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Abstract

Massive Multiple-Input Multiple-Output (MIMO) systems are envisioned for employment

in the upcoming generations of wireless communication networks. The characteristic of

these systems is the use of a large number of antenna elements (M " 1) in the Base

Station (BS) array, that enables data transmission to several users via spatial multiplexing.

These systems enjoy favorable communication properties including energy efficiency due to

channel hardening and large beamforming gain, suppression of the inter-cell interference,

and a simplified user scheduling and rate adaptation.

In allocating time-frequency resources for Uplink-Downlink (UL-DL) transmission, a

massive MIMO BS can operate in two principal modes: Time Division Duplexing (TDD),

and Frequency Division Duplexing (FDD), where in the former UL-DL data transmission

occurs over disjoint time intervals and in the latter it occurs over disjoint frequency bands.

This dissertation is dedicated to the study of various signal processing aspects in realizing

an FDD massive MIMO system. These systems comprise an interesting topic of research,

not only due to their favorability in symmetric-traffic and delay-sensitive communication

scenarios, but also due to their widespread implementation in the existing cellular net-

works. The benefits of FDD massive MIMO systems, however, come at the cost of a more

challenging signal processing task as compared to TDD systems. Due to a lack of UL-DL

channel reciprocity, it is more difficult for the BS to obtain fresh channel state information

(CSI) for effective DL transmission, which is conventionally achieved via training of the

DL channels by transmitting pilot sequences to the users and receiving their closed-loop

feedback. In a massive MIMO scenario where the signal dimension is large, this bur-

dens the system with a sizeable training and feedback overhead, which may exhaust the

time-frequency resources, resulting in a poor DL data rate.

In this dissertation, we address several aspects of the mentioned issues, by analysing

relevant theoretical problems as well as proposing efficient practical algorithms to solve

them. In particular, first we study the problem of channel covariance estimation from

limited pilot samples (either in UL or in DL), in which the goal is to enable an efficient

estimation of the high-dimensional channel covariance with the relatively small pilot di-

mension, where we propose two efficient estimators. Second, we study the problem of

estimating the DL channel covariance from the available UL channel covariance. We de-
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rive universal minimax error bounds for this UL-DL covariance “transformation” and we

propose an algorithm for performing the transformation. Finally, we address the problem

of multi-user DL precoding in an FDD massive MIMO system, in which the goal is to

train the high-dimensional user channels with a given, limited DL pilot dimension. Our

suggested technique, coined as active channel sparsification does not rely on the typical

channel sparsity assumptions and is shown to outperform the state-of-the-art methods in

the literature.
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Zusammenfassung

Massive Multiple-Input Multiple-Output (MIMO) Systeme sind für den Einsatz in den

zukünftigen Generationen von drahtlosen Kommunikationsnetzen vorgesehen. Charakte-

ristisch für diese Systeme ist die Verwendung einer großen Anzahl von Antennenelemen-

ten (M " 1) im Basisstation (BS) Array, das die Datenübertragung an mehrere Benut-

zer über räumliches Multiplexing ermöglicht. Diese Systeme weisen günstige Kommuni-

kationseigenschaften auf, darunter eine Energieeffizienz durch Kanalhärtung und großen

Strahlformungsgewinn, Unterdrückung der Interzellularinterferenz und eine vereinfachte

Benutzerplanung und Ratenanpassung.

Bei der Zuweisung von Zeit-Frequenz Ressourcen für die Uplink-Downlink (UL-DL)

Übertragung kann ein massive MIMO BS in zwei Hauptmodi arbeiten: Time Division

Duplexing (TDD) und Frequency Division Duplexing (FDD), wobei im ersteren Fall die

UL-DL Datenübertragung über disjunkte Zeitintervalle und im letzteren Fall über disjunk-

te Frequenzbänder erfolgt. Diese Dissertation ist der Untersuchung verschiedener Aspekte

der Signalverarbeitung bei der Realisierung eines FDD massive MIMO System gewid-

met. Diese Systeme stellen ein interessantes Forschungsthema dar, nicht nur wegen ihrer

Nutzlichkeit bei symmetrischem Verkehr und verzögerungsempfindlicher Kommunikations-

zenarien, sondern auch aufgrund ihrer weit verbreiteten Implementierung in den bereits

bestehenden zellularen Netzwerken. Die Vorteile von FDD massivs MIMO Systemen gehen

jedoch auf Kosten einer anspruchsvolleren Signalverarbeitung im Vergleich zu TDD Syste-

men. Aufgrund mangelnder Reziprozität der UL-DL Kanäle ist es für die BS schwieriger,

aktuelle Kanalstatusinformationen (CSI) für eine effektive DL Übertragung zu erhalten,

welche konventionell durch Training der DL Kanäle erreicht wird, indem Pilotsequenzen an

die Benutzer übertragen und deren Feedback in geschlossener Schleife empfangen werden.

In einem massiven MIMO-Szenario, in dem die Signaldimension umfangreich ist, belas-

tet dies das System mit einem beträchtlichen Trainings- und Feedback-Overhead, der die

Zeit-Frequenz Ressourcen erschöpfen kann, was zu einer schlechten DL-Datenrate führt.

In dieser Dissertation untersuchen wir mehrere Aspekte der zuvor genannten Themen,

indem wir sowohl relevante theoretische Probleme analysieren als auch effiziente prakti-

sche Algorithmen zu deren Lösung vorschlagen. Insbesondere untersuchen wir zunächst

das Problem der Kanalkovarianzschätzung aus kleinen Pilotstichproben (entweder in UL
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oder in DL), wobei das Ziel darin besteht, eine effiziente Schätzung der hochdimensionalen

Kanalkovarianz mit einer relativ kleinen Pilotdimension zu ermöglichen, wobei wir zwei

effiziente Methoden vorschlagen. Zweitens untersuchen wir das Problem der Schätzung der

DL-Kanal-Kovarianz aus der verfügbaren UL-Kanal-Kovarianz. Wir universelle Minimax-

Fehlergrenzen für diese UL-DL-Kovarianz “Transformation” ab und schlagen einen Al-

gorithmus zur Durchführung der Transformation vor. Schließlich befassen wir uns mit

dem Problem der Mehrbenutzer-DL-Precodierung in einem FDD-Massiv-MIMO-System,

bei dem das Ziel darin besteht, die hochdimensionalen Nutzerkanäle mit einer begrenz-

ten DL-Pilotdimension zu trainieren. Die von uns vorgeschlagene Technik, die als active

channel sparsification bezeichnet wird, beruht nicht auf den typischen Kanalsparsamkeits-

annahmen und übertrifft nachweislich die modernen Methoden der Literatur.
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1 Introduction

Multi-usermultiple-input multiple-output (MIMO) consists of employing multiple antennas

at the Base Station (BS), in order to multiplex several data streams over the spatial domain

to multiple users sharing the same time-frequency transmission resource (time slots and

frequency bands). For a block-fading channel with spatially independent fading, the fading

channel coefficients can be considered constant over a time-frequency coherence block of

T symbols [123]. For such a channel, the high-SNR sum-capacity behaves according to

CpSNRq “ M˚p1 ´M˚{T q log SNR `Op1q (1.1)

where M˚ “ mintM,K, T {2u, M denotes the number of BS antennas, and K denotes the

number of single-antenna users [1, 82,141]. The pre-log factor in this expression indicates

the number of spatial-domain data streams supported by the system, such that each

stream has a spectral efficiency that behaves as an interference-free Gaussian channel, i.e.,

log SNR`Op1q. In practice, although the system may be interference-limited (e.g., due to

inter-cell interference in multi-cell wireless systems), a well-designed system would exhibit

a regime of practically relevant SNR for which its sum-rate behaves as an affine function

of log SNR [78].

When M and the number of users are potentially very large, the system pre-log factor

is maximized by serving K “ T {2 data streams (users). While any number M ě K of

BS antennas yields the same (optimal) pre-log factor, a key observation made in [83] is

that, when training a very large number of antennas comes at no additional overhead

cost, it is indeed convenient to use M " K antennas at the BS. In this way, at the cost

of some additional hardware complexity, very significant benefits at the system level can

be achieved. These include: i) energy efficiency (due to the large beamforming gain);

ii) inter-cell interference reduction; iii) a dramatic simplification of user scheduling and

rate adaptation, due to the inherent large-dimensional channel hardening [75]. Systems for

which the number of BS antennas (M) is much larger than the number of DL data streams

(K) are generally referred to as massive MIMO (see [75, 83, 84] and references therein).

Massive MIMO has been the object of intense research investigation and development

and is expected to be a cornerstone of the forthcoming 5th generation of wireless/cellular

systems [13].
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1 Introduction

In order to achieve the benefits of massive MIMO, the BS must learn the Downlink (DL)

channel coefficients for K users and M " K BS antennas. For Time Division Duplexing

(TDD) systems, due to the inherent Uplink-Downlink (UL-DL) channel reciprocity [82],

this can be obtained from K mutually orthogonal UL pilots transmitted by the users.

Unfortunately, the UL-DL channel reciprocity does not hold for Frequency Division Du-

plexing (FDD) systems, since the UL and DL channels are separated in frequency by much

more than the channel coherence bandwidth [123]. Hence, unlike TDD systems, in FDD

the BS must actively probe the DL channel by sending a common DL pilot signal, and

request the users to feed their channel state back.

In order to obtain a “fresh” channel estimate for each coherence block, Tdl out of T

symbols per coherence block must be dedicated to the common DL pilot transmission.

Assuming (for simplicity of exposition) a delay-free channel state feedback, the resulting

DL pre-log factor is given by Kˆmaxt0, 1´Tdl{T u, where K is the number of served users,

and maxt0, 1´Tdl{T u is the penalty factor incurred by DL channel training. Conventional

DL training consists of sending orthogonal pilot signals from each BS antenna. Thus, in

order to train M antennas, the minimum required training dimension is Tdl “ M . Hence,

with such scheme, the number of BS antennas M cannot grow arbitrarily large. For ex-

ample, consider a typical scenario in an LTE system [111], where the BS schedules groups

of users over resource blocks spanning 14 OFDM symbols ˆ 12 subcarriers, for a total

dimension of T “ 168 symbols in the time-frequency plane. Consider a typical massive

MIMO configuration serving K „ 20 users with M ě 200 antennas (e.g., see [79]). In this

case, the entire resource block dimension would be consumed by the DL pilots, leaving

no room for data communication. Furthermore, feeding back the M -dimensional mea-

surements (or estimated/quantized channel vectors) represents also a significant feedback

overhead for the UL [19,63,69,77,137].

While the argument above is kept informal on purpose, it can be made information-

theoretically rigorous. The main issue is that, if one insists to estimate the KˆM channel

matrix in an “agnostic” way, i.e., without exploiting the channel’s fine structure, a hard

dimensionality bottleneck kicks in and fundamentally limits the number of data streams

that can be supported in the DL by FDD systems. It follows that gathering “massive

MIMO gains” in FDD systems is a challenging problem. Despite this fact, FDD massive

MIMO may be preferred to its TDD counterpart due to the following reasons:

• Current wireless networks are mostly based on FDD. Such systems are easier to

operate and more effective than TDD systems in situations with symmetric traffic

and delay-sensitive applications [23,62,98]. Besides, converting current FDD systems

to TDD would represent a non-trivial cost for wireless operators.

2



1.1 Outline and Contributions

• TDD massive MIMO systems are prone to system imperfections such as calibration

errors in UL and DL RF chains. These result in the issue that estimating the

DL channel from the UL channel by leveraging channel reciprocity may not be

accurate [11,49,96], and therefore it is too optimistic to expect the results predicted

by theory for these systems to hold in practice.

• In a noise-limited transmission scenario, an FDD system shows a 3-dB SNR advan-

tage compared to a TDD system [84]. Let BW denote the total system bandwidth

(sum of UL and DL bandwidths), P the received power at the user side and N0 the

noise spectral density. In TDD, the DL sum-rate is given by BW
2 log2

´

1 ` P
BWN0

¯

,

where the 1{2 factor appears in the pre-log term, since transmission takes place over

the full bandwidth but only half of the time. In contrast, the DL sum-rate in a FDD

system is given by BW
2 log2

ˆ

1 ` P
BW
2

N0

˙

, where the 1{2 factor appears both in and

outside the logarithm, since transmission is performed continuously in time but only

over half of the bandwidth. This results in the mentioned 3-dB advantage of FDD

over TDD.

With these motivations in mind, researchers have devoted a significant effort to reduce the

common DL training dimension and feedback overhead in order to materialize significant

massive MIMO gains also for FDD systems.

1.1 Outline and Contributions

This dissertation addresses three major problems in realizing an FDD massive MIMO sys-

tem, with the eventual goal that the BS can enjoy the advantages of massive MIMO in

FDD mode with as small training and feedback overhead as possible. The three elements

of our work are listed as follows.

I. Channel Covariance Estimation

Channel covariance knowledge is crucial for minimum mean squared error (MMSE) in-

stantaneous channel estimation as well as for designing efficient channel training schemes

and, in a multi-user setup, for precoder design [90, 139]. In order to obtain covariance

information, the BS typically probes the instantaneous channel across multiple coherence

blocks by sending/receiving pilots to/from the user. With low or moderate array size, the

number of available pilots exceeds the channel dimension, and this enables the BS to reli-

ably estimate the covariance using the simple unbiased sample covariance [12]. However,

with a massive array, the channel dimension is large (M " 1) and may be comparable

3



1 Introduction

with the pilot dimension pM „ Nq. It is well-known that in such a regime, the sample

covariance can be substantially improved by exploiting the covariance structure which

narrows down the set of admissible estimands [15]. We propose two covariance estimation

methods that exploit the structure of a MIMO covariance to estimate it from a noisy chan-

nel sample set of a size that is comparable to the channel dimension. The first method

is based on solving a (convex) non-negative least-squares (NNLS) problem [113], and the

second method is based on maximum likelihood (ML) estimation of the coefficients of a

carefully-designed parametric approximation of the covariance. These estimators rely on

the key observation that the channel covariance can be seen as the inner product of the

array manifold with a non-negative measure over the angle domain, which we call the

angular scattering function (ASF) that is independent from the array geometry. Given

a sample set, one can solve an inverse problem to estimate the ASF and then use it for

covariance estimation. The proposed methods can be used either for UL or DL channels,

and both in FDD and TDD modes. We develop the mentioned methods in Chapter 2

and empirically evaluate their performances.

II. Uplink-Downlink Channel Covariance Transformation

Downlink channel covariance estimation in FDD mode is particularly challenging, since

unlike TDD the BS does not naturally receive full-dimensional channel samples, as this

must be done via DL probing (pilot transmission) and closed-loop UL feedback. Collecting

enough channel samples for a reliable DL covariance estimation in the massive MIMO

regime imposes a large overhead on the system [26, 46]. However, the BS receives UL

pilots during UL, enabling an accurate estimation of the UL covariance. It is then desirable

to seek a way to deduce DL covariance information from its UL counterpart. Not that,

even the UL and DL covariance matrices are not identical in FDD mode, since the array

response varies from the UL band to the DL band.

A variety of recent works have proposed techniques for UL-DL covariance transforma-

tion1, by employing specific channel models [32, 35, 54, 56]. In most of these works the

transformation algorithm is heuristic and relies on restrictive structural assumptions such

as channel sparsity. Also a principled analysis of the limitations of covariance transfor-

mation for a general class of MIMO covariances is missing.2 In Chapter 3 we derive

minimax bounds on the error of estimating the DL covariance from the observation of

1The term “transformation” appears in different sources by different synonyms, such as conversion, in-
terpolation, and extrapolation [22,34].

2After the publication of our paper based on the material of this chapter, a number of works addressed
this problem in similar generality and with different error metrics (see [22, 86, 87]). These works will
be discussed on the side of the core material of this chapter.

4



1.1 Outline and Contributions

the UL covariance, where the bound is given per covariance entry (for a large portion of

the entries), and holds for any channel angular scattering function for all estimators that

satisfy minimal properties (namely, non-negativity and data-consistency constraints). Our

result relies on a standard assumption of channel angular reciprocity [40, 59], such that

the angular scattering function is considered to be invariant over UL and DL frequency

bands. We also propose a transformation method based on NNLS that first estimates the

angular scattering function from the UL covariance and, combined with a change of basis,

uses it to estimate the DL covariance. We provide extensive empirical results to compare

our covariance transformation method to those suggested in the literature.

III. Downlink Precoding

In a multi-user MIMO system, the BS needs to probe instantaneous user channels (via

pilot transmission) and design a precoder that mitigates inter-user interference [3, 139].

As mentioned earlier, in a massive MIMO regime the channel dimension can potentially

be larger than the dimension of the fraction of the channel coherence block dedicated to

pilot transmission (M ą Tdl). In this case, the BS has to estimate the channel h from

a set of (noisy) linear feedback pilot measurements y “ Φh ` z, where Φ P CTdlˆM is

the pilot matrix [98]. In order to solve this under-determined system of equations, several

works have proposed exploiting the hypothetical [12] sparse structure of the massive MIMO

channel and using compressed sensing (CS) methods to recover the channel [71, 98, 112].

However, when the channel degrees of freedom s (number of non-zero coefficients in the

sparsity domain) is larger than a certain threshold this strategy results in poor channel

estimates. Standard CS theory states that stable sparse signal reconstruction is possible

using Tdl “ Ops logMq measurements, so when Tdl ă s logM , one can not stably recover

h from y. In other words, CS-based methods are at the mercy of nature, in the sense that

they would fail under circumstances in which the channel is not sparse enough, e.g. in the

case of rich scattering environments.

In order to allow stable channel estimation with a given pilot dimension Tdl, in Chapter

4 we propose active channel sparsification (ACS), a novel method that uses the DL co-

variance information of all users to design an optimal sparsifying precoder. This is a linear

transformation that depends only on the channel second order statistics (estimated DL

covariances) that imposes that the effective channel matrix (including the precoder) has

large rank and yet each column has sparsity not larger than Tdl. In this way, our method is

not at the mercy of nature, i.e. it is flexible with respect to various types of environments

and channel sparsity orders. We cast the optimization of the sparsifying precoder as a
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matching-size maximization problem over a user-virtual beam bipartite graph and solve

it using a mixed-integer linear program (MILP) [91].

To extend the ACS to arbitrary array geometries (other than the ULA), in Chapter 4

we also propose a method of MIMO virtual beam design that can serve as a common spatial

eigenbasis for all user channels. This method is based on maximizing the likelihood of a

unitary matrix that (approximately) jointly diagonalizes the covariances of all users, given

a set of noisy pilot samples– i.e., without accurate covariance information. We implement

the optimization problem via a projected gradient descent algorithm and we show that it

converges to a stationary point of the likelihood function. The common eigenbasis in turns

enables modeling of the user-virtual beam bipartite graph and application of the ACS.
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1.2 Notation and Abbreviations

We denote scalars, vectors, matrices and sets by lower case letters, lower case bold letters,

upper case bold letters and calligraphic letters, i.e., x, x, X, X , respectively. Real and

complex scalars are denoted by R and C, respectively. The natural numbers are denoted

by N “ t1, 2, . . .u and the non-negative integers by Z`. For a non-negative integer n,

the set t0, 1, . . . , n ´ 1u is represented by Zn. We denote the d-dimensional non-negative

orthant by Rd
`, dropping the exponent for d “ 1. The cone of d-dimensional positive

semidefinite (PSD) matrices, Toeplitz Hermitian matrices, and Toeplitz PSD matrices are

denoted by Sd
`, TM , and TM

` , respectively. Unless otherwise defined, we refer to the i-th

element of a vector x by rxsi, and to the pi, jq-th element of a matrix X by rXsi,j . The

i-th row of X is denoted by Xi,¨ and its j-th column by X¨,j . Superscripts p¨q˚, p¨qT, p¨qH,

p¨q´1, and p¨q: represent the complex conjugate, transpose, conjugate transpose, inverse

and Moore-Penrose pseudo-inverse, respectively. The Kronecker product is denoted by b.

For a matrix X of dimension mˆ n, the vector vecpXq of dimension mnˆ 1 is composed

by stacking the columns of X on top of each other. For a vector vector x, the symbol

diagpxq denotes a matrix with x as its main diagonal. For the same vector, given that

its first element is a real scalar, T pxq denotes a Hermitian Toeplitz matrix with x as its

first column. The trace and determinant of a square matrix X, are denoted by trpXq and

detpXq, respectively. The ℓp norm of a vector x is referred to as }x}p, where for simplicity

we drop the subscript for the case of p “ 2. The Frobenius norm of a matrix X is denoted

by }X}F.
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Abbreviations

3GPP 3rd Generation Partnership Project

ACS active channel sparsification

AoA angle-of-arrival

AWGN additive white Gaussian noise

BS base station

CSI channel state information

CSIT channel state information at the transmitter

DL Downlink

FDD frequency division duplexing

iff if and only if

JSDM joint spatial division and multiplexing

LoS Line of Sight

MIMO Multiple-Input Multiple-Output

ML maximum likelihood

MUSIC MUltiple Signal Classification method

MSE mean square error

NNLS non-negative least-squares

OFDM Orthogonal Frequency Division Multiplexing

PGD projected gradient descent

PSD positive semi-definite

SDP semi-definite program

SINR signal to sum of noise and interference ratio

SNR signal to noise ratio

TDD time division duplexing

UL Uplink

w.l.o.g without loss of generality
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2 Channel Covariance Estimation

2.1 Problem Statement

Consider a MIMO system in which a BS is equipped with a ULA consisting of M equi-

spaced antennas and communicates with a single-antenna user. During UL transmission,

the user sends a number N of pilot symbols to the BS, one per time-frequency coherence

block. The signal received at the BS at each of these transmissions can be expressed

as [123]

yris “ hrissris ` zris P CM , i P ZN , (2.1)

where hris P CM is a realization of the narrow-band random channel vector h which

contains the random channel gains associated with the M antenna elements, sris P C

is a symbol chosen from a constellation, and zris P CM is the zero-mean additive white

Gaussian noise (AWGN) vector with ErzzHs “ N0IM . Since the BS knows the pilot

symbol a priori, we can assume without loss of generality (w.l.o.g), that sris “ 1 for all i P

ZN . Note that, taken at distinct channel coherence blocks, thrisui represent independent

realizations. Assuming zero mean and the existence of the second-order statistics, the BS

aims at estimating the channel covariance matrix,

Σ “ E
”

hhH
ı

. (2.2)

When the number of samples is much larger than the channel dimension pN " Mq, a

simple estimator such as the sample covariance

pΣ “
1

N

ÿ

iPZN

yrisyrisH ´N0I, (2.3)

provides a reliable estimate of the covariance. However, with massive antenna arrays, the

channel dimension is much larger than one (M " 1) and is typically of the same order as

the sample size (M „ N); in an extreme case we may even have N ă M . In these regimes,

it is well-known that the sample covariance yields a poor estimate (unless the channel is

extremely correlated and has too few degrees of freedom).
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The purpose of this chapter is to propose practical methods for estimating the channel

covariance from a noisy sample set with cardinality that is comparable to the number of

antennas.

2.2 Related Work

The problem of covariance estimation from a random sample set is a classical problem in

statistics and has applications in various branches including wireless communications. The

older view on covariance estimation considers a case in which the number of samples is

much larger than the signal dimension (N " M), and perhaps tends to infinity, while the

signal dimension is kept constant. In a communication scenario, typically the number of

observed (noisy) channel samples is limited by the pilot dimension, which is itself limited

by the dimension of the time-frequency tile over which the channel covariance remains

(approximately) constant. Therefore, for a massive MIMO channel with M " 1 antennas,

it is more reasonable to consider a case in which the sample size is comparable to the

channel dimension (N „ M). In this case, the behavior of standard covariance estimators

such as the sample covariance changes. An asymptotic study of this behavior dates back to

the sixties and seventies [81,133]. More recent research has focused on the non-asymptotic

regime, in which both the signal dimension and the sample size are assumed finite [130,131].

It is widely accepted that in the case of structured covariance matrices, such as sparse or

low-rank covariances, or covariances with banded decay, one can achieve faster rates of

convergence (in terms of the sample size), either with the simple sample covariance or

more sophisticated estimators, such as thresholding and tapering estimators [10,16,42].

On the algorithmic side, several recent works have proposed decent channel covariance

estimation methods for massive MIMO. These works typically exploit an assumed struc-

ture on the multipath channel to derive their results: super-resolution techniques have

been developed by assuming the channel to consist of discrete, separable multipath com-

ponents [27]. A different type of estimators assumes the channel to be sparse in the angle

domain, that is to say, the number of contributing multipath components is much less

than the channel dimension. These works suggest sparse recovery methods to estimate

the angle-of-arrival (AoA) and power parameters of the multipath components via, for

example, greedy methods such as orthogonal matching pursuit (OMP) [76,92,95], ℓ1-norm

regularization [17, 99], the multiple measurement vectors technique [24, 30], etc. Besides,

low-rank matrix recovery methods have been proposed to exploit the low-rank covariance

structure in certain communication scenarios [25,51]
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2.2.1 Contribution

In this chapter, we propose two channel covariance estimators. Unlike the works mentioned

above, we do not assume any of the standard structures on the covariance. Instead we

recognize that a MIMO covariance of Gaussian channels is associated with the channel

angular scattering function (ASF) through an inner-product with the array manifold.

We exploit this structure of the channel covariance to propose better estimators. We

decompose the ASF to discrete (or specular) and continuous (or diffuse) components. We

approximate the continuous component with the linear combination of the elements of a

family of limited-support density functions, and estimate the finite-dimensional support of

the discrete component via the well-known multiple signal classification (MUSIC) method

[117]. Then, we propose two methods to estimate the coefficients of a parametric expansion

of the covariance. The first method is based on the convex non-negative least squares

(NNLS) estimator and the second method solves a maximum-likelihood (ML) optimization

problem.

2.3 Channel Model

We consider the standard block-fading model for the wireless channel (see, e.g., [123] and

the 3GPP channel model [111]), which assumes the fading to be approximately constant

over time-frequency blocks of fixed size. We denote by hris the channel vector of a generic

user over a time-frequency resource block indexed i. One can assume that the pilots are

transmitted over resource blocks that are sufficiently separated in time and/or frequency

such that the resulting channel samples are i.i.d. A popular (yet simplistic) view of the

wireless channel holds that the channel gain per antenna element can be seen as a weighted

superposition of the element’s response to signals impinging on the array from separable

AoAs [32,40,98,135]. Formally, for a realization hris, we can express the channel according

to this view as

hris “
ÿ

ℓPZL

wℓrisapθℓq, (2.4)

where L is the number of separable wave-fronts, tθℓuℓ are the associated AoAs with each

path, and wℓris is the i-th realization of the random channel coefficient of path ℓ. A

standard assumption is to take wℓris to be zero-mean, complex Gaussian with variance

σ2ℓ , i.e., wℓ „ CN p0, σ2ℓ q. The AoA θℓ belongs to the angular interval r´θmax, θmaxq, where

θmax P r0, π2 s is the maximum array angular aperture. The vector apθq is the array response

vector, mapping θ to an M -dimensional vector of complex exponentials

apθq “ r1, ej
2πd
λ

sinpθq, . . . , ej
2πd
λ

pM´1q sinpθqsT, (2.5)
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Figure 2.1: specular scattering vs diffuse scattering

where d is the distance between consecutive antenna elements, and λ “ c{f is the electro-

magnetic wavelength, with f the carrier frequency of the narrow-band transmitted signal

and c « 3 ˆ 108 the speed of light. For convenience, in this chapter we take the antenna

spacing to be d “ λ
2 sinpθmaxq

, and we normalize the AoA and define the new variable

ξ :“
sinpθq

sinpθmaxq
P r´1, 1q. (2.6)

Here and below we use the term AoA to refer to this normalized quantity. Then, the array

response can be written in terms of ξ as

apξq “ r1, ejπξ, . . . , ejπpM´1qξsT. (2.7)

The channel model in (2.4) is inconsistent with the physical evidence provided by some

measurement campaigns [93, 102, 106, 115]. These studies show that the paths contribut-

ing to the channel can be considered discrete and separable only if they correspond to

line-of-sight (LoS) and specular scattering elements in the propagation environment. But

these are not the only scattering elements: some scatterers induce diffuse patterns corre-

sponding to a group of a large number of closely located components. Fig. 2.1 illustrates

the difference by distinguishing between two different types of scattering. In our opin-

ion, this distinction is fundamental and we will refer to it repeatedly throughout this

dissertation. We propose a more general model of the channel as follows. The wide-

sense stationary uncorrelated scattering (WSSUS) channel model asserts that scattering

over disjoint angular intervals induces uncorrelated scattering coefficients [105]. Focus-

ing on Gaussian channels, these coefficients can be best described as a Lévy process

W : r´1, 1s Ñ C with stationary, uncorrelated complex Gaussian (hence independent)

increments dW pξq “ W pξ ` dξq ´W pξq [66]:

E rdW pξqs “ 0, (2.8a)
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E
“

dW pξqdW pξ1q˚
‰

“ dΓpξqδpξ ´ ξ1q, (2.8b)

where δp¨q denotes Dirac’s delta. The autocorrelation Γ is a non-negative, non-increasing,

right-continuous function whose increment dΓpξq “ Γpξ`dξq´Γpξq ě 0 gives the variance

of dW pξq. The instantaneous channel vector at the ULA can be expressed via the following

stochastic integral [28]:

hris “

ż 1

´1
dW pξqrisapξq P CM , i P ZN , (2.9)

where dW pξqris is an increment corresponding to the the i-th realization of the channel

gains stochastic process and hris is the i-th realization of the channel vector h. Obviously

h is complex Gaussian distributed. Its mean is given by

h̄ “ E rhs “

ż 1

´1
E rdW pξqs apξq “ 0, (2.10)

and its covariance is given by

Σ “ E
”

hhH
ı

“

ż 1

´1

ż 1

´1
E
“

dW pξqdW pξ1q˚
‰

apξqapξ1qH

“

ż 1

´1
dΓpξqapξqapξqH P TM

` ,

(2.11)

where TM
` denotes the space of M ˆM positive semi-definite (PSD) Toeplitz matrices.

2.3.1 Decomposing the Angular Gain Process and the ASF

From a physics viewpoint, the channel angular coefficients process W should represent the

contribution of LoS and specular scattering as well as that of diffuse scattering. This is

naturally modeled by considering the Lévy-Itô decomposition of a Lévy process [72]. The

related theorem states that W can be decomposed as a sum of three independent Lévy

processes as

W “ Wc `Wd `Wsc (2.12)

whereWc is a Wiener process,Wd is a compound Poisson process (in this case with complex

Gaussian jumps) andWsc is a square-integrable pure jump martingale. Replacing (2.12) in

(2.8b), one can show that the autocorrelation increment has the following decomposition:

dΓ “ dΓc ` dΓd ` dΓsc, (2.13)

where
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• dΓc is absolutely continuous.

• dΓd is a pure point process, also known as a discrete measure, which is supported

on a countable set of points.

• dΓsc is a singular continuous measure, that is supported on a Lebesgue null-set.

The relation in (2.13) also follows from the Lebesgue decomposition theorem [55]. Through-

out this dissertation we deal with Lebesgue integrals involving the channel angular auto-

correlation. Since the contribution of dΓsc vanishes in the result of a Lebesgue integral,

we simplify the decomposition (2.13) by ignoring dWsc and recognizing the fact that, any

estimate of dΓ is valid up to an additive singular-continuous measure. This will not have

any effect on the result of the practical algorithms that follow. Furthermore, the discrete

measure dΓd can be represented using a train of Dirac deltas:

dΓdpξq “ γdpξqdξ “
ÿ

kPZK

ckδpξ ´ ξkqdξ, ξ P r´1, 1s, (2.14)

where tck P R`u
K´1
k“0 are non-negative coefficients, and tξku

K´1
k“0 denotes the support of γd.

For simplicity, here we assume that γd is supported over a finite rather than a countable set

of cardinality K.1 Note that (2.14) involves an abuse of notation, since the delta does not

have a Radon-Nikodym derivative. Nonetheless we use this notation for convenience and

define the integral of a function f with respect to the delta measure as
ş1

´1 fpξqδpξ´aqdξ “

fpaq for a P r´1, 1s.

For the absolutely continuous component dΓc we can use the Radon-Nikodym theorem

to write

dΓcpξq “ γcpξqdξ, ξ P r´1, 1s, (2.15)

where γc is a non-negative measure over. Analogous to (2.14), we can represent γc as the

following linear combination:

γcpξq “
ÿ

kPZK1

rckgkpξq. (2.16)

Here K 1 is the number of diffuse scattering elements, rck P R` is a scalar, and gk is

an absolutely continuous, non-negative measure over r´1, 1s for k “ 0, . . . ,K 1 ´ 1. As

an example, gk can be modeled as a rectangular, a truncated Gaussian function or the

density function of a von Mises distribution [100,106].

From a physics standpoint, the discrete measure γd represents the channel power density

received from LoS and specular scattering associated with the discrete AoAs ξk, k “

1This does not incur a loss of generality, since eventually we only consider recovery of a finite support for
γd for the purpose of covariance estimation.
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Figure 2.2: an example ASF with K “ 1 specular component and K 1 “ 2 diffuse components

0, . . . ,K ´ 1. The coefficient ck represents the channel power along the k-th discrete

AoA. In contrast, γcpξq represents the channel power density over the diffuse scatterer

associated with the interval rξ, ξ ` dξs. An element gk, k P ZK1 in (2.16) represents the

power density associated with the k-th diffuse scatterer. Typically, the power received

from such a scatterer occupies a limited subset of the angular interval, which we denote

by Xk and call it the effective support of gk.

Overall we are in a position to define the channel angular scattering function (ASF)

γ “ dΓ as

γ “ γc ` γd, (2.17)

where we call γc and γd the “continuous” and “discrete” ASF components. Fig. 2.2

illustrates an example of the ASF and its discrete and continuous components.

Remark 2.1. Failure to recognize the difference between the discrete channel model in

(2.4) and the continuous model in (2.9) can lead to an unrealistic model of practical

channels and wrong judgments about the performance of a channel processing algorithm.

The diffuse ASF component significantly contributes to the MIMO channel total power

and capacity [102]. Besides, it has been shown that neglecting the diffuse ASF component

can lead to complications in identifying the dominant specular components of the channel

[115]. Therefore, a more general characterization of the channel as developed above seems

necessary.

Using Eq. (2.11) we can relate the ASF to the channel covariance as

Σ “

ż

apξqapξqHγpξqdξ “

ż

apξqapξqHγcpξqdξ `

K´1
ÿ

k“0

ckapξkqapξkqH. (2.18)
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With this we can also define the class of ULA channel covariances as

CULA “

"

Σ P CMˆM : Σ “

ż 1

´1
apξqapξqHγpξqdξ, γ : r´1, 1s Ñ R`,

ż 1

´1
γpξqdξ “ 1

*

,

(2.19)

where the the constraint on γ to be normalized such that
ş1

´1 γpξqdξ “ 1 is added for

simplicity and w.l.o.g. It can be easily observed that Σ is an element in the convex hull

of the continuous dictionary A “
␣

apξqapξqH, ξ P r´1, 1s
(

, and

CULA “ Conv pAq . (2.20)

We exploit this structure in developing our proposed covariance estimators.

2.4 Proposed Covariance Estimation Methods

Our methods for channel covariance estimation rely on a finite- but high-dimensional

approximation of the ASF, estimating the approximation components and using them

to obtain the channel covariance. First, note that the discrete part of the ASF has a

finite-dimensional parametric representation, with parameters tckuk and tξkuk. However,

the constituents of γc are the infinite-dimensional measures gk, k P ZK1 . We propose

to approximate γc as a linear combination of the elements of a family of limited-support

densities

Ψ “ tψi : i P ZGcu, (2.21)

where ψi, is a density supported on a small subset supppψiq
2 of the angular interval such

that |supppψiq| ! 1, and the cardinality of Ψ is taken to be large (Gc " M) (typical values

are Gc “ 2M and Gc “ 3M). The approximation is then written as

γc «
ÿ

iPZGc

c1
iψi. (2.22)

Note that this relation only states that the approximation lies in the span of the columns

of Ψ (spanpΨq), but does not specify the properties of the approximation coefficients.

The density family Ψ can be specified in various ways. We propose two simple construc-

tions as follows. Let ψ‹ : r´1, 1s Ñ R` be a real, non-negative function whose support

is limited to r0, 2
Gc

s, and define the density family to be consisting of shifted and non-

overlapping versions of ψ‹, i.e. ψipξq “ ψ‹pξ ` 1 ´ 2i
Gc

q, i P ZGc , ξ P r´1, 1q. Examples of

simple density families include the following:

2Here and in the rest of this dissertation we define the support of a measure f as supp(f)“ tx : fpxq ‰ 0u.
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rectangular
density family

0 1−1
ξ

(a)

Gaussian
density family

0 1−1
ξ

(b)

Figure 2.3: examples of density families used for approximating γc: (a) rectangular density
family and (b) Gaussian density family.

• impulse densities: here we define ψ‹ as a Dirac impulse at the origin, i.e.

ψ‹pξq “ δpξq, ξ P r´1, 1s. (2.23)

• rectangular densities: in this case, we define ψ‹ as a rectangular pulse over r0, 2
Gc

s,

that is

ψ‹ “
Gc

2
rectr0, 2

Gc
s. (2.24)

• Gaussian denisites: here ψ‹ is defined as a Gaussian function over r0, 2
Gc

s:

ψ‹pξq “

$

&

%

1
a0σ

?
2π
e´

pξ´µq2

2σ2 , ξ P r0, 2
Gc

s,

0, ξ R r0, 2
Gc

s,
(2.25)

where µ “ 1{Gc and σ “ 1

Gc

?
2 logp10q

to ensure that the value of the Gaussian

function drops to 0.1 of its peak at the boundary points of p0, 2
Gc

q, and a0 is a

normalization scalar such that
ş1

´1 ψ
‹pξqdξ “ 1.

Fig. 2.3 illustrates these two density families, and Fig. 2.4 illustrates an example of

approximating the continuous ASF component with the rectangular density family. The

limited support property and the large number of density elements helps with a high-

resolution approximation of the ASF by capturing its local angular properties. Using

(2.11), (2.17), and (2.22) we can assume an approximation of the channel covariance as

Σ :“ Σd ` Σc «
ÿ

kPZK

ckapξkqapξkqH `
ÿ

iPZGc

c1
iA

1
i, (2.26)

where we have defined the matrices A1
i “

ş1
´1 ψipξqapξqapξqHdξ for i P ZGc , and the discrete

and continuous covariance components as Σd and Σc, respectively. One can easily show

that with a as in (2.7), A1
i is Hermitian Toeplitz (A1

i P TM ) for all i and therefore is fully

characterized by its first column a1
i “

ş1
´1 ψipξqapξqdξ. Since Σ also belongs to TM

` , we
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0 1−1
ξ

Figure 2.4: An example of approximating the continuous ASF with rectangular densities.

can explain it by its first column σ given by

σ «
ÿ

iPZGc

c1
ia

1
i `

ÿ

kPZK

ckapξkq. (2.27)

Defining A :“ ra1
0, . . . , a

1
Gc´1,apξ0q, . . . , apξK´1qs and γ :“ rc1

0, . . . , c
1
Gc´1, c0, . . . , cK´1sT P

Rd
` where d :“ Gc `K, we can write (2.27) as

σ « Aγ, (2.28)

and in addition Σpγq « T pAγq. Note that the discrete AoAs tξkukPZK
are unknown and

belong to the continuum r´1, 1s, and therefore the rank-1 matrices tapξkqapξkqHu
K´1
k“0 are

not known a priori (in contrast to the known matrices A1
i, i P ZGc). As a first step in

our covariance estimation algorithm, we propose to estimate the support of γd, that is the

discrete AoAs tξkukPZK
from the set of noisy pilot measurements.

2.4.1 Estimating the Discrete AoAs

An accurate estimation of the discrete AoAs is crucial, not only because in many practical

scenarios they may carry a significant power of the channel, but also that we are modeling

the ASF as to include Dirac impulses. While a piece-wise continuous function can be well-

approximated by a family of “basis” densities, these measures are not well represented by

the same family, in the sense that, the approximation error

min
tciPRui

ż 1

´1
|δpξq ´

ÿ

i

ciψipξq|2dξ, (2.29)

is unbounded. This of course does not mean that if one neglects estimating the discrete

AoA the covariance estimation error will be unbounded, but gives an intuitive hint that

estimating discrete AoAs can result in higher accuracy.

In order to estimate the discrete AoAs from the pilot measurements tyrisuiPZN
, we

employ the well-known Multiple Signal Classification (MUSIC) method [109, 117]. As

a super-resolution method, MUSIC is typically used for estimating the frequencies of
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multiple sinusoids from their (possibly noisy) mixture. Similarly, here we use MUSIC

to estimate the angular frequencies tξkukPZK
. Recall the pilot sample covariance matrix

pΣy “ 1
N

ř

i yrisyrisH and define its eigendecomposition as pΣy “ pUpΛpUH, where pU “

rpu1, . . . , puM s denotes the eigenvectors matrix, and pΛ is the diagonal eigenvalues matrix,

with its diagonal elements ordered as pλ1 ě pλ2 ě . . . ě pλM . Assume that an estimate of the

number of discrete AoAs is given and denote it by pK. Then, we can define the so-called

“noise subspace” as the subspace spanned by the columns of the pM ´ pKq eigenvectors

in pU corresponding to the smallest pM ´ pKq eigenvalues in pΛ, namely the columns of
pUnoise “

”

pu
pK`1

, . . . , puM

ı

MUSIC estimates the discrete AoAs by finding the pK smallest

minimizers of the pseudo-spectrum function

ηpξq “ }pUH
noiseapξq}2 “

M
ÿ

ℓ“ pK`1

ˇ

ˇ

ˇ
puH
ℓ apξq

ˇ

ˇ

ˇ

2
. (2.30)

We denote the estimated discrete AoAs by tpξkukPZ
xK
. When the observations are generated

by a noisy superposition of a finite number of weighted tones, MUSIC asymptotically gives

consistent estimates of the tones. In the context of our problem, this scenario translates

to the case in which the ASF consists of only a discrete component and the tones are the

discrete AoAs. However, in general the channel is not only a product of the discrete ASF

component, but a mixture of discrete and continuous scattering components. Fortunately,

a recent result has shown that even in this case, under some mild conditions on the

energy distribution of the discrete and continuous parts as well as the signal dimension,

MUSIC is able to consistently estimate the discrete AoAs [89]. The following theorem

states a slightly modified version of this result to justify the expected success of MUSIC

in identifying discrete ASF AoAs from the noisy pilot observations.

Theorem 2.1. Consider an ASF γpξq “ γdpξq ` γcpξq “
řK

k“1 c
pMq

k δpξ ´ ξℓq ` γcpξq, ξ P

r´1, 1s and assume that the weights tc
pMq

k ukPZK
may depend on (M). Consider a scaling

regime where the number of antennas M and the sample size N both approach infinity

such that N
M Ñ ζ ą 0. Then, MUSIC is asymptotically consistent, i.e., maxkPZK

M |pξk ´

ξk| Ñ 0 provided that lim supMÑ8 minkPZK
Mc

pMq

k ě ω0pζ, γcq, where ω0pζ, γcq is a finite

parameter that depends on ζ and the continuous component γc. ˝

Proof. See Appendix 2.7.1. [\

Given an estimate of the discrete AoAs as tpξkukPZK
, we have a model that relates the un-

known pGc ` pKq-dimensional vector of real, positive coefficients to the covariance matrix

via (2.26).
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Estimating the Number of Discrete AoAs

The proof of Theorem 2.1 involves a step which shows that, for large M and under

some conditions on the amplitude of the discrete impulses ck, k “ 0, . . . ,K ´ 1 and the

supremum of the continuous measure γc, the K largest eigenvalues of pΣy “escape” from

the rest pM ´Kq eigenvalues, meaning that a large gap between the largest K eigenvalues

and the rest occurs. This suggests a way to estimate the number of discrete AoAs. Let

βi “
pλi
pλ0
, i “ 0, . . . ,M ´ 1 denote the normalized eigenvalues of pΣy in descending order

β0 ě β1 ě . . . ě βM´1. Define the sequence tdi “ βi ´ βi`1 : i “ 0, . . . ,M ´ 2u by taking

differences between consecutive elements of tβiui. Let Kmax P N denote a pre-defined

bound on the maximum number of discrete AoAs. Then, we estimate K as the index for

which the largest gap between consecutive ordered eigenvalues occurs. In order to avoid

poor estimates of the number of discrete impulses under challenging conditions (e.g. when

the impulse amplitudes are small compared to noise and the continuous part), we assume

K to be no larger than the pre-defined integer Kmax. This is mathematically formulated

as
pK “ 1 ` argmax

kďKmax´1
dk. (2.31)

Remark 2.2. Note that the precise estimation of the number of discrete AoAs is not

critical, and in particular, it is better to over-estimate the number of discrete AoAs, than

to under-estimate it. If we over-estimate the number of discrete AoAs, there will be “fake”

spikes identified in the support of the discrete ASF component. However, the estimation

method (as will be introduced shortly) will assign small coefficients to the fake spikes,

which practically means that there is no spike. Under-estimating the number of discrete

AoAs can be more harmful, since some of the existing spikes will not be represented in the

parametric expression and its contribution will not be fully compensated by the rest of the

approximating functions. Nevertheless, even in this case these methods assign a non-zero

coefficient to an element of the density dictionary Ψ that has the highest correlation with

the “missing” spike. This is obviously sub-optimal, due to the poor approximation of the

delta with a continuous density, but the induced error will be controlled.

2.4.2 Covariance Estimation via NNLS

Our first method estimates the non-negative coefficients tckukPZ
xK

and tc1
iuiPZGc

by min-

imizing the norm of the difference between the parametric form on the right-hand-side

(RHS) of (2.27) and a coarse estimate of the ULA covariance. Since we know a priori that

a ULA covariance is Hermitian Toeplitz, the coarse estimate is obtained by projecting the

sample covariance pΣ in (2.3) onto the space of Hermitian Toeplitz matrices TM . In other
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words, the coarse estimate rΣ is given as

rΣ “ PT

´

pΣ
¯

, (2.32)

where PT : CMˆM Ñ CMˆM is the orthogonal projector to the space of Hermitian Toeplitz

matrices. This projection is given by averaging the diagonals of pΣ, and replacing the

diagonal elements by the corresponding average. To be more precise, define rσ as an

M -dimensional complex-valued vector such that

rrσsi :“
1

2M

¨

˝

M´pi`1q
ÿ

m“0

rpΣsm`i,m `

M´pi`1q
ÿ

m“0

rpΣs˚
m,m`i

˛

‚, i P ZM . (2.33)

Then rΣ is defined as the Hermitian Toeplitz matrix with rσ as its first column, i.e. rΣ “

T prσq. The non-negative least-squares (NNLS) estimator of γ is given by solving

minimize
tckuk, tc1

iui

}rΣ ´
ÿ

kPZ
xK

ckapξkqapξkqH ´

Gc´1
ÿ

i“0

c1
iA

1
i, }F

subject to ck ě 0, k P Z
pK
,

c1
i ě 0, i P ZGc .

(2.34)

Since the matrix inside the norm expression is Hermitian Toeplitz, we can use (2.28) and

write the NNLS estimate of the coefficients as

γ‹
NNLS “ argmin

γě0
}M

´

pAγ ´ rσ
¯

}, (PNNLS)

where we have defined pA :“ ra1
0, . . . , a

1
Gc´1,appξ0q, . . . , appξ

pK´1
qs, γ is a pd-dimensional vector

constrained to be non-negative, and

M “ diag

ˆ

”?
M,

a

2pM ´ 1q,
a

2pM ´ 2q, . . . ,
?
2
ıT
˙

.

The matrix M assigns suitable factors to each element to compensate for the number of

times an element is repeated in a Hermitian Toeplitz matrix. The covariance estimate in

this case is given by

Σ‹
NNLS “ T

´

pAγ‹
NNLS

¯

. (2.35)

To clarify why the NNLS estimator yields a good estimate of the covariance, note that the

cost in (PNNLS) is equal to the Euclidean distance between the coarse covariance estimate

(given by the projection onto TM ) and the estimated covariance, by constraining γ to be
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a non-negative measure. The constraint enforces the covariance to lie in a subset Cd
ULA of

the set of MIMO covariances CULA in (2.19). This subset is given as

Cd
ULA “

"

Σ P CMˆM : Σ “

ż 1

´1
γpξqapξqapξqHdξ,

γpξq “

Gc´1
ÿ

i“0

rγsiψipξq `

pK´1
ÿ

k“0

rγsGc`kδpξ ´ pξkq, ξ P r´1, 1s, γ P R
pd
`

,

.

-

,

(2.36)

noting that Cd
ULA Ă CULA. Therefore, PNNLS can be seen as the orthogonal projection of

the coarse covariance estimate onto the Cd
ULA, simply described as

Σ‹
NNLS “ PCd

ULA

´

rΣ
¯

. (2.37)

Remark 2.3. Despite the fact that the coarse covariance estimate rΣ is not necessarily

PSD, the final covariance estimate after applying NNLS is always PSD due to the non-

negativity of the solution coefficients.

2.4.3 Covariance Estimation via Likelihood Maximization

The NNLS estimator is given by minimizing the distance between the parametric form

of the covariance and a coarse estimate of it. An alternative approach to estimate the

unknown parameters vector γ is to maximize the likelihood of the set of observed pilot

signals tyrisuiPZN
as a function of the parametric covariance (equivalently, a function of γ).

Define Y “ ryr0s, . . . ,yrN ´ 1ss P CMˆN as the matrix collecting pilot measurements as

its columns. Assuming zero-mean Gaussian channels, we can write the likelihood function

of Y given γ as (we always assume N0 to be known)

p pY|γq “
ź

iPZN

p pyris |γq “
ź

iPZN

exp
´

´1
2yrisH pΣpγq `N0Iq

´1 yris
¯

a

p2πqMdet pΣpγq `N0Iq

“

exp
´

´1
2 tr

´

pΣpγq `N0Iq
´1YYH

¯¯

p2πq
MN
2 pdetpΣpγq `N0Iqq

N
2

,

(2.38)

where Σpγq “ T ppAγq. Using (2.38) we can form the log-likelihood function log p pY|γq,

which after omitting constants and re-scaling amounts to

fMLpγq :“ ´tr
´

Σ´1
y pγqpΣy

¯

´ log det pΣypγqq (2.39)
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where Σypγq “ Σpγq ` N0I, and pΣy :“ 1
NYYH is the observations sample covariance.

Then, we can formulate the maximum likelihood (ML) optimization problem as:

maximize
γ

fMLpγq

subject to γ ě 0,
, (PML)

Unfortunately, the objective fML is not concave. In fact, it entails a clear decomposition

into the sum of a convex and a concave function fML “ fcav ` fvex given as

fcavpγq “ ´tr
´

Σ´1
y pγqpΣy

¯

,

fvexpγq “ ´ log det pΣypγqq ,
(2.40)

for γ P R pd. As is well-known, it is in general prohibitively difficult to maximize a non-

concave function, due to the existence of local maxima. A standard approach in such

cases is to adopt a minorization-maximization (aka majorization-minimization) (MM) al-

gorithm. MM is an umbrella term for a variety of iterative optimization algorithms, that

consist of two steps [61, 118]: in the minorization step, one finds a surrogate function

that is a lower-bound for the original function, and locally approximates it such that the

difference between the two is minimized at the current estimation point. The surrogate

typically has favorable optimization properties, such as convexity or even that its maxi-

mizer can be derived in closed form. In the second MM step we obtain the maximizer and

update the current estimate and re-iterate this process until a convergence criterion is met.

Examples of an MM algorithm include the expectation maximization (EM) method [37],

cyclic minimization [64,116], and the concave-convex procedure [138]. Here we choose the

EM algorithm to find a solution for the ML optimization problem PML. As we will see, this

algorithm yields a computationally cheap update rule (even for high channel dimensions)

and excellent empirical results for the task of estimating the parametric ASF coefficients.

ML via Expectation Maximization

Before laying out the EM algorithm for solving PML, let us make a few simplifying

assumptions that make the exposition clear and straightforward. Assume that we know

the exact location of the discrete AoAs tξku
K´1
k“0 (in the end, we replace these with their

estimated values tξku
pK´1
k“0 obtained from the MUSIC step). We introduce a latent variable

vector x “ rx0, . . . , xd´1sT P Cd, where d “ Gc ` K. We define the components of

this variable as follows. Recall the approximation of the continuous part of the ASF γc

with a family of density functions tψiuiPZGc
in (2.22), and assume that each density ψi

is supported on an interval Ξi and the supports of distinct densities are non-overlapping,
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i.e. Ξi X Ξj “ ∅ for i ‰ j. Now, consider an approximation of the continuous part of

the angular gain process Wc (see (2.12)) in terms of the densities tψiuiPZGc
as Wcpξq «

řGc´1
i“0 xiψi. Considering in addition the discrete process Wd to be expressed as Wdpξq “

řK´1
k“0 xGc`kδpξ´ξkq, we conclude the following approximation for the overall angular gain

process W :

W pξq «

Gc´1
ÿ

i“0

xiψipξq `

K´1
ÿ

k“0

xGc`kδpξ ´ ξkq. (2.41)

This is clearly an approximation, since in general W is infinite-dimensional, and any

expansion of it in terms of a finite set of functions entails a non-trivial error. Using (2.41)

and (2.9), we can approximate the channel vector as

h “

ż 1

´1
apξqdW pξq «

Gc´1
ÿ

i“0

xi

ż 1

´1
ψipξqapξqdξ `

K´1
ÿ

k“0

xGc`kappξkq “ Ax, (2.42)

where x :“ rx0, . . . , xd´1s, A¨,i “
ş1

´1 ψipξqapξqdξ for i “ 0, . . . , Gc ´ 1, and A¨,Gc`k “

apξkq, for k “ 0, . . . ,K ´ 1. Considering N samples of the channel, we have

Y “ AX ` Z, (2.43)

where Y “ ryr0s, . . . ,yrN ´ 1ss, X “ rxr0s, . . . ,xrN ´ 1ss, and Z “ rzr0s, . . . , zrN ´ 1ss.

Note that xris is the i-th realization of the random vector x, and similarly for Y and Z.

Vectorizing both sides of (2.43), we can rewrite it as

ry “ rArx ` rz P CMN , (2.44)

where ry :“ vecpYq, rx :“ vecpXq P CNd, rz :“ vecpZq, and rA :“ I b A P CMNˆNd. Using

the new variables, we can write the log-likelihood function as

Lpγq “ log p pry|γq “ logE
rx|γ rp pry|rx,γqs , (2.45)

where we have used conditioning on rx to derive the RHS. The function L is equivalent

to fML up to additive and multiplicative constants. Given the current estimate of the

parameters vector as γptq, in the E-step of the EM algorithm, we compute the following

function:
gpγ|γptqq “ E

rx|ry,γptq rlog ppry, rx|γqs

“ E
rx|ry,γptq rlog ppry|rxq ` log pprx|γqs

“ E
rx|ry,γptq rlog pprx|γqs ` const.

(E-Step)

28



2.4 Proposed Covariance Estimation Methods

Using Jensen’s inequality, one can show that gpγ|γptqq is a lower bound for Lpγq, i.e.

gpγ|γptqq ď Lpγq, γ P Rd
` [118]. In order to compute gpγ|γptqq, we need to first compute

the posterior distribution pprx|ry,γptqq. Using the Bayes rule, we have

pprx|ry,γptqq “
ppry|rx,γptqqpprx|γptqq

ppry|γptqq
. (2.46)

Here, the term pprx|γptqq represents the prior on rx. One can decide on this prior in various

ways, for example by considering structural assumptions such as sparsity [114]. Here we

propose the following construction for a prior on rx. Consider txiuiPZd
in (2.41) to be the

coefficients that give the minimum mean-squared approximation error defined as

Epqq “ EW

»

–

›

›

›

›

›

W ´

Gc´1
ÿ

i“0

qiψi ´

K´1
ÿ

k“0

qGc`kδp¨ ´ ξkq

›

›

›

›

›

2
fi

fl

paq
“ EW

»

–

›

›

›

›

›

Wc ´

Gc´1
ÿ

i“0

qiψi

›

›

›

›

›

2

`

›

›

›

›

›

Wd ´

K´1
ÿ

k“0

qGc`kδp¨ ´ ξkq

›

›

›

›

›

2
fi

fl

(2.47)

where (a) follows from the independence of Wc and Wd. Therefore, we define x as

x “ argmin
qPCd

Epqq. (2.48)

Taking the derivative of E and setting it to zero, we can compute the elements of x as

xi “
1

}ψi}
2

xψi,Wcy “
2

Gc
xψi,Wcy “

ż

Ξi

dWcpξq, i P ZGc , (2.49a)

xGc`k “ dWdpξkq, k P ZK , (2.49b)

where we have used the mutual orthogonality of the densities, i.e. xψi, ψjy “ 0, i ‰ j,

which follows from our assumption on the non-overlapping density supports. From (2.49a)

we can infer the following properties about the elements of x:

• Each element xj with j P ZGc is a complex Gaussian random variable, with zero

mean and variance

Varpxjq “ E

«

ż

Ξi

ż

Ξj

dWcpξqdWcpξ
1q˚

ff

“

ż

Ξj

γcpξqdξ

“ rγsj , j P ZGc .

(2.50)
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• Each element xGc`k with k P ZK is a complex Gaussian random variable, with zero

mean and variance

VarpxGc`kq “ E rdWdpξkqdWdpξkq˚s “ rγsGc`k, k P ZK . (2.51)

• The elements of x are mutually independent.

This shows that x „ CN p0,Σxpγqq, where

Σxpγq “ diagpγq, (2.52)

Since the columns of X are independent, we have rx „ CN p0, I b Σxpγqq, and the prior is

given as

pprx|γq „ CN p0, I b Σxpγqq. (2.53)

Furthermore, we can write the posterior distribution of the observation as

ppry|rx,γptqq “ ppry|rxq „ CN prArx, N0Iq. (2.54)

Then, from the Bayes rule (2.46), we can compute the posterior pprx|ry,γptqq as

pprx|ry,γptqq „ CN pµt , Ctq , (2.55)

where the posterior covariance and mean are explicitly given, respectively, as

Ct “

ˆ

1

N0

rAH
rA `N0pI b Σxpγptqqq´1

˙´1

“

ˆ

1

N0
I b pAHAq ` I b Σ´1

x pγptqq

˙´1

“ I b

ˆ

1

N0
AHA ` Σ´1

x pγptqq

˙´1

P CNdˆNd

(2.56a)

µt “
1

N0
Ct

rAH
ry P CNd. (2.56b)

Remark 2.4. Note that the posterior is computed by writing the identity

ppry|γptqqpprx|ry,γptqq “ ppry|rx,γptqqpprx|γptqq,

expanding the RHS, and collecting the terms involving rx within the exponential. Com-

paring the resulting expression with the probability density function (pdf) of a Gaussian

distribution gives (2.55) [122].
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Now, recalling the (E-Step), we need to derive an explicit expression for gpγ|γptqq. A

series of long calculations shows that the term within the expectation can be written as

log pprx|γq “ ´
1

2

˜

N
d´1
ÿ

i“0

logrγsi `

d´1
ÿ

i“0

1

rγsi

˜

N´1
ÿ

n“0

|rxrnssi|
2

¸¸

` const. (2.57)

Consequently, we have

gpγ|γptqq “ ´
1

2

˜

N
d´1
ÿ

i“0

logrγsi `

d´1
ÿ

i“0

rptsi

rγsi

¸

` const, (2.58)

where we have defined the vector pt P Rd such that

rptsj “
1

N

N´1
ÿ

n“0

`

rCtsnd`j,nd`j ` |rµtsnd`j |
2
˘

, (2.59)

and where the dependence on γptq is implicit from the calculation of posterior covariance

and mean from (2.56).

The M-Step of the EM algorithm updates the current estimate of the parameters vector

γpt`1q and can be written as

γpt`1q “ argmax
γě0

gpγ|γptqq. (M-Step)

Note that the cost of the minimization problem above is decoupled in terms of the elements

of γ, which enables calculation of the minimizer in closed form as

rγpt`1qsi “ rptsi i “ 0, . . . , d ´ 1, (2.60)

This concludes the EM algorithm for estimating the vector of parameters γ. We stop the

algorithm once the normalized distance between two consecutive points in the solutions

sequence is less than a threshold, i.e. at an index t ` 1 for which the following condition

is met
}γpt`1q ´ γptq}

}γpt`1q}
ď ϵstop. (2.61)

In the empirical results at the end of this chapter, we pick a typical value of ϵstop “ 10´4

for the threshold. The point reached at the final iteration is an estimate of the ASF

coefficients vector and is denoted by γ‹
ML. Once γ‹

ML is computed, we have an estimate of

the channel covariance as:

Σ‹
ML “ T

´

pAγ‹
ML

¯

. (2.62)
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Algorithm 1 Covariance Estimation via EM

1: Input: Y, pA, γp0q, N0, Gc, and pK
2: rA Ð I b pA
3: ry Ð vecpYq

4: t Ð 0
5: while not converged do
6: Compute Σxpγptqq from (2.52).
7: Compute Ct and µt from (2.56) by replacing A with pA.
8: Compute pt from (2.59).
9: Obtain γpt`1q using the update rules (2.60).

10: t Ð t` 1
11: end while
12: γ‹

EM “ γptq

13: Σ‹
EM “ T

´

pAγ‹
EM

¯

.

14: Output: Σ‹
EM

The whole process is summarized in Algorithm 1.

Remark 2.5. In computing the posterior mean and covariance, we need to use the dic-

tionary matrix A. The last K columns of this matrix are not known a priori, and are

computed after performing the MUSIC step. Therefore, we replace K with pK and A with

its estimate pA.

2.5 Extension to Dual-Polarized Arrays

In order to enjoy a larger benefit from massive arrays, many network developers consider

using dual-polarized (DP) antenna elements in the array, since it offers a doubling of the

number of inputs with a less-than-proportional increase in array size [36, 136]. The effect

of adopting DP antennas at the array on performance metrics such as the multiplexing

gain depends on the degree of co-polarization (co-pol) and cross-polarization (X-pol) be-

tween the two polarization states (namely, horizontal (H) and vertical (V) polarizations).

While specular reflection components lead to a low degree of X-pol (hence an approximate

decoupling of the polarizations), diffuse scattering results in relatively high X-pol [36]. In

order to study these effects, we assign a pair of (correlated) channel coefficients to each

element of the array and introduce a statistical model to represent the co-pol and X-pol

properties of a particular environment. This highlights a difference between DP arrays

and single-polarized arrays, as studied earlier in this chapter, in that the the channel

dimension is doubled by assigning a pair of coefficients to each element.
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2.5 Extension to Dual-Polarized Arrays

2.5.1 Dual-Polarized Channel Model

Similar to the model introduced at the beginning of this chapter, we consider a ULA

of M dual-polarized antenna elements that communicates with a single-antenna, single-

polarized user. The channel between antenna m of the array and the user antenna consists

of two elements, corresponding to H and V polarization coefficients, respectively denoted as

hm,H, hm,V P C. The channel gain for either polarization is a superposition of random gains

along a continuum of AoAs, weighted by the antenna element response which, assuming

as before an antenna spacing of d “ λ
2 sinpθmaxq

, for antenna m P ZM is given by am “

ejmπξ, m P ZM for the normalized AoA ξ P r´1, 1s. Then, one can express H and V

channel coefficients as

hm,H “

ż 1

´1
dWHpξqejπmξ (2.63a)

hm,V “

ż 1

´1
dWVpξqejπmξ (2.63b)

for m P ZM , where WH and WV are random processes representing the random gains

along each AoA for H and V polarizations, respectively. We assume both of these to be

zero-mean, complex Gaussian processes E rdWVpξqs “ E rdWHpξqs “ 0 with the following

autocorrelations:3

E
“

dWHpξqdW ˚
Hpξ1q

‰

“ γHpξqδpξ ´ ξ1qdξ, (2.64a)

E
“

dWVpξqdW ˚
Vpξ1q

‰

“ γVpξqδpξ ´ ξ1qdξ. (2.64b)

The measures γH and γV are both real and non-negative, representing the channel power

density received along each AoA for H and V polarizations, respectively. We call these

the horizontal and vertical ASF’s (see Fig. 2.5).

In practice, the H and V links cannot be entirely isolated from each other and therefore,

there exists a leakage of channel power between the two. This implies that, for each AoA,

the random gains dWHpξq and dWVpξq are correlated such that we have

E
“

dWHpξqdW ˚
Vpξ1q

‰

“ ρpξqδpξ ´ ξ1qdξ (2.65)

where ρ is a generally complex-valued function. As such, the dual-polarized channel can

be more conveniently expressed as follows. Denote M -dimensional horizontal and vertical

channel vectors hH “ rh0,H, . . . , hM´1,Hs
T, hV “ rh0,V, . . . , hM´1,Vs

T and note that using

3For simplicity, we have dropped the technicalities in defining the Gaussian processes WH and WV and
their corresponding autocorrelation functions. For a more involved treatment, we refer to Section 2.3
and we note that the same notions as presented in the single-polarized case extend to the present
dual-polarized case.
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ξ

Figure 2.5: An example of H and V ASF’s as well as the H-V cross-correlation modulus. The blue
shaded area highlights γV, the red one highlights γH and the black one highlights |ρ|.

(2.63) we have

hH “

ż 1

´1
dWHpξqapξq, (2.66a)

hV “

ż 1

´1
dWVpξqapξq. (2.66b)

where apξq “ r1, ejπξ, . . . , ejπpM´1qξsT P CM is the array response vector. Note that,

while we have assumed the array response to be the same for H and V polarizations, the

responses need not be the same. The assumption is made for convenience, and a clearer

exposition of the idea; if the array responses are different, we can duly adapt the proposed

method with a few straightforward modifications. Finally, we define the dual-polarized

channel as the 2M -dimensional vector h “ rhT
H, h

T
VsT which can be written as

h “

ż 1

´1

«

apξq 0

0 apξq

ff «

dWHpξq

dWVpξq

ff

“

ż 1

´1
pI2 b apξqq dwpξq, (2.67)

where b denotes Kronecker product, and dwpξq :“ rdWHpξq, dWVpξqsT is the vector of

random H and V gains, with Erdwpξqs “ 0 and a covariance

E
”

dwpξqdwpξ1qH
ı

“

«

γHpξq ρpξq

ρpξq˚ γVpξq

ff

δpξ ´ ξ1qdξ :“ Γpξqδpξ ´ ξ1qdξ P C2ˆ2. (2.68)

We call the 2 ˆ 2 matrix-valued measure Γ the dual-polarized angular scattering function

(DASF), and we note that it is PSD for all ξ P r´1, 1s.4 The channel covariance can be

4Note that Γ (with bold-face font) is the 2 ˆ 2 DASF matrix and should not be confused with the
autocorrelation Γ introduced in (2.8b) of Section 2.3.
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2.5 Extension to Dual-Polarized Arrays

computed according to (2.67) and using (2.68) as

Σ “ E
”

hhH
ı

“

ż 1

´1

ż 1

´1
pI2 b apξqq E

”

dwpξqdwpξ1qH
ı

`

I2 b apξ1q
˘H

“

ż 1

´1
Γpξq b

´

apξqapξqHdξ
¯

,

(2.69)

Similar to the role played by the ASF in a single-polarized array, the DASF captures

the angular spectral properties of the channel, i.e. the power density along H and V

links and the power leakage density between the two. Note that since Γ is PSD, we

have |ρpξq|2 ď γHpξqγVpξq, for all ξ P r´1, 1s, putting a bound on the modulus of ρ. In

particular, if for some ξ we have γHpξq “ 0 or γVpξq “ 0, then necessarily ρpξq “ 0, which

shows that the support of ρ is limited to the intersection of the supports of γV and γH.

Similar to the scenario described at the beginning of this chapter, we consider a case

in which the BS observes N noisy pilot measurements of the dual-polarized channel as

yris “ hris ` zris, i P ZN , where thrisui are independent channel realizations and zris „

CN p0, N0I2M q, i P ZN are independent AWGN vectors. The goal is to estimate the

channel covariance Σ given the pilot observations tyrisui.

2.5.2 Decomposition of the DASF

The DASF of a channel models the received power density over each AoA. This power

density in turn depends on the scattering properties of the environment: partly it comes

from line of sight (LoS) propagation and specular reflection in the environment, that

occupy narrow angular intervals, while the rest of the power comes from diffuse scattering,

occupying wide angular intervals [36] (see Fig. 2.5). Similar to the decomposition of the

ASF, we decompose the DASF into discrete and continuous components:

Γ “ Γd ` Γc, (2.70)

where Γc is the continuous component and Γd is the discrete component. For the discrete

part, the parametric form is simply given by a train of weighted delta functions:

Γdpξq “
ÿ

kPZK

Ckδpξ ´ ξkqdξ, ξ P r´1, 1s, (2.71)

where tCkuk are 2 ˆ 2 PSD matrices and tξkuk are discrete AoAs. In contrast, we cannot

assume a parametric description of Γc in terms of delta functions. Instead, we introduce an
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approximation of Γc using a family of limited-support densities as discussed in Section 2.4.

We define this density family as the one introduced in (2.21), namely Ψ “ tψi : i P ZGcu.

Using this family we can approximate Γc as

Γc «
ÿ

iPZGc

C1
iψi (2.72)

where similar to (2.71) tC1
iui are 2ˆ2 PSD matrices. If Gc is large enough (Gc " 1), then

one can find the coefficients C1
i such that the approximation error in (2.72) is negligible.

Using (2.69), (2.71) and (2.72), we can write the dual-polarized channel covariance in

parametric form as

Σ “ Σd ` Σc :“
ÿ

kPZK

Ck b

´

apξkqapξkqH
¯

`

ż 1

´1
Γcpξq b

´

apξkqapξkqH
¯

dξ

«
ÿ

kPZK

Ck b

´

apξkqapξkqH
¯

`
ÿ

iPZGc

C1
i b A1

i,
(2.73)

where we have defined A1
i “

ş1
´1 ψipξqapξqapξqHdξ for i P ZGc . If the discrete AoAs

tξkukPZK
were known, we could claim via Eq. (2.73) that estimating Σ is equivalent to

estimating the coefficient matrices tCkukPZK
and tC1

iuiPZGc
. Similar to the case of single-

polarized antennas, here we propose to first estimate the discrete AoAs tξiu
r
i“1 from pilot

measurements.

2.5.3 Estimating Discrete AoAs

We use MUSIC to estimate the discrete AoAs present in the DASF. Suppose we have an

estimate of the number of discrete AoAs as pK, using the heuristic model-order estimation

method in Section 2.4.1. This implies that the discrete covariance component Σd “
ř

kPZK
Ck b

`

apξkqapξkqH
˘

is of maximum rank 2 pK. Define the eigendecomposition of the

sample covariance pΣ as pΣ “ pUpΛpUH, where pU P C2Mˆ2M “ rpu1, . . . , pu2M s is the matrix

of eigenvectors and pΛ P R2Mˆ2M
` is the diagonal eigenvalues matrix, with its diagonal

elements in descending order. We call the space spanned by the 2M ´ 2 pK eigenvectors of
pΣ corresponding to its 2M ´ 2 pK smallest eigenvalues as the noise subspace. The vectors

spanning the noise subspace are collected in the matrix Unoi “ rpu
2 pK`1

, . . . , pu2M s. Then we

form the pseudo-spectrum function ηpξq “
›

›UH
noi pI2 b apξqq

›

›

2

F
and estimate the discrete

AoAs as the pK smallest minimizers of η. Intuitively, in this way we find a number of pK

AoAs that the 2Mˆ2 dual-polarized array response I2bapξq along them, has the smallest

norm when projected to the noise subspace. This heuristic follows the same rationale as

the one explained in Section 2.4.1. We denote the estimated discrete AoAs by tpξkukPZ
xK
.
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2.5 Extension to Dual-Polarized Arrays

Recalling (2.73), now we can say that estimating Σ is equivalent to estimating the pd

coefficient matrices, namely tCkukPZ
xK
and tC1

iuiPZGc
.

2.5.4 Estimating the Coefficients

Let us first reformulate the channel covariance parametric description in a simpler form.

Define the knownMˆM matrices Si :“ A1
i for i “ 0, . . . , Gc´1 and Si :“ appξi´Gcqappξi´GcqH

for i “ Gc, . . . , pd ´ 1. Also define their associated unknown coefficients as Wi :“ C1
i for

i “ 0, . . . , Gc ´ 1 and Wi :“ Ci´Gc for i “ Gc, . . . , pd´ 1. Then (2.73) can be reformulated

as

ΣptWiu
pd
i“1q «

ÿ

iPZGc

Wi b Si. (2.74)

Now, the problem is to estimate the coefficient matrices tWi P S2
`uiPZ

pd
, given the noisy

pilot measurements tyrisuiPZN
. Our proposition for performing this task is based on

minimizing the difference between a coarse estimate of the channel covariance and its

parametric form as a function of the matrix coefficients. It is easy to see that the dual-

polarized channel covariance is a blocky matrix, consisting of four Hermitian Toeplitz

blocks:

Σ “

«

ΣH ΣHV

ΣVH ΣV

ff

, (2.75)

where ΣH “ E
“

hHh
H
H

‰

, ΣV “ E
“

hVh
H
V

‰

, and ΣHV “ E
“

hHh
H
V

‰

“ ΣH
HV. This blocky

structure specifies a linear space, and we define the coarse covariance estimate as the

orthogonal projection of the sample covariance pΣ onto this space. The sample covariance

itself has a blocky structure as

pΣ “

«

pΣH
pΣHV

pΣVH
pΣV,

ff

where the blocks are not necessarily Toeplitz. One can simply show that the mentioned

projection is given by projecting each block onto the space of M ˆM Hermitian Toeplitz

matrices TM . Therefore, the coarse estimate is given as

rΣ “

«

PTM ppΣHq PTM ppΣHVq

PTM ppΣVHq PTM ppΣVq

ff

(2.76)
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After computing rΣ, we estimate the matrix coefficients tWiuiPZ
pd
by solving the following

optimization problem:

tW‹
i ui “ argmin

tWiui

}rΣ ´
ÿ

iPZ
pd

Wi b Si}
2
F

subject to Wi ľ 0, i P Z
pd
.

(2.77)

We call this problem a positive semidefinite least-squares (PSD-LS) program. The PSD-

LS is convex and can be solved using standard convex optimization algorithms. Finally,

we obtain the covariance estimate as

Σ‹ “
ÿ

iPZ
pd

W‹
i b Si. (2.78)

2.6 Simulation Results

We construct an ASF using expressions (2.14), (2.16), and (2.17). The discrete compo-

nent of the ASF is generated by specifying a set of discrete impulse locations tξk : k “

0, . . . ,K ´ 1u and their corresponding positive coefficients tck : k “ 0, . . . ,K ´ 1u, where

K is specified later for each experiment, the spike locations are randomly generated as

ξk „ Unifpr´1, 1sq, k P ZK , and their coefficients as ck „ 1 ` |CN p0, 1q|, k P ZK .

The continuous component consists of rK rectangular functions

gk “
1

|Xk|
rectXk

,

where Xk “ supppgkq, |Xk| “ w @ k denotes the angular support of the diffuse scatterer k,

where the width of the scatterer is set to w “ 0.3. The support starting point infξ Xk is

located, uniformly at random, over the line segment r2k
rK

´1, 2pk`1q

rK
´w´1s. The coefficient

of each function is given as trck : k “ 0, . . . , rK ´ 1u, where rck „ 1 ` |CN p0, 1q|, k P Z
rK
.

The overall ASF is expressed as

γpξq “
α

Zd
γdpξq `

p1 ´ αq

Zc
γcpξq “

α

Zd

K´1
ÿ

k“0

ckδpξ ´ ξkq `
p1 ´ αq

Zc

rK´1
ÿ

k“0

rckgkpξq, ξ P r´1, 1s,

(2.79)

where Zd “
ş1

´1 γdpξqdξ, and Zc “
ş1

´1 γcpξqdξ (normalizing each component of the ASF),

and α controls the contribution of each part to the overall ASF γ, i.e. if α “ 0, we have a

purely continuous ASF, while if α “ 1, we have a purely discrete one.

Once the ASF is specified, we compute the channel covariance Σ using the synthesis

formula in (2.11). Denote the eigendecomposition of Σ as Σ “ UΛUH. Then, a random
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realization of the channel can be drawn as

h “ UΛ
1
2g, (2.80)

where g „ CN p0, IM q is a white, complex Gaussian random vector. A random sample set

of the channel h is obtained by generating N such random realizations. We add white

Gaussian noise z „ CN p0, N0Iq to each sample to generate the noisy pilot samples in (2.1),

noting that the noise variance per component is given as N0 “ 1{SNR. The noise variance

is supposed to be known to all methods.

Error Metrics

There are different ways to compare covariance matrices in terms of error metrics. Among

these, we choose the following two metrics.

1. Normalized Euclidean Distance. Let Σ P SM
` be the true channel covariance

and let pΣ denote its estimate. A standard error metric is given by the normalized

Euclidean norm of the difference, given as

Eeuc “
}Σ ´ pΣ}F

}Σ}F
. (2.81)

2. Relative Efficiency. In wireless communication it is sometimes crucial to know,

how similar their associated “dominant” subspaces. Let p P t1, . . . ,Mu denote a

subspace dimension parameter, Up “ rU¨,1, . . . ,U¨,ps P CMˆp the p eigenvectors of

Σ corresponding to its largest p eigenvalues. Similarly, define pUp as the matrix of

the p eigenvectors of pΣ corresponding to its p largest eigenvalues. We define the

relative efficiency parameter as

εppq “ 1 ´
xΣ, pUp

pUH
p y

xΣ,UpUH
p y
. (2.82)

It is easy to see that εppq P r0, 1s, for all p “ 1, . . . ,M . Disregarding the estimated

eigenvalues, this metric compares the power captured by the estimated p-dominant

subspace to that captured by the true p-dominant subspace. The close εppq is to 0,

the better the p-dominant subspace is estimated.

Averages of these metrics ErEeucs and Erεppqs are empirically calculated, in each case for

100 Monte Carlo simulations. We compare the performance of the following estimators

with regards to these metrics. We compare the results for the sample covariance estimator

given as pΣ “ 1
NYYH ´N0I, the NNLS and the ML estimators. In the two latter cases, we
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Figure 2.6: covariance estimation error curves for the normalized Euclidean distance and relative
efficiency metrics against the sampling ratio N{M for three different channel dimen-
sions M . Here α “ 0.5 and SNR “ 20 dB.

use a rectangular density family introduced in (2.24) to approximate the continuous ASF

component, where the number of density functions is set to Gc “ 3M . In each case, the

MUSIC step is performed to estimate the discrete spike locations, consequently adding the

corresponding array response vectors at those locations to obtain the overall dictionary
pA P CMˆ pd.

Fig. 2.6 illustrates the comparison results for the two error metrics against the sampling

ratio N{M . Here we have considered channels whose ASF is composed of K “ 2 spikes

and rK “ 2 diffuse (rectangular) components. The discrete-continuous power-splitting

ratio is set to α “ 0.5 and the SNR is 20 dB. The results are considered for three different

channel dimensions M “ 50, M “ 100, and M “ 200. We observe that, in all scenarios,

the NNLS and ML estimators perform much better than the sample covariance estimator,

with the the normalized Euclidean error decreasing with an increase of the sampling ratio

(Figs. (a) to (c)). This is also the case for relative efficiency metrics in Figs. (d) to (f),

where we plot the average of εppq for p “ 1, . . . , 20. Note that, we do not expect the metric

to necessarily decrease with p increasing. The important point is rather, that the NNLS

and ML estimators perform much better than the sample covariance for all p. Also, the

sharp minimum observed at p “ 2, in all figures for the ML and NNLS relative efficiency
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Figure 2.7: covariance estimation error curves for the normalized Euclidean distance and relative
efficiency metrics against the sparsity order for three different channel dimensions M .
Here α “ 0.5, N{M “ 2, and SNR “ 20 dB.

curves is justified as follows. The ASFs generated in this simulation contain two spikes

and we have considered an equal splitting of channel power over discrete and continuous

components. Therefore, for large M the span of the p “ 2 dominant eigenvectors of Σ

highly overlap with the span of the two array response vectors at the spike locations. Since

the ML and NNLS methods initially obtain the spike locations via MUSIC, they estimate

the dominant 2-dimensional channel subspace with high accuracy.

In addition to this, the results for NNLS and ML are quite similar, with NNLS showing a

slightly better performance in terms of the normalized Euclidean error. This is understand-

able, since as seen from the formulation of PNNLS, NNLS directly minimizes the Frobenius

norm of the error between the parametric covariance and (the Toeplitz projection of) the

sample covariance, while ML maximizes the likelihood function in PML. Therefore, this

advantage of NNLS compared to ML in terms of a Euclidean distance measure should not

be surprising. On the other hand, the ML method performs better in some cases in terms

of the relative efficiency metric. Admittedly, this performance difference between the two

methods is so small that one can safely ignore it.

As explained in the beginning of this section, in our numerical experiments we con-

sider the channel ASF to consist of K spikes and rK diffuse components. The larger these
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parameters are, the less sparse the channel is. This means that with an increase of K

and rK, the number of angular directions with a non-zero power (variance) increases. It

is interesting to observe the behavior of the covariance estimation methods for different

orders of channel sparsity. Many channel estimation methods in the literature rely on

the assumption of the channel to be sparse in the angular domain. The performance of

these methods naturally degrades when the sparsity assumption is violated. Therefore,

it is desirable to have estimators that perform well for a variety of channel sparsity or-

ders. Fig. 3.11 illustrates the comparison of NNLS and ML estimators with the sample

covariance estimator for different channel sparsity orders. Here, for each sparsity order

s P t1, 2, 3, 4, 5u, we set K “ rK “ s, and we select the location of the scatterers and their

width as explained earlier. As we can see, by increasing s, the sample covariance estimator

shows an increasing error. The reason is that, for a fixed dimension M and sampling ratio

N{M “ 2, as s grows large, the degrees of freedom of the channel covariance increases,

making it harder for the sample covariance to estimate yield an accurate estimate. In

contrast, the NNLS and ML estimators seem to be robust with respect to an increase of

the channel sparsity order, as their error either does not increase or increases only slightly.

Dual-Polarized Covariance Estimation

Finally, we provide simulation results for the task of dual-polarized channel covariance

estimation. We consider a ULA of size M “ 32. In order to produce (semi-)random

Horizontal and Vertical ASFs we consider the following generative model for the horizontal

ASF:

γHpξq “
1

|I1| ` |I2|
prectI1pξq ` rectI2pξqq `

1

2
pδpξ ´ ξ1q ` δpξ ´ ξ2qq , (2.83)

where I1, I2 Ă r´1, 1s where the the interval lengths are chosen uniformly at random

between 0.1 and 0.4, i.e. |Ij | „ Unifpr0.1, 0.4sq, independently for j “ 1 and j “ 2.

Besides, ξ1, ξ2 P denote discrete AoAs, generated independently and uniformly at random

over r´1, 1s. Similarly, we generate the vertical ASF as:

γVpξq “
α

|I 1
1| ` |I 1

2|

´

rectI1
1
pξq ` rectI1

2
pξq

¯

`
1 ´ α

2

`

δpξ ´ ξ1
1q ` δpξ ´ ξ1

2q
˘

, (2.84)

Since it is natural for the horizontal and vertical ASFs to overlap in their support, we

assume the discrete AoAs to be the same, i.e. ξ1
1 “ ξ1 and ξ1

2 “ ξ2, and we assume I 1
1 and

I 1
2 to be slightly shifted versions of I1 and I2 as I 1

1 “ I1`0.1 and I 1
2 “ I2`0.1. Finally, we

assume the cross-correlation function ρpξq to take on the form ρpξq “ 1
2

a

γHpξq γVpξq. This

is a simplifying assumption on the form of ρpξq, which does not undermine the generality
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Figure 2.8: dual-polarized channel covariance estimation error in terms of normalized Euclidean
distance vs the sampling ratio N

2M (left) and vs SNR (right). Here M “ 32.

of the DASF, and satisfies the necessary condition |ρpξq|2 ď γHpξqγVpξq for the DASF

Γpξq to be a PSD matrix-valued function for all ξ P r´1, 1s. To perform a Monte-Carlo

simulation, we generate 100 random DASFs according to the model explained earlier.

For each random DASF, we generate N independent samples of the channel and AWGN

vectors to generate the noisy pilot signals. Fig. 2.8b compares the normalized Euclidean

error as a function of the sampling ratio (left figure) as well as the SNR (right figure). The

error figures show that the method based on PSD-LS considerably improves estimation

accuracy in comparison to the sample covariance estimator. The main reason is that, the

PSD-LS program (2.77) captures the structure of the dual-polarized covariance: it enforces

the Kronecker structure by adopting the parametric covariance form
ř

pd´1
i“0 Wi bSi and it

constraints the coefficients Wi, i “ 0, . . . , pd´ 1 to be PSD in accordance with the DASF

being a PSD matrix-valued function.

2.7 Appendices

2.7.1 Proof of Theorem 2.1

We prove Theorem 2.1 by first referring to the result in [89]. Consider a ULA with M

elements. The channel ASF is expressed as γpξq “
ř

kPZK
ckδpξ ´ ξkq ` γcpξq as in (2.17)

for ξ P r´1, 1s. The asymptotic scaling law studied in [89] assumes a challenging case

in which the spike coefficients tckukPZK
scale with M according to c

pMq

k “
κk
M (hence, the

newly introduced superscript pMq), where κk, k P ZK are positive constants that represent

the relative energy distribution over the support of γd. Note that, with this assumption,

identifying the support set tξkukPZK
becomes more challenging with increasing the array
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dimension, since the associated coefficients keep decreasing. In contrast, in our setup the

spike coefficients remain constant regardless of the number of antennas due to the physical

fact that the power received from a specific AoA is independent of the array dimension.

It can be seen that, we can adopt the analysis in [89] by assuming that the parameters κk

follow a scaling law as κk “ Mκk,0 for positive constants κk,0, so that dividing them by

M results in constant, dimension-independent spike coefficients.

Consider the noisy pilot observations yris “ hris ` zris, i P ZN , which is a zero-mean

complex Gaussian vector with a covariance Σy “ Σ `N0I, where we have

Σ “
ÿ

kPZK

ρ
pMq

k apξkqapξkqH `

ż 1

´1
γcpξqapξqapξqHdξ, (2.85)

with apξq “ r1, ejπξ, . . . , ejπpM´1qξsT being the array response vector. Let λ0,M ě . . . ě

λM´1,M denote the eigenvalues (also singular values) of Σy. The following proposition

shows that as M grows, the K largest singular values of Σy “escape” from the rest of the

singular values and converge to fixed values as M Ñ 8.

Proposition 2.1 (escape of the K largest singular values of Σy). Let γpξq denote an ASF

with a discrete part γdpξq “
ř

kPZK
c

pMq

k δpξ ´ ξkq with ρ
pMq

k “
κk
M and a continuous part

γcpξq, and let Σ be the covariance matrix generated by γpξq and define Σy “ Σ `N0I. If

κk ` γcpξkq ą }γc}8 for all k P 0, . . . ,K ´ 1, then

λk,M ÝÑ
MÑ8

λk “ κk ` γcpξkq `N0, (2.86)

for k “ 0, . . . ,K ´ 1, while lim supmÑ8 λK,M ď }γc}8 ` N0

´

}γc}8 :“ supξPr´1,1s γcpξq

¯

.

˝

Proof. See [89], Proposition 1. [\

This proposition has the following implication: if for all k P ZK , the spike coefficient

plus the value of the continuous component γc at the spike location is greater than the

supremum of the continuous part γc over the whole set of AoAs, then theK largest singular

values converge according to (2.86) to a value larger than }γc}8 ` N0, while the rest of

the singular values are upper-bounded by }γc}8 ` N0. As a result, by increasing M , we

observe a separation between the first K singular values and the remaining M ´K ones,

which can be exploited to identify the number of spikes K (see Section 2.4.1). This result

holds for the true covariance matrix Σy. However, it can be modified to also apply to the

sample covariance pΣ, provided that the number of available signal samples for covariance

estimation N is sufficiently large.
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To characterize this rigorously, let us consider an asymptotic regime, in which the num-

ber of pilots N grows proportionally to the number of antennas M such that ζM “ M
N Ñ

ζ ą 0 as M Ñ 8. Although in practice the dimension M is finite, the ensuing asymptotic

result gives a flavor of conditions under which support recovery is feasible for the discrete

spikes.

Let ηM pλq “ 1
M

ř

kPZM
δpλ´λk,M q be the empirical measure that gives the spectrum of

Σy,M for every M , where we have made the dimension (M) of the observation covariance

Σy explicit by adding a subscript. One can show that this empirical measure converges to

a deterministic one. Call this deterministic measure η. Also, let pλ0,M , . . . , pλM´1,M denote

the eigenvalues of pΣy and define the random probability measure pµM pλq “ 1
M

ř

kPZM
δpλ´

pλk,M q as the empirical distribution of these eigenvalues. It is known that almost surely

(a.s.) as M Ñ 8 we have pµM
weakly
ÝÑ µ,, where µ is a deterministic density with a Stieltjes

transform as [4] (see [132] for the definition of the Stieltjes transform)

mpzq “

ż

R

dµpλq

λ´ z
, (2.87)

where mpzq is a function that satisfies the following fixed-point equation

mpzq “

ż

R

dηpλq

λp1 ´ ζ ´ ζ z mpzqq ´ z
, (2.88)

for all z P Czsupppµq, where supppµq denotes the support µ. Note that, although the

eigenvalues of Σy and pΣy have a well-defined limit as η and µ, these two limit distributions

are different from each other for arbitrary ζ ą 0 and approach each for ζ Ñ 0, namely,

when the number of samples N becomes much larger than M , where in that case pΣy also

converges to Σy.

To extend the separation condition proved in Proposition 2.1 for the true covariance

Σy to the sample covariance pΣy, we need to study η further. From Szegö’s theorem [48],

it is well-known that η is given by the distribution of the random variable γcpdξ̄q ` N0,

where ξ̄ is a uniformly distributed random variable in r´1, 1s. Note that since the random

variable γcpdξ̄q `N0 is upper bounded by }γc}8 `N0, the support of η always lies in the

interval
“

0, }γc}8 `N0

‰

, and in particular maxpsupp pζqq “ }γc}8 `N0. This implies that

the function

ϕpωq “ ω

ˆ

1 ´ ζ

ż

R

λ

λ´ ω
dηpλq

˙

, (2.89)

is well-defined for all ω P p}γc}8 `N0,`8q. Note that ϕpωq is a continuous and differen-

tiable (of any order) function in this interval. Moreover, ϕpωq Ñ 8 as ω Ñ }γc}8 ` N0
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and limωÑ8 ϕpωq “ 8. Thus, ϕpωq should have a local minimum ω0 P p}γc}8 ` N0,8q.

A direct computation shows that

ϕ
2

pωq “

ż

2ζλ2

pω ´ λq3
dηpλq, (2.90)

which is always positive in the interval p}γc}8 `N0,8q. Hence, ϕpωq is a convex function

in this interval and a point ω0 is the unique minimizer of ϕpωq. Note that ω0 is the unique

minimizer of ϕpωq, thus, it satisfies ϕ1pω0q “ 0. Taking the derivative of ϕpωq, we can

write the condition ϕ1pω0q “ 0 as

ż

λ2

pω0 ´ λq2
dηpλq “

1

ζ
. (2.91)

We can simply check that ω0pζq is an increasing function of ζ. In particular, by increasing

the number of samples N , thus, letting ζ Ñ 0, we have 1
ζ Ñ 8, which is satisfied provided

that ω0 approaches the boundary value }γc}8 ` N0. Similarly, we can check that by

decreasing the number of samples N in a scaling regime where ζ Ñ 8, we obtain ω0 “ 8.

In brief, ω0 ranges monotonically in the interval p}γc}8 `N0,`8q for ζ P p0,`8q.

The following theorem, proved in [89], shows that, similar to the escape of the K largest

singular values in the spectrum of the true covariance Σy illustrated in Proposition 2.1, the

K largest singular values of the sample covariance pΣy escape from the rest of its spectrum

if a separation condition is satisfied. This separation condition can be formulated in terms

of ω0 as follows.

Theorem 2.2. Let tλk,M : k P ZKu denote the set of singular values of Σy as before and

suppose that

λk,M ą ω0. (2.92)

Then, for k “ 0, . . . ,K ´ 1, with probability one as M Ñ 8 we have

pλk,M Ñ ϕpλkq, (2.93)

whereas pλK`1,m Ñ ϕpω0q ă ϕpλK,M q (as ω0 is the maximizer of ϕpωq). ˝

The separation condition (2.92) implicitly depends on the parameters of the spike ele-

ments tκk : k P ZKu as well as the continuous part of the ASF γc (through the function ϕ

defined in (2.89)) and in particular on the asymptotic sampling ratio ζ. As a sanity check

by increasing the number of samples ζ Ñ 0, and ω0pζq Ñ }γc}8 ` N0, and the separa-

tion condition in Theorem 2.2 becomes the same as that in Proposition 2.1, which makes

sense since for large number of samples the sample covariance matrix pΣy converges to the
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original covariance matrix Σy. Moreover, as ω0pζq ą }γc}8 ` N0 for all ζ, Theorem 2.2

requires a stronger separation condition than Proposition 2.1, which is the cost one needs

to pay for not having the original covariance matrix but the sample covariance matrix.

Overall, if the separation condition (2.92) is satisfied, we are able to consistently detect

the number of spikes by identifying the gap between the singular values. In particular,

prM “ maxtk : pλk,m ą ϕpω0q ` ϵu
a.s.
ÝÑ K,

as M Ñ 8 for any ϵ P
`

0, ϕpλK´1,M q ´ ϕpω0q
˘

. Eventually, the following theorem proves

the consistency of the MUSIC estimator in the present context.

Theorem 2.3 (Consistency of MUSIC). If the separation condition (2.92) holds, then

M ppξk ´ ξkq
a.s.
ÝÑ 0, k “ 0, . . . ,K ´ 1, (2.94)

as M Ñ 8, where pξk denotes the K-th dominant minimizer of (2.30). ˝

It is worthwhile here to pose these results in the semi-rigorous setting we already dis-

cussed. More specifically, since in our case the amplitude of the spikes tρkukPZK
remain

constant (rather than decreasing with M), we can mimic this by assuming that the coef-

ficients υk grow proportionally to M as κk “ Mρk.

An important point of analysis in [89] summarized in this section is that for any asymp-

totic sampling ratio M
N Ñ ζ P p0,8q, no matter how small ζ may be, we can make the

detection of all K spikes, namely, their number K and also their support, feasible by in-

creasing the coefficients tκk : k P ZKu until the separability condition in (2.92) is fulfilled.

Let us first illustrate this point step by step. First note that the measure ηpλq depends

only on the continuous part γc, thus, is not affected by changing the weights tκk : k P ZKu.

Therefore, for a fixed ζ P p0,8q, the function ϕpωq and as a result the parameter ω0 are not

affected by changing tκkukPZK
. Second, by dropping the contribution of the continuous

part γc from Σy, we can easily check that the first K singular values of Σy are larger than

the first K singular values of the matrix

Σh `N0I “
ÿ

kPZK

κk
M

apξkqapξkqH `N0I. (2.95)

A direct calculation shows that as M Ñ 8, where as a result
xbpξkq,bpξk1 qy

M Ñ 0 for k “ k1,

the K largest singular values approach to tκk ` N0 : k P ZKu which would satisfy (2.92)

by increasing tκk : k P ZKu (as ω0 is not affected by changing tκk : k P ZKu). In brief, we
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can say that the separability condition (2.92) is fulfilled if

mintκk : k P ZKu ě τpζ, γcq, (2.96)

where τpζ, γcq is a finite threshold that depends on the sampling ratio ζ and γc. As a result,

assuming that κk “ ρkM grows proportionally to M , this condition would be satisfied for

any finite ζ P p0,8q and for any practically relevant γc provided that M is sufficiently

large.
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3 Uplink-Downlink Channel Covariance

Transformation

3.1 Problem Statement

In a multi-user MIMO system, the base station (BS) needs to estimate instantaneous

Downlink (DL) channels of all users to transmit precoded data that mitigates interference

and ensures reliable multi-user communication. Knowledge of the second-order channel

statistics at the BS is crucial, not only to obtain minimum mean squared error (MMSE)

estimates of the instantaneous DL channel, but also in user grouping and precoder design

(see [90] and references therein). In a TDD system obtaining the DL channel covari-

ance is straightforward: the Uplink (UL) and DL channels are identical (due to channel

reciprocity) and therefore the UL and DL channel covariances are the same. During UL

transmission, the BS collects a number of independent pilot signals and estimates the UL

channel covariance using, for example, the covariance estimation methods developed in

Chapter 2. Since UL and DL covariances are identical, the UL covariance estimate is also

an estimate for the DL covariance. In contrast, in an FDD system, channel reciprocity

does not hold, since UL and DL signaling is performed over two disjoint frequency bands.

Therefore, a conventional approach suggests that the BS transmits DL pilot signals, re-

ceives pilot measurements from the user via a closed-loop UL feedback mechanism, and

uses these pilot measurements to estimate the DL instantaneous channel and eventually

its covariance. This is an unfeasible strategy for a massive MIMO system, in which the

channel dimension (= the number of BS antennas) is large (M " 1) and DL channel

training requires a high pilot dimension, imposing a large training and feedback overhead

on the system. Note that, UL channel covariance estimation is similar to the TDD case.

The UL pilots are naturally sent from the user to the BS, which enables the BS to obtain a

reliable estimate of the UL channel covariance. Is it possible to obtain a reliable estimate

of the DL covariance Σdl from the UL covariance Σul, without DL pilot transmission and

channel training?

In this chapter, we will show that the answer to the question above is affirmative: one can

estimate Σdl from Σul by solving convex programs and, under mild technical conditions,
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most DL covariance entries can be estimated with sufficiently small error. Our results rely

on the following two widely-accepted assumptions [59,87,134].

Assumption 3.1 (Channel Angular Reciprocity). Let Wul and Wdl be the zero-mean,

complex Gaussian stochastic processes representing the angular channel gains in UL and

DL, respectively. Although instantaneous realizations of Wul and Wdl may be different, we

assume that their increments have identical autocorrelation, i.e.

ErdWulpξqdWulpξ
1qs “ ErdWdlpξqdWdlpξ

1qs “ γpξqδpξ ´ ξ1qdξ, (3.1)

where δp¨q is Dirac’s delta, and γ is a non-negative measure that may include Deltas. The

equality above implies that we assume the angular scattering function (ASF) γ to be an

invariant of the channel during UL and DL transmission.

This assumption can be physically justified, by considering the fact that the UL-DL

frequency bands occupy a fairly small part of the spectrum and they are typically closely

spaced compared to their carrier frequencies (UL-DL band separation of the order of 100

MHz, for carrier frequencies ranging between 2 and 6 GHz) [111]. Therefore, being a

function of the physical properties of scatterers and reflectors, the ASF remains the same

over UL and DL bands.

Assumption 3.2 (Stationarity). We assume that the ASF γ is piece-wise constant

across time and remains unchanged over many time slots (channel coherence times). In

other words, the ASF remains unchanged over a time range much larger than the (instan-

taneous) channel coherence time.

Note that, this assumption is necessary for the BS to reliably estimate the UL covariance

from UL pilots, that are transmitted by the user over multiple time slots. The assumption

is justified as follows. The channel instantaneous fading coefficients are typically modeled

as Gaussian by appealing to the central limit theorem [105, 123]. The variance of each

coefficient depends on the scattering properties of the objects in the environment. There-

fore, while the fading coefficients may change quickly in time and frequency, their second

order statistics changes at a much slower rate.

3.2 System Setup

Consider a BS equipped with a uniform linear array (ULA) consisting of M equi-spaced

antennas that operates in FDD mode over two bands with corresponding carrier frequen-

cies ful for UL and fdl for DL. We assume the same channel model as in Chapter 2. Similar
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to (2.9) we can express UL and DL channels of an arbitrary user respectively as

hul “

ż 1

´1
dWulpξqaulpξq, (3.2a)

hdl “

ż 1

´1
dWdlpξqadlpξq, (3.2b)

where the integrals are understood as stochastic integrals [68], and where the UL and DL

array response vectors are distinctly defined: the response of element m P ZM in UL and

DL are given as

raulpξqsm “ e
j 2πd

λul
mξ

(3.3a)

radlpξqsm “ e
j 2πd

λdl
mξ

(3.3b)

for ξ P r´1, 1s, where λul “ c
ful

and λul “ c
fdl

are UL and DL wavelengths, respectively.

Assume an antenna spacing of d “
ϱλul

2 sinpθmaxq
, where we have introduced the scalar ϱ P p0, 1s

as the spatial oversampling factor. This parameter is set to 1, for simplicity, in the other

chapters of this dissertation. Note that since the normalized angular range r´1, 1s scanned

by the array has an angular span of 2, the antenna spacing with ϱ “ 1 and given by

d “
λul

2 sinpθmaxq
is the maximum one required to avoid spatial aliasing or grating lobes, which

is the reason we call ϱ the spatial oversampling factor. In array processing applications,

where one deals with only a single frequency band, say, Ful or Fdl, it is conventional to

set ϱ “ 1 since this allows maximum physical span, thus, maximum angular resolution

for the array. In this chapter, we study communication at two disjoint frequency bands

F “ Ful
ŤFdl and we will assume ϱ ă

ful
fdl

to avoid grating lobes [70,128] in both bands Ful

and Fdl. We will see the role played by ϱ in our analysis shortly. With these conventions,

the UL and DL array response vectors are given as

aul “

”

1, ejπϱξ, . . . , ejpM´1qπϱξ
ıT

P CM , (3.4a)

adl “

”

1, ejπϱξ{ν , . . . , ejpM´1qπϱξ{ν
ıT

P CM , (3.4b)

where ν :“ ful
fdl

is the UL to DL carrier ratio. In current FDD systems, the UL carrier is

typically smaller than the DL carrier and therefore we have ν ă 1.

Remark 3.1. In general, the BS uses OFDM signaling to send and receive symbols to

and from the user. The array response from one subcarrier to the next changes in UL as

well as in DL. Here, we compare the channel corresponding to the carrier frequency in

the UL and its counterpart in the DL. For other subcarriers, the same comparison applies
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with the slight modification that the ratio ν defined above changes to the ratio between a

subcarrier in UL to its counterpart in DL.

Remark 3.2. In (3.2) we have modeled UL/DL channels asM -dimensional random Gaus-

sian vectors. This model represents a standard mathematical approximation of the small-

scale channel fading, which is different across antenna elements since the elements have

different responses to an incoming wave. However, this model assumes that large-scale

channel coefficients due to path-loss and shadowing are identical across antenna elements.

This assumption is justified when the array dimension is much smaller compared to the

distance between the user and the BS. Later on, we will study the transformation problem

in large channel dimensions (M Ñ 8), which seems to be violating the aforementioned

assumption. However, this is not a fundamental limitation, since in all practical imple-

mentations of massive MIMO, the array dimension will be large, but not so large as to be

comparable to the user-BS distance. The large-dimension analysis is simply a theoretical

tool for predicting the performance behavior of practical, large arrays.

The angular random processesWul andWdl in (3.2) represent zero-mean, complex Gaus-

sian channel gains in UL and DL, respectively. These processes can be seen as realizations

of the small-scale fading along the AoAs as seen at the BS. The gain variance (average

fading power) is captured by the respective autocorrelation function, that is the by the

ASF. Based on Assumption 3.1, the ASF is identical in UL and DL, and therefore, the

UL and DL covariances can be expressed in terms of the ASF, respectively, as:

Σul “

ż 1

´1
γpξqaulpξqaulpξqHdξ, (3.5a)

Σdl “

ż 1

´1
γpξqadlpξqadlpξqHdξ. (3.5b)

Despite the fact that the ASF is an invariant of the UL and DL channels, the covari-

ances differ since the array response is different in UL and DL. Being Hermitian Toeplitz

matrices, Σul and Σdl are characterized by their first columns:

σul “

ż 1

´1
γpξqaulpξqdξ, (3.6a)

σdl “

ż 1

´1
γpξqadlpξqdξ. (3.6b)

Now, suppose we are given the UL channel covariance Σul. Estimates of the UL covari-

ance can be obtained via UL pilot transmission and using, for example, the covariance

estimation techniques proposed in Chapter 2. Assumption 3.2 enables the BS to receive
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sufficient UL pilots while the channel covariance remains the same. This chapter provides

answers for the following two questions.

• What is a minimax estimation error bound on the estimated DL covariance pΣdl

obtained from Σul with respect to the true DL covariance Σdl?

• How can one efficiently estimate the DL covariance given the UL covariance?

3.3 Related Work and Contribution

The problem of UL-DL covariance transformation has been studied now for about two

decades [56, 60]. It has gained more attention in the last five years due to the advent

of massive MIMO and the need for adapting these systems to the FDD operation mode

[32,35,54,107,129]. These works typically rely on heuristic techniques and barely discuss

performance limits in terms of, for example, transformation error bounds. Compared with

these works, we provide the following major contributions:

1. We mathematically prove that under the assumptions 3.1 and 3.2 and mild conditions

on the array spatial oversampling factor (ϱ) and the UL-DL carrier ratio (ν “
ful
fdl
)

the DL covariance matrix Σdl can be stably estimated from the UL covariance Σul.

2. Our analysis of the UL-DL covariance transformation problem implies a robustness

guarantee for a special class of estimators. In short, all estimators that satisfy min-

imal structural assumptions on the underlying channel ASF, namely non-negativity

and data-consistency, result in fairly small estimation error for most DL covariance

entries.

3. As a by-product of our analysis, we prove that for any given pair of parameters

pϱ, νq, there is always a subset of elements of Σdl that may not be well estimated

from the observation of Σul. This effect is totally neglected in all the ad-hoc schemes

previously proposed in the literature.

Perhaps the most relevant results to the topic of this chapter were published in a series of

papers [22], [86], and [87].1 Using set-theoretic results, the authors of [22] derive general

error bounds for estimating a DL covariance entry, given the UL covariance. The strong

aspect of this result lies in its generality for arbitrary arrays, and a wide range of admissible

angular power spectra, treating the ASF as an infinite-dimensional element of a Hilbert

space without too restrictive structural assumptions (such as sparsity and/or consisting of

1All three papers were published after our work first appeared on the online repository arXiv [52], and
later published at the IEEE International Symposium on Information Theory (ISIT), 2018 [53].
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3 Uplink-Downlink Channel Covariance Transformation

only line spectra). However, one caveat of this work is that, explicit error bounds are given

only for the case in which the non-negative angular scattering function γ is bounded in the

induced norm as }γ}H, where } ¨ }H is the norm defined by the inner-product associated

with the Hilbert space H. Particularly, when H “ L2 the space of square-integrable

functions, one uses the standard Euclidean norm which necessitates }γ}2 ď B for some

B P R`. But when γ includes Delta impulses, this condition does not hold, since the

Delta is not an element in L2, and therefore the error bound is violated. This however

is not a negligible example. It is quite natural for the ASF to consist of Delta impulses

that are associated with line-of-sight (LoS) and specular scattering components. In fact

the majority of related works in the literature consider the ASF to be consisting of only

Dirac impulses. It is not clear how one can resolve this issue by using a different inner

product and norm. For example, resorting to the ℓ1 norm enables bounding the norm

of γ by assuming
ş8

´8
δ “ 1, but then it is not clear what inner product induces the ℓ1

norm. Since the bounds depend heavily on the definition of the inner product, we can

not evaluate the proposed bounds in [22] when considering γ P L1, where L1 is the space

of Lebesgue-integrable functions. In contrast, our error bounds hold also for the case in

which the spectrum involves Delta impulses.

Apart from theoretical results, strong UL-DL covariance transformation algorithms were

proposed in the papers [86], and [87] companion to [22]. These methods are based on

solving convex feasibility problems [6], and are proposed in two variants which differ in

the constraints they impose on the ASF, namely, non-negativity and data consistency

constraints. We discuss the relation between our proposed covariance transformation

method and those suggested in [86, 87] and provide simulation results to compare their

performance.

3.4 Minimax Error Bounds

A natural way to study the limitations and potentials of UL-DL covariance transforma-

tion is to derive minimax estimation error bounds. We rigorously define this worst-case

error and specify regimes in which a reliable estimation can be performed. We hasten

to emphasize that, unlike most works in the literature, we do not impose any structural

assumption on the spectrum, such as for it to be consisting of only line spectra or to be a

sparse measure. This generality is crucial in order to cover a wider class of possible ASF

forms in a communication scenario.
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3.4 Minimax Error Bounds

We assume w.l.o.g that γ is a normalized non-negative measure over r´1, 1s with

γpr´1, 1sq “ 1. Define the continuous Fourier transform of γ as qγ : R Ñ C:

qγpxq “

ż 1

´1
γpξqejπξxdξ, x P R. (3.7)

Since γ is a normalized measure with a bounded support r´1, 1s, qγpxq is a continuous

function of x due to

lim
hÑ0

|qγpx` hq ´ qγpxq| ď lim
hÑ0

ż 1

´1
γpξq|ejπξx ´ ejπξpx`hq|dξ

ď lim
hÑ0

ż 1

´1
γpξq|1 ´ ejπξh|dξ “ 0,

where the last equality follows from the dominated convergence theorem as |1´ ejπξh| ď 2

is a bounded function approaching 0 for all ξ P r´1, 1s as h Ñ 0. Similarly, one can verify

that qγp0q “ 1 and |qγpxq| ď |qγp0q| for all x P R`, and that qγpxq has conjugate symmetry,

namely, qγp´xq˚ “ qγpxq for any x P R. Moreover, being the Fourier transform of a positive

measure, it is also a positive definite function, i.e.,
řl

i,j“1 cic
˚
j qγpxi ´ xjq ě 0 for any l,

any txiuiPZl
Ă R, and any sequence of complex numbers tciuiPZl

; We refer to [126] for a

comprehensive introduction to positive definite functions and their applications, and to [8]

for the connection with reproducing kernel Hilbert spaces (RKHS). Also, seen as a function

of x P R, qγpxq is band-limited with a spectrum bounded in r´1, 1s.

Now let us consider σul. From (3.6a) and (3.7) it is seen that

rσulsm “

ż 1

´1
γpξqejmπϱξdξ “ qγpmϱq, m P ZM . (3.8)

Hence, the “samples” tqγpmϱq : m P ZMu of qγ at the lattice sampling points tmϱ : m P ZMu

correspond to the M elements of σul. Similarly, it is not difficult to check that

rσdlsm “ qγp
mϱ

ν
q, m P ZM . (3.9)

This implies that σdl, and as a results Σdl, can be obtained from the samples of qγ at

positions t
mϱ
ν

: m P ZMu. With this explanation, we can pose the problem of UL-DL

covariance transformation as follows.

Problem 1. Given the set of M UL samples tqγpmϱq : m P ZMu of the band-limited

function qγ, with an unknown non-negative spectrum γpξq supported over r´1, 1s, find the

values of the corresponding DL samples tqγp
mϱ
ν q : m P ZMu.
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Figure 3.1: Illustration of the graph G Ă r0,Mϱs ˆC associated to a specific measure and
its width at a specific probing point s. Note that the vertical axis corresponds
to the complex plane or more precisely to the interior of the complex unit
sphere in the complex plane as |qγpxq| ď |qγp0q| “ 1, and due to the conjugate
symmetry we have plotted qγpxq only for x P R`.

This problem is schematically visualized in Fig. 3.1. Note that since by our assumption,

qγpxq is band-limited, from the sampling theorem2 [125], we should be able to recover γ

from the samples tqγpmϱq : m P Z`u (even without any spatial oversampling, i.e., for

ϱ “ 1), thus, to estimate qγpxq at any arbitrary x P R`. When we have only finitely

many samples tqγpmϱq : m P ZMu, given the band-limitedness and smoothness of qγ, we

may still expect to estimate qγpxq for those x inside the UL sampling interval r0,Mϱs

with a moderately small error that vanishes as M Ñ 8. However, in UL-DL covariance

transformation, there is always a subset of DL sampling interval r0, Mϱ
ν s that lies near the

boundary of the UL sampling interval r0,Mϱs (see UL/DL sampling intervals in Fig. 3.1).

In fact, one can argue that no matter how large M is, for most non-negative measures γ,

those boundary points suffer from some interpolation/extrapolation error and cannot be

approximated very well from the UL samples tqγpmϱq : m P ZMu. However, when qγpxq

decays sufficiently fast in terms of x, and M is large, we expect that the samples of qγ close

to the boundary of r0,Mϱs have a small amplitude (energy) and their contribution to the

DL covariance matrix is negligible.

It is also important to note that our explanation in this section confirms that for a large

number of antennas M , the UL and DL covariance matrices can differ significantly from

each other since they are obtained by sampling qγpxq at quite different sampling intervals

(see Fig. 3.1), so an appropriate covariance transformation from UL to DL in relevant

applications is inevitable.

2As a brief note, we would like to mention that here, for convenience, we defined the Fourier transform in
(3.7) by πξx rather than the conventional 2πξx, thus, the bandwidth of qγ in the conventional notation
is 1

2
(rather than 1). Therefore, samples of qγ at Z` have a sampling rate equal to (more than when

ϱ ă 1) twice the bandwidth of γ and are sufficient for its recovery according to the sampling theorem.
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3.4 Minimax Error Bounds

3.4.1 Main Result

As mentioned above, UL-DL transformation problem is equivalent to Problem 1, and here

we focus on a minimax approach to this transformation (or resampling) problem.

We first define Γγ as the set of all positive normalized measures µ that are supported

on r´1, 1s and yield the same UL covariance matrix as γ, or more specifically:

Γγ :“
!

µ : µpr´1, 1sq “ 1, qµpmϱq “ qγpmϱq,m P ZM

)

, (3.10)

where qµ denotes the Fourier transform of µ as in (3.7). We consider the UL probing

window r0,Mϱs Ă R` (see Fig. 3.1) and define the image of the set Γγ over the probing

window r0,Mϱs under the Fourier transform as

G :“
ď

µPΓγ

!

px, qµpxqq : x P r0,Mϱs

)

Ă r0,Mϱs ˆ C, (3.11)

which is given as the union of the graph of the Fourier transforms of all µ P Γγ . Define

the section of the graph G at a probing point s P r0,Mϱs by Gs “ tz P C : ps, zq P Gu. Also

define the width of G at a point s P r0,Mϱs as the diameter of Gs:

wGpsq :“ sup
a,b PGs

|a´ b|. (3.12)

Fig. 3.1 illustrates the graph associated with a specific measure γ and its width at a specific

point s P r0,Mϱs. It is important to note that since all the measures in Γγ have the same

Fourier transform at the sampling points tkϱ : k P ZMu, we have that wGpsq “ 0 for

s P tkϱ : k P ZMu. Also, note that wGpsq measures the variation in the Fourier transform

of the densities in Γγ at a specific point s. As a result, by controlling wGpsq, we can

obtain an estimate of the worst-case error of an algorithm that estimates qγpsq by merely

observing qγ at the sampling points tkϱ : k P ZMu. The following theorem is the main

result of this section.

Theorem 3.1. Let γ be an arbitrary non-negative and normalized measure supported in

r´1, 1s. Let r0,Mϱs be the UL probing window and let s P r0,Mϱs be an arbitrary point.

Let G be the graph corresponding to γ and let wGpsq be the width of G at s P r0,Mϱs.

Then, there exists a universal constant C P R` such that

wGpsq ď min

"

C
´

sinp
πϱ

2
qgp

s

Mϱ
q

¯2M
, 2

*

, (3.13)
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Figure 3.2: illustration of the function g over r0, 1s.

where g : r0, 1s Ñ r1, 2s is a function that is independent of γ, M , and s, and given

explicitly by gpαq “ efpαq for α P r0, 1s where

fpαq “

´

1 ´ h2p
1 ` α

2
q

¯

logp2q, (3.14)

and where h2pxq “ ´x log2pxq ´ p1 ´ xq log2p1 ´ xq is the binary entropy function [31] for

x P r0, 1s. ˝

Fig. 3.2 illustrates the function g in Theorem 3.1 over the interval r0, 1s.

3.4.2 Roadmap to the Proof

In the sequel we develop the proof of Theorem 3.1. But first, let us discuss some of the

algorithmic implications of Theorem 3.1 for UL-DL covariance transformation. Consider

an arbitrary algorithm that produces an estimate µ of the true ASF from the observations

tqγpmϱq : m P ZMu that satisfies tqµpmϱq “ qγpmϱq : k P ZMu. Let s P r0,Mϱs be an

arbitrary probing point, and let qγpsq and qµpsq be the Fourier transform of γ and that of

the estimate µ at s, respectively. Theorem 3.1 implies that

|qγpsq ´ qµpsq| ď wGpsq ď min

"

C
´

sinp
πϱ

2
qgp

s

Mϱ
q

¯2M
, 2

*

decays exponentially fast to 0 as M tends to infinity, provided that sinp
πϱ
2 qgp s

Mϱq ă 1.

Moreover, since g is an increasing function in r0, 1s, we also have that for any W0 Ď r0,Mϱs

sup
sPW0

|qγpsq ´ qµpsq| ď min

"

C sup
sPW0

´

sinp
πϱ

2
qgp

s

Mϱ
q

¯2M
, 2

*
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Figure 3.3: Illustration of the variation in sampling by changing the spatial oversampling
factor ϱ P r0, 1s. It is seen that for a fixed M , the UL and the DL observation
intervals grow proportional to ϱ. For any ϱ, only a fraction of DL covariance
entries in a region of sizeMϱαpϱq denoted by “S” are guaranteed to be robustly
estimated from the UL samples, where a robust estimation might generally fail
for the rest of the DL coefficients lying in a window denoted by “F”.

“ min

"

C
´

sinp
πϱ

2
qgp

smax

Mϱ
q

¯2M
, 2

*

,

where smax “ supts : s P W0u. Thus, the worst case error over any probing window

W0 can be controlled by the largest element supts : s P W0u of W0. In particular, since

gpαq P r1, 2s, the estimation is precise over the whole window r0,Mϱs for M Ñ 8, when

sinp
πϱ
2 q ď 1

2 or equivalently when ϱ ď 1
3 . For example, in a practical case, where the

antenna scans the angular range Θ “ r´θmax, θmaxs with a θmax “ 60 degrees, this would

require an antenna spacing of d “
λul

3
?
3
where λul denotes the wavelength at the UL carrier

frequency ful.

Overall, since the elements of σdl correspond to the samples of qγ at locations s P t
mϱ
ν

:

m P ZMu, from the condition sinp
πϱ
2 qgp s

Mϱq ă 1 needed for wGpsq Ñ 0 asymptotically as

M Ñ 8, it immediately results that for any ϱ ă 1, one can stably estimate from σul those

components of σdl with indices belonging to

Idlpϱq :“ tm P ZM : m ď Mν, sinp
πϱ

2
qgp

m

Mν
q ă 1u. (3.15)

Since |Idlpϱq| ď Mν, the result of Theorem 3.1 guarantees the stable recovery of only a frac-

tion of components of σdl consisting of the first |Idlpϱq| elements (see Fig. 3.1 and Fig. 3.3).

As a result, there are always a subset of components of σdl consisting of M ´ |Idlpϱq| ele-

ments that are not guaranteed to be reliably estimated from σul.

Underlying Trade-offs

The result of Theorem 3.1 might be misleading since it seems to suggest that one needs

to select a smaller ϱ to obtain a better transformation performance. However, one should
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note that selecting a small ϱ creates a significant spatial correlation among the antennas

and reduces the spatial degrees-of-freedom (DoF) of the array. In words, for a given ϱ, the

spatial resolution, thus, the number of effective spatial eigen-functions of the array scales

as OpMϱq. For example, in the extreme case of ϱ Ñ 0, all the antennas are collocated and

it is as if having only a single antenna. We refer to [97] for a more rigorous explanation of

the spatial DoF of the array and related information-theoretic trade-offs. Here, we only

provide an intuitive explanation and mainly focus on the non-asymptotic regime with a

finite number of antennas M . Consider a specific angular ASF γ supported on r´1, 1s.

Using the error bound in Theorem 3.1, we see that we can robustly estimate, from UL

observations tqγpmϱq : m P ZMu obtained via UL covariance estimation, only those DL

coefficients tqγpm ϱ
ν q : m P ZMu that lie inside the window r0,Mϱαs provided that α P r0, 1s

satisfies sinp
πϱ
2 qgpαq ă 1. We define the largest such α by αpϱq “ suptα : sinp

πϱ
2 qgpαq ă

1u “ g´1p 1
sinp

πϱ
2

q
q. Thus, for any ϱ we can only guarantee the robust estimation of those

DL coefficients that are obtained by sampling qγ inside the window r0,Mϱαpϱqs consisting

of the first

Npϱq “
Mϱαpϱq

ϱ
ν

“ Mνg´1p
1

sinp
πϱ
2 q

q, (3.16)

sampling points of the DL coefficients tqγpm ϱ
ν q : m P ZMu. This has been illustrated in

Fig. 3.3. Intuitively speaking, for any ϱ, we have Mϱ spatial DoF in the UL among which

only a fraction of αpϱq P r0, 1s can be robustly estimated and used for the DL, thus, a

total of MDpϱq robust DoF for the DL where Dpϱq “ ϱαpϱq. Fig. 3.4 illustrates Dpϱq for

ϱ P r0.5, 1s, where it is seen that the maximum Dpϱq for ϱ P p0, 1q is achieved at ϱ « 0.5.

For a ULA with θmax “ 60 degrees, this corresponds to an antenna spacing of d “
?
3
3

λul
2 .

We should also point out that the result stated in Theorem 3.1 and also our explanation

in this section follow from the minimax analysis of the transformation problem where we

consider all possible angular ASF’s and even the worst-case ones. The situation is much

better in practice when one deals with a much more structured class of angular ASF’s

γ. For example, consider the class of all ASF’s γ whose Fourier transform qγpxq has a

negligible energy beyond |x| ą ∆ for some fixed ∆ ą 0. In such a case, we expect that all

the significant components of qγpxq in |x| ď ∆ be recovered precisely if Mϱαpϱq « ∆ (see,

e.g., Fig. 3.3), where one can essentially ignore (i.e., zero pad) the coefficients in |x| ą ∆

since they are negligibly small. Note that the condition Mϱαpϱq « ∆ can be fulfilled even

with a moderately large number of antennas. Moreover, for any fixed ∆, one can select ϱ

very close to 1 (no spatial oversampling, thus, maximum spatial resolution) as M Ñ 8,

thus, reconstructing the DL covariance matrix without paying any penalty in spatial DoF.
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Figure 3.4: Comparison between the ideal and achievable (robust) UL-DL DoF (due to
frequency variation) as a function of spatial oversampling factor ϱ. It is seen
that for ϱ ď 1

3 , both DoFs are equal. Moreover, the maximum robust DoF is
achieved for ϱ « 0.5.

Remark 3.3. Throughout this chapter we have assumed, as in almost all massive MIMO

deployments, ful ă fdl, thus, ν “
ful
fdl

ă 1. In such a case, the desired interpolation window

r0, Mϱ
ν s needed for UL goes much beyond the observation window r0,Mϱs in the DL (see,

e.g., Fig. 3.1 and Fig. 3.3), which makes a reliable UL-DL covariance extrapolation quite

challenging. In contrast, when ful ą fdl and ν “
ful
fdl

ą 1, the interpolation window r0, Mϱ
ν s

for the DL is a smaller subset of observation window r0,Mϱs in the UL. As a result, the

UL-DL covariance extrapolation is indeed much easier, even with a moderate number of

antennas M , and can be done with much less spatial oversampling, i.e., with a larger ϱ.

The Chebyshev Differential Equation

In this section, we develop suitable approximation techniques and derive upper bounds on

the approximation error using Chebyshev functions. We will use these results in Section

3.4.4 to obtain suitable minimax upper bounds and to finally prove Theorem 3.1. We first

consider the Chebyshev second order ordinary differential equation (ODE) given by [143]

p1 ´ t2qy2 ´ ty1 ` ς2y “ 0, (3.17)

where ς P R` is a fixed parameter. Since the coefficients of the ODE (3.17) are differen-

tiable infinitely many times in a neighborhood of t “ 0, the ODE has an analytic solution

as a power series yptq “
ř8

n“0 ant
n around t “ 0. Moreover, since the ODE (3.17) has

singular points at t “ ˘1, this series solution has a convergence radius of at most 1 around

t “ 0 [14,29]. As we will see in Section 3.4.4, we will need the solutions of this ODE in the

interval r´η, ηs for η “ sinp
πϱ
2 q, which will be included in the region p´1, 1q as ϱ P p0, 1q.
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3 Uplink-Downlink Channel Covariance Transformation

Replacing the power series in (3.17), we obtain the following recursion for the coefficients:

an`2 “
n2 ´ ς2

pn` 1qpn` 2q
an, n “ 0, 1, . . . . (3.18)

It is seen that the resulting recursion has order 2, thus, it yields two linearly independent

solution yeptq and yoptq for the initial values pa0 “ 1, a1 “ 0q and pa0 “ 0, a1 “ 1q. In fact,

ye and yo are even and odd functions of t respectively, thus, they are linearly independent

and span the two-dimensional space (as the ODE is second order) of the solutions of the

ODE (3.17), namely, any arbitrary solution yptq can be written as a linear combination

of ye and yo. It is also worthwhile to mention that when ς “ 2k0 is an even integer, yeptq

is an even polynomial of degree 2k0, whereas yoptq has infinitely many terms in its power

series. Similarly, when ς “ 2k0 ` 1 is an odd integer, yoptq is an odd polynomial of order

2k0 ` 1, whereas yeptq has infinitely many terms in its power series. These polynomial

solutions correspond to Chebyshev polynomials of even and odd order.

Explicit Formulas for the Solutions and Error Bounds

A direct calculation shows that cospς sin´1ptqq and sinpς sin´1ptqq satisfy the Chebyshev

ODE with parameter ς. Since cospς sin´1ptqq is an even function over t P p´1, 1q, entails a

power series expansion around t “ 0, and satisfies cospς sin´1ptqq |t“0 “ 1 and

d

dt
cospς sin´1ptqq |t“0 “ 0 ,

from yep0q “ 1, y1
ep0q “ 0 and the uniqueness of the solutions of ODE (3.17), it should

correspond to yeptq. Similarly, we can check that yoptq “
sinpς sin´1ptqq

ς . We will mainly

focus on yeptq with a parameter ς “ 2s for s P r0,M s. We have

yeptq “ 1 `

8
ÿ

k“1

a2kt
2k, (3.19)

where a2k from (3.18) is given by

a2kpsq “

k´1
ź

n“0

p2nq2 ´ p2sq2

p2n` 1qp2n` 2q
, (3.20)

where we also represented explicitly the dependence of a2k on s. We will keep s fixed in

this section and will drop the explicit dependence on s for notation simplicity.
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We first write yeptq as follows

yeptq “ 1 `

M´1
ÿ

k“1

a2kt
2k `

8
ÿ

k“M

a2kt
2k “: ye,M ptq ` EM ptq,

where EM ptq denotes the truncation error consisting of the terms with exponents larger

than or equal to 2M . We first prove the following key result.

Proposition 3.1. Let EM ptq be the truncation error of order M as define before. Then,

we have the following:

1. EM ptq “ p´1qtsu
ř8

k“M |a2k|t2k for all t P p´1, 1q, where tsu denotes the largest

integer smaller than s. In particular, EM ptq has the same sign for all t P p´1, 1q.

2. For any fixed η P p0, 1q, the error EM ptq converges to 0 uniformly for t P r´η, ηs with

the maximum error occurring at the boundary t “ ˘η, i.e., maxtPr´η,ηs |EM ptq| “

|EM p˘ηq|.

3. Over the interval r´η, ηs, the truncation error EM ptq is upper bounded by a2M
η2M

1´η2
.

4. For any fixed η P p0, 1q, the derivative of the truncation error EM ptq also con-

verges uniformly to 0 in the interval t P r´η, ηs and satisfies maxtPr´η,ηs |E1
M ptq| ď

2|a2M |
η2M´1pM´pM´2qηq

p1´η2q2
.

˝

Proof. To prove part 1, first note from (3.20) that the coefficients a2kpsq have alternating

signs for k ď s (due to multiplication by the negative factor p2kq2 ´ p2sq2), whereas all the

coefficients with k ą s have the same sign (since p2kq2 ´ p2sq2 is positive). As s P r0,M s,

this implies that all the coefficients a2k for k ě M have the same sign which can be checked

to be p´1qtsu. As a result, we can write EM ptq “ p´1qtsu
ř8

M |a2k|t2k.

To prove part 2, note that from part 1 and the fact that t2k are increasing functions

of t, it immediately results that the maximum of EM ptq over t P r´η, ηs is achieved at

the boundary point t “ ˘η. Since η P p´1, 1q, from the convergence of the series at η, it

results that |EM p˘ηq| converges to 0 as M tends to infinity. This implies the convergence

of EM ptq to 0 for all t P r´η, ηs as M Ñ 8.

To prove part 3, note that from the recursion equation for the coefficients a2k in (3.20),

we have
a2k`2

a2k
“

p2kq2´p2sq2

p2k`1qp2k`2q
. Since s P r0,M s, it is seen that |

a2k`2

a2k
| ď 1 for k ě M , thus,

|a2k| is a decreasing sequence of k for k ě M . As a result, over the interval t P r´η, ηs, we

have that

max
tPr´η,ηs

|EM ptq| “ |EM p˘ηq| “

8
ÿ

k“M

|a2k|η2k (3.21)
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3 Uplink-Downlink Channel Covariance Transformation

ď |a2M |

8
ÿ

k“M

η2k “ |a2M |
η2M

1 ´ η2
. (3.22)

Finally to prove the last part, note that we have E1
M ptq “ p´1qtsu

ř8
k“M |a2k|p2kqt2k´1,

thus, |E1
M ptq| “

ř8
k“M |a2k|p2kqt2k´1. This implies that

|E1
M ptq| ď

8
ÿ

k“M

|a2k|p2kqη2k´1 “ |E1
M pηq|, (3.23)

for t P r´η, ηs, thus, the maximum of |E1
M ptq| is achieved at the boundary point t “ ˘η.

Moreover, by applying the ratio test [104], we can see that multiplication of the coefficients

a2k by 2k does not change the radius of the convergence of the series, thus, |E1
M p˘ηq|

converges to zero as M Ñ 8, which implies the uniform convergence of E1
M ptq in the

interval r´η, ηs. Also, to obtain the final expression, note that

|E1
M ptq| ď |E1

M p˘ηq| “

8
ÿ

k“M

|a2k|p2kqη2k (3.24)

paq

ď |a2M |

8
ÿ

k“M

p2kqη2k´1 (3.25)

“ |a2M |
d

dη

8
ÿ

k“M

η2k (3.26)

“ |a2M |
d

dη

η2M

1 ´ η2
(3.27)

“ 2|a2M |
η2M´1pM ´ pM ´ 2qηq

p1 ´ η2q2
(3.28)

where in paq we used the fact that |a2k| is a decreasing sequence of k for k ě M . This

completes the proof. [\

3.4.3 More Refined Error Analysis

In this part, we will focus on the scaling law of the coefficient |a2M psq| as a function of

s. Our goal is to find a scaling law of an exponential form |a2M psq| ď gp s
M q2M for some

continuous function g : r0, 1s Ñ R`. We will combine this with the error bound derived in

Proposition 3.1 to prove that the truncation error will vanish for all s P r0,M s inside the

probing window for which gp s
M qη ă 1. From (3.20), we have

|a2M psq| “

M´1
ź

n“0

|p2nq2 ´ p2sq2|

p2n` 1qp2n` 2q
(3.29)
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3.4 Minimax Error Bounds

“
p2Mq2M

p2Mq!

M´1
ź

n“0

|p
n

M
q2 ´ p

s

M
q2|. (3.30)

Applying the Stirling’s approximation for a positive integer l

?
2πlp

l

e
ql ď l! ď e

?
lp
l

e
ql, (3.31)

we can upper/lower bound hpsq :“ 1
2M log |aM psq| as follows

fpsq ´
logp2e2Mq

2M
ď hpsq ď fpsq ´

logp4πMq

2M
, (3.32)

where we defined fpsq as

fpsq “ 1 `
1

2M

M´1
ÿ

n“0

log |p
n

M
q2 ´ p

s

M
q2|. (3.33)

We focus on a scaling regime where s andM grow proportionally such that s
M Ñ α P r0, 1s,

where we can approximate fpsq by the following integral

fpαq :“ 1 `
1

2

ż 1

0
logp|t2 ´ α2|qdt, (3.34)

where for simplicity we used the same notation f for the function with the normalized

argument. With this approximation, we see that for s
M Ñ α P r0, 1s, we have

lim
MÑ8

1

2M
log |aM psq| “ lim

MÑ8
hpsq “ fpαq, (3.35)

We can also evaluate the logarithmic integral in (3.34) as

ż 1

0
logp|t2 ´ α2|q “

ż 1

0
logpt` αqdt`

ż α

0
logpα ´ tqdt

`

ż 1

α
logpt´ αqdt (3.36)

“

ż 1`α

α
logptqdt`

ż α

0
logptqdt`

ż 1´α

0
logptqdt (3.37)

“

ż 1`α

0
logptqdt`

ż 1´α

0
logptqdt (3.38)

“ p1 ` αq logp1 ` αq ` p1 ´ αq logp1 ´ αq ´ 2. (3.39)
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Figure 3.5: Comparison between the asymptotic bound for M Ñ 8 and the finite-M
bound for M P t50, 100, 200u.

This implies that

fpαq “
1

2

´

p1 ` αq logp1 ` αq ` p1 ´ αq logp1 ´ αq

¯

(3.40)

“ p1 ´ h2p
1 ` α

2
qq logp2q, (3.41)

where h2pxq “ ´x log2pxq ´ p1 ´ xq log2p1 ´ xq is the binary entropy function [31] for

x P r0, 1s. Fig. 3.5 illustrates fpαq for α P r0, 1s and its comparison with 1
2M |a2M psq| for

s
M P r0, 1s in the finite-M regime for M P t50, 100, 200u. It is seen that the approximation

is quite tight even for M “ 100, where it is also seen that fpαq is an upper bound on
1

2M |a2M psq| for s
M P r0, 1s. It is also worthwhile to mention that |a2M psq| “ 0 for all

the integers s P ZM since for an integer s the even solution of Chebyshev ODE is a

polynomial of order 2s with zero coefficients for terms with order higher than 2s, thus,

logp|a2M psq|q Ñ ´8 for all s
M P t0, 1

M , . . . , 1u, but fpαq is well-defined and continuous for

all α P r0, 1s. The following proposition summarizes some of the properties of fpαq.

Proposition 3.2. Let fpαq for α P r0, 1s be as before. Then, fpαq is a positive, convex,

and increasing function of α for α P r0, 1s. Moreover, fpαq P r0, logp2qs « r0, 0.6931s. ˝

Proof. The proof simply follows from the properties of the binary entropy function h2.

The positivity follows from the fact that h2p1`α
2 q P r0, 1s for α P r0, 1s. The increasing

property follows from the fact that x ÞÑ h2pxq is a decreasing function of x for x P r12 , 1s,

thus, h2p1`α
2 q is a decreasing and fpαq is an increasing function of α for α P r0, 1s. The

convexity also follows from the fact that x ÞÑ h2pxq is a concave function of x and α ÞÑ 1`α
2
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is an affine function of α. The last part also follows immediately from the monotonicity

of f and the fact that h2p12q “ 1 and h2p1q “ 0. This completes the proof. [\

3.4.4 Bound on the Width of the Graph

In this section, we will use the results obtained in Section 3.4.2 to derive upper bounds

on the width of the graph G associated to a fixed normalized measure γ as introduced in

Section 3.4.1. We will use this to prove Theorem 3.1. Recall that the definition of the

graph G in (3.11) and its width in a fixed probing point s P r0,Mϱs in (3.12).

A Simple Minimax Bound

Let s P r0,Mϱs be a fixed probing point and define ϕpξ, sq “ ejπsξ for ξ P r´1, 1s. In this

section, we consider the following problem. Suppose that ξ P r´1, 1s is fixed but unknown.

The goal is to estimate ϕpξ, sq at a specific s from the samples Eξ “ tϕpξ,mϱq : m P ZMu

(note the explicit dependence of Eξ on ξ). Recall that ϱ is the spatial oversampling factor

as introduced before. Let pϕ : Eξ Ñ C be an estimator for ϕpξ, sq from the available samples

Eξ. We define the worst-case error of pϕ by

e
pϕ

“ sup
ξPr´1,1s

|ϕpξ, sq ´ pϕpEξq|. (3.42)

Here, we will mainly focus on linear estimators, where pϕ is a linear function of the obser-

vations Eξ, where this linear function (linear estimator) can depend on the probing point

s. We denote the set of all such linear estimators for a given s by Ls. We define the

minimax error over the class of linear estimators in Ls by

eM psq “ inf
pϕPLs

sup
ξPr´1,1s

|ϕpξ, sq ´ pϕpEξq|. (3.43)

We prove the following result.

Proposition 3.3. Let s P r0,Mϱs be a fixed probing point. Let γ be a fixed positive

normalized measure and let G and wGpsq be the graph corresponding to γ and its width at

s. Let also eM psq be as in (3.43). Then, we have:

1. eM psq ď 1 for all s.

2. wGpsq ď 2eM psq. ˝

Proof. The first part simply follows by setting pϕ “ 0 to be the zero estimator (which is

linear and belongs to Ls) and the fact that |ϕpξ, sq| “ 1.

67



3 Uplink-Downlink Channel Covariance Transformation

To prove the second part, note that by definition of eM psq, for any ϵ ą 0, there is a

linear estimator pϕ such that

|ϕpξ, sq ´ pϕpEξq| ď eM psq ` ϵ, (3.44)

over the whole set ξ P r´1, 1s. Consider a positive normalized measure µ P Γγ (see the

definition of Γγ in (3.10)). Note that since the estimator pϕ is a linear function of Eξ, we
have that

ż

µpξqpϕpEξqdξ “ pϕ
`

ż

µpξqEξdξ
˘

“ pϕ
´

qµp0q, . . . , qµ
`

pM ´ 1qϱ
˘

¯

paq
“ pϕ

´

qγp0q, . . . , qγ
`

pM ´ 1qϱ
˘

¯

“: cγpsq, (3.45)

where paq follows from the fact that µ P Γγ , thus, it has the same Fourier transform as qγ

at sampling points tmϱ : m P ZMu. Also, note that cγpsq in the last expression depends

only on γ, s but not on a specific µ P Γγ . From (3.44) and (3.45), we obtain that

|qµpsq ´ cγpsq| “

ˇ

ˇ

ˇ

ż

µpξqϕpξ, sqdξ ´

ż

µpξqpϕpEξqdξ
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ż

µpξq
`

ϕpξ, sqdξ ´ pϕpEξq
˘

ˇ

ˇ

ˇ

ď

ż

µpξq
ˇ

ˇϕpξ, sq ´ pϕpEξq
ˇ

ˇdξ (3.46)

ď eM psq ` ϵ. (3.47)

Since this is true for any ϵ ą 0, we have that |qµpsq ´ cγpsq| ď eM psq. Note that this

results is valid for any µ P Γγ , thus, by applying the triangle inequality, we have that

|qµpsq ´ qεpsq| ď 2eM psq for any arbitrary measure µ, ε P Γγ . From the definition of the

width of G in (3.12), this implies that wGpsq ď 2eM psq. This completes the proof. [\

We will use Proposition 3.3 in the following to find an upper bound on wGpsq at any

probing point s by finding suitable upper bound for eM psq.

Minimax Error of the Real Part

Let us first derive an upper bound on the minimax error of estimating the real part of

ϕpξ, sq from the samples Eξ “ tϕpξ, kϱq : k P ZMu. This boils down in the linear minimax
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estimation of cospπsξq from the real and the imaginary parts of Eξ given by

RpEξq :“
!

1, cospπϱξq, . . . , cos
`

πϱpM ´ 1qξ
˘

)

, (3.48)

ℑpEξq :“
!

sinpπϱξq, . . . , sin
`

πϱpM ´ 1qξ
˘

)

. (3.49)

Since we are looking for an upper bound on the error, it is sufficient to consider only a sub-

set of linear estimators that use only the real part RpEξq. Denoting by c “ pc0, . . . , cM´1qT P

RM the coefficients of such a linear estimator, we can upper bound the minimax estimation

error of the real part by

e
prq

M psq “ inf
cPRM

max
ξPr´1,1s

| cospπsξq ´

M´1
ÿ

k“0

cm cospmπϱξq|

“ inf
cPRM

max
ξ˝Pr´ϱ,ϱs

| cosp
πs

ϱ
ξ˝q ´

M´1
ÿ

m“0

cm cospmπξ˝q|

“ inf
c

max
tPr´η,ηs

ˇ

ˇ

ˇ
cosp

2s

ϱ
sin´1ptqq ´

M´1
ÿ

m“0

cm cosp2m sin´1ptqq

ˇ

ˇ

ˇ
,

where the superscript “r” refers to the real part, and where we made the change of variable

ξ˝ “ ϱξ and t “ sinp
πξ˝

2 q, and defined η “ sinp
πϱ
2 q, where η P p0, 1q since ϱ P p0, 1q. Note

that we have

M´1
ÿ

m“0

cm cosp2m sin´1ptqq
paq
“

M´1
ÿ

m“0

cm cospmπ ` 2m cos´1ptqq

“

M´1
ÿ

m“0

cmp´1qm cosp2m cos´1ptqq

pbq
“

M´1
ÿ

m“0

cmp´1qmT2mptq (3.50)

where in paq we used the identity sin´1ptq ` cos´1ptq “ π
2 for t P p´1, 1q, and where in

pbq we used the fact that for an integer m, cosp2m cos´1ptqq coincides with the Chebyshev

polynomial T2mptq of order 2m. Note that tT2mptq : m P ZMu forms a basis for the M -dim

linear space of all even polynomials in t P p´1, 1q of order at most 2pM ´ 1q. However,

this space is also spanned by the monomials tt2m : m P ZMu. As a result, using (3.50), we

can write the desired minimax error bound e
prq

M psq more directly as

e
prq

M psq “ inf
bPRM

max
tPr´η,ηs

ˇ

ˇ

ˇ
cosp

2s

ϱ
sin´1ptqq ´

M´1
ÿ

m“0

b2mt
2m

ˇ

ˇ

ˇ
,
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where we defined b “ pb0, b2, . . . , b2pM´1qq
T P RM . Replacing the coefficients b with the

coefficients of Taylor’s expansion of cosp2sϱ sin´1ptqq, i.e., ta2mp sϱq : m P ZMu with the

notation introduced in Section 3.4.2 (note that s
ϱ P r0,M s), and using Proposition 3.1, we

obtain the following upper bound

e
prq

M psq ď |a2M p
s

ϱ
q|
η2M

1 ´ η2
«

´

sinp
πϱ

2
qgp

s

Mϱ
q

¯2M
(3.51)

where in the last expression we replaced η “ sinp
πϱ
2 q and used (3.35) and replaced g “ ef .

Minimax Error of the Imaginary Part

We repeat similar steps to derive an upper bound on the minimax estimation of the

imaginary part of ϕpξ, sq, where this time we estimate the imaginary part of ϕpξ, sq from

ℑpEξq. More specifically, we consider the following minimax error

e
piq
M psq “ inf

s
max

ξPr´1,1s

ˇ

ˇ

ˇ
sinpπsξq ´

M´1
ÿ

m“0

sm sinpmπϱξq

ˇ

ˇ

ˇ

“ inf
s

max
ξ˝Pr´ϱ,ϱs

ˇ

ˇ

ˇ
sinp

πs

ϱ
ξ˝q ´

M´1
ÿ

m“0

sm sinpmπξ˝q

ˇ

ˇ

ˇ

“ inf
s

max
tPr´η,ηs

ˇ

ˇ

ˇ
sinp

2s

ϱ
sin´1ptqq ´

M´1
ÿ

m“0

sm sinp2m sin´1ptqq

ˇ

ˇ

ˇ
,

where the superscript piq refers to the imaginary part, where we defined s “ ps1, . . . , sM´1qT P

RM´1, and where we made the change of variable ξ˝ “ ϱξ and t “ sinp
πξ˝

2 q as before. We

obtain an upper bound on e
piq
M psq via the estimation of the real part done before. We first

define

e
prq

M ps, tq :“ cosp
2s

ϱ
sin´1ptqq ´

M´1
ÿ

m“0

a2m cosp2m sin´1ptqq,

as the truncation error in the estimation of the real part, where t P r´η, ηs as before,

and where have used the same coefficients a2m “ a2mp sϱq as in the real case. Taking the

derivative of e
prq

M ps, tq with respect to t and some simplification yields

max
tPr´η,ηs

ˇ

ˇ

ˇ

ϱ
?
1 ´ t2

2s

d

dt
e

prq

M ps, tq
ˇ

ˇ

ˇ

:“
›

›

›
sinp

2s

ϱ
sin´1ptqq ´

M´1
ÿ

m“0

m

s
a2m sinp2m sin´1ptqq

›

›

›

8
(3.52)
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paq

ě |e
piq
M psq| (3.53)

where in paq we used the fact that (3.52) can be interpreted as the estimation error of

an estimator with coefficients sm “ m
s a2m, which can be lower bounded by |e

piq
M psq| by

definition. Applying Proposition 3.1, we can bound the derivative of the truncation error

e
prq

M ps, tq in t P r´η, ηs by

max
tPr´η,ηs

ˇ

ˇ

d

dt
e

prq

M ps, tq
ˇ

ˇ ď 2|a2M p
s

ϱ
q|
η2M´1

`

M ´ pM ´ 2qη
˘

p1 ´ η2q2
.

From (3.53), this yields

e
piq
M psq ď max

tPr´η,ηs
|
ϱ

?
1 ´ t2

2s
| max
tPr´η,ηs

|
d

dt
e

prq

M ps, tq| (3.54)

ď |a2M p
s

ϱ
q|
η2M´1pM ´ pM ´ 2qηq

sp1 ´ η2q2
(3.55)

MÑ8
«

´

sinp
πϱ

2
qgp

s

Mϱ
q

¯2M
(3.56)

where we used η “ sinp
πϱ
2 q as before.

3.4.5 Proof of Theorem 3.1

Combining the upper bound on the minimax error of the real part e
prq

M psq and that of the

imaginary part e
piq
M psq, we obtain an upper bound on the minimax error (3.43) as follows

eM psq ď e
prq

M psq ` e
piq
M psq ď C 1

´

sinp
πϱ

2
qgp

s

Mϱ
q

¯2M
(3.57)

where C 1 is a universal constant independent ofM and s. From Proposition 3.3, this yields

the following upper bound on the width of the graph G associated to a given measure γ

wGpsq ď mint2eM psq, 2u ď min
!

C
`

sinp
πϱ

2
qgp

s

Mϱ
q
˘2M

, 2
)

,

for some universal constant C independent of M , s P r0,Mϱs, and the measure γ. This

proves Theorem 3.1.

3.5 Algorithms for UL-DL Covariance Transformation

Now we turn to the second question posed at the beginning of this chapter, regarding

algorithms for UL-DL covariance transformation. Perhaps the most general way to perform
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the transformation (resampling) task is to first find a feasible ASF, that is a non-negative

measure pγ : r´1, 1s Ñ R`, that is consistent with the observed UL covariance entries in

the sense that
ż 1

´1
pγpξqejπϱmξdξ “ rσulsm, m P ZM , (3.58)

where rσulsm “
ş1

´1 γpξqejπϱmξdξ is generated by the ground-truth ASF γ. Recall that

the feasibility set, consisting of all such measures was introduced in (3.10) as the closed

convex set Γγ . The set Γγ can be seen as the intersection of two convex sets:

Γγ “ D`

č

Dγ , (3.59)

where the constraint sets, encoding non-negativity and data consistency, are respectively

given as

D` “ tµ : µpξq ě 0 for all ξ P r´1, 1su, (3.60a)

Dγ “ tµ :

ż 1

´1
µpξqejπϱmξdξ “ rσulsm “ for allm P ZMu. (3.60b)

Note that γ P D`

ŞDγ and therefore the intersection Γγ is always non-empty. Given an

estimate of the ASF as pγ, one can estimate the DL covariance simply by computing

rpσdlsm “

ż 1

´1
pγpξqejπϱ

m
ν
ξdξ, m P ZM . (3.61)

In the absence of further structure, the first step above can be formulated as

find µ

subject to µ P Γγ “ D`

č

Dγ .
(Pfeas)

Such problems are generally known as convex feasibility problems [6]. Obviously, the

solution to such a problem may not be unique in general, hence it can be seen as an

ill-posed inverse problem. In the absence of further structure, such as sparsity of the ASF

in a known basis, it seems that any measure in Γγ is a valid solution.

Remark 3.4. The theory developed earlier in this chapter on the minimax interpolation

error bounds can be seen as a “positive” result: for any measure belonging to Γγ , the

transformation error for most covariance entries is fairly small. Therefore, all algorithms

that return solutions within Γγ must have similar estimation errors, especially for those

covariance entries that correspond to lattice points in the S-region of the interpolation

window (see Fig. 3.3). Therefore, the transformation algorithms that will be discussed

below are only decent examples of methods that do not rely on specific assumptions on
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the channel and treat the problem in its generality. One can in principle use any method

that solves Pfeas, and yet be assured of a robust covariance transformation as a result of

Theorem 3.1.

3.5.1 Transformation via Alternating Projection

A popular approach to solving convex feasibility problems, is to use an alternating pro-

jection method. Starting from an initial point γp0q, this method constructs a sequence of

functions tγptq, t “ 0, 1, . . .u by projecting the solution of the previous step first to one of

the involved convex constraint sets (D`) and then to the other one (Dγ) [6]. Excellent

results with such an approach were reported in [87] for arbitrary array geometries. In

particular, the authors of this work employ an extrapolated alternating projection method

(EAPM) [7], briefly explained as follows. Assume γ belongs to the Hilbert space of func-

tions with bounded ℓ2-norm over r´1, 1s, equipped with the standard Euclidean inner

product. Starting from γp0q, this projection method is updated as

γpt`1q “ p1 ´ τKtqγ
ptq ` τKtPDγ

´

PD`

´

γptq
¯¯

, t “ 0, 1, . . . , (3.62)

where Kt is known as an extrapolation parameter that can be computed as a function of

the current estimate γptq. The operator PD`
maps a measure µ to its orthogonal projection

on D` and is given as PD`
pµq “ maxtµ, 0u. Also, PDγ maps µ to its orthogonal projection

onto the (infinite-dimensional) hyperplane Dγ through a closed-form expression (see [87]).

One can show that, under mild conditions, the sequence tγptqutPZ`
generated via (3.62)

converges weakly to a point in Γγ “ D`

ŞDγ [7]. Denoting the convergence point by

γp8q, one can estimate the entries of the DL channel covariance as

rpσdlsm “

ż 1

´1
γp8qpξqejπϱ

m
ν
ξdξ, m P ZM . (3.63)

The projection method is one of the methods that we will repeatedly refer to in the

simulation results section. The strong aspect of this method is that, in principle, it

returns an infinite-dimensional estimate of the ASF and does not rely on a parametric

representation.3 On the flip side, to the best of our knowledge, the projection method

returns a function in L2pr´1, 1sq, i.e. the space of square-integrable functions over r´1, 1s.

However, we know that an important class of power spectra include discrete measures

such as Dirac impulses, representing LoS and specular scattering components. Obviously,

these types of spectra do not belong to L2pr´1, 1sq and it is not clear from [87] (and the

3Despite this fact, any practical implementation of the projection method by a software relies on a
discretization of the angle domain, so that one can compute the update per iteration in closed form.
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3 Uplink-Downlink Channel Covariance Transformation

companion papers [22] and [86]) how one can extend these results to cover such cases. This

is however not to claim that the projection method fails in the task of UL-DL covariance

transformation, since in this case we are interested not in the ASF per se, but in its inner

product with a set of complex exponentials associated with the DL spatial sampling lattice

points (see (3.63)).

A simpler version of the alternating projection method can be considered, by removing

the non-negativity constraint from Pfeas . This significantly reduces the complexity of the

algorithm, since the solution can be obtained in closed form [87]. The drawback is a higher

transformation error, as we will see in the simulation results of this chapter.

3.5.2 Transformation via MUSIC-Assisted Non-Negative Least-Squares

Apart from infinite-dimensional solutions to the ASF estimation problem, one can instead

consider finite- but high-dimensional approximations of the ASF, which relaxes the prob-

lem to that of estimating a vector of coefficients at the cost of a (small) approximation

error. We discussed this method in Chapter 2, where the idea is to approximate the ASF

as a superposition of the elements of a family of densities

Ψ “ Ψd

ď

Ψc, |Ψ| “ Gc ` pK “ G, (3.64)

where Ψc :“ tψi, i P ZGcu is a family of Gc " 1 compact-support, non-negative functions,

whose support partitions the angular domain, i.e.

ď

i

supppψiq “ r´1, 1s, supppψiq
č

supppψjq “ ∅, @i ‰ j. (3.65)

Standard examples include the family of rectangular densities

Ψc,rect “ t
Gc

2
rect

r´1` 2i
Gc

,´1`
2pi`1q

Gc
q
: i P ZGu.

In addition, Ψd :“ tδp¨ ´ pξkq, k “ 0. . . . , pKu is a family of Dirac impulses located at

tpξku
pK´1
k“0 . In Chapter 2, we explained how one can estimate line spectral components from

the covariance matrix (or its empirical estimate) and provided evidence, showing that

under mild conditions on the amplitude of the line spectral components, one can obtain a

consistent estimate of the set tpξku
pK´1
k“0 when the covariance dimension grows large (M Ñ 8;

see Chapter 2, Section 2.4.1). In practice, we observe that these estimates are indeed close

to their true values tξku
K´1
k“0 , even for moderately large dimensions. Therefore, we employ
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3.5 Algorithms for UL-DL Covariance Transformation

the hybrid density family Ψ “ Ψd
Ť

Ψc and approximate the ASF as

γ «

Gc´1
ÿ

i“0

rγsiψi `

Gc` pK´1
ÿ

i“Gc

rγsiδpξ ´ pξi´Gcq “:
G´1
ÿ

i“0

rγsiϕi, (3.66)

where γ is the pGc ` pKq-dimensional vector of approximation coefficients, and where we

have defined ϕi “ ψi, for i “ 0, . . . , Gc ´ 1 and ϕi “ δp¨ ´ pξi´Gcq, for i “ Gc, . . . , G ´ 1.

With this approximation we have

rσulsm “

ż 1

´1
γpξqejπϱmξcξ «

ÿ

iPZG

rγsi

ż 1

´1
ϕipξqejπϱmξdξ “ rAsm,¨γ, m P ZM (3.67)

where rAsm,¨ is the m-th row of a M ˆG “sensing matrix” with entries

rAsm,n “

$

&

%

ş1
´1 ψnpξqejπϱmξdξ, n “ 0, . . . , Gc ´ 1,

ejπϱm
pξn´Gc , n “ Gc, . . . , G ´ 1,

, m P ZM . (3.68)

The goal then is to estimate γ such that it is non-negative and consistent with the given

UL covariance entries. However, since we are considering a finite-dimensional approxima-

tion, we have to loosen the data consistency constraint. This suggests a natural way of

estimating the vector γ, such that the approximation error is minimized. Combined with

the non-negativity constraint on γ, this results in the following non-negative least-squares

(NNLS) convex program:

minimizeγ Cpµq :“ }M pAµ ´ σulq }2

subject to µ P Dd
`,

(Pd
nnls)

where M “ diag

ˆ

”?
M,

a

2pM ´ 1q, . . . ,
?
2
ıT
˙

, and Dd
` “ RG

` is the G-dimensional

non-negative orthant and a discretized version of D`. Recall that the matrix M is used so

that the cost in Pd
nnls is equal to }T pAµq´Σul}

2
F, where T is the Toeplitzification operator.

Given the solution of Pd
nnls as γ

‹
nnls, we estimate the DL covariance as

pΣdl “ T ppσdlq, pσdl “ Aγ‹
nnls. (3.69)

The following proposition shows an equivalence between the two problems Pfeas and Pd
nnls

in a special case.
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3 Uplink-Downlink Channel Covariance Transformation

Proposition 3.4. Assume that γ belongs to the span of a set of densities Ψ whose elements

have non-overlapping support, unless perhaps on a finite number of points. Then Pfeas and

Pd
nnls have identical solution sets.

Proof. Since γ P spanpΨq, there exists a vector of coefficients γ P RG such that γ “
ř

iPZG
rγsiϕi (with strict equality). Then the cost of Pd

nnls achieves an optimal (minimum)

value of zero, since σul “ Aγ and

Cpγq “ }M pAγ ´ σulq }2 “ 0.

Therefore the set of minimizers of Pd
nnls is given as Snnls “ tµ : Cpµq “ 0, µ P Dd

`u. Since

M is diagonal with non-zero diagonal elements, we conclude that in this case

Snnls “ tµ : Aµ “ σul, µ P Dd
`u.

Besides, we can write Pfeas as the problem of finding a vector µ such that

G´1
ÿ

i“0

rµsiϕipξq ě 0, ξ P r´1, 1s, (3.70a)

ż 1

´1

G´1
ÿ

i“0

rµsiϕipξqejmπϱξdξ “ rσulsm. (3.70b)

Note that the non-negativity constraint in 3.70a has a subtle meaning: it is equivalent

to the Dirac impulses ϕi, i “ Gc, . . . , G to have non-negative coefficients (rµsi ě 0 for

i “ Gc, . . . , G) and
řGc´1

i“0 rµsiϕi ě 0. Since the densities ϕi, i “ 0, . . . , Gc ´ 1 have

disjoint support, the combination of these conditions is equivalent to rµsi ě 0 for all

i “ 0, . . . , G´1, i.e. γ P Dd
`. In addition, the constraint (3.70b) is equivalent to Aµ “ σul.

This gives the solution set of Pfeas as Sfeas “ tµ : Aµ “ σul, µ P Dd
`u and therefore we

have Sfeas “ Snnls. [\

3.6 Extension to Arbitrary Array Geometries

So far we discussed the UL-DL covariance transformation problem specifically for ULAs.

Here, we briefly discuss extensions to arbitrary (full-dimensional) array geometries. For

arbitrary array geometries, one can generally parameterize the AoAs by points over the

unit sphere S2 :“ tξ P R3 : }ξ} “ 1u in R3 and represent the angular ASF of each user as

a non-negative measure γ over S2. Denoting by R :“ trm P R3 : m P ZMu the position

of antenna elements in the BS array, we can define UL-DL array responses as aulpξq and
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3.6 Extension to Arbitrary Array Geometries

adlpξq, where

raulpξqsk “ e
jm 2π

λul
xξ,rmy

, radlpξqsm “ e
jm 2π

λdl
xξ,rmy

, (3.71)

for m P ZM . Similarly, we can introduce the Fourier transform of the angular ASF γ as

qγprq “

ż

S
ejπxξ,ryγpξqdξ, (3.72)

where the integral is taken over the set of all AoAs parameterized with ξ P S. The channel

covariance matrices in UL and DL are given, respectively, as

rΣulsm,l “

ż

S
e
jπxξ, rm´rl

λul
2

y

γpξqdξ “ qγp
rm ´ rl

λul
2

q, (3.73)

rΣdlsk,l “

ż

S
e
jπxξ, rm´rl

λdl
2

y

γpξqdξ “ qγp
rm ´ rl

λdl
2

q. (3.74)

Denoting by D :“ R ´ R “ trm ´ rl : m, l P ZMu the Minkowski difference [120] of

the antenna geometry R :“ trm : m P ZMu, we can see that the UL-DL covariance

transformation in this setup can be posed, similar to that stated in Problem 1, as the

problem of resampling the Fourier transform qγ of γ at the DL sampling set Ddl :“
D
λdl
2

from its value at UL sampling set Dul :“
D
λul
2

, where for an α P R we denote by αD :“ tαϕ :

ϕ P Du the component-wise scaling of the elements of D by the factor α. Interestingly, it

is seen that, as in the one-dimensional case of the ULA, the set of DL sampling positions

is simply given by Ddl “ 1
ν ˆ Dul, which is a scaled version of the set of UL sampling

positions Dul by a factor 1
ν (larger than 1 for ν ă 1), where ν “

λdl
λul

“
ful
fdl

, denotes the

ratio between the UL and DL carrier frequencies.

This is illustrated for a circular array geometry in Fig. 3.6, where it is seen that Dul

and Ddl each consist of OpM2q points. For the ULA, the underlying geometry is one-

dimensional and consists of R “ tmd ξ0 : m P ZMu for some unit vector ξ0 P S2 and

some antenna spacing d. Thus, the difference set D “ R ´ R “ tmd ξ0 : m “ ´pM ´

1q, . . . , pM ´ 1qu is also one-dimensional, lies along ξ0, and consists of 2M ´ 1 points

(rather than OpM2q points as in a circular array). Also, for the ULA, the resulting UL-

DL covariance matrices are Toeplitz matrices that depend on a one-dimensional normalized

measure that is obtained by projecting γpξq onto the collection of 2-dim planes that are

orthogonal to ξ0, and can be represented by γpdξq in terms of the parameter ξ :“ xξ0, ξy

that takes on values in r´1, 1s as ξ varies over the sphere S2. Thus, the UL-DL covariance

transformation problem boils down to that stated in Problem 1. We expect that when
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3 Uplink-Downlink Channel Covariance Transformation

(a) ircular array (b) corresponding UL/DL sampling positions

Figure 3.6: Illustration of a circular array geometry R and the corresponding UL (solid
circle) and DL (solid square) sampling positions Dul “ R´R

λul
2

and Ddl “ 1
ν ˆDul.

ν ă 1, thus, the DL sampling set Ddl is an expanded version of UL one Dul, as in the

1-dim case of ULA, one needs to impose some spatial oversampling by a factor ϱ ă 1 in

our notation to guarantee a stable UL-DL covariance extrapolation4, namely, the array

elements should be closely spaced (measured in terms of λul
2 ).

Also note that, for any array geometry R, the Minkowski difference D “ R ´ R is

a symmetric set, i.e., D “ ´D, centered at the origin 0, and Dul and Ddl correspond

to the directional scaling of this set with respect to the origin by a factor 2
λul

and 2
λdl

respectively. As a result, one can always identify a well-defined boundary between Dul and

Ddl. For example, for a circular array illustrated in Fig. 3.6, this boundary corresponds to

all DL sampling points (solid squares) that lie outside the boundary circle corresponding

to the UL sampling points (solid circles). Earlier in this chapter, we used the properties

of the series solutions of Chebyshev ordinary differential equation (since we had a one-

dimensional variable ξ) to derive bounds on the required spatial oversampling factor ϱ

and to specify the subset of reliable samples as in (3.15) in a minimax setup. It would be

interesting to derive similar bounds using perhaps tools from partial differential equations

(since ξ P S1 is two-dimensional). We leave this as an interesting problem to be further

investigated beyond this dissertation.

3.7 Simulation Results

In this section, we study different aspects of the UL-DL covariance transformation problem

via numerical simulations. We consider the IMT FDD band as in the LTE standard [111]

4Note that for general array configurations the UL/DL sampling sets can be highly irregular (non-
uniform), and one needs to make sure that the more general Landau sampling theorem [74, 125] is
fulfilled (rather than the uniform sampling in the sampling theorem), which puts restrictions on the
minimum density of the sampling sets (see, e.g., Fig. 3.6).
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Figure 3.7: UL-DL interpolation error on the DL sampling positions for different number
of antennas M P t50, 100u when ϱ “ 1.05 ą 1 and does not fulfill the sampling
theorem.

with a UL band Ful “ r1920, 1980sMHz and a DL band Ful “ r2110, 2170sMHz. We set

the carrier frequencies as ful “ 1950 and fdl “ 2140 and ν “
ful
fdl

« 0.9 ă 1. We assume

that the ULA at the BS scans the angular range Θ “ r´θmax, θmaxs with a θmax “ 60

degrees. We assume that the ASF γ is the piece-wise constant density

γ “ rectr0.6,0.8s ` 4 rectr0.8,1s, (3.75)

where for X Ă r´1, 1s, we denote by rectX a rectangular pulse of amplitude 1 in X and

0 elsewhere. Note that γ is a normalized measure and qγp0q “ γpr´1, 1sq “ 1. For the

simulations, we apply the NNLS covariance transformation method solved as in Pd
nnls intro-

duced in Section 3.5 over a grid of size G “ 4M , whereM denotes the number of antennas.

3.7.1 Aliasing Effect (Grating Lobes) for ϱ ą 1

We first consider the following simulation to illustrate the importance of the spatial over-

sampling factor ϱ. We assume that the antenna spacing d violates the conditions of

sampling theorem, that is, ϱ ą 1 and d “
ϱλul

2 sinpθmaxq
is larger than λul

2 sinpθmaxq
. In this case,

even if M Ñ 8, one might not be able to recover γ uniquely due to the aliasing, which

is also known as the grating lobe effect in array processing literature [67, 127]. Fig. 3.7

illustrates the UL-DL transformation error at the DL sampling set. It is seen that even for
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Figure 3.8: UL-DL transformation error on the DL sampling positions for different number
of antennas M when ϱ “ 0.9 ă 1 and fulfills the sampling theorem.

ϱ “ 1.05, which is only slightly larger than 1, the UL-DL transformation completely fails,

thus, illustrating the importance of ϱ ă 1. Also, note that, in this case, the interpolation

error does not vanish by increasing the number of antennas M .

We repeat the simulations, where this time we assume that ϱ “ 0.9 ă 1 and fulfills the

sampling theorem. Fig. 3.8 illustrates the simulation results, where we again assume that

the ASF γ is as in (3.75). It is seen that the proposed transformation algorithm estimates

qγ very well at all DL sampling locations, where the transformation error grows quite fast

on the boundary locations, which consists of around 10% of the samples. It is also seen

that the error at the boundary points grows with increasing the number of antennas, which

is compatible with Fig. 3.5, where the error exponent grows by increasing the number of

antennas M and approaches the positive error exponent fpαq as in (3.34) asymptotically

as M Ñ 8.

The simulation results also illustrate that our proposed UL-DL interpolation algorithm

seems to perform better than what predicted from Theorem 3.1. This is partly due to the

fact that the result of Theorem 3.1 has a minimax nature and considers the worst-case γ.

It would be interesting to sharpen the result of Theorem 3.1 for a more structured γ via

a more refined analysis, which requires further research.

3.7.2 The Effect of Increasing the Array Size

A natural question that arises from our analysis, is how increasing the number of antennas

M effects the ergodic rate in a massive MIMO system. As described in section 3.4.2 there
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exists an underlying trade-off between the covariance transformation quality and the array

degrees of freedom, scaling with OpMϱq. Increasing M while ϱ is constant, improves the

degrees of freedom, but increases the interpolation error as well. In this section, we

examine the effect of increasing M , while keeping a constant degrees of freedom, i.e.

Mϱ “ const, by adjusting the spatial oversampling factor. Our implied message here is

that, one can achieve the advantages of FDD massive MIMO by paying in terms of the

number of antennas implemented at the BS.

The simulation settings for this experiment are as follows. We assume that there are

K “ 5 groups of users, occupying disjoint spatial intervals r´ν` 2ν
5 k,´ν` 2ν

5 pk`1qs, k “

0, . . . ,K ´ 1. In each group there exists one user, whose ASF consists of 30 randomly

located equal-amplitude delta functions in the respective interval. We assume that the

UL covariance for each user is available at the BS.5 To estimate the DL covariances, the

BS incorporates the NNLS method by solving Pd
nnls method. In order to transmit data

in the DL, the BS incorporates a statistical beamforming method. There exist several

statistical beamforming schemes, among which we select the one proposed in [140]. Note

that, the choice of the statistical beamforming method is not critical here and we adopt

the mentioned method for simplicity. Let Σk, k “ 0, . . . ,K ´ 1 denote the DL covariance

matrix of the users. Then the beamforming vector for user k is given by

uℓ “ umaxtpIM `
ÿ

k‰ℓ

Σkq´1Σℓu, (3.76)

where umaxpXq denotes the eigenvector corresponding to the maximum eigenvalue of X.

The precoding matrix is given as V “

´

ŨH
¯:

D1{2, where Ũ “ ru1, . . . ,uKs and D is a

diagonal matrix that makes the columns of V to have unit norm. Then, the signal received

at user ℓ can be written as

yℓ “ hH
ℓ Vs ` nℓ “ bℓ,ℓrssℓ `

ÿ

k‰ℓ

bℓ,krssk ` nℓ,

where s P CK is the symbols vector, nℓ „ CN p0, N0q is the AWGN with N0 “ P
KSNR ,

where P is the total transmission power at the BS. Also the coefficients pbℓ,1, . . . , bℓ,Kq are

given by the elements of the 1 ˆ K row vector hH
ℓ V. The ergodic sum-rate with perfect

CSI at the receiver is given by

Rsum “

K
ÿ

ℓ“1

E

«

log

˜

1 `
|bℓ,ℓ|

2

1 `
ř

k‰ℓ |bℓ,k|
2

¸ff

, (3.77)

5Otherwise the UL covariance can be estimated via UL pilot observations, using a standard Toeplitz PSD
covariance estimator.
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Figure 3.9: Sum-rate comparison as a function of M with SNR “ 20 dB. Here the degrees
of freedom is set to Mϱ “ 128.

which we calculate using Monte Carlo simulations.

Fig. 3.9 compares the ergodic sum-rate as a function of the number of antennas M for

two scenarios, where in one the DL covariance is known to the BS and in the other, it

is estimated from the UL covariance. As we can see, the sum-rate in the estimated DL

covariance case increases by increasing M and approaches that of the case with perfect

DL covariance knowledge. This means that, if we increase the number of antennas at the

BS and simultaneously decrease the spatial oversampling factor inversely proportional to

the number of antennas, DL covariance estimation as proposed throughout this chapter

imposes no sum-rate degradation.

3.7.3 MUSIC+NNLS vs Alternating Projection

To compare the performance of transformation based on NNLS and transformation via

the alternating projection method proposed in [87], we compare their accuracy in terms

of Downlink covariance estimation error. Note that the algorithm in [87] returns an ASF

in the feasibility set Γγ “ D`

ŞDγ (see Pfeas). Therefore, the estimate depends on the

solution method and two different algorithms may yield different ASF estimates. There-

fore, a comparison of the proposed NNLS method and the projection method is reasonable.

Error Metrics

We use the following two error metrics to compare the estimated DL covariance with the

true DL covariance.
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1. Normalized Euclidean Distance. Let Σ P SM
` be the true channel covariance

and let pΣ denote its estimate. A standard error metric is given by the normalized

Euclidean norm of the difference, given as

Eeuc “
}Σ ´ pΣ}F

}Σ}F
. (3.78)

2. Relative Efficiency. In wireless communication it is sometimes crucial to know,

how similar their associated “dominant” subspaces. Let p P t1, . . . ,Mu denote a

subspace dimension parameter, Up “ rU¨,1, . . . ,U¨,ps P CMˆp the p eigenvectors of

Σ corresponding to its largest p eigenvalues. Similarly, define pUp as the matrix of

the p eigenvectors of pΣ corresponding to its p largest eigenvalues. We define the

relative efficiency parameter as [51]

εppq “ 1 ´
xΣ, pUp

pUH
p y

xΣ,UpUH
p y
. (3.79)

It is easy to see that εppq P r0, 1s, for all p “ 1, . . . ,M . Disregarding the estimated

eigenvalues, this metric compares the power captured by the estimated p-dominant

subspace to that captured by the true p-dominant subspace. The closer εppq is to

zero, the better the p-dominant subspace of Σ is estimated.

Averages of these metrics ErEeucs and Erεppqs are taken over all sources of randomness

and compared for different methods.

In order to generate random ASF’s, we consider a similar setting to the one used in

Section 2.6 of Chapter 2, where we for the sake of simulation, the parametric ASF model

is used to generate random spectra, so that the error metrics are averaged over a variety

of possible ASF’s. According to the ASF parametric model

γpξq “ γdpξq ` γcpξq “
ÿ

kPZK

ckδpξ ´ ξkq `
ÿ

kPZK1

rckgkpξq,

where K is the number of discrete paths, ck P R` is the coefficient of the k-th discrete

path, ξk is its AoA, where K 1 is the number of continuous scattering elements, rck is

a scaling factor associated with the k-th diffuse scatterer, and gk is a continuous, non-

negative measure over an open interval Xk Ď p´1, 1q. Therefore, we can generate an ASF

by specifying 2K ` 3 rK real-valued parameters, namely tξk, cku
K´1
k“0 and tak, bk, rcku

rK´1
k“0 .

In addition, to have control over the relative power of the discrete and continuous ASF
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Parameter Distribution

K Unifpt1, 2, 3, 4uq

rK Unifpt1, 2, 3, 4uq

α P t0, 12 , 1u „ deterministic defined within the specific simulation result

ξk „ Unifpr´1, 1sq, k P ZK

ck „ 1 ` |CN p0, 1q|, k P ZK

ak „ Unifpr´1, 1sq, k P Z
rK

bk „ Unifpr0.1, 0.1`wsq, k P Z
rK
, where w represents the scatterer’s width

will be set to different values depending on the specific simulation result

rck „ 1 ` |CN p0, 1q|, k P Z
rK

Table 3.1: Simulation Parameters

components, we generate the ASF as

γ “ αγnord ` p1 ´ αqγnorc , (3.80)

where γnord “ γd{
ş1

´1 γdpξqdξ, and γnorc “ γc{
ş1

´1 γcpξqdξ are normalized discrete and con-

tinuous ASF components, respectively. α controls the contribution of each part to the

overall ASF γ, i.e. if α “ 0, we have a purely continuous ASF, while if α “ 1, we have a

purely discrete one. Then, since α, K, and rK are themselves to be specified, in total we

need to determine 2K ` 3 rK ` 3 parameters. We select these parameters independently,

each according to a distribution listed as in Table 3.1. We average the results over 1000

random ASF realizations.

Continuous vs Discrete ASF Components As discussed throughout this disserta-

tion, in many propagation environments, the channel power is received at the BS through

a combination of LoS and specular as well as diffuse components. We modeled the for-

mer as discrete measures (Dirac impulses) and the latter as continuous measures in the

spectrum. It is interesting to see how the UL-DL transformation algorithms perform in

various discrete-continuous power-splitting scenarios. This split of power can be modeled

via the ASF expression in (3.80) by changing the scalar α P r0, 1s. When α Ñ 1, the

ASF is more and more dominated by its discrete component such that at α “ 1, the

ASF is purely discrete. This is in fact the case that is previously studied in plenty of

works in the literature dedicated to estimating line-spectral angular power spectra. In

contrast, when α Ñ 0, the ASF is dominated by its continuous component such that at

α “ 0 the ASF is purely continuous. We apply the MUSIC-assisted NNLS and alternating

projections methods for three different values of α “ 0, 0.5, 1. The shape of the ASF is

generated semi-randomly according to Table 3.1. In all cases we choose the dictionary used
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Figure 3.10: covariance estimation error curves for the average normalized Euclidean distance and
relative efficiency metrics against the channel dimension M for three values of the
continuous-discrete power-splitting ratio α.

for approximating the continuous ASF component to be the rectangular density family

Ψc,rect “ trect
r´1` 2i

Gc
,´1`

2pi`1q

Gc
q
, i “ 0, . . . , Gc ´ 1u of size Gc “ 3M .

Fig. 3.10 illustrates the error curves for four different algorithms, namely, the alternating

projections (AP) method with and without the ASF non-negativity constraint (AP Alg.

2 and AP Alg. 1, respectively) and the NNLS method with and without MUSIC.

First, comparison between alternating projections Alg. 1 and Alg. 2 illustrates the

important point that adding the non-negativity constraint reduces the transformation

error. Although, this comes at the cost of more algorithmic complexity, but it eventually

improves channel estimation MSE. Second, the comparison between the NNLS method

with and without the MUSIC step shows the importance of the MUSIC step in estimating

the support of the discrete ASF component. Using the support information, the algorithm

adds appropriate columns to dictionaryA in (3.67), which can represent the contribution of

the discrete part to the covariance entries. Without adding these columns, the contribution

of the rank-1 matrices tapξkqapξkqHu
K´1
k“0 can not be well-approximated by the rest of the

dictionary columns.

Finally, these results show the superiority of the MUSIC-assisted NNLS method to the

other methods in all cases except for the case in which no discrete component exists (α “
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3 Uplink-Downlink Channel Covariance Transformation

0). The reason is that, this method is able to accurately compensate for the contribution

of the discrete ASF component by estimating the support of this component through a

preliminary MUSIC step. In contrast, alternating projection methods do not differentiate

between discrete and continuous ASF components and assume the ASF to belong to the

space L2pr´1, 1sq. When the contribution of the discrete ASF is high (α Ñ 1), this causes

a performance degradation in the transformation.

The Effect of Sparsity

Channel sparsity as a structural assumption has been exploited in previous works as a tool

for improved covariance estimation/transformation by restricting the class of admissible

ASF to those that are sparse. In a finite-dimensional setup, angular sparsity of the channel

is equivalent to the ASF having a number of non-zero components s that is much smaller

than channel dimension (s ! M), or is otherwise well-approximated by a sparse vector. In

an infinite dimensional case, one can translate the concept of sparsity to the ASF having

a support size that is much smaller than the volume of the angular domain. If the discrete

ASF component has small support, then one can approximate the number of angular

directions having significant power as

s “ K `

ˇ

ˇ

ˇ

Ť

rK´1
k“0 supppgkq

ˇ

ˇ

ˇ

2
M, (3.81)

where K is the number of discrete AoAs and gk, k “ 0, . . . , rK ´ 1 are the continuous

functions representing the diffuse scattering components. Now, consider a ULA consisting

of M “ 100 antennas, with a d “
λul
2 uniform spacing. In order to study the effect of

sparsity on UL-DL covariance transformation, we compare the error metrics as a function

of channel sparsity order. In this case we use the following generative model:

γdpξq “

Ki´1
ÿ

k“0

ckδpξ ´ ξkq, (3.82a)

γcpξq “

1
ÿ

k“0

ckgk,ipξq (3.82b)

γ “ αγnord ` p1 ´ αqγnorc , (3.82c)

where γnord “ γd{
ş1

´1 γdpξqdξ, and γnorc “ γc{
ş1

´1 γcpξqdξ are normalized discrete and con-

tinuous ASF components, respectively, Ki is the number of discrete impulses associated

with the i-th sparsity order. The sparsity order is chosen as si “ 10i`10, and the number

of impulses as Ki “ 1 ` i for i “ 0, . . . , 6. The discrete AoA tξku
Ki´1
k“0 are generated

uniformly and independently at random over r´1, 1s with coefficients, generated indepen-
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Figure 3.11: covariance estimation error curves for the normalized Euclidean distance and rela-
tive efficiency metrics against the channel sparsity order s for three values of the
continuous-discrete power-splitting ratio α.

dently according to the expression provided in Table 3.1, and gk,i are generated such that

supppg0,iq Ă r´1, 0q and supppg1,iq Ă r0, 1q for all i, so that the two continuous compo-

nents have non-overlapping support. Also, we generate the scatterer width parameter bk

deterministically as

bk “
si ´Ki

M
, k “ 0, 1,

for i “ 0, . . . , 6. The mean parameter is then generated according to a0 „ Unifpr´1 `

b0
2 ,´

b0
2 sq and a1 „ Unifpr b12 , 1 ´ b1

2 sq.

Fig. 3.11 illustrates the error curves of this experiment for α “ 0, 0.5, 1. The results

show that, when the ASF contains a discrete component (α ‰ 0), the MUSIC-assisted

NNLS method has the best performance for all values of the sparsity order (see Figs. 3.11b

and 3.11c). In contrast, when α “ 0 the methods based on alternating projections have

a superior performance (see Fig. 3.11a). Also, for larger sparsity orders, the performance

of NNLS (with or without MUSIC) deteriorates. The reason for this phenomenon is that

the NNLS method implicitly favors sparse solutions and when the channel is not sparse,

this causes a not-so-large increase in the transformation error.
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4.1 Problem Statement

Consider a base station (BS) equipped with a uniform linear array (ULA) with M anten-

nas, operating in frequency division duplex (FDD) mode: Uplink (UL) transmission from

a user to the BS takes place over a frequency band Ful “ rful ´
BWul
2 , ful `

BWul
2 s with

carrier frequency ful and a bandwidth BWul, and Downlink (DL) transmission from a BS

to the user takes place over a band Fdl “ rfdl ´
BWdl
2 , fdl `

BWdl
2 s with carrier frequency

fdl and a bandwidth BWdl. For example, one mode of operation in the 3GPP standard

uses the Ful “ r1920, 1980s MHz band for UL transmission and the Fdl “ r2110, 2170s

MHz band for DL, so that ful “ 1950 MHz, BWul “ 60 MHz, fdl “ 2140 MHz, and

BWdl “ 60 MHz [111]. This is in contrast to the time division duplexing (TDD) operation

mode which uses the same band for UL and DL transmission, and uses time duplexing for

UL/DL data reception/transmission. In TDD the BS can directly use the obtained chan-

nel state information (CSI) during UL for data transmission in the DL. This is possible

based on the reasonable assumption that the UL and DL channels are identical, since the

time difference between the two reception and transmission is so short that the change in

the instantaneous channel is negligible. This phenomena is known as channel reciprocity,

which does not hold in FDD mode, since the instantaneous UL and DL channels corre-

spond to two distinct frequency bands (the gap between these bands is equal to190 MHz

for the example above).

Channel reciprocity simplifies the task of DL data transmission in a TDD system: the

BS uses the estimated CSI during UL to design a precoder and transmits multiplexed

data to a set of users. In FDD, however, the BS has to first estimate the DL channels.

This is done by broadcasting a number of Tdl pilot symbols to the multi-user system and

receiving the corresponding pilot measurements from each user in UL, which the BS uses

to estimate DL channels and design the precoder. In a massive MIMO system this proves

to be a challenging task, due to the high channel dimension (M " 1). In order to train M

antennas, a conventional DL training scheme requires a minimum pilot dimension of Tdl “

M . Hence, with such a scheme, the number of BS antennas M cannot be made arbitrarily

large. For example, consider a typical case taken from the LTE system [111], where groups
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of users are scheduled over resource blocks spanning 14 OFDM symbols ˆ 12 subcarriers,

for a total dimension of T “ 168 symbols in the time-frequency plane. Consider a typical

massive MIMO configuration serving K „ 20 users with M ě 200 antennas (see e.g. [79]).

In this case, since M ě T , the entire resource block dimension would be consumed by

the DL pilot, leaving no room for data communication. Furthermore, feeding back the

M -dimensional measurements (or estimated/quantized channel vectors) represents also a

significant feedback overhead for the UL [19,63,69,77,137].

Designing a massive MIMO system that operates in FDD mode requires developing

methods that overcome these dimensionality issues. In particular, we must address the

problem of designing a “suitable” channel precoder that enables simultaneous data trans-

mission to a set of users. This chapter proposes a novel solution to this problem.

4.1.1 Related Work

Several works have proposed to reduce both the DL training and UL feedback overheads by

exploiting the sparse structure of the massive MIMO channel. In particular, these works

assume that propagation between the BS array and the user antenna occurs through a

limited number of scattering clusters, with limited support in the Angle-of-Arrival/Angle-

of-Departure (AoA-AoD) domain.1 Hence, by decomposing the angle domain into discrete

“virtual beam” directions, the M -dimensional user channel vectors admit a sparse rep-

resentation in the beam-space domain [5, 108]. Building on this idea, a large number of

works (see, e.g., [32, 40, 44, 46, 71, 98, 112, 135]) have proposed to use “compressed pilots”,

i.e., a reduced DL pilot dimension Tdl ă M , in order to estimate the channel vectors using

Compressed Sensing (CS) techniques [20,41]. For example, in [5] the sparse representation

of channel multipath components in angle, delay and Doppler domains was exploited to

propose CS methods for channel estimation using far fewer measurements than required

by conventional least-squares (LS) methods. In [46], the authors note that the angles of

the multipath channel components are common among all the subcarriers in the OFDM

signaling. Then they propose to exploit the common sparsity pattern of the channel co-

efficients to further reduce the number of required pilot measurements. This gives rise to

a so-called Multiple Measurement Vector (MMV) setup, which is typically applied when

multiple snapshots of a random vector with common sparse support can be acquired and

jointly processed [24,43]. This was adapted to FDD in the massive MIMO regime, where

the frequent idea is to probe the channel using compressed DL pilots, receiving the mea-

surements at the BS via feedback and performing channel estimation there. A recent work

1From the BS perspective, AoD for the DL and AoA for the UL indicate the same domain. Hence, we
shall simply refer to this as the “angle domain”, while the meaning of departure (DL) or arrival (UL)
is clear from the context.
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based on this approach was presented in [98], starting with the observation that, as shown

in many experimental studies [45,58,65,73], the propagation between the BS antenna ar-

ray and the users occurs along scattering clusters that may be common to multiple users,

since they all belong to the same scattering environment. In turn, this yields that the

channel sparse representations (in the angle/beam domain) share a common part of their

support. Hence, [98] considers a scheme where the users feed back their noisy DL pilot

measurements to the BS and the latter runs a joint recovery algorithm, coined as Joint

Orthogonal Matching Pursuit (J-OMP), able to take advantage of the common sparsity.

It follows that in the presence of common sparsity, J-OMP improves upon the basic CS

schemes that estimate each user channel separately.

More recent CS-based methods, in addition, make use of the angular reciprocity between

the UL and the DL channels in FDD systems to improve channel estimation. Namely, this

refers to the fact that the directions (angles) of propagation for the UL and DL channel

are invariant over the frequency range spanning the UL and DL bands, which is generally

very small with respect to the carrier frequency (e.g., UL/DL separation of the order of

100 MHz, for carrier frequencies ranging between 2 and 6 GHz) [2, 59, 134]. In [135] the

sparse set of AoAs is estimated from a preamble transmission phase in the UL, and this

information is used for user grouping and channel estimation in the DL according to the

well-known joint spatial division and multiplexing (JSDM) paradigm [1, 90]. In [40] the

authors proposed a dictionary learning-based approach for training DL channels. First,

in a preliminary learning phase the BS “learns” a pair of UL-DL dictionaries that are

able to sparsely represent the channel. Then, these dictionaries are used for a joint sparse

estimation of instantaneous UL-DL channels. An issue with this method is that the dic-

tionary learning phase requires off-line training and must be re-run if the propagation

environment around the BS changes (e.g., due to large moving objects such as truck and

buses, or a new building). In addition, the computation involved in the instantaneous

channel estimation is prohibitively demanding for real-time operations with a large num-

ber of antennas (M ą 100). In [32] the authors propose estimating the DL channel using

a Sparse Bayesian Learning framework, aiming at joint-maximum a posteriori (MAP) es-

timation of the off-grid AoAs and multipath power coefficients by observing instantaneous

UL channel measurements. This method has the drawback that it fundamentally assumes

discrete and separable (in the AoA domain) multipath components and that the number

of signal paths (number of channel AoAs) is known a priori. Hence, the method simply

cannot be applied in scenarios with diffuse (continuous) scattering, where the scattering

power is distributed over an interval of the angular domain with non-negligible width.

Such scattering are observed and modeled for various types of communication channels,

and they do not necessarily admit a sparse angular representation [93,101,103,121].
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Figure 4.1: Overall diagram of our scheme for an FDD massive MIMO system.

Throughout this chapter we develop the idea of active channel sparsification (ACS)

in which, for a given DL pilot dimension, the BS selects a set of angular directions to

transmit data to the users, such that the number of DL data streams that the system

can support is maximized. We show that this method does not assume a sparse structure

on the channel and yields excellent performance with any limited pilot dimension. This

chapter also completes our proposed scheme for realizing a multi-user FDD massive MIMO

system. To recapitulate, this scheme consists of the following modules: (1) UL channel

covariance estimation from orthogonal UL pilots received at the BS, (2) UL-DL covariance

transformation, and (3) DL instantaneous channel training and multi-user precoding. The

diagram presented in Fig. 4.1 illustrates the overall proposed scheme. In what follows we

first discuss the concept of ACS for a multi-user system with a ULA geometry. Then we

extend the idea to arbitrary array geometries.

4.2 System Setup: Multi-User MIMO with a massive ULA

In this section, for the sake of clarity, we develop the ACS method for the simple case

of a ULA with M antennas and a multi-user scenario in which K users are to be served.

The DL channel vector of each user hk P CM , k P ZK is assumed to be complex Gaussian

distributed, with zero mean and a covariance Σk (to simplify notation, we have dropped

the “dl” subscript, since we only consider DL transmission and all mentioned covariances
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are DL covariances). In chapter 2 we studied the problem of covariance estimation and in

chapter 3 we studied the problem of UL-DL covariance transformation. The DL channel

covariance of a user can be estimated, for example, by first estimating the UL covariance

(using the tools developed in chapter 2) and then transforming it to the DL covariance

(using the tools developed in chapter 3). Nevertheless, in order to address the problem of

DL multi-user precoding and study its properties apart and isolated from other compo-

nents of a FDD massive MIMO scheme, in this chapter we assume that the true channel

covariances tΣkuk are known to the BS.

4.2.1 Common Eigenbasis of ULA Covariances

The channel covariance of a ULA channel is Toeplitz Hermitian (see Section 2.3 in Chapter

2). In the massive MIMO regime where M " 1, finding a set of (approximate) common

eigenvectors for all the covariances is possible by considering the circulant approximation

of Toeplitz matrices in large dimensions (M " 1) that follows as an application of the

well-known Szegö’s Theorem (see details in [1] and references therein).

Consider the channel covariance of user k with eigendecomposition Σk “ UkΛkU
H
k .

Define the diagonal matrices Λ̊k, k P ZK for which rΛ̊ksm,m “ rFHΣkFsm,m, where F is the

M ˆM DFT matrix, whose pm,nq-th entry is given by rFsm,n “ 1?
M
e´j2πmn

M , m, n P ZM .

There are several ways to define a circulant approximation [142], among which we choose

the following:

Σ̊k “ FΛ̊kF
H. (4.1)

According to Szegö’s theorem, for largeM , Λ̊k converges to the diagonal eigenvalue matrix

Λk of Σk, i.e. Λ̊k Ñ Λk asM Ñ 8 (see [48] for a more rigorous statement). Hence, within

a small error for large M , the set of common eigenvectors for all the users is provided by

the columns of the M ˆ M DFT matrix. As a consequence, the DL channel covariance

of user k is characterized simply via a vector of eigenvalues λk P RM , with m-th element

rλksm “ rΛ̊ksm,m. In addition, the DFT matrix forms a unitary basis for (approximately)

expressing any user channel vector via a Karhunen-Loeve expansion. In particular, let

fm :“ rFs¨,m denote the m-th column of F. We can express the DL channel vector of user

k as

hk «

M´1
ÿ

m“0

gk,m
a

rλksm fm, (4.2)

where tgk,m „ CN p0, 1quk,m are i.i.d. standard complex Gaussian random variables. The

columns of F are very similar to array response vectors and in fact, each column with

index m P rM s of the DFT matrix can be seen as the array response to an angular

direction θ “ sin´1p m
M sin θmaxq where θmax denotes the array maximum angular aperture
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and rλksm can be seen as the power of the channel vector associated with user k along

that direction. Due to the limited number of local scatterers as seen at the BS and the

large number of antennas of the array, one can hypothesize that only a few entries of λk

are significantly large, implying that the DL channel vector hk is sparse in the Fourier

basis. This sparsity in the beam-space domain is precisely what has been exploited in the

CS-based works discussed in Section 4.1.1, in order to reduce the DL pilot dimension Tdl.

It is also evident that this channel representation potentially yields the common sparsity

across users, as exploited by J-OMP in [98]. As seen in the next section, our proposed

approach does not rely on any intrinsic channel sparsity assumption, but adopts a novel

artificial sparsification technique that smartly reduces the effective channel dimension to

enable channel estimation regardless of its sparsity.

4.3 Active Channel Sparsification and DL Channel Probing

In this section we consider the estimation of the instantaneous realization of the DL user

channel vectors, as a first step to design a DL precoder. As in [1], we consider the

concatenation of the physical channel with a fixed precoder, i.e., a linear transformation

that may depend on the user channel statistics (notably, on their covariance matrices), but

is independent of the instantaneous channel realizations, which in fact must be estimated

via the closed-loop DL probing and channel state feedback mechanism.

The BS transmits a training space-time matrix Ψ of dimension Tdl ˆM 1, such that each

row Ψi,. is transmitted simultaneously from the M 1 ď M inputs of a precoding matrix

B of dimension M 1 ˆ M , and where M 1 is a suitable intermediate dimension that will

be determined later. The precoded DL training length (in time-frequency symbols) spans

therefore Tdl dimensions, and the DL training phase is repeated at each resource block of

dimension T . Stacking the Tdl DL training symbols in a column vector, the corresponding

observation at the user k receiver is given by

yk “ ΨBhk ` zk “ Ψheff
k ` zk, (4.3)

where B is the precoding matrix, hk is the channel vector of user k, and we have defined

heff
k :“ Bhk as the effective channel vector, formed by the concatenation of the actual DL

channel (antenna-to-antenna) with the precoder B. We consider additive white Gaussian

noise (AWGN) with distribution zk „ CN p0, N0ITdl
q. The training and precoding matrices

are normalized such that

trpΨBBHΨHq “ TdlPdl, (4.4)
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where Pdl denotes the total BS transmit power and we define the DL signal-to-noise-ratio

as SNR“ Pdl{N0. Notice that most works on channel estimation focus on the estimation

of the actual channels thkuk. This is recovered in our setting by letting B “ IM . However,

our goal here is to design a sparsifying precoder B such that each user’s effective channel

has low dimension (in the beam-space representation) and yet the collection of effective

channels for k P Zk form a high-rank matrix. In this way, each user’s channel can be

estimated using a small pilot overhead Tdl, but the BS is still able to serve many data

streams using spatial multiplexing in the DL (in fact, as many as the rank of the effective

matrix).

4.3.1 Necessity and Implication of Stable Channel Estimation

Suppose that the channel representation (4.2) holds exactly and that the eigenvalue vectors

λk have support Sk “ tm : rλksm ‰ 0u with sparsity level sk “ |Sk|. We hasten to point

out that the above are convenient design assumptions, made in order to obtain a tractable

problem, and that the precoder designed according to our simplifying assumptions are

applied to the actual physical channels. Under these assumptions, the following lemma

yields necessary and sufficient conditions of stable estimation of the channel vectors hk.

Lemma 4.1. Consider the sparse Gaussian vector hk with support set Sk given by the RHS

of (4.2). Let phk denote any estimator for hk based on the observation2 yk “ Ψhk ` zk,

and let Re “ Erphk ´phkqphk ´phkqHs denote the corresponding estimation error covariance

matrix. If Tdl ě sk there exist pilot matrices Ψ P CTdlˆM for which limN0Ó0 trpReq “ 0 for

all support sets Sk : |Sk| “ sk. Conversely, for any support set Sk : |Sk| “ sk any pilot

matrix Ψ P CTdlˆM with Tdl ă sk yields limN0Ó0 trpReq ą 0. ˝

Proof. See appendix 4.6.1. [\

As a direct consequence of Lemma 4.1, we have that any scheme relying on intrinsic

channel sparsity cannot yield stable estimation if Tdl ă sk for some users k P ZK . Fur-

thermore, we need to impose that the effective channel sparsity (after the introduction of

the sparsifying precoder B) is less than or equal to the desired DL pilot dimension Tdl. It

is important to note that the requirement of estimation stability is essential in order to

achieve high spectral efficiency in high SNR conditions, irrespective of the DL precoding

scheme. In fact, if the estimation mean squared error (MSE) of the user channels does

not vanish as N0 Ó 0, the system self-interference due to the imperfect channel knowledge

grows proportionally to the signal power, yielding a Signal-to-Interference plus Noise Ratio

(SINR) that saturates to a constant when SNR becomes large. Hence, for sufficiently high

2Note that this coincides with (4.3) with B “ IM , i.e., without the sparsifying precoder.
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SNR, the best strategy would consist of transmitting just a single data stream, since any

form of multiuser precoding would inevitably lead to an interference limited regime, where

the sum-rate remains bounded while SNR Ñ 8 [33]. Conversely, it is also well-known that

when the channel estimation error vanishes as OpN0q for N0 Ó 0, the high-SNR sum rate

behaves as if the channel was perfectly known and can be achieved by very simple lin-

ear precoding [19]. A possible solution to this problem consists of serving only the users

whose channel support sk is not larger than Tdl. This is assumed implicitly in all CS-based

schemes, and represents a major intrinsic limitation of the CS-based approaches. In con-

trast, by artificially sparsifying the user channels, we manage to serve all users given a

fixed DL pilot dimension Tdl.

4.3.2 Sparsifying Precoder Design

Before proceeding to discuss the design of the sparsifying precoder, let us introduce some

graph-theoretic terms [38]. A bipartite graph is a graph whose vertices (nodes) can be

divided into two sets V1 and V2, such that every edge in the set of graph edges E connects

a vertex in V1 to one in V2. We denote such a graph by L “ pV1,V2, Eq. A subgraph of L
is a graph L1 “ pV 1

1,V 1
2, E 1q such that V 1

1 Ď V1, V 1
2 Ď V2 and E 1 Ď E . With regards to L,

the following terms shall be defined and later used.

• Degree of a vertex: for a vertex x P V1 YV2, the degree of x refers to the number

of edges in E incident to x and is denoted by degLpxq.

• Neighbors of a vertex: the neighbors of a vertex x P V1YV2 are the set of vertices

y P V1 Y V2 connected to x. This set is denoted by NLpxq.

• Matching: a matching in L is a subset of edges in E without common vertices.

• Maximal matching: a maximal matching M of L is a matching with the property

that if any edge outside M and in E is added to it, it is no longer a matching.

• Perfect matching: a perfect matching in L is a matching that covers all vertices

of L.

We propose to design the sparsifying precoder using a graphical model, where a bipartite

graph is formed by a set of vertices representing users on one side and another set of vertices

representing beams (the DFT columns) on the other side. An edge of the bipartite graph

between a beam and a user represents the presence of that beam in the user’s channel

angular profile, with its weight denoting the user channel power along that beam. Now,

we wish to design the precoder B such that the support of every effective user channel

vector heff
k “ Bhk is not larger than Tdl, such that all users have a chance of being served.
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Let qH “ LdG P CMˆK denote the matrix of DL channel coefficients expressed in the DFT

basis (4.2), in which each column of qH “ rqh0, . . . , qhK´1s represents the coefficients vector

of a user (hk “ Fqhk, k P ZK), L is a M ˆ K matrix with elements rLsm,k “
a

rλksm,

G P CMˆK has i.i.d. elements rGsm,k “ gk,m „ CN p0, 1q, and where d denotes the

Hadamard (elementwise) product. Let A denote a one-bit thresholded version of L, such

that rAsm,k “ 1 if rλksm ě th and rAsm,k “ 0, if rλksm ă th, for some suitable small

threshold th ą 0, used to identify the significant angular coefficients, and consider the

M ˆK bipartite graph L “ pA,K, Eq with adjacency matrix A and weights wm,k “ rλksm

on the edges pm, kq P E .
Given a pilot dimension Tdl, our goal consists in selecting a subgraph L1 “ pA1,K1, E 1q

of L in which each node on either side of the graph consists of a degree at least 1 and such

that:

1. For all k P K1 we have degL1pkq ď Tdl, where degL1 denotes the degree of a node in

the selected subgraph.

2. The sum of weights of the edges incident to any node k P K1 in the subgraph L1 is

greater than a threshold, i.e.
ř

mPNL1 pkq wm,k ě Pth, @k P K1.

3. The channel matrix qHA1,K1 obtained from qH by selecting a P A1 (“selected beam

directions”) and k P K1 (“selected users”) has large rank.

The first criterion enables stable estimation of the effective channel of any selected user

with only Tdl common pilot dimensions and Tdl complex symbols of feedback per selected

user. The second criterion makes sure that the effective channel strength of any selected

user is greater than a desired threshold, since we do not want to spend resources on

probing and serving users with weak effective channels (where “weak” is quantitatively

determined by the value of Pth). Therefore Pth is a parameter that serves to obtain

a trade-off between the rank of the effective matrix (which ultimately determines the

number of spatially multiplexed DL data streams) and the beamforming gain (i.e., the

power effectively conveyed along each selected user effective channel). The third criterion

is motivated by the fact that the DL pre-log factor is given by rankp qHA1,K1q ˆ maxt0, 1 ´

Tdl{T u, and it is obtained by serving a number of users equal to the rank of the effective

channel matrix. The following lemmas relate the rank of the effective channel matrix to a

graph-theoretic quantity, namely, the size of the maximal matching.

Lemma 4.2. [Skeleton or “CUR” decomposition] Consider qH P CMˆK , of rank r. Let Q

be an rˆr non-singular intersection submatrix obtained by selecting r rows and r columns

of qH. Then, we have qH “ CUR, where C P CMˆr and R P CrˆK are the matrices of the

selected columns and rows forming the intersection Q and U “ Q´1. ˝
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Figure 4.2: (a) An example bipartite graph L. (b) The corresponding weighted adjacency matrix W.

Proof. See [47]. [\

Lemma 4.3. [Rank and perfect matchings] Let Q denote an r ˆ r matrix with some

elements identically zero, and the non-identically zero elements independently drawn from

a continuous distribution. Consider the associated bipartite graph with adjacency matrix

A such that Ai,j “ 1 if Qi,j is not identically zero, and Ai,j “ 0 otherwise. Then, Q has

rank r with probability 1 iff the associated bipartite graph contains a perfect matching. ˝

Proof. A similar theorem can be found in [124], but we provide a direct proof in Appendix

4.6.2 for the sake of completeness. [\

Lemmas 4.2 and 4.3 result in the following corollary.

Corollary 4.1. The rank r of a random matrix qH P CMˆK with either identically zero

elements or elements independently drawn from a continuous distribution is given, with

probability 1, by the size of the largest intersection submatrix whose associated bipartite

graph (defined as in Lemma 4.3) contains a perfect matching. ˝

This corollary holds in our case where the non-zero elements of qH are drawn from the

complex Gaussian distribution. Using Corollary 4.1 this problem can be formulated as:

Problem 2. Let Tdl denote the available DL pilot dimension and let MpA1,K1q denote a

matching of the subgraph L1pA1,K1, E 1q of the bipartite graph LpA,K, Eq. Find the solution

of the following optimization problem:

maximize
A1ĎA,K1ĎK

ˇ

ˇM
`

A1,K1
˘
ˇ

ˇ (4.5a)
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subject to degL1pkq ď Tdl @k P K1, (4.5b)
ÿ

aPNL1 pkq

wa,k ě Pth, @k P K1. (4.5c)

♢

The following theorem shows that Problem 2 can be solved in a tractable way.

Theorem 4.1. The optimization problem in (4.5) is equivalent to the mixed integer linear

program (MILP) below:

maximize
xm,yk,zm,k

ÿ

mPA

ÿ

kPK
zm,k (4.6a)

subject to zm,k ď rAsm,k @m P A, k P K, (4.6b)
ÿ

kPK
zm,k ď xm @m P A, (4.6c)

ÿ

mPA
zm,k ď yk @k P K, (4.6d)

ÿ

mPA
rAsm,kxm ď Tdlyk `Mp1 ´ ykq @k P K (4.6e)

Pth yk ď
ÿ

mPA
rWsm,kxm @k P K, (4.6f)

xm ď
ÿ

kPK
rAsm,kyk @m P A, (4.6g)

xm, yk P t0, 1u @a P A, k P K, (4.6h)

zm,k P r0, 1s @m P A, k P K, (4.6i)

where W is the |A|ˆ|K| weighted adjacency matrix in which rWsm,k “ wm,k. The solution

sub-graph is given by the set of nodes A1 “ tm : x˚
m “ 1u and K1 “ tk : y‹

k “ 1u, with

tx‹
mu

M´1
m“0 and ty‹

ku
K´1
k“0 being a solution of (4.6). ˝

Proof. See Appendix 4.6.3. [\

The solution to this optimization, however, is not necessarily unique, i.e. there may

exist several sub-graphs with the same (maximum) matching size. In order to limit the

solution set we introduce a regularization term to the objective of (4.6) to favor solutions

containing more active beams. The regularized form of (4.6) is given as

maximize
xm,yk,zm,k

ÿ

mPA

ÿ

kPK
zm,k ` ϵ

ÿ

mPA
xm

subject to txm, yk, zm,kumPA,kPK P Sfeasible,

(PMILP)
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where the feasibility set Sfeasible encodes the constraints (4.6a)-(4.6i). Here the regular-

ization factor ϵ is chosen to be a small positive value such that it does not effect the

matching size of the solution sub-graph. In fact choosing ϵ ă 1
M ensures this, since then

ϵ
ř

mPA xm ă 1 and a solution to PMILP must have the same matching size as a solution

to 4.6, otherwise the objective of PMILP can be improved by choosing a solution with a

larger matching size. The introduced MILP can be efficiently solved using an off-the-shelf

optimization toolbox. In the simulation results of this chapter, we have used the MATLAB

intlinprog, which adopts a Branch and Bound method to find the solution to an MILP [85].

4.3.3 Channel Estimation and Multiuser Precoding

For a given set of user DL covariance matrices, let tx‹
mum and ty‹

kuk denote the MILP

solution and denote by B “ tm : x˚
m “ 1u “ tm1,m2, . . . ,mM 1u the set of selected beam

directions of cardinality |B| “ M 1 and by K “ tk : y‹
k “ 1u the set of selected users of

cardinality |K| “ K 1. The resulting sparsifying precoding matrix B in (4.3) is simply

obtained as

B “ FH
B , (4.7)

where FB “ rfm1 , . . . , fmM 1 s and fm denotes the m-th column of the M ˆM unitary DFT

matrix F. Given a DFT column fm, we have

Bfm “

#

0 if m R B
ui if m “ mi P B

where ui denotes a M 1 ˆ 1 vector with all zero components but a single “1” in the i-th

position. Using the above property and (4.2), the effective DL channel vectors take on the

form
heff
k “ B

ÿ

mPSk

gk,m
a

rλksmfm “
ÿ

i:miPB
Ş

Sk

a

rλksmigk,mui. (4.8)

In words, the effective channel of user k is a vector with non-identically zero elements

only at the positions corresponding to the intersection of the beam directions in Sk, along

which the physical channel of user k carries positive energy, and in B, selected by the spar-

sifying precoder. The non-identically zero elements are independent Gaussian coefficients

„ CN p0, rλksmiq. Notice also that, by construction, the number of non-identically zero

coefficients are |BŞSk| ď Tdl and their positions (encoded in the vectors ui in (4.8)), plus

an estimate of their variances rλksmi are known to the BS. Hence, the effective channel

vectors can be estimated from the Tdl-dimensional DL pilot observation (4.3) with an esti-

mation MSE that vanishes as 1/SNR. The pilot observation in the form (4.3) is obtained

at the user k receiver. In this work, we assume that each user sends its pilot observa-
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tions using Tdl channel uses in the UL, using analog unquantized feedback, as analyzed

for example in [19, 69]. At the BS receiver, after estimating the UL channel from the UL

pilots, the BS can apply linear MMSE estimation and recovers the channel state feedback

which takes on the same form as (4.3) with some additional noise due to the noisy UL

transmission.

Remark 4.1. As an alternative, one can consider quantized feedback using Tdl channel

uses in the UL (see [19, 69] and references therein). Digital quantized feedback yields

generally a better end-to-end estimation MSE in the absence of feedback errors. However,

the effect of decoding errors on the channel state feedback is difficult to characterize

in a simple manner since it depends on the specific joint source-channel coding scheme

employed. Hence, in this work we restrict to the simple analog feedback.

With the above precoding, we haveBBH “ IM 1 . Also, we can choose the DL pilot matrix

Ψ to be proportional to a random unitary matrix of dimension TdlˆM
1, such that ΨΨH “

PdlITdl
. In this way, the DL pilot phase power constraint (4.4) is automatically satisfied.

The estimation of heff
k from the DL pilot observations (4.3) (with suitably increased AWGN

variance due to the noisy UL feedback) is completely straightforward and shall not be

treated here in details.

For the sake of completeness, we conclude this section with the DL precoded data

phase and the corresponding sum rate performance metric that we shall later use for

numerical analysis and comparison with other schemes. Let pHeff “ rph
p1q

eff , . . . ,
ph

pK1q

eff s be

the matrix of the estimated effective DL channels for the selected users. We consider the

ZF beamforming matrix V given by the column-normalized version of the Moore-Penrose

pseudoinverse of the estimated channel matrix, i.e.

V “

´

pHeff

¯:

J1{2,

where
´

pHeff

¯:

“ pHeff

´

pHH
eff
pHeff

¯´1
and J is a diagonal matrix that makes the columns of

V to have unit norm. A channel use of the DL precoded data transmission phase at the

k-th user receiver takes on the form

rk “ phkq
HBHVP1{2d ` nk, (4.9)

where d P CK1ˆ1 is a vector of unit-energy user data symbols and P is a diagonal matrix

defining the power allocation to the DL data streams. The transmit power constraint is

given by trpBHVPVHBq “ trpVHVPq “ trpPq “ Pdl, where we used BBH “ IM 1 and the

fact that VHV has unit diagonal elements by construction. In particular, in the simulation

results section we use the simple uniform power allocation Pk “ Pdl{K
1 to each k-th user
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data stream. In the case of perfect ZF beamforming, i.e., for pHeff “ Heff, we have that

(4.9) reduces to rk “
?
JkPkdk ` nk, where Jk is the k-th diagonal element of the norm

normalizing matrix J, Pk is the k-th diagonal element of the power allocation matrix P, and

dk is the k-th user data symbol. Since in general pHeff ‰ Heff, due to non-zero estimation

error, the received symbol at user k receiver is given by rk “ bk,kdk `
ř

k1‰k bk,k1dk1 ` nk,

where the coefficients pbk,1, . . . , bk,K1q are given by the elements of the 1 ˆ K 1 row vector

phkq
HBHVP1{2 in (4.9). Of course, in the presence of an accurate channel estimation we

expect that bk,k «
?
JkPk and bk,k1 « 0 for k1 ‰ k. For simplicity, in this chapter we

compare the performance of the proposed scheme with that of the state-of-the-art CS-

based scheme in terms of ergodic sum rate, assuming that all coefficients pbk,1, . . . , bk,K1q

are known to the corresponding receiver k. Including the DL training overhead, this yields

the rate expression (see [18])

Rsum “

ˆ

1 ´
Tdl
T

˙

ÿ

kPK
E

«

log

˜

1 `
|bk,k|

2

1 `
ř

k1‰k

ˇ

ˇbk,k1

ˇ

ˇ

2

¸ff

. (4.10)

4.4 Extension to Arbitrary Array Geometries

A necessary step before performing sparsification is that all of the estimated DL covariance

matrices share the same (approximate) eigenbasis, namely a set of common eigenvectors

that represent the beam space. As discussed earlier in this chapter, for a massive ULA,

this common eigenbasis is given by the DFT basis due to an application of Szegö’s theorem

for large Hermitian Toeplitz matrices (see Section 4.2.1). For an arbitrary array geometry,

the covariance is not necessarily Toeplitz. We are not aware of any work suggesting

the existence of an (approximate) common eigenbasis for MIMO covariances of generic

array geometries. In fact, one has reasons to believe the contrary, that is, in general

a common eigenbasis does not exist, even when the channel dimension grows infinitely

large (M Ñ 8). Then, what is a suitable strategy to obtain an approximate common

eigenbasis? In order to extend the ACS method to arrays with arbitrary design, here we

propose a method for obtaining an approximate common eigenbasis among the channel

covariances of a multi-user system with an arbitrary array geometry.

4.4.1 Beam-Space Design for Arbitrary Array Geometries

Consider a BS equipped with an array of arbitrary geometry consisting of M antennas,

that communicating with K users. Suppose the BS collects N noisy pilot samples per user

as

ykris “ hkris ` zkris, i P ZN , (4.11)
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where hkris is the i-th realization of user k’s channel vector, and zkris „ CN p0, N0IM q

is a random realization of the AWGN. The channels are all assumed zero-mean, complex

Gaussian with covariance Σk “ E
“

hkh
H
k

‰

, k P ZK . Define the eigendecomposition of Σk

as Σk “ UkΛkU
H
k , where Uk is the unitary matrix of eigenvectors (UH

kUk “ IM ) and Λk

is the diagonal matrix of non-negative eigenvalues. We note that the eigenbasis of distinct

covariances are generally different. This makes the joint processing of the channels and the

precoding design highly difficult. Hence, we are interested in obtaining an approximate

common eigenbasis among all covariances tΣkuk, given the noisy pilot samples tykrisuk,i.

If the covariances are jointly diagonalizable, i.e. if there exists a unitary matrix Uc such

that U1 “ U2 “ . . . “ UK “ Uc, then it is desirable to obtain Uc as the common

eigenbasis. If the covariances are not jointly diagonalizable, then we want to obtain a

unitary matrix U‹ that “best” diagonalizes the covariances.

We introduce a parametric decomposition of the channel covariances that imposes the

joint diagonalizability criterion on the estimation model, in which each covariance is de-

composed as

Σk “ UΛkU
H, (4.12)

where U “ ru0, . . . ,uM´1s P CMˆM is a unitary matrix (UHU “ IM ) representing the

to-be-estimated common eigenbasis and Λk “ diagpλkq is a diagonal matrix with non-

negative diagonal elements given as the vector λk for k P ZK . Both U and tλkuk are

to be estimated. We propose a method that, given noisy pilot samples, estimates these

parameters by maximizing the associated likelihood function.

The Likelihood Function

Define the matrices Yk :“ rykr0s, . . . ,ykrN ´ 1ss P CMˆN , where Yk includes pilot sam-

ples of user k as its columns. Given tykrisuk,i, one can write the likelihood function as

p ptykrisuk,i|tΣkuk, N0q “

K´1
ź

k“0

1

p2πq
M
2 detpΣk `N0Iq

N
2

exp

ˆ

´
1

2N
tracepYH

k pΣk `N0Iq
´1Ykq

˙

“

K´1
ź

k“0

1

p2πq
M
2 detpΣk `N0Iq

N
2

exp

ˆ

´
1

2
trace

´

pΣk `N0Iq
´1

pΣy,k

¯

˙

,

(4.13)

where we have defined pΣy,k :“ 1
NYkY

H
k , as the sample covariance of the k-th pilot sample

set. Taking the ´ logp¨q of the likelihood function, scaling it, omitting constant terms,

and replacing Σk with UΛkU
H from (4.12), one can show that maximizing the likelihood

function is equivalent to minimizing the following ML cost as a function of the parameters
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U and tλkuk:

C pU, tλkukq :“
řK

k“1 log det
`

UdiagpλkqUH `N0I
˘

` trace
´

`

UdiagpλkqUH `N0I
˘´1

pΣy,k

¯

.

(4.14)

Since

det pUdiagpλkqUH `N0Iq “ det pdiagpλk `N01qq,

and

tr
´

pUdiagpλkqUH `N0Iq
´1

pΣy,k

¯

“ tr
´

diag pλk `N01q
´1UH

pΣy,kU
¯

,

we have

C pU, tλkukq “
ÿ

m,k

logpλk,m `N0q `
uH
m
pΣy,kum

λk,m `N0
, (4.15)

where λk,m ą 0 is the m-th element of λk. The ML optimization problem then can be

formulated as

minimize
tumum,tλkuk

ÿ

m,k

logpλk,m `N0q `
uH
m
pΣkum

λk,m `N0

subject to uH
mun “ δm,n, m, n P ZM .

(4.16)

It is easy to show that, for given tumum, the function gpxq “ logpx`N0q`
uH
m
xΣy,kum

x`N0
, x ě 0

achieves its minimum at x “ uH
m
pΣy,kum ´ N0. Therefore, we take the minimization in

(4.16) first with respect to tλk,muk,m, and simplify (4.16) to

minimize
tumum

fpUq “
ÿ

m,k

log
´

uH
m
pΣy,kum

¯

subject to uH
mun “ δm,n, m, n P ZM .

(P1)

This presents an optimization problem over the manifold of unitary matrices U “ tU P

CMˆM : UHU “ IMu. To solve P1, we propose a gradient projection method and show

that it converges to a stationary point of the cost function f .

Intermezzo: ML and Jointly Diagonalizable Covariances

Assume that the observation sample covariance has converged to its expectation, i.e. the

true covariance: pΣy,k Ñ Σ. One can show that, if the true channel covariances are jointly

diagonalizable, then the global optimum of P1 is given by the common eigenbasis. To see

this, first note that the channel covariance of user k can be decomposed as

Σk “ UcΛkU
cH, (4.17)
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for k “ 0, . . . ,K ´ 1, where Uc P CMˆM , UcHUc “ IM denotes the common eigenbasis.

Definition 4.1 (Majorization). For x P RM , define xÓ as the vector containing the el-

ements of x in descending order. Let y P RM be another vector such that
řM´1

i“0 xi “
řM´1

i“0 yi. We say x majorizes y (x ą y) iff

m
ÿ

i“0

xÓ

i ě

m
ÿ

i“0

yÓ

i ,

for all m P ZM .

We have the following theorem on global optimality of Uc for the ML optimization

problem (P1).

Theorem 4.2. Let Σk, k “ 0, . . . ,K ´ 1 be a set of jointly diagonalizable covariance

matrices as in (4.17). Then U‹ “ Uc is a global optimum of the optimization problem

minimize
U

fpUq “
ÿ

m,k

log
´

uH
m pΣk `N0IM qum

¯

s.t. uH
mun “ δm,n. (4.18)

Proof. For any unitary U, define the vector σkpUq P RM where

rσkpUqsm “ uH
m pΣk `N0Iqum.

In particular σkpUcq is the vector of eigenvalues of Σk ` N0I. Using the properties

of eigenvalue decomposition one can show σkpUcq ą σkpUq for all U P U and all k “

0, . . . ,K´1. In addition, the function hpxq “
ř

i logpxiq is Schur-concave [94] and therefore
ř

m logprσkpUcqsmq ď
ř

m logprσkpUqsmq for all k. Hence, fpUcq ď fpUq for all U P U ,
proving Uc to be the global minimizer of f over U . [\

This serves as a sanity check for the fact that the ML problem returns reasonable solu-

tions. At least when the channel covariances in fact share a common eigenbasis, the ML

optimizer coincides with it.

ML via Projected Gradient Descent

Now we turn to the solving the ML problem P1. We use a projected gradient descent

(PGD) method to minimize the objective cost function f . The PGD is a well-known

iterative optimization algorithm [9]. Starting from an initial point Up0q, this method

consists of the two following steps per iteration:

rUptq “ Uptq ´ αt∇fpUptqq (Gradient Step)
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Upt`1q “ PU prUptqq (Projection Step)

where αt ą 0 is a step size, ∇fpUptqq P CMˆM is the gradient of f at Uptq and PU :

CMˆM Ñ U denotes the orthogonal projection operator onto the set of unitary matrices.

The explicit expression of this operator is given in [80]; Nevertheless, we derive it here

through the following lemma for the sake of completeness.

Lemma 4.4. Let V P CMˆM be a matrix with singular value decomposition V “ SDTH

where S and T are unitary matrices of left and right eigenvectors and D “ diagpdq is non-

negative diagonal. Then, the orthogonal projection of V onto the set of unitary matrices

is given by PU pVq “ STH.

Proof. The orthogonal projection of V is given by the minimizer of gpUq “ }V ´ U}2F

over the set of unitary matrices, where UHU “ IM . We can write

gpUq “ }V ´ U}2F “ }U}2F ` }V}2F ´ 2RtxV,Uyu

“ M ` }V}2F ´ 2RtxV,Uyu,
(4.19)

where the inner product is defined as xV,Uy “ tracepUHVq and we used the fact that

tracepUUHq “ tracepIM q “ M . According to Von Neumann’s trace inequality we have

|xV,Uy| “ |trace
`

UHV
˘

| ď xsU,dy, [88], where s denotes the singular values vector of U.

In the special case where U is unitary, we have sU “ r1, . . . , 1sT and |xV,Uy| ď xsU,dy “
ř

i di. Now, using (4.19) we have gpUq ě M ` }V}2F ´ 2
ř

i di, where the RHS of the

inequality is independent of U. We show that the lower bound on gpUq is achieved by

U‹ “ STH. This is seen by the fact that

gpSTHq “ M ` }SDTH}2F ´ 2RtxSDTH,STHyu

“ M ` }SDTH}2F ´ 2tracepDq

“ M ` }V}2F ´ 2
ÿ

i

di, .

(4.20)

This completes the proof. [\

This lemma provides an explicit formula for the orthogonal projection of a matrix into

the unitary set as

PU : CMˆM Ñ U , V “ SDTH Ñ STH. (4.21)

The following theorem presents the main result of this section.

Theorem 4.3. Let Up0q P U be an initial point and consider the gradient projection update

rule

Upt`1q “ PU

´

Uptq ´ αt∇fpUptqq

¯

, t “ 0, 1, . . . , (4.22)
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with αt P p0, 1
Lq for all t, where L is the Lipschitz constant of ∇fpUq. Then the sequence

tUptq, t “ 0, 1, . . .u converges to a stationary point of fpUq.

In order to prove Theorem 4.3, we need to first prove some useful properties of the ML

optimization problem.

Lipschitz Continuity of the Cost Gradient

As a first step, we prove that the cost gradient ∇fpUq is Lipschitz continuous over U .
Note that the manifold U is a subset of the closed convex ball B (U Ă B) where B “ tU :

}U}F ď
?
Mu. One can show that fpUq has Lipschitz continuous gradient over B, i.e. there

exists a constant L, such that }∇fpUq ´ ∇fpU1q}F ď L}U ´ U1}F, for all U,U
1 P B. One

way to prove this is by showing that the Hessian of fpUq has bounded operator norm over

B. Define the complex Hessian as the M2 ˆ M2 square matrix ∇2fpUq whose elements

are given as [50]

r∇2fpUqsm,n “
B2 fpUq

BrvecpUqsmBrvecpUqs˚
n

, (4.23)

for m,n P ZM2 , where vecpUq “ ruT
1 , . . . ,u

T
M sT is the vectorized version of U. Some

calculation shows that the Hessian is a block-diagonal matrix with its m-th diagonal block

given as

D
pmq

f “

K´1
ÿ

k“0

pΣ
T

y,k

uH
m
pΣy,kum

´

K´1
ÿ

k“0

´

pΣy,kumuH
m
pΣy,k

¯T

´

uH
m
pΣy,kum

¯2 , (4.24)

so that we have ∇2fpUq “ blkdiag
´

D
p1q

f , . . . ,D
pMq

f

¯

. Note that both terms on the RHS

of (4.24) are PSD and therefore D
pmq

f is the difference of two PSD matrices.

Lemma 4.5. The Hessian matrix ∇2fpUq is bounded in operator norm.

Proof. Define the operator norm of a matrix A P CM2ˆM2
as

}A}op “ sup
}x}“1

}Ax}

}x}
, (4.25)

where } ¨ } is the ℓ2 norm. For a block-diagonal matrix such as ∇2fpUq, the operator norm

is equal to the maximum of the operator norms of each individual block, i.e. }∇2fpUq}op “

max
m

}D
pmq

f }op. Using (4.24), the operator norm of block m is bounded as

}D
pmq

f }op ď max

#

ÿ

k

}pΣy,k}op

uH
m
pΣy,kum

,
ÿ

k

}pΣy,kum}2

puH
m
pΣy,kumq2

+

, (4.26)
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where we used the fact that D
pmq

f is the difference of two PSD matrices and therefore its

operator norm is bounded by the maximum of the operator norms of the two. Also, since

the matrix pΣy,kumuH
m
pΣy,k is of rank one, its operator norm is equal to }pΣy,kum}2. Finally,

since sample covariances are assumed to be non-singular, both arguments in maxt¨u are

finite. Taking the maximum over all M bounds also results in a finite value and the proof

is complete. [\

Next we show that the Lipschitz constant of ∇fpUq is related to the operator norm of

∇2fpUq.

Lemma 4.6. For a twice differentiable function f with Hessian bounded in operator norm

as }∇2f}op ď L for all U, the gradient ∇f is Lipschitz continuous with Lipschitz constant

L.

Proof. We show that the Lipschitz continuity condition }∇fpUq´∇fpU1q}F ď L}U´U1}F

holds for any U, U1 via the following sequence of inequalities:

}∇fpUq ´ ∇fpU1q}F
paq

ď sup
}B}F“1

ˇ

ˇ

@

B,∇fpUq ´ ∇fpU1q
Dˇ

ˇ

“ sup
}B}F“1

ˇ

ˇ

ˇ

ˇ

B

vecpBq,

ż 1

0
∇2f

`

U1 ` tpU ´ U1q
˘

vecpU ´ U1q dt

Fˇ

ˇ

ˇ

ˇ

ď sup
}B}F“1

ż 1

0

ˇ

ˇ

@

vecpBq,∇2f
`

U1 ` tpU ´ U1q
˘

vecpU ´ U1q
Dˇ

ˇ dt

pbq

ď sup
}B}F“1

sup
tPr0,1s

}∇2f
`

U1 ` tpU ´ U1q
˘

}op}vecpU ´ U1q}}vecpBq}

“ sup
tPr0,1s

}∇2f
`

U1 ` tpU ´ U1q
˘

}op}vecpU ´ U1q}

pcq

ď L}U ´ U1}F.

(4.27)

Inequality paq holds by taking into account the fact that for the particular value of B as

B0 “
∇fpUq´∇fpU1q

}∇fpUq´∇fpU1q}F
we have xB0,∇fpUq ´ ∇fpU1qy “ }∇fpUq ´ ∇fpU1q}F. Inequality

pbq comes from an application of the Cauchy-Schwarz inequality and the definition of the

operator norm. Finally, inequality pcq holds due to the assumption on the boundedness of

the Hessian operator norm, i.e. }∇2fpUq}op ď L for all U, and the proof is complete. [\

The next lemma emerges as a consequence of the discussion above.

Lemma 4.7. For any pair of matrices U,U1 P B we have

fpUq ď fpU1q ` x∇fpU1q,U ´ U1y `
L

2
}U ´ U1}2F, (4.28)
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where L is the gradient Lipschitz constant.

Proof. See [9], proposition 6.1.2. [\

This lemma is used as a tool to prove the convergence of PGD to a stationary point, as

outlined by Theorem 4.3.

Proof of Theorem 4.3

We start by replacing U1 with Uptq in (4.28) and defining the RHS of (4.28) as the proxy

function

f
ptq
proxypUq “ fpUptqq ` x∇fpUptqq,U ´ Uptqy ` L

2 }U ´ Uptq}2F, (4.29)

at point Uptq, such that we have

fpUq ď f
ptq
proxypUq (4.30)

for all U P U and fpUptqq “ f
ptq
proxypUptqq. Now let us show that the point Upt`1q “

PU
`

Uptq ´ αt∇fpUptqq
˘

is indeed a minimizer of f
ptq
proxypUq over U with αt “ 1

L . To see

this, note that we can expand f
ptq
proxypUq as

f
ptq
proxypUq “ x∇fpUptqq,Uy ´ LxUptq,Uy ` const.,

for all unitary U. Then, minimizing f
ptq
proxypUq is equivalent to the maximization problem:

maximize
UHU“IM

xUptq ´
1

L
∇fpUptqq,Uy.

But the maximum of this objective is achieved at the point U‹ “ StT
H
t , where St and

Tt are matrices of left and right eigenvectors in the SVD form Uptq ´ 1
L∇fpUptqq “

StDtT
H
t . This implies that U‹ “ StT

H
t “ PU

`

Uptq ´ 1
L∇fpUptqq

˘

“ Upt`1q and Upt`1q is

a minimizer of f
ptq
proxypUq. The chain of inequalities below immediately follows:

fpUpt`1qq
paq

ď f
ptq
proxypUpt`1qq

pbq

ď f
ptq
proxypUptqq

pcq
“ fpUptqq, (4.31)

where paq follows from (4.30), pbq follows from the fact that Upt`1q is aminimizer of

f
ptq
proxypUq, and pcq is a result of fpUptqq “ f

ptq
proxypUptqq. Therefore we have fpUpt`1qq ď

fpUptqq, for t “ 0, 1, . . . and since fpUq is bounded from below, the gradient projection

sequence tUptq, t “ 0, 1, . . .u converges to a stationary point of fpUq. [\

Theorem 4.3 guarantees that the sequence generated by PGD converges to a stationary

point of the likelihood function. This gives a suitable common eigenbasis that, in a sense,
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approximately diagonalizes all the user covariance matrices. This basis can serve as the

beam-space representation of the channel. Then, as we will show later in this chapter, it

can be used to implement ACS for arbitrary array geometries.

Extension of ACS to Arbitrary Array Geometries

We can directly extend the ACS technique for FDD massive MIMO channels with non-

ULA geometries. In Section 4.4.1 we proposed a method of designing a common eigenbasis.

Given user channel covariances tΣkuk, or their sample covariance, this method yields a

common eigenbasis U‹, and the user-dependent eigenvalue matrices Λ‹
k “ diagpλ‹

kq, k P

ZK , and approximates covariance k as

Σk « U‹Λ‹
kU

‹H. (4.32)

The eigenbasis U‹ consists of the array virtual beams. Since this beam-space is shared

among all users, we can define the bipartite user-beam graph introduced in Section 4.3.2.

In this case, the edge weight between a user k and a beam m is given by wm,k “ rΛ‹
ksm.

Then we can solve the same matching-size maximization problem in (4.5) through the

MILP. Let tx‹
mum denote the MILP solution for the binary variables representing beam

nodes and ty‹
kuk its solution for binary variables representing user nodes. Also let B “

tm : x‹
m “ 1u define the set of active beams and K “ tk : y‹

k “ 1u the set of active users.

The sparsifying precoder in this case is given as

B “ U‹H
B . (4.33)

The rest of the channel training and precoding procedure is performed just like the ULA

case.

Remark 4.2. Note that since U‹ is only an approximate eigenbasis of Σk, we can not

guarantee the coefficients of the linear expansion of a random channel vector hk in terms

of the columns of U‹ to be independent random variables with a continuous distribution.

Hence, we can not prove that maximizing the matching size in the beam-user bipartite

graph is equivalent to maximizing the channel matrix rank. The reason is that the condi-

tions of Lemma 4.3 are violated, since we can not assume a distribution on the coefficients.

Nevertheless, we hope that the error of approximating the covariances as in (4.32) is not

large, such thatU‹ is close toUk for all k. This would lead the coefficients of the expansion

in terms of the columns of U‹ to be close to the Gaussian coefficients of the Karhunen-

Loeve expansion. Then maximizing the matching size will maximize the channel matrix

rank.
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4.5 Simulation Results

4.5 Simulation Results

With empirical simulations, we compare the performance of the proposed ACS method to

two of the most recent CS-based methods proposed in [98] and [40] in terms of channel

estimation error and sum-rate. In [98], the authors proposed a method based on common

probing of the DL channel with random Gaussian pilots. The DL pilot measurements yk

at users k “ 1, . . . ,K (similar to (4.4), but with a different pilot matrix) are fed back and

collected by the BS, which recovers the channel vectors using a joint orthogonal matching

pursuit (J-OMP) technique able to exploit the possible common sparsity between the user

channels. In [40], a method based on dictionary learning for sparse channel estimation was

proposed. In this scheme, the BS jointly learns sparsifying dictionaries for the UL and DL

channels by collecting channel measurements at different cell locations (e.g., via an off-

line learning phase). The actual user channel estimation is posed as a norm-minimization

convex program using the trained dictionaries and with the constraint that UL and DL

channels share the same support over their corresponding dictionaries. Following the

terminology used in [40], we refer to this method as JDLCM.

4.5.1 Channel Estimation Error and Sum-Rate vs Pilot Dimension

For this comparison, we considered M “ 128 antennas at the BS, K “ 13 users, and

resource blocks of size T “ 128 symbols. For our proposed method, the BS computes the

users’ sample UL covariance matrices by taking Nul “ 1000 UL pilot observations and then

applies the NNLS-based UL-DL covariance transformation scheme explained in Section 3.5

of Chapter 3. Given the obtained DL channel covariance matrix estimates, we first perform

the circulant approximation and extract the vector of approximate eigenvalues as in (4.1).

Then, we compute the sparsifying precoder B via the MILP solution as given in Section

4.3.2. In the results presented here, we set the parameter Pth in the MILP to a small value

in order to favor a high rank of the resulting effective channel matrix over the beamforming

gain.3 After probing the effective channel of the selected users along these active beam

directions via a random unitary pilot matrix Ψ, we calculate their MMSE estimate using

the estimated DL covariance matrices.

Eventually, for all the three methods, we compute the ZF beamforming matrix based on

the obtained channel estimates. In addition, instead of considering all selected users, in

both cases we apply the Greedy ZF user selection approach of [39], that yields a significant

benefit when the number of users is close to the rank of the effective channel matrix.

As said before, the DL SNR is given by SNR “ Pdl{N0 and during the simulations we

3This approach is appropriate in the medium to high-SNR regime. For low SNR, it is often convenient
to increase Pth in order to serve less users with a larger beamforming energy transfer per user.
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Figure 4.3: (a) Normalized channel estimation error, and (b) achievable sum-rate as a function of
DL pilot dimension with SNR “ 20 dB, M “ 128 and K “ 13.

consider ideal noiseless feedback for simplicity, i.e., we assume that the BS receives the

measurements in (4.3) without extra feedback noise to the system.4. The sparsity order

of each channel vector is given as an input to the J-OMP method, but not to the other

two methods. This represents a genie-aided advantage for J-OMP, that we introduce here

for simplicity. As the simulation geometry, we consider three MPC clusters with random

locations within the angular range (parametrized by ξ rather than θ) r´1, 1q. We denote

by Ξ the i-th interval and set each interval size to be |Ξi| “ 0.2, i “ 1, 2, 3. The ASF

for each user is obtained by selecting at random two out of three such clusters, such

that the overlap of the angular components among users is large. The ASF is non-zero

over the angular intervals corresponding to the chosen MPCs and zero elsewhere, i.e.,

γkpdξq “ β1Ξi1
YΞi2

, where β “ 1{
ş1

´1 γkpdξq and i1, i2 P t1, 2, 3u.

The described arrangement results in each generated channel vector being roughly sk “

0.2ˆM « 26-sparse. To measure channel estimation error we use the normalized Euclidean

distance as follows. Let H P CMˆK1

define the matrix whose columns correspond to the

channel vectors of the K 1 served users and let pH denote the estimation of H. Then the

normalized Euclidean error is defined as

Eeuc “ E

«

}H ´ pH}2F

}H}2F

ff

.

4Notice that by introducing noisy feedback the relative gain w.r.t. J-OMP is even larger, since CS schemes
are known to be more noise-sensitive than plain MMSE estimation using estimated DL covariance
matrices
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Figure 4.4: Sum-rate vs Tdl for various channel sparsity orders. Here SNR = 20 dB, M “ 128 and K “ 13.

Fig. 4.3a shows the normalized channel estimation error for the J-OMP, JDLCM and

our proposed Active Channel Sparsification (ACS) method as a function of the DL pilot

dimension Tdl with SNR “ 20 dB. Our ACS method outperforms the other two by a

large margin, especially for low DL pilot dimensions. When the pilot dimension is below

channel sparsity order, CS-based methods perform very poorly, since the number of chan-

nel measurements is less than the inherent channel dimension. Fig. 4.3b compares the

achievable sum-rate for the three methods. Again our ACS method shows a much better

performance compared to J-OMP and JDLCM. This figure also shows that there is an

optimal DL pilot dimension that maximizes the sum-rate. This optimal value is Tdl « 40

for our proposed method, Tdl « 60 for JDLCM and Tdl « 70 for the J-OMP method.

4.5.2 The Effect of Channel Sparsity

Depending on the geometry and user location, channels may show different levels of spar-

sity in the angular domain. In contrast to CS-based methods, our proposed method is

highly flexible with regards to various channel sparsity orders, thanks to the active sparsifi-

cation method. In this section, we investigate how sparsity order effects channel estimation

error as well as sum-rate within the framework of our proposed method. We suppose that

the user ASF’s consist of two clusters chosen at random among the three. But now we

vary the size of the angular interval each of the clusters occupies (|Ξi| “ 0.2, 0.4, 0.6, 0.8)

and see how it effects the error and sum-rate metrics. The sparsification, channel probing

and transmission are performed as described before. Since each ASF consists of two clus-
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Figure 4.5: Sum-rate as a function of log2 (SNR) with M “ 128 and K “ 13.

ters and M “ 128 channel sparsity order (roughly) takes on the values sk “ 26, 51, 77, 102

for all users k P ZK1 . For each value of the pilot dimension we perform a Monte Carlo

simulation to empirically calculate the sum-rate. Fig. 4.4 illustrates the results. Notice

that in these results we fix the channel coefficient power along each scattering component,

such as richer (less sparse) channels convey more signal energy. This corresponds to the

physical fact that the more scattered signal energy is collected at the receiving antennas

the higher the received signal energy is. As we can see in Fig. 4.4, for a fixed Tdl, when

the number of non-zero channel coefficients increases (i.e., the channel is less sparse), we

generally have a larger sum-rate. The main reason is that, with less sparse channels, the

beamforming gain is larger due to the fact that more scattering components contribute

to the channel. Therefore, we can generally say that with our method, for a fixed pilot

dimension, less sparse channels are better. Of course, this is not the case for CS-based

techniques, or techniques based on the “sparsity assumption” of a small number of discrete

angular components, which tend to collapse and yield very bad results when such sparsity

assumptions are not satisfied.

4.5.3 The Multiplexing Gain

An interesting final observation is to examine the system sum-rate vs. SNR with our

proposed method, and in particular show that there is indeed a regime of intermediate

SNR for which the slope of the sum-rate curve yields quite faithfully the number of spatially

multiplexed data streams. We performed a simulation withM “ 128 antennas andK “ 13

users and a pilot dimension of Tdl “ 60. The pre-log factor determines the slope of the sum-
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rate vs log2pSNRq curve, in an intermediate regime where the sum-rate is not saturated,

and yet the spectral efficiency is large.5 As illustrated in Fig. 4.5, this slope is equal to

12.5ˆp1´
Tdl
T q. Notice that the Greedy ZF scheme decides to serve a number of users that

may be less than K in an opportunistic fashion, such that the expected number of served

users (DL data streams) in this SNR regime is indeed slightly less than the maximum

possible K “ 13. Hence, the agreement between the sum-rate slope in this regime and

the number of served DL data streams is exactly what can be expected, thus showing the

relevance of maximizing the rank of the effective matrix in the proposed optimization of

the sparsifying precoder.

4.5.4 Performance of the ML-Based Beam-Space Design

In Section 4.4.1 of this chapter we developed a method of MIMO beam-space design for

arbitrary array geometries that finds, via maximizing a likelihood function, the common

unitary matrix that jointly diagonalizes a set of user channel covariances. Here, we provide

simulation results to study the performance of this technique.

Jointly Diagonalizable Covariances

The case of jointly diagonalizable covariances is especially interesting, as we know by

Theorem 4.2 that the global optimum of the ML problem is given by the shared CES

Uc (see (4.17)). In order to assess the performance of our method, we compare the

ML cost as a function of the number of random samples per process N , to the cost at

the global minimum. Consider a signal dimension (number of antennas) M “ 16 and a

number of processes (number of users) K “ 8. We generate a random unitary matrix as

the CES Uc by calculating the eigenvectors of a random matrix of size M ˆM with i.i.d

complex Gaussian elements. Also, for each process k P rKs, we generate a random vector of

eigenvalues λk with i.i.d, positive elements given as λk,m “ |ρm| where ρm „ N p0, 1q. Then

we form the covariance matrix of user k as rΣ “ UcdiagpλkqUcH. We also normalize the

covariances to have trace equal to one. This way we have randomly generated covariances

with a shared CES. Now, having the covariances, we can generate random realizations for

each process for different sample sizes N . We run a Monte Carlo simulation with 1000

iterations, at each iteration generating covariances as stated above, then for each sample

size N we run our proposed PGD method which converges to a point U‹pNq (explicitly

noting the dependence on N). Then, we average the cost function U‹pNq in (P1) over

the Monte Carlo iterations for each value of N and compare it to the average cost at the

global optimum fpUcq. Note that the latter of course is not a function of N . The PGD

method is initialized with a random unitary matrix. Theorem 4.3 guarantees convergence

5This saturation is due to the non-vanishing covariance estimation error and happens at around SNR “ 60
dB.
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Figure 4.6: The average cost f as a function of the number of samples, for the solution of
PGD U‹pNq and the global optimum Uc. We have set M “ 16 and K “ 8.

to a stationary point when the step size is chosen as αt P p0, 1{Lq. However, practically we

can be more ambitious by choosing larger step sizes as αt “ α0
t , t “ 1, 2, . . . with α0 “ 2

and our simulation results show that even with this choice, PGD converges.

Fig. 4.6 illustrates the result. We denote the solution of our method with U‹pNq,

to explicitly highlight its dependence on the number of samples N . The interesting fact

about this result is that, as the number of samples gets larger, the PGD with random

initialization always converges to the global optimum, as its cost value is the same as that

in the optimal point Uc. This is an empirical evidence for the convergence of our proposed

method to the global solution for jointly diagonalizable covariances.

Non-Jointly Diagonalizable Covariances

As a different scenario, we consider covariances that are not jointly diagonalizable. This

is done by generating a different random unitary eigenvector matrix for each process

separately as rΣ “ UkdiagpλkqUH
k . The eigenvalue vectors λk are generated as before and

we normalize the covariances to have unit trace. So, in this case we do not have a CES

and the PGD method yields a unitary matrix that approximately jointly diagonalizes

the covariances. Since we do not have the global optimum in this case, we compare

our method to the JADE algorithm, which is a classic Jacobian-based method for joint

covariance diagonalization (we do not explain the details of this method here due to space

limitations and refer the reader to [21] for a full account).
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Figure 4.7: The average diagonalization metric as function of the sampling ratio N{M ,
for the solution of our proposed PGD method vs the JADE method. We set
M “ 16 and K “ 8.

One way to measure the performance of joint diagonalization methods is by defining

the metric η : CMˆM Ñ r0, 1s:

ηpUq “ 1 ´
1

K

K
ÿ

k“1

}diagpUHΣkUq}

}Σk}F
, (4.34)

where diagp¨q with a matrix argument as in (4.34) denotes theM -dim vector of the diagonal

elements of its argument. The smaller the value of ηpUq is, the betterU jointly diagonalizes

the covariances. In the extreme case, If U diagonalizes all covariance matrices, we have

ηpUq “ 0.

The joint diagonalization metric is empirically averaged over 1000 Monte Carlo sim-

ulations and for different sample sizes for the solutions of our proposed PGD method

and the JADE method. Fig. 4.7 illustrates the results. It clearly shows that for the

ranges of sample sizes considered here, the proposed PGD method outperforms the classic

JADE method, yielding smaller values of the diagonalization metric on average, and hence

achieving a better joint diagonalization of the covariances.

4.5.5 CES for ULA: the PGD Solution vs the Fourier Basis

For a ULA it is usually taken for granted that the CES is given by the Fourier basis vectors.

While this is true in an asymptotic sense thanks to the Szegö theorem, it does not hold
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Figure 4.8: The average diagonalization metric as function of the number of antennas M ,
for the solution of our proposed PGD method vs the Fourier basis. Here we
have set K “ 5.

for small to moderate array sizes. We conclude our simulations by showing that, in fact

the unitary basis produced by our proposed method better diagonalizes ULA covariances,

compared to the DFT basis.

We consider K “ 5 M -dimensional ULA covariances, generated randomly according to

Σ “
ş1

´1 γpdξqapξqapξqH, by generating random ASF’s according to the model that was

described in Section 2.6 of Chapter 2. Since each covariance is associated with a user that

occupies a limited angular range as seen from the BS, we generate the covariances such

that each of them has an “effective” rank of rk “ effrankprΣkq “ rM2 s. The effective rank is

equivalent to the number of significant covariance eigenvalues as well as channel angular

sparsity.

We plot the expected joint diagonalization metric Erηp¨qs as a function of the number

of antennas for the unitary matrix yielded by our method as well as for the Fourier basis

F where rFsm,n “ 1?
M
ej2π

pm´1qpn´1q

M , m, n P rM s. We assume that the sample covariance

has converged, i.e. pΣk “ pΣk for all k. The expectation Erηp¨qs is taken over random

covariance realizations and is calculated empirically over 100 Monte-Carlo loops. Fig.

4.8 illustrates the result. As we can see, the basis given by the PGD method achieves

better diagonalization (smaller η values) than the Fourier basis, which shows that using

our method is in fact preferable even for the diagonalization of ULA covariances. Also, as

M increases, the two bases have closer diagonalization metrics since we are approaching

the asymptotic regime in which the Fourier basis approximately diagonalizes the Toeplitz

ULA covariances.
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4.6 Appendices

4.6.1 Proof of Lemma 4.1

The proof follows by using the representation hk “
ř

mPSk
gk,m

a

rλksmfm (see (4.2)),

which holds exactly by assumption. Estimating hk is equivalent to estimating the vector

of KL Gaussian i.i.d. coefficients gk “ pgk,m : m P Skq P Cskˆ1. Define the M ˆ sk DFT

submatrix FSk
“ pfm : m P Skq, and the corresponding diagonal sk ˆsk matrix of the non-

zero eigenvalues rΛksSk,Sk
. After some simple standard algebra, the MMSE estimation

error covariance of gk from yk in (4.3) with B “ IM can be written in the form

rRe “ Isk ´ prΛksSk,Sk
q
1{2FH

Sk
ΨH

ˆ

´

ΨFSk
rΛksSk,Sk

FH
Sk
ΨH `N0ITdl

¯´1
ΨFSk

prΛksSk,Sk
q
1{2 .

(4.35)

Using the fact that Re “ FSk
prΛksSk,Sk

q1{2
rReprΛksSk,Sk

q1{2FH
Sk
, such that trpReq “

trprΛksSk,Sk
rReq, we have that trpReq and trprReq have the same vanishing order with

respect to N0. In particular, it is sufficient to consider the behavior of trprReq as a function

of N0. Now, using the Sherman-Morrison-Woodbury matrix inversion lemma [57], after

some algebra omitted for the sake of brevity we arrive at

trprReq “ sk ´

sk
ÿ

i“1

µi
N0 ` µi

, (4.36)

where µi is the i-th eigenvalue of the sk ˆ sk matrix

A “ prΛksSk,Sk
q1{2FH

Sk
ΨHΨFSk

prΛksSk,Sk
q1{2

Next, notice that

rankpAq “ rankpFH
Sk
ΨHΨFSk

q

“ rankpFSk
FH
Sk
ΨHq ď mintsk, Tdlu.

(4.37)

In fact, rΛksSk,Sk
is diagonal with strictly positive diagonal elements, such that left and

right multiplication by prΛksSk,Sk
q1{2 yields rank-preserving row and column scalings, the

matrix FSk
FH
Sk

is the orthogonal projector onto the sk-dimensional column-space of FSk

and has rank sk, while the matrix ΨH P CMˆTdl has the same rank of ΨHΨ, that is at

most Tdl.

For Tdl ě sk the existence of matrices Ψ such that the rank upper bound (4.37) holds

with equality (i.e., for which rankpAq “ sk for any support set Sk of size sk) is shown

as follows. Generate a random Ψ with i.i.d. elements „ CN p0, 1q. Then, the columns
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of FH
Sk
ΨH form a collection of Tdl ě sk mutually independent sk-dimensional Gaussian

vectors with i.i.d. „ CN p0, 1q components. The event that these vectors span a space of

dimension less than sk is a null event (zero probability). Hence, such randomly generated

matrix satisfies the rank equality in (4.37) with probability 1. As a consequence, for

Tdl ě sk we have that µi ą 0 for all i P rsks and (4.36) vanishes as OpN0q as N0 Ó 0. In

contrast, if Tdl ă sk, by (4.37) for any matrix Ψ at most Tdl eigenvalues µi in (4.36) are

non-zero and limN0Ó0 sk ´
řsk

i“1
µi

N0`µi
ě sk ´ Tdl ą 0. [\

4.6.2 Proof of Lemma 4.3

The determinant of Q is given by the expansion detpQq “
ř

ιPπr
sgnpιq

ś

irQsi,ιpiq, where

ι is a permutation of the set t1, 2, . . . , ru, where πr is the set of all such permutations

and where sgnpιq is either 1 or -1. The product
ś

irQsi,ιpiq is non-zero only for the perfect

matchings in the bipartite graph. Hence, if the bipartite graph contains a perfect matching,

then detpQq ‰ 0 with probability 1 (and rankpQq “ r), since the non-identically zero

entries of W are drawn from a continuous distribution. If it does not contain a perfect

matching, then detpQq “ 0 and therefore rankpQq ă r. [\

4.6.3 Proof of Theorem 4.1

First, without loss of generality let us assume that L contains no isolated nodes (since these

would be discarded anyway). As before, the |A|ˆ|K| weighted adjacency matrix is denoted

by W where rWsm,k “ wm,k. An example of the bipartite graph L and its corresponding

weighted adjacency matrix W is illustrated in Figs. 4.2a and 4.2b. Given the bipartite

graph LpA,K, Eq, we select the subgraph L1pA1,K1, E 1q, so that the constraint (4.5b) is

satisfied. We introduce the binary variables txm,m P Au and tyk, k P Ku to indicate if

beam m and user k are selected, respectively. As such, the constraint (4.5b) is equivalent

to the set of constraints:

xm ď
ÿ

kPK
rAsm,kyk @m P A (4.38a)

yk ď
ÿ

mPA
rAsm,kxm @k P K (4.38b)

ÿ

mPA
rAsm,kxm ď Tdlyk `Mp1 ´ ykq @k P K (4.38c)

In particular, (4.38a) ensures that if the beam m is selected (i.e., xm “ 1), there must be

some k P K such that pm, kq P E is selected as well, whereas if beam m is not selected,

then this constraint is redundant. Similarly, in (4.38b) if user k is selected (i.e., yk “ 1),
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there must be some m P A such that pm, kq P E is selected as well. Furthermore, (4.38c)

guarantees that if user k is chosen (i.e., yk “ 1), the number of chosen beams with xm “ 1

is no more than Tdl, and otherwise this constraint is redundant. Meanwhile, the constraint

(4.5c) is written as:

Pth yk ď
ÿ

mPA
rWsm,kxm @k P K (4.39)

which ensures that if user k is chosen (i.e., yk “ 1) then the sum weights of the selected

beams (i.e., m P NL1pkq if xm “ 1) is no less than Pth, while if user k is not chosen

(i.e., yk “ 0) then this constraint is not required and redundant. A closer look reveals

that the constraint (4.39) renders the one (4.38b) redundant, because when yk “ 1 in

(4.39) there must exist at least one m P A with xm “ 1. Second, given the selected

subgraph L1pA1,K1, E 1q, we find a matching MpA1,K1q with maximum cardinality. To this

end, we introduce another set of binary variables tzmk,m P A, k P Ku to indicate if an

edge pa, kq P E is chosen to form the maximum matching in L1pA1,K1, E 1q. Following the

canonical linear program formulation of the maximum cardinality matching for bipartite

graphs, we translate the objective in (4.5) into the following optimization:

maximize
zm,kPt0,1u

ÿ

mPA1

ÿ

kPK1

rAsm,kzm,k (4.40a)

subject to
ÿ

kPK1

rAsm,kzm,k ď 1 @m P A1, (4.40b)

ÿ

mPA1

rAsm,kzm,k ď 1 @k P K1, (4.40c)

Now, to transport the optimization problem on L1 to the original setting on L, we need to

guarantee that MpA1,K1q Ď E 1, i.e., zmk “ 1 only if m P A1 (xm “ 1), and k P K1 (yk “ 1).

This is obtained for a given configuration of the variables txmu and tyku which define L1,

by adding constraints to (4.40) and yields

maximize
zm,kPt0,1u

ÿ

mPA

ÿ

kPK
rAsm,kzm,k (4.41a)

subject to
ÿ

kPK
rAsm,kzm,k ď 1 @m P A, (4.41b)

ÿ

mPA
rAsm,kzm,k ď 1 @k P K, (4.41c)

rAsm,kzm,k ď xm @k P K,m P A, (4.41d)

rAsm,kzm,k ď yk @k P K,m P A, (4.41e)
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where (4.41d)-(4.41e) impose that the edge set tpm, kq : zm,k “ 1u should be a subset

of E 1. A further inspection on these constraints yields the following equivalent simplified

form:

maximize
zm,kPt0,1u

ÿ

mPA

ÿ

kPK
zm,k (4.42a)

subject to zm,k ď rAsm,k, @m P A, k P K, (4.42b)
ÿ

kPK
zm,k ď xm, @m P A, (4.42c)

ÿ

mPA
zm,k ď yk, @k P K, (4.42d)

where the additional constraint (4.42b) turns all the terms of the type rAsm,kzm,k in (4.41)

to zm,k in (4.42), the constraint (4.42c) results from the combination of the constraints

(4.41b) and (4.41d), and (4.42d) results from the combination of (4.41c) with (4.41e). The

formulation in (4.42) can be seen as a modified maximum cardinality bipartite matching

with selective vertices, in which the vertices with xm “ 1 and yk “ 1 are selected to partic-

ipate in the maximum cardinality matching. The eventual mixed integer linear program is

given as in (4.6). Notice that we have relaxed the binary constraint on tzm,k, m P A, k P Ku

to the linear constraint (4.6i) based on the following lemma.

Lemma 4.8. The problem PMILP as stated in (4.6) always has binary-valued solutions for

tzm,k, m P A, k P Ku. ˝

Proof. It suffices to show that zm,k are binary, given that xm and yk are binary. First,

if either xm, m P A or yk, k P K are 0, then za,k “ 0. So, we only need to focus on

the case where xm “ yk “ 1, m P A, k P K. In that case, the constraints of PMILP

with respect to zm,k, m P A, k P K form a convex polytope. This polytope is called

the bipartite matching polytope, which is integral, i.e. all of its extreme points have

integer (and in this case binary) values (see [110, Corollary 18.1b. and Theorem 18.2.]).

Therefore, given xm, yk P t0, 1u, @m P A, k P K, PMILP reduces to a linear program with

respect to the variables zm,k and the optimal solutions are the integral extreme points of

the corresponding polyhedra and the proof is complete. [\
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Conclusion

This dissertation has addressed a few theoretical and practical problems in taking advan-

tage of the potentials of multi-user massive antenna systems that operate in FDD mode.

We motivated the fact that FDD massive MIMO is competitive with (and sometimes

preferable to) its TDD counterpart in various communication scenario. We presented

algorithms for efficient channel covariance estimation and transformation. Universal mini-

max error bounds were driven for the problem of covariance transformation, suggesting its

theoretical feasibility and a rigorous framework to design transformers. We also proposed

a novel solution to the DL channel precoding in FDD massive MIMO. By maximizing the

channel matrix rank with restricted training pilot dimension and feedback overhead, our

proposed active channel sparsification method achieves excellent results in multiplexing

data to an arbitrary set of users with any given (fixed by the standard) channel training

resource dimension. We backed up our theoretical proposals with extensive simulation

results, showing that they are mostly superior to their alternatives in the literature and

provide strong evidence for the claim that FDD is compatible with massive MIMO and

inherits its long list of benefits.

123





Bibliography

[1] Ansuman Adhikary, Junyoung Nam, Jae-Young Ahn, and Giuseppe Caire. Joint

spatial division and multiplexing: the large-scale array regime. IEEE Trans. on

Inform. Theory, 59(10):6441–6463, 2013.
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[66] Sato Ken-Iti. Lévy processes and infinitely divisible distributions. Cambridge uni-

versity press, 1999.

[67] H Kim and Mats Viberg. Two decades of array signal processing research. IEEE

signal magazine, 13(4):67–94, 1996.

[68] Fima C Klebaner. Introduction to stochastic calculus with applications. World Sci-

entific Publishing Company, 2005.

130



Bibliography

[69] Mari Kobayashi, Nihar Jindal, and Giuseppe Caire. Training and feedback opti-

mization for multiuser MIMO downlink. IEEE Transactions on Communications,

59(8):2228–2240, 2011.

[70] Hamid Krim and Mats Viberg. Two decades of array signal processing research: the

parametric approach. IEEE signal processing magazine, 13(4):67–94, 1996.

[71] Ping-Heng Kuo, HT Kung, and Pang-An Ting. Compressive sensing based chan-

nel feedback protocols for spatially-correlated massive antenna arrays. In Wireless

Communications and Networking Conference (WCNC), 2012 IEEE, pages 492–497.

IEEE, 2012.
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