Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Nonlinear waves in Poynting-flux dominated outflows

Mochol, Iwona

[thumbnail of thesis.pdf]
Preview
PDF, English
Download (2MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Rotating, compact objects power some of the most spectacular phenomena in astrophysics, e.g., gamma-ray bursts, active galactic nuclei and pulsar winds. The energy is carried by Poynting flux, and the system is usually modelled using relativistic magnetohydrodynamics (MHD). However, in the relatively low density medium expected around some of these objects, the MHD approximation breaks down, allowing new, large-amplitude waves to propagate. We discuss the role of these waves in two astrophysical contexts:

In blazar jets, we show that a magnetic shear, launched together with a plasma from the black hole magnetosphere, begins to accelerate particles at a large distance from its source. The resulting non-thermal emission can, nevertheless, be modulated on very short timescales, which can explain the rapid variability of the TeV gamma-ray flux observed from some blazars.

In pulsar winds, we analyze the radial propagation of superluminal modes, including their damping by radiation reaction and by interaction with an external photon field. We discuss their effect on the structure of the pulsar wind termination shock, presenting new solutions in which the nonlinear wave is asymptotically matched to the constant pressure surroundings. The observational implications of these solutions are discussed for both isolated pulsars, and pulsars in binary systems.

Document type: Dissertation
Supervisor: Kirk, Prof. Dr. John G.
Date of thesis defense: 7 November 2012
Date Deposited: 28 Nov 2012 09:28
Date: 22 November 2012
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
DDC-classification: 500 Natural sciences and mathematics
520 Astronomy and allied sciences
530 Physics
Controlled Keywords: Nichtlineare Welle, Elektromagnetische Welle, Plasmadynamik, Magnetohydrodynamische Welle, Jet <Astronomie>, Pulsar, Blazar, Schwarzes Loch, Photon-Drag-Effekt
Uncontrolled Keywords: nonlinear waves, pulsar wind, termination shock, charge starvation, underdense plasma, radiation reaction, blazar jet, magnetosphere
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative