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General Introduction

Genomic selection (Meuwissen et al., 2001) is a widely used tool that brought large changes to

plant and animal breeding in recent years. Especially for dairy cattle breeds, this methodology

has great advantages and therefore has been implemented in the breeding programs of the most

important dairy cattle breeds (e.g. Hayes et al., 2009; Pryce and Daetwyler, 2012). In Germany,

genomic selection was implemented in 2010 for the Holstein Friesian breed (Reinhardt et al.,

2011) and in 2011 for the breeds Fleckvieh and Brown Swiss (Edel et al. 2011; LfL, 2011).

One advantage of genomic selection is its ability to predict the individual Mendelian sampling

deviation without the knowledge of own performance or offspring performance (Pryce and

Daetwyler, 2012). In the last few years, the standard selection practice for bulls used in artificial

insemination (AI) in dairy cattle has changed from the time-consuming conventional procedure

of progeny testing to genomic selection, and selection decisions have been made much earlier.

Due to this reduction of the generation interval, the annual genetic gain can be increased (or

even doubled) by using genomic selection (Schaeffer, 2006). This reduction of the generation

interval is directly related to the use of genomically tested young bulls in the population and

is therefore linked to the acceptance of these bulls among breeders and producers. However,

comparing reliabilities of the genomic method with those from the progeny testing (Powell et

al., 2003), it is important to note that although genomic selection provides relatively reliable

estimates for many traits, the more reliable estimates for the selection of AI bulls can be achieved

with the conventional system of progeny testing.

Among other things the quality of genomic breeding values depends on the size and composition

of the so called reference population. Animals belonging to the reference population are both

phenotyped and genotyped and are used to estimate the single nucleotide polymorphism (SNP)

effects that are needed to predict genomic breeding values of future selection candidates (Goddard

and Hayes, 2007; van Grevenhof and van der Werf, 2015). During the course of using genomic

selection in the breeding program the composition of the reference population changes: fewer

bulls are selected (Buch et al., 2011; Pryce et al., 2008) and the number of sires put in service

each year have almost halved compared to the pre-genomic period. As a consequence fewer AI

bulls enter the reference population and, in addition, these bulls are already pre-selected, which
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General Introduction

was not the case in the conventional system (Schaeffer, 2014). As a consequence of these two

aspects it can be expected that without taking appropriate actions the reliabilities of genomic

breeding values will eventually deteriorate and predictions will eventually be biased due to the

effect of pre-selection.

Despite these problems the new methodology has many advantages and there has been a

continuous effort to develop further the scientific understanding of the mechanisms involved.

This study was part of a project called “Zukunftswege” funded by the Arbeitsgemeinschaft

Süddeutscher Rinderzucht- und Besamungsorganisationen e.V. Within this project there are

different work packages defined which deal with the further development of genomic breeding

value estimation for the Fleckvieh and Brown Swiss cattle. Various issues should be dealt with,

including taking into account the genetic diversity of the two breeds and ensuring the quality of

genomic breeding value estimation using different methods.

The presented work thus deals with two different approaches to improve genomic selection

and to ensure the reliability and unbiasedness of genomic breeding values. Chapter one covers a

theoretical aspect of genomic selection models, specifically the question of how variation between

the allele frequencies in subpopulations of the same breed influences genomic predictors and how

this relates to the role of genetic groups in genomic BLUP. Chapter two and chapter three deal

with the question of how to preserve and improve the quality of genomic prediction by a great

enlargement of the reference population using the genotypes and phenotypes of female animals.

Chapter one shows a simple method to decompose the genomic relationship matrix G into two

independent covariance matrices, where G
∗

A
describes the covariance that results from systematic

differences in allele frequencies between groups at the pedigree base and Gs describes genomic

relationships corrected for these differences. By the use of this decomposition and with the help

of Fst statistics (Weir and Cockerham, 1984), it is possible to assign genetic distances between

subgroups within the same population to either a heterogeneous genetic structure already present

at the base of the pedigree and/or to breed divergence during the breeding process. Three models

were tested in a forward prediction on six traits using Brown Swiss and dual-purpose Fleckvieh

cattle data to examine the relative importance of the genetic heterogeneity in the pedigree base.

The aim of chapter two was to explore the potential of increasing the reliability of breeding

values of young selection candidates by genotyping a fixed number of first-crop daughters of each

reference bull from one or two generations in a balanced and regular system of genotyping and

adding these to the reference population. A basic population scenario that mimics the situation

in dual-purpose Fleckvieh cattle with respect to important key parameters was developed using

stochastic simulation. Several scenarios were compared with respect to model-derived reliabilities,

validation reliabilities and unbiasedness of predicted values for selection candidates. In the
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General Introduction

base scenario the reference set consisted of only genotyped bulls. This reference set was then

successively extended by including increasing numbers of daughter genotypes and phenotypes.

In the most extended design, with 200 daughters per sire genotyped from two generations, SNP

effects were estimated from a reference set of 420,000 cows and 4200 bulls.

In chapter three the approach of chapter two was extended to answer some additional questions.

First, the results were complemented for a trait with low heritability but all other aspects were

as in chapter two. Additionally the subject of so called ‘new traits’ was covered. This chapter is

therefore structured into two main parts: 1) an ‘old trait with low heritability’ section and 2) a

‘new trait with low heritability’ section. In the case of ‘new traits’, phenotyping was assumed to

have started only a few generations back and therefore only a limited number of phenotypes on

cows were available. The assignment of animals to the reference population in this situation was

done in two ways: either genotypes were available on sires of phenotyped cows only, or genotypes

were available and used on phenotyped cows themselves.

All investigations were done having the two largest Bavarian cattle breeds in mind: Chapter

one was based on data from Fleckvieh and Brown Swiss cattle and chapter two and three with

simulated data resembling the genetic composition and population structure of Fleckvieh. The

following chapters present methodological and strategic possibilities for the improvement of

some aspects of genomic selection. Other aspects presented in the literature include for example

technical issues like chip densities or the so called next generation sequencing. These additional

issues will be addressed at the end of this work, together with some additional methodological

and strategic aspects which are related to the following chapters.
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A simple method to separate base
population and segregation effects in
genomic relationship matrices
Laura Plieschke1*, Christian Edel1, Eduardo CG Pimentel1, Reiner Emmerling1, Jörn Bennewitz2 and Kay-Uwe Götz1

Abstract

Background: Genomic selection and estimation of genomic breeding values (GBV) are widely used in cattle and
plant breeding. Several studies have attempted to detect population subdivision by investigating the structure of
the genomic relationship matrix G. However, the question of how these effects influence GBV estimation using
genomic best linear unbiased prediction (GBLUP) has received little attention.

Methods: We propose a simple method to decompose G into two independent covariance matrices, one
describing the covariance that results from systematic differences in allele frequencies between groups at the
pedigree base (GA

* ) and the other describing genomic relationships (GS) corrected for these differences. Using
this decomposition and Fst statistics, we examined whether observed genetic distances between genotyped
subgroups within populations resulted from the heterogeneous genetic structure present at the base of the
pedigree and/or from breed divergence. Using this decomposition, we tested three models in a forward
prediction validation scenario on six traits using Brown Swiss and dual-purpose Fleckvieh cattle data. Model 0
(M0) used both components and is equivalent to the model using the standard G-matrix. Model 1 (M1) used
GS only and model 2 (M2), an extension of M1, included a fixed genetic group effect. Moreover, we analyzed
the matrix of contributions of each base group (Q) and estimated the effects and prediction errors of each base
group using M0 and M1.

Results: The proposed decomposition of G helped to examine the relative importance of the effects of base
groups and segregation in a given population. We found significant differences between the effects of base
groups for each breed. In forward prediction, differences between models in terms of validation reliability of
estimated direct genomic values were small but predictive power was consistently lowest for M1. The relative
advantage of M0 or M2 in prediction depended on breed, trait and genetic composition of the validation
group. Our approach presents a general analogy with the use of genetic groups in conventional animal models
and provides proof that standard GBLUP using G yields solutions equivalent to M0, where base groups are
considered as correlated random effects within the additive genetic variance assigned to the genetic base.

Background

Genomic selection [1] and estimation of genomic

breeding values (GBV) are currently used for many

cattle populations. Genomic best linear unbiased

prediction (GBLUP) using relationships estimated

based on SNPs (single nucleotide polymorphisms) has

been established as one of the most prominent methods

for practical applications [2]. The question of how and

to what extent population subdivision affects the

genomic relationship matrix and genomic predictions

was not addressed until applications of GBLUP across

breeds or in admixed or crossbred populations were

proposed e.g. [3–5]. However, several authors have

shown that genomic relationship matrices can be used

to detect population subdivision and to calculate

measures of genetic distances (e.g. Fst) [6, 7].

Conventional methods to estimate breeding values

consider that animals with unknown parents belong to
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an arbitrarily defined base population. Members of

this base population are assumed to come from a

single population with a mean breeding value of 0 and

variance σa
2. Since this is rarely true in practical

applications, many conventional methods to estimate

breeding values include genetic groups or phantom

parents [8–10] in the model. A more elaborated

approach in the context of multi-breed evaluations

was proposed by García-Cortés and Toro [11], who

partitioned the elements of the covariance matrix of

the additive values into a breed-source term and a

segregation term.

In spite of the large number of studies that deal with

the use of genetic groups in conventional models, only a

few have investigated this issue within the framework of

genomic models. Makgahlela et al. [12–14] tested

models that accounted for breed effects and compared

allele frequencies in subgroups of Nordic Red cattle.

They showed that a model that included a fixed breed

effect [12, 13] increased the reliability of direct genomic

values (DGV) by 2 to 3 % [13] for an admixed Nordic

Red population. In a follow-up investigation, they found

that using breed- or subpopulation-specific allele fre-

quencies to calculate the genomic relationship matrix

(G) did not result in higher validation reliabilities,

although accounting for specific allele frequencies in the

calculation of G changed the estimated GBV of some

individuals considerably [14]. Tsuruta et al. [15] pro-

posed an approach to assign unknown parent groups in

one-step GBLUP for US Holstein cattle data. Their

approach can be described as an application of the

model that fits standard fixed genetic groups within the

context of one-step GBLUP. The question of whether

and how population subdivision influences the G-matrix

was not addressed.

A simulation study by Vitezica et al. [16] compared

five BLUP methods and investigated the effect of selec-

tion and genome-wide evaluation methods (one-step

and multi-step) on bias and accuracy of genomic predic-

tions. They examined the problem of unequal genetic

levels between genotyped and non-genotyped animals in

the one-step GBLUP procedure, where the genomic rela-

tionship matrix G and the pedigree-based relationship

matrix A are combined. They proposed a correction of

G and concluded that one-step estimation with a

corrected G results in unbiased estimates of GBV, which

have a similar inflation rate and a higher accuracy than

estimates obtained with other methods. Christensen

[17] presented an alternative approach for one-step

models. For admixed populations, he suggested that the

pedigree-based relationship matrix should be adjusted

by assuming a parametric structure for the relationships

between animals in the base population and estimating

those parameters. He argued that this approach would be

easier to extend and simpler than developing an ap-

propriate method of adjusting the matrix of genomic

relationships of genotyped animals across breeds.

The effects of population subdivision on the structure

of the genomic relationship matrix G have also been

investigated in contexts other than when it is used to

estimate GBV. There are numerous studies on the calcu-

lation of Fst statistics [6, 18] and principal component

analysis (PCA), e.g. [19, 20], and corresponding exten-

sions to the G-matrix [16]. These studies show that it is

possible to detect population subdivision with G in the

same manner as with A. This means that G includes in-

formation about population subdivision and that, in

some cases, this information includes the genetic dis-

tance between potentially discriminable groups in the

base population that is defined by the pedigree. Since

base animals are rarely genotyped, these distances can-

not be estimated directly. A simple and straightforward

method to estimate allele frequencies in the base popula-

tion was proposed by Gengler et al. [21] and is based on

a mixed model approach. In this paper, we estimate

allele frequencies in the base of different subpopulations

that are present in our datasets and propose a method

to separate the genomic relationship matrix (G) into two

independent components: a base group (GA
* ) component

and a segregation (GS) component. Furthermore, we

demonstrate that this decomposition leads to basically

identical results as ordinary GBLUP. Finally, we exam-

ine models that either ignore the effects of base groups

or that consider base groups as fixed effects.

Methods

Material

In total, 7965 genotyped Fleckvieh (FV) and 4257 ge-

notyped Brown Swiss (BS) and 143 genotyped Original

Braunvieh (OB) bulls were available for this study. BS

and OB data were combined (hereafter called BS/OB,

n = 4400) into a single dataset because these two sub-

populations actually originated from a single breed.

The term Brown Swiss is used to denote the modern

Braunvieh, which resulted from an exchange of genetic

material between Europe and North America. An OB

animal is genetically characterized as a descendant of

the old European Braunvieh population, with no or

only minor genetic contributions from the reimported

US Brown Swiss population. This labelling of OB

animals within the European Braunvieh population is

not necessarily applied in a uniform manner and small

differences in the definition can occur between countries.

All animals were genotyped with the Illumina

BovineSNP50 BeadChip (Illumina, San Diego, CA). After

removing SNPs with low call rates (<90 %), minor allele

frequencies less than 2 %, or with a deviation from Hardy-

Weinberg equilibrium with P < 10−5, 37 718 and 41 254

Plieschke et al. Genetics Selection Evolution  (2015) 47:53 Page 2 of 14
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SNPs were retained for the BS/OB and FV datasets,

respectively. Available pedigrees for genotyped animals in-

cluded 7802 and 16 357 records for the BS/OB and FV

breeds, respectively. BS/OB base animals were assigned to

nine groups (Table 1) according to origin and date of

birth. Since the genetic distances between German,

Austrian, Italian and Swiss BS base animals born before

1960 were small (results not shown), they were combined

into one base group called EUb. Base FV animals were

assigned to 11 groups with nine groups assigned accord-

ing to origin and date of birth and two groups assigned to

the Red Holstein breed (Table 2).

We estimated DGV for three milk traits and three

conformation traits from a dataset that was reduced for

the last four years of phenotypic data (referred to as the

reduced dataset). Daughter yield deviations (DYD) from

the German-Austrian system [22] were used for FV bulls

and deregressed MACE (multi-trait across country

evaluations) proofs from Interbull [23] for BS/OB bulls.

Deregression was done using the method proposed by

Garrick et al. [24]. Group effects were not accounted for

in the deregression. Traits analyzed were milk yield

(MY), protein yield (PY), fat yield (FY), stature (STA),

feet and legs (FL) and udder conformation (UD). These

traits were a priori assumed to have a large genetic trend

and/or to show considerable differences between base

groups. DGV estimated from the reduced dataset were

then compared to DYD and deregressed proofs from the

corresponding April 2014 evaluations (current dataset)

according to the guidelines of the Interbull GEBV test

[25, 26]. In short, the validation group included bulls

with no information on the offspring’s performances in

the reduced dataset but corresponding information in

the current dataset. Current information was assumed to

be sufficient for the test when the effective daughter

contribution (EDC) [27] based on offspring perfor-

mances was equal to at least 20. The remaining bulls

from 2010 with an EDC of at least 1 were included into

the training set (Calib).

Technically, we tested DGV by a weighted regression

of current DYD or deregressed proofs of the animals in

the validation group on their DGV estimated from the

reduced set. The resulting test statistics are the intercept

and slope (b) of this regression as measures of bias and

the coefficient of determination (R2) of this regression as

a measure of the reliability of the DGV. The R2 values

were corrected for the uncertainty in DYD, as proposed

by [28], i.e. they were divided by the average reliability of

the DYD of validation bulls.

For presentation of results, we divided the animals of

the validation group into different sub-groups. FV

validation animals were assigned to two groups: animals

from Germany-Austria (DEA) and others. BS validation

animals were also divided into DEA and others, and OB

validation animals were assigned to a third validation

group (OB). Numbers of animals included in each

validation group are in Table 3. The assignments of

validation animals to origins used in this investigation

for the purpose of illustration were mainly based on ISO

country codes [29] and do not necessarily correspond to

assignments based on analyses of genetic contributions

from base groups.

Decomposition of G

Assume a common scenario in genomic prediction with

n animals genotyped for m biallelic SNPs. Information

on genotypes is collected in an n x m matrix C, using

numerical coding that denotes the number of copies of

the arbitrarily defined reference allele (0, 1, 2). Let pT
be the vector of estimated allele frequencies at the m

SNPs, which for each SNP j were derived from geno-

typed animals.

p̂j ¼

Xn

i¼1
Cij

2n
ð1Þ

A genomic relationship matrix GT can be calculated and

used in GBLUP using these “current” allele frequencies as:

GT ¼
MM0

Xm

j¼1
2p̂ j 1‐p̂ j

� � ; ð2Þ

where M is an n x m matrix of recoded genotypes, for

which each row (= animal) i of the matrix of numerically

coded genotypes C is manipulated in the following

manner [30]:

Mi ¼ Ci ‐1‐ 2 pT‐ 0:5ð Þ: ð3Þ

Conceptually, this manipulation is equivalent to

column-wise centering of C if current allele frequencies

Table 1 Number of animals per defined base group for the BS/OB population

EUb DEb ATb CHb ITb USb1 USb2 OBb1 OBb2

Year ≤1960 >1960 >1960 >1960 >1960 ≤1955 >1955 ≤1960 >1960

Number 2093 1482 743 1281 413 489 445 458 398

BS = Brown Swiss and OB = Original Braunvieh, assignment was done by country and year of birth with the exception of the OB base groups, which were

considered across countries: EUb = European base group (born before 1960), DEb = German base group (born after 1960), ATb = Austrian base group (born after

1960), CHb = Swiss base group (born after 1960), ITb = Italian base group (born after 1960), USb1 = American base group (born before 1955), USb2 = American base

group (born after 1955), OBb1 = Original Braunvieh base group (born before 1960), OBb2 = Original Braunvieh base group (born after 1960)

Plieschke et al. Genetics Selection Evolution  (2015) 47:53 Page 3 of 14
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are used and if each marker is in Hardy-Weinberg equi-

librium in the genotyped population.

Assume a subdivision of the genotyped population

into g groups that systematically differ in allele frequen-

cies, as indicated for example by sufficiently high Fst
values [31, 32]. Define a g x m matrix P of group-

specific allele frequencies that are derived by applying

Equation (1) within each group. Using these group-

specific allele frequencies, the vector of genotypes for

each animal can then be centered by applying Equation

(3) using the allele frequencies of the group that it is

assigned to. Thus, for animal i assigned to group k with

group-specific allele frequencies pk, the corresponding

row in C is manipulated as:

M�
i ¼ Ci‐ 1‐2 pk‐0:5ð Þ:

A G-matrix corrected for specific allele frequencies for

different groups can then be calculated as:

GS ¼
M�M�0

Xm

j¼1
2p̂ j 1‐p̂ j

� � ; ð4Þ

with the same denominator as in Equation (2), which is

equivalent to expressing this part of the covariance rela-

tive to the overall covariance. The discarded component

of the original covariance structure, which is caused by

differences between group allele frequencies and overall

frequencies, can be summarized in a matrix GA. Treat-

ing 2P as a matrix of average “genotypes” of groups, a

matrix ~M is calculated by manipulating each group’s row

g as follows:

~Mg ¼ 2Pð Þg‐ 1‐ 2 pT‐ 0:5ð Þ:

Finally, GA is calculated as ~M ~M0 divided by the same

denominator as in Equations (2) and (4). The g x g

matrix GA can be treated and analyzed in the same man-

ner as the standard G-matrix. It can be expanded to give

an n x n matrix GA
* based on:

G�
A ¼ QGAQ

0
;

where Q is the matrix of genetic contributions of each

base group to each animal, which can be calculated as:

Q ¼ TQ�
;

where T is a lower triangular matrix that results from

decomposing A into TDT’, as described in [33], and Q*

is an n x g design matrix that assigns genotyped animals

to groups. Despite this increase in dimensions, GA
* still

has rank (g – 1). Also, note that:

GT ¼ GS þ G�
A: ð5Þ

Although this decomposition is straightforward, its

dependency on the current allele frequencies and the

grouping of current animals causes some problems due

to ambiguous genetic composition and might not be

feasible under practical conditions since new genotypes

have to be successively integrated into the system. To

circumvent this problem, we propose to replace the

current allele frequencies with estimates of base allele

frequencies using the estimation procedure developed by

Gengler et al. [21]. Using a pedigree that relates geno-

typed animals to a set of arbitrarily defined but usually

ungenotyped base animals and calculating the conven-

tional relationship matrix A, the vector of overall base

allele frequencies is calculated as a generalized least

Table 2 Number of animals per defined base group for FV

DEb1 DEb2 DEb3 DEb4 HOLb1 HOLb2 ATb CZb CHb FRb Divb

Year <1960 ≥1960 < 1970 ≥1970 < 1980 ≥1980 <1960 ≥1960 All All All All All

Number 1368 6055 1661 773 528 427 3452 977 183 228 705

FV = Fleckvieh; assignment was done by country and year of birth with the exception of the Red Holstein and the diverse base groups, which were considered across

countries: DEb1 = German base group (born before 1960), DEb2 = German base group (born between 1960 and 1970), DEb3 = German base group (born between 1970

and 1980), DEb4 = German base group (born after 1980), HOLb1 = Red Holstein base group (born before 1960), HOLb2 = Red Holstein base group (born after 1960),

ATb = Austrian base group, CZb = Czech base group, CHb = Swiss base group, FRb = French base group, DIVb = base groups with animals with other countries of origin

Table 3 Number of animals per validation group for the BS/OB
and FV populations and the seven traits considered

Training set Validation set

DEA others OB

BS/OB MY 3262 416 346 8

PY 3262 416 346 8

FY 3262 416 346 8

STA 3535 464 350 51

FL 3551 461 345 43

UD 3550 458 349 43

DEA others -

FV MY 5276 2589 97

PY 5276 2581 97 -

FY 5276 2581 97

STA 5956 2264 139 -

FL 5956 2272 139

UD 5956 2272 139 -

BS = Brown Swiss,OB =Original Braunvieh and FV = Fleckvieh,MY =milk yield, PY =

protein yield, FY = fat yield, STA= stature, FL = feet and legs,UD = udder conformation

Validation sets: DEA = German and Austrian validation animals; others = validation

animals with other countries of origin; OB = Original Braunvieh validation animals
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squares mean by solving the following equation for each

marker j (column of C):

p�j ¼ 0:5 1
0

A‐11
� �‐1

1
0

A‐1 cj

� �

: ð6Þ

Similar to conventional estimation of GBV, base

animals can be grouped according to known or as-

sumed population subdivisions and/or generations,

when additional differentiation due to considerable

genetic trend has to be taken into account. To esti-

mate base group-specific allele frequencies, matrix 1

in Equation (6) is replaced by matrix Q. Matrices GT,

GS and GA
* can then be calculated as described above,

using estimates for global and group-specific base allele

frequencies and again GT = GS + GA
* , as described above.

Models

In order to study the influence of different definitions of

base group on the quality of prediction, we examined

several models. The general model is a standard mixed

animal model with:

y ¼ Xbþ Zuþ e;

where y is a vector of DYD or deregressed proofs of

genotyped animals, b is the vector of fixed effects, u

is the vector of random animal effects, incidence

matrices X and Z relate observations to levels of b

and u, respectively, and e is the residual effect. Further-

more, it is assumed that y ~ N(Xb, Vyy), e ~ N(0,Ve) and

u ~ N(0,Vuu), with Vyy = Vuu + Ve, Ve is diag(1/w)*σ2e,

where w is a vector of weights. The models to be com-

pared are defined in the following.

Standard model (model 0, M0): X = 1 and Vuu =GT × σ
u

2.

Model 1 (M1): X = 1 and Vuu =GS × σ
u

2.

Model 2 (M2): X = [1 | Q] and Vuu =GS × σ
u

2.

Note that M2 is equivalent to a model that fits

standard fixed group effects [34]. Although genomic

relationships corrected for unequal base allele fre-

quencies (GS) are used in M2, it can be shown by

least-squares theory that the solutions are identical to

a model that uses GT, if the same matrix Q is used

to estimate the base allele frequencies and to model

the fixed group effects (see Appendix 1). Finally, it

can be shown that using the standard genomic rela-

tionship matrix GT in standard GBLUP (standard

model, M0) in the presence of base groups that differ

in allele frequencies gives solutions equivalent to the

use of a more specific model with genetic groups as

random effects and equal variances for the base group

and the segregation effects (see Appendix 2), as in

the following representation:

X0X X0Z X0Q

Z0X Z0Z þ GS
‐1
λ Z0Q

Q0X Q0Z Q0Q þ GA
‐1
λ

2

4

3

5

b̂

û

ĝ

2

4

3

5 ¼
X0y

Z0y

Q0y

2

4

3

5

;

where λ = σu
2/σe

2 and the final estimate for the breeding

value is =Qĝ + û. We calculated solutions for the

standard model using this more specific model, which,

in addition, allowed us to derive estimates for group ef-

fects and their prediction errors.

Models were tested in forward prediction by means of

the test described in the sub-section Material. To better

understand the factors that influence the predictive

ability of a specific model for different validation data-

sets, we analyzed the matrix of base group contributions

(Q) and derived base group estimates, as well as their

prediction errors, using M0 and M2. Differences between

group effect estimates were calculated and tested by for-

mulating linear hypotheses.

Distance measures

We calculated Fst statistics to illustrate the effects of the

proposed decomposition of G. Fst is a standard measure

of genetic distance and can be calculated either by pair-

wise analysis of differences in allele frequencies between

known or assumed subpopulations or breeds [18], or by

direct calculation from relationship matrices [6] as:

Fst ¼
~f ‐�f

1‐�f
;

where ~f is the mean coancestry over all subpopula-

tions and �f is the average coancestry within a given

subpopulation. The term 1‐~f is the average diversity

(heterozygosity) and depends on the coancestry within

the given subpopulation. Fst values are primarily used

as a tool to visualize substructures within groups of ani-

mals [6, 10, 35]. An Fst value of 0.05 can be interpreted as

a strong indication of a relevant subdivision [31, 32].

Results

Fst statistics

To illustrate the effects of the decomposition of the G-

matrix, we calculated Fst values for both components

(GS and GA
* ) and for the total G-matrix for the 4400 BS/

OB animals. Results of the Fst statistics are in Fig. 1.

Comparison of distances calculated from GA
* and GS

shows that population differences were primarily caused

by genetic distances in the base population. A substan-

tial genetic distance existed only between the OB group

and the two other groups. This distance was present in

both GA
* and GS, but was considerably greater in GA

* .

Interestingly, the distances in GA
* and GS acted additively
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and their sum resulted in the distances calculated

from GT.

Forward prediction

Results of the forward prediction in terms of the coeffi-

cient of determination (R2), the intercept (a), the slope

(b) and corresponding standard errors are in Tables 4

and 5. For both breeds and across all traits, differences

between models were small, but M1 consistently re-

sulted in a lower R2.

Brown Swiss and Original Braunvieh breeds

For the BS/OB data, we found a minimal advantage in

terms of the R2 for model M2 that fitted fixed groups.

Exceptions were for the traits FL and UD, here the

standard random model M0 showed the highest R2.

Across traits, R2 for M1 was 0.028 to 0.123 lower than

that of the best model. Based on results in terms of

slope, it should be noted that inflation of genomic pre-

dictions was lowest for conformation traits using model

M1. For milk traits, the slope was slightly higher and es-

timates were thus less inflated with the random model

M0 than with the fixed model M2.

Fleckvieh breed

Differences in R2 between M0 and M2 ranged from

0.001 to 0.021. For all six traits, M0 resulted in a higher

R2 than the fixed group model M2. The R2 achieved

with M1 was always lower than that achieved with M0

and M2. Nevertheless, the difference in R2 between M1

and M0 was only 0.002 for the UD trait. For the other

traits, the R2 that was achieved with M1 was between

0.011 and 0.058 lower than that with M0. Based on

slope, model M0 was superior and always led to the low-

est inflation of estimates for milk traits. For conform-

ation traits, the fixed model M2 led to the lowest

inflation. However, differences between models were

relatively small in many cases (between 0.004 and 0.143).

Base group effects

We estimated base group effects based on M0 and M2.

Properties of matrix Q always lead to linear dependen-

cies and no unique solution can be achieved. However,

significant differences between group estimates can be

derived and tested using linear hypotheses. Results in

Tables 6 and 7 are group differences estimated with M2.

Brown Swiss and Original Braunvieh breeds

In the BS/OB dataset, we defined nine different base

groups that led to 36 possible contrasts between base

Fig. 1 Fst values of the base group term (GA
* ), the segregation term (GS), and total G (GT) for the 4400 BS/OB animals. BS = Brown Swiss and

OB = Original Braunvieh

Table 4 Results for the coefficient of determination (R2) from
the forward prediction for the BS/OB and FV populations for
different models

BS/OB Trait M0 (GA
* and GS) M1 (GS) M2 (GS + fixed effects)

R2 MY 0.416 0.386 0.421

PY 0.409 0.370 0.417

FY 0.388 0.349 0.395

STA 0.499 0.382 0.505

FL 0.234 0.216 0.220

UD 0.416 0.394 0.410

FV

R2 MY 0.580 0.530 0.557

PY 0.512 0.463 0.491

FY 0.548 0.490 0.521

STA 0.526 0.515 0.516

FL 0.438 0.425 0.415

UD 0.406 0.404 0.405

BS = Brown Swiss,OB =Original Braunvieh, and FV = Fleckvieh,MY =milk yield, PY =

protein yield, FY = fat yield, STA= stature, FL = feet and legs,UD = udder conformation
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groups. Differences were tested for significance using t-

tests. For the PY trait, significant differences were found

for the majority of group contrasts and only 5 out of 36

differences were not significant. The largest difference

was between the European base group (EUb) and the

German base group (DEb) (−64.86). Estimates for DEb
were significantly larger than estimates for all other

groups. Differences between the EUb group and the

other groups were also large but clearly negative. The

smallest difference was between the Swiss base group

(CHb) and the older Original Braunvieh base group

(OBb1) (−0.05). The differences between the Austrian

(ATb) and the Italian (ITb) base groups were relatively

small in many cases.

For the STA trait, all group differences were signifi-

cant, except the difference between the German base

group (DEb) and the younger American base group

(USb2). The patterns of differences were quite similar as

for PY, although slightly different in magnitude for STA.

The largest and smallest differences were also between

Table 5 Results for the intercept (a), slope (b) and its standard error (s.e.) from the forward prediction for the FV and BS/OB
populations for different models

Trait M0 (GA
* and GS) M1 (GS) M2 (GS + fixed effects)

BS/OB a b (s.e.) a b (s.e.) a b (s.e.)

MY 85.551 0.828 (0.035) 87.672 0.813 (0.037) 85.091 0.820 (0.035)

PY 3.152 0.768 (0.033) 3.221 0.748 (0.035) 3.129 0.765 (0.033)

FY 3.202 0.762 (0.035) 3.198 0.753 (0.037) 3.178 0.757 (0.034)

STA 14.934 0.854 (0.029) −3.706 1.020 (0.044) 18.807 0.817 (0.028)

FL 1.285 0.979 (0.061) −4.480 1.032 (0.068) 24.889 0.751 (0.059)

UD 22.008 0.786 (0.032) 9.036 0.904 (0.038) 30.023 0.711 (0.030)

FV a b (s.e.) a b (s.e.) a b (s.e.)

MY 62.576 0.660 (0.019) 76.031 0.582 (0.018) 76.031 0.619 (0.018)

PY 3.213 0.664 (0.019) 3.914 0.593 (0.019) 3.914 0.644 (0.019)

FY 2.640 0.734 (0.019) 3.696 0.650 (0.019) 3.696 0.729 (0.020)

STA 0.046 0.782 (0.024) 0.076 0.774 (0.024) 0.076 0.786 (0.025)

FL −0.082 0.900 (0.036) −0.179 0.878 (0.036) −0.179 1.021 (0.038)

UD −0.013 0.713 (0.033) −0.031 0.708 (0.033) −0.031 0.736 (0.040)

BS = Brown Swiss, OB = Original Braunvieh and FV = Fleckvieh; values for the slope are printed in bold and values for the standard error of the slope are shown in

brackets. MY = milk yield, PY = protein yield, FY = fat yield, STA = stature, FL = feet and legs, UD = udder conformation

Table 6 Differences between base group effects estimated with the fixed model for the BS/OB population for protein yield above
the diagonal and stature below the diagonal

EUb DEb ATb CHb ITb USb1 USb2 OBb1 OBb2

≤1960 >1960 >1960 >1960 >1960 ≤1955 >1955 ≤1960 >1960

EUb 0 −64.86*** −22.52*** −13.97*** −19.36*** −26.06*** −29.90*** −14.01*** −45.54***

DEb 25.48*** 0 42.35*** 50.90*** 45.50*** 38.80*** 34.97*** 50.85*** 19.32***

ATb 15.66*** −9.82*** 0 8.55*** 3.15n.s. −3.55n.s. −7.38 n.s. 8.50* −23.03***

CHb 1.21* −24.27*** −14.45*** 0 −5.40** −12.10*** −15.93*** −0.05n.s. −31.58***

ITb 19.63*** −5.85*** 3.97*** 18.42*** 0 −6.70* −10.53*** 5.35* −26.18***

USb1 11.23*** −14.25*** −4.43*** 10.02*** −8.40*** 0 −3.83n.s. 12.05** −19.48***

USb2 23.05*** −2.43 n.s. 7.39*** 21.85*** 3.42* 11.82*** 0 15.88*** −15.65***

OBb1 3.56*** −21.92*** −12.11*** 2.35*** −16.08*** −7.67*** −19.50*** 0 −31.53***

OBb2 18.05*** −7.43*** 2.38*** 16.83*** −1.59** 6.82*** −5.01*** 14.49*** 0

BS = Brown Swiss and OB = Original Braunvieh; Protein yield (in kg); Stature (in cm); we calculated the differences row minus column, so negative values indicate

superior horizontal groups and positive values indicate superior vertical groups. n.s. = not significant, * = (p < .05), ** = (p < .01), *** = (p < .001). EUb = European

base group (born before 1960), DEb = German base group (born after 1960), ATb = Austrian base group (born after 1960), CHb = Swiss base group (born after

1960), ITb = Italian base group (born after 1960), USb1 = American base group (born before 1955), USb2 = American base group (born after 1955), OBb1 = Original

Braunvieh base group (born before 1960), OBb2 = Original Braunvieh base group (born after 1960)
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EUb and DEb (25.48) and between the Swiss base group

(CHb) and the European base group (EUb) (1.21),

respectively.

Fleckvieh breed

For the FV breed, almost all group differences were sig-

nificant for PY. The largest differences were between the

older Red Holstein base group (HOLb1) and the Austrian

base group (ATb), between the younger Red Holstein

base group (HOLb2) and ATb and between HOLb2 and

CZb (68.64, 68.15 and 68.14, respectively). The smallest

difference was between the two Red Holstein base

groups (0.49).

The situation for STA was almost the opposite. Only

16 group differences were significant, while 39 out of 55

differences were not significant. From these 16 signifi-

cant differences, 10 were between the older Red Holstein

base group (HOLb1) and all other base groups.

Base group contributions

Analysis of the matrix of base group contributions (Q)

revealed several general breed-specific aspects. In

addition, it was possible to characterize the validation

group, which can help interpretation of other results.

Averages and standard deviations of base group contri-

butions for the PY and STA traits are in Tables 8 and 9

for the two breeds.

Table 7 Differences between base group effects estimated with the fixed model for the FV population for protein yield above the
diagonal and stature below the diagonal

DEb1 DEb2 DEb3 DEb4 HOLb1 HOLb2 ATb CZb CHb FRb Divb

<1960 ≥1960 < 1970 ≥1970 < 1980 ≥1980 <1960 ≥1960 All All All All All

DEb1 0 −16.77*** 1.06 n.s.
−7.49*** −50.43*** −49.94*** 18.21*** −32.21*** 10.89*** −28.14*** 49.76***

DEb2 −0.29n.s. 0 17.83*** 9.28** −33.66*** −33.17*** 34.98*** −15.45*** 27.66*** −11.37*** 66.54***

DEb3 −1.60n.s. −1.31 n.s. 0 −8.55*** −51.49*** −51.00*** 17.15*** −33.28*** 9.82*** −29.20*** 48.701***

DEb4 −0.24n.s. 0.05 n.s. 1.36 n.s. 0 −42.94*** −42.45*** 25.70*** −24.73*** 18.38*** −20.65*** 57.25***

HOLb1 5.16*** 5.45*** 6.76*** 5.40*** 0 0.49n.s. 68.64*** 18.21*** 61.32*** 22.29*** 100.19***

HOLb2 −1.49n.s. −1.20n.s. 0.11n.s. −1.25n.s. −6.65*** 0 68.15*** 68.14*** 60.83*** 21.80*** 99.70***

ATb −0.14 n.s. 0.16n.s. 1.46n.s. 0.11n.s. −5.30*** 1.35n.s. 0 −50.43*** −7.32** −46.35*** 31.55***

CZb −3.48*** −3.19n.s. −1.88n.s. −3.24n.s. −8.64*** −1.99n.s. −3.35n.s. 0 43.11*** 4.08n.s. 81.98***

CHb −1.79n.s. −1.50n.s. −0.19n.s. −1.55n.s. −6.95*** −0.30n.s. −1.65n.s. 1.69 n.s. 0 −39.03*** 38.88***

FRb 0.22n.s. 0.51n.s. 1.82n.s. 0.46n.s. −4.95*** 1.71n.s. 0.35n.s. 3.70* 2.01n.s. 0 77.91***

Divb −3.09*** −2.80n.s. −1.49n.s. −2.85* −8.25*** −1.60n.s. −2.95* 0.39n.s. −1.30n.s. −3.31** 0

FV = Fleckvieh; Protein yield (in kg); Stature (in cm); we calculated the differences row minus column, so negative values indicate superior horizontal groups and

positive values indicate superior vertical groups. n.s. = not significant, * = (p < .05), ** = (p < .01), *** = (p < .001). DEb1 = German base group (born before 1960);

DEb2 = German base group (born between 1960 and 1970), DEb3 = German base group (born between 1970 and 1980), DEb4 = German base group (born after

1980), HOLb1 = Red Holstein base group (born before 1960), HOLb2 = Red Holstein base group (born after 1960), ATb = Austrian base group, CZb = Czech base

group, CHb = Swiss base group, FRb = French base group, DIVb = base groups with animals with other countries of origin

Table 8 Results of the analysis of the Q-matrix for the BS/OB population

BS/OB EUb DEb ATb CHb ITb USb1 USb2 OBb1 OBb2

Year ≤1960 >1960 >1960 >1960 >1960 ≤1955 >1955 ≤1960 >1960

Calib (3262) m 0.02 0.02 0.01 0.01 0.01 0.24 0.62 0.03 0.03

sd 0.04 0.05 0.03 0.03 0.03 0.07 0.12 0.07 0.06

DEA (416) m 0.02 0.03 0.01 0.00 0.00 0.23 0.62 0.03 0.06

sd 0.01 0.05 0.07 0.04 0.01 0.04 0.04 0.02 0.04

OB (8) m 0.25 0.00 0.01 0.05 0.00 0.00 0.00 0.54 0.16

sd 0.25 0.00 0.02 0.09 0.00 0.00 0.00 0.19 0.15

Others (346) m 0.01 0.01 0.00 0.01 0.00 0.27 0.67 0.01 0.01

sd 0.01 0.01 0.01 0.01 0.01 0.03 0.05 0.01 0.02

BS = Brown Swiss and OB = Original Braunvieh; averages (m) and standard deviations (sd) of base group contributions are shown. EUb = European base group,

DEb = German base group (born after 1960); ATb = Austrian base group (born after 1960), CHb = Swiss base group (born after 1960), ITb = Italian base group

(born after 1960), USb1 = American base group (born before 1955), USb2 = American base group (born after 1955), OBb1 = Original Braunvieh (born before 1960),

OBb2 = Original Braunvieh (born after 1960), Calib = training set; Validation sets: DEA = German and Austrian validation animals, others = validation animals with

other countries of origin, OB = Original Braunvieh validation animals
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Brown Swiss and Original Braunvieh

In the BS population, the two American base groups

(USb1 and USb2) represented between 80 % and 90 % of

the overall genetic makeup of the genotyped population

(Table 8). No differences in US contributions were de-

tected between the training set (Calib) and the valid-

ation animals that were assigned to the DEA validation

set and only a slight increase in US contributions was

found in the others validation set. The small number of

validation animals that was unequivocally assigned to

the OB group showed a marked difference in this

respect, with absolutely no contributions from the US

base groups. Standard deviations of contributions for

training animals (Calib) were also highest for the two

US groups. Comparing standard deviations of all contri-

butions between Calib and validation groups showed

that the validation animals tended to have less variation,

again except for the OB group.

Fleckvieh

In the FV breed, the second German base group (DEb2)

had the largest contribution to all validation groups

(Table 9). Average contributions of more than 0.60 of

the second German base group to the Calib training set

and DEA validation set were observed and a consider-

able average contribution of 0.36 to the others validation

set. The contribution of the Czech group (CZb) to the

others validation set was relatively high (0.25).

As previously, across all base groups, we found similar

average contributions to Calib and DEA and decreasing

standard deviations in base group contributions when

comparing Calib to DEA, which indicates an ongoing

equalization of contributions.

Discussion

In conventional methods for estimating breeding values,

phantom parent groups are used in most practical

applications. The reason for this is that the theoret-

ical base population is rarely correctly represented in

the available pedigree. The same is of course true

for genomic evaluation models. Stratification of the

population can be easily determined by Fst plots.

Concept and implementation

The decomposition of the standard G-matrix that we

propose here is primarily an analytical tool. It allows

studying the following aspects in some detail: (i) whether

and how differences in allele frequencies between base

groups contribute to the proportion of genetic variance

explained by differences between base groups; and (ii)

how the effects estimated for the base groups influence

the current population and their genomic predictions.

Conceptually, it follows the classical approach for mod-

eling base groups in genetic evaluations and extends it

to the GBLUP case. More fundamentally, it theoretically

shows that parts of the genetic variation represented by

the G-matrix can be assigned to systematic differences

in allele frequencies between base populations. This im-

plies that standard GBLUP is equivalent to a model that

fits random genetic groups, where differences in group

means are modeled as part of the natural additive-

genetic variance (assumed to be known in the present

investigation). Recently, Makgahlela et al. [13] showed

that, in the case of the largely admixed Nordic Red

population, a model that fits a fixed genetic group has

some advantage in terms of the reliability of DGV over

the standard GBLUP model. Modeling groups as fixed

might be advantageous if true differences between

groups are larger than what can be attributed to differ-

ences in allele frequencies of genetic markers. This

can arise from inconsistent linkage disequilibrium

phases between quantitative trait loci (QTL) and

markers between subpopulations or breeds, or from

Table 9 Results of the analysis of the Q-matrix for the FV population

FV DEb1 DEb2 DEb3 DEb4 HOLb1 HOLb2 ATb CZb CHb FRb Divb

Year <1960 ≥1960 < 1970 ≥1970 < 1980 ≥1980 <1960 ≥1960 All All All All All

Calib (5273) m 0.13 0.61 0.04 0.01 0.04 0.03 0.09 0.01 0.04 0.01 0.00

sd 0.07 0.17 0.04 0.04 0.04 0.05 0.12 0.08 0.04 0.05 0.01

DEA (2581) m 0.13 0.64 0.05 0.01 0.04 0.02 0.07 0.00 0.04 0.01 0.00

sd 0.03 0.08 0.02 0.03 0.03 0.02 0.06 0.00 0.02 0.01 0.00

Others (97) m 0.07 0.36 0.02 0.00 0.09 0.08 0.05 0.25 0.04 0.03 0.02

sd 0.03 0.14 0.02 0.01 0.05 0.07 0.04 0.13 0.03 0.06 0.02

FV = Fleckvieh; averages (m) and standard deviations (sd) of base group contributions are shown

DEb1 = German base group (born before 1960), DEb2 = German base group (born between 1960 and 1970), DEb3 = German base group (born between 1970 and

1980), DEb4 = German base group (born after 1980), HOLb1 = Red Holstein base group (born before 1960), HOLb2 = Red Holstein base group (born after 1960),

ATb = Austrian base group, CZb = Czech base group, CHb = Swiss base group, FRb = French base group, DIVb = base groups with animals with other countries of

origin, Calib = training set, Validation sets: DEA = German and Austrian validation animals, others = validation animals with other countries of origin
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different QTL segregating within groups. Both aspects

have been used in the past to explain why across-

breed genomic predictions based on 50 k genotypes

have low accuracy [36–38].

As in the classical approach for modeling base groups,

we assigned base animals to groups and calculated a

matrix of genetic contributions Q using standard method-

ology. This matrix Q was then used to estimate average

allele frequencies using mixed-model methodology, as de-

scribed by Gengler et al. [21]. As mentioned in the

Methods section, estimation of average allele frequencies

in base groups is not essential for the proposed decom-

position of G. However, it provides a convenient way to

integrate new animals under practical conditions. Concep-

tually, it divides the genetic distance between any pair of

animals into two parts, i.e. a distance that already exists in

the base population and a distance that originates from

the history of the breed as documented by the known

pedigree. Moreover, estimating allele frequencies in base

groups from subsets of genotypes may lead to similar

problems as in standard applications of models that fit

genetic groups, i.e., if the amount of data to estimate allele

frequencies in base groups reliably is not sufficient, it can

result in a loss of accuracy and introduction of bias [39].

Then, this tradeoff between defining all possible relevant

base groups and estimability needs to be taken into ac-

count. A closer examination of the required size and prop-

erties for an optimal design of base groups is beyond the

scope of this paper.

Group effects were not accounted for when dereg-

ressing MACE breeding values for BS/OB animals be-

cause (i) group effects or group contributions are

usually not reported to Interbull by the participating

countries; (ii) Interbull introduces its own group cate-

gorizations based on birth year of bull dams for

MACE evaluation; and (iii) Interbull does not report

group effects or group contributions back to the par-

ticipating countries. Because of these limitations, we

cannot exclude that our results for BS/OB animals

may be influenced in one way or the other by the

properties of MACE breeding values.

Since we tested different models only in a single

forward prediction, the generalization of our results is

not straightforward. However, from a practical point

of view, the steps that we followed allowed us to bet-

ter characterize the genetic composition of the valid-

ation groups. This in turn might help to decide if a

standard GBLUP model is sufficient or whether a dif-

ferent model should be preferred. However, modeling

genetic groups in any of the proposed ways is neither

intended nor expected to improve the prediction for

a standard animal with a pedigree that has many

generations and that is sufficiently complete. Predic-

tions for an animal with an incomplete pedigree or a

limited number of genotyped ancestors should, how-

ever, benefit from the inclusion of group effects in

one form or the other.

Models

We compared three models, which treated effects of

base groups as random (M0), as fixed (M2), or ignored

them completely (M1). Model M1 consistently showed

the lowest R2 values across both breeds and all traits.

This was expected, since ignoring part of the genomic

information should not result in increased predictive

ability. However, it is interesting to note that the segre-

gation term itself results in a relatively good prediction.

Using M1, we observed differences in the decrease of

the model R2 between traits, with the UD trait being the

least influenced by GA
* . We cannot exclude that there

might be cases where omission of base groups will in-

crease the R2 of predictions. However, the slopes of the

regression of current DYD or deregressed proofs on

DGV that we used as a test statistic here gave no indica-

tion that omitting GA
* without adjusting the genetic vari-

ance could lead to less inflated estimates. Recently,

Makgahlela et al. [14] compared predictions using a

genomic relationship matrix based on average allele

frequencies across breeds with predictions using breed-

specific allele frequencies in the Nordic Red dairy cattle

population. This comparison is conceptually quite close

to what we did in the comparison between the reduced

model (M1) and the fixed model (M2). The authors

found a smaller predictive power and greater inflation of

DGV when considering breed-specific allele frequencies.

Since using breed-specific allele frequencies without

modeling differences in allele frequencies in the base

population is equivalent to our reduced model (M1), in

this respect, their results are consistent with those pre-

sented here.

In terms of predictive power, M2 was better than M0

for all milk traits and one conformation trait for the BS/

OB data (Table 5). With the FV data, we saw a clear ad-

vantage of M0 for all traits. In a preliminary study [40],

we had reported that the OB and current BS populations

were separated by a fairly large genetic distance. The val-

idation BS/OB group that we used here included only

very few OB animals. The observed genetic distance and

the fact that this group of animals is small compared to

the overall validation group might explain the small

superiority of M2 observed for the BS/OB data. Genetic

distances of similar magnitude were not detected in the

FV population, for which M0 was clearly the best model.

However, the German-Austrian cooperation for genetic

evaluations in FV [22] recently fully opened the routine

evaluations for the Czech population, which shows some

differences in genetic composition compared to the

current German-Austrian breeding population (Table 9).
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Additional investigations will be necessary to verify if

M0 is still superior with an extended base population that

will very likely be the result of this extended cooperation.

Genetic contributions and base group effects

Analysis of the matrix of genetic contributions Q revealed

some interesting features. For example, on the one hand,

the analysis of average contributions of genetic groups to

current animals revealed that US animals had a strong im-

pact on the current BS population in Europe. On the

other hand, a substantial contribution of the “old” Euro-

pean base group (EUb) to the OB validation group was

found. Averages and standard deviations of contributions

are also an indirect indicator for how accurate base allele

frequencies and base group effects could be estimated

from the current data. However, since information in Q

naturally implies some degree of collinearity, this factor

has to be taken into account also. Finally, differences in

trait means between base groups can only be detected if

there is enough variation in base group contributions

within the training set (Calib). Such variation was ob-

served for both breeds and was considerably smaller for

the dominant groups of the validation set. This was ex-

pected since, in the last 20 years, much less migration has

occurred in both populations, which probably resulted in

less admixture in the more recent groups. Although this

was not the primary focus of this investigation, it was in-

teresting to note the extremely strong genetic contribution

of American Brown Swiss animals to the current BS popu-

lation. The validation group OB was clearly an exception

in the sense that a small or even non-existing contribution

of American Brown Swiss cattle defines what an OB ani-

mal is. In contrast, the strong contribution of the DEb2
group to the FV population seems to be an artifact of the

completeness of the pedigree used, i.e. most of the pedi-

grees traced back to this base group.

For both breeds and for the traits analyzed here, it was

possible to estimate significant differences between the

means of base groups in most cases (Tables 6 and 7).

Treating base groups as fixed or random resulted in

similar patterns, although they were more pronounced

in the case of fixed effects. The observed effects were

quite consistent with our expectations and seem to be

reasonable when considering the limits that were im-

posed on estimability and precision by the collinearity

and dependencies in Q (Q has no full column rank). For

example, the two Holstein base groups in the FV dataset

had a clear advantage for protein yield, which is not sur-

prising since Holstein bulls were introgressed for exactly

that reason. In some cases, such as the advantage found

for the DEb group in BS, knowing that the base group

definition for DEb also comprised relatively young base

animals was helpful, whereas assignment to American

Brown Swiss was more linked to a specific period further

back in the history of the breed.

Both the distribution of genetic contributions and pre-

cision of base group effects emphasize that when consid-

ering genetic grouping in genetic evaluation models, the

question of estimability and relevance for the current

population should always be included [39]. However, as

already noted above, it is not reasonable to believe that

the model used has a strong impact on predictive power

if the animals used for validation show no differences in

their genetic composition with respect to the base

groups and if the majority of them have complete pedi-

grees of sufficient depth.

Additional considerations

This investigation demonstrates that, in many cases, the

genomic relationship matrix includes an important com-

ponent of variation that has no corresponding counterpart

in the conventional numerator relationship matrix. How-

ever, many practical applications of the estimation of GBV

include a step for scaling the genomic relationship matrix

to the numerator relationship matrix to set them on the

same genetic base (see for example [41]). Based on our re-

sults, it seems more suitable to do this scaling based on

matrix GS only. This component of the G-matrix should

be free of the effects of systematic differences in allele fre-

quencies between base groups (represented in GA
* ), which

might otherwise exacerbate the derivation of correct scal-

ing factors. This issue was also raised by Makgahlela et al.

[14] and might be of special importance for applications

of one-step genomic evaluations [16, 17, 42, 43]. Further-

more, it suggests that estimating genetic parameters for

genomic evaluations using GT might be preferred over a

simple transfer of the parameters estimated with the nu-

merator relationship matrix.

Possible extensions of M0, for example with an individ-

ual λ for group effects or – in the most general form –

using an identity matrix instead of GA, e.g. [39], as well as

an individual λ for group effects were beyond the scope of

this paper. In addition, these extensions would require the

estimation of a variance component for groups, which

would be difficult to do due to the typically small number

of degrees of freedom for the variance between group

means. Using GA but assuming an individual λ for group

effects is also somewhat questionable from a conceptual

point of view, since it would be necessary to describe the

covariance between and within subpopulations based on

the same distance between allele frequencies but with dif-

ferent genetic variances.

Conclusions

We showed that the proposed decomposition of the G-

matrix is helpful to examine the relative importance of base

group and segregation effects in a dataset. The commonly
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used genomic relationship matrix G is equivalent to our

model M0, where base groups and segregation terms are

considered as random effects with the same genetic vari-

ance. Although it is interesting to examine contributions of

different founder populations from a scientific point of

view, we also conclude that the standard model M0 is pre-

ferred in many cases, e.g. if base group effects are small or

difficult to estimate, or if the current population is

homogenous with balanced base group contributions.

However, a fixed model (M2) might be preferred if base

group effects are large (i.e. in the range of differences

between breeds rather than between subpopulations) or if

the genomic evaluation comprises two or more separated

populations with only weak genetic links.

Appendix 1

Proof that model 2 (fixed group effects model using GS

as covariance of individual genetic values) and a corre-

sponding model using GT as covariance of individual

genetic values will lead to identical solutions for fixed

and random effects.

As shown in Appendix 2, the standard model and

model 0 are equivalent. Following that, BLUP solutions

of a model using GT as covariance of breeding values

can be equivalently written as:

û ¼ GSV
‐1
yy~y þQGAQ

0V‐1
yy~y ;

where Q is a matrix of genetic contributions of random

groups to animals with observations as described in

Methods and ỹ is the vector of observations corrected for

the GLS-estimates of fixed effects. If the same matrix Q is

used to model the fixed group effects, as it is generally

done, this might be written as:

û ¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yy y‐Qb̂
� �

:

By omitting the global mean since it cannot be estimated

simultaneously and by replacing b̂ by its GLS-estimate, this

can be further manipulated to give:

û ¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yy y‐Qb̂
� �

¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yyy‐QGAQ
0V‐1

yyQb̂

¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yyy‐QGAQ
0V‐1

yyQ Q0V‐1
yyQ

� �

−1QV‐1
yyy

¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yyy‐QGAQ
0V‐1

yyy

¼ GSV
‐1
yy y‐Qb̂
� �

;

and identical solutions for the random effect u are

the consequence. It follows that the product of the

design matrix Q and the contrast for the random

group effect (represented by the second term above)

is also zero, which is a necessary prerequisite for the

resulting estimates, for the fixed genetic groups to be

equal in both models also [44]. As a general consequence

of the cited publication [44], any extension of V in the

GLS-estimate of b of the form:

V� ¼ V þ XUX0
;

for an arbitrary matrix U, where X is the same design

matrix used to estimate the fixed effect itself, results in

GLS-estimates for the fixed effects that are identical to

those using V alone [44].

Appendix 2

Proof that the standard model is equivalent to the ran-

dom group model M0.

Let the standard model be:

y ¼ Xbþ Zuþ e;

where y is a vector of observations, b is a vector of

fixed effects, u is a vector of random breeding values,

e is a vector of residuals and X and Z are known de-

sign matrices. For simplification of the presentation Z

is assumed to be an identity matrix and is omitted.

Furthermore, y ~ N(Xb, Vyy), u ~ N(0,Vuu) and e ~

N(0,Ve) where:

Ve ¼ I� σ
2
e ¼ R;

Vuu ¼ ~GT � σ
2
u ¼ GT;

and

Vyy ¼ GT þ R:

Assume a decomposition of the coefficient matrix
~GT ¼ ~GS þ ~GA

� �

� σ
2
u ¼ GS þ G�

A where GA
* can be

expressed as the product of a matrix of fixed regres-

sion coefficients Q and a matrix GA, that describes

the covariance of random slopes, so GA
* =QGAQ '.

The BLUP estimates for random breeding values are:

û ¼ GTV
‐1
yy y‐Xb̂
� �

¼ GTV
‐1
yy~y ;

with b̂ being the generalized least squares estimates of

b. It follows that:

Vyy ¼ GT þ R

¼ GS þ G�
A þ R

¼ GS þQGAQ
0 þ R;

and

û ¼ GTV
‐1
yy~y

¼ GS þ G�
A

� �

V‐1
yy~y
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¼ GS þQGAQ
0ð ÞV‐1

yy~y

¼ GSV
‐1
yy~y þQGAQ

0V‐1
yy~y :

Let the random group model be:

y ¼ Xbþ Zuþ Qgþ e;

where y is a vector of observations, b is a vector of fixed

effects, u is a vector of random genetic values, g is a

vector of random group effects, e is a vector of re-

siduals and X and Z are known design matrices. For

simplification of the expressions, Z is assumed to be

an identity matrix and is omitted. Q is a matrix of

genetic contributions of random groups to animals

with observations as described in Methods. Further-

more, y ~ N(Xb, Vyy), u ~ N(0,Vuu), g ~ N(0,Vgg) and

e ~ N(0,Ve) where:

Ve ¼ I� σ
2
e ¼ R;

Vuu ¼ ~GS � σ
2

u ¼ GS;

Vgg ¼ ~GA � σ
2

u ¼ GA;

Vyy ¼ GS þQGAQ
0 þ R;

¼ GS þ G�
A þ R:

This is identical to the phenotypic variance assumed

by the standard model if the same Q is used.

The BLUP solutions for random animal and group ef-

fects are:

û ¼ GSV
‐1
yy y‐Xb̂
� �

¼ GSV
‐1
yy~y ;

and

ĝ ¼ GAQ
0V‐1

yy y‐Xb̂
� �

¼ GAQ
0V‐1

yy ~y :

Let the full estimate for the breeding value (the rank-

ing criterion) be:

this is identical to the breeding value solution of û of the

standard model if Q is identical in both models.
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Abstract 

Background: Extending the reference set for genomic predictions in dairy cattle by adding large numbers of cows 

with genotypes and phenotypes has been proposed as a means to increase reliability of selection decisions for 

candidates.

Methods: In this study, we explored the potential of increasing the reliability of breeding values of young selec-

tion candidates by genotyping a fixed number of first-crop daughters of each sire from one or two generations in a 

balanced and regular system of genotyping. Using stochastic simulation, we developed a basic population scenario 

that mimics the situation in dual-purpose Fleckvieh cattle with respect to important key parameters. Starting with 

a reference set consisting of only genotyped bulls, we extended this reference set by including increasing numbers 

of daughter genotypes and phenotypes. We studied the effects on model-derived reliabilities, validation reliabilities 

and unbiasedness of predicted values for selection candidates. We also illustrate and discuss the effects of a selected 

sample and an unbalanced sampling of daughters. Furthermore, we quantified the role of selection with respect to 

the influence on validation reliabilities and contrasted these to model-derived reliabilities.

Results: In the most extended design, with 200 daughters per sire genotyped from two generations, single nucleo-

tide polymorphism (SNP) effects were estimated from a reference set of 420,000 cows and 4200 bulls. For this design, 

the validation reliabilities for candidates reached 80 % or more, thereby exceeding the reliabilities that were achieved 

in traditional progeny-testing designs for a trait with moderate to high heritability. We demonstrate that even a mod-

erate number of 25 genotyped daughters per sire will lead to considerable improvement in the reliability of predicted 

breeding values for selection candidates. Our results illustrate that the strategy applied to sample females for geno-

typing has a large impact on the benefits that can be achieved.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection and genomic breeding value estima-

tion were implemented in several cattle breeding pro-

grams in the last few years. Since the introduction of 

this methodology, there has been a constant attempt 

to further improve it and to increase the reliabilities 

of genomic breeding values. One key factor is the size 

of the reference set [1, 2]. Nowadays, there are several 

international organizations that promote the exchange 

of genotypes on a regular basis to enlarge reference sets 

and to improve the quality of genomic predictions of the 

participating countries. In dual-purpose Fleckvieh (FV) 

cattle, genomic selection was implemented in 2011 and 

genetic evaluation centers in Germany and Austria coop-

erate in a joint genetic and genomic evaluation that uses 

a common genotype pool [3]. Currently, the reference set 

for FV includes approximately 9000 bulls with pheno-

typic measures on most traits.

Several studies have reported that sharing genotypes 

within breeds results in large benefits for the reliability of 
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genomic predictions e.g. [4–6]. However, most opportu-

nities to increase the genotype pool by exchanging geno-

types have been exploited and, in most cases, the growth 

of reference sets within breeds is restricted to the yearly 

increase in number of genomically preselected young 

bulls receiving daughter proofs. As a consequence, fewer 

bulls are progeny-tested than in pre-genomic selection 

programs [7, 8] and the proportion of old bulls increases 

over time. Since the reliability of genomic predictions also 

depends on the degree of relationship between reference 

and predicted animals [9], this ‘aging’ of the reference set 

may lead to decreased reliabilities. As a demonstration of 

that effect, Cooper et al. [10], for example, excluded sub-

sets of old bulls and found that older bulls in the refer-

ence set had only a minimal impact on the reliability of 

the genomic breeding values of predicted animals. In 

addition, preselection of young reference bulls may influ-

ence the quality of genomic predictions. Schaeffer [11] 

predicted a situation where considerable bias was intro-

duced on genomic evaluations by strong preselection 

[12–14] of young bulls based on their genomic breeding 

values.

Another possibility to increase the size of the reference 

set is to use information from genotyped and pheno-

typed females, which can have a beneficial influence on 

the quality of genomic predictions. Thomasen et al. [15] 

found that, by adding female genotypes in the reference 

set, more genetic gain with a lower rate of inbreeding 

can be achieved compared to a breeding scheme where 

the reference set grows only from the addition of newly 

progeny-tested bulls. Pryce et al. [8] showed that by add-

ing 10,000 cows to a reference set of 3000 Holstein bulls, 

the reliability of genomic predictions of 437 young bulls 

in the validation set was improved by 4 to 8 %. Calus et al. 

[16] also combined cows and bulls in a single reference 

set and found that the highest validation accuracies were 

achieved with the combined dataset compared to scenar-

ios with a reference set that included only cows or only 

bulls. Furthermore, since usually cows are not strongly 

preselected, inclusion of their genotypes and phenotypes 

may also contribute to reduce the biasing effects of prese-

lection as pointed out by Schaeffer [11]. Last but not 

least, genotyping cows might be especially important for 

creating reference sets for so-called new traits or expen-

sive-to-measure traits [7, 17, 18] and, most likely, will be 

the basis of new and useful management tools for farm-

ers [8].

If female genotypes are to be included in a genomic 

system, one of the key questions is which cows should be 

genotyped. Pryce et al. [8], Wiggans et al. [19] and Das-

sonneville et al. [20] discussed preferential treatment as a 

potential problem related to the inclusion of bulls’ dams 

into the reference set. Dassonneville et al. [20] found that 

the inclusion of records on elite cows resulted in overesti-

mation of genomic enhanced breeding values for all ani-

mals. Thus, even if genotypes are available for elite cows 

as a consequence of using genomic predictions for the 

selection of bulls’ dams, in the end, they should not be 

part of the reference set.

In a preliminary study [21], we performed a determinis-

tic simulation based on nuclear pedigrees extracted from 

the German-Austrian FV population and showed that 

there is a benefit from including genotyped cows into the 

reference set. We quantified the effects of this inclusion 

on the reliability of genomic breeding values of young 

selection candidates and found marginal to considerable 

gains in reliability (between 1 and 40  %) depending on 

the scenario. However, we were not able to quantify the 

effects of selection on the results and we could not quan-

tify the cumulative effects at the population level. There-

fore, in this study, we examined the following three main 

effects by means of a stochastic simulation: (1) effects of 

selection on validation reliability, (2) effects of genotyp-

ing randomly selected cows on the accuracy of predic-

tion, and (3) effects of some alternative strategies for 

sampling the genotyped daughters.

Methods
Simulation

We used the open access software QMSim [22] to run a 

simulation with five repetitions. Our aim was to simulate 

a population that resembled the German-Austrian dual-

purpose Fleckvieh cattle population for several key char-

acteristics (e.g. linkage disequilibrium (LD) structure, 

allele frequencies and effective population size).

Simulation of the population

QMSim first simulated a so-called historical popula-

tion, which consisted of 2000 unrelated animals with a 

balanced sex ratio. These animals were randomly mated 

for 2500 generations. To create a sufficiently strong LD 

structure as observed in FV, a bottleneck was introduced 

after 2500 generations by reducing the number of breed-

ing animals to 150 for one generation, which corresponds 

approximately to the effective population size in FV i.e. 

160 based on the observed LD structure [23]. This esti-

mate is quite close to that based on pedigree data [24]. 

After this bottleneck, population size was increased 

within one generation again to 31,500 animals (30,000 

dams and 1500 sires), which represented the founder 

animals (generation 0) of the so-called ‘recent’ or pedi-

greed population. The recent population was propa-

gated for another 10 generations. In each generation of 

the recent population, 15,000 female and 15,000 male 

offspring were generated by mating 30,000 dams and 

1500 breeding sires. Generations overlapped and in each 
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generation 30 % of the dams and 70 % of the sires were 

replaced. These two replacement parameters were quite 

similar to the situation observed in the real FV popula-

tion. Breeding animals were selected based on their esti-

mated breeding value (EBV) which was calculated within 

QMSim with a reliability of 0.6. This was done to mimic 

a genomic selection program where dams are selected 

based on a combination of pedigree information and 

own performance and sires are selected on their genomic 

breeding value.

Males of generation 5 to 10 were genotyped (Table 1). 

Sires belonging to generations 5  to  8 (n  =  4200) were 

assigned to the reference set. The remaining animals 

of generations 9 and 10 were used as validation set for 

forward prediction. Note that whereas sires in genera-

tion 9 (n = 1050) were young bulls that were selected by 

QMSim based on a genomic breeding value but without 

daughter performances, the animals of generation 10 

(n = 15,000) were unselected candidates. The validation 

animals were further characterized by the status of their 

sire i.e. a reference animal or not. Figure 1 gives an over-

view of the structure of the simulation. 

Simulation of the genome

We simulated 30 chromosomes, each 100  cM long. On 

each chromosome, 1660 single nucleotide polymor-

phisms (SNPs) and 30 quantitative trait loci (QTL) were 

evenly distributed (49,800 SNPs and 900 QTL in total). 

After routine checks [3, 25], nearly 38,000 valid SNPs 

and approximately 700 QTL that were still segregat-

ing in the reference set (both numbers slightly varying 

between replicates of the simulation) were available. 

The routine checks were as follows: (1) SNPs that devi-

ated from Hardy–Weinberg equilibrium (HWE) with a 

p-value less than 10−5 and (2) SNPs with a minor allele 

frequency (MAF) lower than 0.02 were excluded from 

the dataset. We assumed a sex-linked trait and a single 

observation for each female with a heritability set to 0.4. 

The polygenic nature of the trait was ensured by the rela-

tively large number of QTL and their effects were drawn 

from a uniform distribution (option ‘uniform’ from 

QMSim) to prevent the occurrence of a few isolated large 

QTL effects. With a uniform distribution, the mean of 

the effects is related to the variance and, thus, the range 

of the QTL effects is limited. We performed a couple of 

tests with QMSim and the results confirmed our assump-

tions (data not shown).

Simulation of the daughter sets

In the main part of the simulation, we generated 200 

daughters for each of the reference bulls of generations 

7 and 8 (which represented a total of 420,000 additional 

female genotypes and phenotypes). Due to memory 

requirements and some limitations of the QMSim soft-

ware, we did not simulate the daughter genotypes with 

QMSim directly. Instead, based on the known haplo-

types (SNPs and QTL) of the reference bulls of these 

two generations, we simulated different male gametes by 

recombination and randomly mated them with gametes 

of potential dams of the same cohort (excluding sisters, 

daughters and dams) that was simulated by applying 

the same strategy. Assuming a Poisson distribution for 

cross-overs, recombination was simulated by generat-

ing on average one random cross-over per Morgan for 

each chromosome. Using the observed QTL status of 

each daughter and the known (true) QTL effects from 

the QMSim simulation, we calculated the true breeding 

value (TBV) for each daughter.

Phenotypes

We generated yield deviations (YD, [26]) for daughters 

using the TBV and a random residual. Depending on 

the design investigated, these daughter phenotypes were 

used to calculate daughter yield deviations (DYD, [26]) 

Table 1 Assignment of animals to the reference or validation set in the different scenarios

Validation animals were further divided according to the status of the corresponding sire (member of the reference set or not), resulting in three validation groups. 

Sires of validation animals in generations 9 and 10a were part of the reference set and sires of validation animals in generation 10b were not part of the reference set. 

First, daughters of the sires of generation 8 were added to the reference set (step 1) and then daughters of the sires of generation 7 were also added (step 2)

Generation Number of individuals Explanation

Base scenario Extended scenarios step 1 Extended scenarios step 2

5 1050 1050 1050 Reference set

6 1050 1050 1050

7 1050 1050 1050 + daughters

8 1050 1050 + daughters 1050 + daughters

9 1050 1050 1050 Validation set

10a 4516 4516 4516

10b 10,484 10,484 10,484
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of the corresponding bull or were directly included in 

the reference set. In this way, YD of the reference daugh-

ters were automatically omitted from the daughter yield 

deviation (DYD) of the sire and double-counting in the 

extended scenarios was avoided. To account for different 

variances of the YD and DYD, phenotypes were weighted 

with the equivalent number of own performances (EOP, 

[27]) calculated as 

where � =

σ
2
e

σ
2
a

 with σ2a being the additive genetic variance 

and σ2e the residual variance and R2
phen the reliability of 

the DYD or YD.

EOP = �
R2
phen

1−R
2
phen

,

Designs

In a more general analysis, we investigated the effects 

of selection on validation reliability and model-

derived reliability parameters. To be able to identify 

these selection effects, we repeated the basic scenario 

using the same parameters for QMSim except that 

we replaced directional selection on EBV by random 

selection.

In the main part of the simulation, we included large 

numbers of genotyped cows into the reference set. The 

general sampling strategy was to genotype a random 

sample of fixed size of phenotyped daughters of each arti-

ficial insemination (AI) bull in defined cohorts. We inves-

tigated 10 different scenarios: one base scenario and nine 

extended scenarios. In the base scenario, the reference 

Fig. 1 Structure of the simulation
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set consisted only of sires of generations 5  to 8. For the 

extended scenarios, an increasing number of the gener-

ated female genotypes and phenotypes were integrated 

into the reference set. Tables 1 and 2 give an overview of 

the different scenarios.

To assess how robust the benefits are with respect to 

our general sampling strategy, we changed the compo-

sition of the sample of scenario –/50 (Table 2). Instead 

of including a random sample of daughters as was done 

in scenario –/50, we selected the best 50 daughters of 

each sire for scenario –/50s (selection was done on 

YD). In the scenario –/25r25s, we selected 25 daugh-

ters at random and combined them with the 25 best 

remaining daughters of the corresponding sire. Finally, 

we also ran one unbalanced scenario (–/50ub) with dif-

ferent numbers of daughters per sire to test the effect 

of moderate unbalancedness but the overall number 

of genotyped females was kept the same as in scenario 

–/50. This was done by randomly selecting five daugh-

ters for 330 sires, 50 daughters for 621 sires and all 200 

daughters for 99 sires. The different numbers of the 

daughter sets per sire were chosen arbitrarily but we 

ensured that the total number of genotyped females 

was maintained and that each sire was represented by 

at least some daughters. Moreover, random assign-

ment of the different numbers of daughters to the sires 

was also conducted.

Genomic prediction

Due to the large number of genotypes, we used a SNP-

best linear unbiased prediction (BLUP) model [28] to cal-

culate direct genomic values (DGV) and reliabilities. The 

model equation is as follows:

and the corresponding mixed model equations are:

where 

and y is the vector of observations (here DYD or YD), b 

the vector of fixed effects (in our simulation only an over-

all mean), g is the vector of random marker effects, and e 

the vector of residual effects. Matrix X is a design matrix 

which links the observations to the respective fixed 

effects and M is the centered coefficient matrix of marker 

genotypes and pj and qj are base allele frequencies of 

marker j estimated for generation 0 [29]. Centering was 

done by subtracting two times the base allele frequency 

estimate from the corresponding column of M. Matrix R 

is a diagonal matrix with σ2e/wi on the diagonal, where wi 

is the EOP of the i-th observation and matrix I is an iden-

tity matrix of order m (number of markers).

DGV are calculated as:

and the corresponding predicted error variances (pev) 

are calculated as:

where M∗ is matrix M extended with a column of ones, and 

C
−1
s  is the inverse of the left hand side of the SNP-BLUP-

MME (mixed model equation). The inclusion of the over-

all mean in the calculation of the pev can be questioned 

and may lead to slightly higher theoretical reliabilities. We 

empirically compared results including and omitting the 

overall mean and found differences that were smaller than 

the rounding precision of the results. Moreover, because 

the overall mean is included in each scenario, its impact on 

the contrasts between scenarios can be ignored.

The reliability of the DGV of the i-th animal can then 

be calculated as:

where diag(pev(DGV))i is the i-th diagonal element of 

the pev(DGV) and diag(G)i the i-th diagonal element of 

y = Xb + Mg + e,

(

X′R−1X X′R−1M

M′R−1X M′R−1M + I/σ 2
g

)(

b̂
ĝ

)

=

(

X′R−1y

M′R−1y

)

σ
2
g =

σ
2
a∑m

j=1(2pjqj)
,

DGV = b̂ + Mĝ,

pev(DGV) = M
∗
C

−1
s M

∗′,

R2
i = 1 −

diag(pev(DGV))i

diag(G)iσ
2
a

,

Table 2 Scenarios with  corresponding number of  animals 

and composition of the reference set

The names of the extended scenarios are derived from the number of daughters 

per sire which are included in the reference set and the sire’s generation. The 

number before the slash in the scenario’s name is the number of daughters per 

progeny-tested bull of generation 7 (i.e. step 2 of the extended scenarios) and 

the number after the slash is the number of daughters per progeny-tested bull 

of generation 8 (i.e. step 1 of the extended scenarios). The –/50s is a scenario in 

which the best daughters were selected to be genotyped, –/25r25s is a scenario 

in which 25 random daughters per sire and the 25 best daughters per sire 

were selected and genotyped and –/50ub is a scenario in which an unbalanced 

number of daughters for all sires was selected

Scenario Reference set

Number of sires Number of daughters

Base 4200 0

–/25 4200 26,250

–/50 4200 52,500

–/100 4200 105,000

–/200 4200 210,000

50/50 4200 105,000

100/100 4200 210,000

200/200 4200 420,000

–/50s 4200 52,500

–/25r25s 4200 52,500

–/50ub 4200 52,500
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the genomic relationship matrix (G) which is 1 plus the 

genomic inbreeding coefficient. Matrix G is defined as 

follows:

In addition, we calculated a weighted regression of TBV 

on DGV for validation animals. We used the model fit of 

this regression as a measure of validation reliability (ρ2) 

and the slope (b) as a measure of the bias that describes 

the inflation of estimates [30].

To quantify the effect of incomplete LD between SNPs 

and QTL on the difference between model-derived theo-

retical reliabilities and validation reliabilities, we included 

an analysis where we extended the marker genotype 

coefficient matrix M by QTL genotypes. We present the 

results in the context of the comparison between designs 

with directional and with random selection (ρ2QTL).

Results
Comparison of the simulated dataset with the Fleckvieh 

population

Comparison of the extent of LD between the simulated 

dataset and the real Fleckvieh dataset [31], revealed a 

good agreement with slightly higher values of the link-

age parameter r2 [32] for the simulated data at shorter 

distances. The average distance between a QTL and the 

nearest SNP in the simulated data was 60 kb. Allele fre-

quencies for the simulated dataset were more evenly dis-

tributed than those for the real FV data, for which a slight 

shift to lower allele frequencies was observed. These 

results are illustrated in Figure S1 [see Additional file 1: 

Figure S1] and Figure S2 [see Additional file 2: Figure S2].

Simulation

For ease of interpretation, we separated the presentation 

of results for generation 9 from those for generation 10, 

in order to highlight the fact that generation 9 represents 

a group of individuals that are already pre-selected on an 

G =

MM
′

∑m
j=1(2pjqj)

.

EBV including Mendelian sampling information in the 

course of the simulation process. This selection does have 

an effect on validation statistics [30]. In contrast, genera-

tion 10 is strictly unselected. Results for generation 10 

were further divided according to the status of the sire 

(member of the reference group or not). A more detailed 

categorization of the results for these two generations is 

provided in Tables S1 and S2 [see Additional file 3: Tables 

S1 and S2]. There was a general tendency for scenarios 

with the same number of genotyped females (scenario 

–/100 compared to scenario 50/50 and scenario –/200 

compared to scenario 100/100) showing nearly identical 

results. For the sake of clarity, we do not present results 

for the redundant scenarios. All the results shown are 

averages over five repetitions of the simulation. Stand-

ard errors of the results presented in the main body of 

the paper were less than 1.3 % for validation reliabilities 

(except for one scenario i.e. –/25r25s where standard 

errors were between 3.2 and 4.1 %) and less than 0.02 for 

regression slopes.

General effects of selection

Table  3 shows model-derived reliabilities (R2) and vali-

dation reliabilities (ρ2) for a scenario with directional 

selection and a scenario with random selection. Model-

derived reliabilities were slightly higher for the scenario 

with directional selection than for the scenario with 

random selection, which indicated that, with directional 

selection, the pattern of family sizes differs and results 

in a more informative structure for validation animals. 

Comparing R2 with ρ2 for randomly selected populations, 

we found slightly lower validation reliabilities when only 

SNPs were considered. When QTL were included in the 

SNP panel, validation reliabilities (ρ2QTL) were slightly 

higher than R2. In the scenario with directional selection 

the validation reliabilities for generation 10 were lower 

than with random selection (40  to  51 and 33  to  40  %, 

respectively). When, in addition, the validation sample 

was selected on information that included Mendelian 

sampling information as in generation 9, the decrease 

Table 3 Model-derived reliabilities (R2) and validation reliabilities (ρ2) in the base scenario with directional and random 

selection

Validation animals were divided according to whether their sire was in the reference set or not. For the purpose of illustration (and only here), we included results of 

analyses in which the segregating QTL were included in the SNP panel used for estimation and prediction (ρ2

QTL
)

Validation set Sire status Number of individuals Base scenario

Random selection Directional selection

R
2

ρ
2

ρ
2
QTL

R
2

ρ
2

ρ
2
QTL

9 Reference 1050 54 51 59 58 26 32

10a Reference 4516 54 51 58 58 40 48

10b Not reference 10,484 48 40 49 48 33 41
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in validation reliabilities was even more pronounced 

(26 to 51 %). Selection on parent average (PA) in the vali-

dation group did not result in inflated predictions (slope 

estimates ranged from 0.93 to 0.99 for generation 10a).

Effects of genotyped daughters

Table 4 presents validation reliabilities for the three vali-

dation groups for the basic scenario and five extended 

scenarios. Using results for group 10a as a starting point, 

it can generally be stated that introducing an increas-

ing number of genotyped daughters into the reference 

set clearly had a positive impact on the validation reli-

ability. Beginning with scenario –/100, validation reli-

abilities reached values of 70  % and more. If the sire of 

a validation animal was not a member of the reference 

set (generation 10b), the overall validation reliability was 

reduced, but the general trend observed was the same. 

As expected, the effect of the contribution of a missing 

sire to the overall reliability decreased as information 

increased. When the validation group itself was selected 

(generation 9), the validation reliabilities for all scenarios 

were lower than for the other validation groups. Again, 

the impact of this decrease was more pronounced when 

the number of cows in the reference set was smaller.

Effects of the composition of the daughter samples

Table 5 illustrates some aspects of the composition of the 

sample of daughters that were chosen for genotyping. 

Starting with values for R2, ρ2 and b for scenario –/50 as 

a reference point, we found a lower validation reliability 

and a noticeable increase in inflation of genomic predic-

tions when a selected daughter group was genotyped (sce-

nario –/50s), even if selection was based on the criterion 

of moderate reliability as in this case. Comparing the base 

scenario (Table 4) to scenario –/50s (Table 5), the benefit 

from adding 52,500 genotyped daughters was small with 

respect to validation reliability. The negative effect of this 

preselection can be partially compensated by a combina-

tion of directly and randomly selected daughters (sce-

nario –/25r25s, Table 5), but nevertheless the results were 

lower than those for a scenario where only 25 randomly 

selected daughters per sire were included (scenario –/25, 

see Table 4). A moderately unbalanced scenario (scenario 

–/50ub, Table 5), however, had no detectable effect on reli-

abilities or regression slopes.

Discussion
In this study, we show that even small groups of daugh-

ters per sire can have large beneficial effects on model-

derived reliabilities as well as validation reliabilities. 

A straightforward strategy to achieve these beneficial 

effects is to genotype a balanced random sample of 

daughters per sire. With respect to the structure of the 

validation sample, the results for generation 10 represent 

the ideal validation sample because it comprises the com-

plete male offspring of the previous generation. In the 

following discussion, we refer to the results for validation 

group 10a unless otherwise indicated.

Table 4 Validation reliability (ρ2) for six different scenarios

Validation animals were divided according to whether their sire was in the reference set or not

Validation set Sire status Number of individuals ρ
2

Base –/25 –/50 –/100 100/100 200/200

9 Reference 1050 26 44 53 62 72 80

10a Reference 4516 40 56 65 73 80 86

10b Not reference 10,484 32 51 60 69 77 84

Table 5 Model-derived reliabilities (R2 were virtually equal across all scenarios), validation reliability (ρ2) and regression 

slopes of the –/50 scenario and the three additional scenarios

Validation animals were divided according to whether their sire was in the reference set or not

a Higher standard error compared to the other scenarios

Scenarios –/50 –/50s –/25r25s a –/50ub

Validation set Sire status Number of individuals R
2

ρ
2 b ρ

2 b ρ
2 b ρ

2 b

9 Reference 1050 81 53 0.82 35 0.60 40 0.98 53 0.79

10a Reference 4516 81 65 0.95 42 0.76 48 1.22 65 0.95

10b Not reference 10,484 76 60 0.92 37 0.70 44 1.14 60 0.91
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Effects of selection

This section is included to illustrate the general effects of 

selection on validation statistics and to clarify the extent 

to which the results obtained can be explained by the 

fact that our population is under selection. The results 

(Table  3) are in good agreement with expectations and 

results found by other authors [33–35]. Surprisingly, at 

first, model-derived theoretical reliabilities were slightly 

higher for the scenario with directional selection than 

for the scenario with random selection. However, by ana-

lyzing family structures, we found that with directional 

selection the pattern of family sizes differed, resulting in 

a more informative structure for validation animals in 

scenarios with directional selection (results not shown). 

Model-derived theoretical reliabilities and validation reli-

abilities show relatively good agreement for the scenario 

with random selection. The slightly lower values for vali-

dation reliabilities are presumably a consequence of the 

fact that the LD between SNPs and QTL is not perfect 

and consequently some parts of the additive-genetic vari-

ance are not captured by SNPs [36]. However, by simply 

adding the QTL to the model, we found that validation 

reliabilities were slightly higher than model-derived theo-

retical reliabilities. In this case also, the theoretical model 

is only an approximation of the underlying true model.

The lower values for validation reliabilities under direc-

tional selection must be considered as a consequence 

of selection in the parental generation [33]. When the 

validation sample itself was selected on a criterion that 

included Mendelian sampling information, as was the 

case in generation 9, the decrease in validation reli-

abilities was even more pronounced. These results are 

in agreement with previous studies about the effects of 

selection on theoretical and validation reliabilities [35, 

37].

Size and structure of the daughter samples

We tested different scenarios for which increasing 

numbers of genotyped and phenotyped daughters per 

sire were included in the reference set. By genotyp-

ing 25 daughters per sire from a single generation (cor-

responding to an overall number of 26,250 genotyped 

females, Table 2), the validation reliability was consider-

ably improved, from 40  % in the base scenario to 56  % 

(Table  4, scenario –/25). As the number of daughters 

increased, the validation reliability showed a nearly linear 

increase. If we assume that proofs from progeny-testing 

typically show a validation reliability of about 70 % [38], 

this threshold is reached in scenario –/100 for validation 

group 10a and in scenario 100/100 for all other validation 

groups. With the largest number of genotyped daughters 

in scenario 200/200 (corresponding to a total of 420,000 

genotyped females in the reference set), all validation 

groups reached reliabilities of 80  % or more. This indi-

cates that large numbers of (unselected) females in the 

reference set can largely compensate for unfavorable 

effects such as selection in the parental generation or the 

effect of a sire for which daughter proofs are not avail-

able. As already mentioned, we did not find any relevant 

differences between scenarios with equal total numbers 

of females (e.g. scenarios 50/50 and –/100). The similarity 

between the results of these scenarios is interesting. We 

expected that a scenario with daughters from two gen-

erations such as scenario 50/50 would lead to (slightly) 

higher validation reliabilities than scenario –/100 

because with overlapping generations a larger number of 

sires would have genotyped daughters in scenario 50/50 

and therefore more haplotypes would have been sam-

pled. However, it seems that the existing diversity of hap-

lotypes is already sufficiently covered when genotyping 

only one generation. In addition, beneficial effects can 

be reduced by an additional round of meiosis [21]. This 

implies that a large fraction of the benefits can be already 

generated in the first generation of a genotyping strategy 

that considers randomly selected females. Other studies 

found increases in validation reliabilities when including 

cows in the reference set but the reported increases were 

generally much lower e.g. [8, 16, 39]. We see several rea-

sons for such differences. The most obvious one is cer-

tainly the larger number of cows that were assumed to be 

genotyped and phenotyped. Pryce et al. [8] and Koivula 

et  al. [39] added approximately 10,000 genotyped cows 

to the reference set and Calus et al. [16] only ~1600 first 

lactation heifers. Other reasons might be related to key 

parameters such as the reliability of the phenotype [36], 

effective population size or the LD structure. Moreover, 

all studies mentioned above used real data that can be 

differently influenced by selection.

The concept that we propose here is based on geno-

typing and phenotyping a random sample of (preferably) 

first-crop daughters of each sire from a generation. We 

examined how deviations from this design would influ-

ence results. Comparison of the results of scenario –/50 

(random daughter sample, Table  4) and scenario –/50s 

(selected daughter sample, Table  5), showed that with 

scenario –/50s the beneficial effect of an additional pool 

of 52,500 genotypes in the reference set on validation 

reliability is almost null when compared to the base sce-

nario. Even worse, preselection of daughters caused an 

increase in inflation as indicated by the low regression 

slopes (Table  5). One possible explanation is that refer-

ence animals that are selected based on their within-family 

deviation lead to biased family means and also to biased 

estimates of the deviations from the family mean. Schaef-

fer [11] argued that the animal model might become obso-

lete due to the fact that, in the future, only preselected 
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young bulls will become reference animals. The conse-

quence of this preselection would be that the phenotyped 

sons of a sire would not represent a random sample of all 

sons of this sire. Schaeffer [11] expected a relevant increase 

in inflation as a consequence of this development and 

given our results this expectation might be at least partly 

justified. Although not explicitly covered here, it seems 

likely that the integration of elite cows in the reference set 

will result in an even stronger bias, because elite cows are 

not only selected, they frequently receive also preferential 

treatment so that even their phenotypes are biased. Stud-

ies of Wiggans et al. [19] and Dassonneville et al. [20] dealt 

with the consequences of preferential treatment and pro-

vide further evidence of its biasing effects.

The negative result of scenario –/50s can be only partly 

removed by a combination of selected and unselected 

daughters (scenario –/25r25s; same number of daugh-

ters, Table  5). This result indicates that the combination 

of selected and unselected data cannot yield precise and 

unbiased estimates. Moreover, the results of scenario 

–/25r25s are lower than those of scenario –/25 (Table 4), 

which indicates that it might be relevant to exclude the 

genotypes of (pre-)selected daughters from the reference 

set if this information is available. This kind of monitoring 

presents an additional challenge especially to single-step 

genomic BLUP, in which putting a restriction on the refer-

ence set is not conceptually intended, an important aspect 

that was already emphasized by other authors [40].

Another factor with a strong impact on the validation 

results is the heritability of the trait. In a pilot study [21], 

we found that for traits with medium to high heritabilities 

(h2 = 0.35), 100 genotyped daughters per bull increased 

the marginal reliability [41] by up to 17  % (depend-

ing on the scenario) whereas in situations with very low 

heritabilities (h2 = 0.05), the same number of daughters 

increased the reliability by up to 4 % only. Our study was 

limited to a trait with a heritability of 0.4 to investigate 

several other questions. However, it may be expected that 

with a lower heritability, less substantial improvements 

would be found.

In the literature, there are other strategies for genotyp-

ing cows. Jiménez-Montero et al. [42] found higher reli-

abilities when cows selected from both extremes of the 

distribution of phenotypes were genotyped instead of the 

best ones or a random sample. We hypothesize that such 

a strategy would be better suited for traits for which only 

a few QTL with large effects segregate. Such traits are not 

common in dairy cattle [43] and therefore we focused our 

study on a trait with polygenic characteristics, for which 

no advantage of genotyping extreme animals is expected. 

Moreover, such a sampling strategy would require trait-

specific daughter samples, which is an obstacle for prac-

tical implementation. In Calus et al. [16], cow genotypes 

of entire herds are integrated in the reference set. This 

strategy could indeed ensure the representativeness of 

the cow sample if some precautions are taken. We found 

no disadvantages with moderate unbalancedness in sce-

nario –/50ub in which we ensured that each bull was at 

least represented by a sample of five daughters. Further 

investigations on this subject are necessary to clarify 

which degree of unbalancedness can be tolerated before 

the accuracy of prediction deteriorates.

In real world breeding programs, it is reasonable to 

assume that there is a limited interest for the farmers to 

genotype randomly selected cows and to keep all of them 

for an unbiased performance recording. Thus, for practical 

implementation, it would be necessary to find a solution to 

finance the genotyping costs and to keep track of the cows 

sampled for the reference set. However, this independent 

financing solution, once established as a component of the 

breeding program, might be the only way to ensure a neu-

tral, unselected daughter sample in the long term.

The simple balanced genotyping designs proposed 

here led to very stable improvements as indicated by the 

small standard errors of reliabilities and slopes. The only 

exception was for scenario –/25r25s, which showed more 

variation in the results. This indicates that some sampling 

designs are more robust than others with respect to the 

improvements that can be achieved.

Conclusions
Extending the reference set by adding a large number of 

cows with genotypes and phenotypes increases the reli-

ability of breeding values of young selection candidates 

and may overcome the deterioration of validation reli-

abilities that are caused by intense preselection of young 

bulls. We showed the benefits from genotyping a random 

sample of (first-crop) daughters of all sires from one or 

two generations. It is possible to obtain reliabilities for 

selection candidates that are as high as, or even higher 

than, the reliabilities that have been formerly observed 

for young progeny-tested bulls. We found that the bene-

fits that can be achieved are sensitive to the strategy used 

to sample females for genotyping.
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Abstract 

Background 

Genotyping females and including them into the reference set for genomic predictions in dairy cattle 

is considered to provide gains in reliabilities of estimated breeding values for young selection 

candidates.  

Methods 

By the use of simulation we extended the genomic reference set by including a fixed number of 

genotyped first-crop daughters for one or two generations of references sires. Moreover, we 

provided results for the effects of a similar strategy in a situation where for a new trait the recording 

of phenotypes has recently started. For this case we compared the effect of two different genotyping 

strategies: First, to phenotype cows but to genotype their sires only, and second, to collect 

phenotype and genotype on the same cows. We studied the effects on validation reliabilities and 

unbiasedness of predicted values for selection candidates. We additionally illustrated and discussed 

the effects of a selected sample and an unbalanced sampling of daughters.  

Results 

We found, that by extending the reference set with genotyped daughters it is possible to increase 

validation reliability of genomic breeding values. If the number of phenotypes is limited, as it is in the 

case of a new trait, it is always better to collect and use genotypes and phenotypes on the same 

animals instead of using only sire genotypes. We found that the benefits that can be achieved are 

sensitive to the sampling strategy used when selecting females for genotyping. 

Keywords: genomic selection, reference set, genotyping cows, reliability, bias, new traits 
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Introduction 

Genomic selection has changed breeding programs especially in cattle breeding. Bulls can be selected 

at a younger age with higher reliability. So far, genomic evaluations were primarily implemented for 

traits with an established performance recording scheme providing phenotypes that were also used 

in conventional genetic evaluations. For these traits it was possible and straightforward to include all 

available progeny-tested bulls in the reference set [1]. The changing requirements in the dairy and 

beef production sector and progress in technology, however, will promote the availability of new 

phenotypes [2]. It can be assumed that for these new traits only a limited number of phenotypic 

observations for genetic evaluations will be available in the short to medium term even if a broad 

performance recording scheme will be established. In other cases new traits will only be recorded on 

a sample of all cows of the breeding population. For example, only on cows that are milked in 

automatic milking systems [1] or cows in specific herds. The heritability of many of these new traits 

with importance for the breeding scheme is often very low [2]. Given these two aspects, it is likely 

that the reliability of conventional breeding value estimates and the resulting response to selection 

will be low. Even a genomic reference set consisting of bulls and their daughter yield deviations 

(DYD) only, will not provide genomic breeding values with high reliability in the foreseeable future 

due to their low number. It is in relation to this generally unfavorable situation with respect to new 

traits the additional genotyping of cows providing the phenotypic information has been discussed by 

some researchers [e.g. 3].  

Several studies have shown that the inclusion of females in the reference set of a cattle breed leads 

to higher reliabilities for young selection animals [e.g. 4-6]. Thomasen et al. [4] found that by 

additionally including female genotypes in the reference set a higher genetic gain with lower rates of 

inbreeding can be achieved compared to a breeding scheme where the reference set grows only with 

the inclusion of newly progeny-tested bulls. Calus et al. [5] also combined cows and bulls in one 

reference set. In their study the highest validation accuracies were achieved with the combined data 

set compared to scenarios with only cows or only bulls in the reference set. 

This investigation is intended as an extension and follow-up of Plieschke et al. [6] where we have 

examined the potential to increase reliabilities of breeding values of young selection candidates by 

genotyping a fixed number of first-crop daughters of each sire of one or two generations in a 

balanced and regular system of genotyping. In this first investigation we studied a trait of medium to 

high heritability (0.4). With this short communication we want to add several additional results. First, 

we want to complement results for a trait with low heritability but keeping all other aspects as in 

Plieschke et al. [6]. Additionally we want to cover the subject of new traits within the methodological 
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framework of the approach developed in our first investigation. This paper is therefore structured 

into two ŵaiŶ paƌts: ϭͿ aŶ ͚old tƌait with low heritability͛ seĐtioŶ aŶd ϮͿ a ͚Ŷew tƌait with low 

heritability͛ seĐtioŶ. IŶ the Đase of the old trait design the whole breeding population of cows is 

assumed to be phenotyped and the reference set consists of genotyped sires of many generations 

with a relatively large number of daughters each. In the case of the new trait designs, phenotyping 

has started only recently and therefore only a limited number of phenotypes are available. For 

genotyping in this situation we investigated two different strategies with genotypes available on sires 

of phenotyped cows only or genotypes available on the phenotyped cows themselves. We included 

some additional considerations with respect to the sampling of cows for genotyping and genotyping 

plus phenotyping, respectively.  

Material and Methods 

Simulation with QMSim 

Most methodological aspects are the same as in Plieschke et al. [6] so we will summarize only the 

most fundamental aspects. We ran a simulation with four replicates using the open access software 

QMSim [7]. We first simulated a so-called historical population to create an LD structure sufficiently 

strong for the situation observed in the Fleckvieh breed. Our founder generation (generation 0) 

consisted of 30,000 dams and 1500 sires. The pedigreed population was propagated for 10 

generations. In every generation of the pedigreed population 15,000 female and 15,000 male 

offspring were generated by mating 30,000 dams and 1500 breeding sires. Generations were 

overlapping and in every generation 30% of the dams and 70% of the sires were replaced. We 

simulated 30 chromosomes each with a length of 100 cM. On each chromosome 1660 markers and 

30 QTL were evenly distributed (49,800 markers and 900 QTL in total). After routine checks [8, 9] 

nearly 38,000 valid markers and approximately 700 QTL still segregating in the reference set (both 

depending on repetition) were available. We assumed a sex linked trait with polygenic nature and a 

single observation for every female.  

For the sake of brevity in this investigation we only consider the animals of generation 10 as 

validation sample. This corresponds to validation group 10a in Plieschke et al. [6], and consists of 

unselected candidates whose sires and/or (half-) sisters are part of the reference set. For these 

animals genomic breeding values were calculated from several reference sets varying according to 

the design and scenario investigated. Estimates then were compared to the true breeding values 

from the simulation. 

Simulation of the daughter sets 
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For each reference bull of generation 7 and 8 we generated 200 additional daughters without using 

QMSim. We generated gametes by combining known haplotypes (markers and QTL) of these sires 

and of potential breeding dams from the population. The gametes were randomly mated (excluding 

sisters, daughters and dams of bulls) to create genotypes of the daughters. When generating the 

gametes we simulated on average one random crossing-over event per Morgan for each 

chromosome. True breeding values (TBV) were derived by summing the true QTL effects for all 

relevant loci of a daughter. 

Phenotypes 

Phenotypes used were yield deviations [YD, 10] for females and DYDs [10] for sires. YDs for females 

were generated using the corresponding TBV and a random residual. YDs of all daughters were used 

to calculate DYDs of the corresponding sire. Females that were themselves part of the reference set 

were omitted from the calculation of DYDs. Phenotypes were weighted with the equivalent number 

of own performances calculated as EOP=λ 
RpheŶ

Ϯ  

ϭ – RpheŶ
Ϯ  

, where λ= σe
Ϯ

σa
Ϯ and RpheŶ

Ϯ    is the reliability of the DYD 

or YD respectively.  

Designs 

 Old trait 

The old trait design assumed a situation where all cows of the breeding population are phenotyped 

routinely as in Plieschke et al. [6]. All sires of generations 0 to 8 therefore have DYD and generations 

5 to 8 are used as reference set in the base scenario. This scenario was then extended by genotyping 

daughters of either the last generation or the last two generations of reference bulls and integrating 

them into the reference set (Table 1). Simulated heritability of the trait was 0.05. 

 New trait 

For the two new trait designs we assumed a situation where phenotyping of cows has just begun. 

Here, phenotypes of daughters were assumed to be available for bulls of generations 8 or 

generations 7 and 8 only. Two strategies for genotyping were investigated: In design NTsires cows 

are phenotyped but only their sires are genotyped and used in the reference set. In design NTcows 

genotypes of phenotyped cows are available and cows are used directly as the reference set. The 

number of reference animals therefore differs considerably between these two designs and is 

summarized in Table 1. Simulated heritability of the trait was 0.05, too. 

Special scenarios 
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We used scenario --/50 but changed the composition of the sample of for the old trait and the two 

new trait designs to investigate additional scenarios. In scenario --/50sg, daughters of sires were 

selected on their phenotype. For the old trait design we selected the best 50 out of 200 daughters of 

each sire of generation 8 for genotyping, using the YD as the selection criterion. Since all 200 

daughters were assumed to be phenotyped and contribute to the DYD of their sire this scenario 

might be labelled as selective genotyping. In the case of the two new trait designs a situation of 

selective genotyping is probably of little relevance. In this case we assumed a situation where the 

worst 33% of daughters of each sire might not be considered for replacement and therefore will not 

even reach the stadium of being potential candidates for phenotyping (remaining daughter sample 

per sire: the best 133 daughters out of the 200 daughters generated for each sire). Then we again 

sampled randomly 50 daughters to get a comparable sample size to scenario --/50. Such a situation 

might occur when sampling strategy is intended to be based on an unselected daughter sample, but 

selection within herds already took place based on a visible phenotype that has not (yet) been 

recorded. Such a situation might happen with some conformation traits. Maybe even worse might be 

a situation where genomic breeding values of all cows are available and used for replacement 

selection within herds. Since only these 50 daughters are assumed to be phenotyped and no other 

daughters of the sire are phenotyped this situation was labelled selective phenotyping (scenario --

/50sp). We also included an unbalanced scenario (--/50ub) with different numbers of daughters per 

sire genotyped and/or phenotyped but the overall number of females was kept the same as in 

scenario --/50. This was done by randomly selecting five daughters for 330 sires, 50 daughters for 

621 sires and all 200 daughters for 99 sires. Table 2 gives an overview of the two additional scenarios 

and the number of animals in the reference set.

Genomic prediction 

As in Plieschke et al. [6] we calculated direct genomic values (DGVs) and reliabilities using a SNP-

BLUP model [11]. The model equation can be described as: 

y  =  Xď  +  Mg  +  e 

and the corresponding mixed model equations are: 

X'R-1X X'R-1M
M'R-1X M'R-1M+I/σg

Ϯ       ď̂
ĝ

    =     X'R-1y
M'R-1y

 

with 

 σg
Ϯ =  σa

Ϯ

∑j=ϭ
ŵ ;ϮpjƋjͿ
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where y is the vector of observations (here DYD or YD), b the vector of fixed effects (in our simulation 

only an overall mean), g is the vector of random marker effects, and e the vector of residual effects. 

Matrix X is a design matrix which links the observations to the respective fixed effects and M is the 

centered coefficient matrix of marker genotypes and pj and Ƌj are the estimated base allele 

frequencies [12]. Centering was done by subtracting two times the base allele frequency estimate 

from the corresponding column of M [13]. Matrix R is a diagonal matrix with σe
Ϯ/wi on the diagonal, 

where wi is the EOP of the i-th observation and matrix I is an identity matrix of order m (number of 

markers).  

DGVs are calculated as  

DGV= ď̂ + Mĝ. 

For the analysis we calculated a weighted regression of TBV on DGV for validation animals. We used 

the model fit of this regression as a measure of validation reliability (ρ2
) and the regression slope (b) 

as a measure of bias describing the inflation of estimates [14].  

Results 

Results shown below are averages of validation reliability (ρ2
) and the regression slope (b) over four 

repetitions of the simulation. Standard errors of the results presented in the main body of the paper 

were lower than 1.2 % for validation reliabilities and lower than 0.035 for regression slopes.

 Effects of genotyped daughters 

Table 3 summarizes validation reliabilities ;ρ2
) for 5 different scenarios analyzed. For the old trait 

design in the base scenario without genotyped daughters a validation reliability of 37% was achieved. 

Extending the reference set with an increasing number of daughters increased the validation 

reliability by more than 20% (in the most extended scenario with 4200 sires and 210,000 daughters 

genotyped). Also for the two new trait designs an increasing number of phenotyped (and genotyped) 

daughters lead to increasing ρ2
. The scenario using genotyped cows (NTcows) yielded always more 

reliable DGV than using cow phenotypes only via their genotyped sires. Even in the largest scenario 

with 210,000 females phenotyped and 2100 sires genotyped ρ2
 was only 25%, whereas with the 

corresponding NTcows scenario a validation reliability of more than 50% could be achieved.  

 

Effects of the composition of the daughter samples 
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Table 4 summarizes validation reliabilities ;ρ2
) and regression slopes (b) of three different strategies 

to genotype and/or phenotype females. Using scenario --/50 as a reference scenario it can be stated 

that direct selection of the daughter samples (scenario --/50sg) had negative effects on ρ2 
and b in 

almost all the cases. The strategy of selective genotyping in case of the old trait design lead to a 

validation reliability even lower than the base scenario (ρ2
 = 37%, Table 3) and highly inflated 

estimates. For the new trait design NTsires resulted in higher ρ2
 when daughters were selectively 

phenotyped (scenario --/50sp, Table 4), but at the price of highly deflated estimates. With NTcows 

selective phenotyping lead to lower validation reliability (ρ2 
= 26%) than the reference scenario but 

still higher than any of the NTsires scenarios. However, estimates showed a considerable deflation 

(b = 1.25).  

For the old trait and for the new trait design NTcows a moderately unbalanced scenario (--/50ub, 

Table 4), showed no effect on reliabilities or regression slopes whereas for the new trait design 

NTsires scenario --/50ub resulted in very low ρ2 
and highly inflated estimates (b = 0.35).  

 

Discussion 

Old Trait  

 General effect of genotyped cows 

By adding genotyped daughters to the reference set, it is possible to increase validation reliability for 

young selection candidates. We found improvements in validation reliability of 5-21% points 

depending on the scenario. Other studies confirm that it is possible to increase reliability or accuracy 

for low heritability traits by genotyping females. Jiménez-Montero et al. [15] analyzed accuracies for 

a low heritability trait with h
2
 = 0.1 and a sampling strategy which is comparable to ours and found 

similar improvements when adding up to 50,000 females to the reference set. Egger-Danner et al. [2] 

reported comparable results for a trait with a heritability of 0.05.  

Our results indicate that such an increase can only be achieved if the sample of cows included in the 

reference set is not selected based on their phenotype or any other criterion providing information 

on the individual Mendelian sampling deviation (including genomic breeding values [15]). With 

selected cows contributing to the reference set, reliabilities might be considerably reduced when 

compared to a random sample of genotyped cows (scenario --/50) even to a point where the 

resulting reliability is actually lower than without additional genotypes (base scenario). Moreover, 

scenarios like --/50sg lead to inflated results (b = 0.36 for --/50sg). Although we were not able to study 

this in detail, we suppose that the directional selection of daughters for genotyping leads to biased 
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daughter means and an inconsistency between genotyped and non-genotyped daughters. This might 

contribute to the unprecise and biased estimates we found. Again observations e.g. by Jiménez-

Montero et al. [15] confirm that a sampling strategy that selects only the best cows leads to much 

lower accuracies than a random sampling strategy. This effect was even more pronounced when 

sampling was based on the breeding value instead of phenotype [15].  

 Comparison to higher heritabilities 

In Plieschke et al. [6] we investigated the same design and scenarios as described here for old trait 

but with a higher heritability (h
2
 = 0.4). We found that for a trait with a heritability of only 0.05 

validation reliability for the scenarios investigated is between 3 and 23 % points lower than for a trait 

with higher heritability. Comparing the results we also found that with an increasing number of 

daughters, the difference between the two traits also increases indicating that genotyping females 

will also have a relatively higher effect for high and medium heritable traits. Similar observations 

were made by Edel et al. [16] in a deterministic approach and a theoretical justification was given by 

Hayes et al. [17].  

New Trait 

 Comparison of NTsires and NTcows 

Since the size of the reference set has a large impact on the reliability of genomic prediction [18] 

NTcows always leads to better results than NTsires even though the heritability of an individual cow 

phenotype is lower than that of a DYD of a sire (5% compared to 39% for scenario --/50).  However, 

the strategy to phenotype females and genotype only their sire is still common for genomic selection 

programs. Buch et al. [1] also tested two scenarios where they genotyped the phenotyped cows 

themselves or their sires for a trait with h
2
 = 0.05. Their results support our results in general but 

resulting reliabilities were on a much lower level due to the fact that their reference sets were much 

smaller in the different scenarios.  

 Effects of selective phenotyping  

Some projects for genotyping females plan to genotype calves from which they then want to sample 

cows for phenotyping. In such a strategy, it is not possible to prevent some calves from being 

selected before a phenotype can be recorded. Then the phenotyped cows are assumed to be a 

random sample, however, they are already pre-selected. This has consequences on validation 

reliability and, moreover, it leads to highly biased breeding values.  

NTsires: We found that scenario --/50sp with selective phenotyping leads to higher validation 
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reliabilities than scenarios with randomly selected daughters. Results were 12 and 17 % for scenarios 

--/50 and --/50sp, respectively. Analyzing the variation within daughter samples of sires (results not 

shown) we found a smaller variation of YDs resulting in lower standard errors for sire means. This is a 

consequence of the low heritablity of the trait leading to a situation where selection primarily 

operates in reducing the residual variance of the phenotypes. This results in higher correlations 

ďetweeŶ the ŵeaŶ of the daughteƌ saŵple aŶd the siƌe͛s TBV, but breeding values are overestimated 

(b = 1.17 and b = 1.45 for scenarios --/50 and --/50sp, respectively). We do not expect to find similar 

results in practice, because it is unlikely that selection intensities would be the same in all sire 

families, which would introduce additional variation between sire estimates.  

In contrast to the other designs, we found that an unbalanced phenotyping strategy lead to very low 

validation reliability (only 3 % for scenario --/50ub). Since the size of the reference set with NTsires is 

already very small and DYDs of sires are based on a limited number of lowly heritable daughter 

phenotypes, reducing the number of daughters for some sires to only 5 virtually eliminated these 

data points. The effective size of the reference set is therefore decreased and validation reliabilities 

are reduced.  

NTcows: The scenario with selective phenotyping of cow samples had lower validation reliability than 

the scenario with the randomly selected females. Moreover, the estimated breeding values are 

highly inflated (b = 1.25 for --/50sp vs. b = 0.97 for --/50). However, the negative effects of selective 

phenotyping seem to be somewhat weaker than for selective genotyping in the old trait design.  

General considerations 

We only tested one new trait with a low heritability although there are other new traits with a higher 

heritability like dry matter intake [19] or methane emission [20], for example. The general trends we 

observed in all our simulations were, however, quite similar no matter what heritability was 

assumed. Some aspects, like the negative effect of unbalanced daughter samples in NTsires, might 

not be observable with a higher heritable trait.   

In this investigation and in Plieschke et al. [6] we calculated the phenotypes to be used in our two-

step approach of genomic breeding value estimation based on true breeding values from the 

simulation plus residuals (YD) and aggregated the DYD of bulls directly based on these YD of 

daughters. In practice one would also have to cope with biased estimates for the YD of genotyped 

daughters, which is another argument for random sampling of daughters to be genotyped.  
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Conclusions 

Extending the reference set by adding a large number of cows with genotypes and phenotypes 

increases the reliability of breeding values of young selection candidates also for low heritability 

traits. The gain found was much lower than for a trait with higher heritability. In the case of a new 

trait genotyping of cows seems to be the only realistic option to obtain reasonable reliabilities in due 

time. We found that the benefits that can be achieved in all cases are sensitive to the sampling 

strategy used to select females for genotyping.  

Chapter Three

47



Acknowledgments 

We gratefully acknowledge the Arbeitsgemeinschaft Süddeutscher Rinderzucht- und 

Besamungsorganisationen e.V. for their financial support within the research cooperation 

͟ZukuŶftswege͞. 

Authors’ Đontriďutions 

LP performed the analysis and drafted the manuscript. LP, CE, RE, JB and KUG designed the study. CE 

and LP developed methods. CE, ECGP, RE, JB and KUG revised the manuscript. All authors read and 

approved the final manuscript. 

Competing interests 

The authors declare that they have no competing interests. 

References 

[1] Buch LH, Kargo M, Berg P, Lassen J, Sorensen C. The value of cows in the reference populations 

for genomic selection of new functional traits. Animal. 2012;6:880-6. 

[2] Egger-Danner C, Cole JB, Pryce JE, Gengler N, Heringstad B, Bradley A, et al. Invited review: 

Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. 

Animal. 2014;9:191-20. 

[3] Calus MPL, de Haas Y, Pszczola M, Veerkamp RF. Predicted accuracy of and response to genomic 

selection for new traits in dairy cattle. Animal. 2013;7:183-91 

[4] Thomasen JR, Sorensen AC, Lund MS, Guldbrandtsen B. Adding cows to the reference population 

makes a small dairy population competitive. J Dairy Sci. 2014;97:5822-32. 

[5] Calus MPL, de Haas Y, Veerkamp RF. Combining cow and bull reference populations to increase 

accuracy of genomic prediction and genome-wide association studies. J Dairy Sci. 2013;96:6703-15. 

[6] Plieschke L, Edel C, Pimentel ECG, Emmerling R, Bennewitz J, Götz KU. Systematic genotyping of 

groups of cows to improve genomic estimated breeding values of selection candidates. Genet Sel 

Evol 2016;48:73. 

[7] Sargolzaei M, Schenkel FS. QMSim: a large-scale genome simulator for livestock. Bioinformatics. 

2009;25:680-1. 

Chapter Three

48



[8] Edel C, Schwarzenbacher H, Hamann H, Neuner S, Emmerling R, Götz KU. The German-Austrian 

genomic evaluation system for Fleckvieh (Simmental) cattle. Interbull Bull. 2011;44:152-6. 

[9] Ertl J, Edel C, Emmerling R, Pausch H, Fries R, Götz KU. On the limited increase in validation 

reliability using high-density genotypes in genomic best linear unbiased prediction: Observations 

from Fleckvieh cattle. J Dairy Sci. 2012;97:487-96. 

[10] VanRaden PM, Wiggans GR. Derivation, calculation, and use of national animal model 

information. J Dairy Sci. 1991;74:2737-46. 

[11] Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide 

dense marker maps. Genetics. 2001;157:1819-29. 

[12] Gengler N, Mayeres P, Szydlowski M. A simple method to approximate gene content in large 

pedigree populations: applications to the myostatin gene in dual-purpose Belgian Blue cattle. Animal. 

2007;1:21-8. 

[13] VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23. 

[14] Mäntysaari EA, Liu Z, VanRaden PM. Interbull validation test for genomic evaluations. Interbull 

Bull. 2010;41:17-22. 

[15] Jiménez-Montero JA, González-Recio O, Alenda R. Genotyping strategies for genomic selection in 

small dairy cattle populations. Animal. 2012;6:1216-24. 

[16] Edel C, Pimentel ECG, Plieschke L, Emmerling, R, Götz KU. Short communication: The effect of 

genotyping cows to improve the reliability of genomic predictions for selection candidates. J Dairy 

Sci. 2016;99:1999-2004. 

[17] Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by using the 

realized relationship matrix. Genet. Res., Camb. 2009;91:47-60. 

[18] Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy 

cattle: Progress and challenges. J Dairy Sci. 2009;92:433–43. 

[19] Tetens J, Thaller G, Krattenmacher N. Genetic and genomic dissection of dry matter intake at 

different lactation stages in primiparous Holstein cows. J Dairy Sci. 2014;97:552-31. 

[20] Lassen and Lovendahl. Heritability estimates for enteric methane emissions from Holstein cattle 

measured using noninvasive methods. J Dairy Sci. 2016;99:1959-67. 

  

Chapter Three

49



Table 1: Scenarios with corresponding number of animals in the reference set.   

Scenario Number of reference animals 

Old trait New Trait 

NTsires NTcows 

Base 4200 / / 

--/25 30,450 1050 26,250 

--/50 56,700 1050 52,500 

--/100 109,200 1050 105,000 

100/100 214,200 2100 210,000 

The names of the extended scenarios are derived from the number of phenotyped daughteƌs aŶd the siƌe͛s geŶeƌatioŶ. The Ŷuŵďeƌ ďefoƌe 

the slash iŶ the sĐeŶaƌio͛s Ŷaŵe is the Ŷuŵďeƌ of daughteƌs peƌ pƌogeŶy-tested bull of generation 7 and the number after the slash is the 

number of daughters per progeny-tested bull of generation 8. In the case of NTsires the sires of phenotyped daughters are genotyped only. 

In both cases either NTsires or NTcows the column NTcows gives also the number of available phenotypes used either as either a DYD 

(NTsires) or directly as a YD (NTcows). 
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Table 2: Overview of the special scenarios. 

Scenario Sample size Sampling strategy Sampling population 

(daughters/sire) 

Label 

--/50 50 random 200 reference scenario 

--/50sg 50 selected*  200 selective genotyp. 

--/50ub ±50 unbalanced**  200 unbalanced 

--/50sp 50 random  133***  

 

selective phenotyp. 

* the best 50 daughters per sire were selected for genotyping; ** different numbers of daughters per sire were genotyped and/or 

phenotyped (5, 50 or 200 daughters); *** the best 133 daughters out of the 200 daughters per sire were pre-selected. 
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Table 3: Validation reliaďility (ρ2
) for 5 different scenarios for the old trait design and the two new trait designs. 

 ρ2
 (%) 

Scenario Old Trait NTsires NTcows 

Base 37 - - 

--/25 42 8 20 

--/50 46 12 30 

--/100 50 18 41 

100/100 58 25 54 
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Table 4: Validation reliaďility (ρ2
) and regression slope (b) for 3 different scenarios with the same number of daughters 

but different sampling strategies. 

 Old Trait NTsires NTcows 

Scenario ρ2
 (%) b ρ2

 (%) b ρ2
 (%) b 

--/50 46 1.06 12 1.17 30 0.97 

--/50sg/sp
* 

10 0.36 17 1.45 26 1.25 

--/50ub 46 1.06 3 0.35 29 0.96 

* selective genotyping (sg) in the case of old trait and selective phenotyping (sp) in the case of the two new trait designs. 
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General Discussion

In recent years the breeding value estimation system of many large dairy cattle breeds has been

extended by the prediction of genomic breeding values. The most common procedure to estimate

genomic breeding values in practical applications is GBLUP (VanRaden, 2008). In GBLUP the

genomic relationship matrix (G) calculated from SNP markers describes the genetic relationships

between animals.

All investigations were done having the two largest Bavarian cattle breeds in mind: chapter

one was based on data from Fleckvieh and Brown Swiss cattle and chapter two and three with

simulated data resembling the genetic composition and population structure of Fleckvieh. The

studies presented in the past three chapters have already addressed some methodological and

strategic aspects related to genomic selection. These two aspects are discussed in the following

section in relation to other related issues. In addition, some technological aspects are addressed

which are also related to current developments in genomic selection.

Methodological aspects

The use of GBLUP implies several assumptions, the most obvious one being that the relationship

estimated based on markers is a valid estimate of the relationship based on QTL. This might

only be true if a trait is assumed to be ‘polygenic’, meaning that many QTL contribute to trait

variance, if the contribution of each QTL is limited and if the linkage disequilibrium (LD) between

markers and QTL is sufficiently strong. This means that the allele frequency distribution of

marker and QTL are at least comparable. An important point related to methodological aspects

is that GBLUP as it is proposed by VanRaden (2008) can be shown to be equivalent to the so

called SNP-BLUP approach (Meuwissen et al., 2001) which uses estimates of SNP effects in linear

projections (Goddard, 2008; Plieschke et al., 2015).

Different approaches to calculate G

There are several proposals in the literature on how to calculate the genomic relationship matrix

G but the way proposed by VanRaden (2008, “method one”) seems to be the most common

approach in practical applications. The formula used is

54



General Discussion

G =
MM

′

∑m
i=1 (2piqi)

with M being constructed as M = K - P, where K is the (n×m) matrix of gene-contents

of the reference allele (2, 1 or 0), P is an (n×m) matrix of which the ith column is 2pi, n and

m are the number of animals genotyped and the number of markers, respectively and and are

known or estimated base allele frequencies. The allele coding proposed by VanRaden (2008) uses

assumptions about the allele frequencies in the population and can easily be shown to agree with

the quantitative genetics theory that uses 2q, (q − p) and −2p for genotypes AA, AB and BB

respectively (Falconer and Mackay, 1996). If the true but usually unknown base frequencies are

used (frequency among animals considered to be the pedigree base) it should at least theoretically

lead to a coefficient matrix compatible to the genetic parameter (VanRaden, 2008).

There are other approaches for the calculation of G like, for example, the unified additive

relationship (UAR) approach of Powell et al. (2010) or “method two” of VanRaden (2008).

Method two of VanRaden (2008) is calculated as G2 = MDM
′ where dii =

1
m(2piqi)

. This method

as well as the method of Powell et al. (2010) weights markers by reciprocals of their expected

variance instead of summing expectations across loci and then dividing as done in “method one”.

As a consequence the form of the G-matrix is strongly influenced by rare alleles with extreme

allele frequencies (Endelman and Jannink, 2012).

The shown approaches calculate a genomic relationship matrix based on IBS (identical-by-state)

information. The idea of genomic selection is that each QTL is in sufficiently large LD with the

nearby markers and these markers explain a large proportion of the genetic variance. However,

according to Habier et al. (2007) genomic breeding values also incorporate information of LD

arising from recent family structures. LD generated by family structure can be explained by

linkage analysis (LA). This fact implies that genomic selection can also use LA information

(Luan et al. 2012). LA information can be used by a genomic identity-by-descent (IBD) matrix,

containing identity-by-descent probabilities calculated based on genotypes and the known pedigree.

Since an IBD relationship matrix in some sense uses more information than an IBS relationship

matrix it seems reasonable to assume that an IBD approach might lead in some cases to higher

reliabilities than an IBS approach. However, Luan et al. (2012) found no significant differences

between their IBS, IBD and IBD+IBS approach. In a later study (Luan et al., 2014), using

simulated data, they found that a relationship matrix based on runs of homozygosity achieved

genomic breeding values with higher accuracies than the compared genomic relationship matrices.

However, using real data, only small – if any – differences in accuracies were found by Luan et al.
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(2014). From the practical point of view, using “method one” of VanRaden (2008) seems to be

the fastest and easiest way computing a genomic relationship matrix.

Analyzing the G-matrix

There are several implicit assumptions in the conventional animal model as well in the GBLUP

model. An important aspect is that the base population is assumed to be homogenous and is

assumed to be in Hardy-Weinberg equilibrium (HWE). It is likely that these assumptions do

not hold in many breeding populations. By analyzing G instead of the numerator relationship

matrix violations of these assumptions can become apparent since they do influence the form of

G. The question can be raised whether the sometimes unexpected form of G is reasonable from

a scientific standpoint or not. These differences can be caused by deviations in allele frequencies

between founder populations and a disturbance in HWE which can for example lead to an excess

of heterozygotes.

A related question of practical importance is for example whether to include international

genotypes or genotypes of a so called “equi-breed” into a national genomic evaluation of any

country is advisable. In the case of the joined German-Austrian genomic evaluation (Edel et al,

2011) questions of concern were for example: can Original Braunvieh be part of the genomic

evaluation for Brown Swiss? Can the Czech population of Fleckvieh cattle be integrated? And,

more fundamentally, are the coefficients observed in the G-matrix meaningful?

In the study of Plieschke et al. (2014) the question addressed was whether including international

genotypes in the German-Austrian genomic evaluation system for Brown Swiss would induce

effects on the estimates of the German-Austrian population that are of any relevance. Using

principal component analysis (Patterson et al., 2006; Zou et al. 2010) and Fst statistics (Weir and

Cockerham, 1984; Caballero and Toro, 2002) it was found that there is some degree of genetic

separation detectable within the recent genotyped Brown Swiss population. It was found that

the inclusion of foreign genotypes in the reference population had a noticeable impact on the

breeding values of German-Austrian candidates and results gave an indication that there might

be effects beyond a simple numerical enlargement of the reference population as a consequence of

population subdivision. Moreover, it was observed that an increase of the reference population did

not necessarily lead to an increase in model based reliabilities. This was the case when Original

Braunvieh was integrated.

The hypothesis deduced was that G includes information related to the genetic distance between

potentially discriminable groups in the base population that is defined by the pedigree. Several

other studies show that it is possible to detect population subdivision with G (Zou et al. 2010;

Kadri et al., 2014) analogously to the analyses of the pre-genomic era that were done based on
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the numerator relationship. This hypothesis was investigated here in chapter one. By using

a simple and straightforward method to estimate allele frequencies in the base population as

proposed by Gengler et al. (2007) the genomic relationship matrix (G) was separated into two

independent components: a base group component G
∗

A
and a segregation component GS. This

decomposition allows studying some aspects in more detail: first, whether and how differences in

allele frequencies between base groups contribute to the proportion of genetic variance explained

by differences between base groups; second, how the effects estimated for the base groups influence

the current population and their genomic predictions. The concept extends the classical approach

for modeling base groups in genetic evaluations to the GBLUP case. It shows that parts of the

genetic variation represented by the G-matrix can be assigned to systematic differences in allele

frequencies between populations in the base. This implies that standard GBLUP is equivalent to

a model that fits correlated random genetic groups, where differences in group means are modeled

as part of the natural additive-genetic variance.

Non-linear models

It seems reasonable that for some traits the ‘infinitesimal model’ assumed in the GBLUP approach

does not hold. It can be assumed that the genetic architecture differs between traits (Daetwyler

et al., 2010) and that there are some traits that are influenced by some major QTL. For such

traits a standard GBLUP approach might not be the best one.

Zhang et al. (2010) showed a possibility to calculate trait specific genomic relationship matrices

to take QTL with large effects into account by putting greater weight on loci explaining more of

the genetic variance of the trait than other loci. Their approach might in some cases be superior

for traits that are influenced by major QTL.

It was also found that Bayesian models using more complex assumptions than GBLUP can

lead to higher reliabilities (e.g. Clark et al., 2011; Zeng et al., 2012). However, compared to

more complex Bayesian models standard GBLUP and the trait specific GBLUP have some

advantages in practical application (Zhang et al., 2010). From a theoretical standpoint it seems

to be unreasonable to believe that BLUP models can take full advantage of the LD information

(Meuwissen and Goddard, 2010) when using high-density SNP chips. However, the theory of

effective chromosome segments demonstrates the interrelation between the limited effective size of

our breeding populations, the limited number of segregation segments and the possible limits of

resolution and estimability when trying to track phenotypic variation right down to the specific

mutation. These arguments might argue in favor of GBLUP and may be used as a justification for

why it is still a useful approximation that is used by many countries in routine genomic evaluation

besides the simplicity and low computational requirements (Gao et al., 2013).
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Multi-step vs single-step

Genomic evaluations for Brown Swiss and Fleckvieh are currently calculated with a GBLUP multi-

step approach (VanRaden 2008, Hayes et al., 2009a). A typical multi-step evaluation requires: 1)

conventional breeding value estimation to get an estimated breeding value (EBV), 2) calculation of

pseudo-observations such as DYDs, 3) estimation of direct genomic values for genotyped animals,

and optional 4) combining the direct genomic value with traditional parent averages (PA) or EBV

(Hayes et al., 2009a; VanRaden et al., 2009). Those steps are dependent on many parameters and

assumptions. If all these steps can be taken together in one step, fewer assumptions have to be

made and fewer parameters have to be estimated. The single-step procedure (Legarra et al., 2009

and Christensen and Lund, 2010) is intended to eliminate several assumptions and parameters,

and to calculate more accurate genomic evaluations than the multiple-step procedures (Aguilar et

al., 2010). In simplified terms, the single step equations are similar to Henderson’s mixed model

equations from an animal model, but with covariance structure described by an H-matrix instead

of the numerator relationship matrix A. The inverse of the H-matrix can be calculated according

to Aguilar et al. (2010) as

H
−1 = A

−1 +







0 0

0 G
−1

−A
−1

22







where 2 stands for the group of genotyped animals. One advantage of single-step approaches

is that genotyped as well as ungenotyped animals are part of the genomic evaluation. The

consequence is that the computing effort is considerably increased. As A
−1 can be computed

very easily, the additional effort is caused by the G
−1

−A
−1

22
block. In addition, there are

some questions that have not yet been fully clarified. For example, the bias which is frequently

occurring when using single-step BLUP can only be reduced if the correct scaling factors have

been chosen, for which there is no theoretical explanation (Koivula et al., 2015; Pimentel et

al., 2016). Currently it is not entirely clear where the bias comes from and how to prevent it.

Therefore multi-step GBLUP is still the procedure applied to estimate genomic breeding values

in Germany for Fleckvieh and Brown Swiss.

Strategic aspects

Assuming the infinitesimal model holds and the realized relationship matrix G to be a sufficiently

valid and meaningful representation of the true additive-genetic relationship, Hayes et al. (2009b)

showed that given a specific structure of the genome and a defined family structure (e.g. full sibs)

it is possible to derive the variance of the realized relationship between family members. Based
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on that, it is possible to derive the number of related animals that must be phenotyped and

genotyped in order to achieve a desired level of reliability. Hayes et al. (2009b) found that the

reliability of genomic breeding values depends to a large extend on the number of family members

and the heritability of the trait. In their paper, they used simple family structures to explain their

analytical approach. In a deterministic simulation Edel et al. (2016) showed that it is possible to

increase reliability of genomic breeding values of young selection candidates when genotyping

first-crop daughters of AI bulls. The simulation was based on nuclear pedigrees extracted from

the German-Austrian Fleckvieh population. Using this “within-family structure” they found

that the information from genotyped females contributes predominantly to the reliability of the

Mendelian sampling part of the breeding value estimate of genomic candidates. Limitations

of their investigation were that they could not quantify the assumed cumulative effects at the

population level arising from the theory of effective chromosome segments.

Genotyping cows for known traits

For chapter two and three a population was stochastically simulated by using the simulation

program QMSim. The intention was to simulate a population resembling the current Fleckvieh

population with respect to important key characteristics. With this breeding population a

reference population for genomic predictions was established, which consisted entirely of bulls

with phenotyped daughters and then was extended in a stepwise manner by adding large numbers

of daughters with genotypes and phenotypes. Chapter two shows the results of a trait with a

heritability of 0.4. Chapter three used the same data structure as used in chapter two but for a

trait with heritability of 0.05.

As the number of daughters increased, the validation reliability increased as well. It was found

that genotyping females had a higher effect for the trait with high heritability and a lower effect

for the trait with low heritability, which is in accordance with Edel et al. (2016) and Hayes

et al. (2009b). With decreasing heritability the environmental noise affecting the phenotypic

value increases and every daughter contributes only one observation to estimate her individual

Mendelian sampling deviation. Therefore, with decreasing heritability more daughters are needed

to achieve a desired increase in reliability. If female genotypes are to be included in a genomic

system, one of the key questions is which cows should be genotyped. The results of chapter

two and three indicate that genotyping a selected daughter sample instead of a random sample

decreases the beneficial effect on validation reliability.

Several organizations already include genotyped cows in their reference population. In the

United States of America elite females were integrated in genomic breeding value estimation since

the introduction of genomic selection (Wiggans et al., 2011). It was found that including those
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elite females led to higher bias and therefore cow information was adjusted to be similar to those

of bulls. With this adjustment the accuracy of genomic evaluations for Holsteins and Jerseys was

increased (Wiggans et al., 2011). In Denmark, Finland and Sweden (DFS) a Nordic “LD-project”

started in 2014, in which a low-cost low-density chip was offered to the breeders, who should in

turn voluntarily genotype all young animals in their herds (Langdahl, 2014). In 2016 a project

called KuhVision started in Germany (DHV, KuhVision). Within this project breeders of German

Holstein Friesian have the opportunity to genotype all females at discounted rates, which are

dependent on the number of phenotypes.

Genotyping cows for new traits

Genotyping of females has advantages beyond that of increasing the reliability of genomic estimates

for traits with established performance recording alone. Genotyping of cows is often mentioned in

the context of new or expensive-to-measure traits (Calus et al., 2013; Egger-Danner et al., 2014).

In the case of an old trait, the number of phenotypes is expected to be (nearly) unlimited, since

a recording system is well established. In the case of a new trait recording of phenotypes would

have just started, therefore the number of phenotypes should be limited. For genotyping in this

situation there are two different strategies with genotypes available on sires of phenotyped cows

only or genotypes available on the phenotyped cows themselves. For the simulated new trait a

heritability of 0.05 was assumed in chapter three. For the new trait designs investigated, it was

found that it is always better to genotype the phenotyped cows themselves (NTcows) instead of

using their phenotypic information via their genotyped sires (NTsires).

To consider new trait designs might have different reasons (Egger-Danner et al., 2014): new

phenotypes will be available as a consequence of technical developments, for example automatic

milking or feeding systems that will provide new measurements of fitness and milk parameters

or parameters of conformation on a regular basis. Additional aspects that are promoting the

necessity for new breeding traits are growing world population, negative effects of climate changes

and the need for a higher efficiency when using limited resources. Furthermore, the demand

of consumers for the issue of animal welfare is increasing and a decreasing use of antibiotics is

desired. However, the motivation of farmers and veterinarians to participate in a non-mandatory

monitoring project is usually low. Therefore, recording new traits must provide further benefits to

the producer in order to motivate the required extra effort. In Germany there are two examples

of such monitoring projects, “GKuh” and “ProGesund”. In both projects, veterinarian diagnosis,

treatments and observations by the farmer are recorded to get a large database for health related

traits. In addition, farmers have the opportunity to use these data to optimize the management

of their herd and to make better selection decisions. Having these databases already in place, it
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might be reasonable to genotype cows that have been already phenotyped to make better use of

these valuable phenotypes.

However, the current breeding value estimation already includes many traits (up to 43 (Egger-

Danner et al., 2014)), so it should at least be questioned whether further traits might be useful in

the selection decision or whether the clarity and comparability of animals may suffer. Certainly

the replacement of indicator traits by directly measured traits has its justification. An example

would be the direct estimation of mastitis instead of the somatic cell count. Other traits might

be collected in specific herds for research purposes only.

Further advantages when genotyping cows

Genomic selection is working very well for large cattle breeds with a sufficiently large reference

population with many progeny-tested bulls. However, the number of progeny-tested bulls is

limited for numerically small dairy cattle populations. Su et al. (2015) tested strategies for

Danish Jersey to get a larger reference population. In a first step US Jersey bulls were included in

the reference population and in a second also a large number of genotyped cows. They found that

both including foreign bull genotypes as well as cow genotypes in the reference population greatly

increased reliability of genomic prediction in Danish Jersey. Thomasen et al. (2014) also found

that integrating females in the reference population of a small breed had several advantages. It

was a profitable and fast way to increase reliabilities of genomic predictions. Furthermore, it also

increased genetic gain and decreased the rate of inbreeding compared with breeding schemes that

only updated reference populations with progeny-tested bulls.

Beside the improvement concerning the reliability of genomic breeding values and the use for

new (health) traits, genotyping cows might be especially useful as a management tool for the

farmers. Pryce et al. (2009) listed different advantages especially when the whole herd of the

farm is genotyped. First, it is easier to identify elite females and the best heifers to become

herd replacements. Second, inbreeding can be avoided using genomic assisted mating plans.

Third, genetic defects can be managed to a large extent when avoiding matings of cows and

bulls that are both identified to carry genetic disease allele. Genotyped females might also be

used to estimate non-additive effects. Interactions between genes result in non-additive genetic

variation. Dominance is the interaction between genes at the same locus and epistasis is the

interaction between genes at different loci. Genotyping an increasing number of females with own

phenotypes could lead to a better understanding and use of dominance effects in cattle breeding.

It might be possible to further increase reliabilities and also use this information for mating plans.

Furthermore, such plans can be used to find a suitable bull for a cow to make a targeted use of

overdominance and therefore maximize progeny performance (Wellmann and Bennewitz, 2011).
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Wellmann and Bennewitz (2012) found in a simulation study that accounting for dominance

effects in GBLUP and Bayesian models led to higher accuracies genomic breeding values than

models without dominance effects. Ertl et al. (2014) used real data of 1996 Fleckvieh cows,

genotyped with the Illumina HD-chip (Illumina BovineHD BeadChip, Illumina Inc., San Diego,

CA; HD-chip), to estimate dominance variance. They found estimates of dominance variance

to be from 3.3% to 50.5% of the total genetic variance, depending on the trait. Accuracies did

not change when dominance effects were added to the model. However, the data structure in

other datasets, for example pig data, might be more useful to get dominance-specific information,

because pig data usually contain more full-sibs then dairy cattle data. The dataset of Ertl et al.

(2014) contained 3% of full-sibs only. Wellmann et al. (2014) investigated whether accuracy of

genotypic values and dominance deviations can be increased by a joint evaluation of bulls and

cows. They used the same dataset as in Ertl et al. (2014), increased by 6858 genotyped bulls, and

found that using their strategy it was possible to increase the accuracy of estimated genotypic

values. Further, they concluded that by genotyping more cows, large scale datasets would become

available, which should allow for more accurate prediction of dominance deviations.

Technical aspects

Routine genomic breeding value estimation for dairy cattle is often done based on a 50k-chip

(Illumina Bovine SNP50 BeadChips, Illumina Inc., San Diego, CA) containing approximately

50,000 SNP markers. With the introduction of a 777k bovine chip (HD-chip) it was expected that

by using this denser chip the accuracy of genomic predictions especially for small breeds could

be improved. In several investigations, reliabilities of predicted breeding values were compared

when breeding values were predicted either from 50k or from HD genotypes, but only minor, if

any, gains in validation reliability were observed (Erbe et al., 2012; Su et al., 2012a, Ertl et al.

2013; VanRaden et al., 2013). It has been suggested that the benefits from HD-chips might be

small if most genetic variation is from very small QTL effects (Clark et al., 2011). In addition

to the HD-chip and the routinely used 50k-chip, there is also a series of low-density chips (e.g.

3k, 6k or 7k). LD-chips are often used to genotype cows, since they are more cost-effective than

chips with higher density (Brøndum et al., 2015; Wiggans et al., 2016). For example, since 2010,

genotyping of females with a LD-chip has been implemented at a large scale in Holsteins in the

United States (Wiggans et al., 2011; Goa et al., 2015). However, using LD-chips in most cases

includes an additional imputation step, in which the low-density genotypes are imputed to the

higher density, which is then used in the genomic evaluation. Imputation with a large reference

population works quite well in most cases (Pausch et al., 2013; Plieschke et al., 2014). The
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quality however depends on population key-parameters like the effective population size or LD

(Sargolzaei et al, 2014). This, and the fact that LD-chips are still somewhat costly, might be the

reason why the use of LD-chips has not been established in routine genomic evaluation for the

predominant South-German breeds.

Technical progress over the last decade has allowed millions of DNA reads to be sequenced at

a reasonable cost in a relatively short period of time (Ni et al., 2016). Thus, in the last years

there has been another technology getting available and feasible for dairy cattle: whole-genome

sequencing (e.g. Meuwissen and Goddard, 2010). Compared to SNP arrays, some advantages

of having whole-genome sequence data are expected. For instance, there should be an increase

in the ability to predict the genetic value of an individual for complex traits (Meuwissen and

Goddard, 2010). Additionally, it would make it possible to identify causal mutations and to

increase stability of genomic predictions without updating the reference population (Meuwissen

and Goddard, 2010; Pérez-Enciso et al., 2015; van Binsbergen et al., 2016). Goddard (2017)

further suggested and envisioned the use of whole-genome sequence data in a SNP-MACE method

for combining SNP-effects across countries and even across breeds.

Although the cost of DNA sequencing has decreased in the recent years due to the rapid

development of sequencing technology, it is still relatively expensive (Meynert et al., 2014; Ni et

al., 2016). Instead of sequencing the whole population it is possible to sequence only some so

called key ancestors and impute the remaining genotypes from a lower chip array to the sequence

level. Imputation to sequence data might be a cost-effective approach to obtain a large training

set of sequenced individuals (van Binsbergen et al., 2015; Pausch et al., 2016). The 1000 bull

genomes project (Daetwyler et al., 2014) was set up to build up whole-genome sequence data

from various large cattle breeds. The aim of the project was to build a database containing

sequence variant genotypes of key ancestors from three different cattle breeds to be able to do

genome-wide association studies (GWAS) and genomic prediction based on sequence data and

to use this data to identify mutations that influence animal health, welfare and productivity

(Daetwyler et al., 2014). This project has rapidly increased the availability of sequence data of

important ancestors in these cattle breeds. Although the expectations were great, the results

with respect to the reliability of genomic prediction did not show the desired advantage over the

other SNP chip arrays (e.g. van Binsbergen et al., 2015; Pérez-Enciso et al., 2015). Moreover,

sequence data are very large datasets and therefore difficult to transfer. Additionally, the use of

these datasets requires expensive hardware equipment (Pérez-Enciso et al., 2015). Nevertheless,

sequencing technology might be helpful to detect SNP variants that cause genetic defects.

Genomic selection is a comprehensive topic that brought large changes to animal and plant
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breeding in recent years. Over the past few years, progress has been made. However, it can be

expected that much of the ongoing work will not be completed in the short term and further

open questions will be addressed in the future.
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The aim of this study was to investigate methodological and strategic aspects of genomic selection

in Bavarian cattle breeds.

In chapter one a method was developed to separate the genomic relationship matrix into two

independent covariance matrices. Here, the base group component describes the covariance that

results from systematic differences in allele frequencies between groups at the pedigree base. The

remaining segregation component describes the genomic relationship that is corrected for the

differences between base populations.

To investigate the proposed decomposition three different models were tested on six traits,

where the covariance between animals was described either only by the segregation component

or by a combination of the two components. An additional variant examining the effect of a

fixed modeling of the group effects was included. In total, 7965 genotyped Fleckvieh and 4257

genotyped Brown Swiss and 143 genotyped Original Braunvieh bulls were available for this study.

The proposed decomposition of the genomic relationship matrix helped to examine the relative

importance of the effects of base groups and segregation component in a given population. It

was possible to estimate significant differences between the means of base groups in most cases

for both breeds and for the traits analyzed. Analysis of the matrix of base group contributions

to the populations investigated revealed several general breed-specific aspects. Comparing the

three models, it was concluded that the segregation component is not sufficient to describe the

covariance completely. However, it also was found that the model applied has no strong impact on

predictive power if the animals used for validation show no differences in their genetic composition

with respect to the base groups and if the majority of them have complete pedigrees of sufficient

depth.

The subject of the chapter two was investigation to systematically increase the reliability of

genomic breeding values by integrating cows into the reference population of genomic breeding

value estimation. For this purpose a dataset was generated by simulation resembling the German-

Austrian dual-purpose Fleckvieh population. The concept investigated is based on genotyping

a fixed number of daughters of each AI bull of the last or last two generation of the reference

population and, together with their phenotypic performance, to integrate them into the reference
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population of the genomic evaluation. Different scenarios with different numbers of daughters per

bull were compared. In the base scenario the reference population was made up of 4200 bulls.

In the extended scenarios, more and more daughters were gradually integrated in the reference

population. The reference population of the most extended scenario contained 4200 bulls and

420,000 cows.

It was found that the inclusion of genotypes and phenotypes of female animals can increase the

reliabilities genomic breeding values considerably. Changes in validation reliability of 6-54% for a

trait with a heritability of 0.4 depending on scenario were found. As the number of daughters

increased, the validation reliability increased as well. It should be noted that the composition

of the daughter samples had a very great influence on whether the additional genotyped and

phenotyped animals in the reference population can have a positive effect on the reliability of

genomic breeding values. If pre-selected daughter samples were genotyped, the mean validation

reliability decreased significantly compared to a correspondingly large unselected daughter sample.

In addition, a higher bias was observable in these cases.

Chapter three expands the investigations of chapter two by a low-heritability trait, as well as

the aspect of so called new traits. The results found in chapter two were confirmed in chapter

three for a low-heritability trait. Changes in validation reliability of 5-21% for a heritability of

0.05 depending on scenario were found. The negative effects of pre-selected daughter samples were

even more pronounced in chapter three. In the case of an ‘old’ trait, the number of phenotypes is

expected to be (nearly) unlimited, since a recording system is well established. In the case of a

new trait recording of phenotypes just started, therefore the number of phenotypes is limited.

Two different genotyping strategies were compared for new traits. On the one hand, the sires of

the phenotyped cows were genotyped and on the other hand the phenotyped cows were genotyped

themselves. It was found in all compared scenarios that it is more sensible to genotype cows

themselves instead of the genotyping their sires. However, if usual strategy of phenotyping female

animals and genotyping of males is applied, it is at least important to ensure that many daughters

are phenotyped in a balanced system. If different numbers of daughters per bull are phenotyped

and unbalancedness becomes severe, the average validation reliability decreased significantly.
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General Summary (German)

Ziel der vorgelegten Arbeit war es verschiedene Aspekte der genomischen Selektion zu untersuchen.

In Kapitel eins wurde eine Methode entwickelt, die die Verwandtschaftsmatrix in zwei unab-

hängige Kovarianzmatrizen trennt. Dabei beschreibt die eine Matrix die Basisgruppenkomponente,

eine Kovarianzkomponente die auf Allelfrequenzunterschiede zwischen verschiedenen Gruppen der

Basispopulation zurückzuführen ist. Die Segregationskomponente beschreibt die genomische Ver-

wandtschaft, welche um diese Unterschiede zwischen verschiedenen Basispopulationen korrigiert

wurde.

Die Zerlegung wurde anhand drei verschiedener Modelle für sechs Merkmale untersucht. Dabei

wurde die Kovarianz zwischen Tieren entweder nur durch die Segregationskomponente oder über

eine Kombination beider Komponenten beschrieben. Eine zusätzliche Variante untersuchte den

Effekt einer fixen Modellierung der Gruppeneffekte. Zur Verfügung standen für diese Studie die

Genotypen von 7965 Fleckviehbullen sowie von 4257 Braunvieh- und 143 Original Braunviehbullen.

Über den beschriebenen Weg war es möglich, den Umfang der Basisgruppeneffekte und der

Segregationskomponente in den beiden untersuchten Populationen sichtbar zu machen. Es konnten

signifikante Unterschiede zwischen den mittleren Basisgruppeneffekten in den meisten Fällen für

beide Rassen und für die analysierten Merkmale gefunden werden. Die Analyse der Genanteile

der diversen Basisgruppen an den untersuchten Populationen machte zudem einige rassetypische

Aspekte sichtbar. Im Vergleich der drei Modelle, wurde festgestellt, dass die Segregationskom-

ponente nicht ausreicht die Kovarianz vollständig zu beschreiben. Es wurde allerdings auch

festgestellt, dass das verwendete Modell keinen starken Einfluss auf die Vorhersagekraft hat,

wenn die zur Validierung verwendeten Tiere in ihrer genetischen Zusammensetzung weitgehend

homogen sind und die Mehrheit von ihnen ein vollständiges Pedigree mit ausreichender Tiefe

aufweist.

Gegenstand des zweiten Kapitels waren Berechnungen zur systematischen Steigerung der

Sicherheiten genomischer Zuchtwerte durch die Aufnahme von Kühen in die Referenzstichprobe

der genomischen Zuchtwertschätzung. Hierfür wurde eine Simulationsstudie durchgeführt, durch

die die deutsch-österreichische Fleckviehpopulation widergespiegelt werden sollte. Das in der

Simulation untersuchte Genotypsierungskonzept beruht darauf, eine fixe Anzahl erstlaktierender
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General Summary (German)

Töchter eines jeden Besamungsbullen aus der jeweils letzten bzw. vorletzten und letzten Genera-

tion der Referenzstichprobe zusätzlich zu genotypisieren und zusammen mit ihren phänotypischen

Leistungen in die Referenzstichprobe der genomischen Zuchtwertschätzung zu integrieren. Ver-

glichen wurden verschiedene Szenarien mit unterschiedlicher Anzahl an Töchtern je Bulle. Im

Basisszenario bestand die Referenzstichprobe aus 4200 Bullen, in den erweiterten Szenarien

wurden schrittweise immer mehr Töchter integriert. Wobei die Referenzstichprobe im letzten

Szenario 4200 Bullen und 420.000 Kühe umfasste.

Es konnte gezeigt werden, dass durch die Aufnahme von Genotypen und Phänotypen weiblicher

Tiere die Sicherheiten genomischer Zuchtwerte erheblich gesteigert werden können. Die gefundenen

Zuwächse betrugen dabei zwischen 6 und 54 % bei einem Merkmal mit einer Heritabilität von

0,4, wobei die Zuwächse mit zunehmender Anzahl an Töchter ebenfalls weiter anstiegen. Die

Zusammensetzung der Töchtergruppen hatte einen großen Einfluss darauf, ob die zusätzlichen

genotypisierten und phänotypisierten Tiere in der Referenzstichprobe einen positiven Effekt auf die

Sicherheiten genomischen Zuchtwerte haben können und wie hoch dieser ist. Genotypisierte man

ausschließlich vorselektierte Töchtergruppen, sank die mittlere Validierungssicherheit erheblich im

Vergleich zu einer entsprechend großen unselektierten Töchtergruppe. Außerdem waren Effekte

einer deutlichen Verzerrung der Zuchtwerte beobachtbar.

Kapitel drei erweiterte die Untersuchungen aus Kapitel zwei um ein niedrig-erbliches Merkmal

sowie um den besonderen Aspekt der so genannten neuen Merkmale. Die in Kapitel zwei

gefundenen Ergebnisse konnten in Kapitel drei auch für ein niedrig-erbliches Merkmal bestätigt

werden. Bei einer Heritabilität von 0,05 konnten die Sicherheiten in den verschiedenen Szenarien

zwischen 5 und 21 % gesteigert werden. Eine gezielte Auswahl der genotypisierten Töchtergruppen

führte auch hier zu negativen Effekten auf die ansonsten erzielbaren Sicherheiten und führte

zu einer Verzerrtheit der genomischen Zuchtwerte. Im Falle eines Merkmals mit etablierter

Leistungsprüfung kann davon ausgegangen werden, dass die Anzahl der Phänotypen (nahezu)

unbegrenzt ist.. Im Falle der neuen Merkmale trifft dies nicht zu. In diesem Zusammenhang

wurden zwei verschiedene Strategien der Genotypisierung verglichen. Zum einen wurden die

Väter der phänotypisierten Kühe genotypisiert und zum anderen wurden die begrenzte Anzahl

phänotypisierter Kühe selber genotypisiert. Es konnte in allen verglichenen Szenarien gezeigt

werden, dass es sinnvoller ist, die Kühe selbst zu Genotypisieren statt deren Väter. Sollte dies nicht

möglich sein und man nutzt die neuen Phänotypen wie bisher nur über die Väter, ist zumindest

darauf zu achten, dass Töchter in balancierter Weise phänotypisiert werden. Bei niedrig erblichen

Merkmalen und stark begrenzter Verfügbarkeit von Phänotypen kann Unbalanciertheit deutlich

negative Effekte auf die mittlere Validierungssicherheit haben.
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