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Queueing Systems with Rationally Inattentive Customers

Caner Canyakmaz
ESMT Berlin, caner.canyakmaz@esmt.org

Tamer Boyac�
ESMT Berlin, tamer.boyaci@esmt.org

Problem description: Classical models of queueing systems with rational and strategic customers assume

queues to be either fully visible or invisible while service parameters are known with certainty. In practice,

however, people only have �partial information� on the service environment in the sense that they are not

able to fully discern prevalent uncertainties. This is because assessing possible delays and rewards is costly

as it requires time, attention, and cognitive capacity which are all limited. On the other hand, people are

also adaptive and endogenously respond to information frictions. Methodology: We develop an equilibrium

model for a single-server queueing system with customers having limited attention. Following the theory

of rational inattention, we assume that customers optimize their learning strategies by deciding the type

and amount of information to acquire and act accordingly while internalizing the associated costs. Results:

We establish the existence and uniqueness of a customer equilibrium and delineate the impact of service

characteristics and information costs. We numerically show that when customers allocate their attention to

learn uncertain queue length, limited attention of customers improves throughput in a congested system that

customers value reasonably highly, while it can be detrimental for less popular services that customers deem

rather unrewarding. This is also re�ected in social welfare if the �rm's pro�t margin is high enough, although

customer welfare always su�ers from information costs. Managerial implications: Our results shed light on

optimal information provision and physical design strategies of service �rms and social planners by identifying

service settings where they should be most cautious for customers' limited attention. Academic/practical

relevance: We propose a microfounded framework for strategic customer behavior in queues that links beliefs,

rewards, and information costs. It o�ers a holistic perspective on the impact of information prevalence (and

information frictions) on operational performance and can be extended to analyze richer customer behavior

and complex queue structures, rendering it a valuable tool for service design.

Key words : service operations, rational inattention, strategic customers, rational queueing, information

costs, system throughput, social welfare

1. Introduction

People are inattentive. Even though in today's digitally connected era a vast amount of information is

at our disposal when we make choices, we selectively acquire information. This stems mainly from the

fact that we all have limited time and attention, which prompts us to acquire and pay more attention

to information that we deem important and ignore the rest. In addition, we have limited cognitive

capacities, which constrain our ability to process the acquired information. When decisions are made
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based on partial information, wrong choices and economic losses are inevitable. Thankfully, people

are also adaptive. Depending on the extent of potential losses, we try to allocate time and attention

appropriately, and adjust the amount of information acquired (and hence reduce uncertainty). While

inattention is omnipresent, our focus in this paper is on service settings which are characterized by the

need to execute �production� on demand, tightly coupling customer decisions and resulting demand

with supply capacity. Mismatches in demand and supply result in queues and delays, directly impacting

perceived service quality. How does limited time and attention of customers impact customer behavior,

throughput, and social welfare? These questions form the crux of our paper.

There are di�erent elements of a queueing environment that customers may desire to actively acquire

information about, such as service speed, service quality (reward), and expected delays. Perhaps the

most prominent element, where the extant literature has mostly concentrated on, is expected delays

upon arrival. In many settings, customers do not have perfect information about the queue length

and associated delays before they decide to join or balk. For example, in supermarkets or ticketing

booths for events, physical obstructions such as shelves, walls, or pillars may make it di�cult or even

impossible to judge the extent of the queue. For many other services like call centers or health services,

information about the queue length may not be readily available, and customers must engage in time-

consuming searches to obtain some information about potential delays. Service providers (hereon, �rms)

may take strategic actions to make it easier or more di�cult for customers to acquire this information.

Disney is known for having serpentine queues that are partially hidden for popular rides. Yet, it also

o�ers a mobile app that provides wait time information for rides in its theme parks. Likewise, many

hospitals in Canada and the US post emergency room (ER) wait times online. Even then, the provided

information does not completely resolve customers' uncertainty about queue length and delays. First,

the delay information may be deemed as not necessarily accurate, prodding customers to privately

learn and validate it. For example, in the context of ER wait times, Ang et al. (2015) empirically show

that hospital-posted wait times are extremely unreliable and can be o� by as much as an hour and a

half for much of the time. Second, and perhaps more importantly, customers have limited time and

attention to devote to acquiring such data, and processing the obtained data into useful information.

Since information acquisition and processing is �costly�, rational customers should trade o� the bene�ts

of acquiring better information with the cost associated with it. Our paper is based on this premise of

customer behavior.

In classical models of queueing behavior, customers are assumed to be rational. That is, they max-

imize the expected utility, which is negatively in�uenced by expected delays. They are also strategic,

implying that they consider the actions of other customers when deciding to join or to balk. The

equilibrium analysis of these models mainly di�ers depending on queue visibility, termed as visible

(observable) and invisible (unobservable) queues. The visible and invisible queues are canonical and
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orthogonal representations. Visible queues capture the case where customers freely obtain and pro-

cess all information to accurately assess the length of the queue and expected waiting costs. Invisible

queues, on the other hand, represent the other extreme scenario under which customers cannot observe

or process any information about the length of the queue and expected waiting costs. In this case,

customers act completely based on their prior beliefs on queue length distribution. However, as empha-

sized above, from the customer's perspective, in practice most queues are neither perfectly visible nor

invisible, but they are rather opaque. In the end, determining the exact number of customers ahead

in the queue requires time, attention, and cognitive capacity, which are all limited in quantity. It may

simply turn out to be impossible to make these calculations with certainty and in some cases it may

not make rational sense to spend any e�ort to determine it.

We capture the salient characteristics of limited attention and cognitive capabilities of customers

through a model based on the rapidly growing theory of rational inattention1 in economics. Following

the seminal work of Sims (2003), this theory quanti�es information as reduction in Shannon entropy

and assumes that utility-maximizing customers optimally select the type and quantity of information

they need, ignoring the information that is not worth obtaining. In other words, information acquisition

process is completely endogenized. Rationally inattentive customers know that they are not going to

be able to resolve all uncertainties and make perfect queueing decisions, but they are able to decide

(optimally) on what to learn and to what detail. Naturally, this selection depends on all key factors:

how much time and attention customers have (i.e., information costs), prior beliefs, as well the nature

of uncertainties faced (i.e., what is at stake). We embed the rationally inattentive behavior of customers

in a strategic queueing framework, where customers arriving to the queue are not able to discern the

exact number of customers ahead of them and hence the expected delay cost. Utilizing this framework,

we seek answers to the following fundamental research questions:

• Which equilibrium behavior will prevail (if any) if customers have limited attention and optimally

acquire costly information about queue length prior to joining or balking? How is the equilibrium

shaped by service characteristics such as service rates, delay costs, rewards, and information costs?

• How does limited attention and information costs impact throughput, �rm revenues and pricing,

and social welfare?

• Can the �rm bene�t from customers' limited attention? When does it have the most detrimental

e�ects? What are the implications on the �rm's queue information provision strategy?

Rational inattention models are known to be analytically challenging, even in the absence of any

strategic queueing considerations. Nevertheless, we are able to show that there is a unique equilibrium

that emerges, and establish the directional properties with respect to service characteristics. We �nd

that impact of information costs is more involved, resulting in non-trivial and possibly non-monotone

1 Throughout the paper we use limited attention and rational inattention interchangeably.
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queueing behavior in equilibrium. Elaborating more on such cases numerically, we �nd that when

customers attach reasonably high value to a service that is also popular (high demand), the �rm can

bene�t from the limited attention of customers. The throughput of an opaque queue is higher than fully

visible or invisible cases. In sharp contrast, when the �rm faces relatively low demand from customers

who do not particularly value the service, limited attention of customers can be detrimental. In this

case, the �rm is better o� by either making the queue fully visible or by completely obstructing it.

Interestingly, these insights remain valid when the �rm sets prices optimally. In particular, customer

inattentiveness accentuates e�ects in this case. This is because the �rm can bene�t from inattention

by overcharging customers when they are more willing to join the queue. Pricing also enables the �rm

to moderate the throughput losses when customers are less willing to join the queue.

From a welfare perspective, customer surplus su�ers from limited attention. However, when �rm

surplus is taken into account, social welfare can exactly mimic throughput behavior when service price

is exogenous. This suggests that obstructing queue information partially can result in win-win outcomes

for both the consumer and the �rm when �rm pro�tability (margin) and congestion (demand) are high,

and customer's reward from service is moderate or reasonably high. In contrast, when the service is

moderated optimally through pricing by a social planner, social welfare always su�ers from limited

attention of customers. Furthermore, the welfare losses arising from a service �rm's revenue-maximizing

pricing behavior are highest when the queue is opaque.

As noted before, limited attention and costly information acquisition do not need to be con�ned to

queue length or delays. Customers can spend time and e�ort to learn additional factors that may be

uncertain, such as service speed or customer reward (service quality). It could also be the case that

inattention is only towards these factors, but queue length is visible or invisible to the customers.

We extend our baseline model to capture these cases and demonstrate the throughput implications of

information costs. Comparing di�erent scenarios, we generate additional insights on the information

provision strategy of the �rm. For example, we �nd that throughput is higher when the �rm discloses

service speed information and lets customers learn queue length privately.

Our contribution to the literature is threefold. First, from a theoretical perspective, we develop

a microfounded, tractable framework for service systems that accounts for customers' limited atten-

tion and information processing capabilities. When information frictions are related to queue length,

our framework bridges the classical visible and invisible queues, covering also the entire intermediate

spectrum. Furthermore, it can be adapted to deal with uncertainty in other service characteristics or

physical queue capacity, rendering it a versatile tool for service design. Second, utilizing our framework,

we provide descriptive results on rational customers' queueing decisions in the presence of information

frictions. Through a uni�ed lens, we demonstrate the e�ects of information costs on operational perfor-

mance, �rm pro�tability, and social welfare. Third, we translate our descriptive results into prescriptive
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insights for practicing managers. We can identify settings where service �rms should be most concerned

about customers' limited attention and o�er practical insights regarding information provision.

2. Literature Review

There is a long-standing literature on strategic behavior in queueing, starting with the pioneering

works of Naor (1969) and Edelson and Hilderbrand (1975) for the cases of visible and invisible queues

respectively. Hassin and Haviv (2003) and Hassin (2016) present excellent coverage of various extensions

and a comprehensive review of related literature. Within this vast literature, the papers that are most

closely related to our study can be broadly categorized into two groups: 1) Customer behavior and

information acquisition; 2) Firm policies and information provision.

Our work is more closely connected to the �rst group of papers. One stream in this group examines

customers' bounded rationality, which postulates that customers are not always able to make perfect

rational choices and therefore make errors. Huang et al. (2013) adapts this to a service context by

assuming that customers are not able to perfectly estimate their expected waiting times and investigate

the revenue, pricing, and welfare implications for both visible and invisible queues. The degree of

bounded rationality is taken as an exogenous parameter. Along similar lines, Huang and Chen (2015)

and Ren et al. (2018) assume customers resort to a heuristic in an invisible queue, which involves

sampling experiences of previous customers (referred to as anecdotal reasoning). Huang and Chen

(2015) assume that customers sample the experience (utility net of delay costs) of a single customer

from past generations, and elaborate on pricing and welfare implications. In Ren et al. (2018), customers

estimate the expected service quality (reward) by taking average of k sampled anecdotes from past

customers. As customers gather more samples (i.e., as k increases), they become less boundedly rational,

and their quality estimate converges to the true mean. In our model, customers can also make mistakes,

but there are crucial di�erences. First, information acquisition is completely endogenous and is not

restricted to particular structures (e.g., sampling past behavior). Second, customers are rational; they

optimally decide on what and how much to learn, e�ectively controlling the type and extent of mistakes

they make. This is analogous to customers forming optimal heuristics (Ma¢kowiak et al. 2018).

Another stream in this group investigates the impact of additional queue length or delay information

on queue joining behavior. In Hu et al. (2017), an exogenously speci�ed proportion of customers

have perfect information about queue length, while the rest are completely uninformed about it (but

they know the fraction of informed customers). They examine how heterogeneity impacts equilibrium

throughput and social welfare. In contrast, customers are homogeneous in our model and we focus on

the equilibrium that emerges from a microfounded private learning e�orts of customers. Closer to our

work is the idea that customers can inspect queues at a predetermined cost, upon which queue length is

fully revealed, as in Hassin and Roet-Green (2017). They consider an invisible queue where customers

make three distinct decisions: join, balk, or inspect. The existence and uniqueness of an equilibrium
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strategy is proven and the e�ects of inspection cost on throughput and social revenue are discussed. We

go a step further and allow the customers to determine how much they should improve their knowledge

on the state of the queue, which in optimality is never fully informative (some uncertainty always

remains). Customers can also decide not to acquire any information if processing is deemed to be not

useful or too costly. Interestingly, this approach also avoids the complications in equilibrium analysis

when customers make a choice between three distinct actions as in Hassin and Roet-Green (2017); once

customers acquire information optimally, their eventual decision is only to either join or balk.

We remark that despite the fundamental structural di�erences noted above, there are some con-

nections with this �rst body of research, especially regarding the impact of the level of �customer

information� (broadly de�ned) on throughput and social welfare. We establish these links wherever

possible, and draw parallels and contrasts. We highlight the complementary insights generated by our

unifying framework, which combines customer inattention, endogenous information acquisition, and

strategic queueing behaviour in a natural and consistent manner.

The second group of papers investigate queue information disclosure policies and explore the revenue

and welfare implications for the service �rms. Some works (e.g., Allon and Bassamboo 2011, Yu et al.

2016) focus on the impact of delay announcements on consumer behavior. Others aim to determine

optimal queue disclosure policies. For instance, Simhon et al. (2016) show that disclosing the queue

length when it is shorter than some threshold and concealing it otherwise, is never optimal when

customers are aware of the policy. In contrast, Cui et al. (2017) show that it is indeed optimal when

customers are not aware of the policy. There are also other papers that examine the e�ect of disclosing

some form of delay information from the service �rm's perspective. For a comprehensive survey, we

refer to Ibrahim (2018). We di�er fundamentally from these works since it is the customer who decides

to obtain information about the service environment; there is no predetermined information disclosure

strategy of the �rm. Nevertheless, the �cost of information� in our model captures the ease at which

customers can obtain queue information, and this can be in�uenced by �rm choices related to physical

infrastructure and technology. Recognizing this, we comment on how information provision strategies

of the service �rm may impact equilibrium behavior. This is the only (high-level) connection we have

with this second group of literature.

Finally, we note that our paper also contributes to the literature on rational inattention. With recent

advances made in both theoretical and empirical grounds, there is a surge in the interest on rational

inattention. Applications include consumer (discrete) choice (Mat¥jka and McKay 2015, Hüttner et al.

2019), pricing (Boyac� and Akçay 2017, Mat¥jka 2015), energy e�ciency (Sallee 2014), among others. To

our knowledge, our paper is the �rst study that incorporates rational inattention in a service/queueing

setting with strategic customers.
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3. Baseline Model

Consider a service system modeled as a basic single-server queue operating under FCFS (�rst come,

�rst served) discipline, with Poisson arrival rate λ and exponentially distributed service times with

mean 1/µ. Let R denote the unit reward a customer obtains upon being served and p denote the

price charged by the �rm. A customer arriving to the queue incurs a delay cost of C per unit time for

waiting in queue and during service. Suppose that a customer arrives when there are n customers in

the system. Then the payo�, expected reward net of the delay cost, is given as

vn =R− p− C
µ

(n+ 1) . (1)

Let the value of the outside option of balking (not joining ) from the queue be normalized to 0. Clearly,

if n is known, the customer will only join if vn ≥ 0. Alternatively, if all customers can observe the queue

length freely, then they will only join if n+ 1≤ ne where

ne =

⌊
R− p
C

µ

⌋
(2)

and there can only be at most ne customers in the system. This is exactly the threshold in Naor (1969)

for visible queues. Let us assume that R−p−C/µ≥ 0 so that v0 ≥ 0, ruling out the uninteresting case

where customers have no incentive to join the queue. In our setting, customers are not able to use this

threshold policy because they are not able to discern the queue length precisely due to limited attention

and cognitive capacity. We �rst describe how such customers would optimally acquire information and

decide to join the queue or not. Subsequently, we characterize the equilibrium.

3.1. Join or Balk Decisions Under Limited Attention

Customers know that the number of customers ahead in the queue is a random variable and have a

prior belief about its distribution (common to all). Let us denote customers' prior belief as G and

suppose for now that it is speci�ed. One can view this as the anticipated queue length distribution,

which in equilibrium will coincide with the actual distribution.

Rationally inattentive customers can ask questions and receive signals s to update their beliefs. Let

ω ∈Ω denote the unknown state of the system (here, queue length) at any time. The customer is free

to select an information processing strategy, which is represented as the joint distribution F (s, ω) of

signals and states. The only requirement is that the marginal distribution over the states equals the

prior distribution, so that the customers' posterior beliefs are consistent with their priors. The customer

chooses this distribution to maximize her ex ante expected payo� minus the total cost of information

ĉ(F ) associated with generating signals of di�erent precision levels. Information costs are quanti�ed

by the reduction in uncertainty, measured by the Shannon entropy. More speci�cally, let H(B) denote

the uncertainty of belief B measured by entropy. For a discrete distribution,

H(B) =−
∑
ω

Pω log(Pω)
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where Pω is the probability of the state of the world ω ∈Ω. Then the total cost of information associated

with the information strategy F is given as

ĉ(F ) = θ(H(G)−Es[H(F (·|s)]). (3)

Here, θ > 0 is the marginal cost of acquiring and processing information that the customer deems useful

(simply referred to as cost of information hereon), and F (·|s) is the posterior belief about state after

receiving the signal s. Note that the total cost of information is de�ned as the mutual information

between the signal and the state, multiplied by the marginal information cost parameter θ. This cost

function is well supported by information theory, since from Shannon's coding theorem it relates to the

expected number of questions needed to be asked for implementing a particular information strategy

(see Mat¥jka and McKay 2015, Cover and Thomas 2012). The cost of information θ can also be viewed

as the shadow price of a constraint on the information processing capacity of the customer. A stable θ

implies that the customer has su�ciently more total information processing capability (and attention)

than to the amount she is allocating to the decision task at hand (Sims 2010).

In the context of our queueing system, a customer has two discrete choices, either to �join� or

to �balk � and the state space is Ω = N, i.e., natural numbers. Let G = {gn;n ∈ N} where gn is the

customer's prior belief for the scenario where there are n customers in the system. Given prior belief

G, the customer (referred to as �she� hereon) solves a two-stage problem. In the �rst stage, she selects

an information strategy F to re�ne her beliefs and in the second stage she selects the best option given

her posterior belief. Let V (B) denote the expected payo� from choosing the best option given some

belief B. Then, a rationally inattentive customer's decision-making problem can be formally stated as:

max
F

∑
ω∈N

∫
s

V (F (· | s))F (ds,ω)− ĉ (F ) (4)

s.t.

∫
s

F (ds,ω) = gω for ω ∈N.

The �rst term in (4) is the ex ante expected payo� from selecting the best option based on the generated

posterior belief and the second term is the total cost of information given by (3). According to this

model, the customer is optimally choosing (i) what and how much information to process (what to pay

attention to, how much attention to pay) and (ii) what action to select given the information gathered.

A central result in rational inattention theory that helps to simplify the customer's problem is that

each action can be selected in at most one posterior belief (Mat¥jka and McKay 2015). This means that

receiving distinct signals that lead to the same posterior is suboptimal, since it implies the acquisition

of ample information (which is costly) that is not acted upon. The immediate consequence is that

choosing signals is equivalent to choosing actions. As such, total information cost can be written using

the mutual information between the chosen actions and state. Thanks to this property, it becomes
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possible to write an alternative maximization problem for the customer that uses state-dependent

choices as decision variables, without any referencing to signals. Speci�cally, let SJ denote the set of

signals that lead to joining decision. Then the induced conditional joining probability when there are

n customers in the system can be represented as

πn =

∫
s∈SJ

F (ds|ω= n)

where F (·|ω) is the conditional distribution of signals given state ω. Let Π = {πn;n≥ 0} denote the

collection of conditional joining probabilities; i.e. customer's joining policy (which also implies cus-

tomer's balking policy). Based on this, conditional joining probabilities averaged over all states, i.e.,

the unconditional joining probability is

π=
∑
n≥0

πngn. (5)

Then, for our queueing system, the customer's equivalent optimization problem can be reformulated

as

max
Π={πn;n≥0}

∑
n≥0

vnπngn− c (Π,G) (6)

s.t. πn ∈ [0,1] ∀n≥ 0.

Here πngn is simply the joint probability that the customer joins and there are n people in the system.

Since the utility of balking is 0, the �rst term is the total expected payo� obtained under joining policy

Π. The second term is the total cost of information quantifying the reduction in entropy, i.e. mutual

information between the action and state (due to the equivalence of signals and actions) scaled by

information cost θ:2

c (Π,G) = θ

(
−π logπ− (1−π) log (1−π) +

∑
n≥0

gn (πn logπn + (1−πn) log (1−πn))

)
. (7)

It is established in the rational inattention literature that the optimal information processing strategy

for any θ > 0 results in conditional choice that follows a generalized multinomial logit (GMNL) formula

(Mat¥jka and McKay 2015). In particular, when the choice is about joining a queue or not, as described

above, the conditional probability πn of joining the queue when there are n customers satisfy

πn =
πevn/θ

πevn/θ + 1−π
almost surely for θ > 0 (8)

where π is the unconditional probability of joining the queue that needs to satisfy equation (5) for

consistency. Here it is worth noting that the customer is not randomizing her choice. Rather, her choice

2Due to the symmetry of mutual information H(G)−H(G|Π) =H(Π)−H(Π|G) where the left hand side is analogous
to (3).
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is uncertain ex ante as she does not know what her assessment about the queue length (i.e., signals)

will reveal. If θ= 0, then the customer joins or balks deterministically, depending on which one yields

the higher payo� in that state.

The conditional joining probabilities characterized by the GMNL equation (8) capture the intricate

relationship between three central drivers of a customer's decision, namely the payo�s, beliefs, and

information costs. Observe �rst that according to (8), if the customer has a positive probability of

joining in at least one state (i.e., π > 0), then she has a positive probability to join in all other states

of the system. However, the higher her payo� (vn), the more likely she will join. Accordingly, the

state-dependent joining probabilities increase as n decreases (i.e., vn increase). The impacts of prior

beliefs are captured through the unconditional probability π. It is crucial to note that π is not an

exogenous parameter; rather it is part of the customer's endogenous decision-making process. One

needs to simultaneously solve (8) (for all n≥ 0) together with the consistency equation (5) to arrive at

a complete explicit solution. Rewriting (8) as πn =
(
evn/θ+ln(π)

)
/
(
evn/θ+ln(π) + e0+ln(1−π)

)
, it is evident

that unconditional probability π e�ectively shifts the customer's payo�. Hence, her joining decision

is swayed by how �attractive� it is a priori to join the queue. Information costs play a strong role in

how much emphasis the customer puts on the beliefs. When θ is low, the customer can acquire more

information about each state and the payo�. In the extreme case when θ ↓ 0, the queue length is fully

visible to the customer, and she deterministically makes the best choice in each state. In contrast, as θ

increases, she acquires less information and relies more on her belief. In the extreme case when θ ↑∞,

the customer deterministically joins or balks based on her ex ante beliefs.

It is worthwhile at this point to make a connection with models that use the standard MNL choice

to model customers' bounded rationality. In particular, Huang et al. (2013) adopt MNL choice in their

separate analysis of visible and invisible queues. The corresponding parameter in the MNL speci�cation

(standard deviation of an additive noise) captures customers' degree of bounded rationality. At one

extreme, customers are fully rational, recovering separately the Naor (1969) and Edelson and Hilder-

brand (1975) models for visible and invisible queues respectively. At the other extreme, customers are

fully irrational and join or balk with equal probability. In contrast, there is no degree of rationality

in our framework (customers are always rational). The GMNL formula captures rational customers'

endogenous response to information frictions, e�ectively bridging the invisible and visible queues via

the information cost θ.

In order to fully solve the problem, we plug the conditional joining probability πn given by (8) into

the customer's optimization problem in (6) , which yields a simpli�ed representation of

max
π∈[0,1]

θEG
[
log
(
πevQ/θ + 1−π

)]
(9)

where Q denotes the uncertain queue length with prior distribution G. Hence, in e�ect, the customer is

choosing the unconditional probability π. It is clear that the problem in (9) is concave in π with linear
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constraints and can be easily solved. Once the unconditional joining probability π is found, conditional

joining probabilities are calculated using (8).

Note that equation (8) constitutes the necessary conditions for optimality but they are not suf-

�cient. For instance, the queueing policy Π1 = {πn = 1;n≥ 0} where everyone joins and the policy

Π0 = {πn = 0;n≥ 0} where everyone balks at each state automatically satisfy these conditions. Hence,

it holds trivially when one of the two actions (join or balk) is not chosen at all, but does not specify

when this may occur. The next lemma presents the complete characterization of the customer's opti-

mal joining policy, including both the necessary and su�cient conditions. The proofs for the next and

subsequent results are relegated to the Appendix.

Lemma 1 (Necessary and Su�cient Conditions). The policy Π = {πn;n≥ 0} is optimal if and

only if the implied unconditional choice probabilities π=
∑

n≥0 πngn for actions �join� and �balk� satisfy∑
n≥0

evn/θgn
πevn/θ + 1−π

≤ 1 (for �joining�) and
∑
n≥0

gn
πevn/θ + 1−π

≤ 1 (for �balking�), (10)

and both equations have to hold with equality if 0<π < 1. Otherwise, the su�cient conditions are∑
n≥0

evn/θgn ≤ 1 for π= 0 and
∑
n≥0

e−vn/θgn ≤ 1 for π= 1. (11)

Lemma 1 establishes that there are cases that yield join or balk decisions with certainty, i.e., without

the need for processing any information. For instance, it is possible that the �rst condition in (11) is

satis�ed when the customer's prior belief towards low states (i.e., when there are few customers in the

queue) is very weak and it is optimal for the customer to balk with certainty, i.e., π= 0. A similar e�ect

may also take place when the customer attaches a very low value to the service provided, i.e., a low

service reward. On the contrary, when the customer strongly believes that there will be few customers

in the queue and/or her reward from service is high enough, then she may decide to join with certainty

without obtaining further information, i.e., π= 1 and the second condition in (11) is satis�ed.

As a �nal remark, we highlight the link with more traditional search/inspection models. A prominent

example is the model by Hassin and Roet-Green (2017), where arriving customers have the opportunity

to buy perfect information at a �xed cost. In our framework, receiving perfect information is equivalent

to reducing the posterior entropy to zero. This is tantamount to customers paying a �xed cost of

θH(Π) and deciding to join based on the current queue length (or not pay and act on the basis of prior

beliefs only). However, this is a suboptimal strategy when information strategy is endogenized, since

a marginal deviation from generating perfect signals is always bene�cial as per the objective function

in (6).3 This is why the optimal decision is always probabilistic if the customer chooses to acquire and

process some information. Nevertheless, the customer can also choose not to process any information

and act solely based on her prior belief (see Lemma 1).

3 Technically speaking, this is because the slope of entropy is in�nite when signals fully resolve the uncertainty (i.e., πn = 0
or πn = 1). Therefore, leaving some uncertainty drastically reduces the information cost compared to the corresponding
�nite gain in expected utility due to more information.
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3.2. Joining Behaviour in Equilibrium

Until this point, we have assumed that customers have exogenously speci�ed prior beliefs, representing

the anticipated queue distribution. In fact, customers are strategic in our framework; they are aware

of the other rationally inattentive customers and anticipate their actions. As a result, customer beliefs

are formed by queueing behavior in equilibrium. Queueing behavior itself is shaped by the optimal

information acquisition and joining decisions of rationally inattentive customers in each state. Next,

we de�ne such an equilibrium. To this end, let G̃= {g̃n;n≥ 0} denote the queue length distribution in

equilibrium and ρ= λ/µ be the utilization factor.

Definition 1. In the queueing system with rationally inattentive customers with information cost

θ > 0, the equilibrium probability of joining the queue when there are n customers present is

π̃n =
π̃evn/θ

1− π̃+ π̃evn/θ
(12)

where π̃=
∑

n≥0 π̃ng̃n is the unconditional joining probability. Equilibrium queue length distribution is

g̃0 =
1

1 +
∑∞

k=1 ρ
kπ̃0π̃1...π̃k−1

and g̃n = g̃0ρ
nπ̃0π̃1...π̃n−1 for n≥ 1. (13)

Theorem 1. There exists a unique equilibrium satisfying De�nition 1.

Although our framework involves nontrivial customer behaviour in terms of queueing, Theorem 1

proves a strong result that a unique equilibrium exists despite the complexity of the model. Finding

this equilibrium requires solving a �xed point equation since it requires a consistency between the

joining probabilities (which is a solution of the rational inattentive customer's optimization problem)

and resulting queue length distribution (which is an input as customer's prior belief to the same

optimization problem).

There still remains the question of whether rationally inattentive customers can form the correct

belief about the queue length distribution, that is whether the equilibrium can be attained. We show

in the Appendix that such an equilibrium can be attained via adaptive learning, in a setting where

customers can observe and take averages of the joining fractions of past customers.

An immediate corollary of Theorem 1 presents the limiting cases of the information cost, which have

strong connections with extant literature on strategic queueing.

Corollary 1. (i) (Visible queues) When θ ↓ 0, customers can determine the queue length exactly

and decide to join only if the number of people in the system is strictly less than the threshold ne =⌊
(R−p)µ

C

⌋
. Corresponding equilibrium e�ective joining fraction is π̃= 1−ρne

1−ρne+1 .

(ii) (Invisible queues) When θ ↑ ∞, customers base their queueing decisions on their prior beliefs

only, resulting in the following outcomes (when λ< µ)

(a) (Always join) If R− p− C
µ−λ ≥ 0, then all customers join the queue.
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(b) (Mixed strategy) Otherwise, equilibrium joining fraction is π̃= min
{
µ
λ
− C

(R−p)λ ,1
}
.

The two extreme cases of our framework covered in Corollary 1 retrieve the classical models and

results in the literature. The �rst case is precisely the scenario with the visible queue model of Naor

(1969), where the equilibrium is a threshold policy. The latter case is precisely the invisible queue

model of Edelson and Hilderbrand (1975). In particular, if the bene�t of joining the queue is positive

even if everyone else joins, customers join with probability 1. Otherwise, customers join with a �xed

probability. Given our assumption R− p−C/µ> 0, the case where all customers balk does not occur.

Next, we investigate the impact of salient characteristics of the service system, namely service reward

R, price p, delay cost rate C, and service rate µ on customer joining fraction π̃ (or throughput λπ̃).

Proposition 1. Equilibrium joining fraction π̃ increases in R and µ and decreases in p and C.

The rationale for this result is quite intuitive. Rationally inattentive customers cater their learning

and ultimate actions towards what is most bene�cial for them. In this sense, given an exogenous prior

belief, they choose to join more if doing so brings more payo� at each state. This is surely the case

when the reward from service R is higher, and the price p and/or waiting cost per unit time C are

lower. Proposition 1 establishes that this also holds in equilibrium. To account for the unilateral impact

of these service characteristics, we de�ne R= R−p
C

as the attractiveness of service to the customers.4

According to Proposition 1, equilibrium joining probability increases in service attractiveness R. The

e�ect of service rate µ, on the other hand, is not as straightforward. Although a faster service may

potentially mean less congestion, it also incentivizes customers to join which in turn may increase

congestion. It turns out that the �rst a�ect is always stronger, and a faster service rate always yields

more joining customers in equilibrium.

The impact of information cost on joining behavior is more convoluted and usually more di�cult to

analytically ascertain. We take a deeper look into it and its implications in the next section.

4. Impact of Information Cost on Throughput and Social Welfare

Information costs predominantly a�ect the extent of learning customers can a�ord to (or be able to)

undertake regarding queue length prior to joining. This has a critical impact on customers' joining

behaviour in equilibrium, and consequently on system throughput (which proportionally impacts the

service provider's pro�tability) and social welfare. We start with the former.

4.1. Throughput in Equilibrium

Although more information about the queue length always leads to better joining and balking decisions

on the consumers' side (and hence higher expected payo�s), it does not always bene�t the service

�rm. Indeed, considering the two extreme cases of queue visibility, it is known that throughput is

4Note that when unit waiting cost C is normalized to 1, R becomes R−p which is customer's net value from the service.



14

higher for invisible queues when arrival rate is lower than a certain unique threshold (Chen and Frank

2004). This is because customers in an invisible queue blindly choose to join due to low congestion

while customers in visible queues may still face long queues to deter them from joining. As we bridge

these two extremes, at a �rst glance, it seems quite plausible that the e�ects of information cost θ on

throughput should be monotonic, and its direction should depend on whether visible or invisible queues

have higher joining rates in equilibrium. However, this intuition turns out to be only partially correct

in the case of rationally inattentive customers as more convoluted forces start to impact customers'

equilibrium joining behaviour. To illustrate this, in the following discussion, we use π̃(θ) to denote the

equilibrium joining fraction when the information cost is θ.

We �nd that the impact of information cost on throughput is largely governed by both the attrac-

tiveness of the service to the customer and the level of demand (congestion). We �rst show that for

any demand level, there is a range for service attractiveness in which throughput can potentially be

non-monotone in information cost θ. In particular, outside of this interval, throughput is provably

either monotonically increasing or decreasing.

Proposition 2. For λ< µ there exists two critical thresholds RL and RH for service attractiveness

such that throughput (λπ̃(θ)) is monotonically decreasing in θ if R<RL and monotonically increasing

if R>RH .

In order to see the intuition behind Proposition 2, note that when service is quite attractive to the

customers, they naturally have a tendency to join even if they process no information and act only based

on their prior beliefs. Indeed, the su�cient conditions in Lemma 1 con�rm that for su�ciently large R

(hence large vn) customers may choose to always join without processing any information. However,

as they start to discern the queue length more precisely, some customers will choose to balk due to

congestion. In such cases, π̃(0) is relatively low compared to π̃(∞), and equilibrium joining fraction π̃(θ) is

monotonically increasing in θ. In contrast, when service is quite unattractive, customers are unlikely to

join, simply based on their prior beliefs and π̃(∞) will be low. As they learn the queue length, however,

some (lucky) customers will still be able to �nd the queue short enough to warrant joining. In such cases,

π̃(0) is relatively higher compared to π̃(∞), and equilibrium joining probability π̃(θ) is monotonically

decreasing in θ. When the equilibrium joining fractions under visible and invisible queues are not very

distinct, then we numerically observe a di�erent, and possibly non-monotone behavior with respect to

information costs. This occurs within an intermediate range of service attractiveness R. Furthermore,

we �nd that the non-monotone range increases in demand level (congestion). However, the behavior

inside this region can be quite di�erent depending on the level of demand and service attractiveness.

In what follows we investigate two distinct throughput patterns via two examples for low demand and

high demand scenarios, respectively, to explain the main factors that drive the non-monotone joining

behaviour.
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(c) R= 1.4

Figure 1 Impact of information cost on equilibrium joining fraction and throughput: low demand (λ= 0.2, µ= 1,C = 1)

Figure 1 illustrates three di�erent cases when the demand rate is low. Evidently, when service

attractiveness R is also su�ciently low, higher information costs lead to lower throughput as per

Proposition 2. Similarly, when service attractiveness is su�ciently high, throughput is monotonically

increasing in θ. Interestingly, when R is in the intermediate range (but still relatively low), throughput

may �rst decrease and then increase. The main rationale for this behaviour is as follows. When θ= 0,

customers can observe the queue length and deterministically make the best decision. On the other

hand, when information cost θ is slightly increased, customers start to process information and due

to their limited attention, they may not be able to discern queue length perfectly when it is in fact

relatively short, and balk erroneously. This has a negative impact on throughput. Arguably, for the

same reason, customers may not be able to discern queue length when it is longer, and erroneously

join instead of balking. In the case of low demand, however, this is less likely to happen as low states

are more likely to be observed. Hence, throughput initially decreases in θ. When information cost is

further increased and customers start to rely on their beliefs more, they join with a higher probability

because they believe that the system is not congested and despite the low reward, it makes sense to

join instead of balking. As a result, throughput starts increasing in θ.
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(c) R= 9.4

Figure 2 Impact of information cost on equilibrium joining fraction and throughput: high demand (λ= 0.95, µ= 1,C = 1)
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Figure 2 illustrates three di�erent cases when the demand rate is high. As in the case of low demand,

when service attractiveness is dominating in either direction, throughput becomes monotone in θ

accordingly. Similarly, there is an intermediate level of service attractiveness that potentially makes

throughput non-monotone in information costs. Strikingly, here the e�ect is predominantly opposite;

throughput �rst increases and then decreases. The intuition follows a logic very similar to the low

demand case, but the e�ects are reversed. This is because when demand is high, longer queue lengths

are more likely, and therefore (erroneous) joining decisions at higher queue lengths due to limited

attention outnumber (erroneous) balking decisions at lower queue lengths. Hence, we see an initial

increase in throughput. As information cost further increases, the impact of customers' prior beliefs

kick in and they start to join less due to high congestion, in which case, throughput starts decreasing

(Figure 2b).
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Figure 3 Spectrum of di�erent throughput behaviour with respect to information cost (I: incr., D: decr., µ= 1)

The two distinct unimodal structures illustrated in Figures 1b and 2b, are not the only patterns

that can be observed inside the non-monotone range of service attractiveness. In fact, a combination

of the two is also possible and can be observed for a wide range of parameters along with the two

monotone structures. Figure 3 depicts the full spectrum of possible patterns in λ−R space and hence

provides a comprehensive picture of the impact of information cost on throughput. Here, I and D

respectively denote increasing and decreasing patterns, and their collections de�ne how throughput

changes as information cost increases (i.e., I-D denotes �rst increasing, then decreasing behaviour

as illustrated in Figure 2b). As Proposition 2 shows, for any given λ, throughput is monotonically

decreasing when service is su�ciently unattractive (red region). Conversely, for λ < µ, throughput
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is monotonically increasing when service is su�ciently attractive5 (blue region). In between these

two thresholds, throughput is possibly non-monotone. Furthermore, for higher demand levels, this

intermediate range is wider, as noted before. This is because relative attractiveness of service should

be much higher to dominate the negative impact of increased congestion so that the less customers are

informed about the queue length, the more they decide to join.

The full parameter range of the two distinct non-monotone patterns D-I and I-D are shown by the

orange and green regions in Figure 3, respectively. Note that the I-D pattern is usually observed when

demand is high. On the other hand, D-I pattern emerges for all λ< µ depending on the value of R. In

fact, it also manifests itself in the region where the I-D pattern is more prominent, which creates the

combination pattern D-I-D as shown by the light yellow region in Figure 3.

Figure 3 generates additional insights on non-monotone throughput behavior. In particular, note

that both D-I and D-I-D structures repeatedly emerge when Rµ (equivalently R since µ is normalized

to 1) is close to its integer part as de�ned by the Naor threshold ne in (2). The rationale for this

behaviour is as follows. When Rµ is close to the Naor threshold, joining brings only marginally more

payo� to customers than balking at state ne − 1; that is vne−1 is slightly above zero. Accordingly, it

becomes less important for the customers to discern this threshold state and make the correct joining

decision. Yet, ne−1 is the longest queue length that makes joining desirable, and hence it has the most

bearing on the errors made by the customers. On one hand, when customers are perfectly informed

about the queue length (i.e., a visible queue), they will always join, even though it is only slightly more

rewarding. On the other hand, when customers face some information frictions, they will be prompted

to spend less time and e�ort, and this would lead to more erroneous balking, albeit not to signi�cant

reductions in payo�s. This is why an initial decline in throughput is observed as θ is increased from

zero. This e�ect is present as long as service attractiveness is not dominating (otherwise throughput is

increasing by Proposition 2). When demand is high, the same e�ects discussed before for Figure 2b are

at play. The initial decline in throughput is quickly followed by an increase as high demand leads to

higher states being more likely, which in turn yields more erroneous joining behaviour. This is further

followed by a decrease in throughput as the impact of prior beliefs become more dominant, which leads

to the D-I-D pattern.

It is important to note that although the initial decline in throughput noted above can be observed

in multiple regions, its magnitude and impact becomes greater when both R and λ are lower. This

is because as R (and equivalently ne) is smaller, there is a smaller number of states where joining

is preferred to balking, and the impact of erroneously balking at state ne − 1 becomes more critical.

When λ reduces, low states (shorter queue lengths) are more likely to be realized, further amplifying

5 For λ≥ µ, there is no entrance to the system when the queue is invisible, i.e., θ→∞. Therefore, throughput cannot be
monotonically increasing.
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this e�ect. Consequently, the most detrimental impact, and hence the biggest decline in throughput,

is realized when ne = 1 and customers need to distinguish only one state from the others (i.e., to learn

whether the queue is empty or not). Coupled with a low congestion level, this results in the D-I pattern

demonstrated in 1b and represented by the lower-left orange region in Figure 3. We substantiate this

point in Figure 4. In both Figure 4a and 4b we observe the D-I pattern when R is close to its integer

part and the extent of initial throughput reduction is greater for lower R. As R moves up and away from

its integer part, throughput becomes monotonically increasing. Finally, Figure 4c represents the high

demand case where we observe the D-I-D pattern when R is close to ne. Otherwise, the throughput is

�rst increasing then decreasing.
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(c) λ= 0.95
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Figure 4 Impact of information cost on throughput (C = 1, µ= 1)

To summarize, limited attention and information costs have involved e�ects on throughput. When

the service is signi�cantly attractive (resp., unattractive), the �rm always bene�ts from information

frictions and ideally should make the queue invisible (resp., visible). In the intermediate range of service

attractiveness, a more complex and non-monotone behavior consistently prevails, and this range widens

as demand increases. In particular, the D-I pattern is most distinctly observed and has signi�cant

impact in low demand systems with reasonably low service attractiveness, while the I-D/D-I-D patterns

are predominantly observed in high demand systems. These results o�er a compounding insight on

the e�ect of information prevalence on customer behaviour and hence have signi�cant managerial

implications. It establishes that when customers value a service that is already on-demand (e.g., a

popular restaurant) the �rm can bene�t from an opaque queue and �nd it in its best interest to make

information acquisition di�cult or even to deliberately obstruct it to some extent, rather than providing

a completely visible or invisible system. The opposite is true when the �rm faces low demand from

customers who do not value the service much (e.g., a public o�ce call center). In this case, it may be

optimal for the �rm to employ an �all-or-nothing� information provisioning strategy.

We remark that there are some other papers that �nd that throughput might be unimodal in terms

of information prevalence. Hassin and Roet-Green (2017) conclude that a positive and �nite inspection
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cost might achieve a higher throughput. Similarly, Hu et al. (2017) �nds that having a portion of

uninformed customers in the society might be better in terms of throughput. Our framework is able to

explain these results using a behavioral model that is rooted in the �rst principles and systematically

links the main drivers of human decision making such as beliefs, payo�s, and information costs. More

importantly, it is also able to capture counter cases where throughput su�ers from limited attention

alluding to the potential dangers of deliberate obstruction of information acquisition. To the best of

our knowledge, this is not noted in the strategic queueing literature.

In a similar vein, Huang et al. (2013) and Huang and Chen (2015) capture the impact of customers

having more information on expected delays in invisible queues. They show that, as customers improve

their anecdotal reasoning or become less boundedly rational, throughput improves in high reward (low

price) systems and deteriorates in low reward (high price systems). We complement these results by

demonstrating what happens when rational customers start discerning realized queue length and associ-

ated expected delays. Interestingly, when customers are informed beyond the fully rational benchmarks

of Huang et al. (2013) and Huang and Chen (2015), throughput is strictly worse in reasonably high

reward systems (Figures 1c, 2c, and the blue region in Figure 3 ) and strictly better in reasonably low

reward systems (Figures 1a, 2a, and the red region in Figure 3).

4.2. Social Welfare in Equilibrium

We now investigate how information cost impacts social welfare. For a given service fee p and infor-

mation cost θ, social welfare is de�ned as the expected net utility to the society (customers plus the

service �rm) per unit time. In other words, it is the sum of customer surplus and �rm surplus. Since

information cost is a real cost that customers take into account in their decisions, it is also part of

their surplus, and hence social welfare. Service fee p, on the other hand, is merely a transfer payment

between customer and service �rm, and only indirectly in�uences social welfare through the joining

behaviour it induces. More speci�cally, social welfare Ws is

Ws = λ(EG̃[(R−C(Q+ 1)/µ)π̃Q]− c(Π̃, G̃)) (14)

where the former term inside the parentheses is the total expected service reward net of waiting cost,

and the latter is total information cost given by (7) in equilibrium. Social welfare per unit time is this

di�erence scaled by the demand rate λ.

A more convenient way of writing the social welfare is as the sum of customer and �rm surpluses.

In particular, social welfare in (14) can be written as Ws =Wc +RI where customer surplus

Wc = λ(EG̃[vQπ̃Q]− c(Π̃, G̃))

is customers' optimal net expected utility (9) in equilibrium, and �rm surplus

RI = λpπ̃
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is simply the throughput times pro�t margin p of the �rm. Writing social welfare this way helps to

disentangle the impact of system parameters on its two constituents.

We �rst focus on the case where equilibrium social welfare consists only of customer surplus (equiv-

alently, p= 0). When Ws =Wc, social welfare is decreasing in information cost θ. This is intuitive as

customers bene�t from making more informed decisions due to lower cost, and capacity and demand are

better matched. Furthermore, θ scales the information cost in customers' optimization problem in (6)

and it is natural that in optimality their surplus is lower (for an anticipated queue length distribution).

Next proposition shows that this also holds in equilibrium.

Proposition 3. Wc is decreasing in θ.

Proposition 3 is largely consistent with related literature that investigates the impact of information

prevalence on social welfare when it is measured by customer surplus only. In particular, Hassin and

Roet-Green (2017) �nd that social welfare decreases as the cost of inspecting the queue length increases.

Similarly, in Hu et al. (2017), social welfare increases as the proportion of informed customers in the

population increases (as long as some uninformed customers still remain). In the bounded rationality

model of Huang et al. (2013), however, customer surplus can increase when customers are less rational.

In other words, by making suboptimal decisions customers might improve their surplus. We show that

this is no longer the case when customers endogenize and optimize their learning, while internalizing

the associated costs.

When p 6= 0 and �rm surplus is taken into account, social welfare may not always decrease in

information cost. Indeed, we already know that the service provider may bene�t from limited attention

and information costs, especially when demand is high where throughput is increasing or increasing-

decreasing in information costs. In such cases, the welfare loss on the customer side due to increased

information cost may not o�set the increase in �rm surplus. Mathematically speaking, social welfare

is the sum of a decreasing function (Wc) and a possibly increasing or non-monotone function (RI)

as per the last section. Furthermore, while customer surplus is a�ected by the level of service reward

net of price (i.e., R− p), �rm's surplus is additionally a�ected by the magnitude of p. Accordingly,

by changing p while keeping R− p constant, it is possible to scale the two components and observe

di�erent social welfare behavior in terms of information cost θ. In fact, social welfare would fully mimic

the throughput behavior summarized in Figure 3, provided that �rm surplus is su�ciently large in scale

compared to consumer surplus. This is demonstrated in Figures 5a and 5b for low and high demand

systems, respectively. Note that in both cases, customer surplus Wc is monotonically decreasing in θ

as Proposition 3 indicates. The structure of social welfare function Ws, on the other hand, mimics the

non-monotone throughput behavior. In fact, customer joining behavior (and throughput) in these two

cases are identical to those demonstrated in Figures 1b and 2b. Here, the high service fee p renders the
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�rm surplus to dominate the customer surplus. Conversely, Figure 5c illustrates the case where �rm

surplus is not particularly dominating to the customer surplus, and both customer surplus and social

welfare are decreasing in information cost θ. Note that the throughput in this case is the same as in

Figure 2b; the only di�erence is the scaled-down pro�t margin of the �rm.
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Figure 5 Impact of information cost on social welfare (C = 1, µ= 1)

Evidently, if a popular (high demand) service that is well valued by customers (reasonably high R−p)

is also very pro�table for the �rm (high p), social welfare might bene�t from information frictions.

It might even be optimal from the society's perspective to have an opaque queue. The opposite can

also occur, though is perhaps less likely. For a low-demanded and reasonably low-valued service that

is still relatively pro�table to the �rm, social welfare might su�er the most at an intermediate level of

information friction. In the moderate price regime, customer welfare and social welfare are generally

aligned, promoting visible queues and easing of information acquisition for customers.

5. Pricing Implications

Our analysis thus far assumed that service fees are exogenously given. In this section we focus on the

case when the service provider has the ability to moderate the service through pricing, and analyze

two distinct cases where the service provider is a revenue maximizer or a social planner.

5.1. Revenue Maximization

Suppose now that the service provider aims to maximize the expected revenue RI = λpπ̃. Unfortunately,

the expected �rm revenue is not necessarily unimodal in price and can admit multiple optimal prices,

especially for low information cost θ. To see this, it is important to revisit the limiting cases of visible

and invisible queues. It is well-known that for visible queues, the revenue function displays a sawtooth

pattern, but a unique optimal Naor threshold and an associated price can be found. For invisible

queues, the revenue function is strictly concave, ensuring a unique optimal price. The information cost

θ in our opaque queue e�ectively bridges these two cases, which may result in a multi-modal revenue

function and multiple optimal prices. Furthermore, there could be discontinuities in optimal prices (i.e.,
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price jumps) when information cost varies. Figure 6 presents an illustrative case in detail. Observe �rst

how the expected revenue function in Figure 6a smooths out as θ increases, starting from the sawtooth

shape for the visible queues and eventually becoming concave (here θ = 15 is e�ectively identical to

the invisible queue case). Figure 6b is a close-up version of the same revenue curve for two very close

θ values, which clearly illustrates how a marginal deviation in θ may cause a signi�cant jump in the

optimal price (the dots refer to the highest revenue values). Finally, Figure 6c illustrates how the �rm-

optimal price changes with respect to θ for the same service setting, where an initial decline in optimal

price is followed by a drop, which is then followed by a unimodal pattern.
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Figure 6 Impact of information cost on revenue maximizing prices (R= 9.0, λ= 0.9)

Despite the occasional price jumps at low θ levels, we �nd that the nuanced impact of information

cost on customer joining behaviour and throughput remains prominent when the �rm optimally sets

the price. Especially when customers are still very able to discern queue length (i.e., when θ is very

low), the �rm takes advantage of charging as much as possible with minimal e�ects on customers'

joining behaviour. This follows from the results on visible queues: customers' joining behaviour does

not change as long as the Naor threshold ne = bRµc remains the same, and hence it is optimal for the

�rm to charge the highest price that leads to the optimal ne. This means that for very low θ, when the

�rm sets the optimal price, the resulting Rµ will be very close to its integer part (equals it when θ= 0).

Therefore, when θ is slightly increased, as per our throughput analysis in �4.1 (see D-I and D-I-D

regions in Figure 3), there is an initial decline in the optimal price to compensate for the decreased

throughput. This is also re�ected on the optimal �rm revenue, which faces an initial decline as θ is

increased from zero. The precise evolution of the optimal price and the associated �rm revenue when θ

is further increased hinges on both demand and service reward. In particular, when both of them are

high, customers join more often when the queue is opaque. Given this tendency, the �rm can a�ord

to increase the price and extract a premium from the customers. In contrast, when both demand is

low and service is not rewarding, the �rm is prompted to reduce the price and thereby moderate the

customer losses due to limited attention. Nevertheless, the optimal price and revenue display similar
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non-monotone behavior of the throughput in both cases (albeit in narrower ranges due to pricing),

as illustrated in Figures 7a and 7b. Note that both optimal price and �rm revenue exhibit the D-I-D

pattern in the former case, while exhibiting the D-I pattern in the latter.
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Figure 7 Impact of information cost on revenue maximizing prices (R= 9.0, λ= 0.9)

5.2. Social Welfare Maximization and Welfare Gaps

A social planner aims to maximize the social welfareWs given in (14). We �nd that the social planner's

ability to set prices has a profound impact on the social welfare. In particular, our numerical experiments

reveal without exception two distinct behaviors in comparison to the case when the �rm sets prices to

maximize revenue. First, there is no more non-monotonicity, and the optimal social welfare is decreasing

in information cost θ. In other words, information frictions caused by limited attention are always

detrimental for society when the service is optimally regulated via prices. This is consistent with the

well-known result that social welfare is higher in a visible queue compared to an invisible queue under

socially optimal fees (Hassin and Haviv 2003). Second, optimal price no longer behaves erratically

with respect to the information cost; it always increases. The social planner raises the price (hence

the margin) as information cost increases to compensate for the corresponding decline in customers'

surplus as established in Proposition 3.

Next, we compare the optimal prices set by the social planner with that of the revenue-maximizing

�rm. We know from literature that in a visible queue with θ= 0, a revenue maximizer always charges

customers more than what is socially optimal. Di�erently, in an invisible queue with θ =∞, they

both charge the same price as customer surplus vanishes in equilibrium and hence revenue and social

welfare functions become identical (Edelson and Hilderbrand 1975). Our model sheds light on the

entire intermediate range of information costs. We �nd that the �rm-optimal price remains higher than

the socially-optimal price for any �nite information cost θ ≥ 0. This follows the logic that a revenue

maximizer only considers his individual portion of the social welfare, while a social planner has to

also consider the consumer surplus which is always decreasing in price. The social planner needs to

compensate for this negative impact by lowering prices from what is ideal for a revenue maximizer. As
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θ approaches in�nity, the two prices converge to the same value, retrieving the equivalence result for

invisible queues. Figures 8a and 9a illustrate the impact of information cost on socially-optimal and

�rm-optimal prices for low- and high-demand systems respectively. Note that socially-optimal prices

are monotonically increasing while �rm-optimal prices are non-monotone. Figures 8b and 9b depict the

resulting social welfare. As noted before, socially optimal welfare decreases in θ. Furthermore, optimal

prices, and hence social welfare functions, converge as θ→∞.6
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Figure 8 Socially optimal and revenue-maximizing prices and resulting welfare gap (R= 3.0, λ= 0.2,C = 1, µ= 1)
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Figure 9 Socially optimal and revenue-maximizing prices and resulting welfare gap (R= 20, λ= 0.9,C = 1, µ= 1)

Finally, note that when the service �rm is a revenue-maximizer, the resulting social welfare is lower

than the socially-optimal level by default, that is there is a natural social welfare gap. We numerically

investigate the extent of this gap. Interestingly, our results unequivocally reveal that the welfare gap

is highest at an intermediate information cost value. This suggests that although an opaque queue

might be favorable for a revenue-maximizing �rm, it causes the largest detriment on society's overall

welfare. Furthermore, we �nd that gap is directly linked to customers' joining behaviour induced by

the �rm's pricing policies. This follows from the fact that the service fee is merely a transfer between

the customer and the �rm, so it has only an indirect e�ect on welfare. Even when the �rm moderates

6 To provide a more clear illustration in Figure 9a, θ is cut at 6.0. However, it is apparent that the two curves are going
to converge to each other as θ is further increased.
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social welfare through pricing, the real impact on welfare comes from its implications on throughput.

Accordingly, welfare gap mimics the di�erence in e�ective joining probabilities and hence throughput.

This is clearly observed in Figure 8c and Figure 9c.7 Again, welfare gap starts to diminish after a

certain θ value and eventually vanishes.

6. Finite Queue Capacity

In our analysis so far, we assume that any customer who decides to join the queue can e�ectively do so.

In practice, this may not be possible when the queue has a �nite waiting room/capacity. Such limits

on queue capacity result in throughput losses in standard queueing models. Consider now a queue

with �nite waiting capacity N, serving rationally inattentive customers. This means that an arriving

customer is not admitted to the system when it is full, and to re�ect this inconvenience, let there be

a rejection cost T ≥ 0. The state space (total number of customers) is then {0,1, ..,N}, with payo�s

vn given as in our baseline model by (1), except for state N, vN =−T . The equilibrium of the �nite

capacity queueing system can be de�ned analogous to De�nition 1, with the only change being the

limited state space {0,1, ..,N}. Note that this framework can be readily adapted for a service system

with multiple servers. In both cases, it can be veri�ed that a unique equilibrium strategy exists.

The baseline model we analyzed corresponds to the limiting case with N →∞. In order to shed light

on the impact of �nite queue capacity, we elaborate on the other limiting scenario with zero waiting

capacity, N = 1. This implies that arriving customers cannot join when the server is busy. In this

model, customers aim to learn whether the server is busy or not in order to make a �joining� decision.

Theorem 2. In a queueing system with no waiting capacity and rationally inattentive customers

with information cost θ > 0, the unique equilibrium unconditional joining (trying) probability π̃ is

π̃= min

{ (
ev0/θ− 1

)
(1− ev1/θ) (ρev0/θ + ev0/θ− 1)

,1

}
. (15)

The conditional joining probabilities in equilibrium are π̃n =
(
π̃evn/θ

)
/
(
π̃evn/θ + 1− π̃

)
, for n ∈ {0,1}

and the equilibrium steady-state probability of the server being idle is g̃0 = (1 + ρπ̃0)
−1
.

Throughput in equilibrium is de�ned as λ
∑N−1

n=0 π̃ng̃n for a queue with capacity N . It is clear that

throughput is not proportional to the equilibrium joining fraction since there is no entrance in state N .

The next proposition characterizes the e�ect of information cost on both equilibrium joining probability

and throughput for the zero-capacity case.

Proposition 4. (i) If R− p− C
µ
≥ T, the equilibrium joining fraction π̃ is increasing in infor-

mation cost θ. Otherwise, π̃ takes its maximum value when θ= 0.

7 Percentage welfare (resp., throughput) gap is the di�erence in welfare (resp., throughput) under socially-optimal and
revenue-maximizing prices normalized by the welfare (resp., throughput) under socially-optimal price.
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(ii) Throughput takes its maximum value when θ= 0.

Proposition 4 states that in a service system with no waiting room, the �rm should make the system

completely visible to maximize throughput, regardless of the rejection cost to the customers. The

rationale is that obstructing information acquisition for customers can only deter them joining the

system when it is empty, which is de�nitely undesirable for the �rm. At the other extreme with in�nite

waiting room, we already know that throughput may exhibit non-monotone behavior. Putting these

together, it is evident that queue capacity can be an important design consideration when customers

have limited attention. This is corroborated in Figure 10a, which depicts the impact of information costs

on throughput for di�erent queue capacity levels (N = 20 is practically identical to our baseline case).

Most notably, this extended framework elucidates the possibility for the �rm to garner throughput

gains from limiting waiting room capacity. As illustrated in Figure 10b, throughput may be maximized

at an intermediate, �nite waiting room capacity for a given information cost level θ. This might explain

why some high-end restaurants do not increase their capacity and prefer taking reservations and asking

people to wait.

0 2 4 6

0.74

0.76

0.78

Information cost (θ)

T
h
ro
u
g
h
p
u
t

(a) Throughput vs θ for �xed N

N = 5

N = 8

N = 12

N = 20

5 10 15 20

0.5

0.6

0.7

0.8

Capacity level (N)

T
h
ro
u
g
h
p
u
t

(b) Throughput vs N for �xed θ

θ = 1.0

θ = 5.0

Figure 10 Impact of �nite capacity level on customer behaviour (R= 3.8, p= 0,C = 1, µ= 1, λ= 0.9, T = 2)

7. Learning Beyond the Queue Length

In our baseline framework, rationally inattentive customers aim to learn only the uncertain queue

length. In practice, however, there could be other aspects of the service environment that are also not

easily discernible by customers, such as service speed (rate) and reward (quality), and customers may

�nd it desirable to obtain information about these elements as well. Furthermore, it may even be the

case that queue length is fully revealed at no cost (resp., obstructed), but customers spend time and

attention to learn service rate and/or quality. In this section, we incorporate such multi-dimensional

learning of the service environment into our framework. We provide equilibrium de�nitions and results

for each case, and reveal insights regarding customers' strategic queueing behaviour.
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7.1. Learning Queue Length, Service Rate and/or Quality

Consider the case where customers optimally allocate their attention to simultaneously learn about

queue length, service rate (µ) and/or reward (R). Without loss of generality assume that R and µ are

discrete random variables with �nite support and state space ΩR,µ with customers' common prior hR,µ.

State of the service system is then the triplet Ω = {(n,ωR, ωµ) :∈N×ΩR,µ} with common prior hΩ. Let

π̃n(ωR, ωµ) denote the conditional joining probability in equilibrium when service reward is ωR, service

rate is ωµ, and there are n customers in the system. Similarly, let G̃(ωR, ωµ) = {g̃n(ωR, ωµ);n ≥ 0}
denote the conditional steady-state queue length distribution in equilibrium. State-dependent utility

of joining is

vn(ωR, ωµ) = ωR− p−
C

ωµ
(n+ 1)

and value of balking is normalized to zero. For a given prior hΩ, rationally inattentive customers solve

the extended version of the optimization problem in (9):

max
π∈[0,1]

[
θ
∑

Ω

hΩ(n,ωR, ωµ) log
(
πevn(ωR,ωµ)/θ + 1−π

)]
to arrive at the optimal unconditional joining probability. The di�erence is that the expectation is now

taken with respect to the joint distribution hΩ. Let ρωµ = λ/ωµ denote the utilization parameter given

service rate ωµ.

Definition 2. In a queueing system with rationally inattentive customers with information cost

θ > 0, the equilibrium probability of joining the queue is

π̃n(ωR, ωµ) =
π̃evn(ωR,ωµ)/θ

1− π̃+ π̃evn(ωR,ωµ)/θ

where

π̃=
∑

Ω

π̃n(ωR, ωµ)g̃n(ωR, ωµ)hR,µ(ωR, ωµ)

is the unconditional joining probability in equilibrium. Conditional queue length distribution is

g̃0(ωR, ωµ) =

(
1 +

∞∑
k=1

ρkωµ π̃0(ωR, ωµ)...π̃k−1(ωR, ωµ)

)−1

g̃n(ωR, ωµ) = g̃0(ωR, ωµ)ρnωµ π̃0(ωR, ωµ)...π̃n−1(ωR, ωµ) for n≥ 1. (16)

Theorem 3. There exists a unique equilibrium satisfying De�nition 2.

Theorem 3 generalizes our baseline model results, establishing its validity for a multi-dimensional

learning environment. This testi�es to the versatility of our framework, and signi�es its potential use

as a design tool in a variety of di�erent service settings. Note that an implicit assumption here is that

the information cost is the same for each uncertain element of the environment the customer is learning

about. It is plausible that some aspects of the service system may be easier to learn than others. In

what follows, we explore two special cases with this �avor.
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7.2. Invisible Queues: Learning Service Rate and/or Quality

Suppose now that queue is invisible and rationally inattentive customers learn the service rate and/or

service reward. Clearly, a customer's payo� for joining in any state depends on the strategy of other

customers (as it impacts the expected waiting time). In particular, for given realizations ωR, ωµ, and

conditional joining strategy of other customers π(ωR, ωµ), expected net payo� of joining is

v(ωR, ωµ) = ωR− p−CW (ωR, ωµ)

where

W (ωR, ωµ) =
1

(ωµ−λπ(ωR, ωµ))+

is the expected waiting time in the system. Anticipating π(ωR, ωµ), customers optimize their informa-

tion processing strategy and act accordingly.

Definition 3. In an invisible queueing system with rationally inattentive customers with informa-

tion cost θ > 0, the conditional probability of joining in equilibrium satis�es

π̃(ωR, ωµ) =
π̃ev(ωR,ωµ)/θ

π̃ev(ωR,ωµ)/θ + 1− π̃

where

π̃=
∑
ΩR,µ

π̃(ωR, ωµ)hR,µ(ωR, ωµ).

is the unconditional joining probability.

Theorem 4. There exists a unique equilibrium that satis�es De�nition 3.

The impact of limited attention and associated information costs on the equilibrium performance of

invisible queues depend critically on whether the customer is acquiring information on service reward,

service rate, or both. When service reward is known and customers aim to learn only the service rate µ,

we �nd that throughput is monotonically increasing (resp., decreasing) in information cost if demand

is low (resp., high) enough. This is rather intuitive. When customers anticipate low congestion (due

to low demand), they are inclined to join the queue, but as they start to distinguish realized service

rates, especially slow ones, they may choose to balk more often. The opposite occurs when demand is

su�ciently high. In the moderate demand regime, however, throughput is unimodal, implying again

that some degree of information frictions (regarding service speed) is bene�cial for the �rm.

When customers know the service rate but are uncertain about service reward (quality) R, the level

of demand, and hence congestion, in the system does not play a signi�cant role in throughput behavior.

We observe that, in general, throughput is monotonically increasing in information cost. Notice that

as information cost decreases, customers are able to discern the actual service quality better, leading

to higher (resp., lower) joining rates for high (resp., low) reward states. Interestingly, the combined
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e�ect is typically such that having better-informed customers is detrimental for throughput. The only

exception we �nd to this is when expected reward (quality) is very low. In such cases, having customers

who are only partially informed (intermediate θ) can yield higher throughput (i.e., throughput is

unimodal in θ). We remark that these insights are in stark contrast with those in Ren et al. (2018),

where customers in an invisible queue estimate expected service reward by sampling anecdotes from

earlier customers. They �nd that customers sampling more (and obtaining more information) improves

(resp., deteriorates) throughput for high-quality (resp., low-quality) services. In their model, customers

are most informed when they can perfectly estimate the expected reward. This �rational� benchmark

corresponds to the case when θ→∞ in our model. What we add is, when customers learn beyond the

mean and start distinguishing the realized service quality (as θ decreases), the accretion of customer

information has the opposite impact on throughput.

When both service reward and service rate are uncertain, the impact of learning service rate is

re�ected more on throughput. As illustrated in Figure 11, the implied throughput when customers

acquire information on the service rate (service reward known) is in line with the case where customers

aim to learn both. As such, for high demand systems, disclosing full service rate information and

obstructing the acquisition of service reward information yields the highest throughput for the �rm.
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Figure 11 Impact of learning service rate and/or quality in invisible queues (C = 1, p= 0,R∼U(1.8,5.8), µ∼U(0.5,1.5))

7.3. Visible Queues: Learning Service Rate and/or Quality

Finally, consider a visible queue setting. Note that when queue length is freely observable, it is possible

for customers to infer the distribution of service reward and/or service rate, even before engaging in

information acquisition. Indeed, regardless of customers' prior beliefs, a long queue is more likely due

to high service reward and/or low service rate. In particular, given the (correct) prior G̃ on queue

length (as in 16), customers can construct Bayesian posterior beliefs after observing the actual queue

length:

hR,µ|Q (ωR, ωµ|n) =
g̃n(ωR, ωµ)hR,µ(ωR, ωµ)∑

ΩR,µ
g̃n(ωR, ωµ)hR,µ(ωR, ωµ)

. (17)
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Then, customers process information only to reduce the uncertainty on their �prior� hR,µ|Q.

Naturally, when the queue is visible, for certain queue lengths, customers do not need to process

information at all. Let n=
⌊

(ωR−p)ωµ
C

⌋
and n=

⌊
(ωR−p)ωµ

C

⌋
denote the maximum and minimum �Naor�

thresholds based on the state space ΩR,µ. Clearly, customers join with probability 1 if queue length is

strictly less than n since the payo� of joining is positive even if service reward and rate are realized at

their lowest values. Similarly, customers balk with certainty if queue length is strictly greater than n.

Definition 4. In a visible queueing system with rationally inattentive customers with information

cost θ > 0, the equilibrium conditional probability of joining is

π̃n(ωR, ωµ) =
π̃ne

vn(ωR,ωµ)/θ

π̃nevn(ωR,ωµ)/θ + 1− π̃n
for n≤ n≤ n

where

π̃n =
∑
ΩR,µ

π̃n(ωR, ωµ)hR,µ|Q (ωR, ωµ|n)

is the unconditional joining probability when there are n customers in the system. π̃n(ωR, ωµ) = 1 if

n≤ n− 1 and π̃n(ωR, ωµ) = 0 if n≥ n+ 1.

De�nition 4 is quite di�erent than previous equilibrium de�nitions, and as such, the underlying

equilibrium model. In previous cases, it is su�cient for a customer to anticipate only the unconditional

joining fraction (π̃), as it uniquely determines conditional joining fractions, which, in turn, uniquely

de�ne the queue length distribution. Therefore, a simple �xed point search on a single variable is

su�cient to �nd the unique equilibrium. In the visible queue case, however, customers need to anticipate

unconditional joining fractions for each queue length state (between n and n) to form the correct

belief in (17). Accordingly, �nding the equilibrium requires solving a system of nonlinear �xed point

equations. Due to this, only the existence of an equilibrium is guaranteed.

Theorem 5. There exists an equilibrium that satis�es De�nition 4.

In a visible queue, customer behavior is more convoluted, and hence it is hard to draw unequivocal

throughput and welfare conclusions. Nevertheless, the construct is still instrumental in generating new

insights through comparative analysis. For instance, it is possible to compare equilibria when i) both

service rate and queue length are uncertain, ii) only service rate is uncertain, and iii) only queue

length is uncertain. Such a comparison would shed light on whether it is better for the �rm to provide

information on service speed or queue length. We give a �avor of these insights in Figure 12. First,

observe that �knowing more� (i.e., less uncertainty) does not necessarily lead to higher throughput.

Also, we consistently �nd that throughput is higher when customers learn queue length instead of

service speed, implying that providing visibility on service speed may be more e�ective for the �rm.
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Figure 12 Impact of learning service speed and/or queue length (R= 5.8, p= 0,C = 1, λ= 0.9,Ωµ = {0.5,0.6, ...,1.5})

8. Concluding Remarks

Limited attention is ubiquitous and learning is costly. In a queueing system, customers have to spend

time and cognitive resources to determine uncertain aspects of the environment, estimate associated

delays, and translate this information into decisions. As information is costly, rational customers need

to trade o� the bene�ts of information against the costs and have to make joining decisions based on

partial information. In this paper, we propose a framework that integrates these salient features. At

the core of our framework is rationally inattentive choice, linking customer beliefs, service rewards,

and information costs. We incorporate this into di�erent strategic queueing models, and establish

existence and uniqueness of an equilibrium for each case. Utilizing this framework, we provide a uni�ed

perspective and a comprehensive view on the e�ect of information cost (information prevalence) on

throughput, pricing and social welfare. Instead of replicating the descriptive results here, it is perhaps

better to summarize the managerial prescriptions they translate into.

When inattentive customers acquire information about uncertain queue length and expected delay,

our framework naturally connects the canonical visible and invisible queues studied in the extant

literature. In this case, our results suggest that �rms should be most cautious about customers' limited

attention and their information provision strategies when attractiveness of the service is not excessively

high or low, but in a moderate regime. In particular, when customers value a service reasonably well

and there is robust demand for it, service �rms should intentionally leave some uncertainty around

queue length, but not completely obstruct the information acquisition process. In this sense, Disney's

deployment of special layouts that partially disguise queue length prevails as a reasonable practice.

If �rm pro�ts are relatively more signi�cant compared to customer surplus, then this might even be

bene�cial from a total social welfare perspective. In stark contrast, for less congested �rms o�ering

a service that is not highly valued, partial hindrance of information acquisition is precisely what the

�rm should try to avoid. To the best of our knowledge, this has not been identi�ed and noted in

the extant literature. It is therefore in the interest of a public service o�ce with little congestion or
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a drive-through fast-food restaurant to deploy a completely visible queueing system. It may even be

better to completely obstruct the observation of the queue (if the physical environment allows).

These qualitative insights remain valid when the service is moderated by prices by a revenue-

maximizing �rm. The resulting social welfare, however, is lower than the optimal social welfare that

can be generated by a social planner. Interestingly, even though a revenue-maximizing service �rm may

still want to partially obstruct the observation of the queue length, the opaque queue that ensues from

this choice may result in the greatest social welfare losses.

Throughput bene�ts of limited attention and information frictions extend beyond the case where

customers aim to discern queue length upon arrival. It may also hold true when customers acquire

information on multiple dimensions of the service environment, as well as when the waiting room is

capacitated. Even when the queue is invisible (e.g., as in a call center), providing customers some

assistance on delineating service speed or service quality might be bene�cial. Our framework can

identify required conditions perspicuously, making it a useful tool for service design.
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Appendix

Proof of Lemma 1 Note that both equations in (10) can be obtained by a direct application of

KKT conditions, as in Proposition 1 in Caplin et al. 2016) which provides necessary and su�cient

conditions for a general rationally inattentive discrete choice problem with a given prior. Plugging

π= 0 and π= 1 in the �rst and second expressions in (10), we obtain (11). �

Proof of Theorem 1 We �rst show that the equilibrium in De�nition 1 is stable. Assume

that π̃ < 1 and θ ∈ [0,∞). Then note that steady-state queue distribution is well-de�ned as the

series
∑∞

k=1 ρ
kπ̃0π̃1...π̃k−1 =

∑∞
k=1 ak converges. By ratio test, note that lim

k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞
|ρπ̃k| =

lim
k→∞

∣∣∣ρ π̃evk/θ

1−π̃+π̃evk/θ

∣∣∣= 0 as vk→−∞ as k→∞. This is true for any �nite λ> 0. Note that when λ≥ µ,

equilibrium joining probability can not be 1 as expected waiting time for a customer is in�nite. When

θ=∞, the series is convergent if λ< µ. Now we prove the existence and uniqueness.

Existence: Let us de�ne conditional joining probability and prior queue length distribution as a function

of other customers' unconditional joining probability q:

πn (q) =
qevn/θ

1− q+ qevn/θ
(18)

g0(q) =

(
1 +

∞∑
k=1

ρkπ0 (q)π1 (q) ...πk−1 (q)

)−1

,

gn(q) = g0(q)ρnπ0 (q)π1 (q) ...πn−1 (q) for n≥ 1. (19)

Our aim is to show that there exists at least a point satisfying π (q) = q where

π (q) := arg max
π∈[0,1]

θ
∑
n≥0

gn (q) log
(
πevn/θ + 1−π

)
= arg max

π∈[0,1]

f (π; q) (20)

Let h (q) = π (q)− q. Note that πn (0) = 0 for all n≥ 0 and consequently g0(0) = 1 and gn(0) = 0 for all

n≥ 1. By (20), it is clear that π (0) = 1 since v0 > 0 by assumption. This gives h (0) = π (0) = 1> 0,

which is strictly positive. On the other hand, h (1) = π (1)− 1 ≤ 0 since π (1) ∈ [0,1] . Since h (q) is

continuous in [0,1] , by the intermediate value theorem, there exists a point q ∈ [0,1] satisfying h (q) = 0.

Uniqueness: To prove uniqueness, we show that h (q) is decreasing in q in the interval [0,1] . Note that

for given q ∈ [0,1] , f is concave in π. As shown in Mat¥jka and McKay (2015), there always exists

a solution to (20) and if the vectors evn/θ are linearly independent the solution is unique, which is

exactly our case since vn is strictly monotone in n. Taking partial derivative of f with respect to π gives

∂
∂π
f (π; q) = θ

∑
n gn (q)ϕn (π;θ) = θEG(q)ϕQ (π) where ϕQ (π) = e

vQ/θ−1

πe
vQ/θ+1−π

and Q∈N is the uncertain

queue length. Note that ϕQ (π) is decreasing in Q. Since Q(q) (with distribution G(q)) is stochastically

increasing in q by Lemma 2 and ϕQ (π) is decreasing in Q, EG(q)ϕQ (π) is also decreasing in q. This

means π̄(q), the maximizer of (20), is also decreasing in q. Therefore, there is a unique q∗ ∈ [0,1] that

satis�es π (q∗) = q∗. �
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Lemma 2. Q(q, θ) is stochastically increasing in q for given θ.

Proof. Let θ > 0 be �xed. Then note that πn(q, θ) is increasing in q for any n≥ 0 and consequently

g0(q, θ) is strictly decreasing in q. Additionally, if gn(q, θ) is increasing in q for any n≥ 1, gk(q, θ) is

also increasing in q for all k ≥ n due to the recursive relationship between steady-steady probabilities

of the queueing system, i.e., gn+1(q, θ) = ρgn(q, θ)πn(q, θ). Let k̂ ≥ 1 be the �rst integer such that

gk̂(q, θ) is increasing in q. Then gn(q, θ) is decreasing in q for all n≤ k̂− 1 and increasing in q for all

n ≥ k̂. The existence of k̂ is guaranteed as g0(q, θ) is strictly decreasing and
∑∞

n=0 gn(q, θ) = 1. Let

us �x n ≥ 0. If n ≤ k̂, then P (Q ≥ n) = 1−
∑n−1

i=0 gi(q, θ) is increasing in q. Similarly, if n ≥ k̂ + 1,

P (Q≥ n) =
∑∞

i=n gi(q, θ) is increasing n. Thus, Q(q, θ) is stochastically increasing in q. �

Proof of Corollary 1

1. By (12), as θ→ 0, πn→ 1 if vn > 0 and πn→ 0 if vn < 0. This is precisely the visible queue model

of Naor (1969) which results in a capacitated M/M/1/ne system. Hence, π̃= (1− ρne) (1− ρne+1)
−1
.

2. As θ →∞, (12) implies that in equilibrium π̃n = π̃ for all n ≥ 0 and by (6) , the problem is

the same as in that of invisible queues. More speci�cally, let us assume that other customers join

at each state with probability q. Then, a tagged customer's optimization problem in (6) reduces to

max
π
π (R− p−C/(µ−λq)) where 1/(µ−λq) is the expected waiting time for an M/M/1 system with

arrival rate λq. In this case, the unique equilibrium is the value of q that makes the expected utility

zero, i.e., (R− p−C/(µ−λq)) = 0, hence π = q. This is precisely the equilibrium in invisible queues.

Furthermore, if (R− p−C/(µ−λ))> 0, then clearly π= 1 and the result follows. �

Proof of Proposition 1 We prove this by contradiction. Let R1 <R2 and assume that there exists a

k≥ 0 such that π̃k (R1)> π̃k (R2) . Then, it is easy to verify that π̃n (R1)> π̃n (R2) for all n≥ 0 and con-

sequently G̃(R1)>st G̃(R2) since arrival rates at all states are greater when service reward is R1. Then

it follows that π̃(R1)> π̃(R2) since EG̃(R1)π̃Q (R1)>EG̃(R2)π̃Q (R2) due to the stochastic monotonicity

and π̃Q being decreasing in Q. Let ϕ̃Q(R) = e
vQ(R)/θ−1

π̃(R)e
vQ(R)/θ

+1−π̃(R)
. Then note that, EG̃(R1)ϕ̃Q (R1) = 0 due

to the optimality of π̃(R1) (which is actually the equilibrium and satis�es the �rst order condition).

Since ϕ̃Q(R) is decreasing in π̃(R) and increasing in R, we have 0 = EG̃(R1)ϕ̃Q(R1)< EG̃(R1)ϕ̃Q(R2).

Lastly, since ϕ̃Q(R) is decreasing in Q it follows that 0<EG̃(R1)ϕ̃Q(R2)<EG̃(R2)ϕ̃Q(R2) which is a con-

tradiction since π̃(R2) is the equilibrium when service reward is R2 and EG̃(R2)ϕ̃Q(R2) = 0. This means

π̃n(R1)< π̃n(R2) for all n≥ 0. It is still unclear whether this result implies π̃(R1)< π̃(R2). To show

this we use the rate-in equals rate-out principle for birth and death processes. Note that in equilibrium

λπ̃(R) = µ(1− g̃0(R)) must be satis�ed. Since π̃n(R1)< π̃n(R2) for all n≥ 0, g̃0(R1)> g̃0(R2) by (13).

Then it must be that π̃(R1)< π̃(R2). The same proof arguments follow for the other parameters.
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Proof of Proposition 2 Since π̃ is an equilibrium, it satis�es the �xed point equation π̃(θ) =

π(π̃(θ), θ). Using implicit di�erentiation on π̄, we have

d

dθ
π̃(θ) =

∂π (q, θ)/∂θ|q=π̃(θ)

1− ∂π (q, θ)/∂q|q=π̃(θ)

. (21)

Note that ∂π(q, θ)/∂q|q=π̃θ < 0 (check proof of Theorem 1) and consequently the denominator is posi-

tive. Therefore, it is enough to look at sign of the numerator. Let f(π, q, θ) be the objective function in

(20) and fx(x, q, θ) =EG(q, θ) e
vQ/θ−1

xe
vQ/θ+1−x

denote the partial derivative with respect to x. Using implicit

di�erentiation on fx (π (q, θ) , q, θ) = 0, we have

∂

∂θ
π (q, θ) =−

∂fx (x, q, θ)/∂θ|x=π(q,θ)

∂fx (x, q, θ)/∂x|x=π(q,θ)

.

Note that, since f is concave in x, we have ∂fx (x, q, θ)/∂x < 0 and the sign of ∂
∂θ
π (q, θ) is the same

as the sign of ∂fx (x, q, θ)/∂θ|x=π(q,θ) which can be written as

∂fx(x, q, θ)

∂θ |x=π(q,θ),q=π̃(θ)
=

∂

∂θ
EG(q,θ)

(
evQ/θ− 1

qevQ/θ + 1− q

)
|q=π̃(θ)

= lim
h→0

EG(π̃(θ),θ+h)

(
e
vQ/(θ+h)−1

π̃(θ)e
vQ/(θ+h)

+1−π̃(θ)

)
h

since fx
(
π̃(θ), π̃(θ), θ

)
= 0. Let us look at the sign of this limit for a �xed θ. Assuming λ < µ, the case

where π̃(θ) = 1 induces stochastically the largest distribution among all possible prior distributions

(which yields an M/M/1-type queue). Then we have

1−EGM/M/1

(
1

evn/(θ+h)

)
≤EGM/M/1

(
evn/(θ+h)− 1

π̃(θ)evn/(θ+h) + 1− π̃(θ)

)
≤EG(π̃(θ),θ+h)

(
evn/(θ+h)− 1

π̃(θ)evn/(θ+h) + 1− π̃(θ)

)
where the �rst inequality is due to the expression inside the expectation being decreasing in π̃(θ), and

the second inequality is due to M/M/1 being stochastically greater than G(π̃(θ), θ + h) for any θ.

Clearly, there exists an RH(θ)> p+C/µ value such that EGM/M/1

(
1

evn/(θ+h)

)
≤ 1 for all R>RH(θ) and

consequently EG(π̃(θ),θ+h)

(
evn/(θ+h)−1

π̃(θ)evn/(θ+h)+1−π̃(θ)

)
≥ 0. Now consider the case where ne = 1. In this case,

stochastically smallest distribution is given by anM/M/1/2-type queueing system where g0 = 1/(1+ρ)

and g1 = ρ/(1 + ρ) we have,

EG(π̃(θ),θ+h)

(
evn/(θ+h)− 1

π̃(θ)evn/(θ+h) + 1− π̃(θ)

)
≤ 1

(1 + ρ)

ev0/(θ+h)− 1

π̃(θ)ev0/(θ+h) + 1− π̃(θ)
+

ρ

(1 + ρ)

ev1/(θ+h)− 1

π̃(θ)ev1/(θ+h) + 1− π̃(θ)
.

Similarly, there must exist an RL(θ) > p+ C/µ value such that for all R < RL(θ), the last term is

negative, hence EG(π̃(θ),θ+h)

(
evn/(θ+h)−1

π̃(θ)evn/(θ+h)+1−π̃(θ)

)
≤ 0. This is true for any λ > 0. Since we have these

thresholds for given θ, there must also exists thresholds that work for all θ.
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Proof of Proposition 3 To show that customer utility in equilibrium is decreasing in information

cost, we use an following equivalent maximization problem that gives the equilibrium. Let Wc(Π, θ) =

EGΠ
[πQvQ]− c(Π,G, θ) where c(Π,G, θ) is as in (7). Equilibrium joining probability is found by solving

max
Π={πn;n≥0}

Wc(Π, θ) s.to πn ∈ [0,1] where G is given in (13). (22)

This is seen by noting that an equilibrium to the model in De�nition 1 is a feasible point to (22). Since

the equilibrium is unique, there is no way to improve the objective function and solving (22) gives the

equilibrium. The customer welfare in equilibrium is then denoted by Wc(Π̃
(θ), θ). Let θ1 < θ2. Since

Wc(Π, θ) is decreasing in θ, we have Wc(Π̃
(θ2), θ2) =EG

Π̃(θ2)
πnvn− c(Π̃(θ2),GΠ̃(θ2) , θ2)<EG

Π̃(θ2)
πnvn−

c(Π̃(θ2),GΠ̃(θ2) , θ1). By optimality of Π̃(θ1), we have EG
Π̃(θ2)

πnvn − c(Π̃(θ2),GΠ̃(θ2) , θ1) ≤ EG
Π̃(θ1)

πnvn −

c(Π̃(θ1),GΠ̃(θ1) , θ1). Hence, Wc(Π̃
(θ2), θ2)≤Wc(Π̃

(θ1), θ1).

Proof of Theorem 2 Using necessary and su�cient conditions in Lemma 1, for a given belief g0

(steady-state probability of zero customers in the system), the solution to the rational inattention

problem with v0 =R− p− C
µ
> 0 and v1 =−T is

π=


0 if g0

1−ev1/θ
− 1−g0

ev0/θ−1
< 0

1 if g0
1−ev1/θ

− 1−g0
ev0/θ−1

> 1
g0

1−ev1/θ
− 1−g0

ev0/θ−1
otherwise.

. (23)

Noting g̃0 = (1 + ρπ̃0)
−1
, the �rst element in (15) is the solution to the �xed point equation

1

1+ρ π∗ev0/θ

1−π∗+π∗ev0/θ

1− ev1/θ
−

1− 1

1+ρ π∗ev0/θ

1−π∗+π∗ev0/θ

ev0/θ− 1
= π∗.

Note that this point can not be negative since v0 is assumed positive. However, it can be greater than

one and in this case the unique equilibrium point is in the boundary, i.e., π∗ = 1. �

Proof of Proposition 4

(1) Let us rewrite the �rst element in π̃ in (15) as

π̃=

(
ev0/θ− 1

)
(eT/θ− 1) (ρe(v0−T )/θ + e(v0−T )/θ− e−T/θ)

.

When v0 ≥ T, it is clear that
(
ev0/θ− 1

)
/
(
eT/θ− 1

)
is increasing in θ. Furthermore, the denominator is

decreasing in θ, which makes π̃ increasing. When v0 <T, on the other hand, π̃ may not be monotone,

yet, π̃ is maximum when θ= 0. To show this, let us �rst denote π̃ (θ) as a function of information cost.

Assume to the contrary that for some θ > 0, π̃ (0)< π̃ (θ) , i.e.

1

1 + ρ
<

(
ev0/θ− 1

)
(1− e−T/θ) (ρev0/θ + ev0/θ− 1) .
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After some manipulation, it reduces to

ρ<
e(v0−T )/θ− e−T/θ

(1− e(v0−T )/θ)
.

Note that for v0 <T, the right hand side is increasing in θ and in the limit

lim
θ→∞

e(v0−T )/θ− e−T/θ

(1− e(v0−T )/θ)
= lim

θ→∞

(v0−T )/θe(v0−T )/θ +T/θe−T/θ

− (v0−T )/θe(v0−T )/θ
=

v0

T − v0

.

However, π̃ (0)> π̃ (∞) when ρ> v0/ (T − v0) which is a contradiction.

(2) For any θ ≥ 0, throughput is λπ̃0/ (1 + ρπ̃0) = λ/ (1/π̃0 + ρ) . When θ = 0, throughput is

λ/ (1 + ρ) . Since π̃0 ∈ [0,1], λ/ (1 + ρ)≥ λ/ (1/π̃0 + ρ) . �

Proof of Theorem 3 Let us de�ne conditional joining probabilities as a function of queue

length n, service reward ωR, service rate ωµ and unconditional joining strategy q as πn(q;ωR, ωµ) =

qevn(i,j)/θ

1−q+qevn(ωR,ωµ)/θ with corresponding queue length distribution

g0(q;ωR, ωµ) =

(
1 +

∞∑
n=1

ρnj π0(q;ωR, ωµ)π1(q;ωR, ωµ)...πn−1(q;ωR, ωµ)

)−1

,

gn(q;ωR, ωµ) = g0(q;ωR, ωµ)ρnωµπ0(q;ωR, ωµ)π1(q;ωR, ωµ)...πn−1(q;ωR, ωµ) for n≥ 1.

Note that πn(q;ωR, ωµ) is increasing in q for all n≥ 0. Then, exactly as in Lemma 2, G(q;ωR, ωµ) is

stochastically increasing in q as a distribution. Now, consider the following maximization problem:

π(q) = arg max
π∈[0,1]

θ ∑
(n,ωR,ωµ)∈Ω

gn(q;ωR, ωµ)hR,µ (ωR, ωµ) log
(
πevn(ωR,ωµ)/θ + 1−π

) (24)

whose �rst order derivative with respect to decision variable π is

θ
∑

(ωR,ωµ)∈ΩR,µ

hR,µ(ωR, ωµ)
∞∑
n=0

gn(q;ωR, ωµ)

[
evn(ωR,ωµ)/θ− 1

πevn(ωR,ωµ)/θ + 1−π

]
. (25)

Since the term inside the brackets is decreasing in n and G(q;ωR, ωµ) is stochastically increasing in q, its

expectation with respect to G(q;ωR, ωµ) is decreasing. This in turn implies that (25) and consequently

π(q) is decreasing in q. Then it follows that there exists a unique q∗ ∈ [0,1] that satis�es π (q∗) = q∗. �

Proof of Theorem 4 Note that given unconditional joining probability q, one needs to solve

π(q,ωR, ωµ) =
qev(q,ωR,ωµ)/θ

qev(q,ωR,ωµ)/θ + 1− q
(26)

where v(q,ωR, ωµ) = ωR− p− C
(ωµ−λπ(q,ωR,ωµ))+

for π(q,ωR, ωµ) to arrive at consistent conditional join-

ing probabilities π(q,ωR, ωµ). Since v(q,ωR, ωµ) is decreasing in π(q,ωR, ωµ), so the right hand side

of (26). Since the left hand side is increasing and both sides are in [0,1], the solution is unique.
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Then we can compute the utilities v(q,ωR, ωµ) consistent with q. Finally, we �nd the correspond-

ing rationally inattentive behaviour (implied unconditional joining probability) by solving π(q) =

arg max
π∈[0,1]

∑
(ωR,ωµ)∈ΩR,µ

hR,µ(ωR, ωµ) log
[
πev(q,ωR,ωµ) + 1−π

]
. Then it is easy to see that π(q) is decreas-

ing in q since the �rst order derivative of the objective function is decreasing in q which is a direct

consequence of the consistent utilities being decreasing in q. Since π(q) maps [0,1] to [0,1], there exists

a unique point where π(q) = q which is the equilibrium point. �

Proof of Theorem 5 Let q= {qk;n≤ k≤ n} be a queue-dependent unconditional joining strategy.

Since π̃n = 1 for n < n and π̃n = 0 for n > n, we de�ne conditional queue length distribution as a

function of q as

g̃0(q,ωR, ωµ) =

(
1 +

n+1∑
i=1

ρiωµqnqn+1...qi−1

)−1

g̃k(q,ωR, ωµ) = g̃0(q,ωR, ωµ)ρnωµqnqn+1...qk−1 for 1≤ k≤ n

and the corresponding prior belief given q as hR,µ|Q (q,ωR, ωµ | ·) which is given in (17). We also de�ne,

πk (q) = arg max
π∈[0,1]

θ
∑
ΩR,µ

hR,µ|Q (q,ωR, ωµ | k) log
(
πevk(ωR,ωµ)/θ + 1−π

)
for n≤ k≤ n.

Let m= n−n+1 and de�ne π : [0,1]m→ [0,1]m such that π(q) = (πn(q), πn+1(q), ..., πn(q)). Then note

that �nding equilibrium joining strategies is equivalent to �nding the �xed points of the function π. It

can be shown that πk : [0,1]m→ [0,1] is a continuous function. Hence, π is also continuous. Furthermore,

π maps points from a convex compact set to the points in the same set. Therefore, by Brouwer Fixed

Point Theorem, it must have a �xed point in [0,1]m �

Stability of the Equilibrium

We now show how the equilibrium in De�nition 1 can be attained in an adaptive way. We use time

periods indexed as t∈ {0,1,2, ...} and assume that each period is long enough for the system to reach

steady-state. At t = 1 we assume that customers start with an arbitrary belief about percentage of

joining customers q0 by which they form their prior belief G(q0) on queue length which is de�ned

in (19). Customers' best response in period t = 1 given G (q0) is then q1 = π (q0) which is de�ned in

(20) . At any period t≥ 1, customers use the average of joining fractions of previous periods to form

their belief about queue length distribution. More speci�cally, their prior at period t is G
(∑t−1

k=0 qk/t
)

and the resulting unconditional joining probability is qt = π
(∑t−1

k=0 qk/t
)
. In the following proposition,

we show that customer behaviour qt converges to the equilibrium joining probability q∗ that satis�es

π (q∗) = q∗, i.e., equilibrium given in De�nition 1. Here we also remark that the equilibrium can also be

achieved if customers weight observations from more recent generations more heavily using a geometric

distribution (as in anecdotal reasoning model of Huang and Chen (2015)).
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Proposition 5. The sequence q= {qt; t≥ 0} converges to q∗ which satis�es π (q∗) = q∗.

Proof Let xt =
∑t−1

k=0 qk/t. Then qt = π(xt) and

qt = π (xt) = π

(
1

t

t−2∑
k=0

qk +
1

t
qt−1

)
= π

((
t− 1

t

)
xt−1 +

1

t
qt−1

)
= π

(
xt−1 +

(qt−1−xt−1)

t

)
= π

(
xt−1 +

(π (xt−1)−xt−1)

t

)
This means that if qt−1 = π (xt−1)> xt−1, qt < qt−1 and if qt−1 = π (xt−1)< xt−1, qt > qt−1. Note that

if π(xt−1) = xt−1 for some t∗ ≥ 1, then qt = π (xt) = π (xt−1) , for all t≥ t∗ and �xed point is achieved,

i.e., q∗ = xt∗−1. Otherwise,
(π(xt−1)−xt−1)

t
→ 0 as t→∞ and π (xt)→ π (xt−1) , i.e., x converges to the

�xed point q∗.
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Figure 13 Convergence to the system equilibrium (R= 3.8, p= 0,C = 1, µ= 1, λ= 0.9)

In Figure 13, we provide an illustrative example on convergence to the equilibrium for two di�erent

information cost values. We arbitrarily assume that customers at period t= 1 start constructing their

beliefs using q0 = 0.5. The horizontal line represents the true equilibrium value in these �gures. Note

that customers construct the true belief and hence equilibrium is reached very quickly. As θ gets higher,

convergence speed gets slightly slower.
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