Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface

Hänselmann, Siegfried ; Schneiders, Matthias ; Weidner, Norbert ; Rupp, Rüdiger

In: Journal of neuroEngineering and rehabilitation: JNER, 12 (2015), Nr. 71. pp. 1-11. ISSN 1743-0003

[thumbnail of 12984_2015_Article_63.pdf]
Preview
PDF, English
Download (1MB) | Lizenz: Creative Commons LizenzvertragTranscranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface by Hänselmann, Siegfried ; Schneiders, Matthias ; Weidner, Norbert ; Rupp, Rüdiger underlies the terms of Creative Commons Attribution 3.0 Germany

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Background: For the translation of noninvasive motor imagery (MI)-based brain-computer interfaces (BCIs) from the lab environment to end users at their homes, their handling must be improved. As a key component, the number of electroencephalogram (EEG)-recording electrodes has to be kept at a minimum. However, due to inter-individual anatomical and physiological variations, reducing the number of electrodes bares the risk of electrode misplacement, which will directly translate into a limited BCI performance of end users. The aim of the study is to evaluate the use of focal transcranial magnetic stimulation (TMS) as an easy tool to individually optimize electrode positioning for a MI-based BCI. For this, the area of MI-induced mu-rhythm modulation was compared with the motor hand representation area in respect to their localization and to the control performance of a MI-based BCI. Methods: Focal TMS was applied to map the motor hand areas and a 48-channel high-resolution EEG was used to localize MI-induced mu-rhythm modulations in 11 able-bodied, right-handed subjects (5 male, age: 23–31). The online BCI performances of the study participants were assessed with a single next-neighbor Laplace channel consecutively placed over the motor hand area and over the area of the strongest mu-modulation. Results: For most subjects, a consistent deviation between the position of the mu-modulation center and the corresponding motor hand areas well above the localization error could be observed in mediolateral and to a lesser degree in anterior-posterior direction. On an individual level, the MI-induced mu-rhythm modulation was at average found 1.6 cm (standard deviation (SD) = 1.30 cm) lateral and 0.31 cm anterior (SD = 1.39 cm) to the motor hand area and enabled a significantly better online BCI performance than the motor hand areas. Conclusion: On an individual level a trend towards a consistent average spatial distance between motor hand area and mu-rhythm modulation center was found indicating that TMS may be used as a simple tool for quick individual optimization of EEG-recording electrode positions of MI-based BCIs. The study results indicate that motor hand areas of the primary motor cortex determined by TMS are not the main generators of the cortical mu-rhythm.

Document type: Article
Journal or Publication Title: Journal of neuroEngineering and rehabilitation: JNER
Volume: 12
Number: 71
Publisher: BioMed Central
Place of Publication: London
Date Deposited: 24 Nov 2015 12:37
Date: 2015
ISSN: 1743-0003
Page Range: pp. 1-11
Faculties / Institutes: Medizinische Fakultät Heidelberg > Orthopädische Klinik
DDC-classification: 610 Medical sciences Medicine
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative