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Introduction

Capillarity describes the effects caused by the surface tension on liquids. When considering
small amounts of liquid, the surface tension becomes the dominating parameter. In this
situation the arising mathematical task is to determine the occurring capillary surface. At
the beginning of the research on this topic, problems such as the ascent of fluids in a circular
tube, on a vertical wall or on a wedge were some of the first problems scientists were concerned
with. At the beginning of the 19th century, scientists like YOUNG!, LAPLACE?, TAYLOR ? and
Gauss? established the mathematical foundations of this field. For the capillary tube® they
found, by applying variational methods, the so called mean curvature equation or capillary
equation with the associated boundary condition. As FINN in [Fin86, Chapter 1] describes,
this leads to the following boundary value problem:

divTu = krku+A in Q,
v-Tu = cosvy on 05,
Vu . 6 .. .
where Tu = —————=. A is called the Lagrange® multiplier and ~ is the contact angle,

VI+ Va2
established between the capillary surface and the container wall.

In the past, one tried to solve the problem by linearisation — with more or less satisfying
results. In the last decades, expedited by the developing of micromechanics and the arising
space-technology, capillary effects became more and more significant. Thereby the observed
results differed from the predicted. The reason is the strong non-linearity of the problem.

Interior molecular forces are responsible for the establishing of equilibrium surfaces. The
force, operating between two materials, is called adhesion and cohesion is the molecular
force within a medium. Under some specifications there arises a non-negligible force, called
disjoining pressure. This pressure causes an additional term in the capillary equation, which

'Thomas Young (*13 June 1773, Milverton; 110 May 1829, London); Englisch polymath; made notable
contributions to the fields of vision, light, solid mechanics, energy, physiology, language, musical harmony and
Egyptology, found the Young-Laplace equation

2Pierre-Simon (Marquis de) Laplace (28 March 1749, Beaumont-en-Auge; 15 March 1827, Paris); French
mathematician and astronomer; found the Young—Laplace equation

3Brook Taylor (*18 August 1685, Edmonton; 129 December 1731, Somerset House/London); English math-
ematician; experiments in capillary attraction

“Johann Carl Friedlich GauB (*30 April 1777, Braunschweig; 123 February 1855, Gottingen); German
mathematician and scientist; contributed significantly to many fields, including number theory, statistics,
analysis, differential geometry, geodesy, geophysics, electrostatics, astronomy and optics

S5A capillary tube is a container with cross-section Q and perpendicular container walls, which contains an
amount of liquid.

Joseph-Louis de Lagrange (*25 January 1736, Turin; 110 April 1813, Paris); Ttalian mathematician and
astronomer.



is called the disjoining pressure potential, denoted by P(x,u(x)). That is, we are led to the
following modified capillary equation, see [MMS08]:

divTu=ru+ P+ A in €,

with a similar boundary condition (see Section 1.3 for more details). The main task of this
paper is to examine the behaviour of the capillary problem, considering the disturbance P. A
generic example for such configurations is vapour nitrogen//liquid nitrogen//quartz, see also
[Isr92, Chapter 11] or [MMSO08].

The present work with regard to contents is divided in three parts. In the first part,
inspired by the work of Concus and FINN [CF74], [FH89], we prove a Comparison Principle.
As in the classical context, this principle is a powerful tool to find solutions of the boundary
problem. Thus we can see that the disjoining pressure potential is the key for the asymptotic
of the solutions.

The second part is concerned with the asymptotic behaviour of the solutions for some
classical cases. In particular for the capillary tube with circular cross-section (see [Mie93b],
[Mie94], [Mie96] for the classical setting) the ascent on a horizontal wall and between two
parallel horizontal plates, results are presented. There we are able to specify the asymptotic
behaviour up to a constant term.

In the last part we observe the solution of the problem on a corner. There it is more
difficult to obtain a result. But in return, we gain a better result near the cusp of the edge.
In the articles of MIERSEMANN [MIES88], [Mie89], [Mie90] or SCHOLZ [Sch04] some results for
the classical setting are given.

The formal arrangement is divided into three main chapters. The first of them is a
summary of some notations which will be needed in the following chapters and also the
physical background is illuminated. The main part, where asymptotic results are presented,
is contained in Chapter 2. To afford a better reading, most of the proofs are given in Chapter
3.



Chapter 1

Notations and physical background

In this section we will outline some mathematical facts which will be required in the subse-
quent chapters. Since the divergence of a function plays a major role, we will have a closer
look at it. It is also essential to perform some large calculations. In some of these calculations
it is sufficient to estimate some terms. Thereby it is adjuvant to use both the ”big O notation”
and the ”asymptotic notation”, which we will also introduce in the following. Finally we will
give a brief overview of the physical background of the underlying problem.

1.1 Divergence in polar coordinates

Based on the definition of the divergence we compute it by using polar coordinates. In the
later sections this description enables us to obtain some explicit results.
Let be Q C R% 2 = (21,22) € Q and Tu = ——%“—, where Vu = (ug,, Uz,) denotes the

1+ Vul?’

gradient of u. So we have by definition, for a function u = u(x)

divTue 2 [ Yo + O [ uay
Oxy \ 1+ [Vu? ) Ox2 \ /14 [Vul2 ]’
where |Vul> = u2 +u2 . Let be
divTu=f in

for a given function f = f(z) and let be v = v(z) € CL(R). Thereby C(2) denotes the space
of all continuous differentiable functions with compact support in 2. Then we get, using the
definition of div T u and integration by parts

/fvdx:/divTu-vd:U:/ {i <L>v+i<ﬁ> U}d:ﬂ
Q Q a | 921 \ /1 + |Vul? Oxy \ \/1+ |Vul?
Ug,y Uy,
:_/52{\/1+]Vu\2%1+ \/1+\Vu]2%2}dx.
(1.1)

At this point we introduce the polar coordinates that is, we choose x1 = rcosp and z9 =
rsiny. So we get
u(zy, x2) = u(rcos g, rsinp) = a(r, @)

9



and so

Uy = Ug, COS P + Uy, SIN P,

Up = —Ug, T SINQ + Uy, T COS @
and hence

Uy, = Uy COS P — rilﬂg, sin ¢,

1

Ugy = Up SIN QY + T Uy COS .

Thus we can compute

2 _ 2 2 _ -2 -2.2
[Vl = uy, +ug, =y + 17 ",

Inserting polar coordinates in (1.1) and considering da = rdrdyp yields

Uy Uy + 17210,

fz‘;rdrdgp = — r
/Q o 14 |Vul?

. (1.3)
= / __ Tl + T e vdrde
a [ \V1+[Vu?) V14 |Vul? . 7

where we again used integration by parts. Applying the fundamental lemma of calculus of
variations to equation (1.3) we get

U r1la
divTu=r""! B Y pe—— -
<\/1—|—|Vu|2>r <\/1—|—|Vu|2>gJ

This is the desired result.
With regard to later applications, we also compute the boundary condition in polar coor-
dinates of a wedge shaped domain that is, we define for 0 < a < 7

Q:{(T,Q)GRQ:—QSQSQ, r>0},
see Figure 1.1. We have by (1.2)

" Vu B 1 < Uy cos  — 1, sin g )
VIFIVUR T+ [VuR \ Grsing +r-ta,cos g

and on X7 that is, if 6 = +a and r > 0

([ cos(a+7/2) \ [ —sina

- \Usin(fa+7/2) )\ cosa )’
where v is the outer normal. And so we get on X

o _ S 1
VTU,Z( SIHCE).(’LLTCOS()O rluwanap):

CoS UpSin + 1~ Uy COS Ml—i—\Vu]Q.

By an similar calculation on ¥, we get the final result on ¥\ {0}

1
v-Tu=sign | ———— 0 = *+a.

V1+ [ Vu’

10



Figure 1.1: Wedge shaped domain.

1.2 Order notation and asymptotic notation

The ”order notation”! and the ”asymptotic notation” will be useful to simplify some calcu-
lations which makes them easier to understand. Thereto we use the definitions of MURRAY,
see [Mur84, p. 2ff].

If f(2) and g(z), two functions of a complex number z, defined on some domain €2, possess
limits as z — 2 in , then we say f(z) = O(g(z)) if there exist positive constants K and
k such that |f| < Klg| whenever 0 < |z — z9| < k. If |f| < K]g| for all z in Q, we say
7(2) = O(g(2)) n .

Now we specify the so called "order notation”. Let Q be a subset of C*, n € N =
{1, 2,3, ...}, and f(2) and g(z) defined on Q. Then we introduce the 'Landau-notation’ as
follows.

Definition 1
1. f(2) =0(g9(2)) == 3A>0:|f| < Alg| V=€

2. f(2) =0(g(2)), as z — zp = FA,6 > 0: |f| < Alg| Vz € Bs(z0) N2
3. f(z) =0(g(2)), as z — zp :=Ve > 036 > 0:|f| <elg| Vz € Bs(z0) N Q2
For example, we have sinz = O(1) in R, sinz = O(z) as z — 0 and sinz = o(1) as z — 0.

If ¢ # 0 in ©Q and in a neighbourhood of zy respectively we have got an equivalent
formulation of the upper definition which is

f(z) =0(g(2)), Vz€ Q& ‘@‘ <A <o, VzeQ,

9(2)
f(z) =0(g(2)), as z — zp & ‘%‘ <A <oo0, as z — 2,
f(z) =0(g(2)), as z — 2z & ‘M‘ — 0, as z — 2.

9(2)

1 . . . . .
The ”order notation” is also known as ”big O notation” or ”Landau notion”.

11



As mentioned above, if for a complicated function their asymptotic behaviour is known,
it is together with the ”order notation” an useful tool to shorten difficult calculations.

Definition 2

We say that a function f(z) is asymptotically equal to g(z) under the limit z — zy if f
and g are such that lim F&) — 1, Therefore we write also
2z 9(2)

f(z) ~ g(z), as z — 2.

Sometimes, when mix-ups are impossible, we omit the argument of the function. For example,
if f(2) =294 2"logz, then f ~ 2! as z — oo and f ~ 2" log z as z — 0.

1.3 Physical background

At first we will sketch a short abstract about the practical use of the results presented in
Chapter 2. Then we will give a survey of the underlying physical basics which lead to the
difference to the classical capillary problem. Finally we dwell on some specific examples of
vapour/ /liquid/ /solid configurations, on which our results can be applied.

Porous matter contains a filigree network of pores which are intricate and affiliated into
each other?. If these porous materials get in contact with a liquid, capillary effects lead to an
adsorption of the liquid. A major task is to determine the absorbed amount of substance in
the pores. Therefore it is necessary to have statistics about the distribution of the shape and
size of the occurring cavities. Each category of pores can absorb a fixed condensate quantity.
To get the desired result for a specific type of pore, one examines in each case a single pore?.
Thus combining the statistics of the cavities with the specific condensate quantity yields the

total quantity of the absorbed liquid.

It is well known that all matter is built-on atoms and molecules. An atom itself consists
of a nucleus (a conglomerate of protons and neutrons) and an atomic shell. In the shell
electrons orbit the nucleus. It is also commonly known that electrons carry a negative charge
and protons a positive one, while neutrons are uncharged, and atoms as a whole are neutral,
too. The reason for the cohesion of atoms are the strong interaction and the electrostatic
force, which are short-range forces.

But we are interested in the physical forces between atoms and molecules, in particular
the so called van der Waals * forces. These forces are weaker compared to normal chemical
bonds, but they play a fundamental role in physical chemistry, since they are long range forces.
In the following we use the descriptions of SAFRAN [Saf03, Chapter 5] and ISRAELACHVILI
[Isr92, Chapters 3, 6] respectively.

Most of the types of physical forces arise from straightforward electrostatic interactions
involving charged or bipolar molecules. But the van der Waals forces act between all atoms

2Unless otherwise noted, all nontrivial physical and chemical declarations arise from the correspondence
with PETER SCHILLER, co-author of [MMS08].

3Results for single pores of some simple geometries are stated in [MMS08].

4 Johannes Diderik van der Waals (*23 November 1837, Leiden; 18 March 1923, Amsterdam); Dutch physicist
and thermodynamicist; important contributions on an equation of state for gases and liquids; 1910 Nobel Prize
in Physics

12



and molecules even totally neutral ones. The dominating portions of the van der Waals forces
are called dispersion forces. They play a major role in a host of important phenomena such as
adhesion, surface tension, physical absorption, wetting, properties of liquids and thin films,
and the strengths of solids, see [Isr92, 6.1]. ISRAELACHVILI summarised their main features
as follows®:

(1) They are long-range forces and, depending on the situation, can be effec-
tive from large distances (greater than 10 nm) down to interatomic spacings
(about 0.2 nm).

(2) These forces may be repulsive or attractive, and in general the dispersion
force between two molecules or large particles does not follow a simple power
law.

(3) Dispersion forces not only bring molecules together but also tend to mutually
align or orient them, though this orienting effect is usually weak.

(4) The dispersion interaction of two bodies is affected by the presence of other
bodies nearby. This is known as the non-additivity of an interaction.

In the following we are interested in the forces interacting between nonpolar atoms. So
we will give a short heuristic derivation of some interesting physical phenomena.

As TSRAELACHVILI writes in [Isr92, 6.1], we can explain the arising dispersion forces as
follows: The average duration of the dipole® of an atom is zero. But at any instant there
exists a finite dipole moment, given by the instantaneous positions of the electrons about
the nuclear protons. This dipole generates an electric field that polarises nearby atoms and
inducing a dipole moment in them. The resulting interaction between this dipoles gives rise to
an instantaneous attractive force between the atoms. That is, an instantaneous little variation
of the electric characteristics of a single atom leads to an influence on the adjoining atoms.

As mentioned previously, this is a very simple illustration, primarily just valid for two
molecules (or atoms) in a vacuum. In this case we always get an attractive force between the
particles. Qualitatively one has the following dispersion interaction

u(r) = ——4 (1.4)

where 7 is the distance between the centre of the molecules and «a;; > 0. Modelling a pore,
three different media arise, that is, we have the following configuration

diluted gas//condensed liquid film//solid body. (1.5)

So the dielectric properties of the interacting media influence the setting, too.

Let us consider two particles, a vapour one and a solid one, each of them near a boundary
layer of the upper setting (1.5). To get the effective interaction potential, U, one has to add all
interactions of the type, given in equation (1.4). In addition thereto, one also has to comprise
the solid-film-dispersions and the film-vapour-dispersions. So SAFRAN ([Saf03, Section 5.3])
describes that we are now led to the following formula of the effective interaction of the two
particles

H 1
T2 pyps i
Thereby p, and p, denote the particle-number-density” of vapour and solid respectively and

U=-

®The following properties are taken from [Isr92, p. 83f].
8An electric dipole is a separation of positive and negative charge.
"That is, the number of particles per volume.
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the distance between the center of the two particles. In this formula the Hamaker® constant,
H, occurs. The Hamaker constant depends on the dielectric constants® €,, ; and e, of the
vapour, liquid and solid respectively. Simplified it can be computed by

H=c- (e, —e1)(es — 1), (1.6)

whereby ¢ is a positive constant. From expression (1.6) we conclude that the sign of H de-
pends on the differences between the dielectric constants. That is, the occurring dispersion
interaction can be attractive or repulsive and the Hamaker constant specifies this property.
More precisely if and only if the value of the dielectric constant of the liquid, ¢;, lies between
gy and g4, H becomes negative and the van der Waals interaction is repulsive.

Summing up, the van der Waals force between two arbitrary molecules is attractive,
but the overlapping of forces in a sequence of three phases can result in a repulsive force
between the outer media. In this work we just consider the case of repulsive van der
Waals forces. Repulsive means vividly that the vapour//liquid boundary layer and the
liquid/ / solid boundary layer repulse each other.

The result of this repulsion is that the absorbed film will act to thicken the film, to lower
its energy. But when the liquid climbs up the solid wall, the gain in van der Waals energy is
at the expense of gravitational energy. So the equilibrium film thickness will decrease with
the height, see Figure 1.2.

Q,

vapour

Q

liquid

Figure 1.2: Ascent on the boundary.

8Hugo Christiaan Hamaker (*23 March 1905, Broek op Langendijk; 17 September 1993, Eindhoven); Dutch
scientist; responsible for the Hamaker theory which explains the van der Waals forces between objects larger
than molecules

9The dielectric constant is a measure of the extent of reduction of electric fields and consequently of the
reduced stength of electrostatic interactions in a medium.
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At this point ISRAELACHVILI introduces the disjoining pressure of a film, see [Isr92, 11.6],
which arises when an equilibrium is established in the film. Just this disjoining pressure makes
the difference to the classical capillary equation. Now, when H < 0, the disjoining pressure
has to be attended when the equilibrium of the three phase system is established. And after
using a variational ansatz similar to the one in [Fin86, 1.7], we obtain the following boundary
value problem

divTu = ku+ P(x,u)+ A in Q,

v-Tu = 1 on X. (1.7)

The occurring expression P(z,u) is the disjoining pressure potential, arising from the dis-
joining pressure. In general, the disjoining pressure potential of absorbed films on even and
curved interfaces can be computed by

P = P(z,u(x)) = c/ (21— 91)* + (w2 — y2)® + (u — yg)Q]_p/2 dy, p > 3. (1.8)

Qs

Thereby €2; denotes the solid domain, see Figure 1.3. The occurring constants in the upper
equations are given by the relations

k= pgo*, A= pkTIn(X)o !, c=Hr 2071,
where

p is the difference between the number densities of the liquid and the vapour phase,
g is the gravitational constant (positive when the field is directed downward),

o is the surface tension,

k is the Boltzmann constant,

T is the absolute temperature,

X is the reduced (constant) vapour pressure, 0 < X < 1,

H is the (negative) Hamaker constant.

Figure 1.3: Solid, liquid and vapour domain.

In most practical cases the vapour density is negligibly small, so that p can be replaced
by the density of the liquid phase. Since we consider the problem (1.7) for negative Hamaker
constant ‘H the occurring constant c is also negative.

As mentioned above, formula (1.8) is given in a general form. In the relevant cases we
have p = 6. Cases with 3 < p < 6 may arise in small systems without practical importance.
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The most popular example is the configuration helium vapour//liquid helium//solid. Liq-
uid helium avidly spreads on almost any surface. Thus if liquid helium is placed in a container,
it rapidly climbs up the walls and down the other side. Eventually it leaves the beaker alto-
gether. This behaviour results from the low dielectric constant, which is ey, = 1.055. And as
mentioned above, the Hamaker constant becomes negative and the repulsive van der Waals
forces act to thicken the film to lower its energy. This explains the strong ascent on the walls.

But since the extraction of helium is very expensive it is rarely used in adsorption-

experiments. For financial reasons, one normally uses gases like nitrogen in such experi-
ments!?.

Table 1.1: Static dielectric constants ¢ of some common liquids and solids at 25°C.

Compound e Compound €
Hydrogen bonding Glasses
Methyl formamide HCONHCH3;  182.4 Fused Quartz Si09 3.8
Water H>O 78.5 Soda glass 7.0
Methanol CH3;OH 32.6 Borosilicate glass 4.5
Ethanol CoH50H 24.3
Ammonia NHj 16.9  Crystalline solids
Diamond (carbon) 5.7
Non-hydrogen bonding Quartz SiOs 4.5
Acetone (CH3)2CO 20.7 Sodium chloride NaCl 6.0
Chloroform CHCl3 4.8
Benzene CgHg 2.3 Miscellaneous
Carbon tetrachloride  CCly 2.2 Paraffin (liquid) 2.2
Hexane CeHia 1.9 Paraffin wax (solid) 2.2
Silicone oil 2.8
Polymers Liquid helium (2-3K) 1.055
Nylon 3.7-4.2  Water (liquid, 0°C) 87.9
PTFE 2.0 Air (dry) 1.00054

The values of Table 1.1 are taken from [Isr92, 3.8].

In Table 1.1 the dielectric constants of some materials are given. Since hydrogen bonding is
polar bonding, substances with hydrogen bonding exhibit the highest dielectric constants. We
can also see that helium has a very low dielectric permittivity compared to other media. Just
(dry) air and vacuum (e = 1) have a lower permittivity. Dry air consists of nonpolar nitrogen
and oxygen molecules. But still a very low air humidity falsifies the results and has therefore no
practical importance for the upper explanations. Hence in adsorption-experiments one have
to employ pure gases, for example one uses quartz in a pure nitrogen, oxygen or sometimes
rare gases'! atmosphere.

YOFor example determining the disturbation of the shape and size of pores
"Nitrogen, oxygen and rare gases are nonpolar.
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Chapter 2

Asymptotic results

In this chapter the main results are given. But before we look at them, we will first repeat
a well known result of CONCUS and FINN, namely the Comparison Principle for unbounded
domains. Then we will specify a modified Comparison Principle, a resulting bound for the
solution of problem (2.2), and in the last sections, we will give the asymptotic results for some
common domains.

2.1 Normal Comparison Principle

We will state a classical version of the Comparison Principle of CONCUS and FINN, which was
first published in [FH89]'. The goal of this theorem is to estimate the behaviour of capillary
surfaces in capillary tubes of general cross-section ). That is, we will search a graph u over
a base domain Q C R?, with ¥ = 99, which suffices the boundary value problem

divTu = ru-+ A in Q,

v-Tu = cosvy on X, (2.1)

see [Fin86, Chapter 1] for details. In addition, the principle bears a lot of other applications.
Some of them are listed in [Fin86, 5.2].

Actually the Comparison Principle is also valid for bounded and unbounded domains €2 in
R™. But here just the statement for the case n = 2 is given, since this is physically reasonable.
It is also worth noting that there is no growth hypothesis on v and Vu in the Comparison
Principle. This characteristic results from the particular nonlinearity of the equation.

Theorem 3 (Normal Comparison Principle)
Let k > 0 and suppose ¥ = 0f2 admits a decomposition ¥ = ¥, U Xg U Xy, where Yz € ct
and ¥y has one-dimensional Hausdorff measure zero. Let v,w € C*(Q) NC' (X5 U Q) with the

properties
(i) divTw—kw >divTv—kv inQ,
(ii) w <w as v — Xg,
(iii) v-Tw <v-Tv as r — Xg.

Then we have w < v in .

By writing
v-Tu<v-To, as r — Xg

Versions for bounded domains have been published before.
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we mean
Im v-Tu< lim v-To.

SR/ SR
Tr — X Tr — X
xoézﬁ xoézﬁ

In property (ii) and in the following we use the corresponding abbreviation.
A simple consequence of the upper theorem is that the solution of the problem is unique
and another one is the following corollary.

Corollary 4
Let k > 0 and suppose ¥ = 9€) admits a decomposition ¥ = ¥, U g U Xg, where g € ct
and Yo has one-dimensional Hausdorff measure zero. Let v be a solution of (2.1), w* €

C*(Q) NCH (XU Q) with the properties

a) If
(i) divTw —kw™ > 0 in
(i) w- < v as T — X,
(iii) v-Tw- < cosy asx— g,
then we have w~ < v in Q.
b) If
(i) divTw!t—kwt < 0 in )
(i) wt > v as T — g
(iii) v-Twh > cosy asz— g,

then we have wt > v in .

This corollary bears the common recipe to find a solution of the upper boundary value
problem (2.1). The strategy is to find suitable comparison functions w® which satisfy the
corresponding properties (i)—(iii) of Corollary 4. Normally the comparison functions should
have the shape w*(x) = f(x) & g(x) for some suitable functions f and g. Then Corollary 4
yields

w-<v<w'inQ

)

that is, if w® has got the above mentioned shape, one gets

[v(z) — f(2)] < g(z) in Q.

The best case is that the function g can be chosen arbitrarily small. Normally g can not be
chosen small. In this case at least an estimate of the solution or an asymptotic expansion
may be achieved by applying the Comparison Principle successively.

Another question is how to find a suitable comparison function. There is no general recipe,
but often the underlying geometry of the problem provides an adapted function.

2.2 Modified Comparison Principle

A lot of research has been done concerning the classical capillary problem (2.1) for the cap-
illary tube. In this section we will examine this problem with a perturbation, which is the
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disjoining pressure potential P(x,u) which was mentioned previously. That is, we have the
modified boundary value problem

divTu = ru+ P(x,u)+ A in Q,

v-Tu = 1 as r — X, (2:2)

for k > 0, whereby P is defined in Section 1.3.
The main tool to study this problem is a modification of the Comparison Principle of
Concus and FINN, which we formulate in the following theorem.

Theorem 5 (Modified Comparison Principle)
Let k > 0 and suppose ¥ = 0f2 admits a decomposition ¥ = ¥, U Xg U Yo, where Yg € ct
and Yy has one-dimensional Hausdorfl measure zero. Let u,v € CQ(Q) with the properties
(i) divTu—ku—P(x,u) > divTv—kv— Pz,v) inQ,
(ii) u
(iii) v-Tu
Then we have u < v in .

< w as r — Xgq,
<

v-To as v — Xg.

The result will be that the case P(z,u) is independent of the special graph u, describes
a common situation. In the following we will have a closer look on this situation. If in addi-
tion div T P is uniformly bounded, we can infer the asymptotic behaviour of the solution of
problem (2.2) from the upper Comparison Principle:

Let v be a solution of the boundary problem (2.2), with ¥, = () and P(z,u) independent
of the particular graph u. So let us denote it again by P(z). And in addition let divT P be
bounded. With the notations of Theorem 5, the solution v satisfies in particular

divTv — kv = P(x) — A in Q (2.3)
and
v-Tv—1, as v — Xg.

Now define wg = £~ H(A — P(z)) and wt = wg + A, for a positive A € R, to get the estimate

+:

divT wt — kw div T wg — kwy — KA

= divTwy— kA+ P(z) — A

23) divTwg — kA +divT v — kv

< divTv — kv,

for a constant A which satisfies div T wg — kA < 0. Such a constant exists, since x > 0 and
div T wy is bounded by assumption. We have by definition of P

|P(z)| — oo, as T — g

and so
v-Twh —1, as T — Xg.

That is, in general w™ satisfies the boundary condition (iii) of the Comparison Principle. So
we can apply the principle to get v < w.
An analogous result arises for w™ = wg — A, so that we get the following theorem.
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Theorem 6
Let k > 0 and suppose ¥ = 02 admits a decomposition ¥ = ¥3 U X, where ¥ € C! and ¥
has one-dimensional Hausdorff measure zero and let the following properties be satisfied.
(i)  P(x,u) is independent of u(x)
(ii) div T P is uniformly bounded in §)
Then there is a constant A > 0, such that for the solution v(z) of equation (2.2) follows

{v(m) + Ii_lp(CE)‘ <A in Q.

Thus, Theorem 6 provides the asymptotic behaviour of the solution of problem (2.2).
That is, v ~ —k 1 P(2), as x — 0.

Therefore in the modified problem the disjoining pressure potential P affords access to the
solution of problem (2.2) — at first, just in the upper mentioned special case. But it will turn
out that it also can be a powerful tool if div T P is unbounded (see Section 2.6, for example).

2.3 Boundedness of v at the inner points

We will now present a method to obtain the boundedness of the solution v of (2.2) in a
compact subset of an arbitrary domain . Thereby we use an idea of Finn [Fin86, Theorem
5.2] and adapt it to the current circumstances.

The following lemma allows us to verify condition (ii) of Theorem 5 in some cases.

Lemma 7

Let be Q C R? and let v define a capillary surface over the domain €, so that (2.2) holds with
K> 0.

Then v is bounded on every compact subset of ).

2.4 Capillary tube

Now we consider the special case that the cylinder has got a circular cross-section with con-
stant radius R > 0. We can choose the domain as Q2 = Bg(0), where Br(0) = {2} + 23 < R?}.
Thus we are looking for a rotationally symmetric solution, depending only on the distance
from the origin, which is r = /2§ + 3. The scaling ¢ = r/R transforms the domain into
B1(0).

At first we assume the case of an infinite tube, see Figure 2.1 and Figure 2.2. In this case
we obtain an explicit result via integration. Here the solid domain is

Qs = {y = (yl’y25y3) € Rs : y% +y% > 15 —00 <y3 < OO} .
And so we get the following theorem.

Theorem 8
Let v be the solution of (2.2) over the domain B1(0). Then there is a constant A > 0, with

[v(q) = C-F(a,b;1;¢*)| < A, in By(0),

where a = p—;g, b= p—gl, C = —7T7%Hn_la_lR?’_pI’(a)/I’(p/Z) > 0 and F(a,b;1;q?) is the
hypergeometric Function.
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Figure 2.1: Open capillary tube. Figure 2.2: View from above.

For the closed capillary tube when we have the solid domain
Q=R \{y eR>: 7 + 43 < 1, y3 > 0},

one gets the same result, if one claims that the bottom of the tube is covered by the liquid.
In other words, when v(0) > 0 is assumed.

In addition we present an explicit example for the physically significant case p = 6. Again
let v be the solution of (2.2), then we get with [AS64, 15.3.12] (and m = 3) and the function

- = -3 3 -2 3 —1
M) =C{u-@) 7 -20-) -5 -] (2.4)
8 32
~ 4H ..
whereby €' = —————= > 0, the explicit result:
3komR3

lv(g) —o(g) <A in By(0), (2.5)

with some positive constant A. From formulae (2.4) and (2.5) we see that v has got a
leading singularity C'(1 — ¢%)™2 and some lower singularities. The leading term is the same
ISRAELACHVILI conjectured in 1985, see [Isr92, p. 194].

2.5 Vertical wall and parallel plates

We will now start to examine the ascent of a fluid on an infinite vertical wall. We choose the
coordinate system in a way that the wall coincides with the xo — x3—plane, see Figure 2.3.

In this situation we are looking for a solution depending just on the distance to the xo—x3—
plane which is ;. Here the domain € coincides with the half-plane {z € R?: z; >0, —oc0 <
xg < 0o} and we have ¥ = {1 =0, —0o < z9 < oco}. Then we get the following result.
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Figure 2.3: Ascent on a wall.

Theorem 9
Let v be the solution of the problem (2.2) over the domain Q = {x; >0, —00 < x9 < 00}.
Then there is a constant A > 0 with

v(xy) —C - xi’fp <A in €,

-2
where C' = L > 0.
mro(p—2)(p = 3)
. . . H
That is, for p = 6 we have in particular C' = — > 0 and so
b6mko
v~ _673-20%;3’ as 1 — 0.

A similar situation is the behaviour of a liquid between two parallel vertical walls with
mutual distance 2d > 0. That is, we have the domain Q = {—d < x; <d, —oc0 < x5 < 00}
and so ¥ = {z; = +d, —00 < 9 < oo}, see Figure 2.4. Here the calculations lead to a similar

X3

Figure 2.4: Ascent between two parallel plates.

result as above, namely to the following theorem.
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Theorem 10
Let v be the solution of (2.2) over the domain Q = {—d <z <d, —00 < z9 < o0}. Then
there is a constant A > 0 with

{v(:vl) —C-(d+z)>P-C-(d— xl)g_p‘ <A in Q,

-2
where C' = i > 0.
mro(p—2)(p —3)
That is, for p = 6 we have in particular C' = — > 0 and so
TRO
v~ — (d+z1)73, as r1 — Fd.

O0TKko

2.6 Behaviour at a corner

In this section we will examine the situation that €2 is a vertex, that is, a domain bounded by
two straight lines. Without loss of generality, we can choose the domain, such that the cusp
lies in the origin, symmetric to the zi-axis. So we have

Q={x € R?: |y < zjtanal,

whereby 0 < a < 7/2. To study the behaviour near the cusp we will examine in addition the
solution v of the problem (2.2) over the domain

Q,={z € R?: |z5| < z1tana} N B,(0),

whereby B,(0) = {27+ 23 < p*} and p € (0,1), see Figure 2.5. Since it is impossible to
calculate the disjoining pressure potential explicitly, we will restrict our examinations to the
common case p = 6.

After these preparations, we formulate the last theorem.

Theorem 11
Let v be a solution of (2.2) for p = 6 over the domain 2, 0 < « < 7w/2. Then there are
constants 0 < p < 1, B € R and A > 0, independent of the special solution v considered, so
that we have

'v(r,@)—&g)—@‘gfl in Q,
r r
e £0) _ (o)
U(T,H)—T—g—T—B‘SAT‘ IHQP.
Thereby f and h are given by
B a+0 a—10 3+ 0 3o —0 _ —H
f(@)—C-<3cot +3cotT+cot T—i—cot 5 >, i — > 0,

37(6) - f7(0) — 9f(6)* — 41(6)?
[9£()2 + f/(6)2)*/ '

If « € (7/2,7), that is, if the solid domain is a wedge, we get the same result as mentioned
in Theorem 11.

ne) = > (0)
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Figure 2.5: The domain (2,.
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Chapter 3

Proofs

Here the omitted proofs of the theorems, stated in the pevious chaper, are given. After
proving the Comparison Principles, the modified one will be used when proving the following
theorems. The most difficult part to prove the Theorems 8 to 10, is to show the boundedness
of div T P in the underlying domains. Then with the help of Theorem 6 it is easy to verify
the desired assertions. The proof of Theorem 11 is more complicated, so we have divided it
into some subsections, to permit a better comprehension.

3.1 Proof of Theorem 3

The classical Comparison Principle has been proven a lot of times before for a variety of
situations (k > 0, k = 0, bounded or unbounded domains, ...). We give the proofe, it
because we need it for the special case of unbounded domains ¢ R?. The other reason for
showing the proof is therewith that it is easier to outline the proof of the modified Comparison
Principle.

Theorem 3 (Normal Comparison Principle)
Let k > 0 and suppose ¥ = 0€) admits a decomposition ¥ = ¥, U g U Yo, where g € ct
and Yo has one-dimensional Hausdorff measure zero. Let u,v € C*(Q) NC(X5UQ) with the

properties
(i) divTu—ru >divTv—rkv in,
(ii) u <w as r — g,
(iii) v-Tu <wv-Tv as r — Xg.

Then v > wu Iin 2.

Proof:
We follow the proofs given in [Fin86, p.111] and [FH89].

For any R > 0, we set Bg = {x € R%: |z| < R}, Qr = QN Bg, 'r = 0BrNQ, see Figure
3.1.

Suppose the proposition is not correct. That is, suppose u and v satisfy (i), (ii), (iii) and
for some z¢ € Q it holds u(xo) — v(zp) > 0. For some positive M we define the domains

QG ={zecQ:u—v<0}
Q={zeQ:0<u—v< M},
Qz={zecQ:u—v>M},
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Figure 3.1: Definition of Qg and I'g.

and for ¢ = 1,2,3 we set

see Figure 3.2. Due to our assumptions we can choose M and R so that |Qs| has positive
measure. Let

0 ,in Ql
w(x)=<u—v ,in Qo
M ,in Qg.

The basic idea of the proof is to show that the integral
/ w - ([div Tu — ku] — [div Tv — kv])dz
Qr

vanishes, which leads to a contradiction and proves the theorem. Using integration by parts
we obtain the following estimates:

Og/ w - ([div Tu — ku] — [div Tv — kv])dx
Qr
:/ w-(divTu—diVTv)dx—ﬂ/ w - (u—v)dz
Qr Qr

_ Vw-(Tu—Tv)d:v—n/ w-(u—v)d:c+/ w- (Tu—Tov)-vds.

Qr Qr 12195z
=— V(u—v)-(Tu—Tv)d:c—m/ w-(u—v)d:c—{—/ w- (Tu—To)-vds,
Qo Qg QR
(3.1)
or, assigning in symbols to the integrals on the right in order of appearance,
0<-Q-W+R. (3.2)

With regard to @, write Vu = p, Vv = ¢ and Tu = A(p). Consider the function
Ft)=p—q - -[Alg+tlp—q)—Alg], 0<t<L
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Then we have F(0) =0 and F(1) = V(u—v) - (Tu — Twv). Since
90 qttp-q  _ p —q? -0
O \T+lg+tlp—aP  (+latilp—aP)*?

we can conclude V(u —v)(Tu—Tov) =F(1) > F(0) =0 in Q9 and so @ > 0.
In the next we examine the Integral R:

Ft)=@p-q)-

R:/ w(Tu—Tv)-uds—i—/ w(Tu—Tv)-uds—i—/ w(Tu—Tw)-vds
Iy I T's

—i—/ w(Tu—Tv)-vds
Ir

:/ (u—v)(Tu—Tv) vds+ M (Tu—Tv)-uds—i—/ w(Tu—Tv) - vds
Iy

I's I'r

EIQ—FIg—FIR.

By assumption we have I'y C I'g and I'3 C I'g, hence I < 0 and I3 < 0.
So (3.2) reduces to 0 < Ir — W that is

K /QR w(u — v)dz < /FR w(Tu — To)vds (3.3)

which will lead to the desired contradiction.
Since w? < w(u — v) in Qg and T u is bounded by 1 for every u, we conclude from (3.3)

m/ ’U)2d$§Ii/ w(u—v)d:cg/ w(Tu—Tv)yds§2/ wl/ds:Q/ wdS.
QR QR FR FR FR

So, we get with Holder’s inequality

Q(R)E/ﬂ w2dx§%</r w2d5>%</r dS>%§ C.R</F w2d5>%

for some positive C', which is equivalent to
1
—Q*R)<C | widS. (3.4)
R I'n

Integrating (3.4) yields

R R
J(R) = lQQ(p)dp < C/ / w?dSdp = C w?da
Ry P R1 JT, Qr\Qg,

=C [ w'dz—-C w?dzr = C[Q(R) — Q(Ry)] .
Qg Qr,

If Ry is sufficiently small, then J(R) > 0 and we conclude
J(R) QR Q*(R) c
7(R) ~ RI(R) ~ CPRIQ(R) — QAP ~ R
for all sufficiently large R. Again, by integrating (3.5) we have
1 1 /R J'(p) /R C -
-_ = dp > —dp =Cln(R/Ry).
J(R)  J(R)  Jgr, J*(p) R I

For sufficiently large R, this leads to a contradiction and establishes v < v in 2. O

(3.5)
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3.2 Proof of Theorem 5

This theorem is an elementary extension of the previous one. Its proof is also based on the
preceding one.

Theorem 5 (Comparison principle)
Let k > 0 and suppose ¥ = 9€) admits a decomposition ¥ = ¥, U g U Yo, where g € ct
and ¥y has one-dimensional Hausdorff measure zero. Let u,v € C*(2) with the properties
(i) divTu— ku— P(z,u) > divTv—rv— P(z,v) inQ,
(ii) u v as T — g,
(iii) v-Tu v-Tv as r — Xg.
Then we have u < v in 2.

<
<

Proof:
The proof is based on the proof of Theorem 3. With the same notations as in the mentioned
proof we now are led to the inequality

0<-Q-W+R-G,

see (3.1) and (3.2) respectively for the definition of @), W and R. The new arising integral G
is
G= w - (P(z,u) — P(z,v))dz.
Qr

To show the desired estimate, it is sufficient to show the non-negativity of the integrand. To

prove this, we prove the monotonicity of P(z,u) in u that is, we show %—5 > 0:

oP B, —p/2
u C/Qs ou [(z1 — y1)2 + (22 — y2)? + (u — 93)2] " dy

- _pc/g (u = ys) [(@1 = 1)* + (22— 92)2 + (u —y3)2] ">y

0
— e /Q ( / (= ) [(@1 = 1) + (22 — o) + (u — y3)?] "> dy3> dydys

—00

—pc /RQ\Q (/OO (uw—ys) [(x1 —y1)* + (22 —y2)* + (u — y3)2:|7p/271 dy3> dyidys

— 00

0
= —PC/Q (/ (u—ys) [(@1 — 91)? + (w2 —y2)? + (u — yg)?] 7> dy3> dy1dys

— 00

>0

)

since ¢ is negative and w is positive. So we have P(x,u)— P(z,v) > 0 for u > v. Consequently
we get

G = A (u—v)[P(x,u) — P(x,v)]dx + M A [P(z,u) — P(x,v))|dz > 0.

Thus the theorem is proven. O
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3.3 Proof of Lemma 7

Lemma 7

Let be Q C R? and let v define a capillary surface over the domain ), so that (2.2) holds with
k> 0.

Then v is bounded on every compact subset of 2.

Proof:
We follow the proof given in [Fin86, Theorem 5.2].

We use polar coordinates (p, 6), to desrcibe the points of the compact subset. Let Bs be a
disc of radius § > 0 with By € Q' with centre 2 = (pcos g, psinfy) and radius J, see Figure
3.3. Let Ty be the trapezium, bounded by t¢1, ..., t4. Here ¢y, ..., t4 are the tangents on By,
crossing the origin and the normals to their bisecting line respectively, see Figure 3.4.

8o

Figure 3.3: A disc on the arc I',. Figure 3.4: The trapezium Tj.

Then we use the definition of P(x) to estimate for p fixed

sup | Pz, u(2))] < sup |P(z,u(@))] = |P(4,u(4))] < oo,
z€B;s z€Ts

where A is the intersection between t9 and t3.
Let u denote a lower hemisphere over Bs whose lowest point has the height

2 P(Au(A))
ug = E — #

Since P(z,u) is always negative, we have

divTu =2H = — = kug + P(4,u(4)) < ku + P(z,u(z)) in By.

ST

'Let A and B be open sets with A C B, then we define A € B := A C B.
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That is, we obtain

divTu—ru+ P <0 in By,
v-Tu=1 on 0Bs.

Since we have for a solution of equation (2.2)

divTv—rv—P=0 in By,
v-Tv<1 on 0By,

we apply Theorem 5, with X3 = 0B and X, = 3¢ = ) to get

K

Since we can cover every compact subset by balls, the lemma is proven. O

3.4 Proof of Theorem 8

Theorem 8
Let v be the solution of problem (2.2) over the domain B;(0). Then there is a constant A > 0,
with

lv(q) = C - F(a,b;1;¢%)| < A, in By(0),
where a = p—;?’, b= p—gl, C = —7T7%Hn_la_lR?’_pI’(a)/I’(p/Q) > 0 and F(a,b;1;¢?) is the
hypergeometric Function.
Proof:
The idea of the proof is to show that P(x,u) satisfies the conditions of Theorem 6. To verify
these conditions, it is necessary to compute P(x,u).

In the present symmetric case, it is helpful to introduce polar and cylindrical coordinates
for (x1, x2) and (y1, yo, y3) respectively. We set x1 = Rqgcosf, zo = Rgsinf and y; =
Rscos g, y2 = Rssinyp, y3 = Rh. Henceforward we denote 7 = /2% + 22 and ¢ = r/R. At
this juncture, r and ¢ are the distance to the origin in Br(0) and Bj(0) respectively. Then
we define U(q) = u(z1,22), K = K(q,0,U(q)) = P(z,u(x1,72)) and cog = Ho a2 R37P and
thus we can compute the disjoining pressure potential

K = CO/ / / s [(gcos® — s cos ©)? + (¢sin@ — ssinp)? + (U/R — h)Z]ﬂv/2 dhdeds
1 —m J—00o

= co/ / / s [(gcos® — scosp)® + (gsind — ssinp)? + h?| /2 dhdeds
1 -7 J =

I
o)
o
3
\:‘
—
3
»
"
[\o}
|
DO
S
VA
Q
o
w0
©
+
<
o}
+
=
N
<
~
no
o
>
o
©
Q.
VA
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The values of § and U can be omitted in the integral due to the integration limits. It turns
out that the disjoining pressure potential is a function depending only on one parameter, q.
In detail we have

Pz, u(z)) = cog(q);

whereby c¢g = Ho 'n 2R3>P, g=7r/R and r = \/zm is the distance to the origin and
9(q) = 2/ s [s? —2gscosp + ¢* + h?] /2 dhdeds.
Q1

The domain of integration is Q1 = {(s,¢,h) ER®: 1 < s <00, 0 <@ <m, —00 < h < oo}
Furthermore we follow the achievements of PHILIP in [Phi77, IV]. The substitution h =
[s2 — 2sqcos @ + ¢°]Y/? - tant for —7/2 < t < 7/2 leads to the Beta Function B(.,.) that is,
we obtain with the help of [GR82, Formula 3.621]

oo pm 1-p /2
9(q) = 4/ / s [32 — 28q cos ¢ + q2] 2 d(pds/ (cos t)p*th
1 0

-1 p—-1 1-
= 2P~ 1B< p >/ / S —23qcos<p+q] El dpds

= 2P~ 1 T / / s —23qcos<p+q]7d<pds

By integrating over ¢, the hypergeometric function F(a, b; ¢; z) appears. For handling hyper-
geometric functions see for example [AS64, p. 555 ff] or [Kle33]. In detail we obtain

I‘Qp;l 2p
g(q) =2V~ 1 / §2 p/ [1—2 cos ¢ + ] dpds
1“2(”;) 11 -1p-1 q\2
- () [ (e )
T(p—1) (2’2) L 2 kg ) ds
p—1 e’}
:zngT)/ 2oep (Pt p—1 (g>2 ds
r) h 2 72 77 \s ’

where we have used the relation

T sin?* =1 zdx 1 1 1
=B(A\=|F A4 oA+ =i
/0 (1+2acosz + a?)” < ’2> <y’y bt +2,a>,

see [GR82, 3.665.2], with A = 1/2 and v = (p —1)/2, B (3, 3) = 7 and the formula

F(Z) ﬁ 2172z
F2z) T(z+13)
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Now, using the transformation ¢t = ¢2/s2, for ¢*> >t > 0, we get

resty g 1 p—1
g(g) = 73 % )/ s"Pq°F <pT,pT;1;t> dt
0

3 -5 — —
= Wiiq?’_p/ t'5 F (p—, p—; 1; t> dt
0

In formula (3.6) we used

di [z“_lF(a —1,b;¢;2)] = (a— 1)2%2F(a, b; ¢, 2),
z

see [AS64, 15.2.3].

So we found for the case of the infinite tube that the disjoining pressure potential becomes

- 1
P(z,u(z)) = C-F (a, b;l;qZ), with a = pT?) and b = pT’

g = /22 +2%/R and C = Ho 'z~ 2 R3PT(£52)/T(2).
For the sake of simplicity, we set ¢ = ¥(q) = F(a, b; 1;¢*). To apply Theorem 6 it is sufficient
to verify that div T ¢ is bounded. When using polar coordinates it is necessary to show that

1 qT,Z), _ ¢/ + T,Z)”
\Vit 2 ) | " |o/ir o7 (49

for all ¢ € [0,1]. At first we present the derivatives of 1(q) by using formula [AS64, 15.2.1]:

|div T | =

< K < o0,

d ab
gF(a, b;c;z) = ?F(a + 1,0+ 1;¢c+ 1;52).

To state the derivatives in an appropriate form we use formula [AS64, 15.3.6]
I'(e)'(c—a—Db)
I'(c—a)l'(c—b)

e—apl(@(a+b—c)
R e )

F(a,b;c;2) =

F(a,b;a+b—c+1;1—2)

Flc—a,c—bjc—a—b+1;1—2z).

So we separate the highest poles in the according formulae. In these cases the constants
A, ..., Ag occuring the in equations (3.7) and (3.8) are explicitly known positive constants,
depending only on p. In detail we have

V' (q) = 2abgF(a+ 1,0+ 1;2;¢%)
= A1gF(a+ 1,0+ 1;a + b;1 — ¢?) (3.7)
+A2q(1—q2)_a_bF(1—a,1—b;l—a—b;l—qQ)
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and
¥ (q) = 2abF (a + 1,b+ 152;¢*) + 2ab(a + 1)(b + 1)¢°F (a + 2,b + 2; 3; q2)
=AsF(a+1,b+La+b+1;1—¢*) + Asg°F (a+2,b+ 20+ b+ 2;1 — ¢°)
+ As (1—q2)7aibF(1—a,1—b;l—a—b;l—qQ)
+ Asq® (1 — q2)7liaibF (1-a,1—b;—a—0b;1— 7°).
In the case of a+b € Z we need a slight modification of equations (3.7) and (3.8) respectively.
Thereby we use formulae [AS64, 15.3.10-12] instead of [AS64, 15.3.6]. This modification yields
the same result, which can be confirmed by an easy calculation. However, the result is that
if ¢ tends to 1, the leading singularities in both cases are of the same order.

In the first parts in formulae (3.7) and (3.8) respectively we can see that both ¢’ and ¢ are
bounded for g € [0, %] In particular we have got

(3.8)

/ /
L §M22ab|F(a—|—1,b+1;2;q2)|<K
g/ 1+ q
and
,IIZ)//
‘W <[] < 2ab|F (a+1,b 4 1;2;¢°) |

+2ab(a+1)(b+ D@|F (a+2,b+23:¢°) | < K,

for a constant K with 0 < K < co.
To prove the estimate for g € (%, 1], we use the second parts of formulae (3.7) and (3.8)
respectively. In this case we get

Y’ Y
<2 <2
q 1+ ¢/2 /1 + ¢/2
and if Fq,...,Fg denote the according hypergeometric functions in formulae (3.7) and (3.8)
‘ = q*) T AgFy + Asg®Fal + (1 — ¢°) As|Fs| + Aeq?|F|
(1+¢2)32] = :

51 3/2
[(1 = @) 4 2 {41 (1= @) Fr 4 ASFy ) }
The right-hand-side of the equation above is bounded. This is easy to see when we remember

that As,..., Ag, F3,...,Fg are bounded for ¢ € (%, 1] and since 2a + 2b — 1 is positive.
So we can apply Theorem 6 and Theorem 8 is proven. |

Let us look at the case of the closed tube. That is, we have
QO =R*\{y € R*: 4] +y3 < R?, y3 > 0}.

Let be in addition ¢ a positive constant with v(xz) > ¢ for all € ). Thereby v denotes the
solution of (2.2). So we have

2 2 21—p/2 0 dys * dys
(21 —y1)" + (w2 —y2)” + (u—y3)"| P/"dy < K3 — < K, — < Kj < o0,
Qo —00 |u - y3|p c Y3

where Qy = {y € R® : 42 + 42 < R% y3 < 0}, K; and K, are some positive constants,
depending only on R. So we can adopt the idea of the proof of Theorem 6 with a constant
A + K5 instead of A. This establishes the annex of Theorem 8.
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3.5 Proof of Theorem 9 and Theorem 10

Theorem 9
Let v be the solution of (2.2) over the domain Q = {x1 > 0, —00 < x5 < co}. Then there is
a constant A > 0 with
v(z))—C-2v P <A in €,
—2H

where C' = > 0.
mro(p —2)(p — 3)

Proof:

In order to apply Theorem 6 we have to compute the disjoining pressure potential and check
the boundedness of divT P. Because of the special symmetry it is sufficient to look for a
solution v of (2.2), which depends only on the distance to the x9 — zg—plane. As seen in the
case of the bottomless cylinder, the disjoining pressure potential is independent of the special
solution. Here the solid domain is given by

Q={yeR®: y1 <0, —00 < yp < 00, —00 < y3 < 00} .

First of all we compute the disjoining pressure potential. To do this we examine the following
integral

0 [e’e) 0 2
say= [ [ [ =)+ e - )+ (0= 0] dyrdyadis

0 0 0 o
= / / / [(z1 — y1)* + 5 + y?%] * dy1dy2dys.

To compute the integral we use cylindrical coordinates,

y1=x1—h, oo>h>ux,
yg =rcosp, 0<r <oo,
ys=rsing, 0<p<m,

where the Jacobian is —r. If we use the transformation r = htanca, 0 < o < 5, we get

o) 2w oo
g(:cl):/ / / r [h2 + 1272 drdpdh

-z .
_277/ / g2 [y pesita] F sina
cos? a cosd a

= 277/ h%~ pdh/ (cos a)P~3 sin ada

T1 0

271' 3—p
— a7 P
(p—2)(p—3)"

To apply Theorem 6 we have to estimate divT g, whereas T g = \/151—/2. With ¢y = 27 (p —
g

2)"Hp—3)"1 ¢ =2m(2 — p)~! and ¢y = 27 we get

3—
g(z1) = co} 7,
gl(fEl) - Cle pa

g"(z1) = coy P
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So we transform div T g:

Njw

/
. - q R/ 2\~

- 3 3.9
:CQI'%p'{l‘i‘ClZA 2p} (3.9)

2p—5 2p—4
—Clep { P —1—01}

ww

l\)\w

Since div T g is continuous for 21 € (0, 00) it is sufficient to show that div'T g is bounded, as
x1 tends to 0 and oo respectively.

From the second line in equation (3.9) we conclude that divT g tends to 0 as x; tends to
infinity. We get the same result if z; tends to 0 from the last identity in formula (3.9). That
means the expression div T g is bounded for all z; € (0,00) and so div'T P is bounded, too.
So the theorem is proven. O

Theorem 10
Let v be the solution of (2.2) over the domain Q = {—d <z <d, —00 < z9 < o0}. Then
there is a constant A > 0 with

|v(x1) —C-(d+z)>P-C-(d— xl)?’*p‘ <A in Q,

—2H
where C' = > 0.
mro(p —2)(p — 3)

Proof:
The proof uses analogous steps as in the last one and can be omitted. For the sake of
completeness we perform it in the following.
Here we have with cg = 27(2 —p) " 1(3 —p)~!, c; =2m(2 —p) ! and ¢y = 27
g(x1) —co{d—i-xl)?’p—i- — T 3p}
g (x1) :cl{ (d+21)*P — (d —x1)* p}
q"(z1) —02{d+$1)1p+ —x1 1”}

where ¢ is up to a constant factor the disjoining pressure potential. So we can transform
divTyg

3

2

divTg=g"(14+4%)"

2
1— 2— 2
= [X+p+x p] [1+C%{X+p—x_p}]

I
wlw

p—1 p—2Y) 2 -
_ 3.10
R 1+<§—+> X 4+c%{1— (i—j) } X (3.10)
3
p—1 p—2 212
= oo 1+<§+> ] Xi”4+cl{1—<§—+> } ,
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where we have set Y+ = d £+ x1. Analogously we get

_3
2

p—2 2
e <X—‘> —1 . (3.11)
X+

Taking into consideration, that 2p — 5 > 0 it follows from the last part of formula (3.10) and
from (3.11) that divT ¢ tends to 0 as x; tends to +d.
So the theorem is proven. O

p—1
divTg= 02X27p75 <X—_> +1
X+

3.6 Proof of Theorem 11

Recall that
Q={zeR?: |z| <zitana}

and

Q,={z¢€ R?: |22 < z1tana} N B,
where B, denotes a ball of radius p with 0 < p < 1. In addition we define I', = QN 0B, and
X =00N5B,.

Theorem 11
Let v be a solution of (2.2) for p = 6 over the domain Q, 0 < « < pi/2. Then there are
constants 0 < p < 1, B € R and A > 0, independent of the special solution v considered, so

that we have
'v(r,@)—@—w‘gfl in Q,

r3 r
e £0) o)
v(r,ﬂ)—r—s—T—B‘<Ar in Q,
Thereby f and h are given by
B a+0 a—10 3a+0 3o —0 ~ —H
fo)=c- <3 cot + 3 cot + cot — T cot 5 ) , = Toron ,

3 3£(0) - £"(0) —9f(9)> — Af'(6)?
1(0) = & 5(a) 2010 9102 47’0
w [9£(0)> + f'(6)?]
We divide the proof of Theorem 11 into five parts. These parts verify the assumptions for
Corollary 12 which then yields the first statement. When |v — h/r3 — h/r| < B < oo in

is known, we can verify condition (ii) of Corollary 13 and apply it to get the desired second
assertion in €2,.

Corollary 12
Let v be a solution of (2.2) over the domain Q and w a suitable comparison function. Then
we have:
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a) If

(i) divTw—kw—Px,w) <0 inQ

(ii) v-Tw>1 onX)\{0},
then we have w > v in ).
b) If

(i) divTw—krkw— P(z,w) >0 inQ

(ii) v-Tw<1 onX)\{0},

then we have w < v in ).

Corollary 13
Let v be a solution of (2.2) over the domain Q,, w a suitable comparison function and
0 < p < 1 sufficiently small. Then we have:

a) If
(i) divTw—rw—Plz,w) <0 inf,
(i) w>v onl),
(iii) v-Tw>1 on%,\ {0},

(i) divTw—kw— P(z,w)>0 in§,
(ii) w<v onl,
(iii) v-Tw<1 onX,\ {0}

then we have w < v in §2,.

Proof:
3.6.1 Disjoining pressure potential

The first step is to compute the disjoining pressure potential. The second step is to use it
to find a suitable comparison function w to apply Corollary 12 and Corollary 13 respectively.
Due to the present symmetry, it is clear that we are losing the rotational symmetry in this
case. To obtain an asymptotic result in the cusp, we have the domain 2, = Q2N B,,. Define
Y,=00NB,and I', = 0B, N Q, see Figure 3.5. Actually, after converting problem (2.2) in
cylindrical coordinates, as we did in a previous section, we get the following for the disjoining
pressure potential K = K(r,0) = P(x,u(zx))

2r—a o0 00
K:c/ / / s[(rcos@—scosap)2+(rsin6—ssin<p)2+(U—h)2]_p/2dhdsd4p
« 0 —00

2T—a  foo oo
= 20/ / / s [s* — 2rscos(p — 0) + 1% + h? /2 dhdsde.
ot 0 0

At this point we use the transformation h = étant, 0 < ¢t < 7/2 and dh = é&(cost)~2dt,
whereby &2 = 52 — 2rscos(p — 6) + 2. With this transformation and using

2 72

/2 - - FQ T 7TF £
[ ety tamrtn (P B ) <o % -4 rgp/?)) |
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see [GR63, 3.421.2] and [AS64, 6.2.2, 6.1.18] we obtain

us

2r—a  poo
K= 2c/ / s [52 —2rscos(p —0) + 7’2] (1=p)/2 dsdgo/2 (cost)P~2dt
e 0 0

L(%g) pora (1-p)/2
= \/EWC/ /0 s [82 —2rscos(p —0) + 7’2] dsdep
r p-t 2r—a—0 poo
= \/%T;))c / s [s* — 2rscosp + 17 (1=p)/2 dsde.
a—6 0

In general the integration with respect to s implies the associated Legendre functions, see

A Xo

Figure 3.5: Wedge-shaped domain.

[GR82, Eq. 3.252.10]. For the important physical case p = 6 we obtain some explicit results.

So from now on, let be p = 6. Then, considering I'(5/2) = 3,/7/4 and using Formula [GR82,
Eq. 3.252.7):

/Oo 2" dx B n!
o (ax? +2bx +c)n+3/2  (2n + 1)/e(Vac + b)tt’
(with n = 1) and [GR63, Eq. 2.453.7],

/ dx _ _21_,17121 n — 1\ cot?+1 2
(1 —cosz)™ k 2k +1

k=0
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one gets

3t 2r—a—60 oo slds
a6 0 [s? —2rscosp + r?]

(e}
= 107“_3 {300‘5@—2’_6 —|—3cotaT_9—i—cot3aT+0—i—cotgag6}.

So we obtain P(xz,u(z)) = é&)(8)r~3, where ¢ = H/(480m) < 0 and

a-+0 3a—10

Y(0) = 3cot 5

-0 0
+ 3 cot aT + cot? % + cot (3.12)

We state some properties of ¥ that will help us to perform some calculations in the following
proof. The function 1 has got the derivatives

sy B3 a=0\"T" 3/ ato\"
1/1(9)—2<s1n 5 5 (sin— and

_5 -5
7 _ a—0 (. oa—0 a+0 /(. a+b
" (0) = 3 cos 5 (sm 5 ) + 3 cos 5 (sm 5 .

(3.13)

The function cot z has got the following Taylor series

1 o

cotr = — —
-=
n=1

where B,, is the n-th Bernoulli number. That is, we have

22" B
( a2l for 0 < x| <,

2n)!

1
cotx =—+40(x), asz — 0.
x

So we deduce from equation (3.12) and (3.13) respectively?

$(0) ~ 8(a+6)77,
V'(0) ~ F24(a +0)7*, (3.14)
" (0) ~ 96(a +6)77,
as # tends to Fa.

From (3.12) and (3.13) we can conclude that 1, ¥’ and ¢” are continuous and bounded in
(—a +€p, 0 + ) for a sufficiently small, positive .

3.6.2 Requirements in (), and (2

Our next aim is to find an appropriate comparison function to estimate div T u — ku — P(x).
In the previous sections the divergence of P(x,u(x)) was bounded. As we will see in the case
of the wedge, the divergence of T P is asymptotically equal to xh(f) -7~ as 7 tends to 0 for

2For the notation of f ~ g, see page 12.
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some non-vanishing function h. So we have to find another suitable comparison function. It
turns out that the following function w(@,r) is an adequate choice.
So consider the comparison function

w(f,r) = fﬁﬁ) + h(f) + A, (3.15)
with
é 3, 3f(0) - f"(6) —9f(0)* — 4f'(0)*

f=10)=——9(0), h=h0)=—f0) ; (3.16)

[9£(6)2 + f(6)2)*/

where A and é = H/(4807) < 0 are constants. So we get (see Lemma 14) h € C*([~a, a])
and in addition
h(#) = O(Ja = 6]%), as 6 — Fa,
W) = O([a+6]%), as § — Fa,
R'(0) = O([a £ 6]'), as 6 — Fa.

Step 1:

In this step we consider the behaviour of divT w in §2,, for a p with 0 < p < 1. That is, we
observe the behaviour near the cusp.

From (3.15) we obtain the characteristics

w, = —7“74(3f + hr2),
wy = 7473(.]('/ + h/V"2)7
rw, = —r (3 fr + hr?),
rhwg = 1 (1 ),
and therewith

\Vw|® = w? + 7 2wj =r 8 {(3f + hr?)® + (f' + W'r?)?}
:7"_8 {9f2+f,2+2(3fh+f,h/)r2 4+ (h2 +hl2)7’4}
=r {9+ + @},

where we have set
Q =23fh+ f'R)r*+ (W2 + W)t =23 fh+ f'B)r* + O(r*) = O([1 + [a £ 0] ]r?). (3.17)

So we obtain the partial derivatives of Q
Qr =43 fh+ f'R)r +4(h* + 1*)r* = O([1 + [a £ 0] %r) (3.18)

and

Qo =23 fh+ f'0)'7r* + (h* + h?)'r" = O([1 + [a £ 0] °r?).
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Finally, for sufficiently small p, 0 < r < p < 1 and a € R, we bring the following term in a
convenient form

Q+r% \*

o5 77)

3fh 'n
L

[14+0(%)].

[P+ 9f2+ 2+ Q" = (9f* + f*)° (1 +
— (92 + /)" [1 + 9% (3.19)

= (9£2 + f7?)

a

By definition of Q and h, the term Q/(9f? + f’?) is bounded, 9f2 + f’? is positive. So these
transformations are valid.
Recall that the divergence of T w in polar coordinates is given as:

div T w 1 W, n r_lwg
v = — _— _— .
r V1I+|Vw? ) Vi+[VwP ),

Now we start to compute div' T w beginning with the term:

W, B —3f7“—h7“3
VI Vwl )  \/rS 92+ 524+ Q)

[=3f = 3hr?]\/r8 + 92+ f2 4+ Q — 4 [-3fr — b3

STt
VIt H92 4[24 Q

8+ 9f2+ 2 +Q

At this point we use the boundedness of h and h’ as well as the asymptotic behaviour of f
and the relations (3.17), (3.18) and (3.19) to compute

( rw, ) L B3HO6?) 1B 0] - O+ [ 6] )
V1I+[Vw? ) V92 24 Q2 [r8_|_9f2_|_f/2_|_Q]%
_ 3400 0 oy . L O+ [+ 617
/9f2 + f72 [1+0( )]+2[T8+9f2+f/2+Q]%
_ —3f +0(?) O(r? O([1 + [+ 60]7°]r) 1402
\/W+ (r") + 07 + 71 [1+0(7)]
—3f

O(?“Q).

Vo

To obtain the term O(r?) we use the continuity of f and f’ in (—a + €9, — o) and their
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asymptotic characteristics (3.14). In a similar way we treat the next term:

r*1w9 _ fl—|—hl’l"2
VIVl )\ 92+ 2+ Q)

(f"+ B2 /r8 £ 9f2 + 2+ Q — L(f' + W'r?)

2/"9F + ") + Qo
VIE+92P+ /% +Q

r8 924+ f24+Q
[f" + 09 + 2 + O([L + [ £ 0]r?)]
[rS + 972 + 2+ Q)2
(f' + W) O + ") + O([L + (e £ 0)°r?)]
(S +9f2+ f2 + Q)2
(S~ ) + O + [a £ 85
(S + 972 + 2+ Q)

= 9f7ffl/ — f/zg +0(r?).
[9f% + f7]2

So we are able calculate div T w:

ﬁ . 3ffl/_9f2 _4f/2

T —
divTw " [9f2+f’2]3/2

+0(r) = ~h+O(r). (3.20)

To adopt the Comparison Principle and the corresponding corollaries respectively we derive
the following formula, by using formulae (3.15) and (3.20) and the definition of P

divTw — kw — P = rhr™ ' +O(r) — s fr=> — shr™' — kA + kfr3
=—rkA+O(r).

Then we can choose the constant A positive so that we have
divTw — kw — P <0. (3.21)

Otherwise, by choosing A negative, we can achieve div Tw — kw — P > 0.

Step 2:

Here we regard div T w — kw — P in . The aim is to show that |div T w — kw — P| < oc.
From the first step one easily concludes this relation in €2, for 0 < p < 1. So from now on
we consider r > p > 0. The “c* which occurs in the next calculations denotes some positive
constant. When it appears repeatedly in a calculation, it does not always need to represent
the same value. The important thing is that it is a bounded quantity, the actual value is of
secondary importance.

From the following calculation it is easy to see that div T w is bounded when 7 > 0 is finite
and @ is arbitrary or if 6 € (—a + €9, — &¢) and r is arbitrary, for some small positive .
Consequently it is sufficient to examine the case that 6 tends to £« and r tends to infinity.
So we can choose g9 > 0 small enough and r big enough that

92+ 2+ Bfh+ R+ W24+ 02t > 2> 2> (3.22)
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is satisfied. Remember that 3fh + f'h’ becomes positive as 6 tends to +«, see Lemma 14.
Under this condition we can compute |div T w|, beginning with:

rw, B —3fr — hr?
VIVl ) |\ 9P+ P+ Q)

_|_3f+3hm? 1(3fr+hr®)(8r7 + Q)
TrTH V| (2 24 vel2)?
<c o

T V14| Vw]?

3fr~t 4+ hr=2 4r® +23fh + f'B)r? +2(h? + B?)rt

V1+ [Vul? r8 1+ |Vwl?]

Now, considering that fh, h, h’' are bounded, we can further estimate

cr® + f'h/r?
r8[1+ |[Vwl|?]

rw, |Vw]| |w,|
— < c + .
VIt |Vwl? ) V14 Vw2 1+ |Vl

cr® + f'h/r? c f'hr?
< Tl < (3.23)
S rAET Ve | S T T Ve T R Vel
(3.22) f’h'?“Q f’h'T’Q A
S C—{—Cm SC+CT4—f/ :C+C|h’l" {SC

For the last step we used the inequality of arithmetic and geometric means that is, 7% + /2 >
ert|f'].
Now we compute

B fl_|_h/,r2
B \/T8+9f2+f12+Q 0
(f"+h'r2)/r8+9f2 + 2+ Q — L(f' + W'r?)

r8+9f2 4+ f2+Q

(7).

2/"9F + ") + Qo
VIE+IP+ %+ Q

OF (£1" ~ )+ 3[3f°H" — 20 2f'W — f"h) — f?h] 1

[P+ 92 + [+ QP2
[3£(2hh" — W) — Af'RR + f'R2)r + [R(RR" — W)} + f'r 4 W10
[P 4952+ 2 + Q2 '

_l’_

Therefore by using the asymptotic behaviour of f, h and their derivatives, we can estimate
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the upper expression for some positive constant ¢, by three terms:

c-(a+6)~H c-ri0 c-(a+6)2r8
52 T 3/2 3/2
[+ 972+ 2+ Q) [ +9/2+ 7+ Q) [ +9f2+ 2+ Q)
CEX)ms n c-rio . (a+6) . r? (3.24)
[F2]3/2 [r8]3/2 [r8 + fr2%/8  [r8 4 pr2]7/8 ’
-5 7
gc—l—cr(aia) " <c-r

TERAN

where we have used (3.22). Therefore by combining (3.23), (3.24) and the considerations at
the beginning of the step we get

|div Tw| = 7!

= ¢

< Wy ) n < ’I“_l’wg )

V1+|Vw ) V1i+[VwP? ),

in 2\ ©Q,. Therefore by choosing A appropriate positive we can estimate in '\ €2,
divTw—rkw—P<c—rhr ! —rA<0, (3.25)

since h is bounded and r > p > 0.
Otherwise, by choosing A negative, we can achieve div T w — kw — P > 0.

3.6.3 Boundary behaviour

To prove the boundary condition we have to show

’I“_l’wg

V14 |Vuw|?

for every r > 0. To show this we consider at first the case 0 < r < p < 1 and 0 €
(—a, —a+ep)U(a—ep, ), for a sufficiently small e > 0. Therefore we can use the asymptotic
behaviour of the occurring functions. In detail, we have

v - Tw = sign() =1,as 0 — ta

r~Lwg B f'+h'7"2 B fl+h/742 L Q —1/2
VIFIVuR /IS 102+f2+Q 92+ 2 [ 9f2+f’2]
_ i (1 W ) [Hr8+2(3fh+f’h')r2+(h2+h'2)7~4}1/2
NCOEEN AN 9f% + f7

B f/ B fh, )
VRS (1 7 )[”O<9f2 72" >]

oy L
NGRS [1 o <9f2 T2 >]

/ /2h/
= / + 0 / 3 27‘2 .
/9f2 + £ 9F2 + f72] /
Since f ~ co(a £+ 60)73 and f ~ c1(a + 0)~%, with cg - ¢; # 0, the last expression tends to

+1, as 6 tends to +«. The other transformations are valid since h and h' are bounded (see
Lemma 14).
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Qs X

a-6

Figure 3.6: Normal distance to X.

Let z € Q, x = r(cosf,sinf) for r > p > 0, 6 € (0,«). Hence the normal distance of z to 3 is
d = rsin(a — ), see Figure 3.6. To check the behaviour of v - T w on ¥ afar from the origin,
the normal distance of = to ¥ has to tend to 0. That is, we have in particular | — 0] << 1
and therefore d = 7(a — ) + O([r(a — 0)]3).

Thus we have

r?W [~ er(a = 0)[r(a—6)],
8/ ~ colr(a = 0)],
9f2/f ~ c(a — 6)?, (3.26)
203 fh+ f'R)r? /2 ~ ca(a — 0)*[r(a — 0))?,
(B* + W)t/ 2 ~ 5o — 0)°[r(a — )],

whereby cg, ..., cs are some bounded constants.
Combining the definition of v - T w with (3.26) we get

hl
7"71?1}9 1+?7"2
\/1+|Vw|2_ 23fh "y 2 h2 h/2 4’
1478/ f2 4 9f2/f72 4 Bfh+ [ )7}/;’( +h5)r

which tends to 1, as x approaches 3, since all expressions of (3.26) tend to 0, as rsin(a — )
tends to 0.
And so the boundary condition is shown.

3.6.4 Applying the Comparison Principle

Let v be a solution of (2.2) and w = fr=3 + hr~! + A. Firstly we apply the Comparison
Principle to show that v satisfies |v — fr=3 — hr~!| < A in Q for some positive A. And
therewith we show [v — fr2 —hr~! —B| < A-rin Q,, for a p with 0 < p < 1.

After choosing A > 0 sufficiently big we can combine (3.21) and (3.25) to get

divTw — kw — P <0 in Q.
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Therefore condition (i) of Corollary 12.a) is satisfied. Since we have shown that
v-Tw=1asxz— X\ {0},

condition (ii) of Corollary 12.a) is satisfied. So we get v < w in Q. Similarly by choosing A
negative we get v > w. Therewith we have

FO) PO - 4 a,

v(r,0) — 3 .
for some constant A > 0.

From now on we consider just the cusp of the domain 2 that is €,, where 0 < p < 1.
Replacing the upper comparison function w by @ = fr—2 +hr~! 4+ B+ Ar results just a slight
modification® of the upper calculations. Thereby f and h are the functions defined in (3.16)
and A and B constants. Finally one also attains

div T @ = khr~! + O(r) in Q,.
Thus we can choose the constant A > 0 appropriate big to get
divT®w — ko — P = —kAr 4+ O(r) <0,

and again, by choosing A negative, the vice versa relation can be achieved. In other words
property (i) of Corollary 13 is satisfied.

Thus again we have v -divT@w =1 as © — 3, \ {0}, which is property (iii) of Corollary 13.
The last step is to show property (ii) of the same corollary. By choosing | B| sufficiently large
we can achieve this since we have shown that [v — fr—3 — hr~!| < B, where v is the solution

of (2.2).
Then we can apply Corollary 13 to achieve |v — fr=2 — hr=! — B| < Ar, which means the
second part of the theorem is shown, which proves the theorem. O

The result for o € (w/2,7) follows from the calculations above.

3.6.5 Properties of h

Lemma 14
Let h be the function defined by equation (3.16). Then we have:

a) h € C*([~a,q)),
b) h*) = O([a & 0]>7%), as 0 tends to Fo and k = 0,1,2,
¢) h, W and h" are bounded,

d) f'-h' >0and3fh+ f'h >0, as 6 tends to +a.

3The additonal term Ar has no perturbing influence on the calculations since it is bounded by f/r® and
h/r, respectively.
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Proof:
We have got

. §f3ffl/_9f2_4f/2

K [9f2 4 f/2]3/2 (3.27)

and we get for the derivatives

/ hl " h2

h=—"— and I

92+ /7% (952 + 7%

where hi is a homogeneous polynomial of fifth degree in f, f/, f” and f” and hs a homoge-
neous polynomial of seventh degree in f, f/, f”, f” and f®.

Since f is a multiple of 1, it is sufficient to examine 1 and its derivatives to verify the stated
properties. From the equations (3.12) and (3.13) we see that v, ¢’ and )" are continuous in
(—a+ep, a0 —gg) for a sufficiently small ey > 0, and from (3.14) we have got their asymptotic
behaviour as 6 tends to +a. After calculating ¥ and ¥Y, one obtains that they also are
continuous in (—a + €9, @ — gp) and have a similar asymptotic behaviour as § — Fa. More
precisely we have got

Y8atd) B, Y~ F2U(at0) P~ 96(a£0)70,

mn —6 (4) -7 (3-28)
"~ FASO(a £ 0) 6, @ ~ 2880(a = 0) 7,

as 0 tends to Fa. With this information we conclude that h, A’ and h” are continuous in

(—a+eg, a0 — £0).

From (3.28) we obtain their behaviour near the boundary. So we see that in (3.27) the term

3ff" — 4f" vanishes as 6 tends to +a. In the same way the highest singularities of h; and

ho vanish, and we get

A (£ 0)37% 60— Fa, k=0,1,2

for and some constants ¢, # 0, depending only on k. And so a) and b) are shown.

The property c) is an easy consequence of a) and b). What remains to show is point d).
Since the denominator of A’ is positive, it is sufficient to show f’h; > 0, as 0 tends to *a. A
close examination yields that we have, for a positive c:

hy = cp? (30" — 8y + 5¢7) + O([a £ 0))
= Te(a£0)" +O([a £ 0]).

And so we have

f'hi=cla£0)"2+0(Ja+0]73), as 0 — Fa,
and therefore
f'H =cla+0)"2+0(a=+4)]), as 0 — Fa,
which is positive as 0 tends to £a. A similar examination yields fh = —c+ O([a £ 0]) for a

constant ¢ > 0. So d) is shown.
For the sake of completeness we give the upper mentioned but omitted details. The mentioned
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polynomials are

hl _ —%(—27f4fm + 72f3f/f// _ 3f2f/[15f/2 + f/f/// _ 3f”2] _ 10ff/3f// + 4f/5)

—%(—243f6f(4) + 81f5[11flf”/ + 8f//2] _ 27f4[f/2{93f// + 2f(4)} _ 9f/f//f/// o 3f//3]

+ 9f3[135f/4 _ 5f/3f/// _ 89f/2f//2] + 3f2f/2 [f/2{282f// _ f(4)} + gflfl/fl/l _ 12f”3]
_ 2ff/4[135f/2 + 8f/f/// _ 19f”2] _ 10f/6f”)-

hy =

(3.29)
In (3.29) the terms
_ 3f2f/[f/f/l/ _ 3f/12] _ 10ff/3fl/ + 4f/5 and
3f2f/2[_f/2f(4) + 9f/f//f/// _ 12f”3] _ 2ff/4 [Sf/f/// _ 19f”2] _ 10f/6f//
vanish as 6 tends to +a.
To compute the third and fourth derivative of f we need:
" _§~—4 o—0 § 2 oa—0 ;. —6 o—0
P(0) = 5 Si 5 + 5 €S 5 sin 5
3. 4 (a+0 15 S, (fa+0\ . 4(a+0
— —sin — — cos sin )
2 2 2 2 2
21 —0 -0 4 -0 —0
pW(g) = 5 cos <a 5 > sin? (a 5 ) + 750053 (%) sin " (a 5 >
—i—gcos ath sin~° at? +4—5COS3 —OH_H sin~" at? ,
2 2 2 2 2 2
since we have f = —%¢ and —% > 0. O
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Outlook

Of cause there is still a lot of work to do. First of all, the existence of a solution of problem
(2.2) is not assured, neither for the general case nor for any special case. Maybe the work
of JOHNSON and PERKO [JP68| will provide a method to obtain an existence result for the
circular case.

In this work we just accounted for some special cases. A still open problem is to expand
our results on capillary tubes with arbitrary cross-sections.

An other problem is to find some solutions in the absence of gravity.

We computed the solution for the wedge problem just for the special case ¢ = 6. Of
course this is the most important case. But it is self-evident to compute the disjoining
pressure potential for arbitrary p > 3 and apply the above developed method to achieve a
general result. It is probably impossible to get an exact result for the disjoining pressure
potential. It maybe also responsible, that the asymptotic behaviour of P is be sufficient to
reach an asymptotic result for the solution of (2.2).

After determining an asymptotic solution, another goal is to find an asymptotic expansion
for the problem (2.2) and the corresponding domain 2. The Comparison Principle will be
adjuvant thereby. Compare the articles of MIERSEMANN [Mie94] and [Mie93a] for the case of
a circular and a wedge domain respectively.

In reality, there is a variety of different pores in porous media. To apply our mathematical
results in chemistry, it will not be sufficient to determine the shape of liquid layers on capillary
tubes that is, on straight cylinders over some domain 2. There are a lot of pores that can
not be modeled by cylinders. For example spherical pores or slit cavities. A last goal is to
develop a method to deal with other kind of pores.
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