EFFICIENT GRAPH EXPLORATION

Jan Hackfeld

Efficient Graph Exploration

vorgelegt von
M. Sc. Jan Hackfeld

von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
- Dr. rer. nat. -
genehmigte Dissertation

Promotionsausschuss
Vorsitzende: Prof. Dr. Noemi Kurt
Gutachter: Prof. Dr. Yann Disser
Prof. Dr. Max Klimm
Prof. Dr. Friedhelm Meyer auf der Heide
Prof. Dr. Martin Skutella

Tag der wissenschaftlichen Aussprache: 12. Oktober 2018

Acknowledgments

Writing this thesis would not have been possible without the support of many people to whom I want to express my gratitude at this point.

First of all, I want to thank my supervisors Yann Disser und Max Klimm for their guidance, encouragement and support. I had an awesome time working together with you. Our discussions gave me a lot of helpful insight as well as motivation. Your feedback was very valuable for me to improve my written and verbal presentations of research. I also really appreciated the "non-scientific" time we spend together during many lunches, coffee breaks or legendary game nights playing Kreml.

I would like to thank Friedhelm Meyer auf der Heide and Martin Skutella for agreeing to be referees for this thesis. Moreover, I am happy that Noemi Kurt agreed to be head of the committee.

I am grateful to Jérémie and Shantanu for their invitation to a research stay in Marseille for two weeks. I had a great time working together with you, as well as with Evangelos and Christina. Many thanks also for showing me nice places and delicious food in Marseille and to Jérémie for taking me to the ultimate frisbee training. I further want to thank Peter Widmayer for his invitation to Zürich and my other coauthors Andreas, Daniel and Paolo for a very pleasant and productive collaboration.

A big contribution to my well-being was the great atmosphere at the COGA group and its offspring group at HU Berlin. A big thanks to Martin Skutella and all my former and current colleagues for many fun philosophical discussions over lunch and coffee, a great time during group retreats, joint workshop or conference visits, creative hat making sessions, table football or game nights.

I am further grateful to Alexandra and Miriam for taking the time to proofread parts of this thesis.
Another important part of my academic life in Berlin was the Berlin Mathematical School (BMS). The unique international environment and numerous academic and non-academic activities have been great opportunities to have interesting discussions with people from all over the world and make new friends. I enjoyed contributing to this fruitful environment as a student representative and organizer of the BMS Student Conference. I also benefited from the financial support of the BMS for conference visits and from many excellent soft-skill trainings. I especially want to thank the BMS Office staff for all their work, which makes all this possible.

I am very grateful to the DFG SPP 1736 for the financial support that enabled my research and the generous support to attend conferences and summer schools. In particular I would like to thank Ulrich Meyer for his organizational work for the project and for promoting the PhD meetings and international summer schools.

I wish to thank my family for their love and support. You have nurtured my curiosity, always believed in me and encouraged me to continue on my path. I also want to thank my friends here in Berlin and all over the world for enriching my life and supporting me. Finally, I want to thank Alexandra for all her love.

So long, and thanks for all the coffee,

Contents

1 Introduction 1
1.1 Contributions and Outline 3
1.2 Preliminaries 4
1.3 Related Work 11
2 Space Efficient Graph Exploration 23
2.1 Agent Models 24
2.2 Exploration Algorithms 32
2.3 Lower Bounds 49
3 Energy Efficient Tree Exploration 65
3.1 Terminology and Model 66
3.2 Algorithm for Maximal Tree Exploration 67
3.3 General Lower Bound on the Competitive Ratio 75
4 Energy Efficient Delivery 91
4.1 Terminology and Model 92
4.2 Lower Bound on the Benefit of Collaboration 93
4.3 Upper Bounds on the Benefit of Collaboration 95
Conclusion 103
Bibliography 105

Chapter 1

Introduction

The first of these factors is the compelling urge of man to explore and to discover, the thrust of curiosity that leads men to try to go where no one has gone before. Most of the surface of the earth has now been explored and men now turn on the exploration of outer space as their next objective.
"Introduction to Outer Space", President’s Science Advisory Committee, 1958.

The exploration of an unknown environment is a central challenge in many applications ranging from searching the internet or a large set of linked data [Pen+12; Mir+13] to physical exploration of unknown terrain [BMS02; Plo+17] or even the universe [Mau03]. In this work, we consider an abstraction of the exploration problem and model the unknown environment as a graph. In many settings the environment is discrete (e.g., the webgraph describing links between pages of the World Wide Web) or it can be discretized (e.g., road networks) without losing the essence of the problem. Another perspective is to view exploration as an abstraction of a process of computing, where every node of the graph corresponds to a configuration (e.g., configuration of a Turing machine or a different model of computation), edges correspond to possible transitions between configurations, and the question is what configurations are reachable starting in a given initial configuration. In this context, graph exploration has a close connection to complexity theory and the study of the relationship between probabilistic and deterministic space-bounded algorithms [Sav73; CR80; Rei08].

The study of exploration in the context of theoretical computer science originates from investigating how to systematically search a labyrinth for an exit (imagine a garden maze with hedges). One of the first fundamental results in this direction was discovered here in Berlin by Budach, who showed that no finite automaton can find a way out of every finite labyrinth from any initial position [Bud75; Bud78]. Around the same time Shah showed that by utilizing five pebbles, that is, some additional markers than can be placed at arbitrary positions in the labyrinth and collected later, a finite automaton can search and find a way out of any finite labyrinth [Sha74]. This result was subsequently improved by Blum and Kozen who showed that two pebbles are already sufficient [BK78] and by Hoffmann who finally showed that this is best possible, i.e., one pebble does not suffice to search and

Chapter 1. Introduction

find a way out of any finite labyrinth [Hof81].
In the following decades the exploration of graphs, as a more abstract and general setting with less structure, was the focus of most research. In these settings typically one or more so-called mobile agents or robots have to deterministically visit all vertices of a given unknown graph. A large variety of different exploration problems have been considered, differing mainly in the class of graphs to be explored, the ability of the agent(s) and the objective function. While single agent exploration has been intensively studied for a long time and is by now quite well understood, exploration involving multiple agents has only received more attention rather recently. The communication between and coordination of multiple robots adds another level of complexity to the exploration problem, yielding many interesting open problems in this field of research.

The main focus of this dissertation is to investigate the collaboration of agents that move in a graph and have to jointly perform a certain task. We study the memory requirement and energy efficiency of collaborating agents exploring a graph and the closely related problem of energy efficient delivery by collaborating agents. The three topics covered in this dissertation are:

Space Efficient Graph Exploration. We study the problem of deterministically exploring an undirected and initially unknown graph with n vertices either by a single agent equipped with a set of pebbles or by multiple collaborating agents. Our goal is to understand how the memory requirement decreases compared to the case of single agent exploration as the agent may mark vertices by dropping and retrieving distinguishable pebbles, or when multiple agents jointly explore the graph. This problem can be seen as a natural generalization of the initial question in graph exploration asking how many pebbles one agent needs to explore any finite labyrinth.

Energy Efficient Tree Exploration. We assume that an agent consumes energy proportional to the number of edges it traverses and every agent has a fixed energy budget bounding the number of edges it can traverse. All agents start at the root of a tree and have no initial knowledge about its structure. During the exploration, the agents are able to exchange information at arbitrary distances in the graph. The objective is to maximize the number of distinct vertices collectively visited by the agents compared to an algorithm that has complete knowledge of the tree in advance.

Energy Efficient Delivery. We consider the problem of different mobile agents that have to deliver a set of messages in a weighted undirected graph while minimizing the total energy consumption. In our model, the agents consume energy proportional to the distance they travel and different agents can have different rates of energy consumption. The messages have different starting vertices and destinations and different messages can be transported together if the capacity of the agent permits it. The aim is to investigate how the agents benefit from collaborating on delivering the messages compared to the case in which every message is transported by a single agent.

1.1 Contributions and Outline

In this section, we give an outline of the thesis together with a summary of the main results.
Chapter 1: Introduction. In the remainder of this chapter, we introduce the notation and most important concepts used in this thesis. This includes a thorough introduction to the definitions and main concepts common in graph exploration that are necessary to understand the related work and this thesis. Moreover, we give a brief introduction to complexity theory as well as offline and online optimization problems. We further present a detailed overview of previous research in graph exploration and message delivery.

Chapter 2: Space Efficient Graph Exploration. We prove that for a single agent with constant memory $\Theta(\log \log n)$ pebbles are both necessary and sufficient for exploring any undirected graph with n vertices. We further show that collaborating agents are not more powerful than pebbles in this setting, as $\Theta(\log \log n)$ agents with constant memory each are necessary and sufficient for the same task. Our results show that the memory requirement can be significantly reduced by utilizing additional pebbles or agents compared to the $\Theta(\log n)$ bits of memory that are necessary and sufficient to explore an undirected graph by a single agent without pebbles [Fra+05; Rei08].

For the upper bounds, we present an algorithm for a single agent with constant memory that explores any graph with n vertices using $O(\log \log n)$ pebbles. The algorithm does not require the number of vertices n as input, terminates after a polynomial number of edge traversals and the agent returns to the starting vertex. We further show that we can replace every pebble by two agents in our algorithm and therefore $O(\log \log n)$ agents with constant memory each can also explore any n-vertex graph.

For the lower bounds, we recursively construct a family of graphs with $O\left(s^{2^{5 k}}\right)$ vertices that a given arbitrary set of k collaborating agents with s states each cannot explore. Our construction is by many orders of magnitude smaller than existing constructions of size $\tilde{O}(s \uparrow \uparrow(2 k+1))$ and $\tilde{O}(s \uparrow \uparrow(k+1))$ due to Rollik [Rol80] and Fraigniaud et al. [Fra+06b], respectively. Here we use Knuth's up-arrow notation $a \uparrow \uparrow b$ to denote the exponentiation tower $a^{a^{\cdot a}}$ with b levels in the exponent and \tilde{O} neglects lower order terms. Directly from the bound on the number of vertices of our construction, we obtain that, even if we allow $O\left((\log n)^{1-\epsilon}\right)$ bits of memory for some constant $\epsilon>0$ for every agent, the number of agents needed for exploring every n-vertex graph is at least $\Omega(\log \log n)$. The same construction also yields that one agent needs $\Omega(\log \log n)$ pebbles for exploring every n-vertex graph.

Chapter 3: Energy Efficient Tree Exploration. We consider the problem of exploring a maximal set of vertices of an unknown tree by k agents initially located at the root of the tree. Every agent has only limited energy and hence can traverse at most B edges. We assume that the agents can communicate with each other at arbitrary distances and thus the knowledge obtained by one agent after traversing an edge is instantaneously available to all other agents. The objective is to maximize the number of distinct vertices collectively visited by the agents compared to an algorithm that has complete knowledge of the tree in advance. We design an online algorithm that maintains a set of edge-disjoint subtrees of the part of the tree that is already explored and iteratively sends an agent
from the root to the subtree with the highest root. This way the algorithm balances between sending agents in a depth-first manner to avoid visiting the same set of vertices too often and exploring the tree in a breadth-first manner to make sure that the algorithm did not miss a large set of vertices close to the root, which can be reached with little energy. We prove that our algorithm is 3-competitive compared to an optimal solution that we could obtain if we knew the map of the tree in advance. We also show that our analysis is tight by giving a sequence of instances showing that the algorithm is not better than 3-competitive. We further present a construction based on an adaptive adversary showing a lower bound of 2.17 on the competitive ratio of any online algorithm.

Chapter 4: Energy Efficient Delivery. We study the problem of delivering a set of messages, which are specified as source-target pairs in an undirected weighted graph, by k mobile agents starting at distinct vertices of the graph. Every agent consumes energy proportional to the distance it travels in the graph and the rate of energy consumption may be different for different agents. The goal is to deliver all messages by the agents while minimizing the total energy consumption for this task. The purpose of this chapter is to investigate how the agents benefit from collaborating on delivering the messages compared to the case that every message is transported by a single agent. We show how an optimal solution of the delivery problem can be 2-approximated by a solution in which every message is transported only by a single agent. We further prove that this is best possible for arbitrary number of messages and agent capacities, i.e., number of messages that can be transported at the same time. Moreover, for a single message, we present an algorithm that determines an agent that can deliver the message with at most $(1 / \ln 2)$-times the cost of an optimal solution. This improves the general upper bound of 2 and we show that it is best possible for a single message.

1.2 Preliminaries

In this section, we give an introduction to the terminology and notation used in this work. We assume that the reader is familiar with the basic concepts in graph theory, complexity theory and algorithms and therefore only briefly recall the respective definitions in order to introduce a consistent notation. A general introduction to these topics can be found in the textbooks by Korte and Vygen [KV18] or Cormen et al. [CLR89], for instance. We also introduce the basic concepts and definitions used in the context of graph exploration which are necessary to understand the related work and this thesis. Additional more specific definitions can be found in the respective chapters.

1.2.1 Graphs

A graph is a tuple $G=(V, E)$, where V is a finite non-empty set and $E \subseteq\binom{V}{2}$ if G is undirected and $E \subseteq\{(v, w) \mid v, w \in V, v \neq w\}$ if G is directed. In both cases, we call the elements of V vertices or nodes and the elements of E edges. We let $n:=|V|$ denote the order or number of vertices of G and $m:=|E|$ the number of edges. If we additionally have a function $w: E \rightarrow \mathbb{R}$ assigning a weight or length to every edge, then we call G a weighted graph. All graphs considered in this
work are simple, that is, for any vertex $v \in V$ there is at most one edge $\{v, w\}$ or (v, w) in E for every vertex $w \neq v$ and there are no loops, i.e., $\{v, v\} \notin E$ or $(v, v) \notin E$ for all $v \in V$. For an edge $e=\{v, w\}$ or $e=(v, w)$, we call v and w endpoints of e and say that v and w are incident with e. The degree $\Delta(v)$ of a vertex v is the number of edges incident to v. If $\Delta(v)=d$ for all $v \in V$, then we call the graph \boldsymbol{d}-regular or simply regular. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of a graph $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. If E^{\prime} contains all edges in E that have both endpoints in V^{\prime}, then G^{\prime} is called an induced subgraph or the subgraph induced by V^{\prime}.

A walk in G is a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ or $\left(v_{i}, v_{i+1}\right) \in E$ for all $i \in\{0, \ldots, k-1\}$. As we only consider simple graphs, the sequence of vertices of a walk uniquely determine the edges between the vertices. We call v_{0} the starting vertex or first vertex and v_{k} the end vertex or last vertex of the walk. A walk is closed if $v_{0}=v_{k}$. A closed walk is also called a tour. If additionally all edges along the closed walk are distinct, then the walk is called a cycle. A walk where all vertices $v_{0}, v_{1}, \ldots, v_{k}$ are distinct is called a path. The length of a path is the number of its edges. A Eulerian walk or Eulerian tour is a closed walk containing every edge of the graph. A graph containing a Eulerian tour is called Eulerian.

An undirected graph G is connected if for any two distinct vertices v and w, there is a path from v to w in G. An undirected connected graph without any cycles is called a tree. The minimum length of a path connecting two distinct vertices v and w in G is called the distance between v and w. The maximum distance over all vertices v and w in G is the diameter of G.

1.2.2 Graph Exploration

Formally, we model an agent exploring a graph as a finite automaton $A=\left(\Sigma, \bar{\Sigma}, \delta, \sigma^{*}\right)$, where Σ is a set of states, $\bar{\Sigma} \subseteq \Sigma$ is a set of halting or final states, $\sigma^{*} \in \Sigma$ is the starting state of the agent, and δ is its transition function. The transition function describes how the agent interacts with the graph and possibly other agents. Its exact specifics depend on the problem considered, i.e., whether we consider a single agent or a group of agents and whether we allow the agents to use additional markers. In every exploration step an agent A observes the local environment at the current vertex and possible additional information, such as the states of other agents or position of markers, and then performs actions, e.g., traverses an edge, according to the transition function δ. In Section 2.1, we give a formal introduction to some agent models including a full description of the transition function δ. In most settings, however, the agent capabilities are described on an informal and intuitive level, as the exact implementation is not important for the analysis.

If an agent can distinguish different vertices, then we call G vertex-labeled or simply labeled. Formally, this means that there is a bijection $\lambda: V \rightarrow\{1, \ldots, n\}$ and the transition function δ can depend on the label $\lambda(v)$ of the current vertex v of the agent in G. In many graph exploration models, the agent cannot identify or distinguish different vertices and thus the transition function can depend on the degree of the current vertex, but not on its label. In this case, we call the graph unlabeled or anonymous. In order to enable sensible navigation for an agent in this setting, we assume for undirected graphs that the edges incident to a vertex v have distinct labels $0, \ldots, \Delta(v)-1$ at v. Hence,
every edge $\{v, w\} \in E$ has two labels called port numbers, one at v and one at w. These port numbers can be different at both endpoints and there is in general no correlation between the two port numbers of an edge. For a directed graph it is sufficient to assume that the outgoing edges at a vertex v have distinct port numbers $0, \ldots,\left|\delta^{+}(v)\right|-1$ at v, where $\left|\delta^{+}(v)\right|$ is the number of outgoing edges at v. We call a graph with such a labeling a locally edge-labeled graph.

A single agent traverses an anonymous, locally edge-labeled graph G as follows: Starting at a vertex v_{0}, in every step it observes the degree of the current vertex (and for an undirected graph also the local port number of the edge leading back to the previous vertex). Depending on its current state, the vertex degree (and port number to the previous vertex for undirected graphs), it then transitions to a state given by the transition function δ and traverses the edge corresponding to the port number given by the transition function δ.

A different way to specify the behavior of an agent in a regular graph are traversal sequences. A traversal sequence is a sequence of integers $l_{0}, l_{1}, l_{2}, \ldots$ with $l_{i} \in\{0,1, \ldots, d-1\}$ determining the walk of an agent A in a d-regular locally edge-labeled graph G. The agent follows a traversal sequence l_{0}, l_{1}, \ldots if it traverses the edges with port number l_{0}, l_{1}, \ldots in this order. We further say that a traversal sequence is universal for a class of connected, locally edge-labeled d-regular graphs \mathcal{G} if an agent following it explores every graph $G \in \mathcal{G}$ for any starting vertex in G, i.e., starting at an arbitrary vertex of G, it visits all vertices of G. For a set M, we use the notation $M^{+}:=\bigcup_{i=1}^{\infty} M^{i}$ to denote the set of finite non-empty sequences with elements in M. Furthermore, we let ϵ denote the empty sequence and $M^{*}=M^{+} \cup\{\epsilon\}$. This allows us to use the compact notation $\omega \in\{0,1, \ldots, d-1\}^{+}$ for a finite traversal sequence ω.

Note that traversal sequences are only defined for regular graphs and the port numbers to the previous edge are not taken into account. In order to overcome these shortcomings, Koucký introduced the concept of exploration sequences for undirected graphs [Kou02]. An exploration sequence is a sequence of integers $e_{0}, e_{1}, e_{2}, \ldots$ with $e_{i} \in \mathbb{Z}$ that guides the walk of an agent through an undirected graph G as follows: Assume an agent starts in a vertex v_{0} of an arbitrary locally edge-labeled graph G and let $l_{0}=0$. Let v_{i} denote the agent's location in step i and l_{i} the port number of the edge at v_{i} leading back to the previous location. Then, the agent follows the exploration sequence $e_{0}, e_{1}, e_{2}, \ldots$ if, in each step i, it traverses the edge with port number $\left(l_{i}+e_{i}\right) \bmod \Delta\left(v_{i}\right)$ at v_{i} to the next vertex v_{i+1}. This means that an exploration sequence gives edge label offsets instead of absolute edge labels. Thus, exploration sequences are well-defined for arbitrary undirected graphs and also allow backtracking, i.e., returning to the previous vertex, by specifying the offset 0 . Analogously, we say that an exploration sequence is universal for a class of undirected, connected, locally edge-labeled graphs \mathcal{G} if an agent following it explores every graph $G \in \mathcal{G}$ for any starting vertex in G.

In order to give an agent in an anonymous graph the power to distinguish a limited number of vertices, it is possible to equip the agent with one or multiple pebbles. A pebble is a tool to mark vertices. It can be dropped at a vertex and picked up again later. Every time an agent visits a vertex where it has dropped a pebble, it will observe this marker. Pebbles can be distinguishable, i.e., every pebble has some unique identifier, or indistinguishable, i.e., the agent only observes the number of
pebbles at the current vertex.
Multiple agents can exchange information when exploring a graph. This exchange of information can be possible only locally, i.e., if the agents share a vertex or are only a small distance apart, or globally, i.e., independent of the agents' location in the graph. We can model the case of local communication by allowing δ to depend on the state of the agents colocated at the same vertex and the case of global communication by allowing δ to depend on the states of all other agents. Another way to allow agents to communicate is by means of so-called whiteboards. These are local storages at every vertex that the agents can write to and read information from. The amount of local storage available at a node is typically limited. Whiteboards, similar to pebbles, can also be used to mark certain nodes.

The goal in graph exploration is to visit all vertices of the given graph. We say that a graph G is explored when each vertex of G has been visited by at least one agent. There are three variants of the exploration problem, which are in increasing order of difficulty: perpetual exploration, exploration with stop and exploration with return. If we want to achieve perpetual exploration, then the agent(s) are not required to terminate, but can traverse the graph indefinitely. For exploration with stop, we require the agent(s) to terminate, i.e., transition to a halting state after a finite number of steps. Lastly, for exploration with return, we require all agents to return to the starting vertex and then terminate. Note that in some cases, the agent(s) may not be able to recognize if the whole graph is explored and only perpetual exploration is feasible, while in other cases the agent(s) may not be able to return to the starting vertex. See the related work in Section 1.3 for details. A graph that cannot be explored by an agent (a set of agents) is called a trap for the agent(s). In some settings, it is additionally required that the agent(s) map the given graph, i.e., construct a representation of an edge-labeled graph isomorphic to the given graph.

1.2.3 Computational Complexity Theory

For a detailed introduction of the concepts presented in this section, the reader can refer to the textbook by Garey and Johnson [GJ79] or the textbook by Korte and Vygen [KV18, Chapter 15].

Informally, an algorithm is a sequence of well-defined operations or instructions for a set of valid inputs. The time complexity or running time of an algorithm is the number of operations of the algorithm on a given input, whereas the space complexity is the amount of space or memory required to store additional information during the execution of the algorithm. According to the Church-Turing thesis everything that is computable by this intuitive idea of an algorithm can also be computed on a Turing machine [Chu36]. There are several other equally powerful formal models for computation, such as random access machines, which are equivalent in terms of time complexity and space complexity, i.e., for a suitable time measure and space measure the machines can simulate each other with polynomial overhead in time and constant factor overhead in space [GJ79; SE84]. For this reason, we present most algorithms in pseudocode similar to modern programming languages, as it would be extremely tedious to give a complete description in terms of a Turing machine. In Chapter 2, however, we also work with a description of an algorithm in form of a Turing machine and introduce
an agent model which is internally utilizing a Turing machine. We therefore give an introduction to this model of computation and further cover some complexity classes relevant for this thesis.

A Turing machine consists of an infinite tape divided into cells, a read-write head, a finite set of states and a transition function describing how the Turing machine transitions from one state to the next depending on the current state and the symbol read from the tape at the current position of the read-write head. Formally, a deterministic Turing machine M is a tuple ($Q, q^{*}, \bar{q}, \delta$), where

- Q is the finite set of states of M,
- $q^{*} \in Q$ is the starting state of M,
- $\bar{q} \in Q$ is the stop state of M,
- $\delta: Q \backslash\{\bar{q}\} \times\{0,1, \sqcup\} \rightarrow Q \times\{0,1, \sqcup\} \times\{L, R\}$ is the transition function of M, where $\{0,1\}$ is the set of input symbols and \sqcup is the blank symbol representing an empty tape cell.

For an input $x \in\{0,1\}^{*}$, we assume that initially the input x is contained in the tape cells, the head of the Turing machine M is at the first symbol of x and all other symbols of x follow to the right of the head position. Every tape cell not containing a symbol of x contains the blank symbol \sqcup. The Turing machine M performs a computation step as follows: If M reads the symbol $a \in\{0,1, \sqcup\}$ at the current head position, is in state $q \in Q$ and $\delta(a, q)=\left(q^{\prime}, a^{\prime}, S\right)$, then it writes the symbol $a^{\prime} \in\{0,1, \sqcup\}$ to the tape cell of the current head position, changes its state to $q^{\prime} \in Q$ and moves the head left if $S=L$ or right if $S=R$. The Turing machine M continues its computation until it reaches its final state \bar{q} or it can also run forever.

We define the output of the Turing machine to be the string $y \in\{0,1\}^{*}$ that is contained in the tape cells when the Turing machine terminates, beginning from the head position to the right until the first cell containing a blank symbol \sqcup.

The running time of the Turing machine M is described by the function $t_{M}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$, where $t_{M}(n)$ is the maximum number of computation steps that the Turing machine M needs on an input $x \in\{0,1\}^{*}$ with length n (or ∞ if M runs forever). If there exists a polynomial p such that for all $n \in \mathbb{N}$, we have $t_{M}(n) \leq p(n)$, then M is a polynomial-time Turing machine.

The space requirement of the Turing machine M is given by a function $s_{M}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$, where $s_{M}(n)$ is the total number of tape cells that are used in the computation, i.e., that do not contain the blank symbol \sqcup at some point. In order to overcome the fact that the input length as well as the output length is always a lower bound on the space requirement with this definition, we extend the definition of the Turing machine above to a Turing machine with three tapes and three heads: a read-only input tape, a read-and-write working tape, and a write only output tape. Then the space requirement is defined as the total number of tape cells of the working tape that are used in the computation of the Turing machine.

In general, Turing machines are defined over an input alphabet Σ, but for our purpose the case $\Sigma=\{0,1\}$ is sufficient and we therefore introduce the Turing machine as above. Note that this does not change the computational power of the Turing machine.

A language L is a subset of $\{0,1\}^{*}$ and the elements of $\{0,1\}^{*}$ are called words or binary
strings. We say that a deterministic Turing machine M accepts a word $x \in\{0,1\}^{*}$ if and only if M terminates on the input x and outputs 1 . We further say that M decides a language L if M terminates on every $x \in\{0,1\}^{*}$ and it accepts $x \in\{0,1\}^{*}$ if and only if $x \in L$. If additionally M is a polynomial-time Turing machine, then we say that L is decidable in polynomial time. A decision problem is a pair $\mathcal{P}=(X, Y)$, where $X \subseteq\{0,1\}^{*}$ is a language decidable in polynomial time and $Y \subseteq X$. We refer to the elements of X as instances, the elements of Y as yes-instances and those of $X \backslash Y$ as no-instances. Moreover, we say that a deterministic Turing machine M decides a decision problem $\mathcal{P}=(X, Y)$, if M terminates on all $x \in X$, outputs 1 for all inputs $x \in Y$ and 0 for all inputs $x \in X \backslash Y$.

Another variant of a Turing machine is a non-deterministic Turing machine. It differs from a deterministic Turing machine in the transition function that is a transition relation for a nondeterministic Turing machine, i.e., $\delta \subseteq Q \times\{0,1, \sqcup\} \times Q \times\{0,1, \sqcup\} \times\{L, R\}$. If a non-deterministic Turing machine M reads the symbol $a \in\{0,1, \sqcup\}$ at the current head position, is in state $q \in Q$, then it can non-deterministically choose any $\left(a, q, q^{\prime}, a^{\prime}, S\right) \in \delta$, transition to the state q^{\prime}, write $a^{\prime} \in\{0,1, \sqcup\}$ to the current tape cell, change it state to $q^{\prime} \in Q$ and move the head left if $S=L$ or right if $S=R$. For a given input $x \in\{0,1\}^{*}$, there can now be different possible outputs of the Turing machine depending on the computation path, i.e., the transitions chosen in every step of the computation.

The running time for a non-deterministic Turing machine M on an input $x \in\{0,1\}^{*}$ is defined as the maximum number of computation steps over all computations paths and similarly the space requirement as the maximum number of tape cells used over all computation paths. These definitions allow us to analogously define the running time and space requirement for non-deterministic Turing machines. Furthermore, we say that a non-deterministic Turing machine M accepts a word $x \in\{0,1\}^{*}$ if and only if there is one possible computation path of M on input x such that M terminates and outputs 1 . The decidability of languages and decision problems for non-deterministic Turing machines is defined analogously

We further define the configuration of a Turing machine as a tuple (q, t, p), where q is the current state of the Turing machine, $t \in\{0,1, \sqcup\}^{\mathbb{Z}}$ is the tape content and $p \in \mathbb{Z}$ is the head position. Here we identify every tape cell with an integer $z \in \mathbb{Z}$. Note that the configuration of a deterministic Turing machine completely describes the current state of the computation and uniquely determines the next configuration in the computation. We call a non-deterministic Turing machine symmetric if the graph describing the transitions between the configurations of the Turing machine is symmetric, i.e., if the Turing machine can change from a configuration (q, t, p) to a configuration $\left(q^{\prime}, t^{\prime}, p^{\prime}\right)$ by making a transition according to δ, then it can also a make a transition from the configuration $\left(q^{\prime}, t^{\prime}, p^{\prime}\right)$ to (q, t, p). For a detailed introduction of symmetric Turing machines and related complexity classes, see [LP82].

We can now define the following complexity classes:
P The class containing all decision problems \mathcal{P} for which there is a polynomial-time deterministic Turing machine deciding \mathcal{P}.

NP The class containing all decision problems \mathcal{P} for which there is a polynomial-time non-
deterministic Turing machine deciding \mathcal{P}.
L The class containing all decision problems \mathcal{P} for which there is a deterministic Turing machine deciding \mathcal{P} that uses logarithmic memory.

NL The class containing all decision problems \mathcal{P} for which there is a non-deterministic Turing machine deciding \mathcal{P} that uses logarithmic memory

SL The class containing all decision problems \mathcal{P} for which there is a non-deterministic symmetric Turing machine deciding \mathcal{P} that uses logarithmic memory.

A decision problem $\mathcal{P}_{1}=\left(X_{1}, Y_{1}\right)$ polynomially transforms to a second decision problem $\mathcal{P}_{2}=$ $\left(X_{2}, Y_{2}\right)$ if there is a function $f: X_{1} \rightarrow X_{2}$ computable in polynomial time such that $f\left(x_{1}\right) \in Y_{2}$ if and only if $x_{1} \in Y_{1}$. A polynomial transformation is also referred to as a Karp reduction. Furthermore, a decision problem $\mathcal{P} \in N P$ is NP-complete if all other problems in NP polynomially transform to \mathcal{P}.

1.2.4 Offline and Online Optimization Problems

The introduction of the following concepts and notation in this section is based on the introduction in the textbook of Borodin and El-Yaniv [BE98].

A discrete optimization problem is a set $I \subseteq\{0,1\}^{*}$ of instances, a set of feasible solutions \mathcal{S}_{I} for every instance $I \in \mathcal{I}$, a cost function $c:\left\{(I, S) \mid I \in I, S \in \mathcal{S}_{I}\right\} \rightarrow \mathbb{R}$ computable in polynomial time and a goal, i.e., minimizing or maximizing the cost. For a given instance $I \in \mathcal{I}$, we write $\operatorname{Opt}(I):=\min \left\{c(I, S) \mid S \in \mathcal{S}_{I}\right\}$ for the cost of an optimum solution in case of a minimization problem and $\operatorname{Opt}(I):=\max \left\{c(I, S) \mid S \in \mathcal{S}_{I}\right\}$ for the cost of an optimum solution in case of a maximization problem. An algorithm for an optimization problem computes a feasible solution $S \in \mathcal{S}_{I}$ for every instance $I \in I$ with $\mathcal{S}_{I} \neq \emptyset$. We write $\operatorname{Alg}(I):=c(I, S)$ if the considered algorithm Alg computes solution $S \in \mathcal{S}_{I}$ on input I. If $\operatorname{AlG}(I)=\operatorname{Opt}(I)$ for all $I \in \mathcal{I}$ with $\mathcal{S}_{I} \neq \emptyset$, then AlG is an exact algorithm.

A decision problem or discrete optimization problem \mathcal{P}_{1} polynomially reduces to an optimization \mathcal{P}_{2} if there exists an exact polynomial algorithm for \mathcal{P}_{1} using at most a polynomial number of calls to an exact algorithm for \mathcal{P}_{2}. This type of reduction is also referred to as Turing reduction and the algorithm for \mathcal{P}_{1} using at most a polynomial number of calls to an exact algorithm for \mathcal{P}_{2} is called a polynomial time oracle algorithm. A formal definition of this concept using oracle Turing machines can be found in [GJ79; KV18]. Moreover, an optimization problem or decision problem \mathcal{P} is called NP-hard if all problems in NP polynomially reduce to \mathcal{P}.

Many interesting discrete optimization problems are NP-hard and there is thus no polynomial exact algorithm solving them under the assumption that $N P \neq P$. In order to still find good (close to optimal) solutions for those problems in acceptable practical running time (polynomial time), one can trade a loss in solution quality for a better running time. This leads to the concept of approximation algorithms. More precisely, an algorithm Alg is called an asymptotic c-approximation algorithm
for a discrete optimization problem with the goal of minimization if there is a constant α such that

$$
\operatorname{ALG}(I) \leq c \cdot \operatorname{Opt}(I)+\alpha \quad \text { for all } I \in I
$$

If $\alpha=0$, we call Alg a \boldsymbol{c}-approximation algorithm. For a maximization problem, an (asymptotic) c-approximation algorithm requires $\operatorname{AlG}(I) \geq 1 / c \cdot \operatorname{Opt}(I)+\alpha$ for all $I \in I$. In both cases the approximation factor or approximation ratio c satisfies $c \geq 1$ and the better the approximation, the closer the approximation factor c is to 1 . A thorough introduction and study of approximation algorithms is given in [WS11].

For classical optimization problems the whole input is available to an algorithm at the beginning. There are many interesting problems, however, where only a part of the input is received at a time and the algorithm needs to already output decisions based on only this partial input. Almost all graph exploration problems fall into this category. The graph to be explored is typically unknown and the algorithm, in this case the agents, need to make decisions, e.g., which edges to traverse next, based only on the information they gathered so far, i.e., the part of the graph traversed so far. These type of problems are called online problems and an algorithm for such a problem is called an online algorithm. In contrast to that, the classic optimization problems, where the whole input is known in advance, are referred to as offline problems and an algorithm which receives the complete input at the beginning an offline algorithm. An instance $I \in I$ of an online problem is called an input sequence in order to emphasize that the input is received in many parts.

We measure the performance of an online algorithm using the concept of competitive analysis introduced by Sleator and Tarjan in [ST85]. In this framework, the cost of an online algorithm Alg on an instance $I \in I$ is compared to the cost of an optimal offline solution $\operatorname{Opt}(I)$, i.e., an optimal solution for the case that the whole input is known in advance. An online algorithm Alg for a minimization problem is \boldsymbol{c}-competitive if there is a constant α such that

$$
\operatorname{ALG}(I) \leq c \cdot \operatorname{Opt}(I)+\alpha \quad \text { for all finite input sequences } I \in I
$$

For a maximization problem, a c-competitive algorithm Alg needs to satisfy $\operatorname{AlG}(I) \geq 1 / c \cdot \operatorname{Opt}(I)+\alpha$ for all for all finite input sequences $I \in \mathcal{I}$. If $\alpha=0$, then ALG is strictly c-competitive. We call c the competitive ratio of the algorithm Alg. For further reading and a detailed introduction to online algorithms and competitive analysis the reader can refer to [BE98].

1.3 Related Work

The main aim of this section is to give a detailed systematic overview about the graph exploration and message delivery literature.

We focus on the part of graph exploration literature most relevant for this thesis and give several pointers to books and surveys covering topics that are not covered in this section. The vast amount of research on graph exploration and large number of different models makes it difficult to put the results in one general scheme. Nevertheless, we hope that our categorization of the results provides a fast and
easy way to grasp the state-of-the-art of graph exploration and the main lines of research. Our main distinction is between single agent (Section 1.3.1) and collaborative (Section 1.3.2) exploration and undirected and directed graphs. We further distinguish between the objectives feasibility, memory, time, and energy. See also the Tables 1.1 and 1.2 for a concise overview of the graph exploration literature.

In Section 1.3.3, we then give an overview about the literature related to message delivery. The problem is related to many classical optimization problems and has been studied in many variants and contexts.

1.3.1 Single Agent Graph Exploration

Undirected Graphs. The exploration of plane labyrinths, i.e., finite connected subgraphs of the infinite 2-dimensional grid where edges are labeled with their cardinal direction, was the starting point of graph exploration research. Shannon [Sha51] constructed an actual physical device - Shannon's mouse - that could explore a 5×5 grid. Budach proved that one agent with constant memory and without any pebble cannot explore any plane labyrinth [Bud75; Bud78]. Later Hoffmann showed that one pebble is also not sufficient [Hof81]. On the positive side, Shah proposed an algorithm for an agent with five pebbles that can explore any plane labyrinth [Sha74]. This result was improved by Blum and Kozen who presented an algorithm using only two pebbles [BK78]. They also showed that exploration can be achieved utilizing a counter using $O(\log n)$ space instead of two pebbles.

For many years a central open problem in graph exploration was the question of how much memory an agent needs to explore any undirected graph. It turned out that this problem is closely connected to the space complexity of the $s-t$-connectivity problem in undirected graphs, i.e., the problem of deciding if two vertices s and t are in the same connected component of a given graph. For instance, any exploration algorithm can be turned into an algorithm deciding s - t-connectivity by letting an agent start at s and returning yes if and only if the agent visits t during the exploration. The problem of undirected $s-t$ connectivity is complete for the complexity class SL (see [LP82]), which was studied in an effort to answer the question whether the complexity classes NL and L are the same.

A famous result relating deterministic and non-deterministic space complexity is due to Savitch [Sav73], who showed that $\operatorname{NSPACE}(s(n)) \subseteq \operatorname{DSPACE}\left(s^{2}(n)\right)$ holds for any function $s \in \Omega(\log n)$. Here $\operatorname{NSPACE}(s(n))$ denotes the class of decision problems that can be decided by a non-deterministic Turing machine in $s(n)$ space and $\operatorname{DSPACE}(s(n))$ the class of decision problems that can be decided by a deterministic Turing machine in $s(n)$ space. This result immediately implies that $\mathrm{NL} \subseteq \mathrm{L}^{2}$.

A big step towards understanding the space complexity of $s-t$-connectivity and graph exploration was the work by Aleliunas et al. [Ale+79], who showed that a random walk of length $O\left(\Delta^{2} n^{3} \log n\right)$ in an undirected graph with n vertices and maximum degree Δ visits all vertices with high probability. Moreover, the authors proved the existence of a universal traversal sequence for all d-regular graphs on n vertices of length $O\left(d^{2} n^{3} \log n\right)$. Note that, by adding a counter that keeps track of the number of edge traversals, the first bound yields a randomized log-space exploration algorithm that terminates after a polynomial number of steps and explores an undirected graph with high probability if an
upper bound on the number of vertices of the graph is known. In terms of complexity classes, the result by Aleliunas et al. implies that s - t-connectivity is contained in the class RL, the class of decision problems that can be solved by a randomized, log-space algorithm with one-sided error, and the relationship of the complexity classes is

$$
\mathrm{L} \subseteq \mathrm{SL} \subseteq \mathrm{RL} \subseteq \mathrm{NL} \subseteq \mathrm{~L}^{2}
$$

Finally, Reingold [Rei08] showed that $s-t$-connectivity can be decided in log-space and therefore $\mathrm{L}=\mathrm{SL}$. His proof also yields a log-space constructible universal exploration sequence, which can be used to devise a log-space exploration algorithm for undirected graphs [Rei08, Corollary 5.5]. As this algorithm utilizes an exploration sequence (and not a traversal sequence), it is essential that the agent can observe the label of the edge by which it enters a vertex. Universal traversal sequences of length $O\left(n^{\log n}\right)$ can be constructed in $O\left(\log ^{2} n\right)$ space using Nisan's derandomization technique [Nis92]. Explicit construction of universal traversal sequences in log-space are only known for cycles [Ist88] and it remains an open problem whether universal traversal sequences of polynomial length can be constructed deterministically in log-space for general graphs.

Concerning a lower bound on the space complexity of graph exploration, the results by Budach [Bud75; Bud78] already show that constant memory is not sufficient to explore any graph. Later, Rollik [Rol80] constructed a trap for any set of k collaborating agents, i.e., a graph that the given set of agents do not explore. Although he never computes it explicitly, his work implies a memory requirement of $\Omega(\log n)$ space for graph exploration. Finally, Fraigniaud et al. [Fra +05$]$ show that for any agent with s states there exists a graph with $s+1$ vertices which the agent does not explore. The result is only an asymptotic improvement over the result by Rollik when considering the number of states of the agent instead of the memory requirement in bits.

For trees with maximum degree Δ, Diks et al. [Dik+04] gave a perpetual exploration algorithm that uses $O(\log \Delta)$ space, i.e., asymptotically not more than the space needed to store a single edge label. They showed that $\Omega(\log \log \log n)$ bits of memory are needed if the algorithm has to eventually terminate. If, in addition, the algorithm is required to terminate at the same vertex where it started, $\Omega(\log n)$ bits of memory are needed. A matching upper bound for the latter result was given by Ambühl et al. [Amb+11].

Another natural objective for graph exploration is to minimize the exploration time, i.e., the number of edge traversals until the given graph is explored. In labeled graphs, depth first search can be used to explore an undirected graph with m edges in at most $2 m$ steps. Note that m is a trivial lower bound for the problem, as every edge needs to be traversed before the agent can be sure that it explored the whole graph. In [PP99], Panaite and Pelc presented an algorithm that requires $m+3 n$ steps for exploring a graph of n nodes and m edges. This is an improvement over the depth-first search for dense graphs and shows that it is possible to exceed the lower bound m by a term depending only linearly on n.

If, however, the given graph is anonymous, minimizing the exploration time becomes considerably harder. In a d-regular graph, for instance, an agent can gain no knowledge when traversing the
graph and also has no way of recognizing when exploration is completed. If the number of vertices n or an upper bound on n is known, then it is possible to utilize universal traversal sequences or universal exploration sequences to completely explore the graph in this case. The length of a universal traversal sequence or universal exploration sequence for a d-regular graph is bounded by $O\left(d n^{3} \log n\right)$ for $d \leq n / 2-1$ [Kou03; Kah+89] and by $O\left(n^{3} \log n\right)$ for $d \geq n / 2$ [Kou03; Cha+97]. By using a transformation of a universal exploration sequence for 3-regular graphs to general undirected graphs (see [Kou03, Theorem 87] or Lemma 2.6 and its proof), we obtain a universal exploration sequence of length $O\left(n^{4} \log n\right)$ for general graphs. Note that although the proof is not constructive, this bound already implies the existence of a polynomial space exploration algorithm that needs $O\left(n^{4} \log n\right)$ edge traversals to explore any anonymous undirected graph because an agent can find a suitable exploration sequence in polynomial space by enumeration. There also is a lower bound of $\Omega\left(n^{4}\right)$ on the length of universal traversal sequences [BRT92]. However, this lower bound does not translate to a lower bound on the number of steps required for exploring an anonymous undirected graph, as an agent can also make use of the fact that it observes the port number of the edge by which it enters a vertex.

A setting that is in between unlabeled and labeled graph exploration is to allow the agents to only distinguish certain vertices. Dudek et al. [Dud +91$]$ showed that an agent provided with a pebble can explore and map an undirected graph in time $O(m n)$. For graphs with maximum degree Δ, Chalopin et al. [CDK10] showed that if the starting node can be recognized by the agent, then the graph can be explored and mapped in time $O\left(n^{3} \Delta\right)$ using $O(n \Delta \log n)$ bits of memory.

Another line of research, referred to as piecemeal exploration, focuses on minimizing the exploration time when the number of edge traversals an agent can do before returning to the starting vertex for refueling is bounded by $(2+\alpha) r$, where α is some positive constant and r is the distance to the furthest node from the starting vertex. The problem was first considered by Betke et al. in [BRS95] and the authors presented an $O(m)$ algorithm for the exploration of grid graphs with rectangular obstacles. In [Awe+99], an algorithm for piecemeal exploration of general graphs was proposed requiring $O\left(m+n^{1+o(1)}\right)$ edge traversals. Finally, Ducan et al. gave an optimal algorithm for piecemeal exploration for generals graphs requiring only $\Theta(m)$ edge traversals [DKK06]. Their algorithm also extends to weighted graphs and a similar model, where the agent is tethered by a rope of length $(1+\alpha) r$ instead of requiring regular refueling.

Exploration of undirected weighted graphs was first considered by Kalyanasundaram and Pruhs in [KP94]. In their model, the graph is labeled and an agent arriving at a vertex v learns about all edges $\{v, u\} \in E$ incident to v including the edge weight $w(\{v, u\})$ and the vertex u at the other endpoint. Every time an agent traverses an edge e, it incurs a cost of $w(e)$, and the total exploration time of an agent is the sum over all edge weights (with multiplicities) traversed by the agent. Note that it is important that an agent sees the neighbors of a vertex and thus does not need to traverse all edges of the graph. Otherwise $\sum_{e \in E} w(\{v, w\})$ is a trivial lower bound on the exploration time and a depth-first search algorithm is already 2-competitive. The nearest neighbors heuristic for the traveling salesperson problem yields a $\Theta(\log n)$-competitive algorithm for this problem [RSI77]. Kalyanasundaram and Pruhs proposed a sophisticated algorithm which is 16 -competitive on planar
graphs [KP94]. Megow et al. [MMS12] showed that the algorithm is in fact $16(1+2 g)$-competitive for graphs of genus at most g and constructed a lower bound showing that it does not have a constant competitive ratio on general graphs. They also presented an alternative $\Theta(\log n)$-competitive algorithm for the problem, which achieves a constant competitive ratio for the case that there are only a constant number of distinct edge weights. The existence of a general constant competitive algorithm in this model is an open problem.

Directed Graphs. The main focus of research in directed graph exploration has been the exploration time. Deng and Papadimitriou [DP99] considered the exploration of unknown labeled directed graphs, where the agent does not know the other endpoint of an edge that it has not traversed. The offline version of the problem, i.e., traversing all edges of a given directed graph with the minimum number of edge traversals, is known as the Chinese postperson problem and can be solved in polynomial time [EJ73]. Deng and Papadimitriou suggested an online algorithm for the problem achieving a competitive ratio of $d^{O(d)}$, where d is the deficiency of the given graph G, i.e., the minimum number of edges that have to be added to make it Eulerian. They also showed a lower bound of $\Omega(d)$ on the competitive ratio for deterministic algorithms and of $\Omega(d / \log d)$ for randomized algorithms. Note that there is a simple online algorithm that explores the graph in polynomial time $O(n m)$ by traversing the nearest edge, which has not been traversed, in every step. Albers and Henzinger [AH00] proposed the first algorithm with a subexponential competitive ratio of $d^{O(\log d)}$ for the problem. Finally, Fleischer and Trippen [FT05] gave a deterministic exploration algorithm with a polynomial competitive ratio of $O\left(d^{8}\right)$.

A variant of the above model is studied by Foerster and Wattenhofer in [FW16]. They considered weighted, labeled directed graphs and the main difference is that in their model the agent observes the vertex at the other endpoint of all outgoing edges at a vertex. This implies that an online algorithm does not necessarily have to traverse all edges to ensure that exploration is complete and the corresponding offline problem is the asymmetric traveling salesperson problem. They showed that the competitive ratio is $\Theta(n)$ for this problem, even for Euclidean planar graphs or unweighted graphs.

Exploration is considerably more difficult if the directed graph is unlabeled. In this case, it is possible to construct a graph for a given arbitrary agent such that the agent needs an exponential number of steps in n to visit all vertices. See the combination lock graph presented in [BS94] for details. Note that this holds even if we allow the agent to use randomization. If the number of vertices n or a bound on n is known, the exploration of a directed graph is still feasible by using a brute-force approach: The agent iterates over all directed graphs G with at most n vertices and possible start positions v_{0}. In every iteration, it first computes the current position v reached in G when following the edge labels traversed so far. Then it follows a sequence of edge labels exploring G from the position v.

If we allow the agent to utilize indistinguishable pebbles, the exploration time can be reduced to polynomial time, as shown by Bender et al. [Ben+02]. The authors gave an $O\left(n^{8} \Delta^{2}\right)$-time algorithm that uses one pebble and explores (and maps) a directed graph with maximum degree Δ, when n or

Graph			Agent	Goal		Result	Reference
class	$V E$	know		task	ter. obj.		
laby	a u	-	$O(1)$ memory, dist. pebbles	expl	y feas	2 pebbles necessary and sufficient	[BK78] [Hof81]
laby	a u	-	$O(1)$ memory, counter	expl	y feas	exploration in $O\left(n^{2}\right)$ steps, $O(\log n)$ space counter	[BK78]
graph	a u	-	$O(1)$ memory	expl	y feas	$\Theta(\log \log n)$ pebbles necessary and sufficient	Cor. 2.10 Cor. 2.27
tree	a u	-		expl	n mem	$O(\log \Delta)$ memory sufficient	[Dik+04]
tree	a u	-		expl	y mem	$\begin{gathered} \text { need } \Omega(\log \log \log n) \\ \text { memory, } O(\log n) \text { sufficient } \end{gathered}$	$\begin{gathered} {[\mathrm{Dik}+04]} \\ {[\text { Amb }+11]} \end{gathered}$
graph	a u	n		expl	$y \mathrm{mem}$	$\Theta(\log n)$ memory necessary and sufficient	[Rol80] [Rei08]
graph	a u	Δ, n	$O(\log n)$ memory	expl	y time	rand. walk explores graph in $O\left(n^{3} \Delta^{2} \log n\right)$ steps whp.	[Ale+79]
graph	a u	n	poly memory	expl	y time	$O\left(n^{4} \log n\right)$ steps sufficient	[Kou03]
graph	1 u	-	$\begin{gathered} l=(1+\alpha) r \\ \text { rope or } 2 l \text { fuel } \end{gathered}$	map	y time	$\Theta(m)$ edge traversals necessary and sufficient	[DKK06]
graph	1 u	-	poly mem	expl	y time	t most $m+3 n$ steps	P999]
graph	1 wu	-	poly mem	expl	y time	$O(\log n)$-competitive alg., $O(g)$-competitive alg. for graphs of genus g	[RSI77] [MMS12]
graph	a d	n	indist. pebbles	map	y time	need 1 pebbles for expl. in poly time	[Ben+02]
graph	a d	-	indist. pebbles	map	y time	need $\Theta(\log \log n)$ pebbles, $\Omega(n \log \Delta)$ memory for expl. in poly time	$\begin{gathered} {[\mathrm{Ben}+02]} \\ {[\mathrm{FI} 04]} \end{gathered}$
graph	1 d		sees labels of neighbors	expl	y time	$O\left(d^{8}\right)$ competitive on graphs with deficiency d	[FT05]
graph	1 wd	-	unaware of neighb. labels	expl	y time	$\Theta(n)$ competitive for weighted graphs	[FW16]

$\mathrm{a}=$ anonymous, $\mathrm{l}=$ labeled, $(\mathrm{w}) \mathrm{u}=($ weighted $)$ undirected, $(\mathrm{w}) \mathrm{d}=($ weighted $)$ directed, $\mathrm{y}=\mathrm{yes}, \mathrm{n}=\mathrm{no}$
Table 1.1: Summary of results for single agent exploration.
an upper bound on n is known. For the case that such an upper bound is not available, they proved that $\Theta(\log \log n)$ pebbles are both necessary and sufficient to explore the graph in polynomial time. Concerning the space complexity of directed graph exploration in the same model, Fraigniaud and Ilcinkas [FI04] showed that $\Omega(n \log \Delta)$ bits of memory are necessary to explore any directed graph with n vertices and maximum degree Δ, even with a linear number of pebbles. As an upper bound on the space complexity, they presented an algorithm requiring $O(n \Delta \log n)$ bits of memory that explores a graph in exponential time with a single pebble and terminates. They also gave an $O\left(n^{2} \Delta \log n\right)$-space algorithm running in polynomial time and using $O(\log \log n)$ indistinguishable pebbles for the case that n is not known.

Further Related Work. A lot of research has been done in more geometric and applied exploration settings, see the survey in [DS17] and [Rao+93].

Search problems, i.e., problems where a specific target t needs to be located in an unknown environment, are quite similar to exploration problems. In the worst case, for instance, the whole environment needs to be searched in order to locate the target t. If the target is found earlier, however, the algorithm can already terminate whereas in exploration we typically require the whole environment to be visited. This fact leads to a different notion of (offline) optimum that a solution for a search problem is compared to. For a detailed introduction to search algorithms the reader can refer to the textbook [AG03]. A survey covering both search and exploration problems is given in [Ber98]. Another survey with the focus of exploration or search on the plane is given in [GK10]

Randomized graph exploration and the study of memory efficient graph exploration if the environment can be manipulated (for instance, by providing a suitable labeling of the graph) were further considered in the survey [GR08]. Another line of research is the study of exploration of graphs that change over time as studied in [FMS09; EHK15].

1.3.2 Collaborative Graph Exploration

Undirected Graphs. The first main focus of research for collaborative exploration was the feasibility and memory requirement for exploration of mazes and planar graphs. Blum and Kozen [BK78] proved that any 2-dimensional maze can be explored by two agents with constant memory. In the same work, the authors also showed that 3-regular graphs are more difficult to explore than 2-dimensional mazes by exhibiting that no three agents with constant memory can explore all 3-regular graphs. In [BS77], Blum and Sakoda proved that no finite set of agents with constant memory can explore any finite 3-dimensional maze, i.e., finite subgraphs of the 3-dimensional lattice graph \mathbb{Z}^{3}. A similar result was later obtained by Rollik [Rol80] for 3-regular graphs. He showed that for any set of k agents with s states each there is a planar graph that cannot be explored by the agents. Fraigniaud et al. [Fra+06b] revisited his construction and bounded the order of his trap for k agents with s states by $\tilde{O}(s \uparrow \uparrow(2 k+1))$. They further improved the bound on the order of the trap to $\tilde{O}(s \uparrow \uparrow(k+1))$. Note that the order of the trap directly implies a lower bound on the memory requirement and number of agents required for exploring any graph with n vertices. Concerning an upper bound for the memory
requirement of collaborative graph exploration, we are not aware of any previous work that improves upon the $O(\log n)$ bits of memory algorithm for a single agent. In Chapter 2 of this thesis, we present an algorithm that breaks this bound and shows that $\Theta(\log \log n)$ agents with constant memory can explore any graph with n vertices in polynomial time and terminate. We also construct a dramatically smaller trap with only $O\left(s^{2^{5 k}}\right)$ vertices implying that the bound on the number of agents is tight.

Collaborative exploration with the objective of minimizing the exploration time was first considered by Fraigniaud et al. in [Fra+06a]. The authors presented an algorithm for agents using whiteboard communication that explores any tree in time $O(D+n / \log k)$, where D is the diameter of the tree and k is is the number of collaborating agents. They also showed that the offline problem of minimizing the exploration time of k collaborating agents is NP-hard, even for trees. Note that an optimal offline algorithm can explore a tree in time $\Theta(D+n / k)$ by dividing a depth-first traversal of the tree in k equal parts. Thus the algorithm in [Fra+06a] achieves a competitive ratio of $O(k / \log k)$. The authors also gave a lower bound of $\Omega(2-1 / k)$ on the competitive ratio. Later, Dynia et al. [Dyn +06] proposed a different algorithm, which is $O\left(D^{1-1 / p}\right)$-competitive, where p is the density of the tree, i.e., the minimum number $p \in \mathbb{N}$ which satisfies $\left|V^{\prime}\right| \leq 4 \cdot h\left(T^{\prime}\right)^{p}$ for all induced subtrees $T^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of T with height $h\left(T^{\prime}\right)$. As $p \leq \log n$, the algorithm is $O(D)$-competitive in general. The algorithm requires that agents can exchange information if they are at distance at most 1 . For $k \leq \sqrt{n}$ agents, Dynia et al. [D£S07] showed an improved lower bound on the competitive ratio of $\Omega(\log k / \log \log k)$. Later, Disser et al. [Dis+17] constructed a different family of trees showing that the same lower bound on the competitive ratio also holds for $k \leq n \log ^{c} n$ agents for any $c \in \mathbb{N}$. Another algorithm relying on whiteboard communication of the agents was presented by Brass et al. in [Bra+11]. It achieves a competitive ratio of $O\left(n / k+(k+D)^{k-1}\right)$, which is an improvement over the algorithm by Fraigniaud et al. for small values of k and D compared to n. The special case of grid graphs is considered by Ortolf and Schindelhauer in [OS12]. The authors proposed an algorithm for exploring grid graphs, which obtains a competitive ratio of $O\left(\log ^{2} n\right)$. In [OS14], Ortolf and Schindelhauer adopted a recursive approach using global communication between the agents to improve the upper bound on the competitive ratio for certain values of the parameters n, k and D. In [Hig+14], the authors introduced a class of algorithms for the collaborative exploration of trees called greedy algorithms and obtained a lower bound of $O(k / \log k)$ on the competitive ratio of any greedy algorithm for weighted trees. Surprisingly, for $k \geq D n^{c}$ agents for any constant $c>1$, Dereniowski et al. showed in [Der+15] that any graph can be explored in time $\Theta(D)$, even if the agents can only exchange information at the same vertex. This means that for a large number of agents it is possible to achieve a competitive ratio of $O(1)$.

Another line of research is energy-aware graph exploration. In the energy-aware models for collaborative graph exploration the number of edge traversals of an agent is bounded or the maximum number of edge traversals of an agents is to be minimized. Dynia et al. [DKS06] studied the problem of collaborative exploration with a fixed number of agents where the objective is to minimize the maximum number of edges traversed by an agent. The agents can communicate at distance at most one and additionally there are whiteboards at every vertex. At the end, all agents have to return to
the starting vertex. The authors presented an 8-competitive algorithm for trees and showed a lower bound of 1.5 on the competitive ratio for any deterministic algorithm. The upper bound was later improved to $4-2 / k$ in [DŁS07]. In [DDK15], Das et al. considered tree exploration with no return for the case that the amount of energy B available to the agents is fixed and the goal is to minimize the number of agents used. The authors presented an algorithm with a competitive ratio of $\Theta(\log B)$ for the case that the agents need to meet in order to communicate. They further gave a lower bound showing that this is best possible. In our model considered in Chapter 3, the number of agents as well as the bound on the energy is fixed and we do not require the agents to explore the whole graph. Instead, we measure the performance of an online algorithm by the number of vertices explored by it compared to an optimal offline algorithm. In the abstract in [Bam+17a], the authors presented a 7.47-competitive online algorithm for the problem together with a simple lower bound of 2 on the competitive ratio of any online algorithm. In Chapter 3, we give an improved lower bound and upper bound for the problem.

A different variant of collaborative exploration, in which the agents are identical and initially dispersed among the vertices of the graph, was studied in [Das+06; Das+07]. The agents move asynchronously and can communicate by writing on whiteboards at every node. As the agents follow exactly the same protocol, exploration with termination is not always feasible because of symmetries (e.g., consider two agents starting on opposite vertices of an even length cycle). In [Das+07], the authors showed that the problem of exploration with termination, leader election (i.e., selecting a leader among the agents) and rendezvous (i.e., gathering all agents at one vertex) are equivalent in this setting. They suggested an algorithm achieving exploration with termination if k and n are coprime. The algorithm uses at most $O(m \cdot k)$ edge traversals and at most $O(\log n)$ bits of whiteboard memory at every node. The cases where exploration is possible were characterized in [Das+06], including an algorithm that achieves leader election and thus also exploration with termination in all solvable cases. There are different variants of the algorithm with a different tradeoff between the number of edge traversals and whiteboard memory.

Directed Graphs. There has been only little research on collaborative exploration of directed graphs that we are aware of. For unlabeled, directed graphs, Bender and Slonim showed that two randomized agents can explore and map the given graph in expected polynomial time when global communication is allowed and n is not known [BS94]. Recall that in [Ben+02], the authors showed that the same task can be achieved by one agent with $O(\log \log n)$ indistinguishable pebbles.

Further Related Work. A survey covering both single agent and multi agent exploration topics, most of which are already covered in this section, was given in [Das13].

A lot of research has been also done on collaborative exploration involving malicious software or a malicious environment that can destroy agents. The task is to explore the graph while removing the malicious software or locating malicious vertices that destroy agents. Surveys for collaborative exploration in unsafe environments were given in [FS06; Mar12].

$\mathrm{a}=$ anonymous, $\mathrm{l}=$ labeled, $\mathrm{u}=$ undirected, $\mathrm{d}=$ directed, com.=communication, $\mathrm{y}=\mathrm{yes}, \mathrm{n}=\mathrm{no}$
Table 1.2: Summary of results for collaborative exploration.

The rendezvous problem, i.e., the task of gathering multiple, often identical agents at one location of the environment, is closely related to collaborative graph exploration. Connections between graph exploration and rendezvous were already mentioned in the related work above, see [Das+06; Das+07] for an example. For a detailed introduction to rendezvous problems the reader can refer to the textbook by Gal and Alpern [AG03]. Surveys about rendezvous research were further given in [Pel12] and [Alp+13].

1.3.3 Message Delivery

The problem of transporting goods between sources and destinations has many real-world applications in logistics and has been studied in a lot of different variants.

In some cases, the transportation of goods can be modeled as a network flow problem. Two prominent well-studied models are the minimum-cost flow problem for a single good and, more generally, the multi-commodity flow problem for multiple goods [KV18, Chapter 9 and 19]. While the first problem admits a polynomial time algorithm [EK72], the latter problem is known to be NP-hard [EIS76]. In contrast to our model, where the agents transporting the messages have capacity limits and transporting messages together does not incur additional costs, in these models there is a capacity limit on the edges and the cost of transportation grows linearly with the amount of goods transported.

More closely related to our problem is the point-to-point delivery problem studied in [LMS92]. In their model, a set of items have to be transported from different sources to different destinations and up to κ items can be transported together on an edge by an agent while the costs increase linearly in the number of agents used. The main difference to our model is that in this model there is an infinite supply of agents and agents can move for free if they do not transport any item. The authors showed that the problem is NP-hard for $\kappa \geq 2$ and moreover gave a polynomial algorithm for the case that the number of items is constant.

In the vehicle routing problem, introduced by Dantzig and Ramser in [DR59], a set of items have to be delivered from a common source called depot to different destinations in a network by a fleet of vehicles that all start at the depot. The number of items transported by a vehicle is further bounded by a capacity limit κ. For the special case of unbounded capacity, the vehicle routing problem corresponds to the traveling salesperson problem, which is known to be NP-hard [GJ79]. A large number of variants of the vehicle routing problem have been considered, differing in whether the vehicles start at a single depot or at different locations, the item sources are all at the depot or at different locations, the vehicles are identical or have different capacities or speeds. Moreover, variants with additional constraints motivated by applications have been considered, such as a time window until deliveries must be made. Almost all variants of the vehicle routing problem are also NP-hard and most research focuses on integer programming techniques and heuristics. A survey of many types of vehicle routing problems was given in the book [TV02]. A survey about several vehicle routing problems with a heterogeneous fleet of vehicles was further given in [BBV08]. The class of vehicle routing problems with pickup and delivery as well as time window constraints is referred to as dial-a-ride problems and was covered in the survey [CL07].

Chapter 1. Introduction

The Chinese postperson problem, i.e., the problem of finding the shortest tour traversing all edges of a given undirected or directed graph, can also be viewed as a delivery problem and it can be solved in polynomial time [EJ73]. A generalization of this problem is the stacker crane problem introduced in [FHK78], which requires the tour to only traverse a given set of arcs of a mixed graph. The authors showed that the stacker crane problem is NP-hard and also considered the k-person variants of the traveling salesperson problem, Chinese postperson problem and stacker crane problem. In the k-person variant, the goal is to find k tours starting and ending at the same vertex while minimizing the maximum cost among the k tours. This objective function is one of the main differences between this problem and the class of vehicle routing problems or our problem considered in Chapter 4, where we minimize the overall cost. In [FHK78], the authors proved that all three k-person variants are NP-hard and further presented approximation algorithms for the problems.

Another related problem is the study of how to move a set of identical agents in a graph from a starting configuration to a desired final configuration while minimizing the overall or maximum movement of the agents. Demaine et al. [Dem+09] gave several approximation algorithms and inapproximability results for this problem on graphs. Moreover, for agents on simple polygons several algorithms and inapproximability results were presented in [Bil+13].

The delivery of multiple pieces of data or messages from different sources to different destinations by collaborating agents with different energy budgets, i.e., bounds on the distance they can travel, is called the budgeted delivery problem. The problem was first considered in [Cha+13] under the additional assumption that all messages have to be transported to one destination. The authors showed that the problem is strongly NP-hard even for a single source and uniform energy budgets and further presented approximation and resource augmentation algorithms for the problem. In [Cha+14], it was shown that the problem is already weakly NP-hard for transporting a single piece of data from a source to a destination on the line. The general budgeted delivery problem with different sources and sinks was considered in [Bär+16]. The authors provided both hardness results and resource augmentation algorithms for the general budgeted delivery problem as well as a returning variant, where the agents additionally need to return to their starting vertex. Another variant of the problem, where robots can share energy, was considered in [Bam+17b].

In the weighted delivery problem considered in Chapter 4, the agents can travel an arbitrary distance, but every agent has a different energy efficiency, which is the energy consumption per unit distance traveled by the agent. The goal is to deliver all messages while minimizing the total energy consumption. A variant of this problem is considered in [BT17], where instead both the energy consumption as well as the delivery time is supposed to be minimized.

Further related are the problems of convergecast, in which every agent initially has a piece of information and one agent has to collect the information of all agents, and broadcast, in which the information of one agent has to be transferred to all other agents, as considered in [Ana+16; Czy+17].

Chapter 2

Space Efficient Graph Exploration

The space complexity of undirected graph exploration for one agent has received a lot of attention in the literature as it is closely related to the problem of undirected s - t-connectivity, which is complete for the complexity class SL. In his breakthrough result, Reingold [Rei08] showed that undirected $s-t$-connectivity lies in L and therefore $L=S L$. His result also yields a deterministic exploration algorithm that explores any anonymous undirected graph with n vertices in polynomial time and $O(\log n)$ space if n is known. Logarithmic memory is in fact necessary to explore all anonymous graphs with n vertices [Fra+05].

The objective of this chapter is to investigate how the memory requirement can be decreased if we allow the agent to mark vertices by dropping and retrieving pebbles or if multiple agents jointly explore the graph. There are several examples in the graph exploration literature where exploration becomes feasible or the time complexity decreases when considering agents with pebbles or multiple agents. For instance, for plane labyrinths it is known that a single agent with two pebbles can explore any plane labyrinth [BK78], whereas one pebble is not sufficient for this task [Hof81]. The exploration of plane labyrinths can also be achieved by two collaborating agents [BK78]. Similarly, directed anonymous graphs cannot be explored by a single agent in polynomial time, but two cooperating agents or one agent with $\Theta(\log \log n)$ indistinguishable pebbles can explore any anonymous graph in polynomial time [BS94; Ben+02].

For the space complexity of undirected graphs it has been an open problem if it is possible to break the $O(\log n)$ barrier by using additional pebbles or multiple agents. The only result for this problem was a lower bound on the memory requirement of the agents due to Rollik [Rol80], who constructed a graph that k agents with s states each do not explore. Fraigniaud et al. [Fra +06 b] revisited Rollik's construction and observed that the number of vertices can be bounded by $\tilde{O}(s \uparrow \uparrow(2 k+1))$, where $a \uparrow \uparrow b:=a^{a^{\cdot a}}$ with b levels in the exponent and \tilde{O} suppresses lower order terms. In the same paper, the authors also gave an improved construction with $\tilde{O}(s \uparrow \uparrow(k+1))$ vertices. Note that both bounds translate to a lower bound in terms of the number of states s and number of agents k necessary for exploring every graph with n vertices. Also for the case of one agent with pebbles, no other lower bound construction was known.

Contributions and Outline. We start this chapter by giving a formal introduction of the agent models for an agent with pebbles and multiple collaborating agent in Section 2.1. We further prove that a pebble is more powerful than a bit of memory and that, under some technical assumptions, two agents are more powerful than a pebble.

Afterwards, in Section 2.2, we develop an algorithm that explores any graph with n vertices using $O(\log \log n)$ pebbles. Our algorithm terminates and returns to the starting vertex if it exhausts the number of pebbles available or realizes that it already explored the graph. This means that the algorithm does not require n to be known and gradually increases the number of used pebbles during the course of the algorithm such that for any n-vertex graph at most $f(n)$ pebbles are used, where $f(n) \in O(\log \log n)$. We further prove that the exploration time, i.e., the number of edge traversals of the agent, is polynomial in the number of vertices of the graph. As the exploration algorithm with pebbles satisfies the additional technical requirements, we can replace the pebbles by additional agents and obtain a multi-agent exploration algorithm with $O(\log \log n)$ agents and only constant memory per agent.

In Section 2.3, we construct a lower bound showing that the number of pebbles or agents used in our algorithm is asymptotically optimal. To prove this lower bound, we construct a family of graphs with $O\left(s^{2^{5 k}}\right)$ vertices that trap any set of k agents with s states each. The size of the trap is by many orders of magnitude smaller then the constructions due to Rollik [Rol80] and Fraigniaud et al. [Fra+06b]. Directly from the bound on the size of the trap, we obtain that, even if we allow $O\left((\log n)^{1-\epsilon}\right)$ bits of memory for some constant $\epsilon>0$ for every agent, the number of agents needed for exploring every n-vertex graph is at least $\Omega(\log \log n)$. The same construction also yields the lower bound of $\Omega(\log \log n)$ pebbles for a single agent with $O\left((\log n)^{1-\epsilon}\right)$ bits of memory. Our results allow to fully describe the tradeoff between the number of agents and the memory of each agent. When agents have $\Omega(\log n)$ bits of memory, a single agent without pebbles explores all n-vertex graphs. For agents with $O\left((\log n)^{1-\epsilon}\right)$ memory, $\Omega(\log \log n)$ agents are needed. On the other hand, when $\Omega(\log \log n)$ agents are available it is sufficient that every agent has only constant memory. In fact, already one agent with constant memory and $\Omega(\log \log n)$ pebbles is sufficient.

Bibliographic Information. The results presented in this chapter are joint work with Yann Disser and Max Klimm. Parts of the results appeared in [DHK16], a more extensive version was published in [DHK18].

2.1 Agent Models

In this section, we formally introduce the agent model. We show that a pebble is more powerful than a bit of memory because one bit of memory can basically be encoded by either dropping or picking up a pebble (Lemma 2.1). Moreover, we show that under some additional technical assumptions two additional agents are more powerful than a pebble (Lemma 2.3). Note that all graphs considered in this chapter are undirected, anonymous, locally edge-labeled and connected.

We model an agent as a tuple $A=\left(\Sigma, \bar{\Sigma}, \delta, \sigma^{*}\right)$, where Σ is its set of states, $\bar{\Sigma} \subseteq \Sigma$ is its set of halting states, $\sigma^{*} \in \Sigma$ is its starting state, and δ is its transition function. The transition function governs the actions of the agent and its transitions between states based on its local observations. Its exact specifics depend on the problem considered, i.e., whether we consider a single agent or a group of agents and whether we allow the agents to use pebbles. Exploration terminates when a halting state is reached by all agents.

Our model for an agent is based on a Mealy automaton. In particular this means that the output, i.e., the actions of the agent, can depend on the current state of the agent and the input, i.e., the local environment. This allows for a more memory efficient representation of the agents in contrast to a Moore automaton, whose output online depends on its current state.

2.1.1 Single Agent without Pebbles

The most basic model is that of a single agent A without any pebbles. In each step, the agent observes its current state $\sigma \in \Sigma$, the degree $\Delta(v)$ of the current vertex v and the port number l at v of the edge from which v was entered. The port number l is also referred to as incoming port number. We let $l=\perp$ at the start of the exploration or when the agent stayed at v in the last transition. The transition function δ then specifies a new state $\sigma^{\prime} \in \Sigma$ of the agent and an outgoing port number $l^{\prime} \in\{0, \ldots, \Delta(v)-1\} \cup\{\perp\}$. If $l^{\prime} \in\{0, \ldots, \Delta(v)-1\}$ holds, the agent enters the edge with the local port number l^{\prime}, whereas for $l^{\prime}=\perp$ it stays at v. Formally, the transition function is a partial function

$$
\begin{aligned}
\delta: \Sigma \times \mathbb{N} \times(\mathbb{N} \cup\{\perp\}) & \rightarrow \Sigma \times(\mathbb{N} \cup\{\perp\}), \\
(\sigma, \Delta(v), l) & \mapsto\left(\sigma^{\prime}, l^{\prime}\right) .
\end{aligned}
$$

Note that the transition function only needs to be defined for l with $l<\Delta(v)$ and degrees $\Delta(v)$ that actually appear in the class of graphs considered. It is standard to define the space requirement of an an agent with states Σ as $\log |\Sigma|$ as this is the number of bits needed to encode every state, see, e.g., Cook and Rackoff [CR80].

2.1.2 Single Agent with Pebbles

We may equip the agent A with a set $P=\{1, \ldots, p\}$ of unique and distinguishable pebbles. At the start of the exploration the agent is carrying all of its pebbles. As before, the agent observes in each step the degree $\Delta(v)$ of the current vertex v and the port number l from which v was entered, allowing for $l=\perp$ in case the agent did not move during the previous transition. In addition, the agent has the ability to observe the set of pebbles P_{A} that it carries and the set of pebbles P_{v} present at the current vertex v. The transition function δ then specifies the new state $\sigma^{\prime} \in \Sigma$ of the agent, and a move $l^{\prime} \in\{0, \ldots, \Delta(v)-1\} \cup\{\perp\}$ as before. In addition, the agent may drop any subset $P_{\text {drop }} \subseteq P_{A}$ of carried pebbles and pick up any subset of pebbles $P_{\text {pick }} \subseteq P_{v}$ that were located at v, so that after the transition the set of carried pebbles is $P_{A}^{\prime}=\left(P_{A} \backslash P_{\text {drop }}\right) \cup P_{\text {pick }}$ and the set of pebbles present at v
is $P_{v}^{\prime}=\left(P_{v} \backslash P_{\text {pick }}\right) \cup P_{\text {drop }}$. Formally, we have

$$
\begin{aligned}
\delta: \Sigma \times \mathbb{N} \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P} & \rightarrow \Sigma \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P}, \\
\left(\sigma, \Delta(v), l, P_{A}, P_{v}\right) & \mapsto\left(\sigma^{\prime}, l^{\prime}, P_{A}^{\prime}, P_{v}^{\prime}\right) .
\end{aligned}
$$

The transition function δ is partial as it is only defined for $P_{A} \cap P_{v}=\emptyset$. We assume that the pebbles are actual physical devices dropped at the vertices so that no space is needed to manage the pebbles. Thus, the space requirement of the agent is again $\log |\Sigma|$.

2.1.3 Collaborating Agents without Pebbles

Consider a set of k cooperative agents $A_{1}=\left(\Sigma_{1}, \bar{\Sigma}_{1}, \delta_{1}, \sigma_{1}^{*}\right), \ldots, A_{k}=\left(\Sigma_{k}, \bar{\Sigma}_{k}, \delta_{k}, \sigma_{k}^{*}\right)$ jointly exploring the graph. We assume that all agents start at the same vertex v_{0} of the given graph G. In each step, all agents synchronously determine the set of agents they share a location with, as well as the states of these agents. Then, all agents move and alter their states synchronously according to their transition functions $\delta_{1}, \ldots, \delta_{k}$. The transition function of agent i determines a new state σ^{\prime} and a move l^{\prime} as before. Formally, let

$$
\Sigma_{-i}=\left(\Sigma_{1} \cup\{\perp\}\right) \times \cdots \times\left(\Sigma_{i-1} \cup\{\perp\}\right) \times\left(\Sigma_{i+1} \cup\{\perp\}\right) \times \cdots \times\left(\Sigma_{k} \cup\{\perp\}\right)
$$

denote the states of all agents potentially visible to agent A_{i} where a \perp at position j (or $(j-1)$ if $j \geq i$) stands for the event that agent A_{i} and agent A_{j} are located at different vertices. Then, the transition function δ_{i} of agent A_{i} is a partial function

$$
\begin{aligned}
\delta_{i}: \Sigma_{i} \times \Sigma_{-i} \times \mathbb{N} \times(\mathbb{N} \cup\{\perp\}) & \rightarrow \Sigma_{i} \times(\mathbb{N} \cup\{\perp\}), \\
\left(\sigma_{i}, \sigma_{-i}, \Delta(v), l\right) & \mapsto\left(\sigma_{i}^{\prime}, l_{i}^{\prime}\right) .
\end{aligned}
$$

The overall memory requirement is $\sum_{i=1}^{k} \log \left|\Sigma_{i}\right|$.

2.1.4 Relationship between Agent Models

In order to compare the capability of an agent A with s states and p pebbles to another agent A^{\prime} with s^{\prime} states and p^{\prime} pebbles or a set of agents \mathcal{A}, we use the following notion: We say that the walk of an agent A is reproduced by an agent A^{\prime} in a graph G, if the sequence of edges traversed by A is a subsequence of the edges visited by A^{\prime} in G, and agent A^{\prime} reaches a halting state if and only if agent A reaches a halting state. Put differently, A traverses the same edges as A^{\prime} in the same order, but for every edge traversal of A the agent A^{\prime} can do an arbitrary number of intermediate edge traversals. Similarly, we say that a set of agents \mathcal{A} reproduces the walk of an agent A in G, if there is an agent $A^{\prime} \in \mathcal{A}$ such that A^{\prime} reproduces the walk of A in G. We further require that if agent A reaches a halting state then all agents $A^{\prime} \in \mathcal{A}$ reach a halting state.

We first formally show the intuitive fact that pebbles are more powerful than memory bits.

Lemma 2.1. Let A be an agent with states and p pebbles exploring a set of graphs \mathcal{G}. Then there is an agent A^{\prime} with five states and $p+\lceil\log s\rceil$ pebbles that reproduces the walk of A in every $G \in \mathcal{G}$ and performs at most three edge traversals for every edge traversal of A.

Proof. As the set of graphs \mathcal{G} that can be explored by an agent with s states and p pebbles is nondecreasing in s, it suffices to show the claimed result for the case that s is an integer power of two. Let $A=\left(\Sigma, \bar{\Sigma}, \delta, \sigma^{*}\right)$ be an agent with a set of p pebbles P and $s=|\Sigma|=2^{r}, r \in \mathbb{N}$ states exploring all graphs $G \in \mathcal{G}$. In the following, we construct an agent $A^{\prime}=\left(\Sigma^{\prime}, \bar{\Sigma}^{\prime}, \delta^{\prime}, \sigma^{* \prime}\right)$ with five states $\Sigma^{\prime}=$ $\left\{\sigma^{* \prime}, \sigma_{\text {comp }}, \bar{\sigma}_{\text {halt }}, \sigma_{\text {back }-1}, \sigma_{\text {back }-2}\right\}$, one halting state $\bar{\Sigma}^{\prime}=\left\{\bar{\sigma}_{\text {halt }}\right\}$, and a set P^{\prime} of $\left|P^{\prime}\right|=p+r$ pebbles. The general idea is to let A^{\prime} store the state of A by dropping and retrieving the additional r pebbles. To this end, we identify p of the pebbles of A^{\prime} with the p pebbles of A and call the additional set of r pebbles P_{Σ}^{\prime}, i.e., $P^{\prime}=P \cup P_{\Sigma}^{\prime}$ with $|P|=p$ and $\left|P_{\Sigma}^{\prime}\right|=r$, respectively. Since $\left|P_{\Sigma}^{\prime}\right|=r$ and $|\Sigma|=s=2^{r}$, there is a canonical bijection $f: \Sigma \rightarrow 2^{P_{\Sigma}^{\prime}}$. The construction ensures that the following invariant holds during the traversal: If agent A reaches a vertex v in a state σ, then agent A^{\prime} reaches v in its computation state $\sigma_{\text {comp }}$ while carrying the set of pebbles $f(\sigma)$ plus the additional pebbles that A is carrying and all pebbles in $P_{\Sigma}^{\prime} \backslash f(\sigma)$ are located at v. We need the additional states $\sigma_{\text {back }-1}$ and $\sigma_{\text {back-2 }}$ to move all pebbles in P_{Σ}^{\prime} encoding the state of A to the next vertex in some intermediate steps.

For every $P_{A^{\prime}} \subseteq P^{\prime}, P_{v} \subseteq P^{\prime}$ with $P_{A^{\prime}} \cap P_{v}=\emptyset, \Delta(v) \in \mathbb{N}, l \in \mathbb{N} \cup\{\perp\}$ and $\sigma \in \Sigma$, let

$$
\begin{equation*}
\delta\left(\sigma, \Delta(v), l, P_{A^{\prime}} \cap P, P_{v} \cap P\right)=\left(\sigma^{\prime}, l^{\prime}, P_{A}^{\prime}, P_{v}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

be the transition of agent A with $\sigma^{\prime} \in \Sigma, l^{\prime} \in \mathbb{N} \cup\{\perp\}$ and $P_{A}^{\prime}, P_{v}^{\prime} \in 2^{P}$. Then we define

$$
\delta^{\prime}\left(\sigma_{A^{\prime}}, \Delta(v), l, P_{A^{\prime}}, P_{v}\right)= \begin{cases}\left(\sigma_{\text {comp }},\right. & l^{\prime}, P_{A}^{\prime} \cup f\left(\sigma^{\prime}\right), P_{v}^{\prime} \cup\left(P_{\Sigma}^{\prime} \backslash f\left(\sigma^{\prime}\right)\right) \tag{2.2}\\ \left(\sigma_{\text {back }-1}, l^{\prime}, P_{A}^{\prime} \cup\left(P_{\Sigma}^{\prime} \backslash f\left(\sigma^{\prime}\right)\right), P_{v}^{\prime} \cup f\left(\sigma^{\prime}\right)\right) & \text { if } l^{\prime} \neq \perp \text { and } \sigma^{\prime} \notin \bar{\Sigma}, \\ \left(\sigma_{\text {halt }},\right. & l^{\prime}, P_{A}^{\prime} \cup f\left(\sigma^{\prime}\right), P_{v}^{\prime} \cup\left(P_{\Sigma}^{\prime} \backslash f\left(\sigma^{\prime}\right)\right) \\ \text { else. }\end{cases}
$$

for $\sigma_{A^{\prime}} \in\left\{\sigma^{* \prime}, \sigma_{\text {comp }}\right\}$. If agent A traverses an edge without entering a halting state (second case in transition function δ^{\prime} above), we also need to fetch the set of remaining pebbles $f\left(\sigma^{\prime}\right)$ from the previous vertex to be able to encode the state of A in the future. To this end, A^{\prime} switches to the state $\sigma_{\text {back }-1}$. When in state $\sigma_{\text {back }-1}$, the fetching will be done in two steps: First, A^{\prime} drops all pebbles in $P_{\Sigma}^{\prime} \backslash f\left(\sigma^{\prime}\right)$, moves to the previous vertex and changes its state to $\sigma_{\text {back }-2}$. Formally, this means

$$
\delta^{\prime}\left(\sigma_{\text {back }-1}, \Delta(v), l, P_{A^{\prime}}, P_{v}\right)=\left(\sigma_{\text {back-2 }}, l, P_{A^{\prime}} \backslash P_{\Sigma}^{\prime}, P_{v} \cup\left(P_{\Sigma}^{\prime} \cap P_{A^{\prime}}\right)\right)
$$

for all $\Delta(v) \in \mathbb{N}, l \in \mathbb{N} \cup\{\perp\}$ and $P_{A^{\prime}}, P_{v} \in 2^{P^{\prime}}$ with $P_{A^{\prime}} \cap P_{v}=\emptyset$. Then it picks up the pebbles in $f\left(\sigma^{\prime}\right)$, returns to the current vertex of A and changes its state to $\sigma_{\text {comp }}$, i.e.,

$$
\delta^{\prime}\left(\sigma_{\text {back }-2}, \Delta(v), l, P_{A^{\prime}}, P_{v}\right)=\left(\sigma_{\text {comp }}, l, P_{A^{\prime}} \cup\left(P_{\Sigma}^{\prime} \cap P_{v}\right), P_{v} \backslash P_{\Sigma}^{\prime}\right)
$$

for all $\Delta(v) \in \mathbb{N}, l \in \mathbb{N} \cup\{\perp\}$ and $P_{A^{\prime}}, P_{v} \in 2^{P^{\prime}}$ with $P_{A^{\prime}} \cap P_{v}=\emptyset$. After these two transitions, the state of agent A^{\prime} is $\sigma_{\text {comp }}$, all pebbles in P_{Σ}^{\prime} are at the current vertex or carried by A^{\prime} and $P_{A^{\prime}} \cap P_{\Sigma}^{\prime}=f\left(\sigma^{\prime}\right)$ encodes the current state σ^{\prime} of agent A.

A simple inductive proof establishes that the state σ of A in every step of the exploration of a graph $G \in \mathcal{G}$ corresponds to the set of pebbles in P_{Σ}^{\prime} carried by A^{\prime} in its computation state $\sigma_{\text {comp }}$, i.e., $\sigma=f^{-1}\left(P_{A^{\prime}} \cap P_{\Sigma}^{\prime}\right)$. Moreover, if agent A in state σ traverses an edge $\{v, w\}$ from a vertex v to a vertex w and does not move to a halting state, then A^{\prime} will traverse the edge $\{v, w\}$ three times and afterwards again the set of pebbles carried by A will correspond to $P_{A^{\prime}} \cap P$ and the state of A to $\sigma=f^{-1}\left(P_{A^{\prime}} \cap P_{\Sigma}^{\prime}\right)$. If A remains at the same vertex or moves to a halting state then this transition is mirrored by a single transition of agent A^{\prime}. In particular, agent A^{\prime} visits exactly the same vertices as A in every graph $G \in \mathcal{G}$ while performing at most three times the number of edge traversals.

We proceed to show a similar reduction between exploration with additional agents and exploration by a single agent with pebbles. Intuitively, it would seem that an additional agent is at least as powerful as a pebble since an agent may simply simulate the behavior of a pebble. However, there are several subtleties in the different behavior of agents and pebbles that prevent us from showing such a general result. While a pebble is passive and its movement is entirely determined by the agent, an additional agent moves on its own and has to compute where to go next. In addition, after termination of the exploration, pebbles may remain distributed in the graph while agents that mimic pebbles need to be informed about the fact that the exploration terminated in order to switch into a halting state.

We resolve these issues in the following way. First, we restrict ourselves to agents with pebbles that have the additional property that they carry all pebbles when they terminate. Second, we require that the agent with pebbles satisfies the following pickup invariant. Our algorithm presented in Section 2.2 will satisfy both properties.

Definition 2.2. Let A be an agent with a set of p pebbles P. We say that A satisfies the pickup invariant, if every time A drops a pebble $p_{0} \in P$ at a vertex v with current incoming edge label l, then p_{0} is only picked up again if A is at v with the same incoming edge label l.

For illustration of the general proof idea assume for a moment that agents are able to recall their last incoming port number even when they stay at a vertex for multiple rounds. Then, an agent A with p pebbles satisfying the pickup invariant can be simulated by a set of $p+1$ agents as follows. There is one master agent reproducing the walk of A while all other agents behave and move as pebbles. When a pebble agent remains at a vertex it does not move until the master agent visits the vertex again. Using the pickup invariant and the fact that the pebble agent can recall the last incoming port number, the pebble agent can do the same computations as the master agent and can synchronously move as the master agent in case the outcome of the computation is that the corresponding pebble is picked up by agent A.

For this to work, we need a way to circumvent the fact that the incoming port number of an agent becomes \perp whenever they remain at a vertex. Instead of remaining at the vertex v where the agent with pebbles would drop a pebble, we let the corresponding pebble agents move back and forth between v and the vertex v^{\prime} last visited by the agent before entering v. This ensures that in every other step, the pebble agent is where it is supposed to be. Since the master agent may be using cycles of odd length, we need to ensure that the agent knows of the position of the pebbles when a pebble
agent is not at the vertex where the pebble was dropped. To this end, we double the number of agents and do two (largely independent) explorations of the graph such that the second exploration is always one step behind the first exploration. That is, there are two master agents each with a set of p pebble agents. The master agents do not distinguish between their pebble agents and the pebble agents of the other master agent. Since the explorations are shifted by one step, the two pebble agents of the two master agents simulating the same pebble will not be at the same vertex so that the agent not picked up by one master agent will be picked up by the other. Formally, we show the following result.

Lemma 2.3. Let A be an agent with states and pebbles that explores a set \mathcal{G} of graphs, satisfies the pickup invariant and terminates carrying all pebbles. Then there is a set \mathcal{A} of $2(p+1+\lceil\log s\rceil)$ agents with a constant number of states each that reproduce the walk of A in every graph $G \in \mathcal{G}$. If A never remains at a vertex before halting, then for every edge traversal of A, each agent in \mathcal{A} performs at most one edge traversal.

Proof. For an agent with pebbles, there is no benefit in remaining at a vertex so that there is no loss of generality when assuming for the following arguments that A never remains at a vertex before it halts.

Let $A=\left(\Sigma, \bar{\Sigma}, \delta, \sigma^{*}\right)$ be an agent with $s=|\Sigma|$ and a set $P=\{1, \ldots, p\}$ of p pebbles exploring all graphs $G \in \mathcal{G}$. We first explain the construction for the case that s is constant and describe at the end of the proof how to use a construction similar to the proof of Lemma 2.1 when s is not constant. We construct a set $\mathcal{A}=\left\{A_{1,0}, \ldots, A_{1, p}, A_{2,0}, \ldots, A_{2, p}\right\}$ of $2 p+2$ agents $A_{j, i}=\left(\Sigma_{j, i}, \bar{\Sigma}_{j, i}, \delta_{j, i}, \sigma_{j, i}^{*}\right)$, $i \in\{0, \ldots, p\}, j \in\{1,2\}$ that reproduces the walk of A on all graphs $G \in \mathcal{G}$. In this construction, there are two explorations by the groups of agents $A_{1,0}, \ldots, A_{1, p}$ and $A_{2,0}, \ldots, A_{2, p}$, where in each group $j \in\{1,2\}$ the master agent $A_{j, 0}$ represents the original agent A while every agent $A_{j, i}$ for $i>0$ represents a pebble. In the course of the exploration, the assignment of pebble agents to the two explorations may change, however.

For the first master agent $A_{1,0}$, we set $\Sigma_{1,0}=\Sigma, \bar{\Sigma}_{1,0}=\bar{\Sigma}$, and $\sigma_{1,0}^{*}=\sigma^{*}$. The second master agent has one additional state $\sigma_{\text {start }}$ that allows it to wait at the start of the exploration for one step, i.e., we set $\Sigma_{2,0}=\Sigma \cup\left\{\sigma_{\text {start }}\right\}, \bar{\Sigma}_{2,0}=\bar{\Sigma}$ and $\sigma_{2,0}^{*}=\sigma_{\text {start. }}$. Waiting for one time unit is implemented via the transition

$$
\delta_{2,0}\left(\sigma_{\text {start }}, \sigma_{-2,0}, \Delta(v), \perp\right)=\left(\sigma^{*}, \perp\right)
$$

for all $\Delta(v) \in \mathbb{N}$ and $\sigma_{-2,0} \in \Sigma_{-2,0}$. Throughout the construction, we will ensure that the exploration by master agent $A_{2,0}$ is always one step behind the exploration of master agent $A_{1,0}$. In addition, master agent $A_{1,0}$ explores all graphs in the same way as the agent with pebbles A would. Since we assumed that A never remains at a vertex, this implies in particular that $A_{1,0}$ and $A_{2,0}$ are never at the same vertex (except for the start and the end of the exploration).

For every agent $A_{j, i}$ with $i \in P$ and $j \in\{1,2\}$, we set $\Sigma_{j, i}=\left\{c_{j, i}, d_{j, i}, d_{j, i}^{\prime}, \bar{h}_{j, i}\right\}, \bar{\Sigma}_{j, i}=\left\{\bar{h}_{j, i}\right\}$. Intuitively, the state $c_{j, i}$ simulates that pebble i is carried, $d_{j, i}$ simulates that the pebble is dropped and at the correct vertex, $d_{j, i}^{\prime}$ simulates that the pebble is dropped but at a neighbor of the correct

Chapter 2. Space Efficient Graph Exploration

vertex, and $\bar{h}_{i, j}$ is the halting state. We let pebble agents of the first group start being carried and the pebble agents of the second group start in the incorrect dropped state, i.e., $\sigma_{1, i}^{*}=c_{1, i}$ and $\sigma_{2, i}^{*}=d_{2, i}^{\prime}$ for all $i \in P$. For $i, i^{\prime} \in\{0, \ldots, p\}$ and $j, j^{\prime} \in\{1,2\}$, let $\sigma_{j^{\prime}, i^{\prime}: j, i}$ denote the state of agent $A_{j^{\prime}, i^{\prime}}$ visible to agent $A_{j, i}$, i.e., $\sigma_{j^{\prime}, i^{\prime}: j, i}=\sigma_{j, i}$ if $A_{j^{\prime}, i^{\prime}}$ and $A_{j, i}$ share the same vertex and $\sigma_{j^{\prime}, i^{\prime}: j, i}=\perp$ otherwise. To define the transition functions $\delta_{j, i}\left(\sigma_{j, i}, \sigma_{-j, i}, \Delta(v), l\right)$ for $i \in\{0, \ldots, p\}, \sigma_{j, i} \in \Sigma_{j, i}, \sigma_{-j, i} \in \Sigma_{-j, i}$ and $\Delta(v) \in \mathbb{N}, l \in \mathbb{N} \cup\{\perp\}$, we compute for all $j \in\{1,2\}$ the corresponding transitions of the pebble agent A, i.e.,

$$
\delta\left(\sigma_{j, 0}, \Delta(v), l, C\left(\sigma_{-j, 0}\right), D\left(\sigma_{-j, 0}\right)\right)=\left(\sigma_{j, 0}^{\prime}, l_{j}^{\prime}, P_{j, A}^{\prime}, P_{j, v}^{\prime}\right),
$$

with $\sigma_{j, 0}^{\prime} \in \Sigma, l_{j}^{\prime} \in \mathbb{N}$, and $P_{j, A}^{\prime}, P_{j, v}^{\prime} \in 2^{P}$ where the set

$$
C\left(\sigma_{-j, 0}\right):=\left\{i \in P: \sigma_{1, i: j, 0}=c_{1, i}\right\} \cup\left\{i \in P: \sigma_{2, i: j, 0}=c_{2, i}\right\}
$$

is the set of pebbles that are simulated by a pebble agent (of the first or the second group) who is at the same vertex as the master agent $A_{j, 0}$ and in its carried state. Similarly, the set

$$
D\left(\sigma_{-j, 0}\right):=\left\{i \in P: \sigma_{1, i: j, 0}=d_{1, i}\right\} \cup\left\{i \in P: \sigma_{2, i: j, 0}=d_{2, i}\right\}
$$

is the set of pebbles that are simulated by a pebble agent (of the first or the second group) who is at the same vertex as the master agent $A_{j, 0}$ and in its correct dropped state $d_{1, i}$ or $d_{2, i}$. We then let the master agents $A_{1,0}$ and $A_{2,0}$ transition as agent A when observing the corresponding sets of carried and dropped pebbles, i.e.,

$$
\delta_{j, 0}\left(\sigma_{j, 0}, \sigma_{-j, 0}, \Delta(v), l\right)=\left(\sigma_{j, 0}^{\prime}, l_{j}^{\prime}\right)
$$

for all $j \in\{1,2\}$. Pebble agents that are in their carried state move as the master agent that carries them. Except for the start of the exploration, there is at most one master agent at a vertex (and pebble agents of the second group start dropped) so that the assignment to master agents is well-defined. Pebble agents $A_{j, i}$ that are in their correct dropped state $d_{j, i}$ or the carried state $c_{j, i}$ observe whether there is a master agent at the same vertex. If this is the case, they do the same computation as the master agent. If the outcome of this computation is that the corresponding pebble is picked up, they move as the master agent and transition into their carried state. If the outcome of this computation is that the pebble should remain dropped, they move to the last incoming port number and transition into the incorrect dropped state $d_{j, i}^{\prime}$. Pebble agents that are in the incorrect dropped state $d_{j, i}$ move to the last incoming port number and transition into the correct dropped state $d_{j, i}$. There is a further small corner case of pebble agents of the second group that transition from dropped to carried at the
start of the exploration. Summarizing, we obtain

$$
\delta_{j, i}\left(\sigma_{j, i}, \sigma_{-j, i}, \Delta(v), l\right)= \begin{cases}\left(d_{j, i}, l\right) & \text { if } \sigma_{j, i}=d_{j, i}^{\prime} \text { and } \sigma_{2,0, j, i} \neq \sigma_{\text {start }}, \\ \left(c_{j, i}, \perp\right) & \text { if } \sigma_{j, i}=d_{j, i}^{\prime} \text { and } \sigma_{2,0: j, i}=\sigma_{\text {start }}, \\ \left(d_{j, i}^{\prime}, l\right) & \text { if } \sigma_{j, i}=d_{j, i} \text { and } \sigma_{1,0: j, i}=\sigma_{2,0: j, i}=\perp, \\ \left(c_{j, i}, l_{1}^{\prime}\right) & \text { if } \sigma_{j, i} \in\left\{c_{j, i}, d_{j, i}\right\}, \sigma_{1,0: j, i} \neq \perp, \sigma_{1,0}^{\prime} \notin \bar{\Sigma}_{1,0}, \text { and } j \in P_{1, A}^{\prime}, \\ \left(d_{j, i}^{\prime}, l\right) & \text { if } \sigma_{j, i} \in\left\{c_{j, i}, d_{j, i}\right\}, \sigma_{1,0, j, i} \neq \perp, \sigma_{1,0}^{\prime} \notin \bar{\Sigma}_{1,0}, \text { and } j \in P_{1, v}^{\prime}, \\ \left(\bar{h}_{j, i}, l_{1}^{\prime}\right) & \text { if } \sigma_{j, i} \in\left\{c_{j, i}, d_{j, i}\right\}, \sigma_{1,0: j, i} \neq \perp, \text { and } \sigma_{1,0}^{\prime} \in \bar{\Sigma}_{1,0}, \\ \left(c_{j, i}, l_{2}^{\prime}\right) & \text { if } \sigma_{j, i} \in\left\{c_{j, i}, d_{j, i}\right\}, \sigma_{2,0: j, i} \notin\left\{\perp, \sigma_{\text {start }}\right\}, \sigma_{2,0}^{\prime} \notin \bar{\Sigma}_{2,0}, \text { and } j \in P_{2, A}^{\prime}, \\ \left(d_{j, i}^{\prime}, l\right) & \text { if } \sigma_{j, i} \in\left\{c_{j, i}, d_{j, i}\right\}, \sigma_{2,0, j, i} \notin\left\{\perp, \sigma_{\text {start }\}}\right\}, \sigma_{2,0}^{\prime} \notin \bar{\Sigma}_{2,0}, \text { and } j \in P_{2, v}^{\prime}, \\ \left(\bar{h}_{j, i}, l_{2}^{\prime}\right) & \text { if } \sigma_{j, i} \in\left\{c_{j, i}, d_{j, i}\right\}, \sigma_{2,0: j, i} \notin\left\{\perp, \sigma_{\text {start }}\right\}, \text { and } \sigma_{2,0}^{\prime} \in \bar{\Sigma}_{2,0},\end{cases}
$$

for all $i \in P$ and $j \in\{1,2\}$.
To finish the proof, fix a graph $G \in \mathcal{G}$ and consider the transitions of agent A and the set of agents \mathcal{A} in G. An inductive proof shows that after k transitions, the state and position of agent A equals the state and position of the master agent $A_{1,0}$, and the state and position of the master agent $A_{2,0}$ equals the state and position of A after $k-1$ transitions. In addition there is exactly one pebble agent $A_{i} \in\left\{A_{1, i}, A_{2, i}\right\}$ that is in state $c_{j, i}$ with $j \in\{1,2\}$ at the same vertex as master agent $A_{1,0}$ if and only if agent A is carrying pebble i. For the dropped pebbles one can show that there is exactly one pebble agent $A_{i} \in\left\{A_{1, i}, A_{2, i}\right\}$ that is in state $d_{j, i}$ with $j \in\{1,2\}$ at some vertex v if and only if in the exploration with pebbles agent A has dropped (and not yet retrieved) pebble i at vertex v an even number of steps ago. So when master agent $A_{1,0}$ returns to a vertex where A dropped a pebble it either sees the pebble agent that it caused to go into dropped state (if since that an even number of steps have passed), or the pebble agent that the other master agent $A_{2,0}$ caused to go into dropped state (if an odd number of steps have passed). In any way, the two explorations by the master agents $A_{1,0}$ and $A_{2,0}$ are never at the same vertex at any point in time, and the dropped pebbles seen by the one are invisible to the other, so that the claim follows. Finally note that as agent A carries all pebbles at the end of the exploration, all pebbles agents are at the same vertex as a master agent when they switch to a halting state. Thus, also all pebble agents reach a halting state when the exploration is terminated.

Finally, when s is not constant, we introduce $2 k=2\lceil\log s\rceil$ additional agents $A_{1, p+1}, \ldots, A_{1, p+k}$ and $A_{2, p+1}, \ldots, A_{2, p+k}$ with states $\Sigma_{j, i}=\{0,1, \bar{h}\}$ and halting states $\bar{\Sigma}=\{\bar{h}\}$ for all $j \in\{1,2\}$ and $i \in\{p+1, p+k\}$. The general idea is that the additional agents $\mathcal{A}_{1}^{\prime}=\left\{A_{1, i}: i \in\{p+1, \ldots, p+k\}\right\}$ always move synchronously with master agent $A_{1,0}$ and the additional agents $\mathcal{A}_{2}^{\prime}=\left\{A_{2, i}: i \in\right.$ $\{p+1, \ldots, p+k\}\}$ always move synchronously with master agent $A_{2,0}$. As an effect, the additional agents \mathcal{H}_{j}^{\prime} always have the same incoming port number as the corresponding master agent $A_{j, 0}$. The states 0 and 1 of the additional agents can be used to store the state of agent A so that a constant number of states of the master agent suffice. When the master agent $A_{j, 0}$ reaches a halting state the additional agents in \mathcal{A}_{j}^{\prime} also switch to their halting state \bar{h} so that they also terminate when the
exploration is finished.
We note that both the pickup invariant and the doubling of the number of agents are unnecessary in a slightly stronger model of cooperative exploration where the transition function of one agent may also depend on the incoming labels of other agents at the same vertex. In that case, pebble agents may simply remain at the vertex where they were dropped and resume computation when the master agent returns to the vertex. It is further worth noting that our lower bound construction of Section 2.3 also remains valid for this slightly stronger model.

2.2 Exploration Algorithms

In this section, we devise an agent exploring any graph on at most n vertices with $O(\log \log n)$ pebbles and $O(\log \log n)$ memory. By the reductions between the agent models given in Section 2.1.4, this implies that an agent with $O(\log \log n)$ pebbles and constant memory can explore any n-vertex graph. The algorithm further satisfies the technical requirements stated in Lemma 2.3 and therefore also yields that a set of $O(\log \log n)$ agents with constant memory each can explore any n-vertex graph.

For the algorithm, we use the concept of universal exploration sequences, which were introduced by Koucký [Kou02], see Section 1.2.2. One of our main building blocks is the algorithm of Reingold [Rei08] that takes n and d as input and deterministically constructs an exploration sequence universal to all d-regular graphs using $O(\log n)$ bits of memory. The general idea of our algorithm is to run Reingold's algorithm with a smaller amount of seed memory a. As the seed memory is substantially less than $O(\log n)$, the algorithm will, in general, fail to explore the whole graph. We show in Lemma 2.6, however, that the algorithm will visit $2^{\Omega(a)}$ distinct vertices. Reinvoking Reingold's algorithm allows us to deterministically walk along these vertices in the order of exploration of Reingold's algorithm. Using this traversal, we encode additional memory by placing a subset of pebbles on the vertices along the walk as explained formally in Theorem 2.8. Having boosted our memory this way, we again run Reingold's algorithm, this time with more memory, and recurse. At some recursion depth, running Reingold's algorithm with a^{*} bits of memory will visit less than $2^{\Omega\left(a^{*}\right)}$ distinct vertices. In the proof of Theorem 2.9, we show that this can only happen when the graph is fully explored. Hence, the algorithm can terminate when this event occurs and the agent can return to the starting vertex. The ability of our algorithm to terminate and return to the starting vertex after successful exploration stands in contrast to Reingold's algorithm that is only able to terminate when having the number n of vertices as input.

There are a couple of technical difficulties to make these ideas work. The main challenge is that the memory generated by placing pebbles along a walk in the graph is implicit and can only be accessed and altered locally. To still make use of the memory, we do not work with Reingold's algorithm directly but consider an implementation of Reingold's algorithm on a Turing machine with logarithmically bounded working tape. We show that the tape operations on the working tape can be reproduced by the agent by placing and retrieving the pebbles on the walk as explained in detail in the proof of Theorem 2.8. This allows to use the memory encoded by the pebble positions for further
runs of Reingold's algorithm. In each recursion, we only need a constant number of pebbles and additional states. We further show in Theorem 2.9 that $O(\log \log n)$ recursive calls are sufficient to explore an n-vertex graph so that the total number of pebbles needed is $O(\log \log n)$.

A second challenge is that Reingold's algorithm produces a universal exploration sequence for regular graphs which our graph need not be. A natural approach to circumvent this issue is to apply the technique of Koucky [Kou03] that allows to locally view vertices with degree d as cycles of $3 d$ subvertices with degree 3 each. Unfortunately, this approach requires $O(\log d)$ bits of memory if we keep track of the current subvertex which may exceed the memory of our agent. To circumvent this issue, we store the current subvertex only implicitly using the incoming port number. This technique is explained in detail in the proof of Lemma 2.6

The following fundamental result of Reingold [Rei08] establishes that universal exploration sequences can be constructed in logarithmic space.

Theorem 2.4 ([Rei08, Corollary 5.5]). There exists an algorithm taking n and d as input and producing in $O(\log n)$ space a finite exploration sequence universal for all connected d-regular graphs on n vertices.

Reingold's result implies in particular that there is an agent without pebbles and $O\left(n^{c}\right)$ states for some constant c that explores any d-regular graph with n vertices when both n and d are known. We further note that Reingold's algorithm can be implemented on a Turing machine that has a read/write tape of length $O(\log n)$ as work tape and writes the exploration sequence to a write-only output tape, see [Rei08, Section 5] for details. For formal reasons the Turing machine in [Rei08] additionally has a read-only input tape from which it reads the values of n and d encoded in unary so that the space complexity of the algorithm is actually logarithmic in the input length. For our setting, it is sufficient to assume that n and d are given as binary encoded numbers on the working tape of length $O(\log n)$, as we care only about the space complexity of exploration in terms of the number of vertices n.

As a first step, we show in Lemma 2.5 how to modify Reingold's algorithm for 3-regular graphs to yield a closed walk containing an exponential number of vertices in terms of the memory used. Afterwards, we extend this result to general graphs in Lemma 2.6.

Lemma 2.5. For anyz $\in \mathbb{N}$, there exists an $O(\log z)$-space algorithm producing an exploration sequence $w \in\{0,1,2\}^{+}$such that for all connected 3-regular graphs G with n vertices the following hold:
(a) An agent following w in G explores at least $\min \{z, n\}$ distinct vertices.
(b) An agent that starts in a vertex v_{0} with incoming port number l_{0} returns to v_{0} with incoming port number l_{0} after following w. In particular, w yields a closed walk in G.
(c) The length of w is bounded by $z^{O(1)}$.

Proof. By Theorem 2.4, there is a Turing machine M_{0} with a tape of length $O(\log z)$ producing a finite universal exploration sequence $e_{0}, e_{1}, \ldots, e_{a-1}$ of length $a \in \mathbb{N}$ for any 3-regular graph on exactly $4 z$ vertices.

```
Algorithm 2.1: Turing machine \(M\) computing exploration sequence for 3-regular graphs.
    Input: \(z \in \mathbb{N}\)
    Output: exploration sequences \(w \in\{0,1,2\}^{+}\)
    for \(t \in\{1, \ldots, 2 a+2\}\) do
        if \(t \leq a\) then
            run \(M_{0}\) for \(t\) steps to obtain element \(e_{t-1}\) of the exploration sequence generated by \(M_{0}\)
            output \(e_{t-1}\)
        else if \(t \equiv a+1\) or \(t \equiv 2 a+2\) then
            output 0
        else if \(a+2 \leq t \leq 2 a+1\) then
            run \(M_{0}\) for \(2 a+1-t\) steps to obtain element \(e_{2 a+2-t}\) of exploration sequence of \(M_{0}\)
            output \(-e_{2 a+1-t} \bmod 3\)
```

The Turing machine M producing an exploration sequence w with the desired properties is given in Algorithm 2.1. By construction, the sequence w produced by M is

$$
e_{0}, e_{1}, \ldots, e_{a-1}, 0,\left(-e_{a-1} \bmod 3\right),\left(-e_{a-2} \bmod 3\right), \ldots,\left(-e_{1} \bmod 3\right),\left(-e_{0} \bmod 3\right), 0
$$

We first show property (b). Let an agent A start at a vertex v_{0} with incoming port number l_{0} in some 3-regular graph G. Let further A follow the exploration sequence w, and, for $i \in\{0, \ldots, a-1\}$, let v_{i+1} be the vertex reached after following w up to e_{i}. Then the offset 0 takes the agent back from v_{a} to v_{a-1} and afterwards $-e_{i} \bmod 3$ takes agent A from v_{i} to v_{i-1}. This means that the offset $-e_{1} \bmod 3$ takes A back to v_{0} with incoming port number $l_{0}+e_{0}$. Hence, after the offsets $-e_{0} \bmod 3$ and 0 , agent A has returned to v_{0} with incoming port number l_{0}. This yields property (b).

Moreover, the length a of the exploration sequence of M_{0} is bounded by the number of configurations of M_{0}, i.e., the number of possible combinations of state, head position, and tape contents. The working tape has length $O(\log z)$. Therefore, the number of configurations of M_{0} and hence also a is bounded by $z^{O(1)}$, which yields property (c). As the auxiliary variable t ranges from 1 to $2 a+2$ and running the Turing machine M_{0} for t steps can be implemented in $O(\log z)$ space, the Turing machine M can be implemented to run in $O(\log z)$ space.

It is left to show that an agent following w in an arbitrary connected 3-regular graph with n vertices explores at least $\min \{z, n\}$ vertices. For the sake of contradiction, assume there exists some 3-regular graph G on n vertices so that an agent A starting in a vertex v_{0} and following the exploration sequence w produced by M only visits a set of vertices V_{0} with $\left|V_{0}\right|<\min \{z, n\}$. Let G_{0} be the subgraph of G induced by V_{0}. Note that, since $\left|V_{0}\right|<n$ by assumption, at least one vertex in G_{0} has degree less than 3. We now extend G_{0} to a connected 3-regular graph with $4 z$ vertices as follows. First, we let G_{1} be the graph G_{0} after adding an isolated vertex if $\left|V_{0}\right|$ is odd and we let V_{1} be the vertex set of G_{1}. We further let G_{2} be a cycle of length $4 z-\left|V_{1}\right|$ with opposite vertices connected by an edge. Note that $4 z$ and $\left|V_{1}\right|$ are even and G_{2} is 3-regular. As long as G_{1} contains at least one vertex of degree

Figure 2.1: Example for the transformation of a graph G to a 3-regular graph $G_{\text {reg }}$. A vertex v of degree 2 is transformed to a cycle containing 6 vertices and for the edge $\{v, w\}$, three edges are added to the graph.
less than 3, we delete an edge $\left\{w, w^{\prime}\right\}$ connecting opposite vertices in the cycle in G_{2} and for w and then w^{\prime} add an edge from this vertex to a vertex of degree less than 3 in G_{1} (possibly the same). This procedure terminates when all vertices in G_{1} have degree 3 , since G_{2} contains $4 z-\left|V_{1}\right| \geq 3 z \geq 3\left|V_{1}\right|$ vertices and there cannot be a single vertex of degree 2 left in G_{1}, as this would mean that the sum of all vertex degrees in G_{1} is odd. The labels in $\{0,1,2\}$ at both endpoints of every edge not in G_{0} are chosen arbitrarily. Let H be the resulting 3-regular graph with $4 z$ vertices containing G_{0} as induced subgraph.

By construction, the walk of an agent A starting in H at v_{0} and following w is the same as the walk in G starting in v_{0} and following w. In particular, the agent A only visits the vertices V_{0} and does not explore H. This contradicts that the sequence $e_{0}, e_{1}, \ldots, e_{a-1}$, which corresponds to the first a elements of the exploration sequence w, is a universal exploration sequence for all connected 3 -regular graph on $4 z$ vertices by assumption.

We proceed to give a similar result for non-regular graphs.
Lemma 2.6. For any $z \in \mathbb{N}$, there exists a $O(\log z)$-space algorithm producing an exploration sequence $w \in\{-1,0,1\}^{+}$such that for all connected graphs G with n vertices the following hold:
(a) An agent following w in G explores at least $\min \{z, n\}$ distinct vertices.
(b) An agent that starts in a vertex v_{0} with incoming port number l_{0} returns to v_{0} with incoming port number l_{0} after following w. In particular, w yields a closed walk in G.
(c) The length of w is bounded by $z^{O(1)}$.

Proof. Let M_{reg} be the Turing machine of Lemma 2.5 with a tape of length bounded by $O(\log z)$

```
Algorithm 2.2: Turing machine \(M\) computing exploration sequence for arbitrary graphs.
    Input: \(z \in \mathbb{N}\)
    Output: exploration sequences \(w \in\{-1,0,1\}^{*}\)
    \(i \leftarrow 0\)
    output 0,0
    while \(M_{\text {reg }}\) has not terminated do
        obtain next offset \(w_{\text {reg }}(i)\) from \(M_{\text {reg }}\)
        compute edge label \(l_{i}\) in \(G_{\text {reg }}\)
        if \(l_{i} \equiv 0\) then
            output 1,0
        else if \(l_{i} \equiv 1\) then
            output \(-1,0\)
        else if \(l_{i} \equiv 2\) then
            output 0
        \(i \leftarrow i+1\)
```

producing a universal exploration sequence $w_{\text {reg }} \in\{0,1,2\}^{+}$such that an agent following $w_{\text {reg }}$ in some 3-regular graph with n vertices visits at least $\min \left\{3 z^{2}, n\right\}$ distinct vertices.

To prove the statement, we transform this universal exploration sequence for 3-regular graphs to a universal exploration sequence universal for general graphs by using a construction taken from Koucký [Kou03, Theorem 87]. In this construction, an arbitrary graph G with n vertices is transformed into a 3-regular graph $G_{\text {reg }}$ as follows: We replace every vertex v of degree $\Delta(v)$ by a circle of $3 \Delta(v)$ vertices $(v, 0), \ldots,(v, 3 \Delta(v)-1)$, where the edge $\{(v, i),(v, i+1 \bmod 3 \Delta(v))\}$ has port number 0 at (v, i) and port number 1 at $(v, i+1 \bmod 3 \Delta(v))$. See also Figure 2.1 for an example of this construction. For any edge $\{v, w\}$ in G with port number i at v and j at w, we add the three edges $\{(v, i),(w, j)\},\{(v, i+\Delta(v)),(w, j+\Delta(w))\},\{(v, i+2 \Delta(v)),(w, j+2 \Delta(w))\}$ with port numbers 2 at both endpoints to $G_{\text {reg }}$.

Observe that there are only two labelings of edges in $G_{\text {reg }}$, edges with port number 2 at both endpoints and edges with port numbers 0 and 1 . In particular, one port number of an edge can be deduced from the other port number. As a consequence, given the initial incoming port number and the edge offsets from the exploration sequence $w_{\text {reg }}$ produced by $M_{\text {reg }}$, all outgoing port numbers can be computed without knowing the incoming port number at every vertex. In other words, we can transform the sequence of edge label offsets given by $w_{\text {reg }}$ to a traversal sequence, i.e., a sequence of absolute edge labels l_{0}, l_{1}, \ldots of $G_{\text {reg }}$.

We proceed to define the Turing machine M producing an exploration sequence $w \in\{-1,0,1\}^{+}$ with the desired properties as shown in Algorithm 2.2. We assume that the initial incoming port number is 0 and hence $l_{0}=w_{\text {reg }}(0)$. First of all, note that the next outgoing port number l_{i} in $G_{\text {reg }}$ can be computed from the last outgoing port number in $G_{\text {reg }}$ and the offset $w_{\text {reg }}(i)$ in constant space
(line 5 of Algorithm 2.1). Thus, M can be implemented in $O(\log z)$ space. By assumption, the length of the exploration sequence produced by $M_{\text {reg }}$ is bounded by $z^{O(1)}$. Hence, also the length of the exploration sequence produced by M is bounded by $z^{O(1)}$ showing (c).

What is left to show are properties (a) and (b). Let A be an agent following the exploration sequence w produced by M in G and starting at a vertex v_{0} with incoming port number a_{0}. Let further $A_{\text {reg }}$ be an agent following $w_{\text {reg }}$ in $G_{\text {reg }}$ and starting at vertex $\left(v_{0}, a_{0}\right)$ with incoming port number 0 . We first establish the following invariants that hold after every iteration i of the while-loop in Algorithm 2.2:

1. If agent $A_{\text {reg }}$ is at vertex $\left(v_{i}, a_{i}\right)$ in $G_{\text {reg }}$ after i steps, then after following the exploration sequence output by M up to the end of iteration i agent A is at v_{i} in G and $a_{i} \bmod \Delta\left(v_{i}\right)$ is the current incoming port number.
2. If ($\left.v_{i}, a_{i}\right)$ is visited by $A_{\text {reg }}$ in $G_{\text {reg }}$, then in G both v_{i} and the neighbor incident to the edge with label $\left(a_{i} \bmod \Delta\left(v_{i}\right)\right)$ are visited by A.

We show the invariants by induction. Note that at the beginning the Turing machine M outputs 0,0 so that in G agent A visits the neighbor of v_{0} incident to the edge with port number a_{0} and then returns to v_{0}. Thus, both invariants hold before the first iteration of the while-loop.

Now assume that before iteration i both invariants hold. We show that then they also hold after iteration i. If agent $A_{\text {reg }}$ is at the vertex (v, a) and the edge traversed by $A_{\text {reg }}$ in step i has label 0 , i.e., $l_{i}=0$, then $A_{\text {reg }}$ moves to vertex $(v,(a+1) \bmod 3 \Delta(v))$ by the definition of $G_{\text {reg }}$, see also Figure 2.1. By assumption, agent A is at vertex v in G and the incoming port number is $a \bmod \Delta(v)$. Thus, if agent A follows the exploration sequence 1,0 output by M in iteration i (line 7 of Algorithm 2.2), then it first traverses the edge labeled $(a+1) \bmod \Delta(v)$ and then returns to v. This means that after iteration i, the current vertex of A in G is v and the incoming port number is $(a+1) \bmod \Delta(v)=$ $((a+1) \bmod 3 \Delta(v)) \bmod \Delta(v)$. Moreover, agent A visited both v and the neighbor of v incident to the edge with label $(a+1) \bmod \Delta(v)$. Thus, both invariants hold after iteration i in this case.

The case that $l_{i}=1$ is analogous except that edges with label $l_{i}=1$ in $G_{\text {reg }}$ lead from a vertex (v, a) to a vertex $(v,(a-1) \bmod 3 \Delta(v))$. The equivalent movement of A in G is achieved by the sequence $-1,0$ (line 9 in Algorithm 2.1).

So assume that agent $A_{\text {reg }}$ in step i traverses an edge with label $l_{i}=2$ from a vertex (v, a) to a vertex $\left(v^{\prime}, a^{\prime}\right)$. This means that there is an edge $\left\{v, v^{\prime}\right\}$ in G with port number $a \bmod \Delta(v)$ at v and port number $a^{\prime} \bmod \Delta\left(v^{\prime}\right)$ at v^{\prime}. By assumption, at the beginning of iteration i agent A is at v and $a \bmod \Delta(v)$ is the label of the edge to the previous vertex. So if A follows the exploration sequence 0 output in iteration i (line 11 of Algorithm 2.2), then it moves to v^{\prime}. Now the label to the previous vertex at v^{\prime} is $a^{\prime} \bmod \Delta\left(v^{\prime}\right)$ and A visited both v and v^{\prime} so that both invariants hold again.

Finally, for property (b) in the lemma, we know that after following the exploration sequence $w_{\text {reg }}$ agent $A_{\text {reg }}$ returns to (v_{0}, a_{0}) in $G_{\text {reg }}$ by Lemma 2.5. Thus, after following w agent A returns to v_{0} and a_{0} is the incoming port number by the first invariant.

What is left to show is that A visits at least $\min \{z, n\}$ distinct vertices in G. If $G_{\text {reg }}$ has at most $3 z^{2}$
vertices, then $A_{\text {reg }}$ visits all vertices in $G_{\text {reg }}$ by assumption and thus A also visits all vertices in G by the second invariant. Otherwise, we know that $A_{\text {reg }}$ visits at least $3 z^{2}$ distinct vertices in $G_{\text {reg }}$. Note that this implies $z<n$ as $G_{\text {reg }}$ contains at most $3 n(n-1)$ vertices.

Assume, for the sake of contradiction, that A visits less than z vertices in G. Let $\bar{V}_{\text {reg }}$ be the set of vertices visited by $A_{\text {reg }}$ in $G_{\text {reg }}$. As $\left|\bar{V}_{\text {reg }}\right| \geq 3 z^{2}$ by assumption, at least one of the two following cases occurs:

1. The cardinality of $\bar{V}:=\left\{v \mid(v, j) \in \bar{V}_{\text {reg }}\right.$ for some $\left.j\right\}$ is at least z.
2. There is a vertex \bar{v} in G such that $M_{\bar{v}}:=\left\{j \mid(\bar{v}, j) \in \bar{V}_{\text {reg }}\right\}$ has cardinality $\geq 3 z$.

We show that both cases lead to a contradiction. Note that by the second invariant agent A visits all vertices in \bar{V}. Thus, if $|\bar{V}| \geq z$, then A visits at least z distinct vertices in G, a contradiction.

Assume the second case occurs and let \bar{v} in G be a vertex such that $\left|M_{\bar{v}}\right| \geq 3 z$. Then we have $\mid\left\{j \bmod \Delta(\bar{v})\left|j \in M_{\bar{v}}\right| \geq z\right.$ implying that agent A visits at least z neighbors of \bar{v} in G by the second invariant. This again is a contradiction.

To make the results above usable for our agents with pebbles, we need more structure regarding the memory usage of the agent. To this end, we formally define a walking Turing machine with access to pebbles, which we will refer to as a pebble machine. Formally, we can view such a walking Turing machine as a weaker agent model than the general agent model with pebbles described in Section 2.1.2, where the states of the agent correspond to the state of the working tape, the position of the head, and the state of the Turing machine. Specifically, this model is weaker since it separates computations on its tape from state transitions that depend on pebble locations and incoming port number, and since it demands δ_{TM} to be computable.

Definition 2.7. Let $s, p, m \in \mathbb{N}$. An $(s, \boldsymbol{p}, \boldsymbol{m})$-pebble machine $T=\left(Q, \bar{Q}, P, m, \delta_{\text {in }}, \delta_{T M}, \delta_{o u t}, q^{*}\right)$ is an agent $A=\left(\Sigma, \bar{\Sigma}, \delta, \sigma^{*}\right)$ with a set $P=\{1, \ldots, p\}$ of p pebbles and the following properties:
(a) The set of states is $\Sigma=Q \times\{0,1\}^{m} \times\{0, \ldots, m-1\}$, where $|Q|=s$. This means that each agent state consists of a Turing state, the state of the working tape of length m, and a head position on the tape.
(b) In the initial state σ^{*} the Turing state is q^{*}, the head position is 0 , and the tape has 0 at every position.
(c) The agent's transition function $\delta: \Sigma \times \mathbb{N} \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P} \rightarrow \Sigma \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P}$ is computed as follows:
(i) The agent first observes its local environment according to the function $\delta_{\text {in }}: Q \times \mathbb{N} \times(\mathbb{N} \cup$ $\{\perp\}) \times 2^{P} \times 2^{P} \rightarrow Q$ that maps a vector $\left(q, \Delta(v), l, P_{A}, P_{v}\right)$ consisting of the current Turing state, the degree $\Delta(v)$ of the current vertex, the label l of the edge leading back to the vertex last visited, the set P_{A} of carried pebbles and the set P_{v} of pebbles located at the current vertex to a new Turing state q^{\prime}.
(ii) The agent does computations on the working tape like a regular Turing machine according to the function $\delta_{T M}: Q \times\{0,1\} \rightarrow Q \times\{0,1\} \times\{$ left, right $\}$ that maps the tuple consisting of the current Turing state and the symbol at the current head position (q, a) to a tuple ($\left.q^{\prime}, a^{\prime}, d\right)$ meaning that the machine transitions to the new state q^{\prime}, writes a^{\prime} at the current position of the head and moves the head in direction d; this process is repeated until a halting state $\bar{q} \in \bar{Q}$ is reached (note that we only consider Turing machines that eventually halt).
(iii) It performs actions according to the function $\delta_{\text {out }}: \bar{Q} \times \mathbb{N} \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P} \rightarrow 2^{P} \times$ $2^{P} \times(\mathbb{N} \cup\{\perp\})$ that maps a tuple $\left(q, \Delta(v), l, P_{A}, P_{v}\right)$ containing the current Turing state q, the degree $\Delta(v)$ of the current vertex, the label l of the edge leading back to the vertex last visited, the set of carried pebbles P_{A} and the set of pebbles P_{v} at the current vertex v to a tuple $\left(P_{A}^{\prime}, P_{v}^{\prime}, l^{\prime}\right)$. This means that the agent drops and retrieves pebbles such that it carries P_{A}^{\prime}, leaves P_{v}^{\prime} at v and traverses the edge with local edge label l^{\prime}.

When considering a pebble machine $T=\left(Q, \bar{Q}, P, m, \delta_{\text {in }}, \delta_{\mathrm{TM}}, \delta_{\text {out }}, q^{*}\right)$, we call the Turing states Q simply states and we call the set of states Σ of the underlying agent model configurations. As the configuration of a pebble machine is fully described by the (Turing) state $q \in Q$, the head position, and the state of the working tape, it has $s m 2^{m}$ configurations. We further call a transition of the agent according to the transition function δ_{TM} a computation step. Note that an agent remains at the same vertex and only changes its configuration when performing a computation step.

We assume that a pebble machine does not forget the incoming port number when remaining at a vertex, i.e., the incoming port number does not become \perp in this case. Note that for any pebble machine T there is an agent A with pebbles which never waits at a vertex and combines multiple intermediate transitions of the pebble machine (of which only the last one results in an edge traversal) into one transition with edge traversal. Then the agent A always has access to the incoming port number so we may make this assumption for the sake of simplicity and without strengthening the agent model.

In the following theorem, we explain how to place pebbles on a closed walk and use them as additional memory.

Theorem 2.8. There are constants $c, c^{\prime} \in \mathbb{N}$ such that the following holds: Let T be a $(s, p, 2 m)$-pebble machine that performs a closed walk in any graph following an exploration sequence in $\{-1,0,1\}^{+}$and terminates with all p pebbles at the starting vertex. Then there exists $a(c s, p+c, m)$-pebble machine T^{\prime} that follows an exploration sequence in $\{-1,0,1\}^{+}$and terminates at the starting vertex carrying all $p+$ c pebbles. Moreover, the following properties hold:
(a) For every graph G with $n<2^{m / c^{\prime}}$ vertices, the pebble machine T^{\prime} explores G. The overall number of edge traversals and computation steps needed by the pebble machine T^{\prime} is bounded by $2^{O(m)}$.
(b) For every graph G with $n \geq 2^{m / c^{\prime}}$ vertices, T^{\prime} reproduces the walk of T in G. For the initialization, T^{\prime} needs $2^{O(m)}$ edge traversals and computations steps. Afterwards, the number of edge traversals and computation steps needed by the pebble machine T^{\prime} to reproduce one edge traversal or computation step of T is bounded by $2^{O(m)}$.

Chapter 2. Space Efficient Graph Exploration

(c) If T satisfies the pickup invariant, then so does T^{\prime}.

Proof. The general idea of the proof is that T^{\prime} places the constant number of additional pebbles on a closed walk ω in order to encode the tape content of the pebble machine T. Using these pebbles, T^{\prime} can also count the number of distinct vertices on the closed walk ω. If the closed walk is too short, then T^{\prime} already explored the graph and condition for (a) is satisfied. Otherwise, the closed walk is long enough to allow for a sufficient number of distinct positions of the pebble and we are in part (b) of the statement of the theorem.

Let Q be the set of states of T. We define the set of states of T^{\prime} to be $Q \times Q^{\prime}$ for a set Q^{\prime}, i.e., every state of T^{\prime} is a tuple (q, q^{\prime}), where q corresponds to the state of T in the current step of the traversal. The pebble machine T^{\prime} observes the input according to $\delta_{\text {in }}$, performs actions according to $\delta_{\text {out }}$, and uses p pebbles in the same way as T. Thus, after the transitions that correspond to the transitions of pebble machine T, the first component of the state of T^{\prime} corresponds to the state of T. Moreover, the positions of the p pebbles that T^{\prime} and T have in common is the same. Additionally, the pebble machine T^{\prime} makes many intermediate transitions to simulate the computations of T and in order to carry the additional pebbles $\left\{p_{0}, p_{1}, \ldots, p_{c-2}, p_{\text {temp }}\right\}$ along. For reproducing a step of the pebble machine T, the pebbles $\left\{p_{0}, p_{1}, \ldots, p_{c-2}\right\}$ are placed along a closed walk ω to simulate the memory of T, while the states Q^{\prime} and the tape of T^{\prime} are used to manage this memory. The purpose of the pebble $p_{\text {temp }}$ will be explained later.

We divide the tape of T^{\prime} into a constant number c_{0} of blocks of size m / c_{0} each. In the course of the proof, we will introduce a constant number of variables to manage the simulation of the memory of T with pebbles. Each of these variables is stored in a constant number of blocks. The constant c_{0} is chosen large enough to accommodate all variables on the tape of T^{\prime}. By Lemma 2.6, there is a constant c_{1} such that for any $r \in \mathbb{N}$ there is a Turing machine M with at most c_{1} states and a tape of length $c_{1} \cdot r$ outputting an exploration sequence that gives a closed walk of length at most $2^{c_{1} \cdot r}$ visiting at least $\min \left\{2^{r}, n\right\}$ vertices in any graph with n vertices. Let $m_{1}:=m /\left(c_{0} c_{1}\right)$ and let $m_{0} \in \mathbb{N}$ be such that for all $m^{\prime} \in \mathbb{N}$ with $m^{\prime} \geq m_{0}$ we have $c_{1} \leq 2^{m^{\prime} / c_{0}}$ and $2^{m^{\prime} / c_{0}}>2 m^{\prime}$.

In the following, we show how the simulated memory is managed by providing algorithms in pseudocode (see Algorithms 2.3 to 2.8). These can be implemented on a Turing machine with a constant number of states $c_{\text {Alg }}$. Let $c=\max \left\{2^{2 m_{0}}, 2 c_{0} c_{1}+1, c_{\mathrm{Alg}}\right\}$ and $c^{\prime}:=c_{0} c_{1}$. Note that c only depends on the constants c_{0}, c_{1} and $c_{\text {Alg }}$, but not on m or p. It is without loss of generality to assume $m \geq m_{0}$, because, for $m<m_{0}$, we can store the configuration of the tape of T in the states Q^{\prime} of T^{\prime}, since $c \geq 2^{2 m_{0}}$.

We proceed to show that the computations on the tape of length $2 m$ performed by T according to the transition function δ_{TM} can be simulated using the pebbles $\left\{p_{0}, p_{1}, \ldots, p_{c-2}, p_{\text {temp }}\right\}$. The proof of this result proceeds along the following key claims.

1. We can find a closed walk ω that starts at the current vertex v and contains $2^{m_{1}}$ distinct vertices so that $c-1$ pebbles placed along this walk can encode all configurations of the tape of T.
2. We can move along ω while keeping track of the number of steps and counting the number of

p_{0}			p_{1}				p_{2}				p_{3}		
0	1	0	1	1	0	1	0	0	0	1	1		

(a) Tape memory

(b) Memory encoded by pebbles

Figure 2.2: Memory encoded by using pebbles on a closed walk. The state of the tape of length $2 m=$ 12 in (a) is encoded by the position of the $c-1=4$ pebbles in (b). The number of the vertices corresponds to the order of first traversal by the closed walk ω starting in 0 . The position of each pebble encodes $m_{1}=3$ bits.
distinct vertices until we have seen $2^{m_{1}}$ distinct vertices.
3. We can read from and write to the memory encoded by the placement of the pebbles along ω.
4. If T moves from vertex v to vertex v^{\prime}, we can move all pebbles to a closed walk ω^{\prime} starting in v^{\prime} while preserving the content of the memory.

1. Finding a closed walk ω. Lemma 2.6 yields a Turing machine $M_{\text {walk }}$ with c_{1} states and a tape of length m / c_{0} that produces an exploration sequence corresponding to a closed walk ω that contains at least $\min \left\{n, 2^{m_{1}}\right\}$ distinct vertices and has length at most $2^{c_{1} m_{1}}=2^{m / c_{0}}$. We use a variable $R_{\text {walk }}$ of size m / c_{0} for the memory of $M_{\text {walk }}$, which is initially assumed to have all bits set to 0 . If $2^{m_{1}}>n$, then the exploration sequence produced by $M_{\text {walk }}$ is a walk exploring G. Note that by definition we have $m / c^{\prime}=m_{1}$. So this happens exactly when the condition for (a) in the theorem is satisfied. Below we will show how to count the number of unique vertices on the closed walk of $M_{\text {walk }}$. Hence, the pebble machine T^{\prime} can initially walk along the closed walk ω counting the number of distinct vertices. If this number is smaller than $2^{m_{1}}$, we know that we have visited all vertices of G. In this case, all pebbles used can be picked up while once walking along the closed walk ω. We show at the end of the proof that this takes at most $2^{O(m)}$ edge traversals and computation steps.

From now on, we can therefore assume that ω contains at least $2^{m_{1}}$ distinct vertices. We need to show that $c-1$ pebbles placed along the walk ω can be used to encode all of the $2^{2 m}$ configurations of the tape of T. Figure 2.2 shows how each pebble encodes a certain part of the tape of T. The idea is that each pebble can be placed on one of $2^{m_{1}}$ different vertices, thus encoding exactly m_{1} bits. We divide the tape of length $2 m$ into $2 m / m_{1}=2 c_{0} c_{1}$ parts of size m_{1} each, such that the position of pebble p_{i} encodes the bits $\left\{\operatorname{im}_{1}, \ldots,(i+1) m_{1}-1\right\}$, where we assume the bits of the tape of T to be numbered $0,1 \ldots, 2 m-1$. As $c \geq 2 c_{0} c_{1}+1$, we have enough pebbles to encode the configuration of the tape of T.

```
Algorithms 2.3: Auxiliary functions for moving along the closed walk \(\omega\).
    function \(\operatorname{step}()\)
        traverse edge according to value of exploration sequence output by \(M_{\text {walk }}\)
        \(R_{\text {steps }} \leftarrow R_{\text {steps }}+1\)
    function findPebble \(\left(p_{i}\right)\)
        while not \(\operatorname{OBSERVE}\left(p_{i}\right)\) do
            \(\operatorname{sTEP}()\)
    function Restart()
        while \(M_{\text {walk }}\) has not terminated do
        STEP()
        \(R_{\text {steps }} \leftarrow 0\)
        \(R_{\mathrm{id}} \leftarrow 0\)
        \(R_{\text {walk }} \leftarrow 0\)
```

2. Navigating ω. Let $R_{\text {steps }}$ be a variable counting the number of steps along ω and $R_{\text {id }}$ be a variable for counting the number of unique vertices visited along ω starting in v. Note that R_{id} gives a way of associating a unique identifier to the first $2^{m_{1}}$ distinct vertices along ω. As $m_{1} \leq m / c_{0}$ holds, m / c_{0} tape cells suffice for counting the first $2^{m_{1}}$ distinct vertices along ω. The overall number of steps along the closed walk is bounded by $2^{m / c_{0}}$ and therefore m / c_{0} tape cells also suffice for counting the steps along ω.

It remains to show that we can move along the closed walk ω while updating $R_{\text {steps }}$ and R_{id}, such that, starting from the vertex v, the variable $R_{\text {steps }}$ contains the number of steps taken and R_{id} contains the number of distinct vertices visited. Let $\operatorname{Drop}\left(p_{i}\right)$ denote the operation of dropping pebble p_{i} at the current vertex, $\operatorname{PICKUP}\left(p_{i}\right)$ the operation of picking up p_{i} from the current vertex if possible, and let $\operatorname{observe}\left(p_{i}\right)$ be "true" if and only if pebble p_{i} is located at the current position. Consider the auxiliary functions shown in Algorithms 2.3. The function $\operatorname{stEp}()$ moves one step along ω and updates $R_{\text {steps }}$ accordingly. The function $\operatorname{findPebble}\left(p_{i}\right)$ moves along ω until it finds pebble p_{i}. The function Restart() follows the exploration sequence output by $M_{\text {walk }}$ until $M_{\text {walk }}$ terminates. After $M_{\text {walk }}$ terminates, the pebble machine T has returned to the starting vertex v and the incoming edge label is again the same as at the beginning of the closed walk ω by Lemma 2.6. The variables $R_{\text {steps }}$ and R_{id} are then set to 0 , and $M_{\text {walk }}$ is restarted by setting the variable $R_{\text {walk }}$ to 0 . Finally, the function nextDistinctVertex() in Algorithm 2.4 does the following: If the number of distinct vertices visited along ω is already $2^{m_{1}}$, then the pebble machine T^{\prime} returns to the start. Otherwise, it continues along ω until it encounters a vertex that it has not visited before. It repeatedly traverses an edge, drops the pebble $p_{\text {temp }}$, stores the number of steps until reaching that vertex, then restarts from the beginning and checks if it can reach the vertex containing pebble $p_{\text {temp }}$ with fewer steps. If not, the while-loop can be exited as T^{\prime} found a new distinct vertex. Note that we use the auxiliary variable $R_{\text {steps }}^{\prime}$, which

```
Algorithm 2.4: Moving along the closed walk \(\omega\) while updating \(R_{\text {steps }}\) and \(R_{\mathrm{id}}\).
    Input: local environment observed by pebble machine \(T^{\prime}\)
    function nextDistinctVertex()
        if \(R_{\mathrm{id}} \equiv 2^{m_{1}}-1\) then
            Restart()
            return
        \(R_{\mathrm{id}} \leftarrow R_{\mathrm{id}}+1\)
        while True do
            step()
            \(\operatorname{DROP}\left(p_{\text {temp }}\right)\)
            \(R_{\text {steps }}^{\prime} \leftarrow R_{\text {steps }}\)
            Restart()
            FindPebble \(\left(p_{\text {temp }}\right)\)
            if \(R_{\text {steps }} \equiv R_{\text {steps }}^{\prime}\) then
            \(\operatorname{PICKUP}\left(p_{\text {temp }}\right)\)
            break
            while \(R_{\text {steps }}<R_{\text {steps }}^{\prime}\) do
            STEP()
            \(\operatorname{PICKUP}\left(p_{\text {temp }}\right)\)
```

needs a constant number of blocks of size m_{0} / c_{0}.
3. Reading from and writing to simulated memory. We show how to simulate the changes to the tape of T by changing the positions of the pebbles along ω. The transition function δ_{TM} of T determines how T does computations on its tape and, in particular, how T changes its head position. We use a variable $R_{\text {head }}$ of size m / c_{0} to store the head position. By assumption, $m \geq m_{0}$ and therefore $2^{m / c_{0}}>2 m$, i.e., the size of $R_{\text {head }}$ is sufficient to store the head position. In order to simulate one transition of T according to δ_{TM}, we need to read the bit at the current head position and then write to the simulated memory and change the head position accordingly. Reading from the simulated memory is done by the function READBit() in Algorithm 2.7 and writing of a bit b to the simulated memory is performed by the function writeBit (b) in Algorithm 2.8.

First, let us consider the two auxiliary functions $\operatorname{GetPebbleId}\left(p_{i}\right)$ and $\operatorname{PutPebbleAtId}\left(p_{i}, \mathrm{id}\right)$ (cf. Algorithms 2.5 and 2.6). As the name suggests, the function $\operatorname{GetPebbleId}\left(p_{i}\right)$ returns the unique identifier associated to the vertex marked by p_{i}. Recall that vertices are indistinguishable. Here, unique identifier refers to the number of distinct vertices on the walk ω before reaching the vertex marked with p_{i} for the first time. Given an identifier id, we can use the function $\operatorname{PutPebbleAtId}\left(p_{i}\right.$, id) for placing pebble p_{i} at the unique vertex corresponding to id. By the choice of our encoding,

```
Algorithm 2.5: Reading position of a pebble on the closed walk \(\omega\).
    Input: pebble \(p_{i}\)
    Output: identifier id \(\in\left\{0, \ldots, 2^{m_{1}}-1\right\}\) corresponding to position of pebble \(p_{i}\)
    function \(\operatorname{GetPebbleId}\left(p_{i}\right)\)
        RESTART()
        while not observe \(\left(p_{i}\right)\) do
            nextDistinctVertex()
        return \(R_{\text {id }}\)
```

```
Algorithm 2.6: Putting a pebble at a specific position on the closed walk \(\omega\).
    Input: pebble \(p_{i}\), identifier id \(\in\left\{0, \ldots, 2^{m_{1}}-1\right\}\)
    function putPebbleAtId \(\left(p_{i}\right.\), id)
        RESTART()
        findPebble \(\left(p_{i}\right)\)
        \(\operatorname{PICKUP}\left(p_{i}\right)\)
        RESTART()
        while id \(>0\) do
            id \(\leftarrow \mathrm{id}-1\)
            nextDistinctVertex()
        \(\operatorname{DROP}\left(p_{i}\right)\)
```

if $R_{\text {head }}=i \cdot m_{1}+j$ with $j \in\left\{0, \ldots, m_{1}-1\right\}$, then the j-bit of the binary encoding of the position of pebble p_{i} encodes the contents of the tape cell specified by $R_{\text {head }}$. Thus, for reading from the simulated memory, we have to compute i and j and determine the position of the corresponding pebble in the function $\operatorname{readBit}()$. For the function writeBit(b), we also compute i and j. Then, we move the pebble p_{i} by 2^{j} unique vertices forward if the bit flips to 1 or by 2^{j} unique vertices backward if the bit flips to 0 .
4. Relocating ω. Assume T is at vertex v with current incoming edge label l and it moves to another vertex v^{\prime}. By assumption, T follows an exploration sequence in $\{-1,0,1\}^{+}$such that there is an offset $l_{0} \in\{-1,0,1\}$ and T traverses the edge with port number $l_{1}:=l+l_{0} \bmod \Delta(v)$ at v. We further let l^{\prime} be the incoming port number at v^{\prime}. Due to Lemma 2.6, after every traversal of the closed walk ω, pebble machine T^{\prime} returns to v with incoming edge label l. After having computed the label l_{1} of the edge to v^{\prime}, T^{\prime} can move between vertex v with incoming edge label l and vertex v^{\prime} with incoming edge label l^{\prime} using constant memory and without the need to recompute l_{1} : The offset $l_{0} \in\{-1,0,1\}$ takes T^{\prime} from vertex v and incoming edge label l to vertex v^{\prime} with incoming edge label l^{\prime}. Moreover, the sequence of offsets $0,-l_{0}, 0$ takes T^{\prime} from vertex v^{\prime} and incoming edge label l^{\prime} back to vertex v with incoming edge label l.

```
Algorithm 2.7: Reading the bit at the current head position from the simulated memory.
    Output: bit \(b \in\{0,1\}\) at current head position of the simulated memory
    function ReadBit()
        \(i \leftarrow\left\lfloor R_{\text {head }} / m_{1}\right\rfloor\)
        \(j \leftarrow R_{\text {head }}-m_{1} \cdot i\)
        \(\mathrm{id} \leftarrow \operatorname{GetPebbleId}\left(p_{i}\right)\)
        return \(j\)-th bit of id (in binary)
```

```
Algorithm 2.8: Writing the bit \(b\) to the simulated memory at the current head position.
    Input: bit \(b \in\{0,1\}\) to be written to simulated memory at current head position
    function writeBit \((b)\)
        \(i \leftarrow\left\lfloor R_{\text {head }} / m_{1}\right\rfloor\)
        \(j \leftarrow R_{\text {head }}-m_{1} \cdot i\)
        \(\mathrm{id} \leftarrow \operatorname{GetPebbleId}\left(p_{i}\right)\)
        if \(b \equiv 1\) and \(\operatorname{READBIT}() \equiv 0\) then
            \(\mathrm{id} \leftarrow \mathrm{id}+2^{j}\)
        else if \(b \equiv 0\) and \(\operatorname{READBit}() \equiv 1\) then
            \(\mathrm{id} \leftarrow \mathrm{id}-2^{j}\)
        putPebbleAtId \(\left(p_{i}, \mathrm{id}\right)\)
```

Hence, T^{\prime} can move the pebbles placed along the walk ω to the corresponding positions along a new walk ω^{\prime} starting at v^{\prime} with incoming edge label l^{\prime} in the following way: We iterate over all $c-1$ pebbles and for each pebble p_{i} we start in v, determine the identifier id of the vertex marked by p_{i} via GetPebbleId $\left(p_{i}\right)$, pick up p_{i}, move to v^{\prime} and place p_{i} on ω^{\prime} using the function putPebbleAtId $\left(p_{i}, \mathrm{id}\right)$. This way, we can carry the memory simulated by the pebbles along during the graph traversal. Note that as soon as pebble machine T terminates at a vertex v, the pebble machine T^{\prime} can simply move once along the closed walk ω, pick up all pebbles, return to v and terminate. By assumption, all p pebbles of T are at v when T terminates and by construction also the additional c pebbles are at v when T^{\prime} terminates.

Thus, we have shown that for case (b) T^{\prime} can reproduce the traversal of T in G while using a tape with half the length, but c additional pebbles and a factor of c additional states.

We now bound the number of edge traversals and computation steps for both part (a) and (b). First, we bound the number of edge traversals that T^{\prime} needs for simulating one computation step of T. Recall that T^{\prime} needs at most $2^{m / c_{0}} \leq 2^{m}$ edge traversals for moving once along the whole closed walk ω. A call of the function $\operatorname{step}()$ corresponds to one edge traversal, a call of $\operatorname{FindPbbble}\left(p_{i}\right)$ thus corresponds to at most 2^{m} edge traversals and also a call of RESTART() corresponds to at most 2^{m} edge traversals. Moreover, one iteration of the loop in nextDistinctVertex() accounts for at most $2^{m}+1$ edge traversals and therefore executing the whole function results in at most $\left(2^{m}+1\right) \cdot 2^{m}=2^{O(m)}$ edge
traversals. This means that one call of $\operatorname{GetPebbleId}\left(p_{i}\right)$ or PutPebbleAtid $\left(p_{i}, \mathrm{id}\right)$ incur at most $2^{O(m)}$ edge traversals and this also holds for $\operatorname{ReadBit}()$ and $\operatorname{writeBit}(b)$. Hence, for every computation step performed by T according to δ_{TM}, the pebble machine T^{\prime} performs actions according to $\operatorname{READBit}()$ and writeBit (b) and overall does at most $2^{O(m)}$ edge traversals. The above argument also shows that at most $2^{O(m)}$ edge traversals are necessary to count the number of distinct vertices on the closed walk ω at the beginning.

Next, let us bound the number of edge traversals that T^{\prime} needs for reproducing one edge traversal of T. This means that we need to count how many edge traversals are necessary to relocate all pebbles placed along the walk ω to the new walk ω^{\prime}. For every pebble p_{i}, we call $\operatorname{GetPebbleId}\left(p_{i}\right)$ which results in at most $2^{O(m)}$ edge traversals, we pick up p_{i} and move to v^{\prime} which again needs at most $2^{O(m)}$ edge traversals, and place p_{i} on ω^{\prime} using the function PuTPebbleAtid $\left(p_{i}\right.$, id) which also needs $2^{O(m)}$ edge traversals. Overall, this procedure is done for a constant number of pebbles and hence requires at most $2^{O(m)}$ edge traversals.

We now bound the number of computation steps of T^{\prime} by using the bounds on the number of edge traversals. Recall that the state of T^{\prime} is a tuple $\left(q, q^{\prime}\right)$, where q corresponds to the state of T. In the computation only the second component of the state of T^{\prime} changes and therefore there are only at most c possible states. The tape length and number of possible head positions of the Turing machine is m. Since we may assume without loss of generality that $m \geq 2$, we can bound the number of distinct configurations of T^{\prime} in each computation by $2^{O(m)}$. Hence, after every edge traversal T^{\prime} does at most $2^{O(m)}$ computation steps. This implies that in part (a) of the theorem the number of computation steps is bounded by $2^{O(m)}$ because the number of edge traversals is bounded by $2^{O(m)}$ as shown above. Similarly, in part (b) of the theorem, the total number of computation steps after $2^{O(\mathrm{~m})}$ edge traversals is bounded by $2^{O(m)}$. Since $m \geq 2$, this means that also the sum of computation steps and edge traversals can be bounded by $2^{O(m)}$ both for one computation step and one edge traversal of T.

Finally, we need to show that the pickup invariant is maintained. By assumption, T satisfies this property. As pebble machine T^{\prime} drops and picks up the p common pebbles at the same vertices with the same incoming labels, we need to only show this property for the c additional pebbles. For any vertex u on the closed walk ω, let l_{u} be the incoming edge label when T^{\prime} first visits u on the closed walk. If u is the current vertex after a call of the function nextDistinctVertex() and $R_{\text {steps }}$ is the current number of steps from the starting vertex on the closed walk ω, then we know that u cannot be reached with less than $R_{\text {steps }}$ steps. In particular, the incoming edge label must be l_{u}. Hence, every time T^{\prime} drops a pebble p_{i} for $i \in\{0,1, \ldots c-2\}$ at vertex u, the incoming edge label is l_{u} and the same holds every time a pebble p_{i} is picked up from u. Furthermore, the function nextDistinctVertex() ensures that if pebble $p_{\text {temp }}$ is dropped after $R_{\text {steps }}^{\prime}$ steps on the closed walk, then it is also picked up again after $R_{\text {steps }}^{\prime}$ steps on the closed walk. Thus, the pickup invariant also holds for the pebble $p_{\text {temp }}$.

Finally, we show that by recursively simulating a pebble machine by another pebble machine with half the memory but a constant number of additional pebbles we can explore any graph with at most n vertices while using $O(\log \log n)$ pebbles and only $O(\log \log n)$ bits of memory.

Theorem 2.9. Any connected undirected graph on at most n vertices can be explored by an agent in a polynomial number of steps using $O(\log \log n)$ pebbles and $O(\log \log n)$ bits of memory. The agent does not require n as input and terminates at the starting vertex with all pebbles after exploring the graph. The agent further maintains the pickup invariant.

Proof. Let $c, c^{\prime} \in \mathbb{N}$ be the constants of Theorem 2.8. Let $r \in \mathbb{N}$ be arbitrary and consider a ($c, 0, c^{\prime} 2^{r+1}$)pebble machine $T^{(r)}$ that simply terminates without making a computation step or edge traversal. Applying Theorem 2.8 for the pebble machine $T^{(r)}$ gives a $\left(c^{2}, c, c^{\prime} 2^{r}\right)$-pebble machine $T_{r}^{(r)}$ that follows an exploration sequence in $\{-1,0,1\}^{+}$and terminates with all pebbles at the starting vertex. Moreover, if $n<2^{2^{r}}$ holds, then $T_{r}^{(r)}$ explores the graph and returns to the starting vertex. If, on the other hand, $n \geq 2^{2^{r}}$, then $T_{r}^{(r)}$ reproduces the walk of $T^{(r)}$ (which in this case is of course trivial). Note that these properties hold even though the number n of vertices is unknown and, in particular, not given as input to $T_{r}^{(r)}$.

Applying Theorem 2.8 iteratively, we obtain a $\left(c^{r+2-i},(r+1-i) c, c^{\prime} 2^{i}\right)$-pebble machine $T_{i}^{(r)}$ that follows an exploration sequence in $\{-1,0,1\}^{+}$and terminates with all pebbles at the starting vertex. For a graph G with $n<2^{2^{r}}, T_{r}^{(r)}$ explores G. Thus, for such a graph G it does not matter which case occurs when applying Theorem 2.8, as in both cases we can conclude that $T_{i}^{(r)}$ for $i \in\{0, \ldots, r-1\}$ explores the graph G. If we have $n \geq 2^{2^{r}}$, then $n \geq 2^{2^{i}}$ holds for all $i \in\{0, \ldots, r-1\}$ and in particular $T_{0}^{(r)}$ reproduces the walk of $T^{(r)}$ in G.

The desired pebble machine T exploring any graph G with $O(\log \log n)$ pebbles and $O(\log \log n)$ bits of memory works as follows: We have a counter r, which is initially 1 and is increased by one after each iteration until the given graph G is explored. In iteration r, pebble machine T does the same as the $\left(c^{r+2},(r+1) c, c^{\prime}\right)$-pebble machine $T_{0}^{(r)}$ until it terminates. The pebble machine T terminates as soon as for some $r \in \mathbb{N}$ the pebble machine $T_{0}^{(r)}$ recognizes that it explored the whole graph. This happens when $r=\lceil\log \log n\rceil+1$. Hence, T uses at most $O(\log \log n)$ pebbles.

Concerning the memory requirement of T, note that T needs to store the state of $T_{0}^{(r)}$, the tape content of $T_{0}^{(r)}$ and the current value of r. There are c^{r+2} states of the pebble machine $T_{0}^{(r)}$, its tape length is c^{\prime} and $r \leq\lceil\log \log n\rceil+1$ in every iteration, so that T can be implemented with $O(\log \log n)$ bits of memory.

It is left to show is that the number of edge traversals of T in the exploration of a given graph G with n vertices is polynomial in n. To this end, we first show that the number of edge traversals of the pebble machine $T_{0}^{(r)}$ is bounded by $n^{O(1)}$ for all $r \in\{1, \ldots,\lceil\log \log n\rceil+1\}$. Let $r \in\{1, \ldots,\lceil\log \log n\rceil+1\}$ be arbitrary and let t_{i} denote the sum of the number of edge traversals and computation steps of $T_{i}^{(r)}$ in the given graph G. The pebble machine $T_{r}^{(r)}$ has a tape of length $m=c^{\prime} 2^{r}$. Applying Theorem 2.8, we get that either $T_{r}^{(r)}$ explores G and uses at most $2^{O(m)}$ edge traversals and computation steps or $T_{r}^{(r)}$ simulates the walk of a pebble machine that does not make a single edge transition and uses at most $2^{O(m)}$ edges traversals and computation steps. In both cases, we obtain

$$
t_{r} \leq 2^{O\left(2^{r}\right)} \leq 2^{O\left(2^{\log \log n}\right)}=2^{O(\log n)}=n^{O(1)} .
$$

This shows the desired bound for t_{r}. Furthermore, one computation step or one edge traversal of $T_{i}^{(r)}$

Chapter 2. Space Efficient Graph Exploration

leads to at most $2^{O\left(c^{\prime} \cdot 2^{i}\right)}=2^{O(1) 2^{i}}$ edge traversals and computation steps of $T_{i-1}^{(r)}$ by Theorem 2.8. Hence, we obtain

$$
\begin{equation*}
t_{i-1} \leq 2^{O(1) 2^{i}} t_{i} \quad \forall i \in\{1, \ldots,\lceil\log \log n\rceil+1\} \tag{2.3}
\end{equation*}
$$

By iterative application of (2.3), we obtain

$$
t_{0} \leq 2^{O(1) 2^{i}} t_{1} \leq \ldots \leq 2^{O(1) \sum_{i=1}^{[\log \log n\rceil+1} 2^{i}} \cdot t_{\lceil\log \log n\rceil+1} \leq 2^{O(1) 2^{[\log \log n]}} \cdot n^{O(1)} \leq n^{O(1)}
$$

Thus, the number of edge traversals t_{0} of $T_{0}^{(r)}$ is polynomial in n. As T performs at most $n^{O(1)}$ edge traversals according to $T_{0}^{(r)}$ for at most $\lceil\log \log n\rceil+1$ distinct values of r, the overall number of edge traversals of T is also bounded by $n^{O(1)}$.

The pebble machine $T^{(r)}$ satisfies the pickup invariant and, hence, by Theorem 2.8 also the pebble machine $T_{0}^{(r)}$ satisfies the pickup invariant. For every value of r, the pebble machine $T_{0}^{(r)}$ returns to the starting vertex carrying all $(r+1) c$ pebbles. Therefore, the constructed pebble machine T picks up all pebbles in the same level of recursion as it drops them and, thus, also satisfies the pickup invariant.

Since an additional pebble is more powerful than a bit of memory (Lemma 2.1), we obtain the following direct corollary of Theorem 2.9.

Corollary 2.10. Any connected undirected graph on at most n vertices can be explored by an agent in a polynomial number of steps using $O(\log \log n)$ pebbles and constant memory. The agent does not require n as input and terminates at the starting vertex with all pebbles after exploring the graph.

As the pickup invariant is satisfied by the agent in Theorem 2.9, we can apply Lemma 2.3 and obtain the following corollary.

Corollary 2.11. Any connected undirected graph on at most n vertices can be explored in polynomial time by a set of $O(\log \log n)$ agents with constant memory each. The agents do not require n as input and terminate at the starting vertex after exploring the graph.

Remark 2.12 The agent in Theorem 2.9 requires $O(\log \log n)$ bits of memory and the agents in Corollary 2.10 and Corollary 2.11 only $O(1)$ bits of memory. An interesting question is how much memory is necessary to fully encode the transition function

$$
\delta: \Sigma \times \mathbb{N} \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P} \rightarrow \Sigma \times(\mathbb{N} \cup\{\perp\}) \times 2^{P} \times 2^{P},
$$

of an agent (see Section 2.1.2). Naively encoding it as a table with a row for every possible state, vertex degree, previous edge label and possible combination of $O(\log \log n)$ pebbles/agents at the current vertex takes $n^{O(1)}$ bits of memory.

However, we can obtain a much more compact encoding by exploiting the specific structure of our algorithm: First of all, we never explicitly use the degree of the current vertex. Moreover, the Turing machine from Lemma 2.6 that we internally use produces an exploration sequence of the
form $\{-1,0,1\}^{+}$. This means that our transition function can be expressed more concisely if we would allow in our model to specify transitions relative to the label of the previous edge.

Furthermore, our algorithm only interacts with a constant number of pebbles in every level of the recursion (cf. Theorem 2.8). We can express the state of T in the proof of Theorem 2.9 as a vector, where each component encodes the state in a different level of the recursion. In every transition, only two consecutive entries of this vector can change, as one level of recursion only interacts with the level of recursion below to access the simulated memory.

Since there are only a constant number of states per recursive level, and only a constant number of pebbles involved, all transitions regarding two consecutive levels can be encoded in constant memory. If we therefore explicitly encode all $O(\log \log n)$ levels of recursion and additionally allow to only give the edge label offset in the transition function, the entire transition function can be encoded with $O(\log \log n)$ bits of memory.

2.3 Lower Bounds

In this section, we present a general lower bound relating the memory requirement and number of collaborating agent needed for exploration. Specifically, we show that for a set of cooperative agents with $O\left((\log n)^{1-\varepsilon}\right)$ bits of memory each for some constant $\varepsilon>0, \Omega(\log \log n)$ agents are needed to explore any undirected graph with n vertices. The same construction implies that an agent with sublogarithmic memory needs $\Omega(\log \log n)$ pebbles to explore any n-vertex graph.

To prove the lower bound, we use the concept of an r-barrier that we introduce in Definition 2.13. Informally, an r-barrier is a graph with two special entry points such that any subset of up to r agents with s states cannot reach one entry point when starting from the other. Moreover, a set of $r+1$ agents can explore an r-barrier, but the agents can only leave the barrier via the same entry point. We construct an r-barrier by replacing every edge of a graph G by a $(r-1)$-barrier. The resulting graph has the property that a set of r agents traversing this graph needs to stay close to each other to be able to traverse the barriers and make progress, as shown in Lemma 2.19. However, if the agents stay close to each other, the states and relative positions of the agents repeat and their behavior becomes periodic. This property is formally expressed in Lemma 2.20. In Theorem 2.21, we then show how to use these two key properties in order to construct an r-barrier for a set of k agents given an $(r-1)$-barrier.

By carefully bounding the size of the r-barriers in our recursive construction via Lemma 2.23, we obtain a trap of size $O\left(s^{2^{5 k}}\right)$ for any given set of k agents with at most s states each (Theorem 2.25). In Theorem 2.26, we show that the size of the trap directly implies that the number of agents with at most $O\left((\log n)^{1-\varepsilon}\right)$ bits of memory needed for exploring any graph of size n is at least $\Omega(\log \log n)$.

The graphs involved in our construction are 3-regular and allow a labeling such that the two port numbers at both endpoints of any edge coincide. We therefore speak of the label of an edge and assume the set of labels to be $\{0,1,2\}$.

In order to define barriers formally, we need to describe how to connect two 3-regular graphs.

Figure 2.3: The r-barrier B on the left with two distinguished edges $\{u, v\},\left\{u^{\prime}, v^{\prime}\right\}$ can be connected to an arbitrary graph G, as shown on the right.

Let B be a 3-regular graph with two distinguished edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ both labeled 0 , as shown in Figure 2.3. An arbitrary 3-regular graph G with at least two edges labeled 0 can be connected to B as follows: We remove the edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ from B and two edges labeled 0 from G. We then connect each vertex of degree 2 in G with a vertex of degree 2 in B via an edge labeled 0 . The vertices $u, v, u^{\prime}, v^{\prime}$ are referred to as boundary vertices of B, whereas all other vertices of B are called interior vertices. Any edge e with $e \neq\{u, v\}$ and $e \neq\left\{u^{\prime}, v^{\prime}\right\}$ is referred to as interior edge.

Definition 2.13 (r-barrier). For $1 \leq r \leq k$, the graph B with distinguished edges $\{u, v\},\left\{u^{\prime}, v^{\prime}\right\}$ is an \boldsymbol{r}-barrier for a set of $k s$-state agents \mathcal{A} if for all graphs G connected to B as above, the following two properties hold:
(a) For all subsets of agents $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ with $\left|\mathcal{A}^{\prime}\right| \leq r$ and every pair (a, b) in $\{u, v\} \times\left\{u^{\prime}, v^{\prime}\right\}$ the following holds: If initially all agents \mathcal{A} are at vertices of G, then no agent in the set \mathcal{A}^{\prime} can traverse B from a to b or vice versa when only agents in \mathcal{A}^{\prime} enter the subgraph B at any time during the traversal. We equivalently say that no subset of at most r agents can traverse B from a to b or vice versa.
(b) For all subsets of agents $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ with $\left|\mathcal{A}^{\prime}\right|=r+1$, if initially all agents in \mathcal{A} are at vertices of G and agents in \mathcal{A}^{\prime} only enter B either via u and v, or via u^{\prime} and v^{\prime}, then all agents in \mathcal{A}^{\prime} leave B either via u and v or via u^{\prime} and v^{\prime} if no other agents visit B during this traversal. In other words, if the set \mathcal{A}^{\prime} of agents enters B via the same distinguished edge, then it cannot split up such that a part of the agents leaves B via u orv and the other part via u^{\prime} or v^{\prime}.

A k-barrier immediately yields a trap for a set of agents.
Lemma 2.14. Given a k-barrier with n vertices for a set ofk agents \mathcal{A}, we can construct a trap with $2 n+4$ vertices for \mathcal{A}.

Proof. Let H_{1} and H_{2} be two copies of a k-barrier for the set of agents \mathcal{A} with distinguished edges $\left\{u_{i}, v_{i}\right\},\left\{u_{i}^{\prime}, v_{i}^{\prime}\right\}$ of H_{i}. We connect the two graphs and four additional vertices, as shown in Figure 2.4. If the agents start in the vertex v_{0}, then none of the agents can reach u_{1}^{\prime} or v_{1}^{\prime} via

Figure 2.4: Constructing a trap given two k-barriers H_{1} and H_{2}.

Figure 2.5: A 1-barrier B for \mathcal{A} for the case that $l \in\{1,2\}$.
the k-barrier H_{1} or via the k-barrier H_{2}. Thus the agents \mathcal{A} do not explore the graph. The constructed trap for the set of agents \mathcal{A} contains $2 n+4$ vertices.

Our goal for the remainder of the section is to construct a k-barrier for a given set of k agents \mathcal{A} and to give a good upper bound on the number of vertices it contains. This will give an upper bound on the number of vertices of a trap by Lemma 2.14. The construction of the k-barrier is recursive. We start with a 1-barrier which builds on the following useful result by Fraigniaud et al. [Fra+06b] stating that, for any set of non-cooperative agents, there is a graph containing an edge which is not traversed by any of them. A set of agents is non-cooperative if the transition function δ_{i} of every agent A_{i} is completely independent of the state and location of the other agents, i.e., δ_{i} is independent of $\boldsymbol{\sigma}_{-i}$, see Section 2.1.3.

Theorem 2.15 ([Fra+06b, Theorem 4]). For anyk non-cooperative s-state agents, there exists a 3-regular graph G on $O(k s)$ vertices with the following property: There are two edges $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ in G, the former labeled 0 , such that none of the k agents traverses the edge $\left\{v_{3}, v_{4}\right\}$ when starting in v_{1} or v_{2}.

We proceed to generalize this construction for arbitrary starting states and collaborating agents.
Lemma 2.16. For every set ofk collaborating s-state agents $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$, there exists a 1-barrier B with $O\left(k s^{2}\right)$ vertices. Moreover, B remains a 1-barrier even iffor all $i \in\{1, \ldots, k\}$ agent A_{i} with the set of states Σ_{i} starts in an arbitrary state $\sigma \in \Sigma_{i}$ instead of the starting state σ_{i}^{*}.

Proof. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$, let Σ_{i} be the set of states of A_{i} and let σ_{i}^{*} be its starting state. For
all $i \in\{1, \ldots, k\}$ and all $\sigma \in \Sigma_{i}$, we define agent $A_{i}^{(\sigma)}$ to be the agent with the same behavior as A_{i}, but starting in state σ instead of σ_{i}^{*}. That is, $A_{i}^{(\sigma)}$ has the same set of states Σ_{i} as A_{i} and it transitions according to the function δ_{i} of A_{i}. Moreover, let $S:=\left\{A_{i}^{(\sigma)} \mid i \in\{1, \ldots, k\}, \sigma \in \Sigma_{i}\right\}$.

Applying Theorem 2.15 for the set of agents S yields a graph H with an edge $\left\{v_{1}, v_{2}\right\}$ labeled 0 and an edge $\left\{v_{3}, v_{4}\right\}$ labeled $l \in\{0,1,2\}$ so that any agent $A_{i}^{(\sigma)}$ that starts in v_{1} or v_{2} does not traverse the edge $\left\{v_{3}, v_{4}\right\}$. Let B be the graph consisting of two connected copies of H and 8 additional vertices, as illustrated in Figure 2.5. The edges $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$ are replaced by $\left\{v_{1}, v_{1}^{\prime}\right\}$ and $\left\{v_{2}, v_{2}^{\prime}\right\}$, which are also labeled 0 . The edges $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{3}^{\prime}, v_{4}^{\prime}\right\}$ with label l are deleted and v_{3} and v_{4} are connected each to one of the two two-degree vertices of a diamond graph by an edge with label l. The same connection to a diamond graph is added for v_{3}^{\prime} and v_{4}^{\prime} as shown in Figure 2.5. The edge labels of the two diamond graphs are arbitrary. Since each diamond graph has two vertices of degree three, each diamond graph has at least one edge with label 0 . We choose one edge with label 0 and call the end vertices u and v (resp. u^{\prime}, v^{\prime}). Note that in Figure 2.5 we have $l \in\{1,2\}$; for the case that $l=0$ the edge $\{u, v\}$ is the unique edge between the two vertices that are not adjacent to v_{3} or v_{4}.

We claim that B is a 1 -barrier for \mathcal{A} with the distinguished edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$. Assume for the sake of contradiction, that property (b) of the 1-barrier does not hold, i.e., there is a graph G that can be connected to B via the pairs of vertices $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ so that if the agents \mathcal{A} start in G in an arbitrary state, there is an agent A_{j} that walks (without loss of generality) from u to u^{\prime} in B while there are no other agents in B. Then A_{j} in particular walks from v_{1}^{\prime} or v_{2}^{\prime} to v_{3}^{\prime} or v_{4}^{\prime} in H^{\prime} and starts this walk in a state $\sigma \in \Sigma_{j}$. But the traversal sequence of A_{j} in H^{\prime} is the same as that of $A_{j}^{(\sigma)}$ that starts at v_{1}^{\prime} or v_{2}^{\prime}. This would imply that $A_{i}^{(\sigma)}$ traverses the edge $\left\{v_{3}, v_{4}\right\}$ in the original graph H when starting in v_{1} or v_{2}, which contradicts Theorem 2.15.

To prove property (b) of a 1-barrier, assume that there is a set of two agents, such that both enter B via the same distinguished edge without the other agents entering B and one of them exits B via u or v and the other via u^{\prime} or v^{\prime}. But then again one of the agents must have traversed H alone starting in v_{1} or v_{2} in a state σ and finally traversed the edge with label l incident to v_{3} or v_{4} or similarly in H^{\prime} with $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}$. This leads to the same contradiction as above.

The whole proof does not use the specific starting states of the agents \mathcal{A} and, in particular, the definition of S is independent of the starting states of the agents. Consequently, B is a 1-barrier for \mathcal{A} even if we change the starting states of the agents.

Since every agent has s states, we obtain that the cardinality of S is bounded by $O(k s)$ and, hence, the graph B has $O\left(k s^{2}\right)$ vertices by Theorem 2.15.

The proof of Theorem 2.15 in [Fra+06b] uses the fact that when traversing a 3-regular graph the next state of an s-state agent only depends on the previous state and the label $l \in\{0,1,2\}$ of the edge leading back to the previous vertex. Thus, after at most $3 s$ steps, the state of the agent and therefore also the next label chosen need to repeat with a period of length at most 3 s . For cooperative agents, however, the next state and label that are chosen may also depend on the positions and states of the other agents. We therefore need to account for the positions of all agents when forcing them into a periodic behavior. To this end, we will consider the relative positions of the agents with respect to

Figure 2.6: An edge $\{a, b\}$ labeled l is replaced with the gadget $B(l)$ containing an r-barrier B. Only the dotted edges incident to a_{0} and b_{0} that are not labeled l are part of the gadget. Consequently, the gadget contains two vertices of degree 2. The vertices a and b are macro vertices of the graph $G(B)$.
a given vertex v. For our purposes, it is sufficient to define the relative position of an agent A_{i} by the shortest traversal sequence leading from v to the location of A_{i}. This motivates the following definition.

Definition 2.17. The configuration of a set of k agents $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ in a graph G with respect to a vertex v is a ($3 k$)-tuple $\left(\sigma_{1}, l_{1}, r_{1}, \sigma_{2}, l_{2}, r_{2}, \ldots, \sigma_{k}, l_{k}, r_{k}\right)$, where σ_{i} is the current state of A_{i}, l_{i} is the label of the edge leading back to the previous vertex visited by A_{i} and r_{i} is the shortest traversal sequence from v to A_{i}, where ties are broken in favor of lexicographically smaller sequences and where we set $r_{i}=\perp$ if the location of A_{i} is v.

In order to limit the number of possible configurations, we will force the agents to stay close together. Intuitively, we can achieve this for any graph G by replacing all edges with $(k-1)$-barriers. This way, only all agents together can move between neighboring vertices of the original graph G. To formalize this, we first need to explain how edges of a graph can be replaced by barriers. Since our construction may not be 3-regular, we need a way to extend it to a 3-regular graph.

Definition 2.18. Given a graph G, with vertices of degrees 2 and 3, we define the 3-regular extension \bar{G} as the graph resulting from copying G and connecting every vertex v of degree 2 to its copy v^{\prime}. As the edges incident to v and v^{\prime} have the same labels, it is possible to label the new edge $\left\{v, v^{\prime}\right\}$ with a locally unique label in $\{0,1,2\}$.

Note that the 3-regular extension only increases the number of vertices of the graph by a factor of 2. Given a 3-regular graph G with distinguished edges e_{1}, e_{2} labeled 0 and an r-barrier B for a set of k agents \mathcal{A} with $k \geq r$, we replace all edges of G except for e_{1} and e_{2} using the following construction. First, for every $l \in\{0,1,2\}$ we replace every edge $\{a, b\}$ labeled l (except for the distinguished edges e_{1} and e_{2}) with the gadget $B(l)$ shown in Figure 2.6, and we call the resulting graph $G^{0}(B)$. By construction, the labels of the edges incident to the same vertex in $G^{0}(B)$ are distinct. However, certain vertices only have degree 2. We take the 3-regular extension of $G^{0}(B)$ and define the resulting graph as $G(B):=\overline{G^{0}(B)}$.

The graph $G(B)$ contains two copies of $G^{0}(B)$. To simplify exposition, we identify each vertex v with its copy v^{\prime} in $G(B)$. Then, there is a canonical bijection between the vertices in G and the vertices
in $G(B)$ which are not part of a gadget $B(l)$. These vertices can be thought of as the original vertices of G, and we call them macro vertices.

We further connect a graph $G(B)$ to an arbitrary 3-regular graph G^{\prime} as follows: Let $e_{1}=\left\{u_{1}, v_{1}\right\}$ and $e_{2}=\left\{u_{2}, v_{2}\right\}$ be the two distinguished edges of G with label 0 . We remove the edges e_{1}, e_{2} from $G(B)$ and also two edges of G^{\prime} with label 0 . Then we connect each of the vertices $u_{1}, v_{1}, u_{2}, v_{2}$ with one vertex of G^{\prime} of degree 2 . We will use this construction in the recursive construction of barriers because, as shown later, for a suitable graph G, the graph $G(B)$ is an $(r+1)$-barrier with distinguished edges e_{1}, e_{2}.

In the following, we show several results about graphs of the form $G(B)$ connected to an arbitrary 3-regular graph G^{\prime} as outlined above. We sometimes omit specifying the exact distinguished edges of G if these can be chosen arbitrarily. Moreover, we say that a group of agents \mathcal{A} is moving in the interior of $G(B)$ if all agents only visit interior vertices of $G(B)$, i.e., they do not visit any of the boundary vertices $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$. The vertices of $G(B)$ corresponding to vertices of G other than $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ are called the interior macro vertices, whereas $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ are referred to as boundary macro vertices. Recall that we call any edge e in G with $e \neq e_{1}$ and $e \neq e_{2}$ an interior edge.

We now establish that the agents always stay close to each other in the graph $G(B)$.
Lemma 2.19. Let G, G^{\prime} be two connected 3-regular graphs and let B be a $(k-1)$-barrier for a set of k agents \mathcal{A} with s states each. If the agents \mathcal{A} start at arbitrary vertices of G^{\prime} and then traverse the graph resulting from connecting $G(B)$ to G^{\prime}, the following statements hold:
(a) For all interior edges $\left\{v, v^{\prime}\right\}$ in G, no strict subset $\mathcal{A}^{\prime} \subsetneq \mathcal{A}$ of the agents can get from macro vertex v to macro vertex v^{\prime} in $G(B)$ by traversing the gadget $B(l)$ connecting v and v^{\prime} (where $l \in\{0,1,2\}$) without all other agents also entering this gadget.
(b) If the macro vertex v in $G(B)$ most recently visited by an agent in \mathcal{A} is an interior vertex, then all agents are at v or in the surrounding gadgets $B(0), B(1)$ and $B(2)$.

Proof. For the sake of contradiction, assume that there is a strict subset of agents $\mathcal{A}^{\prime} \subsetneq \mathcal{A}$ that walks from a macro vertex v in $G(B)$ via the gadget $B(l)$ (where $l \in\{0,1,2\}$) to a distinct macro vertex v^{\prime} without all other agents also entering this gadget connecting v and v^{\prime} at any time during the traversal. The graph $G(B)$ contains two copies of $G^{0}(B)$, but all vertices in the $(k-1)$-barriers within $G^{0}(B)$ have degree 3 . Thus, \mathcal{A}^{\prime} must have traversed some $(k-1)$-barrier B while only agents in \mathcal{A}^{\prime} enter B at any time of the traversal. This is a contradiction, as $\left|\mathcal{A}^{\prime}\right| \leq k-1$ and B is a $(k-1)$-barrier. Thus, in order for any agent in \mathcal{A} to get from the macro vertex v to the distinct macro vertex v^{\prime} via the gadget $B(l)$ connecting v and v^{\prime}, all k agents \mathcal{A} need to enter the gadget $B(l)$ during the traversal. This shows the first part of the claim.

For the second part of the claim, note that because of property (b) for the barrier B the agents cannot split up into two groups such that after the traversal of the gadget connecting v and v^{\prime} one group is at v (or one of the vertices at distance at most 4 from v that are not part of the barrier B) and the other group is at v^{\prime} (or one of the vertices at distance 4 from v^{\prime} that are not part of the barrier B).

Figure 2.7: An interior macro vertex v in a graph $G(B)$ surrounded by the three gadgets $B(0), B(1)$ and $B(2)$.

By the first part of the proof, all agents have to enter a gadget $B(l)$ with $l \in\{0,1,2\}$ in order to reach an interior macro vertex of $G(B)$ after starting in G^{\prime}. By property (b), the agents \mathcal{A} cannot split up while only visiting interior vertices of $G(B)$. Hence, if v is the macro vertex last visited by an agent in \mathcal{A} and v is an interior macro vertex (this means that, in particular, none of the agents visited a vertex of G^{\prime} after visiting v), then all agents must be located at v or in the surrounding gadgets.

Let B be a $(k-1)$-barrier for a set of k cooperative s-state agents $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$. We will frequently consider the configuration of \mathcal{A} with respect to some macro vertex v in a graph of the form $G(B)$. Recall from the definition that the graph $G(B)$ contains two copies of the graph $G^{0}(B)$ and actually there exists a macro vertex v and a copy v^{\prime}. Thus, when we talk about configurations of \mathcal{A} in $G(B)$ with respect to some macro vertex v, we mean that we consistently choose one of the copies $G^{0}(B)$ and consider the configuration of \mathcal{A} with respect to the macro vertex in this copy.

The behavior of a single agent A in a 3-regular graph is rather simple. If after t_{1} steps in a 3-regular graph G_{1} the state of A and incoming port number is the same as after t_{2} steps in a 3-regular graph G_{2}, then, in both cases, the agent does the same state transition and chooses the edge with the same label. This means that, first of all, in one 3-regular graph (i.e., $G_{1}=G_{2}$) the behavior of the agent quickly becomes periodic, and secondly, the agent has exactly the same behavior in every 3-regular graph. In particular, the traversal sequence of one agent A is the same in every 3-regular graph. The intuitive reason is that the agent can gain no new information while traversing a 3-regular graph because these graphs locally look the same.

We want to obtain a similar result for a set of agents. However, in general it is not true that if the configuration of a set of agents in a graph G_{1} with respect to a vertex v_{1} after t_{1} steps is the same as after t_{2} steps in G_{2} with respect to a vertex v_{2}, then the next configurations and chosen labels of each agent coincide. This is because an agent can be used to mark a particular vertex and this can be used to detect differences in two 3-regular graphs G_{1} and G_{2} (or differences in the local neighborhood of v_{1} and v_{2} for $G_{1}=G_{2}$). For instance, one agent could remain at a certain vertex while the other one walks in a loop that is only part of one of the graphs, but not the other. This may then lead to different
configurations. That is why we consider graphs of the form $G(B)$. In these graphs, all interior macro vertices look the same, as they are surrounded by the same gadgets, and the agents have to stay close together, making it impossible for the agents to detect a loop that is part of one of the graphs, but not the other. This intuition is formally expressed in the following technical lemma.

Lemma 2.20. Let B be a $(k-1)$-barrier for a set of $k s$-state agents \mathcal{A}, and let $G_{1}, G_{2}, G_{1}^{\prime}$ and G_{2}^{\prime} be 3-regular graphs. Assume that, for $i \in\{1,2\}$, the $\operatorname{graph} G_{i}(B)$ is connected to G_{i}^{\prime} and the agents \mathcal{A} start at arbitrary vertices of G_{i}^{\prime}. Further, consider the configuration of \mathcal{A} after t_{i} exploration steps where the last macro vertex v_{i} visited is an interior macro vertex of $G_{i}(B)$. If the configuration after t_{1} steps with respect to v_{1} is the same as after t_{2} with respect to v_{2}, then one of the following claims holds:
(a) For $i \in\{1,2\}$, the agents only visit the last macro vertex v_{i} or vertices of the surrounding gadgets for the remainder of the exploration of the respective graph.
(b) There is $l \in\{0,1,2\}$ such that in both graphs the agents traverse the gadget $B(l)$ to the next macro vertex w_{i} in $G_{i}(B)$. Moreover, the configuration of the agents \mathcal{A} with respect to w_{1} when the first agent visits w_{1} is the same as the configuration with respect to w_{2} when the first agent visits w_{2}.

Proof. The graphs $G_{1}(B)$ and $G_{2}(B)$ locally look the same to the agents, since the macro vertices v_{1} and v_{2} are surrounded by the same gadgets, as shown in Figure 2.7. Formally, this means that there is a canonical graph isomorphism γ from the induced subgraph of $G_{1}(B)$ containing v_{1}, all surrounding gadgets and the neighboring macro vertices to the induced subgraph of $G_{2}(B)$ containing v_{2}, all surrounding gadgets and the neighboring macro vertices. Moreover, γ respects the labeling and maps v_{1} to v_{2}. Note that it is important that both v_{1} and v_{2} are interior macro vertices for the isomorphism to exist.

As the configuration of \mathcal{A} after t_{1} steps with respect to v_{1} is the same as the configuration of \mathcal{A} after t_{2} steps with respect to v_{2}, the isomorphism also respects the positions of all the agents. By Lemma 2.19, we further know for $i \in\{1,2\}$ that, as long as v_{i} in $G_{i}(B)$ is the last macro vertex visited by the agents \mathcal{A}, all agents are at v_{i} or the surrounding gadgets. Iteratively, for $h=0,1, \ldots$ the following holds until the agents reach a macro vertex distinct from v_{i} in $G_{i}(B)$:

1. For every agent $A \in \mathcal{A}$, the state of A and the incoming port number after $t_{1}+h$ steps in $G_{1}(B)$ is the same as the state of A and the incoming port number after $t_{2}+h$ steps in $G_{2}(B)$.
2. The isomorphism γ maps the position of every agent $A \in \mathcal{A}$ after $t_{1}+h$ steps in $G_{1}(B)$ to the position of A after $t_{2}+h$ steps in $G_{2}(B)$.

In particular, this means that if the agents in $G_{1}(B)$ never visit a macro vertex distinct from v_{1} after step t_{1}, then also the agents never visit a macro vertex distinct from v_{2} after step t_{2} in $G_{2}(B)$. On the other hand, if after $t_{1}+\bar{h}$ steps for some $\bar{h} \in \mathbb{N}$ one agent $A \in \mathcal{A}$ first visits the distinct macro vertex w_{1} in $G_{1}(B)$, then after $t_{2}+\bar{h}$ steps in $G_{2}(B)$ agent A also visits the distinct macro vertex w_{2} for the first time. At this moment, the configuration of \mathcal{A} with respect to v_{1} is the same as the configuration of \mathcal{A} with respect to v_{2}. This implies that v_{1} and w_{1} are connected with the same gadget $B(l)$ as v_{2} and w_{2}.

Furthermore, also the configuration of \mathcal{A} with respect to w_{1} after $t_{1}+\bar{h}$ steps must be the same as the configuration of \mathcal{A} with respect to w_{2} after $t_{2}+\bar{h}$ steps.

Let G, G^{\prime} be two 3-regular graphs and B be a $(k-1)$-barrier for a set of k agents \mathcal{A} with s states each. While traversing the graph $G(B)$ connected to G^{\prime}, assume that the agents \mathcal{A} in step t_{0} first visit an interior macro vertex v_{0} distinct from the previous macro vertex visited by any agent in \mathcal{A}. Further, let x_{0} be the configuration of \mathcal{A} in step t_{0} with respect to v_{0}. Iteratively, for $i>0$, define t_{i} to be the first point in time after t_{i-1}, when one of the agents in \mathcal{A} visits an interior macro vertex v_{i} distinct from v_{i-1}. We also say that \mathcal{A} arrives at $\boldsymbol{v}_{\boldsymbol{i}}$ at this exploration step. Note that as soon as \mathcal{A} visit a boundary vertex of $G(B)$, we abort and the sequence ends. The vertex v_{i} is a neighbor of v_{i-1} in G and, by Lemma 2.19, all agents are at v_{i} or the surrounding gadgets. The sequence of macro vertices v_{0}, v_{1}, \ldots, which is a sequence of neighboring vertices in G, yields a unique sequence of labels l_{0}, l_{1}, \ldots of the edges between the neighboring vertices in G, which we call the macro traversal sequence of \mathcal{A} starting in vertex v_{0} of $G(B)$ in configuration x_{0}. Note that the macro traversal sequence may be finite if the agents visit a boundary macro vertex or stop exploring distinct macro vertices. From Lemma 2.20, we obtain that the configuration x_{0} in step t_{0} completely determines all labels of the macro label sequence independent of the underlying graph G (the graph G may, however, influence when the macro label sequence terminates because the agents \mathcal{A} visit a boundary vertex).

Before we can present the recursive construction of barriers, we need to introduce an additional definition. Let $k, r \in \mathbb{N}$ be such that $2 \leq r \leq k$. In order to construct an r-barrier B^{\prime} for a set \mathcal{A} of k cooperative s-state agents given an $(r-1)$-barrier B, we need to examine the behavior of all subsets of r agents. There are $\binom{k}{r}$ subsets of r agents and the behavior of two different subsets of r agents may be completely different. We denote these $\binom{k}{r}$ subsets of r agents by $\mathcal{A}_{1}^{(r)}, \ldots, \mathcal{A}_{\binom{(k)}{r}}^{(r)}$.

Assume that we have an $(r-1)$-barrier B for a set of k agents \mathcal{A} and let G, G^{\prime} be two 3-regular graphs such that $G(B)$ is connected to G^{\prime}. We assume that the agents \mathcal{A} start at arbitrary vertices of G^{\prime}. For $1 \leq j \leq\binom{ k}{r}$, consider the situation that only the subset of agents $\mathcal{A}_{j}^{(r)}$ enters the subgraph $G(B)$ and let v be the last interior macro vertex visited by the agents $\mathcal{A}_{j}^{(r)}$. Until these agents visit a distinct macro vertex w, all agents in $\mathcal{A}_{j}^{(r)}$ are located at v or the surrounding gadgets $B(0), B(1), B(2)$ by Lemma 2.19. Thus, the number of possible locations of the agents can be bounded in terms of the size of the gadgets $B(0), B(1)$, and $B(2)$. In addition, every agent has at most s states. Therefore the number of configurations of $\mathcal{A}_{j}^{(r)}$ with respect to the macro vertex v last visited is finite and can be bounded in terms of s and the size of the gadgets. We define α_{B} to be the number of possible configurations of $\mathcal{A}_{j}^{(r)}$ with respect to an interior macro vertex v of $G(B)$ in the exploration step when the agents $\mathcal{A}_{j}^{(r)}$ arrive at v, i.e., some agent in $\mathcal{A}_{j}^{(r)}$ first visits v. Note that α_{B} is a bound on the number of possible configurations and hence is independent of the specific subset of agents $\mathcal{A}_{j}^{(r)}$. As the local neighborhood of v, i.e., the three gadgets surrounding v, does not depend on the graph G, the definition also does not depend on the 3-regular graph G.

Given the definition of α_{B}, we are now in a position to present the construction of an r-barrier given an $(r-1)$-barrier. We will later bound α_{B} and, thus, the size of the r-barrier in Lemma 2.23.

Theorem 2.21. Given an $(r-1)$-barrier B with n vertices for a set \mathcal{A} of k agents with states each, we can construct an r-barrier B^{\prime} for \mathcal{A} with the following properties:
(a) We have $B^{\prime}=H(B)$ for a suitable 3-regular graph H with distinguished edges $e_{1}=\left\{u_{1}, v_{1}\right\}$ and $e_{2}=\left\{u_{2}, v_{2}\right\}$ labeled 0.
(b) Any path from u_{1} or v_{1} to u_{2} or v_{2} in B^{\prime} contains at least 3 distinct barriers B.
(c) The r-barrier B^{\prime} contains at most $O\left(\binom{k}{r} \cdot n \cdot \alpha_{B}^{2}\right)$ vertices.

Proof. Let G, G^{\prime} be two arbitrary 3-regular graphs and e, e^{\prime} be two distinguished edges in G with label 0 such that $G(B)$ is connected to G^{\prime} via the vertices incident to the distinguished edges. For $j \in$ $\left\{1,2, \ldots,\binom{k}{r}\right\}$, consider the subset of r agents $\mathcal{A}_{j}^{(r)}$ starting at arbitrary vertices of G^{\prime}. By definition and Lemma 2.19, there are at most α_{B} possible configurations of the agents $\mathcal{A}_{j}^{(r)}$ whenever one of the agents in α_{B} first visits a new distinct interior macro vertex in $G(B)$. We can hence denote these possible configurations by $x_{1}, \ldots, x_{\alpha_{B}}$.

Assume that after t exploration steps an agent in $\mathcal{A}_{j}^{(r)}$ first visits an interior macro vertex v in $G(B)$ distinct from the previous macro vertex visited by any agent in $\mathcal{A}_{j}^{(r)}$. Moreover, let x_{h} for $h \in\left\{1, \ldots, \alpha_{B}\right\}$ be the configuration of $\mathcal{A}_{j}^{(r)}$ with respect to v at this time. By Lemma 2.20, the following holds: Either the agents $\mathcal{A}_{j}^{(r)}$ do not visit any macro vertex distinct from v after step t or x_{h} uniquely determines $l \in\{0,1,2\}$ such that the agents traverse the gadget $B(l)$ to the next macro vertex v^{\prime} visited in $G(B)$ (this means that l only depends on $x_{h}, \mathcal{A}_{j}^{(r)}$ and B, but not on G).

We can therefore define a single agent \bar{A}_{j} as follows: The set of states of \bar{A}_{j} is $\left\{\sigma_{1}, \ldots, \sigma_{\alpha_{B}}\right\}$. Moreover, in state σ_{h} the agent \bar{A}_{j} traverses the edge labeled l and transitions to $\sigma_{h^{\prime}}$ if the set of agents $\mathcal{A}_{j}^{(r)}$ in configuration x_{h} at a time t traverses the gadget $B(l)$ to the next macro vertex v^{\prime}. Here the configuration of \bar{A}_{j} with respect to v^{\prime} when the first agent visits v^{\prime} is $x_{h^{\prime}}$. If the agents \bar{A}_{j} do not visit any macro vertex after visiting v in step t, then \bar{A}_{j} terminates in state σ_{h}. The starting state of \bar{A}_{j} corresponds to the configuration with respect to a vertex v, where all the agents in $\mathcal{A}_{j}^{(r)}$ are in their starting states and located at vertex v. Note that the transition function $\bar{\delta}$ of \bar{A}_{j} described above is well-defined because, by Lemma 2.20, the label l only depends on the configuration of $\mathcal{A}_{j}^{(r)}$ at t and is independent of the underlying graph G. By construction, there is a one-to-one correspondence between the macro traversal sequence of $\mathcal{A}_{j}^{(r)}$ starting in $G(B)$ in an interior macro vertex v in a configuration x_{h} and the traversal sequence of agent \bar{A}_{j} starting in the corresponding vertex v in G in state σ_{h} (as long as $\mathcal{A}_{j}^{(r)}$ does not visit any boundary vertex in $G(B)$).

Applying Lemma 2.16 for the single agent \bar{A}_{j} yields a 1-barrier H_{j} with $O\left(\alpha_{B}^{2}\right)$ vertices that cannot be traversed by \bar{A}_{j}, irrespective of its starting state. We now connect the graphs $H_{1}, \ldots, H_{\binom{k}{r}}$ as shown in Figure 2.8, and we let H denote the resulting graph. We first show that the graph $B^{\prime}:=H(B)$ resulting from replacing all edges except for $e_{1}=\left\{u_{1}, v_{1}\right\}$ and $e_{2}=\left\{u_{2}, v_{2}\right\}$ by the barrier B is an r-barrier for \mathcal{A}. Afterwards, we show the three additional properties in the claim.

For property (a) of an r-barrier, assume, for the sake of contradiction, that there is a subset of r agents $\mathcal{A}_{j}^{(r)}$ and some 3-regular graph G connected to $H(B)$ such that without loss of generality the agents $\mathcal{A}_{j}^{(r)}$ can traverse $H(B)$ from u_{1} to u_{2}. Then there must be a consecutive subse-

Figure 2.8: Connecting the graphs $H_{1}, H_{2}, \ldots, H_{\binom{k}{r}}$ to a graph H yields the r-barrier $H(B)$.
quence $w_{0}, w_{1}, \ldots, w_{h}$ of the macro vertex sequence of $\mathcal{A}_{j}^{(r)}$ during the traversal of $H(B)$ with the following properties: The vertices w_{1}, \ldots, w_{h-1} are contained in $H_{j}(B), w_{0}$ and w_{h} are not contained in $H_{j}(B), w_{1}$ and w_{h-1} (as vertices in the 1-barrier H_{j}) are incident to different distinguished edges (i.e., $\{u, v\}$ or $\left\{u^{\prime}, v^{\prime}\right\}$ in Figure 2.5 of the 1-barrier H_{j}. Thus, the set of agents $\mathcal{A}_{j}^{(r)}$ starting in w_{0} or the surrounding gadgets in a suitable configuration x_{i} with respect to w_{0} traverses the graph $H_{j}(B)$ from w_{1} to w_{h-1}. This means that for a suitable graph G^{\prime} connected to H_{j} and starting state σ_{i} the agent \bar{A}_{j} can traverse H_{j}. But this is a contradiction as we constructed H_{j} as a 1-barrier for \bar{A}_{j} using Lemma 2.16 and the 1-barrier H_{j} is independent of the starting state of \bar{A}_{j}.

For property (b) of an r-barrier, let $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ be a set of agents with $\left|\mathcal{A}^{\prime}\right|=r+1$. Assume, for the sake of contradiction, that there is some graph G connected to $H(B)$ such that after the agents \mathcal{A}^{\prime} (and no other agents) enter $H(B)$ via u_{1} and v_{1}, or via u_{2} and v_{2}, a subset $\emptyset \neq \mathcal{A}_{1}^{\prime} \subsetneq \mathcal{A}^{\prime}$ leaves $H(B)$ via u_{1} or v_{1} and the other agents $\mathcal{A}_{2}^{\prime}:=\mathcal{A}^{\prime} \backslash \mathcal{A}_{1}^{\prime}$ via u_{2} or v_{2}. Since B is an $(r-1)$-barrier, no set of at most $r-1$ agents can get from an interior macro vertex to a distinct interior macro vertex in $H(B)$. Thus, we must have $\left|\mathcal{A}_{1}^{\prime}\right| \geq r$ or $\left|\mathcal{A}_{2}^{\prime}\right| \geq r$. Without loss of generality, we assume that the first case occurs, which implies $\left|\mathcal{A}_{1}^{\prime}\right|=r$ and $\left|\mathcal{A}_{2}^{\prime}\right|=1$. For the single agent in \mathcal{A}_{2}^{\prime} to leave $H(B)$ via u_{2} or v_{2} at least $r-1$ agents from \mathcal{A}_{1}^{\prime} must be in a gadget adjacent to u_{2} or v_{2}. But all these $r-1$ agents afterwards leave $H(B)$ via u_{1} or v_{1} and they need the remaining agent in \mathcal{A}_{1}^{\prime} to even get to a distinct macro vertex. But then the set of r agents \mathcal{A}_{1}^{\prime} traverses the subgraphs $H_{j}(B)$ for all $j \in\left\{1, \ldots,\binom{k}{r}\right\}$, which again leads to a contradiction as in the proof of property (a) in the previous paragraph (for j such that $\left.\mathcal{A}_{1}^{\prime}=\mathcal{A}_{j}^{(r)}\right)$.

Finally, we obviously have $B^{\prime}=H(B)$ for a 3-regular graph H by construction and the second claim follows from the fact that any path from u_{1} or v_{1} to u_{2} or v_{2} in H has length at least 3. Further, each H_{j} contains $O\left(\alpha_{B}^{2}\right)$ vertices and therefore H has at most $\left.O\binom{k}{r} \cdot \alpha_{B}^{2}\right)$ vertices. Since B has n vertices, the number of vertices of $B^{\prime}=H(B)$ is at most $O\binom{k}{r} \cdot n \cdot \alpha_{B}^{2}$), where we use that H is 3-regular and therefore the number of edges of H that are replaced by a copy of B is $3 / 2$ times the number of its vertices.

We now fix a set of k agents \mathcal{A} with s states each and let B_{1} be the 1-barrier given by Lemma 2.16 and B_{r} for $1<r \leq k$ be the r-barrier constructed recursively using Theorem 2.21. Moreover, we let n_{r} be the number of vertices of B_{r} and $\alpha_{r}:=\alpha_{B_{r-1}}$ be the maximum number of possible configurations of a set of r agents with respect to an interior macro vertex in a graph of the form $G\left(B_{r-1}\right)$.

Chapter 2. Space Efficient Graph Exploration

Figure 2.9: Recursive structure of $B(l)$ containing i-barriers for $i \in\{1, \ldots, r-1\}$.

We want to bound the number of vertices n_{k} of B_{k} and thus, according to Lemma 2.14, also the number of vertices of the trap for \mathcal{A}. By Theorem 2.21, there is a constant $c \in \mathbb{N}$ such that $n_{r} \leq c\binom{k}{r} n_{r-1} \alpha_{r}^{2}$. In order to bound n_{r}, we therefore need to bound α_{r}.

One possible way to obtain an upper bound on α_{r} is to use Lemma 2.19 stating that there always is a macro vertex v such that all agents are located at v or the surrounding gadgets. Counting the number of possible positions within these three gadgets and states of the agents then gives an upper bound on α_{r}. For the tight bound in our main result, however, we need a more careful analysis of the recursive structure of our construction and also need to consider the configurations of the agents at specific times. We start with the following definition and a technical lemma.

For $j \in\{1, \ldots, r-1\}$, we say that a vertex w^{\prime} is \boldsymbol{j}-adjacent to some other vertex w if there is a path P from w to w^{\prime} that does not traverse a j-barrier B_{j}, i.e., P does not contain a subpath leading from one vertex of the distinguished edge $\{u, v\}$ to a vertex of the other distinguished edge $\left\{u^{\prime}, v^{\prime}\right\}$ in B_{j}. As a convention, every vertex w is j-adjacent to itself for all $j \in\{1, \ldots, r-1\}$. Note that a vertex w^{\prime} that is part of a j-barrier may be j-adjacent to some vertex w outside the barrier if there is a path from w to w^{\prime} that does not traverse a distinct j-barrier.

Lemma 2.22. Let G, G^{\prime} be two 3-regular graphs such that $G\left(B_{r-1}\right)$ is connected to G^{\prime}. Ifv is an interior macro vertex in $G\left(B_{r-1}\right)$, then for $j \in\{1, \ldots, r-1\}$ the number of vertices that are j-adjacent to v is bounded by $2^{4(r-j)} n_{j}$.

Proof. In order to bound the number of j-adjacent vertices, we examine the recursive structure of one of the gadgets $B(l)$ incident to v, as shown in Figure 2.9. By Theorem 2.21, an $(r-1)$-barrier B^{\prime} for $r \geq 3$ is constructed from a 3-regular graph H and an $(r-2)$-barrier B such that $B^{\prime}=H(B)$. Hence, the gadget $B(l)$, which contains the barrier B_{r-1}, also contains many copies of the barrier B_{r-2}, which again contain many copies of the barrier B_{r-3} (if $r \geq 4$) and so on.

We first show that the distance from v to any j-adjacent vertex, which is not part of a barrier B_{j} and hence, in particular, not a boundary vertex of B_{j}, is at most $4(r-j)$. For $j=r-1$, consider Figure 2.6 showing how for $l \in\{0,1,2\}$ every interior edge $\{a, b\}$ with label l in G is replaced by the gadget $B_{r-1}(l)$ containing B_{r-1}. Note that actually $G\left(B_{r-1}\right)$ contains a copy a^{\prime} of a as well as a copy b^{\prime} of b and there is one such gadget between a and b and another gadget between a^{\prime} and b^{\prime}. However, all vertices in both gadget, which are $(r-1)$-adjacent, but not in B_{r-1}, are at distance at

Figure 2.10: Vertex a is $(r-j)$-adjacent to v, while b is not $(r-j+1)$-adjacent to v.
most 4 from a for all $l \in\{0,1,2\}$ (the copy a_{0}^{\prime} of a_{0} is at distance 2 from a and every vertex in the copy is at distance at most 2 from a_{0}^{\prime}). For $j=r-2, r-3, \ldots$ the claim follows by the same argument, since edges between two macro vertices in B_{r-1} are replaced by a barrier B_{r-2} and so on. See also the recursive structure given in Figure 2.9.

As $G\left(B_{r-1}\right)$ is 3-regular, the number of vertices at distance at most $4(r-j)$ from v can be bounded by $3 \cdot 2^{4(r-j)-1}$. Hence there are at most $3 \cdot 2^{4(r-j)-1}$ vertices, which are j-adjacent but not part of a barrier B_{j}. Moreover, any j-barrier B_{j} containing vertices that are j-adjacent to v, in particular contains two vertices with a distance of at most $4(r-j)$ to v. This follows from the same analysis of the recursive structure of the barriers as above. As $G\left(B_{r-1}\right)$ is 3-regular, there are at most $3 \cdot 2^{4(r-j)-1}$ vertices of distance at most $4(r-j)$ from v and therefore at most $3 / 2 \cdot 2^{4(r-j)-1}$ different j-barriers, with n_{j} vertices each, containing j-adjacent vertices. Thus, there are at most $3 / 2 \cdot 2^{4(r-j)-1} n_{j}$ vertices that are j-adjacent to v and part of a barrier B_{j}. Overall, the number of j-adjacent vertices to v can therefore be bounded by

$$
3 / 2 \cdot 2^{4(r-j)-1} \cdot n_{j}+3 \cdot 2^{4(r-j)-1} \leq 2^{4(r-j)} \cdot n_{j}
$$

where we used $n_{j} \geq 6$ and $j \leq r-1$.
The idea now is to consider the configuration of the agents with respect to a macro vertex v_{i} exactly at the time t when at least $\lceil r / 2\rceil+1$ agents are $\lceil r / 2\rceil$-adjacent to v_{i}. We then further use the fact that it is not possible to partition the agents \mathcal{A} into two groups \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$ with at most $i \geq\lceil r / 2\rceil$ agents each that are separated on any path by at least two i-barriers. This yields the following bound on α_{r}.

Lemma 2.23. Let \mathcal{A} be a set of k agents, $s \geq 2$ and $r \in\{2, \ldots, k\}$. We then have

$$
\alpha_{r} \leq s^{7 r^{2}} \cdot n_{\lceil r / 2\rceil}^{\lceil r / 2\rceil} \cdot n_{r-1} \cdot \prod_{j=\lceil r / 2\rceil+1}^{r-1} n_{j} .
$$

Proof. Let $\mathcal{A}^{(r)} \subseteq \mathcal{A}$ be an arbitrary subset of r agents and G, G^{\prime} be two 3-regular graphs such that $G\left(B_{r-1}\right)$ is connected to G^{\prime}. Let further v be an interior macro vertex of $G\left(B_{r-1}\right)$. We want to bound α_{r}, i.e., the number of configurations of $\mathcal{A}^{(r)}$ in the exploration step t when the agents arrive at v. Let v^{\prime} be the last macro vertex of $G\left(B_{r-1}\right)$ that was visited by one of the agents in $\mathcal{A}^{(r)}$ before.

Because of the recursive structure of the barriers, see Figure 2.9, every macro vertex is surrounded by $\lceil r / 2\rceil$-barriers and any path between the two macro vertices v^{\prime} and v contains at least one barrier $B_{\lceil r / 2\rceil}$ (note that $r \geq 2$ by assumption). In order to reach the vertex v after visiting v^{\prime}, at least $\lceil r / 2\rceil+1$ agents from $\mathcal{A}^{(r)}$ are necessary to traverse such an $\lceil r / 2\rceil$-barrier. Thus, at some step t_{0} before the agents arrive at v at step t at least $\lceil r / 2\rceil+1$ agents must be at a vertex that is $\lceil r / 2\rceil$-adjacent to v, as otherwise the agents would not be able to reach v. The crucial observation at this point is that the number of possible configurations in step t_{0} also bounds the number α_{r} of possible configurations in step t, because, by Lemma 2.20, the configurations in step t must coincide if they already coincided in step t_{0}.

Let \mathcal{A}_{1} denote the set of agents that are at a vertex that is $\lceil r / 2\rceil$-adjacent to v at time t_{0} and let $\mathcal{A}_{2}:=\mathcal{A}^{(r)} \backslash \mathcal{A}_{1}$. By the argument above we have $\left|\mathcal{A}_{1}\right| \geq\lceil r / 2\rceil+1$. We claim the following: For $j \in\left\{1, \ldots,\left|\mathcal{A}_{2}\right|\right\}$, there are at least $(r-j)$ agents in $\mathcal{A}^{(r)}$ that are located at a vertex which is $(r-j)$-adjacent to v.

For $j=\left|\mathcal{A}_{2}\right|$, we have $r-j=\left|\mathcal{A}_{1}\right|>\lceil r / 2\rceil$. Thus, the claim holds by definition of \mathcal{A}_{1}, since there are $r-j$ agents, namely the set of agents \mathcal{A}_{1}, which are located at vertices which are $\lceil r / 2\rceil$-adjacent to v and thus also $(r-j)$-adjacent to v because $r-j>\lceil r / 2\rceil$.

Now, assume for the sake of contradiction that the claim holds for j, but not for $j-1$. This means that there is a subset of agents $\mathcal{A}^{\prime} \subset \mathcal{A}^{(r)}$ with $\left|\mathcal{A}^{\prime}\right|=r-j$ such that all agents in \mathcal{A}^{\prime} are located at vertices which are $(r-j)$-adjacent to v. But for $j-1$ the claim does not hold, which implies that all other agents $\mathcal{A}^{\prime \prime}:=\mathcal{A}^{(r)} \backslash \mathcal{A}^{\prime}$ are at vertices which are not $(r-j+1)$-adjacent: If there was an agent $A \in \mathcal{A}^{\prime \prime}$ at a vertex which is $(r-j+1)$-adjacent, then $\mathcal{A}^{\prime} \cup\{A\}$ would be a set of $(r-j+1)$ agents which are all at $(r-j+1)$-adjacent vertices, which is a contradiction to the choice of j.

But the path between any pair of vertices (a, b), such that a is $(r-j)$-adjacent to v and b is not $(r-j+1)$-adjacent to v, contains at least two $(r-j)$-barriers, see also Figure 2.10. The reason is that $r-j+1>\lceil r / 2\rceil \geq 1$ and, by Theorem 2.21, any path from u or v to u^{\prime} or v^{\prime} contains at least three $(r-j)$ barriers. Thus the set of agents \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$ are separated by at least two $(r-j)$-barriers on any path and $\left|\mathcal{A}^{\prime}\right| \leq r-j$ as well as $\left|\mathcal{A}^{\prime \prime}\right|=j<r-j$ since $j \leq\lceil r / 2\rceil-1$. But then a set of at most $r-j$ agents must have traversed a barrier B_{r-j} or a set of at most $r-j-1$ agents must have traversed the gadget between two macro vertices in B_{r-j}, which both is a contradiction.

By the claim above, we can enumerate the agents in $\mathcal{A}^{(r)}$ as $A_{1}, A_{2}, \ldots, A_{r}$ so that:

1. For $j \in\left\{1, \ldots,\left|\mathcal{A}_{1}\right|\right\}, A_{j} \in \mathcal{A}_{1}$ and the location of A_{j} is $\lceil r / 2\rceil$-adjacent to v.
2. For $j \in\left\{\left|\mathcal{A}_{1}\right|+1, \ldots, r-1\right\}, A_{j} \in \mathcal{A}_{2}$ and the location of A_{j} is j-adjacent to v.
3. Agent $A_{r} \in \mathcal{A}_{2}$ is at v or one of the surrounding gadgets by Lemma 2.19.

We first bound the number of possible locations of the agents and afterwards consider the number of possible states and possible edge labels to the previous vertex.

There are r ! possible permutations of the agents. Moreover, using Lemma 2.22, we can bound the number of possible locations at time t_{0} of the agents in \mathcal{A}_{1} by $\left(2^{4(r-[r / 2\rceil)} n_{\lceil r / 2\rceil}\right)^{\left|\mathcal{A}_{1}\right|}$, the number of possible locations of the agents $\left\{A_{\left|\mathcal{A}_{1}\right|+1}, \ldots, A_{r-1}\right\}$ by $\prod_{j=\left|\mathcal{A}_{1}\right|+1}^{r-1} 2^{4(r-j)} n_{j}$ and the number of
possible locations of A_{r} by $2^{4} n_{r-1}$. Overall, we can thus bound the number of possible locations of the agents $\mathcal{A}^{(r)}$ at t_{0} with respect to v by

$$
\begin{aligned}
& r!\cdot\left(2^{4(r-\lceil r / 2\rceil)} n_{\lceil r / 2\rceil}\right)^{\left|\mathcal{A}_{1}\right|}\left(\prod_{j=\left|\mathcal{A}_{1}\right|+1}^{r-1} 2^{4(r-j)} n_{j}\right) 2^{4} n_{r-1} \\
\leq & r!\cdot\left(2^{4 r}\right)^{r} \cdot n_{\lceil r / 2\rceil}^{\left|\mathcal{A}_{1}\right|} \cdot n_{r-1} \cdot \prod_{j=\left|\mathcal{A}_{1}\right|+1}^{r-1} n_{j} \leq 2^{5 r^{2}} \cdot n_{\lceil r / 2\rceil}^{\lceil r / 2\rceil} \cdot n_{r-1} \cdot \prod_{j=\lceil r / 2\rceil+1}^{r-1} n_{j},
\end{aligned}
$$

where we used $r!\leq r^{r} \leq 2^{r^{2}}$ and $n_{j-1} \leq n_{j}$ for all $j \in\{2, \ldots, r-1\}$.
In order to bound the number of configurations of the agents $\mathcal{A}^{(r)}$ note that there are s^{r} possible states of the agents and for every agent 3 possible edge labels to the previous vertex. Combining these bounds with the above bound on the number of locations of the agents, we obtain the following bound on the number of configurations of $\mathcal{A}^{(r)}$ at t_{0} with respect to v :

$$
s^{r} \cdot 3^{r} \cdot 2^{5 r^{2}} \cdot n_{\lceil r / 2\rceil}^{\lceil r / 2\rceil} \cdot n_{r-1} \cdot \prod_{j=\lceil r / 2\rceil+1}^{r-1} n_{j} \leq s^{7 r^{2}} \cdot n_{\lceil r / 2\rceil}^{\lceil r / 2\rceil} \cdot n_{r-1} \cdot \prod_{j=\lceil r / 2\rceil+1}^{r-1} n_{j} .
$$

Here we used $s \geq 2$ and $r \geq 2$. By the observation at the beginning of the proof, the number of possible configurations of $\mathcal{A}^{(r)}$ at t_{0} with respect to v also bounds α_{r}.

Using the bound on α_{r} from Lemma 2.23, we can bound the number of vertices of the barriers.
Theorem 2.24. For every set of k agents \mathcal{A} with s states each and every $r \leq k$, there is an r-barrier with at most $O\left(s^{k \cdot 2^{4 \cdot r}}\right)$ vertices.

Proof. The existence of an r-barrier follows from Lemma 2.16 and Theorem 2.21 and we further have the following bound on the number of vertices n_{r} of B_{r} for a sufficiently large constant $c \in \mathbb{N}$:

$$
n_{1} \leq c k s^{2} \quad \text { and } \quad n_{r} \leq c\binom{k}{r} n_{r-1} \alpha_{r}^{2}
$$

It is without loss of generality to assume $s \geq 2$ since otherwise a trap of constant size can trivially be found. Hence, we can plug in the bound on α_{r} from Lemma 2.23. For the asymptotic bound, we may assume $c \leq s^{k}$ and we further have $\binom{k}{r} \leq 2^{k}$. We therefore get

$$
\begin{align*}
n_{r} & \leq s^{k} \cdot 2^{k} \cdot n_{r-1} \cdot\left(s^{7 \cdot r^{2}}\right)^{2} \cdot\left(n_{\lceil r / 2\rceil}^{\lceil r / 2\rceil}\right)^{2} \cdot n_{r-1}^{2} \prod_{j=\lceil r / 2\rceil+1}^{r-1} n_{j}^{2} \\
& \leq s^{2 k+14 r^{2}} \cdot n_{\lceil r / 2\rceil}^{(r+1)} \cdot n_{r-1}^{3} \prod_{j=\lceil r / 2\rceil+1}^{r-1} n_{j}^{2} . \tag{2.4}
\end{align*}
$$

We proceed to show inductively that $n_{r} \leq s^{k \cdot 2^{4 \cdot r}}$ holds for all $r \in\{1, \ldots, k\}$. For $r=1$, we have $n_{1} \leq$ $c k s^{2} \leq s^{4 k} \leq s^{k \cdot 2^{4}}$. Let us assume the claim holds for $1, \ldots, r-1$. From Inequality (2.4) we obtain

$$
\begin{aligned}
n_{r} & \leq s^{2 k+14 r^{2}} \cdot\left(s^{k \cdot 2^{4 \cdot[r / 2]}}\right)^{r+1} \cdot\left(s^{k \cdot 2^{4(r-1)}}\right)^{3} \cdot \prod_{j=\lceil r / 2\rceil+1}^{r-1}\left(s^{k \cdot 2^{4 \cdot j}}\right)^{2} \\
& =s^{2 k+14 r^{2}+k \cdot(r+1) \cdot 2^{4 \cdot[r / 2]}+3 \cdot k \cdot 2^{4(r-1)}+2 k \sum_{j=[r / 2\rceil+1}^{r-1} 2^{4 \cdot j}} .
\end{aligned}
$$

Chapter 2. Space Efficient Graph Exploration

Thus, it is sufficient to bound the exponent. As $r \geq 2$, we have $\sum_{i=0}^{r-1} 2^{4 \cdot i}=\left(2^{4 r}-1\right) /\left(2^{4}-1\right) \leq 2 \cdot 2^{4(r-1)}$ as well as $(r+1) \cdot 2^{4\lceil r / 2\rceil} \leq 4 \cdot 2^{4(r-1)}$ and $2 k+14 r^{2} \leq 2 \cdot k \cdot 2^{4(r-1)}$. Hence, we obtain

$$
\begin{aligned}
& 2 k+14 r^{2}+k \cdot(r+1) \cdot 2^{4 \cdot[r / 2\rceil}+3 \cdot k \cdot 2^{4(r-1)}+2 k \sum_{j=[r / 2\rceil+1}^{r-1} 2^{4 \cdot j} \\
\leq & k \cdot\left(2 \cdot 2^{4(r-1)}+4 \cdot 2^{4(r-1)}+3 \cdot 2^{4(r-1)}+4 \cdot 2^{4(r-1)}\right) \leq k \cdot 2^{4 \cdot r} .
\end{aligned}
$$

This shows $n_{r} \leq s^{k \cdot 2^{4 r}}$, as desired.
The bound for the barriers above immediately yields the bound for the trap for k agents.
Theorem 2.25. For any set \mathcal{A} of k agents with at most s states each, there is a trap with at most $O\left(s^{2^{5 k}}\right)$ vertices.

Proof. We can always add additional unreachable states to all agents so that all of them have s states. Theorem 2.24 yields a k-barrier for a given set of k agents \mathcal{A} with $O\left(s^{k \cdot 2^{4 \cdot k}}\right)$ vertices. The claim follows from the fact that $k \cdot 2^{4 \cdot k} \leq 2^{5 \cdot k}$ and that a k-barrier with n vertices yields a trap with $O(n)$ vertices for \mathcal{A} by Lemma 2.14.

Finally, we derive a bound on the number of agents k that are needed for exploring every graph on at most n vertices.

Theorem 2.26. The number of agents needed to explore every graph on at most n vertices is at least $\Omega(\log \log n)$, if we allow $O\left((\log n)^{1-\varepsilon}\right)$ bits of memory for an arbitrary constant $\varepsilon>0$ for every agent.

Proof. Let \mathcal{A} be a set of k agents with $O\left((\log n)^{1-\varepsilon}\right)$ bits of memory that explores any graph on at most n vertices. By otherwise adding some unused memory, we may assume that $0<\varepsilon<1$ and that there is a constant $c \in \mathbb{N}$ such that all agents in \mathcal{A} have $s:=2^{c \cdot(\log n)^{1-\varepsilon}}$ states. We apply Theorem 2.25 and obtain a trap for \mathcal{A} containing $\mathcal{O}\left(s^{2^{5 \cdot k}}\right)$ vertices. As the set of agents \mathcal{A} explore any graph on at most n vertices, we have $n \leq O(1) s^{2 \cdot k}$. By taking logarithms on both sides of this inequality, we obtain

$$
\log n \leq O(1)+2^{5 k} \log s=O(1)+2^{5 k} \cdot c \cdot(\log n)^{1-\varepsilon}
$$

Multiplication by $(\log n)^{\varepsilon-1}$ on both sides and taking logarithms yields the claim.
Observe that the entire argument eventually leading to Theorem 2.26 relies on bounding the number of different configurations of the system (in the sense of Lemma 2.23), and, in particular, on the number of steps until a configuration repeats (cf. Lemma 2.20 and Theorem 2.21). Clearly, the number of configurations is only smaller for a single agent with pebbles, since pebbles do not have a state or an incoming edge label associated with them. Our proof therefore carries over to this setting (for an explicit proof in this setting, we refer to [DHK16]).

Corollary 2.27. An agent with $O\left((\log n)^{1-\varepsilon}\right)$ bits of memory for an arbitrary constant $\varepsilon>0$ needs $\Omega(\log \log n)$ pebbles to explore every graph with at most n vertices.

Chapter 3

Energy Efficient Tree Exploration

In this chapter, we study the collaborative exploration of trees under the constraint that every agent has limited energy resources and movement consumes energy. We assume that the distance traveled by an agent is proportional to the number of edges it traverses. Hence, we model the limited energy resources by bounding the number of edges that an agent can traverse by an integer B, which we call the energy budget of the agent. A similar restriction for one agent was considered in the piecemeal exploration problem [BRS95; Awe+99; DKK06], where also the number of edge traversals of the agent is bounded and the agent can refuel by going back to its starting location. A different approach is to consider multiple agents instead of allowing refueling. In this context, Dynia et al. [DKS06] studied the problem of collaborative exploration with a fixed number of agents while minimizing the maximum number of edges traversed by an agent. The authors presented a lower bound of 1.5 on the competitive ratio and proposed an 8-competitive algorithm for the problem. The upper bound was later improved to $4-2 / k$ in [DŁS07]. In [DDK15], Das et al. considered a different variant of energy efficient tree exploration where the amount of energy B available to the agents is fixed and the goal is to minimize the number of agents used. They proved a tight bound on the competitive ratio of $O(\log B)$ for the case that the agents need to meet in order to communicate. In our model, the number of agents k as well as the energy budget B is fixed and we drop the requirement that the tree needs to be completely explored. Our objective is to explore the maximum number of vertices with the given set of agents compared to the number of vertices explored by an optimal offline algorithm for the problem. In [Bam+17a], the authors presented a 7.47-competitive online algorithm for the problem together with a simple lower bound of 2 on the competitive ratio of any online algorithm. In this chapter, we improve both of these bounds.

Contributions and Outline. We formally introduce the model and some specific notation for the problem in Section 3.1. In Section 3.2, we present an online algorithm for the exploration problem that utilizes global communication between the agents. The challenge is to balance between sending agents in a depth-first manner to avoid visiting the vertices close to the root too often and exploring the tree in a breadth-first manner to make sure that the algorithm did not miss a large set of vertices

Chapter 3. Energy Efficient Tree Exploration

close to the root, which can be reached with little energy. We achieve this by iteratively splitting the part of the tree that is already explored into edge-disjoint subtrees, which all contain a sufficiently long part of a depth-first traversal of the whole tree. In every iteration, we send an agent from the root to the subtree with the highest root and let it perform a depth-first search with some additional properties in that subtree. We show that our algorithm is 3 -competitive and further prove that our analysis is tight by giving a sequence of instances showing that the algorithm is not better than 3-competitive. In Section 3.3, we adaptively construct a tree depending on the choices of the given online algorithm. We thus force the online algorithm to spend a lot of energy to explore certain subtrees while preventing it from discovering all vertices at a certain depth close to the root. By optimizing the parameters of our construction, we obtain a lower bound of 2.17 on the competitive ratio of any online algorithm.

Bibliographic Information. The results presented in this chapter are joint work with Evangelos Bampas, Jérémie Chalopin, Shantanu Das and Christina Karousatou and were published in [Bam+18].

3.1 Terminology and Model

We consider a set \mathcal{A} of k distinct agents initially located at the root v_{0} of an undirected, initially unknown, locally edge-labeled tree T. We assume, without loss of generality, that the local port number of the edge leading back to the root r is 0 for any vertex $v \neq v_{0}$ in T. Otherwise, every agent internally swaps the label of the edge leading back to the root and the label 0 for every vertex $v \neq r$. Note that in our setting, it does not make a difference if we assume that the vertices are labeled or not because we can uniquely identify every vertex with the sequence of port numbers leading to it from the root v_{0}. For any vertex v in T, we let $d(v)$ be the depth of v in T. The induced subtree with root v containing v and all vertices below v in T is further denoted by $T(v)$. For a subtree S of T, we write r_{S} to denote the root of S, i.e., the unique vertex contained in S having the smallest depth in T. Moreover, $|S|$ denotes the number of vertices in S.

The tree is initially unknown to the agents, but they learn the map of the tree as they traverse new edges. Each time an agent arrives at a new vertex, it learns the local port number of the edge through which it arrived, as well as the degree of the vertex. We assume that agents can communicate at arbitrary distances, so the updated map of the tree, including all agent positions, is instantaneously available to all agents (global communication). Each agent has a limited energy budget B and it consumes one unit of energy for every edge that it traverses. The agents do not need to return to the root, i.e., each agent can terminate on any vertex of the tree.

The goal is to design an algorithm Alg that maximizes the total number of distinct vertices visited by the agents. For a given instance $I=\left\langle T, v_{0}, k, B\right\rangle$, where T is a tree, v_{0} is the starting vertex of the agents, k is the number of agents, and B is the energy budget of each agent, let $\operatorname{AlG}(I)$ denote the total number of distinct vertices visited by the agents using algorithm Alg on the instance I. Similarly, $\operatorname{Opt}(I)$ denotes the maximum number of distinct vertices of T that can be explored by the
agents using an optimal offline algorithm Opt, i.e., an algorithm with full initial knowledge of the instance I. We measure the performance of an algorithm for this problem by the standard tool of competitive analysis, i.e., we compare a given online algorithm to an optimal offline algorithm which has a complete map of the tree in advance.

3.2 Algorithm for Maximal Tree Exploration

This section is divided into three parts. First, we present the idea and intuition behind our algorithm in Section 3.2.1. In Section 3.2.2, we then analyze the algorithm and show that it is 3-competitive. Finally, we construct an instance showing that the analysis of the algorithm is tight in Section 3.2.3.

3.2.1 Algorithm Divide \& Explore and Intuition

```
Algorithm 3.1: L-DFS traversal of a tree \(T\) starting in a vertex \(u\).
    Input: tree \(T\), starting vertex \(u\) in \(T\)
    function \(\operatorname{L-DFS}(T, u)\)
        move an agent \(A\) from root \(r\) on a shortest path to \(u\)
        while agent \(A\) has energy left and \(T\) is not completely explored do
            if the subtree below the current node is completely explored then
                traverse the edge with label 0
            else
                traverse the unexplored edge with the smallest label \(l>0\)
```

```
Algorithm 3.2: R-DFS traversal of a tree \(T\) starting in a vertex \(u\).
    Input: tree \(T\), starting vertex \(u\) in \(T\)
    function \(\operatorname{L-DFS}(T, u)\)
        move an agent \(A\) from root \(r\) on a shortest path to \(u\)
        while agent \(A\) has energy left and \(T\) is not completely explored do
            if the subtree below the current node is completely explored then
            traverse the edge with label 0
            else
                traverse the unexplored edge with the largest label \(l>0\)
```

Let us assume that we do a depth-first search of the whole tree T and always choose the smallest label $l>0$ to an unexplored vertex, as described in Algorithm 3.1. We call this algorithm L-DFS. We further denote the sequence $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right) \ldots,\left(v_{m}, v_{0}\right)$ of directed edges obtained by directing every undirected edge of T that the agent traversed in the direction in which the agent traversed the

Figure 3.1: Example in which algorithm Divide © Explore in iteration t divides the considered subtree S into two subtrees $S^{(1)}$ and $S^{(2)}$. The tree T_{t}^{R} that connects the roots of the subtrees in \mathcal{T}_{t} is the subtree containing all thick edges.
edge in the L-DFS traversal the L-DFS sequence of T. Note that every undirected edge $\{v, w\}$ of the tree T appears as (v, w) and (w, v) in this sequence. Similarly, we call a depth-first search of T that always chooses the largest label $l>0$ to an unexplored vertex an R-DFS and the corresponding sequence of directed edges an R-DFS sequence. An implementation of the algorithm R-DFS is given in Algorithm 3.2. Note that the R-DFS sequence of the edges in T is obtained by reversing the order of edges of the L-DFS sequence and changing every edge (v, w) to (w, v).

We call a consecutive subsequence of an L-DFS or R-DFS sequence a substring. For an induced subtree $T(v)$ of T, the L-DFS sequence of $T(v)$ is simply a substring of the L-DFS sequence of T. For a subtree S we define the leftmost unexplored vertex as the unexplored vertex in S which is incident to the first edge in the L-DFS sequence of S leading to an unexplored vertex and the rightmost unexplored vertex as the unexplored vertex in S which is incident to the first edge in the R-DFS sequence of S leading to an unexplored vertex.

We further say that an agent A performing an L-DFS covers at least s edges $\left(v_{1}, v_{2}\right), \ldots,\left(v_{s}, v_{s+1}\right)$ of the L-DFS sequence of T, if A consecutively visits $v_{1}, v_{2}, \ldots, v_{s}, v_{s+1}$ in this order and the sequence $\left(v_{1}, v_{2}\right), \ldots,\left(v_{s}, v_{s+1}\right)$ is a substring of the L-DFS sequence of T. Similarly, we say that an agent A performing an R-DFS covers at least s edges $\left(v_{1}, v_{2}\right), \ldots,\left(v_{s}, v_{s+1}\right)$ of the L-DFS sequence of T, if A consecutively visits $v_{s+1}, v_{s}, \ldots, v_{2}, v_{1}$ in this order and the sequence $\left(v_{1}, v_{2}\right), \ldots,\left(v_{s}, v_{s+1}\right)$ is a substring of the L-DFS sequence of T. Note that two agents A_{1} and A_{2} may traverse the same edge in the same direction, but still cover two distinct sets of directed edges of the L-DFS sequence, if one agent performs an L-DFS and the other agent an R-DFS.

With these definitions, we are now ready to explain the idea of the algorithm Divide \& Explore: During the run of the algorithm, we maintain a set \mathcal{T} of edge-disjoint subtrees of T, initially just containing T. An example is shown in Figure 3.1, where the triangles show the subtrees that are currently contained in the set \mathcal{T}. In every iteration, we first move down the root r_{S} of every subtree S if r_{S} has no unexplored children and only one child leading to an unexplored vertex. This first step is

```
Algorithm 3.3: Divide ed Explore
    Input: tree \(T\) with root \(v_{0}\), set of agents \(\mathcal{A}\), energy bound \(B\)
    \(\mathcal{T} \leftarrow\{T\}\)
    L-DFS( \(T, v_{0}\) )
    R-DFS( \(T, v_{0}\) )
    while \(T\) contains unexplored vertex and \(\exists\) agent at \(v_{0}\) do
        // Step 1: move down the roots of the subtrees in \(\mathcal{T}\) if possible
        forall \(S \in \mathcal{T}\) containing an unexplored vertex do
            \(r_{0} \leftarrow r_{S}\)
            while \(r_{0}\) only has one child \(v\) leading to an unexplored vertex
                and \(r_{0}\) has no unexplored child do
                \(r_{0} \leftarrow v\)
            \(\mathcal{T} \leftarrow(\mathcal{T} \backslash\{S\}) \cup\left\{T\left(r_{0}\right)\right\}\)
        // Step 2: explore or split the subtree with the highest root
        \(S \leftarrow\) subtree in \(\mathcal{T}\) that contains an unexplored vertex and minimizes \(d\left(r_{S}\right)\)
        \(v_{L} \leftarrow\) leftmost unexplored vertex in \(S\)
        \(v_{R} \leftarrow\) rightmost unexplored vertex in \(S\)
        if \(d\left(v_{L}\right)-d\left(r_{S}\right) \leq \max \left\{1,1 / 3 \cdot\left(B-d\left(r_{S}\right)\right)\right\}\) then
            \(\operatorname{L-DFS}\left(S, v_{L}\right)\)
        else if \(d\left(v_{R}\right)-d\left(r_{S}\right) \leq \max \left\{1,1 / 3 \cdot\left(B-d\left(r_{S}\right)\right)\right\}\) then
            \(\mathrm{R}-\mathrm{DFS}\left(S, v_{R}\right)\)
        else
            let \(v_{1}, \ldots, v_{p}\) be the children of \(r_{S}\), where the edge \(\left\{r_{S}, v_{i}\right\}\) is labeled \(i\) at \(r_{S}\)
            \(v_{j}:=\) child of \(r_{S}\) leading to \(v_{R}\)
            \(S^{(1)} \leftarrow\) induced subtree of \(S\) containing \(r_{S}\) and all vertices in \(T\left(v_{1}\right), \ldots, T\left(v_{j-1}\right)\)
            \(S^{(2)} \leftarrow\) induced subtree of \(S\) containing \(r_{S}\) and all vertices in \(T\left(v_{j}\right), \ldots, T\left(v_{p}\right)\)
            \(\mathcal{T} \leftarrow(\mathcal{T} \backslash\{S\}) \cup\left\{S^{(1)}, S^{(2)}\right\}\)
            R-DFS \(\left(S^{(1)}, r_{S}\right)\)
            if \(\exists\) unused agent at \(r\) then
                \(\operatorname{L-DFS}\left(S^{(2)}, r_{S}\right)\)
```


Chapter 3. Energy Efficient Tree Exploration

later necessary for our analysis. Afterwards, we consider a subtree S which contains an unexplored vertex and has the highest root, i.e., minimizes $d\left(r_{S}\right)$. As long as the leftmost unexplored vertex v_{L} in S is not too far away from r_{S}, i.e., $d\left(v_{L}\right)-d\left(r_{S}\right)$ is sufficiently small, we send an agent to v_{L} and let it continue the L-DFS from there. We do the same if v_{R} is not too deep and then let the agent continue the R-DFS from v_{R}. The intuition is that the energy spent to reach r_{S} is unavoidable, but also the agents in the offline optimum Opt need to spend this energy without exploring new vertices after the tree has been explored up to depth $d\left(r_{S}\right)$. Thus, the agent only potentially wastes energy to reach v_{L} (or v_{R}), but from then on explores many new vertices because an agent doing $2 m$ edge traversals on a DFS visits at least m distinct vertices. If both v_{L} and v_{R} are sufficiently deep, we split S into two edge-disjoint subtrees $S^{(1)}$ and $S^{(2)}$, as shown in Figure 3.1. In this case both $S^{(1)}$ and $S^{(2)}$ contain a sufficiently long part of the L-DFS sequence, which has not been covered by any agent. This is important because we want to avoid that an agent is sent to a new subtree which only needs little more exploration. A complete description of Divide \& Explore is given in Algorithm 3.3.

3.2.2 Proof of 3-Competitiveness

In this subsection, we analyze Algorithm Divide d Explore in order to show that it is 3-competitive. Note that the first agent in Divide ש Explore simply performs a depth-first search and explores at least $B / 2$ vertices or completely explores the tree. Consequently, if $k=1$ or if $n<B$, the algorithm is 2-competitive, and thus we assume in the following that $n \geq B$ and $k \geq 2$.

For the analysis of Divide d Explore, we further need the following notation. For every iteration t of the outer while-loop, we let $k_{t} \in\{1,2\}$ be the number of agents used by Divide \& Explore in this iteration and $k_{0}=2$ be the number of agents used before the first iteration of the outer while-loop. Further, let \mathcal{T}_{t} be the set of subtrees \mathcal{T} at the end of iteration t and let T_{t}^{R} be the unique subtree of T that connects the set of roots $\left\{r_{S} \mid S \in \mathcal{T}_{t}\right\}$ of all subtrees with the minimum number of edges. Moreover, we denote the subtree S with the highest root considered by Divide \uplus Explore in iteration t by S_{t} and its root by r_{t}. Finally \bar{t} denotes the total number of iterations of the while-loop. Note that in iteration \bar{t}, the algorithm may split the tree S into two edge-disjoint subtrees $S^{(1)}$ and $S^{(2)}$ while there is only one agent remaining at the root r. In this case, $k_{\bar{t}}=1$ and we say that iteration \bar{t} is not completed.

The crux of our analysis is to show that the amortized amount of energy spent making progress on the L-DFS or R-DFS is $\frac{2}{3} \cdot k_{i} \cdot\left(B-d\left(r_{i}\right)\right)$ for the agents in iteration i, as stated in the following lemma.

Lemma 3.1. The algorithm Divide \& Explore either completely explores T or all agents used by the algorithm together cover at least

$$
\frac{2}{3}\left(\left|T_{\bar{t}}^{R}\right|-1\right)+\sum_{0 \leq i \leq \bar{t}} \frac{2}{3} \cdot k_{i} \cdot\left(B-d\left(r_{i}\right)\right)
$$

distinct edges of the total L-DFS sequence of T.

Proof. Let us assume that Divide © Explore does not completely explore T and let \mathcal{U}_{t} be the subset of \mathcal{T}_{t} containing all subtrees with an unexplored vertex. We will show by induction over t that all agents used by Divide ひ Explore up to the end of iteration t together cover at least

$$
\begin{equation*}
\frac{2}{3}\left(\left|T_{t}^{R}\right|-1\right)+\sum_{S \in \mathcal{U}_{t}} \frac{2}{3}\left(B-d\left(r_{S}\right)\right)+\sum_{0 \leq i \leq t} \frac{2}{3} \cdot k_{i} \cdot\left(B-d\left(r_{i}\right)\right) \tag{3.1}
\end{equation*}
$$

distinct edges of the total L-DFS sequence of T. It may happen that in the last iteration \bar{t} of Divide \mathscr{b} Explore the third case occurs, but only one agent is left at the root. We will treat this special case separately at the end of the proof. First, we show the lower bound above for all t, for which iteration t is completed, i.e., there are enough agents for Divide \mho Explore to finish iteration t.

For $t=0$, we have $\mathcal{U}_{0}=\{T\}$ as Divide $ひ$ Explore does not completely explore T by assumption, $k_{0}=2, r_{0}=r_{T}$, and T_{t}^{R} only contains r_{T}. Thus the lower bound (3.1) on the number of edges covered by the first two agents evaluates to $2 B$. The first agent used by Divide \& Explore performs an L-DFS and covers exactly B edges of the total L-DFS sequence of T. The second agent performs an R-DFS starting at the root of T and also covers exactly B edges of the total L-DFS sequence of T. The edges of the total L-DFS sequence of T covered by the second agent are distinct from the edges covered by the first because T is not completely explored by the algorithm by assumption. Hence, the lower bound (3.1) holds for $t=0$.

Now, assume that the lower bound (3.1) holds for $t-1$. We will show it for iteration t. Let $\mathcal{U}_{t-1}^{\prime}$ be the set of subtrees \mathcal{U}_{t-1} after the for-all loop in iteration t terminated and possibly some roots of the trees in \mathcal{U}_{t-1} were moved down. We claim that

$$
\begin{equation*}
\frac{2}{3}\left(\left|T_{t-1}^{R}\right|-1\right)+\sum_{S \in \mathcal{U}_{t-1}} \frac{2}{3}\left(B-d\left(r_{S}\right)\right)=\frac{2}{3}\left(\left|T_{t}^{R}\right|-1\right)+\sum_{S \in \mathcal{U}_{t-1}^{\prime}} \frac{2}{3}\left(B-d\left(r_{S}\right)\right) . \tag{3.2}
\end{equation*}
$$

For any subtree $S \in \mathcal{U}_{t-1}$, let $S^{\prime} \in \mathcal{U}_{t-1}^{\prime}$ be the corresponding subtree after the root of S was possibly moved down. The tree T_{t}^{R} contains all vertices of the tree T_{t-1}^{R} plus the path from r_{S} to $r_{S^{\prime}}$, i.e., $d\left(r_{S}\right)-d\left(r_{S^{\prime}}\right)$ additional vertices, for all $S \in \mathcal{U}_{t-1}$. This already implies (3.2).

Applying (3.2) on the lower bound (3.1) for $t-1$ yields that the number of edges of the total L-DFS sequence of T covered by the agents up to iteration $t-1$ is at least

$$
\begin{equation*}
\frac{2}{3}\left(\left|T_{t}^{R}\right|-1\right)+\sum_{S \in \mathcal{U}_{t-1}^{\prime}} \frac{2}{3}\left(B-d\left(r_{S}\right)\right)+\sum_{0 \leq i \leq t-1} \frac{2}{3} \cdot k_{i} \cdot\left(B-d\left(r_{i}\right)\right) . \tag{3.3}
\end{equation*}
$$

Let now S_{t} be the subtree with root r_{t} considered by the algorithm in iteration t as defined above and v_{L}, v_{R} be defined as in the algorithm.

First, assume that we have $d\left(v_{L}\right)-d\left(r_{t}\right) \leq \max \left\{1,1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)\right\}$ and let A_{0} be the only agent used by the algorithm in iteration t. Note that if $1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)<1$, then once it has reached r_{t}, agent A_{0} has either one or two energy left. In the first case, A_{0} only explores v_{L} and makes a progress of 1 on the total L-DFS sequence. In the second case, A_{0} makes a progress of 2 on the total L-DFS sequence: it goes to v_{L} and then either it visits a child of v_{L}, or it goes back to r_{t}. Consequently, if $1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)<1=d\left(v_{L}\right)-d\left(r_{t}\right), A_{0}$ makes a progress of at least $\left(B-d\left(r_{t}\right)\right) \geq 2 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ on the total L-DFS sequence.

Chapter 3. Energy Efficient Tree Exploration

Suppose now that $1 \leq d\left(v_{L}\right)-d\left(r_{t}\right) \leq 1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$. Agent A_{0} moves to r_{t} using $d\left(r_{t}\right)$ energy and from r_{t} to v_{L} using at most $1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ energy and then performs an L-DFS. If A_{0} does not completely explore S_{t}, then the set of edges traversed by A_{0} starting in v_{L} and directed in the direction the edge is traversed by A_{0} has not been covered by any other agent. Therefore A_{0} makes a progress of at least $2 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ edges on the total L-DFS sequence. Adding this progress of agent A_{0} to the lower bound in (3.3) on the number of edges covered by the agents in the first $t-1$ iterations and using $\mathcal{U}_{t}=\mathcal{U}_{t-1}^{\prime}$ yields the lower bound (3.1) for iteration t.

Next assume that A_{0} completely explores the subtree S_{t}. We then have $\mathcal{U}_{t}=\mathcal{U}_{t-1}^{\prime} \backslash\left\{S_{t}\right\}$ and the lower bound (3.1) for iteration t follows directly from the lower bound (3.3) even if A_{0} explores only v_{L} and only covers two new directed edges of the total L-DFS sequence.

The proof when $d\left(v_{R}\right)-d\left(r_{t}\right) \leq 1 / 3 \cdot \max \left\{1,1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)\right\}$ is completely analogous.
Finally, assume that the last case occurs in iteration t and S_{t} is split into two subtrees $S^{(1)}$ and $S^{(2)}$ as defined in the algorithm. Further, let A_{1} and A_{2} be the agents used in iteration t for performing an R-DFS in $S^{(1)}$ and an L-DFS in $S^{(2)}$, respectively.

We first show that v_{L} and v_{R} are below different children of r_{t}. Note that we have $d\left(v_{L}\right)-d\left(r_{t}\right)>$ $\max \left\{1,1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)\right\} \geq 1$ as well as $d\left(v_{R}\right)-d\left(r_{t}\right)>\max \left\{1,1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)\right\} \geq 1$. Therefore neither v_{L} nor v_{R} are children of r_{t}. Suppose, for the sake of contradiction, there is a child v of r_{t} such that both v_{L} and v_{R} are contained in $T(v)$. By the definition of v_{L} and v_{R}, the subtrees below all other children of r_{t} must be completely explored. This means r_{t} only has one child leading to an unexplored vertex. We cannot have $v_{L}=v_{R}=v$ as v_{L} and v_{R} are not children of r_{t}. But then the root r_{t} would be moved down to v and possibly further at the beginning of iteration t. This is a contradiction. Therefore, $S^{(1)}$ and $S^{(2)}$ are edge-disjoint, non-empty trees and v_{L} is contained in $S^{(1)}$ and v_{R} in $S^{(2)}$.

Agent A_{1}, which moves according to the call R-DFS $\left(S^{(1)}, r_{t}\right)$, moves to r_{t} using $d\left(r_{t}\right)$ energy and starts an R-DFS making a progress of at least $d\left(v_{L}\right)-d\left(r_{t}\right)>1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ on the overall L-DFS sequence, as the part of the L-DFS sequence from v_{L} to r_{t} has not been covered by any other agent and has length at least $d\left(v_{L}\right)-d\left(r_{t}\right)$. If A_{1} does not completely explore $S^{(1)}$, then it makes even a progress of $B-d\left(r_{t}\right)$ on the overall L-DFS sequence.

The second agent used in iteration t, the agent A_{2}, first moves to r_{t} using $d\left(r_{t}\right)$ energy and then performs an L-DFS according to the call L-DFS $\left(S^{(2)}, r_{t}\right)$. We have $d\left(v_{R}\right)-d\left(r_{t}\right)>1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ and hence A_{2} makes a progress of at least $1 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ edges on the overall L-DFS sequence, as the part of the sequence from r_{t} to v_{R} has not been covered by any other agent. If A_{2} does not completely explore $S^{(2)}$, then it also makes a progress of $B-d\left(r_{t}\right)$ on the overall L-DFS sequence.

Let $s \in\{0,1,2\}$ be the number of subtrees among $\left\{S^{(1)}, S^{(2)}\right\}$ that A_{1} and A_{2} do not explore completely. By the above argument, we showed that overall A_{1} and A_{2} together make a progress of at least $2 / 3 \cdot\left(B-d\left(r_{t}\right)\right)+s \cdot 2 / 3 \cdot\left(B-d\left(r_{t}\right)\right)$ edges on the overall L-DFS sequence of T. Adding this progress to the lower bound (3.3) and using $S_{t} \in \mathcal{U}_{t-1}^{\prime} \backslash \mathcal{U}_{t}$ again yields the lower bound (3.1) for iteration t.

In order to show the claim, let us consider the last iteration \bar{t}. If Divide \notin Explore can complete
this iteration, then the claim follows directly from the lower bound (3.1) because $\frac{2}{3}\left(B-d\left(r_{S}\right)\right) \geq 0$ for all $S \in \mathcal{U}_{t}$ as no agent can explore a vertex below depth B in T. Now assume that iteration \bar{t} is not completed. But then we have that the number of edges of the total L-DFS sequence of T covered by the agents up to iteration $\bar{t}-1$ is at least

$$
\frac{2}{3}\left(\left|T_{\bar{t}}^{R}\right|-1\right)+\sum_{S \in \mathcal{U}_{\bar{t}-1}^{\prime}} \frac{2}{3}\left(B-d\left(r_{S}\right)\right)+\sum_{0 \leq i \leq \bar{t}-1} \frac{2}{3} \cdot k_{i} \cdot\left(B-d\left(r_{i}\right)\right)
$$

by the lower bound (3.3). The above lower bound already implies the claim, as we have $k_{\bar{t}}=1$ and $\sum_{S \in \mathcal{U}_{\bar{t}-1}^{\prime}} \frac{2}{3}\left(B-d\left(r_{S}\right)\right) \geq \frac{2}{3} \cdot k_{\bar{t}} \cdot\left(B-d r_{\bar{t}}\right)$.

With the lower bound above, we can now prove the main result of this section.

Theorem 3.2. The algorithm DIVIDE \&ூ EXPLORE is 3-competitive.
Proof. Assume that the algorithm Divide \& Explore terminates after iteration \bar{t}. If it completely explores T, then it is clearly optimal. So let us assume that it runs out of agents in iteration \bar{t}.

Let $A_{1}, A_{2}, \ldots, A_{k}$ be the sequence of agents used by Divide d^{6} Explore in this order and let agent A_{i} be used in iteration t_{i}. We let $d_{i}:=d\left(r_{t_{i}}\right)$ be the depth of the root of the subtree visited by A_{i} in iteration t_{i}. As the algorithm in every iteration chooses the subtree S with an unexplored vertex which minimizes $d\left(r_{S}\right)$, we have $d_{1} \leq d_{2} \leq \ldots \leq d_{k}$.

Note that every undirected edge $\{v, w\}$ of the tree appears exactly twice as a directed edge in the total L-DFS sequence of T, as (v, w) and as (w, v). Thus dividing the bound given by Lemma 3.1 by two yields a lower bound on the number of distinct undirected edges traversed by the agents. As T is a tree, this number plus 1 is a lower bound on the number of vertices visited by the agents. Thus, using the notation T^{R} instead of $T_{\bar{t}}^{R}$, we obtain for the given instance I that

$$
\begin{equation*}
\operatorname{ALG}(I) \geq \frac{1}{3}\left|T^{R}\right|+\sum_{1 \leq i \leq k} \frac{1}{3} \cdot\left(B-d_{i}\right) \tag{3.4}
\end{equation*}
$$

Let now $A_{1}^{*}, \ldots, A_{k}^{*}$ be the k agents used by an optimal offline algorithm Opt and let d_{i}^{*} be the maximum depth of a vertex in T^{R} that is visited by the agent A_{i}^{*}. This is well-defined as every agent at least visits the root r of T^{R}. We assume without loss of generality that $d_{1}^{*} \leq d_{2}^{*} \leq \ldots \leq d_{k}^{*}$. As the agent A_{i}^{*} must use at least d_{i}^{*} energy to reach a vertex at depth d_{i}^{*} in T^{R}, we have

$$
\begin{equation*}
\operatorname{Opt}(I) \leq\left|T^{R}\right|+\sum_{1 \leq i \leq k}\left(B-d_{i}^{*}\right) \tag{3.5}
\end{equation*}
$$

Consider the maximal index $j \in\{1, \ldots, k\}$ such that $d_{j}>d_{j}^{*}$. If no such j exists, $d_{i} \leq d_{i}^{*}$ holds for all $1 \leq i \leq k$. This implies $\sum_{i=1}^{k}\left(B-d_{i}^{*}\right) \leq \sum_{i=1}^{k}\left(B-d_{i}\right)$ and thus also $\operatorname{Opt}(I) / \operatorname{Alg}(I) \leq 3$ by (3.4) and (3.5).

Otherwise, we have $d_{1}^{*} \leq d_{2}^{*} \leq \ldots \leq d_{j}^{*}<d_{j}$. Let $T_{\text {ALG }}^{j}$ be the subtree explored by the first j agents used by Divide d Explore. We claim that all vertices explored by the agents $A_{1}^{*}, \ldots, A_{j}^{*}$ are contained in T_{ALG}^{j}. Assume, for the sake of contradiction, that there is $1 \leq i \leq j$ such that agent A_{i}^{*} explores a vertex u which is not contained in $T_{\text {ALG }}^{j}$. At the moment when the agent A_{j} is used by Divide \dot{G}

Chapter 3. Energy Efficient Tree Exploration

Explore, the root r_{S} of every subtree $S \in \mathcal{T}_{t_{j}}$ is contained in $T_{t_{j}}^{R}$ and it has depth at least d_{j}. Let $S^{\prime} \in \mathcal{T}_{t_{j}}$ be the subtree containing u. This means that the agent A_{i}^{*} must also visit $r_{S^{\prime}}$ to reach u. But $T_{t_{j}}^{R}$ is a subtree of T^{R} and thus A_{i}^{*} visits a vertex in T^{R} of depth $d\left(r_{s^{\prime}}\right) \geq d_{j}$. This implies $d_{i}^{*} \geq d\left(r_{S^{\prime}}\right) \geq d_{j}$ contradicting the initial assumption that $d_{i}^{*}<d_{j}$. Consequently, the agents $A_{1}^{*}, \ldots, A_{j}^{*}$ in Opt only visit vertices in $T_{\text {ALG }}^{j}$. But then the first j agents in Opt visit a strict subset of the vertices visited by the first j agents in Divide d Explore. In this case, we can just replace the agents $A_{1}^{*}, \ldots, A_{j}^{*}$ and their paths by the agents A_{1}, \ldots, A_{j} and their paths in Divide \& Explore and $\operatorname{Opt}(I)$ does not decrease. By construction and by maximality of j, we then have $d_{i} \leq d_{i}^{*}$ for all $1 \leq i \leq k$, which again implies the claim.

3.2.3 Lower Bound for Divide \& Explore

In this subsection, we construct a sequence of instances to show that the analysis of Divide dr Explore is tight. Let $k, d \in \mathbb{N}, d \geq 2$ and $B=3(d-1)$. Our instance $I_{k, d}$ is a tree T consisting of a root v_{0} connected to $2 k$ paths, of which k have length d and k have length B, as illustrated in Figure 3.2. We assume that the edge labels of the edges incident to the root are increasing from left to right, i.e., for all $1 \leq i \leq 2 k-1$, the edge label of $\left\{v_{0}, v_{i}\right\}$ is smaller than the label of $\left\{v_{0}, v_{i+1}\right\}$. We further denote the path v_{0}, v_{i}, \ldots down to the leaf of the tree by P_{i}.

At the beginning of Divide \& Explore, one agent A_{1} performs an L-DFS and completely explores P_{1} and explores P_{2} up to depth $d-3$, overall exploring $2 d-3$ vertices. The second agent A_{2} performs an R-DFS and completely explores the rightmost path $P_{2 k}$ of length B, i.e., $B=3(d-1)$ vertices. From now on, in every iteration of the while loop, we have $\mathcal{T}=\{T\}, r_{S}=v_{0}, d\left(v_{L}\right)=d-2$ and thus

$$
d\left(v_{L}\right)-d\left(r_{S}\right)=d-2 \leq d-1=1 / 3 \cdot\left(B-d\left(r_{S}\right)\right) .
$$

This means that, for $i \geq 3$, the agent A_{i} used in the iteration $i-2$ of the outer while-loop, first moves to the unexplored vertex at depth $d-2$ on the path P_{i-1}, then finishes exploring this path, and runs out of energy at depth $d-3$ in P_{i}. Thus, A_{i} explores exactly d vertices. Overall, the number of vertices explored by the algorithm is therefore

$$
2 d-3+3(d-1)+(k-2) d=5 d-6+(k-2) d .
$$

The optimal offline algorithm sends one agent down each of the paths $P_{k+1}, \ldots, P_{2 k}$ exploring $3 k(d-1)$ vertices. Hence, we obtain the following lower bound on the competitive ratio:

$$
\frac{\operatorname{OPT}\left(I_{k, d}\right)}{\operatorname{ALG}\left(I_{k, d}\right)}=\frac{3 k(d-1)}{5 d-6+(k-2) d} \xrightarrow{d \rightarrow \infty, k \rightarrow \infty} 3 .
$$

Figure 3.2: Instance showing that the analysis of Divide \& Explore is tight.

3.3 General Lower Bound on the Competitive Ratio

In this section, we construct a sequence of instances for a given online algorithm that show a lower bound of $(5+3 \sqrt{17}) / 8 \approx 2.17$ on the competitive ratio of any online algorithm. The section is organized as follows: In Section 3.3.1, we first present a simple lower bound of 2 on the competitive ratio and then present our construction for the lower bound of 2.17. As the full proof of the lower bound is quite involved, we first give some intuition and a simplified proof for some special cases in Section 3.3.2. The general proof of the lower bound is then given in Section 3.3.3.

3.3.1 Lower Bound Construction

In order to get some intuition, we first consider a simple example showing a lower bound of 2 on the competitive ratio of any online algorithm.

Proposition 3.3 ([Bam+17a]). There exists no c-competitive online exploration algorithm with $\mathrm{c}<2$.
Proof. Let k and B be positive integers, B be even and T be a tree with root v_{0} connected to k paths of length B and $k \cdot B / 2$ paths of length 1 . A team of k agents starts at v_{0} with energy B each. For every algorithm Alg, the adversary can ensure that no agent that starts at v_{0} ever enters one of the long paths by permuting the port numbers of the edges at v_{0} accordingly. For every edge that an agent explores, it then needs to go back to v_{0} in order to explore other edges. Thus, every agent can explore at most $B / 2$ edges and all k agents together at most $k \cdot B / 2$ edges since B is even. On the other hand, the offline optimum Opt sends all agents in the long paths exploring $k \cdot B$ edges.

Note that the simple lower bound of 2 only requires that B is even and otherwise works for any choice of parameter k and B. For the lower bound of $(5+3 \sqrt{17}) / 8 \approx 2.17$ on the competitive ratio, we present a sequence of instances where k and B become arbitrarily large. We initially construct an instance with general parameters and at the end choose the parameters to maximize the competitive ratio that the online algorithm can achieve. The lower bound instances that we construct are trees

Chapter 3. Energy Efficient Tree Exploration

Figure 3.3: Tree for the lower bound of 2.17 on the competitive ratio.
that contain very long paths and high degree vertices at certain depth in the tree. The length of the paths is determined by the online exploration algorithm.

For a given online algorithm Alg, we consider a set of $k:=2 l-1$ agents \mathcal{A} for $l \in \mathbb{N}$ with energy B each and we let $\Delta:=\lceil\sqrt{2 \cdot l \cdot B}\rceil+2 l$. We now construct a tree T, which is shown in Figure 3.3, depending on the behavior of the algorithm. The tree T has a root v_{0} with l distinct paths, each going from v_{0} to a vertex $v_{i}^{(1)}$ at depth d_{1} for $i=1, \ldots, l$. Each vertex $v_{i}^{(1)}$ has degree $\Delta+1$ and is the root of a subtree T_{i}. There are Δ paths connected to every $v_{i}^{(1)}$ whose length will be determined by the algorithm. Furthermore, depending on the algorithm, there may exist a vertex $v_{i}^{(2)}$ at depth d_{2} that has degree $\Delta+1$ and also Δ paths connected to it whose length will be determined by the algorithm. We call the subtrees with root $v_{i}^{(1)}$ and $v_{i}^{(2)}$ adaptive subtrees as they depend on the behavior of the online exploration algorithm. We further assume that B, d_{1}, d_{2} are even and

$$
\begin{equation*}
d_{1}+\Delta<d_{2} \leq \frac{5}{3} \cdot d_{1} \quad \text { and } \quad 3 \cdot d_{1}<B \leq d_{1}+2 \cdot d_{2} . \tag{3.6}
\end{equation*}
$$

Each of the adaptive trees can be active, i.e., as soon as an agent visits an unexplored vertex on a path another unexplored neighbor is presented, or passive, i.e., all unexplored vertices in the adaptive tree are leaves. Moreover, every subtree T_{i} has a budget N_{i}, which limits the total number of non-leaf vertices that are presented to the algorithm, i.e., if N_{i} vertices that are not leaves have been explored in T_{i} both adaptive trees in T_{i} become passive and from now on all unexplored vertices in T_{i} are leaves. The budget N_{i} is initially 2 and is increased as described below when agents enter the subtree T_{i}. Initially every subtree T_{i} has an active adaptive subtree below $v_{i}^{(1)}$. We now present new vertices to the algorithm in every subtree T_{i} for $i \in\{1, \ldots, l\}$ according to the following rules:
I. When the first agent A_{1} that has not visited any other tree $T_{j} \neq T_{i}$ before enters T_{i} for the first time:
The budget N_{i} of T_{i} is increased by $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$, the adaptive tree below $v_{i}^{(1)}$ is active and $v_{i}^{(2)}$ has not been discovered. The first vertex at depth d_{2} discovered by A_{1} is $v_{i}^{(2)}$, i.e., it has degree $\Delta+1$ and is the root of another adaptive tree which is active. Additionally, if A_{1} explores a new vertex v at depth $d>d_{2}$ in T_{i} (below $v_{i}^{(2)}$ or on any branch below $v_{i}^{(1)}$) and the
remaining energy of A_{1} is $\leq d-d_{2}$, then we stop presenting new vertices on the current path of A_{1}, i.e., v is a vertex without further unexplored neighbors.
II. When the second agent A_{2} that has not visited any other tree $T_{j} \neq T_{i}$ before enters T_{i} for the first time:
(a) If A_{1} has explored at most $\left(d_{1}+d_{2}\right) / 2$ vertices in T_{i} :

The adaptive trees both at $v_{i}^{(1)}$ and at $v_{i}^{(2)}$ become passive. In all following cases below, we assume that A_{1} explored more than $\left(d_{1}+d_{2}\right) / 2$ vertices in T_{i}.
(b) If A_{1} has explored the vertex $v_{i}^{(2)}$ or still has enough energy left to reach a vertex v at depth d_{2} via an unexplored vertex:
If $v_{i}^{(2)}$ has been discovered, the adaptive tree at $v_{i}^{(1)}$ becomes passive, but the adaptive tree at $v_{i}^{(2)}$ remains active. If A_{1} has not visited a vertex at depth d_{2}, then the adaptive tree at $v_{i}^{(1)}$ becomes passive except for the path via an unexplored vertex to $v_{i}^{(2)}:=v$ at depth d_{2}, which A_{1} can reach with its remaining energy. From now on, if any agent A is at depth $d>d_{2}$, then we stop presenting new vertices on the current path of A as soon as the remaining energy is $\leq d-d_{2}$.
(c) If A_{1} has not visited a vertex at depth d_{2} and has not enough energy to reach a vertex at depth d_{2} via an unexplored vertex:
From now on if any agent A is at depth $d>d_{1}$, we stop presenting new vertices on the current path of A if the remaining energy of A is $\leq d-d_{1}$.
III. Whenever an agent A which before has visited a tree $T_{j} \neq T_{i}$ enters T_{i} for the first time with remaining energy B_{A} :
The budget N_{i} of T_{i} is increased by $B_{A} / 2+2$. If A discovers a vertex v below $v_{i}^{(2)}$ at depth $d>d_{2}$ and the remaining energy of A is $\leq d-d_{2}$, then we stop presenting new vertices on this path. Similarly, if A discovers a vertex v below $v_{i}^{(1)}$ at depth $d>d_{1}$ (but not on a branch containing $v_{i}^{(2)}$) and the remaining energy of A is $\leq d-d_{1}$, then we also stop presenting new vertices on that path.

Note that in every tree T_{i}, if Case II (b) does not occur in $T_{i}, v_{i}^{(2)}$ and the adaptive subtree below $v_{i}^{(2)}$ exist if and only if A_{1} discovers a vertex v at depth d_{2}.

3.3.2 Intuition and Proof of the Lower Bound in Special Cases

In this subsection, we want to give some intuition about our construction by looking at two special cases and making some simplifying assumptions, which do not hold in general. The adaptive trees are constructed in a way that a path ends exactly when the agent currently exploring that path has just enough energy to return to $v_{i}^{(1)}$ or $v_{i}^{(2)}$ respectively. So let us make the simplifying assumption that the final position of every agent is either at $v_{i}^{(1)}$ or $v_{i}^{(2)}$ for some $i \in\{1, \ldots, l\}$. The online algorithm has to balance between sending each agent to only one subtree T_{i} to completely explore it or to move to a second subtree T_{j} later to explore more vertices which are close to the root v_{0}. We will consider
instances with increasing values of B and l in such a way that $l=o(B)$. Note that this implies that $\Delta=o(B)$.

Let us consider the special case that the algorithm first sends one agent to each of the subtrees T_{1}, \ldots, T_{l} and then a second agent to every subtree except T_{1} (there are $2 l-1$ agents and l subtrees). For the sake of simplification, assume that A_{1} visits $v_{i}^{(2)}$ and Case II (b) occurs in each subtree T_{i} when the second agent A_{2} enters T_{i}. Note that in this case, A_{1} cannot visit another subtree as it visits $v_{i}^{(2)}$ at depth d_{2} and $2 d_{2}+d_{1} \geq B$ by (3.6). We further assume that for each subtree $T_{i}, 2 \leq i \leq l$, either the second agent A_{2} entering T_{i} helps A_{1} to explore T_{i} completely, or it goes to T_{1} to explore new vertices.

The first agent A_{1} in each subtree T_{i} can explore at most $\left(B+d_{2}\right) / 2$ vertices in T if its final position is at $v_{i}^{(2)}$ (it traverses at most d_{2} edges once and all other edges are traversed an even number of times) and less vertices if its final position is at $v_{i}^{(1)}$. Note that $d_{1}-2$ of the vertices explored by A_{1} are on the path from v_{0} to $v_{i}^{(1)}$ and thus A_{1} can only explore at most $\left(B+d_{2}\right) / 2-d_{1}+2$ vertices in T_{i}. But by construction the budget N_{i} is increased by $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$ when A_{1} enters T_{i} so that A_{1} alone cannot deplete the whole budget and completely explore T_{i}.

As the subtree below $v_{i}^{(1)}$ becomes passive when A_{2} enters T_{i}, A_{2} can only explore at most Δ vertices that are not below $v_{i}^{(2)}$. Therefore if A_{1} and A_{2} completely explore T_{i}, A_{2} has to go to depth d_{2} and then it cannot visit any other subtree as $2 d_{2}+d_{1} \geq B$ by (3.6). In this case, agents A_{1} and A_{2} together then explore at most N_{i} vertices in T_{i} plus at most 2Δ leaves and the path of length d_{1} leading to T_{i}, i.e., they explore at most $\left(B+d_{2}\right) / 2+4 \Delta+2=\left(B+d_{2}\right) / 2+o(B)$ vertices.

Suppose now that A_{1} and A_{2} do not completely explore the subtree T_{i} and that A_{2} goes to T_{1} to explore new vertices after having visited T_{i}. Assume that A_{2} has $B_{A_{2}}$ energy left when it enters T_{1}, and note that $B_{A_{2}} \leq\left(B-3 d_{1}\right) / 2$ since A_{2} went first to T_{i} before entering T_{1}. Agent A_{2} can explore at most $B_{A_{2}} / 2$ new vertices in T_{1} if its final position is in $v_{i}^{(1)}$ (every edge it traverses in T_{1} is traversed an even number of times) and less vertices if its final position is in $v_{i}^{(2)}$ (since the vertices on the branch from $v_{i}^{(1)}$ to $v_{i}^{(2)}$ have already been explored). Note that when A_{2} enters T_{1}, the budget N_{1} of T_{1} is increased by $B_{A_{2}} / 2+2$ and thus the budget of T_{1} is never depleted. As A_{2} has $B_{A_{2}}$ energy left when it enters T_{1} and spends $3 d_{1}$ energy to first reach T_{i} and then T_{1}, it can have explored at most $\left(B-3 d_{1}-B_{A_{2}}\right) / 2$ vertices in T_{i} because A_{2} traverses every edge in T_{i} an even number of times. Overall, A_{2} thus explores at most $\left(B-3 d_{1}\right) / 2$ new vertices and A_{1} at most $\left(B+d_{2}\right) / 2$ vertices in this case.

Recall that for sake of simplification, we consider only two strategies for the online algorithm AlG: either in every tree $T_{i}, 2 \leq i \leq l, A_{1}$ and A_{2} completely explore T_{i}, or for every tree $T_{i}, 2 \leq i \leq l$, the second agent A_{2} entering T_{i} also visits T_{1} (and T_{i} is not completely explored by the algorithm). In the first case, the algorithm explores at most $l \cdot\left(B+d_{2}\right) / 2+o(l B)$ vertices. In the second case, the algorithm explores at most $l \cdot\left(\left(B+d_{2}\right) / 2+\left(B-3 d_{1}\right) / 2\right)+o(l B)$ vertices.

Let us now consider an optimal offline algorithm Opt. Whatever the strategy of Alg is, one can show that there is always an unexplored vertex u_{1} at depth at most $d_{1}+\Delta$ in T_{1} (this is proved in Lemma 3.4 (f)). We can assume that u_{1} has degree $2 l$ and there are $2 l-1$ distinct paths of length B
connected to it.
If Alg completely explores every tree $T_{i}, 2 \leq i \leq l$, then Opt can send all agents to u_{1} and then each agent explores one of the paths below u_{1}. In this case, Opt explores at least $B+(2 l-2) \cdot\left(B-d_{1}-\Delta\right)=$ $2 l \cdot\left(B-d_{1}\right)-o(l B)$ vertices.

If Alg does not completely explore any $T_{i}, 2 \leq i \leq l$, then there exists an unexplored vertex u_{i} in each tree $T_{i}, 2 \leq i \leq l$, and we can assume that there is a path of length B connected to it. In this case, Opt can send an agent to each $u_{i}, 2 \leq i \leq l$ that can then explore the path below u_{i}. Then, Opt can send the remaining l agents to u_{1} as in the previous case, and each of these agent explores one of the paths below u_{1}. In this case, Opt explores at least $l B+(l-1) \cdot\left(B-d_{1}-\Delta\right)=l \cdot\left(2 B-d_{1}\right)-o(l B)$ vertices.

As the algorithm can choose the best strategy among the two strategies described above, we get for our constructed instance I that

$$
\frac{\operatorname{Opt}(I)}{\operatorname{ALG}(I)} \geq \min \left\{\frac{4 l \cdot\left(B-d_{1}\right)-o(l B)}{l \cdot\left(B+d_{2}\right)+o(l B)}, \frac{2 l \cdot\left(2 B-d_{1}\right)-o(l B)}{l \cdot\left(2 B+d_{2}-3 d_{1}\right)+o(l B)}\right\} .
$$

In order to maximize the competitive ratio, we want to choose d_{2} as small as possible. Because of the initial assumptions on the parameter in (3.6), we must have $2 d_{2}+d_{1} \geq B$ and thus we choose $d_{2}=\left(B-d_{1}\right) / 2$. Additionally, dividing by l and omitting the terms that vanish as B tends to infinity, we obtain that the competitive ratio $\rho_{\text {ALG }}$ of the online algorithm AlG satisfies

$$
\rho_{\mathrm{ALG}} \geq \lim _{B \rightarrow \infty} \frac{\operatorname{OpT}(I)}{\operatorname{ALG}(I)} \geq \lim _{B \rightarrow \infty} \min \left\{\frac{8 B-8 d_{1}}{3 B-d_{1}}, \frac{8 B-4 d_{1}}{5 B-7 d_{1}}\right\} .
$$

By standard calculus, the competitive ratio is maximized when the two terms on the right-hand side are equal and this is true when $d_{1}=(19-3 \sqrt{17}) B / 26$. These choices of d_{1} and d_{2} satisfy (3.6) and the above lower bound evaluates to $(5+3 \sqrt{17}) / 8 \approx 2.17$.

We made several simplifying assumptions to get to this bound, but one can show that no other strategy can beat the lower bound we established. The challenge in the analysis is that the online algorithm does not necessarily use one agent after the other, but the agents may wait in between. This creates many different cases which need to be grouped and analyzed.

3.3.3 Proof of the Lower Bound for the General Case

In this subsection, we give a complete proof of the lower bound on the competitive ratio of an arbitrary online algorithm Alg using the construction introduced in Section 3.3.1.

For every vertex v in T, we say that v is explored by an agent A, if A is the first agent visiting v. If $v_{i}^{(2)}$ is defined, then we say that every vertex on the path from $v_{i}^{(1)}$ to $v_{i}^{(2)}$ is explored by the first agent A_{1}, which enters T_{i} and has not visited any other tree $T_{j} \neq T_{i}$ before. It may be even the case that A_{1} never visits these vertices, but to simplify the analysis, we will still attribute them to A_{1}.

For $i \in\{1, \ldots, l\}$, we let $\mathcal{A}_{1, i}$ be the set of agents for which T_{i} is the first tree they visit and let $\mathcal{A}_{2, i}$ be the set of agents for which T_{i} is the second tree they visit, i.e., every agent $A \in \mathcal{A}_{2, i}$ has

Chapter 3. Energy Efficient Tree Exploration

visited a subtree distinct from T_{i} before. Note that an agent can visit at most two subtrees as

$$
\begin{equation*}
5 \cdot d_{1} \geq d_{1}+4 \cdot \frac{3}{5} d_{2}>d_{1}+2 \cdot d_{2} \geq B \tag{3.7}
\end{equation*}
$$

by our assumptions on the parameters in (3.6). Therefore an agent $A \in \mathcal{A}$ can be contained in one set $\mathcal{A}_{1, i}$ and possible in some other set $\mathcal{A}_{2, j}$ for $j \in\{1, \ldots, l\} \backslash\{i\}$. For every agent $A \in \mathcal{A}$ we let B_{A} denote the remaining energy when A enters a second subtree. If A only enters at most one of the subtrees T_{1}, \ldots, T_{l}, we set $B_{A}=0$. We now establish the following important properties for the number of vertices that the agents explore.

Lemma 3.4. Let T_{i} be a subtree of T as defined above.
(a) $B_{A} \leq B-3 d_{1}$ for all $A \in \mathcal{A}$.
(b) If Case II (b) or Case II (c) occurs, then the first agent A_{1} in $\mathcal{A}_{1, i}$ entering T_{i} does not visit any other subtree, i.e., $B_{A_{1}}=0$.
(c) Every agent $A \in \mathcal{A}_{2, i}$ explores at most $B_{A} / 2+2$ vertices in T_{i}.
(d) The first agent A_{1} in $\mathcal{A}_{1, i}$ entering T_{i} explores at $\operatorname{most}\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$ vertices.
(e) If $\left|\mathcal{A}_{1, i}\right| \leq 1$, then the agents in $\mathcal{A}_{1, i} \cup \mathcal{A}_{2, i}$ visit strictly less than N_{i} vertices in T_{i}.
(f) If the adaptive tree below $v_{i}^{(1)}$ is active and the budget N_{i} is not depleted, then there is an unexplored vertex in T_{i} at depth at most $d_{1}+\Delta$.

Proof. (a) Note that we have $B-3 d_{1}>0$ by our initial assumptions on the parameters in (3.6) and thus the claim trivially holds if A visits at most one of the subtrees T_{1}, \ldots, T_{l}, i.e., if $B_{A}=0$. Now, consider an agent $A \in \mathcal{A}$ visiting two subtrees and assume without loss of generality, that A first visits T_{1} and afterwards enters T_{2} with remaining energy B_{A}. To reach T_{1} the agent needs to traverse d_{1} edges. In order to afterwards reach T_{2}, the agent A needs to traverse another $2 d_{1}$ edges. Thus, we must have $B_{A} \leq B-3 d_{1}$.
(b) In both cases, agent A_{1} has explored more than $\left(d_{1}+d_{2}\right) / 2$ vertices in T_{i}. If A_{1} visits another subtree it traverses every edge in T_{i} an even number of times and therefore needs at least $d_{1}+$ d_{2} energy to explore more than $\left(d_{1}+d_{2}\right) / 2$ vertices. Moreover, $3 d_{1}$ energy is needed to first reach T_{i} and then another subtree. As $3 d_{1}+\left(d_{1}+d_{2}\right)>5 d_{1} \geq B$ by (3.6) and (3.7), A_{1} cannot visit another subtree.
(c) By definition, the remaining energy of the agent A when entering T_{i} is B_{A}. If the final position of A is not in T_{i}, then it traverses every edge in T_{i} an even number of times and in particular A traverses at most $B_{A} / 2$ edges in T_{i}. These can be incident to at most $B_{A} / 2+1$ vertices, which yields the claim.

Now, consider the case that the final position of A is below $v_{i}^{(1)}$ and not below $v_{i}^{(2)}$ and not on the path between $v_{i}^{(1)}$ and $v_{i}^{(2)}$. This means that at some point A must have visited a vertex v at depth d with remaining energy exactly $d-d_{1}$. Recall that B and d_{1} are even, hence B_{A} is even and this must happen at some point. Then A has exactly enough energy left to move to $v_{i}^{(1)}$ and,
in particular, A cannot reach any other path below $v_{i}^{(1)}$. If v is explored by A, then v has no new unexplored neighbor and we can simply assume that A returns to $v_{i}^{(1)}$ as this does not change the number of neighbors it explores. In this case A has traversed every edge in T_{i} an even number of times and therefore can have explored at most $B_{A} / 2+1$ vertices. If v is not explored by A, then A can only explore at most one more vertex after visiting v with energy $d-d_{1}$, because the current path ends immediately when A explores a new vertex. Compared to the case that v is explored by A, agent A only explores at most one additional vertex in this case so that we can bound the total number of vertices explored by A by $B_{A} / 2+2$.

Next consider the case that the final position of A is on the path between $v_{i}^{(1)}$ and $v_{i}^{(2)}$. In particular, this implies that $v_{i}^{(2)}$ is defined and all vertices on the path between $v_{i}^{(1)}$ and $v_{i}^{(2)}$ are attributed to A_{1}. Note that then all edges that are not on that path, must be traversed an even number of times by A and we therefore again obtain that A can explore at most $B_{A} / 2+1$ vertices, which yields the claim.

Finally, the case the final position of A is below $v_{i}^{(2)}$ is completely analogous to the case that the final position is below $v_{i}^{(1)}$ as all vertices on the path from $v_{i}^{(1)}$ to $v_{i}^{(2)}$ are attributed to A_{1}.
(d) Let A_{1} be the first agent entering T_{i}. If A_{1} visits another subtree $T_{j} \neq T_{i}$ afterwards, then A_{1} traverses every edge in T_{i} an even number of times and needs $3 d_{1}$ energy to first reach T_{i} and afterwards T_{j}. Overall, A_{1} can therefore explore at most $\left(B-3 d_{1}\right) / 2$ vertices in T_{i} and as $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta \geq\left(B-3 d_{1}\right) / 2$ this yields the claim.

From now on, we can therefore assume that A_{1} only visits the subtree T_{i}. The energy that A_{1} spends in T_{i} is at most $B-d_{1}$, as $B-d_{1}$ is the maximum energy possible when entering T_{i}. If the final position of the agent A_{1} is at depth d_{2} or less, then it traverses at most $d_{2}-d_{1}$ edges in T_{i} once using $d_{2}-d_{1}$ energy and exploring at most $d_{2}-d_{1}+1$ vertices. All other edges in T_{i} traversed by A_{1} must be traversed at least twice which means there is at most one explored vertex for every two energy used. Overall, the number of explored vertices is thus bounded by

$$
\left(d_{2}-d_{1}+1\right)+\frac{B-d_{1}-\left(d_{2}-d_{1}\right)}{2}=\frac{B+d_{2}}{2}-d_{1}+1
$$

if the final position of A_{1} is at depth d_{2} or less. If the final position of A_{1} is below d_{2}, there has to be a vertex v at depth d visited by A_{1} such that the remaining energy of A_{1} when visiting v is exactly $d-d_{2}$ (recall that d_{2} and B are even by assumption). If v is explored by A_{1}, then v is the last vertex that A_{1} explores because v then is a vertex without further neighbors and A_{1} cannot reach another path below $v_{i}^{(1)}$ or $v_{i}^{(2)}$. If v has been already explored by another agent, then A_{1} can only explore one more additional vertex as the path also ends immediately if A_{1} explores a vertex. If A_{1} after visiting v with remaining energy $d-d_{2}$, would directly move up towards $v_{i}^{(1)}$, its final position would be at depth d_{2} and by the argument above A_{1} could explore at most $\left(B+d_{2}\right) / 2-d_{1}+1$ vertices. As A_{1} can explore only at most one more vertex, as we just showed, the total number of vertices explored by A_{1} is bounded by $\left(B+d_{2}\right) / 2-d_{1}+2$ in this case.

However, in Case II (b), it can happen that $v_{i}^{(2)}$ is defined as it can be reached by A_{1} with its remaining energy when A_{2} enters T_{i}, but A_{1} does not visit $v_{i}^{(2)}$. Recall that we always attribute
the vertices on the path between $v_{i}^{(1)}$ and $v_{i}^{(2)}$ to A_{1}, even if A_{1} never visits them. If A_{1} visits $v_{i}^{(2)}$, then it visits all vertices on the path between $v_{i}^{(1)}$ and $v_{i}^{(2)}$ and by the argument above the number of vertices visited by A_{1} is bounded by $\left(B+d_{2}\right) / 2-d_{1}+2$. As the adaptive tree at $v_{i}^{(1)}$ becomes passive when A_{2} enters T_{i}, A_{1} can from then on only explore Δ vertices which are not on the path between $v_{i}^{(1)}$ and $v_{i}^{(2)}$ or below $v_{i}^{(2)}$. This means compared to the case that A_{1} visits $v_{i}^{(2)}, A_{1}$ can only visit additional Δ vertices and therefore the overall number of vertices explored by A_{1} is bounded by $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$ in this case as $2+\Delta \leq 2 \Delta$. This yields the claim.
(e) By Lemma 3.4 (c), every agent $A \in \mathcal{A}_{2, i}$ entering T_{i} explores at most $B_{A} / 2+2$ vertices and the budget N_{i} is also increased by this value when A enters T_{i}. Thus, if $\mathcal{A}_{1, i}=\emptyset$, the number of vertices explored in T_{i} will always be less than the budget, as N_{i} is initially 2 . Now assume, there is one agent $A_{1} \in \mathcal{A}_{1, i}$ entering T_{i}. By Case I in the construction of the lower bound, the budget N_{i} is increased by $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$ and by Lemma 3.4 (d), A_{1} also explores at most $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$ vertices in T_{i}. Thus the budget N_{i}, which is initially 2 , is also larger than the number of explored vertices in T_{i} in this case.
(f) Suppose, for the sake of contradiction, that the budget N_{i} is not depleted and the adaptive tree below $v_{i}^{(1)}$ is active, but there is no unexplored vertex at depth at most $d_{1}+\Delta$ in T_{i}. Recall that there are Δ paths below $v_{i}^{(1)}$ and $\Delta=\lceil\sqrt{2 \cdot l \cdot B}\rceil+2 l$. As $v_{i}^{(1)}$ is active and the budget N_{i} is not depleted by assumption, a path only ends if an agent has remaining energy $\leq d-d_{1}$ at depth d. In particular, one agent can be only responsible for at most one path to be fully explored and end. We have $2 l-1$ agents and thus at most $2 l-1$ paths can end before depth Δ. If there is no unexplored vertex at depth at most $d_{1}+\Delta$, all other $[\sqrt{2 \cdot l \cdot B}]+1$ paths must be fully explored up to depth Δ. These paths then contain at least $\Delta \cdot \mid \sqrt{2 \cdot l \cdot B}\rceil \geq 2 \cdot l \cdot B$ vertices. But all agents together only have $(2 \cdot l-1) \cdot B$ energy and hence cannot visit all these vertices. This is a contradiction.

We will say that Case II (a) occurs in T_{i} if $\left|\mathcal{A}_{1, i}\right| \geq 2$ and Case II (a) occurs when the second agent $A_{2} \in \mathcal{A}_{1, i}$ enters T_{i}. Analogously for Case II (b) and Case II (c). We partition the subtrees into the following three sets:
$M_{0}:=\left\{i \mid B_{A}>0\right.$ for all $A \in \mathcal{A}_{1, i}$ or Case II (a) occurs in $\left.T_{i}\right\}$,
$M_{1}:=\left\{i \mid T_{i}\right.$ is not completely explored, $\exists A \in \mathcal{A}_{1, i}$ with $B_{A}=0$ and Case II (a) does not occur $\}$, $M_{2}:=\left\{i \mid T_{i}\right.$ is completely explored and Case II (b) or Case II (c) occurs in $\left.T_{i}\right\}$.

Lemma 3.5. Let T_{i} be a subtree of $T, A L G_{i}$ be the number of vertices explored in T_{i} by ALG and M_{0}, M_{1} and M_{2} as defined above.
(a) We have $M_{0} \cup M_{1} \cup M_{2}=\{1, \ldots, l\}$ and $M_{i} \cap M_{j}=\emptyset$ for all $i, j \in\{0,1,2\}$ with $i \neq j$.
(b) For every $i=1, \ldots, l$, we have

$$
\begin{equation*}
A L G_{i} \leq \frac{B+d_{2}}{2}-d_{1}+6 \Delta+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2} . \tag{3.8}
\end{equation*}
$$

(c) If $i \in M_{0}$, then

$$
\begin{equation*}
A L G_{i} \leq \frac{B+d_{2}}{2}-d_{1}+4 \Delta+\left(\left|\mathcal{A}_{1, i}\right|-2\right) \cdot \frac{B-3 d_{1}}{2}+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2}-\sum_{A \in \mathcal{A}_{1, i}} \frac{B_{A}}{2} \tag{3.9}
\end{equation*}
$$

(d) If $i \in M_{1}$, then

$$
\begin{equation*}
\sum_{A \in \mathcal{A}_{1, i}} B_{A} \leq\left(\left|\mathcal{A}_{1, i}\right|-1\right) \cdot\left(B-3 d_{1}\right) . \tag{3.10}
\end{equation*}
$$

(e) If $i \in M_{2}$, then

$$
\begin{equation*}
\sum_{A \in \mathcal{A}_{1, i}} B_{A} \leq\left(\left|\mathcal{A}_{1, i}\right|-2\right) \cdot\left(B-3 d_{1}\right) . \tag{3.11}
\end{equation*}
$$

Proof. (a) For the first part of the statement, let $i \in\{1, \ldots, l\} \backslash\left(M_{0} \cup M_{1}\right\}$, and note that there exists $A \in \mathcal{A}_{1, i}$ with $B_{A}=0$, Case II (a) does not occur in T_{i}, and T_{i} is completely explored. By Lemma 3.4 (e) and Lemma 3.4 (f), we have $\left|\mathcal{A}_{1, i}\right| \geq 2$. Consequently, since Case II (a) does not occur in T_{i}, necessarily Case II (b) or Case II (c) occurs in T_{i} and $i \in M_{2}$.

We obviously have $M_{0} \cap M_{1}=\emptyset$ and $M_{1} \cap M_{2}=\emptyset$. By Lemma 3.4 (b), $B_{A_{1}}=0$ if Case II (b) or Case II (c) occurs and thus also $M_{0} \cap M_{2}=\emptyset$.
(b) The budget N_{i} of the tree T_{i}, which is initially 2 , satisfies

$$
N_{i} \leq 2+\frac{B+d_{2}}{2}-d_{1}+2 \Delta+\sum_{A \in \mathcal{A}_{2, i}}\left(\frac{B_{A}}{2}+2\right) \leq \frac{B+d_{2}}{2}-d_{1}+4 \Delta+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2},
$$

where we used $2+2\left|\mathcal{A}_{2, i}\right| \leq 4 l+2 \leq 2 \Delta$. Since T_{i} has at most $2 \Delta-1$ leaves, and since the number of vertices explored in T_{i}, which are not leaves, is at most N_{i}, we have $\mathrm{ALG}_{i} \leq N_{i}+2 \Delta$. This yields the claim.
(c) First we show the claim for the case that $B_{A}>0$ for all $A \in \mathcal{A}_{1, i}$. This means that every agent $A \in \mathcal{A}_{1, i}$ also visits a second subtree. As $3 d_{1}$ energy is spent to reach T_{i} and afterwards the second subtree and A has still B_{A} energy left when entering the second subtree, at most $B-3 d_{1}-B_{A}$ energy is spent in T_{i}. As every edge in T_{i} is traversed an even number of times, at most $\left(B-3 d_{1}-B_{A}\right) / 2$ vertices are explored by A in T_{i} for all $A \in \mathcal{A}_{1, i}$. Moreover, every agent $A \in \mathcal{A}_{2, i}$ explores at most $B_{A} / 2+2$ vertices in T_{i} by Lemma 3.4. Additionally using $2\left|\mathcal{A}_{2, i}\right| \leq 2 \Delta$, we thus have

$$
\begin{aligned}
\mathrm{ALG}_{i} & \leq \sum_{A \in \mathcal{A}_{1, i}} \frac{B-3 d_{1}-B_{A}}{2}+\sum_{A \in \mathcal{A}_{2, i}}\left(\frac{B_{A}}{2}+2\right) \\
& \leq\left|\mathcal{A}_{1, i}\right| \cdot \frac{B-3 d_{1}}{2}+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2}-\sum_{A \in \mathcal{A}_{1, i}} \frac{B_{A}}{2}+2 \Delta .
\end{aligned}
$$

Chapter 3. Energy Efficient Tree Exploration

We obtain the claim using $\left(B+d_{2}\right) / 2-d_{1} \geq 2 \cdot\left(B-3 d_{1}\right) / 2$ as $d_{2}>d_{1}$ and $5 d_{1}>B$ by (3.6) and (3.7).

Now assume Case II (a) occurs and let $A_{1} \in \mathcal{A}_{1, i}$ be the first agent entering T_{i} and $A_{2} \in \mathcal{A}_{1, i}$ the second agent entering T_{i}. As Case II (a) occurs, A_{1} has explored at most $\left(d_{1}+d_{2}\right) / 2$ vertices in T_{i} when A_{2} enters T_{i}. If $B_{A_{1}}>0$, i.e., A_{1} also enters a second tree, we can even bound the number of vertices explored by A_{1} in T_{i} by $\left(B-3 d_{1}-B_{A_{1}}\right) / 2$. We have $\left(d_{1}+d_{2}\right) / 2>\left(B-3 d_{1}\right) / 2$ as $d_{2}>d_{1}$ and $5 d_{1}>B$ by (3.6) and (3.7). Therefore, we can both for $B_{A_{1}}=0$ and for $B_{A_{1}}>0$ bound the number of vertices explored by A_{1} until A_{2} enters T_{i} by $\left(d_{1}+d_{2}-B_{A_{1}}\right) / 2$. As soon as A_{2} enters T_{i} all agents together can only explore the unexplored leaves, i.e., at most 2Δ vertices. Moreover, every agent $A \in \mathcal{A}_{2, i}$ explores at most $B_{A} / 2+2$ vertices in T_{i} by Lemma 3.4. Overall, we hence have

$$
\mathrm{ALG}_{i} \leq \frac{d_{1}+d_{2}-B_{A_{1}}}{2}+2 \Delta+\sum_{A \in \mathcal{A}_{2, i}}\left(\frac{B_{A}}{2}+2\right) \leq \frac{d_{1}+d_{2}-B_{A_{1}}}{2}+4 \Delta+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2}
$$

where we again used $2\left|\mathcal{A}_{2, i}\right| \leq 2 \Delta$. We also have $0 \leq B-3 d_{1}-B_{A}$ for all $A \in \mathcal{A}_{1, i}$ by Lemma 3.4 and obtain

$$
\begin{aligned}
\mathrm{ALG}_{i} & \leq \frac{d_{1}+d_{2}-B_{A_{1}}}{2}+4 \Delta+\sum_{A \in \mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}} \frac{B-3 d_{1}-B_{A}}{2}+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2} \\
& =\frac{d_{1}+d_{2}}{2}+4 \Delta+\left(\left|\mathcal{A}_{1, i}\right|-1\right) \cdot \frac{B-3 d_{1}}{2}-\sum_{A \in \mathcal{H}_{1, i}} \frac{B_{A}}{2}+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2} \\
& =\frac{B+d_{2}}{2}-d_{1}+4 \Delta+\left(\left|\mathcal{A}_{1, i}\right|-2\right) \cdot \frac{B-3 d_{1}}{2}-\sum_{A \in \mathcal{A}_{1, i}} \frac{B_{A}}{2}+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2} .
\end{aligned}
$$

(d) The bound follows directly from the fact that $B_{A}=0$ for some $A \in \mathcal{A}_{1, i}$ and $B_{A} \leq B-3 d_{1}$ for all $A \in \mathcal{A}_{1, i}$ by Lemma 3.4.
(e) In order to show the bound (3.11), we proceed along the following key claims:
(i) The bound (3.11) follows, if the set of agents $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ together visit at least ($B-$ $\left.3 d_{1}\right) / 2$ distinct vertices in T_{i} or if there is an agent in $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ that does not visit another subtree.
(ii) The bound (3.11) holds if Case II (b) occurs.
(iii) For Case II (c), the agents in $\left(\mathcal{A}_{i, 1} \backslash\left\{A_{1}\right\}\right) \cup \mathcal{A}_{i, 2}$ need to visit at least $\left(B-3 d_{1}\right)+$ $\sum_{A \in \mathcal{A}_{i, 2}}\left(B_{A} / 2+2\right)$ vertices in T_{i} for T_{i} to be completely explored. Some of these vertices may have already been explored by agent A_{1}.
(iv) Let V_{1} be the set of vertices visited by A_{1}. Further let e_{2} be the number of vertices explored by the agents in $\mathcal{A}_{i, 2}$ that are not contained in V_{1} and n_{2} be the total number of vertices visited by the agents in $\mathcal{A}_{i, 2}$ that are contained in V_{1}. Then it holds that $e_{2}+n_{2} / 2 \leq \sum_{A \in \mathcal{A}_{i, 2}}\left(B_{A} / 2+2\right)$.
(v) The claims (iii) and (iv) yield the bound (3.11) if Case II (c) occurs.

We now show each of the above claims.
(i) By Lemma 3.4 (b), we know that A_{1} cannot visit another subtree, i.e., $B_{A_{1}}=0$, as Case II (b) or Case II (c) occurs when A_{2} enters T_{i}. If there exists another agent $A^{\prime} \in \mathcal{A}_{1, i}$ such that $B_{A^{\prime}}=0$, then the claim follows directly from the fact that $B_{A} \leq B-3 d_{1}$ for all $A \in \mathcal{A}_{1, i} \backslash\left\{A_{1}, A^{\prime}\right\}$ by Lemma 3.4. So assume that for every $A \in \mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}, B_{A}>0$ holds, i.e., every agent in $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ visits two subtrees and the agents in $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ together visit at least $\left(B-3 d_{1}\right) / 2$ distinct vertices in T_{i}. As every agent A in $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ visits a distinct subtree after T_{i}, A traverses every edge in T_{i} an even number of times. Thus at least $B-3 d_{1}$ energy is needed to visit $\left(B-3 d_{1}\right) / 2$ distinct vertices. But then we already have

$$
\sum_{A \in \mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}} B_{A} \leq\left(\left|\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}\right|-1\right) \cdot\left(B-3 d_{1}\right),
$$

as every agent spends an additional $3 d_{1}$ energy to first reach T_{i} and then the second subtree. This implies (3.11).
(ii) The budget of T_{i} is increased by $\left(B+d_{2}\right) / 2-d_{1}+2 \Delta$ when A_{1} enters T_{i}, but this is also the maximum number of vertices that A_{1} can explore by Lemma 3.4. Similarly, for every agent $A \in \mathcal{A}_{2, i}$ the budget is increased by $B_{A} / 2+2$ and the agent can also explore at most $B_{A} / 2+2$ vertices by Lemma 3.4. Note that when A_{2} enters T_{i}, the adaptive tree rooted at $v_{i}^{(1)}$ becomes passive, and thus agents not entering $v_{i}^{(2)}$ can collectively explore at most Δ vertices after A_{2} entered T_{i}. We claim that if no agent from $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ enters $v_{i}^{(2)}$, then T_{i} cannot be explored. Indeed, there are Δ paths starting from $v_{i}^{(1)}$ and Δ paths starting from $v_{i}^{(2)}$. When the budget N_{i} is depleted, the agents must have explored N_{i} vertices that are not leaves, and consequently, $\left|T_{i}\right| \geq N_{i}+2 \Delta$. Since the agents from $\mathcal{A}_{2, i} \cup\left\{A_{1}\right\}$ can explore at most $N_{i}-2$ vertices, the agents from $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ have to explore at least $2 \Delta+2$ vertices in T_{i}. Consequently, at least one agent A^{\prime} from $\mathcal{A}_{1, i} \backslash\left\{A_{1}\right\}$ has to visit $v_{i}^{(2)}$ and thus $B_{A^{\prime}}=0$ as $d_{1}+2 d_{2} \geq B$ by (3.6). By (i), this yields (3.11).
(iii) As Case II (c) occurs when A_{2} enters T_{i}, agent A_{1} has not enough energy to reach a vertex at depth d_{2} via an unexplored vertex. We first show that then A_{1} never visits a vertex at depth $d_{2}+1$ (it is clear by assumption that A_{1} never explores a vertex at depth d_{2} or below, but A_{1} could still visit a vertex at depth $d_{2}+1$ on a path that was explored by another agent). If any agent A from $\mathcal{A}_{i, 2}$ explores a vertex v at depth d_{2} in T_{i}, then it must have spend at least $2 d_{1}$ energy to reach the tree it visited before T_{i} and then come back to the root and another d_{2} energy to reach v. We have $B-2 d_{1}-d_{2} \leq d_{2}-d_{1}$ as $d_{1}+2 d_{2} \geq B$ by (3.6). Thus A has at most $d_{2}-d_{1}$ energy left when it visits v at depth d_{2} and the path of A ends by Case III in the construction of the lower bound. Therefore, A_{1} cannot reach any vertex at depth $d_{2}+1$ on a path that was explored by an agent from $\mathcal{A}_{i, 2}$ as this path ends at depth d_{2} at the latest. Agent A_{1} also cannot visit a vertex at depth $d_{2}+1$ that was explored by an agent in $\left(\mathcal{A}_{i, 1} \backslash\left\{A_{1}\right\}\right)$ as this vertex would be unexplored at the time A_{2} enters T_{i} and we assume that at this point A_{1} cannot reach an unexplored vertex at depth d_{2}.

This means that A_{1} never visits any vertex at depth $d_{2}+1$ and can therefore only completely explore one path below $v_{i}^{(1)}$ containing at most $d_{2}-d_{1}+1$ vertices. All other vertices visited by A_{1} that are not on that path have to be visited by other agents since otherwise there is an unexplored vertex at the end of that path. For T_{i} to be completely explored, the budget N_{i} must be completely depleted as otherwise the adaptive tree below $v_{i}^{(1)}$ remains active and there is an unexplored vertex in T_{i} by Lemma 3.4 (f). Thus all N_{i} vertices, except for at most $d_{2}-d_{1}+1$, need to be visited by the agents in $\left(\mathcal{A}_{i, 1} \backslash\left\{A_{1}\right\}\right) \cup \mathcal{A}_{i, 2}$ for T_{i} to be completely explored. We have

$$
\begin{equation*}
N_{i}-\left(d_{2}-d_{1}+1\right) \geq \frac{B-d_{2}}{2}+\sum_{A \in \mathcal{H}_{i, 2}}\left(\frac{B_{A}}{2}+2\right) \tag{3.12}
\end{equation*}
$$

Using, $d_{1}+2 d_{2} \geq B$ and $d_{2} \leq 5 / 3 \cdot d_{1}$ by (3.6), we obtain

$$
2 B-6 d_{1} \leq\left(d_{1}+2 d_{2}\right)+B-6 d_{1}=3 d_{2}-5 d_{1}+\left(B-d_{2}\right) \leq B-d_{2} .
$$

This implies $B-3 d_{1} \leq\left(B-d_{2}\right) / 2$ and together with (3.12) this yields the claim.
(iv) For an agent $A \in \mathcal{A}_{i, 2}$, let e_{A} be the number of vertices in T_{i} that are explored by A and not visited by A_{1}. Moreover, let n_{A} be the number of moves performed by agent A in T_{i} increasing the distance from A to $v_{i}^{(1)}$ while visiting a new distinct vertex in V_{1}. We show that $e_{A}+n_{A} / 2 \leq B_{A} / 2+2$. The claim then follows by using $n_{2}=\sum_{A \in \mathcal{A}_{i, 2}} n_{A}$ and $e_{2}=\sum_{A \in \mathcal{A}_{i, 2}} e_{A}$.

Consider the last time an agent $A \in \mathcal{A}_{i, 2}$ visits a vertex v at depth d and exactly has enough energy to move to $v_{i}^{(1)}$ (as B and d_{1} are even, this will happen at some point). Note that A cannot reach any other path below $v_{i}^{(1)}$ and that it can explore at most one vertex as any unexplored vertex that A visits will have no further neighbor.

First, assume v is explored by A. By Case III in the construction of the lower bound, the current path ends and v is a vertex without further neighbors. We can now assume that A returns to $v_{i}^{(1)}$, as this does not change e_{A} or n_{A}. Then A has traversed every edge in T_{i} an even number of times and we have $e_{A}+n_{A} \leq B_{A} / 2+1$ and thus in particular, $e_{A}+n_{A} / 2 \leq B_{A} / 2+1$ as $n_{A} \geq 0$.

Next, assume that v is not explored by A and also not visited by A_{1}. If A would return to $v_{i}^{(1)}$, then we can again argue that A traverses every edge an even number of times and obtain $e_{A}+n_{A} \leq B_{A} / 2$ because now we even know that the edge traversal to v was neither an exploration move nor is v contained in V_{1}. On the other hand, if A does not return to $v_{i}^{(1)}$ from v then it cannot visit any new vertex in V_{1} as A_{1} never visits v and therefore also no vertex below v. Moreover, A can explore at most one additional vertex because then the current path will end immediately. Overall, we therefore again obtain $e_{A}+n_{A} \leq B_{A} / 2+1$, which yields $e_{A}+n_{A} / 2 \leq B_{A} / 2+1$.

Finally, assume that v is not explored by A but visited by A_{1}. Let e_{A}^{\prime} be the number of vertices not visited by A_{1} and explored by A until the visit of v with remaining energy $d-d_{1}$ and analogously let n_{A}^{\prime} be the number of moves performed by agent A up to that time
increasing the distance from A to $v_{i}^{(1)}$ while visiting a new distinct vertex in V_{1}. If A would return to $v_{i}^{(1)}$ with its remaining energy, it would have traversed every edge an even number of times and we obtain $e_{A}^{\prime}+n_{A}^{\prime} \leq B_{A} / 2+1$. After visiting v agent A can explore only at most one more vertex as then the path ends immediately. Thus, we have $e_{A} \leq e_{A}^{\prime}+1$. As v is visited by A_{1}, all vertices between v and $v_{i}^{(1)}$ must also be visited by A_{1}. Hence, it holds that $n_{A}^{\prime} \geq d-d_{1}$. Moreover, after visiting v agent A only has $d-d_{1}$ energy left for visiting vertices in V_{1} implying $n_{A}-n_{A}^{\prime} \leq d-d_{1}$. Overall, this yields

$$
e_{A}+\frac{n_{A}}{2} \leq e_{A}^{\prime}+1+\frac{\left(d-d_{1}\right)+n_{A}^{\prime}}{2} \leq e_{A}^{\prime}+1+\frac{2 n_{A}^{\prime}}{2} \leq \frac{B_{A}}{2}+2
$$

(v) Let n_{1} be the total number of vertices in T_{i} visited by the agents in $\mathcal{A}_{i, 1} \backslash\left\{A_{1}\right\}$. We assume $n_{1}<\left(B-3 d_{1}\right) / 2$ as otherwise the claim follows by (i). First of all, we must have $n_{1}+e_{2} \geq \sum_{A \in \mathcal{A}_{i, 2}}\left(B_{A} / 2+2\right)$ as T_{i} contains at least $N_{i}+\Delta$ vertices if it is completely explored of which $\sum_{A \in \mathcal{A}_{i, 2}}\left(B_{A} / 2+2\right)$ are not visited by A_{1} by Lemma 3.4 (d). Using (iv), this implies

$$
\begin{equation*}
\left(B-3 d_{1}\right) / 2>n_{1} \geq \sum_{A \in \mathcal{H}_{i, 2}}\left(B_{A} / 2+2\right)-e_{2} \geq n_{2} / 2 . \tag{3.13}
\end{equation*}
$$

By (iii), we must further have

$$
\begin{equation*}
n_{1}+n_{2}+e_{2} \geq B-3 d_{1}+\sum_{A \in \mathcal{H}_{i, 2}}\left(B_{A} / 2+2\right) \tag{3.14}
\end{equation*}
$$

for the budget N_{i} to be depleted and T_{i} completely explored. By (iv), we further have $\sum_{A \in \mathcal{A}_{i, 2}}\left(B_{A} / 2+2\right) \geq n_{2} / 2+e_{2}$ and hence we obtain $n_{1}+n_{2} / 2 \geq B-3 d_{1}$ from (3.14). But this implies $n_{1} \geq\left(B-3 d_{1}\right) / 2$ as $n_{2} / 2<\left(B-3 d_{1}\right) / 2$ by (3.13), which is a contradiction.

Theorem 3.6. There exists no c-competitive online exploration algorithm with $c<(5+3 \sqrt{17}) / 8 \approx 2.17$.
Proof. Let Alg be an online exploration algorithm and let I be the instance defined above, i.e., the tree T depending on ALg and the parameters l, d_{1}, d_{2} and B. Assume t of the l subtrees $T_{1}, T_{2} \ldots, T_{l}$ are completely explored and for $j \in\{1,2,3\}$ let $k_{j}:=\left|\bigcup_{i \in M_{j}} \mathcal{A}_{1, i}\right|$.

We have $\operatorname{ALG}(I) \leq l \cdot d_{1}+\sum_{i=1}^{l} \operatorname{ALG}_{i}$, as there are l paths with d_{1} edges each connecting the root v_{0} to every subtree. We now apply (3.8) from Lemma 3.5 for all subtrees T_{i} with $i \in M_{1} \cup M_{2}$ and Inequality (3.9) for all subtrees T_{i} with $i \in M_{0}$ and additionally use that $\bigcup_{i=1}^{l} \mathcal{A}_{1, i} \supseteq \bigcup_{i=1}^{l} \mathcal{A}_{2, i}$. This

Chapter 3. Energy Efficient Tree Exploration

yields

$$
\begin{aligned}
\operatorname{ALG}(I) \leq & l \cdot d_{1}+\sum_{i=1}^{l} \operatorname{ALG}_{i} \\
\leq & l \cdot d_{1}+\sum_{i \in M_{1} \cup M_{2}}\left(\frac{B+d_{2}}{2}-d_{1}+6 \Delta+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2}\right) \\
& +\sum_{i \in M_{0}}\left(\frac{B+d_{2}}{2}-d_{1}+4 \Delta+\left(\left|\mathcal{A}_{1, i}\right|-2\right) \cdot \frac{B-3 d_{1}}{2}+\sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2}-\sum_{A \in \mathcal{A}_{1, i}} \frac{B_{A}}{2}\right) \\
\leq & l \cdot\left(\frac{B+d_{2}}{2}+6 \Delta\right)+\sum_{i=1}^{l} \sum_{A \in \mathcal{A}_{2, i}} \frac{B_{A}}{2}-\sum_{i \in M_{0}} \sum_{A \in \mathcal{A}_{1, i}} \frac{B_{A}}{2}+\sum_{i \in M_{0}}\left(\left|\mathcal{A}_{1, i}\right|-2\right) \cdot \frac{B-3 d_{1}}{2} \\
\leq & l \cdot\left(\frac{B+d_{2}}{2}+6 \Delta\right)+\left(k_{0}-2\left|M_{0}\right|\right) \cdot \frac{B-3 d_{1}}{2}+\frac{1}{2} \sum_{i \in M_{1} \cup M_{2}} \sum_{A \in \mathcal{A}_{1, i}} B_{A} .
\end{aligned}
$$

Now we can apply the Inequalities (3.10) and (3.11). We further use $k_{0}+k_{1}+k_{2} \leq k=2 l-1$, $\left|M_{0}\right|+\left|M_{1}\right|+\left|M_{2}\right|=l, t \leq\left|M_{0}\right|+\left|M_{2}\right|$ and obtain

$$
\begin{aligned}
\operatorname{ALG}(I) \leq & l\left(\frac{B+d_{2}}{2}+6 \Delta\right)+\left(k_{0}-2\left|M_{0}\right|\right) \cdot \frac{B-3 d_{1}}{2}+\frac{1}{2} \sum_{i \in M_{1}} \sum_{A \in \mathcal{A}_{1, i}}\left(\left|\mathcal{A}_{1, i}\right|-1\right) \cdot\left(B-3 d_{1}\right) \\
& +\frac{1}{2} \sum_{i \in M_{2}} \sum_{A \in \mathcal{A}_{1, i}}\left(\left|\mathcal{A}_{1, i}\right|-2\right) \cdot\left(B-3 d_{1}\right) \\
\leq & l\left(\frac{B+d_{2}}{2}+6 \Delta\right)+\left(k_{0}+k_{1}+k_{2}-2\left|M_{0}\right|-\left|M_{1}\right|-2\left|M_{2}\right|\right) \frac{B-3 d_{1}}{2} \\
\leq & l\left(\frac{B+d_{2}}{2}+6 \Delta\right)+(l-1-t) \frac{B-3 d_{1}}{2} .
\end{aligned}
$$

Next, we will give a lower bound on the number of vertices explored by an optimal offline algorithm Opt. As there are $2 l-1$ agents and l subtrees, there has to be a subtree T_{i} with $\left|\mathcal{A}_{1, i}\right| \leq 1$. Without loss of generality let this subtree be T_{1}. By Lemma 3.4 the subtree T_{1} then has an unexplored vertex u_{1} at depth at most $d_{1}+\Delta$ and, in particular, is not completely explored, implying $t<l$.

For every subtree T_{i} that is not completely explored, let u_{i} be an unexplored vertex in this tree. We can just assume that every u_{i} has degree $2 l$ and $2 l-1$ distinct paths of length B connected to it. The optimal offline algorithm Opt can then send $l-t$ agents each to one of the unexplored leaves u_{i} and then down one of the $2 l-1$ distinct paths. These agents in total explore $(l-t) \cdot B$ vertices. All other $l-1+t$ agents are send to the unexplored vertex u_{1} in T_{1} and then each down one path which is not taken by any other agent. These agents in total explore at least $(l-1+t) \cdot\left(B-d_{1}-\Delta\right)$ vertices. Overall, this yields

$$
\operatorname{Opt}(I) \geq(l-t) \cdot B+(l-1+t) \cdot\left(B-d_{1}-\Delta\right)=(2 l-1) \cdot B+(l-1+t) \cdot\left(-d_{1}-\Delta\right) .
$$

For the competitive ratio, we hence obtain

$$
\frac{\operatorname{OPT}(I)}{\operatorname{ALG}(I)} \geq \min _{t \in\{0, \ldots, l-1\}} \frac{(4 l-2) \cdot B+(2 l-2+2 t) \cdot\left(-d_{1}-\Delta\right)}{l \cdot\left(B+d_{2}+12 \Delta\right)+(l-1-t)\left(B-3 d_{1}\right)}
$$

In order to maximize the term on the right-hand side, we want to choose d_{2} as small as possible. Because of the initial assumptions on the parameters in (3.6), we must satisfy $2 d_{2}+d_{1} \geq B$. We can therefore choose $d_{2}=\left(B-d_{1}\right) / 2$ and get

$$
\frac{\operatorname{OPT}(I)}{\operatorname{ALG}(I)} \geq \min _{t \in\{0, \ldots, l-1\}} \frac{(8 l-4) \cdot B+(4 l-4+4 t) \cdot\left(-d_{1}-\Delta\right)}{l \cdot\left(3 B-d_{1}+24 \Delta\right)+(2 l-2-2 t)\left(B-3 d_{1}\right)} .
$$

Note that since we assumed $d_{2} \leq 5 d_{1} / 3$, we need to have that $B \leq 13 d_{1} / 3$, i.e, $d_{1} \geq 3 B / 13$. We also need to satisfy $3 d_{1}<B$ by (3.6) or equivalently $d_{1}<B / 3$.

We now consider an infinite sequence of instances with the following parameters: For every $i \in \mathbb{N}$, let the energy B of the agents be $B^{(i)}:=2^{2 i}$, the parameter l be $l^{(i)}:=2^{i}$ and the depth d_{1} be $d_{1}^{(i)}:=$ $b_{1} \cdot B^{(i)}$ for some $b_{1} \in(3 / 13,1 / 3)$. Note that $d_{1}^{(i)}$ then satisfies $3 d_{1}^{(i)}<B^{(i)}<13 d_{1}^{(i)} / 3$ as required by our initial assumptions on the parameters. Furthermore, we have

$$
\frac{\Delta^{(i)}}{B^{(i)}}=\frac{\left\lceil\sqrt{2 l^{(i)} \cdot B^{(i)}}\right\rceil+2 l^{(i)}}{B^{(i)}} \xrightarrow{i \rightarrow \infty} 0 .
$$

By dividing all terms in the numerator and denominator by $l^{(i)} \cdot B^{(i)}$ and using the property above, we can compute

$$
\begin{aligned}
\frac{\operatorname{Opt}(I)}{\operatorname{ALG}(I)} & \geq \min _{t \in\left\{0, \ldots, l^{(i)}-1\right\}} \frac{\left(8 l^{(i)}-4\right) \cdot B^{(i)}+\left(4 l^{(i)}-4+4 t\right) \cdot\left(-d_{1}^{(i)}-\Delta^{(i)}\right)}{l^{(i)} \cdot\left(3 B^{(i)}-d_{1}^{(i)}+24 \Delta^{(i)}\right)+\left(2 l^{(i)}-2-2 t\right)\left(B^{(i)}-3 d_{1}^{(i)}\right)} \\
& \xrightarrow{i \rightarrow \infty} \inf _{t \in[0,1)} \frac{8-4 b_{1}-4 b_{1} \cdot t}{3-b_{1}+2-6 b_{1}-2 t+6 t \cdot b_{1}}
\end{aligned}
$$

Hence, we have that the competitive ratio $\rho_{\text {ALG }}$ of the online algorithm Alg satisfies

$$
\rho_{\mathrm{ALG}} \geq \lim _{i \rightarrow \infty} \frac{|\mathrm{OPT}|}{|\mathrm{ALG}|} \geq \inf _{t \in[0,1)} \frac{8-4 b_{1}-4 b_{1} \cdot t}{3-b_{1}+2-6 b_{1}-2 t+6 t \cdot b_{1}}
$$

We still have the freedom to choose $b_{1} \in(3 / 13,1 / 3)$ to maximize the term on the right-hand side, so we even have

$$
\rho_{\mathrm{ALG}} \geq \sup _{b_{1} \in(3 / 13,1 / 3)} \inf _{t \in[0,1)} \frac{8-4 b_{1}-4 b_{1} \cdot t}{5-7 b_{1}-2 t+6 t \cdot b_{1}}
$$

By standard calculus, we obtain that $b_{1}=\frac{-3 \sqrt{17}+19}{26} \approx 0.26$ maximizes the infimum and satisfies $3 / 13 \leq b_{1} \leq 1 / 3$. Finally, we get

$$
\rho_{\mathrm{ALG}} \geq \frac{5+3 \sqrt{17}}{8} \approx 2.17
$$

Chapter 4

Energy Efficient Delivery

In this chapter, we study the problem of moving a set of distinct messages from their current locations to specific destinations by a team of mobile agents. In an application, a message could be some person or object to be transported and a mobile agent some autonomous robot or vehicle. The messages can be located at different initial locations and every message has a specific destination. Each mobile agent consumes energy proportional to the distance it travels and the proportionality factor, i.e., the efficiency of the agent, may be different for different agents. The different efficiencies of the agents can be due to different power sources or technologies of the autonomous robot or vehicle, for instance. The agents may carry several messages at the same time. However, there is a capacity κ bounding the number of messages an agent can carry simultaneously. We model the environment as a weighted undirected graph, where the initial position and destination of every message is specified as a sourcetarget pair. Previous work on energy-efficient delivery of messages studied agents with different energy budgets, i.e., bounds on the overall energy an agent can spend traversing the environment, but with the same energy efficiency [Cha+13; Cha+14; Bär+16].

In our setting, which we refer to as WeightedDelivery, the energy of an agent is unlimited, and we study the problem of delivering all messages to their destinations while minimizing the total energy consumption. In this chapter, we focus on one aspect of the WeightedDelivery problem, namely we investigate how much the agents can benefit by collaborating on delivering messages compared to the case that every message is delivered by only one agent. We call the best approximation factor achieved by an algorithm using only one agent for delivering every message the benefit of collaboration (BoC).

Contributions and Outline. We start by giving a formal introduction of the model in Section 4.1. Afterwards, in Section 4.2, we construct an instance showing that no algorithm that delivers every message by only one agent can achieve an approximation factor better than $\ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right)^{-1}$, where r is the minimum of the agent capacity κ and number of messages μ. For a single message this implies a lower bound of $1 / \ln 2$ on the benefit of collaboration, whereas for arbitrary large agent capacity and number of messages this lower bound converges to 2 . In Section 4.3, we show how to
transform an optimal solution of the message delivery problem to a solution where every message is transported by only one agent while the cost is at most twice the cost of the original solution. This implies a general tight upper bound of 2 on the benefit of collaboration for arbitrary capacities and numbers of messages. Additionally, for the special case of one message, we give a different transformation showing a tight upper bound of $1 / \ln 2 \approx 1.44$.

Further Results. Other aspects of the delivery problem, which we do not cover in this chapter, were presented in [Bär+17]. The authors showed that for a single message an optimal solution can be found in $O\left(|V|^{3}\right)$, independently of the number of agents k. However, for more messages it is shown that already the subproblem of planning in which order an agent delivers a set of messages is NP-hard on planar graphs, but it can be 2-approximated in polynomial time if agents have capacity $\kappa=1$ and do not collaborate. It is further shown that the coordination aspect of WeightedDelivery, i.e., deciding which agent delivers which subset of messages, is NP-hard, but can be efficiently solved if the agents have the same efficiency. Combining the approximation results and the bound on the benefit of collaboration yields a polynomial-time ($4 \max \frac{\alpha_{i}}{\alpha_{j}}$)-approximation for message delivery with unit capacities, where $\max \frac{\alpha_{i}}{\alpha_{j}}$ is the maximum ratio between the different energy consumption rates of the agents.

Bibliographic Information. The results presented in this chapter are joint work with Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Daniel Graf, and Paolo Penna, and have been published in [Bär+17].

4.1 Terminology and Model

We model the environment as an undirected labeled and edge weighted graph $G=(V, E)$. Every edge $e=\{u, v\} \in E$ has a length denoted by $w(e) \in \mathbb{R}_{\geq 0}$. The length of a walk is the sum of the edge lengths along the walk. The distance between a vertex u and a vertex v is the length of a shortest path from u to v in G and denoted by $\operatorname{dist}(u, v)$. There is a set \mathcal{A} of k mobile agents denoted by $A_{1}, \ldots A_{k}$ initially located at arbitrary vertices $v_{0}^{(1)}, \ldots, v_{0}^{(k)}$ of G. The agents have a complete map of the graph and can communicate globally. Each agent A_{i} has a weight $\alpha_{i}>0$, which is the rate of energy consumption per unit distance traveled by the agent, i.e., every time agent A_{i} traverses an edge $e \in E$ it incurs an energy cost of $\alpha_{i} \cdot w(e)$. Note that a higher weight α_{i} of an agent implies a higher rate of energy consumption and therefore a lower efficiency. Hence, $1 / \alpha_{i}$ can be interpreted as the efficiency of the agent. Moreover, there is a set of μ messages M to be delivered. For every message $j \in M$ there is a pair $\left(s_{j}, t_{j}\right)$ giving the source vertex $s_{j} \in V$ and target vertex $t_{j} \in V$ of message j. A message at a vertex v can be picked up by any agent located at v. It can be carried by an agent to any other vertex of G and dropped there. A message $j \in M$ is delivered if it is dropped by an agent at its target vertex t_{j}. Furthermore, the agents have a capacity $\kappa \in \mathbb{N} \cup\{\infty\}$, which is a limit on the number of messages an agent can carry simultaneously. We do not impose any restriction on how
far an agent may travel and let d_{i} denote the total distance traveled by agent A_{i}, i.e., the length of the walk performed by A_{i} in G. We call a feasible solution S to an instance I of the WeightedDelivery problem a schedule. A schedule is a complete description of the agents trajectories, including all message pick-up and message drop-off actions and times. The cost of a schedule S for an instance I is the total energy consumption of the agents, i.e., $c(S, I):=\sum_{i=1}^{k} \alpha_{i} d_{i}$. The goal is to find a schedule S minimizing the total energy $c(S, I)$ needed to deliver all messages of instance I.

4.2 Lower Bound on the Benefit of Collaboration

In this section, we construct an instance showing a lower bound on the approximation ratio by an algorithm using only one agent for delivering every message. For our construction, we make use of the fact that the agents have different starting locations and they can finish at any vertex of the graph. Due to different agent efficiencies it may therefore be cheaper that an agent close to the message source first transports a message before handing it over to another agent with a better efficiency compared to the case that the message is transported the whole time by only the agent with the better efficiency. In general, it can even be the case that an agent hands over the message to a less efficient agent if there are multiple messages and capacity constraints for the agents.

Theorem 4.1. On instances of WeightedDelivery with agent capacity κ and μ messages, an algorithm using one agent for delivering every message cannot achieve an approximation ratio better than

$$
\frac{1}{\ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right)},
$$

where $r:=\min \{\kappa, \mu\}$.

Proof. The instance I showing the lower bound is constructed as follows: Consider the graph $G=$ (V, E) given in Figure 4.1, where the length $w(e)$ of every edge $e \in E$ is $1 / t$. This means that G is a star graph with center $v_{t, 0}$ and $r+1$ paths of total length 1 each. We have r messages and message j needs to be transported from $v_{0, j}$ to $v_{2 t, 0}$ for $j=1, \ldots, r$. There further is an agent $A_{i, j}$ with weight $\alpha_{i, j}=\frac{2 r}{2 r+i / t}$ starting at every vertex $v_{i, j}$ for $(i, j) \in(\{0, \ldots, t-1\} \times\{1, \ldots, r\}) \cup(\{t, \ldots, 2 t\} \times\{0\})$.

We first show the following: If any agent transports s messages from their sources to their destinations, then this incurs a cost of at least $2 s$. Note that this implies that any schedule S for delivering all messages by the agents such that every message is only carried by one agent satisfies $c(I, S) \geq 2 r$.

So let an agent $A_{i, j}$ transport s messages from the sources to the destination $v_{2 t, 0}$. Without loss of generality let these messages be $1, \ldots, s$, which are picked up in this order. By construction, agent $A_{i, j}$ needs to travel a distance of at least i / t to reach message 1 , next a distance of 1 to move back to $v_{t, 0}$, then a distance of 2 for picking up message j and going back to $v_{t, 0}$ for $j=2, \ldots, s$. Finally it needs to move a distance of 1 from $v_{t, 0}$ to $v_{2 t, 0}$. Overall, agent $A_{i, j}$ therefore travels a distance of at least $2 s+\frac{i}{t}$.

Chapter 4. Energy Efficient Delivery

Figure 4.1: Lower bound construction for the benefit of collaboration.

The overall cost for agent $A_{i, j}$ to deliver the s messages therefore is at least

$$
\left(2 s+\frac{i}{t}\right) \cdot \alpha_{i, j}=\left(2 s+\frac{i}{t}\right) \cdot \frac{2 r}{2 r+i / t} \geq\left(2 s+\frac{i}{t}\right) \cdot \frac{2 s}{2 s+i / t}=2 s
$$

Now, consider a schedule $S_{\text {col }}$, where the agents collaborate, i.e., agent $A_{i, j}$ transports message j from $v_{i, j}$ to $v_{i+1, j}$ for $j=1, \ldots, r, i=0, \ldots, t-1$, where we identify $v_{t, j}$ with $v_{t, 0}$. Then agent $A_{i, 0}$ transports all r messages from $v_{i, 0}$ to $v_{i+1,0}$ for $i=t, \ldots, 2 t-1$. This is possible because $r \leq \kappa$ by the definition of r. The total cost of this schedule is given by

$$
c\left(I, S_{\text {col }}\right)=r \cdot \int_{0}^{1} f_{\text {step }}(x) \mathrm{d} x+\int_{1}^{2} f_{\text {step }}(x) \mathrm{d} x,
$$

where $f_{\text {step }}(x)$ is a step-function defined on $[0,2]$ giving the current cost of transporting the message, i.e., $f_{\text {step }}(x)=\frac{2 r}{2 r+i / t}$ on the interval $[i / t,(i+1) / t)$ for $i=0, \ldots, 2 n-1$. The first integral corresponds the first part of the schedule, where the r messages are transported separately and therefore the cost of transporting message j from $v_{i, j}$ to $v_{i+1, j}$ is exactly $\int_{i / t}^{(i+1) / t} f_{\text {step }}(x) \mathrm{d} x=\frac{1}{t} \cdot \frac{2 r}{2 r+i / t}$. The second part of the schedule corresponds to the part, where all r messages are transported together by one agent at a time.

Observe that the function $f(x)=2 r \cdot \frac{1}{2 r-1 / t+x}$ satisfies $f(x) \geq f_{\text {step }}(x)$ on [0, 2]. Hence, we obtain

$$
\begin{aligned}
c\left(I, S_{\text {col }}\right) & \leq r \int_{0}^{1} f(x) \mathrm{d} x+\int_{1}^{2} f(x) \mathrm{d} x=2 r \cdot\left(\left.r \ln (2 r-1 / t+x)\right|_{0} ^{1}+\left.\ln (2 r-1 / t+x)\right|_{1} ^{2}\right) \\
& =2 r \cdot \ln \left(\left(\frac{2 r-1 / t+1}{2 r-1 / t}\right)^{r}\left(\frac{2 r-1 / t+2}{2 r-1 / t+1}\right)\right) \stackrel{t \rightarrow \infty}{\rightarrow} 2 r \cdot \ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right) .
\end{aligned}
$$

The best approximation ratio of an algorithm that transports every message by only one agent compared to an algorithm that uses an arbitrary number of agents for every message is therefore bounded from below by

$$
\mathrm{BoC} \geq \frac{c(I, S)}{c\left(I, S_{\mathrm{col}}\right)} \geq \frac{2 r}{2 r \cdot \ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right)}=\frac{1}{\ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right)}
$$

By observing that $\lim _{r \rightarrow \infty} \ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right)^{-1}=\ln \left(e^{1 / 2}\right)^{-1}=2$, we obtain the following corollary.

Corollary 4.2. An algorithm for WeIGhtedDelivery delivering every message by a single agent cannot achieve an approximation ratio better than 2 in general, and better than $1 / \ln 2 \approx 1.44$ for a single message.

4.3 Upper Bounds on the Benefit of Collaboration

In this section, we show a general upper bound on the benefit of collaboration of 2 and an upper bound of $1 / \ln 2$ for the case of one message. Our proof of the upper bound of 2 transforms an optimal schedule $S_{\text {Opt }}$ for an instance I to a schedule S where every message is transported by only one agent and $c(I, S) \leq 2 \cdot c\left(I, S_{\text {Opt }}\right)$, see Theorem 4.3. Note that this result does not yield an efficient algorithm. In fact, finding an optimal schedule in which every message is transported by only one agent, is still NP-hard, as shown in [Bär+17]. But the result is an important part in designing the polynomial-time ($4 \max \frac{\alpha_{i}}{\alpha_{j}}$)-approximation for WeightedDelivery with unit capacities. However, for only one message the simple greedy strategy of choosing the cheapest agent to deliver the message yields an efficient algorithm with an approximation factor of $1 / \ln 2$, see Theorem 4.4. In this special case of one message, it is also possible to find an optimal solution in polynomial time, see [Bär+17].

Theorem 4.3. Let $S_{\text {Opt }}$ be an optimal schedule for a given instance I of WeightedDelivery. Then there exists a schedule S such that every message is only transported by one agent and $c(I, S) \leq 2 \cdot c\left(I, S_{\text {OPT }}\right)$.

Proof. We can assume without loss of generality that in the optimal schedule $S_{\text {OPt }}$ for instance I every message $j \in M$ is transported on a path from its starting point s_{j} to its destination t_{j}. This can be easily achieved by letting agents drop a message at an intermediate vertex if it would otherwise be transported in a cycle. We now define the directed multigraph $G_{\text {Opt }}=\left(V, E_{\text {OPT }} \dot{U} \bar{E}_{\mathrm{OPT}}\right)$ as follows:

- V is the set of vertices of the original graph G.
- For every time in the optimal schedule that an agent traverses an edge $\{u, v\}$ from u to v while carrying a set of messages $M^{\prime} \subseteq M$, we add the arc $e=(u, v)$ to $E_{\text {Opt }}$ and $\bar{e}=(v, u)$ to $\bar{E}_{\text {Opt }}$. Note that we can have $M^{\prime}=\emptyset$ if the agent carries no messages. We further label both edges with the set of messages M^{\prime} and write $M_{e}:=M_{\bar{e}}:=M^{\prime}$ to denote these labels. We call the edges in $E_{\text {Opt }}$ original edges and the edges in $\bar{E}_{\text {OPt }}$ reverse edges.

We say that a schedule S in $G_{\text {Opt }}$ for an agent A satisfies the edge labels, if every original edge $e \in$ $E_{\text {Opt }}$ is traversed at most once by A and only while carrying exactly the set of messages M_{e}, and every reverse edge $\bar{e} \in \bar{E}_{\text {Opt }}$ is traversed by A at most once and without carrying any message. We further identify a schedule S in $G_{\text {Opt }}$ with the schedule S^{\prime} in G by replacing the traversal of a directed edge $e=(u, v)$ in $G_{\text {OPT }}$ by the traversal of the corresponding edge $\{u, v\}$ in G.

The idea of the proof is as follows: By construction, every strongly connected component in the graph $G_{\text {Opt }}$ is Eulerian as the in-degree and out-degree of every vertex are the same. We show that an agent can follow some Eulerian tour that allows to deliver all messages, i.e., a Eulerian tour that satisfies the edge labels. In particular, the agent needs exactly twice as many moves as the total number of moves of all agents in the component in $S_{\text {OPt }}$. By choosing the cheapest agent (in terms of weight) in each component, we obtain a schedule S with $c(I, S) \leq 2 \cdot c\left(I, S_{\text {Opt }}\right)$.

By only considering a subset of the messages and a subschedule of $S_{\text {Opt }}$, we may from now on assume that $G_{\text {OPT }}$ is strongly connected (by construction, every connected component of $G_{\text {OPT }}$ is strongly connected). We further let $M(v)$ denote the set of messages currently at a vertex v and use the
notation $S \oplus S^{\prime}$ to denote the concatenation of a schedule S and a schedule S^{\prime}, i.e., first the schedule S is executed and then S^{\prime}. The desired schedule is computed using the procedure computeTour() given in Algorithm 4.1, which utilizes the subroutine fetchMessage() given in Algorithm 4.2. We proceed along the following key claims:

1. Every edge traversal added to a schedule in computeTour() or fetchMessage() satisfies the edge labels in $G_{\text {Opt }}$.
2. The following invariants hold after every iteration of any of the two while-loops in computeTour():
(i) Every strongly connected component of $G_{\text {Opt }}$ is Eulerian.
(ii) For every message $j \in M$ currently at a vertex v_{j} it holds that there is a simple path from v_{j} to t_{j} in $G_{\text {OPT }}$ with edges in $E_{\text {OPT }}$ containing j in their labels, and a path in the reverse direction with edges in $\bar{E}_{\text {OPT }}$ containing j in their labels.
3. For every vertex v_{0} in $G_{\text {OPt }}$, a call computeTour $\left(G_{\text {OPt }}, v_{0}\right)$ terminates.
4. For every vertex v_{0} in $G_{\text {OPt }}$, a call COMPUTETOUR $\left(G_{\text {OPt }}, v_{0}\right)$ returns a schedule corresponding to a closed walk.
5. Combining the schedules of multiple calls of computeTour() yields a schedule S of $G_{\text {Opt }}$ for an agent $A_{\text {min }}$ that satisfies the edge labels in every step and corresponds to a Eulerian tour of $G_{\text {Oрт }}$. The schedule S satisfies $c(I, S) \leq 2 \cdot c\left(I, S_{\text {Oрt }}\right)$.

Note that the last claim shows our desired result. We now show each of the above claims.

1. It is an easy observation that every time a traversal of an edge $e \in E_{\text {Opt }}$ is added to a schedule in computeTour() or fetchMessage(), the set of carried messages is M_{e}. Similarly, every time a traversal of an edge $\bar{e} \in \bar{E}_{\text {OPt }}$ is added to a schedule, no messages are carried. Note that in the second else-case in computeTour(), we have $M_{e}=\emptyset$ so this also holds in this case. Furthermore, every time an edge is traversed, it is deleted from the graph $G_{\text {OPT }}$ so that every edge is traversed at most once.
2. By construction, the graph $G_{\text {Opt }}$ is Eulerian at the beginning. As all messages are delivered in the optimal schedule $S_{\text {OPT }}$ and they are transported on a path, also the second property holds at the beginning.

If we assume that a call to fetchMessage() maintains these two properties, then it is easy to see that the two properties are preserved in computeTour(): First of all, an original edge $e \in E_{\text {Opt }}$ is always deleted together with the corresponding reverse edge $\bar{e} \in \bar{E}_{\text {OPt }}$ and thus every strongly connected component of $G_{\text {Opt }}$ is still Eulerian. Moreover, an edge $e=(u, v)$ and a reserve edge \bar{e} are deleted if and only if the set of messages M_{e} is transported from u to v preserving the second property. Note that if a message is delivered, then the empty path satisfies the second property. What is left to show is that the properties are also preserved by a call fetchMessage $\left(G_{\text {Opt }}, j, v\right)$ in computeTour(). Again, initially both properties hold by assumption. In the procedure fetchmes$\operatorname{SAGE}\left(\right.$), we first move on the path of reverse edge with $j \in M_{\bar{e}}$ from the current vertex v to the

```
Algorithm 4.1: Compute schedule to deliver messages for agent starting at vertex \(v\).
    Input: graph \(G_{\text {Opt }}\), starting vertex \(v\)
    Output: schedule \(S\) satisfying the edge labels, starting and ending at vertex \(v\)
    function COMPUTETOUR \(\left(G_{\text {OPt }}, v\right)\)
        \(S \leftarrow \perp\)
        while \(\exists\) outgoing edge \(e=(v, w) \in E_{\text {Opt }}\) do
            if \(M(v) \supseteq M_{e}\) then
            \(S \leftarrow S \oplus\) traversal of \(e\) carrying messages \(M_{e}\)
            delete \(e, \bar{e}\) from \(G_{\text {Opt }}\) and update positions of messages \(M_{e}\) in \(G_{\text {Opt }}\)
            \(S \leftarrow S \oplus \operatorname{COMPUTETOUR}\left(G_{\text {OPT }}, w\right)\)
            \(S \leftarrow S \oplus\) traversal of \(\bar{e}\) carrying no messages
        else
            let \(j \in M_{e} \backslash M(v)\)
            \(S \leftarrow S \oplus \operatorname{FETCHMESSAGE}\left(G_{\mathrm{OPT}}, j, v\right)\)
        while \(\exists\) outgoing edge \(\bar{e}=(v, w) \in \bar{E}_{\text {OPT }}\) do
            if \(\exists j \in M_{\bar{e}}\) then
            \(S \leftarrow S \oplus \operatorname{FETCHMESSAGE}\left(G_{\text {Opt }}, j, v\right)\)
        else
            \(S \leftarrow S \oplus\) traversal of \(\bar{e}\) carrying no messages
            delete \(e, \bar{e}\) from \(G_{\text {OPT }}\)
            \(S \leftarrow S \oplus \operatorname{computeTour}\left(G_{\text {Opt }}, w\right)\)
            \(S \leftarrow S \oplus\) traversal of \(e\) carrying no messages
        return \(S\)
```

current location v_{j} of message j while deleting the reverse edges. Afterwards, we move from v_{j} on the path of original edges with $j \in M_{e}$ back to v while deleting the original edges. Ignoring further recursive calls of fetchMessage(), this means that for every original edge also the reverse edge is deleted. Furthermore, message j is moved to vertex v and thus there again is a path from the current position of message j to t_{j} in $G_{\text {Opt }}$ with edges in $E_{\text {Opt }}$ containing j in their labels, and a path in the reverse direction with edges in $\bar{E}_{\text {Opt }}$ containing j in their labels. As this holds for every level of recursive calls of FetchMessage(), every strongly connected component of $G_{\text {Opt }}$ again is Eulerian and also the second property holds after all recursive calls of fetchMessage() are finished.
3. We show that a call $\operatorname{computeTour}\left(G_{\text {Opt }}, v_{0}\right)$ terminates for every vertex v_{0} in $G_{\text {Opt }}$. First, observe that a call to fetchMessage() always leads to some progress as the procedure is only called, if a message j is not at the current vertex so at least one edge is deleted from $G_{\text {Opt }}$ in the first while-loop (unless the procedure gives up). Similarly, for every call of COMPUTETOUR() either an edge e and

```
Algorithm 4.2: Compute schedule for transporting message \(j\) to current vertex \(v\).
    Input: graph \(G_{\text {Opt }}\), message \(j\), current vertex \(v\)
    Output: schedule \(S\) transporting message \(j\) to vertex \(v\)
    function fetchMessage \(\left(G_{\text {Opt }}, j, v\right)\)
        \(S \leftarrow \perp\)
        \(v_{\text {cur }} \leftarrow v\)
        while \(j \notin M\left(v_{\text {cur }}\right)\) do
            if \(\exists\) outgoing edge \(\bar{e}=\left(v_{\mathrm{cur}}, w\right) \in \bar{E}_{\text {OPT }}\) with \(j \in M_{\bar{e}}\) leaving the current vertex then
                \(S \leftarrow S \oplus\) traverse \(\bar{e}\) carrying no messages
                delete \(\bar{e}\) from \(G_{\text {Opt }}\)
                \(v_{\text {cur }} \leftarrow w\)
            else
                give up
        while \(v_{\text {cur }} \neq v\) do
            let \(e=\left(v_{\mathrm{cur}}, w\right) \in E_{\text {OPT }}\) with \(j \in M_{e}\)
            if \(M\left(v_{\text {cur }}\right) \supseteq M_{e}\) then
            \(S \leftarrow S \oplus\) traversal of \(e\) carrying messages \(M_{e}\)
            delete \(e\) from \(G_{\text {OPT }}\) and update positions of messages \(M_{e}\) in \(G_{\text {OPT }}\)
            \(v_{\text {cur }} \leftarrow w\)
            else
            let \(j^{\prime} \in M_{e} \backslash M\left(v_{\text {cur }}\right)\)
            \(S \leftarrow S \oplus\) FETCHMESSAGE \(\left(G_{\text {OPT }}, j^{\prime}, v_{\text {cur }}\right)\)
        return \(S\)
```

the corresponding reserve edge \bar{e} are deleted from $G_{\text {Opt }}$ or fetchMessage() is called and also at least one edge is deleted. Thus, there cannot be an infinite sequence of recursive calls as always edges from $G_{\text {OPT }}$ are deleted.

We therefore only have to show that the case "give up" in fetchMessage() cannot occur. Assume, for the sake of contradiction, that this case occurs in a call fetchMessage $\left(G_{\text {Opt }}, j, v\right)$. This means that at a vertex v^{*} in the first while-loop, there is no edge $\bar{e} \in \bar{E}_{\mathrm{Opt}}$ with a label containing message j and v^{*} also does not contain the message j. By construction of G_{Opt}, the vertex v^{*} must be on the path that message j takes from its start s_{j} to its destination t_{j} in the optimal schedule $S_{\text {OPT }}$ and thus initially there must have been an outgoing edge $\bar{e}=\left(v^{*}, w\right) \in \bar{E}_{\text {OPT }}$ at v^{*} with $j \in M_{\bar{e}}$ that was traversed and deleted. If the corresponding original edge $e=\left(w, v^{*}\right) \in E_{\text {Opt }}$ were already traversed and deleted, then message j would have reached v^{*} as edge labels are obeyed by Claim 1. This contradicts that in the current call fetchMessage $\left(G_{\text {Opt }}, j, v\right)$ the first while-loop has not terminated because we have not encountered message j. Thus, the current setting is

Figure 4.2: Path that message $j \in M$ is transported in graph $G_{\text {OPT }}$ according to S_{OPT}.
as shown in Figure 4.2. The edge \bar{e} cannot have been deleted in a call computeTour $\left(G_{\text {Opt }}, v^{*}\right)$, as then e would also be deleted. Thus, \bar{e} must have been traversed and deleted during a call $\operatorname{FetchMessage}\left(G_{\mathrm{Opt}}^{(1)}, j_{1}, v_{1}\right)$ before as message j is transported on a path. We claim that this call is not completed. Indeed, if the call were already completed, the original edge e would have been traversed and deleted.

As we established that the call $\operatorname{FetchMessage}\left(G_{\mathrm{OPT}}^{(1)}, j_{1}, v_{1}\right)$ is not complete, there must be a vertex v_{2} and a message j_{2} missing at this vertex to further carry j_{1} on its paths to the destination, and a call FetchMessage $\left(G_{\mathrm{Opt}}^{(2)}, j_{2}, v_{2}\right)$, which is also incomplete. By iterating this argument, we obtain that the current stack of functions is FetchMessage $\left(G_{\mathrm{OPT}}^{(s)}, j_{s}, v_{s}\right), \ldots, \operatorname{FetchMessaGE}\left(G_{\mathrm{Opt}}^{(1)}, j_{1}, v_{1}\right)$ for some $s \in \mathbb{N}$, where $j_{s}=j$ and $v_{s}=v$. In the optimal schedule $S_{\text {Opt }}$ the message j_{2} needs to be transported to v_{2} before j_{1} can be further transported from v_{2} together with j_{2}. Similarly, message j_{r} needs to be transported to v_{r} before message j_{r-1} can be transported further together with message j_{r} from v_{r} for $r=2, \ldots, s$. In particular, this implies that message $j_{s}=j$ needs to be transported to v (via v^{*}) before j_{1} can be transported further. Hence, also in $S_{\text {OPt }}$ message j is transported to v before j_{1} is transported further. But this contradicts that $j, j_{1} \in M_{e}$, i.e., in $S_{\text {OPT }}$ the messages j and j_{1} are transported together along the edge e. Therefore computeTour() terminates.
4. Next, we show that in fact all function calls of computeTour() and fetchMessage() in the call $\operatorname{COMPUTETOUR}\left(G_{\text {Opt }}, v_{0}\right)$ return a schedule corresponding to a closed walk. Note that by Claim 3, all these function calls terminate. For fetchMessage(), the second while-loop only terminates if the current vertex is again the initial vertex v. Thus, $\operatorname{FetchMessage}()$ clearly returns a closed walk.

For the procedure computeTour() we show that after every iteration of any of the while-loops the current schedule S corresponds to a closed walk. Initially, S is the empty schedule and clearly corresponds to a closed walk. If in the iteration of the while-loop we add the schedule returned by a call of fetchMessage() to S, then S still corresponds to a closed walk as the added schedule corresponds to a closed walk. Otherwise, first the traversal of an edge e, then the schedule returned by a recursive call of computeTour() and finally the traversal of the reverse edge \bar{e} is added to the current schedule S. By a simple induction over the recursion depth, we can assume that the schedule returned by the recursive call of COMPUTETOUR() corresponds to a closed walk so that again S corresponds to a closed walk as we traverse the reverse edge \bar{e} after traversing e. This means that also the call COMPUTETOUR $\left(G_{\mathrm{OPt}}, v_{0}\right)$ return a schedule corresponding to a closed walk.
5. Let $A_{\min }$ be an agent with minimum weight among the agents that move in S_{OPT}, let v_{0} be the starting vertex of $A_{\min }$ and let T be the schedule resulting from a call $\operatorname{computeTour}\left(G_{\text {Opt }}, v_{0}\right)$.

Assume that T does not traverse all edges of $G_{\text {Opt }}$. Let v be the last vertex visited on the tour of $A_{\min }$ according to the schedule T that is is incident to an edge of $G_{\text {OPT }}$, which is not traversed. Further, let v_{j} be the position of message j after the schedule T is finished and $G_{\text {ОРт }}^{\prime}$ be the graph $G_{\text {Opt }}$ after the call of computeTour $\left(G_{\text {Opt }}, v_{0}\right)$, i.e., without the edges deleted in the call $\operatorname{computeTour}\left(G_{\text {Opt }}, v_{0}\right)$ and message j at position v_{j} instead of s_{j}. We want to show that we can add the schedule T^{\prime} returned by a call computeTour $\left(G_{\mathrm{OPT}}^{\prime}, v\right)$ to the schedule T as follows: First $A_{\min }$ follows T until the last time it visits v, then it follows T^{\prime}, and finally the remaining part of T.

The graph $G_{\text {Opt }}^{\prime}$ is a feasible input to computeTour() as both properties of Claim 2 are satisfied. By the previous claims, $\operatorname{COMPUTETOUR}\left(G_{\mathrm{OPT}}^{\prime}, v\right)$ will produce a schedule T^{\prime} corresponding to a closed walk that satisfies the edge labels. The only problem that can occur when combining the schedules T and T^{\prime} therefore is that there is a message j such that $A_{\text {min }}$ visits v_{j} to transport message j further, but message j has not arrived at v_{j} as the schedule T is not complete. But this would mean that vertex v_{j} is visited in the schedule T (in order to transport message j to v_{j}) after the last time v is visited by the schedule T. However, by the choice of v, all edges incident to v_{j} must be visited and deleted by the schedule T when $A_{\min }$ starts the schedule T^{\prime}. This contradicts that v_{j} is visited in the schedule T^{\prime}.

By iterative applying the above argument, we obtain a schedule S, which traverses all edges in $G_{\text {Opt }}$ while satisfying the edge labels as well as starts and ends at v_{0}. As $A_{\min }$ is the agent with minimum weight $\alpha_{\text {min }}$, we have

$$
2 \cdot c\left(I, S_{\mathrm{OPT}}\right) \geq \sum_{e=(v, w) \in E_{\mathrm{OPr}} \dot{E}_{\overline{\mathrm{OPP}}}} w(\{v, w\}) \cdot \alpha_{\min }=c(I, S) .
$$

For the case of a single message, we can improve the upper bound of 2 on the benefit of collaboration from Theorem 4.3 to a tight bound of $1 / \ln 2 \approx 1.44$.

Theorem 4.4. There is a $(1 / \ln 2)$-approximation algorithm using a single agent for WeIGHTEDDELIVERY with one message.

Proof. By running an algorithm for the all-pairs shortest path problem, such as the Floyd-Warshall algorithm [CLR89, Chapter 25], we can efficiently determine the agent that can transport the message from s to t with lowest cost in an instance I. We need to show that this is at most $1 / \ln (2)$ the cost of an optimum using all agents.

Fix an optimum schedule $S_{\text {OPT }}$ for instance I and let the agents $A_{1}, A_{2}, \ldots, A_{k}$ be labeled in the order in which they transport the message in this optimum solution (ignoring unused agents). We first show that we can without loss of generality assume that $\alpha_{i}>\alpha_{i+1}$ holds for all $i \in\{1, \ldots, k-1\}$. Assume that we have $\alpha_{i} \leq \alpha_{i+1}$ for some $i \in\{1, \ldots, k-1\}$. Then the part of the message transport carried out by agent A_{i+1} in $S_{\text {OPT }}$ can be taken over by agent A_{i}. Since we have $\alpha_{i} \leq \alpha_{i+1}$, the cost of the schedule does not increase and thus is still optimal.

By scaling the edge length and agent weights, we can further assume without loss of generality that $\alpha_{k}=1$ and that the total distance traveled by the message is 1 . Now, for each point $x \in[0,1]$

Figure 4.3: Choosing the largest b such that $\frac{b}{x+1}$ is a lower bound on the step-function f representing the weight of the agent currently transporting the message.
along the message path there is an agent A_{i} with cost α_{i} carrying the message at this point in the optimum schedule and we can define a function f with $f(x)=\alpha_{i}$. The function f is a step function that is monotonically decreasing as $\alpha_{1}>\alpha_{2}>\ldots>\alpha_{k}$. We further have $f(0)=\alpha_{1}$ and $f(1)=\alpha_{k}=1$. We now choose the largest $b \in[0,1]$ such that $f(x) \geq \frac{b}{x+1}$, see Figure 4.3.

Note that $b \geq 1$ as $f(x) \geq 1 \geq \frac{b}{x+1}$ for $b=1$ and all $x \in[0,1]$. Further, let g_{i} be the distance traveled by agent A_{i} without the message and $g:=\sum_{i=1}^{k} g_{i} \alpha_{i}$ the total cost for the distances traveled by all agents without the message. We obtain the following lower bound for an optimum solution

$$
c\left(I, S_{\mathrm{OPT}}\right)=\int_{0}^{1} f(x) \mathrm{d} x+g \geq \int_{0}^{1} \frac{b}{x+1} \mathrm{~d} x+g=b \ln (2)+g .
$$

By the choice of b, the functions $f(x)$ and $\frac{b}{x+1}$ coincide in at least one point in the interval $[0,1]$. Let this point be x^{*} and $A_{i^{*}}$ be the agent carrying the message at this point. This means that $f\left(x^{*}\right)=\frac{b}{x^{*}+1}=\alpha_{i^{*}}$. We will show that it costs at most $c\left(I, S_{\mathrm{OPT}}\right) / \ln (2)$ for agent $A_{i^{*}}$ to transport the message alone from s to t. The cost for agent $A_{i^{*}}$ to reach s is bounded by $g_{i^{*}} \alpha_{i^{*}}+x^{*} \cdot \alpha_{i^{*}}$ and the cost for transporting the message from s to t is bounded by $\alpha_{i^{*}}$. Thus, the cost of a schedule S using only one agent can be bounded by

$$
c(I, S) \leq g_{i^{*}} \alpha_{i^{*}}+x^{*} \cdot \alpha_{i^{*}}+\alpha_{i^{*}}=g_{i^{*}} \alpha_{i^{*}}+\left(x^{*}+1\right) \cdot \frac{b}{x^{*}+1}=b+g_{i^{*}} \alpha_{i^{*}}
$$

By using that $g_{i^{*}} \alpha_{i^{*}} \leq g$, we finally obtain

$$
\frac{c(I, S)}{c\left(I, S_{\mathrm{OPT}}\right)} \leq \frac{b+g_{i^{*}} \alpha_{i^{*}}}{b \ln (2)+g} \leq \frac{b}{b \ln (2)}=\frac{1}{\ln (2)} .
$$

Conclusion

In this thesis, we studied algorithms and lower bounds for two different exploration problems and a delivery problem involving multiple agents.

In Chapter 2, we proved that for a single agent with constant memory $\Theta(\log \log n)$ pebbles are both necessary and sufficient for exploring any undirected graph with n vertices. We also showed that $\Theta(\log \log n)$ agents with constant memory each are necessary and sufficient for the same task. Thus, in this setting collaborating agents are not more powerful than pebbles. An interesting question for future research is if this is still the case if we strengthen the power of the agents or weaken the power of the pebbles. It is for example still an open problem how many indistinguishable pebbles are necessary to explore any graph with n vertices by an agent with constant memory. For our algorithm, it is essential that the pebbles are distinguishable and, in particular, pebbles from different levels of the recursion can be distinguished by the agent. A simple way to simulate p distinguishable pebbles by indistinguishable pebbles is to identify pebble $i \in\{1, \ldots, p\}$ with a set of 2^{i} indistinguishable pebbles. However, we then need 2^{p} indistinguishable pebbles to simulate p distinguishable pebbles and we would obtain an algorithm for the exploration of an undirected graph for a single agent with constant memory and $O(\log n)$ indistinguishable pebbles. The question is if this exponential overhead for indistinguishable pebbles is really necessary. The other direction would be to ask if the lower bound construction can be adapted to agents that can communicate globally or maybe even agents that can jump to any other agent during the exploration. In our recursive construction, we need the fact that the communication can only happen locally. For instance, we need that the state of a single agent traversing a 1-barrier without meeting any other agent quickly repeats and cannot be influenced by the other agents communicating to it.

In Chapter 3, we presented a 3-competitive algorithm and a lower bound of 2.17 on the competitive ratio for exploring a maximum number of vertices by a fixed set of agents with fixed energy budget B. The obvious open problem is to close the gap between the upper and lower bound on the competitive ratio. As the analysis of the algorithm is tight, a new idea would be necessary to improve the upper bound of 3 . The construction of the lower bound of 2.17 is quite involved and we did not find any other easier construction that improves upon the simple lower bound of 2. Another interesting question is what happens if we only allow local communication. There seems to be no easy way to transform our algorithm to an algorithm using only local communication while still obtaining a constant competitive ratio. It may be worth to first consider the simpler algorithm presented

Conclusion

in [Bam+17a] with competitive ratio 7.47 for an extension to local communication. It would also be interesting if a stronger lower bound could be obtained if we only allow local communication. In the similar model considered in [DDK15], the authors gave a $\Theta(\log B)$-competitive algorithm for minimizing the number of agents with energy budget B for the case of local communication. However, for the case of global communication it is an open question if the competitive ratio can be improved to a constant. Our algorithm as well as the algorithms considered for the related energy efficient exploration problems in [DKS06; DDK15] only work for trees. Thus, an important questions is whether labeled graphs are inherently more difficult to explore than trees in these models. This question is also open for other collaborative exploration models, such as minimizing the exploration time by multiple agents as introduced in [Fra+06a].

In Chapter 4, we showed that an optimal solution to the weighted delivery problem can be 2approximated by a solution, in which every message is only transported by a single agent. As a lower bound, we construct an instance showing that no algorithm that delivers every message by only one agent can achieve an approximation factor better than $\ln \left(\left(1+\frac{1}{2 r}\right)^{r}\left(1+\frac{1}{2 r+1}\right)\right)^{-1}$, where r is the minimum of the agent capacity κ and number of messages μ. Asymptotically, we hence obtain a tight result as this ratio tends to 2 if the agent capacity and number of messages become arbitrarily large. The open question is if it is possible to close the gap in general, i.e., improve the lower bound construction or give an improved approximation algorithm for a small number of messages or small agent capacities. We presented a tight algorithm for the case of one message with an approximation factor of $1 / \ln 2 \approx 1.44$. A starting point could be to investigate if it is also possible to obtain an improved algorithm for the case of agent capacity $\kappa=1$ or two messages, for instance. An improved algorithm for the case of $\kappa=1$ could also improve the approximation ratio of the polynomial-time ($4 \max \frac{\alpha_{i}}{\alpha_{j}}$)-approximation algorithm for message delivery with unit capacities presented in [Bär+17]. Furthermore, it would be interesting to generalize the latter approximation algorithm to agent capacities other than 1.

Bibliography

[AH00] Susanne Albers and Monika R. Henzinger. "Exploring Unknown Environments". In: SIAM 7. Comput. 29.4 (2000), pp. 1164-1188. DoI: 10 . 1137 / S009753979732428X (cit. on p. 15).
[Ale+79] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff. "Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems". In: Proc. 20th Annu. IEEE Symp. Found. Comput. Sci. (FOCS). 1979, pp. 218-223. DoI: 10.1109/SFCS 1979.34 (cit. on pp. 12, 16).
[Alp+13] Steve Alpern, Robbert Fokkink, Leszek Gasieniec, Roy Lindelauf, and V.S. Subrahmanian. Search Theory. Springer, 2013. ISBN: 978-1-461-46824-0 (cit. on p. 21).
[AG03] Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. Vol. 55. Springer Science \& Business Media, 2003. Dor: $10.1007 / \mathrm{b} 100809$ (cit. on pp. 17, 21).
[Amb+11] Christoph Ambühl, Leszek Gąsieniec, Andrzej Pelc, Tomasz Radzik, and Xiaohui Zhang. "Tree Exploration with Logarithmic Memory". In: ACM Trans. Algorithms 7.2 (2011), pp. 1-21. Doi: $10.1145 / 1921659.1921663$ (cit. on pp. 13, 16).
[Ana+16] Julian Anaya, Jérémie Chalopin, Jurek Czyzowicz, Arnaud Labourel, Andrzej Pelc, and Yann Vaxès. "Convergecast and Broadcast by Power-Aware Mobile Agents". In: Algorithmica 74.1 (2016), pp. 117-155. DoI: 10.1007/s00453-014-9939-8 (cit. on p. 22).
[Awe+99] Baruch Awerbuch, Margrit Betke, Ronald L Rivest, and Mona Singh. "Piecemeal Graph Exploration by a Mobile Robot". In: Inform. and Comput. 152.2 (1999), pp. 155-172. Doi: 10.1006/inco. 1999.2795 (cit. on pp. 14, 65).
[BBV08] Roberto Baldacci, Maria Battarra, and Daniele Vigo. "Routing a Heterogeneous Fleet of Vehicles". In: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, 2008, pp. 3-27. Dor: 10. 1007/978-0-387-77778-8_1 (cit. on p. 21).
[Bam+17a] Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Jan Hackfeld, and Christina Karousatou. "Comment explorer un arbre inconnu avec des agents à énergie limitée?" In: ALGOTEL 2017-19èmes Rencontres Francophones sur les Aspects Algorithmiques des

Bibliography

Télécommunications. 2017. URL: https://hal. archives-ouvertes.fr/hal01523302 (cit. on pp. 19, 65, 75, 104).
[Bam+18] Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Jan Hackfeld, and Christina Karousatou. "Maximal Exploration of Trees with Energy-Constrained Agents". In: ArXiv e-prints (2018). arXiv: 1802.06636 (cit. on p. 66).
[Bam+17b] Evangelos Bampas, Shantanu Das, Dariusz Dereniowski, and Christina Karousatou. "Collaborative Delivery by Energy-Sharing Low-Power Mobile Robots". In: Proc. 13th Int. Symp. Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS). 2017, pp. 1-12. Doi: 10.1007/978-3-319-72751-6_1 (cit. on p. 22).
[Bär+16] Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann, Daniel Graf, Arnaud Labourel, and Matús Mihalák. "Collaborative Delivery with EnergyConstrained Mobile Robots". In: Proc. 23rd Int. Colloquium Structural Information and Communication Complexity (SIROCCO). 2016, pp. 258-274. Doi: 10. 1007/978-3-319-48314-6_17 (cit. on pp. 22, 91).
[Bär+17] Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Daniel Graf, Jan Hackfeld, and Paolo Penna. "Energy-Efficient Delivery by Heterogeneous Mobile Agents". In: Proc. 34th Annu. Sympos. Theoretical Aspects Comput. Sci. (STACS). 2017, 10:1-10:14. Doi: 10.4230/LIPIcs.STACS. 2017.10 (cit. on pp. 92, 95, 104).
[BT17] Andreas Bärtschi and Thomas Tschager. "Energy-Efficient Fast Delivery by Mobile Agents". In: Proc. 21th Int. Symp. Fundamentals of Computation Theory (FCT). 2017, pp. 82-95. Doi: 10.1007/978-3-662-55751-8_8 (cit. on p. 22).
[Ben+02] Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil Vadhan. "The Power of a Pebble: Exploring and Mapping Directed Graphs". In: Inform. and Comput. 176.1 (2002), pp. 1-21. DOI: 10.1006 /inco. 2001.3081 (cit. on pp. 15, 16, 19, 23).
[BS94] Michael A. Bender and Donna K. Slonim. "The Power of Team Exploration: Two Robots Can Learn Unlabeled Directed Graphs". In: Proc. 35th Annu. IEEE Symp. Found. Comput. Sci. (FOCS). 1994, pp. 75-85. Doi: 10.1109/SFCS. 1994.365703 (cit. on pp. 15, 19, 20, 23).
[Ber98] Piotr Berman. "On-line Searching and Navigation". In: Online Algorithms, The State of the Art. 1998, pp. 232-241. Doi: 10.1007 /BFb0029571 (cit. on p. 17).
[BRS95] Margrit Betke, Ronald L. Rivest, and Mona Singh. "Piecemeal Learning of an Unknown Environment". In: Machine Learning 18.2-3 (1995), pp. 231-254. DoI: 10/bqxgpc (cit. on pp. 14, 65).
[Bil+13] Davide Bilò, Yann Disser, Luciano Gualà, Matús Mihalák, Guido Proietti, and Peter Widmayer. "Polygon-Constrained Motion Planning Problems". In: Proc. 9th Int. Symp. Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS). 2013, pp. 67-82. DOI: 10.1007/978-3-642-45346-5_6 (cit. on p. 22).
[BK78] Manuel Blum and Dexter Kozen. "On the Power of the Compass (or, Why Mazes Are Easier to Search than Graphs)". In: Proc. 19th Annu. IEEE Symp. Found. Comput. Sci. (FOCS). 1978, pp. 132-142. Doi: 10.1109/SFCS. 1978.30 (cit. on pp. 1, 12, 16, 17, 20, 23).
[BS77] Manuel Blum and William J. Sakoda. "On the Capability of Finite Automata in 2 and 3 Dimensional Space". In: Proc. 18th Annu. IEEE Symp. Found. Comput. Sci. (FOCS). 1977, pp. 147-161. DOI: 10.1109/SFCS 1977.20 (cit. on p. 17).
[BE98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998. ISBN: 978-0-521-56392-5 (cit. on pp. 10, 11).
[BRT92] Allan Borodin, Walter L. Ruzzo, and Martin Tompa. "Lower Bounds on the Length of Universal Traversal Sequences". In: f. Comput. System Sci. 45.2 (1992), pp. 180-203. doi: 10.1016/0022-0000(92) 90046-L (cit. on p. 14).
[Bra+11] Peter Brass, Flavio Cabrera-Mora, Andrea Gasparri, and Jizhong Xiao. "Multirobot Tree and Graph Exploration". In: IEEE Trans. Robotics 27.4 (2011), pp. 707-717. Doi: 10.1109/TRO. 2011.2121170 (cit. on p. 18).
[Bud75] Lothar Budach. "On the Solution of the Labyrinth Problem for Finite Automata". In: Elektronische Informationsverarbeitung und Kybernetik 11.10-12 (1975), pp. 661-672 (cit. on pp. 1, 12, 13).
[Bud78] Lothar Budach. "Automata and Labyrinths". In: Mathematische Nachrichten 86.1 (1978), pp. 195-282. Doi: $10.1002 /$ mana. 19780860120 (cit. on pp. 1, 12, 13).
[BMS02] Wolfram Burgard, Mark Moors, and Frank E. Schneider. "Collaborative Exploration of Unknown Environments with Teams of Mobile Robots". In: Proc. Dagstuhl Seminar on Advances in Plan-Based Control of Robotic Agents. LNCS. 2002, pp. 52-70. Doi: 10 . 1007/3-540-37724-7_4 (cit. on p. 1).
[CDK10] Jérémie Chalopin, Shantanu Das, and Adrian Kosowski. "Constructing a Map of an Anonymous Graph: Applications of Universal Sequences". In: Proc. 14th Int. Conf. Principles Distributed Systems (OPODIS). 2010, pp. 119-134. DoI: 10.1007/978-3-642-17653-1_10 (cit. on p. 14).
[Cha+13] Jérémie Chalopin, Shantanu Das, Matús Mihalák, Paolo Penna, and Peter Widmayer. "Data Delivery by Energy-Constrained Mobile Agents". In: Proc. 9th Int. Symp. Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics
(ALGOSENSORS). 2013, pp. 111-122. Doi: 10.1007/978-3-642-45346-5_9 (cit. on pp. 22, 91).
[Cha+14] Jérémie Chalopin, Riko Jacob, Matús Mihalák, and Peter Widmayer. "Data Delivery by Energy-Constrained Mobile Agents on a Line". In: Proc. 41st Int. Colloquium Automata, Languages and Programming (ICALP). 2014, pp. 423-434. DoI: 10.1007/978-3-662-43951-7_36 (cit. on pp. 22, 91).
[Cha+97] Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon Tiwari. "The Electrical Resistance of a Graph Captures its Commute and Cover Times". In: Comput. Complexity 6.4 (1997), pp. 312-340. DoI: 10. 1007/BF01270385 (cit. on p. 14).
[Chu36] Alonzo Church. "An Unsolvable Problem of Elementary Number Theory". In: American Journal of Mathematics 58.2 (1936), pp. 345-363 (cit. on p. 7).
[Com58] President's Science Advisory Committee. Introduction to Outer Space. NASA Historical Reference Colleciton. 1958. URL: https://history. nasa.gov/sputnik/16. html.
[CR80] Stephen A. Cook and Charles Rackoff. "Space Lower Bounds for Maze Threadability on Restricted Machines". In: SIAM f. Comput. 9.3 (1980), pp. 636-652. Doi: 10 . 1137 / 0209048 (cit. on pp. 1, 25).
[CL07] Jean-François Cordeau and Gilbert Laporte. "The dial-a-ride problem: models and algorithms". In: Annals OR 153.1 (2007), pp. 29-46. DoI: 10.1007/s10479-007-0170-8 (cit. on p. 21).
[CLR89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, 1989. ISBN: 0-262-03141-8 (cit. on pp. 4, 100).
[Czy+17] Jerzy Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter. "Energy-Optimal Broadcast in a Tree with Mobile Agents". In: Proc. 13th Int. Symp. Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS). 2017, pp. 98-113. DoI: $10.1007 / 978-3-319-72751-6 _8$ (cit. on p. 22).
[DR59] George B. Dantzig and John H. Ramser. "The truck dispatching problem". In: Management Sci. 6.1 (1959), pp. 80-91. Doi: $10.1287 / \mathrm{mnsc} .6 .1 .80$ (cit. on p. 21).
[Das13] Shantanu Das. "Mobile agents in distributed computing: Network exploration". In: Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 109 (2013), pp. 54-69. url: http : / bulletin . eatcs.org/index.php/beatcs/article/download/27/23 (cit. on p. 19).
[DDK15] Shantanu Das, Dariusz Dereniowski, and Christina Karousatou. "Collaborative Exploration by Energy-Constrained Mobile Robots". In: Proc. 22nd Int. Colloquium Structural Information and Communication Complexity (SIROCCO). 2015, pp. 357-369. Doi: 10.1007/978-3-319-25258-2_25 (cit. on pp. 19, 20, 65, 104).
[Das+07] Shantanu Das, Paola Flocchini, Shay Kutten, Amiya Nayak, and Nicola Santoro. "Map construction of unknown graphs by multiple agents". In: Theoret. Comput. Sci. 385.1-3 (2007), pp. 34-48. DOI: $10.1016 / \mathrm{j} . \mathrm{tcs} .2007 .05 .011$ (cit. on pp. 19-21).
[Das+06] Shantanu Das, Paola Flocchini, Amiya Nayak, and Nicola Santoro. "Effective Elections for Anonymous Mobile Agents". In: Proc. 17thth Int. Symp. Algorithms and Computation (ISAAC). 2006, pp. 732-743. Doi: $10.1007 / 11940128 _73$ (cit. on pp. 19-21).
[Dem+09] Erik D. Demaine, Mohammad Taghi Hajiaghayi, Hamid Mahini, Amin S. Sayedi-Roshkhar, Shayan Oveis Gharan, and Morteza Zadimoghaddam. "Minimizing movement". In: ACM Trans. Algorithms 5.3 (2009), 30:1-30:30. DOI: $10.1145 / 1541885.1541891$ (cit. on p. 22).
[DP99] Xiaotie Deng and Christos H. Papadimitriou. "Exploring an Unknown Graph". In: 7 . Graph Theory 32.3 (1999), pp. 265-297. DoI: 10/b9zxdq (cit. on p. 15).
[Der+15] Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pająk, and Przemysław Uznański. "Fast collaborative graph exploration". In: Inform. and Comput. 243 (2015), pp. 37-49. Doi: $10.1016 /$ j.ic. 2014.12 .005 (cit. on pp. 18, 20).
[Dik+04] Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. "Tree exploration with little memory". In: f. Algorithms 51.1 (2004), pp. 38-63. Doi: 10 . 1016/j jalgor. 2003. 10.002 (cit. on pp. 13, 16).
[DHK16] Yann Disser, Jan Hackfeld, and Max Klimm. "Undirected Graph Exploration with Θ (log $\log n$) Pebbles". In: Proc. 27th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA). 2016, pp. 25-39. DoI: $10.1137 / 1.9781611974331$. ch3 (cit. on pp. 24, 64).
[DHK18] Yann Disser, Jan Hackfeld, and Max Klimm. "Tight bounds for undirected graph exploration with pebbles and multiple agents". In: ArXiv e-prints (2018). arXiv: 1805.03476 (cit. on p. 24).
[Dis+17] Yann Disser, Frank Mousset, Andreas Noever, Nemanja Skoric, and Angelika Steger. "A General Lower Bound for Collaborative Tree Exploration". In: Proc. 24th Int. Colloquium Structural Information and Communication Complexity (SIROCCO). 2017, pp. 125-139. DOI: $10.1007 / 978-3-319-72050-0 _8$ (cit. on pp. 18, 20).
[DS17] Yann Disser and Steven S. Skiena. "Geometric Reconstruction Problems". In: Handbook of Discrete and Computational Geometry, Third Edition. 3rd ed. CRC Press LLC, 2017. Chap. 35 (cit. on p. 17).
[Dud+91] Gregory Dudek, Michael Jenkin, Evangelos E. Milios, and David Wilkes. "Robotic Exploration as Graph Construction". In: IEEE Trans. Robot. Autom 7.6 (1991), pp. 859-865. DoI: 10.1109/70. 105395 (cit. on p. 14).
[DKK06] Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. "Optimal Constrained Graph Exploration". In: ACM Trans. Algorithms 2.3 (2006), pp. 380-402. Doi: 10 . 1145/ 1159892.1159897 (cit. on pp. 14, 16, 65).
[DKS06] Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer. "Power-Aware Collective Tree Exploration". In: Proc. 19th Int. Conf. Architecture of Computing Systems (ARCS). 2006, pp. 341-351. Doi: 10 . 1007/11682127_24 (cit. on pp. 18, 20, 65, 104).
[Dyn+06] Miroslaw Dynia, Jaroslaw Kutyłowski, Friedhelm Meyer auf der Heide, and Christian Schindelhauer. "Smart Robot Teams Exploring Sparse Trees". In: Proc. 31st Int. Symp. Math. Found. Comput. Sci. (MFCS). 2006, pp. 327-338. Doi: 10.1007/11821069_29 (cit. on p. 18).
[DŁS07] Miroslaw Dynia, Jakub Łopuszański, and Christian Schindelhauer. "Why Robots Need Maps". In: Proc. 14th Int. Colloquium Structural Information and Communication Complexity (SIROCCO). 2007, pp. 41-50. DOI: 10.1007/978-3-540-72951-8_5 (cit. on pp. 18-20, 65).
[EJ73] Jack Edmonds and Ellis L. Johnson. "Matching, Euler tours and the Chinese postman". In: Math. Program. 5.1 (1973), pp. 88-124. DoI: $10.1007 /$ BF01580113 (cit. on pp. 15, 22).
[EK72] Jack Edmonds and Richard M. Karp. "Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems". In: f. ACM 19.2 (1972), pp. 248-264. Doi: 10 . 1145/ 321694. 321699 (cit. on p. 21).
[EHK15] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. "On Temporal Graph Exploration". In: Proc. 42 nd Int. Colloquium Automata, Languages and Programming (ICALP). 2015, pp. 444-455. doi: $10.1007 / 978-3-662-47672-7 _36$ (cit. on p. 17).
[EIS76] Shimon Even, Alon Itai, and Adi Shamir. "On the Complexity of Timetable and Multicommodity Flow Problems". In: SIAM F. Comput. 5.4 (1976), pp. 691-703. Doi: 10 . 1137 / 0205048 (cit. on p. 21).
[FT05] Rudolf Fleischer and Gerhard Trippen. "Exploring an Unknown Graph Efficiently". In: Proc. 13th Annu. European Symp. Algorithms. 2005, pp. 11-22. Doi: 10/dd49r2 (cit. on pp. 15, 16).
[FMS09] Paola Flocchini, Bernard Mans, and Nicola Santoro. "Exploration of Periodically Varying Graphs". In: Proc. 20th Int. Symp. Algorithms and Computation (ISAAC). 2009, pp. 534-543. doi: $10.1007 / 978-3-642-10631-6 _55$ (cit. on p. 17).
[FS06] Paola Flocchini and Nicola Santoro. "Distributed Security Algorithms by Mobile Agents". In: 8th Int. Conf. Distributed Computing and Networking (ICDCN). 2006, pp. 1-14. DoI: 10.1007/11947950_1 (cit. on p. 19).
[FW16] Klaus-Tycho Foerster and Roger Wattenhofer. "Lower and upper competitive bounds for online directed graph exploration". In: Theoret. Comput. Sci. 655 (2016), pp. 15-29. DoI: $10.1016 /$ j.tcs. 2015.11 .017 (cit. on pp. 15, 16).
[Fra+06a] Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. "Collective Tree Exploration". In: Networks 48.3 (2006), pp. 166-177. DoI: 10 . 1002/net . 20127 (cit. on pp. 18, 20, 104).
[FI04] Pierre Fraigniaud and David Ilcinkas. "Digraphs Exploration with Little Memory". In: Proc. 21st Annu. Sympos. Theoretical Aspects Comput. Sci. (STACS). 2004, pp. 246-257. DoI: $10.1007 / 978-3-540-24749-4 _22$ (cit. on pp. 16, 17).
[Fra+05] Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. "Graph exploration by a finite automaton". In: Theoret. Comput. Sci. 345.2-3 (2005), pp. 331-344. DoI: $10.1016 / \mathrm{j} . \mathrm{tcs} .2005 .07 .014$ (cit. on pp. 3, 13, 23).
[Fra+06b] Pierre Fraigniaud, David Ilcinkas, Sergio Rajsbaum, and Sébastien Tixeuil. "The Reduced Automata Technique for Graph Exploration Space Lower Bounds". In: Theoret. Comput. Sci., Essays in Memory of Shimon Even (2006), pp. 1-26. Doi: 10 . 1007/11685654_1 (cit. on pp. 3, 17, 23, 24, 51, 52).
[FHK78] Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. "Approximation Algorithms for Some Routing Problems". In: SIAM 7. Comput. 7.2 (1978), pp. 178-193. doi: 10 . 1137/0207017 (cit. on p. 22).
[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. IsBn: 0-7167-1044-7 (cit. on pp. 7, 10, 21).
[GR08] Leszek Gasieniec and Tomasz Radzik. "Memory Efficient Anonymous Graph Exploration". In: 34th Int. Workshop Graph-Theoretic Concepts in Comput. Sci. 2008, pp. 14-29. Doi: 10.1007/978-3-540-92248-3_2 (cit. on p. 17).
[GK10] Subir Kumar Ghosh and Rolf Klein. "Online algorithms for searching and exploration in the plane". In: Computer Science Review 4.4 (2010), pp. 189-201. DoI: $10.1016 / \mathrm{j}$. cosrev. 2010.05 .001 (cit. on p. 17).
[Hig+14] Yuya Higashikawa, Naoki Katoh, Stefan Langerman, and Shin-ichi Tanigawa. "Online graph exploration algorithms for cycles and trees by multiple searchers". In: f. Comb. Optim. 28.2 (2014), pp. 480-495. Doi: $10.1007 / \mathrm{s} 10878-012-9571-\mathrm{y}$ (cit. on p. 18).
[Hof81] Frank Hoffmann. "One pebble does not suffice to search plane labyrinths". In: Proc. 3rd Int. Symp. Fundamentals of Computation Theory (FCT). 1981, pp. 433-444. Doi: 10.1007/3-540-10854-8_47 (cit. on pp. 2, 12, 16, 23).
[Ist88] Sorin Istrail. "Polynomial Universal Traversing Sequences for Cycles Are Constructible". In: Proc. 20th Annu. ACM Symp. Theory Computing (STOC). 1988, pp. 491-503. DoI: 10.1145/62212. 62260 (cit. on p. 13).
[Kah+89] Jeff D. Kahn, Nathan Linial, Noam Nisan, and Michael E. Saks. "On the Cover Time of Random Walks on Graphs". In: Theor. Probability 2.1 (1989), pp. 121-128. Doi: 10 . 1007/BF01048274 (cit. on p. 14).
[KP94] Bala Kalyanasundaram and Kirk Pruhs. "Constructing competitive tours from local information". In: Theoret. Comput. Sci. 130.1 (1994), pp. 125-138. Doi: 10.1016/03043975 (94) 90155-4 (cit. on pp. 14, 15).
[KV18] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Sixth Edition. Springer, 2018. DoI: 10.1007/978-3-642-24488-9 (cit. on pp. 4, 7, 10, 21).
[Kou02] Michal Koucký. "Universal traversal sequences with backtracking". In: f. Comput. System Sci. 65.4 (2002), pp. 717-726. DoI: 10.1016 /S0022-0000(02) 00023-5 (cit. on pp. 6, 32).
[Kou03] Michal Koucký. "On Traversal Sequences, Exploration Sequences and Completeness of Kolmogorov Random Strings". PhD thesis. Rutgers University, 2003 (cit. on pp. 14, 16, 33, 36).
[LP82] Harry R. Lewis and Christos H. Papadimitriou. "Symmetric Space-Bounded Computation". In: Theoret. Comput. Sci. 19 (1982), pp. 161-187. Doi: 10.1016/0304-3975 (82) 90058-5 (cit. on pp. 9, 12).
[LMS92] Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. "The point-to-point delivery and connection problems: complexity and algorithms". In: Discrete Appl. Math. 36.3 (1992), pp. 267-292. DOI: 10 . 1016/0166-218X(92) 90258-C (cit. on p. 21).
[Mar12] Euripides Markou. "Identifying Hostile Nodes in Networks Using Mobile Agents". In: Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 108 (2012), pp. 93-129. url: http : / / eatcs.org/beatcs/index.php/beatcs/article/view/52 (cit. on p. 19).
[Mau03] M. Maurette. "Mars Rover Autonomous Navigation". In: Auton. Robots 14.2-3 (2003), pp. 199-208. DoI: $10.1023 /$ A: 1022283719900 (cit. on p. 1).
[MMS12] Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. "Online graph exploration: New results on old and new algorithms". In: Theoret. Comput. Sci. 463 (2012), pp. 62-72. DoI: 10.1016/j.tcs.2012.06.034 (cit. on pp. 15, 16).
[Mir+13] Seyed M. Mirtaheri, Mustafa Emre Dinçktürk, Salman Hooshmand, Gregor von Bochmann, Guy-Vincent Jourdan, and Iosif-Viorel Onut. "A Brief History of Web Crawlers". In: Center for Advanced Studies on Collaborative Research (CASCON). 2013, pp. 40-54. URL: http://dl.acm.org/citation.cfm?id=2555529 (cit. on p. 1).
[Nis92] Noam Nisan. "Pseudorandom generators for space-bounded computation". In: Combinatorica 12.4 (1992), pp. 449-461. DoI: $10.1007 /$ BF01305237 (cit. on p. 13).
[OS12] Christian Ortolf and Christian Schindelhauer. "Online Multi-Robot Exploration of Grid Graphs with Rectangular Obstacles". In: Proc. 24th ACM Symp. Parallelism Algorithmics and Architecture. 2012, pp. 27-36. Doi: 10.1145/2312005. 2312010 (cit. on p. 18).
[OS14] Christian Ortolf and Christian Schindelhauer. "A Recursive Approach to Multi-robot Exploration of Trees". In: Proc. 21st Int. Colloquium Structural Information and Communication Complexity (SIROCCO). 2014, pp. 343-354. Doi: 10. 1007/978-3-319-09620-9_26 (cit. on p. 18).
[PP99] Petrisor Panaite and Andrzej Pelc. "Exploring Unknown Undirected Graphs". In: 7 . Algorithms 33.2 (1999), pp. 281-295. Doi: $10.1006 /$ jagm. 1999.1043 (cit. on pp. 13, 16).
[Pel12] Andrzej Pelc. "Deterministic rendezvous in networks: A comprehensive survey". In: Networks 59.3 (2012), pp. 331-347. DoI: $10.1002 /$ net. 21453 (cit. on p. 21).
[Pen+12] Zhaomeng Peng, Nengqiang He, Chunxiao Jiang, Zhihua Li, Lei Xu, Yipeng Li, and Yong Ren. "Graph-Based AJAX Crawl: Mining Data from Rich Internet Applications". In: Proc. Int. Conf. Computer Science and Electronics Engineering. 2012, pp. 590-594. Doi: 10.1109/ICCSEE. 2012.38 (cit. on p. 1).
[Plo+17] Patrick A. Plonski, Joshua Vander Hook, Cheng Peng, Narges Noori, and Volkan Isler. "Environment Exploration in Sensing Automation for Habitat Monitoring". In: IEEE Trans. Autom. Sci. Eng. 14.1 (2017), pp. 25-38. Doi: 10.1109/TASE. 2016. 2613403 (cit. on p. 1).
[Rao+93] Nageswara Rao, Srikumar Kareti, Weimin Shi, and Sundararaj Iyengar. Robot Navigation in Unknown Terrains: Introductory Survey of Non-Heuristic Algorithms. Tech. rep. Oak Ridge National Lab. (United States), 1993. Doi: $10.2172 / 10180101$ (cit. on p. 17).
[Rei08] Omer Reingold. "Undirected Connectivity in Log-Space". In: J. ACM 55.4 (2008), 17:117:24. DoI: $10.1145 / 1391289.1391291$ (cit. on pp. 1, 3, 13, 16, 23, 32, 33).
[Rol80] Hans-Anton Rollik. "Automaten in planaren Graphen". In: Acta Inf. 13 (1980), pp. 287298. DOI: 10.1007 /BF00288647 (cit. on pp. 3, 13, 16, 17, 23, 24).
[RSI77] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. "An Analysis of Several Heuristics for the Traveling Salesman Problem". In: SIAM 7. Comput. 6.3 (1977), pp. 563-581. Doi: $10.1137 / 0206041$ (cit. on pp. 14, 16).
[Sav73] Walter J. Savitch. "Maze Recognizing Automata and Nondeterministic Tape Complexity". In: f. Comput. System Sci. 7.4 (1973), pp. 389-403. DoI: $10 / \mathrm{d} 7 \mathrm{fmjz}$ (cit. on pp. 1, 12).
[Sha74] Anupam N. Shah. "Pebble Automata on Arrays". In: Computer Graphics and Image Processing 3.3 (1974), pp. 236-246. Dor: 10.1016/0146-664X(74) 90017-3 (cit. on pp. 1, 12).
[Sha51] Claude A. Shannon. "Presentation of a Maze-Solving Machine". In: Trans. 8th Conf. on Cybernetics. 1951, pp. 173-180 (cit. on p. 12).
[ST85] Daniel D. Sleator and Robert E. Tarjan. "Amortized Efficiency of List Update and Paging Rules". In: Commun. ACM 28.2 (1985), pp. 202-208. Doi: 10 . 1145/2786. 2793 (cit. on p. 11).

Bibliography
[SE84] Cees F. Slot and Peter van Emde Boas. "On Tape Versus Core; an Application of Space Efficient Perfect Hash Functions to the Invariance of Space". In: Proc. 16th Annu. ACM Symp. Theory Computing (STOC). 1984, pp. 391-400. Doi: 10.1145/800057.808705 (cit. on p. 7).
[TV02] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002. Isbn: 978-0-898-71851-5 (cit. on p. 21).
[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011. IsBN: 978-0-521-19527-0 (cit. on p. 11).

