [ZR02, KKL+09, SKC+10, BLP11, BATÖ13, BTAO13], in heteroge-
neous (NUMA) memory architectures [AKN12, LPM+13, LBKN14, LLA+15], on
graphics cards [HLY+09, BS10, DWLW12, KLMV12, BHS+14b, KML15], on FP-
GAs [MTA09, TM11, MTA12], and on other more exotic architectures [GAHF05,
HNZB07, KHSL13, JHL+15, PMS15]. Implementing and tuning each of these algo-
rithms for a new hardware architecture is a massively laborious task even for expert
database engineers that are familiar with the intricacies of the targeted hardware.
Furthermore, since each device comes with its specific quirks and twists, this whole
manual tuning and evaluation process has to be largely repeated anytime we want to
port an operator to a new architecture. Therefore, even if we had access to a smart
runtime component to choose the optimal device for each operation automatically, we
would still have to significantly reduce the development overhead for providing this
runtime with device-specific operator implementations before we could even think
about building a heterogeneity-aware database system.

In this chapter, we are discussing our work on hardware-oblivious database engines,
which are specifically designed to reduce the development overhead when imple-
menting relational operators for heterogeneous hardware [HSP+13]. Generally speak-
ing, there are two significant sources of development overhead when adding sup-
port for a new hardware architecture: Code portability, and performance portability.
Code portability overhead refers to the effort required to make the engine run on
the new architecture. For example, extending a database engine to support GPUs
would at the very least require us to set up the GPGPU development environ-
ment, map out and implement GPU-accelerated data processing algorithms, provide
the database engine with the capability to schedule said algorithms, and develop
infrastructure components to manage data transfers, result transfers, and device
caching [HLY+09, HSP+13, BHS+14b]. In a hardware-oblivious database engine, we
approach code portability from a different angle: Instead of writing hand-written
code for each targeted device, engineers provide a single abstract implementation
that does not contain any device-specific code and is implemented against a common
execution substrate. At runtime, these abstract algorithms are then translated by
vendor-provided drivers to run on the actual hardware. In our work, we use OpenCL
as this common execution substrate, and we will discuss in the next section why we
think that this is a reasonable choice. Performance portability overhead is related
to achieving peak performance and fully exploiting the given hardware resources.
Multiple authors have repeatedly demonstrated that it is a necessity to fine-tune the
implementation of data processing algorithms to the specific characteristics of a de-
vice to achieve optimal performance [RVDDB10, BBHS14, RHVM15, PMZM16]. In
a hardware-oblivious database engine, we achieve portable performance by relying on
a learning hardware-conscious runtime that iteratively refines the hardware-oblivious
operator code individually for each device, based on the knowledge gained from run-
time performance feedback. Figure 3.1 illustrates these basic concepts to visualize
the core components of a hardware-oblivious database engine.
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Figure 3.1: The fundamental idea behind a hardware-oblivious database engine
is to move all hardware-specific code out of the core engine. Instead of having to
develop and fine-tune device-specific operators (left), our goal is to rely on a hardware-
conscious runtime to generate and iteratively refine device-specific operator code at
runtime, based on a common execution substrate like OpenCL that is supported
across multiple vendors (right). Figure adapted from [HSP+13].

Now, this overview is obviously just meant to provide a high-level idea of how we
could design a hardware-oblivious database engine. In reality, things are never as
clear-cut, and there will always be cases where device-specific fixes and optimizations
have to be part of the core engine. Still, the general idea of relying on hardware
abstraction and high-level programming patterns to improve developer efficiency is
sound and has been successfully demonstrated by several authors before [Koc14].
Legobase is probably the most prominent project that follows a similar strategy:
Klonatos et al. demonstrated that generating engine code at runtime from abstract
operators written in a high-level language allowed them to achieve performance that
was similar to hand-tuned engines, while only requiring a fraction of the develop-
ment overhead [KKRC14]. Many other projects employ similar strategies to improve
developer efficiency. Tupleware relies on code generation to efficiently process dis-
tributed, UDF-heavy data analytics tasks written in a high-level language [CGD+15].
Emma exploits algebraic comprehensions to simplify the development of distributed
algorithms over collections [AKK+15]. OmniDB, which also aims at reducing the
development overhead for data processing on heterogeneous hardware, follows a
conceptually similar design approach to hardware-oblivious databases by moving
common functionality into an abstract query processing kernel against which de-
velopers then have to implement device-specific adapters [ZHHL13]. Voodoo pro-
vides an abstract execution algebra for query processing tasks to hide details of
the underlying hardware from the developers [PMZM16]. Finally, the programming
language research community has repeatedly demonstrated how so-called iterative
compilers can employ self-tuning mechanisms to learn device-specific compilation
heuristics and adapt to the underlying hardware, allowing them to compile high-
level languages down to device-specific code that is close to hand-optimized perfor-
mance [TCC+09, FKM+11, GGXS+12, PARKA13].
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Figure 3.2: An overview of the OpenCL system model.

3.2 Background: OpenCL & The Kernel

Programming Model

According to the official specification, OpenCL — which was initially developed by
Apple and later donated to the non-profit industry consortium Khronos Group —,
is an “open royalty-free standard for general purpose parallel programming across
CPUs, GPUs and other processors, giving software developers portable and efficient
access to the power of these heterogeneous processing platforms” [The15a]. This focus
on heterogeneous hardware, as well as its extensive support across various platforms
and vendors, distinguishes OpenCL from similar frameworks like Nvidia’s CUDA,
AMD’s Mantle or Microsoft’s DirectCompute. It is also what makes OpenCL a highly
interesting candidate for the common execution substrate of a hardware-oblivious
database engine.

OpenCL was designed from the ground up to allow writing programs that are portable
between different computer architectures, covering multiple devices from various ven-
dors. As illustrated in Figure 3.2, OpenCL utilizes a generic system model, expressing
computers as a collection of one or more compute devices, which are attached to a
central host system1 that controls them. Compute devices themselves consist of one
or more compute units — think cores that can each run multiple hardware threads

— and come with some on-device global memory that is shared among the compute
units. Furthermore, devices are assumed to only be capable of operating on data that
is stored in their global memory. Accordingly, devices have to rely on explicit data
transfers, or memory mapping to access data from other devices or the host. How-
ever, this limitation can be relaxed in cases where the global memory of a device is
physically identical with the memory of either a different device (like for multi-GPU
graphics cards, or integrated GPUs) or the host (like when using the primary CPU
as a compute device). Finally, each compute unit itself can contain a small amount
of fast, on-chip local memory that is only accessible by the threads running on this
unit, and that can be used as an explicit cache or a scratchpad.

Since OpenCL is designed around a strict distinction between the host and the
compute devices, programs written against it have to be split into two components:

1Note that a CPU can act as both the host and as a compute device.
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Listing 3.1: Computing a vector sum in OpenCL.

1 __kernel void vector_add(

2 __global const float* a,

3 __global const float* b,

4 __global float* c) {

5 unsigned int gi = get_global_id(0);

6 c[gi] = a[gi] + b[gi];

7 }

The host code coordinates the devices, schedules data transfers, and manages com-
putations. For this, the OpenCL standard defines an extensive host API, comprising
well over 100 different methods [The15a]. The second part, which encodes the ac-
tual computation, are the so-called kernels, small routines written in a C-derived
programming language that express computations from the point-of-view of a single
thread. A good way to conceptualize this kernel programming model is to think of
kernels as the body of a loop over the input data, while the host code corresponds to
the loop header and the code setting up the required variables. Listing 3.1 provides
a simple example to illustrate this model, showing a kernel that implements vector
addition c⃗ = a⃗ + b⃗. Each invocation of the kernel function vec add computes a
single element of the result vector, with the framework using the return value of the
call to g e t g l o b a l i d ( ) in line 5 to indicate which element a particular invoca-
tion should produce. The OpenCL runtime automatically splits the computational
domain into multiple work items to compute the overall result, scheduling a kernel
invocation for each item in a data-parallel, lock-free fashion. The total number of
work-items is also called the global size of the computation. The items themselves
are partitioned into equally-sized work-groups, whose size is also called the local size
of the computation. The items within a work-group can be synchronized via barriers
and memory fences, and share access to the compute unit’s local memory. Each work
item is uniquely identified by a global id, which identifies its global position within the
computational domain, as well as a local id, which identifies its local position within
the work-group. Note that, since OpenCL allows kernels to be scheduled in domains
of up to three dimensions, the global and local ids are actually three-dimensional
vectors. However, in the context of this thesis, we will (almost) exclusively work with
one-dimensional kernels.

OpenCL provides the so-called event mechanism to enable synchronization between
individual operations. Each operation is associated with a unique event marker,
representing the operation’s current execution status. These markers can be used to
profile and query the status of all operations. Furthermore, they allow developers to
provide the OpenCL runtime with information about dependency relationships by
providing a wait list of events that have to finish before the newly scheduled operation
is allowed to start. This enables programmers to schedule highly complex networks
of data transfers and computations without having to manage the synchronization
between them explicitly. Furthermore, since the OpenCL standard explicitly allows
device vendors to exploit this dependency information, it allows the runtime to
optimize execution, for instance by reordering non-dependent operations to improve
device utilization or caching behavior.

This abstract kernel programming model enables device vendors to map OpenCL
programs to a wide variety of hardware architectures. For instance, on a single-
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(a) Map. (b) Scatter. (c) Gather.

(d) Reduce. (e) Prefix Sum (“Scan”).

Figure 3.3: Five basic data-parallel programming primitives.

core CPU, work-items can be processed sequentially within a compiler-generated
loop, potentially using auto-vectorization to merge neighboring items and to exploit
SIMD functionality. On a multi-core CPU, each core can be mapped to an OpenCL
compute unit, with the local memory being mapped to the core’s L2 memory (if
supported). On a GPU, work-groups can be mapped to multi-processors, which each
can run a few hundred invocations in parallel and have access to a small amount
of fast on-chip memory. Interestingly, OpenCL can also be used to control more
exotic hardware such as mobile processors [LNS09, CW11, WXYC13], massively-
parallel vector processors [LKS+10, BF10] like the Cell processor or Intel’s Xeon
Phi [Rei12], or runtime-configurable circuits like FPGAs [SE11, CAD+12, BRS13,
WHZ15, WCP+16]. Finally, there are also frameworks that allow OpenCL programs
to run in distributed environments, by modeling each server as a distinct compute
device [AONM11, KSL+12, DGAJ13].

Let us now demonstrate the flexibility of the kernel programming model by discussing
how to implement a basic relational operator. To simplify this process, we will
first introduce a set of commonly used data-parallel programming primitives as
building blocks that can be efficiently expressed within the model’s confines [SHZO07,
HGLS07]. By combining these primitives, we can then construct efficient OpenCL
representations of most relational operators [HYF+08].

Map is the most basic primitive in the kernel programming model. Given an input
array I and a function f , it applies the function to each input value indepen-
dently, storing the generated result to the same position in an output array.
This process is illustrated in Figure 3.3a. Assuming that the input and out-
put types are built-in data types, implementing a Map is straightforward in
OpenCL since it can be directly mapped to a single kernel that evaluates f .
Note that in the context of OpenCL, all invocations of the same Map primitive
have to produce the same number of output values.

Scatter & Gather allow us to shuffle data between the in- and output arrays.
Both primitives expect an input array I filled with values of type TI , and an
index array Idx containing n integer values. The Scatter primitive, which is
illustrated in Figure 3.3b, reads the input value I [i] at position i and writes it
to the output array at the position Idx [i] that is indicated by the index array.
Note that every index must be unique to avoid threads overwriting the results
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Figure 3.4: Implementing a filter operation in OpenCL.

of each other. The Gather primitive, which is illustrated in Figure 3.3c is just
the opposite: It reads the input value I [Idx [i]] from the position indicated by
the index array and writes it to the output array at position i.

Reduce2 aggregates all values from a given input array into a single result using
a bisymmetric3 function like addition, multiplication, minimum or maximum.
Figure 3.3d illustrates this for the case of a summation. Efficiently implementing
the Reduce primitive within the confines of the kernel programming model is
typically done via a parallel binary aggregation tree strategy [H+07]. Starting
with version 2.0, OpenCL provides a built-in work-group reduce function for
summation, minimum & maximum, allowing the hardware vendor to insert a
device-optimized version at runtime. For older versions of OpenCL, a manual
implementation based on barriers and thread-synchronization mechanisms must
be used [H+07].

Prefix Sum (“Scan”) can be seen as a generalized version of the Reduce primitive.
Given a (bisymmetric) function g, this primitive transforms an input array
I with n values into an output array O, such that ∀i ∈ [1, n] : Oi = g (I:i),
where I:i denotes the set of the first i input values. In other words: The output
array at position i contains the result of aggregating the first i input values.
Figure 3.3d illustrates this for the case of a summation. The Prefix Sum is
typically implemented based on a two-pass sweep through a parallel binary
aggregation tree over the input array [BRE82, HKL+08]. However, recently,
there has also been work on designing single-pass parallel algorithms to improve
the operation’s IO-behavior [MG16]. Similar to reduce, OpenCL offers a built-in
work-group function for the Prefix Sum primitive starting with version 2.0.

Now that we have something to build upon let us discuss how to implement a sim-
ple parallel relational operator in the kernel programming model. In particular, let

2Not to be confused with the Reduce operator from MapReduce [DG08]
3Meaning the function is both associative and commutative.
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us implement the Filter operation, which takes an input column and a predicate,
and produces an output column containing only those values that qualify the given
predicate. The first step of implementing this is to have each thread evaluate the
predicate on its share of input values, which is a straightforward Map primitive.
However, things get a little bit more complicated when we want to store back the
filtered result: Since the filter removes non-qualifying values from the input, the
position where a particular qualifying input value appears in the result depends on
how many non-qualifying values came before it. In other words: Since the number
of produced values per thread is not known when starting the operation, we gener-
ally cannot precompute unique write offsets into the contiguous result array. The
straightforward option to solve this problem is to use a single atomic offset counter
that gets incremented to produce unique write offsets whenever a thread is writing a
result. However, this will cause severe contention when the total number of results is
big, given that each produced value requires concurrent access to the atomic result
counter, which leads to serialization by the hardware. We can achieve a lock-free
solution that avoids this problem by relying on a combination of the Map, Prefix Sum,
and Scatter primitives. This strategy, which is illustrated in Figure 3.4, involves three
passes: First, each thread counts its number of produced values, writing this number
into a temporary buffer. In the second pass, the Prefix Sum primitive is used on the
result counts to compute unique write offsets into the result buffer for each thread.
These offsets are then used in the final pass of the computation as index values for the
Scatter primitive to write the filtered values into the correct positions of the result
buffer [WDCY12]. The research literature on GPU-accelerated database operators
contains similar strategies to provide efficient OpenCL implementations for virtually
all relational operators. This includes sorting [GGKM06, SA08, SHG09a, MG11],
hashing [ASA+09, GLHL11, AVS+11, KBGB15], joins [HYF+08, KLMV12, HLH13],
group-by & aggregations [Hor05, HFL+08, KML15] and string operations [CRRS10,
DN13, SR16]. This wide variety of supported operators demonstrates the applicability
of OpenCL as a target platform for relational query processing.

In summary, OpenCL offers a highly flexible, yet expressive programming standard
that enjoys broad support from the hardware industry, with virtually all major ven-
dors providing compatible drivers. This enables programs written against OpenCL
to run unchanged on a wide variety of different hardware configurations, making
it — and derived frameworks like SyCL [The15b], VexCL [DARG13, Dem14], and
Boost.Compute [Lut15] — one of the most promising current platforms for program-
ming heterogeneous hardware. Furthermore, it has repeatedly been demonstrated
that OpenCL can indeed act as an efficient and powerful execution target plat-
form for relational databases, in particular when focusing on heterogeneous hard-
ware [HSP+13, ZHHL13, PMZM16, KHL17].
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3.3 Ocelot — A Hardware-Oblivious

Database Engine

In [HSP+13], we introduced Ocelot as a proof of concept to demonstrate the gen-
eral feasibility of a hardware-oblivious database engine design. In particular, we
wanted to show that implementing our engine against a common execution sub-
strate like OpenCL allowed us to overcome the architectural aspects of the devel-
opment bottleneck of heterogeneous hardware and achieve code portability across
different architectures. Ocelot is integrated into the in-memory column store Mon-
etDB [BKM08] and uses OpenCL as its common execution substrate against which
it provides a basic set of hardware-oblivious operators. The name Ocelot was cho-
sen because it reminds of OpenCL, and because Ocelots — a type of wild cat
from Southern America — are fast animals, reaching stunning speeds exceeding
60 kph4. Ocelot is open-source, and the complete source code can be downloaded
from bitbucket.org/msaecker/monetdb-opencl.

Figure 3.5: The majestic Ocelot staring mysteriously into the distance. Picture
”Nice profile of Nelson” by “Tambako The Jaguar” is licensed under CC ND 2.0.

3.3.1 System Overview

Since Ocelot was primarily meant as a demonstrator to showcase a hardware-oblivious
database design, we limited our development efforts to the subset of operators that was
necessary to allow a reasonable evaluation based on the TPC-H benchmark [Tra14].
Furthermore, to quickly arrive at a working prototype, we decided to design Ocelot
as a drop-in replacement of an existing database engine. The choice for using Mon-
etDB as our host system was made for two primary reasons: First, MonetDB is
an in-memory column store, which is a vital prerequisite to achieve performance
improvements obtained from modern hardware in general, and from graphics cards
in particular [GAHF05, Bre14]. Second, MonetDB’s source code is publicly available

4http://a-z-animals.com/animals/ocelot
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Figure 3.6: The architecture of Ocelot. Figure taken from [HSP+13].

under an open-source license, which made it easy for us to make the required modifi-
cations and also enabled us to publish our system under the same open-source license.
Building Ocelot on top of MonetDB allowed us to reuse several major components,
including the data layout, storage management, debugging facilities, and plan sched-
uler. It also allowed us to recycle MonetDB’s query plans, which greatly simplified
development, testing, and benchmarking. Furthermore, it allows both systems to com-
plement each other, with Ocelot being able to fall back to MonetDB for operators that
it does not support, and with MonetDB gaining support for hardware-accelerated
operations from Ocelot.

Figure 3.6 shows a high-level overview of Ocelot’s architecture, highlighting its four
major components: The Operators are the central part and the workhorse of Ocelot,
each one implementing a hardware-oblivious drop-in replacement of a particular
MonetDB database operator against OpenCL. The Memory Manager is used to
abstract away details of the memory architectures from the operators by transparently
handling device memory management and required data transfer operations. The
Query Rewriter adjusts MonetDB’s query plans by replacing operator calls by the
corresponding ones from Ocelot. Finally, the OpenCL Context Management initializes
the OpenCL runtime environment, detects all available OpenCL devices, triggers
the compilation of kernels for each device, handles the scheduling of operations and
data transfers, and provides API calls and internal data structures for each device
to the operators. With the overview out of the way, let us now discuss the individual
components in greater depth.

3.3.2 Hardware-Oblivious Operators

Ocelot’s operators are advertised to MonetDB via a MonetDB Assembly Language
(MAL) binding, describing the interface and entry function. The entry function
contains the host code to schedule all required OpenCL operations for the current op-
erator. This includes checking input parameters, setting up the required resources on
the device via the Memory Manager, initializing the required kernels, and scheduling
them for execution via the Context Management. Most operators also contain code
to handle errors, ensuring that all held resources are released upon encountering an
unrecoverable error. The actual computations are implemented as standard OpenCL
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kernels, which are compiled in bulk by the Context Management for all detected
devices when Ocelot is initialized. Naturally, neither the operator host code nor the
kernels contain any device-specific code. Instead, the operators rely on the abstrac-
tion mechanisms provided by OpenCL and by Ocelot’s common infrastructure to
arrive at a fully portable, hardware-oblivious implementation that allows them to
run without changes on any available OpenCL device. In fact, setting the device
on which a given operator should run on is done by simply passing the id of the
intended device as an optional argument to the operator. Setting this argument only
changes which OpenCL context is handed to the operator by the Ocelot runtime:
From the operator’s point of view there is no difference between running on the
CPU, on a graphics card, or even on an FPGA. The context transparently han-
dles all device-specific operations like required memory transfers, specific scheduling
decisions, or compilation choices. Let us now take a quick look at how we imple-
mented some of these operators. With OpenCL being derived from a GPU-centric
programming model, we based most of our implementations on existing work from the
area of GPU-accelerated databases [GLW+04, HGLS07, HYF+08, HLY+09, BS10,
WDCY12, KLMV12, HLH13].

Filter

The implementation of Ocelot’s filter operator follows the general approach outlined
in the previous section, with one major difference: Instead of generating a contiguous
list, we encode the set of qualifying tuple IDs as a bitmap [WDCY12]. This allows
us to efficiently combine multiple filter predicates through simple bitwise operators
without having to materialize the intermediate result. Furthermore, it also enables
subsequent operators to rely on positional lookups into the bitmap to check whether
a given input tuple is still selected. The actual implementation is straightforward:
Each thread evaluates the given predicate on a small consecutive chunk of at least
eight input values to generate one (or more) bytes of the result bitmap. Note that, to
ensure compatibility with MonetDB’s selection operator, bitmaps are never exposed
in the interface and are only passed via Memory Manager references. Our query
rewriter transparently injects a Projection operator to materialize these bitmaps into
a list of qualifying tuple IDs if operators from MonetDB try to access the result of a
filter operation.

Projection

Conceptually, MonetDB’s projection operation is a join between a list of tuple IDs
and a column. Practically, since the tuple IDs directly identify the position of the
join partner, this operation can be efficiently implemented by a parallel Gather
primitive [HGLS07]. Things get more interesting when the left input is a bitmap —
for instance when projecting on a selection result, or when materializing a bitmap.
This materialization operation requires two steps, as outlined in the previous section:
First, we run a Prefix Sum over the bit counts to compute unique write offsets for
each thread. Then, we run a Scatter primitive, where each thread writes the positions
of set bits within its assigned bitmap chunk to its corresponding offset.
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Sorting

Ocelot uses a binary radix sort implementation that was loosely based on the ideas of
Satish et al. [SHG09b, SKC+10]. In a first step, we generate local histograms of the
current radix for each work-group. Afterwards, we shuffle the histograms to ensure
that all buckets for the same radix are laid out consecutively in memory, using a
Prefix Sum to calculate the offset for each value and all work-groups. Finally, we
reorder the values according to the offsets in the global histogram. We then repeat
this procedure until the key is fully processed. Our local sort implementation is based
on [Hel11], with minor modifications to handle arbitrary input sizes and negative
values. Note that Ocelot does not support sorting over multiple columns. Due to
the nature of the radix sort, sorting by multiple columns would require several
additional passes over the data. Therefore, multi-column sorting would require a
different, comparator-based implementation to become competitive.

Hashing

Ocelot’s parallel hashing algorithm builds on ideas from [Alc11, GLHL11]. It begins
with an optimistic round, letting each thread insert its keys without any form of
synchronization. If a collision occurs, this will result in keys being overwritten. We
then test for collisions in a second round, where each thread checks whether its key
ended up in the expected bucket. If the test failed for at least one key, we know
that a collision occurred and fall back to a pessimistic implementation that uses re-
hashing and relies on OpenCL’s atomic compare-and-swap operations to iteratively
re-insert failed keys. We found that in practice, a probing strategy that re-hashes
with three sufficiently orthogonal hash functions before reverting to linear probing
gave us a good balance of achieved load factors and hashing costs. In contrast to prior
work, Ocelot does not use a stash for failed elements, as we could not observe any
noteworthy improvements from using one. Instead, if the pessimistic approach fails
for at least one key, we restart with an increased hash table size. Since restarting is
expensive, we try to avoid this by picking an adequate initial table size. In particular,
we observed that our hash tables have a filling rate of around 75% and consequently
over-allocate the hash table by a factor of around 1.5. Based on this general hashing
scheme, we also built a multi-stage hash lookup table for joins and grouping operation
as described in [HLY+09].

Join

Ocelot contains parallel implementations of two basic join algorithms, loosely based
on the work from [HYF+08]: A parallel nested loop join for theta-joins, and a parallel
hash join for equi-joins5. In the case of sorted input, Ocelot can also run a parallel
merge join, or, if only the smaller side is sorted, a nested-loop join that uses binary
search to find join partners quickly. All join algorithms are embedded within a two-
pass framing algorithm to achieve lock-free parallelism when producing an unknown
number of result tuples [HYF+08]: During the first pass, each thread only counts the
number of join result tuples it will produce. From these counts, we then compute
unique write offsets into the result buffer by using a Prefix Sum. In the second
pass, the join is actually performed, with each thread writing its result tuples at its

5A special case are PK-FK joins, which are precomputed as join indexes by MonetDB. These
joins are actually implemented as a simple projection against the join index.
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respective offset. Now, since this effectively means that each join has to run twice,
we try to be a bit smart about this and only use the two-pass procedure if the join
cardinality is unknown.

Grouping

The grouping operator in MonetDB produces a column that assigns a dense group ID
to each tuple. Ocelot uses two different implementations for this operation, depending
on whether the input is sorted or not. For sorted input, we first run a Map primitive
that identifies the position of group boundaries by comparing each value with its
immediate successor. Running a Prefix Sum over the group boundary indicators then
generates dense group IDs. If the input is unsorted, we start by building a hash
table over the grouping column to generate dense group IDs. Once the hash table is
built, we generate a marker array with the same number of buckets as the hash table,
storing 1 if the corresponding bucket in the hash table stores a valid value, and 0
otherwise. We then run a Prefix Sum over the marker array to generate contiguous
IDs for each bucket. After this is done, we run a final pass over the grouping column
to look up the dense group IDs from the hash table and write them to the output.
Multi-column grouping is implemented by recursively applying this general strategy
on the combined group assignment IDs from two prior grouping passes.

Aggregation

We implemented scalar aggregation as a straightforward parallel binary reduction
strategy [HGLS07]. Grouped aggregation is a bit more complex but generally works
by exploiting the fact that MonetDB guarantees dense IDs for groups. This guarantee
allows us to use group IDs as direct offsets into the aggregation table. We rely on
OpenCL’s atomic operation — or on hand-written locks based on atomic cmpxchg

— to guarantee thread-safe updates to the actual aggregate values. Each work-group
uses its own aggregation table to improve parallelism and reduce contention. If the
number of groups is small enough, we keep this table in the group’s local memory
to further improve access latency. If it does not fit into the local memory, we fall
back to storing the table in global memory. After the partial aggregation tables have
been generated, we collect all partial aggregates and compute the final results in
parallel, using one thread per group to do so. Due to the use of atomic operations, this
strategy works best when the number of groups is high and not skewed. Otherwise,
contention on the atomic aggregation variables causes the execution to serialize,
which can lead to severe performance penalties. Finally, to reduce this contention,
and to make our implementation skew-resilient, we distribute the computation evenly
across multiple hash tables within each work-group, with the number of tables being
inversely proportional to the number of groups.

3.3.3 Device Memory Management

The Memory Manager acts as the storage interface between Ocelot and MonetDB. It
abstracts away all details of the location and current status of data from the operators,
automatically prepares data produced by Ocelot for consumption by MonetDB,
and also shields the operators from the details of the device memory architecture
they are running on. Internally, MonetDB keeps all of its data in so-called Binary
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Association Tables (BATs), which reside in-memory on the host. OpenCL kernels,
however, can only operate on OpenCL buffers, which reside on the device’s global
memory. Consequently, we have to transfer each BAT into an OpenCL buffer before
we can launch a kernel to operate on it. The Memory Manager transparently handles
this transformation. Internally, it maintains a mapping of BATs to OpenCL buffer
objects and provides functions to return the buffer object for a given BAT. If there
is no current object, the Memory Manager transparently allocates a new buffer on
the device and schedules a data transfer to fill it with a copy of the BAT data. When
Ocelot is running on a device that operates in host memory like the CPU, this is a
zero-copy operation where we simply wrap an OpenCL memory object around the
BAT’s memory buffer from MonetDB. For external devices like graphics cards, the
Memory Manager also acts as a device cache, keeping buffer objects on the device as
long as possible to avoid expensive transfers. For operators and developers, all of this
complexity is completely hidden: The Memory Manager transparently injects any
required data transfers, dependency management operations, or scheduling decisions
in the background via events.

The Memory Manager is also responsible for managing the memory resources on the
devices. If an allocation request on the device cannot be fulfilled due to insufficient free
memory, the Memory Manager automatically starts to free up resources, for instance
by evicting cached BAT data in LRU order, until the request can succeed. Once
all cached BATs are evicted, the Memory Manager resorts to offloading result and
intermediate buffers to the host6. This also happens in LRU order, giving preference
to auxiliary data structures like hash-tables before offloading result buffers, and
relying on reference counting to prevent the eviction of buffers that are currently
in use. This mechanism can also be used to pin BATs permanently to particular
devices, allowing frequently accessed data to be effectively device-resident.

Last but not least, the Memory Manager also plays an important role for the interface
between MonetDB and Ocelot operators. MonetDB requires that operators exchange
all intermediate results in BATs. However, if we want to pass results between Ocelot
operators, this would incur a severe performance hit, given that it would incur an extra
round-trip to the host for all intermediate results. In order to avoid these unnecessary
round trips, we rely on the Memory Manager’s caching feature to transparently pass
OpenCL buffers while still adhering to MonetDB’s operator interface: By convention,
all of our operators will return empty “marker” BATs, for which the actual content
is registered as an OpenCL buffer object within the Memory Manager. When an
Ocelot operator consumes a “marker” BAT, this allows us to transparently resolve
it into the actual result buffer without incurring any additional transfer overhead.
We only need to perform result transfers when MonetDB tries to access a BAT that
was produced by Ocelot. This case is automatically detected by our Query Rewriter,
which then injects an explicit synchronization operation into the plan that schedules
a result transfer to materialize the BAT before it is passed to MonetDB.

6We cannot simply drop these buffers, as they contain computed content. Instead, we offload
them to the host and copy them back when needed.
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Figure 3.7: Illustration of Ocelot’s execution schedule for the query: “SELECT b
FROM . . . WHERE a IN (2,3)”. Figure taken from [HSP+13]

3.3.4 Query Execution Model

Ocelot follows the same operator-at-a-time batch processing model as MonetDB.
Conceptually, each operator consumes its complete input and materializes its full
output before the next operator is started. However, contrary to MonetDB, we em-
ploy a lazy evaluation model: Ocelot operators only schedule their kernels and data
transfers but do not wait for them to finish. To still achieve correctness, Ocelot
performs automatic dependency management, centered around OpenCL’s event syn-
chronization model and using buffer objects as synchronization points. Internally, the
Context Management maintains a registry of events for each buffer object, keeping
producer events — tied to operations writing to the buffer — and consumer events7

— tied to operations reading from the buffer. Whenever Ocelot’s operators schedule
a new operation via the ontext Management API, they have to provide the list of
buffers the operation reads from (“consumes”) and writes to (“produces”). Internally,
this information is then used to look up the current list of producer events tied to
the consumed buffers. This list is passed as a wait-list to the OpenCL runtime for
the scheduled operation, ensuring that the operation will only start to run, once
all of its inputs are ready. After the operation has been scheduled, we register the
new event that is tied to it, both as a producer for the buffers it produces and as a
consumer for the buffers it consumes. This mechanism allows us to pass scheduling
and dependency information to the device driver, allowing it to reorder operations
to improve performance. It also allows us to abstract away all scheduling decisions
from the developer of the operator, and — in conjunction with the Ocelot Memory
Manager — even allows us to completely hide the complexity of managing input or
result data transfers.

Figure 3.7 illustrates an exemplary Ocelot execution schedule for a simple SQL query.
The lower half of the Figure shows the sequence of operators that are scheduled by
MonetDB’s execution plan, while the upper half demonstrates how Ocelot translates
this into kernels, data transfers, and memory allocations on the device. The upper
half also demonstrates all dependency relationships that Ocelot forwards to OpenCL.
We can see a few interesting details: First, note that, even though it is used twice,

7Maintaining consumer events is important in our lazy evaluation model to decide whether it is
safe to discard a buffer, for instance when freeing up device storage.
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the input BAT a is only transferred once to the device, due to the Memory Manager
caching the corresponding device buffer. Second, note that the result BATs t1, t2,
and t3 are never owned by MonetDB, and never incur any data transfer. These BATs
are solely used to pass references to device buffers between Ocelot operators. Third,
note that, when MonetDB actually requires the final result, the Query Rewriter
automatically injects a sync operation after the final kernel, which triggers the result
transfer and waits for everything to finish. Finally, the schedule also contains two
cases where an OpenCL device driver might decide to reorder operations to improve
performance: First, data transfer tb is independent of kernels σ2, σ3, and ∨ — so it
could be moved forward, hiding transfer latency by interleaving it with any of those
kernels. Second, kernels σ2 and σ3 are independent of each other. Depending on the
current device load, the driver might decide to interleave those kernels to achieve
higher throughput.

3.3.5 Evaluation

The goal behind building Ocelot was to demonstrate the feasibility of a hardware-
oblivious database design that achieves code portability through a common execution
substrate like OpenCL. Technically, this merely meant that we had to show that
Ocelot is indeed capable of running the same operator code against arbitrary devices.
However, mere portability is obviously only half the story, and the real question
quickly becomes whether our engine can also deliver query performance that is com-
petitive with state-of-the-art systems. To answer this question, we ran a performance
comparison between Ocelot and its host system MonetDB based on the TPC-H
benchmark [Tra14]. Since Ocelot runs the same query plans as MonetDB, and since
both systems share the same column-at-a-time bulk-processing execution model, any
performance differences between these two systems can largely be attributed to how
their operator code performs. Before we could start this experiment, we first had
to make a few modifications to the TPC-H benchmark to ensure that all queries
could run within Ocelot’s restricted implementation scope. In particular, we changed
all DECIMAL columns to REAL, got rid of queries that required complex string
operations (LIKE), and removed LIMIT clauses, secondary join keys, and order by
expressions on string keys from the remaining ones. This left us with a set of fourteen
TPC-H-derived queries. For a full list of these queries, including a detailed rundown of
our changes broken down by query, please refer to our original publication [HSP+13].

For the actual experiment, we then created a new TPC-H database of scale factor one8

and ran all fourteen queries against MonetDB, Ocelot on the CPU, and Ocelot on
the graphics card. Comparing the query runtimes between these three configurations
allowed us to highlight two important aspects: First, by comparing between MonetDB
and Ocelot on the CPU, we get a feeling just how well the performance of a hardware-
oblivious engine can stack up against a hand-tuned system. Second, by comparing
between Ocelot on the CPU and Ocelot on the graphics card, we can investigate
whether our engine is indeed portable and whether it can also exploit other hardware
architectures to achieve performance improvements. To limit the impact of side-

8In our original publication, we also presented experiments based on larger scale factors [HSP+13].
However, since those experiments did not really lead to any additional insight, we merely present
the scale factor one experiment here.
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Figure 3.8: Comparing the performance of Ocelot on CPU & GPU to MonetDB
using TPCH-derived queries (SF1).

effects unrelated to operator performance, we ran each query once to warm up
the cache, followed by measuring the average runtime of four query repetitions. In
particular, this means that measurements on the graphics card do not include the
time that was required to transfer input data onto the card. The measurements do
however include the time that was required to return the query result to the host.
Furthermore, to guarantee that all three configurations used the same query plans,
we ran the fourteen queries directly against MonetDB’s SQL interface and relied on
Ocelot’s Query Rewriter to inject the rewritten operators. We ran this experiment on
a custom-built server containing a multi-core, multi-processor Intel CPU system (two
Intel Xeon E5-2650 v2 eight-core processors), as well as a professional GPU-derived
accelerator card from Nvidia (Nvidia Tesla K40m).

Figure 3.8 illustrates the results of our performance comparison. There are a few
interesting observations to be made. First, we can see that, on average, Ocelot man-
ages to outperform MonetDB on the CPU by around ten to twenty percent. Now,
to be fair, this is primarily caused by two outlier queries (Q17 and Q21), for which
MonetDB is much slower than Ocelot. If we ignore these outliers, MonetDB is actu-
ally around ten percent faster on the CPU than Ocelot. Still, this is an encouraging
result, given that it confirms our claim that a hardware-oblivious engine can indeed
achieve query performance that is competitive to a hand-tuned system. Looking at
the numbers for Ocelot on the GPU, we can see that using the graphics card gives us
a performance boost of around twenty percent over the CPU. While this speed-up is
below what other publications claim to achieve for GPU-accelerated query process-
ing [WDS+14, MSP+16], the result still demonstrates Ocelot’s capability to achieve
solid performance across architecture from a single unified codebase. Let us quickly
compare these results to our original evaluation of Ocelot, which we published in our
2013 VLDB paper [HSP+13]. Back then, our experiments showed that Ocelot was
dramatically slower than MonetDB on the CPU, often by several orders of magnitude.
We explained this behavior by the early development stages of Ocelot, as well as the
lacking maturity of available OpenCL drivers. In particular, we stated that: “We
believe that as OpenCL becomes more mature, and as vendors become more familiar
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with it, we will automatically see performance improvements.” [HSP+13]. Looking
at the results from Figure 3.8, it seems that this prediction has come true, with
Ocelot being much closer to MonetDB’s query performance. This was made possible
by a combination of multiple factors. We obviously made various improvements to
Ocelot’s code over the last years, including optimizing algorithms, improving the
scheduling strategies, and tuning the kernel compilation process. However, a good
chunk of the relative performance improvements also came “for free” by nature of
having access to more mature OpenCL drivers.

Another interesting source of experimental insight into the viability of a hardware-
oblivious database design comes from the various publications of authors that have
used Ocelot as a reference or baseline system [WZY+14, BSTS15, KHL15, PHH16,
PMZM16, KHL17]. Out of those publications, there are two that we want to highlight
specifically. The first one was published by Breß et al. in [BSTS15]. In this publi-
cation, the authors compared Ocelot against CoGaDB [Bre14, BFT16], a relational
database engine that was specifically designed to exploit graphics cards. The conclu-
sion from this experiment — which was based on both TPC-H and the star schema
benchmark [OOC07] with scale factors of ten —, was that both systems offer similar
performance. In particular, the authors concluded that “the GPU backends of Ocelot
and CoGaDB are both highly optimized and competitive in performance.” [BSTS15].
These findings confirm our claim that hardware-oblivious systems can achieve compet-
itive performance to hand-tuned systems across architectures. The second evaluation
we want to highlight was published by Pirk et al. in [PMZM16] and contains a
comparison between Ocelot, Hyper, and Voodoo. Hyper is an in-memory database
system that uses dynamic code generation, and that is specifically tuned to exploit
modern multi-core, multi-processor architectures efficiently [Neu11]. Voodoo, which
in a way can be seen as the “spiritual successor” to Ocelot, is a data processing
framework that relies on a declarative algebra to abstract away hardware proper-
ties and that uses dynamic code generation based on OpenCL to target different
architectures [PMZM16]. The results of this evaluation are a bit more challenging to
interpret, given that MonetDB uses a different execution strategy than the other two
systems. Nevertheless, we can make a few interesting observations. First, for queries
that are not strongly dominated by intermediate results (e.g., Q6, Q12, and Q15),
Ocelot’s performance is roughly within a factor of two of Hyper. Given that Hyper
is considered to be one of the most optimized database systems for modern CPU
architectures, this is a solid result. Second, Voodoo manages to provide performance
that is competitive to both Hyper on the CPU, and to Ocelot on the GPU. In other
words: Under identical execution paradigms, it is not unreasonable to assume that
an OpenCL-based, hardware-oblivious database engine could achieve performance
that is competitive with a highly tuned CPU-based query processing engine.
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3.4 Closing the Performance Gap

The various experimental evaluations of Ocelot conclude that while the system man-
ages to provide competitive performance across a variety of architectures from a
single code base, there is still an apparent performance gap left to hand-tuned sys-
tems [HSP+13, BFT16, PMZM16]. And while understanding how to construct a
system around a common execution substrate like OpenCL is an essential first step
towards building a hardware-oblivious database engine, the ultimate goal must al-
ways be achieving performance portability. With that in mind, we will now discuss
two strategies that could help us to reduce this performance gap.

3.4.1 The Algorithm Selection Problem

Probably the most basic way to improve the query performance of a relational
database engine is to select the right set of algorithms to implement the relational
operators. Since the relational calculus is a declarative language, most of its operators
can be implemented in a variety of ways, often with vastly different performance
profiles [Cod70, SAC+79]. Probably the best example to illustrate this variety of
available implementation strategies is the join: Most people reading this thesis are
likely familiar with at least three to four general classes of join algorithms, each of
which having various specializations for different use case scenarios, data types, and
hardware architectures [ME92]. In fact, a quick search on Google Scholar uncovers
around 300 publications that discuss different strategies to perform a join. And while
many of those are either improvements of prior algorithms or target specific use cases
like geospatial [RKV95, KS97, BK02] or similarity [KKPR06, XWL08] joins, there is
still a sizable number of different algorithms to choose from [Gra99, SS16]. Even worse,
the optimal algorithm choice is often non-obvious and depends on several variables,
including query workload, data properties, and last but not least the underlying
hardware [KLMV12, SR13, BBHS14, BSTS15, BBS15, JHL+15, PRR15, RHVM15,
SS16, PMZM16].

Let us illustrate this algorithm selection problem for a simple example. Consider a se-
lection operator that evaluates disjunctive range predicates of form

⋁
i a ≥ li∧a ≤ ui

on a single attribute a, returning a bitmap to indicate the qualifying tuples. We now
compare two OpenCL algorithms to implement this operator: Chaining relies on
prebuilt kernels to produce intermediate bitmaps for each range disjunct, followed by
merging these intermediates via a bitwise OR operation. Dynamic Code Generation
constructs and compiles a custom kernel at runtime to evaluate the whole predicate
in a single pass over the data. We evaluated both algorithms on four devices — a
server CPU (Intel Xeon E5620), a consumer CPU (Intel Core i7 2620M), a mobile
GPU (Nvidia NVS 4200M), and a consumer graphics card (Nvidia Geforce 4600) —,
varying both the size of the input and the number of disjunct ranges. Figure 3.9 illus-
trates the results of this experiment, showing heatmaps to indicate which algorithm
was fastest on which device in which part of the parameter space. There are two
interesting observations: First, we can see a clear device-specific divide between the
optimal algorithm choices, with graphics cards preferring Chaining and CPUs gen-
erally Dynamic Code Generation. Second, we can also see a workload-specific trend
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(a) Server CPU
(Intel Xeon E5620)

(b) Consumer CPU
(Intel Core i7 2620M)

(c) Mobile GPU
(Nvidia NVS 4200M)

(d) Consumer GPU
(Nvidia Geforce 4600)

Figure 3.9: Heatmaps illustrating the fastest selection algorithm on various devices.
The X-axis shows the number of range predicates, the Y-axis the number of input
tuples. The color indicates the fastest algorithm, with green denoting Dynamic Code
Generation and red denoting the chaining of prebuilt kernels.

— most visible for the consumer CPU and the mobile GPU — towards preferring
Dynamic Code Generation for larger input sizes and more complex predicates. This
is caused by the different performance profiles of the two algorithms: While Chaining
has to repeatedly scan the input for each range predicate, it does not incur any
up-front costs. Dynamic Code Generation on the other hand performs the operation
in a single pass over the input, but requires us to spend some initial time to compile
the custom kernel. For small input sizes and few range disjuncts, this compilation
time dominates the overall execution cost, making Chaining more efficient. However,
as the input and the number of disjuncts grows, the impact of the initial compila-
tion time becomes less significant, and Dynamic Code Generation takes over as the
optimal choice. Now, as we can see, the actual boundary in the parameter space
where this shift happens depends strongly on the hardware. For instance, graphics
cards have a much higher memory throughput than CPUs, allowing them to perform
several full passes over the data in the time it takes to compile a kernel. Compared
to CPUs, this pushes their decision boundary outwards in the direction of larger
input sizes and more complex predicates.

Obviously, having to choose between multiple available algorithms is hardly a new
problem. In fact, this is a classical topic from query optimization research that — in
particular for joins — has been studied for almost thirty years. Modern relational
query optimizers typically rely on manually tuned analytical cost models to choose
between algorithms [Swa89, ME92, Ioa96]. And while this is also the preferred
strategy in the context of heterogeneous hardware, we now have to face an explosion
in the number of required models: Instead of having a single one per algorithm, we now
have to build and tune cost models for each device [BSTS15]. In theory, we could just
build those models at development time for a list of selected devices. However, since
this would effectively restrict us to a set of predefined devices, this approach violates
the core principles of heterogeneity-aware databases. An alternative that does not
restrict our engine — and that is also more in line with our ultimate goal to reduce the
development overhead — is to rely on methods from machine learning to allow the
system to learn required models from runtime observations automatically. This idea
of using learning cost models has repeatedly been demonstrated as a viable solution
for the algorithm selection problem on heterogeneous hardware [IOP99, HLY+09,
BS13, BHS+14a, HHM+14, BSTS15].
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Figure 3.10: An overview of Ocelot’s multi-algorithm selection framework. Figure
adapted from [HHM+14].

Ocelot’s multi-algorithm selection framework uses learning cost models to identify the
optimal algorithm choice. The framework exploits Ocelot’s — or rather MonetDB’s

— operator-at-a-time execution model to make this decision at runtime when the
operator is called, as opposed to the classical model of having the query optimizer
select algorithms at compile time based on estimated input cardinalities. This has
the distinct advantage of being able to make decisions based on accurate information,
which typically leads to better results. The framework is also designed with online
learning in mind, meaning that Ocelot continuously refines the learned decision
boundaries based on runtime feedback. This means that we do not require any upfront
calibration based on a representative workload to initialize our cost models9, and it
also enables us to dynamically react to workload or data changes that impact the
optimal algorithm decision. To implement a so-called multi-operator, the developer
has to provide10 the following three components:

The algorithms: The set of algorithms that implement the operator. Each algo-
rithm has to be provided as an individual Ocelot operator, as described in
Section 3.3.2. This includes the host code to set up required data transfers and
operations, as well as the OpenCL kernels to perform the required computations.
All provided algorithms must share the same signature.

The feature provider: The developer has to provide us with a function that re-
turns a set of variables that have an impact on the operator runtime to define
the feature space over which Ocelot will learn its cost models. This allows us
to incorporate domain expertise from the developer into the training process,
leading to more accurate models [THW02, ATNW11]. Possible features could
include input cardinality, predicate selectivity, predicate complexity, or skew
in the data distribution.

The operator interface: A small piece of code that ties the other components to-
gether by defining the operator’s signature, as well as registering the algorithms
and the feature provider.

9It is, however, trivially possible to run an upfront calibration, if needed. This is done by directly
running the representative workload on the live system, which will cause Ocelot’s learning routine
to adjust its cost models based on the workload-specific feedback.

10For syntactical details on how to implement these components, we refer to our 2014 EDBT
publication [HHM+14] as well as the Ocelot source code repository.
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At compile time, Ocelot uses these components to generate framework code that
implements the required decision and learning logic. Figure 3.10 illustrates the work-
flow in this generated code: When a multi-operator is called, the decision routine
picks one of the provided algorithms based on their expected runtime costs. The
decision routine estimates these costs by plugging the feature vector from the fea-
ture provider into the learned cost models. After the selected algorithm returns, a
training record consisting of the observed algorithm runtime and the corresponding
feature vector is collected and forwarded to the learning routine, which uses them
to adjust the cost models. Internally, Ocelot trains L2-Regularized Linear Regression
models for each combination of hardware and algorithm. We decided to use linear
regression over alternative methods like K-Nearest Neighbors [IOP99, BFT16], Deci-
sion Trees [GMD08], or Kernel Methods [GKD+09], given that linear models provide
good estimation quality while being efficient to evaluate. Since we have to evaluate
multiple models for each operator call, cheap evaluation costs are essential for our
use case. The system automatically extends the provided feature vectors by adding
several non-linear combinations, including products, squares, and logarithms to also
capture non-linear cost functions. The models are initialized based on a small batch of
around fifty training examples using the L-BFGS optimization method [LN89]. Once
initialized, the systems continuously updates the models using an online optimization
algorithm with adaptive learning rate [RB93, TH12].

A noteworthy aspect of our learning routine is that we start without any prior
knowledge and have to discover the cost functions as we go. This forces us to solve
an instance of the so-called Multi-Armed Bandit problem, a well-known concept from
the statistics literature [Rob85]. Imagine a group of gamblers that is presented with a
set of slot machines, each having a different, yet unknown, payout rate. The gamblers
naturally want to maximize their winnings, for which they have to identify the best-
paying machine. However, to determine a machine’s payout rate, they have to play
it repeatedly. This scenario leads us to the central trade-off behind the Multi-Armed
Bandit problem: At each point in time, the gamblers can either exploit their current
knowledge by playing what they believe to be the optimal machine or they can explore
a new machine to improve their knowledge. Obviously, if the gamblers solely focus on
exploration, they are guaranteed to find the optimal choice eventually. This strategy
will, however, come at a cost, since they will also play low-paying machines repeatedly.
On the other hand, if they start to exploit their knowledge too early, they might stick
with a suboptimal choice. Ocelot’s multi-algorithm framework has to solve a similar
problem: At each point in time we can either select the algorithm that we currently
believe to be optimal or decide to refine our knowledge by exploring a different one.
Luckily, there are a few simple heuristics that produce surprisingly good results
for this sort of problem. Take for instance ϵ-greedy : Given a parameter ϵ ∈ [0, 1],
this strategy picks the choice we currently believe to be optimal with probability
1 − ϵ, and explores a random one with probability ϵ [Wat89]. In Ocelot, we use the
slightly modified decaying ϵ-greedy strategy, which starts out with a comparably high
value of ϵ that decays over time. This results in the strategy favoring exploration in
the beginning when accumulated knowledge is still sparse while moving to a more
conservative behavior that exploits the collected knowledge as time goes on.
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3.4.2 The Variant Selection Problem

After we have selected a set of algorithms to implement the relational operators, we
can fine-tune their implementations for the underlying hardware to further improve
query performance. Most parallel data processing algorithms feature several tuning
knobs that can be used to influence their performance profile. These knobs include
things like changing the memory access patterns [ZNB08, RBZ13, RHVM15], intro-
ducing predication to eliminate branches [Ros04, RBZ13, SR13, ZPF16], exploiting
SIMD instructions [ZR02, BZN05, JRSS08, WPB+09, KCS+10, PRR15], or chang-
ing execution parameters like the loop tiling size or the number of threads [Wol89,
ZSIC13]. With most hardware architectures reacting differently to these knobs, no
single optimal configuration will work across the board. Instead, each combination of
device and workload usually requires specific, often non-portable settings to achieve
peak performance [RVDDB10, RBZ13, SR13, ZSIC13, BBHS14, RHVM15]. Finding
the optimal settings for a given operator is a major part of the performance tuning
process and typically involves a laborious manual search through the combinatorial
space of possible implementation variants. And while such a manual tuning task
is probably time well spent when building an engine that is optimized for a single
device, it should be obvious that we need to automate this task to solve the variant
selection problem on heterogeneous hardware.

Let us illustrate this problem for the same parallel selection operator we analyzed
in the previous section. In particular, let us take a closer look at how we could
implement and optimize a simple selection kernel that evaluates a range predicate
on a single attribute and returns a bitmap to indicate qualifying input tuples. A
straightforward strategy is to have each thread evaluate the predicate for a few
consecutive input values, create the resulting bitmap element in a register, and then
write it out to the corresponding result memory address. Figure 3.11a illustrates this
strategy, which we call sequential since each thread processes a sequential set of input
values. Now, depending on the underlying hardware, it might be more efficient to read
input values in an interleaved access strategy, where neighboring threads evaluate the
predicate on neighboring values [SR13]. This causes a slight problem: Since the result
bitmap has to be in the same order as the input values, neighboring threads have to
manipulate neighboring bits in the result. One way to achieve this concurrently is to
rely on atomic operations to set individual bits in the output. Figure 3.11b illustrates
this strategy, which we call interleaved-atomic-global. Figure 3.11c shows the slightly
modified interleaved-atomic-local variant, where threads use local memory as a scratch
pad to construct the result bitmap before writing it back to global memory. On some
architectures, atomic operations are significantly cheaper for local memory addresses,
making this strategy preferable.

A major problem of both interleaved-atomic-global and interleaved-atomic-local is
their reliance on atomic operations, which can become costly to evaluate. Furthermore,
for predicates that are satisfied by a large percentage of the input data, neighbor-
ing threads will frequently access the same result element, causing severe thread
contention. Figure 3.11d illustrates an alternative strategy that does not require
atomic operations: Each thread evaluates the predicate for one input value, creates a
bitmap element with the corresponding bit set and writes it to local memory. After
all threads of a work-group have written their elements, they perform a parallel bi-
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(a) Sequential:
independent
work-items

(b) Interleaved:
atomic or on
global memory

(c) Interleaved:
atomic or on
local memory

(d) Interleaved: reduction of bitmaps
in local memory

(e) Interleaved: matrix transpose in local memory

Figure 3.11: Possible base variants to implement a selection operator in OpenCL.
The row of boxes denotes the input column; filled boxes evaluate to true. Circles
denote threads. Arrows leading upwards from threads illustrate reads, arrows leading
downwards or to the right illustrate writes. Line styles indicate storage locations:
solid is global memory, dashed is local, and dotted are thread-private registers. Wavy
lines illustrate memory barriers. Note that while input data is read from left to right,
bitmaps are written from right to left. For brevity, we only illustrate the case of
four-bit bitmaps. Figure taken from [RHVM15].

nary aggregation to compute their joint result. Now, while this strategy does not use
atomic operations, it is also fairly wasteful with regard to the limited local memory:
Each thread sets a single bit but has to store a full bitmap element in local memory.
The final two interleaved variants, which are illustrated by Figure 3.11e, are therefore
designed to utilize local memory resources more efficiently by splitting predicate eval-
uation and bitmap generation into two steps. In the first step, each thread produces
a bitmap element, keeping it in a register. Due to the interleaved memory access, the
bit pattern in this result will be interleaved as well, forcing us to restore the correct
order before writing it back to global memory. Essentially, these shuffled intermediate
bitmaps can be interpreted as a matrix which we need to transpose, and the two
final variants differ in how this happens. In interleaved-collect, each thread builds
one element of the result in a register by subsequently collecting the required bits
from other elements via bit masks and bit shifts. This strategy scales linearly with
the number of matrix elements and does not require memory barriers. In contrast,
interleaved-transpose uses the full work-group to cooperatively transpose increasingly
larger tiles of the interleaved bitmap elements in local memory. While this strategy
scales logarithmically, it also requires additional thread synchronization making it
less efficient on architectures where this is operation is expensive.
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Figure 3.12: Cumulative distribution of the runtime of selection kernel variants
at selectivity 0.5. Runtimes are expressed as the slowdown compared to the fastest
variant for each device, capped at a factor of two. The number in parentheses after
each device shows the maximum slowdown. Figure taken from [RHVM15].

These six base strategies allow us to adjust the selection kernel to specific device
properties like the preferred memory access pattern, the cost of atomic operations,
or the capabilities of on-chip local memory. After selecting a strategy, we can tweak
it further by applying general-purpose optimizations like matching the bitmap el-
ement size to the device’s native type preference, applying loop unrolling to mini-
mize control flow overhead, using predication to avoid pipeline stalls due to branch
mispredictions, or adjusting the per-thread workload to match the device’s native
execution pattern [Ros04, ZNB08, RBZ13, ZSIC13, RHVM15]. Combining these dif-
ferent strategies and tuning knobs, we can generate well over six thousand different
implementation variants, demonstrating that even for simple operators the space of
potential implementations can be massive.

Having a massive search space of potential implementation variants does not neces-
sarily facilitate a problem: It could be that there is a single variant that performs
well across all devices, or that some tuning knobs do not affect performance at all. To
get a better understanding of the performance implications of the different variants,
we ran an extensive experimental evaluation, measuring the runtime of all of our
selection kernel variants on a variety of devices. In particular, we implemented a
parametric code generator to produce OpenCL code for each variant 11 and then
used this to measure the time to evaluate a range predicate over an array of 32
million integer values for each variant. To achieve reasonable device coverage, we
ran this experiment on seven mobile, server and consumer processors from Intel,
AMD & IBM, five consumer and professional graphics cards from Nvidia, AMD &
Intel, as well as on Intel’s Xeon Phi accelerator card. We also ran the experiment
with multiple different selectivity factors for the predicate to measure the impact of
workload properties on variant performance.

11The source code for the parametric code generator, as well as our experimental scripts, are
available at goo.gl/zF8U1W [RHVM15].
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Figure 3.13 shows heatmaps to visualize the results of this experiment. Each row of
the heatmap corresponds to one particular variant and each column to one particular
predicate selectivity factor. Cell colors indicate the relative performance a particular
variant achieved for a particular selectivity factor, with black indicating the fastest
and white the slowest runtime for a given device. The first thing we notice is that the
heatmap patterns look drastically different between devices, confirming that hardware
properties indeed have a significant impact on the relative variant performance. There
are also some indicators for workload-specific changes in the variant performance.
For instance, some of the sequential variants exhibit a pattern on Intel CPUs, where
they are fast for low and high selectivities, but slow in the middle. This is a well-
known effect that is caused by Intel’s branch prediction logic having a hard time
to optimize conditions that are equally likely and unlikely [SR13]. Interestingly, we
can also see pattern differences between devices from the same class but different
vendors, or even between different device generations from the same vendor. In other
words, having a mechanism to optimize operator code automatically would even be
beneficial for single-device database systems by allowing them to react when moving
to a new generation of the targeted device. Another important observation is that
there does not seem to be any particular variant that is optimal or near-optimal
across devices. Even worse, in some cases — for instance when comparing Intel CPUs
to professional Nvidia GPUs — the optimal choice for one device is among the worst
possible choices for the other.

Figure 3.12 shows the cumulative distribution of the percentage of variants that are
at most x times slower than the fastest one for each device. In other words, this
Figure illustrates how flexible different devices are with regard to sub-optimal variant
choices. For instance, on AMD’s Opteron 6128 HE, half of all variants are no more
than two times slower than the fastest one, meaning that even if we make a random
choice, there is still a fifty percent chance that we will be within a factor of two of
the optimum. On the other hand, for Intel’s Xeon Phi, this chance goes down to a
mere 15 %, meaning sub-optimal choices will have a much stronger impact. This is
an interesting observation since it means that there are devices for which the variant
selection problem is inherently more important, and also more difficult, to tackle.

3.4.3 An Automatic Variant Tuning Framework

The operator variant experiment from the previous section has demonstrated that
even simple database operators can have a wide variety of different implementation
variants. Furthermore, the performance of these individual variants is inherently
difficult to predict and can vary substantially across devices [BBS15, RHVM15].
This brings us to the central question behind the variant selection problem: Can we
build a variant tuning mechanism that automatically finds the best — or at least a
near-optimal — operator variant for a given operator on a given device?

We could approach this similar to the algorithm selection problem and again rely on
learning cost models to discover decision boundaries between the individual variants.
However, in contrast to the handful of different algorithms that are available for a
typical multi-operator, we are now facing tens of thousands of variants, making it
prohibitively expensive to learn all models. Alternatively, we could rely on an upfront
training phase during database setup in which the system evaluates all possible
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Figure 3.13: Heatmaps illustrating the relative performance of selection kernel
variants across a range of selectivities on different devices. Each row represents a
distinct combination of tuning parameters. For example, the top row shows an 8-bit
branched sequential kernel, the bottom one a 64-bit unrolled & predicated interleaved-
transpose kernel. Colors show the relative runtime for the given selectivity on the
given device, with black indicating the fastest choice. The range of absolute runtimes
in ms is shown on the bottom. Figure taken from [RHVM15].
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operator variants to identify the fastest one. While this method would guarantee to
find the optimal configuration, it also comes with its fair share of problems. First
of all, an exhaustive search of the variant space would be prohibitively expensive:
Even for our simple selection kernel, we already had to spend hours per device to
evaluate all variants [RHVM15]. In a realistic scenario, we would have to tune several
operators on a multitude of devices, which could easily take days or even weeks and
thereby render this idea infeasible. Second, even if we could search reasonably fast,
we would still face potential data and workload dependencies which require us to
perform the initial exploration based on a representative query workload, which is
often hard to facilitate. Furthermore, there might not even exist a single optimal
choice for a particular operator, but rather a bouquet of different variants that are
each optimal for different data and workload properties [RBZ13, BBS15]. Finally, in
modern cloud-based database-as-a-service products [DCZ+16], even the underlying
hardware might change at any given moment because of machine migrations, making
strategies that can dynamically react to hardware changes much more valuable.

Based on these considerations, we decided to use an online learning strategy that
relies on performance feedback collected during normal operations to select operator
variants. In particular, we based our variant selection framework on Micro Adaptivity,
an online learning strategy proposed by Răducanu et al. to dynamically find the
fastest variant from a variety of operator implementations. Micro Adaptivity was
designed for a vectorized query engine like Vectorwise, whose operators process
data in cache-sized chunks to achieve better cache behavior than column-at-a-time
models [BZN05]. Vectorized operators typically have to process thousands of chunks
even for modestly sized input tables. Micro Adaptivity exploits this to evaluate
multiple variants in a single operator call by dynamically swapping implementations
between chunks. The framework then uses vw-greedy, a variant of a multi-armed
bandit algorithm, to find the optimal variant [RBZ13]: The first time an operator
is called, vw-greedy will cycle through all available variants, storing their measured
runtime as a performance metric. Once all variants have been explored, the algorithm
enters the exploitation phase, in which it uses the fastest seen variant to process the
remaining chunks. In order to react to changes in the optimal variant due to data or
workload changes, vw-greedy periodically enters an exploration phase, where it runs
a random variant to update its knowledge. Micro Adaptivity has a few beneficial
properties that make it an excellent foundation for our variant tuning framework.
First, its operational overhead is tiny, given that the method only relies on runtime
measurements as performance metrics and amortizes book-keeping costs over all
tuples within a chunk. Second, it can quickly adapt to both data and workload
changes through its periodic exploration phases. Furthermore, since the exploratory
phase only spans a small number of chunks, its overall impact on query performance
is typically negligible.

Before we could build upon Micro Adaptivity, we had to overcome one major hurdle:
As it turns out, vw-greedy is somewhat limited in the number of variants it can
reasonably support, making it not directly applicable to the massive search spaces
we are facing. Let us demonstrate this restriction with a simple experiment. For this,
we ran a single range query over a dataset that we partitioned into 1024 chunks, using
both vw-greedy and a näıve random selection strategy to dynamically choose variants
for each chunk. To simulate the impact of a growing variant space, we restricted

44



3.4. Closing the Performance Gap

Figure 3.14: Query performance depending on variant pool size, using vw-greedy to
pick kernel variants compared to using a random strategy. The dashed line indicates
the performance of the optimal variant. Figure taken from [RHVM15].

the algorithms to only select from randomly chosen, fixed-size variant pools that we
grew over the course of the experiment. In particular, we ran 300 repetitions for each
variant pool size, reconstructing a new random pool for each repetition. Figure 3.14
shows box plots to illustrate how the distribution of per-chunk runtimes changed
when we increased the variant pool size. We can see that, compared to the näıve
strategy, vw-greedy can effectively reduce the influence of bad variants in the pool,
resulting in the average runtime approaching the performance of the optimal variant,
as indicated by the dashed line. However, for larger pool sizes, the initial exploration
phase starts to dominate the query execution time for vw-greedy, causing the per-
chunk runtime to converge towards the pool average. In other words, for larger pool
sizes, vw-greedy will not perform noticeably better than a näıve random selection
strategy, forcing us to limit the number of variants we present to vw-greedy.

Listing 3.2: Genome definition for the selection kernel.

kernel_type: { sequential, interleaved_reduce,

interleaved_transpose, interleaved_atomic_global,

interleaved_atomic_local, interleaved_collect }

result_type: { char, short, int, long }

branched: { true, false }

unrolled: { true, false }

elements_per_thread: { 1, 2, 4, 8, 16, 32, 64, 128, 256, ... }

local_size: { 0, 1, 2, 4, 8, 16, 32, 64, ... }

Because of this, the main challenge our variant tuning framework has to solve is
efficiently selecting a small pool of promising candidates that we can then pass on to
vw-greedy. Instead of instantiating the full universe of all possible implementations,
we only let vw-greedy choose from a small working pool of around eight to sixteen
active variants. In between queries, we then refine this pool based on performance
feedback, removing variants that did not perform and using a search strategy to
identify which new variants that should go into the pool. Ideally, this process should
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Figure 3.15: The Variant Learning Framework. Figure taken from [RHVM15].

continuously improve the quality of variants in the working pool, bringing the overall
performance closer to the optimum in each step. Figure 3.15 illustrates the general
idea behind our variant tuning framework. We assume that our universe of potential
variants is represented by a parametrized code generator that produces callable
variants of the operator for a given device. We also assume that individual operators
are identified by a genome, which is a predefined collection of parameters that uniquely
identify a given variant and that can be used by the generator to produce code for the
variant. To illustrate this concept, Listing 3.2 shows an exemplary genome definition
for our selection kernel.

Probably the most critical component of our variant tuning framework is the search
strategy, which is responsible for exploring the vast amount of potential variants and
narrowing it down to a manageable set of candidates. At its core, this is corresponds
to a discrete optimization problem over the variant space, which is why we evaluated
the following two well-known discrete optimization algorithms:

Greedy keeps the two fastest variants from the current working pool and replaces
all other variants by randomly selected ones. These replacements are generated
by randomly changing some parameters in the genome of the evicted variants,
causing us to explore their neighborhood. This strategy corresponds to a guided
random walk through the variant universe.

Genetic keeps the two fastest variants from the current working pool and replaces
the others by combining the features of two parents from the current pool.
Parents are selected randomly, with a probability that is proportional to their
observed performance, meaning that faster variants have a higher chance of
passing on their genomes. The child genome is generated by choosing each
parameter with a fifty percent chance from either parent. We also introduce
mutations with a low probability to add genetic diversity and to avoid getting
stuck in a local minimum.
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Figure 3.16: Influence of different search strategies on the Intel Xeon E5620, a
device with many competitive variants. Figure taken from [RHVM15].

We ran a series of experiments to measure how these two search strategies affect the
query runtime of our selection operator over time. In particular, we measured the
average per-chunk runtime of ten random selection queries with a fixed selectivity
of 0.5 over a 16 GB column that we partitioned into 1024 chunks. After each query,
we used the selected search strategy to update the current working pool, which we
fixed to a size of eight variants. We then repeated each experimental series 100
times to control for randomization effects, resetting the initial working pool before
each repetition. In addition to the two search strategies, we also included a baseline
strategy that does not evolve the working pool between queries.

Figure 3.16 shows the results of this experiment for the Intel Xeon E5620 CPU,
reporting the relative slowdown compared to the fastest possible variant. There are a
few interesting observations to be made. First, we can see that — even without using
any search strategy —, vw-greedy alone already produces substantial performance
improvements, dramatically lowering the number of outliers. This behavior is caused
by the performance distribution of the selection variants for the Xeon processor. As
can be seen in Figure 3.12, 40% of all variants fall within a factor two, and 30%
within a factor of 1.5 of the optimum. Consequently, our randomly initialized pool of
size eight has a 94% chance of containing a variant that is at most 1.5 times slower
than the optimal one. Since vw-greedy masks the occurrence of slow variants in the
working pool, even the None strategy can produce competitive results here. This high
chance of randomly selecting a good variant also benefits the Greedy search strategy,
which improves upon vw-greedy and shows an even better convergence behavior,
arriving at a pool that contains a variant within a factor of 1.1 of the optimum in
75% of our experimental series. The Genetic search strategy achieves even stronger
convergence towards the optimum, reaching a factor of 1.1 after two, and a factor of
1.05 after seven queries.

Our variant tuning framework had a somewhat unfair advantage on the Xeon pro-
cessor because of the high percentage of near-optimal variants making the problem
itself much easier to solve. To control for this, we repeated the whole experiment on
a Xeon Phi, where only 6% of all variants fell within a factor of 1.5 of the optimum,
making it much harder to find a good variant by chance. In fact, there is only a
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Figure 3.17: Influence of different search strategies on the Intel Xeon Phi, a device
with few competitive variants. Figure taken from [RHVM15].

40% chance that a randomly selected, eight-variant pool will contain a good variant.
Figure 3.17 shows the results of this experiment. While our search strategies are still
able to improve the performance on the Xeon Phi, it is clearly not as impressive as
on the Xeon CPU. After three queries, the Greedy strategy is at most three times
slower than the optimal variant in 75% of the queries series. The Genetic strategy
shows a slightly stronger benefit and can improve upon the None baseline by about
40%. Interestingly, the best median performance of Genetic, a slowdown of factor
two, is achieved after four queries but becomes worse after eight. This is most likely
caused by a performance degradation from including bad variants in the pool during
the search. One potential strategy to compensate for this is to reduce the pool size
over time, which reduces the overall chance of having bad variants show up in the
converged pool.

3.5 Summary & Outlook

With hardware growing increasingly heterogeneous, the database research community
is facing the question of how to design database engines that can efficiently manage
the increasing variety of available compute devices. One particular aspect of this
problem is how to deal with the development overhead that comes with having
to support numerous hardware architectures: Since each additionally supported
architecture typically requires developers to re-engineer and re-optimize major parts
of the engine, there is a hefty price tag attached to building databases that can exploit
a variety of different devices. This development bottleneck of heterogeneous hardware
is one of the primary reasons why non-traditional hardware has not seen widespread
adoption in commercial databases, in particular considering that specialized devices
like graphics cards or FPGAs are often limited in the types of workload scenarios they
can accelerate. This combination of high initial costs and limited applicability makes
it difficult for established database vendors to support non-traditional hardware
economically.
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In this chapter, we discussed how to avoid this bottleneck by reducing both the de-
velopment and the maintenance overhead for supporting a variety of different devices.
In particular, we motivated the idea of designing databases in a hardware-oblivious
manner, where the engine is designed around a hardware-independent, common exe-
cution substrate against which developers implement their operators. At runtime, a
vendor-provided driver maps this abstract representation down to the actual hard-
ware, allowing us to maintain a single code base that is portable across various
devices. We then demonstrated the feasibility of this concept by introducing Ocelot,
a prototypical hardware-oblivious database engine that integrates into MonetDB,
and uses OpenCL as its common execution substrate. We decided to build upon
OpenCL because it is a powerful open programming standard that is supported by
all major hardware vendors across a wide variety of architectures, including graphics
cards, CPUs, accelerators like Cell or Xeon Phi, and even FPGAs. Ocelot itself was
implemented as a collection of OpenCL operators built around infrastructure com-
ponents that help developers to abstract away details of the hardware. The whole
system was designed as a drop-in replacement for MonetDB’s query engine, allowing
us to reuse major components like the data layout, storage management, and query
optimizer. In order to validate our concept, we evaluated Ocelot based on a TPC-H-
derived benchmark, comparing its performance against MonetDB. The results of this
experiment confirmed that, despite providing a portable engine, Ocelot still achieves
competitive performance to a manually-tuned system like MonetDB. In particular,
while our performance numbers were slightly behind MonetDB’s on the CPU, Ocelot
could easily beat them when running on a graphics card without having to change
a single line of code. However, while we – and also other authors – confirmed that
Ocelot offers generally competitive performance across a wide variety of devices, we
also found that its performance numbers were still behind what manually tuned
systems could achieve on their targeted hardware.

In order to further close this performance gap and achieve performance portability,
we introduced two methods that rely on machine learning and query performance
feedback to continuously improve the performance of a hardware-oblivious database
engine by automatically adapting it to the underlying hardware. The first method
deals with the so-called algorithm selection problem on heterogeneous hardware, which
denotes the problem of having to find the best-fitting algorithms to implement re-
lational operators on a given device. Since the relational calculus is a declarative
language, most of its operators can be implemented in a variety of ways, often with
vastly different performance profiles. In particular, this means that some algorithms
will perform better on a given device than others and that finding the right set of
algorithms is a big part of fine-tuning a relational database system. We suggested
using learning cost models, which can automatically learn the decision boundary
between different algorithms from runtime performance feedback to automate this
task. We demonstrated this idea by implementing Ocelot’s multi-operator framework,
which allows developers to specify operators that can be implemented by different
algorithms. At runtime, the framework transparently explores the cost space, learns
the decision boundaries between the provided algorithms, and chooses the fastest
option. The second method deals with the related variant selection problem on
heterogeneous hardware, which denotes the problem of having to fine-tune implemen-
tations to achieve peak performance on a given device. Typically, each algorithm has
multiple tuning knobs that we can use to adjust its runtime. These knobs include
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things like changing the memory access pattern, introducing predication to eliminate
branches, unrolling loops to avoid control flow overhead, exploiting SIMD instructions,
or adjusting parallelization parameters like the tiling size or the number of threads.
Combined, the different possible settings for these knobs span a vast space of possible
implementation variants even for simple algorithms. And finding the optimal variant
from this vast space for a given device and query workload is often non-trivial and
requires a laborious, manual tuning process. To automate this task, we demonstrated
a variant tuning framework that can traverse this space and find near-optimal vari-
ants based on query feedback The framework maintains a working pool of candidate
variants, using Micro Adaptivity to dynamically select the fastest one for the current
query [RBZ13]. In between queries, we continuously update this working pool, using
a search strategy to find new variants that replace bad-performing candidates. Based
on our experimental evaluation, we could show that using a genetic search strategy
allowed this framework to converge to a near-optimal variant within only a handful
of queries.

Let us now conclude this chapter with a quick reflection and a look ahead. Based on
our experimental evaluation, it seems that the concepts we discussed in this chapter

— namely abstracting away details of the hardware from the developer and relying on
self-tuning and learning mechanisms to achieve portable performance — are promis-
ing strategies to overcome the development bottleneck of heterogeneous hardware in
a database system. However, while it works in an experimental setting, it remains to
be seen whether a hardware-oblivious design is viable in a realistic commercial setting.
While using OpenCL — or its successor Vulkan — as a common device-independent
development target seems feasible, lingering issues like the problematic debuggability,
the weak performance consistency guarantees, and the missing accountability limit
the usefulness of learning-based methods like variant tuning for commercial database
vendors. In the end, the applicability of these methods will boil down to how man-
ageable we can make them, and how much performance benefit they can deliver for
realistic query workloads. Accordingly, there are several directions for possible future
research in this field, out of which we will now discuss three that we deem to be
particularly exciting:

Specifying and generating operator variants: Today, our variant tuning frame-
work requires developers to provide parametric code generators and descriptions
of the available parameters for each algorithm. In our experiments, we manu-
ally implemented these components, which is obviously not a viable strategy
for a real-world scenario. Therefore, it is an essential open question to under-
stand how we can algorithmically derive both tuning knobs and the space of
potential variants from an abstract algorithm representation provided by the de-
veloper. One potential approach is to use a combination of specifically designed
high-level languages and code generation, as demonstrated by Delite [SBL+14],
Legobase [KKRC14], Dandelion [RYC+13], as well as the works of Broneske
et al. [BBHS14] and Haensch et al. [HKHL15]. Another approach is to rely on
an intermediate representation of the operator code to generate the space of
potential variants. A promising candidate for such an intermediate representa-
tion is Voodoo, a vector algebra designed by Pirk et al. with the specific intent
of providing an abstract representation for data-parallel operations close to the
hardware [PMZM16].
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Hardware-Oblivious Query Compilation: In this chapter, we discussed how to
build a hardware-oblivious database engine that uses an operator-at-a-time
processing model. A logical next step would now be to take these concepts
and apply them to the more efficient query compilation model, which processes
queries by generating custom code at runtime that evaluates whole pipelines
spanning multiple operators [KVC10, Neu11, Vig14a]. In a first approxima-
tion, we could achieve this goal of hardware-oblivious query compilation by
building upon existing query compilers for GPUs, modifying them to generate
OpenCL code [RDSF13, RYC+13, WDS+14], or by compiling query pipelines
down to an appropriate intermediate representation like Voodoo [PMZM16].
Now obviously, this would only be the first step, and in order to achieve compet-
itive performance, we would again have to think about adaptive performance
optimization strategies. One particularly interesting aspect of this work is to
investigate how we could port a variant selection framework to a query compiler.
This is a challenging problem, given that we now have to make joint variant
decisions for a whole pipeline. In particular, this would require us to understand
how to represent variants in the presence of parameter dependencies between
subsequent operators, how to learn about individual operator preferences from
joint performance feedback that covers a whole pipeline, and how to make opti-
mal variant decisions based on this knowledge. And while these are complicated
problems, there are also some low-hanging fruits that could help us to get the
work started. For instance, by limiting variant selection to a set of predefined
pipeline configurations that are likely to appear frequently, we could achieve a
basic level of performance adaptivity for a majority of queries with basically
the same logic we use for single operators today. Another approach to achieve
initial performance improvements without incurring the full complexity of a
generic solution is to holistically optimize over a few generally applicable tuning
parameters like the memory access patterns, or the loop unrolling factor.

Incorporating prior knowledge: The primary design philosophy behind Ocelot
and the adaptive performance methods we discussed in this chapter was to
shield the developer from the details of the underlying hardware. In particular,
this means that none of our methods provide mechanisms to exploit device-
specific execution hints or other prior knowledge about the hardware. Now, in
any real-world scenario, exploiting such prior knowledge would almost certainly
be a good idea, since it will help us to avoid bad decisions and to improve the
convergence behavior of our learning methods. In order to facilitate this, we
would have to investigate how to represent and exploit such additional knowl-
edge, as well as design mechanism for developers to provide it. This could,
for instance, be achieved through developer-provided restrictions for certain
variant parameters, through developer-provided adapter code that provides
device-specific implementation variants [ZHHL13], or simply by manually spec-
ifying the optimal algorithm selections in a configuration file. Another approach,
that requires less input from the developers, is to rely on microbenchmarks to
automatically learn the characteristics of the underlying hardware and then
use this information to drive our search strategies.
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Chapter 4

Exploiting Heterogeneity:
GPU-Assisted Selectivity
Estimation

One of the primary goals of any research project in the area of data processing on
modern hardware is to accelerate existing database systems. Even the most skillfully
and elegantly designed parallel data processing algorithms, system architectures, or
storage strategies are of little use if they have fundamental restrictions that prevent
them from being applied in the real world. This was a lesson that the research
community on GPU-accelerated database systems had to learn the hard way. From
the looks of it, graphics cards should be an ideal platform to process data: They are
fully programmable, massively parallel processing engines that come bundled with a
few gigabytes of high-bandwidth memory. However, despite strong research interest,
GPU-accelerated databases never materialized beyond a niche technology: Limited
device memory sizes, complex programming requirements, and expensive data trans-
fers simply put too many restrictions on the technology for it to be reasonably used
as a query processor in a commercial database system [LKC+10, BHS+14b].

In this chapter, we present our work on GPU-Assisted Selectivity Estimation, a GPU-
based technique that tries to avoid the pitfalls of GPU-accelerated data processing
by using the graphics card to indirectly accelerate a database through the generation
of better query plans. The principle idea is simple: The statistical models that are
used by query optimizers to predict the cardinality of intermediate results are ideal
candidates for GPU acceleration, allowing us to exploit the graphics cards’ massive
raw computational power to increase feasible model sizes and to enable the use of
more sophisticated methods. This leads to more accurate estimates, which in turn
enables the query optimizer to produce better query plans.

Based on this general idea, we present a modern, multidimensional selectivity estima-
tor for range queries on real-valued attributes based on Kernel Density Estimation
that is tailored to exploit the massive data parallelism found on modern GPUs and
multi-core CPUs. The estimator is self-tuning, reacts to changes in both the data
and the query workload, and can be efficiently scaled up to massive model sizes.
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This chapter is based in parts on material from the following three publications:

1. Max Heimel, Volker Markl
A First Step Towards GPU-Assisted Query Optimization [HM12]
In: Proceedings of the 2012 ADMS@VLDB Workshop.

2. Max Heimel, Martin Kiefer, Volker Markl
Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional Se-
lectivity Estimation [HKM15]
In: Proceedings of the 2015 ACM SIGMOD Conference.

3. Martin Kiefer, Max Heimel, Volker Markl
Demonstrating Transfer-Efficient Sample Maintenance on Graphics Cards [KHM15]
In: Proceedings of the 2015 EDBT Conference.

4.1 Introduction: GPU-Assisted Query

Optimization

From the perspective of a database performance engineer, graphics cards could
be considered to be a godsend: Their architectural focus on delivering massively
parallel computational throughput on the order of a few teraflops, paired with
on-device memory bandwidths that are up to a few orders of magnitude higher
than what main memory achieves, makes them a fascinating platform for any par-
allelizable, IO-hungry workload. Given that relational data processing is generally
IO-bound, and given that virtually all relational operators can be efficiently ex-
pressed in a data-parallel fashion, graphics cards should be an ideal platform to
run the type of data-intensive operations found in relational databases. Unsurpris-
ingly, there has been a ton of research on this topic over the past decade, pro-
ducing several highly interesting publications that discuss how to exploit GPUs
for data processing efficiently, usually demonstrating impressive speed-ups of up
to two orders of magnitude for various use cases [GLW+04, GGKM06, HYF+08,
HLY+09, BS10, HY11, DWLW12, KLMV12, SR13, BAM13, HLH13, Bre14, PMK14,
WZY+14, KML15, PLH+15, ZWY+15, BFT16, PHH16]. Nevertheless, despite all of
these impressive achievements, GPU-accelerated data processing never grew above
a niche technology: As of writing this thesis, none of the established database ven-
dors offers any products that utilize graphics cards. And to the best of our knowl-
edge, only a handful of smaller companies offer GPU-accelerated data processing so-
lutions: Jedox (www.jedox.com/en/ressources/jedox-olap-accelerator), MapD
(www.mapd.com), Kinectica (www.kinectica.com), and Sqream (www.sqream.com).

Architectural limitations cause this apparent mismatch between expectations and re-
ality, primarily stemming from limited device memory sizes, high-latency operations,
and expensive data transfers. First of all, with their architectures trading off latency
& single-thread performance for parallelism & throughput, GPUs are not a good
match for the kind of short-running, complex data operations that are found in trans-
actional workloads. Accordingly, there is only little research into accelerating OLTP
workloads using graphics cards, and the single paper that discusses this issue focuses
on bulk-processing multiple predefined transactions to achieve throughput [HY11].
Furthermore, graphics cards are typically unable to accelerate traditional disk-based
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Figure 4.1: A schematic overview of a computer system with a modern graphics
cards (in this case based on a GM402 Maxwell chip from Nvidia). Updated version
of figures found in [HM12] and [BHS+14b].

database systems, whose query processing costs are too strongly dominated by disk
IOs to warrant computational acceleration [HYF+08]. And even for the sweet spot of
strictly read-only, analytical workloads on memory-resident data, there are significant
problems that hinder adoption: Before the GPU can accelerate any given operator, all
required input has to be present in the card’s device memory. Otherwise, it must first
be copied over from the host across the PCI Express bus, which has a comparably
low bandwidth, as illustrated in the architecture diagram of Figure 4.1. This aptly
named PCI Express bottleneck results in graphics cards typically being unable to
outperform CPUs on IO-bound workloads if the input data are not already located
on the device [HLY+09, GH11, BHS+14b]. In conjunction with the relatively small1

on-device memory sizes, this puts severe limitations on the applicability of graphics
cards for analytical workloads as well [HM12]. For a more in-depth discussion of the
advantages and disadvantages of graphics cards in the context of database systems,
we refer to our recent survey of GPU-accelerated database systems [BHS+14b].

In this chapter, we are introducing an orthogonal strategy to exploit graphics cards
in relational databases that does not suffer from these problems: Instead of using the
graphics card to accelerate query execution directly, we use it to offload computations
required by the cost-based query optimizer. A cost-based query optimizer is an integral
component of any modern relational database system, where it is used to find the
optimal strategy to execute a given SQL query. Internally, the optimizer traverses
the combinatorial space of possible plans, estimates the cost for each candidate
plan, and eventually returns the cheapest one it came across [SAC+79, GM93]. The
algorithms used for this process are highly compute-bound and can be parallelized
quite efficiently [HKL+08, HL09]. Furthermore, they operate on data that is typically
small and mostly static. This makes query optimization an interesting target for GPU
acceleration [HM12]. Having said that, ”simply” using graphics cards to accelerate
the optimization process is only of minor importance: Modern query optimizers
are highly efficient components that seldom incur more than a few milliseconds to
optimize even complex queries. Accordingly, the focus of our work was not strictly
on reducing the time required to optimize a query, but rather on exploiting the
additional computational resources to improve the output of the optimizer itself.

1Around two to four GB on consumer, and up to twelve GB on professional cards.
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Figure 4.2: Using a graphics card as a statistical co-processor during query opti-
mization. Figure adapted from [HM12].

Since an improved query optimization process generally leads to better plans [Chr84,
IC91, RH05, LGM+15], this allows us to indirectly accelerate query processing through
the use of graphics cards2 while avoiding the typical pitfalls associated with GPU-
accelerated query processing.

There are two primary ways how we can use increased computational resources to
improve the output of a cost-based query optimizer:

1. Due to the combinatorial size of the plan search space, it is infeasible to enu-
merate all possible plans for a given query. Instead, relational query optimizers
utilize heuristically guided search strategies to traverse those parts of the plan
search space that likely contain good variants [SAC+79]. By reducing the num-
ber of search heuristics, or increasing the number of search cycles, the optimizer
can accordingly investigate a more substantial fraction of the search space,
increasing the chances of finding a better plan. Therefore — and this is particu-
larly true for larger queries with several joins —, spending more resources on the
plan search will directly lead to better plans being discovered [Swa89, HKL+08].

2. The query optimizer requires accurate information about the result cardinali-
ties of intermediate plan operations to correctly predict the cost of candidate
plans. These are estimated in a process called selectivity (or cardinality) es-
timation, which uses data statistics to predict them. The quality of these es-
timates has a direct impact on the generated plan quality [RH05, LGM+15],
and incorrect estimates have been shown to cause unexpectedly bad query per-
formance [Chr84, RH05, MHK+07]. In fact, due to the multiplicative nature
of joins, errors in the cardinality estimates propagate exponentially through
larger query plans, meaning that even small reductions in the estimation error
can dramatically improve the information that is available to the query opti-
mizer [IC91, LGM+15]. Increasing the computational resources allocated for
selectivity estimation allows us to improve the estimation accuracy by a) in-
creasing model sizes and b) utilizing more sophisticated estimation algorithms.

2Interestingly, this also means that GPU-accelerated query optimization is one of the only
approaches to accelerate traditional, disk-based database systems using GPUs.
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Figure 4.3: Scaling the accuracy of a histogram by increasing model complexity.
Figure taken from [HM12].

In our research, we focused on the second aspect3, given that the statistical models
that are used to predict cardinalities are usually designed to support trading off
quality for computational effort, making it easier to achieve our goal [Sco15]. In fact,
the estimation quality of statistical estimators can be improved almost arbitrarily
by increasing the underlying model’s size, complexity, or both. Figure 4.3 exemplary
illustrates this relationship for an equi-width histogram: By increasing the number
of histogram bins, we can get arbitrarily close to the true data distribution. However,
at the same time, computing estimates becomes more expensive, given that more
bins have to be scanned.

Based on this observation, we suggested in [HM12] to exploit graphics cards as
statistical co-processors to compute selectivity estimates during query optimization.
Figure 4.2 illustrates this idea: A statistical model of the database is maintained
on the graphics card and used to compute selectivity estimates for the optimizer.
The additional computational power of the GPU allows us to compute estimates
based on much more detailed models than the CPU could handle, and also to use
much more computationally involved methods. It should be noted that increased
data transfer across the PCI Express bus is of little concern here: The model is
kept on the graphics card at all times, meaning that — besides model updates due
to database changes — the only data that needs to be transferred across the PCI
Express bus are the query bounds and the computed estimate.

3Andreas Meister, a PhD student from the University of Magdeburg, is currently investigat-
ing GPU-assisted plan search strategies. For an overview of his work, please refer to his latest
publications [Mei15, MBS15, MS16].
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Figure 4.4: Selectivity — or cardinality — estimation is the process of predicting
the number of tuples that qualify a given predicate.

4.2 Background: Kernel Density-based Selectiv-

ity Estimation

Let us start by providing a formal view of the selectivity estimation problem: Given
a relation R with attributes (A1, . . . , Ad), and an arbitrary query region Ω ⊆ D1 ×
. . .×Dd — where Di denotes the domain of attribute Ai —, selectivity estimators
aim to estimate the fraction sel (Ω) = |σx⃗∈Ω(R)|/|R| of tuples from R that fall within
Ω. Without loss of generality, we focus on the case of rectangular queries, i.e. cases
where Ω is the Cartesian product of intervals within the d attribute domains: Ω =
(l1, u1)× . . .× (ld, ud). Furthermore, as a simplifying assumption, we assume that all
attributes are real-valued, meaning that R ⊆ Rd. However, note that — contrary to
the authors of [GKTD05] —, we do not make any further assumptions about the
attribute domains. In particular, we do not assume that the data in R is chosen from
a known region, such as the unit cube.

For single-dimensional queries, range selectivities are typically estimated from simple
base statistics or histograms. For instance, in the original publication by Selinger
et al., which introduced the notion of a query optimizer, the authors suggested to
estimate the number of tuples falling into a given range [l, u] based on a uniformity
assumption sel (Ω) ≈ u−l

max−min
, or, in case the minimum and maximum values of the

column are unknown, to simply always predict 0.4 [SAC+79]. Since then, research
on selectivity estimation has come a long way, with modern systems relying on equi-
height or v-optimal (”serial”) histograms to produce accurate, high-quality predictions
[Ioa03]. Now, while selectivity estimation on single attributes is well-understood and
not seen as a major problem, things get a lot more complicated once we move into
the realm of multidimensional queries [Loh14].

The easiest way to estimate the selectivity of multidimensional range query is to
assume that its attributes are independent of each other. In this case, we can com-
pute a d-dimensional estimate by multiplying d one-dimensional estimates, which
we could, for instance, derive from histograms. While relying on this attribute-value
independence assumption is a highly efficient method — and in fact is the one that
is used by most modern relational database systems —, it can cause significant esti-
mation errors on real-world data, where attributes are almost always correlated to
some degree [Chr84, MHK+07, Loh14]. Accordingly, improving the quality of multi-
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dimensional selectivity estimates is a classical database research problem, and several
authors have actively investigated and suggested estimation methods for over 15 years.
Most of these methods rely on multidimensional histograms, which partition the data
space into buckets and track the number of tuples within those [MD88]. Prominent
representatives include MHIST [PI97], Genhist [GKTD05], STHoles [BCG01], and
ISOMER [SHM+06]. However, there are also many alternative approaches, including
wavelets [MVW98], discrete cosine transformations [LKC99], kernel methods [BKS99],
and sampling [LLZZ07, LNS90]. For a much more detailed overview of existing es-
timator methods, we refer the reader to the following two surveys: In [Ioa03], the
authors give an overview of the development of histograms and other estimators.
In [GKTD05], the authors provide an experimental comparison of the estimation
quality of kernel methods, wavelets, sampling techniques, and multidimensional his-
tograms on real-valued attributes.

One of these alternative methods for multidimensional selectivity estimation, and the
one that we will use most prominently in this chapter, is Kernel Density Estimation
(KDE), which is also known under the name of Parzen-Rosenblatt Window Method.
KDE is a well-known and appreciated tool from statistics that has been indepen-
dently introduced by Emanuel Parzen and Murray Rosenblatt in the late 1950s and
early 1960s [R+56, Par62]. It is a data-driven, non-parametric method to estimate a
probability density function from a data sample [Sco15]. Figure 4.5 visualizes a Ker-
nel Density Estimator for a two-dimensional dataset: Local probability distributions

— known as kernels — are centered around the sample points (Figure 4.5(c)). We can
then compute the estimated probability density at a given point by averaging the
likelihood that the point was generated by these local distributions (Figure 4.5(d)).
Essentially, this amounts to sampled points contributing probability mass to their
immediate neighborhood, making KDE assign high probability densities to regions
that lie in the vicinity of sampled data points. Kernel-based methods are among the
most accurate estimators in statistics literature [Sco15], and compared to alternative
methods such as histograms, they offer several advantages:

• KDE has been shown to converge faster to the underlying distribution than his-
tograms do [Sco15]. Furthermore, compared to methods that “näıvely” evaluate
the query on a sample [LLZZ07, LNS90], KDE has been shown to consistently
offer superior estimation quality [GKTD05].

• KDE models are easy to construct and to use: After the sample is collected,
they are ready to be used. In particular, they do not require any additional
model assumptions, like splitting or bucketization rules.

• Since a KDE model is inherently a data sample, the estimator implicitly fol-
lows any data distribution without having to model the domain space explicitly.
This makes KDE robust against many of the adverse statistical effects com-
ing from correlated or degenerate data, making it a well-suited method for
multidimensional estimates.

• Compared to multidimensional histograms, maintaining KDE -based selectivity
estimators under database updates is straightforward and inexpensive: Since
the model is a sample from the database, maintaining it under changes is
identical to the well-understood sample maintenance problem [GMP00].
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(a) Points in database. (b) Sampled points.

(c) Kernels. (d) Estimated distribution.

Figure 4.5: A Kernel Density Estimator approximates the underlying distribution
of a given dataset (a) by picking a random sample of data points (b), centering local
probability distributions (kernels) around the sampled points (c), and averaging those
local distributions (d). Figure taken from [HKM15].
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Despite all of these advantages, the amount of database research literature published
on KDE -based selectivity estimation is surprisingly scarce. The first paper that sug-
gested using KDE to predict selectivities — albeit only for single dimensions — was
published in 1999 by Blohsfeld et al. [BKS99]. They experimentally demonstrated
that KDE is generally preferable over a purely sample-based estimator, matches the
estimation quality of equi-width histograms, and can drastically outperform them in
case of sufficiently smooth data. In 2005, Gunopulos et al. generalized KDE -based
selectivity estimation for the multidimensional case and compared it against Genhist,
their variant of a multidimensional histogram [GKTD05]. They demonstrated that
KDE offers comparable estimation quality in the multidimensional case and also
highlighted the cheap construction costs. While those are the only publications that
primarily discuss aspects of KDE -based selectivity estimation, other ones suggest
further use cases, including approximate range query processing [GKTD00], estimat-
ing stream cardinalities [HS08], online outlier detection [SPP+06], and predicting the
results of skyline queries [ZYC+09].

4.2.1 The Formal View

Formally, based on a sample S =
{
t⃗ (1), . . . , t⃗ (s)

}
of size s from a d-dimensional

dataset, multivariate KDE defines an estimator p̂H (x⃗) : Rd → R that assigns a
probability density to each point x⃗ ∈ Rd. The estimator is defined as:

p̂H (x⃗) =
1

s · |H|

s∑
i=1

K
(
H−1

[⃗
t (i) − x⃗

])
(4.1)

In this equation, K : Rd → R denotes the kernel function, which defines the shape
of the local probability distributions. The matrix H ∈ Rd×d is the bandwidth matrix,
which controls the spread of the local probability distributions. We will take a closer
look at how to choose these components later on. The probability density p̂H (x⃗)
from Equation (4.1) can be interpreted as the likelihood of finding a tuple at point
x⃗. In order to estimate the selectivity sel (Ω) = p̂H (Ω) for a query Ω, we have to
integrate (4.1) over the query region:

p̂H (Ω) =

∫
Ω

p̂H (x⃗) dx⃗

=
1

s

s∑
i=1

∫
Ω

K
(
H−1

[⃗
t (i) − x⃗

])
|H|

dx⃗  
=p̂

(i)
H (Ω)

(4.2)

In this equation, p̂
(i)
H (Ω) denotes the individual probability mass contribution of the i-

th sample point to region Ω. Now, before we can start deriving a closed-form solution
for the integral in Equation (4.2), we need to take a closer look at the kernel function
K and the bandwidth matrix H.

The kernel function K defines the shape of the local probability distributions that are
used to smooth the estimator. In theory, there is a large number of possible choices
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(a) Uniform Kernel:
K (x⃗) =

∏d
i
1
2 · 1|xi|≤1

(b) Triangular Kernel:
K (x⃗) =

∏d
i (1− |xi|) · 1|xi|≤1

(c) Epanechnikov Kernel:
K (x⃗) =

∏d
i
3
4

(
1− x2i

)
· 1|xi|≤1

(d) Gaussian Kernel:
K (x⃗) =

∏d
i

1√
2·π · e−0.5·x2

i

Figure 4.6: A few commonly used Kernel functions.

for K, as any symmetric probability distribution is valid. However, in practice, only
a handful of functions are being used; Figure 4.6 illustrates some of them. The typi-
cal go-to choice is the Epanechnikov Kernel, a truncated second- order polynomial,
which is the theoretically optimal choice to minimize the squared estimation er-
ror [Epa69]. However, most other choices are just barely suboptimal, and in practice,
the shape of the kernel only has a minuscule impact on estimation quality [Sco15].
Therefore, K is typically chosen based on other desired properties such as evaluation
performance or differentiability. In our case, we will be primarily using the Gaussian
Kernel, a multivariate Standard Normal Distribution, since it simplifies the required
derivations.

The bandwidth matrix H controls the spread of the local probability distributions,
i.e., the larger its magnitude is, the further will sample points distribute probability
mass into their neighborhood. Choosing the right bandwidth matrix has a much
stronger impact on estimation quality than the kernel function has. In fact, it is
considered to be the most important parameter to control the quality of a KDE -
based estimator [JMS96, Sco15]. Figure 4.7 illustrates the effect of choosing different
bandwidth parameters for the estimator from Figure 4.5: If the bandwidth is chosen
too small (Figure 4.7 (a)), the estimator isn’t smooth enough, resulting in a spiky
distribution that overfits the sample. On the other hand, if the bandwidth is chosen
too large (Figure 4.7 (b)), the estimator is smoothed too strongly, losing much of the
local information and underfitting the actual distribution. Generally, any symmetric,
positive-definite matrix is a valid choice for H. However, in order to limit complexity,
a typical simplification is to assume that the bandwidth matrix is diagonal, i.e.
H = diag (h1, . . . , hd), where hi is a scalar that controls the spread of the local
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4.2. Background: Kernel Density-based Selectivity Estimation

(a) Bandwidth too small. (b) Bandwidth too large.

Figure 4.7: Choosing the bandwidth has a crucial impact on estimation quality. If
the bandwidth is too small (a), the estimator overfits the sample. If it is too large
(b), all local information is lost. Figure taken from [HKM15].

distributions along the i-th dimension. While this simplification can have an impact
on estimation quality [WJ93], it dramatically simplifies operations and allows us to
derive closed-form expressions that do not exist for full matrices [Sco15]. A good first
approach to select the bandwidth is to use Scott’s Rule, a closed-form expression
for the optimal bandwidth value under the assumption that the data is following a
Normal distribution [Sco15]:

ĥscott
i = s−

1
d+4 · σi (4.3)

In this equation, σi denotes the observed standard deviation along the i-th attribute
in the dataset. As we will later see, the bandwidth values computed by Scott’s rule
can be suboptimal, and we will discuss more sophisticated methods to compute
better values later on. However, it is an inexpensive method that produces solid
results, and is therefore used by most KDE -based estimators in the database research
literature [GKTD00, GKTD05, SPP+06, HS08].

4.2.2 A Closed-Form Solution

With the kernel function and bandwidth matrix defined, we can now begin to derive
a closed-form expression for the KDE estimator from Equation (4.2). In order to do
this, we have to apply the following simplifying assumptions:

1. We assume that the query region Ω is rectangular, i.e., it is the Cartesian
product of intervals within the d attribute domains: Ω = (l1, u1)× . . .× (ld, ud).

2. We assume that the kernel function K : Rd → R is Gaussian, i.e. it is of the
following form:

K (x⃗) =
d∏
i

1√
2 · π

· e−0.5·x2
i (4.4)
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3. We assume that the bandwidth matrix is diagonal, i.e. it is of the form H =
diag (h1, . . . , hd), where hi is a scalar that controls the spread of the local
distributions along the i-th attribute.

In general, the integral in Equation (4.2) does not have a closed-form solution for
arbitrary regions [Sco15]. However, since we assume that Ω is rectangular, i.e. Ω =
(l1, u1) × . . .× (ld, ud), we can integrate by each dimension individually:

p̂H (Ω) =
1

s

s∑
i=1

∫
Ω

K
(
H−1

[⃗
t (i) − x⃗

])
|H|

dx⃗

=
1

s

s∑
i=1

∫ u1

l1

. . .

∫ ud

ld

K
(
H−1

[⃗
t (i) − x⃗

])
|H|

dxd . . . dx1 (4.5)

In order to further simplify Equation (4.5) we use the following two observations:

1. The assumption of a diagonal bandwidth matrix allows us to a) provide a
closed-form expression for the determinant |H| =

∏d
i=1 hi and to b) express the

matrix-vector product H−1
[⃗
t (i) − x⃗

]
as:
[

1
h1

(
x1 − t

(i)
1

)
, . . . , 1

hd

(
xd − t

(i)
d

)]T
.

2. The multivariate Gaussian Kernel is a so-called product kernel, meaning it
can be expressed as the product of d single-dimensional kernel functions:
K (x⃗) =

∏d
i=1 K (xi). In our case, this allows us to evaluate the integral over a

d-dimensional kernel function as the product of d one-dimensional integrals.

Plugging the definition of the Gaussian Kernel from (4.4) into Equation (4.5) and
applying these two simplifications, we arrive at:

p̂H (Ω) =
1

s

s∑
i=1

d∏
j=1

∫ uj

lj

1

hj ·
√

2 · π
exp

⎛⎜⎝−

(
xj − t

(i)
j

)2
2 · h2

j

⎞⎟⎠dxj (4.6)

Further simplifying Equation (4.6), we can observe that the integrand directly cor-
responds to the definition of the probability density function (PDF) of a one-

dimensional Gaussian (Normal) distribution Nµ,σ2 (x) = 1
σ·
√
2·πe

− (x−µ)2

2·σ2 with mean t
(i)
j

and variance h2
j . Plugging this back into Equation (4.6), we arrive at the following

compact representation:

p̂H (Ω) =
1

s

s∑
i=1

d∏
j=1

∫ uj

lj

N
t
(i)
j ,h2

j
(xj) dxj (4.7)

We are now able to derive a closed-form solution for the estimator p̂H (Ω) by express-
ing the definite integral in Equation (4.7) in terms of the Gaussian antiderivative,
also called its cumulative distribution function (CDF). For a Gaussian distribution
with mean µ and variance σ2, the antiderivative is given by

∫ x

−∞Nµ,σ2 (τ) dτ =

1
2

[
1 + erf

(
x−µ

σ·
√
2

)]
, where erf : R → R denotes the error function, which is defined
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as erf (x) = 2√
π

∫ x

0
e−τ2dτ . By plugging this back into Equation (4.7), we arrive at

the closed-form solution to compute selectivity estimates for range queries based on
(Gaussian) KDE :

p̂H (Ω) =
1

s · 2d

s∑
i=1

d∏
j=1

[
erf

(
uj − t

(i)
j√

2 · hj

)
− erf

(
lj − t

(i)
j√

2 · hj

)]
  

=p̂
(i)
H (Ω)

(4.8)

Based on Equation (4.8), implementing a KDE -based selectivity estimator is rel-
atively straightforward: We initialize the estimator by collecting a data sample
of size s, for instance via Reservoir Sampling [Vit85], and use Scott’s rule from
Equation (4.3) to compute the bandwidth values h1 to hd. We can then use Equa-
tion (4.8) to compute the estimated fraction of points falling into query region
Ω = (l1, u1) × . . . × (ld, ud). This formulation has been around for quite some time
and can be considered state of the art. In fact, a single-dimensional variant of this
estimator had already been suggested and studied by Blohsfeld et al. in 1999 [BKS99].
The multidimensional formulation — albeit with a different choice of kernel function

— was introduced by Gunopulos et al. in 2005 [GKTD05]. Still, despite being around
for over 15 years, and despite its general advantages over histograms, KDE only plays
a side note in the research literature on multidimensional selectivity estimators. Let
us now take a closer look at why this is the case.

4.2.3 Evaluating KDE-based Selectivity Estimation

In order to understand the limited exposure that KDE received in the database
research literature, we will now take a detailed experimental look at how it stacks
up against other state-of-the-art multidimensional estimators. In particular, we will
compare a number of different methods with respect to their estimation quality and
cost. Let us begin by discussing the experimental setup, which is an extended version
of the experiments used in our 2015 ACM SIGMOD publication [HKM15], which
were inspired by the experimental evaluation from the Genhist paper [GKTD05].

Experimental Setup: Compared Estimators

In order to arrive at a solid understanding of how KDE stacks up against other
state-of-the-art methods, we compared it against the following four methods, each
representing a different category of multidimensional selectivity estimators:

Attribute-Value Independence (AVI) The state of the art for computing d-
dimensional selectivity estimates in commercial database systems is to rely on
the attribute-value independence assumption and multiply individual estimates
for the d attributes, which are typically obtained from histograms [Ioa03]. Sim-
ilar to Gunopulos et al., we did not compare any particular estimator from this
class, but instead used a custom method that returns the product of the exact
single-dimensional selectivities for a given query. Accordingly, AVI can be seen
as an upper bound on the potential estimation quality that is achievable by
methods that do not exploit cross-dimensional information.
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Genhist A state-of-the-art multidimensional histogram that was introduced by
Gunopulos et al. in 2005 [GKTD05]. The model behind Genhist uses a se-
quence of increasingly coarser equi-distant multidimensional histograms to
represent data structure at various degrees of granularity. In order to make
this representation computationally feasible, Genhist does not store the full
sequence of histograms, and only keeps high-density buckets.

STHoles A state-of-the-art, self-tuning multidimensional histogram that was intro-
duced by Bruno et al. in 2001 [BCG01]. STHoles uses nested, non-overlapping
rectangular buckets as its base model. In contrast to Genhist (and KDE ),
STHoles does not run an initial model construction phase. Instead, buckets are
generated — and iteratively refined — at runtime based on query feedback,
allowing STHoles to adapt itself to both changes in the data and the query
workload.

Sample A straightforward, sampling-based model that computes estimates by näıvely
evaluating the given predicate on a fixed-size data sample. Sample can be seen
as a baseline model for how well KDE would perform without applying any
additional probabilistic smoothing. Furthermore, since evaluating a predicate
on a sample strictly converges to the true estimate with growing model sizes,
Sample can be seen as a baseline for optimal model convergence.

Figure 4.8 exemplary visualizes Genhist, KDE & STHoles4 by illustrating their re-
spective models for a simple two-dimensional dataset. In our experiments, we used
custom implementations (in-memory, single-threaded) for all compared estimators. In
order to enable a fair comparison, the implementations were carefully designed, ensur-
ing that their behavior closely follows the descriptions outlined in the corresponding
original publications. Furthermore, we made sure to implement all performance op-
timizations that were suggested by the original authors. The source code for all
compared estimators can be found at: bitbucket.org/mheimel/feedback-kde.

Experimental Setup: Datasets & Workloads

In order to get a solid assessment of the estimation quality, we conducted our ex-
periments based on a variety of synthetic and real-world datasets with different
characteristics and dimensionalities. In particular, we used the following datasets:

Bike Hourly aggregated usage statistics for the Washington DC bike sharing system,
taken from the UCI Machine Learning Repository [BL13]. The dataset consists
of 17, 379 data points with 16 continuous attributes. Based on the raw data, we
created two tables: A 3D one (columns 1, 10 & 14), and an 8D one (columns
1, 10, 11, 12, 13, 14, 15 & 16).

Forest Geological survey of forest cover types found in the USA, taken from the UCI
Machine Learning Repository [BL13]. The dataset consists of 581, 012 points
with 54 attributes, of which we only used the ten continuous ones. Based on
the raw data, we created two tables: A 3D one (columns 1, 3 & 6) and an 8D
one (columns 1, 2, 4, 5, 6, 7, 9 & 10).

4Since AVI does not correspond to any actual model, it is not part of this visualization.
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(a) Genhist

(b) STHoles

(c) KDE

Figure 4.8: Visualizing different multidimensional estimators. The dataset used to
generate the models is shown as dots in the plot.
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Power Time-series dataset from the UCI Machine Learning Repository [BL13],
describing the electric power consumption of a single household with one-minute
resolution. The dataset consists of 2, 075, 259 data points with nine attributes
containing continuous and discrete values. Based on the raw data, we created
two tables: A 3D one (columns 3, 4 & 5) and an 8D one (columns 1, 2, 3, 4, 5,
6, 7 & 8).

Protein Dataset from the UCI Machine Learning Repository [BL13], describing
physio-chemical properties of the tertiary structure of proteins. The dataset
contains 45, 730 points with ten continuous attributes. Based on the raw data,
we created two tables: A 3D one (columns 3, 4 & 5), and an 8D one (columns
1, 2, 3, 5, 6, 7, 9 & 10).

TPCH Five-dimensional dataset based on the TPC-H benchmark [Tra14]. The
dataset consist of 6, 001, 215 points, and is created from the TPC-H dataset
generator with scale factor one by joining tables lineitem and partsupp, and
projecting on columns quantity, extendedprice, discount, tax & availqty.

Synthetic Synthetic dataset from [GKTD05], consisting of one million points. The
dataset is generated by randomly placing 100 hyper-rectangular clusters with
a uniform interior distribution, followed by adding 10% uniformly distributed
noise. We generated three- and eight-dimensional tables for this dataset.

For each of the eleven datasets used in our experiments, we generated the five following
workloads, each consisting of 2, 500 random, rectangular range queries with different
query characteristics:

dt narrow Queries with a selectivity between 0.5% and 1.5%, whose centers are
following the data distribution. This workload corresponds to a set of well-
defined user queries that all return roughly the same number of tuples.

dt wide Queries with a selectivity between 2% and 12%, whose centers are following
the data distribution. This workload corresponds to a set of well-defined user
queries with a wide spectrum of returned tuples.

dv Queries with a target volume around 1% of the data space, whose centers are fol-
lowing the data distribution. This workload corresponds to a set of exploratory
user queries with varying selectivities.

ut Queries with a selectivity between 0.5% and 1.5%, whose centers are randomly
distributed across the data space. This workload corresponds to a random
workload with queries having highly diverse query volumes.

uv Queries with a target volume around 1% of the data space, whose centers are
randomly distributed across the data space. Especially for high-dimensional
datasets, this workload corresponds to a set of mostly empty queries.

Between the eleven datasets and five query workloads, the experimental setup spans
almost 140 thousand queries, covering a wide variety of different data characteris-
tics, query scenarios, and use cases. The full set of scripts that was used to gener-
ate these datasets and query workloads can be found at: bitbucket.org/mheimel/
feedback-kde.
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Figure 4.9: Comparing the estimation quality of different state-of-the-art multidi-
mensional selectivity estimators. Note the logarithmic x-axis.

Experiment 1: Estimation Accuracy

In our first experiment, we wanted to compare the accuracy of the different estimators
and understand the impact of increasing model sizes on model convergence. For this,
we ran the full experimental workload, measuring the absolute cardinality estimation
error |R| · |p (Ω) − p̂ (Ω)|, i.e., the number of mispredicted rows, for each query. The
experiment was repeated for increasingly larger model sizes from 4 up to 128K values
per dimension. In order to avoid biasing the experiment towards any particular
estimator, we made a few basic decisions: First, in order to avoid penalizing STHoles,
which requires a few rounds of query feedback to construct an initial model, we used
the first 250 queries of each workload as a training set. Consequently, we only report
the estimation errors for the remaining 2250 queries in each workload. Second, we
built clean models before each workload to avoid potential side effects from previous
experiments. Figure 4.9 summarizes the results of this experiment, plotting the
progression of the 99th percentile and the average measured error for the different
estimators across all experiments. Note that, due to its estimation costs becoming
prohibitively expensive for larger models, we did not include STHoles for model sizes
beyond 2K values per dimension.

Looking at the results, we can get a pretty good idea why KDE was never considered
to be a competitive alternative to other methods: Across the board, it produces the
least accurate estimates and is dominated by all other methods, including the baseline
estimators. In particular, its estimation errors are around a factor of two larger than
what Genhist and STHoles achieve. Furthermore, looking at model scalability, KDE
requires a model that is roughly three orders of magnitude larger than Genhist to
achieve comparable estimation accuracy. In other words, before we can exploit GPU-

69



4.2. Background: Kernel Density-based Selectivity Estimation

accelerated KDE to achieve more accurate selectivity estimates, we will first have
to drastically improve the method itself.

There are a few other interesting observations: First of all, we can see that multi-
dimensional estimators can indeed improve upon methods that do not take cross-
dimensional information into account: Even though AVI is a lower bound for the
magnitude of estimation errors that is achieved by such methods, on average Genhist
and STHoles still deliver clearly improved results, requiring only moderate model
sizes to do so. Now interestingly, looking at the 99th percentile, we can see that
Genhist has much more trouble matching AVI ’s baseline accuracy: It seems as if
the multidimensional methods suffer from stronger (relative) fluctuations in their
worst-case errors than AVI does. These larger worst-case errors are somewhat con-
cerning in the context of query optimization, where estimation errors propagate
exponentially through the plan [IC91]. However, it should also be noted that, when
we limited the experiment to highly-correlated datasets (forest, bike, protein), the
picture looked much better for Genhist. Second, while all compared estimators benefit
from larger model sizes, Sample is clearly showing the best convergence behavior,
easily outperforming the other methods for larger model sizes. This is not surprising:
With growing sample sizes, evaluating a predicate on a sample naturally converges
towards the true solution. Accordingly, Sample can be seen as a baseline for ideal
convergence. Finally, when we look at small model sizes, we can see that Sample is
actually the worst performing method, even trailing KDE. Again, this is not really
surprising: For small model sizes, Sample will miss a significant fraction of matching
data points, and as a result often severely underestimate the result size. It is in these
regions of small model sizes relative to the base table where sophisticated statistical
methods like KDE or Genhist can deliver significantly improved estimates compared
to sampling.

Experiment 2: Estimation Costs

Besides estimation accuracy, another important metric is the time required to com-
pute an estimate: Methods that produce perfect results but require multiple seconds
to compute are simply not economical in a setting like query optimization. In our
second experiment, we wanted to compare how the different methods stack up with
regard to estimation costs. For this, we ran the same workload as in the previous
experiment but measured the time it took to compute estimates. In particular, we
measured both the per-query estimation cost, i.e., the time required to compute a
single estimate, and the construction cost, i.e., the time required to build the initial
model. Measuring the construction costs for STHoles was a bit challenging, given
that it starts with an empty model that is iteratively refined based on query feedback.
In order to have a somewhat comparable metric, we therefore defined construction
costs as the time required to initialize the model plus the time spent to estimate
the first 250 queries (the “training set”). The timing experiment was run on a server
equipped with two Xeon E5-2650 v2 eight-core processors running at 2.60GHz and
128GB of DDR3 memory. As with the previous experiment, we scaled the estimators
up from 4 to 128K values per dimension to also get an understanding how the cost
of the different models scales. The results of the estimation cost measurements are
summarized in Figure 4.10, and the results of the construction cost measurements
in Figure 4.11.
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Figure 4.10: Comparing the estimation costs of different state-of-the-art multidi-
mensional selectivity estimators. Whiskers mark the 25th and 75th percentile. Note
the log-log scale.

Let us start by discussing the results of the estimation time measurements. As we
can see in Figure 4.10, Genhist is around an order of magnitude faster than KDE.
These cheaper estimation costs of Genhist can be primarily attributed to KDE ’s
usage of the fairly expensive error function erf (x), which is called 2 ·d times per data
point (c.f. Equation (4.8)). This overhead can also be seen when comparing KDE
to Sample, which on average runs two orders of magnitude faster. Still, despite not
being great, the runtimes for both methods are actually acceptable, staying around
or below one millisecond for all but the extreme model sizes. This is not the case
for STHoles, which turned out to be too costly, with estimation times reaching up
to 100ms. In fact, we had to stop running STHoles for model sizes larger than 2K,
since it simply became too prohibitively expensive, at times even requiring more
than one second per estimate. Furthermore, STHoles showed a fairly strong variance
in its estimation costs, spanning around two orders of magnitude. This is an effect of
STHole’s feedback-based model refinement mechanism, which can become extremely
expensive, depending on the current query and the state of the histogram. Now, to
be fair, if we had only measured the time to compute a single estimate, STHoles
would be roughly comparable to Genhist. However, given that the self-tuning model
optimization is an inherent feature of STHoles ’ algorithm, we decided to include the
time spent on refining the model.

Let us now take a look at the construction costs. Figure 4.11 shows a box-plot summa-
rizing these measurements. With median construction times of around 20ms, KDE
and Sample are clearly the fastest methods to construct. This is not surprising, given
that constructing these methods merely consists of collecting a random data sample,
which can be done in a single sequential scan. Compared to this, the construction
of multidimensional histograms is much more involved. Accordingly, Genhist and
STHoles are clearly more expensive to build, requiring median construction times of
around three seconds. Interestingly, Genhist shows a much stronger variance than
STHoles, sometimes even exceeding a few 100 seconds of construction time. This is
caused by Genhist requiring multiple passes over the dataset to capture information
on multiple levels of granularity [GKTD05].
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Figure 4.11: Comparing the construction costs of different state-of-the-art multidi-
mensional selectivity estimators. Note the logarithmic y-axis.

Summary

Let us now quickly summarize our findings:

• In its state-of-the-art formulation, KDE does not match the estimation quality
of existing multidimensional histograms, making it obvious why the method
has not been seriously studied by the database research community.

• Compared to Sample, it seems that the smoothing introduced by KDE is only
beneficial when the model size is small in relation to the base table. For larger
sample sizes, KDE ’s model accuracy simply does not show the required scaling
behavior: Ideally, we would expect KDE to converge to the true estimate at
the same speed as a näıve sample evaluation does.

• While scaling up the model size has a positive effect on KDE ’s estimation
quality, multidimensional histograms seem to profit more from it. However,
with STHole’s built-in model maintenance simply becoming too expensive, only
Genhist and KDE scale well enough to actually support reasonable estimation
costs for larger models.

• Due to their sampling-based nature, KDE and Sample are the only compared
methods that can be reasonably maintained for larger model sizes via efficient
online algorithms [JPA04]. Static multidimensional estimators like Genhist
cannot be updated and thus have to be periodically rebuilt, which can incur
significant construction costs. Finally, while dynamic histograms like STHoles
can automatically adjust to data changes, their expensive maintenance costs
make them often infeasible for larger model sizes.

These results are somewhat discouraging for us, given that our initial plan was
to exploit larger model sizes enabled by a graphics card to produce more accurate
estimates. Looking at the results of our evaluation, it seems that even with drastically
larger models, we won’t be able to realistically beat traditional multidimensional
estimators like Genhist, and would clearly lag behind the accuracy of traditional
sampling methods. This basically means that in order to reasonably exploit GPU-
accelerated KDE models, we first have to improve both the general estimation quality
and the scaling behavior of KDE itself.
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4.3 KDE on Steroids: Query-Driven & Self-Tuning

Bandwidth Selection

Generally speaking, there are two ways to improve the quality of a Kernel Density
Estimation model: Increasing the sample size and fine-tuning the bandwidth value
[Sco15]. In our experimental evaluation, we already saw that increasing the size of
the sample does not improve the estimation quality significantly enough to make a
difference against Genhist, STHoles, and näıve sample evaluation. Therefore, we will
now focus on the second option: Selecting an optimal bandwidth parameter.

4.3.1 The Bandwidth Selection Problem

Recall Equation (4.2), which defines the KDE -based selectivity estimator for range
queries. In this Equation, the bandwidth matrix H controls how strongly the esti-
mator p̂H is smoothed along the various dimensions. As we already stated, select-
ing the optimal — or even just good enough — bandwidth values is a challenging
problem that has been under heavy investigation by the statistics community for
quite some time [Bow84, SBS94, WJ94, JMS96, DH05, Sco15]. The primary goal
behind this so-called bandwidth selection problem is to find the bandwidth matrix
that minimizes the distance between the estimator p̂H (x⃗) and the true distribution
p (x⃗). In particular, most methods aim to minimize the mean integrated square error
E
[∫

x⃗
(p (x⃗) − p̂H (x⃗))2 dx⃗

]
, which is the L2 loss between distributions p and p̂H .

What makes this problem particularly challenging is that the true distribution p (x⃗)
is generally unknown and often doesn’t even have a closed form [Sco15]. Bandwidth
selection algorithms solve this problem by selecting H based on an approximation of
the true distribution. For instance, so-called Rule-of-Thumb methods replace p (x⃗)
by a known distribution, allowing the derivation of simple formulas to compute the
optimal bandwidth [JMS96]. Scott’s rule (c.f. Equation (4.3)) is an example of such
a method: It is derived by assuming that the data is distributed according to a
Normal distribution N (µ,Σ) with the observed mean µ and covariance Σ [Sco15].
The advantage of rule-of-thumb methods is that they are cheap to compute, while
still producing solid choices for the bandwidth values. However, as we have seen
in Section 4.2.3, they also lead to disappointing estimation quality on data that
do not follow the assumed distribution. More sophisticated bandwidth selection
algorithms follow the same basic principle as Scott’s rule, but apply more involved
methods to approximate p (x⃗). The two most prominent classes are Cross Validation
methods, which use leave-one-out cross validation on the data sample to approximate
p (x⃗) [Bow84, SBS94, DH05], and Plug-In methods, which iteratively refine a pilot
distribution for p (x⃗) that was plugged into the bandwidth optimization [WJ94].

The bandwidth selection problem has also been covered in the database literature.
However, while all KDE-related publications acknowledge the problem, most rely
on Scott’s rule due to its simplicity [GKTD00, GKTD05, HS08, HM12, SPP+06].
In fact, there are only two papers that discuss alternative approaches: In [BKS99],
Blohsfeld et al. demonstrate that a Plug-In method can drastically improve the
selectivity estimation quality of a one-dimensional KDE model. Instead of relying
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Figure 4.12: Illustrating the impact of proper bandwidth selection on the accuracy
of Kernel Density models. Note the logarithmic x-axis.

on an existing method, Zhang et al. introduce a Newton-based optimization method
in [ZYC+09] that directly minimizes the skyline cardinality estimation error based
on a sampled test set from the database. However, they only discuss the case of
optimizing a single bandwidth value that is used across all dimensions.

Let us quickly demonstrate the impact that proper bandwidth selection can have on
the estimation quality. For this, we repeated the estimation accuracy experiment from
Section 4.2.3 for a new estimatorKDE (SCV), which uses a state-of-the-art bandwidth
selection algorithm. In particular, we were using the function Hscv.diag from the R
package ks5, which implements the Smoothed Cross Validation method [DH05]. The
results for this experiment, illustrated in Figure 4.12, show that bandwidth selection
indeed drastically improves the quality of KDE, bringing it in striking distance to
both Genhist and STHoles. However, this increased accuracy comes at a cost, given
that bandwidth selection algorithms can be extremely expensive to evaluate. For
instance, in our experiments we had to stop using KDE (SCV) for models larger
than 2K values per dimension, because the bandwidth optimization simply became
too time-consuming to run. In fact, a KDE (SCV) model is around four to five
orders of magnitude more expensive to construct than a simple KDE model, and
two to three orders of magnitude more expensive than Genhist. These excessive
costs put a fairly strict ceiling on the feasible model sizes, and thereby also the
achievable quality. Furthermore, they also limit the applicability of KDE (SCV) in
dynamic scenarios, given that changes to the data can easily cause shifts in the
optimal bandwidth configuration which forces us to rerun the expensive bandwidth
optimization routine.

5http://cran.r-project.org/web/packages/ks
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So, if the main problem of bandwidth selection algorithms is the computational cost,
then why don’t we “simply” use graphics cards to accelerate them? This approach
would fit nicely with the general theme of this chapter, as it exploits novel hardware
to enable more sophisticated estimation methods. Furthermore, it has already been
successfully demonstrated: Andrzejewski et al. showed that they can achieve speed-
ups exceeding two orders of magnitude when using a graphics card to accelerate a
Plug-In method [AGG13]. However, as we will see, there are ways to use additional
computational resources more efficiently, in particular when we consider the context
of KDE-based selectivity estimation in relational database systems. General-purpose
bandwidth selection methods are built around the assumption that the true distribu-
tion p (x⃗) is unknown and needs to be approximated to find the optimal bandwidth
configuration. Interestingly, this assumption can be relaxed when we use KDE to
approximate the frequency distribution found in a database, where our true distribu-
tion is actually known and can be easily found by querying the data. This also means
that we can compute the actual estimation error, giving us a clear and measurable
objective that we can optimize the bandwidth for. Accordingly, by selecting the
bandwidth that minimizes the measured selectivity estimation error, we should be
able to achieve even better results than any general-purpose bandwidth selection
algorithm can. Let us now take a closer look at how to do this.

4.3.2 Query-Driven Bandwidth Optimization

The general idea behind our approach is to optimize the bandwidth parameter of a
KDE -based selectivity estimator by directly minimizing the estimation error. More
formally, we need to solve the following constrained optimization problem:

H∗ = argmin
H

E
[
L
(
p̂H (Ω) ,

|σx⃗∈Ω (R)|
|R|

)]
(4.9)

s.t. ∀i : hi > 0

In this formula, |R| denotes the cardinality of relation R and |σx⃗∈Ω (R)| denotes the
number of tuples from R that fall into the query region Ω, i.e. the query’s cardinality.
Summarizing optimization problem (4.9), we want to pick the (positive) bandwidth
that minimizes the expected value of a given loss function L : R2 → R over all
possible range queries on relation R. Possible choices for the loss function include
quadratic (L2), absolute (L1), relative, or the Q-Error [MNS09].

In order to solve optimization problem (4.9), we need to compute the expected esti-
mation error across all possible range queries on R. Since this is obviously infeasible
to compute, we will instead solve a tractable approximation. In particular, we can
approximate the expected error by averaging the estimation error over a small set of
representative range queries, which yields an asymptotically correct approximation
that can be efficiently computed. In other words, given a training set of range queries
Q = {Ω1, . . . ,Ωq}, we find the optimal bandwidth by solving the following modified
optimization problem:
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H∗ = argmin
H

1

q

q∑
i=1

L
(
p̂H (Ωi) ,

|σx⃗∈Ωi
(R)|

|R|

)
(4.10)

s.t. ∀i : hi > 0

There are two issues to consider: First, this optimization problem is non-convex,
meaning it could have multiple local minima 6. It is therefore important to use a global
optimization algorithm. Second, finding the optimal bandwidth requires a viable set
of representative range queries. A straightforward way to do this is to generate a
workload consisting of random range queries, which would result in a model that
is optimized under the assumption that every region is equally likely to be queried.
However, since real-world query activity is usually more focused and not spread
equally across the whole database [YCHL92], we can achieve better results if we run
the optimization procedure for a set of collected user queries. This idea of utilizing
query feedback to drive optimization procedures is a popular theme in the research
literature on self-tuning databases [CN07], where it is exploited — among other
things — to identify useful materialized views and indexes [SV99, LPT99, ACN00],
maintain and optimize selectivity estimators [BCG01, CGG04, MHK+07], generally
assist the query optimizer [SLMK01, DDD+04], or to incrementally optimize physical
structures like table files or indexes [IKM+07, GK10, IMKG11].

4.3.3 Deriving the Gradient

In order to numerically solve optimization problem (4.10) by an off-the-shelf solver, we
first need to derive its gradient. Since the optimization problem minimizes the average
loss coming from the q queries in the training set, the gradient is simply the average

of q gradients. Accordingly, we need to derive the gradient ∇HL =
[

∂L
∂h1

, . . . , ∂L
∂hd

]T
for

the loss of a single query with respect to the individual components of the bandwidth
matrix H. Looking at the partial derivative with respect to hi and applying the chain
rule, we arrive at:

∂L
∂hi

=
∂L

∂p̂H (Ω)
· ∂p̂H (Ω)

∂hi

(4.11)

According to this equation, we can compute each element of the gradient as the
product of two partial derivatives. The first factor is independent of the estimator
and encodes information about the chosen loss function L. The second factor encodes
how the estimator reacts when we change the bandwidth of the i-th attribute. We
will now take a closer look at both factors individually.

Partial Derivative of the Loss Function

The first factor, the partial derivative ∂L
∂p̂H(Ω)

of the loss function, is the only place
that encodes information about the chosen loss function. In other words, by changing
this factor, we can modify the error metric that is being optimized by the solver,
allowing us to easily optimize the bandwidth with respect to any arbitrary (but

6Interestingly, in our experiments, the actual number of local minima turned out to be rather
low, typically on the order of one or two.
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differentiable) error metric. The following list provides loss functions and closed-form
partial derivatives for several important error functions:

• Quadratic (L2) Error:

LQuadratic = (p̂H (Ω) − p (Ω))2

∂LQuadratic

∂p̂H (Ω)
= 2 · (p̂H (Ω) − p (Ω))

• Absolute (L1) Error:

LAbsolute = |p̂H (Ω) − p (Ω)|

∂LAbsolute

∂p̂H (Ω)
=

⎧⎨⎩
−1 p̂H (Ω) < p (Ω)
0 p̂H (Ω) = p (Ω)
1 p̂H (Ω) > p (Ω)

• Relative Error7:

LRelative =
|p̂H (Ω) − p (Ω)|

λ + p (Ω)

∂LRelative

∂p̂H (Ω)
=

1

λ + p (Ω)
·

⎧⎨⎩
−1 p̂H (Ω) < p (Ω)
0 p̂H (Ω) = p (Ω)
1 p̂H (Ω) > p (Ω)

• Squared Relative Error7:

LRelative2 =

(
p̂H (Ω) − p (Ω)

λ + p (Ω)

)2

∂LRelative2

∂p̂H (Ω)
= 2 · p̂H (Ω) − p (Ω)

λ + p (Ω)

• Squared Q-Error7 [MNS09]:

LQ2 = [log (λ + p̂H (Ω)) − log (λ + p (Ω))]2

∂LQ2

∂p̂H (Ω)
= 2 · log (λ + p̂H (Ω)) − log (λ + p (Ω))

λ + p̂H (Ω)

7The value λ denotes a small positive smoothing constant that prevents divisions by zero.
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Partial Derivative of the Estimator

The second factor in Equation (4.11) is the model-specific part of the gradient, spec-
ifying how strongly the selectivity estimate changes when we modify the bandwidth
of the i-th attribute. We start our derivation of a closed-form solution by plugging
the definition of the KDE estimator for rectangular range queries from Equation (4.2)

into the partial derivative ∂p̂H(Ω)
∂hi

. After applying the summation rule and the constant
factor rule, we arrive at:

∂p̂H (Ω)

∂hi

=
1

2d · s

s∑
j=1

∂

∂hi

d∏
k=1

[
erf

(
uk − t

(j)
k√

2 · hk

)
− erf

(
lk − t

(j)
k√

2 · hk

)]
(4.12)

We can now apply the product rule to arrive at:

∂p̂H (Ω)

∂hi

=
1

2d · s

s∑
j=1

∂

∂hi

[
erf

(
ui − t

(j)
i√

2 · hi

)
− erf

(
li − t

(j)
i√

2 · hi

)]
·

∏
k ̸=i

[
erf

(
uk − t

(j)
k√

2 · hk

)
− erf

(
lk − t

(j)
k√

2 · hk

)]
(4.13)

Applying the chain rule to Equation (4.13), and observing that d
dx

erf
(
c
x

)
= − 2·c√

π·x2 ·

exp
(
−
(
c
x

)2)
, we arrive at the closed-form formula to compute the partial derivative

of the estimator with regard to the bandwidth of the i-th attribute:

∂p̂H (Ω)

∂hi

=

√
2√

π · h2
i · 2d · s

·
s∑

j=1[(
li − t

(j)
i

)
· exp

⎛⎜⎝−

(
li − t

(j)
i

)2
2 · h2

i

⎞⎟⎠
−
(
ui − t

(j)
i

)
· exp

⎛⎜⎝−

(
ui − t

(j)
i

)2
2 · h2

i

⎞⎟⎠]·
∏
k ̸=i

[
erf

(
uk − t

(j)
k√

2 · hk

)
− erf

(
lk − t

(j)
k√

2 · hk

)]
(4.14)
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Figure 4.13: Evaluating query-driven bandwidth selection for a KDE-based selec-
tivity estimator. Note the logarithmic x-axis.

4.3.4 Evaluating Query-Driven Bandwidth Selection

Now that we have derived a closed-form solution of the required gradient, we construct
a KDE -based selectivity estimator based on our Query-Driven Bandwidth Selection
method. In particular, the following three steps are required:

1. Collect a set of representative queries on relation R, for instance by keeping
the last q user queries in a ring buffer or by sampling from the set of user
queries. Increasing the number of collected queries leads to a smoother result
and reduces the risk of over-fitting to a specific region. However, at the same
time, increasing q makes the process more expensive, given that each gradient
computation requires iterating over all queries. In our experiments, we found
that a good choice for q is on the order of a few hundred queries.

2. Collect a random sample of size s from the target relation and initialize the
bandwidth using Scott’s rule. Increasing the sample size will improve the
estimation quality, but also increase the per-query estimation costs. Luckily,
KDE ’s per-query estimation time only depends on the sample size and doesn’t
fluctuate a lot, allowing us to easily find the largest possible sample size that
still guarantees that estimation costs stay within a given time budget.

3. Pick the optimal bandwidth H∗ by plugging optimization problem (4.10) into
your favorite gradient-based numerical solver for bound-constrained optimiza-
tion problems, using Equation (4.14) to compute the gradient. Since the op-
timization problem is non-convex, this requires a global solver. In our experi-
ments, we had good experiences with first running a coarse global optimization
algorithm like MLSLS [KT87] to get us into the right neighborhood, followed
by a local optimization algorithm like L-BFGS-B [BLNZ95] or MMA [Sva02]
to refine the bandwidth. Note that we did not implement these algorithms
ourselves but relied on the NLopt library [Joh14].
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Let us now quickly evaluate how this method stacks up against the state of the art.
For this, we repeated the estimation accuracy experiment from Section 4.2.3, this time
including our shiny new query-driven estimator KDE (query), which we optimized
based on the (randomized) first 250 queries of each workload. The results, which are
summarized in Figure 4.13, speak for themselves: KDE (query) delivers by far the
most accurate results among all estimators, easily beating both multidimensional
histograms and the state-of-the-art bandwidth selection method used by KDE (SCV).
Furthermore, it is also in striking distance of näıve sample evaluation for larger
models, making this method highly competitive. Now, to be fair, we only managed to
beat the state-of-the-art bandwidth selection algorithm because we were not playing
by the same rules: General-purpose methods do not have access to the additional
information and domain knowledge we incorporate into KDE (query) to directly
minimize the estimation error. Still, it is a nice result, showing that we are not only
able to bring KDE on-par with the state of the art in multidimensional selectivity
estimation, but even to significantly improve upon it.

Figure 4.14: Investigating the construction costs of Kernel Density Models using
query-driven bandwidth-selection. Note the logarithmic y-axis.

Now, similar to KDE (SCV), there is still the problem of having to pay high up-
front construction costs due to the numerical optimization when building a KDE
(query) model. Figure 4.14 illustrates this, based on the estimation cost benchmark
from Section 4.2.3. As we can see, despite not being as prohibitively expensive to
construct as KDE (SCV), KDE (query) is still roughly in the same ballpark as
STHoles and Genhist. As we stated before, high construction costs can severely limit
the model’s applicability for real-world scenarios, where changing data and workload
characteristics force us to frequently re-optimize the estimator. Ideally, we would like
to have an estimator that achieves comparable estimation quality to KDE (query)
without incurring excessive up-front construction costs. So, before we finally discuss
how modern hardware can help us to accelerate this shiny new estimator, let us
first discuss one final optimization that will allow us to significantly reduce these
expensive up-front model construction costs.
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4.3.5 Self-Tuning, Query-Driven Bandwidth Selection

One approach to amortize high up-front model construction costs is to continuously
update the model as we go, similar to how STHoles does it. In our case, where we
have to solve a numerical optimization problem, this could for instance be done
by using an online optimization algorithm like stochastic gradient descent (SGD).
The principle idea is simple: Instead of optimizing the bandwidth offline based on a
set of user queries, we could directly update it after each query by subtracting the
query’s estimation error gradient ∇HL. This is a well-known approach from Machine
Learning, where online methods have often been shown to provide faster, more
flexible, and more stable convergence towards the optimal model, when compared to
batch optimization algorithms [WM03, Bot10].

There are a few issues to consider: First, online optimization algorithms like SGD are
fairly susceptible to outliers, since extreme gradients from outlier observations can
cause strong fluctuations and lead to erratic behavior. In our case, we can mitigate
this problem by using a mini-batch approach, which smooths out extreme gradients
by averaging contributions over a small number of queries before updating the model.
Second, the convergence behavior of SGD depends on the choice of the learning
rate, which determines how strongly each observation changes the model [Jac88].
Ideally, this rate should be adaptive, tending towards zero for static workloads to
accelerate convergence, but then increase again when the workload changes to enable
quick and reactive model updates. In our case, we use the adaptive learning rate
method RMSprop [TH12], which is the mini-batch variant of the earlier Rprop [RB93],
to achieve this intended behavior. RMSprop adjusts the learning rate based on the
direction of previous gradients: If the directions of the last gradients agree, the rate is
increased, otherwise it is decreased. Before updating the model, RMSprop also scales
the gradients by the average magnitude of recent gradients to improve convergence
behavior. RMSprop is a simple and cheap learning algorithm that we found to work
well in our experiments. Finally, we need to ensure that the positivity constraint
from optimization problem (4.10) is never violated during the online optimization.
RMSprop is an unconstrained optimization algorithm, meaning we have to manually
guarantee positivity. We do this by artificially restricting updates that violate the
constraint: If an update would result in a negative bandwidth parameter, we discard
the update and instead set the bandwidth to half of its current value in the direction
of the gradient.

Listing 4.1 provides a detailed overview of our adaptive bandwidth optimization
algorithm: When a new query arrives, we compute the selectivity estimate according
to Equation (4.8) (line 6), pass the estimate to the database, and let the query run
(line 8). We also compute the error-independent part of the error gradient, the partial
derivative of the estimator with regard to the bandwidth according to Equation (4.14)
(line 7). Note that, since Equations (4.8) and (4.14) are both summations over similar
factors computed from the sample, we can save computations by evaluating both
in a single pass over the dataset. This allows us to hide a significant portion of the
additional costs for computing the gradient. After the query finishes, we receive its
query feedback (line 9), compute the error gradient based on Equation (4.11) (line
10) and add it to the current mini-batch (line 11). If the mini-batch is full, we start
the model optimization process by averaging the accumulated gradients (line 14) and
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Listing 4.1: A Self-Tuning KDE-based Selectivity Estimator

1 g⃗(0) = [0, . . . , 0]T // Mini-batch accumulator.

2 m⃗ = [0, . . . , 0]T // Running average magnitude.

3 λ⃗ = [1, . . . , 1]T // Initial learning rates.
4 i = 0; t = 0
5 foreach query Ω:
6 Compute estimated selectivity p̂H (Ω) according to Equation (3.8).

7 Compute partial derivative of the estimator ∂p̂H(Ω)
∂H according to Equation (3.14).

8 Run query Ω.
9 Collect actual selectivity |σx⃗∈Ω(R)|/|R| from query feedback.

10 Compute gradient ∇HL (p̂H (Ω) , |σx⃗∈Ω(R)|/|R|) according to Equation (3.11).

11 g⃗(t) = g⃗(t) +∇HL (p̂H (Ω) , |σx⃗∈Ω(R)|/|R|)
12 i = i+ 1
13 i f ( i mod N == 0 ) :

14 g⃗(t) = g⃗(t)/N
15 foreach dimension d:

16 md = α ·md + (1− α) ·
(
g
(t)
d

)2
17 i f (g

(t)
d · g(t−1)

d > 0) λd = min(λd · λinc, λmax)

18 i f (g
(t)
d · g(t−1)

d < 0) λd = max(λd · λdec, λmin)

19 hd = max
(
0.5 · hd, hd − λd/√md · g(t)d

)
20 t = t+ 1; g⃗(t) = [0, . . . , 0]T

updating the running average of gradient magnitudes (line 16). We then perform the
RMSprop learning rate update for each dimension (line 17 and 18) by subtracting
the scaled gradient values (line 19). Finally, when updating the individual bandwidth
parameters, we enforce the positivity constraint by capping the update to half the
bandwidth’s current value (line 19).

There are a few important parameters that control the algorithm’s behavior: The
mini-batch size N controls how many gradients are averaged per mini-batch. We
found that a value around 10 works well in practice. The smoothing rate α limits the
influence of historic gradients on the gradient scaling. In our implementation, this is
set to 0.9. Parameters λmin and λmax are the smallest and largest allowed learning
rates. They are set to 10−6 and 50 respectively, which are the suggested values from
[TH12]. The final two parameters are λinc and λdec, which are the multiplicative
factors by which the learning rate is in-/decreased. These are also set to their
suggested values from [TH12], which are 1.2 and 0.5 respectively.

4.3.6 Evaluating Self-Tuning KDE

Let us now investigate how well our self-tuning method KDE (online) works in
practice. Figure 4.15 shows the results of including it in the estimation accuracy
experiment from Section 4.2.3. As we can see, KDE (online) achieves basically the
same accuracy as KDE (query), making it one of the most accurate and best-scaling
estimators in the experiment. The slight degradation compared to KDE (query) can
be explained by two factors: First, the stochastic nature of online learning leads to a

82



4.3. KDE on Steroids: Query-Driven & Self-Tuning Bandwidth Selection

Figure 4.15: Evaluating the model accuracy of online, query-driven bandwidth
selection for Kernel Density Models. Note the logarithmic x-axis.

Figure 4.16: Evaluating the estimation cost of online, query-driven bandwidth
selection for Kernel Density Models. Note the log-log scale.

higher variance in the produced bandwidth estimates, which can cause less reliable
estimates. Second, in contrast to KDE (query), KDE (online) does not use a global
optimization procedure, meaning it is more likely to get stuck in local minima. Still,
KDE (online) produces comparably accurate estimates to KDE (query), while not
incurring hugely expensive up-front model construction costs. However, in order to
achieve this, we pushed the bandwidth optimization into the estimator itself, making
computing an estimate more expensive. Figure 4.16 shows how these additional
computations affect the per-query estimation costs of KDE (online). As we can see,
despite doing more work per sample point, KDE (query) is actually not significantly
more expensive than traditional KDE, only incurring a constant overhead over the
existing method.
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Let us quickly summarize our findings:

1. The estimation quality of KDE (online) significantly surpasses both multi-
dimensional histograms and existing KDE -based methods. Furthermore, it
manages to match the scaling behavior of sampling-based methods, while dras-
tically exceeding their accuracy for small model sizes. However, it does not
fully match the accuracy of KDE (query), which is likely caused by the lack of
global optimization and the increased susceptibility towards extreme gradients
caused by outliers.

2. In contrast to Genhist and KDE (query), KDE (online) is a fully self-tuning
model that does not have to be periodically rebuilt. The online-learning algo-
rithm it uses to incrementally update its bandwidth allows KDE (online) to
automatically react to any changes in the query workload. Furthermore, like
any KDE -based estimator, its sample-based nature allows KDE (online) to
also adapt to changes in the database when combined with a sample main-
tenance mechanism like CAR [OR92] or RPMerge [GLH08] that propagates
insertions, updates, and deletions from the database to the underlying sample.
Compared to alternative self-tuning estimators like STHoles, this adaptivity
does not come with a hefty price tag, making it much more reasonable to use.

4.4 GPU-Accelerated Kernel-Density Estimation

As we have seen, bandwidth-optimized KDE -based estimators like KDE (query)
and KDE (online) are highly accurate methods that significantly improve upon the
estimation accuracy of state-of-the-art multidimensional histograms. At the same
time, due to their sampling-based nature, KDE -based estimators are especially well-
suited for parallelization: All major operations can be expressed as summations over
individual contributions from the sample points, which is an embarrassingly parallel
problem that can be efficiently accelerated by a GPU — or any other parallel processor
for that matter. In this section, we will demonstrate how to parallelize both KDE
and KDE (online), and sketch OpenCL-based implementations for both. Afterwards,
we provide an experimental evaluation showcasing the advantages of pushing these
models to a graphics card. For an overview of the basic concepts behind OpenCL,
as well as the parallel programming primitives that are typically used to implement
data-parallel programs in OpenCL, we refer the reader to Section 3.2.

4.4.1 A Parallel Kernel Density Estimator

Before we start parallelizing the computations that are required for KDE, let us
first discuss how to represent the estimator model. Essentially, this boils down to
deciding memory layouts for the three buffers that store the bandwidth, the query
bounds, and the data sample. Due to their relatively small sizes, the layouts of the
first two buffers are not really performance critical. In our implementation, we simply
store them in a straightforward row-major format. The more interesting question
is how to represent the sample buffer, which is significantly larger. In particular,
we have to decide whether we should use a row-wise or a columnar data layout
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Figure 4.17: Parallelizing Kernel Density Estimation, exemplified for a three-
dimensional dataset.

for this buffer. Using a columnar layout would have the advantage of enabling co-
alesced memory access patterns when computing estimates: In a coalesced pattern,
neighboring threads access neighboring memory addresses, which allows the GPU
to combine their IO-operations, drastically improving the peak IO-throughput on
graphics cards [BBK+08]. A row-wise layout does not lend itself to coalesced memory
access, making it slightly less efficient. Now, since KDE is primarily compute-bound,
such IO-specific optimizations are not really critical: In our experiments, we found
that the performance penalty incurred from using a row-wise sample buffer layout
is typically below 10%. At the same time, however, a row-wise layout brings clear
performance benefits when updating the model: Since all points are stored contigu-
ously in memory, the host can replace individual points with a single PCI Express
transfer operation, whereas d individual transfers would be required for each point
in a columnar layout. Since model maintenance is a big advantage of KDE models,
we therefore decided to go with a row-wise layout for the sample buffer.

With the data layout decided, let us now discuss the basic parallelization strat-
egy for the KDE -based range selectivity estimator, as defined by Equation (4.8).
Recall that, given a bandwidth H = {h1, . . . , hd}, KDE estimates the selectivity
p̂H (Ω) for a range query Ω by summing up the s individual probability contributions

p̂
(1)
H (Ω) . . . p̂

(s)
H (Ω). We follow a straightforward two-stage approach to implement

this in a data-parallel fashion: In the first stage, we compute the s individual contri-
butions in parallel. Afterwards, the second stage computes the sum of all individual
contributions via a parallel reduction (aggregation) strategy [H+07]. Figure 4.17
illustrates this approach, and Listing 4.2 provides the corresponding OpenCL kernel
source code that we used in our experiments.

Let us quickly walk through the implementation in Listing 4.2 to highlight a few
interesting details. The first one is found in lines 10 to 14, where we instruct each
work-group’s first d threads to compute the d factors 1/

√
2·hi and store them in local

memory. These factors are required by all threads, so precomputing them saves us a
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Listing 4.2: Evaluating a KDE range estimate in OpenCL.

1 __kernel void kde(

2 // Input arguments.

3 __global const float* sample,

4 __global const float2* query,

5 __global const float* bandwidth,

6 // Output argument.

7 __global float* result,

8 ) {

9 // Precompute bandwidth factors.

10 __local float bw[D];

11 if (get_local_id(0) < D) {

12 float h = bandwidth[get_local_id(0)];

13 bw[get_local_id(0)] = 1.0 / (M_SQRT2 * h);

14 }

15 barrier(CLK_LOCAL_MEM_FENCE); // Wait for work-group.

16 // Compute local contribution from our sample point.

17 float res = 1.0;

18 for (unsigned int d=0; d<D; ++d) {

19 // Fetch the required input for this dimension..

20 float t = sample[D*get_global_id(0) + d];

21 float h = bw[d];

22 float2 q = query[d];

23 // Compute result for this dimension (vectorized over bounds).

24 float2 q_x = erf(h * (q - t));

25 float local_result = q_x.y - q_x.x;

26 res *= local_result;

27 }

28 // Aggregate within the work-group & return result.

29 res = work_group_reduce_add(res);

30 if (get_local_id(0) == 0) result[get_group_id(0)] = res;

31 }
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few cycles. Furthermore, by moving them from global to local memory, we drastically
reduce the latency to access these commonly used values. The barrier in line 15
ensures that the other threads will only start with the actual computations once
these common factors have been written to local memory. In line 18, we start the
actual computation by entering a loop over the d dimensions to evaluate the product
in Equation (4.8). Here, we exploit OpenCL’s runtime compilation capabilities: The
kernel is compiled just-in-time, and we are passing the number of dimensions as a
compile-time constant D. This enables the vendor-provided OpenCL compiler to
unroll and/or vectorize this loop as needed. In lines 20 to 22, we are fetching the
required values for this dimension and sample point from global memory. Note that
we are using a vectorized load operation in line 22 to fetch both upper and lower
bound at the same time. In lines 24 and 25, we are computing the result factor
for the current dimension according to Equation (4.8). This computation is again
vectorized over both the lower and upper bound. Finally, in line 26, we are updating
the local result, which is then added to the results of all other threads via a built-in
OpenCL work-group reduce function (line 29). This produces a partial aggregate
from the results of all threads in the local work-group, which is then written to global
memory by the first thread in the group (line 30). Afterwards, all we have to do is
add up the partial aggregates from all work-groups with another reduction operation,
transfer this final sum back to the host, and normalize it according to Equation (4.8).
Interestingly, despite requiring two individual stages, we managed to implement the
operation in a single kernel by merging the final aggregate into the kernel of the first
stage, a process also called kernel weaving [WDCY12]. Doing so has the advantage
of reducing the required kernel calls and IO-operations on the device, making the
whole operation more efficient [WLY10].

Experimental Evaluation

Let us now take a look at how much faster the parallelized KDE estimator is compared
to the single-threaded variant. For this, we repeated the estimation cost experiment
from Section 4.2.3, and compared the per-query estimation costs of single-threaded
KDE against the OpenCL-based parallel implementation. In order to understand
both the impact of parallelization and of GPU acceleration, we ran the OpenCL vari-
ant on three different systems: A multi-core, multi-processor Intel CPU system (KDE
(CPU), two Intel Xeon E5-2650 v2 eight-core processors), a professional Nvidia com-
pute accelerator (KDE (Nvidia), Nvidia Tesla K40m), and a consumer-grade AMD
graphics card (KDE (AMD), AMD Radeon R9 Fury X). Note that the measurements
for the GPU-based experiments include both the transfer of query bounds to the
graphics card, as well as the return of the estimates back to the host. Figure 4.18
shows the results, illustrating the 95th-percentile per-query estimation costs measured
in this experiment.

There are a few noteworthy things to observe. First, in contrast to the purely linear
scaling behavior of single-threaded KDE, the parallelized variants exhibit constant
per-query estimation costs of around a tenth of a millisecond for model sizes smaller
than 8k to 16k, only starting to gradually converge towards linear scaling when
the models grow larger. This somewhat weird behavior is an artifact of the constant
overhead that was added by the OpenCL runtime. For small data sizes, this overhead,
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Figure 4.18: Comparing the model scalability of single-threaded KDE with the
parallelized version on multi-core CPUs and graphics cards.

which comprises general framework latencies, kernel calls, and data transfers, simply
shadows the actual computations. When the model sizes grow, this overhead is
eventually amortized over the more expensive computations, and we begin to see the
expected linear scaling behavior. Now, interestingly, we would expect this OpenCL
runtime overhead to be larger for the GPU-accelerated variants, given that those
have to perform several high-latency transfers across the PCI Express bus. Instead,
we can see that it is actually a few nanoseconds smaller for the graphics cards. This
is somewhat surprising, and honestly, the best explanation we came up with were
inefficiencies in Intel’s OpenCL runtime. This theory is somewhat supported by the
weird performance hiccup on the CPU for model sizes between one and 32k, where
the estimation costs shoot up by almost an order of magnitude. We assume that
this effect is caused by our OpenCL implementation trying to keep the number of
work-groups smallish, making it harder for Intel’s runtime to exploit all available
processors and causing suboptimal scaling behavior for smaller model sizes.

Let us now take a look at the actual numbers. Once the initial runtime overhead
is amortized, we can clearly see the dramatic effect that parallelization and GPU
acceleration have on the runtime. For instance, looking at model sizes of 128k points,
the 95th-percentile per-query estimation cost of single-threaded KDE is around 90 ms,
whereas the parallelized variant requires only 500 ns on the CPU, and around 200 ns
on the graphics cards. In other words, we achieve an acceleration of almost three
orders of magnitude! On the CPU, the acceleration is reasonably close to the theoreti-
cally achievable factor of 256X8, demonstrating that a) KDE indeed benefits strongly
from parallelization, and that b) Intel’s OpenCL runtime managed extremely well
to vectorize and parallelize our code. Looking at the measurements for the graph-
ics cards, we can see that — as expected — both GPUs clearly outperform the
parallelized variant on the CPU. In particular, running on the Nvidia Tesla card
accelerates computations by around a factor of two over the CPU, while the AMD
card is roughly four times as fast as the CPU. Now, these speed-ups are slightly below

8Our test system had two eight-core Xeon processors, whose cores each support two hardware
threads via hyper-threading, and feature AVX 256-bit vector-processing, allowing them to process
eight 32-bit floating point operations at once.
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what we would expect for running a compute-bound application whose primary data
is cached on the GPU [LKC+10, GH11]. However, note that a) we are comparing a
consumer-grade graphics card against a server-grade two-processor system, and b)
we specifically did not optimize our kernels to run efficiently on GPUs (for instance
by using coalesced memory access patterns).

Let us quickly iterate what these speed-ups mean in practice. As we stated in the
beginning of this chapter, selectivity estimation can hardly be considered as a per-
formance bottleneck, and accordingly, our goal was never to “simply” accelerate the
estimator. Instead, we want to exploit the improved performance to enable larger
model sizes and thereby producing more accurate estimates. Let us, for instance,
assume that we are given a time budget of 1 ms to compute an estimate. Looking at
Figure 4.18, the largest model size that single-threaded KDE could handle within
this budget is around two thousand sample points. The parallelized variant running
on the CPU could run models of up to 256k sample points, while the AMD graphics
card would even allow to use models of up to two million sample points: An improve-
ment of three orders of magnitude. Looking back at the results of our estimation
accuracy experiment from Section 4.2.3 in Figure 4.15, we can see that increasing
the model by three orders of magnitude should reduce the 99th percentile estimation
error by two thirds. While this might not seem impressive, recall that errors in the
cardinality estimates propagate exponentially through the query plan with the num-
ber of joins [Swa89, RH05, MNS09], meaning that even small improvements can have
a dramatic effect on the quality of the plan. However, as we have shown in the pre-
vious sections, KDE vitally requires a bandwidth optimization mechanism to truly
deliver estimates whose accuracy exceed existing state-of-the-art methods. Therefore,
our ultimate goal should be to build a parallelized, GPU-accelerated variant of our
query-driven & self-tuning selectivity estimator KDE (online).

4.4.2 Parallelizing Query-Driven Bandwidth Selection

Recall that the primary idea behind KDE (online) is to utilize the gradient of the
estimation error to continuously adjust the bandwidth and thus improve the accuracy
of the estimator. As we have shown in Equation (4.11), this gradient is computed
by multiplying two factors: The partial derivative of the loss function ∂L/∂p̂H(Ω) and
the partial derivative of the estimator ∂p̂H(Ω)/∂H. Out of these two factors, only the
first one actually depends on the estimation error: According to Equation (4.13), the
second factor — which indicates how strongly the estimator would react to changes
of the bandwidth — can be computed solely based on the sample points, the current
bandwidth H, and the query region Ω. In other words, we don’t need to wait for the
query to finish before we can start to compute this factor, allowing us to interleave its
computation with the query execution itself. Figure 4.19 illustrates this idea: After
the query has been parsed, we send its bounds Ω to the graphics card, where we run
the parallelized implementation of Equation (4.8) to compute the estimate p̂H (Ω).
This estimate is then used by the database to optimize the query. Meanwhile, we can
already start to evaluate Equation (4.13) on the graphics card to compute ∂p̂H(Ω)/∂H.
Finally, after the query has finished processing, we push the query feedback p̂H (Ω)
to the graphics card, which can then update its model using the algorithm outlined
in Listing 4.1. Since computing the partial derivative of the estimator is by far the
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Figure 4.19: Using a graphics cards allows us to hide most of KDE (online)’s
expensive model update computations by interleaving them with query processing.

most expensive part of KDE (online)’s model update algorithm, this method allows
us to hide a significant part of the additional costs behind query execution. Or in
other words: Exploiting a graphics card allows us to use the much more advanced
KDE (online) without incurring any user-visible performance impact compared to
KDE.

With the general implementation strategy being mapped out, let us now discuss how
to parallelize KDE (online)’s model update algorithm from Listing 4.1. The majority
of this algorithm, in particular the update of the bandwidth values, is actually trivial
to parallelize by using one thread per dimension. Furthermore, the only part of the
algorithm that touches the data sample — and thus incurs significant costs — is
the evaluation of Equation (4.14) to compute the partial derivative of the estimator
∂p̂H(Ω)/H. Accordingly, our main focus should be on parallelizing this computation,
whose basic structure is a summation over gradient contributions from the individual
sample points. While this is similar to Equation (4.8), which defines the KDE -based
estimator, there are two things that stand out: First, instead of being a scalar value,
the individual contributions are now d-dimensional vectors. Second, the contributions
are far more expensive to compute, requiring two factors per dimension that have to
be multiplied in a cross-wise fashion across dimensions. Equations (4.15) to (4.17)
show a breakdown of the individual steps required by this computation. As we can
see, the i-th component of the gradient vector is computed as the (normalized) sum

of s local gradient contributions γ
(j)
i from the individual sample points. Each of these

local gradients is computed as the product of α
(j)
i , a factor that depends on the i-th
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Figure 4.20: Parallelizing the gradient computation required by the online query-
driven Kernel Density Estimator, exemplified for a three-dimensional dataset

The straightforward way to parallelize this set of equations is to have each thread
evaluate Equation (4.16) to compute the i-th dimension of the local gradient γ

(j)
i

for a sample point j, followed by d + 1 parallel reduction operations to finalize the
gradient vector. However, while easy to implement, this method also causes a lot of
unnecessary computations: Each factor β

(j)
i appears in d− 1 of point j’s individual

gradient computations, meaning we would recompute each β-factor d−1 times. Since
there are d · s β-factors, and since each one requires two invocations of the error
function, we are looking at a grand total of 2 · s · (d− 1)2 unnecessary calls to this
fairly expensive function. One way to avoid these additional computations is to
have each thread compute all d γ-factors for a given sample point, ensuring that
each β factor is only required by exactly one thread. However, while reducing the
total number of computations, this approach results in a much more complex kernel,
making it harder for the OpenCL runtime to properly exploit the available hardware
resources. Furthermore, each thread would now have to compute d times as many
values, effectively reducing the degree of parallelism from d× s to s. Based on our
experiments, we found that the most robust parallelization strategy is actually a
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Listing 4.3: Computing the gradient factors for KDE (online) in OpenCL.

1 __kernel void computeGradFactors(

2 __global const float* sample,

3 __global const float2* query,

4 __global const float* bandwidth,

5 __global float* alpha_buffer,

6 __global float* beta_buffer

7 ) {

8 // Precompute the bandwidth factors.

9 __local float bw[D];

10 if (get_local_id(0) == 0) {

11 T h = bandwidth[get_global_id(1)];

12 bw[get_global_id(1)] = 1.0 / (M_SQRT2 * h);

13 }

14 barrier(CLK_LOCAL_MEM_FENCE); // Wait for work-group

15 // Fetch the required values.

16 float t = sample[D*get_global_id(0) + get_global_id(1)];

17 float h = bw[get_global_id(1)];

18 float2 q = query[get_global_id(1];

19 // Compute common factors.

20 float2 q_t = q - t;

21 // Compute the alpha factor.

22 float alpha = erf(h * q_t);

23 alpha_buffer[D*get_global_id(0) + get_global_id(1)] =

24 alpha.y - alpha.x;

25 // Compute the beta factor.

26 float beta = q_t * exp(-1 * h * h * q_t * q_t);

27 beta_buffer[D*get_global_id(0) + get_global_id(1)] =

28 beta.x - beta.y;

29 }

hybrid of these two alternatives: In the first stage, we compute all α and β factors
in parallel, with each thread computing one particular α

(j)
i and β

(j)
i pair, followed by

storing them to global memory. Afterwards, in the second stage, each thread computes
the d γ factors for one sample point, again writing those values to global memory.
Finally, we launch d parallel reduction operations to aggregate the s γ factors and
produce the final gradient. Figure 4.20 illustrates this strategy. By splitting the work
across these three stages, we are able to run the most expensive computations with the
highest possible degree of parallelism, while still avoiding unnecessary computations.

Let us do a quick walk through the parallelized code for KDE (online), starting with
the first stage of the computation, which is depicted in Listing 4.3. Recall that in this
stage, each thread computes the factors αi,j and βi,j for one particular dimension j of
one particular sample point i. In order to represent this work assignment naturally,
and in order to provide the OpenCL runtime with additional information to opti-
mally schedule the required work, we use a two-dimensional kernel: Each of the s · d
threads is assigned to one specific point in the two-dimensional work space, with the
first coordinate i (get global id (0)) determining the sample point, and the second
coordinate j (get global id (1)) determining the dimension. Based on these coordi-
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Listing 4.4: Computing the partial gradients for KDE (online) in OpenCL.

1 __kernel void computeLocalGradients(

2 __global const float* alpha_buffer,

3 __global const float* beta_buffer,

4 __global float* partial_gradient_buffer

5 ) {

6 // Initialize variables for the local gradient.

7 float local_gradient[D];

8 for (unsigned int i=0; i<D; ++i) {

9 local_gradient[i] = 1.0;

10 }

11 // Compute the local gradient contributions

12 for (unsigned int i=0; i<D; ++i) {

13 float alpha = alpha_buffer[D * get_global_id(0) + i];

14 float beta = beta_buffer[D * get_global_id(0) + i];

15 for (unsigned int j=0; j<D; ++j) {

16 local_gradient[j] *= (i == j) ? beta : alpha;

17 }

18 }

19 // Aggregate within the work-group and return results.

20 for (unsigned int i=0; i<D; ++i) {

21 float result = work_group_reduce_add(local_gradient[i]);

22 if (get_local_id(0) == 0) {

23 partial_gradient_buffer[get_num_groups(0)*i + get_group_id(0)]

24 = result;

25 }

26 }

27 }

nates, the threads can access their required values by computing the corresponding
linearized positions within the row-major buffers as i · d + j (lines 16, 23, and 27).
The remainder of the kernel is relatively straightforward: After having fetched their
required input values, each thread computes their pair of α (lines 22 to 24) and β
(lines 26 to 28) factors according to Equations (4.17), followed by writing them back
to global memory. Note that we use the same set of general optimizations that were
discussed for parallelized KDE in the previous section: In particular, we again cache
the bandwidth values within local memory, hard-code the number of dimensions D,
and vectorize the computations over the upper and lower query bounds.

In the second stage of the computation, which is depicted in Listing 4.4, each thread
uses the precomputed α and β factors to derive the d-dimensional local gradient γi for
one particular sample point i. The actual computation of these local gradient values
happens in lines 14 to 21 according to Equation (4.11). Once we have computed
these values, we aggregate the local gradient values (lines 22 to 29) by spawning D
parallel reduction operations and then write the aggregated contributions to separate
columnar buffers in global memory, each of which stores the contributions for one
particular dimension from all work-groups in consecutive memory positions. This
layout allows us to efficiently compute the final gradient value for each dimension by
running d parallel reduction algorithms on consecutive values in global memory. Note
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Figure 4.21: Comparing the model scalability of single-threaded, bandwidth-
optimized KDE with the parallelized version on both a CPU and a GPU.

that we again exploited kernel weaving to merge the third stage, which accumulates
the local gradients, into the second one (lines 24 to 35). Furthermore, we also used
vectorization and dynamic code generation as previously described to improve the
overall code efficiency.

Experimental Evaluation

The last thing that remains to be done is evaluating the performance improvements
obtained from parallelizing KDE (online) and pushing its computations onto a
graphics card. In order to do this, we ran the estimation cost experiment a final
time, this time comparing parallelized KDE (online) against the single-threaded
implementation. The experimental setup was identical to the one we used to evaluate
the parallel KDE estimator. Figure 4.21 illustrates the results of this experiment,
showing the 95th-percentile per-query estimation costs observed in this experiment.
Note that the plot uses a log-log scale.

Generally speaking, the performance measurements for parallelized KDE (online)
show a similar picture as the ones for parallelized KDE : On all three devices, our
parallel implementation clearly outperforms the serialized variant by a few orders
of magnitude, making the method viable for much larger model sizes. The detailed
measurements are also comparable to those of parallelized KDE : On all devices,
we can observe a constant OpenCL framework runtime overhead of a few 100 ns.
However, due to us having to run two kernels instead of one, this constant overhead
is now roughly twice of what we observed for parallelized KDE. For larger model
sizes, this constant overhead is amortized and the scaling behavior becomes linear.
Comparing the measured runtimes to parallelized KDE, we can see that the band-
width optimization roughly causes a 2-3x runtime overhead. However, recall that
this overhead is not necessarily visible to a database user due to us interleaving the
computations with actual query processing by scheduling them on the graphics card
while the query is running.
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4.5 Summary & Outlook

Growing hardware heterogeneity is increasingly challenging our notion of how to
optimally exploit the advantages of modern processor architectures in relational
database systems. Historically, the typical approach has always been to utilize all
available resources to accelerate traditional data processing algorithms, leading to
the development of a plethora of specialized algorithms for virtually all available
hardware architectures. However, with hardware architectures becoming increasingly
specialized, it is unclear whether this sole focus on improving only one particular
aspect of the database system is the right way forward. In this chapter, we motivated
an alternative approach by suggesting to utilize modern hardware resources like
graphics cards to assist the relational query optimizer. Several of the computations
required by relational query optimizers could benefit from hardware acceleration,
and pushing more resources into the optimizer would directly improve the quality of
the generated query plans. Exploiting modern hardware to improve the overall plan
quality could indirectly accelerate all aspects of the data processing pipeline while
avoiding most of the problems that are associated with hardware-accelerated data
processing.

We demonstrated the feasibility of this general idea by presenting a GPU-accelerated
selectivity estimator based on Kernel Density Estimation, a statistical tool to cal-
culate probability estimates based on a data sample. KDE has several advantages
over histogram-based methods: It converges faster, can be updated more easily to
changing data, and generally produces more accurate results. However, at the same
time, KDE is also prohibitively more expensive to evaluate, making it infeasible
to use in the time-critical setting of query optimization. Luckily, KDE is easy to
parallelize, and it can be efficiently accelerated by modern hardware, making it an
ideal example to demonstrate how exploiting modern hardware can enable advanced
methods that improve the query optimization process. Another important aspect of
our work on KDE -based selectivity estimators was the question of how to optimize
the so-called bandwidth parameter, which controls the amount of smoothing in the
estimator. Finding a good value for this parameter is a hard problem, yet essential
for KDE to achieve competitive accuracy. In fact, as we have demonstrated, choosing
a suboptimal bandwidth parameter can cause the accuracy of KDE -based estimators
to plummet by orders of magnitude. In this chapter, we introduced a novel approach
to solve this bandwidth selection problem in the context of selectivity estimators. Our
proposed method utilizes query feedback to iteratively refine the bandwidth param-
eter at runtime, enabling us to dramatically improve the estimation accuracy and to
arrive at a self-tuning model that can automatically react to changes in the workload.
Furthermore, we explained how to perform this optimization efficiently in parallel,
and demonstrated that, by pushing computations to a graphics card and interleaving
them with actual query execution, we can effectively hide the additionally incurred
costs.

In summary, by exploiting the properties of modern hardware in the context of query
optimization, we were able to implement a novel selectivity estimator based on KDE
that is highly scalable, can adapt itself to changes in both the database and the query
workload, and also outperforms the accuracy of established state-of-the-art methods.
This is a great example of how utilizing modern hardware outside of the confines
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of the core execution engine can unlock novel applications while still assisting the
database engine. Let us now close this chapter by taking a quick look ahead and
discussing a few selected topics based on our work that we believe to be exciting
directions for future research:

Advancing KDE-based selectivity estimation: There are two research direc-
tions that we consider to be of particular interest to further advance the state
of the art in KDE-based selectivity estimation: KDE for discrete data and
Variable Kernel Density Models. As for the first topic: In this thesis — and all
of our prior publications —, we only considered the case of continuous data.
While this was a reasonable decision, given that KDE is ultimately built upon
the assumption of a continuous probability space, it also limited the applica-
bility of our estimator for realistic SQL scenarios, which require support for
discrete data. It is, therefore, a crucial next step to a) understand how KDE
behaves when estimating the cardinality of queries on discrete attributes, and
to b) investigate how to improve KDE’s support for discrete data. Now, while
we did not explicitly demonstrate this, KDE (online) actually already handles
discrete data somewhat reasonably: Thanks to the query-driven bandwidth
optimization, bandwidth parameters typically converge towards tiny values on
discrete attributes. This essentially means that we automatically degrade to a
näıve sample evaluation on discrete attributes, which is a reasonable thing to
do. However, this mechanism is relatively ad-hoc and far from stable. Accord-
ingly, further research into how to consistently deal with discrete and string
data is still required. A good starting point for this work is the statistics liter-
ature, which already studied KDE models over mixed continuous and discrete
variables [LR03].

The second topic are so-called Variable Kernel Density Models. Instead of using
a single bandwidth parameter, variable (or adaptive) KDE models use distinct
parameters for each sample point making them more flexible to use, but also
more costly to optimize. These types of models have shown promising results
in density estimation for high-dimensional spaces [TS92], which makes them
extremely interesting for the selectivity estimation problem. In particular, vari-
able models should help with data that require different bandwidth parameters
in different regions or data that contain non-continuities, which both frequently
appear in real-world scenarios. Besides modifying the base estimator, a primary
aspect of this work would also be to investigate how query-driven bandwidth
selection would cope with having to optimize an extreme number of bandwidth
parameters: While our bandwidth optimization procedures should be directly
portable to variable KDE, the actual optimization algorithm would likely have
to be redesigned explicitly for this case.

KDE-based Join Selectivity Estimation: In this thesis, we only focused on the
problem of estimating the selectivity of multidimensional range predicates
over single relations. And while this is an important and relevant problem,
the actual “holy grail” of selectivity estimation research is how to accurately
and consistently predict the result size of join queries [SS94]. Several authors
have proposed methods to tackle this Join Estimation problem over the past
years, including Histograms [IC93], Sampling [HNS94, GGMS96, VMZC15,
LRG+17], Probabilistic Models [GTK01, LNS11, TDJ11], or Sketches [RD08].
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However, none of these methods has manifested itself as a general solution,
and the problem remains as one of the major unsolved challenges in research
on query optimization [Loh14]. Accordingly, extending and evaluating KDE-
based estimators for the case of join results is a highly interesting research
direction. Now, if the join predicates are static and known — for instance in
the case of PK-FK joins —, there is a straightforward way to extend KDE
to joins by building the model based on a combined sample of tuples from
the join result [CMN99]. This method would allow us to treat joins in the
same way that we treat range predicates without requiring any additional
modifications to the core estimator. The more challenging question is obviously
how to deal with arbitrary theta joins. In this case, we will have to dynamically
combine the individual estimators of the involved tables to achieve our goal.
This could, for instance, happen by injecting a discrete kernel that models
the join predicate, or by formulating the join as a joint integral over both
continuous domains. Any dynamic approach will likely require fundamental
changes to the estimator’s internal logic, and it remains to be seen whether
such an approach can a) actually improve upon the accuracy of alternative
methods, b) still support self-tuning optimization of bandwidth parameters,
and c) be implemented efficiently on modern hardware [KHBM17].

Approximate Query Processing is another highly interesting topic to demon-
strate the benefits of exploiting modern hardware outside of the confines of
classical query processing. With data volumes continuing to outpace the growth
in computational resources, the goal of approximate query processing is to offer
a way to trade off result accuracy for evaluation performance. The general idea
is straightforward: Instead of evaluating queries on the full dataset, we rely on
synopses to quickly arrive at approximate results, ideally while still providing
confidence bounds [PG99, CGRS01, GG01, CGHJ12, AMK+14]. In a way, this
makes approximate query processing a generalization of the selectivity estima-
tion problem. And indeed, several papers discuss how to use common selectiv-
ity estimator models like histograms [PGI99, IP99, BRPS02], wavelets [VW99,
CGRS01], samples [GM98, BCD03, AMP+13], and also KDE [GKTD00] to
approximate the result of general-purpose relational queries. Accordingly, the
arguments why we think that approximate query processing would benefit
from hardware acceleration are basically identical to what we discussed in
this chapter: The additional, massively-parallel compute resources available on
non-traditional hardware like graphics cards, and FPGAs would allow us to
process much larger synopses within the same time budget, ultimately leading
to significantly improved accuracy of the approximate results. A good exam-
ple to demonstrate this general idea is the work on bitwise decomposition by
Pirk et al. [PMK14]. In their paper, the authors demonstrate that placing
low-resolution copies of relational data onto a graphics card can drastically
improve query performance by allowing the GPU to quickly compute approxi-
mate results, which are then refined on the CPU. In particular with regard to
the increasing relevance of “Big Data” and streaming applications, we firmly
believe that hardware-accelerated approximate query processing will become a
highly relevant topic soon.
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Chapter 5

The Road Ahead:
Conclusion & Future Work

Fueled by the end of Dennard Scaling and the looming threat of the Power Wall,
processor manufacturers are increasingly turning towards heterogeneous chip designs
to match the performance growth expectations set forth by Moore’s Law [CMHM10,
BC11, EBA+11, ZPFH13]. Over the last years, this development has led to a sharp
diversification of the processing architecture landscape. Today, most modern sys-
tems feature a variety of different processors, including multi-core CPUs with on-
board graphics processing units, heterogeneous mobile processors with varying power
profiles, discrete graphics accelerator cards, and sometimes even more “exotic” co-
processors such as FPGAs. And this trend towards increased hardware heterogeneity
is only just beginning, with experts agreeing that we are about to enter a whole era
of heterogeneity [Boh11, BC11, ZPFH13, Mär14].

Similar to how the emergence of multi-core architectures forced us to begin thinking
in terms of threads & parallelization, increased hardware heterogeneity will require us
to develop novel programming paradigms, design strategies, and best practices. The
context of this thesis was to discuss the impact that increased hardware heterogene-
ity will have on the architecture of relational database systems. Modern relational
databases form the backbone of virtually all data management applications and
are an essential tool for storing, organizing, querying, processing & analyzing the
massive amounts of data that the modern information society produces. And due to
this interdisciplinary importance, there has always been great interest in improving
their performance. One particularly active field from this domain is the research on
how to exploit modern hardware to accelerate query processing, which also includes
the usage of heterogeneous and non-traditional processor architectures [Ail15]. In
fact, we can find articles that discuss how to efficiently process data on virtually
any available processor architecture [GLW+04, CR07, HNZB07, MTA09, HLY+09,
HLH13, KHSL13, BHS+14b, FKM+14, MRS+14, PMS15].

Interestingly, despite this keen interest from an active research community that has
repeatedly demonstrated impressive performance improvements, there is surprisingly
little commercial interest in exploiting heterogeneous and non-traditional hardware.
Virtually all modern commercial database systems rely solely on traditional multi-
core CPUs, and there are only a handful of small startup companies that exploit
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other architectures. The reasons for this apparent mismatch are twofold: First of all,
non-traditional hardware is typically not the best foundation for a general-purpose
query processing engine. While devices like graphics cards and FPGAs can dramati-
cally improve query performance for specific scenarios, they also come with several
architectural limitations that restrict their applicability. And this limited applica-
bility directly feeds into the second reason: It is simply not economically justifiable
to invest large amounts of development and maintenance time to add support for
hardware architectures that can only be reasonably used in a few selected scenarios.
Summarizing this central dilemma: While there are only limited ways to reasonably
exploit heterogeneous hardware for query processing, the costs required to build a
database system that can efficiently manage hardware diversity are prohibitively ex-
pensive. In this thesis, we discussed methods to tackle this central dilemma with the
ultimate goal of reducing the entry barrier for supporting heterogeneous hardware
in a relational database engine. In particular, our two main contributions were:

• In Chapter 3, we introduced the concept of a hardware-oblivious database en-
gine as a means to reduce the implementation overhead for supporting a variety
of different devices. The central idea is to design the engine around a hardware-
independent common execution substrate against which developers implement
their operators. At runtime, we rely on vendor-provided drivers to map this
abstract code down to the actual hardware, allowing us to maintain a single
code base that is portable across various devices. We demonstrated the feasi-
bility of this concept by presenting Ocelot, a prototypical hardware-oblivious
database engine integrated into MonetDB that uses OpenCL as its common
execution substrate. The results of our experimental evaluation confirmed that,
despite providing a portable engine, Ocelot still achieves generally competitive
performance to a hand-tuned system like MonetDB. Then, to further close the
performance gap to hand-tuned systems, we introduced two methods that uti-
lize tools from Machine Learning to automatically fine-tune hardware-oblivious
operators at runtime based on performance feedback.

• In Chapter 4, we introduced the concept of GPU-assisted query optimization,
where we use the additional compute power of a graphics card to improve the
quality of execution plans produced by the relational query optimizer. This
approach allows us to indirectly accelerate all types of queries while also avoid-
ing the typical set of problems that are associated with GPU-accelerated data
processing. We demonstrated the feasibility of this general idea by presenting
a GPU-accelerated selectivity estimator based on Kernel Density Estimation,
a statistical tool to calculate probability estimates from a data sample. We
also demonstrated how we can use query feedback and methods from machine
learning to continuously optimize our KDE model, arriving at a self-tuning
estimator that easily beats any state-of-the-art method. This is a great example
of an application of non-traditional hardware that is generally applicable and
greatly improves the value of non-traditional hardware for database vendors.

We made all of the source code and experimental scripts that we used for this
thesis publicly available to allow other authors and interested parties to reproduce
our results and build upon our work. In particular, you can find the source code
and benchmark scenarios for our self-tuning, GPU-accelerated selectivity estimator
at bitbucket.org/mheimel/feedback-kde. The source code for Ocelot, including
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its multi-algorithm operator framework, can be found at bitbucket.org/msaecker/

monetdb-opencl. And finally, the source code and experimental scripts for our variant
tuning framework are available at gitlab.tubit.tu-berlin.de/viktor-rosenfeld/
perseus.

Now, we obviously did not cover the whole field of data processing on heterogeneous
hardware in this thesis. This is a truly massive field that spans several interesting
and challenging sub-domains, topics, and problems. And while we made a few inter-
esting, and hopefully relevant, contributions to the sub-domain of data processing on
heterogeneous processors, there are also several equally interesting topics that we did
not cover. So, in order to close this thesis, we now want to provide a quick overview
of related topics from the field of data processing on heterogeneous hardware that
we — purely subjectively — consider to be particularly exciting:

Operator Placement: One of the core problems for data processing on heteroge-
neous hardware is how to decide which of the available devices is the optimal one
for a given operation. With different architectures typically having vastly dif-
ferent performance profiles, the best choice is often unclear, in particular when
we also have to consider data placement and locality [GH11]. Several authors
have discussed this operator placement problem and have suggested — typically
cost-based — solutions for it [HLY+09, BS13, ZHHL13, BHS+14a, MRS+14,
KHL15, BFT16, KHL17]. Broadly speaking, these solutions fall into one of two
categories: Global strategies perform a holistic placement optimization for the
whole query plan at compile time, allowing them to optimize data movement
and locality globally, but also making them more sensitive to incorrect cardinal-
ity estimates. GDB is an example for a system that utilizes a global placement
strategy, using a classical two-phase query optimization approach [HS91] and
relying on calibrated analytical cost models to make a cost-based placement
decision between CPU and GPU [HLY+09]. Local strategies perform individ-
ual placement decisions for each operator at runtime, allowing them to rely
on accurate data. While this makes them more robust, it also restricts their
optimization potential across operators, which can result in suboptimal deci-
sions compared to a global strategy [KHL15]. Examples for local strategies
include Hype, which treats operators as black-boxes and relies on self-tuning
cost models to make placement decisions [BS13, BHS+14a], and HOP, which
relies on developer-provided cost factors that are calibrated based on a generic
benchmark [KHH+14, KHL15]. There are also some interesting hybrid strate-
gies: Breß et al. suggested to combine global data placement optimization with
a heuristic local operator placement strategy to improve the performance of
concurrent queries [BFT16]. Karnagel et al. suggested to split the operator tree
at compile time into so-called islands for which accurate cardinality estimates
will be known at runtime. At runtime, the system then uses self-tuning cost
models to decide the placement for each island [KHL17]. A noteworthy aspect
of this strategy is that it can be integrated almost transparently into an exist-
ing database engine. The authors demonstrated this by providing an OpenCL
driver that implements their strategy and running Ocelot against it, enabling
our engine to utilize all available devices.
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Exploiting FPGAs: Field Programmable Gate Arrays (FPGAs) are special pro-
cessing devices whose internal compute logic and data routing can be reconfig-
ured at runtime. This allows them to represent almost arbitrary logic flows in
hardware, making them extremely versatile and highly interesting as special-
purpose accelerators. Unsurprisingly, there has been considerable interest from
the database research community in exploiting FPGAs to accelerate data pro-
cessing tasks [DZT12, TW13, Teu17], resulting in a variety of publications that
demonstrate how to implement operators like sort [KT11, MTA12], filter [F+11,
WTA11, TWN13], join [TM11, CO14], and group-by [DZT13, WIA14] effi-
ciently. Furthermore, with IBM’s Netezza data warehousing appliance, there
is even a major commercial database offering that uses FPGAs to accelerate
internal tasks like filtering and data compression [F+11]. There are two topics
we want to particularly highlight: First, with vendors increasingly support-
ing OpenCL to streamline the typically cumbersome FPGA development pro-
cess [CAD+12, CWFH13], it will become a lot easier to integrate FPGAs into
existing OpenCL-based database systems like Ocelot or OmniDB [WCP+16].
Second, Istvan et al. recently suggested to use FPGAs that are placed in the
data path to automatically collect and maintain data statistics as a side effect
of data movement, for instance when reading a table from disk or over the
network [IWA14]. Finally, for a more detailed introduction into the topic of
data processing on FPGAs, we refer the interested reader to the 2013 textbook
by Teubner et al. [TW13], as well as their more recent survey article, which
provides an overview of the latest developments [Teu17].

The Evolving Memory Hierarchy: One of the primary goals of database per-
formance research is to make the most efficient use of the available stor-
age and memory hardware. Accordingly, the design of database systems is
often closely tied to the latest memory and storage hardware trends. For
instance, the earliest database systems stored data on hard disks and pro-
cessed them within a limited amount of main memory. Accordingly, these
systems were carefully designed to minimize disk IOs as their primary bottle-
neck [Gra93]. However, when larger memory sizes became affordable in the late
1990s, the research community shifted to investigate main-memory database
systems, which treat hard disks as a stable archive, main memory as their
primary data storage, and rely on architectural innovations to minimize loads
into the CPU cache [GMS92, BMK+99, Neu11, ZCO+15]. Today, two major
hardware trends diversify our understanding of the memory hierarchy and
make us rethink how to efficiently process data: The growing maturation of
solid-state disks (SSD) and the introduction of various types of non-volatile
memory (NVRAM) [AAC+10, CGN11, Ail15, Vig15, ZCO+15]. SSDs, which
offer superior performance compared to hard disks, are increasingly becom-
ing the primary location to store persistent data in modern database sys-
tems [Gra07]. Accordingly, several publications discuss how to redesign classi-
cal components like index data structures [KJKK07, AGS+09, AA14, JYJ+16],
or query processing algorithms [DP09, THS10, BPB11, LOX+13] for SSDs.
NVRAM technology is aiming to bridge the gap between memory and disk,
offering persistent storage guarantees with performance that is close to main
memory. This makes NVRAM highly interesting for databases, in particu-
lar for transactional data processing on memory-resident data. And despite
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not being commercially available yet, there are already several publications
that discuss how to redesign transactional log processing and recovery mech-
anisms [PWGB13, WJ14, APD15, CCV15, Vig15], as well as data processing
algorithms and index structures [Vig14b, CJ15, SDUP15] for NVRAM.

Energy-Efficient Data Processing: Investigating methods to reduce the energy
consumption of relational database engines has been an active research topic
since the mid-2000s[BH07, Gra08, HSMR09]. The primary focus of this area
has traditionally been on distributed database systems, which can automati-
cally shut down or scale down underutilized nodes to improve the cluster-wide
energy efficiency [LHP+12, SH13]. For single-node systems, it is considerably
harder to achieve good energy scaling behavior. In fact, Tsirogiannis et al.
found that for a single-node database system, “the most energy-efficient con-
figuration is typically the highest performing one” [THS10]. In recent years,
however, the research interest in this topic was reignited by the increasing fo-
cus of hardware manufacturers to produce energy-efficient, heterogeneous chip
designs [HM08, WL08, Mar12, VT14]. For instance, Mühlbauer et al. recently
demonstrated that a cost-based mapping of relational database operations to
the heterogeneous cores found on a chip from ARM’s big.LITTLE architecture
allowed them to improve the energy efficiency of a single-node database server
by up to 60% [MRS+14]. Haas et al. published another interesting piece of
related work, demonstrating that they could achieve significant energy savings
by using a custom-built processor for data processing [HAS+16].
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ner, Georg Ellguth, Andreas Dixius, Annett Ungethüm, Eric Mier,
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[UHK+15] Annett Ungethüm, Dirk Habich, Tomas Karnagel, Wolfgang Lehner,
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