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Chapter 1

Introduction

The first of these factors is the compelling urge of man to explore and to discover, the

thrust of curiosity that leads men to try to go where no one has gone before. Most of the

surface of the earth has now been explored and men now turn on the exploration of outer

space as their next objective.

"Introduction to Outer Space", President’s Science Advisory Committee, 1958.

The exploration of an unknown environment is a central challenge in many applications ranging

from searching the internet or a large set of linked data [Pen+12; Mir+13] to physical exploration

of unknown terrain [BMS02; Plo+17] or even the universe [Mau03]. In this work, we consider an

abstraction of the exploration problem and model the unknown environment as a graph. In many

settings the environment is discrete (e.g., the webgraph describing links between pages of the World

Wide Web) or it can be discretized (e.g., road networks) without losing the essence of the problem.

Another perspective is to view exploration as an abstraction of a process of computing, where every

node of the graph corresponds to a configuration (e.g., configuration of a Turing machine or a different

model of computation), edges correspond to possible transitions between configurations, and the

question is what configurations are reachable starting in a given initial configuration. In this context,

graph exploration has a close connection to complexity theory and the study of the relationship

between probabilistic and deterministic space-bounded algorithms [Sav73; CR80; Rei08].

The study of exploration in the context of theoretical computer science originates from inves-

tigating how to systematically search a labyrinth for an exit (imagine a garden maze with hedges).

One of the first fundamental results in this direction was discovered here in Berlin by Budach, who

showed that no finite automaton can find a way out of every finite labyrinth from any initial position

[Bud75; Bud78]. Around the same time Shah showed that by utilizing five pebbles, that is, some

additional markers than can be placed at arbitrary positions in the labyrinth and collected later, a finite

automaton can search and find a way out of any finite labyrinth [Sha74]. This result was subsequently

improved by Blum and Kozen who showed that two pebbles are already sufficient [BK78] and by

Hoffmann who finally showed that this is best possible, i.e., one pebble does not suffice to search and
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Chapter 1. Introduction

find a way out of any finite labyrinth [Hof81].

In the following decades the exploration of graphs, as a more abstract and general setting with

less structure, was the focus of most research. In these settings typically one or more so-called mobile

agents or robots have to deterministically visit all vertices of a given unknown graph. A large variety

of different exploration problems have been considered, differing mainly in the class of graphs to be

explored, the ability of the agent(s) and the objective function. While single agent exploration has

been intensively studied for a long time and is by now quite well understood, exploration involving

multiple agents has only received more attention rather recently. The communication between and

coordination of multiple robots adds another level of complexity to the exploration problem, yielding

many interesting open problems in this field of research.

The main focus of this dissertation is to investigate the collaboration of agents that move in a

graph and have to jointly perform a certain task. We study the memory requirement and energy

efficiency of collaborating agents exploring a graph and the closely related problem of energy efficient

delivery by collaborating agents. The three topics covered in this dissertation are:

Space Efficient Graph Exploration. We study the problem of deterministically exploring an

undirected and initially unknown graph with n vertices either by a single agent equipped with a

set of pebbles or by multiple collaborating agents. Our goal is to understand how the memory

requirement decreases compared to the case of single agent exploration as the agent may mark

vertices by dropping and retrieving distinguishable pebbles, or when multiple agents jointly explore

the graph. This problem can be seen as a natural generalization of the initial question in graph

exploration asking how many pebbles one agent needs to explore any finite labyrinth.

Energy Efficient Tree Exploration. We assume that an agent consumes energy proportional to

the number of edges it traverses and every agent has a fixed energy budget bounding the number of

edges it can traverse. All agents start at the root of a tree and have no initial knowledge about its

structure. During the exploration, the agents are able to exchange information at arbitrary distances

in the graph. The objective is to maximize the number of distinct vertices collectively visited by the

agents compared to an algorithm that has complete knowledge of the tree in advance.

Energy Efficient Delivery. We consider the problem of different mobile agents that have to deliver

a set of messages in a weighted undirected graph while minimizing the total energy consumption. In

our model, the agents consume energy proportional to the distance they travel and different agents

can have different rates of energy consumption. The messages have different starting vertices and

destinations and different messages can be transported together if the capacity of the agent permits

it. The aim is to investigate how the agents benefit from collaborating on delivering the messages

compared to the case in which every message is transported by a single agent.
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1.1 Contributions and Outline

1.1 Contributions and Outline

In this section, we give an outline of the thesis together with a summary of the main results.

Chapter 1: Introduction. In the remainder of this chapter, we introduce the notation and most

important concepts used in this thesis. This includes a thorough introduction to the definitions

and main concepts common in graph exploration that are necessary to understand the related work

and this thesis. Moreover, we give a brief introduction to complexity theory as well as offline and

online optimization problems. We further present a detailed overview of previous research in graph

exploration and message delivery.

Chapter 2: Space Efficient Graph Exploration. We prove that for a single agent with constant

memory Θ(log logn) pebbles are both necessary and sufficient for exploring any undirected graph

with n vertices. We further show that collaborating agents are not more powerful than pebbles in

this setting, as Θ(log logn) agents with constant memory each are necessary and sufficient for the

same task. Our results show that the memory requirement can be significantly reduced by utilizing

additional pebbles or agents compared to the Θ(logn) bits of memory that are necessary and sufficient

to explore an undirected graph by a single agent without pebbles [Fra+05; Rei08].

For the upper bounds, we present an algorithm for a single agent with constant memory that

explores any graph with n vertices using O(log logn) pebbles. The algorithm does not require the

number of vertices n as input, terminates after a polynomial number of edge traversals and the agent

returns to the starting vertex. We further show that we can replace every pebble by two agents in

our algorithm and therefore O(log logn) agents with constant memory each can also explore any

n-vertex graph.

For the lower bounds, we recursively construct a family of graphs with O

(
s2

5k
)
vertices that

a given arbitrary set of k collaborating agents with s states each cannot explore. Our construction

is by many orders of magnitude smaller than existing constructions of size
˜O(s ↑↑ (2k + 1)) and

˜O(s ↑↑ (k +1)) due to Rollik [Rol80] and Fraigniaud et al. [Fra+06b], respectively. Here we use Knuth’s

up-arrow notation a ↑↑ b to denote the exponentiation tower aa
.. a
with b levels in the exponent and

˜O neglects lower order terms. Directly from the bound on the number of vertices of our construction,

we obtain that, even if we allow O((logn)1−ϵ ) bits of memory for some constant ϵ > 0 for every agent,

the number of agents needed for exploring every n-vertex graph is at least Ω(log logn). The same

construction also yields that one agent needs Ω(log logn) pebbles for exploring every n-vertex graph.

Chapter 3: Energy Efficient Tree Exploration. We consider the problem of exploring a maximal

set of vertices of an unknown tree by k agents initially located at the root of the tree. Every agent

has only limited energy and hence can traverse at most B edges. We assume that the agents can

communicate with each other at arbitrary distances and thus the knowledge obtained by one agent

after traversing an edge is instantaneously available to all other agents. The objective is to maximize

the number of distinct vertices collectively visited by the agents compared to an algorithm that has

complete knowledge of the tree in advance. We design an online algorithm that maintains a set of

edge-disjoint subtrees of the part of the tree that is already explored and iteratively sends an agent
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Chapter 1. Introduction

from the root to the subtree with the highest root. This way the algorithm balances between sending

agents in a depth-first manner to avoid visiting the same set of vertices too often and exploring the

tree in a breadth-first manner to make sure that the algorithm did not miss a large set of vertices close

to the root, which can be reached with little energy. We prove that our algorithm is 3-competitive

compared to an optimal solution that we could obtain if we knew the map of the tree in advance. We

also show that our analysis is tight by giving a sequence of instances showing that the algorithm

is not better than 3-competitive. We further present a construction based on an adaptive adversary

showing a lower bound of 2.17 on the competitive ratio of any online algorithm.

Chapter 4: Energy Efficient Delivery. We study the problem of delivering a set of messages, which

are specified as source-target pairs in an undirected weighted graph, by k mobile agents starting at

distinct vertices of the graph. Every agent consumes energy proportional to the distance it travels

in the graph and the rate of energy consumption may be different for different agents. The goal is

to deliver all messages by the agents while minimizing the total energy consumption for this task.

The purpose of this chapter is to investigate how the agents benefit from collaborating on delivering

the messages compared to the case that every message is transported by a single agent. We show

how an optimal solution of the delivery problem can be 2-approximated by a solution in which every

message is transported only by a single agent. We further prove that this is best possible for arbitrary

number of messages and agent capacities, i.e., number of messages that can be transported at the

same time. Moreover, for a single message, we present an algorithm that determines an agent that

can deliver the message with at most (1/ln 2)-times the cost of an optimal solution. This improves

the general upper bound of 2 and we show that it is best possible for a single message.

1.2 Preliminaries

In this section, we give an introduction to the terminology and notation used in this work. We assume

that the reader is familiar with the basic concepts in graph theory, complexity theory and algorithms

and therefore only briefly recall the respective definitions in order to introduce a consistent notation.

A general introduction to these topics can be found in the textbooks by Korte and Vygen [KV18] or

Cormen et al. [CLR89], for instance. We also introduce the basic concepts and definitions used in

the context of graph exploration which are necessary to understand the related work and this thesis.

Additional more specific definitions can be found in the respective chapters.

1.2.1 Graphs

A graph is a tuple G = (V ,E), where V is a finite non-empty set and E ⊆
(V
2

)
if G is undirected and

E ⊆ {(v,w) | v,w ∈ V ,v , w} if G is directed. In both cases, we call the elements of V vertices

or nodes and the elements of E edges. We let n := |V | denote the order or number of vertices

of G andm := |E | the number of edges. If we additionally have a function w : E → R assigning a

weight or length to every edge, then we call G a weighted graph. All graphs considered in this
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1.2 Preliminaries

work are simple, that is, for any vertex v ∈ V there is at most one edge {v,w} or (v,w) in E for

every vertex w , v and there are no loops, i.e., {v,v} < E or (v,v) < E for all v ∈ V . For an

edge e = {v,w} or e = (v,w), we call v and w endpoints of e and say that v and w are incident

with e . The degree ∆(v) of a vertex v is the number of edges incident to v . If ∆(v) = d for all v ∈ V ,

then we call the graph d-regular or simply regular. A graphG ′ = (V ′,E ′) is called a subgraph of a

graph G = (V ,E) if V ′ ⊆ V and E ′ ⊆ E. If E ′ contains all edges in E that have both endpoints in V ′,

then G ′ is called an induced subgraph or the subgraph induced by V ′
.

A walk in G is a sequence of vertices (v0,v1, . . . ,vk ) such that {vi ,vi+1} ∈ E or (vi ,vi+1) ∈ E for

all i ∈ {0, . . . ,k − 1}. As we only consider simple graphs, the sequence of vertices of a walk uniquely

determine the edges between the vertices. We call v0 the starting vertex or first vertex and vk the

end vertex or last vertex of the walk. A walk is closed if v0 = vk . A closed walk is also called a

tour. If additionally all edges along the closed walk are distinct, then the walk is called a cycle. A

walk where all vertices v0,v1, . . . ,vk are distinct is called a path. The length of a path is the number

of its edges. A Eulerian walk or Eulerian tour is a closed walk containing every edge of the graph.

A graph containing a Eulerian tour is called Eulerian.

An undirected graph G is connected if for any two distinct vertices v and w , there is a path

from v tow in G. An undirected connected graph without any cycles is called a tree. The minimum

length of a path connecting two distinct verticesv andw inG is called the distance betweenv andw .

The maximum distance over all vertices v andw in G is the diameter of G.

1.2.2 Graph Exploration

Formally, we model an agent exploring a graph as a finite automaton A = (Σ, Σ̄,δ ,σ ∗), where Σ is

a set of states, Σ̄ ⊆ Σ is a set of halting or final states, σ ∗ ∈ Σ is the starting state of the agent,

and δ is its transition function. The transition function describes how the agent interacts with the

graph and possibly other agents. Its exact specifics depend on the problem considered, i.e., whether

we consider a single agent or a group of agents and whether we allow the agents to use additional

markers. In every exploration step an agent A observes the local environment at the current vertex

and possible additional information, such as the states of other agents or position of markers, and

then performs actions, e.g., traverses an edge, according to the transition function δ . In Section 2.1,

we give a formal introduction to some agent models including a full description of the transition

function δ . In most settings, however, the agent capabilities are described on an informal and intuitive

level, as the exact implementation is not important for the analysis.

If an agent can distinguish different vertices, then we call G vertex-labeled or simply labeled.

Formally, this means that there is a bijection λ : V → {1, . . . ,n} and the transition function δ can

depend on the label λ(v) of the current vertex v of the agent inG . In many graph exploration models,

the agent cannot identify or distinguish different vertices and thus the transition function can depend

on the degree of the current vertex, but not on its label. In this case, we call the graph unlabeled

or anonymous. In order to enable sensible navigation for an agent in this setting, we assume for

undirected graphs that the edges incident to a vertexv have distinct labels 0, . . . ,∆(v) − 1 atv . Hence,
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Chapter 1. Introduction

every edge {v,w} ∈ E has two labels called port numbers, one at v and one at w . These port

numbers can be different at both endpoints and there is in general no correlation between the two

port numbers of an edge. For a directed graph it is sufficient to assume that the outgoing edges at a

vertex v have distinct port numbers 0, . . . , |δ+(v)| − 1 at v , where |δ+(v)| is the number of outgoing

edges at v . We call a graph with such a labeling a locally edge-labeled graph.

A single agent traverses an anonymous, locally edge-labeled graph G as follows: Starting at a

vertex v0, in every step it observes the degree of the current vertex (and for an undirected graph also

the local port number of the edge leading back to the previous vertex). Depending on its current state,

the vertex degree (and port number to the previous vertex for undirected graphs), it then transitions

to a state given by the transition function δ and traverses the edge corresponding to the port number

given by the transition function δ .

A different way to specify the behavior of an agent in a regular graph are traversal sequences.

A traversal sequence is a sequence of integers l0, l1, l2, . . . with li ∈ {0, 1, . . . ,d − 1} determining

the walk of an agent A in a d-regular locally edge-labeled graph G. The agent follows a traversal

sequence l0, l1, . . . if it traverses the edges with port number l0, l1, . . . in this order. We further say that

a traversal sequence is universal for a class of connected, locally edge-labeled d-regular graphs G

if an agent following it explores every graph G ∈ G for any starting vertex in G, i.e., starting at an

arbitrary vertex of G, it visits all vertices of G. For a set M , we use the notation M+ :=
⋃∞

i=1M
i
to

denote the set of finite non-empty sequences with elements inM . Furthermore, we let ϵ denote the

empty sequence andM∗ = M+∪{ϵ}. This allows us to use the compact notationω ∈ {0, 1, . . . ,d−1}+

for a finite traversal sequence ω.

Note that traversal sequences are only defined for regular graphs and the port numbers to the

previous edge are not taken into account. In order to overcome these shortcomings, Koucký introduced

the concept of exploration sequences for undirected graphs [Kou02]. An exploration sequence is a

sequence of integers e0, e1, e2, . . . with ei ∈ Z that guides the walk of an agent through an undirected

graphG as follows: Assume an agent starts in a vertex v0 of an arbitrary locally edge-labeled graphG

and let l0 = 0. Let vi denote the agent’s location in step i and li the port number of the edge at vi

leading back to the previous location. Then, the agent follows the exploration sequence e0, e1, e2, . . .

if, in each step i , it traverses the edge with port number (li + ei ) mod ∆(vi ) atvi to the next vertexvi+1.

This means that an exploration sequence gives edge label offsets instead of absolute edge labels. Thus,

exploration sequences are well-defined for arbitrary undirected graphs and also allow backtracking,

i.e., returning to the previous vertex, by specifying the offset 0. Analogously, we say that an exploration

sequence is universal for a class of undirected, connected, locally edge-labeled graphs G if an agent

following it explores every graph G ∈ G for any starting vertex in G.

In order to give an agent in an anonymous graph the power to distinguish a limited number of

vertices, it is possible to equip the agent with one or multiple pebbles. A pebble is a tool to mark

vertices. It can be dropped at a vertex and picked up again later. Every time an agent visits a vertex

where it has dropped a pebble, it will observe this marker. Pebbles can be distinguishable, i.e., every

pebble has some unique identifier, or indistinguishable, i.e., the agent only observes the number of
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pebbles at the current vertex.

Multiple agents can exchange information when exploring a graph. This exchange of information

can be possible only locally, i.e., if the agents share a vertex or are only a small distance apart, or

globally, i.e., independent of the agents’ location in the graph. We can model the case of local

communication by allowing δ to depend on the state of the agents colocated at the same vertex

and the case of global communication by allowing δ to depend on the states of all other agents.

Another way to allow agents to communicate is by means of so-called whiteboards. These are local

storages at every vertex that the agents can write to and read information from. The amount of local

storage available at a node is typically limited. Whiteboards, similar to pebbles, can also be used to

mark certain nodes.

The goal in graph exploration is to visit all vertices of the given graph. We say that a graph G

is explored when each vertex of G has been visited by at least one agent. There are three variants

of the exploration problem, which are in increasing order of difficulty: perpetual exploration,

exploration with stop and exploration with return. If we want to achieve perpetual exploration,

then the agent(s) are not required to terminate, but can traverse the graph indefinitely. For exploration

with stop, we require the agent(s) to terminate, i.e., transition to a halting state after a finite number

of steps. Lastly, for exploration with return, we require all agents to return to the starting vertex

and then terminate. Note that in some cases, the agent(s) may not be able to recognize if the whole

graph is explored and only perpetual exploration is feasible, while in other cases the agent(s) may not

be able to return to the starting vertex. See the related work in Section 1.3 for details. A graph that

cannot be explored by an agent (a set of agents) is called a trap for the agent(s). In some settings, it

is additionally required that the agent(s)map the given graph, i.e., construct a representation of an

edge-labeled graph isomorphic to the given graph.

1.2.3 Computational Complexity Theory

For a detailed introduction of the concepts presented in this section, the reader can refer to the

textbook by Garey and Johnson [GJ79] or the textbook by Korte and Vygen [KV18, Chapter 15].

Informally, an algorithm is a sequence of well-defined operations or instructions for a set of

valid inputs. The time complexity or running time of an algorithm is the number of operations of

the algorithm on a given input, whereas the space complexity is the amount of space or memory

required to store additional information during the execution of the algorithm. According to the

Church-Turing thesis everything that is computable by this intuitive idea of an algorithm can also be

computed on a Turing machine [Chu36]. There are several other equally powerful formal models for

computation, such as random access machines, which are equivalent in terms of time complexity and

space complexity, i.e., for a suitable time measure and space measure the machines can simulate each

other with polynomial overhead in time and constant factor overhead in space [GJ79; SE84]. For this

reason, we present most algorithms in pseudocode similar to modern programming languages, as it

would be extremely tedious to give a complete description in terms of a Turing machine. In Chapter 2,

however, we also work with a description of an algorithm in form of a Turing machine and introduce
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Chapter 1. Introduction

an agent model which is internally utilizing a Turing machine. We therefore give an introduction to

this model of computation and further cover some complexity classes relevant for this thesis.

A Turing machine consists of an infinite tape divided into cells, a read-write head, a finite set of

states and a transition function describing how the Turing machine transitions from one state to the

next depending on the current state and the symbol read from the tape at the current position of the

read-write head. Formally, a deterministic Turing machineM is a tuple (Q,q∗,q,δ ), where

• Q is the finite set of states ofM ,

• q∗ ∈ Q is the starting state ofM ,

• q ∈ Q is the stop state ofM ,

• δ : Q \ {q} × {0, 1,⊔} → Q × {0, 1,⊔} × {L,R} is the transition function ofM , where {0, 1} is

the set of input symbols and ⊔ is the blank symbol representing an empty tape cell.

For an input x ∈ {0, 1}∗, we assume that initially the input x is contained in the tape cells, the head of

the Turing machineM is at the first symbol of x and all other symbols of x follow to the right of the

head position. Every tape cell not containing a symbol of x contains the blank symbol ⊔. The Turing

machine M performs a computation step as follows: If M reads the symbol a ∈ {0, 1,⊔} at the

current head position, is in state q ∈ Q and δ (a,q) = (q′,a′, S), then it writes the symbol a′ ∈ {0, 1,⊔}

to the tape cell of the current head position, changes its state to q′ ∈ Q and moves the head left

if S = L or right if S = R. The Turing machineM continues its computation until it reaches its final

state q or it can also run forever.

We define the output of the Turing machine to be the string y ∈ {0, 1}∗ that is contained in the

tape cells when the Turing machine terminates, beginning from the head position to the right until

the first cell containing a blank symbol ⊔.

The running time of the Turing machine M is described by the function tM : N → N ∪ {∞},

where tM (n) is the maximum number of computation steps that the Turing machineM needs on an

input x ∈ {0, 1}∗ with length n (or∞ ifM runs forever). If there exists a polynomial p such that for

all n ∈ N, we have tM (n) ≤ p(n), thenM is a polynomial-time Turing machine.

The space requirement of the Turing machine M is given by a function sM : N → N ∪ {∞},

where sM (n) is the total number of tape cells that are used in the computation, i.e., that do not contain

the blank symbol ⊔ at some point. In order to overcome the fact that the input length as well as

the output length is always a lower bound on the space requirement with this definition, we extend

the definition of the Turing machine above to a Turing machine with three tapes and three heads:

a read-only input tape, a read-and-write working tape, and a write only output tape. Then the

space requirement is defined as the total number of tape cells of the working tape that are used in the

computation of the Turing machine.

In general, Turing machines are defined over an input alphabet Σ, but for our purpose the

case Σ = {0, 1} is sufficient and we therefore introduce the Turing machine as above. Note that this

does not change the computational power of the Turing machine.

A language L is a subset of {0, 1}∗ and the elements of {0, 1}∗ are called words or binary
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strings. We say that a deterministic Turing machine M accepts a word x ∈ {0, 1}∗ if and only

if M terminates on the input x and outputs 1. We further say that M decides a language L if M

terminates on every x ∈ {0, 1}∗ and it accepts x ∈ {0, 1}∗ if and only if x ∈ L. If additionally M

is a polynomial-time Turing machine, then we say that L is decidable in polynomial time. A

decision problem is a pair P = (X ,Y ), where X ⊆ {0, 1}∗ is a language decidable in polynomial

time and Y ⊆ X . We refer to the elements of X as instances, the elements of Y as yes-instances and

those of X \ Y as no-instances. Moreover, we say that a deterministic Turing machineM decides a

decision problem P = (X ,Y ), ifM terminates on all x ∈ X , outputs 1 for all inputs x ∈ Y and 0 for all

inputs x ∈ X \ Y .

Another variant of a Turing machine is a non-deterministic Turing machine. It differs from

a deterministic Turing machine in the transition function that is a transition relation for a non-

deterministic Turing machine, i.e., δ ⊆ Q × {0, 1,⊔} ×Q × {0, 1,⊔} × {L,R}. If a non-deterministic

Turing machineM reads the symbol a ∈ {0, 1,⊔} at the current head position, is in state q ∈ Q , then it

can non-deterministically choose any (a,q,q′,a′, S) ∈ δ , transition to the state q′, write a′ ∈ {0, 1,⊔}

to the current tape cell, change it state to q′ ∈ Q and move the head left if S = L or right if S = R.

For a given input x ∈ {0, 1}∗, there can now be different possible outputs of the Turing machine

depending on the computation path, i.e., the transitions chosen in every step of the computation.

The running time for a non-deterministic Turing machineM on an input x ∈ {0, 1}∗ is defined

as the maximum number of computation steps over all computations paths and similarly the space

requirement as the maximum number of tape cells used over all computation paths. These definitions

allow us to analogously define the running time and space requirement for non-deterministic Turing

machines. Furthermore, we say that a non-deterministic TuringmachineM accepts a word x ∈ {0, 1}∗

if and only if there is one possible computation path of M on input x such that M terminates and

outputs 1. The decidability of languages and decision problems for non-deterministic Turing machines

is defined analogously.

We further define the configuration of a Turing machine as a tuple (q, t ,p), where q is the current

state of the Turing machine, t ∈ {0, 1,⊔}Z is the tape content and p ∈ Z is the head position. Here we

identify every tape cell with an integer z ∈ Z. Note that the configuration of a deterministic Turing

machine completely describes the current state of the computation and uniquely determines the next

configuration in the computation. We call a non-deterministic Turing machine symmetric if the

graph describing the transitions between the configurations of the Turing machine is symmetric, i.e.,

if the Turing machine can change from a configuration (q, t ,p) to a configuration (q′, t ′,p ′) by making

a transition according to δ , then it can also a make a transition from the configuration (q′, t ′,p ′) to

(q, t ,p). For a detailed introduction of symmetric Turing machines and related complexity classes, see

[LP82].

We can now define the following complexity classes:

P The class containing all decision problems P for which there is a polynomial-time deterministic

Turing machine deciding P.

NP The class containing all decision problems P for which there is a polynomial-time non-

9
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deterministic Turing machine deciding P.

L The class containing all decision problems P for which there is a deterministic Turing machine

deciding P that uses logarithmic memory.

NL The class containing all decision problems P for which there is a non-deterministic Turing

machine deciding P that uses logarithmic memory.

SL The class containing all decision problems P for which there is a non-deterministic symmetric

Turing machine deciding P that uses logarithmic memory.

A decision problem P1 = (X1,Y1) polynomially transforms to a second decision problem P2 =

(X2,Y2) if there is a function f : X1 → X2 computable in polynomial time such that f (x1) ∈ Y2 if and

only if x1 ∈ Y1. A polynomial transformation is also referred to as a Karp reduction. Furthermore, a

decision problem P ∈ NP is NP-complete if all other problems in NP polynomially transform to P.

1.2.4 Offline and Online Optimization Problems

The introduction of the following concepts and notation in this section is based on the introduction

in the textbook of Borodin and El-Yaniv [BE98].

A discrete optimization problem is a set I ⊆ {0, 1}∗ of instances, a set of feasible solu-

tions SI for every instance I ∈ I, a cost function c : {(I , S) | I ∈ I, S ∈ SI} → R computable in

polynomial time and a goal, i.e., minimizing or maximizing the cost. For a given instance I ∈ I, we

writeOpt(I ) := min{ c(I , S) | S ∈ SI} for the cost of an optimum solution in case of a minimization

problem and Opt(I ) := max{c(I , S) | S ∈ SI} for the cost of an optimum solution in case of a maxi-

mization problem. An algorithm for an optimization problem computes a feasible solution S ∈ SI

for every instance I ∈ I with SI , ∅. We write Alg(I ) := c(I , S) if the considered algorithm Alg

computes solution S ∈ SI on input I . If Alg(I ) = Opt(I ) for all I ∈ I with SI , ∅, then Alg is an

exact algorithm.

A decision problem or discrete optimization problem P1 polynomially reduces to an optimiza-

tion P2 if there exists an exact polynomial algorithm for P1 using at most a polynomial number of

calls to an exact algorithm for P2. This type of reduction is also referred to as Turing reduction

and the algorithm for P1 using at most a polynomial number of calls to an exact algorithm for P2 is

called a polynomial time oracle algorithm. A formal definition of this concept using oracle Turing

machines can be found in [GJ79; KV18]. Moreover, an optimization problem or decision problem P is

called NP-hard if all problems in NP polynomially reduce to P.

Many interesting discrete optimization problems are NP-hard and there is thus no polynomial

exact algorithm solving them under the assumption that NP , P. In order to still find good (close to

optimal) solutions for those problems in acceptable practical running time (polynomial time), one can

trade a loss in solution quality for a better running time. This leads to the concept of approximation

algorithms. More precisely, an algorithm Alg is called an asymptotic c-approximation algorithm
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for a discrete optimization problem with the goal of minimization if there is a constant α such that

Alg(I ) ≤ c · Opt(I ) + α for all I ∈ I.

If α = 0, we call Alg a c-approximation algorithm. For a maximization problem, an (asymptotic)

c-approximation algorithm requires Alg(I ) ≥ 1/c · Opt(I ) + α for all I ∈ I. In both cases the

approximation factor or approximation ratio c satisfies c ≥ 1 and the better the approximation,

the closer the approximation factor c is to 1. A thorough introduction and study of approximation

algorithms is given in [WS11].

For classical optimization problems the whole input is available to an algorithm at the beginning.

There are many interesting problems, however, where only a part of the input is received at a time

and the algorithm needs to already output decisions based on only this partial input. Almost all graph

exploration problems fall into this category. The graph to be explored is typically unknown and the

algorithm, in this case the agents, need to make decisions, e.g., which edges to traverse next, based

only on the information they gathered so far, i.e., the part of the graph traversed so far. These type

of problems are called online problems and an algorithm for such a problem is called an online

algorithm. In contrast to that, the classic optimization problems, where the whole input is known in

advance, are referred to as offline problems and an algorithm which receives the complete input

at the beginning an offline algorithm. An instance I ∈ I of an online problem is called an input

sequence in order to emphasize that the input is received in many parts.

We measure the performance of an online algorithm using the concept of competitive analysis

introduced by Sleator and Tarjan in [ST85]. In this framework, the cost of an online algorithm Alg on

an instance I ∈ I is compared to the cost of an optimal offline solutionOpt(I ), i.e., an optimal solution

for the case that the whole input is known in advance. An online algorithm Alg for a minimization

problem is c-competitive if there is a constant α such that

Alg(I ) ≤ c · Opt(I ) + α for all finite input sequences I ∈ I.

For a maximization problem, a c-competitive algorithm Alg needs to satisfy Alg(I ) ≥ 1/c ·Opt(I )+α

for all for all finite input sequences I ∈ I. If α = 0, then Alg is strictly c-competitive. We call c the

competitive ratio of the algorithm Alg. For further reading and a detailed introduction to online

algorithms and competitive analysis the reader can refer to [BE98].

1.3 Related Work

The main aim of this section is to give a detailed systematic overview about the graph exploration

and message delivery literature.

We focus on the part of graph exploration literature most relevant for this thesis and give several

pointers to books and surveys covering topics that are not covered in this section. The vast amount of

research on graph exploration and large number of different models makes it difficult to put the results

in one general scheme. Nevertheless, we hope that our categorization of the results provides a fast and
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easy way to grasp the state-of-the-art of graph exploration and the main lines of research. Our main

distinction is between single agent (Section 1.3.1) and collaborative (Section 1.3.2) exploration and

undirected and directed graphs. We further distinguish between the objectives feasibility, memory,

time, and energy. See also the Tables 1.1 and 1.2 for a concise overview of the graph exploration

literature.

In Section 1.3.3, we then give an overview about the literature related to message delivery. The

problem is related to many classical optimization problems and has been studied in many variants

and contexts.

1.3.1 Single Agent Graph Exploration

Undirected Graphs. The exploration of plane labyrinths, i.e., finite connected subgraphs of the

infinite 2-dimensional grid where edges are labeled with their cardinal direction, was the starting point

of graph exploration research. Shannon [Sha51] constructed an actual physical device – Shannon’s

mouse – that could explore a 5 × 5 grid. Budach proved that one agent with constant memory and

without any pebble cannot explore any plane labyrinth [Bud75; Bud78]. Later Hoffmann showed that

one pebble is also not sufficient [Hof81]. On the positive side, Shah proposed an algorithm for an

agent with five pebbles that can explore any plane labyrinth [Sha74]. This result was improved by

Blum and Kozen who presented an algorithm using only two pebbles [BK78]. They also showed that

exploration can be achieved utilizing a counter using O(logn) space instead of two pebbles.

For many years a central open problem in graph exploration was the question of how much

memory an agent needs to explore any undirected graph. It turned out that this problem is closely

connected to the space complexity of the s-t-connectivity problem in undirected graphs, i.e., the

problem of deciding if two vertices s and t are in the same connected component of a given graph.

For instance, any exploration algorithm can be turned into an algorithm deciding s-t-connectivity by

letting an agent start at s and returning yes if and only if the agent visits t during the exploration. The

problem of undirected s-t connectivity is complete for the complexity class SL ( see [LP82]), which

was studied in an effort to answer the question whether the complexity classes NL and L are the same.

A famous result relating deterministic and non-deterministic space complexity is due to Savitch

[Sav73], who showed that NSPACE(s(n)) ⊆ DSPACE(s2(n)) holds for any function s ∈ Ω(logn). Here

NSPACE(s(n)) denotes the class of decision problems that can be decided by a non-deterministic

Turing machine in s(n) space and DSPACE(s(n)) the class of decision problems that can be decided by

a deterministic Turing machine in s(n) space. This result immediately implies that NL ⊆ L2.

A big step towards understanding the space complexity of s-t-connectivity and graph exploration

was the work by Aleliunas et al. [Ale+79], who showed that a random walk of length O(∆2n3 logn) in

an undirected graph with n vertices and maximum degree ∆ visits all vertices with high probability.

Moreover, the authors proved the existence of a universal traversal sequence for all d-regular graphs

on n vertices of length O(d2n3 logn). Note that, by adding a counter that keeps track of the number of

edge traversals, the first bound yields a randomized log-space exploration algorithm that terminates

after a polynomial number of steps and explores an undirected graph with high probability if an
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upper bound on the number of vertices of the graph is known. In terms of complexity classes, the

result by Aleliunas et al. implies that s-t-connectivity is contained in the class RL, the class of decision

problems that can be solved by a randomized, log-space algorithm with one-sided error, and the

relationship of the complexity classes is

L ⊆ SL ⊆ RL ⊆ NL ⊆ L2.

Finally, Reingold [Rei08] showed that s-t-connectivity can be decided in log-space and therefore

L = SL. His proof also yields a log-space constructible universal exploration sequence, which can

be used to devise a log-space exploration algorithm for undirected graphs [Rei08, Corollary 5.5]. As

this algorithm utilizes an exploration sequence (and not a traversal sequence), it is essential that the

agent can observe the label of the edge by which it enters a vertex. Universal traversal sequences

of length O(nlogn) can be constructed in O(log2 n) space using Nisan’s derandomization technique

[Nis92]. Explicit construction of universal traversal sequences in log-space are only known for

cycles [Ist88] and it remains an open problem whether universal traversal sequences of polynomial

length can be constructed deterministically in log-space for general graphs.

Concerning a lower bound on the space complexity of graph exploration, the results by Budach

[Bud75; Bud78] already show that constant memory is not sufficient to explore any graph. Later,

Rollik [Rol80] constructed a trap for any set of k collaborating agents, i.e., a graph that the given

set of agents do not explore. Although he never computes it explicitly, his work implies a memory

requirement of Ω(logn) space for graph exploration. Finally, Fraigniaud et al. [Fra+05] show that for

any agent with s states there exists a graph with s + 1 vertices which the agent does not explore. The

result is only an asymptotic improvement over the result by Rollik when considering the number of

states of the agent instead of the memory requirement in bits.

For trees with maximum degree ∆, Diks et al. [Dik+04] gave a perpetual exploration algorithm

that uses O(log∆) space, i.e., asymptotically not more than the space needed to store a single edge

label. They showed that Ω(log log logn) bits of memory are needed if the algorithm has to eventually

terminate. If, in addition, the algorithm is required to terminate at the same vertex where it started,

Ω(logn) bits of memory are needed. A matching upper bound for the latter result was given by

Ambühl et al. [Amb+11].

Another natural objective for graph exploration is to minimize the exploration time, i.e., the

number of edge traversals until the given graph is explored. In labeled graphs, depth first search

can be used to explore an undirected graph with m edges in at most 2m steps. Note that m is a

trivial lower bound for the problem, as every edge needs to be traversed before the agent can be sure

that it explored the whole graph. In [PP99], Panaite and Pelc presented an algorithm that requires

m+3n steps for exploring a graph of n nodes andm edges. This is an improvement over the depth-first

search for dense graphs and shows that it is possible to exceed the lower boundm by a term depending

only linearly on n.

If, however, the given graph is anonymous, minimizing the exploration time becomes considerably

harder. In a d-regular graph, for instance, an agent can gain no knowledge when traversing the
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graph and also has no way of recognizing when exploration is completed. If the number of vertices n

or an upper bound on n is known, then it is possible to utilize universal traversal sequences or

universal exploration sequences to completely explore the graph in this case. The length of a universal

traversal sequence or universal exploration sequence for a d-regular graph is bounded by O(dn3 logn)

for d ≤ n/2 − 1 [Kou03; Kah+89] and by O(n3 logn) for d ≥ n/2 [Kou03; Cha+97]. By using a

transformation of a universal exploration sequence for 3-regular graphs to general undirected graphs

(see [Kou03, Theorem 87] or Lemma 2.6 and its proof), we obtain a universal exploration sequence of

length O(n4 logn) for general graphs. Note that although the proof is not constructive, this bound

already implies the existence of a polynomial space exploration algorithm that needs O(n4 logn) edge

traversals to explore any anonymous undirected graph because an agent can find a suitable exploration

sequence in polynomial space by enumeration. There also is a lower bound of Ω(n4) on the length

of universal traversal sequences [BRT92]. However, this lower bound does not translate to a lower

bound on the number of steps required for exploring an anonymous undirected graph, as an agent

can also make use of the fact that it observes the port number of the edge by which it enters a vertex.

A setting that is in between unlabeled and labeled graph exploration is to allow the agents to only

distinguish certain vertices. Dudek et al. [Dud+91] showed that an agent provided with a pebble can

explore and map an undirected graph in time O(mn). For graphs with maximum degree ∆, Chalopin

et al. [CDK10] showed that if the starting node can be recognized by the agent, then the graph can be

explored and mapped in time O(n3∆) using O(n∆ logn) bits of memory.

Another line of research, referred to as piecemeal exploration, focuses on minimizing the explo-

ration time when the number of edge traversals an agent can do before returning to the starting

vertex for refueling is bounded by (2 + α)r , where α is some positive constant and r is the distance to

the furthest node from the starting vertex. The problem was first considered by Betke et al. in [BRS95]

and the authors presented an O(m) algorithm for the exploration of grid graphs with rectangular

obstacles. In [Awe+99], an algorithm for piecemeal exploration of general graphs was proposed

requiring O(m + n1+o(1)) edge traversals. Finally, Ducan et al. gave an optimal algorithm for piecemeal

exploration for generals graphs requiring only Θ(m) edge traversals [DKK06]. Their algorithm also

extends to weighted graphs and a similar model, where the agent is tethered by a rope of length (1+α)r

instead of requiring regular refueling.

Exploration of undirected weighted graphs was first considered by Kalyanasundaram and Pruhs

in [KP94]. In their model, the graph is labeled and an agent arriving at a vertex v learns about all

edges {v,u} ∈ E incident to v including the edge weight w({v,u}) and the vertex u at the other

endpoint. Every time an agent traverses an edge e , it incurs a cost ofw(e), and the total exploration

time of an agent is the sum over all edge weights (with multiplicities) traversed by the agent. Note

that it is important that an agent sees the neighbors of a vertex and thus does not need to traverse

all edges of the graph. Otherwise

∑
e ∈E w({v,w}) is a trivial lower bound on the exploration time

and a depth-first search algorithm is already 2-competitive. The nearest neighbors heuristic for

the traveling salesperson problem yields a Θ(logn)-competitive algorithm for this problem [RSI77].

Kalyanasundaram and Pruhs proposed a sophisticated algorithm which is 16-competitive on planar
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graphs [KP94]. Megow et al. [MMS12] showed that the algorithm is in fact 16(1 + 2д)-competitive

for graphs of genus at most д and constructed a lower bound showing that it does not have a

constant competitive ratio on general graphs. They also presented an alternative Θ(logn)-competitive

algorithm for the problem, which achieves a constant competitive ratio for the case that there are

only a constant number of distinct edge weights. The existence of a general constant competitive

algorithm in this model is an open problem.

DirectedGraphs. Themain focus of research in directed graph exploration has been the exploration

time. Deng and Papadimitriou [DP99] considered the exploration of unknown labeled directed graphs,

where the agent does not know the other endpoint of an edge that it has not traversed. The offline

version of the problem, i.e., traversing all edges of a given directed graph with the minimum number

of edge traversals, is known as the Chinese postperson problem and can be solved in polynomial

time [EJ73]. Deng and Papadimitriou suggested an online algorithm for the problem achieving a

competitive ratio of dO (d ), where d is the deficiency of the given graph G, i.e., the minimum number

of edges that have to be added to make it Eulerian. They also showed a lower bound of Ω(d) on the

competitive ratio for deterministic algorithms and of Ω(d/logd) for randomized algorithms. Note that

there is a simple online algorithm that explores the graph in polynomial time O(nm) by traversing the

nearest edge, which has not been traversed, in every step. Albers and Henzinger [AH00] proposed the

first algorithm with a subexponential competitive ratio of dO (logd ) for the problem. Finally, Fleischer

and Trippen [FT05] gave a deterministic exploration algorithm with a polynomial competitive ratio

of O(d8).

A variant of the above model is studied by Foerster and Wattenhofer in [FW16]. They considered

weighted, labeled directed graphs and the main difference is that in their model the agent observes the

vertex at the other endpoint of all outgoing edges at a vertex. This implies that an online algorithm does

not necessarily have to traverse all edges to ensure that exploration is complete and the corresponding

offline problem is the asymmetric traveling salesperson problem. They showed that the competitive

ratio is Θ(n) for this problem, even for Euclidean planar graphs or unweighted graphs.

Exploration is considerably more difficult if the directed graph is unlabeled. In this case, it is

possible to construct a graph for a given arbitrary agent such that the agent needs an exponential

number of steps in n to visit all vertices. See the combination lock graph presented in [BS94] for

details. Note that this holds even if we allow the agent to use randomization. If the number of

vertices n or a bound on n is known, the exploration of a directed graph is still feasible by using

a brute-force approach: The agent iterates over all directed graphs G with at most n vertices and

possible start positions v0. In every iteration, it first computes the current position v reached in G

when following the edge labels traversed so far. Then it follows a sequence of edge labels exploringG

from the position v .

If we allow the agent to utilize indistinguishable pebbles, the exploration time can be reduced to

polynomial time, as shown by Bender et al. [Ben+02]. The authors gave an O(n8∆2)-time algorithm

that uses one pebble and explores (and maps) a directed graph with maximum degree ∆, when n or
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Graph Agent Goal Result Reference

class V E know task ter. obj.

laby a u -

O(1) memory,

dist. pebbles

expl y feas

2 pebbles necessary

and sufficient

[BK78]

[Hof81]

laby a u -

O(1) memory,

counter

expl y feas

exploration in O(n2) steps,

O(logn) space counter
[BK78]

graph a u - O(1) memory expl y feas

Θ(log logn) pebbles

necessary and sufficient

Cor. 2.10

Cor. 2.27

tree a u - expl n mem O(log∆) memory sufficient [Dik+04]

tree a u - expl y mem

need Ω(log log logn)

memory, O(logn) sufficient

[Dik+04]

[Amb+11]

graph a u n expl y mem

Θ(logn) memory

necessary and sufficient

[Rol80]

[Rei08]

graph a u ∆, n
O(logn)

memory

expl y time

rand. walk explores graph

in O(n3∆2
logn) steps whp.

[Ale+79]

graph a u n poly memory expl y time O(n4 logn) steps sufficient [Kou03]

graph l u -

l = (1 + α)r

rope or 2l fuel
map y time

Θ(m) edge traversals

necessary and sufficient

[DKK06]

graph l u - poly mem expl y time at mostm + 3n steps [PP99]

graph l wu - poly mem expl y time

O(logn)-competitive alg.,

O(д)-competitive alg.

for graphs of genus д

[RSI77]

[MMS12]

graph a d n indist. pebbles map y time

need 1 pebbles

for expl. in poly time

[Ben+02]

graph a d - indist. pebbles map y time

need Θ(log logn) pebbles,

Ω(n log∆) memory

for expl. in poly time

[Ben+02]

[FI04]

graph l d -

sees labels

of neighbors

expl y time

O(d8) competitive on

graphs with deficiency d
[FT05]

graph l wd -

unaware of

neighb. labels

expl y time

Θ(n) competitive

for weighted graphs

[FW16]

a=anonymous, l=labeled, (w)u=(weighted) undirected, (w)d=(weighted) directed, y=yes, n=no

Table 1.1: Summary of results for single agent exploration.
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an upper bound on n is known. For the case that such an upper bound is not available, they proved

that Θ(log logn) pebbles are both necessary and sufficient to explore the graph in polynomial time.

Concerning the space complexity of directed graph exploration in the same model, Fraigniaud and

Ilcinkas [FI04] showed that Ω(n log∆) bits of memory are necessary to explore any directed graph

with n vertices and maximum degree ∆, even with a linear number of pebbles. As an upper bound on

the space complexity, they presented an algorithm requiring O(n∆ logn) bits of memory that explores

a graph in exponential time with a single pebble and terminates. They also gave an O(n2∆ logn)-space

algorithm running in polynomial time and using O(log logn) indistinguishable pebbles for the case

that n is not known.

Further RelatedWork. A lot of research has been done in more geometric and applied exploration

settings, see the survey in [DS17] and [Rao+93].

Search problems, i.e., problems where a specific target t needs to be located in an unknown

environment, are quite similar to exploration problems. In the worst case, for instance, the whole

environment needs to be searched in order to locate the target t . If the target is found earlier,

however, the algorithm can already terminate whereas in exploration we typically require the whole

environment to be visited. This fact leads to a different notion of (offline) optimum that a solution for

a search problem is compared to. For a detailed introduction to search algorithms the reader can refer

to the textbook [AG03]. A survey covering both search and exploration problems is given in [Ber98].

Another survey with the focus of exploration or search on the plane is given in [GK10].

Randomized graph exploration and the study of memory efficient graph exploration if the envi-

ronment can be manipulated (for instance, by providing a suitable labeling of the graph) were further

considered in the survey [GR08]. Another line of research is the study of exploration of graphs that

change over time as studied in [FMS09; EHK15].

1.3.2 Collaborative Graph Exploration

Undirected Graphs. The first main focus of research for collaborative exploration was the feasi-

bility and memory requirement for exploration of mazes and planar graphs. Blum and Kozen [BK78]

proved that any 2-dimensional maze can be explored by two agents with constant memory. In the same

work, the authors also showed that 3-regular graphs are more difficult to explore than 2-dimensional

mazes by exhibiting that no three agents with constant memory can explore all 3-regular graphs.

In [BS77], Blum and Sakoda proved that no finite set of agents with constant memory can explore

any finite 3-dimensional maze, i.e., finite subgraphs of the 3-dimensional lattice graph Z3
. A similar

result was later obtained by Rollik [Rol80] for 3-regular graphs. He showed that for any set of

k agents with s states each there is a planar graph that cannot be explored by the agents. Fraigniaud et

al. [Fra+06b] revisited his construction and bounded the order of his trap for k agents with s states by

˜O(s ↑↑ (2k + 1)). They further improved the bound on the order of the trap to
˜O(s ↑↑ (k + 1)). Note

that the order of the trap directly implies a lower bound on the memory requirement and number of

agents required for exploring any graph with n vertices. Concerning an upper bound for the memory
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requirement of collaborative graph exploration, we are not aware of any previous work that improves

upon the O(logn) bits of memory algorithm for a single agent. In Chapter 2 of this thesis, we present

an algorithm that breaks this bound and shows that Θ(log logn) agents with constant memory can

explore any graph with n vertices in polynomial time and terminate. We also construct a dramatically

smaller trap with only O(s2
5k
) vertices implying that the bound on the number of agents is tight.

Collaborative exploration with the objective of minimizing the exploration time was first consid-

ered by Fraigniaud et al. in [Fra+06a]. The authors presented an algorithm for agents using whiteboard

communication that explores any tree in time O(D +n/logk), where D is the diameter of the tree and

k is is the number of collaborating agents. They also showed that the offline problem of minimizing

the exploration time of k collaborating agents is NP-hard, even for trees. Note that an optimal offline

algorithm can explore a tree in timeΘ(D+n/k) by dividing a depth-first traversal of the tree in k equal

parts. Thus the algorithm in [Fra+06a] achieves a competitive ratio of O(k/logk). The authors also

gave a lower bound of Ω(2 − 1/k) on the competitive ratio. Later, Dynia et al. [Dyn+06] proposed

a different algorithm, which is O(D1−1/p )-competitive, where p is the density of the tree, i.e., the

minimum number p ∈ N which satisfies |V ′ | ≤ 4 · h(T ′)p for all induced subtrees T ′ = (V ′,E ′) of T

with height h(T ′). As p ≤ logn, the algorithm is O(D)-competitive in general. The algorithm requires

that agents can exchange information if they are at distance at most 1. For k ≤
√
n agents, Dynia et

al. [DŁS07] showed an improved lower bound on the competitive ratio of Ω(logk/log logk). Later,

Disser et al. [Dis+17] constructed a different family of trees showing that the same lower bound on

the competitive ratio also holds for k ≤ n logc n agents for any c ∈ N. Another algorithm relying

on whiteboard communication of the agents was presented by Brass et al. in [Bra+11]. It achieves a

competitive ratio of O(n/k + (k + D)k−1), which is an improvement over the algorithm by Fraigniaud

et al. for small values of k and D compared to n. The special case of grid graphs is considered by

Ortolf and Schindelhauer in [OS12]. The authors proposed an algorithm for exploring grid graphs,

which obtains a competitive ratio of O(log2 n). In [OS14], Ortolf and Schindelhauer adopted a recur-

sive approach using global communication between the agents to improve the upper bound on the

competitive ratio for certain values of the parameters n, k and D. In [Hig+14], the authors introduced

a class of algorithms for the collaborative exploration of trees called greedy algorithms and obtained

a lower bound of O(k/logk) on the competitive ratio of any greedy algorithm for weighted trees.

Surprisingly, for k ≥ Dnc agents for any constant c > 1, Dereniowski et al. showed in [Der+15] that

any graph can be explored in time Θ(D), even if the agents can only exchange information at the

same vertex. This means that for a large number of agents it is possible to achieve a competitive ratio

of O(1).

Another line of research is energy-aware graph exploration. In the energy-aware models for

collaborative graph exploration the number of edge traversals of an agent is bounded or the maximum

number of edge traversals of an agents is to be minimized. Dynia et al. [DKS06] studied the problem

of collaborative exploration with a fixed number of agents where the objective is to minimize the

maximum number of edges traversed by an agent. The agents can communicate at distance at most

one and additionally there are whiteboards at every vertex. At the end, all agents have to return to
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the starting vertex. The authors presented an 8-competitive algorithm for trees and showed a lower

bound of 1.5 on the competitive ratio for any deterministic algorithm. The upper bound was later

improved to 4 − 2/k in [DŁS07]. In [DDK15], Das et al. considered tree exploration with no return for

the case that the amount of energy B available to the agents is fixed and the goal is to minimize the

number of agents used. The authors presented an algorithm with a competitive ratio of Θ(logB) for

the case that the agents need to meet in order to communicate. They further gave a lower bound

showing that this is best possible. In our model considered in Chapter 3, the number of agents as

well as the bound on the energy is fixed and we do not require the agents to explore the whole graph.

Instead, we measure the performance of an online algorithm by the number of vertices explored by

it compared to an optimal offline algorithm. In the abstract in [Bam+17a], the authors presented a

7.47-competitive online algorithm for the problem together with a simple lower bound of 2 on the

competitive ratio of any online algorithm. In Chapter 3, we give an improved lower bound and upper

bound for the problem.

A different variant of collaborative exploration, in which the agents are identical and initially

dispersed among the vertices of the graph, was studied in [Das+06; Das+07]. The agents move

asynchronously and can communicate by writing on whiteboards at every node. As the agents follow

exactly the same protocol, exploration with termination is not always feasible because of symmetries

(e.g., consider two agents starting on opposite vertices of an even length cycle). In [Das+07], the

authors showed that the problem of exploration with termination, leader election (i.e., selecting a

leader among the agents) and rendezvous (i.e., gathering all agents at one vertex) are equivalent in this

setting. They suggested an algorithm achieving exploration with termination if k and n are coprime.

The algorithm uses at most O(m · k) edge traversals and at most O(logn) bits of whiteboard memory

at every node. The cases where exploration is possible were characterized in [Das+06], including

an algorithm that achieves leader election and thus also exploration with termination in all solvable

cases. There are different variants of the algorithm with a different tradeoff between the number of

edge traversals and whiteboard memory.

Directed Graphs. There has been only little research on collaborative exploration of directed

graphs that we are aware of. For unlabeled, directed graphs, Bender and Slonim showed that two

randomized agents can explore and map the given graph in expected polynomial time when global

communication is allowed and n is not known [BS94]. Recall that in [Ben+02], the authors showed

that the same task can be achieved by one agent with O(log logn) indistinguishable pebbles.

Further Related Work. A survey covering both single agent and multi agent exploration topics,

most of which are already covered in this section, was given in [Das13].

A lot of research has been also done on collaborative exploration involving malicious software or

a malicious environment that can destroy agents. The task is to explore the graph while removing

the malicious software or locating malicious vertices that destroy agents. Surveys for collaborative

exploration in unsafe environments were given in [FS06; Mar12].
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Graph Agent Goal Result Reference

class V E know task ter. obj.

laby a u - O(1) mem. expl y feas

2 agents

necessary and sufficient

[BK78]

graph a u -

identical,

local com.

via whiteboards

expl y feas

algorithm using

O(m · k) edge traversals

in all feasible cases

[Das+06]

[Das+07]

graph a u -

O(1) mem.

local com.

expl y feas

Θ(log logn) agents

necessary and sufficient

Cor. 2.11

Cor. 2.26

tree a u - expl y time

CR ≤ O(k/logk),

CR ≥ Ω(logk/log logk) for

k ≤ n logc n agents, c ∈ N

[Fra+06a]

[DŁS07]

[Dis+17]

tree a u - expl y time

CR = O(1) for

k ≥ Dnc agents, c ∈ N,

tree with diameter D

[Der+15]

tree a u -

local com.,

whiteboards,

fixed # agents

expl y energy

3/2 ≤ CR ≤ 4 − 2/k for

minimizing max. # edges

traversed by an agent

[DKS06]

[DŁS07]

tree a u -

local com.,

fixed energy B
expl y energy

CR = Θ(logB)

for minimizing # agents

[DDK15]

tree a u -

global com.,

fixed energy B

fixed # agents

expl y energy

2.17 ≤ CR ≤ 3 for

maximizing

total # vertices visited

Theo. 3.2

Theo. 3.6

graph a d -

randomized,

global com.

map y time

2 agents can map graph

in polynomial time

[BS94]

a=anonymous, l=labeled, u= undirected, d=directed, com.=communication, y=yes, n=no

Table 1.2: Summary of results for collaborative exploration.
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The rendezvous problem, i.e., the task of gathering multiple, often identical agents at one location

of the environment, is closely related to collaborative graph exploration. Connections between graph

exploration and rendezvous were already mentioned in the related work above, see [Das+06; Das+07]

for an example. For a detailed introduction to rendezvous problems the reader can refer to the textbook

by Gal and Alpern [AG03]. Surveys about rendezvous research were further given in [Pel12] and

[Alp+13].

1.3.3 Message Delivery

The problem of transporting goods between sources and destinations has many real-world applications

in logistics and has been studied in a lot of different variants.

In some cases, the transportation of goods can be modeled as a network flow problem. Two

prominent well-studied models are the minimum-cost flow problem for a single good and, more

generally, the multi-commodity flow problem for multiple goods [KV18, Chapter 9 and 19]. While the

first problem admits a polynomial time algorithm [EK72], the latter problem is known to be NP-hard

[EIS76]. In contrast to our model, where the agents transporting the messages have capacity limits

and transporting messages together does not incur additional costs, in these models there is a capacity

limit on the edges and the cost of transportation grows linearly with the amount of goods transported.

More closely related to our problem is the point-to-point delivery problem studied in [LMS92]. In

their model, a set of items have to be transported from different sources to different destinations and

up to κ items can be transported together on an edge by an agent while the costs increase linearly in

the number of agents used. The main difference to our model is that in this model there is an infinite

supply of agents and agents can move for free if they do not transport any item. The authors showed

that the problem is NP-hard for κ ≥ 2 and moreover gave a polynomial algorithm for the case that

the number of items is constant.

In the vehicle routing problem, introduced by Dantzig and Ramser in [DR59], a set of items have to

be delivered from a common source called depot to different destinations in a network by a fleet of

vehicles that all start at the depot. The number of items transported by a vehicle is further bounded by

a capacity limit κ. For the special case of unbounded capacity, the vehicle routing problem corresponds

to the traveling salesperson problem, which is known to be NP-hard [GJ79]. A large number of variants

of the vehicle routing problem have been considered, differing in whether the vehicles start at a

single depot or at different locations, the item sources are all at the depot or at different locations,

the vehicles are identical or have different capacities or speeds. Moreover, variants with additional

constraints motivated by applications have been considered, such as a time window until deliveries

must be made. Almost all variants of the vehicle routing problem are also NP-hard and most research

focuses on integer programming techniques and heuristics. A survey of many types of vehicle routing

problems was given in the book [TV02]. A survey about several vehicle routing problems with a

heterogeneous fleet of vehicles was further given in [BBV08]. The class of vehicle routing problems

with pickup and delivery as well as time window constraints is referred to as dial-a-ride problems

and was covered in the survey [CL07].
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The Chinese postperson problem, i.e., the problem of finding the shortest tour traversing all edges

of a given undirected or directed graph, can also be viewed as a delivery problem and it can be solved

in polynomial time [EJ73]. A generalization of this problem is the stacker crane problem introduced

in [FHK78], which requires the tour to only traverse a given set of arcs of a mixed graph. The authors

showed that the stacker crane problem is NP-hard and also considered the k-person variants of

the traveling salesperson problem, Chinese postperson problem and stacker crane problem. In the

k-person variant, the goal is to find k tours starting and ending at the same vertex while minimizing

the maximum cost among the k tours. This objective function is one of the main differences between

this problem and the class of vehicle routing problems or our problem considered in Chapter 4, where

we minimize the overall cost. In [FHK78], the authors proved that all three k-person variants are

NP-hard and further presented approximation algorithms for the problems.

Another related problem is the study of how to move a set of identical agents in a graph from

a starting configuration to a desired final configuration while minimizing the overall or maximum

movement of the agents. Demaine et al. [Dem+09] gave several approximation algorithms and

inapproximability results for this problem on graphs. Moreover, for agents on simple polygons several

algorithms and inapproximability results were presented in [Bil+13].

The delivery of multiple pieces of data or messages from different sources to different destinations

by collaborating agents with different energy budgets, i.e., bounds on the distance they can travel,

is called the budgeted delivery problem. The problem was first considered in [Cha+13] under the

additional assumption that all messages have to be transported to one destination. The authors

showed that the problem is stronglyNP-hard even for a single source and uniform energy budgets and

further presented approximation and resource augmentation algorithms for the problem. In [Cha+14],

it was shown that the problem is already weakly NP-hard for transporting a single piece of data from

a source to a destination on the line. The general budgeted delivery problem with different sources

and sinks was considered in [Bär+16]. The authors provided both hardness results and resource

augmentation algorithms for the general budgeted delivery problem as well as a returning variant,

where the agents additionally need to return to their starting vertex. Another variant of the problem,

where robots can share energy, was considered in [Bam+17b].

In the weighted delivery problem considered in Chapter 4, the agents can travel an arbitrary

distance, but every agent has a different energy efficiency, which is the energy consumption per

unit distance traveled by the agent. The goal is to deliver all messages while minimizing the total

energy consumption. A variant of this problem is considered in [BT17], where instead both the energy

consumption as well as the delivery time is supposed to be minimized.

Further related are the problems of convergecast, in which every agent initially has a piece of

information and one agent has to collect the information of all agents, and broadcast, in which the

information of one agent has to be transferred to all other agents, as considered in [Ana+16; Czy+17].
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Chapter 2

Space Efficient Graph Exploration

The space complexity of undirected graph exploration for one agent has received a lot of attention in

the literature as it is closely related to the problem of undirected s-t-connectivity, which is complete

for the complexity class SL. In his breakthrough result, Reingold [Rei08] showed that undirected

s-t-connectivity lies in L and therefore L = SL. His result also yields a deterministic exploration

algorithm that explores any anonymous undirected graph with n vertices in polynomial time and

O(logn) space if n is known. Logarithmic memory is in fact necessary to explore all anonymous

graphs with n vertices [Fra+05].

The objective of this chapter is to investigate how the memory requirement can be decreased if

we allow the agent to mark vertices by dropping and retrieving pebbles or if multiple agents jointly

explore the graph. There are several examples in the graph exploration literature where exploration

becomes feasible or the time complexity decreases when considering agents with pebbles or multiple

agents. For instance, for plane labyrinths it is known that a single agent with two pebbles can explore

any plane labyrinth [BK78], whereas one pebble is not sufficient for this task [Hof81]. The exploration

of plane labyrinths can also be achieved by two collaborating agents [BK78]. Similarly, directed

anonymous graphs cannot be explored by a single agent in polynomial time, but two cooperating

agents or one agent with Θ(log logn) indistinguishable pebbles can explore any anonymous graph in

polynomial time [BS94; Ben+02].

For the space complexity of undirected graphs it has been an open problem if it is possible to break

the O(logn) barrier by using additional pebbles or multiple agents. The only result for this problem

was a lower bound on the memory requirement of the agents due to Rollik [Rol80], who constructed

a graph that k agents with s states each do not explore. Fraigniaud et al. [Fra+06b] revisited Rollik’s

construction and observed that the number of vertices can be bounded by
˜O(s ↑↑ (2k + 1)), where

a ↑↑ b := aa
.. a
with b levels in the exponent and

˜O suppresses lower order terms. In the same paper,

the authors also gave an improved construction with
˜O(s ↑↑ (k + 1)) vertices. Note that both bounds

translate to a lower bound in terms of the number of states s and number of agents k necessary for

exploring every graph with n vertices. Also for the case of one agent with pebbles, no other lower

bound construction was known.
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Contributions and Outline. We start this chapter by giving a formal introduction of the agent

models for an agent with pebbles and multiple collaborating agent in Section 2.1. We further prove

that a pebble is more powerful than a bit of memory and that, under some technical assumptions,

two agents are more powerful than a pebble.

Afterwards, in Section 2.2, we develop an algorithm that explores any graph with n vertices

using O(log logn) pebbles. Our algorithm terminates and returns to the starting vertex if it exhausts

the number of pebbles available or realizes that it already explored the graph. This means that

the algorithm does not require n to be known and gradually increases the number of used pebbles

during the course of the algorithm such that for any n-vertex graph at most f (n) pebbles are used,

where f (n) ∈ O(log logn). We further prove that the exploration time, i.e., the number of edge

traversals of the agent, is polynomial in the number of vertices of the graph. As the exploration

algorithm with pebbles satisfies the additional technical requirements, we can replace the pebbles by

additional agents and obtain a multi-agent exploration algorithm with O(log logn) agents and only

constant memory per agent.

In Section 2.3, we construct a lower bound showing that the number of pebbles or agents used

in our algorithm is asymptotically optimal. To prove this lower bound, we construct a family of

graphs with O

(
s2

5k
)
vertices that trap any set of k agents with s states each. The size of the trap is

by many orders of magnitude smaller then the constructions due to Rollik [Rol80] and Fraigniaud

et al. [Fra+06b]. Directly from the bound on the size of the trap, we obtain that, even if we allow

O((logn)1−ϵ ) bits of memory for some constant ϵ > 0 for every agent, the number of agents needed

for exploring every n-vertex graph is at least Ω(log logn). The same construction also yields the lower

bound of Ω(log logn) pebbles for a single agent with O((logn)1−ϵ ) bits of memory. Our results allow

to fully describe the tradeoff between the number of agents and the memory of each agent. When

agents have Ω(logn) bits of memory, a single agent without pebbles explores all n-vertex graphs.

For agents with O((logn)1−ϵ ) memory, Ω(log logn) agents are needed. On the other hand, when

Ω(log logn) agents are available it is sufficient that every agent has only constant memory. In fact,

already one agent with constant memory and Ω(log logn) pebbles is sufficient.

Bibliographic Information. The results presented in this chapter are joint work with Yann Disser

and Max Klimm. Parts of the results appeared in [DHK16], a more extensive version was published

in [DHK18].

2.1 Agent Models

In this section, we formally introduce the agent model. We show that a pebble is more powerful than

a bit of memory because one bit of memory can basically be encoded by either dropping or picking

up a pebble (Lemma 2.1). Moreover, we show that under some additional technical assumptions two

additional agents are more powerful than a pebble (Lemma 2.3). Note that all graphs considered in

this chapter are undirected, anonymous, locally edge-labeled and connected.
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We model an agent as a tuple A = (Σ, Σ̄,δ ,σ ∗), where Σ is its set of states, Σ̄ ⊆ Σ is its set of

halting states, σ ∗ ∈ Σ is its starting state, and δ is its transition function. The transition function

governs the actions of the agent and its transitions between states based on its local observations. Its

exact specifics depend on the problem considered, i.e., whether we consider a single agent or a group

of agents and whether we allow the agents to use pebbles. Exploration terminates when a halting

state is reached by all agents.

Our model for an agent is based on a Mealy automaton. In particular this means that the output,

i.e., the actions of the agent, can depend on the current state of the agent and the input, i.e., the local

environment. This allows for a more memory efficient representation of the agents in contrast to a

Moore automaton, whose output online depends on its current state.

2.1.1 Single Agent without Pebbles

The most basic model is that of a single agent A without any pebbles. In each step, the agent observes

its current state σ ∈ Σ, the degree ∆(v) of the current vertex v and the port number l at v of the

edge from which v was entered. The port number l is also referred to as incoming port number.

We let l = ⊥ at the start of the exploration or when the agent stayed at v in the last transition.

The transition function δ then specifies a new state σ ′ ∈ Σ of the agent and an outgoing port

number l ′ ∈ {0, . . . ,∆(v) − 1} ∪ {⊥}. If l ′ ∈ {0, . . . ,∆(v) − 1} holds, the agent enters the edge with

the local port number l ′, whereas for l ′ = ⊥ it stays at v . Formally, the transition function is a partial

function

δ : Σ × N × (N ∪ {⊥}) → Σ × (N ∪ {⊥}),

(σ ,∆(v), l) ↦→ (σ ′, l ′).

Note that the transition function only needs to be defined for l with l < ∆(v) and degrees ∆(v) that

actually appear in the class of graphs considered. It is standard to define the space requirement of an

an agent with states Σ as log |Σ| as this is the number of bits needed to encode every state, see, e.g.,

Cook and Rackoff [CR80].

2.1.2 Single Agent with Pebbles

Wemay equip the agentAwith a set P = {1, . . . ,p} of unique and distinguishable pebbles. At the start

of the exploration the agent is carrying all of its pebbles. As before, the agent observes in each step

the degree ∆(v) of the current vertex v and the port number l from which v was entered, allowing

for l = ⊥ in case the agent did not move during the previous transition. In addition, the agent has

the ability to observe the set of pebbles PA that it carries and the set of pebbles Pv present at the

current vertex v . The transition function δ then specifies the new state σ ′ ∈ Σ of the agent, and a

move l ′ ∈ {0, . . . ,∆(v) − 1} ∪ {⊥} as before. In addition, the agent may drop any subset Pdrop ⊆ PA

of carried pebbles and pick up any subset of pebbles Ppick ⊆ Pv that were located at v , so that after

the transition the set of carried pebbles is P ′A =
(
PA \ Pdrop

)
∪ Ppick and the set of pebbles present at v
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is P ′v =
(
Pv \ Ppick

)
∪ Pdrop. Formally, we have

δ : Σ × N × (N ∪ {⊥}) × 2P × 2P → Σ × (N ∪ {⊥}) × 2P × 2P ,

(σ ,∆(v), l , PA, Pv ) ↦→ (σ
′, l ′, P ′A, P

′
v ).

The transition function δ is partial as it is only defined for PA ∩ Pv = ∅. We assume that the pebbles

are actual physical devices dropped at the vertices so that no space is needed to manage the pebbles.

Thus, the space requirement of the agent is again log |Σ|.

2.1.3 Collaborating Agents without Pebbles

Consider a set of k cooperative agentsA1 = (Σ1, Σ̄1,δ1,σ
∗
1
), . . . , Ak = (Σk , Σ̄k ,δk ,σ

∗
k ) jointly exploring

the graph. We assume that all agents start at the same vertex v0 of the given graphG . In each step, all

agents synchronously determine the set of agents they share a location with, as well as the states of

these agents. Then, all agents move and alter their states synchronously according to their transition

functions δ1, . . . ,δk . The transition function of agent i determines a new state σ ′ and a move l ′ as

before. Formally, let

Σ−i = (Σ1 ∪ {⊥}) × · · · × (Σi−1 ∪ {⊥}) × (Σi+1 ∪ {⊥}) × · · · × (Σk ∪ {⊥})

denote the states of all agents potentially visible to agent Ai where a ⊥ at position j (or (j − 1) if j ≥ i)

stands for the event that agent Ai and agent Aj are located at different vertices. Then, the transition

function δi of agent Ai is a partial function

δi : Σi × Σ−i × N × (N ∪ {⊥}) → Σi × (N ∪ {⊥}),

(σi ,σ−i ,∆(v), l) ↦→ (σ
′
i , l
′
i ).

The overall memory requirement is

∑k
i=1 log |Σi |.

2.1.4 Relationship between Agent Models

In order to compare the capability of an agent A with s states and p pebbles to another agent A′

with s ′ states and p ′ pebbles or a set of agents A, we use the following notion: We say that the

walk of an agent A is reproduced by an agent A′ in a graph G, if the sequence of edges traversed

by A is a subsequence of the edges visited by A′ in G, and agent A′ reaches a halting state if and

only if agent A reaches a halting state. Put differently, A traverses the same edges as A′ in the same

order, but for every edge traversal of A the agent A′ can do an arbitrary number of intermediate edge

traversals. Similarly, we say that a set of agents A reproduces the walk of an agent A in G, if there

is an agent A′ ∈ A such that A′ reproduces the walk of A in G. We further require that if agent A

reaches a halting state then all agents A′ ∈ A reach a halting state.

We first formally show the intuitive fact that pebbles are more powerful than memory bits.
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Lemma 2.1. Let A be an agent with s states and p pebbles exploring a set of graphs G. Then there is

an agent A′ with five states and p + ⌈log s⌉ pebbles that reproduces the walk of A in every G ∈ G and

performs at most three edge traversals for every edge traversal of A.

Proof. As the set of graphs G that can be explored by an agent with s states and p pebbles is non-

decreasing in s , it suffices to show the claimed result for the case that s is an integer power of two.

Let A = (Σ, Σ̄,δ ,σ ∗) be an agent with a set of p pebbles P and s = |Σ| = 2
r
, r ∈ N states exploring

all graphs G ∈ G. In the following, we construct an agent A′ = (Σ′, Σ̄′,δ ′,σ ∗′) with five states Σ′ =

{σ ∗′,σcomp, σ̄halt,σback−1,σback−2}, one halting state Σ̄′ = {σ̄halt}, and a set P ′ of |P ′ | = p + r pebbles.

The general idea is to let A′ store the state of A by dropping and retrieving the additional r pebbles.

To this end, we identify p of the pebbles of A′ with the p pebbles of A and call the additional set of

r pebbles P ′Σ, i.e., P
′ = P ∪ P ′Σ with |P | = p and |P ′Σ | = r , respectively. Since |P

′
Σ | = r and |Σ| = s = 2

r
,

there is a canonical bijection f : Σ→ 2
P ′Σ . The construction ensures that the following invariant

holds during the traversal: If agent A reaches a vertex v in a state σ , then agent A′ reaches v in its

computation state σcomp while carrying the set of pebbles f (σ ) plus the additional pebbles that A

is carrying and all pebbles in P ′Σ \ f (σ ) are located at v . We need the additional states σback−1 and

σback−2 to move all pebbles in P ′Σ encoding the state of A to the next vertex in some intermediate steps.

For every PA′ ⊆ P ′, Pv ⊆ P ′ with PA′ ∩ Pv = ∅, ∆(v) ∈ N, l ∈ N ∪ {⊥} and σ ∈ Σ, let

δ (σ ,∆(v), l , PA′ ∩ P , Pv ∩ P) = (σ
′, l ′, P ′A, P

′
v ) (2.1)

be the transition of agent A with σ ′ ∈ Σ, l ′ ∈ N ∪ {⊥} and P ′A, P
′
v ∈ 2

P
. Then we define

δ ′(σA′,∆(v), l , PA′, Pv ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(σcomp, l ′, P ′A ∪ f (σ ′), P ′v ∪ (P

′
Σ \ f (σ

′)) if l ′ = ⊥ and σ ′ < Σ̄,

(σback−1, l
′, P ′A ∪ (P

′
Σ \ f (σ

′)), P ′v ∪ f (σ ′)) if l ′ , ⊥ and σ ′ < Σ̄,

(σ̄halt, l ′, P ′A ∪ f (σ ′), P ′v ∪ (P
′
Σ \ f (σ

′)) else.

(2.2)

for σA′ ∈ {σ
∗′,σcomp}. If agent A traverses an edge without entering a halting state (second case

in transition function δ ′ above), we also need to fetch the set of remaining pebbles f (σ ′) from the

previous vertex to be able to encode the state of A in the future. To this end, A′ switches to the

state σback−1. When in state σback−1, the fetching will be done in two steps: First, A′ drops all pebbles

in P ′Σ \ f (σ
′), moves to the previous vertex and changes its state to σback−2. Formally, this means

δ ′(σback−1,∆(v), l , PA′, Pv ) =
(
σback−2, l , PA′ \ P

′
Σ, Pv ∪

(
P ′Σ ∩ PA′

) )
for all ∆(v) ∈ N, l ∈ N ∪ {⊥} and PA′, Pv ∈ 2

P ′
with PA′ ∩ Pv = ∅. Then it picks up the pebbles

in f (σ ′), returns to the current vertex of A and changes its state to σcomp, i.e.,

δ ′(σback−2,∆(v), l , PA′, Pv ) =
(
σcomp, l , PA′ ∪

(
P ′Σ ∩ Pv

)
, Pv \ P

′
Σ

)
for all ∆(v) ∈ N, l ∈ N∪{⊥} and PA′, Pv ∈ 2P

′

with PA′ ∩Pv = ∅. After these two transitions, the state

of agent A′ is σcomp, all pebbles in P ′Σ are at the current vertex or carried by A′ and PA′ ∩ P
′
Σ = f (σ ′)

encodes the current state σ ′ of agent A.
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A simple inductive proof establishes that the state σ of A in every step of the exploration of a

graph G ∈ G corresponds to the set of pebbles in P ′Σ carried by A′ in its computation state σcomp,

i.e., σ = f −1
(
PA′ ∩ P

′
Σ

)
. Moreover, if agent A in state σ traverses an edge {v,w} from a vertex v to

a vertex w and does not move to a halting state, then A′ will traverse the edge {v,w} three times

and afterwards again the set of pebbles carried by A will correspond to PA′ ∩ P and the state of A

to σ = f −1
(
PA′ ∩ P

′
Σ

)
. If A remains at the same vertex or moves to a halting state then this transition

is mirrored by a single transition of agent A′. In particular, agent A′ visits exactly the same vertices

as A in every graph G ∈ G while performing at most three times the number of edge traversals.

We proceed to show a similar reduction between exploration with additional agents and explo-

ration by a single agent with pebbles. Intuitively, it would seem that an additional agent is at least as

powerful as a pebble since an agent may simply simulate the behavior of a pebble. However, there are

several subtleties in the different behavior of agents and pebbles that prevent us from showing such a

general result. While a pebble is passive and its movement is entirely determined by the agent, an

additional agent moves on its own and has to compute where to go next. In addition, after termination

of the exploration, pebbles may remain distributed in the graph while agents that mimic pebbles need

to be informed about the fact that the exploration terminated in order to switch into a halting state.

We resolve these issues in the following way. First, we restrict ourselves to agents with pebbles that

have the additional property that they carry all pebbles when they terminate. Second, we require that

the agent with pebbles satisfies the following pickup invariant. Our algorithm presented in Section 2.2

will satisfy both properties.

Definition 2.2. Let A be an agent with a set of p pebbles P . We say that A satisfies the pickup
invariant, if every time A drops a pebble p0 ∈ P at a vertex v with current incoming edge label l , then

p0 is only picked up again if A is at v with the same incoming edge label l .

For illustration of the general proof idea assume for a moment that agents are able to recall their

last incoming port number even when they stay at a vertex for multiple rounds. Then, an agentAwith

p pebbles satisfying the pickup invariant can be simulated by a set of p + 1 agents as follows. There

is one master agent reproducing the walk of A while all other agents behave and move as pebbles.

When a pebble agent remains at a vertex it does not move until the master agent visits the vertex

again. Using the pickup invariant and the fact that the pebble agent can recall the last incoming port

number, the pebble agent can do the same computations as the master agent and can synchronously

move as the master agent in case the outcome of the computation is that the corresponding pebble is

picked up by agent A.

For this to work, we need a way to circumvent the fact that the incoming port number of an

agent becomes ⊥ whenever they remain at a vertex. Instead of remaining at the vertex v where the

agent with pebbles would drop a pebble, we let the corresponding pebble agents move back and forth

between v and the vertex v ′ last visited by the agent before entering v . This ensures that in every

other step, the pebble agent is where it is supposed to be. Since the master agent may be using cycles

of odd length, we need to ensure that the agent knows of the position of the pebbles when a pebble
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agent is not at the vertex where the pebble was dropped. To this end, we double the number of agents

and do two (largely independent) explorations of the graph such that the second exploration is always

one step behind the first exploration. That is, there are two master agents each with a set of p pebble

agents. The master agents do not distinguish between their pebble agents and the pebble agents of

the other master agent. Since the explorations are shifted by one step, the two pebble agents of the

two master agents simulating the same pebble will not be at the same vertex so that the agent not

picked up by one master agent will be picked up by the other. Formally, we show the following result.

Lemma 2.3. Let A be an agent with s states and p pebbles that explores a set G of graphs, satisfies the

pickup invariant and terminates carrying all pebbles. Then there is a set A of 2(p + 1 + ⌈log s⌉) agents

with a constant number of states each that reproduce the walk of A in every graph G ∈ G. If A never

remains at a vertex before halting, then for every edge traversal of A, each agent in A performs at most

one edge traversal.

Proof. For an agent with pebbles, there is no benefit in remaining at a vertex so that there is no loss

of generality when assuming for the following arguments that A never remains at a vertex before it

halts.

Let A = (Σ, Σ̄,δ ,σ ∗) be an agent with s = |Σ| and a set P = {1, . . . ,p} of p pebbles exploring all

graphs G ∈ G. We first explain the construction for the case that s is constant and describe at the

end of the proof how to use a construction similar to the proof of Lemma 2.1 when s is not constant.

We construct a set A = {A1,0, . . . ,A1,p ,A2,0, . . . ,A2,p } of 2p + 2 agents Aj,i = (Σj,i , Σ̄j,i ,δ j,i ,σ
∗
j,i ),

i ∈ {0, . . . ,p}, j ∈ {1, 2} that reproduces the walk of A on all graphs G ∈ G. In this construction,

there are two explorations by the groups of agents A1,0, . . . ,A1,p and A2,0, . . . ,A2,p , where in each

group j ∈ {1, 2} the master agent Aj,0 represents the original agent A while every agent Aj,i for i > 0

represents a pebble. In the course of the exploration, the assignment of pebble agents to the two

explorations may change, however.

For the first master agent A1,0, we set Σ1,0 = Σ, Σ̄1,0 = Σ̄, and σ ∗
1,0 = σ ∗. The second master agent

has one additional state σstart that allows it to wait at the start of the exploration for one step, i.e., we

set Σ2,0 = Σ ∪ {σstart}, Σ̄2,0 = Σ̄ and σ ∗
2,0 = σstart. Waiting for one time unit is implemented via the

transition

δ2,0(σstart,σ−2,0,∆(v),⊥) = (σ
∗,⊥)

for all ∆(v) ∈ N and σ−2,0 ∈ Σ−2,0. Throughout the construction, we will ensure that the exploration

by master agent A2,0 is always one step behind the exploration of master agent A1,0. In addition,

master agent A1,0 explores all graphs in the same way as the agent with pebbles A would. Since we

assumed that A never remains at a vertex, this implies in particular that A1,0 and A2,0 are never at the

same vertex (except for the start and the end of the exploration).

For every agent Aj,i with i ∈ P and j ∈ {1, 2}, we set Σj,i = {c j,i ,dj,i ,d
′
j,i ,

¯hj,i }, Σ̄j,i = { ¯hj,i }.

Intuitively, the state c j,i simulates that pebble i is carried, dj,i simulates that the pebble is dropped

and at the correct vertex, d ′j,i simulates that the pebble is dropped but at a neighbor of the correct
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vertex, and
¯hi, j is the halting state. We let pebble agents of the first group start being carried and the

pebble agents of the second group start in the incorrect dropped state, i.e., σ ∗
1,i = c1,i and σ

∗
2,i = d

′
2,i

for all i ∈ P . For i, i ′ ∈ {0, . . . ,p} and j, j ′ ∈ {1, 2}, let σj′,i′:j,i denote the state of agent Aj′,i′ visible

to agent Aj,i , i.e., σj′,i′:j,i = σj,i if Aj′,i′ and Aj,i share the same vertex and σj′,i′:j,i = ⊥ otherwise.

To define the transition functions δ j,i (σj,i ,σ−j,i ,∆(v), l) for i ∈ {0, . . . ,p}, σj,i ∈ Σj,i , σ−j,i ∈ Σ−j,i

and ∆(v) ∈ N, l ∈ N ∪ {⊥}, we compute for all j ∈ {1, 2} the corresponding transitions of the pebble

agent A, i.e.,

δ (σj,0,∆(v), l ,C(σ−j,0),D(σ−j,0)) = (σ
′
j,0, l

′
j , P
′
j,A, P

′
j,v ),

with σ ′j,0 ∈ Σ, l
′
j ∈ N, and P ′j,A, P

′
j,v ∈ 2

P
where the set

C(σ−j,0) := {i ∈ P : σ1,i :j,0 = c1,i } ∪ {i ∈ P : σ2,i :j,0 = c2,i }

is the set of pebbles that are simulated by a pebble agent (of the first or the second group) who is at

the same vertex as the master agent Aj,0 and in its carried state. Similarly, the set

D(σ−j,0) := {i ∈ P : σ1,i :j,0 = d1,i } ∪ {i ∈ P : σ2,i :j,0 = d2,i }

is the set of pebbles that are simulated by a pebble agent (of the first or the second group) who is at

the same vertex as the master agent Aj,0 and in its correct dropped state d1,i or d2,i . We then let the

master agents A1,0 and A2,0 transition as agent A when observing the corresponding sets of carried

and dropped pebbles, i.e.,

δ j,0(σj,0,σ−j,0,∆(v), l) = (σ
′
j,0, l

′
j )

for all j ∈ {1, 2}. Pebble agents that are in their carried state move as the master agent that carries

them. Except for the start of the exploration, there is at most one master agent at a vertex (and pebble

agents of the second group start dropped) so that the assignment to master agents is well-defined.

Pebble agents Aj,i that are in their correct dropped state dj,i or the carried state c j,i observe whether

there is a master agent at the same vertex. If this is the case, they do the same computation as the

master agent. If the outcome of this computation is that the corresponding pebble is picked up, they

move as the master agent and transition into their carried state. If the outcome of this computation is

that the pebble should remain dropped, they move to the last incoming port number and transition

into the incorrect dropped state d ′j,i . Pebble agents that are in the incorrect dropped state dj,i move

to the last incoming port number and transition into the correct dropped state dj,i . There is a further

small corner case of pebble agents of the second group that transition from dropped to carried at the
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start of the exploration. Summarizing, we obtain

δ j,i (σj,i ,σ−j,i ,∆(v), l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(dj,i , l) if σj,i = d
′
j,i and σ2,0:j,i , σstart,

(c j,i ,⊥) if σj,i = d
′
j,i and σ2,0:j,i = σstart,

(d ′j,i , l) if σj,i = dj,i and σ1,0:j,i = σ2,0:j,i = ⊥,

(c j,i , l
′
1
) if σj,i ∈ {c j,i ,dj,i }, σ1,0:j,i , ⊥, σ

′
1,0 < Σ̄1,0, and j ∈ P ′

1,A,

(d ′j,i , l) if σj,i ∈ {c j,i ,dj,i }, σ1,0:j,i , ⊥, σ
′
1,0 < Σ̄1,0, and j ∈ P ′

1,v ,

(¯hj,i , l
′
1
) if σj,i ∈ {c j,i ,dj,i }, σ1,0:j,i , ⊥, and σ

′
1,0 ∈ Σ̄1,0,

(c j,i , l
′
2
) if σj,i ∈ {c j,i ,dj,i }, σ2,0:j,i < {⊥,σstart}, σ

′
2,0 < Σ̄2,0, and j ∈ P ′

2,A,

(d ′j,i , l) if σj,i ∈ {c j,i ,dj,i }, σ2,0:j,i < {⊥,σstart}, σ
′
2,0 < Σ̄2,0, and j ∈ P ′

2,v ,

(¯hj,i , l
′
2
) if σj,i ∈ {c j,i ,dj,i }, σ2,0:j,i < {⊥,σstart}, and σ

′
2,0 ∈ Σ̄2,0,

for all i ∈ P and j ∈ {1, 2}.

To finish the proof, fix a graph G ∈ G and consider the transitions of agent A and the set of

agents A in G. An inductive proof shows that after k transitions, the state and position of agent A

equals the state and position of the master agent A1,0, and the state and position of the master

agent A2,0 equals the state and position of A after k − 1 transitions. In addition there is exactly one

pebble agentAi ∈ {A1,i ,A2,i } that is in state c j,i with j ∈ {1, 2} at the same vertex as master agentA1,0

if and only if agent A is carrying pebble i . For the dropped pebbles one can show that there is exactly

one pebble agent Ai ∈ {A1,i ,A2,i } that is in state dj,i with j ∈ {1, 2} at some vertex v if and only if in

the exploration with pebbles agent A has dropped (and not yet retrieved) pebble i at vertex v an even

number of steps ago. So when master agentA1,0 returns to a vertex whereA dropped a pebble it either

sees the pebble agent that it caused to go into dropped state (if since that an even number of steps

have passed), or the pebble agent that the other master agent A2,0 caused to go into dropped state (if

an odd number of steps have passed). In any way, the two explorations by the master agents A1,0

and A2,0 are never at the same vertex at any point in time, and the dropped pebbles seen by the one

are invisible to the other, so that the claim follows. Finally note that as agent A carries all pebbles

at the end of the exploration, all pebbles agents are at the same vertex as a master agent when they

switch to a halting state. Thus, also all pebble agents reach a halting state when the exploration is

terminated.

Finally, when s is not constant, we introduce 2k = 2⌈log s⌉ additional agents A1,p+1, . . . ,A1,p+k

and A2,p+1, . . . ,A2,p+k with states Σj,i = {0, 1, ¯h} and halting states Σ̄ = { ¯h} for all j ∈ {1, 2} and

i ∈ {p + 1,p + k}. The general idea is that the additional agents A ′
1
= {A1,i : i ∈ {p + 1, . . . ,p + k}}

always move synchronously with master agent A1,0 and the additional agents A ′
2
= {A2,i : i ∈

{p + 1, . . . ,p + k}} always move synchronously with master agent A2,0. As an effect, the additional

agents A ′j always have the same incoming port number as the corresponding master agent Aj,0. The

states 0 and 1 of the additional agents can be used to store the state of agent A so that a constant

number of states of the master agent suffice. When the master agent Aj,0 reaches a halting state

the additional agents in A ′j also switch to their halting state
¯h so that they also terminate when the
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exploration is finished.

We note that both the pickup invariant and the doubling of the number of agents are unnecessary

in a slightly stronger model of cooperative exploration where the transition function of one agent

may also depend on the incoming labels of other agents at the same vertex. In that case, pebble agents

may simply remain at the vertex where they were dropped and resume computation when the master

agent returns to the vertex. It is further worth noting that our lower bound construction of Section 2.3

also remains valid for this slightly stronger model.

2.2 Exploration Algorithms

In this section, we devise an agent exploring any graph on at most n vertices with O(log logn) pebbles

and O(log logn) memory. By the reductions between the agent models given in Section 2.1.4, this

implies that an agent with O(log logn) pebbles and constant memory can explore any n-vertex graph.

The algorithm further satisfies the technical requirements stated in Lemma 2.3 and therefore also

yields that a set of O(log logn) agents with constant memory each can explore any n-vertex graph.

For the algorithm, we use the concept of universal exploration sequences, which were introduced

by Koucký [Kou02], see Section 1.2.2. One of our main building blocks is the algorithm of Rein-

gold [Rei08] that takes n and d as input and deterministically constructs an exploration sequence

universal to all d-regular graphs using O(logn) bits of memory. The general idea of our algorithm

is to run Reingold’s algorithm with a smaller amount of seed memory a. As the seed memory is

substantially less than O(logn), the algorithm will, in general, fail to explore the whole graph. We

show in Lemma 2.6, however, that the algorithm will visit 2
Ω(a)

distinct vertices. Reinvoking Rein-

gold’s algorithm allows us to deterministically walk along these vertices in the order of exploration

of Reingold’s algorithm. Using this traversal, we encode additional memory by placing a subset of

pebbles on the vertices along the walk as explained formally in Theorem 2.8. Having boosted our

memory this way, we again run Reingold’s algorithm, this time with more memory, and recurse.

At some recursion depth, running Reingold’s algorithm with a∗ bits of memory will visit less than

2
Ω(a∗)

distinct vertices. In the proof of Theorem 2.9, we show that this can only happen when the

graph is fully explored. Hence, the algorithm can terminate when this event occurs and the agent

can return to the starting vertex. The ability of our algorithm to terminate and return to the starting

vertex after successful exploration stands in contrast to Reingold’s algorithm that is only able to

terminate when having the number n of vertices as input.

There are a couple of technical difficulties to make these ideas work. The main challenge is

that the memory generated by placing pebbles along a walk in the graph is implicit and can only

be accessed and altered locally. To still make use of the memory, we do not work with Reingold’s

algorithm directly but consider an implementation of Reingold’s algorithm on a Turing machine with

logarithmically bounded working tape. We show that the tape operations on the working tape can be

reproduced by the agent by placing and retrieving the pebbles on the walk as explained in detail in

the proof of Theorem 2.8. This allows to use the memory encoded by the pebble positions for further
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runs of Reingold’s algorithm. In each recursion, we only need a constant number of pebbles and

additional states. We further show in Theorem 2.9 that O(log logn) recursive calls are sufficient to

explore an n-vertex graph so that the total number of pebbles needed is O(log logn).

A second challenge is that Reingold’s algorithm produces a universal exploration sequence for

regular graphs which our graph need not be. A natural approach to circumvent this issue is to apply

the technique of Koucký [Kou03] that allows to locally view vertices with degree d as cycles of

3d subvertices with degree 3 each. Unfortunately, this approach requires O(logd) bits of memory if

we keep track of the current subvertex which may exceed the memory of our agent. To circumvent

this issue, we store the current subvertex only implicitly using the incoming port number. This

technique is explained in detail in the proof of Lemma 2.6

The following fundamental result of Reingold [Rei08] establishes that universal exploration

sequences can be constructed in logarithmic space.

Theorem 2.4 ([Rei08, Corollary 5.5]). There exists an algorithm taking n and d as input and producing

in O(logn) space a finite exploration sequence universal for all connected d-regular graphs on n vertices.

Reingold’s result implies in particular that there is an agent without pebbles and O(nc ) states for

some constant c that explores any d-regular graph with n vertices when both n and d are known. We

further note that Reingold’s algorithm can be implemented on a Turing machine that has a read/write

tape of length O(logn) as work tape and writes the exploration sequence to a write-only output tape,

see [Rei08, Section 5] for details. For formal reasons the Turing machine in [Rei08] additionally has a

read-only input tape from which it reads the values of n and d encoded in unary so that the space

complexity of the algorithm is actually logarithmic in the input length. For our setting, it is sufficient

to assume that n and d are given as binary encoded numbers on the working tape of length O(logn),

as we care only about the space complexity of exploration in terms of the number of vertices n.

As a first step, we show in Lemma 2.5 how to modify Reingold’s algorithm for 3-regular graphs

to yield a closed walk containing an exponential number of vertices in terms of the memory used.

Afterwards, we extend this result to general graphs in Lemma 2.6.

Lemma 2.5. For any z ∈ N, there exists an O(log z)-space algorithm producing an exploration sequence

w ∈ {0, 1, 2}+ such that for all connected 3-regular graphs G with n vertices the following hold:

(a) An agent followingw in G explores at least min{z,n} distinct vertices.

(b) An agent that starts in a vertex v0 with incoming port number l0 returns to v0 with incoming port

number l0 after followingw . In particular,w yields a closed walk in G.

(c) The length ofw is bounded by zO(1).

Proof. By Theorem 2.4, there is a Turing machine M0 with a tape of length O(log z) producing a

finite universal exploration sequence e0, e1, . . . , ea−1 of length a ∈ N for any 3-regular graph on

exactly 4z vertices.
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Algorithm 2.1: Turing machineM computing exploration sequence for 3-regular graphs.

Input: z ∈ N

Output: exploration sequencesw ∈ {0, 1, 2}+

1 for t ∈ {1, . . . , 2a + 2} do

2 if t ≤ a then

3 runM0 for t steps to obtain element et−1 of the exploration sequence generated byM0

4 output et−1

5 else if t ≡ a + 1 or t ≡ 2a + 2 then

6 output 0

7 else if a + 2 ≤ t ≤ 2a + 1 then

8 runM0 for 2a + 1 − t steps to obtain element e2a+2−t of exploration sequence ofM0

9 output −e2a+1−t mod 3

The Turing machineM producing an exploration sequencew with the desired properties is given

in Algorithm 2.1. By construction, the sequencew produced byM is

e0, e1, . . . , ea−1, 0, (−ea−1 mod 3), (−ea−2 mod 3), . . . , (−e1 mod 3), (−e0 mod 3), 0.

We first show property (b). Let an agent A start at a vertex v0 with incoming port number l0 in some

3-regular graphG . Let furtherA follow the exploration sequencew , and, for i ∈ {0, . . . ,a− 1}, letvi+1

be the vertex reached after followingw up to ei . Then the offset 0 takes the agent back fromva tova−1

and afterwards −ei mod 3 takes agentA fromvi tovi−1. This means that the offset −e1 mod 3 takesA

back to v0 with incoming port number l0 + e0. Hence, after the offsets −e0 mod 3 and 0, agent A has

returned to v0 with incoming port number l0. This yields property (b).

Moreover, the length a of the exploration sequence ofM0 is bounded by the number of configura-

tions ofM0, i.e., the number of possible combinations of state, head position, and tape contents. The

working tape has length O(log z). Therefore, the number of configurations ofM0 and hence also a

is bounded by zO(1), which yields property (c). As the auxiliary variable t ranges from 1 to 2a + 2

and running the Turing machine M0 for t steps can be implemented in O(log z) space, the Turing

machineM can be implemented to run in O(log z) space.

It is left to show that an agent followingw in an arbitrary connected 3-regular graph withn vertices

explores at least min{z,n} vertices. For the sake of contradiction, assume there exists some 3-regular

graph G on n vertices so that an agent A starting in a vertex v0 and following the exploration

sequence w produced by M only visits a set of vertices V0 with |V0 | < min{z,n}. Let G0 be the

subgraph of G induced by V0. Note that, since |V0 | < n by assumption, at least one vertex in G0 has

degree less than 3. We now extend G0 to a connected 3-regular graph with 4z vertices as follows.

First, we letG1 be the graphG0 after adding an isolated vertex if |V0 | is odd and we letV1 be the vertex

set ofG1. We further letG2 be a cycle of length 4z − |V1 | with opposite vertices connected by an edge.

Note that 4z and |V1 | are even andG2 is 3-regular. As long asG1 contains at least one vertex of degree
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(b) 3-regular graph Greg.

Figure 2.1: Example for the transformation of a graph G to a 3-regular graph Greg. A vertex v of

degree 2 is transformed to a cycle containing 6 vertices and for the edge {v,w}, three edges are added

to the graph.

less than 3, we delete an edge {w,w ′} connecting opposite vertices in the cycle in G2 and forw and

thenw ′ add an edge from this vertex to a vertex of degree less than 3 inG1 (possibly the same). This

procedure terminates when all vertices in G1 have degree 3, since G2 contains 4z − |V1 | ≥ 3z ≥ 3|V1 |

vertices and there cannot be a single vertex of degree 2 left in G1, as this would mean that the sum of

all vertex degrees in G1 is odd. The labels in {0, 1, 2} at both endpoints of every edge not in G0 are

chosen arbitrarily. Let H be the resulting 3-regular graph with 4z vertices containing G0 as induced

subgraph.

By construction, the walk of an agent A starting in H at v0 and following w is the same as the

walk in G starting in v0 and following w . In particular, the agent A only visits the vertices V0 and

does not explore H . This contradicts that the sequence e0, e1, . . . , ea−1, which corresponds to the

first a elements of the exploration sequencew , is a universal exploration sequence for all connected

3-regular graph on 4z vertices by assumption.

We proceed to give a similar result for non-regular graphs.

Lemma 2.6. For any z ∈ N, there exists a O(log z)-space algorithm producing an exploration sequence

w ∈ {−1, 0, 1}+ such that for all connected graphs G with n vertices the following hold:

(a) An agent followingw in G explores at least min{z,n} distinct vertices.

(b) An agent that starts in a vertex v0 with incoming port number l0 returns to v0 with incoming port

number l0 after followingw . In particular,w yields a closed walk in G.

(c) The length ofw is bounded by zO(1).

Proof. Let Mreg be the Turing machine of Lemma 2.5 with a tape of length bounded by O(log z)
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Algorithm 2.2: Turing machineM computing exploration sequence for arbitrary graphs.

Input: z ∈ N

Output: exploration sequencesw ∈ {−1, 0, 1}∗

1 i ← 0

2 output 0, 0

3 whileMreg has not terminated do

4 obtain next offsetwreg(i) fromMreg

5 compute edge label li in Greg

6 if li ≡ 0 then

7 output 1, 0

8 else if li ≡ 1 then

9 output −1, 0

10 else if li ≡ 2 then

11 output 0

12 i ← i + 1

producing a universal exploration sequence wreg ∈ {0, 1, 2}
+
such that an agent following wreg in

some 3-regular graph with n vertices visits at least min{3z2,n} distinct vertices.

To prove the statement, we transform this universal exploration sequence for 3-regular graphs

to a universal exploration sequence universal for general graphs by using a construction taken

from Koucký [Kou03, Theorem 87]. In this construction, an arbitrary graph G with n vertices is

transformed into a 3-regular graph Greg as follows: We replace every vertex v of degree ∆(v) by a

circle of 3∆(v) vertices (v, 0), . . . , (v, 3∆(v) − 1), where the edge {(v, i), (v, i + 1 mod 3∆(v))} has port

number 0 at (v, i) and port number 1 at (v, i + 1 mod 3∆(v)). See also Figure 2.1 for an example of

this construction. For any edge {v,w} in G with port number i at v and j at w , we add the three

edges {(v, i), (w, j)}, {(v, i +∆(v)), (w, j +∆(w))}, {(v, i + 2∆(v)), (w, j + 2∆(w))} with port numbers 2

at both endpoints to Greg.

Observe that there are only two labelings of edges in Greg, edges with port number 2 at both

endpoints and edges with port numbers 0 and 1. In particular, one port number of an edge can be

deduced from the other port number. As a consequence, given the initial incoming port number and

the edge offsets from the exploration sequencewreg produced byMreg, all outgoing port numbers can

be computed without knowing the incoming port number at every vertex. In other words, we can

transform the sequence of edge label offsets given bywreg to a traversal sequence, i.e., a sequence of

absolute edge labels l0, l1, . . . of Greg.

We proceed to define the Turing machineM producing an exploration sequencew ∈ {−1, 0, 1}+

with the desired properties as shown in Algorithm 2.2. We assume that the initial incoming port

number is 0 and hence l0 = wreg(0). First of all, note that the next outgoing port number li in Greg

can be computed from the last outgoing port number in Greg and the offsetwreg(i) in constant space
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(line 5 of Algorithm 2.1). Thus,M can be implemented in O(log z) space. By assumption, the length

of the exploration sequence produced by Mreg is bounded by zO(1). Hence, also the length of the

exploration sequence produced byM is bounded by zO(1) showing (c).

What is left to show are properties (a) and (b). Let A be an agent following the exploration

sequence w produced by M in G and starting at a vertex v0 with incoming port number a0. Let

further Areg be an agent following wreg in Greg and starting at vertex (v0,a0) with incoming port

number 0. We first establish the following invariants that hold after every iteration i of the while-loop

in Algorithm 2.2:

1. If agent Areg is at vertex (vi ,ai ) in Greg after i steps, then after following the exploration

sequence output byM up to the end of iteration i agent A is at vi in G and ai mod ∆(vi ) is the

current incoming port number.

2. If (vi ,ai ) is visited by Areg inGreg, then inG both vi and the neighbor incident to the edge with

label (ai mod ∆(vi )) are visited by A.

We show the invariants by induction. Note that at the beginning the Turing machineM outputs 0,0 so

that in G agent A visits the neighbor of v0 incident to the edge with port number a0 and then returns

to v0. Thus, both invariants hold before the first iteration of the while-loop.

Now assume that before iteration i both invariants hold. We show that then they also hold after

iteration i . If agent Areg is at the vertex (v,a) and the edge traversed by Areg in step i has label 0, i.e.,

li = 0, then Areg moves to vertex (v, (a + 1) mod 3∆(v)) by the definition of Greg, see also Figure 2.1.

By assumption, agent A is at vertex v in G and the incoming port number is a mod ∆(v). Thus, if

agent A follows the exploration sequence 1, 0 output by M in iteration i (line 7 of Algorithm 2.2),

then it first traverses the edge labeled (a + 1) mod ∆(v) and then returns to v . This means that after

iteration i , the current vertex of A in G is v and the incoming port number is (a + 1) mod ∆(v) =

((a + 1) mod 3∆(v)) mod ∆(v). Moreover, agent A visited both v and the neighbor of v incident to

the edge with label (a + 1) mod ∆(v). Thus, both invariants hold after iteration i in this case.

The case that li = 1 is analogous except that edges with label li = 1 inGreg lead from a vertex (v,a)

to a vertex (v, (a−1) mod 3∆(v)). The equivalent movement ofA inG is achieved by the sequence−1, 0

(line 9 in Algorithm 2.1).

So assume that agent Areg in step i traverses an edge with label li = 2 from a vertex (v,a) to a

vertex (v ′,a′). This means that there is an edge {v,v ′} in G with port number a mod ∆(v) at v and

port number a′ mod ∆(v ′) at v ′. By assumption, at the beginning of iteration i agent A is at v and

a mod ∆(v) is the label of the edge to the previous vertex. So if A follows the exploration sequence 0

output in iteration i (line 11 of Algorithm 2.2), then it moves to v ′. Now the label to the previous

vertex at v ′ is a′ mod ∆(v ′) and A visited both v and v ′ so that both invariants hold again.

Finally, for property (b) in the lemma, we know that after following the exploration sequence wreg

agent Areg returns to (v0,a0) in Greg by Lemma 2.5. Thus, after following w agent A returns to v0

and a0 is the incoming port number by the first invariant.

What is left to show is that A visits at least min{z,n} distinct vertices inG . IfGreg has at most 3z2
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vertices, then Areg visits all vertices in Greg by assumption and thus A also visits all vertices in G by

the second invariant. Otherwise, we know that Areg visits at least 3z
2
distinct vertices in Greg. Note

that this implies z < n as Greg contains at most 3n(n − 1) vertices.

Assume, for the sake of contradiction, that A visits less than z vertices inG. Let V̄reg be the set of

vertices visited by Areg in Greg. As |V̄reg | ≥ 3z2 by assumption, at least one of the two following cases

occurs:

1. The cardinality of V̄ := { v | (v, j) ∈ V̄reg for some j } is at least z.

2. There is a vertex v̄ in G such thatMv̄ := { j | (v̄, j) ∈ V̄reg } has cardinality ≥ 3z.

We show that both cases lead to a contradiction. Note that by the second invariant agent A visits all

vertices in V̄ . Thus, if |V̄ | ≥ z, then A visits at least z distinct vertices in G, a contradiction.

Assume the second case occurs and let v̄ in G be a vertex such that |Mv̄ | ≥ 3z. Then we have

|{j mod ∆(v̄) | j ∈ Mv̄ | ≥ z implying that agent A visits at least z neighbors of v̄ in G by the second

invariant. This again is a contradiction.

To make the results above usable for our agents with pebbles, we need more structure regarding

the memory usage of the agent. To this end, we formally define a walking Turing machine with access

to pebbles, which we will refer to as a pebble machine. Formally, we can view such a walking Turing

machine as a weaker agent model than the general agent model with pebbles described in Section 2.1.2,

where the states of the agent correspond to the state of the working tape, the position of the head,

and the state of the Turing machine. Specifically, this model is weaker since it separates computations

on its tape from state transitions that depend on pebble locations and incoming port number, and

since it demands δTM to be computable.

Definition 2.7. Let s,p,m ∈ N. An (s,p,m)-pebble machine T = (Q, Q̄, P ,m,δin,δTM,δout,q∗) is an
agent A = (Σ, Σ̄,δ ,σ ∗) with a set P = {1, . . . ,p} of p pebbles and the following properties:

(a) The set of states is Σ = Q × {0, 1}m × {0, . . . ,m − 1}, where |Q | = s . This means that each agent

state consists of a Turing state, the state of the working tape of lengthm, and a head position on

the tape.

(b) In the initial state σ ∗ the Turing state is q∗, the head position is 0, and the tape has 0 at every

position.

(c) The agent’s transition function δ : Σ × N × (N ∪ {⊥}) × 2P × 2P → Σ × (N ∪ {⊥}) × 2P × 2P is

computed as follows:

(i) The agent first observes its local environment according to the function δin : Q × N × (N ∪

{⊥}) × 2P × 2P → Q that maps a vector (q,∆(v), l , PA, Pv ) consisting of the current Turing

state, the degree ∆(v) of the current vertex, the label l of the edge leading back to the vertex

last visited, the set PA of carried pebbles and the set Pv of pebbles located at the current vertex

to a new Turing state q′.

38



2.2 Exploration Algorithms

(ii) The agent does computations on the working tape like a regular Turing machine according to

the function δTM : Q × {0, 1} → Q × {0, 1} × {left, right} that maps the tuple consisting of

the current Turing state and the symbol at the current head position (q,a) to a tuple (q′,a′,d)

meaning that the machine transitions to the new state q′, writes a′ at the current position of

the head and moves the head in direction d ; this process is repeated until a halting state q̄ ∈ Q̄

is reached (note that we only consider Turing machines that eventually halt).

(iii) It performs actions according to the function δout : Q̄ × N × (N ∪ {⊥}) × 2P × 2P → 2
P ×

2
P × (N ∪ {⊥}) that maps a tuple (q,∆(v), l , PA, Pv ) containing the current Turing state q,

the degree ∆(v) of the current vertex, the label l of the edge leading back to the vertex last

visited, the set of carried pebbles PA and the set of pebbles Pv at the current vertex v to a

tuple (P ′A, P
′
v , l
′). This means that the agent drops and retrieves pebbles such that it carries P ′A,

leaves P ′v at v and traverses the edge with local edge label l ′.

When considering a pebble machineT = (Q, Q̄, P ,m,δin,δTM,δout,q
∗), we call the Turing states Q

simply states and we call the set of states Σ of the underlying agent model configurations. As the

configuration of a pebble machine is fully described by the (Turing) state q ∈ Q , the head position,

and the state of the working tape, it has sm2
m
configurations. We further call a transition of the

agent according to the transition function δTM a computation step. Note that an agent remains at

the same vertex and only changes its configuration when performing a computation step.

We assume that a pebble machine does not forget the incoming port number when remaining at

a vertex, i.e., the incoming port number does not become ⊥ in this case. Note that for any pebble

machine T there is an agent A with pebbles which never waits at a vertex and combines multiple

intermediate transitions of the pebble machine (of which only the last one results in an edge traversal)

into one transition with edge traversal. Then the agent A always has access to the incoming port

number so we may make this assumption for the sake of simplicity and without strengthening the

agent model.

In the following theorem, we explain how to place pebbles on a closed walk and use them as

additional memory.

Theorem 2.8. There are constants c, c ′ ∈ N such that the following holds: Let T be a (s,p, 2m)-pebble

machine that performs a closed walk in any graph following an exploration sequence in {−1, 0, 1}+ and

terminates with all p pebbles at the starting vertex. Then there exists a (cs,p + c,m)-pebble machine T ′

that follows an exploration sequence in {−1, 0, 1}+ and terminates at the starting vertex carrying all p +

c pebbles. Moreover, the following properties hold:

(a) For every graph G with n < 2
m/c ′

vertices, the pebble machine T ′ explores G . The overall number

of edge traversals and computation steps needed by the pebble machine T ′ is bounded by 2
O(m)

.

(b) For every graphG withn ≥ 2
m/c ′

vertices,T ′ reproduces the walk ofT inG . For the initialization,T ′

needs 2
O(m)

edge traversals and computations steps. Afterwards, the number of edge traversals and

computation steps needed by the pebble machineT ′ to reproduce one edge traversal or computation

step of T is bounded by 2
O(m)

.
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(c) If T satisfies the pickup invariant, then so does T ′.

Proof. The general idea of the proof is that T ′ places the constant number of additional pebbles on a

closed walk ω in order to encode the tape content of the pebble machine T . Using these pebbles, T ′

can also count the number of distinct vertices on the closed walk ω. If the closed walk is too short,

then T ′ already explored the graph and condition for (a) is satisfied. Otherwise, the closed walk is

long enough to allow for a sufficient number of distinct positions of the pebble and we are in part (b)

of the statement of the theorem.

Let Q be the set of states ofT . We define the set of states ofT ′ to be Q ×Q ′ for a set Q ′, i.e., every

state of T ′ is a tuple (q,q′), where q corresponds to the state of T in the current step of the traversal.

The pebble machine T ′ observes the input according to δin, performs actions according to δout, and

uses p pebbles in the same way as T . Thus, after the transitions that correspond to the transitions

of pebble machine T , the first component of the state of T ′ corresponds to the state of T . Moreover,

the positions of the p pebbles that T ′ and T have in common is the same. Additionally, the pebble

machine T ′ makes many intermediate transitions to simulate the computations of T and in order

to carry the additional pebbles {p0,p1, . . . ,pc−2,ptemp} along. For reproducing a step of the pebble

machine T , the pebbles {p0,p1, . . . ,pc−2} are placed along a closed walk ω to simulate the memory

of T , while the states Q ′ and the tape of T ′ are used to manage this memory. The purpose of the

pebble ptemp will be explained later.

We divide the tape of T ′ into a constant number c0 of blocks of sizem/c0 each. In the course of

the proof, we will introduce a constant number of variables to manage the simulation of the memory

of T with pebbles. Each of these variables is stored in a constant number of blocks. The constant c0

is chosen large enough to accommodate all variables on the tape of T ′. By Lemma 2.6, there is a

constant c1 such that for any r ∈ N there is a Turing machine M with at most c1 states and a tape

of length c1 · r outputting an exploration sequence that gives a closed walk of length at most 2
c1 ·r

visiting at least min{2r ,n} vertices in any graph with n vertices. Letm1 :=m/(c0c1) and letm0 ∈ N

be such that for allm′ ∈ N withm′ ≥ m0 we have c1 ≤ 2
m′/c0

and 2
m′/c0 > 2m′.

In the following, we show how the simulated memory is managed by providing algorithms in

pseudocode (see Algorithms 2.3 to 2.8). These can be implemented on a Turing machine with a

constant number of states cAlg. Let c = max

{
2
2m0 , 2c0c1 + 1, cAlg

}
and c ′ := c0c1. Note that c only

depends on the constants c0, c1 and cAlg, but not on m or p. It is without loss of generality to

assumem ≥ m0, because, form < m0, we can store the configuration of the tape of T in the states Q ′

of T ′, since c ≥ 2
2m0

.

We proceed to show that the computations on the tape of length 2m performed by T according to

the transition function δTM can be simulated using the pebbles {p0,p1, . . . ,pc−2,ptemp}. The proof of

this result proceeds along the following key claims.

1. We can find a closed walk ω that starts at the current vertexv and contains 2
m1

distinct vertices

so that c − 1 pebbles placed along this walk can encode all configurations of the tape of T .

2. We can move along ω while keeping track of the number of steps and counting the number of
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(b) Memory encoded by pebbles

Figure 2.2: Memory encoded by using pebbles on a closed walk. The state of the tape of length 2m =

12 in (a) is encoded by the position of the c − 1 = 4 pebbles in (b). The number of the vertices

corresponds to the order of first traversal by the closed walk ω starting in 0. The position of each

pebble encodesm1 = 3 bits.

distinct vertices until we have seen 2
m1

distinct vertices.

3. We can read from and write to the memory encoded by the placement of the pebbles along ω.

4. If T moves from vertex v to vertex v ′, we can move all pebbles to a closed walk ω ′ starting

in v ′ while preserving the content of the memory.

1. Finding a closed walkω. Lemma 2.6 yields a Turing machineMwalk with c1 states and a tape

of lengthm/c0 that produces an exploration sequence corresponding to a closed walk ω that contains

at least min{n, 2m1 } distinct vertices and has length at most 2
c1m1 = 2

m/c0
. We use a variable Rwalk of

sizem/c0 for the memory ofMwalk, which is initially assumed to have all bits set to 0. If 2
m1 > n, then

the exploration sequence produced byMwalk is a walk exploringG. Note that by definition we have

m/c ′ =m1. So this happens exactly when the condition for (a) in the theorem is satisfied. Below we

will show how to count the number of unique vertices on the closed walk ofMwalk. Hence, the pebble

machineT ′ can initially walk along the closed walk ω counting the number of distinct vertices. If this

number is smaller than 2
m1

, we know that we have visited all vertices of G. In this case, all pebbles

used can be picked up while once walking along the closed walk ω. We show at the end of the proof

that this takes at most 2
O(m)

edge traversals and computation steps.

From now on, we can therefore assume that ω contains at least 2
m1

distinct vertices. We need to

show that c − 1 pebbles placed along the walk ω can be used to encode all of the 2
2m

configurations

of the tape of T . Figure 2.2 shows how each pebble encodes a certain part of the tape of T . The

idea is that each pebble can be placed on one of 2
m1

different vertices, thus encoding exactlym1 bits.

We divide the tape of length 2m into 2m/m1 = 2c0c1 parts of sizem1 each, such that the position of

pebble pi encodes the bits {im1, . . . , (i + 1)m1 − 1}, where we assume the bits of the tape of T to be

numbered 0, 1 . . . , 2m − 1. As c ≥ 2c0c1 + 1, we have enough pebbles to encode the configuration of

the tape of T .
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Algorithms 2.3: Auxiliary functions for moving along the closed walk ω.

1 function step()

2 traverse edge according to value of exploration sequence output byMwalk

3 Rsteps ← Rsteps + 1

4 function findPebble(pi )

5 while not observe(pi ) do

6 step()

7 function restart()

8 whileMwalk has not terminated do

9 step()

10 Rsteps ← 0

11 Rid ← 0

12 Rwalk ← 0

2. Navigatingω. Let Rsteps be a variable counting the number of steps alongω and Rid be a variable

for counting the number of unique vertices visited along ω starting in v . Note that Rid gives a way of

associating a unique identifier to the first 2
m1

distinct vertices alongω. Asm1 ≤ m/c0 holds,m/c0 tape

cells suffice for counting the first 2
m1

distinct vertices along ω. The overall number of steps along

the closed walk is bounded by 2
m/c0

and thereforem/c0 tape cells also suffice for counting the steps

along ω.

It remains to show that we can move along the closed walk ω while updating Rsteps and Rid, such

that, starting from the vertexv , the variable Rsteps contains the number of steps taken and Rid contains

the number of distinct vertices visited. Let drop(pi ) denote the operation of dropping pebble pi

at the current vertex, pickup(pi ) the operation of picking up pi from the current vertex if possible,

and let observe(pi ) be “true” if and only if pebble pi is located at the current position. Consider

the auxiliary functions shown in Algorithms 2.3. The function step() moves one step along ω and

updates Rsteps accordingly. The function findPebble(pi ) moves along ω until it finds pebble pi . The

function restart() follows the exploration sequence output byMwalk untilMwalk terminates. After

Mwalk terminates, the pebble machine T has returned to the starting vertex v and the incoming edge

label is again the same as at the beginning of the closed walk ω by Lemma 2.6. The variables Rsteps

and Rid are then set to 0, andMwalk is restarted by setting the variable Rwalk to 0. Finally, the function

nextDistinctVertex() in Algorithm 2.4 does the following: If the number of distinct vertices visited

alongω is already 2
m1

, then the pebble machineT ′ returns to the start. Otherwise, it continues alongω

until it encounters a vertex that it has not visited before. It repeatedly traverses an edge, drops the

pebble ptemp, stores the number of steps until reaching that vertex, then restarts from the beginning

and checks if it can reach the vertex containing pebble ptemp with fewer steps. If not, the while-loop

can be exited as T ′ found a new distinct vertex. Note that we use the auxiliary variable R′
steps

, which
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Algorithm 2.4: Moving along the closed walk ω while updating Rsteps and Rid.

Input: local environment observed by pebble machine T ′

1 function nextDistinctVertex()

2 if Rid ≡ 2
m1 − 1 then

3 restart()

4 return

5 Rid ← Rid + 1

6 while True do

7 step()

8 drop(ptemp)

9 R′
steps
← Rsteps

10 restart()

11 findPebble(ptemp)

12 if Rsteps ≡ R′
steps

then

13 pickup(ptemp)

14 break

15 while Rsteps < R′
steps

do

16 step()

17 pickup(ptemp)

needs a constant number of blocks of sizem0/c0.

3. Reading from and writing to simulated memory. We show how to simulate the changes to

the tape of T by changing the positions of the pebbles along ω. The transition function δTM of T

determines how T does computations on its tape and, in particular, how T changes its head position.

We use a variable Rhead of sizem/c0 to store the head position. By assumption,m ≥ m0 and therefore

2
m/c0 > 2m, i.e., the size of Rhead is sufficient to store the head position. In order to simulate one

transition of T according to δTM, we need to read the bit at the current head position and then write

to the simulated memory and change the head position accordingly. Reading from the simulated

memory is done by the function readBit() in Algorithm 2.7 and writing of a bit b to the simulated

memory is performed by the function writeBit(b) in Algorithm 2.8.

First, let us consider the two auxiliary functions getPebbleId(pi ) and putPebbleAtId(pi , id)

(cf. Algorithms 2.5 and 2.6). As the name suggests, the function getPebbleId(pi ) returns the unique

identifier associated to the vertex marked by pi . Recall that vertices are indistinguishable. Here,

unique identifier refers to the number of distinct vertices on the walk ω before reaching the vertex

marked with pi for the first time. Given an identifier id, we can use the function putPebbleAtId(pi ,

id) for placing pebble pi at the unique vertex corresponding to id. By the choice of our encoding,
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Algorithm 2.5: Reading position of a pebble on the closed walk ω.

Input: pebble pi

Output: identifier id ∈ {0, . . . , 2m1 − 1} corresponding to position of pebble pi

1 function getPebbleId(pi )

2 restart()

3 while not observe(pi ) do

4 nextDistinctVertex()

5 return Rid

Algorithm 2.6: Putting a pebble at a specific position on the closed walk ω.

Input: pebble pi , identifier id ∈ {0, . . . , 2
m1 − 1}

1 function putPebbleAtId(pi , id)

2 restart()

3 findPebble(pi )

4 pickup(pi )

5 restart()

6 while id>0 do

7 id← id − 1

8 nextDistinctVertex()

9 drop(pi )

if Rhead = i ·m1 + j with j ∈ {0, . . . ,m1 − 1}, then the j-bit of the binary encoding of the position of

pebble pi encodes the contents of the tape cell specified by Rhead. Thus, for reading from the simulated

memory, we have to compute i and j and determine the position of the corresponding pebble in the

function readBit(). For the function writeBit(b), we also compute i and j. Then, we move the

pebble pi by 2
j
unique vertices forward if the bit flips to 1 or by 2

j
unique vertices backward if the bit

flips to 0.

4. Relocating ω. Assume T is at vertex v with current incoming edge label l and it moves to

another vertex v ′. By assumption, T follows an exploration sequence in {−1, 0, 1}+ such that there

is an offset l0 ∈ {−1, 0, 1} and T traverses the edge with port number l1 := l + l0 mod ∆(v) at v . We

further let l ′ be the incoming port number at v ′. Due to Lemma 2.6, after every traversal of the

closed walk ω, pebble machine T ′ returns to v with incoming edge label l . After having computed

the label l1 of the edge to v
′
, T ′ can move between vertex v with incoming edge label l and vertex v ′

with incoming edge label l ′ using constant memory and without the need to recompute l1: The

offset l0 ∈ {−1, 0, 1} takesT
′
from vertex v and incoming edge label l to vertex v ′ with incoming edge

label l ′. Moreover, the sequence of offsets 0,−l0, 0 takes T
′
from vertex v ′ and incoming edge label l ′

back to vertex v with incoming edge label l .
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Algorithm 2.7: Reading the bit at the current head position from the simulated memory.

Output: bit b ∈ {0, 1} at current head position of the simulated memory

1 function readBit()

2 i ← ⌊Rhead/m1⌋

3 j ← Rhead −m1 · i

4 id← getPebbleId(pi )

5 return j-th bit of id (in binary)

Algorithm 2.8: Writing the bit b to the simulated memory at the current head position.

Input: bit b ∈ {0, 1} to be written to simulated memory at current head position

1 function writeBit(b)

2 i ← ⌊Rhead/m1⌋

3 j ← Rhead −m1 · i

4 id← getPebbleId(pi )

5 if b ≡ 1 and readBit() ≡ 0 then

6 id← id + 2j

7 else if b ≡ 0 and readBit() ≡ 1 then

8 id← id − 2j

9 putPebbleAtId(pi ,id)

Hence, T ′ can move the pebbles placed along the walk ω to the corresponding positions along

a new walk ω ′ starting at v ′ with incoming edge label l ′ in the following way: We iterate over

all c − 1 pebbles and for each pebble pi we start in v , determine the identifier id of the vertex

marked by pi via getPebbleId(pi ), pick up pi , move to v ′ and place pi on ω ′ using the function

putPebbleAtId(pi , id). This way, we can carry the memory simulated by the pebbles along during

the graph traversal. Note that as soon as pebble machine T terminates at a vertex v , the pebble

machine T ′ can simply move once along the closed walk ω, pick up all pebbles, return to v and

terminate. By assumption, all p pebbles of T are at v when T terminates and by construction also the

additional c pebbles are at v when T ′ terminates.

Thus, we have shown that for case (b) T ′ can reproduce the traversal of T in G while using a tape

with half the length, but c additional pebbles and a factor of c additional states.

We now bound the number of edge traversals and computation steps for both part (a) and (b). First,

we bound the number of edge traversals thatT ′ needs for simulating one computation step ofT . Recall

that T ′ needs at most 2
m/c0 ≤ 2

m
edge traversals for moving once along the whole closed walk ω. A

call of the function step() corresponds to one edge traversal, a call of findPebble(pi ) thus corresponds

to at most 2
m
edge traversals and also a call of restart() corresponds to at most 2

m
edge traversals.

Moreover, one iteration of the loop in nextDistinctVertex() accounts for at most 2
m + 1 edge

traversals and therefore executing the whole function results in at most (2m + 1) · 2m = 2
O(m)

edge
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traversals. This means that one call of getPebbleId(pi ) or putPebbleAtId(pi ,id) incur at most 2
O(m)

edge traversals and this also holds for readBit() andwriteBit(b). Hence, for every computation step

performed by T according to δTM, the pebble machine T ′ performs actions according to readBit()

and writeBit(b) and overall does at most 2
O(m)

edge traversals. The above argument also shows that

at most 2
O(m)

edge traversals are necessary to count the number of distinct vertices on the closed

walk ω at the beginning.

Next, let us bound the number of edge traversals thatT ′ needs for reproducing one edge traversal

of T . This means that we need to count how many edge traversals are necessary to relocate all

pebbles placed along the walk ω to the new walk ω ′. For every pebble pi , we call getPebbleId(pi )

which results in at most 2
O(m)

edge traversals, we pick up pi and move to v ′ which again needs at

most 2
O(m)

edge traversals, and place pi on ω ′ using the function putPebbleAtId(pi , id) which also

needs 2
O(m)

edge traversals. Overall, this procedure is done for a constant number of pebbles and

hence requires at most 2
O(m)

edge traversals.

We now bound the number of computation steps of T ′ by using the bounds on the number of

edge traversals. Recall that the state of T ′ is a tuple (q,q′), where q corresponds to the state of T .

In the computation only the second component of the state of T ′ changes and therefore there are

only at most c possible states. The tape length and number of possible head positions of the Turing

machine ism. Since we may assume without loss of generality thatm ≥ 2, we can bound the number

of distinct configurations of T ′ in each computation by 2
O(m)

. Hence, after every edge traversal T ′

does at most 2
O(m)

computation steps. This implies that in part (a) of the theorem the number of

computation steps is bounded by 2
O(m)

because the number of edge traversals is bounded by 2
O(m)

as

shown above. Similarly, in part (b) of the theorem, the total number of computation steps after 2
O(m)

edge traversals is bounded by 2
O(m)

. Sincem ≥ 2, this means that also the sum of computation steps

and edge traversals can be bounded by 2
O(m)

both for one computation step and one edge traversal

of T .

Finally, we need to show that the pickup invariant is maintained. By assumption, T satisfies this

property. As pebble machine T ′ drops and picks up the p common pebbles at the same vertices with

the same incoming labels, we need to only show this property for the c additional pebbles. For any

vertex u on the closed walk ω, let lu be the incoming edge label when T ′ first visits u on the closed

walk. If u is the current vertex after a call of the function nextDistinctVertex() and Rsteps is the

current number of steps from the starting vertex on the closed walk ω, then we know that u cannot be

reached with less than Rsteps steps. In particular, the incoming edge label must be lu . Hence, every time

T ′ drops a pebble pi for i ∈ {0, 1, . . . c−2} at vertexu, the incoming edge label is lu and the same holds

every time a pebble pi is picked up from u. Furthermore, the function nextDistinctVertex() ensures

that if pebble ptemp is dropped after R′
steps

steps on the closed walk, then it is also picked up again

after R′
steps

steps on the closed walk. Thus, the pickup invariant also holds for the pebble ptemp.

Finally, we show that by recursively simulating a pebble machine by another pebble machine

with half the memory but a constant number of additional pebbles we can explore any graph with at

most n vertices while using O(log logn) pebbles and only O(log logn) bits of memory.
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Theorem 2.9. Any connected undirected graph on at most n vertices can be explored by an agent in a

polynomial number of steps using O(log logn) pebbles and O(log logn) bits of memory. The agent does

not require n as input and terminates at the starting vertex with all pebbles after exploring the graph.

The agent further maintains the pickup invariant.

Proof. Let c, c ′ ∈ N be the constants of Theorem 2.8. Let r ∈ N be arbitrary and consider a (c, 0, c ′2r+1)-

pebble machine T (r ) that simply terminates without making a computation step or edge traversal.

Applying Theorem 2.8 for the pebble machineT (r ) gives a (c2, c, c ′2r )-pebble machineT (r )r that follows

an exploration sequence in {−1, 0, 1}+ and terminates with all pebbles at the starting vertex. Moreover,

if n < 2
2
r
holds, then T (r )r explores the graph and returns to the starting vertex. If, on the other hand,

n ≥ 2
2
r
, then T (r )r reproduces the walk of T (r ) (which in this case is of course trivial). Note that these

properties hold even though the number n of vertices is unknown and, in particular, not given as

input to T (r )r .

Applying Theorem 2.8 iteratively, we obtain a (cr+2−i , (r + 1 − i)c, c ′2i )-pebble machine T (r )i that

follows an exploration sequence in {−1, 0, 1}+ and terminates with all pebbles at the starting vertex.

For a graph G with n < 2
2
r
, T (r )r explores G. Thus, for such a graph G it does not matter which case

occurs when applying Theorem 2.8, as in both cases we can conclude that T (r )i for i ∈ {0, . . . , r − 1}

explores the graphG . If we have n ≥ 2
2
r
, then n ≥ 2

2
i
holds for all i ∈ {0, . . . , r − 1} and in particular

T (r )
0

reproduces the walk of T (r ) in G.

The desired pebble machine T exploring any graph G with O(log logn) pebbles and O(log logn)

bits of memory works as follows: We have a counter r , which is initially 1 and is increased by one

after each iteration until the given graphG is explored. In iteration r , pebble machineT does the same

as the (cr+2, (r + 1)c, c ′)-pebble machine T (r )
0

until it terminates. The pebble machine T terminates as

soon as for some r ∈ N the pebble machine T (r )
0

recognizes that it explored the whole graph. This

happens when r = ⌈log logn⌉ + 1. Hence, T uses at most O(log logn) pebbles.

Concerning the memory requirement of T , note that T needs to store the state of T (r )
0

, the tape

content of T (r )
0

and the current value of r . There are cr+2 states of the pebble machine T (r )
0

, its tape

length is c ′ and r ≤ ⌈log logn⌉ + 1 in every iteration, so that T can be implemented with O(log logn)

bits of memory.

It is left to show is that the number of edge traversals ofT in the exploration of a given graphG with

n vertices is polynomial inn. To this end, we first show that the number of edge traversals of the pebble

machine T (r )
0

is bounded by nO(1) for all r ∈ {1, . . . , ⌈log logn⌉ + 1}. Let r ∈ {1, . . . , ⌈log logn⌉ + 1}

be arbitrary and let ti denote the sum of the number of edge traversals and computation steps of T (r )i

in the given graphG. The pebble machine T (r )r has a tape of lengthm = c ′2r . Applying Theorem 2.8,

we get that either T (r )r explores G and uses at most 2
O(m)

edge traversals and computation steps or

T (r )r simulates the walk of a pebble machine that does not make a single edge transition and uses at

most 2
O(m)

edges traversals and computation steps. In both cases, we obtain

tr ≤ 2
O(2r ) ≤ 2

O(2log logn ) = 2
O(logn) = nO(1).

This shows the desired bound for tr . Furthermore, one computation step or one edge traversal of T (r )i
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leads to at most 2
O(c ′ ·2i ) = 2

O(1)2i
edge traversals and computation steps of T (r )i−1 by Theorem 2.8.

Hence, we obtain

ti−1 ≤ 2
O(1)2i ti ∀ i ∈ {1, . . . , ⌈log logn⌉ + 1}. (2.3)

By iterative application of (2.3), we obtain

t0 ≤ 2
O(1)2i t1 ≤ . . . ≤ 2

O(1)
∑⌈log logn⌉+1
i=1 2

i
· t ⌈log logn ⌉+1 ≤ 2

O(1)2⌈log logn⌉ · nO(1) ≤ nO(1).

Thus, the number of edge traversals t0 of T
(r )
0

is polynomial in n. As T performs at most nO(1) edge

traversals according to T (r )
0

for at most ⌈log logn⌉ + 1 distinct values of r , the overall number of edge

traversals of T is also bounded by nO(1).

The pebble machine T (r ) satisfies the pickup invariant and, hence, by Theorem 2.8 also the pebble

machine T (r )
0

satisfies the pickup invariant. For every value of r , the pebble machine T (r )
0

returns to

the starting vertex carrying all (r + 1)c pebbles. Therefore, the constructed pebble machine T picks

up all pebbles in the same level of recursion as it drops them and, thus, also satisfies the pickup

invariant.

Since an additional pebble is more powerful than a bit of memory (Lemma 2.1), we obtain the

following direct corollary of Theorem 2.9.

Corollary 2.10. Any connected undirected graph on at most n vertices can be explored by an agent

in a polynomial number of steps using O(log logn) pebbles and constant memory. The agent does not

require n as input and terminates at the starting vertex with all pebbles after exploring the graph.

As the pickup invariant is satisfied by the agent in Theorem 2.9, we can apply Lemma 2.3 and

obtain the following corollary.

Corollary 2.11. Any connected undirected graph on at most n vertices can be explored in polynomial

time by a set of O(log logn) agents with constant memory each. The agents do not require n as input

and terminate at the starting vertex after exploring the graph.

Remark 2.12 The agent in Theorem 2.9 requiresO(log logn) bits of memory and the agents in Corol-

lary 2.10 and Corollary 2.11 only O(1) bits of memory. An interesting question is how much memory

is necessary to fully encode the transition function

δ : Σ × N × (N ∪ {⊥}) × 2P × 2P → Σ × (N ∪ {⊥}) × 2P × 2P ,

of an agent (see Section 2.1.2). Naively encoding it as a table with a row for every possible state,

vertex degree, previous edge label and possible combination of O(log logn) pebbles/agents at the

current vertex takes nO(1) bits of memory.

However, we can obtain a much more compact encoding by exploiting the specific structure of

our algorithm: First of all, we never explicitly use the degree of the current vertex. Moreover, the

Turing machine from Lemma 2.6 that we internally use produces an exploration sequence of the
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form {−1, 0, 1}+. This means that our transition function can be expressed more concisely if we would

allow in our model to specify transitions relative to the label of the previous edge.

Furthermore, our algorithm only interacts with a constant number of pebbles in every level of the

recursion (cf. Theorem 2.8). We can express the state of T in the proof of Theorem 2.9 as a vector,

where each component encodes the state in a different level of the recursion. In every transition, only

two consecutive entries of this vector can change, as one level of recursion only interacts with the

level of recursion below to access the simulated memory.

Since there are only a constant number of states per recursive level, and only a constant number of

pebbles involved, all transitions regarding two consecutive levels can be encoded in constant memory.

If we therefore explicitly encode all O(log logn) levels of recursion and additionally allow to only

give the edge label offset in the transition function, the entire transition function can be encoded

with O(log logn) bits of memory.

2.3 Lower Bounds

In this section, we present a general lower bound relating the memory requirement and number of

collaborating agent needed for exploration. Specifically, we show that for a set of cooperative agents

with O((logn)1−ε ) bits of memory each for some constant ε > 0, Ω(log logn) agents are needed to

explore any undirected graph with n vertices. The same construction implies that an agent with

sublogarithmic memory needs Ω(log logn) pebbles to explore any n-vertex graph.

To prove the lower bound, we use the concept of an r -barrier that we introduce in Definition 2.13.

Informally, an r -barrier is a graph with two special entry points such that any subset of up to r agents

with s states cannot reach one entry point when starting from the other. Moreover, a set of r +1 agents

can explore an r -barrier, but the agents can only leave the barrier via the same entry point. We

construct an r -barrier by replacing every edge of a graph G by a (r − 1)-barrier. The resulting graph

has the property that a set of r agents traversing this graph needs to stay close to each other to be

able to traverse the barriers and make progress, as shown in Lemma 2.19. However, if the agents

stay close to each other, the states and relative positions of the agents repeat and their behavior

becomes periodic. This property is formally expressed in Lemma 2.20. In Theorem 2.21, we then show

how to use these two key properties in order to construct an r -barrier for a set of k agents given

an (r − 1)-barrier.

By carefully bounding the size of the r -barriers in our recursive construction via Lemma 2.23, we

obtain a trap of size O(s2
5k
) for any given set of k agents with at most s states each (Theorem 2.25).

In Theorem 2.26, we show that the size of the trap directly implies that the number of agents with at

most O((logn)1−ε ) bits of memory needed for exploring any graph of size n is at least Ω(log logn).

The graphs involved in our construction are 3-regular and allow a labeling such that the two

port numbers at both endpoints of any edge coincide. We therefore speak of the label of an edge and

assume the set of labels to be {0, 1, 2}.

In order to define barriers formally, we need to describe how to connect two 3-regular graphs.
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Figure 2.3: The r -barrier B on the left with two distinguished edges {u,v}, {u ′,v ′} can be connected

to an arbitrary graph G, as shown on the right.

Let B be a 3-regular graph with two distinguished edges {u,v} and {u ′,v ′} both labeled 0, as shown

in Figure 2.3. An arbitrary 3-regular graph G with at least two edges labeled 0 can be connected

to B as follows: We remove the edges {u,v} and {u ′,v ′} from B and two edges labeled 0 from G.

We then connect each vertex of degree 2 in G with a vertex of degree 2 in B via an edge labeled 0.

The vertices u,v,u ′,v ′ are referred to as boundary vertices of B, whereas all other vertices of B are

called interior vertices. Any edge e with e , {u,v} and e , {u ′,v ′} is referred to as interior edge.

Definition 2.13 (r -barrier). For 1 ≤ r ≤ k , the graph B with distinguished edges {u,v}, {u ′,v ′} is

an r -barrier for a set of k s-state agents A if for all graphs G connected to B as above, the following

two properties hold:

(a) For all subsets of agents A ′ ⊆ A with |A ′ | ≤ r and every pair (a,b) in {u,v} × {u ′,v ′} the

following holds: If initially all agents A are at vertices of G, then no agent in the set A ′ can

traverse B from a to b or vice versa when only agents in A ′ enter the subgraph B at any time

during the traversal. We equivalently say that no subset of at most r agents can traverse B from a

to b or vice versa.

(b) For all subsets of agentsA ′ ⊆ A with |A ′ | = r + 1, if initially all agents inA are at vertices ofG

and agents in A ′ only enter B either via u and v , or via u ′ and v ′, then all agents in A ′ leave B

either via u and v or via u ′ and v ′ if no other agents visit B during this traversal. In other words,

if the set A ′ of agents enters B via the same distinguished edge, then it cannot split up such that a

part of the agents leaves B via u or v and the other part via u ′ or v ′.

A k-barrier immediately yields a trap for a set of agents.

Lemma 2.14. Given a k-barrier withn vertices for a set of k agentsA, we can construct a trap with 2n+4

vertices for A.

Proof. Let H1 and H2 be two copies of a k-barrier for the set of agents A with distinguished

edges {ui ,vi }, {u
′
i ,v
′
i } of Hi . We connect the two graphs and four additional vertices, as shown

in Figure 2.4. If the agents start in the vertex v0, then none of the agents can reach u ′
1
or v ′

1
via
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Figure 2.4: Constructing a trap given two k-barriers H1 and H2.
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Figure 2.5: A 1-barrier B for A for the case that l ∈ {1, 2}.

the k-barrier H1 or via the k-barrier H2. Thus the agentsA do not explore the graph. The constructed

trap for the set of agents A contains 2n + 4 vertices.

Our goal for the remainder of the section is to construct a k-barrier for a given set of k agents A

and to give a good upper bound on the number of vertices it contains. This will give an upper bound

on the number of vertices of a trap by Lemma 2.14. The construction of the k-barrier is recursive.

We start with a 1-barrier which builds on the following useful result by Fraigniaud et al. [Fra+06b]

stating that, for any set of non-cooperative agents, there is a graph containing an edge which is not

traversed by any of them. A set of agents is non-cooperative if the transition function δi of every

agentAi is completely independent of the state and location of the other agents, i.e., δi is independent

of σ−i , see Section 2.1.3.

Theorem 2.15 ([Fra+06b, Theorem 4]). For any k non-cooperative s-state agents, there exists a 3-regular

graph G on O(ks) vertices with the following property: There are two edges {v1,v2} and {v3,v4} in G,

the former labeled 0, such that none of the k agents traverses the edge {v3,v4} when starting in v1 or v2.

We proceed to generalize this construction for arbitrary starting states and collaborating agents.

Lemma 2.16. For every set of k collaborating s-state agentsA = {A1, . . . ,Ak }, there exists a 1-barrier B

with O(ks2) vertices. Moreover, B remains a 1-barrier even if for all i ∈ {1, . . . ,k} agent Ai with the set

of states Σi starts in an arbitrary state σ ∈ Σi instead of the starting state σ
∗
i .

Proof. Let A = {A1, . . . ,Ak }, let Σi be the set of states of Ai and let σ ∗i be its starting state. For
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all i ∈ {1, . . . ,k} and all σ ∈ Σi , we define agent A
(σ )
i to be the agent with the same behavior as Ai ,

but starting in state σ instead of σ ∗i . That is, A
(σ )
i has the same set of states Σi as Ai and it transitions

according to the function δi of Ai . Moreover, let S := {A(σ )i | i ∈ {1, . . . ,k}, σ ∈ Σi }.

Applying Theorem 2.15 for the set of agents S yields a graphH with an edge {v1,v2} labeled 0 and

an edge {v3,v4} labeled l ∈ {0, 1, 2} so that any agent A(σ )i that starts in v1 or v2 does not traverse the

edge {v3,v4}. Let B be the graph consisting of two connected copies of H and 8 additional vertices, as

illustrated in Figure 2.5. The edges {v1,v2} and {v
′
1
,v ′

2
} are replaced by {v1,v

′
1
} and {v2,v

′
2
}, which

are also labeled 0. The edges {v3,v4} and {v
′
3
,v ′

4
} with label l are deleted and v3 and v4 are connected

each to one of the two two-degree vertices of a diamond graph by an edge with label l . The same

connection to a diamond graph is added for v ′
3
and v ′

4
as shown in Figure 2.5. The edge labels of the

two diamond graphs are arbitrary. Since each diamond graph has two vertices of degree three, each

diamond graph has at least one edge with label 0. We choose one edge with label 0 and call the end

vertices u and v (resp. u ′,v ′). Note that in Figure 2.5 we have l ∈ {1, 2}; for the case that l = 0 the

edge {u,v} is the unique edge between the two vertices that are not adjacent to v3 or v4.

We claim that B is a 1-barrier for A with the distinguished edges {u,v} and {u ′,v ′}. Assume for

the sake of contradiction, that property (b) of the 1-barrier does not hold, i.e., there is a graph G that

can be connected to B via the pairs of vertices {u,v} and {u ′,v ′} so that if the agents A start in G

in an arbitrary state, there is an agent Aj that walks (without loss of generality) from u to u ′ in B

while there are no other agents in B. Then Aj in particular walks from v ′
1
or v ′

2
to v ′

3
or v ′

4
in H ′ and

starts this walk in a state σ ∈ Σj . But the traversal sequence of Aj in H ′ is the same as that of A(σ )j

that starts at v ′
1
or v ′

2
. This would imply that A(σ )i traverses the edge {v3,v4} in the original graph H

when starting in v1 or v2, which contradicts Theorem 2.15.

To prove property (b) of a 1-barrier, assume that there is a set of two agents, such that both enter B

via the same distinguished edge without the other agents entering B and one of them exits B via u

or v and the other via u ′ or v ′. But then again one of the agents must have traversed H alone starting

in v1 or v2 in a state σ and finally traversed the edge with label l incident to v3 or v4 or similarly

in H ′ with v ′
1
,v ′

2
,v ′

3
,v ′

4
. This leads to the same contradiction as above.

The whole proof does not use the specific starting states of the agents A and, in particular, the

definition of S is independent of the starting states of the agents. Consequently, B is a 1-barrier forA

even if we change the starting states of the agents.

Since every agent has s states, we obtain that the cardinality of S is bounded by O(ks) and, hence,

the graph B has O(ks2) vertices by Theorem 2.15.

The proof of Theorem 2.15 in [Fra+06b] uses the fact that when traversing a 3-regular graph the

next state of an s-state agent only depends on the previous state and the label l ∈ {0, 1, 2} of the edge

leading back to the previous vertex. Thus, after at most 3s steps, the state of the agent and therefore

also the next label chosen need to repeat with a period of length at most 3s . For cooperative agents,

however, the next state and label that are chosen may also depend on the positions and states of the

other agents. We therefore need to account for the positions of all agents when forcing them into a

periodic behavior. To this end, we will consider the relative positions of the agents with respect to

52



2.3 Lower Bounds

B

u

v

u ′

v ′

a0

0

0

1

2 1

2

0

b0

0

0

1

21

2

0

a b
l l

Figure 2.6: An edge {a,b} labeled l is replaced with the gadget B(l) containing an r -barrier B. Only

the dotted edges incident to a0 and b0 that are not labeled l are part of the gadget. Consequently, the

gadget contains two vertices of degree 2. The vertices a and b are macro vertices of the graph G(B).

a given vertex v . For our purposes, it is sufficient to define the relative position of an agent Ai by

the shortest traversal sequence leading from v to the location of Ai . This motivates the following

definition.

Definition 2.17. The configuration of a set of k agents A = {A1, . . . ,Ak } in a graphG with respect

to a vertex v is a (3k)-tuple (σ1, l1, r1,σ2, l2, r2, . . . ,σk , lk , rk ), where σi is the current state of Ai , li is

the label of the edge leading back to the previous vertex visited by Ai and ri is the shortest traversal

sequence from v to Ai , where ties are broken in favor of lexicographically smaller sequences and where

we set ri = ⊥ if the location of Ai is v .

In order to limit the number of possible configurations, we will force the agents to stay close

together. Intuitively, we can achieve this for any graph G by replacing all edges with (k − 1)-barriers.

This way, only all agents together can move between neighboring vertices of the original graphG . To

formalize this, we first need to explain how edges of a graph can be replaced by barriers. Since our

construction may not be 3-regular, we need a way to extend it to a 3-regular graph.

Definition 2.18. Given a graphG , with vertices of degrees 2 and 3, we define the 3-regular extensionG
as the graph resulting from copyingG and connecting every vertex v of degree 2 to its copy v ′. As the

edges incident to v and v ′ have the same labels, it is possible to label the new edge {v,v ′} with a locally

unique label in {0, 1, 2}.

Note that the 3-regular extension only increases the number of vertices of the graph by a factor

of 2. Given a 3-regular graph G with distinguished edges e1, e2 labeled 0 and an r -barrier B for a

set of k agents A with k ≥ r , we replace all edges of G except for e1 and e2 using the following

construction. First, for every l ∈ {0, 1, 2} we replace every edge {a,b} labeled l (except for the

distinguished edges e1 and e2) with the gadget B(l) shown in Figure 2.6, and we call the resulting

graphG0(B). By construction, the labels of the edges incident to the same vertex inG0(B) are distinct.

However, certain vertices only have degree 2. We take the 3-regular extension of G0(B) and define

the resulting graph as G(B) := G0(B).

The graph G(B) contains two copies of G0(B). To simplify exposition, we identify each vertex v

with its copyv ′ inG(B). Then, there is a canonical bijection between the vertices inG and the vertices
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in G(B) which are not part of a gadget B(l). These vertices can be thought of as the original vertices

of G, and we call them macro vertices.

We further connect a graph G(B) to an arbitrary 3-regular graph G ′ as follows: Let e1 = {u1,v1}

and e2 = {u2,v2} be the two distinguished edges of G with label 0. We remove the edges e1, e2

from G(B) and also two edges of G ′ with label 0. Then we connect each of the vertices u1,v1,u2,v2

with one vertex of G ′ of degree 2. We will use this construction in the recursive construction of

barriers because, as shown later, for a suitable graph G, the graph G(B) is an (r + 1)-barrier with

distinguished edges e1, e2.

In the following, we show several results about graphs of the formG(B) connected to an arbitrary

3-regular graph G ′ as outlined above. We sometimes omit specifying the exact distinguished edges

of G if these can be chosen arbitrarily. Moreover, we say that a group of agents A is moving in

the interior of G(B) if all agents only visit interior vertices of G(B), i.e., they do not visit any of

the boundary vertices {u1,v1,u2,v2}. The vertices of G(B) corresponding to vertices of G other

than {u1,v1,u2,v2} are called the interior macro vertices, whereas {u1,v1,u2,v2} are referred to

as boundary macro vertices. Recall that we call any edge e inG with e , e1 and e , e2 an interior

edge.

We now establish that the agents always stay close to each other in the graph G(B).

Lemma 2.19. Let G,G ′ be two connected 3-regular graphs and let B be a (k − 1)-barrier for a set

of k agents A with s states each. If the agents A start at arbitrary vertices of G ′ and then traverse the

graph resulting from connecting G(B) to G ′, the following statements hold:

(a) For all interior edges {v,v ′} inG , no strict subsetA ′ ⊊ A of the agents can get frommacro vertexv

to macro vertex v ′ in G(B) by traversing the gadget B(l) connecting v and v ′ (where l ∈ {0, 1, 2})

without all other agents also entering this gadget.

(b) If the macro vertex v in G(B) most recently visited by an agent in A is an interior vertex, then all

agents are at v or in the surrounding gadgets B(0), B(1) and B(2).

Proof. For the sake of contradiction, assume that there is a strict subset of agents A ′ ⊊ A that walks

from a macro vertex v in G(B) via the gadget B(l) (where l ∈ {0, 1, 2}) to a distinct macro vertex v ′

without all other agents also entering this gadget connectingv andv ′ at any time during the traversal.

The graph G(B) contains two copies of G0(B), but all vertices in the (k − 1)-barriers within G0(B)

have degree 3. Thus, A ′ must have traversed some (k − 1)-barrier B while only agents in A ′ enter B

at any time of the traversal. This is a contradiction, as |A ′ | ≤ k − 1 and B is a (k − 1)-barrier. Thus,

in order for any agent in A to get from the macro vertex v to the distinct macro vertex v ′ via the

gadget B(l) connecting v and v ′, all k agents A need to enter the gadget B(l) during the traversal.

This shows the first part of the claim.

For the second part of the claim, note that because of property (b) for the barrier B the agents

cannot split up into two groups such that after the traversal of the gadget connecting v and v ′ one

group is at v (or one of the vertices at distance at most 4 from v that are not part of the barrier B) and

the other group is at v ′ (or one of the vertices at distance 4 from v ′ that are not part of the barrier B).
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v B(0)

B(1)

B(2)

Figure 2.7: An interior macro vertex v in a graph G(B) surrounded by the three gadgets B(0),B(1)

and B(2).

By the first part of the proof, all agents have to enter a gadget B(l) with l ∈ {0, 1, 2} in order to reach

an interior macro vertex ofG(B) after starting inG ′. By property (b), the agents A cannot split up

while only visiting interior vertices of G(B). Hence, if v is the macro vertex last visited by an agent

in A and v is an interior macro vertex (this means that, in particular, none of the agents visited a

vertex of G ′ after visiting v), then all agents must be located at v or in the surrounding gadgets.

Let B be a (k − 1)-barrier for a set of k cooperative s-state agents A = {A1, . . . ,Ak }. We will

frequently consider the configuration of A with respect to some macro vertex v in a graph of the

form G(B). Recall from the definition that the graph G(B) contains two copies of the graph G0(B)

and actually there exists a macro vertex v and a copy v ′. Thus, when we talk about configurations

of A in G(B) with respect to some macro vertex v , we mean that we consistently choose one of the

copies G0(B) and consider the configuration of A with respect to the macro vertex in this copy.

The behavior of a single agentA in a 3-regular graph is rather simple. If after t1 steps in a 3-regular

graphG1 the state ofA and incoming port number is the same as after t2 steps in a 3-regular graphG2,

then, in both cases, the agent does the same state transition and chooses the edge with the same label.

This means that, first of all, in one 3-regular graph (i.e., G1 = G2) the behavior of the agent quickly

becomes periodic, and secondly, the agent has exactly the same behavior in every 3-regular graph. In

particular, the traversal sequence of one agent A is the same in every 3-regular graph. The intuitive

reason is that the agent can gain no new information while traversing a 3-regular graph because

these graphs locally look the same.

We want to obtain a similar result for a set of agents. However, in general it is not true that if the

configuration of a set of agents in a graph G1 with respect to a vertex v1 after t1 steps is the same as

after t2 steps inG2 with respect to a vertex v2, then the next configurations and chosen labels of each

agent coincide. This is because an agent can be used to mark a particular vertex and this can be used

to detect differences in two 3-regular graphsG1 andG2 (or differences in the local neighborhood of v1

and v2 for G1 = G2). For instance, one agent could remain at a certain vertex while the other one

walks in a loop that is only part of one of the graphs, but not the other. This may then lead to different
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configurations. That is why we consider graphs of the form G(B). In these graphs, all interior macro

vertices look the same, as they are surrounded by the same gadgets, and the agents have to stay close

together, making it impossible for the agents to detect a loop that is part of one of the graphs, but not

the other. This intuition is formally expressed in the following technical lemma.

Lemma 2.20. Let B be a (k − 1)-barrier for a set of k s-state agents A, and let G1, G2, G
′
1
and G ′

2
be

3-regular graphs. Assume that, for i ∈ {1, 2}, the graph Gi (B) is connected to G
′
i and the agents A start

at arbitrary vertices of G ′i . Further, consider the configuration of A after ti exploration steps where the

last macro vertex vi visited is an interior macro vertex of Gi (B). If the configuration after t1 steps with

respect to v1 is the same as after t2 with respect to v2, then one of the following claims holds:

(a) For i ∈ {1, 2}, the agents only visit the last macro vertex vi or vertices of the surrounding gadgets

for the remainder of the exploration of the respective graph.

(b) There is l ∈ {0, 1, 2} such that in both graphs the agents traverse the gadget B(l) to the next macro

vertexwi in Gi (B). Moreover, the configuration of the agents A with respect tow1 when the first

agent visitsw1 is the same as the configuration with respect tow2 when the first agent visitsw2.

Proof. The graphs G1(B) and G2(B) locally look the same to the agents, since the macro vertices v1

and v2 are surrounded by the same gadgets, as shown in Figure 2.7. Formally, this means that there is

a canonical graph isomorphism γ from the induced subgraph of G1(B) containing v1, all surrounding

gadgets and the neighboring macro vertices to the induced subgraph of G2(B) containing v2, all

surrounding gadgets and the neighboring macro vertices. Moreover, γ respects the labeling and

maps v1 to v2. Note that it is important that both v1 and v2 are interior macro vertices for the

isomorphism to exist.

As the configuration of A after t1 steps with respect to v1 is the same as the configuration

of A after t2 steps with respect to v2, the isomorphism also respects the positions of all the agents.

By Lemma 2.19, we further know for i ∈ {1, 2} that, as long as vi in Gi (B) is the last macro vertex

visited by the agents A, all agents are at vi or the surrounding gadgets. Iteratively, for h = 0, 1, . . .

the following holds until the agents reach a macro vertex distinct from vi in Gi (B):

1. For every agent A ∈ A, the state of A and the incoming port number after t1 + h steps inG1(B)

is the same as the state of A and the incoming port number after t2 + h steps in G2(B).

2. The isomorphism γ maps the position of every agent A ∈ A after t1 + h steps in G1(B) to the

position of A after t2 + h steps in G2(B).

In particular, this means that if the agents in G1(B) never visit a macro vertex distinct from v1 after

step t1, then also the agents never visit a macro vertex distinct from v2 after step t2 in G2(B). On the

other hand, if after t1+ ¯h steps for some
¯h ∈ N one agentA ∈ A first visits the distinct macro vertexw1

in G1(B), then after t2 + ¯h steps in G2(B) agent A also visits the distinct macro vertexw2 for the first

time. At this moment, the configuration ofA with respect to v1 is the same as the configuration ofA

with respect to v2. This implies that v1 andw1 are connected with the same gadget B(l) as v2 andw2.
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Furthermore, also the configuration ofA with respect tow1 after t1 + ¯h steps must be the same as the

configuration of A with respect tow2 after t2 + ¯h steps.

Let G, G ′ be two 3-regular graphs and B be a (k − 1)-barrier for a set of k agents A with s states

each. While traversing the graph G(B) connected to G ′, assume that the agents A in step t0 first

visit an interior macro vertex v0 distinct from the previous macro vertex visited by any agent in A.

Further, let x0 be the configuration ofA in step t0 with respect to v0. Iteratively, for i > 0, define ti to

be the first point in time after ti−1, when one of the agents in A visits an interior macro vertex vi

distinct from vi−1. We also say that A arrives at vi at this exploration step. Note that as soon

as A visit a boundary vertex of G(B), we abort and the sequence ends. The vertex vi is a neighbor

of vi−1 in G and, by Lemma 2.19, all agents are at vi or the surrounding gadgets. The sequence of

macro vertices v0,v1, . . ., which is a sequence of neighboring vertices in G, yields a unique sequence

of labels l0, l1, . . . of the edges between the neighboring vertices in G, which we call the macro

traversal sequence of A starting in vertex v0 of G(B) in configuration x0. Note that the macro

traversal sequence may be finite if the agents visit a boundary macro vertex or stop exploring distinct

macro vertices. From Lemma 2.20, we obtain that the configuration x0 in step t0 completely determines

all labels of the macro label sequence independent of the underlying graph G (the graph G may,

however, influence when the macro label sequence terminates because the agents A visit a boundary

vertex).

Before we can present the recursive construction of barriers, we need to introduce an additional

definition. Let k, r ∈ N be such that 2 ≤ r ≤ k . In order to construct an r -barrier B′ for a set A of k

cooperative s-state agents given an (r − 1)-barrier B, we need to examine the behavior of all subsets

of r agents. There are
(k
r

)
subsets of r agents and the behavior of two different subsets of r agents

may be completely different. We denote these

(k
r

)
subsets of r agents by A(r )

1
, . . . ,A

(r )

(kr )
.

Assume that we have an (r − 1)-barrier B for a set of k agents A and let G, G ′ be two 3-regular

graphs such thatG(B) is connected toG ′. We assume that the agentsA start at arbitrary vertices ofG ′.

For 1 ≤ j ≤
(k
r

)
, consider the situation that only the subset of agents A

(r )
j enters the subgraph G(B)

and let v be the last interior macro vertex visited by the agents A
(r )
j . Until these agents visit a

distinct macro vertexw , all agents inA
(r )
j are located at v or the surrounding gadgets B(0),B(1),B(2)

by Lemma 2.19. Thus, the number of possible locations of the agents can be bounded in terms of

the size of the gadgets B(0), B(1), and B(2). In addition, every agent has at most s states. Therefore

the number of configurations of A
(r )
j with respect to the macro vertex v last visited is finite and can

be bounded in terms of s and the size of the gadgets. We define αB to be the number of possible

configurations of A
(r )
j with respect to an interior macro vertex v of G(B) in the exploration step

when the agents A
(r )
j arrive at v , i.e., some agent in A

(r )
j first visits v . Note that αB is a bound on the

number of possible configurations and hence is independent of the specific subset of agents A
(r )
j . As

the local neighborhood of v , i.e., the three gadgets surrounding v , does not depend on the graph G,

the definition also does not depend on the 3-regular graph G.

Given the definition of αB , we are now in a position to present the construction of an r -barrier

given an (r − 1)-barrier. We will later bound αB and, thus, the size of the r -barrier in Lemma 2.23.
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Theorem 2.21. Given an (r − 1)-barrier B with n vertices for a set A of k agents with s states each, we

can construct an r -barrier B′ for A with the following properties:

(a) We have B′ = H (B) for a suitable 3-regular graph H with distinguished edges e1 = {u1,v1} and

e2 = {u2,v2} labeled 0.

(b) Any path from u1 or v1 to u2 or v2 in B′ contains at least 3 distinct barriers B.

(c) The r -barrier B′ contains at most O

( (k
r

)
· n · α2

B

)
vertices.

Proof. Let G, G ′ be two arbitrary 3-regular graphs and e , e ′ be two distinguished edges in G with

label 0 such that G(B) is connected to G ′ via the vertices incident to the distinguished edges. For j ∈{
1, 2, . . . ,

(k
r

)}
, consider the subset of r agents A(r )j starting at arbitrary vertices of G ′. By definition

and Lemma 2.19, there are at most αB possible configurations of the agents A
(r )
j whenever one of

the agents in αB first visits a new distinct interior macro vertex in G(B). We can hence denote these

possible configurations by x1, . . . ,xαB .

Assume that after t exploration steps an agent in A
(r )
j first visits an interior macro vertex v

in G(B) distinct from the previous macro vertex visited by any agent in A
(r )
j . Moreover, let xh

for h ∈ {1, . . . ,αB } be the configuration of A
(r )
j with respect to v at this time. By Lemma 2.20, the

following holds: Either the agents A
(r )
j do not visit any macro vertex distinct from v after step t

or xh uniquely determines l ∈ {0, 1, 2} such that the agents traverse the gadget B(l) to the next macro

vertex v ′ visited in G(B) (this means that l only depends on xh , A
(r )
j and B, but not on G).

We can therefore define a single agent Āj as follows: The set of states of Āj is {σ1, . . . ,σαB }.

Moreover, in state σh the agent Āj traverses the edge labeled l and transitions to σh′ if the set of

agentsA
(r )
j in configuration xh at a time t traverses the gadget B(l) to the next macro vertex v ′. Here

the configuration of Āj with respect to v ′ when the first agent visits v ′ is xh′ . If the agents Āj do not

visit any macro vertex after visiting v in step t , then Āj terminates in state σh . The starting state

of Āj corresponds to the configuration with respect to a vertex v , where all the agents in A(r )j are in

their starting states and located at vertex v . Note that the transition function
¯δ of Āj described above

is well-defined because, by Lemma 2.20, the label l only depends on the configuration ofA
(r )
j at t and

is independent of the underlying graph G. By construction, there is a one-to-one correspondence

between the macro traversal sequence of A
(r )
j starting in G(B) in an interior macro vertex v in a

configuration xh and the traversal sequence of agent Āj starting in the corresponding vertex v in G

in state σh (as long as A
(r )
j does not visit any boundary vertex in G(B)).

Applying Lemma 2.16 for the single agent Āj yields a 1-barrier Hj with O(α
2

B ) vertices that cannot

be traversed by Āj , irrespective of its starting state. We now connect the graphs H1, . . . ,H(kr )
as

shown in Figure 2.8, and we let H denote the resulting graph. We first show that the graph B′ := H (B)

resulting from replacing all edges except for e1 = {u1,v1} and e2 = {u2,v2} by the barrier B is

an r -barrier for A. Afterwards, we show the three additional properties in the claim.

For property (a) of an r -barrier, assume, for the sake of contradiction, that there is a subset

of r agents A
(r )
j and some 3-regular graph G connected to H (B) such that without loss of gener-

ality the agents A
(r )
j can traverse H (B) from u1 to u2. Then there must be a consecutive subse-
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Figure 2.8: Connecting the graphs H1,H2, . . . ,H(kr )
to a graph H yields the r -barrier H (B).

quence w0,w1, . . . ,wh of the macro vertex sequence of A
(r )
j during the traversal of H (B) with the

following properties: The verticesw1, . . . ,wh−1 are contained in Hj (B),w0 andwh are not contained

in Hj (B), w1 andwh−1 (as vertices in the 1-barrier Hj ) are incident to different distinguished edges

(i.e., {u,v} or {u ′,v ′} in Figure 2.5 of the 1-barrier Hj . Thus, the set of agents A
(r )
j starting inw0 or

the surrounding gadgets in a suitable configuration xi with respect tow0 traverses the graph Hj (B)

from w1 to wh−1. This means that for a suitable graph G ′ connected to Hj and starting state σi the

agent Āj can traverse Hj . But this is a contradiction as we constructed Hj as a 1-barrier for Āj using

Lemma 2.16 and the 1-barrier Hj is independent of the starting state of Āj .

For property (b) of an r -barrier, let A ′ ⊆ A be a set of agents with |A ′ | = r + 1. Assume, for the

sake of contradiction, that there is some graph G connected to H (B) such that after the agents A ′

(and no other agents) enter H (B) via u1 and v1, or via u2 and v2, a subset ∅ , A
′
1
⊊ A ′ leaves H (B)

via u1 or v1 and the other agentsA ′
2
:= A ′ \ A ′

1
via u2 or v2. Since B is an (r − 1)-barrier, no set of at

most r − 1 agents can get from an interior macro vertex to a distinct interior macro vertex in H (B).

Thus, we must have |A ′
1
| ≥ r or |A ′

2
| ≥ r . Without loss of generality, we assume that the first case

occurs, which implies |A ′
1
| = r and |A ′

2
| = 1. For the single agent in A ′

2
to leave H (B) via u2 or v2

at least r − 1 agents from A ′
1
must be in a gadget adjacent to u2 or v2. But all these r − 1 agents

afterwards leave H (B) via u1 or v1 and they need the remaining agent in A ′
1
to even get to a distinct

macro vertex. But then the set of r agents A ′
1
traverses the subgraphs Hj (B) for all j ∈ {1, . . . ,

(k
r

)
},

which again leads to a contradiction as in the proof of property (a) in the previous paragraph (for j

such that A ′
1
= A

(r )
j ).

Finally, we obviously have B′ = H (B) for a 3-regular graphH by construction and the second claim

follows from the fact that any path from u1 orv1 to u2 orv2 inH has length at least 3. Further, eachHj

contains O(α2

B ) vertices and therefore H has at most O(
(k
r

)
· α2

B ) vertices. Since B has n vertices, the

number of vertices of B′ = H (B) is at most O(
(k
r

)
· n · α2

B ), where we use that H is 3-regular and

therefore the number of edges of H that are replaced by a copy of B is 3/2 times the number of its

vertices.

We now fix a set of k agentsA with s states each and let B1 be the 1-barrier given by Lemma 2.16

and Br for 1 < r ≤ k be the r -barrier constructed recursively using Theorem 2.21. Moreover, we let nr

be the number of vertices of Br and αr := αBr−1 be the maximum number of possible configurations

of a set of r agents with respect to an interior macro vertex in a graph of the form G(Br−1).

59



Chapter 2. Space Efficient Graph Exploration

Br−1

Br−2

v

Figure 2.9: Recursive structure of B(l) containing i-barriers for i ∈ {1, . . . , r − 1}.

We want to bound the number of vertices nk of Bk and thus, according to Lemma 2.14, also

the number of vertices of the trap for A. By Theorem 2.21, there is a constant c ∈ N such that

nr ≤ c
(k
r

)
nr−1α

2

r . In order to bound nr , we therefore need to bound αr .

One possible way to obtain an upper bound on αr is to use Lemma 2.19 stating that there always

is a macro vertex v such that all agents are located at v or the surrounding gadgets. Counting the

number of possible positions within these three gadgets and states of the agents then gives an upper

bound on αr . For the tight bound in our main result, however, we need a more careful analysis of the

recursive structure of our construction and also need to consider the configurations of the agents at

specific times. We start with the following definition and a technical lemma.

For j ∈ {1, . . . , r − 1}, we say that a vertexw ′ is j-adjacent to some other vertexw if there is a

path P fromw tow ′ that does not traverse a j-barrier Bj , i.e., P does not contain a subpath leading

from one vertex of the distinguished edge {u,v} to a vertex of the other distinguished edge {u ′,v ′}

in Bj . As a convention, every vertex w is j-adjacent to itself for all j ∈ {1, . . . , r − 1}. Note that a

vertexw ′ that is part of a j-barrier may be j-adjacent to some vertexw outside the barrier if there is a

path fromw tow ′ that does not traverse a distinct j-barrier.

Lemma 2.22. LetG ,G ′ be two 3-regular graphs such thatG(Br−1) is connected toG
′
. If v is an interior

macro vertex in G(Br−1), then for j ∈ {1, . . . , r − 1} the number of vertices that are j-adjacent to v is

bounded by 2
4(r−j)nj .

Proof. In order to bound the number of j-adjacent vertices, we examine the recursive structure of

one of the gadgets B(l) incident to v , as shown in Figure 2.9. By Theorem 2.21, an (r − 1)-barrier B′

for r ≥ 3 is constructed from a 3-regular graph H and an (r − 2)-barrier B such that B′ = H (B). Hence,

the gadget B(l), which contains the barrier Br−1, also contains many copies of the barrier Br−2, which

again contain many copies of the barrier Br−3 (if r ≥ 4) and so on.

We first show that the distance from v to any j-adjacent vertex, which is not part of a barrier Bj

and hence, in particular, not a boundary vertex of Bj , is at most 4(r − j). For j = r − 1, consider

Figure 2.6 showing how for l ∈ {0, 1, 2} every interior edge {a,b} with label l in G is replaced by

the gadget Br−1(l) containing Br−1. Note that actually G(Br−1) contains a copy a′ of a as well as a

copy b ′ of b and there is one such gadget between a and b and another gadget between a′ and b ′.

However, all vertices in both gadget, which are (r − 1)-adjacent, but not in Br−1, are at distance at
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Br−j+1

Br−j

a

b

v

Figure 2.10: Vertex a is (r − j)-adjacent to v , while b is not (r − j + 1)-adjacent to v .

most 4 from a for all l ∈ {0, 1, 2} (the copy a′
0
of a0 is at distance 2 from a and every vertex in the

copy is at distance at most 2 from a′
0
). For j = r − 2, r − 3, . . . the claim follows by the same argument,

since edges between two macro vertices in Br−1 are replaced by a barrier Br−2 and so on. See also the

recursive structure given in Figure 2.9.

AsG(Br−1) is 3-regular, the number of vertices at distance at most 4(r − j) from v can be bounded

by 3 · 24(r−j)−1. Hence there are at most 3 · 24(r−j)−1 vertices, which are j-adjacent but not part of

a barrier Bj . Moreover, any j-barrier Bj containing vertices that are j-adjacent to v , in particular

contains two vertices with a distance of at most 4(r − j) to v . This follows from the same analysis of

the recursive structure of the barriers as above. As G(Br−1) is 3-regular, there are at most 3 · 24(r−j)−1

vertices of distance at most 4(r − j) from v and therefore at most 3/2 · 24(r−j)−1 different j-barriers,

with nj vertices each, containing j-adjacent vertices. Thus, there are at most 3/2 · 24(r−j)−1nj vertices

that are j-adjacent to v and part of a barrier Bj . Overall, the number of j-adjacent vertices to v can

therefore be bounded by

3/2 · 24(r−j)−1 · nj + 3 · 2
4(r−j)−1 ≤ 2

4(r−j) · nj ,

where we used nj ≥ 6 and j ≤ r − 1.

The idea now is to consider the configuration of the agents with respect to a macro vertex vi

exactly at the time t when at least ⌈r/2⌉ + 1 agents are ⌈r/2⌉-adjacent to vi . We then further use

the fact that it is not possible to partition the agents A into two groups A ′ and A ′′ with at most

i ≥ ⌈r/2⌉ agents each that are separated on any path by at least two i-barriers. This yields the

following bound on αr .

Lemma 2.23. Let A be a set of k agents, s ≥ 2 and r ∈ {2, . . . ,k}. We then have

αr ≤ s7r
2

· n ⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1∏
j= ⌈r/2⌉+1

nj .

Proof. Let A(r ) ⊆ A be an arbitrary subset of r agents and G, G ′ be two 3-regular graphs such that

G(Br−1) is connected toG
′
. Let furtherv be an interior macro vertex ofG(Br−1). We want to bound αr ,

i.e., the number of configurations of A(r ) in the exploration step t when the agents arrive at v . Let v ′

be the last macro vertex of G(Br−1) that was visited by one of the agents in A(r ) before.
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Because of the recursive structure of the barriers, see Figure 2.9, every macro vertex is surrounded

by ⌈r/2⌉-barriers and any path between the two macro vertices v ′ and v contains at least one

barrier B ⌈r/2⌉ (note that r ≥ 2 by assumption). In order to reach the vertex v after visiting v ′, at least

⌈r/2⌉ + 1 agents from A(r ) are necessary to traverse such an ⌈r/2⌉-barrier. Thus, at some step t0

before the agents arrive atv at step t at least ⌈r/2⌉+1 agents must be at a vertex that is ⌈r/2⌉-adjacent

to v , as otherwise the agents would not be able to reach v . The crucial observation at this point is that

the number of possible configurations in step t0 also bounds the number αr of possible configurations

in step t , because, by Lemma 2.20, the configurations in step t must coincide if they already coincided

in step t0.

Let A1 denote the set of agents that are at a vertex that is ⌈r/2⌉-adjacent to v at time t0 and

let A2 := A(r ) \ A1. By the argument above we have |A1 | ≥ ⌈r/2⌉ + 1. We claim the following:

For j ∈ {1, . . . , |A2 |}, there are at least (r − j) agents in A(r ) that are located at a vertex which

is (r − j)-adjacent to v .

For j = |A2 |, we have r − j = |A1 | > ⌈r/2⌉. Thus, the claim holds by definition ofA1, since there

are r − j agents, namely the set of agents A1, which are located at vertices which are ⌈r/2⌉-adjacent

to v and thus also (r − j)-adjacent to v because r − j > ⌈r/2⌉.

Now, assume for the sake of contradiction that the claim holds for j , but not for j − 1. This means

that there is a subset of agents A ′ ⊂ A(r ) with |A ′ | = r − j such that all agents in A ′ are located

at vertices which are (r − j)-adjacent to v . But for j − 1 the claim does not hold, which implies that

all other agents A ′′ := A(r ) \ A ′ are at vertices which are not (r − j + 1)-adjacent: If there was an

agentA ∈ A ′′ at a vertex which is (r − j+1)-adjacent, thenA ′∪{A} would be a set of (r − j+1) agents

which are all at (r − j + 1)-adjacent vertices, which is a contradiction to the choice of j.

But the path between any pair of vertices (a,b), such that a is (r − j)-adjacent to v and b is

not (r − j + 1)-adjacent to v , contains at least two (r − j)-barriers, see also Figure 2.10. The reason is

that r − j + 1 > ⌈r/2⌉ ≥ 1 and, by Theorem 2.21, any path from u or v to u ′ or v ′ contains at least

three (r − j) barriers. Thus the set of agents A ′ and A ′′ are separated by at least two (r − j)-barriers

on any path and |A ′ | ≤ r − j as well as |A ′′ | = j < r − j since j ≤ ⌈r/2⌉ − 1. But then a set of at most

r − j agents must have traversed a barrier Br−j or a set of at most r − j − 1 agents must have traversed

the gadget between two macro vertices in Br−j , which both is a contradiction.

By the claim above, we can enumerate the agents in A(r ) as A1,A2, . . . ,Ar so that:

1. For j ∈ {1, . . . , |A1 |}, Aj ∈ A1 and the location of Aj is ⌈r/2⌉-adjacent to v .

2. For j ∈ {|A1 | + 1, . . . , r − 1}, Aj ∈ A2 and the location of Aj is j-adjacent to v .

3. Agent Ar ∈ A2 is at v or one of the surrounding gadgets by Lemma 2.19.

We first bound the number of possible locations of the agents and afterwards consider the number of

possible states and possible edge labels to the previous vertex.

There are r ! possible permutations of the agents. Moreover, using Lemma 2.22, we can bound

the number of possible locations at time t0 of the agents in A1 by (2
4(r−⌈r/2⌉)n ⌈r/2⌉)

|A1 |
, the number

of possible locations of the agents {A |A1 |+1, . . . ,Ar−1} by
∏r−1

j= |A1 |+1
2
4(r−j)nj and the number of
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possible locations of Ar by 2
4nr−1. Overall, we can thus bound the number of possible locations of

the agents A(r ) at t0 with respect to v by

r ! ·
(
2
4(r−⌈r/2⌉)n ⌈r/2⌉

) |A1 | ©«
r−1∏

j= |A1 |+1

2
4(r−j)nj

ª®¬ 2
4nr−1

≤ r ! ·
(
2
4r )r · n |A1 |

⌈r/2⌉ · nr−1 ·
r−1∏

j= |A1 |+1

nj ≤ 2
5r 2 · n ⌈r/2⌉

⌈r/2⌉ · nr−1 ·
r−1∏

j= ⌈r/2⌉+1

nj ,

where we used r ! ≤ r r ≤ 2
r 2
and nj−1 ≤ nj for all j ∈ {2, . . . , r − 1}.

In order to bound the number of configurations of the agents A(r ) note that there are sr possible

states of the agents and for every agent 3 possible edge labels to the previous vertex. Combining

these bounds with the above bound on the number of locations of the agents, we obtain the following

bound on the number of configurations of A(r ) at t0 with respect to v :

sr · 3r · 25r
2

· n ⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1∏
j= ⌈r/2⌉+1

nj ≤ s7r
2

· n ⌈r/2⌉
⌈r/2⌉ · nr−1 ·

r−1∏
j= ⌈r/2⌉+1

nj .

Here we used s ≥ 2 and r ≥ 2. By the observation at the beginning of the proof, the number of

possible configurations of A(r ) at t0 with respect to v also bounds αr .

Using the bound on αr from Lemma 2.23, we can bound the number of vertices of the barriers.

Theorem 2.24. For every set of k agents A with s states each and every r ≤ k , there is an r -barrier

with at most O

(
sk ·2

4·r
)
vertices.

Proof. The existence of an r -barrier follows from Lemma 2.16 and Theorem 2.21 and we further have

the following bound on the number of vertices nr of Br for a sufficiently large constant c ∈ N:

n1 ≤ cks2 and nr ≤ c

(
k

r

)
nr−1α

2

r .

It is without loss of generality to assume s ≥ 2 since otherwise a trap of constant size can trivially be

found. Hence, we can plug in the bound on αr from Lemma 2.23. For the asymptotic bound, we may

assume c ≤ sk and we further have

(k
r

)
≤ 2

k
. We therefore get

nr ≤ sk · 2k · nr−1 ·
(
s7·r

2

)
2

·

(
n ⌈r/2⌉
⌈r/2⌉

)
2

· n2r−1

r−1∏
j= ⌈r/2⌉+1

n2j

≤ s2k+14r
2

· n(r+1)
⌈r/2⌉ · n

3

r−1

r−1∏
j= ⌈r/2⌉+1

n2j . (2.4)

We proceed to show inductively that nr ≤ sk ·2
4·r

holds for all r ∈ {1, . . . ,k}. For r = 1, we have n1 ≤

cks2 ≤ s4k ≤ sk ·2
4

. Let us assume the claim holds for 1, . . . , r − 1. From Inequality (2.4) we obtain

nr ≤ s2k+14r
2

·

(
sk ·2

4·⌈r /2⌉
)r+1
·

(
sk ·2

4(r−1)
)
3

·

r−1∏
j= ⌈r/2⌉+1

(
sk ·2

4·j
)
2

= s2k+14r
2+k ·(r+1)·24·⌈r /2⌉+3·k ·24(r−1)+2k

∑r−1
j=⌈r /2⌉+1 2

4·j
.
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Thus, it is sufficient to bound the exponent. As r ≥ 2, we have

∑r−1
i=0 2

4·i = (24r −1)/(24−1) ≤ 2 ·24(r−1)

as well as (r + 1) · 24 ⌈r/2⌉ ≤ 4 · 24(r−1) and 2k + 14r 2 ≤ 2 · k · 24(r−1). Hence, we obtain

2k + 14r 2 + k · (r + 1) · 24· ⌈r/2⌉ + 3 · k · 24(r−1) + 2k
r−1∑

j= ⌈r/2⌉+1

2
4·j

≤ k ·
(
2 · 24(r−1) + 4 · 24(r−1) + 3 · 24(r−1) + 4 · 24(r−1)

)
≤ k · 24·r .

This shows nr ≤ sk ·2
4r
, as desired.

The bound for the barriers above immediately yields the bound for the trap for k agents.

Theorem 2.25. For any set A of k agents with at most s states each, there is a trap with at most

O

(
s2

5k
)
vertices.

Proof. We can always add additional unreachable states to all agents so that all of them have s states.

Theorem 2.24 yields ak-barrier for a given set ofk agentsA withO

(
sk ·2

4·k
)
vertices. The claim follows

from the fact that k · 24·k ≤ 2
5·k

and that a k-barrier with n vertices yields a trap with O(n) vertices

for A by Lemma 2.14.

Finally, we derive a bound on the number of agents k that are needed for exploring every graph

on at most n vertices.

Theorem 2.26. The number of agents needed to explore every graph on at most n vertices is at

least Ω(log logn), if we allow O((logn)1−ε ) bits of memory for an arbitrary constant ε > 0 for ev-

ery agent.

Proof. Let A be a set of k agents with O((logn)1−ε ) bits of memory that explores any graph on at

most n vertices. By otherwise adding some unused memory, we may assume that 0 < ε < 1 and that

there is a constant c ∈ N such that all agents inA have s := 2
c ·(logn)1−ε

states. We apply Theorem 2.25

and obtain a trap for A containing O

(
s2

5·k
)
vertices. As the set of agents A explore any graph on

at most n vertices, we have n ≤ O(1)s2
5·k
. By taking logarithms on both sides of this inequality, we

obtain

logn ≤ O(1) + 25k log s = O(1) + 25k · c · (logn)1−ε .

Multiplication by (logn)ε−1 on both sides and taking logarithms yields the claim.

Observe that the entire argument eventually leading to Theorem 2.26 relies on bounding the

number of different configurations of the system (in the sense of Lemma 2.23), and, in particular, on

the number of steps until a configuration repeats (cf. Lemma 2.20 and Theorem 2.21). Clearly, the

number of configurations is only smaller for a single agent with pebbles, since pebbles do not have a

state or an incoming edge label associated with them. Our proof therefore carries over to this setting

(for an explicit proof in this setting, we refer to [DHK16]).

Corollary 2.27. An agent with O((logn)1−ε ) bits of memory for an arbitrary constant ε > 0 needs

Ω(log logn) pebbles to explore every graph with at most n vertices.
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Chapter 3

Energy Efficient Tree Exploration

In this chapter, we study the collaborative exploration of trees under the constraint that every agent

has limited energy resources and movement consumes energy. We assume that the distance traveled

by an agent is proportional to the number of edges it traverses. Hence, we model the limited energy

resources by bounding the number of edges that an agent can traverse by an integer B, which we call

the energy budget of the agent. A similar restriction for one agent was considered in the piecemeal

exploration problem [BRS95; Awe+99; DKK06], where also the number of edge traversals of the agent

is bounded and the agent can refuel by going back to its starting location. A different approach

is to consider multiple agents instead of allowing refueling. In this context, Dynia et al. [DKS06]

studied the problem of collaborative exploration with a fixed number of agents while minimizing the

maximum number of edges traversed by an agent. The authors presented a lower bound of 1.5 on

the competitive ratio and proposed an 8-competitive algorithm for the problem. The upper bound

was later improved to 4 − 2/k in [DŁS07]. In [DDK15], Das et al. considered a different variant of

energy efficient tree exploration where the amount of energy B available to the agents is fixed and the

goal is to minimize the number of agents used. They proved a tight bound on the competitive ratio

of O(logB) for the case that the agents need to meet in order to communicate. In our model, the

number of agents k as well as the energy budget B is fixed and we drop the requirement that the tree

needs to be completely explored. Our objective is to explore the maximum number of vertices with

the given set of agents compared to the number of vertices explored by an optimal offline algorithm

for the problem. In [Bam+17a], the authors presented a 7.47-competitive online algorithm for the

problem together with a simple lower bound of 2 on the competitive ratio of any online algorithm. In

this chapter, we improve both of these bounds.

Contributions and Outline. We formally introduce the model and some specific notation for the

problem in Section 3.1. In Section 3.2, we present an online algorithm for the exploration problem

that utilizes global communication between the agents. The challenge is to balance between sending

agents in a depth-first manner to avoid visiting the vertices close to the root too often and exploring

the tree in a breadth-first manner to make sure that the algorithm did not miss a large set of vertices
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close to the root, which can be reached with little energy. We achieve this by iteratively splitting the

part of the tree that is already explored into edge-disjoint subtrees, which all contain a sufficiently

long part of a depth-first traversal of the whole tree. In every iteration, we send an agent from the

root to the subtree with the highest root and let it perform a depth-first search with some additional

properties in that subtree. We show that our algorithm is 3-competitive and further prove that our

analysis is tight by giving a sequence of instances showing that the algorithm is not better than

3-competitive. In Section 3.3, we adaptively construct a tree depending on the choices of the given

online algorithm. We thus force the online algorithm to spend a lot of energy to explore certain

subtrees while preventing it from discovering all vertices at a certain depth close to the root. By

optimizing the parameters of our construction, we obtain a lower bound of 2.17 on the competitive

ratio of any online algorithm.

Bibliographic Information. The results presented in this chapter are joint work with Evangelos

Bampas, Jérémie Chalopin, Shantanu Das and Christina Karousatou and were published in [Bam+18].

3.1 Terminology and Model

We consider a set A of k distinct agents initially located at the root v0 of an undirected, initially

unknown, locally edge-labeled tree T . We assume, without loss of generality, that the local port

number of the edge leading back to the root r is 0 for any vertex v , v0 in T . Otherwise, every agent

internally swaps the label of the edge leading back to the root and the label 0 for every vertex v , r .

Note that in our setting, it does not make a difference if we assume that the vertices are labeled or

not because we can uniquely identify every vertex with the sequence of port numbers leading to it

from the root v0. For any vertex v in T , we let d(v) be the depth of v in T . The induced subtree with

root v containing v and all vertices below v in T is further denoted by T (v). For a subtree S of T , we

write rS to denote the root of S , i.e., the unique vertex contained in S having the smallest depth in T .

Moreover, |S | denotes the number of vertices in S .

The tree is initially unknown to the agents, but they learn the map of the tree as they traverse

new edges. Each time an agent arrives at a new vertex, it learns the local port number of the edge

through which it arrived, as well as the degree of the vertex. We assume that agents can communicate

at arbitrary distances, so the updated map of the tree, including all agent positions, is instantaneously

available to all agents (global communication). Each agent has a limited energy budget B and it

consumes one unit of energy for every edge that it traverses. The agents do not need to return to the

root, i.e., each agent can terminate on any vertex of the tree.

The goal is to design an algorithm Alg that maximizes the total number of distinct vertices visited

by the agents. For a given instance I = ⟨T ,v0,k,B⟩, where T is a tree, v0 is the starting vertex of

the agents, k is the number of agents, and B is the energy budget of each agent, let Alg(I ) denote

the total number of distinct vertices visited by the agents using algorithm Alg on the instance I .

Similarly, Opt(I ) denotes the maximum number of distinct vertices of T that can be explored by the
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agents using an optimal offline algorithm Opt, i.e., an algorithm with full initial knowledge of the

instance I . We measure the performance of an algorithm for this problem by the standard tool of

competitive analysis, i.e., we compare a given online algorithm to an optimal offline algorithm which

has a complete map of the tree in advance.

3.2 Algorithm for Maximal Tree Exploration

This section is divided into three parts. First, we present the idea and intuition behind our algorithm

in Section 3.2.1. In Section 3.2.2, we then analyze the algorithm and show that it is 3-competitive.

Finally, we construct an instance showing that the analysis of the algorithm is tight in Section 3.2.3.

3.2.1 Algorithm Divide & Explore and Intuition

Algorithm 3.1: L-DFS traversal of a tree T starting in a vertex u.

Input: tree T , starting vertex u in T

1 function L-DFS(T ,u)

2 move an agent A from root r on a shortest path to u

3 while agent A has energy left and T is not completely explored do

4 if the subtree below the current node is completely explored then

5 traverse the edge with label 0

6 else

7 traverse the unexplored edge with the smallest label l > 0

Algorithm 3.2: R-DFS traversal of a tree T starting in a vertex u.

Input: tree T , starting vertex u in T

1 function L-DFS(T ,u)

2 move an agent A from root r on a shortest path to u

3 while agent A has energy left and T is not completely explored do

4 if the subtree below the current node is completely explored then

5 traverse the edge with label 0

6 else

7 traverse the unexplored edge with the largest label l > 0

Let us assume that we do a depth-first search of the whole tree T and always choose the smallest

label l > 0 to an unexplored vertex, as described in Algorithm 3.1. We call this algorithm L-DFS.

We further denote the sequence (v0,v1), (v1,v2) . . . , (vm ,v0) of directed edges obtained by directing

every undirected edge of T that the agent traversed in the direction in which the agent traversed the
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v0

rS

vL

vR

S

S (1) S (2)

Figure 3.1: Example in which algorithm Divide & Explore in iteration t divides the considered

subtree S into two subtrees S (1) and S (2). The tree T R
t that connects the roots of the subtrees in Tt is

the subtree containing all thick edges.

edge in the L-DFS traversal the L-DFS sequence of T . Note that every undirected edge {v,w} of

the tree T appears as (v,w) and (w,v) in this sequence. Similarly, we call a depth-first search of T

that always chooses the largest label l > 0 to an unexplored vertex an R-DFS and the corresponding

sequence of directed edges an R-DFS sequence. An implementation of the algorithm R-DFS is given

in Algorithm 3.2. Note that the R-DFS sequence of the edges in T is obtained by reversing the order

of edges of the L-DFS sequence and changing every edge (v,w) to (w,v).

We call a consecutive subsequence of an L-DFS or R-DFS sequence a substring. For an induced

subtree T (v) of T , the L-DFS sequence of T (v) is simply a substring of the L-DFS sequence of T . For a

subtree S we define the leftmost unexplored vertex as the unexplored vertex in S which is incident

to the first edge in the L-DFS sequence of S leading to an unexplored vertex and the rightmost

unexplored vertex as the unexplored vertex in S which is incident to the first edge in the R-DFS

sequence of S leading to an unexplored vertex.

We further say that an agentA performing an L-DFS covers at least s edges (v1,v2), . . . , (vs ,vs+1)

of the L-DFS sequence ofT , if A consecutively visits v1,v2, . . . ,vs ,vs+1 in this order and the sequence

(v1,v2), . . . , (vs ,vs+1) is a substring of the L-DFS sequence of T . Similarly, we say that an agent A

performing an R-DFS covers at least s edges (v1,v2), . . . , (vs ,vs+1) of the L-DFS sequence of T ,

if A consecutively visits vs+1,vs , . . . ,v2,v1 in this order and the sequence (v1,v2), . . . , (vs ,vs+1) is a

substring of the L-DFS sequence of T . Note that two agents A1 and A2 may traverse the same edge in

the same direction, but still cover two distinct sets of directed edges of the L-DFS sequence, if one

agent performs an L-DFS and the other agent an R-DFS.

With these definitions, we are now ready to explain the idea of the algorithm Divide & Explore:

During the run of the algorithm, we maintain a set T of edge-disjoint subtrees of T , initially just

containing T . An example is shown in Figure 3.1, where the triangles show the subtrees that are

currently contained in the set T . In every iteration, we first move down the root rS of every subtree S

if rS has no unexplored children and only one child leading to an unexplored vertex. This first step is
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Algorithm 3.3: Divide & Explore

Input: tree T with root v0, set of agents A, energy bound B

1 T ← {T }

2 L-DFS(T ,v0)

3 R-DFS(T ,v0)

4 while T contains unexplored vertex and ∃ agent at v0 do

// Step 1: move down the roots of the subtrees in T if possible

5 forall S ∈ T containing an unexplored vertex do

6 r0 ← rS

7 while r0 only has one child v leading to an unexplored vertex

8 and r0 has no unexplored child do

9 r0 ← v

10 T ← (T \ {S}) ∪ {T (r0)}

// Step 2: explore or split the subtree with the highest root

11 S ← subtree in T that contains an unexplored vertex and minimizes d(rS )

12 vL ← leftmost unexplored vertex in S

13 vR ← rightmost unexplored vertex in S

14 if d(vL) − d(rS ) ≤ max{1, 1/3 · (B − d(rS ))} then

15 L-DFS(S,vL)

16 else if d(vR ) − d(rS ) ≤ max{1, 1/3 · (B − d(rS ))} then

17 R-DFS(S,vR )

18 else

19 let v1, . . . ,vp be the children of rS , where the edge {rS ,vi } is labeled i at rS

20 vj := child of rS leading to vR

21 S (1) ← induced subtree of S containing rS and all vertices in T (v1), . . . ,T (vj−1)

22 S (2) ← induced subtree of S containing rS and all vertices in T (vj ), . . . ,T (vp )

23 T ← (T \ {S}) ∪ {S (1), S (2)}

24 R-DFS(S (1), rS )

25 if ∃ unused agent at r then

26 L-DFS(S (2), rS )
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later necessary for our analysis. Afterwards, we consider a subtree S which contains an unexplored

vertex and has the highest root, i.e., minimizes d(rS ). As long as the leftmost unexplored vertex vL

in S is not too far away from rS , i.e., d(vL) − d(rS ) is sufficiently small, we send an agent to vL and

let it continue the L-DFS from there. We do the same if vR is not too deep and then let the agent

continue the R-DFS from vR . The intuition is that the energy spent to reach rS is unavoidable, but

also the agents in the offline optimum Opt need to spend this energy without exploring new vertices

after the tree has been explored up to depth d(rS ). Thus, the agent only potentially wastes energy

to reach vL (or vR ), but from then on explores many new vertices because an agent doing 2m edge

traversals on a DFS visits at leastm distinct vertices. If both vL and vR are sufficiently deep, we split S

into two edge-disjoint subtrees S (1) and S (2), as shown in Figure 3.1. In this case both S (1) and S (2)

contain a sufficiently long part of the L-DFS sequence, which has not been covered by any agent. This

is important because we want to avoid that an agent is sent to a new subtree which only needs little

more exploration. A complete description of Divide & Explore is given in Algorithm 3.3.

3.2.2 Proof of 3-Competitiveness

In this subsection, we analyze Algorithm Divide & Explore in order to show that it is 3-competitive.

Note that the first agent in Divide & Explore simply performs a depth-first search and explores at

least B/2 vertices or completely explores the tree. Consequently, if k = 1 or if n < B, the algorithm

is 2-competitive, and thus we assume in the following that n ≥ B and k ≥ 2.

For the analysis of Divide & Explore, we further need the following notation. For every iteration t

of the outer while-loop, we let kt ∈ {1, 2} be the number of agents used by Divide & Explore in this

iteration and k0 = 2 be the number of agents used before the first iteration of the outer while-loop.

Further, let Tt be the set of subtrees T at the end of iteration t and let T R
t be the unique subtree

of T that connects the set of roots {rS | S ∈ Tt } of all subtrees with the minimum number of edges.

Moreover, we denote the subtree S with the highest root considered byDivide & Explore in iteration t

by St and its root by rt . Finally t̄ denotes the total number of iterations of the while-loop. Note that

in iteration t̄ , the algorithm may split the tree S into two edge-disjoint subtrees S (1) and S (2) while

there is only one agent remaining at the root r . In this case, kt̄ = 1 and we say that iteration t̄ is not

completed.

The crux of our analysis is to show that the amortized amount of energy spent making progress

on the L-DFS or R-DFS is
2

3
· ki · (B − d(ri )) for the agents in iteration i , as stated in the following

lemma.

Lemma 3.1. The algorithm Divide & Explore either completely explores T or all agents used by the

algorithm together cover at least

2

3
(|T R

t | − 1) +
∑

0≤i≤t

2

3
· ki · (B − d(ri ))

distinct edges of the total L-DFS sequence of T .
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Proof. Let us assume that Divide & Explore does not completely explore T and let Ut be the subset

of Tt containing all subtrees with an unexplored vertex. We will show by induction over t that all

agents used by Divide & Explore up to the end of iteration t together cover at least

2

3
(|T R

t | − 1) +
∑
S ∈Ut

2

3
(B − d(rS )) +

∑
0≤i≤t

2

3
· ki · (B − d(ri )) (3.1)

distinct edges of the total L-DFS sequence of T . It may happen that in the last iteration t of Divide &

Explore the third case occurs, but only one agent is left at the root. We will treat this special case

separately at the end of the proof. First, we show the lower bound above for all t , for which iteration t

is completed, i.e., there are enough agents for Divide & Explore to finish iteration t .

For t = 0, we haveU0 = {T } as Divide & Explore does not completely explore T by assumption,

k0 = 2, r0 = rT , and T
R
t only contains rT . Thus the lower bound (3.1) on the number of edges covered

by the first two agents evaluates to 2B. The first agent used by Divide & Explore performs an L-DFS

and covers exactly B edges of the total L-DFS sequence of T . The second agent performs an R-DFS

starting at the root of T and also covers exactly B edges of the total L-DFS sequence of T . The edges

of the total L-DFS sequence of T covered by the second agent are distinct from the edges covered

by the first because T is not completely explored by the algorithm by assumption. Hence, the lower

bound (3.1) holds for t = 0.

Now, assume that the lower bound (3.1) holds for t − 1. We will show it for iteration t . LetU ′t−1
be the set of subtreesUt−1 after the for-all loop in iteration t terminated and possibly some roots of

the trees inUt−1 were moved down. We claim that

2

3
(|T R

t−1 | − 1) +
∑

S ∈Ut−1

2

3
(B − d(rS )) =

2

3
(|T R

t | − 1) +
∑

S ∈U′t−1

2

3
(B − d(rS )). (3.2)

For any subtree S ∈ Ut−1, let S
′ ∈ U ′t−1 be the corresponding subtree after the root of S was possibly

moved down. The tree T R
t contains all vertices of the tree T R

t−1 plus the path from rS to rS ′ , i.e.,

d(rS ) − d(rS ′) additional vertices, for all S ∈ Ut−1. This already implies (3.2).

Applying (3.2) on the lower bound (3.1) for t − 1 yields that the number of edges of the total L-DFS

sequence of T covered by the agents up to iteration t − 1 is at least

2

3
(|T R

t | − 1) +
∑

S ∈U′t−1

2

3
(B − d(rS )) +

∑
0≤i≤t−1

2

3
· ki · (B − d(ri )). (3.3)

Let now St be the subtree with root rt considered by the algorithm in iteration t as defined above

and vL , vR be defined as in the algorithm.

First, assume that we have d(vL) − d(rt ) ≤ max{1, 1/3 · (B − d(rt ))} and let A0 be the only agent

used by the algorithm in iteration t . Note that if 1/3 · (B − d(rt )) < 1, then once it has reached rt ,

agent A0 has either one or two energy left. In the first case, A0 only explores vL and makes a progress

of 1 on the total L-DFS sequence. In the second case, A0 makes a progress of 2 on the total L-DFS

sequence: it goes to vL and then either it visits a child of vL , or it goes back to rt . Consequently, if

1/3 · (B − d(rt )) < 1 = d(vL) − d(rt ), A0 makes a progress of at least (B − d(rt )) ≥ 2/3 · (B − d(rt )) on

the total L-DFS sequence.
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Suppose now that 1 ≤ d(vL) − d(rt ) ≤ 1/3 · (B − d(rt )). Agent A0 moves to rt using d(rt ) energy

and from rt to vL using at most 1/3 · (B − d(rt )) energy and then performs an L-DFS. If A0 does not

completely explore St , then the set of edges traversed byA0 starting invL and directed in the direction

the edge is traversed by A0 has not been covered by any other agent. Therefore A0 makes a progress

of at least 2/3 · (B − d(rt )) edges on the total L-DFS sequence. Adding this progress of agent A0 to the

lower bound in (3.3) on the number of edges covered by the agents in the first t − 1 iterations and

usingUt = U
′
t−1 yields the lower bound (3.1) for iteration t .

Next assume that A0 completely explores the subtree St . We then have Ut = U
′
t−1 \ {St } and

the lower bound (3.1) for iteration t follows directly from the lower bound (3.3) even if A0 explores

only vL and only covers two new directed edges of the total L-DFS sequence.

The proof when d(vR ) − d(rt ) ≤ 1/3 ·max{1, 1/3 · (B − d(rt ))} is completely analogous.

Finally, assume that the last case occurs in iteration t and St is split into two subtrees S (1) and S (2)

as defined in the algorithm. Further, let A1 and A2 be the agents used in iteration t for performing an

R-DFS in S (1) and an L-DFS in S (2), respectively.

We first show that vL and vR are below different children of rt . Note that we have d(vL) −d(rt ) >

max{1, 1/3 · (B − d(rt ))} ≥ 1 as well as d(vR ) − d(rt ) > max{1, 1/3 · (B − d(rt ))} ≥ 1. Therefore

neither vL nor vR are children of rt . Suppose, for the sake of contradiction, there is a child v of rt

such that both vL and vR are contained in T (v). By the definition of vL and vR , the subtrees below

all other children of rt must be completely explored. This means rt only has one child leading to

an unexplored vertex. We cannot have vL = vR = v as vL and vR are not children of rt . But then

the root rt would be moved down to v and possibly further at the beginning of iteration t . This is a

contradiction. Therefore, S (1) and S (2) are edge-disjoint, non-empty trees and vL is contained in S (1)

and vR in S (2).

Agent A1, which moves according to the call R-DFS(S (1), rt ), moves to rt using d(rt ) energy and

starts an R-DFS making a progress of at least d(vL) − d(rt ) > 1/3 · (B − d(rt )) on the overall L-DFS

sequence, as the part of the L-DFS sequence from vL to rt has not been covered by any other agent

and has length at least d(vL) − d(rt ). If A1 does not completely explore S (1), then it makes even a

progress of B − d(rt ) on the overall L-DFS sequence.

The second agent used in iteration t , the agent A2, first moves to rt using d(rt ) energy and then

performs an L-DFS according to the call L-DFS(S (2), rt ). We have d(vR ) − d(rt ) > 1/3 · (B − d(rt )) and

hence A2 makes a progress of at least 1/3 · (B − d(rt )) edges on the overall L-DFS sequence, as the

part of the sequence from rt to vR has not been covered by any other agent. If A2 does not completely

explore S (2), then it also makes a progress of B − d(rt ) on the overall L-DFS sequence.

Let s ∈ {0, 1, 2} be the number of subtrees among {S (1), S (2)} that A1 and A2 do not explore

completely. By the above argument, we showed that overall A1 and A2 together make a progress of

at least 2/3 · (B − d(rt )) + s · 2/3 · (B − d(rt )) edges on the overall L-DFS sequence of T . Adding this

progress to the lower bound (3.3) and using St ∈ U
′
t−1 \ Ut again yields the lower bound (3.1) for

iteration t .

In order to show the claim, let us consider the last iteration t . If Divide & Explore can complete
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this iteration, then the claim follows directly from the lower bound (3.1) because
2

3
(B − d(rS )) ≥ 0 for

all S ∈ Ut as no agent can explore a vertex below depth B in T . Now assume that iteration t is not

completed. But then we have that the number of edges of the total L-DFS sequence of T covered by

the agents up to iteration t − 1 is at least

2

3
(|T R

t | − 1) +
∑

S ∈U′
t−1

2

3
(B − d(rS )) +

∑
0≤i≤t−1

2

3
· ki · (B − d(ri ))

by the lower bound (3.3). The above lower bound already implies the claim, as we have kt = 1 and∑
S ∈U′

t−1

2

3
(B − d(rS )) ≥

2

3
· kt · (B − drt ).

With the lower bound above, we can now prove the main result of this section.

Theorem 3.2. The algorithm Divide & Explore is 3-competitive.

Proof. Assume that the algorithm Divide & Explore terminates after iteration t̄ . If it completely

explores T , then it is clearly optimal. So let us assume that it runs out of agents in iteration t̄ .

Let A1,A2, . . . ,Ak be the sequence of agents used by Divide & Explore in this order and let

agent Ai be used in iteration ti . We let di := d(rti ) be the depth of the root of the subtree visited by Ai

in iteration ti . As the algorithm in every iteration chooses the subtree S with an unexplored vertex

which minimizes d(rS ), we have d1 ≤ d2 ≤ . . . ≤ dk .

Note that every undirected edge {v,w} of the tree appears exactly twice as a directed edge in the

total L-DFS sequence of T , as (v,w) and as (w,v). Thus dividing the bound given by Lemma 3.1 by

two yields a lower bound on the number of distinct undirected edges traversed by the agents. As T is

a tree, this number plus 1 is a lower bound on the number of vertices visited by the agents. Thus,

using the notation T R
instead of T R

t̄ , we obtain for the given instance I that

Alg(I ) ≥ 1

3
|T R | +

∑
1≤i≤k

1

3
· (B − di ). (3.4)

Let now A∗
1
, . . . ,A∗k be the k agents used by an optimal offline algorithm Opt and let d∗i be the

maximum depth of a vertex in T R
that is visited by the agent A∗i . This is well-defined as every agent

at least visits the root r of T R
. We assume without loss of generality that d∗

1
≤ d∗

2
≤ . . . ≤ d∗k . As the

agent A∗i must use at least d∗i energy to reach a vertex at depth d∗i in T
R
, we have

Opt(I ) ≤ |T R | +
∑

1≤i≤k

(B − d∗i ). (3.5)

Consider the maximal index j ∈ {1, . . . ,k} such that dj > d∗j . If no such j exists, di ≤ d∗i holds

for all 1 ≤ i ≤ k . This implies

∑k
i=1(B − d∗i ) ≤

∑k
i=1(B − di ) and thus also Opt(I )/Alg(I ) ≤ 3

by (3.4) and (3.5).

Otherwise, we have d∗
1
≤ d∗

2
≤ . . . ≤ d∗j < dj . LetT

j
Alg

be the subtree explored by the first j agents

used by Divide & Explore. We claim that all vertices explored by the agentsA∗
1
, . . . ,A∗j are contained

in T j
Alg

. Assume, for the sake of contradiction, that there is 1 ≤ i ≤ j such that agent A∗i explores

a vertex u which is not contained in T j
Alg

. At the moment when the agent Aj is used by Divide &
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Explore, the root rS of every subtree S ∈ Ttj is contained inT
R
tj and it has depth at least dj . Let S

′ ∈ Ttj

be the subtree containing u. This means that the agent A∗i must also visit rS ′ to reach u. But T R
tj is

a subtree of T R
and thus A∗i visits a vertex in T

R
of depth d(rS ′) ≥ dj . This implies d∗i ≥ d(rS ′) ≥ dj

contradicting the initial assumption that d∗i < dj . Consequently, the agents A
∗
1
, . . . ,A∗j in Opt only

visit vertices inT j
Alg

. But then the first j agents in Opt visit a strict subset of the vertices visited by the

first j agents in Divide & Explore. In this case, we can just replace the agents A∗
1
, . . . ,A∗j and their

paths by the agents A1, . . . ,Aj and their paths in Divide & Explore and Opt(I ) does not decrease.

By construction and by maximality of j, we then have di ≤ d∗i for all 1 ≤ i ≤ k , which again implies

the claim.

3.2.3 Lower Bound for Divide & Explore

In this subsection, we construct a sequence of instances to show that the analysis of Divide & Explore

is tight. Let k , d ∈ N, d ≥ 2 and B = 3(d − 1). Our instance Ik,d is a tree T consisting of a root v0

connected to 2k paths, of which k have length d and k have length B, as illustrated in Figure 3.2. We

assume that the edge labels of the edges incident to the root are increasing from left to right, i.e., for

all 1 ≤ i ≤ 2k − 1, the edge label of {v0,vi } is smaller than the label of {v0,vi+1}. We further denote

the path v0,vi , . . . down to the leaf of the tree by Pi .

At the beginning of Divide & Explore, one agent A1 performs an L-DFS and completely ex-

plores P1 and explores P2 up to depth d − 3, overall exploring 2d − 3 vertices. The second agent A2

performs an R-DFS and completely explores the rightmost path P2k of length B, i.e., B = 3(d − 1)

vertices. From now on, in every iteration of the while loop, we have T = {T }, rS = v0, d(vL) = d − 2

and thus

d(vL) − d(rS ) = d − 2 ≤ d − 1 = 1/3 · (B − d(rS )).

This means that, for i ≥ 3, the agent Ai used in the iteration i − 2 of the outer while-loop, first moves

to the unexplored vertex at depth d − 2 on the path Pi−1, then finishes exploring this path, and runs

out of energy at depth d − 3 in Pi . Thus,Ai explores exactly d vertices. Overall, the number of vertices

explored by the algorithm is therefore

2d − 3 + 3(d − 1) + (k − 2)d = 5d − 6 + (k − 2)d .

The optimal offline algorithm sends one agent down each of the paths Pk+1, . . . , P2k exploring 3k(d−1)

vertices. Hence, we obtain the following lower bound on the competitive ratio:

Opt(Ik,d )

Alg(Ik,d )
=

3k(d − 1)

5d − 6 + (k − 2)d

d→∞,k→∞
−−−−−−−−−→ 3.
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v0

v1 v2 vi vk vk+1 vk+2 v2k

depth d

depth B

Ai

Figure 3.2: Instance showing that the analysis of Divide & Explore is tight.

3.3 General Lower Bound on the Competitive Ratio

In this section, we construct a sequence of instances for a given online algorithm that show a lower

bound of (5 + 3

√
17)/8 ≈ 2.17 on the competitive ratio of any online algorithm. The section is

organized as follows: In Section 3.3.1, we first present a simple lower bound of 2 on the competitive

ratio and then present our construction for the lower bound of 2.17. As the full proof of the lower

bound is quite involved, we first give some intuition and a simplified proof for some special cases

in Section 3.3.2. The general proof of the lower bound is then given in Section 3.3.3.

3.3.1 Lower Bound Construction

In order to get some intuition, we first consider a simple example showing a lower bound of 2 on the

competitive ratio of any online algorithm.

Proposition 3.3 ([Bam+17a]). There exists no c-competitive online exploration algorithm with c < 2.

Proof. Let k and B be positive integers, B be even andT be a tree with root v0 connected to k paths of

length B and k · B/2 paths of length 1. A team of k agents starts at v0 with energy B each. For every

algorithm Alg, the adversary can ensure that no agent that starts at v0 ever enters one of the long

paths by permuting the port numbers of the edges at v0 accordingly. For every edge that an agent

explores, it then needs to go back to v0 in order to explore other edges. Thus, every agent can explore

at most B/2 edges and all k agents together at most k · B/2 edges since B is even. On the other hand,

the offline optimum Opt sends all agents in the long paths exploring k · B edges.

Note that the simple lower bound of 2 only requires that B is even and otherwise works for any

choice of parameter k and B. For the lower bound of (5+ 3
√
17)/8 ≈ 2.17 on the competitive ratio, we

present a sequence of instances where k and B become arbitrarily large. We initially construct an

instance with general parameters and at the end choose the parameters to maximize the competitive

ratio that the online algorithm can achieve. The lower bound instances that we construct are trees
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v0

v(1)
1

v(1)
2

v(1)
3

v(1)l

v(2)
1

v(2)
3 v(2)l

depth d1

depth d2

Figure 3.3: Tree for the lower bound of 2.17 on the competitive ratio.

that contain very long paths and high degree vertices at certain depth in the tree. The length of the

paths is determined by the online exploration algorithm.

For a given online algorithm Alg, we consider a set of k := 2l −1 agentsA for l ∈ N with energy B

each and we let ∆ :=
⌈√

2 · l · B
⌉
+ 2l . We now construct a tree T , which is shown in Figure 3.3,

depending on the behavior of the algorithm. The treeT has a root v0 with l distinct paths, each going

from v0 to a vertex v(1)i at depth d1 for i = 1, . . . , l . Each vertex v(1)i has degree ∆ + 1 and is the root

of a subtree Ti . There are ∆ paths connected to every v(1)i whose length will be determined by the

algorithm. Furthermore, depending on the algorithm, there may exist a vertex v(2)i at depth d2 that

has degree ∆ + 1 and also ∆ paths connected to it whose length will be determined by the algorithm.

We call the subtrees with root v(1)i and v(2)i adaptive subtrees as they depend on the behavior of the

online exploration algorithm. We further assume that B, d1, d2 are even and

d1 + ∆ < d2 ≤
5

3
· d1 and 3 · d1 < B ≤ d1 + 2 · d2. (3.6)

Each of the adaptive trees can be active, i.e., as soon as an agent visits an unexplored vertex

on a path another unexplored neighbor is presented, or passive, i.e., all unexplored vertices in the

adaptive tree are leaves. Moreover, every subtree Ti has a budget Ni , which limits the total number

of non-leaf vertices that are presented to the algorithm, i.e., if Ni vertices that are not leaves have

been explored inTi both adaptive trees inTi become passive and from now on all unexplored vertices

in Ti are leaves. The budget Ni is initially 2 and is increased as described below when agents enter

the subtree Ti . Initially every subtree Ti has an active adaptive subtree below v(1)i . We now present

new vertices to the algorithm in every subtree Ti for i ∈ {1, . . . , l} according to the following rules:

I. When the first agent A1 that has not visited any other tree Tj , Ti before enters Ti for the first

time:

The budget Ni of Ti is increased by (B + d2)/2 − d1 + 2∆, the adaptive tree below v(1)i is active

and v(2)i has not been discovered. The first vertex at depth d2 discovered by A1 is v
(2)

i , i.e., it

has degree ∆ + 1 and is the root of another adaptive tree which is active. Additionally, if A1

explores a new vertex v at depth d > d2 in Ti (below v(2)i or on any branch below v(1)i ) and the
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remaining energy of A1 is ≤ d − d2, then we stop presenting new vertices on the current path

of A1, i.e., v is a vertex without further unexplored neighbors.

II. When the second agent A2 that has not visited any other tree Tj , Ti before enters Ti for the first

time:

(a) If A1 has explored at most (d1 + d2)/2 vertices in Ti :

The adaptive trees both at v(1)i and at v(2)i become passive. In all following cases below,

we assume that A1 explored more than (d1 + d2)/2 vertices in Ti .

(b) IfA1 has explored the vertexv
(2)

i or still has enough energy left to reach a vertexv at depth d2

via an unexplored vertex:

If v(2)i has been discovered, the adaptive tree at v(1)i becomes passive, but the adaptive

tree at v(2)i remains active. If A1 has not visited a vertex at depth d2, then the adaptive

tree at v(1)i becomes passive except for the path via an unexplored vertex to v(2)i := v at

depth d2, which A1 can reach with its remaining energy. From now on, if any agent A is

at depth d > d2, then we stop presenting new vertices on the current path of A as soon as

the remaining energy is ≤ d − d2.

(c) If A1 has not visited a vertex at depth d2 and has not enough energy to reach a vertex at

depth d2 via an unexplored vertex:

From now on if any agent A is at depth d > d1, we stop presenting new vertices on the

current path of A if the remaining energy of A is ≤ d − d1.

III. Whenever an agent A which before has visited a tree Tj , Ti enters Ti for the first time with

remaining energy BA:

The budget Ni ofTi is increased by BA/2+2. IfA discovers a vertexv belowv(2)i at depth d > d2

and the remaining energy of A is ≤ d − d2, then we stop presenting new vertices on this

path. Similarly, if A discovers a vertex v below v(1)i at depth d > d1 (but not on a branch

containing v(2)i ) and the remaining energy of A is ≤ d − d1, then we also stop presenting new

vertices on that path.

Note that in every treeTi , if Case II (b) does not occur inTi ,v
(2)

i and the adaptive subtree belowv(2)i
exist if and only if A1 discovers a vertex v at depth d2.

3.3.2 Intuition and Proof of the Lower Bound in Special Cases

In this subsection, we want to give some intuition about our construction by looking at two special

cases and making some simplifying assumptions, which do not hold in general. The adaptive trees are

constructed in a way that a path ends exactly when the agent currently exploring that path has just

enough energy to return to v(1)i or v(2)i respectively. So let us make the simplifying assumption that

the final position of every agent is either at v(1)i or v(2)i for some i ∈ {1, . . . , l}. The online algorithm

has to balance between sending each agent to only one subtree Ti to completely explore it or to move

to a second subtree Tj later to explore more vertices which are close to the root v0. We will consider

77



Chapter 3. Energy Efficient Tree Exploration

instances with increasing values of B and l in such a way that l = o(B). Note that this implies that

∆ = o(B).

Let us consider the special case that the algorithm first sends one agent to each of the sub-

trees T1, . . . ,Tl and then a second agent to every subtree except T1 (there are 2l − 1 agents and l sub-

trees). For the sake of simplification, assume thatA1 visitsv
(2)

i and Case II (b) occurs in each subtreeTi

when the second agent A2 enters Ti . Note that in this case, A1 cannot visit another subtree as it visits

v(2)i at depth d2 and 2d2 +d1 ≥ B by (3.6). We further assume that for each subtreeTi , 2 ≤ i ≤ l , either

the second agent A2 entering Ti helps A1 to explore Ti completely, or it goes to T1 to explore new

vertices.

The first agentA1 in each subtreeTi can explore at most (B+d2)/2 vertices inT if its final position

is at v(2)i (it traverses at most d2 edges once and all other edges are traversed an even number of times)

and less vertices if its final position is at v(1)i . Note that d1 − 2 of the vertices explored by A1 are on

the path from v0 to v
(1)

i and thus A1 can only explore at most (B +d2)/2 −d1 + 2 vertices inTi . But by

construction the budget Ni is increased by (B + d2)/2 − d1 + 2∆ when A1 enters Ti so that A1 alone

cannot deplete the whole budget and completely explore Ti .

As the subtree below v(1)i becomes passive when A2 enters Ti , A2 can only explore at most ∆

vertices that are not below v(2)i . Therefore if A1 and A2 completely exploreTi , A2 has to go to depth d2

and then it cannot visit any other subtree as 2d2 + d1 ≥ B by (3.6). In this case, agents A1 and A2

together then explore at most Ni vertices inTi plus at most 2∆ leaves and the path of length d1 leading

to Ti , i.e., they explore at most (B + d2)/2 + 4∆ + 2 = (B + d2)/2 + o(B) vertices.

Suppose now that A1 and A2 do not completely explore the subtree Ti and that A2 goes to T1 to

explore new vertices after having visited Ti . Assume that A2 has BA2
energy left when it enters T1,

and note that BA2
≤ (B − 3d1)/2 since A2 went first to Ti before entering T1. Agent A2 can explore at

most BA2
/2 new vertices in T1 if its final position is in v(1)i (every edge it traverses in T1 is traversed

an even number of times) and less vertices if its final position is in v(2)i (since the vertices on the

branch from v(1)i to v(2)i have already been explored). Note that when A2 enters T1, the budget N1

of T1 is increased by BA2
/2 + 2 and thus the budget of T1 is never depleted. As A2 has BA2

energy

left when it enters T1 and spends 3d1 energy to first reach Ti and then T1, it can have explored at

most (B − 3d1 − BA2
)/2 vertices in Ti because A2 traverses every edge in Ti an even number of times.

Overall, A2 thus explores at most (B − 3d1)/2 new vertices and A1 at most (B + d2)/2 vertices in this

case.

Recall that for sake of simplification, we consider only two strategies for the online algorithm

Alg: either in every tree Ti , 2 ≤ i ≤ l , A1 and A2 completely explore Ti , or for every tree Ti , 2 ≤ i ≤ l ,

the second agent A2 entering Ti also visits T1 (and Ti is not completely explored by the algorithm). In

the first case, the algorithm explores at most l · (B + d2)/2 + o(lB) vertices. In the second case, the

algorithm explores at most l · ((B + d2)/2 + (B − 3d1)/2) + o(lB) vertices.

Let us now consider an optimal offline algorithm Opt. Whatever the strategy of Alg is, one

can show that there is always an unexplored vertex u1 at depth at most d1 + ∆ in T1 (this is proved

in Lemma 3.4 (f)). We can assume that u1 has degree 2l and there are 2l − 1 distinct paths of length B
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connected to it.

If Alg completely explores every treeTi , 2 ≤ i ≤ l , thenOpt can send all agents tou1 and then each

agent explores one of the paths below u1. In this case, Opt explores at least B + (2l − 2) · (B −d1 −∆) =

2l · (B − d1) − o(lB) vertices.

If Alg does not completely explore any Ti , 2 ≤ i ≤ l , then there exists an unexplored vertex ui in

each treeTi , 2 ≤ i ≤ l , and we can assume that there is a path of length B connected to it. In this case,

Opt can send an agent to each ui , 2 ≤ i ≤ l that can then explore the path below ui . Then, Opt can

send the remaining l agents to u1 as in the previous case, and each of these agent explores one of

the paths below u1. In this case, Opt explores at least lB + (l − 1) · (B − d1 − ∆) = l · (2B − d1) − o(lB)

vertices.

As the algorithm can choose the best strategy among the two strategies described above, we get

for our constructed instance I that

Opt(I )

Alg(I )
≥ min

{
4l · (B − d1) − o(lB)

l · (B + d2) + o(lB)
,

2l · (2B − d1) − o(lB)

l · (2B + d2 − 3d1) + o(lB)

}
.

In order to maximize the competitive ratio, we want to choose d2 as small as possible. Because of

the initial assumptions on the parameter in (3.6), we must have 2d2 + d1 ≥ B and thus we choose

d2 = (B − d1)/2. Additionally, dividing by l and omitting the terms that vanish as B tends to infinity,

we obtain that the competitive ratio ρAlg of the online algorithm Alg satisfies

ρAlg ≥ lim

B→∞

Opt(I )

Alg(I )
≥ lim

B→∞
min

{
8B − 8d1
3B − d1

,
8B − 4d1
5B − 7d1

}
.

By standard calculus, the competitive ratio is maximized when the two terms on the right-hand side

are equal and this is true when d1 = (19 − 3
√
17)B/26. These choices of d1 and d2 satisfy (3.6) and the

above lower bound evaluates to (5 + 3
√
17)/8 ≈ 2.17.

We made several simplifying assumptions to get to this bound, but one can show that no other

strategy can beat the lower bound we established. The challenge in the analysis is that the online

algorithm does not necessarily use one agent after the other, but the agents may wait in between.

This creates many different cases which need to be grouped and analyzed.

3.3.3 Proof of the Lower Bound for the General Case

In this subsection, we give a complete proof of the lower bound on the competitive ratio of an arbitrary

online algorithm Alg using the construction introduced in Section 3.3.1.

For every vertex v in T , we say that v is explored by an agent A, if A is the first agent visiting v .

If v(2)i is defined, then we say that every vertex on the path from v(1)i to v(2)i is explored by the first

agent A1, which enters Ti and has not visited any other tree Tj , Ti before. It may be even the case

that A1 never visits these vertices, but to simplify the analysis, we will still attribute them to A1.

For i ∈ {1, . . . , l}, we let A1,i be the set of agents for which Ti is the first tree they visit and

let A2,i be the set of agents for which Ti is the second tree they visit, i.e., every agent A ∈ A2,i has
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visited a subtree distinct from Ti before. Note that an agent can visit at most two subtrees as

5 · d1 ≥ d1 + 4 ·
3

5
d2 > d1 + 2 · d2 ≥ B (3.7)

by our assumptions on the parameters in (3.6). Therefore an agent A ∈ A can be contained in one

set A1,i and possible in some other set A2, j for j ∈ {1, . . . , l} \ {i}. For every agent A ∈ A we

let BA denote the remaining energy when A enters a second subtree. If A only enters at most one of

the subtrees T1, . . . ,Tl , we set BA = 0. We now establish the following important properties for the

number of vertices that the agents explore.

Lemma 3.4. Let Ti be a subtree of T as defined above.

(a) BA ≤ B − 3d1 for all A ∈ A.

(b) If Case II (b) or Case II (c) occurs, then the first agent A1 in A1,i entering Ti does not visit any

other subtree, i.e., BA1
= 0.

(c) Every agent A ∈ A2,i explores at most BA/2 + 2 vertices in Ti .

(d) The first agent A1 in A1,i entering Ti explores at most (B + d2)/2 − d1 + 2∆ vertices.

(e) If |A1,i | ≤ 1, then the agents in A1,i ∪ A2,i visit strictly less than Ni vertices in Ti .

(f) If the adaptive tree belowv(1)i is active and the budget Ni is not depleted, then there is an unexplored

vertex in Ti at depth at most d1 + ∆.

Proof. (a) Note that we have B − 3d1 > 0 by our initial assumptions on the parameters in (3.6) and

thus the claim trivially holds if A visits at most one of the subtrees T1, . . . ,Tl , i.e., if BA = 0.

Now, consider an agent A ∈ A visiting two subtrees and assume without loss of generality,

that A first visits T1 and afterwards enters T2 with remaining energy BA. To reach T1 the agent

needs to traverse d1 edges. In order to afterwards reach T2, the agent A needs to traverse

another 2d1 edges. Thus, we must have BA ≤ B − 3d1.

(b) In both cases, agent A1 has explored more than (d1 + d2)/2 vertices in Ti . If A1 visits another

subtree it traverses every edge in Ti an even number of times and therefore needs at least d1 +

d2 energy to explore more than (d1 + d2)/2 vertices. Moreover, 3d1 energy is needed to first

reach Ti and then another subtree. As 3d1 + (d1 + d2) > 5d1 ≥ B by (3.6) and (3.7), A1 cannot

visit another subtree.

(c) By definition, the remaining energy of the agent A when entering Ti is BA. If the final position

of A is not in Ti , then it traverses every edge in Ti an even number of times and in particular A

traverses at most BA/2 edges in Ti . These can be incident to at most BA/2 + 1 vertices, which

yields the claim.

Now, consider the case that the final position of A is below v(1)i and not below v(2)i and not

on the path between v(1)i and v(2)i . This means that at some point Amust have visited a vertex v

at depth d with remaining energy exactly d −d1. Recall that B and d1 are even, hence BA is even

and this must happen at some point. ThenA has exactly enough energy left to move to v(1)i and,
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in particular, A cannot reach any other path below v(1)i . If v is explored by A, then v has no new

unexplored neighbor and we can simply assume that A returns to v(1)i as this does not change

the number of neighbors it explores. In this case A has traversed every edge in Ti an even

number of times and therefore can have explored at most BA/2 + 1 vertices. If v is not explored

by A, then A can only explore at most one more vertex after visiting v with energy d − d1,

because the current path ends immediately when A explores a new vertex. Compared to the

case that v is explored by A, agent A only explores at most one additional vertex in this case so

that we can bound the total number of vertices explored by A by BA/2 + 2.

Next consider the case that the final position of A is on the path between v(1)i and v(2)i . In

particular, this implies that v(2)i is defined and all vertices on the path between v(1)i and v(2)i are

attributed to A1. Note that then all edges that are not on that path, must be traversed an even

number of times byA and we therefore again obtain thatA can explore at most BA/2+1 vertices,

which yields the claim.

Finally, the case the final position of A is below v(2)i is completely analogous to the case that

the final position is below v(1)i as all vertices on the path from v(1)i to v(2)i are attributed to A1.

(d) Let A1 be the first agent entering Ti . If A1 visits another subtree Tj , Ti afterwards, then A1

traverses every edge in Ti an even number of times and needs 3d1 energy to first reach Ti

and afterwards Tj . Overall, A1 can therefore explore at most (B − 3d1)/2 vertices in Ti and as

(B + d2)/2 − d1 + 2∆ ≥ (B − 3d1)/2 this yields the claim.

From now on, we can therefore assume thatA1 only visits the subtreeTi . The energy thatA1

spends in Ti is at most B − d1, as B − d1 is the maximum energy possible when entering Ti . If

the final position of the agent A1 is at depth d2 or less, then it traverses at most d2 − d1 edges

in Ti once using d2 − d1 energy and exploring at most d2 − d1 + 1 vertices. All other edges in Ti

traversed by A1 must be traversed at least twice which means there is at most one explored

vertex for every two energy used. Overall, the number of explored vertices is thus bounded by

(d2 − d1 + 1) +
B − d1 − (d2 − d1)

2

=
B + d2

2

− d1 + 1,

if the final position of A1 is at depth d2 or less. If the final position of A1 is below d2, there has

to be a vertexv at depth d visited byA1 such that the remaining energy ofA1 when visitingv is

exactly d −d2 (recall that d2 and B are even by assumption). If v is explored by A1, then v is the

last vertex that A1 explores because v then is a vertex without further neighbors and A1 cannot

reach another path below v(1)i or v(2)i . If v has been already explored by another agent, then A1

can only explore one more additional vertex as the path also ends immediately if A1 explores a

vertex. If A1 after visiting v with remaining energy d −d2, would directly move up towards v(1)i ,

its final position would be at depth d2 and by the argument above A1 could explore at most

(B +d2)/2−d1 + 1 vertices. As A1 can explore only at most one more vertex, as we just showed,

the total number of vertices explored by A1 is bounded by (B + d2)/2 − d1 + 2 in this case.

However, in Case II (b), it can happen that v(2)i is defined as it can be reached by A1 with its

remaining energy when A2 enters Ti , but A1 does not visit v
(2)

i . Recall that we always attribute
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the vertices on the path betweenv(1)i andv(2)i toA1, even ifA1 never visits them. IfA1 visitsv
(2)

i ,

then it visits all vertices on the path between v(1)i and v(2)i and by the argument above the

number of vertices visited by A1 is bounded by (B + d2)/2 − d1 + 2. As the adaptive tree at v
(1)

i

becomes passive when A2 enters Ti , A1 can from then on only explore ∆ vertices which are

not on the path between v(1)i and v(2)i or below v(2)i . This means compared to the case that A1

visits v(2)i , A1 can only visit additional ∆ vertices and therefore the overall number of vertices

explored by A1 is bounded by (B + d2)/2 − d1 + 2∆ in this case as 2 + ∆ ≤ 2∆. This yields the

claim.

(e) By Lemma 3.4 (c), every agent A ∈ A2,i entering Ti explores at most BA/2 + 2 vertices and the

budget Ni is also increased by this value when A enters Ti . Thus, if A1,i = ∅, the number of

vertices explored in Ti will always be less than the budget, as Ni is initially 2. Now assume,

there is one agent A1 ∈ A1,i entering Ti . By Case I in the construction of the lower bound, the

budget Ni is increased by (B + d2)/2 − d1 + 2∆ and by Lemma 3.4 (d), A1 also explores at most

(B + d2)/2 − d1 + 2∆ vertices in Ti . Thus the budget Ni , which is initially 2, is also larger than

the number of explored vertices in Ti in this case.

(f) Suppose, for the sake of contradiction, that the budget Ni is not depleted and the adaptive tree

below v(1)i is active, but there is no unexplored vertex at depth at most d1 + ∆ in Ti . Recall that

there are ∆ paths below v(1)i and ∆ =
⌈√

2 · l · B
⌉
+ 2l . As v(1)i is active and the budget Ni is not

depleted by assumption, a path only ends if an agent has remaining energy ≤ d − d1 at depth d .

In particular, one agent can be only responsible for at most one path to be fully explored and

end. We have 2l − 1 agents and thus at most 2l − 1 paths can end before depth ∆. If there is no

unexplored vertex at depth at most d1 + ∆, all other
⌈√

2 · l · B
⌉
+ 1 paths must be fully explored

up to depth ∆. These paths then contain at least ∆ ·
⌈√

2 · l · B
⌉
≥ 2 · l · B vertices. But all agents

together only have (2 · l − 1) · B energy and hence cannot visit all these vertices. This is a

contradiction.

We will say that Case II (a) occurs in Ti if |A1,i | ≥ 2 and Case II (a) occurs when the second

agent A2 ∈ A1,i enters Ti . Analogously for Case II (b) and Case II (c). We partition the subtrees into

the following three sets:

M0 := {i | BA > 0 for all A ∈ A1,i or Case II (a) occurs in Ti },

M1 := {i | Ti is not completely explored, ∃A ∈ A1,i with BA = 0 and Case II (a) does not occur},

M2 := {i | Ti is completely explored and Case II (b) or Case II (c) occurs in Ti }.

Lemma 3.5. Let Ti be a subtree of T , Algi be the number of vertices explored in Ti by Alg andM0,M1

andM2 as defined above.

(a) We haveM0 ∪M1 ∪M2 = {1, . . . , l} andMi ∩Mj = ∅ for all i, j ∈ {0, 1, 2} with i , j.
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(b) For every i = 1, . . . , l , we have

Algi ≤
B + d2

2

− d1 + 6∆ +
∑

A∈A2,i

BA
2

. (3.8)

(c) If i ∈ M0, then

Algi ≤
B + d2

2

− d1 + 4∆ + (|A1,i | − 2) ·
B − 3d1

2

+
∑

A∈A2,i

BA
2

−
∑

A∈A1,i

BA
2

(3.9)

(d) If i ∈ M1, then ∑
A∈A1,i

BA ≤ (|A1,i | − 1) · (B − 3d1). (3.10)

(e) If i ∈ M2, then ∑
A∈A1,i

BA ≤ (|A1,i | − 2) · (B − 3d1). (3.11)

Proof. (a) For the first part of the statement, let i ∈ {1, . . . , l} \ (M0 ∪ M1}, and note that there

exists A ∈ A1,i with BA = 0, Case II (a) does not occur in Ti , and Ti is completely explored.

By Lemma 3.4 (e) and Lemma 3.4 (f), we have |A1,i | ≥ 2. Consequently, since Case II (a) does

not occur in Ti , necessarily Case II (b) or Case II (c) occurs in Ti and i ∈ M2.

We obviously haveM0 ∩M1 = ∅ andM1 ∩M2 = ∅. By Lemma 3.4 (b), BA1
= 0 if Case II (b)

or Case II (c) occurs and thus alsoM0 ∩M2 = ∅.

(b) The budget Ni of the tree Ti , which is initially 2, satisfies

Ni ≤ 2 +
B + d2

2

− d1 + 2∆ +
∑

A∈A2,i

(
BA
2

+ 2

)
≤

B + d2
2

− d1 + 4∆ +
∑

A∈A2,i

BA
2

,

where we used 2 + 2|A2,i | ≤ 4l + 2 ≤ 2∆. Since Ti has at most 2∆ − 1 leaves, and since the

number of vertices explored inTi , which are not leaves, is at most Ni , we have Algi ≤ Ni + 2∆.

This yields the claim.

(c) First we show the claim for the case that BA > 0 for all A ∈ A1,i . This means that every

agent A ∈ A1,i also visits a second subtree. As 3d1 energy is spent to reach Ti and afterwards

the second subtree and A has still BA energy left when entering the second subtree, at most

B − 3d1 − BA energy is spent in Ti . As every edge in Ti is traversed an even number of times,

at most (B − 3d1 − BA)/2 vertices are explored by A in Ti for all A ∈ A1,i . Moreover, every

agent A ∈ A2,i explores at most BA/2 + 2 vertices in Ti by Lemma 3.4. Additionally using

2|A2,i | ≤ 2∆, we thus have

Algi ≤
∑

A∈A1,i

B − 3d1 − BA
2

+
∑

A∈A2,i

(
BA
2

+ 2

)
≤ |A1,i | ·

B − 3d1
2

+
∑

A∈A2,i

BA
2

−
∑

A∈A1,i

BA
2

+ 2∆.
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We obtain the claim using (B + d2)/2 − d1 ≥ 2 · (B − 3d1)/2 as d2 > d1 and 5d1 > B by (3.6)

and (3.7).

Now assume Case II (a) occurs and letA1 ∈ A1,i be the first agent enteringTi andA2 ∈ A1,i

the second agent entering Ti . As Case II (a) occurs, A1 has explored at most (d1 + d2)/2 vertices

in Ti when A2 enters Ti . If BA1
> 0, i.e., A1 also enters a second tree, we can even bound the

number of vertices explored byA1 inTi by (B−3d1−BA1
)/2. We have (d1+d2)/2 > (B−3d1)/2 as

d2 > d1 and 5d1 > B by (3.6) and (3.7). Therefore, we can both for BA1
= 0 and for BA1

> 0 bound

the number of vertices explored by A1 until A2 enters Ti by (d1 + d2 − BA1
)/2. As soon as A2

enters Ti all agents together can only explore the unexplored leaves, i.e., at most 2∆ vertices.

Moreover, every agent A ∈ A2,i explores at most BA/2+ 2 vertices inTi by Lemma 3.4. Overall,

we hence have

Algi ≤
d1 + d2 − BA1

2

+ 2∆ +
∑

A∈A2,i

(
BA
2

+ 2

)
≤

d1 + d2 − BA1

2

+ 4∆ +
∑

A∈A2,i

BA
2

,

where we again used 2|A2,i | ≤ 2∆. We also have 0 ≤ B−3d1−BA for allA ∈ A1,i by Lemma 3.4

and obtain

Algi ≤
d1 + d2 − BA1

2

+ 4∆ +
∑

A∈A1,i \{A1 }

B − 3d1 − BA
2

+
∑

A∈A2,i

BA
2

=
d1 + d2

2

+ 4∆ + (|A1,i | − 1) ·
B − 3d1

2

−
∑

A∈A1,i

BA
2

+
∑

A∈A2,i

BA
2

=
B + d2

2

− d1 + 4∆ + (|A1,i | − 2) ·
B − 3d1

2

−
∑

A∈A1,i

BA
2

+
∑

A∈A2,i

BA
2

.

(d) The bound follows directly from the fact that BA = 0 for some A ∈ A1,i and BA ≤ B − 3d1 for

all A ∈ A1,i by Lemma 3.4.

(e) In order to show the bound (3.11), we proceed along the following key claims:

(i) The bound (3.11) follows, if the set of agents A1,i \ {A1} together visit at least (B −

3d1)/2 distinct vertices in Ti or if there is an agent in A1,i \ {A1} that does not visit

another subtree.

(ii) The bound (3.11) holds if Case II (b) occurs.

(iii) For Case II (c), the agents in

(
Ai,1 \ {A1}

)
∪ Ai,2 need to visit at least (B − 3d1) +∑

A∈Ai,2
(BA/2 + 2) vertices in Ti for Ti to be completely explored. Some of these ver-

tices may have already been explored by agent A1.

(iv) Let V1 be the set of vertices visited by A1. Further let e2 be the number of vertices

explored by the agents in Ai,2 that are not contained in V1 and n2 be the total number

of vertices visited by the agents in Ai,2 that are contained in V1. Then it holds that

e2 + n2/2 ≤
∑

A∈Ai,2
(BA/2 + 2).

(v) The claims (iii) and (iv) yield the bound (3.11) if Case II (c) occurs.

We now show each of the above claims.
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(i) By Lemma 3.4 (b), we know thatA1 cannot visit another subtree, i.e., BA1
= 0, as Case II (b)

or Case II (c) occurs when A2 enters Ti . If there exists another agent A′ ∈ A1,i such

that BA′ = 0, then the claim follows directly from the fact that BA ≤ B − 3d1 for all

A ∈ A1,i \ {A1,A
′} by Lemma 3.4. So assume that for every A ∈ A1,i \ {A1}, BA > 0

holds, i.e., every agent in A1,i \ {A1} visits two subtrees and the agents in A1,i \ {A1}

together visit at least (B − 3d1)/2 distinct vertices in Ti . As every agent A in A1,i \ {A1}

visits a distinct subtree after Ti , A traverses every edge in Ti an even number of times.

Thus at least B − 3d1 energy is needed to visit (B − 3d1)/2 distinct vertices. But then we

already have ∑
A∈A1,i \{A1 }

BA ≤ (|A1,i \ {A1}| − 1) · (B − 3d1),

as every agent spends an additional 3d1 energy to first reach Ti and then the second

subtree. This implies (3.11).

(ii) The budget of Ti is increased by (B + d2)/2 − d1 + 2∆ when A1 enters Ti , but this is also

the maximum number of vertices that A1 can explore by Lemma 3.4. Similarly, for every

agent A ∈ A2,i the budget is increased by BA/2+ 2 and the agent can also explore at most

BA/2 + 2 vertices by Lemma 3.4. Note that when A2 enters Ti , the adaptive tree rooted

atv(1)i becomes passive, and thus agents not enteringv(2)i can collectively explore at most ∆

vertices after A2 enteredTi . We claim that if no agent fromA1,i \ {A1} enters v
(2)

i , thenTi

cannot be explored. Indeed, there are ∆ paths starting from v(1)i and ∆ paths starting

from v(2)i . When the budget Ni is depleted, the agents must have explored Ni vertices that

are not leaves, and consequently, |Ti | ≥ Ni + 2∆. Since the agents from A2,i ∪ {A1} can

explore at most Ni − 2 vertices, the agents fromA1,i \ {A1} have to explore at least 2∆+ 2

vertices in Ti . Consequently, at least one agent A
′
from A1,i \ {A1} has to visit v

(2)

i and

thus BA′ = 0 as d1 + 2d2 ≥ B by (3.6). By (i), this yields (3.11).

(iii) As Case II (c) occurs when A2 entersTi , agent A1 has not enough energy to reach a vertex

at depth d2 via an unexplored vertex. We first show that then A1 never visits a vertex at

depth d2 + 1 (it is clear by assumption thatA1 never explores a vertex at depth d2 or below,

but A1 could still visit a vertex at depth d2 + 1 on a path that was explored by another

agent). If any agent A from Ai,2 explores a vertex v at depth d2 in Ti , then it must have

spend at least 2d1 energy to reach the tree it visited before Ti and then come back to the

root and another d2 energy to reach v . We have B − 2d1 − d2 ≤ d2 − d1 as d1 + 2d2 ≥ B

by (3.6). Thus A has at most d2 − d1 energy left when it visits v at depth d2 and the path

of A ends by Case III in the construction of the lower bound. Therefore, A1 cannot reach

any vertex at depth d2 + 1 on a path that was explored by an agent from Ai,2 as this

path ends at depth d2 at the latest. Agent A1 also cannot visit a vertex at depth d2 + 1

that was explored by an agent in

(
Ai,1 \ {A1}

)
as this vertex would be unexplored at the

time A2 enters Ti and we assume that at this point A1 cannot reach an unexplored vertex

at depth d2.
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This means that A1 never visits any vertex at depth d2 + 1 and can therefore only

completely explore one path below v(1)i containing at most d2 − d1 + 1 vertices. All other

vertices visited by A1 that are not on that path have to be visited by other agents since

otherwise there is an unexplored vertex at the end of that path. For Ti to be completely

explored, the budget Ni must be completely depleted as otherwise the adaptive tree

below v(1)i remains active and there is an unexplored vertex in Ti by Lemma 3.4 (f).

Thus all Ni vertices, except for at most d2 − d1 + 1, need to be visited by the agents

in

(
Ai,1 \ {A1}

)
∪ Ai,2 for Ti to be completely explored. We have

Ni − (d2 − d1 + 1) ≥
B − d2

2

+
∑

A∈Ai,2

(
BA
2

+ 2

)
. (3.12)

Using, d1 + 2d2 ≥ B and d2 ≤ 5/3 · d1 by (3.6), we obtain

2B − 6d1 ≤ (d1 + 2d2) + B − 6d1 = 3d2 − 5d1 + (B − d2) ≤ B − d2.

This implies B − 3d1 ≤ (B − d2)/2 and together with (3.12) this yields the claim.

(iv) For an agent A ∈ Ai,2, let eA be the number of vertices in Ti that are explored by A

and not visited by A1. Moreover, let nA be the number of moves performed by agent A

in Ti increasing the distance from A to v(1)i while visiting a new distinct vertex in V1. We

show that eA + nA/2 ≤ BA/2 + 2. The claim then follows by using n2 =
∑

A∈Ai,2
nA and

e2 =
∑

A∈Ai,2
eA.

Consider the last time an agent A ∈ Ai,2 visits a vertex v at depth d and exactly has

enough energy to move tov(1)i (as B and d1 are even, this will happen at some point). Note

that A cannot reach any other path below v(1)i and that it can explore at most one vertex

as any unexplored vertex that A visits will have no further neighbor.

First, assume v is explored by A. By Case III in the construction of the lower bound,

the current path ends and v is a vertex without further neighbors. We can now assume

that A returns to v(1)i , as this does not change eA or nA. Then A has traversed every edge

in Ti an even number of times and we have eA + nA ≤ BA/2 + 1 and thus in particular,

eA + nA/2 ≤ BA/2 + 1 as nA ≥ 0.

Next, assume that v is not explored by A and also not visited by A1. If A would return

to v(1)i , then we can again argue that A traverses every edge an even number of times

and obtain eA + nA ≤ BA/2 because now we even know that the edge traversal to v was

neither an exploration move nor is v contained in V1. On the other hand, if A does not

return to v(1)i from v then it cannot visit any new vertex in V1 as A1 never visits v and

therefore also no vertex below v . Moreover, A can explore at most one additional vertex

because then the current path will end immediately. Overall, we therefore again obtain

eA + nA ≤ BA/2 + 1, which yields eA + nA/2 ≤ BA/2 + 1.

Finally, assume that v is not explored by A but visited by A1. Let e
′
A be the number of

vertices not visited byA1 and explored byA until the visit ofv with remaining energyd−d1

and analogously let n′A be the number of moves performed by agent A up to that time
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increasing the distance from A to v(1)i while visiting a new distinct vertex in V1. If A

would return to v(1)i with its remaining energy, it would have traversed every edge an

even number of times and we obtain e ′A + n
′
A ≤ BA/2 + 1. After visiting v agent A can

explore only at most one more vertex as then the path ends immediately. Thus, we have

eA ≤ e ′A+1. Asv is visited byA1, all vertices betweenv andv(1)i must also be visited byA1.

Hence, it holds that n′A ≥ d −d1. Moreover, after visiting v agent A only has d −d1 energy

left for visiting vertices in V1 implying nA − n
′
A ≤ d − d1. Overall, this yields

eA +
nA
2

≤ e ′A + 1 +
(d − d1) + n

′
A

2

≤ e ′A + 1 +
2n′A
2

≤
BA
2

+ 2.

(v) Let n1 be the total number of vertices in Ti visited by the agents in Ai,1 \ {A1}. We

assume n1 < (B − 3d1)/2 as otherwise the claim follows by (i). First of all, we must have

n1 + e2 ≥
∑

A∈Ai,2
(BA/2 + 2) as Ti contains at least Ni + ∆ vertices if it is completely

explored of which

∑
A∈Ai,2

(BA/2 + 2) are not visited by A1 by Lemma 3.4 (d). Using (iv),

this implies

(B − 3d1)/2 > n1 ≥
∑

A∈Ai,2

(BA/2 + 2) − e2 ≥ n2/2. (3.13)

By (iii), we must further have

n1 + n2 + e2 ≥ B − 3d1 +
∑

A∈Ai,2

(BA/2 + 2) (3.14)

for the budget Ni to be depleted and Ti completely explored. By (iv), we further have∑
A∈Ai,2

(BA/2 + 2) ≥ n2/2 + e2 and hence we obtain n1 + n2/2 ≥ B − 3d1 from (3.14). But

this implies n1 ≥ (B − 3d1)/2 as n2/2 < (B − 3d1)/2 by (3.13), which is a contradiction.

Theorem 3.6. There exists no c-competitive online exploration algorithm with c < (5+ 3
√
17)/8 ≈ 2.17.

Proof. Let Alg be an online exploration algorithm and let I be the instance defined above, i.e., the

tree T depending on Alg and the parameters l ,d1,d2 and B. Assume t of the l subtrees T1,T2 . . . ,Tl

are completely explored and for j ∈ {1, 2, 3} let kj := |
⋃

i ∈Mj
A1,i |.

We have Alg(I ) ≤ l · d1 +
∑l

i=1 Algi , as there are l paths with d1 edges each connecting the

root v0 to every subtree. We now apply (3.8) from Lemma 3.5 for all subtreesTi with i ∈ M1 ∪M2 and

Inequality (3.9) for all subtrees Ti with i ∈ M0 and additionally use that

⋃l
i=1A1,i ⊇

⋃l
i=1A2,i . This
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yields

Alg(I ) ≤ l · d1 +
l∑
i=1

Algi

≤ l · d1 +
∑

i ∈M1∪M2

©«B + d22

− d1 + 6∆ +
∑

A∈A2,i

BA
2

ª®¬
+

∑
i ∈M0

©«B + d22

− d1 + 4∆ + (|A1,i | − 2) ·
B − 3d1

2

+
∑

A∈A2,i

BA
2

−
∑

A∈A1,i

BA
2

ª®¬
≤ l ·

(
B + d2

2

+ 6∆

)
+

l∑
i=1

∑
A∈A2,i

BA
2

−
∑
i ∈M0

∑
A∈A1,i

BA
2

+
∑
i ∈M0

(|A1,i | − 2) ·
B − 3d1

2

≤ l ·

(
B + d2

2

+ 6∆

)
+ (k0 − 2|M0 |) ·

B − 3d1
2

+
1

2

∑
i ∈M1∪M2

∑
A∈A1,i

BA.

Now we can apply the Inequalities (3.10) and (3.11). We further use k0 + k1 + k2 ≤ k = 2l − 1,

|M0 | + |M1 | + |M2 | = l , t ≤ |M0 | + |M2 | and obtain

Alg(I ) ≤ l

(
B + d2

2

+ 6∆

)
+ (k0 − 2|M0 |) ·

B − 3d1
2

+
1

2

∑
i ∈M1

∑
A∈A1,i

(|A1,i | − 1) · (B − 3d1)

+
1

2

∑
i ∈M2

∑
A∈A1,i

(|A1,i | − 2) · (B − 3d1)

≤ l

(
B + d2

2

+ 6∆

)
+ (k0 + k1 + k2 − 2|M0 | − |M1 | − 2|M2 |)

B − 3d1
2

≤ l

(
B + d2

2

+ 6∆

)
+ (l − 1 − t)

B − 3d1
2

.

Next, we will give a lower bound on the number of vertices explored by an optimal offline

algorithm Opt. As there are 2l − 1 agents and l subtrees, there has to be a subtree Ti with |A1,i | ≤ 1.

Without loss of generality let this subtree be T1. By Lemma 3.4 the subtree T1 then has an unexplored

vertex u1 at depth at most d1 + ∆ and, in particular, is not completely explored, implying t < l .

For every subtree Ti that is not completely explored, let ui be an unexplored vertex in this tree.

We can just assume that every ui has degree 2l and 2l − 1 distinct paths of length B connected to it.

The optimal offline algorithm Opt can then send l − t agents each to one of the unexplored leaves ui

and then down one of the 2l − 1 distinct paths. These agents in total explore (l − t) · B vertices. All

other l − 1 + t agents are send to the unexplored vertex u1 in T1 and then each down one path which

is not taken by any other agent. These agents in total explore at least (l − 1 + t) · (B −d1 − ∆) vertices.

Overall, this yields

Opt(I ) ≥ (l − t) · B + (l − 1 + t) · (B − d1 − ∆) = (2l − 1) · B + (l − 1 + t) · (−d1 − ∆).

For the competitive ratio, we hence obtain

Opt(I )

Alg(I )
≥ min

t ∈{0, ...,l−1}

(4l − 2) · B + (2l − 2 + 2t) · (−d1 − ∆)

l · (B + d2 + 12∆) + (l − 1 − t)(B − 3d1)
.
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3.3 General Lower Bound on the Competitive Ratio

In order to maximize the term on the right-hand side, we want to choose d2 as small as possible.

Because of the initial assumptions on the parameters in (3.6), we must satisfy 2d2 + d1 ≥ B. We can

therefore choose d2 = (B − d1)/2 and get

Opt(I )

Alg(I )
≥ min

t ∈{0, ...,l−1}

(8l − 4) · B + (4l − 4 + 4t) · (−d1 − ∆)

l · (3B − d1 + 24∆) + (2l − 2 − 2t)(B − 3d1)
.

Note that since we assumed d2 ≤ 5d1/3, we need to have that B ≤ 13d1/3, i.e, d1 ≥ 3B/13. We also

need to satisfy 3d1 < B by (3.6) or equivalently d1 < B/3.

We now consider an infinite sequence of instances with the following parameters: For every i ∈ N,

let the energy B of the agents be B(i) := 2
2i
, the parameter l be l (i) := 2

i
and the depth d1 be d

(i)
1

:=

b1 · B
(i)

for some b1 ∈ (3/13, 1/3). Note that d
(i)
1

then satisfies 3d (i)
1
< B(i) < 13d (i)

1
/3 as required by

our initial assumptions on the parameters. Furthermore, we have

∆(i)

B(i)
=

⌈√
2l (i) · B(i)

⌉
+ 2l (i)

B(i)
i→∞
−−−−→ 0.

By dividing all terms in the numerator and denominator by l (i) · B(i) and using the property above,

we can compute

Opt(I )

Alg(I )
≥ min

t ∈{0, ...,l (i )−1}

(8l (i) − 4) · B(i) + (4l (i) − 4 + 4t) · (−d (i)
1
− ∆(i))

l (i) ·
(
3B(i) − d (i)

1
+ 24∆(i)

)
+ (2l (i) − 2 − 2t)(B(i) − 3d (i)

1
)

i→∞
−−−−→ inf

t ∈[0,1)

8 − 4b1 − 4b1 · t

3 − b1 + 2 − 6b1 − 2t + 6t · b1
.

Hence, we have that the competitive ratio ρAlg of the online algorithm Alg satisfies

ρAlg ≥ lim

i→∞

|Opt|

|Alg|
≥ inf

t ∈[0,1)

8 − 4b1 − 4b1 · t

3 − b1 + 2 − 6b1 − 2t + 6t · b1
.

We still have the freedom to choose b1 ∈ (3/13, 1/3) to maximize the term on the right-hand side, so

we even have

ρAlg ≥ sup

b1∈(3/13,1/3)
inf

t ∈[0,1)

8 − 4b1 − 4b1 · t

5 − 7b1 − 2t + 6t · b1
.

By standard calculus, we obtain that b1 =
−3
√
17+19
26

≈ 0.26 maximizes the infimum and satisfies

3/13 ≤ b1 ≤ 1/3. Finally, we get

ρAlg ≥
5 + 3
√
17

8

≈ 2.17.
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Chapter 4

Energy Efficient Delivery

In this chapter, we study the problem of moving a set of distinct messages from their current locations

to specific destinations by a team of mobile agents. In an application, a message could be some person

or object to be transported and a mobile agent some autonomous robot or vehicle. The messages can

be located at different initial locations and every message has a specific destination. Each mobile

agent consumes energy proportional to the distance it travels and the proportionality factor, i.e., the

efficiency of the agent, may be different for different agents. The different efficiencies of the agents

can be due to different power sources or technologies of the autonomous robot or vehicle, for instance.

The agents may carry several messages at the same time. However, there is a capacity κ bounding the

number of messages an agent can carry simultaneously. We model the environment as a weighted

undirected graph, where the initial position and destination of every message is specified as a source-

target pair. Previous work on energy-efficient delivery of messages studied agents with different

energy budgets, i.e., bounds on the overall energy an agent can spend traversing the environment,

but with the same energy efficiency [Cha+13; Cha+14; Bär+16].

In our setting, which we refer to as WeightedDelivery, the energy of an agent is unlimited,

and we study the problem of delivering all messages to their destinations while minimizing the total

energy consumption. In this chapter, we focus on one aspect of theWeightedDelivery problem,

namely we investigate how much the agents can benefit by collaborating on delivering messages

compared to the case that everymessage is delivered by only one agent. We call the best approximation

factor achieved by an algorithm using only one agent for delivering every message the benefit of

collaboration (BoC).

Contributions and Outline. We start by giving a formal introduction of the model in Section 4.1.

Afterwards, in Section 4.2, we construct an instance showing that no algorithm that delivers every

message by only one agent can achieve an approximation factor better than ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) )−1
,

where r is the minimum of the agent capacity κ and number of messages µ. For a single message

this implies a lower bound of 1/ln 2 on the benefit of collaboration, whereas for arbitrary large agent

capacity and number of messages this lower bound converges to 2. In Section 4.3, we show how to
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transform an optimal solution of the message delivery problem to a solution where every message

is transported by only one agent while the cost is at most twice the cost of the original solution.

This implies a general tight upper bound of 2 on the benefit of collaboration for arbitrary capacities

and numbers of messages. Additionally, for the special case of one message, we give a different

transformation showing a tight upper bound of 1/ln 2 ≈ 1.44.

Further Results. Other aspects of the delivery problem, which we do not cover in this chapter,

were presented in [Bär+17]. The authors showed that for a single message an optimal solution can be

found in O(|V |3), independently of the number of agents k . However, for more messages it is shown

that already the subproblem of planning in which order an agent delivers a set of messages is NP-hard

on planar graphs, but it can be 2-approximated in polynomial time if agents have capacity κ = 1

and do not collaborate. It is further shown that the coordination aspect of WeightedDelivery, i.e.,

deciding which agent delivers which subset of messages, is NP-hard, but can be efficiently solved

if the agents have the same efficiency. Combining the approximation results and the bound on the

benefit of collaboration yields a polynomial-time (4max
αi
α j
)-approximation for message delivery with

unit capacities, where max
αi
α j

is the maximum ratio between the different energy consumption rates

of the agents.

Bibliographic Information. The results presented in this chapter are joint work with Andreas

Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Daniel Graf, and Paolo Penna, and have been

published in [Bär+17].

4.1 Terminology and Model

We model the environment as an undirected labeled and edge weighted graph G = (V ,E). Every

edge e = {u,v} ∈ E has a length denoted by w(e) ∈ R≥0. The length of a walk is the sum of the

edge lengths along the walk. The distance between a vertex u and a vertex v is the length of a

shortest path from u to v in G and denoted by dist(u,v). There is a set A of k mobile agents denoted

by A1, . . .Ak initially located at arbitrary vertices v(1)
0
, . . . ,v(k )

0
ofG . The agents have a complete map

of the graph and can communicate globally. Each agent Ai has a weight αi > 0, which is the rate of

energy consumption per unit distance traveled by the agent, i.e., every time agent Ai traverses an

edge e ∈ E it incurs an energy cost of αi ·w(e). Note that a higher weight αi of an agent implies a

higher rate of energy consumption and therefore a lower efficiency. Hence, 1/αi can be interpreted

as the efficiency of the agent. Moreover, there is a set of µ messages M to be delivered. For every

message j ∈ M there is a pair (sj , tj ) giving the source vertex sj ∈ V and target vertex tj ∈ V of

message j . A message at a vertex v can be picked up by any agent located at v . It can be carried by an

agent to any other vertex ofG and dropped there. A message j ∈ M is delivered if it is dropped by an

agent at its target vertex tj . Furthermore, the agents have a capacity κ ∈ N∪ {∞}, which is a limit on

the number of messages an agent can carry simultaneously. We do not impose any restriction on how
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far an agent may travel and let di denote the total distance traveled by agent Ai , i.e., the length of the

walk performed by Ai in G. We call a feasible solution S to an instance I of the WeightedDelivery

problem a schedule. A schedule is a complete description of the agents trajectories, including all

message pick-up and message drop-off actions and times. The cost of a schedule S for an instance I is

the total energy consumption of the agents, i.e., c(S, I ) :=
∑k

i=1 αidi . The goal is to find a schedule S

minimizing the total energy c(S, I ) needed to deliver all messages of instance I .

4.2 Lower Bound on the Benefit of Collaboration

In this section, we construct an instance showing a lower bound on the approximation ratio by an

algorithm using only one agent for delivering every message. For our construction, we make use of

the fact that the agents have different starting locations and they can finish at any vertex of the graph.

Due to different agent efficiencies it may therefore be cheaper that an agent close to the message

source first transports a message before handing it over to another agent with a better efficiency

compared to the case that the message is transported the whole time by only the agent with the better

efficiency. In general, it can even be the case that an agent hands over the message to a less efficient

agent if there are multiple messages and capacity constraints for the agents.

Theorem 4.1. On instances ofWeightedDelivery with agent capacity κ and µ messages, an algorithm

using one agent for delivering every message cannot achieve an approximation ratio better than

1

ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) ) ,
where r := min{κ, µ}.

Proof. The instance I showing the lower bound is constructed as follows: Consider the graph G =

(V ,E) given in Figure 4.1, where the lengthw(e) of every edge e ∈ E is 1/t . This means thatG is a star

graph with centervt,0 and r+1 paths of total length 1 each. We have r messages andmessage j needs to

be transported fromv0, j tov2t,0 for j = 1, . . . , r . There further is an agentAi, j withweightαi, j =
2r

2r+i/t

starting at every vertex vi, j for (i, j) ∈ ({0, . . . , t − 1} × {1, . . . , r }) ∪ ({t , . . . , 2t} × {0}).

We first show the following: If any agent transports s messages from their sources to their

destinations, then this incurs a cost of at least 2s . Note that this implies that any schedule S for

delivering all messages by the agents such that every message is only carried by one agent satisfies

c(I , S) ≥ 2r .

So let an agent Ai, j transport s messages from the sources to the destination v2t,0. Without loss of

generality let these messages be 1, . . . , s , which are picked up in this order. By construction, agentAi, j

needs to travel a distance of at least i/t to reach message 1, next a distance of 1 to move back to vt,0,

then a distance of 2 for picking up message j and going back to vt,0 for j = 2, . . . , s . Finally it needs to

move a distance of 1 fromvt,0 tov2t,0. Overall, agentAi, j therefore travels a distance of at least 2s +
i
t .

93



Chapter 4. Energy Efficient Delivery

v0,1

v0,2

v0,r

v1,1

v1,2

v1,r

vn−1,1

vt−1,2

vt−1,r

vt,0 vt+1,0 v2t,0

Figure 4.1: Lower bound construction for the benefit of collaboration.

The overall cost for agent Ai, j to deliver the s messages therefore is at least(
2s +

i

t

)
· αi, j =

(
2s +

i

t

)
·

2r

2r + i/t
≥

(
2s +

i

t

)
·

2s

2s + i/t
= 2s .

Now, consider a schedule Scol, where the agents collaborate, i.e., agent Ai, j transports message j

from vi, j to vi+1, j for j = 1, . . . , r , i = 0, . . . , t − 1, where we identify vt, j with vt,0. Then agent Ai,0

transports all r messages from vi,0 to vi+1,0 for i = t , . . . , 2t − 1. This is possible because r ≤ κ by the

definition of r . The total cost of this schedule is given by

c(I , Scol) = r ·

∫
1

0

fstep(x) dx +

∫
2

1

fstep(x) dx ,

where fstep(x) is a step-function defined on [0, 2] giving the current cost of transporting the message,

i.e., fstep(x) =
2r

2r+i/t on the interval [i/t , (i + 1)/t) for i = 0, . . . , 2n − 1. The first integral corresponds

the first part of the schedule, where the r messages are transported separately and therefore the cost

of transporting message j from vi, j to vi+1, j is exactly
∫ (i+1)/t
i/t fstep(x) dx =

1

t ·
2r

2r+i/t . The second part

of the schedule corresponds to the part, where all r messages are transported together by one agent

at a time.

Observe that the function f (x) = 2r · 1

2r−1/t+x satisfies f (x) ≥ fstep(x) on [0, 2]. Hence, we obtain

c(I , Scol) ≤ r

∫
1

0

f (x) dx +

∫
2

1

f (x) dx = 2r ·

(
r ln(2r − 1/t + x)

���1
0

+ ln(2r − 1/t + x)
���2
1

)
= 2r · ln

((
2r − 1/t + 1

2r − 1/t

)r (
2r − 1/t + 2

2r − 1/t + 1

))
t→∞
→ 2r · ln

((
1 +

1

2r

)r (
1 +

1

2r + 1

))
.

The best approximation ratio of an algorithm that transports every message by only one agent

compared to an algorithm that uses an arbitrary number of agents for every message is therefore

bounded from below by

BoC ≥
c(I , S)

c(I , Scol)
≥

2r

2r · ln
( (
1 + 1

2r

)r (
1 + 1

2r+1

) ) = 1

ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) ) .
By observing that limr→∞ ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) )−1
= ln

(
e1/2

)−1
= 2, we obtain the following

corollary.

Corollary 4.2. An algorithm forWeightedDelivery delivering every message by a single agent cannot

achieve an approximation ratio better than 2 in general, and better than 1/ln 2 ≈ 1.44 for a single

message.
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4.3 Upper Bounds on the Benefit of Collaboration

In this section, we show a general upper bound on the benefit of collaboration of 2 and an upper

bound of 1/ln 2 for the case of one message. Our proof of the upper bound of 2 transforms an optimal

schedule SOpt for an instance I to a schedule S where every message is transported by only one

agent and c(I , S) ≤ 2 · c(I , SOpt), see Theorem 4.3. Note that this result does not yield an efficient

algorithm. In fact, finding an optimal schedule in which every message is transported by only one

agent, is still NP-hard, as shown in [Bär+17]. But the result is an important part in designing the

polynomial-time (4max
αi
α j
)-approximation forWeightedDelivery with unit capacities. However,

for only one message the simple greedy strategy of choosing the cheapest agent to deliver the message

yields an efficient algorithm with an approximation factor of 1/ln 2, see Theorem 4.4. In this special

case of one message, it is also possible to find an optimal solution in polynomial time, see [Bär+17].

Theorem 4.3. Let SOpt be an optimal schedule for a given instance I ofWeightedDelivery. Then there

exists a schedule S such that every message is only transported by one agent and c(I , S) ≤ 2 · c(I , SOpt).

Proof. We can assume without loss of generality that in the optimal schedule SOpt for instance I every

message j ∈ M is transported on a path from its starting point sj to its destination tj . This can be

easily achieved by letting agents drop a message at an intermediate vertex if it would otherwise be

transported in a cycle. We now define the directed multigraph GOpt = (V ,EOpt Û∪ ĒOpt) as follows:

• V is the set of vertices of the original graph G.

• For every time in the optimal schedule that an agent traverses an edge {u,v} from u to v while

carrying a set of messages M ′ ⊆ M , we add the arc e = (u,v) to EOpt and ē = (v,u) to ĒOpt.

Note that we can have M ′ = ∅ if the agent carries no messages. We further label both edges

with the set of messagesM ′ and writeMe := Mē := M ′ to denote these labels. We call the edges

in EOpt original edges and the edges in ĒOpt reverse edges.

We say that a schedule S in GOpt for an agent A satisfies the edge labels, if every original edge e ∈

EOpt is traversed at most once by A and only while carrying exactly the set of messages Me , and

every reverse edge ē ∈ ĒOpt is traversed by A at most once and without carrying any message. We

further identify a schedule S inGOpt with the schedule S ′ inG by replacing the traversal of a directed

edge e = (u,v) in GOpt by the traversal of the corresponding edge {u,v} in G.

The idea of the proof is as follows: By construction, every strongly connected component in

the graphGOpt is Eulerian as the in-degree and out-degree of every vertex are the same. We show

that an agent can follow some Eulerian tour that allows to deliver all messages, i.e., a Eulerian tour

that satisfies the edge labels. In particular, the agent needs exactly twice as many moves as the total

number of moves of all agents in the component in SOpt. By choosing the cheapest agent (in terms of

weight) in each component, we obtain a schedule S with c(I , S) ≤ 2 · c(I , SOpt).

By only considering a subset of the messages and a subschedule of SOpt, we may from now on

assume that GOpt is strongly connected (by construction, every connected component of GOpt is

strongly connected). We further letM(v) denote the set of messages currently at a vertexv and use the
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notation S ⊕ S ′ to denote the concatenation of a schedule S and a schedule S ′, i.e., first the schedule S

is executed and then S ′. The desired schedule is computed using the procedure computeTour() given

in Algorithm 4.1, which utilizes the subroutine fetchMessage() given in Algorithm 4.2. We proceed

along the following key claims:

1. Every edge traversal added to a schedule in computeTour() or fetchMessage() satisfies the

edge labels in GOpt.

2. The following invariants hold after every iteration of any of the two while-loops in compute-

Tour():

(i) Every strongly connected component of GOpt is Eulerian.

(ii) For every message j ∈ M currently at a vertex vj it holds that there is a simple path

from vj to tj in GOpt with edges in EOpt containing j in their labels, and a path in the

reverse direction with edges in ĒOpt containing j in their labels.

3. For every vertex v0 in GOpt, a call computeTour(GOpt,v0) terminates.

4. For every vertex v0 inGOpt, a call computeTour(GOpt,v0) returns a schedule corresponding to

a closed walk.

5. Combining the schedules of multiple calls of computeTour() yields a schedule S of GOpt for

an agent Amin that satisfies the edge labels in every step and corresponds to a Eulerian tour

of GOpt. The schedule S satisfies c(I , S) ≤ 2 · c(I , SOpt).

Note that the last claim shows our desired result. We now show each of the above claims.

1. It is an easy observation that every time a traversal of an edge e ∈ EOpt is added to a schedule

in computeTour() or fetchMessage(), the set of carried messages is Me . Similarly, every time

a traversal of an edge ē ∈ ĒOpt is added to a schedule, no messages are carried. Note that in the

second else-case in computeTour(), we haveMe = ∅ so this also holds in this case. Furthermore,

every time an edge is traversed, it is deleted from the graphGOpt so that every edge is traversed at

most once.

2. By construction, the graph GOpt is Eulerian at the beginning. As all messages are delivered in the

optimal schedule SOpt and they are transported on a path, also the second property holds at the

beginning.

If we assume that a call to fetchMessage() maintains these two properties, then it is easy to

see that the two properties are preserved in computeTour(): First of all, an original edge e ∈ EOpt

is always deleted together with the corresponding reverse edge ē ∈ ĒOpt and thus every strongly

connected component ofGOpt is still Eulerian. Moreover, an edge e = (u,v) and a reserve edge ē

are deleted if and only if the set of messagesMe is transported from u to v preserving the second

property. Note that if a message is delivered, then the empty path satisfies the second property.

What is left to show is that the properties are also preserved by a call fetchMessage(GOpt, j,v) in

computeTour(). Again, initially both properties hold by assumption. In the procedure fetchMes-

sage(), we first move on the path of reverse edge with j ∈ Mē from the current vertex v to the
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Algorithm 4.1: Compute schedule to deliver messages for agent starting at vertex v .

Input: graph GOpt, starting vertex v

Output: schedule S satisfying the edge labels, starting and ending at vertex v

1 function computeTour(GOpt,v)

2 S ← ⊥

3 while ∃ outgoing edge e = (v,w) ∈ EOpt do

4 if M(v) ⊇ Me then

5 S ← S ⊕ traversal of e carrying messagesMe

6 delete e, ē from GOpt and update positions of messagesMe in GOpt

7 S ← S ⊕ computeTour(GOpt,w)

8 S ← S ⊕ traversal of ē carrying no messages

9 else

10 let j ∈ Me \M(v)

11 S ← S ⊕ fetchMessage(GOpt, j,v)

12 while ∃ outgoing edge ē = (v,w) ∈ ĒOpt do

13 if ∃ j ∈ Mē then

14 S ← S ⊕ fetchMessage(GOpt, j,v)

15 else

16 S ← S ⊕ traversal of ē carrying no messages

17 delete e, ē from GOpt

18 S ← S ⊕ computeTour(GOpt,w)

19 S ← S ⊕ traversal of e carrying no messages

20 return S

current location vj of message j while deleting the reverse edges. Afterwards, we move from vj

on the path of original edges with j ∈ Me back to v while deleting the original edges. Ignoring

further recursive calls of fetchMessage(), this means that for every original edge also the reverse

edge is deleted. Furthermore, message j is moved to vertex v and thus there again is a path from

the current position of message j to tj in GOpt with edges in EOpt containing j in their labels, and

a path in the reverse direction with edges in ĒOpt containing j in their labels. As this holds for

every level of recursive calls of fetchMessage(), every strongly connected component of GOpt

again is Eulerian and also the second property holds after all recursive calls of fetchMessage()

are finished.

3. We show that a call computeTour(GOpt,v0) terminates for every vertex v0 in GOpt. First, observe

that a call to fetchMessage() always leads to some progress as the procedure is only called, if a

message j is not at the current vertex so at least one edge is deleted fromGOpt in the first while-loop

(unless the procedure gives up). Similarly, for every call of computeTour() either an edge e and
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Algorithm 4.2: Compute schedule for transporting message j to current vertex v .

Input: graph GOpt, message j, current vertex v

Output: schedule S transporting message j to vertex v

1 function fetchMessage(GOpt, j,v)

2 S ← ⊥

3 vcur ← v

4 while j < M(vcur) do

5 if ∃ outgoing edge ē = (vcur,w) ∈ ĒOpt with j ∈ Mē leaving the current vertex then

6 S ← S ⊕ traverse ē carrying no messages

7 delete ē from GOpt

8 vcur ← w

9 else

10 give up

11 while vcur , v do

12 let e = (vcur,w) ∈ EOpt with j ∈ Me

13 if M(vcur) ⊇ Me then

14 S ← S ⊕ traversal of e carrying messagesMe

15 delete e from GOpt and update positions of messagesMe in GOpt

16 vcur ← w

17 else

18 let j ′ ∈ Me \M(vcur)

19 S ← S ⊕ fetchMessage(GOpt, j
′,vcur)

20 return S

the corresponding reserve edge ē are deleted from GOpt or fetchMessage() is called and also at

least one edge is deleted. Thus, there cannot be an infinite sequence of recursive calls as always

edges from GOpt are deleted.

We therefore only have to show that the case “give up” in fetchMessage() cannot occur.

Assume, for the sake of contradiction, that this case occurs in a call fetchMessage(GOpt, j,v). This

means that at a vertex v∗ in the first while-loop, there is no edge ē ∈ ĒOpt with a label containing

message j and v∗ also does not contain the message j. By construction of GOpt, the vertex v
∗

must be on the path that message j takes from its start sj to its destination tj in the optimal

schedule SOpt and thus initially there must have been an outgoing edge ē = (v∗,w) ∈ ĒOpt at v
∗

with j ∈ Mē that was traversed and deleted. If the corresponding original edge e = (w,v∗) ∈ EOpt

were already traversed and deleted, then message j would have reachedv∗ as edge labels are obeyed

by Claim 1. This contradicts that in the current call fetchMessage(GOpt, j,v) the first while-loop

has not terminated because we have not encountered message j. Thus, the current setting is
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sj w v∗ v tj
e ∈ Es

ē ∈ ĒOpt

(deleted)

Figure 4.2: Path that message j ∈ M is transported in graph GOpt according to SOpt.

as shown in Figure 4.2. The edge ē cannot have been deleted in a call computeTour(GOpt,v
∗
),

as then e would also be deleted. Thus, ē must have been traversed and deleted during a call

fetchMessage(G(1)
Opt
, j1,v1) before as message j is transported on a path. We claim that this call is

not completed. Indeed, if the call were already completed, the original edge e would have been

traversed and deleted.

As we established that the call fetchMessage(G(1)
Opt
, j1,v1) is not complete, there must be a ver-

tex v2 and a message j2 missing at this vertex to further carry j1 on its paths to the destination, and

a call fetchMessage(G(2)
Opt
, j2,v2), which is also incomplete. By iterating this argument, we obtain

that the current stack of functions is fetchMessage(G(s)
Opt
, js ,vs ), . . ., fetchMessage(G(1)

Opt
, j1,v1)

for some s ∈ N, where js = j and vs = v . In the optimal schedule SOpt the message j2 needs

to be transported to v2 before j1 can be further transported from v2 together with j2. Similarly,

message jr needs to be transported to vr before message jr−1 can be transported further together

with message jr from vr for r = 2, . . . , s . In particular, this implies that message js = j needs to

be transported to v (via v∗) before j1 can be transported further. Hence, also in SOpt message j is

transported to v before j1 is transported further. But this contradicts that j, j1 ∈ Me , i.e., in SOpt the

messages j and j1 are transported together along the edge e . Therefore computeTour() terminates.

4. Next, we show that in fact all function calls of computeTour() and fetchMessage() in the call

computeTour(GOpt,v0) return a schedule corresponding to a closed walk. Note that by Claim 3,

all these function calls terminate. For fetchMessage(), the second while-loop only terminates

if the current vertex is again the initial vertex v . Thus, fetchMessage() clearly returns a closed

walk.

For the procedure computeTour() we show that after every iteration of any of the while-loops

the current schedule S corresponds to a closed walk. Initially, S is the empty schedule and clearly

corresponds to a closed walk. If in the iteration of the while-loop we add the schedule returned

by a call of fetchMessage() to S , then S still corresponds to a closed walk as the added schedule

corresponds to a closed walk. Otherwise, first the traversal of an edge e , then the schedule returned

by a recursive call of computeTour() and finally the traversal of the reverse edge ē is added to

the current schedule S . By a simple induction over the recursion depth, we can assume that the

schedule returned by the recursive call of computeTour() corresponds to a closed walk so that

again S corresponds to a closed walk as we traverse the reverse edge ē after traversing e . This

means that also the call computeTour(GOpt,v0) return a schedule corresponding to a closed walk.

5. Let Amin be an agent with minimum weight among the agents that move in SOpt, let v0 be the

starting vertex of Amin and let T be the schedule resulting from a call computeTour(GOpt,v0).
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Assume that T does not traverse all edges of GOpt. Let v be the last vertex visited on the tour of

Amin according to the schedule T that is is incident to an edge of GOpt, which is not traversed.

Further, let vj be the position of message j after the schedule T is finished and G ′
Opt

be the

graph GOpt after the call of computeTour(GOpt,v0), i.e., without the edges deleted in the call

computeTour(GOpt,v0) and message j at position vj instead of sj . We want to show that we

can add the schedule T ′ returned by a call computeTour(G ′
Opt
,v) to the schedule T as follows:

First Amin follows T until the last time it visits v , then it follows T ′, and finally the remaining part

of T .

The graphG ′
Opt

is a feasible input to computeTour() as both properties of Claim 2 are satisfied.

By the previous claims, computeTour(G ′
Opt
,v) will produce a schedule T ′ corresponding to a

closed walk that satisfies the edge labels. The only problem that can occur when combining the

schedules T and T ′ therefore is that there is a message j such that Amin visits vj to transport

message j further, but message j has not arrived at vj as the schedule T is not complete. But this

would mean that vertex vj is visited in the schedule T (in order to transport message j to vj ) after

the last time v is visited by the schedule T . However, by the choice of v , all edges incident to vj

must be visited and deleted by the schedule T when Amin starts the schedule T
′
. This contradicts

that vj is visited in the schedule T ′.

By iterative applying the above argument, we obtain a schedule S , which traverses all edges

in GOpt while satisfying the edge labels as well as starts and ends at v0. As Amin is the agent with

minimum weight αmin, we have

2 · c(I , SOpt) ≥
∑

e=(v,w )∈EOpt Û∪ĒOpt

w({v,w}) · αmin = c(I , S).

For the case of a single message, we can improve the upper bound of 2 on the benefit of collabora-

tion from Theorem 4.3 to a tight bound of 1/ln 2 ≈ 1.44.

Theorem 4.4. There is a (1/ln 2)-approximation algorithm using a single agent forWeightedDelivery

with one message.

Proof. By running an algorithm for the all-pairs shortest path problem, such as the Floyd-Warshall

algorithm [CLR89, Chapter 25], we can efficiently determine the agent that can transport the message

from s to t with lowest cost in an instance I . We need to show that this is at most 1/ln(2) the cost of

an optimum using all agents.

Fix an optimum schedule SOpt for instance I and let the agents A1,A2, . . . ,Ak be labeled in the

order in which they transport the message in this optimum solution (ignoring unused agents). We

first show that we can without loss of generality assume that αi > αi+1 holds for all i ∈ {1, . . . ,k − 1}.

Assume that we have αi ≤ αi+1 for some i ∈ {1, . . . ,k − 1}. Then the part of the message transport

carried out by agent Ai+1 in SOpt can be taken over by agent Ai . Since we have αi ≤ αi+1, the cost of

the schedule does not increase and thus is still optimal.

By scaling the edge length and agent weights, we can further assume without loss of generality

that αk = 1 and that the total distance traveled by the message is 1. Now, for each point x ∈ [0, 1]
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x
1x∗

α j∗

b
x+1

f (x)

Figure 4.3: Choosing the largest b such that
b

x+1 is a lower bound on the step-function f representing

the weight of the agent currently transporting the message.

along the message path there is an agent Ai with cost αi carrying the message at this point in the

optimum schedule and we can define a function f with f (x) = αi . The function f is a step function

that is monotonically decreasing as α1 > α2 > . . . > αk . We further have f (0) = α1 and f (1) = αk = 1.

We now choose the largest b ∈ [0, 1] such that f (x) ≥ b
x+1 , see Figure 4.3.

Note that b ≥ 1 as f (x) ≥ 1 ≥ b
x+1 for b = 1 and all x ∈ [0, 1]. Further, let дi be the distance

traveled by agent Ai without the message and д :=
∑k

i=1 дiαi the total cost for the distances traveled

by all agents without the message. We obtain the following lower bound for an optimum solution

c(I , SOpt) =

∫
1

0

f (x) dx + д ≥

∫
1

0

b

x + 1
dx + д = b ln(2) + д.

By the choice of b, the functions f (x) and b
x+1 coincide in at least one point in the interval [0, 1].

Let this point be x∗ and Ai∗ be the agent carrying the message at this point. This means that

f (x∗) = b
x ∗+1 = αi∗ . We will show that it costs at most c(I , SOpt)/ln(2) for agent Ai∗ to transport the

message alone from s to t . The cost for agent Ai∗ to reach s is bounded by дi∗αi∗ + x
∗ · αi∗ and the

cost for transporting the message from s to t is bounded by αi∗ . Thus, the cost of a schedule S using

only one agent can be bounded by

c(I , S) ≤ дi∗αi∗ + x
∗ · αi∗ + αi∗ = дi∗αi∗ + (x

∗ + 1) ·
b

x∗ + 1
= b + дi∗αi∗ .

By using that дi∗αi∗ ≤ д, we finally obtain

c(I , S)

c(I , SOpt)
≤

b + дi∗αi∗

b ln(2) + д
≤

b

b ln(2)
=

1

ln(2)
.
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In this thesis, we studied algorithms and lower bounds for two different exploration problems and a

delivery problem involving multiple agents.

In Chapter 2, we proved that for a single agent with constant memory Θ(log logn) pebbles are

both necessary and sufficient for exploring any undirected graph with n vertices. We also showed

that Θ(log logn) agents with constant memory each are necessary and sufficient for the same task.

Thus, in this setting collaborating agents are not more powerful than pebbles. An interesting question

for future research is if this is still the case if we strengthen the power of the agents or weaken the

power of the pebbles. It is for example still an open problem how many indistinguishable pebbles are

necessary to explore any graph with n vertices by an agent with constant memory. For our algorithm,

it is essential that the pebbles are distinguishable and, in particular, pebbles from different levels of

the recursion can be distinguished by the agent. A simple way to simulate p distinguishable pebbles

by indistinguishable pebbles is to identify pebble i ∈ {1, . . . ,p} with a set of 2
i
indistinguishable

pebbles. However, we then need 2
p
indistinguishable pebbles to simulate p distinguishable pebbles

and we would obtain an algorithm for the exploration of an undirected graph for a single agent with

constant memory and O(logn) indistinguishable pebbles. The question is if this exponential overhead

for indistinguishable pebbles is really necessary. The other direction would be to ask if the lower

bound construction can be adapted to agents that can communicate globally or maybe even agents

that can jump to any other agent during the exploration. In our recursive construction, we need

the fact that the communication can only happen locally. For instance, we need that the state of a

single agent traversing a 1-barrier without meeting any other agent quickly repeats and cannot be

influenced by the other agents communicating to it.

In Chapter 3, we presented a 3-competitive algorithm and a lower bound of 2.17 on the competitive

ratio for exploring a maximum number of vertices by a fixed set of agents with fixed energy budget B.

The obvious open problem is to close the gap between the upper and lower bound on the competitive

ratio. As the analysis of the algorithm is tight, a new idea would be necessary to improve the upper

bound of 3. The construction of the lower bound of 2.17 is quite involved and we did not find any

other easier construction that improves upon the simple lower bound of 2. Another interesting

question is what happens if we only allow local communication. There seems to be no easy way

to transform our algorithm to an algorithm using only local communication while still obtaining

a constant competitive ratio. It may be worth to first consider the simpler algorithm presented
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in [Bam+17a] with competitive ratio 7.47 for an extension to local communication. It would also

be interesting if a stronger lower bound could be obtained if we only allow local communication.

In the similar model considered in [DDK15], the authors gave a Θ(logB)-competitive algorithm

for minimizing the number of agents with energy budget B for the case of local communication.

However, for the case of global communication it is an open question if the competitive ratio can be

improved to a constant. Our algorithm as well as the algorithms considered for the related energy

efficient exploration problems in [DKS06; DDK15] only work for trees. Thus, an important questions

is whether labeled graphs are inherently more difficult to explore than trees in these models. This

question is also open for other collaborative exploration models, such as minimizing the exploration

time by multiple agents as introduced in [Fra+06a].

In Chapter 4, we showed that an optimal solution to the weighted delivery problem can be 2-

approximated by a solution, in which every message is only transported by a single agent. As a

lower bound, we construct an instance showing that no algorithm that delivers every message by

only one agent can achieve an approximation factor better than ln

( (
1 + 1

2r

)r (
1 + 1

2r+1

) )−1
, where

r is the minimum of the agent capacity κ and number of messages µ. Asymptotically, we hence

obtain a tight result as this ratio tends to 2 if the agent capacity and number of messages become

arbitrarily large. The open question is if it is possible to close the gap in general, i.e., improve

the lower bound construction or give an improved approximation algorithm for a small number

of messages or small agent capacities. We presented a tight algorithm for the case of one message

with an approximation factor of 1/ln 2 ≈ 1.44. A starting point could be to investigate if it is also

possible to obtain an improved algorithm for the case of agent capacity κ = 1 or two messages, for

instance. An improved algorithm for the case of κ = 1 could also improve the approximation ratio of

the polynomial-time (4max
αi
α j
)-approximation algorithm for message delivery with unit capacities

presented in [Bär+17]. Furthermore, it would be interesting to generalize the latter approximation

algorithm to agent capacities other than 1.
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