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Abstract
The origins of this thesis lie in the present author’s study of the asymptotic behavior of the weighted

p-Laplacian evolution equation, which is one of the bench marks of nonlinear evolution equations and

used to model many physical phenomena, such as the evolution of fluvial landscapes. Due to these

modeling aspects, it is of great interest to add randomness to such an equation. In this thesis, we

investigate two different ways of doing that: We literally add a pure-jump noise to a nonlinear semigroup

and derive an existence, uniqueness and asymptotic theory for the resulting process; and secondly, we

replace the weight function occurring in the p-Laplacian evolution equation by a random quantity.

Hereby, the first approach will be set up for arbitrary nonlinear semigroups, and the applicability of our

results will be demonstrated at hand of the p-Laplacian evolution equation; and the latter approach is

written specifically for the p-Laplacian case.
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Chapter 1

Introduction

The purpose of this thesis is to present new insights into the existence/uniqueness and asymptotic theory

of some deterministic and random nonlinear partial differential equations. Even though the different

results obtained here are to some extend connected, they are not as intertwined as it seems on a first

glance. Particularly, we may consider the same objects in many chapters of this thesis, but in each

chapter we shoot at them from different angles; and by doing so we cover a variety of mathematical

areas, including: Classical functional analysis, the theory of nonlinear semigroups and abstract Cauchy

problems, random variables taking values in (separable) Banach spaces, and Markov processes taking

values in infinite-dimensional spaces.

In this introduction, we do not intend to give a precise and rigorous outline of the results which we will

obtain, but we would rather like to: Explain why we consider these objects as well as their connection

to one another, and roughly explain the type of results we shall prove.

In general three different topics are covered by this thesis:

• Asymptotic results for the strong solution of a weighted p-Laplacian evolution equation with

Neumann boundary conditions acting on an L1-space. (Chapter 3)

• Existence, Uniqueness and asymptotic results for a class of stochastic processes which arise by

exposing a nonlinear semigroup to time-discrete big-jump noise. For this class of processes, we

coin the term ”ACPRM-process”, where ACPRM is an acronym for abstract Cauchy problem

driven by a random measure. (Chapters 4, 5 and 6)

• Existence, uniqueness and asymptotic results for the strong solution of a randomized weighted

p-Laplacian evolution equation with Neumann boundary conditions acting on an L1-space. (Chap-

ter 7)

The above list covered all chapters, except for Chapter 2 and Chapter 8. The former is a general intro-

duction to the existence/uniqueness theory of abstract Cauchy problems (Section 2.1) and to ACPRM-

processes (Section 2.2), and in the latter chapter, we briefly summarize our results and outline how they
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might be extended.

As mentioned, in this thesis we employ techniques from many mathematical fields. Therefore, to

make the reader’s life as pleasant as possible, the present author tried to write the respective chapters

as self-contained as possible. More accurately, the chapters/sections depend upon each other in the

following way:

• Section 2.1 is needed in every chapter of this thesis. And it is of extreme relevance to Chapters 3,

4 and 7. In particular, we use some notations/definitions from nonlinear semigroup theory in this

introduction. One finds precise definitions of all these quantities in Section 2.1.

• Section 2.2 builds the foundation for Chapters 4, 5 and 6; and it is irrelevant to Chapters 3 and 7.

• Chapter 3 is of extreme importance to Chapter 7. Moreover, the p-Laplacian semigroup introduced

in Chapter 3, serves as an example in the chapters dealing with ACPRM-processes, that means

it is relevant to Sections 4.4, 5.3 and 6.4; but it is irrelevant to any other section in Chapters 4, 5

and 6.

• Chapters 4, 5, 6 and 7 are entirely independent of each other.

In conclusion, reading Chapter 2 suffices to understand most parts of this thesis, and additionally read-

ing Chapter 3 suffices to understand all of them.

In the next three sections of this introduction, we will have a closer look at each of the central topics

covered by this thesis. These sections are about conveying why we consider the objects we consider,

and briefly outlining our results. Particularly, we will try to keep the amount of formulas to a necessary

minimum. Note that each chapter (except for Chapters 2 and 8) starts with a section called ”Outline

& Highlights”, where one finds a rigorous description of the proven results.

1.1 The weighted p-Laplacian evolution Equation

The weighted p-Laplacian evolution equation with Neumann boundary conditions is the central object

of Chapter 3. It is given by 
u′(t) = div

(
γ|∇u(t)|p−2∇u(t)

)
on S,

γ|∇u(t)|p−2∇u(t) ·Υ = 0 on ∂S,

u(0) = v,

(1.1)

for a.e. t ∈ (0,∞); where p ∈ (1,∞)\{2}, S ⊆ Rn is a sufficiently regular set, n ∈ N\{1}, γ : S → (0,∞)

is a weight function fulfilling some technical conditions, Υ is the unit outer normal on ∂S, and v : S → R
is an integrable initial.

From the applied point of view, the solution u can be used to model diffusion processes: One has some
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initially given quantity v = u(0) which changes over time due to an external force γ and the resulting

quantity at time t is u(t). For example, as B. Birnir and J. Rowlett demonstrated in [BR], the solution u

of (1.1) can be used to describe the evolution of a fluvial landscape v (for example a hill) which changes

over time due to rain that determines the water depth γ.

Moreover, F. Andreu, J. Mazón, J. Rossi and J. Toledo employed the following technique in [3] to

show that (1.1) has in some sense a unique solution: They introduced a certain p-Laplace operator Ap,

and then use nonlinear semigroup theory to prove that the initial value problem

0 ∈ u′(t) +Apu(t), for a.e. t ∈ (0,∞), u(0) = v, (1.2)

has a unique strong solution, where Ap is the closure of Ap. In fact, the general results from nonlinear

semigroup theory used by them, are also stated in Section 2.1.

Now, let us give a brief outline of Chapter 3: To this end, let B(S) denote the Borel σ-Algebra

on S and let λ denote the n-dimensional Lebesgue measure. Moreover, for any q ∈ [1,∞], we de-

note by Lq(S) := Lq(S;B(S), λ;R) the usual Lebesgue spaces. In addition, for any v ∈ L1(S), let

TAp(·)v : [0,∞)→ L1(S), be the unique strong solution of (1.2). In the sequel we refer to the family of

mappings (TAp(t))t≥0 as p-Laplacian semigroup, or the semigroup associated to Ap.
In Chapter 3, we will prove that lim

t→∞
TAp(t)v = (v)S in Lq(S), for all v ∈ Lq(S) and q ∈ [1,∞), where

(v)S := 1
λ(S)

∫
S

vdλ. Moreover, we will strengthen these results in many ways:

• We will prove an L∞-Lp-contraction principle for ”large” p and sufficiently integrable initials.

• We will derive that the solution extincts in finite time for ”small” p and sufficiently integrable

initials.

• We will derive further decay estimates of polynomial order.

Hereby, ”large” means that p is in a sub-interval of (2,∞) and ”small” that p is in a sub-interval of (1, 2).

The concrete shape of the sub-interval, might vary from one result to another and usually depends on

the dimension n and (in some sense) on how close γ is to zero. Of course, throughout an actual theorem,

the precise shape of the sub-interval is given.

Chapter 3 is the only part of this thesis which is not concerned with probability theory at all, but

solely deals with the aforementioned asymptotic results. In all chapters subsequent to Chapter 3 we deal

with two different ways of adding randomness to either a general (time-continuous, contractive) semi-

group or specifically to the p-Laplacian semigroup. The former approach leads to ACPRM-Processes,

where the p-Laplacian evolution equation is the most important example we consider, and the latter

leads to the randomized p-Laplacian evolution equation. Consequently, this equation is the glue that

holds the chapters of this thesis together and connects them to one another.
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1.2 Abstract Cauchy Problems driven by a random Measure

(ACPRM)

ACPRM-processes are the central object of Chapters 4, 5 and 6. Before rigorously defining them, let

us give an intuitive explanation of what an ACPRM-Process is.

Imagine one has some physical phenomena that starts at a state v and is in the state T (t)v after

t ∈ [0,∞) units of time. Hereby, we will assume that v is an element of some (separable) Banach space

(V, || · ||V ), and that (T (t))t≥0, where T (t) : V → V for all t ≥ 0, is a (time-continuous, contractive)

semigroup on V . Now, one gets an ACPRM-process by disturbing this semigroup in the following way:

After a random amount of time α1 the semigroup is exposed to the random shock η1, then after α2

random units of time the semigroup is exposed to the random shock η2, and so on. In fact, we also

allow that the initial state v ∈ V is no longer deterministic but might be random as well.

For instance, if the considered semigroup is our p-Laplacian semigroup, then the shocks η1, η2, ... could

model changes in vegetation (caused due to rain showers, or drought periods), occurring at the random

times α1, α2, ... . This is an important generalization, since the weight function γ considered in (1.1) is

neither time-dependent, nor random. Consequently, (1.1) does not allow for any changes in vegetation;

particularly, it does not allow that these changes occur at random times and have random intensities.

To be able to better describe what we intend to do with ACPRM-Processes, let us formalize the

above procedure: To this end, let (Ω,F ,P) be a complete probability space and let (V, || · ||V ) be a

separable Banach space. In addition, let (βm)m∈N, where βm : Ω→ (0,∞), be a sequence of real-valued

random variables, and introduce αm :=
m∑
k=1

βk for all m ∈ N as well as α0 := 0. Moreover, let (ηm)m∈N,

where ηm : Ω→ V , be a sequence of V -valued random variables. Furthermore, let x : Ω→ V be another

V -valued random variable and let (T (t))t≥0, where T (t) : V → V for all t ≥ 0, be a time-continuous,

contractive semigroup on V . Now, introduce the sequence (Xx,m)m∈N0
by Xx,0 := x and

Xx,m := T (αm − αm−1)Xx,m−1 + ηm = T (βm)Xx,m−1 + ηm, ∀m ∈ N.

Finally, introduce the stochastic process Xx : [0,∞)× Ω→ V by

Xx(t) :=

∞∑
m=0

T ((t− αm)+)(Xx,m)11[αm,αm+1)(t), ∀t ≥ 0, (1.3)

where (·)+ := max(·, 0).

Particularly throughout running text, we may call a stochastic process which is given by (1.3) for some

not closer specified ((βm)m∈N, (ηm)m∈N, x, T ) an ACPRM-process. Throughout mathematical results

and/or when it is of importance what ((βm)m∈N, (ηm)m∈N, x, T ) we consider, we call (Xx,m)m∈N0
the

sequence and Xx : [0,∞)× Ω→ V the process generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V .

Note that the process Xx indeed models the aforementioned scenario: For a fixed ω ∈ Ω, we have

4



Xx(t, ω) = T (t)x(ω) for all t ∈ [0, α1(ω)), then at α1(ω), we have Xx(α1(ω), ω) = T (α1(ω))x(ω)+η1(ω),

and until time α2(ω), we get Xx(t, ω) = T (t−α1(ω))
(
T (α1(ω))x(ω) + η1(ω)

)
for all t ∈ [α1(ω), α2(ω)),

and so on.

In this thesis, we intend to do two different things with ACPRM-Processes: We demonstrate that

these processes may arise as a solution of a random differential equation (Chapter 4), and we study the

asymptotic properties of such processes (Chapters 5 and 6).

Before outlining this in more detail, the following is worth emphasizing: The assumptions regarding

(T (t))t≥0, (βm)m∈N, (ηm)m∈N and x, differ from one of the Chapters 4, 5, 6 to another one. Particularly,

in Chapter 4, the considered semigroup must be (in some sense) connected to a multi-valued operator,

whereas the considered semigroup in Chapters 5 and 6 does not need to be connected to a multi-valued

operator at all. Moreover, the results in Chapter 4 are of a functional analytic nature, whereas the

results in Chapters 5 and 6 are more of a probability theoretic one.

Now, let us briefly address the results of Chapter 4: Roughly speaking, Chapter 4 deals with ex-

tending the classical existence/uniqueness theory for deterministic abstract Cauchy problems to those

driven by a random measure; more precisely: An abstract Cauchy problem is an equation (or in fact an

inclusion) of the form

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), (1.4)

where A : V → 2V is a multi-valued operator and 2V is the power-set of V . We are going to extend this

theory to random equations of the form

η(t, z)NΘ(dt⊗ z) ∈ dX(t) +AX(t)dt, (1.5)

where NΘ is the random counting measure induced by a finite point process Θ, η : (0,∞)×Z ×Ω→ V

is a (jointly measurable) drift function, (Z,Z) is a measurable space and X is a V -valued stochastic

process supposed to fulfill (1.5) in some sense. We call an equation of the form (1.5) abstract Cauchy

problem driven by a random measure.

We will set up the notions of mild and strong solution for such an equation, will demonstrate that it

has, under appropriate assumptions on the involved quantities, a mild/strong solution, and that such

solutions are unique, in the sense that two processes which are solutions and are almost surely equal at

t = 0, are indistinguishable of each other. Moreover, we will see that if there is a mild/strong solution

of (1.5), then this solution is the process generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V , where: The

sequence (βm)m∈N will depend on the point process Θ, the sequence (ηm)m∈N will depend on Θ and

the drift η, and: The semigroup (T (t))t≥0 must be such that T (·)v is, for any v ∈ V , a mild solution

of the (deterministic) abstract Cauchy problem (1.4). Rigorously stating all other assumptions on the

involved quantities and outlining the results in any more detail is fairly technical, requires to introduce
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much more notations, and is therefore postponed to Chapter4.

In Chapters 5 and 6 we will study conditions guaranteeing that an ACPRM-process fulfills two of

the most classical results in probability theory: The strong law of large numbers (SLLN) and the central

limit theorem (CLT). That means we will derive conditions such that

lim
t→∞

1

t

t∫
0

F (Xx(τ))dτ = ν

with probability one and

lim
t→∞

1√
t

 t∫
0

F (Xx(τ))dτ − tν

 = Y,

in distribution, where: F belongs to some class of functionals, ν is an element of the image space of F

and Y is a centered Gaussian random variable taking values in the image space of F .

In Chapter 5, we will obtain these results, by assuming (among some technical conditions) that the

underlying semigroup (T (t))t≥0 extincts in finite time. Of course, this will also require some assump-

tions regarding the underlying random variables. Moreover, we will be able to prove these results for

vector-valued functionals F , which are in a certain sense sub-linear; in particular, we obtain the SLLN

and the CLT for Xx itself. These results will be proven by exploiting classical results from the theory

of random variables taking values in separable Banach spaces.

In Chapter 6, we will derive distributional conditions on the involved random variables ensuring that Xx
is a time-homogeneous Markov process. Particularly, this does not require any asymptotic assumptions

on the semigroup. Moreover, we exploit Markov process techniques to prove an SLLN and a CLT for

real-valued, Lipschitz continuous functionals, if the underlying semigroup fulfills a polynomial decay

assumption.

Moreover, each of the Chapters 4, 5 and 6 concludes with a section called ”Examples”, where we

illustrate the results in each of these sections at hand of the p-Laplacian semigroup and at least one

real-valued semigroup.

Finally, let us point out that there are some related works, for example [28] (and the references

therein) which also deals with evolution inclusions exposed to noise, but there the considered noise

has a more complicated structure, but the assumptions regarding Banach spaces are more restrictive

and rely on the classical variational framework formulated in Gelfand-Triplets, whereas this thesis treats

arbitrary separable Banach spaces and does not rely on a variational approach, but a classical semigroup

approach.
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1.3 The randomized weighted p-Laplacian evolution Equation

The purpose of Chapter 7 is two-fold: Firstly, we will extend the existence/uniqueness theory for the

(deterministic) weighted p-Laplacian evolution equation considered in Chapter 3 to weight functions

which are no longer deterministic, but random. Secondly, we will derive asymptotic results for the

solution of this equation.

That means instead of the deterministic PDE (1.1), we would like to study the randomized PDE
U ′(t)(ω) = div

(
g(ω)|∇U(t)(ω)|p−2∇U(t)(ω)

)
on S,

g(ω)|∇U(t)(ω)|p−2∇U(t)(ω) ·Υ = 0 on ∂S,

U(0)(ω) = v(ω),

(1.6)

for P-a.e. ω ∈ Ω and a.e. t ∈ (0,∞), where: (Ω,F ,P) is a complete probability space, p ∈ (1,∞) \ {2},
S ⊆ Rn is a sufficiently regular set, n ∈ N \ {1}, g : Ω → L1(S) is a random weight function fulfilling

some technical conditions, Υ is the unit outer normal on ∂S, and v : Ω→ L1(S) is an integrable initial.

As mentioned, the deterministic problem (1.1) can be used to model the evolution of a fluvial land-

scape, in which case the weight function γ considered there, models a water depth occurring due to rain.

In this case, it is reasonable to assume that this water depth is not precisely known, which motivates

why we would like to replace it by a random quantity. This naturally leads to the randomized PDE

(1.6), which does not just enable us to consider a random weight function, but as a side effect also a

random initial.

The technique employed to demonstrate that (1.6) has a unique solution is as follows: We introduce

a random p-Laplace operator Arp acting on the space of Bochner integrable functions L1(Ω, L1(S)) :=

L1(Ω,F ,P;L1(S)), and then show that its closure, which will be denoted by Arp, is densely defined and

m-accretive. By the results form nonlinear semigroup theory introduced in Section 2.1, this will yield

that

0 ∈ U ′(t) +ArpU(t), for a.e. t ∈ (0,∞), U(0) = v, (1.7)

has a unique mild solution for any initial v ∈ L1(Ω, ;L1(S)). So let, for any v ∈ L1(Ω;L1(S)),

Tra(·)v : [0,∞)→ L1(Ω;L1(S)) denote the unique mild solution of (1.7). After the existence/uniqueness

of mild solutions has been established, we proceed by deriving a useful relation between the deterministic

p-Laplacian semigroup and (Tra(t))t≥0. Then we exploit this relation to demonstrate that Tra(·)v is not

only a mild solution of (1.7) but also a strong one.

Moreover, this connection also enables us to derive some basic asymptotic properties of this randomized

semigroup. Finally, we will use differential inequality techniques to establish bounds for the tail function

of ||Tra(t)v− (v)||2L2(S), where v : Ω→ L1(S), with v ∈ L2(S) a.s., has to be (in some sense) sufficiently
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integrable.
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Chapter 2

Nonlinear Semigroup Theory and

Preliminaries

2.1 Nonlinear Semigroup Theory

In this section, we give a brief introduction to nonlinear semigroup theory, with a focus on their con-

nection to abstract Cauchy problems. Hereby, we do not intend to give a complete survey of this topic,

but focus solely on the results needed in this thesis. In particular, we do not prove any new, so far

unknown, results here.

The inquisitive reader is referred to [8] for a very comprehensive introduction to nonlinear semigroup

theory, and to the appendix of [2] for a more concise one.

This section is structured as follows: At first, we are going to define what a semigroup is, then we

will introduce the concepts of mild and strong solutions of abstract Cauchy problems, and discuss when

such a problem has a unique mild/strong solution. Afterwards, we are going to dive into the concept of

complete accretivity. This concept was originally introduced in [7], and is also treated in the appendix

of [2].

Finally, at this section’s very end, we give a general lemma, which we did not find stated and proven

anywhere in the literature, even though it seems to be in common use.

Throughout this section (V, || · ||V ) denotes an arbitrary, real Banach space.

Definition 2.1.1. A family of mappings (T (t))t≥0, where T (t) : V → V is called a semigroup on V , if

T (0)v = v and T (t + h)v = T (t)T (h)v for all t, h ∈ [0,∞) and v ∈ V . A semigroup (T (t))t≥0 on V is

called

i) time-continuous, if [0,∞) 3 t 7→ T (t)v is a continuous map for all v ∈ V ;

ii) contractive, if ||T (t)v1 − T (t)v2||V ≤ ||v1 − v2||V for all t ∈ [0,∞) and v1, v2 ∈ V ; and
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iii) jointly continuous, if [0,∞)× V 3 (t, v) 7→ T (t)v is a continuous map.

Time-continuous, contractive semigroups arise naturally as solutions of abstract Cauchy problems.

An abstract Cauchy problem is an equation of the form

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), (ACR)

where A : V → 2V is a mapping, 2V is the power set of V and u : [0,∞) → V is supposed to fulfill

(ACR) in some sense. Before defining the different notions of solutions of (ACR), let us spend some

words on multi-valued operators: A mapping A : V → 2V is called a multi-valued operator, or simply

operator. Moreover, D(A) := {v ∈ V : Av 6= ∅} is called its domain and we may write A : D(A)→ 2V .

In addition, G(A) := {(v, v̂) : v̂ ∈ Av} is the graph of v. Obviously an operator is uniquely determined

by its graph. In the sequel, we identify an operator with its graph, and may simply write (v, v̂) ∈ A,

instead of v ∈ D(A) and v̂ ∈ Av. Moreover, if A : D(A)→ 2V is an operator with graph G(A), then the

operator whose graph is G(A), is called the closure of A. In addition, for any operator A : D(A)→ 2V ,

v ∈ D(A), w ∈ V and α > 0, we set w + αAv := {w + αv̂ : v̂ ∈ Av} and introduce

R(Id+ αA) :=
⋃

v∈D(A)

v + αAv.

Finally, we call A single-valued if Av contains precisely one element for each v ∈ D(A) - in this case we

identify Av with the only element it contains and write A : D(A)→ V .

Now, let us continue with the notions of mild and strong solution of (ACR).

Definition 2.1.2. Let A : D(A)→ 2V be an operator. A continuous function u : [0,∞)→ V is called

a strong solution of (ACR), if: u|(0,∞) ∈ W 1,1
Loc((0,∞);V ),1 u(t) ∈ D(A) for almost every t ∈ (0,∞)

and 0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞).

The term strong solution is an intuitive way to set up a solution of (ACR). The following definition of

mild solution is more technical. In fact, we will never directly work with this definition, but all we need

is that there is this notion, that mild solutions have certain properties and are under certain conditions

even strong ones. Of course, the proofs of the general results which we use to achieve this heavily rely

directly on the definition of mild solution; therefore, for the sake of completeness, this definition is now

given.

Definition 2.1.3. Let A : D(A)→ 2V be an operator. A continuous function u : [0,∞)→ V is called

a mild solution of (ACR), if the following holds: For every interval [a, b] ⊆ [0,∞) and every ε > 0, there

is an n ∈ N, real numbers t0, ..., tn ∈ [0,∞), vectors f1, ..., fn ∈ V and a function ũ : [t0, tn] → V such

that

i) 0 ≤ t0 − a < ε, 0 ≤ b− tn < ε and 0 < ti − ti−1 < ε for all i = 1, ..., n,

ii)
n∑
i=1

(ti − ti−1)||fi||V < ε,

1As usually, W 1,1
Loc((0,∞);V ) := {f : (0,∞)→ V : f is loc. absolutely continuous and differentiable a.e.}
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iii) ||u(t)− ũ(t)||V < ε for all t ∈ [t0, tn],

iv) ũ is constant on (ti−1, ti] for all i = 1, ..., n, and

v) ũ(ti) ∈ D(A) and fi ∈ ũ(ti)−ũ(ti−1)
ti−ti−1

+Aũ(ti) for all i = 1, ..., n.

Definition 2.1.4. Let A : D(A)→ 2V be an operator and v ∈ V . A continuous function u : [0,∞)→ V

is called a mild (strong, resp.) solution of the initial value problem

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), u(0) = v,

if u is a mild (strong, resp.) solution of (ACR) and u(0) = v.

Remark 2.1.5. Strong solutions are mild ones, i.e.: Let A : D(A) → 2V be an operator and let

u : [0,∞) → V be continuous. Then, if u is a strong solution of (ACR) it is also a mild one, see [8,

Theorem 1.4].

Definition 2.1.6. Let A : D(A)→ 2V be an operator. Then A is called

i) accretive, if ||v1 − v2 + α(v̂1 − v̂2)||V ≥ ||v1 − v2||V for all (v1, v̂1), (v2, v̂2) ∈ A, and α > 0;

ii) m-accretive, if it is accretive and R(Id+ αA) = V , for all α > 0; and

iii) densely defined, if D(A) = V .

Theorem 2.1.7. Let A : D(A) → 2V be m-accretive and densely defined; moreover, let v ∈ V . Then

the initial initial value problem

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), u(0) = v, (2.1)

has precisely one mild solution. Now, denote for each v ∈ V by TA(·)v : [0,∞) → V the uniquely

determined mild solution of (2.1). Then, (TA(t))t≥0 is a jointly continuous, contractive semigroup on

V .

Proof. See [8, Proposition 3.7] for the existence and uniqueness; [8, Theorem 3.10] for the contractivity

and joint continuity of (TA(t))t≥0, and [8, Theorem 1.10] for the fact that (TA(t))t≥0 is a semigroup on

V .

Definition 2.1.8. Let the assumptions and notations of Theorem 2.1.7 prevail. Then, (TA(t))t≥0 is

called the semigroup associated to A.

Remark 2.1.9. Let A : D(A) → 2V be accretive and α > 0. Then it is clear that there is for every

w ∈ R(Id + αA) precisely one pair (v, v̂) ∈ A such that w = v + αv̂. Consequently, one can introduce

(Id+αA)−1 : R(Id+αA)→ V , where (Id+αA)−1w is precisely the element v ∈ D(A), such that there

is an v̂ ∈ Av with w = v + αv̂.

The mapping (Id+ αA)−1 is called the resolvent of A.

11



Theorem 2.1.10. Let A : D(A) → 2V be m-accretive and densely defined. Moreover, introduce

(Id+αA)−m : V → V recursively by (Id+αA)−m := (Id+αA)−1(Id+αA)−(m−1) for all m ∈ N \ {1}
and α > 0. Then we have

lim
m→∞

(
Id+

t

m
A
)−m

v = TA(t)v, ∀t > 0, v ∈ V,

where (TA(t))t≥0 is the semigroup associated to A.

Proof. See [8, Theorem 4.2]

Thanks to Theorem 2.1.7, proving the existence/uniqueness of mild solutions boils down to verifying

that the operator at hand is m-accretive and densely defined. Moreover, under the same assumptions

as in Theorem 2.1.7, we get the representation formula stated in Theorem 2.1.10.

Even though it might be a challenging task to verify that a given operator is m-accretive and densely

defined, Theorem 2.1.7 is frequently used to show the existence/uniqueness of mild solutions.

Now, let us turn our focus to criteria guaranteeing that mild solutions are strong ones.

Definition 2.1.11. Let A : D(A) → 2V be densely defined and m-accretive. Moreover, let (TA(t))t≥0

denote the semigroup associated to A. (TA(t))t≥0 is called domain invariant, if TA(t)v ∈ D(A) for

all t > 0 and v ∈ V . Moreover, (TA(t))t≥0 is said to admit an infinitesimal generator, if there is an

operator A◦ : V → V such that

− lim
h↘0

TA(h)v − v
h

= A◦v ∈ Av, (2.2)

for all v ∈ D(A) and A◦v = 0 for all v ∈ V \D(A). In this case, we call A◦ the infinitesimal generator

of TA.2

Theorem 2.1.12. Let A : D(A) → 2V be densely defined and m-accretive, and let (TA(t))t≥0 be

the semigroup associated to A. Moreover, introduce v ∈ V , and assume that (TA(·)v)|(0,∞) is locally

Lipschitz continuous and almost everywhere right differentiable. Then, (TA(·)v)|(0,∞) ∈W 1,1
Loc((0,∞);V )

and TA(·)v is the uniquely determined strong solution of

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), u(0) = v.

Proof. Lemma 2.1.193 yields that (TA(·)v)|(0,∞) is differentiable almost every. Thus, as locally Lipschitz

continuous functions are also locally absolutely continuous, we get (TA(·)v)|(0,∞) ∈ W 1,1
Loc((0,∞);V ).

Consequently, [8, Theorem 7.1] yields the existence of a strong solution, and the uniqueness follows by

combining Theorem 2.1.7 and Remark 2.1.5.

2In the nonlinear setting, the existence of the limit in (2.2) is indeed an assumption and not necessarily true. Moreover,
it is more common to set A◦v := ∅ for v ∈ V \D(A), which clearly yields D(A) = D(A◦); but in our case, setting it to
zero on V \D(A) is more convenient.

3This is a general result which is probably available in the literature. To not disturb the flow of reading, this result is
stated at this section’s end. It is independent of any other result in this section.
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Lemma 2.1.13. Let A : D(A) → 2V be densely defined and m-accretive. Moreover, introduce

v ∈ D(A), b > 0 and let (TA(t))t≥0 denote the semigroup associated to A. Then (TA(·)v)|[0,b] is

Lipschitz continuous.

Proof. See [8, Lemma 7.8].

Theorem 2.1.14. Let A : D(A)→ 2V be densely defined and m-accretive, and let (TA(t))t≥0 denote the

semigroup associated to A. Moreover, assume that TA is domain invariant and admits an infinitesimal

generator A◦ : V → V . Finally, introduce v ∈ V . Then, (TA(·)v)|(0,∞) is locally Lipschitz continuous

and everywhere right differentiable, with

lim
h↘0

TA(t+ h)v − TA(t)v

h
= −A◦TA(t)v,

for all t > 0. Consequently, (TA(·)v)|(0,∞) ∈W 1,1
Loc((0,∞);V ), T ′A(t)v = −A◦TA(t)v for a.e. t ∈ (0,∞),

and TA(·)v is the uniquely determined strong solution of

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), u(0) = v.

Proof. Let w ∈ D(A). Then Lemma 2.1.13 yields that [a, b] 3 t 7→ TA(t − a)w is Lipschitz continuous

for any [a, b] ⊆ (0,∞). Thus, choosing w = TA(a)v, and employing the semigroup property as well

as the domain invariance, gives that [a, b] 3 t 7→ TA(t)v is Lipschitz continuous. Moreover, using the

domain invariance again, yields

lim
h↘0

TA(t+ h)v − TA(t)v

h
= lim
h↘0

TA(h)TA(t)v − TA(t)v

h
= −A◦TA(t)v.

Now, the remaining claims follow from Theorem 2.1.12.

Definition 2.1.15. Let (T (t))t≥0 be a semigroup on V . Moreover, assume that V̂ ⊆ V is a subspace.

Then, V̂ is called an invariant space w.r.t. (T (t))t≥0, if T (t)v̂ ∈ V̂ for all t ≥ 0, and v̂ ∈ V̂ .

Now, let us turn to the concept of complete accretivity, which is a powerful tool to establish that

the semigroup associated to an operator is domain invariant and admits an infinitesimal generator.

Throughout the remainder of this section (K,Σ, µ) denotes a finite measure space and B(R) is the

Borel σ-algebra on R. Moreover, for any q ∈ [1,∞], Lq(K,Σ, µ) denotes the usual Lebesgue space of

(µ-equivalence classes of) functions v : K → R, which are Σ-B(R)-measurable and fulfill
∫
K

|v|qdµ <∞,

if q 6= ∞, and are µ-essentially bounded, if q = ∞. As usually, || · ||Lq(K,Σ,µ) denotes the standard

Lq-norm on Lq(K,Σ, µ).

Moreover, we introduce J0 := {j : R → [0,∞] : j is lower semicontinuous and convex, j(0) = 0}.
Furthermore, for any v1, v2 ∈ L1(K,Σ, µ), we write v1 << v2 whenever∫

K

j ◦ v1dµ ≤
∫
K

j ◦ v2dµ, ∀j ∈ J0.
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Remark 2.1.16. Let q ∈ [1,∞], v1, v2 ∈ Lq(K,Σ, µ) and assume that v1 << v2. Then, we have

||v1||Lq(K,Σ,µ) ≤ ||v2||Lq(K,Σ,µ), since: If q 6= ∞ this is an immediate consequence of | · |q ∈ J0; and if

q =∞, one verifies this by exploiting that R 3 x 7→ max(|x| − ||v2||L∞(K,Σ,µ), 0) is an element of J0.

Definition 2.1.17. An operator A : D(A)→ 2L
1(K,Σ,µ) is called completely accretive, if

v1 − v2 << v1 − v2 + α(v̂1 − v̂2)

for all (v1, v̂1), (v2, v̂2) ∈ A and α ∈ (0,∞).

As the absolute value function is obviously an element of J0, a completely accretive operator is also

accretive. Moreover, we have the following striking result:

Theorem 2.1.18. Let A : D(A)→ 2L
1(K,Σ,µ) be completely-accretive, m-accretive and densely defined.

In addition, assume that A is positively homogeneous of degree m ∈ (0,∞)\{1}, that is A(αv) = αmA(v)

for all v ∈ D(A) and α ≥ 0. Finally, let (TA(t))t≥0 denote the semigroup associated to A. Then TA is

domain invariant and admits an infinitesimal generator A◦ : L1(K,Σ, µ)→ L1(K,Σ, µ). Consequently,

for any v ∈ L1(K,Σ, µ), TA(·)v is the uniquely determined strong solution of

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), u(0) = v. (2.3)

Moreover, the following assertions hold.

i) TA(t)v1 − TA(t)v2 << v1 − v2 for all v1, v2 ∈ L1(K,Σ, µ) and t ≥ 0.

ii) TA(t)v << v for all v ∈ L1(K,Σ, µ) and t ≥ 0.

iii) For any q ∈ [1,∞], Lq(K,Σ, µ) is an invariant subspace w.r.t. TA.

iv) |A◦TA(t)v| ≤ 2 |v|
|m−1|

1
t , µ-a.e. on K, for all v ∈ L1(K,Σ, µ) and t > 0.

v) 1
h (TA(t+ h)v − TA(t)v) << A◦TA(t)v, for all t, h > 0 and v ∈ V .

Proof. The existence of an infinitesimal generator follows from [7, Theorem 4.2], and the domain invari-

ance as well as iv) follow from [7, Theorem 4.4]. Moreover, v) follows from the domain invariance and

[7, Theorem 4.2]. Furthermore, Theorem 2.1.14 yields that TA(·)v is the unique strong solution of (2.3).

In addition, i) follows from [7, Proposition 4.1]. Moreover, the homogeneity of A yields A(0) = 0, and

thus TA(t)(0) = 0 for all t ≥ 0. In light of this, it is clear that i) implies ii). Finally, combining ii) and

Remark 2.1.16 yields iii).

The preceding result is a powerful tool to verify the existence of unique strong solutions. The price

we had to pay, is that we had to restrict ourselves to L1(K,Σ, µ). In fact, the above results can be

generalized to so-called ”normal Banach spaces”, but are in this case more technical to formulate - The

reader is referred to [7] for a comprehensive treatment of the general case.

Now, this section concludes with the following general result which we could not find in the literature.

The result is independent of any other result in this section, and was used in the proof of Theorem 2.1.12.
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Lemma 2.1.19. Let [a, b] ⊆ R be an interval and let f : [a, b] → V be Lipschitz continuous and right

differentiable almost everywhere. Then f is differentiable almost everywhere.

Proof. Firstly, introduce L1([a, b];V ) as the space of functions ϕ : [a, b]→ V which are strongly measur-

able and fulfill
∫

[a,b]

||ϕ(t)||V dt < ∞. Note that (V, || · ||V ) is not necessarily separable, thus the notions

of Borel measurable, and strongly measurable do not necessarily agree. This proof is the only time in

this thesis, where we have to deal with integrals of functions which take values in Banach spaces that

are not necessarily separable. For any ϕ ∈ L1([a, b];V ),
∫

[a,b]

ϕ(t)dt denotes its Bochner integral, see [5]

for an introduction to strong measurability, and Bochner integrals in the non-separable setting.

Now, let f : [a, b]→ V be Lipschitz continuous and right differentiable almost everywhere. Then f is a

fortiori continuous and thus f ∈ L1([a, b];V ).

Now introduce f ′r : [a, b]→ V , as the almost everywhere existing right derivative of f . Moreover, let L

denote the Lipschitz constant of f .

Then we have by construction that

lim
h↘0

∣∣∣∣∣∣∣∣f(t+ h)− f(t)

h
− f ′r(t)

∣∣∣∣∣∣∣∣
V

= 0,

for almost every t ∈ [a, b]. Thus f ′r is strongly measurable. Moreover, thanks to the Lipschitz continuity

of f and Fatou’s Lemma, we obtain∫
[a,b]

||f ′r(t)||V dt ≤ lim inf
h↘0

∫
[a,b]

1

h
||f(t+ h)− f(t)||V dt ≤ L(b− a) <∞.

Ergo, we get f ′r ∈ L1([a, b];V ).

Now introduce f∗ : [a, b]→ V , by

f∗(t) :=

∫
[a,t]

f ′r(z)dz + f (a) , ∀t ∈ [a, b].

Then the fundamental theorem of calculus (for Bochner integrals) yields that f∗ is differentiable almost

everywhere and that f ′∗(t) = f ′r(t) for a.e. t ∈ [a, b], see [5, Prop. 1.2.2].

Consequently, the claim follows if f(t) = f∗(t) for every t ∈ [a, b].

To prove this, introduce Γ : [a, b]→ R by

Γ(t) := ||f(t)− f∗(t)||V , ∀t ∈ [a, b].

Firstly, note that obviously Γ(a) = 0. Moreover, we have

lim
h↘0

∣∣∣∣Γ(t+ h)− Γ(t)

h

∣∣∣∣
≤ lim

h↘0

(∣∣∣∣∣∣∣∣f(t+ h)− f(t)

h
− f ′r(t)

∣∣∣∣∣∣∣∣
V

+

∣∣∣∣∣∣∣∣−f∗(t+ h) + f∗(t)

h
+ f ′r(t)

∣∣∣∣∣∣∣∣
V

)
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= 0,

for almost every t ∈ [a, b], i.e. Γ is almost everywhere right differentiable and the right derivative is

equal to zero.

In addition, it is also easily verified that Γ is Lipschitz continuous, which implies, as R has the Radon-

Nikodym property, that it is differentiable almost everywhere. Since the right derivate of Γ is zero

almost everywhere, the almost everywhere derivative is also zero a.e. Finally, the Lipschitz continuity

of Γ yields that Γ is constant, and hence Γ(t) = 0 for all t ∈ [a, b].

2.2 General Results about ACPRM-Processes

In this section, we introduce ACPRM-processes and establish some of their basic properties needed in

Chapters 4, 5 and 6. Moreover, we set up some general notations needed there and define two real-valued

semigroups which serve as examples in the chapters dealing with ACPRM-processes.

Throughout everything which follows (Ω,F ,P) denotes a complete probability space. Moreover,

throughout this section (V, || · ||V ) denotes a separable (real) Banach space.

Remark 2.2.1. Whenever (K,Σ) is a measurable space and (M, τ) is a topological space, we set

M(K,Σ;M) := {f : K →M : f is Σ−B(M)−measurable},

where B(M) denotes the Borel σ-Algebra of M . Furthermore, we introduce the shortcut notation

M(Ω;V ) := M(Ω,F ;V ). As usually, we may refer to the elements of M(Ω;V ) as V -valued random

variables, and if V = R we refer to them as real-valued random variables.

Definition 2.2.2. Let (βm)m∈N, where βm : Ω→ (0,∞), be a sequence of real-valued random variables.

Moreover, let (ηm)m∈N ⊆M(Ω;V ), introduce αm :=
m∑
k=1

βk for all m ∈ N and set α0 := 0. Finally, let

x ∈ M(Ω;V ) and let (T (t))t≥0 be a time-continuous, contractive semigroup on V . Then the sequence

(Xx,m)m∈N0
defined by Xx,0 := x and

Xx,m := T (αm − αm−1)Xx,m−1 + ηm = T (βm)Xx,m−1 + ηm, ∀m ∈ N,

is called the sequence generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V . Moreover, the stochastic process

Xx : [0,∞)× Ω→ V defined by

Xx(t) :=

∞∑
m=0

T ((t− αm)+)(Xx,m)11[αm,αm+1)(t), ∀t ≥ 0, (2.4)

is called the process generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V , where (·)+ := max(·, 0).

Remark 2.2.3. Note that if (αm)m∈N0
is as in the previous definition, then (αm(ω))m∈N0

is, for every
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ω ∈ Ω, a strictly increasing sequence. Thus, the right-hand-side series in (2.4) consists at most out of

one non-zero summand which ensures that Xx is well-defined.

Remark 2.2.4. Particularly throughout running text, we may simply call a stochastic process which is

given by (2.4) for some not closer specified ((βm)m∈N, (ηm)m∈N, x, T ) an ACPRM-process

Remark 2.2.5. Let (T (t))t≥0 be a time-continuous and contractive semigroup on V . Then it is easily

verified that T is also jointly continuous. Consequently, this map is a fortiori B([0,∞) × V )-B(V )-

measurable. Moreover, by separability we have B([0,∞)× V ) = B([0,∞))⊗B(V ), see [10, page 244];

which gives that this map is B([0,∞))⊗B(V )-B(V )-measurable.

Lemma 2.2.6. Let (βm)m∈N, where βm : Ω → (0,∞), be a sequence of real-valued random variables.

Moreover, let (ηm)m∈N ⊆ M(Ω;V ) and x ∈ M(Ω;V ). In addition, introduce αm :=
m∑
k=1

βk for all

m ∈ N and set α0 := 0. Finally, let Xx be the process and (Xx,m)m∈N0
be the sequence generated

by ((βm)m∈N, (ηm)m∈N, x, T ) in V ; where (T (t))t≥0 is a time-continuous, contractive semigroup on V .

Then the following assertions hold.

i) Xx(0) = x.

ii) Xx,m is F-B(V )-measurable for each m ∈ N0.

iii) (Xx(t))t≥0 is a stochastic process, i.e. each Xx(t) is F-B(V )-measurable.

iv) The mapping [0,∞) 3 t 7→ Xx(t, ω) is right continuous for each ω ∈ Ω.

v) Xx is B([0,∞))⊗F-B(V )-measurable.

vi) If in addition P( sup
m∈N

αm =∞) = 1, then the stochastic process (Xx(t))t≥0 has almost surely càdlàg

paths.

vii) If V̂ ⊆ V is a subspace which is invariant w.r.t. (T (t))t≥0, and x, ηm ∈ V̂ for all m ∈ N a.s., then

Xx,m ∈ V̂ for all m ∈ N0 a.s. and Xx(t) ∈ V̂ for all t ≥ 0 with probability one.

Proof. The first assertion is trivial. Moreover, ii) is easily verified inductively: As Xx,0 = x, ii) holds

if m = 0, and if it holds for an m ∈ N, Remark 2.2.5 enables us to conclude that T (βm+1)Xx,m is

F-B(V )-measurable, which yields that Xx,m+1 = T (βm+1)Xx,m + ηm+1 is F-B(V )-measurable.

One now easily deduces the third assertion from the second and Remark 2.2.5.

Now, let us verify the fourth: Let ω ∈ Ω and t ∈ [0,∞) be given. If, t ≥ sup
m∈N

αm(ω), then the same holds

true for t + h, for any h ≥ 0. Thus, we get Xv(t + h, ω) = Xv(t, ω) = 0. Moreover, if t < sup
m∈N

αm(ω),

then there is precisely one m ∈ N0 such that t ∈ [αm(ω), αm+1(ω)). Now, for each h ≥ 0 sufficiently

small we also have t+ h ∈ [αm(ω), αm+1(ω)) which yields by the time continuity of T that

lim
h↘0

Xx(t+ h, ω)− Xx(t, ω) = T (t+ h− αm(ω))Xx,m − T (t− αm(ω))Xx,m = 0
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and iv) follows.

Furthermore, v) follows from iii), iv) and [31, Prop. 2.2.3.2].

Proof of vi). Invoking iv) yields that it remains to prove that (0,∞) 3 t 7→ Xx(t, ω) has left limits for

each ω ∈ Ω̃ := {ω ∈ Ω : sup
m∈N

αm(ω) =∞}, which is by assumption a set of full P-measure.

So fix t > 0 and ω ∈ Ω̃ and note that there is precisely one m ∈ N0 such that t ∈ [αm(ω), αm+1(ω)).

If t ∈ (αm(ω), αm+1(ω)), it follows analogously to the proof of iv) that lim
h↘0

Xx(t− h, ω)−Xx(t, ω) = 0,

and if t = αm(ω), we get by the time-continuity of T that

lim
h↘0

Xx(t− h, ω) = T (αm(ω)− h− αm−1(ω))Xx,m−1(ω) = T (βm(ω))Xx,m−1(ω),

which completes the proof of vi).

Finally, let us prove vii). That Xx,m ∈ V̂ for all m ∈ N0 a.s. is easily verified by induction: If m = 0, we

have Xx,m = x ∈ V̂ a.s., and if Xx,m ∈ V̂ a.s. for an m ∈ N0, it follows from the invariance of V̂ w.r.t. T

that T (βm+1)Xx,m ∈ V̂ almost surely. Ergo, Xx,m+1 = T (βm+1)Xx,m + ηm+1 ∈ V̂ with probability one,

since V̂ is a vector space. Thus, Xx,m ∈ V̂ for all m ∈ N0 with probability one. Finally, using this, the

invariance of V̂ w.r.t. T and 0 ∈ V̂ , yields the remaining claim.

Now let us introduce the two real-valued semigroups which will serve as examples in the chapters

dealing with ACPRM-processes.

Remark 2.2.7. Let ρ1 ∈ (0, 1) and ρ2 ∈ (0,∞) be given and consider the families of mappings

(Tρi(t))t≥0, with Tρi(t) : R→ R for all t ∈ [0,∞), i = 1, 2, defined by

i) Tρ1(t)v := sgn(v) (−t+ |v|ρ1)
1
ρ1
+ for all v ∈ R and t ∈ [0,∞), where (·)+ := max(·, 0), and

ii) Tρ2(t)v := sgn(v)
(
t+ |v|−

1
ρ2

)−ρ2
for all v ∈ R and t ∈ [0,∞). (If v = 0, set (t+ |v|−

1
ρ2 )−ρ2 := 0

which is reasonable, since: For any x ∈ [0,∞) the mapping (0,∞) 3 y 7→
(
x+ y−

1
ρ2

)−ρ2
can be

extended continuously by zero in y = 0.)

The families of mappings (Tρ1(t))t≥0 and (Tρ2(t))t≥0 are time-continuous, contractive semigroups on

R. As a warm up, let us verify that (Tρ1(t))t≥0 has in fact these properties. (For (Tρ2(t))t≥0 this works

analogously and will be omitted.)

Firstly, for v ∈ R and t, h ≥ 0 we get

Tρ1(t)(Tρ1(h)v) = sgn(Tρ1(h)v) (−t+ |Tρ1(h)v|ρ1)
1
ρ1
+ = sgn(v) (−t− h+ |v|ρ1)

1
ρ1
+ = Tρ1(t+ h)v,

and it is trivial that Tρ1(0)v = v. Thus, (Tρ1(t))t≥0 is a semigroup, and it is plain that it is time

continuous. Now, fix v, v̂ ∈ R and introduce f : [0,∞) → [0,∞) by f(t) := (Tρ1(t)v − Tρ1(t)v̂)2 for

all t ≥ 0, then f is continuously differentiable on [0,∞), and one verifies (by differentiating) that f is

decreasing on [0,∞). Thus we get

|Tρ1(t)v − Tρ1(t)v̂| =
√
f(t) ≤

√
f(0) = |v − v̂|, ∀t ≥ 0,

18



which yields the desired contractivity.

Now, let us conclude this section with some remarks clarifying our conventions regarding Lq-spaces

of (vector-valued) functions, σ-algebras generated by (vector-valued) random variables, and laws of

(vector-valued) random variables:

Remark 2.2.8. Let (K,Σ, µ) denote a σ-finite measure space, then Lq(K,Σ, µ;V ) denotes, for any

q ∈ [1,∞), the set of all (equivalence classes of) functions f ∈M(K,Σ;V ), such that∫
K

||f ||qV dµ <∞.

For any f ∈ Lq(K,Σ, µ;V ), the integral
∫
K

fdµ is understood as a Bochner integral; for an introduction

to Bochner integrability, see [31, Section 2.1]. Particularly, note that the separability of V yields that

the notions of measurability, weak measurability and strong measurability agree, see [31, p. 6]

As usually, if V = R we may simply write Lq(K,Σ, µ), and define L∞(K,Σ, µ) as the space of equivalence

classes of µ-essentially bounded Σ-B(R)-measurable functions.

Finally, we introduce the short-cut notations

Lq(Ω;V ) := Lq(Ω,F ,P;V ) and Lq(Ω) := Lq(Ω,F ,P).

Remark 2.2.9. Let I be an index-set. Moreover, introduce for each i ∈ I a separable Banach space

(Vi, || · ||Vi) and a Vi-valued random variable Yi : Ω → Vi. Then σ(Yj ; j ∈ I) ⊆ F denotes the smallest

σ-Algebra, such that each Yi is σ(Yj ; j ∈ I) −B(Vi)-measurable. In addition, σ0(Yj ; j ∈ I) denotes its

completion, i.e.

σ0(Yj ; j ∈ I) := {A ∈ F : ∃B ∈ σ(Yj ; j ∈ I), such that P(A∆B) = 0},

where ∆ denotes the symmetric difference. It is easily verified that the right-hand-side of the previous

equation is indeed a σ-Algebra and the smallest one containing all P-null-sets as well as all elements of

σ(Yj ; j ∈ I).

Remark 2.2.10. Whenever, Y ∈ M(Ω;V ), then PY denotes its law, i.e. PY : B(V ) → [0, 1], with

PY (B) := P(Y ∈ B) for all B ∈ B(V ).

19



Chapter 3

Asymptotic Results for the weighted

p-Laplacian evolution Equation

3.1 Outline & Highlights

In this chapter, we will derive numerous asymptotic results for the weighted p-Laplacian evolution

equation given by 
u′(t) = div

(
γ|∇u(t)|p−2∇u(t)

)
on S,

γ|∇u(t)|p−2∇u(t) ·Υ = 0 on ∂S,

u(0) = v,

(3.1)

for a.e. t ∈ (0,∞); where: ∅ 6= S ⊆ Rn is a bounded, open and connected set of class C1, n ∈ N \ {1},
p ∈ (1,∞) \ {2}, Υ is the unit outer normal on ∂S, v : S → R is an integrable initial and γ : S → (0,∞)

is an almost everywhere bounded, B(S)-B(0,∞)-measurable weight function, which can be extended

to a p-Muckenhoupt weight on Rn and fulfills
∫
S

γ
1

1−p dλ <∞.

Existence and uniqueness results for this problem have been studied in [3, Section 3]. Before outlining

our asymptotic results, let us give a brief summary of [3, Section 3]: There, the authors introduce a

single-valued p-Laplace operator Ap : D(Ap)→ L1(S), where we denote by Lq(S) := Lq(S,B(S), λ;R),

for any q ∈ [1,∞], the usual Lebesgue spaces. Then they prove that the closure of Ap, which we will

denote by Ap : D(Ap)→ 2L
1(S), is m-accretive and densely defined. Thus, we can introduce (TAp(t))t≥0,

where TAp(t) : L1(S)→ L1(S) for all t ≥ 0, as the semigroup associated to Ap, see Definition 2.1.8.

In fact, the authors of [3, Section 3] even show that the initial value problem

0 ∈ u′(t) +Apu(t), for a.e. t ∈ (0,∞) u(0) = v,
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has for any v ∈ L1(S) a uniquely determined strong solution, which of course coincides with TAp(·)v,

see Remark 2.1.5.

In Section 3.2, we are going to recall these results in greater detail; particularly, Ap as well as Ap
will be introduced there, and we also use this section to deduce some basic properties of (TAp(t))t≥0

which are direct consequences of the results in Section 2.1.

Afterwards, we will establish that (TAp(t))t≥0 conserves mass, that is (TAp(t)v)
S

= (v)S for every t ≥ 0

and v ∈ L1(S), where (v)S := 1
λ(S)

∫
S

vdλ denotes the average of any v ∈ L1(S).

This result builds the basis for our investigation of the asymptotic behavior of (TAp(t))t≥0. We will

demonstrate that

lim
t→∞

||TAp(t)v − (v)S ||Lq(S) = 0, (3.2)

for any v ∈ Lq(S) and q ∈ [1,∞); as well as

||TAp(t)v − (v)S ||L1(S) ≤ C1(p, γ, S)||v − (v)S ||
2
p

L2(S)

(
1

t

) 1
p

, (3.3)

for all v ∈ L2(S) and t ∈ (0,∞), where C1(p, γ, S) > 0 is a constant (being determined explicitly later)

depending only on p, S and γ.1 Actually, it will turn out that (3.3) is a corollary of a slightly stronger

result which is more technical to formulate and will be postponed until Section 3.4.

Deriving further asymptotic results, requires a way of measuring how close γ is to zero, which is done

by

p0 := inf{q > 1 : γ
1

1−q ∈ L1(S)}.

The first highlight of this chapter is an L∞-Lp-contraction principle, which reads: If p > np0, then

||TAp(t)v − (v)S ||L∞(S) ≤ C2(p, γ, S, n)||v − (v)S ||
2
p

L2(S)

(
1

t

) 1
p

, (3.4)

for all t ∈ (0,∞) and v ∈ Lp(S).

Additionally, an extinction principle will be proven, i.e. if p ∈
(
p0(n−2)
n+2 + p0, 2

)
6= ∅, then

||TAp(t)v − (v)||2−pL2(S) ≤ (−C3(p, γ, S, n)t+ ||v − (v)||2−pL2(S))+, (3.5)

for all t ≥ 0 and v ∈ L2(S). In particular, TAp(t)v = (v) for all t ≥
||v−(v)||2−p

L2(S)

C3(p,γ,S,n) and v ∈ L2(S).

1In this section, several constants Ci(...) occur. They are all positive, will be determined explicitly later, and solely
depend on the quantities inside of the parenthesis.
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Moreover, we will see that: If p ∈ (2,∞) and
∫
S

γ
2

2−p dλ <∞ (which is true if p > 2p0), then

||TAp(t)v − (v)S ||L1(S) ≤ C4(p, S, γ)

(
1

t

) 1
p−2

,∀v ∈ L1(S), t > 0 (3.6)

as well as

||TAp(t)v − (v)S ||L2(S) ≤
(
C5(p, S, γ)t+ ||v − (v)S ||

2−p
L2(S)

) 1
2−p

, ∀v ∈ L2(S), t ≥ 0. (3.7)

Note that if n = 2 and p0 = 1, then (3.4), (3.6) and (3.7) can be applied if p > 2; and (3.5) can be

applied, if p ∈ (1, 2); given that the initial fulfills the stated integrability assumption. Hereby, p0 = 1 is

fulfilled if for instance, γ ≥ c a.e. on S for a constant c > 0. Moreover, as described in Section 1.1, the

p-Laplacian semigroup (TAp(t))t≥0 can be used to model the evolution of a fluvial landscape, in which

case n = 2.

In fact, there are some further asymptotic results proven in this chapter, which we left out to keep

this section more concise, and since they are in a similar spirit to one of the results we have already stated.

This chapter is structured as follows: The basic notation needed in this chapter and a summary of the

highlights of [3, Section 3] can be found in Section 3.2. Then, in Section 3.3 we prove our conservation

of mass principle, and some further elementary properties of TAp , Ap and Ap. In Section 3.4, we derive

the results (3.2), (3.3) and (3.4). Finally, in Section 3.5 we employ differential inequality techniques to

prove (3.5), (3.6) and (3.7).

Moreover, the asymptotic results proven here, will enable us to apply the general results regarding

ACPRM-processes that will be developed in Chapters 4, 5 and 6, to (TAp(t))t≥0.

3.2 Assumptions, Notation and preliminary Results

Throughout this entire chapter, let n ∈ N \ {1}, p ∈ (1,∞) \ {2} and let ∅ 6= S ⊆ Rn be an open,

connected and bounded set of class C1.

Now let us introduce some general notations: λ denotes the Lebesgue measure on Rn, | · | the

euclidean norm on Rn, and x · y is the canonical inner product of any x, y ∈ Rn. In addition, we

introduce the usual Lebesgue spaces Lq(S) := Lq(S,B(S), λ;R) and Lq(S;Rn) := Lq(S,B(S), λ;Rn),

for all q ∈ [1,∞]. As usually, W 1,1
Loc(S) denotes the space of weakly differentiable functions and ∇f

denotes the weak derivative of any f ∈ W 1,1
Loc(S). In addition, for any q ∈ [1,∞), W 1,q(S) denotes the

Sobolev space of once weakly differentiable functions, such that ϕ ∈ Lq(S) and ∇ϕ ∈ Lq(S;Rn); and as

usually C∞c (S) is the space of infinitely often continuous differentiable, compactly supported functions

ϕ : S → R.
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Remark 3.2.1. Let q ∈ (1,∞). Then Mq(Rn) denotes the class of q-Muckenhoupt weights, that is:

Mq(Rn) consists of all B(Rn)-B(R)-measurable functions γ0 : Rn → R such that γ0 > 0 a.e., γ0 is

(w.r.t. the Lebesgue measure) locally integrable on Rn and

sup
B⊆Rn

B is a ball

[ 1

λ(B)

∫
B

γ0dλ
( 1

λ(B)

∫
B

γ
1

1−q
0 dλ

)q−1]
<∞.

Now, let us state the assumptions regarding γ which are needed throughout this chapter: Let

γ : S → (0,∞) be such that γ ∈ L∞(S), γ
1

1−p ∈ L1(S) and assume that there is a γ0 ∈ Mp(Rn) such

that γ0|S = γ a.e. on S.

Finally, we set Lp(S, γ,Rn) := Lp(S,B(S), νγ ;Rn), where νγ : B(S) → [0,∞) is the measure induced

by γ, i.e. νγ(B) :=
∫
B

γdλ for all B ∈ B(S), and introduce the weighted Sobolev space

W 1,p
γ (S) := {f ∈ Lp(S) : ∇f ∈ Lp(S, γ;Rn)}. (3.8)

These notations enable us to introduce the following p-Laplace operator:

Definition 3.2.2. Let Ap : D(Ap) → 2L
1(S) be defined by: (f, f̂) ∈ Ap if and only if the following

assertions hold.

i) f ∈W 1,p
γ (S) ∩ L∞(S).

ii) f̂ ∈ L1(S).

iii)
∫
S

γ|∇f |p−2∇f · ∇ϕdλ =
∫
S

f̂ϕdλ for all ϕ ∈W 1,p
γ (S) ∩ L∞(S).

As introductory claimed, we will see in the next section that Ap is single-valued. Now, we would like

to introduce the closure of Ap, which requires to generalize the concept of weak differentiability:

Remark 3.2.3. In the sequel, τk : R→ R, where k ∈ (0,∞), denotes the standard truncation function,

i.e. τk(s) := s, if |s| < k and τk(s) := ksgn(s), if |s| ≥ k. Moreover, if f : S → R is Borel measurable

and fulfills τk(f) ∈ W 1,1
Loc(S) for all k ∈ (0,∞), then ∇̃f : S → Rn, denotes the (up to equality a.e.)

uniquely determined function fulfilling

∇τk(f) = ∇̃f11{|f |<k}, ∀k ∈ (0,∞) (3.9)

a.e. on S. The function ∇̃f is called the generalized weak derivative of f . Note that if f : S → R is

generalized weakly differentiable, then f ∈ W 1,1
Loc(S) if and only if ∇̃f is (w.r.t. the Lebesgue measure)

locally integrable on S; and in this case ∇̃f = ∇f . Cf. [6], for these and further properties.

Definition 3.2.4. Let Ap : D(Ap) → 2L
1(S) be defined by: (f, f̂) ∈ Ap if and only if the following

assertions hold.

i) f, f̂ ∈ L1(S).
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ii) τk(f) ∈W 1,p
γ (S) for all k ∈ (0,∞) .

iii)
∫
S

γ|∇̃f |p−2∇̃f · ∇(τk(f − ϕ))dλ ≤
∫
S

f̂ τk(f − ϕ)dλ for all k ∈ (0,∞) and ϕ ∈W 1,p
γ (S) ∩ L∞(S).

Now let us extract the following result from [3, Section 3]:

Theorem 3.2.5. The operator Ap is m-accretive, complete accretive, densely defined and positively

homogeneous of degree p− 1. Consequently, for any v ∈ V , the initial value problem

0 ∈ u′(t) +Apu(t) for a.e. t ∈ (0,∞) and u(0) = v. (3.10)

has precisely one strong solution. Moreover, Ap is the closure of Ap, and even D(Ap) is a dense subset

of (L1(S), || · ||L1(S)).

Remark 3.2.6. Throughout this chapter, (TAp(t))t≥0 denotes the semigroup associated to Ap, see

Definition 2.1.8. Consequently, as mild solutions are according to Remark 2.1.5 also strong ones, we

infer from Theorem 3.2.5 that: For any v ∈ V , TAp(·)v : [0,∞) → L1(S) is the uniquely determined

strong solution of (3.10), i.e. TAp(·)v is continuous on [0,∞), (TAp(·)v)|(0,∞) ∈ W 1,1
Loc((0,∞);L1(S))

and last but not least

0 ∈ T ′Ap(t)v +ApTAp(t)v for a.e. t ∈ (0,∞) and TAp(0)v = v. (3.11)

For the reader’s convenience let us state some further useful properties of (TAp(t))t≥0, which can be

inferred from the properties of Ap stated in Theorem 3.2.5 and the results in Section 2.1:

i) (TAp(t))t≥0 is a jointly-continuous, contractive semigroup. (See Theorem 2.1.7)

ii) For any v ∈ D(Ap) and t > 0, (TAp(·))|[0,t] is Lipschitz continuous. (See Lemma 2.1.13.)

iii) ||TAp(t)v1 − TAp(t)v2||Lq(S) ≤ ||v1 − v2||Lq(S) for all v1, v2 ∈ Lq(S), q ∈ [1,∞] and t ≥ 0. (See

Theorem 2.1.18.i) and Remark 2.1.16)

iv) ||TAp(t)v||Lq(S) ≤ ||v||Lq(S) for all v ∈ Lq(S), q ∈ [1,∞] and t ≥ 0. (See Theorem 2.1.18.ii) and

Remark 2.1.16.)

v) (TAp(t))t≥0 is domain invariant and admits an infinitesimal generator A◦p : L1(S) → L1(S). (See

Theorem 2.1.18.)

vi) Let A◦p denote the infinitesimal generator of (TAp(t))t≥0, q ∈ [1,∞], t, h > 0 and v ∈ Lq(S), then

we have 1
h ||TAp(t + h)v − TAp(t)v||Lq(S) ≤ ||A◦pTAp(t)v||Lq(S) ≤ 2

|p−2|
1
t ||v||Lq(S). (See 2.1.18.iv,v

and Remark 2.1.16.)

3.3 Basic Results and Conservation of Mass

In this section, we will derive some basic properties of TAp , Ap and Ap, among them is the introductory

mentioned conservation of mass principle, which is stated and proven in Lemma 3.3.5.
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Lemma 3.3.1. Ap is single-valued. Moreover, if f ∈ D(Ap) ∩ L∞(S) and f̂ ∈ Apf , then f ∈ D(Ap)

and f̂ = Apf .

Proof. It is plain that Ap is single-valued, since (f, f̂), (f, f̃) ∈ Ap implies∫
S

(f̂ − f̃)ϕdλ = 0, ∀ϕ ∈W 1,p
γ (S) ∩ L∞(S),

and obviously C∞c (S) ⊆W 1,p
γ (S) ∩ L∞(S).

Now let f ∈ D(Ap) ∩ L∞(S) and f̂ ∈ Apf , then τk(f) ∈ W 1,p
γ (S) for all k ∈ (0,∞). Consequently, by

choosing k > ||f ||L∞(S), we get f ∈W 1,p
γ (S) ∩ L∞(S) . Hence the claim follows if∫

S

γ|∇f |p−2∇f · ∇ϕdλ =

∫
S

f̂ϕdλ, ∀ϕ ∈W 1,p
γ (S) ∩ L∞(S). (3.12)

Proof of (3.12). It follows from the definition of Ap that∫
S

γ|∇̃f |p−2∇̃f · ∇(τk(f − ϕ))dλ ≤
∫
S

f̂ τk(f − ϕ)dλ,

for all ϕ ∈W 1,p
γ (S) ∩ L∞(S) and k ∈ (0,∞).

Observe that f ∈ W 1,p
γ (S) ∩ L∞(S) implies ∇̃f = ∇f on S (see Remark 3.2.3) and that ϕ = f − ϕ̃,

where ϕ̃ ∈W 1,p
γ (S) ∩ L∞(S), is a valid choice as a test function in the previous equation; hence∫

S

γ|∇f |p−2∇f · ∇(τk(ϕ̃))dλ ≤
∫
S

f̂ τk(ϕ̃)dλ, (3.13)

for all ϕ̃ ∈W 1,p
γ (S) ∩ L∞(S) and k ∈ (0,∞).

Now (3.13) yields, by choosing k > ||ϕ̃||L∞(S) for a given ϕ̃ ∈W 1,p
γ (S) ∩ L∞(S), that∫

S

γ|∇f |p−2∇f · ∇ϕ̃dλ ≤
∫
S

f̂ ϕ̃dλ, ∀ϕ̃ ∈W 1,p
γ (S) ∩ L∞(S). (3.14)

Conclusively the claim follows since ϕ̃ can be replaced by −ϕ̃ as a test function in (3.14).

Lemma 3.3.2. Let v ∈ L∞(S). Then we have TAp(t)v ∈ D(Ap) and −T ′Ap(t)v = ApTAp(t)v for almost

every t ∈ (0,∞).

Proof. We already know that 0 ∈ T ′Ap(t)v +ApTAp(t)v for a.e. t ∈ (0,∞) and (by domain invariance)

even TAp(t)v ∈ D(Ap) for every t ∈ (0,∞). Thus, employing the services of Remark 3.2.6.iv) (with

q =∞) and Lemma 3.3.1 yields the claim.

Lemma 3.3.3. Let v ∈ L1(S) and ϕ : S → R be a constant function. Then

TAp(t)(v + ϕ) = TAp(t)(v) + ϕ, ∀t ∈ [0,∞). (3.15)
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Consequently, if TAp(·)v is differentiable in t ∈ (0,∞), then TAp(·)(v + ϕ) is differentiable in t and

T ′Ap(t)(v + ϕ) = T ′Ap(t)v.

Proof. Let v ∈ L∞(S), let ϕ : S → R be a constant function and introduce f : [0,∞) → L1(S) by

f(t) := TAp(t)(v) + ϕ.

It is clear that f(0) = v+ϕ and also that f is continuous on [0,∞) and an element ofW 1,1
Loc((0,∞);L1(S)),

since TAp(·)v has these properties.

Now observe that obviously f ′(t) = T ′Ap(t)v for a.e. t ∈ (0,∞). Moreover, we have for any ϕ ∈
W 1,p
γ (S) ∩ Lv(S) that∫

S

γ|∇f(t)|p−2∇f(t) · ∇ϕdλ =

∫
S

γ|∇TAp(t)v|p−2∇TAp(t)v · ∇ϕdλ

which implies, together with f ′(t) = T ′Ap(t)v for a.e. t ∈ (0,∞) and Lemma 3.3.2, that f(t) ∈ D(Ap)

and −f ′(t) = Apf(t) for a.e. t ∈ (0,∞). Consequently (3.15) is verified for initial values v ∈ L∞(S).

Conclusively, applying Remark 3.2.6.iii (with q = 1) yields that both sides of (3.15) depend continuously

on v. Thus, as L∞(S) is dense in (L1(S), || · ||L1(S)), (3.15) holds for all v ∈ L1(S).

Finally observe that (3.15) clearly implies the remaining part of the claim.

Remark 3.3.4. We denote for any v ∈ L1(S), its average by (v)S, that means (v)S := 1
λ(S)

∫
S

vdλ. By

slightly abusing notation, the constant function mapping from S to R, which takes only the value (v)S
will also be denoted by (v)S. In addition, we set

Lq0(S) := {v ∈ Lq(S) : (v)S = 0},

for all q ∈ [1,∞]. Moreover, we equip Lq0(S) with || · ||Lq(S) as a norm. Then (Lq0(S), || · ||Lq(S)) is a

Banach space, for any q ∈ [1,∞], and it is separable, if q 6=∞.

Lemma 3.3.5. Let v ∈ L1(S), then (TAp(t)v)
S

= (v)S for every t ≥ 0.

Proof. As, L1(S) 3 v 7→ (v)S is clearly continuous, employing Remark 3.2.6.iii) (with q = 1) yields

that L1(S) 3 v 7→ (TAp(t)v)
S

is continuous as well. Thus, it suffices to prove the claim for v ∈ D(Ap),

since this is according to Theorem 3.2.5 a dense subset of (L1(S)|| · ||L1(S)). So let v ∈ D(Ap) be given.

Moreover, introduce τ ∈ (0,∞) and f : [0, τ ]→ R by f(t) :=
∫
S

TAp(t)vdλ, for all t ∈ [0, τ ].

According to Remark 3.2.6.ii), (TAp(·)v)|[0,τ ] is Lipschitz continuous which obviously implies that f is

Lipschitz continuous as well. Moreover, it is plain that f ′(t) =
∫
S

T ′Ap(t)vdλ.

In addition, note that D(Ap) ⊆ L∞(S) which yields by the aid of Lemma 3.3.2 that

f ′(t) = −
∫
S

γ|∇TAp(t)v|p−2∇TAp(t)v · ∇ϕdλ = 0,

where ϕ : S → R denotes the function which is constantly one.
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Consequently, f is constant and therefore (v) = (TAp(t)v) for all t ∈ [0, τ ] which gives the claim as τ is

arbitrary.

Lemma 3.3.6. For each q ∈ [1,∞), the space Lq0(S) is invariant w.r.t. TAp . Moreover, the restriction of

TAp to Lq0(S) is a time-continuous, contractive semigroup on (Lq0(S), ||·||Lq(S)) which fulfills TAp(t)0 = 0

for all t ∈ [0,∞).

Proof. The invariance follows from Lemma 3.3.5 and Remark 3.2.6.iv). In addition, the contractivity

follows from Remark 3.2.6.iii). Moreover, TAp(t)0 = 0 is easily inferred from 0 ∈ D(Ap), Ap0 = 0. In

addition, it is plain that the semigroup property still holds on Lq0(S) ⊆ L1(S).

Thus, it remains to prove the time-continuity. So let v ∈ Lq0(S) and introduce a null-sequence (hm)m∈N ⊆
R, as well as t ≥ 0 and ε > 0. Moreover, assume w.l.o.g. that t+hm ≥ 0 for all m ∈ N. Moreover, choose

v̂ ∈ L∞0 (S) such that ||v− v̂||Lq(S) <
ε
2 . Then we get by the time continuity of TAp , and by passing to a

subsequence if necessary, that lim
m→∞

TAp(t + hm)v̂ = TAp(t)v̂ almost everywhere. In addition, invoking

Remark 3.2.6.iv) gives ||TAp(t + hm)v̂||L∞(S) ≤ ||v̂||L∞(S) for all m ∈ N and employing dominated

convergence yields lim
m→∞

TAp(t+ hm)v̂ = TAp(t)v̂ w.r.t. || · ||Lq(S). Conclusively, we get by contractivity

that

lim
m→∞

||TAp(t+ hm)v − TAp(t)v||Lq(S) ≤ 2||v − v̂||Lq(S) + lim
m→∞

||TAp(t+ hm)v̂ − TAp(t)v̂||Lq(S) ≤ ε,

which yields the desired time continuity.

Now, let us conclude this section with the following lemma which is not needed in the Sections 3.4

and 3.5, but in Section 4.4.

Lemma 3.3.7. Let ϕ ∈ W 1,p
γ (S) ∩ L∞(S) and v ∈ L∞(S). Moreover, let A◦p : L1(S) → L1(S) denote

the infinitesimal generator of TAp . Then, the mapping (0,∞) 3 τ 7→
∫
S

ϕA◦pTAp(τ)vdλ is B((0,∞))-

B(R)-measurable and

t∫
0

∣∣∣∣∣∣
∫
S

ϕA◦pTAp(τ)vdλ

∣∣∣∣∣∣ dτ <∞. (3.16)

for all t > 0.

Proof. Firstly, Remark 3.2.6.vi) yields that ϕA◦pTAp(τ)v ∈ L∞(S) ⊆ L1(S) for all τ > 0; thus, the

integral
∫
S

ϕA◦pTAp(τ)vdλ exists. Moreover, Remark 3.2.6.v) yields

∫
S

ϕA◦pTAp(τ)vdλ = − lim
h↓0

1

h

∫
S

ϕTAp(τ + h)vdλ−
∫
S

ϕTAp(τ)vdλ

 , ∀τ > 0.

In addition, for any h > 0, the mapping (0,∞) 3 τ 7→ 1
h

(∫
S

ϕTAp(τ + h)vdλ−
∫
S

ϕTAp(τ)vdλ

)
is continuous, and therefore a fortiori B((0,∞))-B(R)-measurable. Consequently, (0,∞) 3 τ 7→
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∫
S

ϕA◦pTAp(τ)vdλ is B((0,∞))-B(R)-measurable, and it remains to prove (3.16).

Firstly, Lemma 3.3.2 yields A◦pTAp(τ)v = ApTAp(τ)v, for a.e. τ > 0. Thus, by employing Cauchy-

Schwarz’ and Hölder’s inequality we get∣∣∣∣∣∣
∫
S

ϕA◦pTAp(τ)vdλ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
S

γ|∇TAp(τ)v|p−2
n ∇TAp(τ)v · ∇ϕdλ

∣∣∣∣∣∣
≤

∫
S

γ|∇TAp(τ)v|pndλ


p−1
p
∫
S

γ|∇ϕ|pndλ

 1
p

=

∫
S

TAp(τ)vApTAp(τ)vdλ


p−1
p
∫
S

γ|∇ϕ|pndλ

 1
p

for a.e. τ ∈ (0,∞). Consequently, Remark 3.2.6.iv,vi) enable us to deduce that

∣∣∣∣∣∣
∫
S

ϕA◦pTAp(τ)vdλ

∣∣∣∣∣∣ ≤
(

1

τ
2λ(S)

1

|p− 2|
||v||2L∞(S)

) p−1
p

∫
S

γ|∇ϕ|pndλ

 1
p

,

for a.e. τ ∈ (0,∞). But, the preceding inequality obviously implies (3.16).

3.4 An L∞-Lp-Contraction Principle

The purpose of this section is to prove the results (3.2), (3.3) and (3.4) mentioned in the introduction.

Actually, it will turn out that (3.3) is a corollary of a slightly stronger result.

Among other things, the (proofs of the) asymptotic results we obtain, heavily rely on Poincareé’s

inequality:

Remark 3.4.1. We denote for any q ∈ [1,∞), the Poincaré constant of S in Lq(S) by CS,q, that is:

CS,q ∈ (0,∞) is the smallest constant depending only on S and q, such that

||f − (f)S ||Lq(S) ≤ CS,q||∇f ||Lq(S;Rn), ∀f ∈W 1,q(S).

Note that S is assumed to be open, bounded, connected and of class C1. Consequently, Poincaré’s

inequality implies the existence of CS,q.

Remark 3.4.2. Throughout this chapter, let p0 ∈ [1, p] be the constant defined by

p0 := inf{q > 1 : γ
1

1−q ∈ L1(S)}.

Since γ
1

1−p ∈ L1(S) by assumption, it is clear that indeed p0 ≤ p.

Roughly speaking, p0 gets as closer to one, as further away γ is from zero. Moreover, as it turns
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out, the closer p0 is to one, the better our asymptotic results get. In addition, note the following special

case:

Remark 3.4.3. If there is a constant c > 0 such that γ ≥ c a.e. on S, then p0 = 1, since: We then

have for all q > 1 that
∫
S

γ
1

1−q dλ ≤ λ(S)c
1

1−q <∞.

Thus, particularly if γ is constant a.e. on S, then p0 = 1.

Lemma 3.4.4. If q > p0 then γ
1

1−q ∈ L1(S). Moreover, p0 < p.

Proof. Let q > p0, then there is q̃ ∈ [p0, q) \ {1} such that γ
1

1−q̃ ∈ L1(S). Since trivially 1−q
1−q̃ > 1,

Hölder’s inequality yields

∫
S

γ
1

1−q dλ ≤ λ(S)
q̃−q
1−q

∫
S

γ
1

1−q̃ dλ


1−q̃
1−q

<∞,

which implies γ
1

1−q ∈ L1(S).

By assumption there is γ0 ∈ Mp(Rn) such that γ = γ0 a.e. on S. Moreover, there is an ε ∈ (0, p − 1)

such that γ0 ∈Mp−ε(Rn). (See [40, Ch. IX Prop. 4.3 and Theorem 5.5].)

Since S is bounded, there is a ball B ⊆ Rn containing S which implies γ
1

1−(p−ε)
0 ∈ L1(S). This implies

p0 < p, since γ = γ0 a.e. on S.

Lemma 3.4.5. Let 0 ≤ δ < p−p0
p0

and f ∈W 1,p
γ (S), then f ∈W 1,1+δ(S) and

||∇f ||L1+δ(S;Rn) ≤

∫
S

γ
1+δ

1+δ−p dλ


p−1−δ
p(1+δ)

||∇f ||Lp(S,γ;Rn) <∞. (3.17)

Proof. Let 0 ≤ δ < p−p0
p0

. (Note that p0 < p, thus such a δ does indeed exists.)

In addition, let f ∈W 1,p
γ (S), then obviously f ∈W 1,1

Loc(S) as well as f ∈ Lp(S).

Moreover, note that 1 + δ < 1 + p−p0
p0
≤ p and thus f ∈ L1+δ(S), since λ(S) < ∞. Conclusively, the

claim follows once (3.17) is proven.

First of all 1 + δ − p 6= 0. Secondly p
1+δ > p0, thus Lemma 3.4.4 yields∫

S

γ
1+δ

1+δ−p dλ =

∫
S

γ
1

1− p
1+δ dλ <∞. (3.18)

Finally, (3.17) follows from the following estimate, where Hölder’s inequality is used.

||∇f ||L1+δ(S;Rn) =

∫
S

|∇f |1+δγ
1+δ
p γ−

1+δ
p dλ

 1
1+δ
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≤


∫
S

|∇f |pγdλ


1+δ
p
∫
S

γ
1+δ

1+δ−p dλ


p−1−δ
p


1

1+δ

= ||∇f ||Lp(S,γ;Rn)

∫
S

γ
1+δ

1+δ−p dλ


p−1−δ
p(1+δ)

,

which is finite due to (3.18).

The preceding lemma is a slight modification of [23, Prop. 2.1]. There, an analogues result is proven

for Sobolev spaces, where the function and its weak derivative need to be integrable with respect to the

same measure and not to different ones as in our setting.

Lemma 3.4.6. Let v ∈ L2(S) ∩ Lp(S), then TAp(t)v ∈ L2(S) ∩W 1,p
γ (S) for a.e. t ∈ (0,∞) and

||∇TAp(t)v||Lp(S,γ;Rn) ≤
(

2

|p− 2|

) 1
p

||v − (v)S ||
2
p

L2(S)

(
1

t

) 1
p

(3.19)

for a.e. t ∈ (0,∞).

Proof. Thanks to Lemma 3.3.3 it suffices to prove the claim for v ∈ L2
0(S) ∩ Lp0(S). So let v ∈ L2

0(S) ∩
Lp0(S) be given and introduce t ∈ (0,∞) such that 0 ∈ T ′Ap(t)v+ApTAp(t)v. According to (3.11) almost

every value in (0,∞) is a valid choice for t.

Firstly, note that TAp(t)v ∈ L2
0(S) ∩ Lp0(S) by Lemma 3.3.6. Moreover, TAp(t)v is generalized weakly

differentiable. Consequently, if ∫
S

γ|∇̃TAp(t)v|pdλ ≤ 2

|p− 2|
||v||2L2(S)

1

t
, (3.20)

then obviously ∇̃TAp(t)v ∈ Lp(S, γ;Rn) ⊆ L1(S;Rn) and therefore, apppealing to Remark 3.2.3 yields

∇̃TAp(t)v = ∇TAp(t)v a.e. on S.

Hence, if (3.20) holds, then also (3.19) as well as TAp(t)v ∈ L2(S) ∩W 1,p
γ (S).

Proof of (3.20). Firstly, Remark 3.2.6.vi) implies

||T ′Ap(t)v||L2(S) ≤
2

|p− 2|t
||v||L2(S). (3.21)

Moreover, Fatou’s lemma yields∫
S

γ|∇̃TAp(t)v|pdλ ≤ lim inf
k→∞

∫
S

−T ′Ap(t)vτk
(
TAp(t)v

)
dλ.
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Consequently, by Cauchy Schwarz’ inequality, (3.21) and Lebesgue’s theorem we get∫
S

γ|∇̃TAp(t)v|pdλ ≤ 2

|p− 2|t
||v||L2(S)||TAp(t)v||L2(S).

Finally, (3.20) follows by applying Remark 3.2.6.iv).

Theorem 3.4.7. Let 0 ≤ δ < p−p0
p0

and v ∈ L2(S) ∩ L1+δ(S), then

||TAp(t)v − (v)S ||L1+δ(S) ≤ CS,1+δΓδ,p||v − (v)S ||
2
p

L2(S)

(
1

t

) 1
p

(3.22)

for every t ∈ (0,∞), where

Γδ,p :=

∫
S

γ
1+δ

1+δ−p dλ


p−1−δ
p(1+δ) (

2

|p− 2|

) 1
p

<∞. (3.23)

Proof. Let 0 ≤ δ < p−p0
p0

and v ∈ L2
0(S) ∩ Lp0(S).

Moreover, let t ∈ (0,∞) be such that the assertions of Lemma 3.4.6 hold. Since TAp(t)v ∈ W 1,p
γ (S),

Lemma 3.4.5 yields TAp(t)v ∈W 1,1+δ(S) and thus Lemma 3.3.5, Poincaré’s inequality, (3.17) and (3.19)

imply

||TAp(t)v||L1+δ(S) = ||TAp(t)v − (TAp(t)v)
S
||L1+δ(S)

≤ CS,1+δ||∇TAp(t)v||L1+δ(S;Rn)

≤ CS,1+δΓδ,p||v||
2
p

L2(S)

(
1

t

) 1
p

,

i.e. (3.22) holds for v ∈ L2
0(S) ∩ Lp0(S) and almost every t ∈ (0,∞). Thus, employing Lemma 3.3.6

yields (3.22) for v ∈ L2
0(S) ∩ Lp0(S) and each t ∈ (0,∞).

Now, let t ∈ (0,∞) be arbitrary and let v ∈ L2
0(S) ∩ L1+δ

0 (S).

Moreover, let (vm)m∈N ⊆ L2
0(S) ∩ Lp0(S) be such that lim

m→∞
vm = v w.r.t. || · ||L2(S) and || · ||1+δ(S).

Then, it follows from Remark 3.2.6.iii) that lim
m→∞

TAp(t)vm = TAp(t)v w.r.t. || · ||1+δ(S). Hence

||TAp(t)v||L1+δ(S) = lim
m→∞

||TAp(t)vm||L1+δ(S)

≤ lim
m→∞

CS,1+δΓδ,p||vm||
2
p

L2(S)

(
1

t

) 1
p

= CS,1+δΓδ,p||v||
2
p

L2(S)

(
1

t

) 1
p

,

which implies (3.22) for every t ∈ (0,∞) and v ∈ L2
0(S) ∩ L1+δ

0 (S).

Finally, for arbitrary v ∈ L2(S) ∩ L1+δ(S), (3.22) follows from Lemma 3.3.3.
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Remark 3.4.8. Whenever δ is given such that 0 ≤ δ < p−p0
p0

, then Γδ,p denotes the quantity introduced

in (3.23).

Corollary 3.4.9. Let v ∈ L2(S), then

||TAp(t)v − (v)S ||L1(S) ≤ CS,1Γ0,p||v − (v)S ||
2
p

L2(S)

(
1

t

) 1
p

, (3.24)

for every t ∈ (0,∞).

If 0 ≤ δ < p−p0
p0

, then δ can be chosen as bigger as smaller p0 gets, i.e. Theorem 3.4.7 yields the

most general result if p0 = 1. The reader is referred to Remark 3.4.3 for assumptions implying p0 = 1.

By virtue of Sobolev’s embedding theorem we obtain the main result of this section:

Theorem 3.4.10. Let v ∈ Lp(S) and assume p0 <
p
n , then TAp(t)v ∈ L∞(S) for every t ∈ (0,∞).

Moreover, if n − 1 < δ < p−p0
p0

, then TAp(t)v ∈ W 1,1+δ(S) and there is a constant C∗S,δ ∈ [0,∞),

depending only on S and δ, such that

||TAp(t)v − (v)S ||L∞(S) ≤ C∗S,δΓδ,p||v − (v)S ||
2
p

L2(S)

(
1

t

) 1
p

, (3.25)

for every t ∈ (0,∞).

In addition, C∗S,δ can be chosen as C∗S,δ = C̃S,1+δ

(
C1+δ
S,1+δ + 1

) 1
1+δ

, where C̃S,1+δ is the operator norm

of the continuous injection W 1,1+δ(S) ↪→ L∞(S).

Proof. Thanks to Lemma 3.3.3 it suffices to prove the claim for v ∈ Lp0(S). Moreover, note that if

p0 <
p
n , then p−p0

p0
> n− 1, consequently (n− 1, p−p0p0

) 6= ∅.
So let n− 1 < δ < p−p0

p0
and v ∈ Lp0(S) which implies v ∈ L2

0(S), since p > np0 ≥ n ≥ 2.

Moreover, by appealing to Lemma 3.4.6 and Lemma 3.3.5 we get TAp(t)v ∈ L2
0(S) ∩W 1,p

γ (S) for a.e.

t ∈ (0,∞). Consequently, Lemma 3.4.5 yields TAp(t)v ∈W 1,1+δ(S) and

||∇TAp(t)v||L1+δ(S;Rn) ≤ Γδ,p||v||
2
p

L2(S)

(
1

t

) 1
p

, (3.26)

for a.e. t ∈ (0,∞).

Since TAp(t)v ∈W 1,1+δ(S) and 1 + δ > n, employing Sobolev’s embedding theorem yields

||TAp(t)v||L∞(S) ≤ C̃S,1+δ||TAp(t)v||W 1,1+δ(S), (3.27)

for almost every t ∈ (0,∞), where C̃S,1+δ is the operator norm of the continuous injection W 1,1+δ(S) ↪→
L∞(S).

Hence it follows by virtue of Theorem 3.4.7, and the inequalities (3.26) and (3.27) that

(
1

C̃S,1+δ

||TAp(t)v||L∞(S)

)1+δ

≤ ||TAp(t)v||1+δ
W 1,1+δ(S)
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= ||TAp(t)v||1+δ
L1+δ(S)

+ ||∇TAp(t)v||1+δ
L1+δ(S;Rn)

≤
(
C1+δ
S,1+δ + 1

)(
Γδ,p||v||

2
p

L2(S)

(
1

t

) 1
p

)1+δ

Consequently, if one defines C∗S,δ := C̃S,1+δ

(
C1+δ
S,1+δ + 1

) 1
1+δ

, then the preceding estimate yields the

claim for almost every t ∈ (0,∞).

Now let t ∈ (0,∞) and choose a monotonically increasing sequence (tm)m∈N ⊆ (0,∞) such that

lim
m→∞

tm = t, tm < t and such that (3.25) holds for each m ∈ N. Then Remark 3.2.6.iv), yields

||TAp(t)v||L∞(S) ≤ ||TAp(tm)v||L∞(S),

for every m ∈ N, which verifies (3.25) and TAp(t)v ∈ L∞(S) for every t ∈ (0,∞). Finally, invoking

Remark 3.2.6.v) yields TAp(t)v ∈ D(Ap) and thus (by Lemma 3.3.1) we get TAp(t)v ∈ D(Ap) ⊆
W 1,p
γ (S) ⊆W 1,1+δ(S) for every t ∈ (0,∞), where the last inclusion follows from Lemma 3.4.5.

Remark 3.4.11. Assume v ∈ Lp(S) and p0 <
p
n . Moreover, let n − 1 < δ < p−p0

p0
and t > 0. Then

the preceding theorem states particularly that TAp(t)v ∈ W 1,1+δ(S). Consequently, Sobolev’s embedding

theorem also yields that TAp(t)v is Hölder continuous of order 1− n
1+δ , or more accurately that there is

a representative in the equivalence class which is Hölder continuous of this order.

Remark 3.4.12. It is clear that Corollary 3.4.9 implies

lim
t→∞

||TAp(t)v − (v)S ||L1(S) = 0, ∀v ∈ L2(S).

Moreover, Theorem 3.4.10 yields that even lim
t→∞

||TAp(t)v − (v)S ||L∞(S) = 0, if v ∈ Lp(S) and p0 <
p
n .

It is beyond the scope of this thesis to obtain a uniform convergence result under more general as-

sumptions. But it will be proven that Lq-convergence holds under more general assumptions for any

q ∈ [1,∞).

Theorem 3.4.13. Let q ∈ [1,∞) and v ∈ Lq(S), then

lim
t→∞

TAp(t)v = (v)S in Lq(S). (3.28)

Proof. Again, thanks to Lemma 3.3.3 it suffices to prove the claim for v ∈ Lq0(S). So let, v ∈ Lq0(S) be

given and let τk : R→ R denote the standard truncation function, for each k ∈ (0,∞).

Moreover, let (t̃m)m∈N ⊆ [0,∞) be an arbitrary sequence such that lim
m→∞

t̃m =∞. In addition, (tm)m∈N

is a subsequence such that

lim
m→∞

TAp(tm)τk(v) = (τk(v))S , a.e. on S. (3.29)

(Corollary 3.4.9 ensures the existence of such a subsequence, since τk(v) ∈ L2(S).)
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Now observe that Remark 3.2.6.iv) implies

||TAp(tm)τk(v)− (τk(v))S ||L∞(S) ≤ 2k,

for all m ∈ N and k ∈ (0,∞). Consequently, this, together with (3.29) yields by virtue of dominated

convergence that lim
m→∞

TAp(tm)τk(v) = (τk(v))S in Lq(S) and therefore

lim
t→∞

||TAp(t)τk(v)− (τk(v))S ||Lq(S) = 0, ∀k ∈ (0,∞). (3.30)

Observe that clearly lim
k→∞

τk(v) = v a.e. on S and that |τk(v) − v|q ≤ (2|v|)q for all k ∈ (0,∞).

Consequently, Lebesgue’s theorem yields

lim
k→∞

τk(v) = v, in Lq(S). (3.31)

Now let ε > 0 and choose k0 ∈ (0,∞) sufficiently large such that

max(||τk0(v)− v||Lq(S), |(τk0(v))S |) <
ε

3
, (3.32)

which is possible, due to (3.31).

Moreover, (3.30) yields the existence of a t0 ∈ (0,∞) such that

||TAp(t)τk0(v)− (τk0(v))S ||Lq(S) <
ε

3
, ∀t ≥ t0. (3.33)

Finally, it follows by combining (3.32), (3.33) and by using Remark 3.2.6.iii), that ||TAp(t)v||Lq(S) < ε

for all t ≥ t0.

3.5 Asymptotic Results obtained by differential Inequality Tech-

niques

Let us open this section by stating and proving two differential inequality results which will be exploited

to prove (3.5), (3.6) and (3.7).

The first of these results is stated, but not proven in [16, Lemma 2.2]. For the sake of completeness, we

will give a proof. The second one seems to be in use, but we were not able to find it rigorously stated

anywhere in the literature, even though it might be available somewhere.

Lemma 3.5.1. Let ρ1 ∈ (0, 1), κ1 ∈ (0,∞) and let f : [0,∞)→ [0,∞) be locally Lipschitz continuous,

i.e. f |[0,t] is Lipschitz continuous for any t ∈ (0,∞). Moreover, assume

f ′(t) +
κ1

ρ1
f(t)1−ρ1 ≤ 0,
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for a.e. t ∈ (0,∞). Then we have

f(t)ρ1 ≤ (−κ1t+ f(0)ρ1)+, ∀t ≥ 0.

In particular, f(t) = 0 for all t ∈ [t∗,∞), where t∗ := 1
κ1
f(0)ρ1 .

Proof. Set a := f(0) and introduce f̃ : [0,∞) → [0,∞) as f̃(t) := (−κ1t + aρ1)
1
ρ1
+ , for all t ∈ [0,∞).

Then, f̃ is Lipschitz continuous, and a direct calculation verifies that

f̃ ′(t) +
κ1

ρ1
f̃(t)1−ρ1 = 0,

for all t ∈ (0,∞).

Now, let us prove (by superposition) that 0 ≤ f(t) ≤ f̃(t) for all t ∈ [0,∞) which obviously implies all

claims.

So, assume there is a t1 > 0 such that f(t1) > f̃(t1), then there is, since both functions are continuous

and since f(0) = f̃(0), a t0 ∈ [0, t1) such that

f(t) > f̃(t), ∀t ∈ (t0, t1] and f̃(t0) = f(t0). (3.34)

But this implies

f̃(t1)− f(t1) = f̃(t1)− f(t1)− (f̃(t0)− f(t0))

=

t1∫
t0

f̃ ′(t)− f ′(t)dt

≥
t1∫
t0

−κ1

ρ1
f̃(t)1−ρ1 +

κ1

ρ1
f(t)1−ρ1dt

≥ 0,

which yields f̃(t1) ≥ f(t1) and therefore contradicts (3.34).

The next differential inequality result can be proven with the same technique as Lemma 3.5.1. But,

there is also another interesting technique available, which we will employ.

Lemma 3.5.2. Let f : [0,∞) → [0,∞) be locally Lipschitz continuous on [0,∞). Moreover, assume

that there are constants κ2, ρ2 ∈ (0,∞) such that

f ′(t) + κ2ρ2f(t)1+ 1
ρ2 ≤ 0, (3.35)

for a.e. t ∈ (0,∞). Then we have

f(t) ≤
(
κ2t+ f(0)−

1
ρ2

)−ρ2
, (3.36)
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for all t ∈ [0,∞).

Proof. Firstly, as f is locally Lipschitz continuous, (3.35) yields that f is monotonically decreasing.

Now set I := inf{t ≥ 0 : f(t) = 0}. If I = 0, then f(t) = 0 for all t > 0 and by continuity for all t ≥ 0.

Consequently, in this case (3.36) trivially holds. So assume I > 0 and let Ĩ ∈ [0, I) be arbitrary but

fixed and introduce F : [0, Ĩ]→ [0,∞) with F (t) := f(t)−
1
ρ2 . As f(t) ≥ f(Ĩ) > 0 for all t ∈ [0, Ĩ], F is,

as is the composition of Lipschitz continuous functions, itself Lipschitz continuous. Consequently, we

get

F (t)− F (0) =

t∫
0

F ′(τ)dτ = − 1

ρ2

t∫
0

f(τ)−
1
ρ2
−1f ′(τ)dτ ≥ κ2t, ∀t ∈ [0, Ĩ].

Thus (3.36) holds on [0, Ĩ] and as Ĩ was arbitrary, it holds on t ∈ [0, I). Finally, if I = ∞ the proof

is complete and if I < ∞, the infimum is (by continuity) a minimum and by monotonicity f = 0 on

[I,∞), in which case (3.36) is trivial.

Throughout this section, let fu,v : [0,∞)→ [0,∞) be defined by

fu,v(t) :=

∫
S

(
TAp(t)u− TAp(t)v

)2
dλ,

for all t ∈ [0,∞) and u, v ∈ L2(S).

Now let us demonstrate that fu,v is locally Lipschitz continuous, if u, v ∈ D(Ap) and calculate its almost

everywhere existing derivative. Afterwards, we will prove a technical approximation result, and then

proceed by employing Lemma 3.5.1 and Lemma 3.5.2 to get the desired asymptotic results.

Lemma 3.5.3. Let u, v ∈ D(Ap). Then fu,v is locally Lipschitz continuous. Thus, it is differentiable

almost everywhere. Moreover, we have TAp(t)u, TAp(t)v ∈W 1,p
γ (S) as well as

f ′u,v(t) = −2

∫
S

γ
(
|∇TAp(t)u|p−2∇TAp(t)u− |∇TAp(t)v|p−2∇TAp(t)v

)
· (∇TAp(t)u−∇TAp(t)v)dλ,

for a.e. t ∈ (0,∞).

Proof. Firstly, let us verify the desired local Lipschitz continuity. To this end, fix c > 0 and note

that [0, c] 3 t 7→ TAp(t)u and [0, c] 3 t 7→ TAp(t)v are by Remark 3.2.6.ii), w.r.t. || · ||L1(S), Lipschitz

continuous. So let Cu, Cv ≥ 0 denote their Lipschitz constants. Then, Remark 3.2.6.iv) (with q = ∞)

yields

|fu,v(t1)− fu,v(t2)| ≤ |t1 − t2|(Cu + Cv)(2||u||L∞(S) + 2||v||L∞(S)),

for every t1, t2 ∈ [0, c].

Consequently, f is locally Lipschitz continuous and as it is real-valued, it is also differentiable almost
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everywhere.

Now, recall that for all w ∈ D(Ap) we have TAp(t)w ∈ D(Ap) and −T ′Ap(t)w = ApTAp(t)w for a.e.

t ∈ (0,∞), see Lemma 3.3.2. Thus, as D(Ap) ⊆ W 1,p
γ (S), it remains to prove the formula regarding

f ′u,v.

Let (hm)m∈N ⊆ (0,∞) be a null-sequence. As TAp(t)u, TAp(t)v ∈ D(Ap), −T ′Ap(t)u = ApTAp(t)u and

−T ′Ap(t)v = ApTAp(t)v, we get (by passing to a subsequence if necessary) that

lim
m→∞

1

hm

((
TAp(t+ hm)u− TAp(t+ hm)v

)
−
(
TAp(t)u− TAp(t)v

))
= −

(
ApTAp(t)u−ApTAp(t)v

)
,

a.e. on S, for a.e. t ∈ (0,∞). Now Remark 3.2.6.vi) (with q = ∞) enables us to conclude from

Lebesgue’s theorem that the preceding convergence also holds w.r.t. || · ||L2(S).

Moreover, we also have (by passing to a subsequence if necessary) that

lim
m→∞

((
TAp(t+ hm)u− TAp(t+ hm)v

)
+
(
TAp(t)u− TAp(t)v

))
= 2

(
TAp(t)u− TAp(t)v

)
a.e. on S, for a.e. t ∈ (0,∞), and by virtue of Lebesgue’s theorem (which is thanks to Remark 3.2.6.iii)

applicable) also w.r.t. || · ||L2(S) for a.e. t ∈ (0,∞). Thus, combining the preceding two equations yields

lim
m→∞

1

hm
(fu,v(t+ hm)− fu,v(t)) = −2

∫
S

(TAp(t)u− TAp(t)v)(ApTAp(t)u−ApTAp(t)v)dλ,

for a.e. t ∈ (0,∞). Consequently, as we already know that fu,v is differentiable almost everywhere, we

get

f ′u,v(t) = −2

∫
S

(TAp(t)u− TAp(t)v)(ApTAp(t)u−ApTAp(t)v)dλ, (3.37)

for a.e. t ∈ (0,∞). Finally, (3.37) implies, by using (TAp(t)u − TAp(t)v) as a test function in the

definition of Ap, that

f ′u,v(t) = −2

∫
S

γ
(
|∇TAp(t)u|p−2∇TAp(t)u− |∇TAp(t)v|p−2∇TAp(t)v

)
· (∇TAp(t)u−∇TAp(t)v)dλ,

for a.e. t ∈ (0,∞); which completes the proof.

Lemma 3.5.4. D(Ap) is a dense subset of (L2(S), || · ||L2(S)) and D(Ap) ∩ L2
0(S) is a dense subset of

(L2
0(S), || · ||L2(S)).

Proof. Let us start by proving the first assertion. Firstly, it suffices to prove that there is for each

h ∈ L∞(S) a sequence (vm)m∈N ⊆ D(Ap) such that

lim
m→∞

vm = h in L2(S),
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since L∞(S) is a dense subspace of L2(S).

So, let h ∈ L∞(S) be arbitrary but fixed.

Since Ap is m-accretive there are for each m ∈ N functions vm ∈ D(Ap), v̂m ∈ Apvm, such that

h = vm +
1

m
v̂m a.e. on S, (3.38)

for all m ∈ N.

Moreover, by complete accretivity we get

||vm||L∞(S) ≤ ||h||L∞(S) <∞, ∀m ∈ N. (3.39)

Consequently vm ∈ L∞(S) and therefore vm ∈ D(Ap) for all m ∈ N.

Moreover, (3.39) also implies that the sequence (||vm||L2(S))m∈N is bounded. Hence, by passing to a

subsequence if necessary, there is an h̃ ∈ L2(S) such that

w - lim
m→∞

vm = h̃ in L2(S). (3.40)

Now observe that

lim
m→∞

1

m

∫
S

γ|∇vm|p−2∇vm · ∇ϕdλ = 0, ∀ϕ ∈W 1,p
γ (S) ∩ L∞(S), (3.41)

since we obtain for all ϕ ∈W 1,p
γ (S) ∩ L∞(S) and q := p

p−1 that∣∣∣∣∣∣
(

1

m

) 1
q
∫
S

γ|∇vm|p−2∇vm · ∇ϕdλ

∣∣∣∣∣∣
≤

(
1

m

) 1
q

∫
S

γ|∇vm|p−2∇vm · ∇vmdλ

 1
q

||∇ϕ||Lp(S,γ;Rn)

=

∫
S

(h− vm)vmdλ

 1
q

||∇ϕ||Lp(S,γ;Rn)

≤

∫
S

(||h||L∞(S) + ||h||L∞(S))||h||L∞(S)dλ

 1
q

||∇ϕ||Lp(S,γ;Rn)

=
(

2λ(S)||h||2L∞(S)

) 1
q ||∇ϕ||Lp(S,γ;Rn),

where Cauchy Schwarz inequality, Hölder’s inequality, v̂m = Apvm, (3.38) and (3.39) were used.
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Moreover, (3.41) yields ∫
S

(h− h̃)ϕdλ = lim
m→∞

∫
S

(h− vm)ϕdλ

= lim
m→∞

∫
S

1

m
v̂mϕdλ

= lim
m→∞

1

m

∫
S

γ|∇vm|p−2∇vm · ∇ϕdλ

= 0,

for all ϕ ∈W 1,p
γ (S) ∩ L∞(S) and therefore h = h̃.

Moreover, by complete accretivity we have ||vm||L2(S) ≤ ||vm + 1
m v̂m||L2(S) and thus we also get

||vm||L2(S) ≤ ||h||L2(S) = ||h̃||L2(S) for all m ∈ N, which implies particularly that

lim sup
m→∞

||vm||L2(S) ≤ ||h̃||L2(S).

Conclusively, this, (3.40) and the uniform convexity of (L2(S), ||·||L2(S)) yield lim
m→∞

vm = h̃ = h, in L2(S),

which proves the first assertion.

Now, the second assertions is easily deduced from the first one: Let h ∈ L2
0(S), then there is a

sequence (hm)m∈N ⊆ D(Ap), such that lim
m→∞

hm = h in L2(S). Now, one instantly verifies that

hm − (hm) ∈ D(Ap), with Ap(hm − (hm)) = Aphm. Consequently, hm − (hm) ∈ D(Ap) ∩ L2
0(S)

for all m ∈ N and clearly lim
m→∞

hm − (hm) = h, in L2(S) since (h) = 0.

Remark 3.5.5. The proof of Lemma 3.5.4 has revealed the following: Let h ∈ L∞(S) and introduce

vm := (Id+ 1
mAp)

−1h.2 Then we have

lim
m→∞

vm = h, in L2(S).

This fact is not needed in this section, but will be useful in Chapter 7. Moreover, the technique which we

employed to prove Lemma 3.5.4 is a standard technique to prove such density results. It is for example

also used in [4, Prop. 5.1].

Theorem 3.5.6. Assume that the interval
(
p0(n−2)
n+2 + p0, 2

)
is non-empty and that p ∈

(
p0(n−2)
n+2 + p0, 2

)
.

In addition, introduce

κ1 := (2− p)

C̃pS (C 2n
n+2

S, 2n
n+2

+ 1

)np+2p
2n

∫
S

γ
2n

2n−np−2p dλ


np+2p−2n

2n


−1

∈ (0,∞), (3.42)

2See Remark 2.1.9 for the definition of the resolvent.
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where C̃S is the operator norm of the continuous injection W 1, 2n
n+2 ↪→ L2(S). Then we have

||TAp(t)v − (v)||2−pL2(S) ≤ (−κ1t+ ||v − (v)||2−pL2(S))+, (3.43)

for all t ≥ 0 and v ∈ L2(S). In particular, TAp(t)v = (v) for all t ≥
||v−(v)||2−p

L2(S)

κ1
and v ∈ L2(S).

Proof. Firstly, it is plain that (3.43) implies TAp(t)v = (v) for all t ≥
||v−(v)||2−p

L2(S)

κ1
. Secondly, Lemma

3.3.3 yields that it suffices to prove (3.43) for v ∈ L2
0(S). Moreover, the right-hand-side of (3.43)

clearly depends continuously on v, and appealing to Remark 3.2.6.iii) yields that the left-hand-side also

depends continuously on v. Thus by invoking Lemma 3.5.4, we get that it suffices to prove (3.43) for

v ∈ D(Ap) ∩ L2
0(S).

So let v ∈ D(Ap)∩L2
0(S) be given and assume p ∈

(
p0(n−2)
n+2 + p0, 2

)
6= ∅. Moreover, note that 2n

n+2 < n,

since n 6= 1. Consequently, Sobolev’s embedding theorem yields that there is a continuous injection

W 1, 2n
n+2 (S) ↪→ L2(S). So let C̃S denote its operator norm.

Now, introduce fv : [0,∞)→ [0,∞), by

fv(t) := f0,v(t) = ||TAp(t)v||2L2(S),

for all t ≥ 0.

Moreover, note that

0 ≤ 2n

n+ 2
− 1 =

1

p0

(
p0(n− 2)

n+ 2
+ p0

)
− 1 <

p

p0
− 1 =

p− p0

p0
. (3.44)

In addition, appealing to Lemma 3.5.3 yields that fv is locally Lipschitz continuous and differentiable

a.e. with

f ′v(t) = −2||∇TAp(t)v||pLp(S,γ;Rn) (3.45)

for almost every t ∈ (0,∞). Moreover, as TAp(t)v ∈ W 1,p
γ (S) for a.e. t ∈ (0,∞), we get by employing

Lemma 3.4.5 and (3.44) that TAp(t)v ∈W 1, 2n
n+2 (S) as well as

||∇TAp(t)v||p
L

2n
n+2 (S;Rn)

≤

∫
S

γ
2n

2n−np−2p dλ


np+2p−2n

2n

||∇TAp(t)v||pLp(S,γ;Rn) (3.46)

and in particular, we get ∫
S

γ
2n

2n−np−2p dλ <∞,

which implies that the integral occurring in the definition of κ1 is finite. Now, it follows from Sobolev’s
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embedding theorem, Poincaré’s inequality and (3.46) that

fv(t)
p
2 = ||TAp(t)v||pL2(S)

≤ C̃pS ||TAp(t)v||p
W

1, 2n
n+2 (S)

= C̃pS

(
||TAp(t)v||

2n
n+2

L
2n
n+2 (S)

+ ||∇TAp(t)v||
2n
n+2

L
2n
n+2 (S;Rn)

)np+2p
2n

≤ C̃pS

(
C

2n
n+2

S, 2n
n+2

||∇TAp(t)v||
2n
n+2

L
2n
n+2 (S;Rn)

+ ||∇TAp(t)v||
2n
n+2

L
2n
n+2 (S;Rn)

)np+2p
2n

= C̃pS

(
C

2n
n+2

S, 2n
n+2

+ 1

)np+2p
2n

||∇TAp(t)v||p
L

2n
n+2 (S;Rn)

≤ C̃pS

(
C

2n
n+2

S, 2n
n+2

+ 1

)np+2p
2n

∫
S

γ
2n

2n−np−2p dλ


np+2p−2n

2n

||∇TAp(t)v||pLp(S,γ;Rn)

=
2− p
κ1
||∇TAp(t)v||pLp(S,γ;Rn),

for a.e. t ∈ (0,∞). Thus, employing (3.45) yields

f ′v(t) +
κ1

ρ1
fv(t)

1−ρ1 ≤ 0,

for a.e. t ∈ (0,∞), where ρ1 := 2−p
2 . Consequently, invoking Lemma 3.5.1 yields

fv(t)
ρ1 ≤ (−κ1t+ fv(0)ρ1)+,

for all t ≥ 0, which completes our proof.

Remark 3.5.7. Note that if n = 2 and p0 = 1, then we can either apply Theorem 3.5.6 or Theorem

3.4.10, i.e. depending on the value of p, either (3.43) or (3.25) holds. Thus, if n = 2 this works

particularly if γ is bounded from below away from zero, see Remark 3.4.3.

Remark 3.5.8. The following proposition (and the results we deduce from it), rely on the assumptions

p ∈ (2,∞) and
∫
S

γ
2

2−p dλ <∞. Note that 2
2−p = 1

1− p2
. Thus, employing Lemma 3.4.4 yields: If p0 <

p
2 ,

then
∫
S

γ
2

2−p dλ < ∞. Moreover, it is easily verified by Hölder’s inequality that for p ∈ (2,∞), the

assumption
∫
S

γ
2

2−p dλ <∞ implies
∫
S

γ
1

1−p dλ <∞.

Proposition 3.5.9. Assume p ∈ (2,∞) and
∫
S

γ
2

2−p dλ < ∞. Moreover, introduce u, v ∈ L2
0(S). Then

we have

||TAp(t)u− TAp(t)v||L2(S) ≤
(
κ2t+ ||u− v||2−pL2(S)

) 1
2−p

, ∀t ≥ 0, (3.47)
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where κ2 := (p− 2)2−(p−2)

(∫
S

γ
2

2−p dλ

) 2−p
2

C−pS,2.

Proof. Thanks to Remark 3.2.6.iii) and Lemma 3.5.4 it suffices to prove (3.47) for u, v ∈ L2
0(S)∩D(Ap).

Moreover, we have W 1,p
γ (S) ⊆W 1,2(S), since appealing to Hölder’s inequality gives

∫
S

|∇ϕ|2dλ =

∫
S

γ−
2
p γ

2
p |∇ϕ|2dλ ≤

∫
S

γ
2

2−p dλ


p−2
p
∫
S

γ|∇ϕ|pdλ

 2
p

<∞, ∀ϕ ∈W 1,p
γ (S).

Consequently, employing Poincaré’s inequality yields

∫
S

γ|∇ϕ|pdλ ≥ C−pS,2

∫
S

ϕ2dλ


p
2
∫
S

γ
2

2−p dλ


2−p
2

, ∀ϕ ∈W 1,p
γ (S) ∩ L2

0(S). (3.48)

Moreover, it is well known that (|x|p−2x − |y|p−2y) · (x − y) ≥ 22−p|x − y|p for all x, y ∈ Rn, see [11,

Lemma 3.6]. By Lemma 3.3.2, we get TAp(t)u, TAp(t)v ∈ W 1,p
γ (S) for a.e. t ∈ (0,∞) and by the

aid of Lemma 3.3.6 we then obtain TAp(t)u − TAp(t)v ∈ W 1,p
γ (S) ∩ L2

0(S) for a.e. t ∈ (0,∞). These

observations enable us to conclude from (3.48) and Lemma 3.5.3 that

f ′u,v(t) ≤ −23−p
∫
S

γ|∇TAp(t)u−∇TAp(t)v|pdλ ≤ −23−pC−pS,2

∫
S

γ
2

2−p dλ


2−p
2

fu,v(t)
p
2 ,

for a.e. t ∈ (0,∞). Thus, by setting ρ2 := 2
p−2 , we get f ′u,v(t) + κ2ρ2fu,v(t)

1+ 1
ρ2 ≤ 0 for a.e. t ∈ (0,∞).

Hence, invoking Lemma 3.5.2 yields fu,v(t) ≤ (κ2t+ fu,v(0)−
1
ρ2 )−ρ2 ; thus by taking the square root and

noting that u, v ∈ L2
0(S) ∩ D(Ap) were arbitrary, we get (3.47) for all u, v ∈ L2

0(S) ∩ D(Ap) and the

proof is complete.

Theorem 3.5.10. Assume p ∈ (2,∞) and
∫
S

γ
2

2−p dλ <∞. Then we have

||TAp(t)v − (v)S ||L1(S) ≤ λ(S)
1
2κ

1
2−p
2

(
1

t

) 1
p−2

, (3.49)

for all t > 0 and v ∈ L1(S), where κ2 := (p− 2)2−(p−2)

(∫
S

γ
2

2−p dλ

) 2−p
2

C−pS,2.

Proof. By Lemma 3.3.3 it suffices to prove the claim for v ∈ L1
0(S). Moreover, by Remark 3.2.6.iii) it

suffices the prove the claim for v ∈ L2
0(S). But then, the claim is trivial, since appealing to Proposition

3.5.9 (with u = 0) and Hölder’s inequality yield

||TAp(t)v||L1(S) ≤ λ(S)
1
2 ||TAp(t)v||L2(S) ≤ λ(S)

1
2

(
κ2t+ ||v||2−pL2(S)

) 1
2−p ≤ λ(S)

1
2 (κ2t)

1
2−p ,

42



for all t > 0

Moreover, the following corollary is also easily deduced from Proposition 3.5.9.

Corollary 3.5.11. Assume p ∈ (2,∞) and
∫
S

γ
2

2−p dλ <∞. Then we have

||TAp(t)v − (v)S ||L2(S) ≤
(
κ2t+ ||v − (v)S ||

2−p
L2(S)

) 1
2−p

, ∀t ≥ 0, (3.50)

for all v ∈ L2(S), where κ2 := (p− 2)2−(p−2)

(∫
S

γ
2

2−p dλ

) 2−p
2

C−pS,2.

The advantage of (3.50) compared to (3.49) is that (3.50) is also sharp for t↘ 0, whereas the right-

hand-side of (3.49) diverges to +∞ for t ↘ 0. On the other hand, the advantage of (3.49) is that it is

applicable for all v ∈ L1(S) and not just v ∈ L2(S).

Moreover, note that the order of convergence (for t→∞) in (3.49) and (3.50) is better than in (3.25).

Of course, the clear advantage of (3.25) is that this is a bound w.r.t || · ||L∞(S).

In fact, it would have been possible (and easier) to directly prove Corollary 3.5.11 instead of Propo-

sition 3.5.9, and to then deduce Theorem 3.5.10 from this corollary. The reason why we undertook this

detour is that Proposition 3.5.9 is needed in Section 6.4.
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Chapter 4

Abstract Cauchy Problems driven

by random Measures: Existence and

Uniqueness

4.1 Outline & Highlights

In this chapter, we will set up an existence and uniqueness theory for random evolution inclusions of

the form

η(t, z)NΘ(dt⊗ z) ∈ dX(t) +AX(t)dt, (ACPRM)

where A : D(A) → 2V is a multi-valued operator, (V, || · ||V ) is a separable Banach space,

NΘ : (B((0,∞)) ⊗ Z) × Ω → N0 ∪ {∞} is the random counting measure induced by a finite, sim-

ple point process Θ, (Z,Z) is a measurable space, η : (0,∞) × Z × Ω → V is a (jointly measurable)

drift function, (Ω,F ,P) denotes our complete probability space and X is a V -valued stochastic process

supposed to fulfill (1.5) in some sense. Equations of the above form will be called abstract Cauchy

problem driven by a random measure.

There is a comprehensive existence and uniqueness theory for abstract Cauchy problems of the form

0 ∈ u′(t) +Au(t), for a.e. t ∈ (0,∞), (4.1)

which we briefly outlined in Section 2.1. We would like to obtain criteria which are similar to the

existence/uniqueness results of Section 2.1, for (ACPRM).

Surprisingly, it seems that there are very few results connecting these areas.

The first step in deriving an existence/uniqueness theory for (ACPRM) is of course setting up a

44



notion of a solution. In fact, we will introduce to different kinds of solutions: Strong and mild ones.

Instead of simply giving the definition of a strong/mild solution, let us give the reader an intuition on

how to set up such a notion: At first, one would try to define a solution of (ACPRM) as a process

X : [0,∞)× Ω→ V which is sufficiently regular and fulfills

∫
(0,t]×Z

η(τ, z)NΘ(dτ ⊗ z) ∈ X(t)− x+

t∫
0

AX(τ)dτ, ∀t > 0

where x : Ω → V is an F-B(V )-measurable initial, i.e. X(0) = x. The obvious issue is that A takes

values in the power set of V . Consequently, one either has to somehow define the set-valued integral, or

one has to ”pick” for each τ and ω an element of AX(τ, ω) by some rule. We choose to do the latter.

To define this rule, assume that A is m-accretive and densely defined and let TA denote the semigroup

associated to A, see Definition 2.1.8. Moreover, assume that TA admits an infinitesimal generator, which

we denoted by A◦ : V → V , see Definition 2.1.11.

Consequently, we have found a rule and would like to define a solution as a process fulfilling

∫
(0,t]×Z

η(τ, z)NΘ(dτ ⊗ z) = X(t)− x+

t∫
0

A◦X(τ)dτ, ∀t > 0.

The issue with this equation is that one needs that the Bochner integral
t∫

0

A◦X(τ)dτ exists for all

t > 0 with probability one; which is unfortunately not necessarily fulfilled. To get an existence result

as applicable as possible, we will therefore formulate the preceding equation in a weak sense; more

precisely, we will coin the term strong solution, as a process X fulfilling

∫
(0,t]×Z

〈Ψ, η(τ, z)〉VNΘ(dτ ⊗ z) = 〈Ψ, X(t)− x〉V +

t∫
0

〈Ψ,A◦X(τ)〉V dτ, ∀t > 0 (4.2)

for all ψ ∈ V ∗, where V ′ denotes the dual of V , 〈·, ·〉V the duality between V and V ′ and V ∗ ⊆ V ′ is

a set which separates points. Of course, the process X also has to fulfill some regularity assumptions,

which mainly serve to make sure the uniqueness of solutions.

In addition, we will introduce a ”mild solution of (ACPRM)”, as a process which can be approximated

in some sense by strong solutions.

Having done so, we shall see that (ACPRM) has for any F-B(V )-measurable initial x : Ω → V

a unique mild solution, if: A is densely defined and m-accretive, TA is domain invariant and admits

an infinitesimal generator, and there is a dense subset V ⊆ V , which is invariant w.r.t. TA and such

that 〈Ψ,A◦TA(·)v〉V ∈ L1(0, t) for all t > 0, v ∈ V and Ψ ∈ V ∗. Particularly, this result only requires

that η and x are measurable. Moreover, it will be demonstrated that mild solutions depend Lipschitz

continuously on the initial x and the drift η. Furthermore, if x ∈ V and η(t, z) ∈ V for all t > 0,
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z ∈ Z almost surely, then the mild solution is even a strong one. Moreover, we will see that the solution

process is the process generated by ((βm)m∈N, (ηm)m∈N, x, TA) in V , where: (βm)m∈N is the sequence of

inter-arrival times of Θ and ηm(ω) := η(αm(ω),Θ(ω)(αm(ω)), ω) for all m ∈ N and P-a.e. ω ∈ Ω, where

αm :=
m∑
k=1

βk for all m ∈ N. In addition, these results will be exemplified by the weighted p-Laplacian

evolution equation considered in Chapter 3 as well as by the two one-dimensional semigroups introduced

in Remark 2.2.7.

The main advantages of employing the theory of m-accretive operators to solve (ACPRM) is that

this works on any separable Banach space. Moreover, the fairly lean assumptions on A allow to consider

a large group of operators.

That all of this works is highly owed to the fact that the noise term ”η(t, z)NΘ(dt ⊗ z)” is a pure

jump noise. However, it might be possible that one can extend these results to more general noise terms

by applying the theory of m-accretive operators for inhomogeneous Cauchy problems.

This chapter is structured as follows: In Section 4.2, we give a very brief introduction to point

processes. Section 4.3 is this chapter’s centerpiece; all general results regarding existence and uniqueness

are proven there. And last but not least, the applicability of these results to the weighted p-Laplacian

evolution equation and the semigroups considered in Remark 2.2.7 is demonstrated in Section 4.4.

4.2 Intermezzo: Point Processes

Let (Z,Z) be a measurable space and recall that (Ω,F ,P) denotes a complete probability space. We

call a mapping θ : D(θ) → Z, where D(θ) ⊆ (0,∞) is countable, a point function. Moreover, π(Z)

denotes the set of all point functions mapping into Z and we equip this space with the σ-algebra

Π(Z) := σ
({
θ ∈ π(Z) : #{t ∈ D(θ) : (t, θ(t)) ∈ U} = k

}
; k ∈ N0, U ∈ B((0,∞))⊗Z

)
.

In addition, a mapping Θ : Ω → π(Z) which is F − Π(Z)-measurable, is called a random point

function, or point process. Moreover, for a point process Θ : Ω → π(Z), we introduce the mapping

NΘ : (B((0,∞))⊗Z)× Ω→ N0 ∪ {∞} by

NΘ(U, ω) := #{t ∈ D(Θ(ω)) : (t,Θ(ω)(t)) ∈ U}, ∀U ∈ B((0,∞))⊗Z, ω ∈ Ω

and refer to it as the counting measure induced by Θ.

It is plain to verify that the mapping B((0,∞))⊗Z 3 U 7→ NΘ(U, ω) is a measure for each ω ∈ Ω and

that Ω 3 ω 7→ NΘ(U, ω) is a (extended) real-valued random variable for each ω ∈ Ω. (Hereby extended

refers to the fact that this random variable might take the value +∞.)

Note that, by definition, any point process Θ is simple, i.e. NΘ({t× z}, ω) ≤ 1 for all (t, z) ∈ (0,∞)×Z
and ω ∈ Ω.
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A point process Θ : Ω → π(Z), or the random measure NΘ induced by Θ, is called finite if

ENΘ((0, t] × Z) < ∞ for all ∀t > 0. It is easy to infer that this implies NΘ((0, t] × Z) < ∞ for

all t ∈ (0,∞) with probability one.

Remark 4.2.1. Let NΘ be the counting measure induced by a finite point process Θ : Ω → Π(Z).

Then there is a P-null-set M ∈ F , such that NΘ((0, t] × Z, ω) < ∞ for all t > 0 and ω ∈ Ω \ M .

Hence, D(Θ(ω)) ∩ (0, t] contains only finitely many elements for any t > 0; which yields that D(Θ(ω))

is an isolated set for any ω ∈ Ω \M . Therefore, we can find a sequence of mappings (αm)m∈N, with

αm : Ω→ (0,∞), such that

i) D(Θ(ω)) = {α1(ω), α2(ω), ...} for all ω ∈ Ω \M and

ii) 0 < αm(ω) < αm+1(ω) <∞ for all m ∈ N and ω ∈ Ω \M .

The sequence of mappings (αm)m∈N fulfilling these two assertions is obviously unique on Ω \M . We

will refer to the (up to a P-null-set) uniquely determined sequence fulfilling the assertions i)-ii), as the

sequence of hitting times induced by Θ. Moreover, the sequence (βm)m∈N, with βm : Ω→ (0,∞), fulfill-

ing β1 = α1 and βm = αm − αm−1 for all m ∈ N \ {1} on Ω \M is called the sequence of inter-arrival

times induced by Θ.

One instantly verifies that each αm (and thus also each βm) is F-B((0,∞))-measurable and that

lim
m→∞

αm = ∞ almost surely. Moreover, with slightly more effort one verifies that the mapping de-

fined by Ω 3 ω 7→ Θ(ω)(αm(ω)) is F − Z-measurable.

For a function f : (0,∞)× Z ×Ω→ R which is B((0,∞))⊗Z ⊗F −B(R)-measurable and a finite

point measure NΘ, we introduce ∫
(0,t]×Z

f(τ, z)NΘ(dτ ⊗ dz)

 (ω) :=

∫
(0,t]×Z

f(τ, z, ω)NΘ(dτ ⊗ dz, ω), ∀t > 0, P− a.e. ω ∈ Ω. (4.3)

Hereby the right hand side is understood as a Lebesgue integral w.r.t. the measure N(·, ω). Let us

conclude this section with the following lemma, which states in particular that the right-hand-side

integral in (4.3) is in fact finite and well-defined:

Lemma 4.2.2. Let Θ : Ω→ π(Z) be a finite point process and NΘ : (B((0,∞))⊗Z)×Ω→ N0 ∪ {∞}
the counting measure induced by Θ. Moreover, let (αm)m∈N be the sequence of hitting times induced by

Θ. Now, let M ∈ F be a P-null-set such that

D(Θ(ω)) = {α1(ω), α2(ω), ...}, 0 < αm(ω) < αm+1(ω), ∀m ∈ N and lim
m→∞

αm(ω) =∞, (4.4)

for all ω ∈ Ω \M . Finally, introduce f : (0,∞)×Z ×Ω→ R and assume that it is B((0,∞))⊗Z ⊗F-

B(R)-measurable.

Then, for any m ∈ N, the mapping Ω 3 ω 7→ f(αm(ω),Θ(ω)(αm(ω)), ω) := fm(ω) is well defined on
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Ω \M and F −B(R)-measurable. In addition, the Lebesgue integral∫
(0,t]×Z

f(τ, z, ω)N(dτ ⊗ z, ω) (4.5)

exists and is finite for all t > 0 and ω ∈ Ω \ M . Moreover, the mapping defined by

Ω 3 ω 7→
∫

(0,t]×Z
f(τ, z, ω)N(dτ ⊗ z, ω) is well-defined on Ω \M , and it is F − B(R)-measurable for

all t > 0. Finally, the assertion∫
(0,t]×Z

f(τ, z, ω)N(dτ ⊗ z, ω) =

∞∑
m=1

m∑
k=1

fk(ω)11[αm(ω),αm+1(ω))(t) (4.6)

is valid for all t > 0 and ω ∈ Ω \M .

Proof. For notational convenience introduce α0 : Ω→ R, with α0 := 0.

Firstly, employing Remark 4.2.1 yields that each fm is the composition of measurable functions and

consequently F −B(R)-measurable.

Now note that it is plain that the mapping defined by (0, t]×Z 3 (τ, z) 7→ f(τ, z, ω) is B((0, t])⊗Z−B(R)

measurable for all ω ∈ Ω and t > 0. Consequently, it follows that the Lebesgue integral considered in

(4.5) is well defined and finite, if∫
(0,t]×Z

|f(τ, z, ω)|N(dτ ⊗ z, ω) <∞, ∀t > 0, ω ∈ Ω \M. (4.7)

To this end, note that

NΘ

((
αm(ω), αm+1(ω)

)
× Z, ω

)
= 0, ∀m ∈ N0, ω ∈ Ω \M (4.8)

as well as

NΘ

(
{αm(ω)} × Z, ω

)
= NΘ

(
{αm(ω)} × {Θ(ω)(αm(ω))}, ω

)
= 1, ∀m ∈ N, ω ∈ Ω \M. (4.9)

Moreover, for a given t > 0 and ω ∈ Ω\M there is an m ∈ N, such that t < αk(ω) for all k ∈ N\{1, ...,m}.
This combined with the preceding two equalities clearly yields (4.7).

Moreover, note that the right-hand-side of (4.6) defines an F-B(R)-measurable mapping. Consequently,

as F is complete, the claim follows as soon as (4.6) is proven. This is easily deduced from (4.8) and

(4.9), since these two equations yield

i)
∫

(0,αm(ω)]×Z
f(τ, z, ω)NΘ(dτ ⊗ dz, ω) =

m∑
k=1

fk(ω) for all m ∈ N,

ii)
∫

(0,t]×Z
f(τ, z, ω)NΘ(dτ ⊗ dz, ω)11[0,α1(ω))(t) = 0 for all t > 0 and
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iii)
∫

(0,t]×Z
f(τ, z, ω)NΘ(dτ ⊗ dz, ω)11[αm(ω),αm+1(ω))(t) =

m∑
k=1

fk(ω)11[αm(ω),αm+1(ω))(t), for all m ∈ N

and t > 0,

for all ω ∈ Ω \M .

Similar versions of the preceding result can be found in the literature. For example a similar result

(for the case that NΘ is a Poisson random measure) can be found in [24, Corollary 3.4], nevertheless we

were unable to find it stated precisely as above anywhere in the literature.

4.3 General Existence and Uniqueness Results

Throughout this section, (V, ||·||V ) denotes a real, separable Banach space with dual space V ′. Moreover,

let 〈·, ·〉V denote the duality between V and V ′. As usually, a subset V ∗ ⊆ V ′ is said to separate points,

if for all v ∈ V we have that 〈Φ, v〉V = 0 for all Φ ∈ V ∗ implies v = 0.

In addition, let

W 1,1([a, b];V ) := {f : [a, b]→ V : f is absolutely continuous and differentiable a.e.},

for any interval [a, b] ⊆ (0,∞); and L1(0, t) := L1((0, t),B((0, t)), λ;R), for any t > 0, where λ is the

one-dimensional Lebesgue measure.

As previously, (Z,Z) is a measurable space, and we introduce the short-cut notation

M((0,∞)× Z × Ω;V ) :=M((0,∞)× Z × Ω,B((0,∞))⊗Z ⊗F ;V ),

and M(Ω;V ) :=M(Ω,F ;V ), see Remark 2.2.1.

Moreover, Θ : Ω → π(Z) denotes a finite point process and NΘ : (B((0,∞)) ⊗ Z) × Ω → N0 ∪ {∞}
denotes the counting measure induced by Θ. Furthermore, (αm)m∈N denotes the sequence of hitting

times induced by Θ and (βm)m∈N the sequence of inter-arrival times induced by Θ; and for notational

convenience we also introduce α0 : Ω→ R, with α0 := 0.

Last but not least, A : D(A) → 2V is a densely defined, m-accretive operator, (TA(t))t≥0 denotes

the semigroup associated to A and we assume that this semigroup is domain invariant and admits an

infinitesimal generator A◦ : V → V .1

Now we are in the position to rigorously define the notions of mild and strong solutions of (ACPRM).

After this is achieved we will demonstrate that mild solutions are unique (Corollary 4.3.5) and also derive

an upper bounds for the mild solution, see Theorem 4.3.6. Thereafter, we will turn our focus on showing

that there is indeed a mild/strong solution, and that the mild/strong solution must be an ACPRM-

1Note that the p-Laplace operator Ap and the associated semigroup TAp considered in Chapter 3 fulfill all of these
assertions, see Theorem 3.2.5 and Remark 3.2.6.v).
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process. Hereby, our main result regarding the existence of a strong solution is Proposition 4.3.10 and

our main result ensuring the existence of mild solutions is Theorem 4.3.12.

Definition 4.3.1. Let η ∈M((0,∞)× Z × Ω;V ) and x ∈M(Ω;V ). In addition, let V ∗ ⊆ V ′ be a set

that separates points. Then a B([0,∞))⊗F-B(V )-measurable stochastic process X : [0,∞)×Ω→ V is

called a strong solution of (ACPRM){x, η, V ∗} if all of the following assertions hold for P-a.e. ω ∈ Ω.

i) X(0, ω) = x(ω),

ii) the mapping [0,∞) 3 t 7→ X(t, ω) is càdlàg,

iii) X(t, ω) ∈ D(A), ∀t ∈ (0,∞) \ {αm(ω) : m ∈ N},

iv) ∀m ∈ N0, ∀[a, b] ⊆ (αm(ω), αm+1(ω)) : X(·, ω)|[a,b] ∈W 1,1([a, b];V ),

v) 〈Ψ,A◦X(·, ω)〉V ∈ L1(0, t), ∀t > 0, Ψ ∈ V ∗ and

vi) 〈Ψ, X(t, ω)−x(ω)〉V +
t∫

0

〈Ψ,A◦X(τ, ω)〉V dτ =
∫

(0,t]×Z
〈Ψ, η(τ, z, ω)〉VNΘ(dτ⊗z, ω), ∀t > 0, Ψ ∈ V ∗.

In addition, a B([0,∞)) ⊗ F-B(V )-measurable stochastic process Y : [0,∞) × Ω → V is called a

mild solution of (ACPRM){x, η, V ∗}, if it fulfills conditions i-iv) with probability one and if there are

sequences (xm)m∈N, (ηm)m∈N and (Xm)m∈N such that

vii) xm ∈M(Ω;V ) and ηm ∈M((0,∞)× Z × Ω;V ) for all m ∈ N,

viii) Xm : Ω× [0,∞)→ V is a strong solution of (ACPRM){xm, ηm, V ∗} for all m ∈ N,

ix) lim
m→∞

sup
τ∈[0,t]

||Xm(τ)− Y (τ)||V = 0 for all t > 0 almost surely and

x) lim
m→∞

∫
(0,t]×Z

||ηm(τ, z)− η(τ, z)||VNΘ(dτ ⊗ z) = 0 for all t > 0 almost surely.

Lemma 4.3.2. Let V ∗ ⊆ V ′ be a set that separates points, η ∈ M((0,∞) × Z × Ω;V ), x ∈ M(Ω;V )

and introduce ηk(ω) := η(αk(ω),Θ(ω)(αk(ω)), ω) for all k ∈ N and P-a.e. ω ∈ Ω. Then ηk ∈ M(Ω;V )

for all k ∈ N and a B([0,∞))⊗ F-B(V )-measurable stochastic process X : [0,∞)× Ω→ V is a strong

solution of (ACPRM){x, η, V ∗} if and only if it fulfills 4.3.1.i-v) and

〈Ψ, X(t)− x〉V +

t∫
0

〈Ψ,A◦X(τ)〉V dτ =

∞∑
m=1

m∑
k=1

〈Ψ, ηk〉V 11[αm,αm+1)(t), ∀t > 0, Ψ ∈ V ∗. (4.10)

almost surely.

Proof. Firstly, appealing to Remark 4.2.1 yields that each ηk is, up to a P-null-set, well-defined and that

ηk is the composition of measurable functions and consequently F-B(V )-measurable.

Lemma 4.2.2 yields that there is a P-null-set M ∈ F such that for all Ψ ∈ V ∗, we have∫
(0,t]×Z

〈Ψ, η(τ, z, ω)〉VN(dτ ⊗ z, ω) =

∞∑
m=1

m∑
k=1

〈Ψ, ηk(ω)〉V 11[αm(ω),αm+1(ω)), ∀t > 0, ω ∈ Ω \M.
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Consequently, we get that 4.3.1.vi) holds almost surely if and only if (4.10) does, which concludes the

proof.

Proposition 4.3.3. Let V ∗ ⊆ V ′ be a set that separates points, η1, η2 ∈ M((0,∞) × Z × Ω;V ) and

x1, x2 ∈M(Ω;V ). Moreover, assume Xi : [0,∞)×Ω→ V is a strong solution of (ACPRM){xi, ηi, V ∗}
for i = 1, 2. Then we have

||X1(t)−X2(t)||V ≤ ||x1 − x2||V +

∫
(0,t]×Z

||η1(τ, z)− η2(τ, z)||VNΘ(dτ ⊗ z), ∀t ≥ 0, (4.11)

almost surely.

Proof. Firstly, by Lemma 4.3.2 and Remark 4.2.1 we get that there is a P-null-set M ∈ F such that

D(Θ(ω)) = {α1(ω), α2(ω), ...}, 0 < αm(ω) < αm+1(ω), ∀m ∈ N and lim
m→∞

αm(ω) =∞, (4.12)

and

i) Xi(0, ω) = xi(ω),

ii) the mapping [0,∞) 3 t 7→ Xi(t, ω) is càdlàg,

iii) Xi(t, ω) ∈ D(A), ∀t ∈ (0,∞) \ {αm(ω) : m ∈ N},

iv) ∀m ∈ N0, ∀[a, b] ⊆ (αm(ω), αm+1(ω)) : Xi(·, ω)|[a,b] ∈W 1,1([a, b];V ),

v) 〈Ψ,A◦Xi(·, ω)〉V ∈ L1(0, t), ∀t > 0, Ψ ∈ V ∗ and

vi) 〈Ψ, Xi(t, ω)− xi(ω)〉V +
t∫

0

〈Ψ,A◦Xi(τ, ω)〉V dτ =
∞∑
m=1

m∑
k=1

〈Ψ, ηi,k(ω)〉V 11[αm(ω),αm+1(ω))(t), ∀t > 0,

Ψ ∈ V ∗, where ηi,k(ω) := ηi(αk(ω),Θ(ω)(αk(ω)), ω) for all k ∈ N,

for all ω ∈ Ω \M and i = 1, 2.

Moreover, Lemma 4.2.2 yields that it suffices to prove that

||X1(t, ω)−X2(t, ω)||V ≤ ||x1(ω)− x2(ω)||V +

∞∑
m=1

m∑
k=1

||η1,k(ω)− η2,k(ω)||V 11[αm(ω),αm+1(ω))(t),

for all t ≥ 0 and ω ∈ Ω \M .

To this end, let ω ∈ Ω \M be arbitrary but fixed and introduce

α̂0 := 0, α̂m := αm(ω), η̂i,m := ηi,m(ω), x̂i := xi(ω) and X̂i(t) := Xi(t, ω),

for all t ≥ 0, m ∈ N and i = 1, 2.

Let us start tackling the task ahead of us, by proving that

lim
ε↘0

X̂i(α̂m̃)− X̂i(α̂m̃ − ε) = η̂i,m̃, ∀m̃ ∈ N and i = 1, 2. (4.13)
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in norm. Let m̃ ∈ N and i ∈ {1, 2} be arbitrary but fixed and note that v) yields

lim
ε↘0

α̂m̃−ε∫
0

〈Ψ,A◦X̂i(τ)〉V dτ −
α̂m̃∫
0

〈Ψ,A◦X̂i(τ)〉V dτ = 0, ∀Ψ ∈ V ∗.

Consequently, we get by invoking vi) that

lim
ε↘0
〈Ψ, X̂i(α̂m̃)− X̂i(α̂m̃ − ε)〉V =

m̃∑
k=1

〈Ψ, η̂i,k〉V −
m̃−1∑
k=1

〈Ψ, η̂i,k〉V = 〈Ψ, η̂i,m̃〉V ,

for all Ψ ∈ V ∗. Moreover, ii) implies that there is a u ∈ V such that

lim
ε↘0
||X̂i(α̂m̃)− X̂i(α̂m̃ − ε)− u||V = 0. (4.14)

Consequently, as convergence in norm implies weak convergence, we have

〈Ψ, η̂i,m̃ − u〉V = lim
ε↘0
〈Ψ, X̂i(α̂m̃)− X̂i(α̂m̃ − ε)〉V − 〈Ψ, X̂i(α̂m̃)− X̂i(α̂m̃ − ε)〉V = 0, ∀Ψ ∈ V ∗,

which yields η̂i,m̃ = u, since V ∗ separates points. Consequently, (4.14) implies (4.13).

We will proceed by proving that

||X̂1(t)− X̂2(t)||V ≤ ||X̂1(α̂m)− X̂2(α̂m)||V , ∀m ∈ N0, t ∈ [α̂m, α̂m+1). (4.15)

Proving (4.15) is divided into several intermediate steps and requires some notations. To this end, fix

m ∈ N0, and introduce ε ∈ (0, α̂m+1 − α̂m) arbitrary but fixed, bε := α̂m+1 − α̂m − ε, Fi : [0, bε] → V

by Fi := X̂i(·+ α̂m) and ui := X̂i(α̂m) for i = 1, 2.

Firstly, note that

Fi|[a,b] ∈W 1,1([a, b];V ), ∀[a, b] ⊆ (0, bε), i ∈ {1, 2}, (4.16)

since: For [a, b] ⊆ (0, bε) and t ∈ [a, b] we have

α̂m < α̂m + a ≤ α̂m + t ≤ α̂m + b < α̂m+1 − ε,

which yields by appealing to iv) that X̂i ∈W 1,1([α̂m+a, α̂m+b];V ); and hence (4.16), by the definition

of Fi.

Secondly, we will prove that

Fi ∈ C([0, bε];V ), i ∈ {1, 2}, (4.17)

where C(S;V ) denotes the space of continuous functions, mapping from S into V , for any open or closed
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set S ⊆ R.

Note that (4.16) already yields Fi ∈ C((0, bε);V ) which then gives Fi ∈ C([0, bε);V ), since Fi inherits

the right-continuity of X̂i. Consequently, (4.17) follows if Fi is left-continuous in bε. As X̂i is càdlàg,

we have that there is a wi ∈ V such that

lim
h↘0

Fi(bε − h)− Fi(bε) = wi.

in norm. Moreover, note that bε + α̂m ∈ (α̂m, α̂m+1), which yields by invoking vi) that

〈wi,Ψ〉V = lim
h↘0

bε+α̂m∫
0

〈Ψ,A◦Xi(τ, ω)〉V dτ −
bε+α̂m−h∫

0

〈Ψ,A◦Xi(τ, ω)〉V dτ = 0

for all Ψ ∈ V ∗. As V ∗ separates points, this is only possible if wi = 0, which establishes the desired left

continuity and (4.17) follows.

The last intermediate step necessary to prove (4.15) is

0 ∈ F ′i (t) +AFi(t), a.e. t ∈ (0, bε), Fi(0) = ui, i = 1, 2. (4.18)

To this end, note that (4.16) yields that there is for each i ∈ {1, 2} a Lebesgue null-set M(Fi) ⊆ (0, bε)

such that Fi is differentiable (in norm) on (0, bε) \M(Fi).

Now let V ∗c ⊆ V ∗ be a countable set which separates points; such a set exists due to [41, Lemma 2.1

and Theorem 2.1].

By virtue of the fundamental theorem of calculus for Lebesgue integrals, there is for each Ψ ∈ V ∗c and

i ∈ {1, 2} a Lebesgue null-set M(Ψ, i) ⊆ (0, bε) such that

lim
h→0

1

h

 t+α̂m+h∫
0

〈Ψ,A◦X̂i(τ)〉V dτ −
t+α̂m∫
0

〈Ψ,A◦X̂i(τ)〉V dτ

 = 〈Ψ,A◦X̂i(t+ α̂m)〉V

for all t ∈ (0, bε) \M(Ψ, i), i = 1, 2.

Consequently, employing the previous equality, the differentiability a.e. of Fi and vi) yields

〈F ′i (t) +A◦Fi(t),Ψ〉V

= lim
h→0

1

h
〈Fi(t+ h)− Fi(t),Ψ〉V + 〈A◦Fi(t),Ψ〉V

= − lim
h→0

1

h

 t+α̂m+h∫
0

〈Ψ,A◦X̂i(τ)〉V dτ −
t+α̂m∫
0

〈Ψ,A◦X̂i(τ)〉V dτ

+ 〈A◦Fi(t),Ψ〉V

= − 〈Ψ,A◦X̂i(t+ α̂m)〉V + 〈A◦Fi(t),Ψ〉V
= 0

for all Ψ ∈ V ∗c , i ∈ {1, 2} and t ∈ (0, bε) \ (M(Fi) ∪M(Ψ, i)).
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Now let Mi :=
⋃

Ψ∈V ∗c
M(Ψ, i)∪M(Fi), which is still a Lebesgue null-set since V ∗c is countable. Then the

previous calculation implies 〈F ′i (t)+A◦Fi(t),Ψ〉V = 0 for all Ψ ∈ V ∗c and t ∈ (0, bε)\Mi. Consequently,

as V ∗c separates points, we get 0 = F ′i (t) + A◦Fi(t) for every t ∈ (0, bε) \ Mi. Finally, iii) yields

Fi(t) ∈ D(A) for all t ∈ (0, bε) and consequently A◦Fi(t) ∈ AFi(t) for all t ∈ (0, bε). Combining this

with 0 = F ′i (t) +A◦F (t) for every t ∈ (0, bε) \Mi gives (4.18).

The results (4.16)-(4.18) enable us to prove (4.15). By (4.16)-(4.18), we have that Fi is a strong solution

of the initial value problem

0 ∈ U ′i(t) +AU(t), a.e. t ∈ (0, bε), U(0) = ui, (4.19)

for i = 1, 2. Consequently Fi is also a mild solution of (4.19), see Remark 2.1.5. Moreover, as A is m-

accretive and densely defined (4.19) has precisely one mild solution, see Theorem2.1.7. This necessarily

implies Fi(t) = TA(t)ui for t ∈ [0, bε] and i = 1, 2. Therefore, as (TA(t))t≥0 is contractive (see Theorem

2.1.7) we get

||X̂1(t+ α̂m)− X̂2(t+ α̂m)||V = ||TA(t)u1 − TA(t)u2||V ≤ ||u1 − u2||V = ||X̂1(α̂m)− X̂2(α̂m)||V ,

for all t ∈ [0, bε] = [0, α̂m+1− α̂m− ε]. As ε ∈ (0, α̂m+1− α̂m) can be chosen arbitrarily small, this holds

for all t ∈ [0, α̂m+1 − α̂m) which proves (4.15).

The next (and last) intermediate step enables us to prove the claim and reads as follows: For all

m ∈ N, all t ∈ [α̂m, α̂m+1) and all ε ∈ (0,min(α̂1 − α̂0, .., α̂m − α̂m−1)), we have

||X̂1(t)− X̂2(t)||V ≤ ||x̂1 − x̂2||V +

m∑
k=1

||X̂1(α̂k)− X̂1(α̂k − ε)− X̂2(α̂k) + X̂2(α̂k − ε)||V . (4.20)

This will be proven inductively. Let m = 1, t ∈ [α̂1, α̂2) and ε ∈ (0, α̂1 − α̂0). Then appealing to (4.15)

and i) yields

||X̂1(t)− X̂2(t)||V ≤ ||X̂1(α̂1)− X̂2(α̂1)||V
≤ ||x̂1 − x̂2||V + ||X̂1(α̂1)− X̂1(α̂1 − ε)− X̂2(α̂1) + X̂2(α̂1 − ε)||V .

Induction step: Let t ∈ [α̂m+1, α̂m+2) and ε ∈ (0,min(α̂1 − α̂0, .., α̂m+1 − α̂m)). Firstly, note that

α̂m+1 − ε ∈ [α̂m, α̂m+1) and that particularly ε ∈ (0,min(α̂1 − α̂0, .., α̂m − α̂m−1)). Consequently, the

induction hypothesis yields that

||X̂1(α̂m+1 − ε)− X̂2(α̂m+1 − ε)||V ≤ ||x̂1 − x̂2||V +

m∑
k=1

||X̂1(α̂k)− X̂1(α̂k − ε)− X̂2(α̂k) + X̂2(α̂k − ε)||V
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Conclusively, appealing to (4.15), the triangle inequality and the preceding estimate gives

||X̂1(t)− X̂2(t)||V ≤ ||x̂1 − x̂2||V +

m+1∑
k=1

||X̂1(α̂k)− X̂1(α̂k − ε)− X̂2(α̂k) + X̂2(α̂k − ε)||V ,

which implies (4.20).

Now the (from here on short) proof the claim will be derived: If t ∈ [0, α̂1) we have

||X̂1(t)− X̂2(t)||V ≤ ||x̂1 − x̂2||V = ||x̂1 − x̂2||V +

∞∑
m=1

m∑
k=1

||η̂1,k − η̂2,k||V 11[α̂m,α̂m+1)(t),

by (4.15) and i). If t ∈ [α̂1,∞), then (4.12) yields that there is an m̃ ∈ N such that t ∈ [α̂m̃, α̂m̃+1).

Finally, employing (4.20) and (4.13) gives

||X̂1(t)− X̂2(t)||V ≤ ||x̂1 − x̂2||V + lim
ε↘0

m̃∑
k=1

||X̂1(α̂k)− X̂1(α̂k − ε)− X̂2(α̂k) + X̂2(α̂k − ε)||V

= ||x̂1 − x̂2||V +

m̃∑
k=1

||η̂1,k − η̂2,k||V

= ||x̂1 − x̂2||V +

∞∑
m=1

m∑
k=1

||η̂1,k − η̂2,k||V 11[α̂m,α̂m+1)(t),

which concludes the proof.

Theorem 4.3.4. Let V ∗ ⊆ V ′ be a set that separates points, η1, η2 ∈ M((0,∞) × Z × Ω;V ) and

introduce x1, x2 ∈ M(Ω;V ). Moreover, assume that Xi : [0,∞) × Ω → V is a mild solution of

(ACPRM){xi, ηi, V ∗} for i = 1, 2. Then we have

||X1(t)−X2(t)||V ≤ ||x1 − x2||V +

∫
(0,t]×Z

||η1(τ, z)− η2(τ, z)||VNΘ(dτ ⊗ z), ∀t ≥ 0, (4.21)

almost surely.

Proof. Let xi,m ∈M(Ω;V ), ηi,m ∈M((0,∞)× Z × Ω;V ) and Xi,m : Ω× [0,∞)→ V be such that

i) Xi,m is a strong solution of (ACPRM){xi,m, ηi,m, V ∗} for all m ∈ N and i ∈ {1, 2},

ii) lim
m→∞

sup
τ∈[0,t]

||Xi,m(τ)−Xi(τ)||V = 0 for all t > 0, i ∈ {1, 2} almost surely,

iii) lim
m→∞

∫
(0,t]×Z

||ηi,m(τ, z)− ηi(τ, z)||VNΘ(dτ ⊗ z) = 0 for all t > 0, i ∈ {1, 2} almost surely, and

iv) ||X1,m(t) − X2,m(t)||V ≤ ||x1,m − x2,m||V +
∫

(0,t]×Z
||η1,m(τ, z) − η2,m(τ, z)||VNΘ(dτ ⊗ z) for all

t ≥ 0, m ∈ N, i ∈ {1, 2} almost surely.
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Proposition 4.3.3 (and the definition of mild solution) guarantee the existence of these quantities. Con-

sequently, we have

||X1(t)−X2(t)||V
= lim

m→∞
||X1,m(t)−X2,m(t)||V

≤ lim
m→∞

||x1,m − x2,m||V +

∫
(0,t]×Z

||η1,m(τ, z)− η2,m(τ, z)||VNΘ(dτ ⊗ z)

= ||x1 − x2||V +

∫
(0,t]×Z

||η1(τ, z)− η2(τ, z)||VNΘ(dτ ⊗ z)

for all t ≥ 0, with probability one.

Theorem 4.3.4 has two important consequences: Uniqueness of mild solutions of (ACPRM) and an

upper bound for the solution.

Corollary 4.3.5. (ACPRM) has at most one mild solution; more precisely: Let V ∗ ⊆ V ′ be such that it

separates points, let x ∈M(Ω;V ), η ∈M((0,∞)×Z×Ω;V ) and assume that X1, X2 : [0,∞)×Ω→ V

are mild solutions of (ACPRM){x, η, V ∗}, then X1 and X2 are indistinguishable.

Theorem 4.3.6. Let V ∗ ⊆ V ′ be such that it separates points, let η ∈ M((0,∞) × Z × Ω;V ),

x ∈ M(Ω;V ) and assume that X : [0,∞) × Ω → V is a mild solution of (ACPRM){x, η, V ∗}. Fi-

nally, assume that (0, 0) ∈ A0. Then we have

||X(t)||V ≤ ||x||V +

∫
(0,t]×Z

||η(τ, z)||VNΘ(dτ ⊗ z), ∀t ≥ 0, (4.22)

almost surely.

Proof. As 0 ∈ A0, it is plain that TA(t)0 = 0 for all t ≥ 0. Consequently, we have A◦0 = 0. This implies

that the stochastic process which is constantly zero, is a strong (and therefore also mild) solution of

(ACPRM){0, 0, V ∗}. Consequently, the claim follows from Theorem 4.3.4.

Now we will turn to the question of existence. Firstly, the assumptions imposed on A and TA enable

us to apply Theorem 2.1.14, which yields:

Remark 4.3.7. Let v ∈ V be arbitrary but fixed. Then TA(·)v is locally Lipschitz continuous on (0,∞)

and differentiable a.e. with −A◦TA(t)v = T ′A(t)v for a.e. t ∈ (0,∞).

Lemma 4.3.8. Let t > 0, v ∈ V and Ψ ∈ V ′. Moreover, assume that 〈Ψ,A◦TA(·)v〉V ∈ L1((0, t)).

Then we have

t∫
0

〈Ψ,A◦TA(τ)v〉V dτ = −〈Ψ, TA(t)v − v〉V .
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Proof. Let ε ∈ (0, t) be arbitrary but fixed. Firstly, Remark 4.3.7 obviously implies that the mapping

(ε, t) 3 τ 7→ 〈Ψ, TA(τ)v〉V is Lipschitz continuous and differentiable almost everywhere with

∂

∂τ
〈Ψ, TA(τ)v〉V = −〈Ψ,A◦TA(τ)v〉V , a.e. τ ∈ (ε, t).

Consequently, we have

t∫
ε

〈Ψ,A◦TA(τ)v〉V dτ = −〈Ψ, TA(t)v − TA(ε)v〉V (4.23)

Now the claim follows from (4.23) by taking limit, more precisely: By Theorem 2.1.7, TA is a fortiori

time continuous, ergo

lim
ε↘0
−〈Ψ, TA(t)v − TA(ε)v〉V = −〈Ψ, TA(t)v − v〉V .

Moreover, dominated convergence yields that

t∫
0

〈Ψ,A◦TA(τ)v〉V dτ =

t∫
0

lim
ε↘0
〈Ψ,A◦TA(τ)v〉V 11(ε,t)(τ)dτ = lim

ε↘0

t∫
ε

〈Ψ,A◦TA(τ)v〉V dτ,

which is applicable since 〈Ψ,A◦TA(·)v〉V ∈ L1((0, t)) by assumption.

Lemma 4.3.9. Let x ∈ M(Ω;V ), η ∈ M((0,∞) × Z × Ω;V ), set ηk(ω) := η(αk(ω),Θ(ω)(αk(ω)), ω)

for all k ∈ N and P-a.e. ω ∈ Ω, and let Xx denote the process generated by ((βm)m∈N, (ηm)m∈N, x, TA)

in V . Then the following assertions hold for P-a.e. ω ∈ Ω.

i) Xx(t, ω) ∈ D(A), ∀t ∈ (0,∞) \ {αm(ω) : m ∈ N},

ii) ∀m ∈ N0, ∀[a, b] ⊆ (αm(ω), αm+1(ω)) : Xx(·, ω)|[a,b] ∈W 1,1([a, b];V ) and

iii) A◦Xx(·, ω) is B((0,∞))−B(V )-measurable.

Proof. Firstly, let (Xx,m)m∈N0 be the sequence generated by ((βm)m∈N, (ηm)m∈N, x, TA) in V . In addi-

tion, let M ∈ F be a P-null-set such that 0 = α0(ω) < α1(ω) < α2(ω) < ... as well as lim
m→∞

αm(ω) =∞
and αm(ω) ∈ D(Θ(ω)) for all ω ∈ Ω \M and m ∈ N. Now, i)-iii) will be proven for all ω ∈ Ω \M .

So, fix ω ∈ Ω\M and let us prove i). To this end, introduce t ∈ (0,∞)\{αm(ω) : m ∈ N}, and note that

there is precisely one m ∈ N0 such that t ∈ (αm(ω), αm+1(ω)) and thus Xx(t, ω) = TA(t−αm(ω))Xx,m(ω).

Consequently, as TA is domain invariant, we have Xx(t, ω) ∈ D(A).

Proof of ii). Let m ∈ N and [a, b] ⊆ (αm(ω), αm+1(ω)). Then it is plain that

Xx(·, ω)|[a,b] = TA(· − αm(ω))Xx,m(ω). But the local absolute continuity and differentiability almost

everywhere of this mapping follow trivially from Remark 4.3.7.
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Proof of iii). Let (hk)k∈N ⊆ (0,∞) be a null sequence. Moreover, introduce fk,m : (0,∞)→ V by

fk,m(t) :=
TA((t− αm(ω))+ + hk)Xx,m(ω)− TA((t− αm(ω))+)Xx,m(ω)

hk
11[αm(ω),αm+1(ω))(t),

for all t ∈ (0,∞), m ∈ N0 and k ∈ N.

Then we have

lim
k→∞

fk,m(t) = −A◦(TA((t− αm(ω))+)Xx,m(ω))11[αm(ω),αm+1(ω))(t), (4.24)

for all m ∈ N0 and t ∈ (0,∞) \ {αj(ω) : j ∈ N}, since: If t 6∈ [αm(ω), αm+1(ω)), for a given m ∈ N0,

then (4.24) is trivial and if t ∈ (αm(ω), αm+1(ω)), we have by domain invariance of TA that

lim
k→∞

fk,m(t) = lim
k→∞

TA(hk)TA(t− αm(ω))Xx,m(ω)− TA(t− αm(ω))Xx,m(ω)

hk
= −A◦TA(t− αm(ω))Xx,m(ω).

In addition, the joint continuity of TA yields that each fk,m is B((0,∞)) − B(V )-measurable. Con-

sequently, (4.24) yields that (0,∞) 3 t 7→ −A◦(TA((t − αm(ω))+)Xx,m(ω))11[αm(ω),αm+1(ω))(t) is also

B(0,∞)−B(V )-measurable for all m ∈ N0, since it is (except for a countable set) the pointwise limit

of B(0,∞)−B(V )-measurable functions.

Finally, it is plain that

A◦Xx(t, ω) =

∞∑
m=0

A◦(TA((t− αm(ω))+)Xx,m)11[αm(ω),αm+1(ω))(t), ∀t ∈ (0,∞),

which implies the desired measurability.

The preceding lemma enables us to give a condition ensuring that (ACPRM) has a (uniquely de-

termined) strong solution. Afterwards, just one more approximation lemma is needed to formulate this

chapter’s central result: A criteria ensuring the existence of a unique mild solution of (ACPRM).

Proposition 4.3.10. Let V ⊆ V be a subspace of V and let V ∗ ⊆ V ′ be a subset which separates points.

Moreover, let x ∈ M(Ω;V ), η ∈ M((0,∞) × Z × Ω;V ) and let Xx denote the process generated by

((βm)m∈N, (ηm)m∈N, x, TA) in V , where ηm(ω) := η(αm(ω),Θ(ω)(αm(ω)), ω) for all m ∈ N and P-a.e.

ω ∈ Ω. In addition, assume that x ∈ V a.s. and η(t, z) ∈ V for all t ∈ (0,∞) and z ∈ Z with probability

one. Finally, assume that V is an invariant space w.r.t. TA and that 〈Ψ,A◦TA(·)u〉V ∈ L1((0, t))

for all t > 0, u ∈ V and Ψ ∈ V ∗. Then the stochastic process Xx is the unique strong solution of

(ACPRM){x, η, V ∗}.

Proof. Firstly, let (Xx,m)m∈N0
denote the sequence generated by ((βm)m∈N, (ηm)m∈N, x, TA) in V .
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In light of Lemma 4.3.9, Lemma 2.2.6.i),v),vi) and Lemma 4.3.2, it remains to verify

t∫
0

|〈Ψ,A◦Xx(τ)〉V |dτ <∞, ∀t > 0, Ψ ∈ V ∗ (4.25)

a.s. and

〈Ψ,Xx(t)− x〉V +

t∫
0

〈Ψ,A◦Xx(τ)〉V dτ =

∞∑
m=1

m∑
k=1

〈Ψ, ηk〉V 11[αm,αm+1)(t), ∀t > 0, Ψ ∈ V ∗ (4.26)

almost surely.

Moreover, by Corollary 4.3.5 we get that this strong solution is unique. (The Corollary is indeed

applicable, since every strong solution is obviously also a mild one.)

Now, let M ∈ F be a P-null-set such that 0 = α0(ω) < α1(ω) < α2(ω) < ... as well as lim
m→∞

αm(ω) =∞,

αm(ω) ∈ D(Θ(ω)) for all m ∈ N, η(t, z, ω) ∈ V for all t ∈ (0,∞) and z ∈ Z, x(ω) ∈ V, such that

t 7→ Xx(t, ω) is cadlag, such that Lemma 4.3.9.i-iii) and such that

Xx,m(ω) ∈ V, ∀m ∈ N0. (4.27)

for all ω ∈ Ω \M . (Invoking Lemma 2.2.6.vii) yields that M can indeed be chosen such that (4.27)

holds.)

Now, fix an ω ∈ Ω \M and let us prove (4.25). For a given t ∈ [0,∞) there is an m ∈ N0 such that

t ∈ [αm(ω), αm+1(ω)). This yields

t∫
0

|〈Ψ,A◦Xx(τ, ω)〉V |dτ ≤
αm+1(ω)∫

0

|〈Ψ,A◦Xx(τ, ω)〉V |dτ

=

m∑
k=0

αk+1(ω)∫
αk(ω)

|〈Ψ,A◦TA(τ − αk(ω))Xx,k(ω)〉V |dτ

=

m∑
k=0

βk+1(ω)∫
0

|〈Ψ,A◦TA(τ)Xx,k(ω)〉V |dτ.

Moreover, invoking (4.27) gives

βk+1(ω)∫
0

|〈Ψ,A◦TA(τ)Xx,k(ω)〉V |dτ <∞

for all k = 0, ...,m, which concludes the proof of (4.25).

Proof of (4.26). Let t ∈ (0,∞) and (as usually) let m ∈ N0 such that t ∈ [αm(ω), αm+1(ω)).
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If m = 0, we have
∞∑
j=1

j∑
k=1

〈Ψ, ηk(ω)〉V 11[αj(ω),αj+1(ω))(t)=0 and Xx(t, ω) = TA(t)x(ω). Hence in this case

(4.26) follows from Lemma 4.3.8, which is applicable since x(ω) ∈ V.

Now assume m ∈ N. Then we have

t∫
0

〈Ψ,A◦Xx(τ, ω)〉V dτ

=

m−1∑
k=0

αk+1(ω)∫
αk(ω)

〈Ψ,A◦Xx(τ, ω)〉V dτ +

t∫
αm(ω)

〈Ψ,A◦Xx(τ, ω)〉V dτ

=

m−1∑
k=0

βk+1(ω)∫
0

〈Ψ,A◦TA(τ)Xx,k(ω)〉V dτ +

t−αm(ω)∫
0

〈Ψ,A◦TA(τ)Xx,m(ω)〉V dτ.

In addition, (4.27) enables us to use Lemma 4.3.8 now. Doing so, and having in mind that

TA(αk+1(ω)− αk(ω))Xx,k(ω) = Xx,k+1(ω)− ηk+1(ω) for all k ∈ N0 gives

t∫
0

〈Ψ,A◦Xx(τ, ω)〉V dτ

= −
m−1∑
k=0

〈Ψ, Xx,k+1(ω)− ηk+1(ω)− Xx,k(ω)〉V − 〈Ψ, TA(t− αm(ω))Xx,m(ω)− Xx,m(ω)〉V .

Now it is plain to deduce that also

t∫
0

〈Ψ,A◦Xx(τ, ω)〉V dτ =

m−1∑
k=0

〈Ψ, ηk+1(ω)〉V + 〈Ψ, x(ω)〉V − 〈Ψ,Xx(t, ω)〉V .

Finally, the previous equation yields

〈Ψ,Xx(t, ω)− x〉V +

t∫
0

〈Ψ,A◦Xx(τ, ω)〉V dτ =

m∑
k=1

〈Ψ, ηk(ω)〉V =

∞∑
j=1

j∑
k=1

〈Ψ, ηk(ω)〉V 11[αj(ω),αj+1(ω))(t),

which gives (4.26).

Lemma 4.3.11. Let V ⊆ V be a dense subspace of V . Then there is a sequence of mappings (Γn)n∈N,

with Γn : V → V , such that the following assertions hold.

i) Γn(V ) ⊆ V for all n ∈ N,

ii) Γn is B(V )−B(V )-measurable for all n ∈ N and

iii) lim
n→∞

Γn(v) = v for all v ∈ V .
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Proof. As V is dense and V is separable, we can find a sequence (vn)n∈N ⊆ V such that

{vn : n ∈ N} = V = V. (4.28)

Now introduce

Vj,n := {v ∈ V : ||v − vj ||V = min
k=1,..,n

||v − vk||V }, ∀j ∈ {1, ..., n} and n ∈ N,

set Ṽ1,n := V1,n for all n ∈ N and

Ṽj,n := Vj,n \ (V1,n ∪ .. ∪ Vj−1,n), ∀j ∈ {2, .., n} and n ∈ N \ {1}.

Then it is plain that for each n ∈ N the system of sets (Ṽj,n)j=1,..,n is a disjoint cover of V .

Now introduce Γn : V → V by

Γn(v) :=

n∑
j=1

vj11Ṽj,n(v), ∀v ∈ V, , n ∈ N.

Then it is plain that each Γn only takes values in the set {v1, .., vn} ⊆ V which gives i). In addition, we

have that each Vj,n is closed and therefore Vj,n ∈ B(V ) which implies Ṽj,n ∈ B(V ); this yields ii).

Finally, let us prove iii). To this end, fix v ∈ V and note that for all n ∈ N there is precisely one

j(n) ∈ {1, .., n} such that v ∈ Ṽj(n),n and hence Γn(v) = vj(n). Since also v ∈ Vj(n),n, we obtain

||v − Γn(v)||V = ||v − vj(n)||V = min
k=1,..,n

||v − vk||V , ∀n ∈ N.

Finally, (4.28) yields that there is for a given ε > 0 an n0 ∈ N such that ||v−vn0
||V < ε and consequently

||v − Γn(v)||V = min
k=1,..,n

||v − vk||V < ε, ∀n ≥ n0,

which concludes the proof.

Theorem 4.3.12. Let V ⊆ V be a dense subspace of V and let V ∗ ⊆ V ′ be a subset which separates

points. Moreover, let x ∈M(Ω;V ), η ∈M((0,∞)×Z×Ω;V ) and let Xx denote the process generated by

((βm)m∈N, (ηm)m∈N, x, TA) in V , where ηm(ω) := η(αm(ω),Θ(ω)(αm(ω)), ω) for all m ∈ N and P-a.e.

ω ∈ Ω. Finally, assume that V is an invariant space w.r.t. TA and that 〈Ψ,A◦TA(·)u〉V ∈ L1((0, t)) for

all t > 0, u ∈ V and Ψ ∈ V ∗.
Then the stochastic process Xx is the unique mild solution of (ACPRM){x, η, V ∗}. Moreover, if in

addition (0, 0) ∈ A, we have

||Xx(t)||V ≤ ||x||V +

∫
(0,t]×Z

||η(τ, z)||VNΘ(dτ ⊗ z), ∀t ≥ 0, (4.29)
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with probability one.

Proof. Let (Γn)n∈N, where Γn : V → V , be such that Γn(V ) ⊆ V, Γn is B(V )−B(V )-measurable and

lim
n→∞

Γn(v) = v for all v ∈ V . In addition, let M ∈ F be a P-null-set such that

0 = α0(ω) < α1(ω) < α2(ω) < ..., D(Θ(ω)) = {α1(ω), α2(ω), ..} and lim
m→∞

αm(ω) =∞,

for all ω ∈ Ω \M . In addition, let (Xx,m)m∈N0 be the sequence generated by ((βm)m∈N, (ηm)m∈N, x, TA)

in V . Finally, for each n ∈ N, let (yn,k)k∈N0 and Yn be the sequence and the process generated by

((βm)m∈N, (Γn(ηm))m∈N,Γn(x), TA) in V .

Firstly, note that Γn(x) ∈ M(Ω;V ) and Γn(η) ∈ M((0,∞) × Z × Ω;V ), for all n ∈ N, since the

composition of measurable functions remains measurable. Moreover, it is plain that Γn(x), Γn(η) ∈ V
for all n ∈ N a.s. Consequently, we get by invoking Proposition 4.3.10 that Yn is the strong solution

of (ACPRM){Γn(x),Γn(η), V ∗} for all n ∈ N. Hence, it follows from Lemma 4.3.9.i),ii) and Lemma

2.2.6.i),v),vi) that Xx is a mild solution of (ACPRM){x, η, V ∗}, if

lim
n→∞

∫
(0,t]×Z

||Γn(η(τ, z, ω))− η(τ, z, ω)||VNΘ(dτ ⊗ z, ω) = 0, ∀t > 0 and ω ∈ Ω \M (4.30)

and

lim
n→∞

sup
τ∈[0,t]

||Yn(τ, ω)− Xx(τ, ω)||V = 0, ∀t > 0 and ω ∈ Ω \M. (4.31)

Now let t > 0 and ω ∈ Ω \M be arbitrary but fixed and let m̃ ∈ N0 be such that t ∈ [αm̃(ω), αm̃+1(ω)).

(4.30) is trivial, since Lemma 4.2.2 gives that

lim
n→∞

∫
(0,t]×Z

||Γn(η(τ, z, ω))− η(τ, z, ω)||VNΘ(dτ ⊗ z, ω) = lim
n→∞

m̃∑
k=1

||Γn(ηk(ω))− ηk(ω)||V = 0.

Proof of (4.31). Firstly, it will be proven inductively that

||yn,m(ω)− Xx,m(ω)||V ≤ ||Γn(x(ω))− x(ω)||V +

m∑
k=1

||Γn(ηk(ω))− ηk(ω)||V , ∀m ∈ N0 (4.32)

and all n ∈ N. If m = 0, (4.32) is trivial and if (4.32) holds for an m ∈ N, then the contractivity of TA

and the induction hypothesis enable us to conclude that

||yn,m+1(ω)− Xx,m+1(ω)||V ≤ ||yn,m(ω)− Xx,m(ω)||V + ||Γn(ηm+1(ω))− ηm+1(ω)||V

≤ ||Γn(x(ω))− x(ω)||V +

m+1∑
k=1

||Γn(ηk(ω))− ηk(ω)||V ,

which proves (4.32). Now note that for each τ ∈ [0, t] there is an mτ ∈ {0, ..., m̃}, such that
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τ ∈ [αmτ (ω), αmτ+1(ω)). Consequently, exploiting the contractivity of TA and (4.32) yields

||Yn(τ, ω)− Xx(τ, ω)||V = ||TA(τ − αmτ (ω))yn,mτ (ω)− TA(τ − αmτ (ω))Xx,mτ (ω)||V
≤ ||yn,mτ (ω)− Xx,mτ (ω)||V
≤ max

m=0,..,m̃
||yn,m(ω)− Xx,m(ω)||V

≤ ||Γn(x(ω))− x(ω)||V +

m̃∑
k=1

||Γn(ηk(ω))− ηk(ω)||V

As this upper bound is independent of τ ∈ [0, t], we get

lim
n→∞

sup
τ∈[0,t]

||Yn(τ, ω)− Xx(τ, ω)||V ≤ lim
n→∞

||Γn(x(ω))− x(ω)||V +

m̃∑
k=1

||Γn(ηk(ω))− ηk(ω)||V = 0,

which proves (4.31). Consequently, Xx is a mild solution of (ACPRM){x, η, V ∗}. Finally, Corollary

4.3.5 yields the uniqueness and Theorem 4.3.6 gives (4.29).

In Chapter 5 and Chapter 6, we simply consider a time continuous, contractive semigroup and do

not necessarily assume that this semigroup is associated to an m-accretive, densely defined operator.

Note that this is a weaker assumption, since a semigroup associated to an m-accretive, densely defined

operator is always time continuous and contractive, see Theorem 2.1.7.

Moreover, we will simply consider sequences (βm)m∈N, where βm : Ω → (0,∞) is F-B((0,∞))-

measurable, and (ηk)k∈N ⊆M(Ω;V ), and not point processes Θ and functions η ∈M((0,∞)×Z×Ω;V ).

So, let us conclude this section with a remark connecting these different approaches:

Remark 4.3.13. Let (T (t))t≥0 be a time-continuous, contractive semigroup on V , and assume that

the sequence of inter-arrival times (βm)m∈N induced by Θ, is an arbitrary sequence of independent and

identically distributed random variables, with βm : Ω→ (0,∞). Then we have

ENΘ((0, t]× Z) = E
∞∑
m=1

11

{
m∑
k=1

βk ≤ t

}
=

∞∑
m=1

P

(
m∑
k=1

βk ≤ t

)
<∞,

where the finiteness follows from [30, Theorem 1.6]. Thus, without any further assumptions regarding

(βm)m∈N, NΘ is necessarily finite. In other words: For any sequence of (0,∞)-valued i.i.d. random

variables (βm)m∈N, we can find a necessarily finite point process Θ, such that (βm)m∈N is the sequence

of inter-arrival times induced by Θ. (Of course, Θ(ω)(αm(ω)) has to be chosen such that Θ is F-Π(Z)-

measurable; this is always possible: For example Θ(ω)(αm(ω)) := z for all ω ∈ Ω and m ∈ N, where

z ∈ Z is fix, has the desired measurability property.)

Now, let (ηk)k∈N ⊆ M(Ω;V ) and x ∈ M(Ω;V ). Moreover, let Xx denote the process generated by

((βm)m∈N, (ηm)m∈N, x, T ) in V and introduce

η(t, z, ω) :=

∞∑
k=1

ηk(ω)11[αk(ω),αk+1(ω))(t),
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for all t > 0, z ∈ Z and ω ∈ Ω. Then it is obvious that indeed η ∈M((0,∞)× Z × Ω;V ).

Now, if one assumes that T (t) = TA(t) for all t ≥ 0 and that 〈Ψ,A◦TA(·)u〉V ∈ L1((0, t)) for all t > 0,

u ∈ V and Ψ ∈ V ∗, where V ⊆ V is a dense and invariant space w.r.t. TA, and V ∗ ⊆ V ′ separates

points; then Xx is the unique mild solution of (ACPRM){x, η, V ∗}.
In conclusion, if one has given: A time-continuous, contractive semigroup (T (t))t≥0 on V , a sequence

(ηk)k∈N ⊆M(Ω;V ), another sequence (βm)m∈N, of (0,∞)-valued i.i.d. random variables and an initial

x ∈ M(Ω;V ); then: One can choose η ∈ M((0,∞) × Z × Ω;V ) such that the process generated by

((βm)m∈N, (ηm)m∈N, x, T ) in V is for some V ∗ ⊆ V ′ the unique mild solution of (ACPRM){x, η, V ∗}, if

(T (t))t≥0 fulfills the assumptions we just outlined.

4.4 Examples

The purpose of this section is to demonstrate the applicability of the developed existence and uniqueness

results to the one-dimensional examples introduced in Remark 2.2.7 and to the weighted p-Laplacian

evolution equation with Neumann boundary conditions considered in Chapter 3.

Throughout this section, (Z,Z) is a measurable space, Θ : Ω→ π(Z) denotes a finite point process

and NΘ : (B((0,∞)) ⊗ Z) × Ω → N0 ∪ {∞} is the counting measure induced by Θ. Furthermore,

(αm)m∈N denotes the sequence of hitting times induced by Θ and (βm)m∈N the sequence of inter-arrival

times induced by Θ; and for notational convenience we also introduce α0 : Ω→ R, with α0 := 0.

Now let us start with the one-dimensional examples: (To do that, we will have to formulate fairly simple

nonlinear ODEs in the language of the general existence/uniqueness theory introduced in Section 2.1.

To the reader familiar with this theory, this will probably seem like a huge overkill, but to the unfamiliar

reader, this might be helpful.)

Remark 4.4.1. Let ρ1 ∈ (0, 1) and ρ2 ∈ (0,∞) be given and let Tρ1 , Tρ2 denote the semigroups

introduced in Remark 2.2.7, i.e. Tρ1(t)v := sgn(v) (−t+ |v|ρ1)
1
ρ1
+ and Tρ2(t)v := sgn(v)

(
t+ |v|−

1
ρ2

)−ρ2
for all v ∈ R and t ∈ [0,∞).

Now introduce the mappings Aρ1 , Aρ2 : R→ R defined by

Aρ1(v) :=
1

ρ1
sgn(v)|v|1−ρ1 and Aρ2(v) := ρ2v|v|

1
ρ2 ,

for all v ∈ R. Now, in the remainder of this remark we fix i ∈ {1, 2} and note that Aρi can be viewed

as a single-valued operator, with domain D(Aρi) = R.

Plainly, Aρi is monotonically increasing. Consequently, Aρi is accretive. Moreover, Aρi is continuous

and lim
v→∞

v + αAρi(v) = ∞ as well as lim
v→−∞

v + αAρi(v) = −∞ for all α ∈ (0,∞). Thus, Aρi is also

m-accretive.

Consequently, as we already know that Aρi is densely defined, it follows from Theorem 2.1.7 that the
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initial value problem

0 ∈ u′(t) +Aρiu(t), for a.e. t ∈ (0,∞), u(0) = v, (4.33)

has, for any v ∈ R precisely one mild solution. Moreover, for every v ∈ R we have: Tρi(·)v is con-

tinuously differentiable on [0,∞), thus it is a fortiori continuous on [0,∞), locally absolutely con-

tinuous as well as differentiable almost everywhere on (0,∞), and a direct calculation verifies that

T ′ρi(t)v = −Aρi(Tρi(t)v) for all t ∈ [0,∞). Thus Tρi(·)v is for any v ∈ R a strong solution of (4.33).

And as any strong solution is a mild one (see Remark 2.1.5), Tρi(·)v is the unique strong solution of

(4.33); and in our terminology: (Tρi(t))t≥0 is the semigroup associated to Aρi , see Definition 2.1.8.

Moreover, as Aρi is everywhere defined, (Tρi(t))t≥0 is domain invariant. And as Tρi(·)v is, for any

v ∈ R, continuously differentiable on [0,∞) it admits an infinitesimal generator which coincides with

Aρi .
Now, we are in the position to Proposition 4.3.10 to Tρi : Choose V = R and V = R. Of course, we iden-

tify the dual space of R with R and choose V ∗ = R. As, [0,∞) 3 t 7→ AρiTρi(t)v is a continuous map,

the integrability assumption stated in Proposition 4.3.10 is clearly fulfilled, and we infer from Proposition

4.3.10 that: For any x ∈ M(Ω;R) and η ∈ M((0,∞) × Z × Ω;R), (ACPRM){x, η,R} has a uniquely

determined strong solution, which is given by the process generated by ((βm)m∈N, (ηm)m∈N, x, Tρi) in R,

where ηm(ω) := η(αm(ω),Θ(ω)(αm(ω)), ω) for all m ∈ N and P-a.e. ω ∈ Ω.

Now let us turn to the p-Laplacian example: Firstly, let us recall some notations introduced in

Section 3.2: Throughout the remainder of this section, let n ∈ N \ {1} and p ∈ (1,∞) \ {2}. Moreover,

∅ 6= S ⊆ Rn denotes a non-empty, open, connected and bounded sets of class C1, and λ is the Lebesgue

measure on B(S). Moreover, γ : S → (0,∞), denotes the weight function, i.e. we assume γ ∈ L∞(S),

γ
1

1−p ∈ L1(S) and that there is a γ0 : Rn → R with γ0 ∈ Mp(Rn) such that γ0|S = γ a.e. on S.

Moreover, as previously we set

W 1,p
γ (S) := {f ∈ Lp(S) : ∇f ∈ Lp(S, γ;Rn)}.

In addition, Ap : D(Ap) → 2L
1(S) denotes the p-Laplace operator introduced in Definition 3.2.2, and

Ap : D(Ap) → 2L
1(S) denotes its closure, see Definition 3.2.4 for the definition and Theorem 3.2.5 for

the fact that this is the closure of Ap. In addition, note that Ap is m-accretive and densely defined, see

Theorem 3.2.5.

Finally, (TAp(t))t≥0, where TAp : L1(S)→ L1(S) for all t ≥ 0, denotes the semigroup associated to Ap,
see Remark 3.2.6.

Now, let us apply the results of Section 4.3 to the current setting: As the reader probably guessed

correctly, the Banach Space V considered there has to be chosen as V = L1(S). As usually, we identify
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V ′ with L∞(S). Note that in this case, the duality 〈·, ·〉L1(S) reduces to an integral, i.e.

〈f, h〉L1(S) =

∫
S

fhdλ,

for any f ∈ L1(S) and h ∈ L∞(S).

Theorem 4.4.2. Let x ∈ M(Ω;L1(S)) and η ∈ M((0,∞) × Z × Ω;L1(S)). Moreover, introduce

X(p)
x : [0,∞) × Ω → L1(S) as the process generated by ((βm)m∈N, (ηm)m∈N, x, TAp) in L1(S), where

ηm(ω) := η(αm(ω),Θ(ω)(αm(ω)), ω) for all m ∈ N and P-a.e. ω ∈ Ω. Then X(p)
x is the uniquely

determined mild solution of (ACPRM){x, η,W 1,p
γ (S) ∩ L∞(S)}, and we have

||X(p)
x (t)||L1(S) ≤ ||x||L1(S) +

∫
(0,t]×Z

||η(τ, z)||L1(S)NΘ(dτ ⊗ z), ∀t ≥ 0,

with probability one. Moreover, if in addition x ∈ L∞(S) and η(t, z) ∈ L∞(S) for all t > 0 and z ∈ Z
a.s., then X(p)

x is even the uniquely determined strong solution of (ACPRM){x, η,W 1,p
γ (S) ∩ L∞(S)}.

Proof. All claims follow at once from Proposition 4.3.10 and Theorem 4.3.12, by choosing V := L1(S),

V := L∞(S) and V ∗ := W 1,p
γ (S) ∩ L∞(S) there; more precisely: Firstly, we already know that TAp

is domain invariant and admits an infinitesimal generator, see Remark 3.2.6.v). Moreover, V is indeed

an invariant space w.r.t. TAp (Remark 3.2.6.iv), with q = ∞) and it is well-known that V is dense in

(V, || · ||V ). Furthermore, as C∞c (S) ⊆ V ∗, it is clear that V ∗ separates points. Finally, the needed

integrability assumption stated in Proposition 4.3.10 and Theorem 4.3.12 was already proven in Lemma

3.3.7, and it is clear that (0, 0) ∈ Ap.
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Chapter 5

Asymptotic Results for

ACPRM-Processes in the finite

extinction Case

5.1 Outline & Highlights

The purpose of this chapter is to prove an SLLN and a CLT for ACPRM-processes, if the underlying

semigroup extincts in finite time. Outlining this in greater detail requires to introduce some notations:

Firstly, recall that (Ω,F ,P) is a complete probability space and introduce a separable Banach space

(V, || · ||V ). Moreover, let (βm)m∈N and (ηm)m∈N be (0,∞)-valued and V -valued sequences of random

variables, respectively. In addition, let x be a V -valued random variable, introduce αm :=
m∑
k=1

βm and

α0 := 0. Finally, let (T (t))t≥0 denote a time-continuous, contractive semigroup on V , and let Xx denote

the process generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V .

Now, the finite extinction assumption that we will have to assume throughout this chapter reads as

follows: There are constants κ ∈ (0,∞) and ρ ∈ (0, 1) such that

||T (t)v||ρV1
≤ (−κt+ ||v||ρV1

)+ (5.1)

for all t ≥ 0 and v ∈ V1, where (V1, || · ||V1
) ⊆ V is another separable Banach space which is an invariant

space w.r.t. T and such that the injection V1 ↪→ V is continuous.

The reason why we introduce V1 is to make the results more applicable, since it is possible that one has

a semigroup which is defined on a (separable) Banach space V but that the finite extinction property

(5.1) only holds on a subspaces, or is only known on a subspace.

The most important stochastic assumptions needed to achieve this, are that (βm)m∈N and (ηm)m∈N
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are both i.i.d. sequences, which are independent of each other, independent of the initial x and that βm

is in some sense (to be made precise later) ”larger” than ηm.

It will then be possible to show that, for a class of functionals Ξ : V →W , where (W, || · ||W ) is another

separable Banach space, we have

lim
t→∞

1

t

t∫
0

Ξ(Xx(τ))dτ = νΞ, (SLLN)

with probability one, where νΞ ∈ W will be made precise later; and that if (W, || · ||W ) is in addition a

type 2 Banach space, we have

lim
t→∞

1√
t

 t∫
0

Ξ(Xx(τ))dτ − tνΞ

 = Z, (CLT)

in distribution, where Z : Ω→W is a centered, Gaussian W -valued random variables, whose covariance

will be determined explicitly.

Particularly, the class of functionals is sufficiently large, such that Ξ(Xx(t)) in (SLLN) and (CLT) can

be replaced by Xx(t). Moreover, Ξ depends on another separable Banach space (V2, || · ||V2
) ⊆ (V, || · ||V ),

with continuous injection and invariant w.r.t. T . This makes it possible to replace Ξ(Xx(t)) in (SLLN)

and (CLT) by ||Xx(t)||V2
.

Moreover, our theoretical results will be applied to the one-dimensional semigroup introduced in

Remark 2.2.7.i) and to the weighted p-Laplacian evolution equation for ”small” p; more accurately, p

has to be as in Theorem 3.5.6. For the latter semigroup, we will see that all Lq-norms, where q ∈ [1,∞),

are a valid choice for || · ||V2
and that (SLLN) as well as (CLT) also hold for Xx itself.

There are besides the examples we consider, many other nonlinear semigroups which extinct in finite

time. For another concrete example, see [2, Chapter 4] and for a general survey on the finite extinction

property, containing many examples, including the (unweighted) p-Laplacian case, see [12].

Of course, there are plenty of semigroups that do not extinct in finite time. Therefore, in the next chap-

ter we continue our investigation regarding the asymptotic properties of Xx. Particularly, the theoretical

results obtained there will be applied to the p-Laplacian semigroup for ”large” p and to the semigroup

introduced in Remark 2.2.7.ii).

Note that one inevitably has to draw some assumption regarding the asymptotic behavior of T , if

one wants a result like (SLLN) or (CLT) to hold: If ηk = 0 for all k ∈ N a.s., then (thanks to the

semigroup property) we have Xx(t) = T (t)x for all t ≥ 0 with probability one. Thus, if the general

assumptions on ηk are such that at least ηk = 0 for all k ∈ N is a valid choice for the ηk’s then a result

like (SLLN) can only hold if the limit lim
t→∞

1
t

t∫
0

Ξ(T (t)x)dτ exists almost surely.

Of course, assuming that the semigroup extincts in finite time, and that this finite extinction is pre-
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cisely due to (5.1) is a strong assumption. But, on the other hand note that the results we obtain are

very strong; particular, that we obtain both the SLLN and the CLT for vector-valued functionals. One

possible (and frequently used) way to prove an inequality like (5.1) is employing Lemma 3.5.1 - which is

precisely how we derived such a bound for the weighted p-Laplacian evolution equation in Section 3.5.

The basic technique to prove this chapter’s general results is to introduce a certain sequence of

stopping times (τm)m∈N, such that
τm∫
0

Ξ(Xx(τ))dτ can be decomposed into an i.i.d. sum; and then to

use approximation techniques to replace τm by t. Moreover, this chapter relies strongly on the theory of

random variables taking values in separable Banach spaces. A comprehensive introduction to this topic

can be found in [26].

This chapter is structured as follows: The mentioned general results are proven in Section 5.2 and

the applicability of these results will be demonstrated in Section 5.3.

Moreover, Section 5.2 contains a type 2 Banach space version of Anscombe’s CLT, which we did not

find in the literature and might be of independent interest to some readers. It can be found in Theorem

5.2.22 and is written as self-contained as possible.

5.2 The SLLN and the CLT

The purpose of this section is to prove the introductory mentioned results (SLLN) and (CLT). At first

we will state the needed assumptions, as well as some additional notations. As this section is quite long,

a detailed outline is given after all the assumptions and notations have been stated, see Remark 5.2.6.

There the technique employed to prove (SLLN) and (CLT) is also described in greater detail.

Throughout this section, (V, || · ||V ) denotes a separable Banach space and (T (t))t≥0 denotes a time-

continuous, contractive semigroup on V . (Consequently, (T (t))t≥0 is also jointly continuous.)

In addition, the reader is reminded that (Ω,F ,P) is a complete probability space, and that we use the

short-cut notations M(Ω;V ) :=M(Ω,F ;V ) and Lq(Ω;V ) := Lq(Ω,F ,P;V ) for all q ∈ [1,∞).

Moreover, (ηm)m∈N and (βm)m∈N denote i.i.d. sequences, where ηm : Ω → V and βm : Ω → (0,∞) are

F-B(V )-measurable and F-B((0,∞))-measurable, respectively. In addition, assume that (ηm)m∈N and

(βm)m∈N are independent of each other. Furthermore, introduce (αm)m∈N0
, where αm : Ω→ [0,∞), by

α0 := 0 and

αm :=

m∑
k=1

βk, ∀m ∈ N.

Finally, for any x ∈M(Ω;V ), (Xx,m)m∈N0
and Xx : [0,∞)×Ω→ V denote the sequence and the process

generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V .

Now, the following functional analytic assumption is drawn:
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Assumption 5.2.1. There are separable Banach spaces (V1, || · ||V1
) and (V2, || · ||V2

), with Vi ⊆ V , such

that the injections Vi ↪→ V are continuous for i = 1, 2. In addition, the following assertions hold.

i) Vi is an invariant space w.r.t. (T (t))t≥0, for i = 1, 2.

ii) There are constants κ ∈ (0,∞) and ρ ∈ (0, 1) such that ||T (t)v||ρV1
≤ (−κt+ ||v||ρV1

)+ for all t ≥ 0

and v ∈ V1, where (·)+ := max(·, 0).

iii) ||T (t)v||V2
≤ ||v||V2

for all v ∈ V2.

Throughout this entire section, Assumption 5.2.1 is assumed to hold and (V1, || · ||V1
), (V2, || · ||V2

)

as well as κ ∈ (0,∞), ρ ∈ (0, 1) are as in this assumption.

Stating our stochastic assumption, requires the following remark regarding measurability:

Remark 5.2.2. Let (V̂ , || · ||V̂ ) ⊆ (V, || · ||V ) be another separable Banach space and assume that

the injection V̂ ↪→ V is continuous. Then Lusin-Souslin’s Theorem (see [22, Theorem 15.1]) yields

f(B) ∈ B(V ) for all B ∈ B(V̂ ) and f : V̂ → V which are continuous and injective. Consequently, we

get B(V̂ ) ⊆ B(V ). Particularly, for | · |V̂ : V → [0,∞), with |v|V̂ := ||v||V̂ for all v ∈ V̂ and |v|V̂ := 0

for all v ∈ V \ V̂ , we have that | · |V̂ is B(V )-B([0,∞))-measurable.

Hence, if y : Ω→ V is F-B(V )-measurable, with P(y ∈ V̂ ) = 1, then ||y||V̂ is F-B([0,∞))-measurable.

Assumption 5.2.3. Throughout this section, the following assertions hold for all m ∈ N.

i) ηm ∈ Vi for i = 1, 2 with probability one.

ii) E||ηm||4V2
<∞, and there is a ε̂ > 0, such that E||ηm||ρ(11+ε̂)

V1
<∞ and Eβ11+ε̂

m <∞.

iii) −κEβm + E||ηm||ρV1
< 0.

Throughout this section ε̂ > 0 is as in the preceding assumption.

Notation 5.2.4. We write (Ξ, (W, || · ||W )) ∈ SLV2(V ), whenever the following assertions hold.

i) (W, || · ||W ) is a separable Banach space.

ii) Ξ : V →W is B(V )−B(W )-measurable.

iii) Ξ is sub-linear in the following sense: There are constants c1, c2 ∈ [0,∞) such that

||Ξ(v)||W ≤ c1||v||V2
+ c2, for all v ∈ V2.

Definition 5.2.5. A mapping x : Ω → V is called an independent initial leading to extinction, if the

following assertions hold.

i) x ∈M(Ω;V ).

ii) x ∈ Vi for i = 1, 2 with probability one.

iii) E||x||2ρV1
<∞.
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iv) x is jointly independent of (βm)m∈N and (ηm)m∈N.

Moreover, if x : Ω→ V is an independent initial leading to extinction, we denote by (ex(n))n∈N, where

ex(n) : Ω→ N ∪ {∞}, the sequence of extinction times, defined by

v) ex(1) := min(m ∈ N : T (βm)Xx,m−1 = 0) and

vi) ex(n) := min
(
m ∈ N : T (βm)Xx,m−1 = 0, m > ex(n− 1)

)
for all n ∈ N \ {1}.

Finally, introduce the filtrations1 (Fxj )j∈N and (F̃xm)m∈N0
, by

vii) Fx1 := σ0(x, β1), F̃x0 := σ0(x) and

viii) Fxj := σ0(x, β1, ..., βj , η1, ..., ηj−1) for all j ∈ N \ {1} and F̃xm := σ0(x, β1, ..., βm, η1, ..., ηm) for all

m ∈ N.

Remark 5.2.6. Let x ∈ M(Ω;V ) be an independent initial leading to extinction and Ξ ∈ SLV2
(V ).

The centerpiece of the proof of the SLLN as well as the CLT, which are both proven in Theorem 5.2.23,

is the fact that the sequence

(
αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ

)
n∈N

is i.i.d., square integrable and for each n ∈ N in

distribution equal to
αex(1)∫

0

Ξ(Xx(τ))dτ , where x ∈M(Ω;V ) is specified in Remark 5.2.14.

Before one can prove these results, one of course needs that P(ex(n) < ∞, ∀n ∈ N) = 1 and that the

occurring integrals exist and are well-defined, which is subject to Proposition 5.2.10 and Lemma 5.2.12.

The stated i.i.d. and square integrability assertions are then proven in Proposition 5.2.17 and Lemma

5.2.18.

Even though

(
αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ

)
n∈N

is i.i.d., it remains so far open how one gets from there to

Theorem 5.2.23. A similar obstacle occurs for discrete time Markov chains possessing an atom; and the

technique we employ to overcome it is somehow similar to the one used in [29, Theorems 17.2.1 and

17.2.2]. It is just ”somehow” similar, since we are not in discrete time, consider vector-valued instead

of real-valued functionals and last but not least T (βm)Xx,m−1 = 0, means Xx,m = ηm, i.e. we do not

stop the sequence (Xx,m)m∈N at deterministic states, but at a ”random state”; moreover, note that even

though (Xx,m)m∈N is a Markov chain, Xx is not necessarily2 a Markov process.

Moreover, Corollary 5.2.24 is a useful application of Theorem 5.2.23 for special choices of (Ξ, (W, ||·||W )).

In addition, Theorem 5.2.22 is a vector-valued version of Anscombe’s CLT.

The remaining results, which have not been mentioned explicitly in this remark, solely serve to keep the

exposition more clean and the proofs more accessible, but are not of independent interest out of this

section.

Lemma 5.2.7. Let x : Ω→ V be an independent initial leading to extinction. Then all of the following

assertions hold.

1See Remark 2.2.9 for our conventions regarding σ-Algebras.
2In Section 6.2, we shall see that Xx is a Markov process, if x, (ηm)m∈N and (βm)m∈N are jointly independent,

both sequences are i.i.d. and each βm is exponentially distributed. The present author conjectures that this is the only
(non-trivial) distribution for βm turning Xx into a Markov process.

71



i) Xx,m is F̃xm-B(V )-measurable for all m ∈ N0.

ii) ex(n) + 1 ≤ ex(n+ 1) and ex(n) ≥ n for all n ∈ N.

iii) {ex(n) = j} ∈ Fxj for all n, j ∈ N.

Proof. Let us start by proving i) inductively. We have Xx,0 = x, which is obviously σ0(x)-B(V )-

measurable. Now assume that i) holds for an m ∈ N0 and note that Xx,m+1 = T (βm+1)Xx,m + ηm+1. As

Xx,m is by the induction hypothesis a fortiori F̃xm+1-B(V )-measurable and since βm+1 is obviously F̃xm+1-

B([0,∞))-measurable, Remark 2.2.5 yields that T (βm+1)Xx,m is F̃xm+1-B(V )-measurable. As ηm+1 has

this property as well, i) follows.

Now note that it is plain that ex(n)+1 ≤ ex(n+1), which gives ex(n) ≥ n, since ex(1) ≥ 1, by definition.

Consequently, ii) holds as well.

Proof of iii). This statement is proven inductively w.r.t. n ∈ N. We have for any j ∈ N that

{ex(1) ≤ j} = {∃k ∈ {1, ..., j} : T (βk)Xx,k−1 = 0} =

j⋃
k=1

{T (βk)Xx,k−1 = 0} ∈ Fxj ,

by Remark 2.2.5 and i). Consequently, as {ex(1) = j} = {ex(1) ≤ j} \ {ex(1) ≤ j − 1} and Fxj−1 ⊆ Fxj ,

iii) holds if n = 1.

Now assume that iii) holds for an n ∈ N. If j < n + 1, we have {ex(n + 1) ≤ j} = ∅, by ii). So let

j ≥ n+ 1. Note that on {ex(n+ 1) ≤ j}, we have n ≤ ex(n) < j, by ii).

Consequently, we have

{ex(n+ 1) ≤ j} =

j−1⋃
i=n

{∃ k ∈ {i+ 1, ..., j} : T (βk)Xx,k−1 = 0, ex(n) = i}.

Moreover, the induction hypothesis yields {ex(n) = i} ∈ Fxi ⊆ Fxj , for all i = n, ..., j − 1 and combining

Remark 2.2.5 and i) gives {T (βk)Xx,k−1 = 0} ∈ Fxk ⊆ Fxj for all k = n+ 1, ..., j.

Consequently, we get {ex(n+ 1) ≤ j} ∈ Fxj for all j ∈ N and therefore also {ex(n+ 1) = j} ∈ Fxj .

Lemma 5.2.8. Let x : Ω → V be an independent initial leading to extinction. Then the following

assertions hold.

i) Xx,m ∈ Vi for all m ∈ N0 and i ∈ {1, 2} almost surely.

ii) ||Xx,m||ρV1
≤ (−κβm + ||Xx,m−1||ρV1

)+ + ||ηm||ρV1
for all m ∈ N almost surely.

Proof. Thanks to Lemma 2.2.6.vii), the first assertion is trivial.

The second assertion is also easily verified: Appealing to Assumption 5.2.1.ii), while having in mind i),

gives

||Xx,m||ρV1
≤ ||T (βm)Xx,m−1||ρV1

+ ||ηm||ρV1
≤ (−κβm + ||Xx,m−1||ρV1

)+ + ||ηm||ρV1
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for all m ∈ N almost surely, where the well-known inequality (a + b)ρ ≤ aρ + bρ for all a, b ≥ 0, was

used.

Lemma 5.2.9. Let x : Ω → V be an independent initial leading to extinction and introduce m,n ∈ N,

with m < n. Then the inclusion

{−κβk + ||Xx,k−1||ρV1
> 0, ∀k = m, ..., n} ⊆ {−κ

n∑
k=m

βk +

n−1∑
k=m

||ηk||ρV1
+ ||Xx,m−1||ρV1

> 0}

holds up to a P-null-set.

Proof. Fix n ∈ N \ {1} and let us prove inductively that

{−κβk + ||Xx,k−1||ρV1
> 0,∀k = n− j, .., n} ⊆ {−κ

n∑
k=n−j

βk +
n−1∑
k=n−j

||ηk||ρV1
+ ||Xx,n−j−1||ρV1

> 0} (5.2)

for all j = 1, ..., n− 1 almost surely, which obviously yields the claim.

So let j = 1. Firstly, invoking Lemma 5.2.8.ii) gives ||Xx,n−1||ρV1
≤ (−κβn−1 + ||Xx,n−2||ρV1

)+ + ||ηn−1||ρV1

a.s. and therefore

{−κβn + ||Xx,n−1||ρV1
> 0} ⊆ {−κβn + (−κβn−1 + ||Xx,n−2||ρV1

)+ + ||ηn−1||ρV1
> 0} (5.3)

almost surely. Using this yields

{−κβk + ||Xx,k−1||ρV1
> 0, ∀k = n− 1, ..., n}

⊆ {−κβn−1 + ||Xx,n−2||ρV1
> 0, − κβn + (−κβn−1 + ||Xx,n−2||ρV1

)+ + ||ηn−1||ρV1
> 0}

⊆ {−κ
n∑

k=n−1

βk +

n−1∑
k=n−1

||ηk||ρV1
+ ||Xx,n−2||ρV1

> 0}

almost surely, and consequently (5.2) holds for j = 1.

Now assume (5.2) holds for a j ∈ {1, ..., n − 2} (and w.l.o.g. that n > 2). Firstly, using the induction

hypothesis yields

{−κβk + ||Xx,k−1||ρV1
> 0,∀k = n− (j + 1), ..., n}

⊆ {−κ
n∑

k=n−j

βk +

n−1∑
k=n−j

||ηk||ρV1
+ ||Xx,n−j−1||ρV1

> 0} ∩ {−κβn−j−1 + ||Xx,n−j−2||ρV1
> 0}

almost surely. Appealing to Lemma 5.2.8.ii) once more, yields

{−κ
n∑

k=n−j

βk +

n−1∑
k=n−j

||ηk||ρV1
+ ||Xx,n−j−1||ρV1

> 0}
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⊆ {−κ
n∑

k=n−j

βk +

n−1∑
k=n−j

||ηk||ρV1
+ (−κβn−j−1 + ||Xx,n−j−2||ρV1

)+ + ||ηn−j−1||ρV1
> 0}

almost surely. Finally, combining the former and the latter inclusion gives the claim.

Proposition 5.2.10. Let x : Ω→ V be an independent initial leading to extinction. Then we have

P(ex(i) <∞, ∀i ∈ N) = 1.

Proof. It obviously suffices to prove that ex(i) <∞ a.s. for all i ∈ N. This will be proven inductively.

Firstly, employing the σ-continuity of probability measures from above yields

P(ex(1) =∞) = lim
n→∞

P(T (βk)Xx,k−1 6= 0, ∀k = 1, ..., n).

Moreover, appealing to Lemma 5.2.8.i) gives Xx,k−1 ∈ V1 for all k ∈ N a.s. Consequently, Assumption

5.2.1.ii) gives

{T (βk)Xx,k−1 6= 0} ⊆ {(−κβk + ||Xx,k−1||ρV1
)+ > 0} = {−κβk + ||Xx,k−1||ρV1

> 0}, ∀k ∈ N (5.4)

a.s. Using this, while having in mind Lemma 5.2.9 yields

P(ex(1) =∞) ≤ lim
n→∞

P

(
−κ

n∑
k=1

βk +

n−1∑
k=1

||ηk||ρV1
+ ||x||ρV1

> 0

)
. (5.5)

Now note that ||x||ρV1
, βk, ||ηk||ρV1

∈ L2(Ω). Consequently, we can introduce

νn := E

(
−κ

n∑
k=1

βk +

n−1∑
k=1

||ηk||ρV1
+ ||x||ρV1

)
= n

(
−κE(β1) + E||η1||ρV1

)
− E||η1||ρV1

+ E||x||ρV1
.

Moreover, appealing to Assumption 5.2.3.iii) yields νn < 0 for all n sufficiently large. Consequently, by

invoking (5.5) and employing Tschebyscheff’s inequality, we get

P(ex(1) =∞) ≤ lim
n→∞

1

ν2
n

Var

(
−κ

n∑
k=1

βk +

n−1∑
k=1

||ηk||ρV1
+ ||x||ρV1

)

= lim
n→∞

1

ν2
n

(
κ2Var(β1)n+ (n− 1)Var(||η1||ρV1

) + (Var||x||ρV1
)
)

= 0,

which proves P(ex(1) <∞) = 1.

Now assume ex(i) <∞ a.s. for a given i ∈ N. Then there is a set Mi ⊆ N, such that P(ex(i) ∈Mi) = 1
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and P(ex(i) = m) > 0 for all m ∈Mi. This implies

P(ex(i+ 1) =∞) =
∑
m∈Mi

P(ex(i+ 1) =∞, ex(i) = m).

Consequently, it suffices to prove that P(ex(i+ 1) =∞, ex(i) = m) = 0 for all m ∈Mi. So let m ∈Mi

be given. Then we have

P(ex(i+ 1) =∞, ex(i) = m) = P(T (βk)Xx,k−1 6= 0, ∀k > m, ex(i) = m).

Consequently, employing the σ-continuity of probability measures, (5.4) and Lemma 5.2.9 gives

P(ex(i+ 1) =∞, ex(i) = m) ≤ lim
n→∞

P

(
−κ

n∑
k=m+1

βk +

n−1∑
k=m+1

||ηk||ρV1
+ ||Xx,m||ρV1

> 0, ex(i) = m

)

Moreover, it is plain that Xx,m = ηm on {ex(i) = m} which implies

P(ex(i+ 1) =∞, ex(i) = m) ≤ lim
n→∞

P

(
−κ

n∑
k=m+1

βk +

n−1∑
k=m+1

||ηk||ρV1
+ ||ηm||ρV1

> 0

)

= lim
n→∞

P

(
−κ

n−m∑
k=1

βk +

n−m∑
k=1

||ηk||ρV1
> 0

)
,

where the last equality follows from the fact that the ηk’s as well as the βk’s are i.i.d. and independent of

each other. Analogously to the induction beginning, one now easily verifies by the aid of Tschebyscheff’s

inequality that the last limit converges to zero and the claim follows.

Remark 5.2.11. The following observations will be useful in the sequel, and follow directly from the

definition of SLV2
(V ).

i) If (Ξ, (W, || · ||W )) ∈ SLV2
(V ), then (||Ξ||W ,R) ∈ SLV2

(V ).

ii) If (Ξ, (W, || · ||W )) ∈ SLV2
(V ) and w ∈ W , then (Ξw, (W, || · ||W )) ∈ SLV2

(V ), where we set

Ξw(v) := Ξ(v) + w for all v ∈ V .

Lemma 5.2.12. Let (Ξ, (W, || · ||W )) ∈ SLV2
(V ) and let x : Ω→ V be an independent initial leading to

extinction. Then we have

i) P(Xx(t) ∈ Vi, ∀t ≥ 0) = 1, where i ∈ {1, 2}.

ii) The mapping defined by [0,∞)× Ω 3 (t, ω) 7→ Ξ(Xx(t, ω)) is B([0,∞))⊗F-B(W )-measurable.

iii) P
(
t∫

0

||Ξ(Xx(τ))||W dτ <∞, ∀t ≥ 0

)
= 1.
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Consequently, the Bochner integral
t∫

0

Ξ(Xx(τ))dτ is (up-to a P-null-set which is independent of t) well-

defined, for all t ≥ 0, and the stochastic process defined by [0,∞) × Ω 3 (t, w) 7→
t∫

0

Ξ(Xx(τ, ω))dτ is

F ⊗B([0,∞))-B(W )-measurable.

Proof. The first assertions follows directly from Lemma 2.2.6.vii); and the second follows from the

measurability of Ξ and Lemma 2.2.6.v).

Proof of iii). Let t > 0 and ω ∈ Ω \M , where M is a P-null-set such that lim
m→∞

αm(ω) = ∞, and such

that Xx(t, ω) ∈ Vi for i = 1, 2 and all t ≥ 0. Moreover, introduce m ∈ N such that t < αm(ω). Then

there are constants c1, c2 ∈ [0,∞) such that

t∫
0

||Ξ(Xx(τ, ω))||W dτ ≤
m−1∑
k=0

αk+1(ω)∫
αk(ω)

||Ξ(T (τ − αk(ω))Xx,k(ω))||W dτ

≤
m−1∑
k=0

αk+1(ω)∫
αk(ω)

c1||T (τ − αk(ω))Xx,k(ω)||V2dτ + c2βk+1(ω)

≤
m−1∑
k=0

βk+1(ω)(c1||Xx,k(ω)||V2
+ c2),

where the last inequality follows from Assumption 5.2.1.iii). Consequently, iii) is proven, since the P-

null-set M is indeed independent of t ≥ 0.

Moreover, it follows from ii) that [0,∞) 3 t 7→ Ξ(Xx(t, ω)) is B([0,∞))-B(W )-measurable for all ω ∈ Ω.

This and (the proof of) iii) yield that the Bochner integral
t∫

0

Ξ(Xx(τ, ω))dτ exists for all ω ∈ Ω \M and

t ≥ 0.

Finally, [31, Lemma 2.2.4] yields that [0,∞)×Ω 3 (t, ω) 7→
t∫

0

Ξ(Xx(τ, ω))dτ := I(t, ω) is (almost surely)

continuous and that each I(t) is F-B(W )-measurable; which implies that I is F ⊗B([0,∞))-B(W )-

measurable, by [31, Proposition 2.2.3]. (The results in [31] are formulated for filtered probability spaces,

chose the filtration which is constantly F while applying [31, Lemma 2.2.4, Proposition 2.2.3].)

The preceding lemma yields in particular that Ω 3 ω 7→
a2(ω)∫
a1(ω)

Ξ(Xx(ω, τ))dτ is well-defined and F-

B(W )-measurable, whenever ai : Ω→ [0,∞) are F-B([0,∞))-measurable, x : Ω→ V is an independent

initial leading to extinction and (Ξ, (W, || · ||W )) ∈ SLV2(V ).

Our next goal is to establish that the sequence defined by

(
αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ

)
n∈N

is i.i.d.

Remark 5.2.13. Whenever x : Ω→ V is an independent initial leading to extinction, then (Fxex(n))n∈N

denotes the stopped filtration, defined by

Fxex(n) := {A ∈ F : A ∩ {ex(n) = j} ∈ Fxj , ∀j ∈ N},
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for all n ∈ N.

Note that (Fxj )j∈N is trivially a filtration. Moreover, invoking Lemma 5.2.7.iii) yields that each ex(n) is

a stopping time w.r.t. (Fxj )j∈N and that ex(n) ≤ ex(n + 1) for all n ∈ N. Consequently, it is standard

that each Fxex(n) is indeed a σ-algebra and that Fxex(n) ⊆ F
x
ex(n+1) for all n ∈ N. In addition, it is plain

that (Fxex(n))n∈N inherits the completeness of (Fxj )j∈N.

Remark 5.2.14. In all that follows x ∈M(Ω;V ), denotes a mapping fulfilling

i) x = η1 in distribution and

ii) x is jointly independent of (ηm)m∈N and (βm)m∈N.

Note that this implies x ∈ Vi a.s. for i = 1, 2. Moreover, as 0 < 2ρ < ρ(11 + ε̂), we also have

E||x||2ρV1
<∞, which gives that x is an independent initial leading to extinction.

Lemma 5.2.15. Let (Ξ, (W, || · ||W )) ∈ SLV2
(V ) and x : Ω → V be an independent initial leading to

extinction. Then we have

E

f
 αex(n+1)∫

αex(n)

Ξ(Xx(τ))dτ

∣∣∣Fxex(n)

 = Ef

 αex(1)∫
0

Ξ(Xx(τ))dτ

 ,

for all n ∈ N and f : W → R which are B(W )-B(R)-measurable and bounded.

Proof. Let A ∈ Fxex(n) be given and introduce Ai := {ω ∈ A : ex(n)(ω) = i} for all i ∈ N, with i ≥ n.

At first, it will be shown that

E11Ai f̂j(Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j) = P(Ai)Ef̂j(Xx,0, ..., Xx,j−1, β1, ..., βj), (5.6)

for all i ∈ N, with i ≥ n, all j ∈ N and f̂j : V j×[0,∞)j → R which are bounded and B(V j)⊗B([0,∞)j)-

B(R)-measurable.

Now let us prove (5.6) inductively w.r.t. j ∈ N.

Let j = 1, i ≥ n and f̂1 : V × [0,∞) → R be bounded and measurable. Note that T (βi)Xx,i−1 = 0 on

Ai. Consequently, we get E11Ai f̂1(Xx,i, βi+1) = E11Ai f̂1(ηi, βi+1). Moreover, appealing to Remark 5.2.13

yields that Ai ∈ Fxi = σ0(x, β1, ..., βi, η1, ..., ηi−1). Hence, Ai is independent of f̂1(ηi, βi+1), which gives

E11Ai f̂1(Xx,i, βi+1) = P(Ai)Ef̂1(ηi, βi+1) = P(Ai)Ef̂1(Xx,0, β1),

where the last inequality follows from the fact that (Xx,0, β1) = (x, β1), which is in distribution equal to

(ηi, βi+1). Hence, (5.6) holds for j = 1.

Now assume that it holds for an j ∈ N, let i ≥ n and f̂j+1 : V j+1 × [0,∞)j+1 → R be bounded

and B(V j+1) ⊗ B([0,∞)j+1)-B(R)-measurable. Moreover, for any β̃ ∈ [0,∞), η̃ ∈ V , introduce

f̂β̃,η̃ : V j × [0,∞)j → R, by

f̂β̃,η̃(y0, ..., yj−1, b1, ..., bj) := f̂j+1(y0, ..., yj−1, T (bj)yj−1 + η̃, b1, ..., bj , β̃),
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for all y0, ..., yj−1, η̃ ∈ V and b1, ..., bj , β̃ ∈ [0,∞). Then f̂β̃,η̃ inherits the boundedness of f̂j+1. Moreover,

invoking Remark 2.2.5, gives that f̂β̃,η̃ is B(V j)⊗B([0,∞)j)-B(R)-measurable, as it is the composition

of measurable functions, for all β̃ ∈ [0,∞) and η̃ ∈ V . Consequently, the induction hypothesis yields

E11Ai f̂β̃,η̃(Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j)dP = P(Ai)Ef̂β̃,η̃(Xx,0, ..., Xx,j−1, β1, ..., βj),

which gives

E11Ai f̂j+1(Xx,i, ..., Xx,i+j−1, T (βi+j)Xx,i+j−1 + η̃, βi+1, ..., βi+j , β̃)

= P(Ai)Ef̂j+1(Xx,0, ..., Xx,j−1, T (βj)Xx,j−1 + η̃, β1, ..., βj , β̃),

for all i ≥ n, β̃ ∈ [0,∞) and η̃ ∈ V .

Moreover, Lemma 5.2.7 yields, that (Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j) is Fxi+j-B(V j)⊗B([0,∞)j)-measurable

and, a fortiori, that 11Ai is Fxi+j-B(R)-measurable. Consequently, as (βi+j+1, ηi+j) is independent of

Fxi+j and as (βi+j+1, ηi+j) = (βj+1, ηj) in distribution, we get

E11Ai f̂j+1(Xx,i, ..., Xx,i+j , βi+1, ..., βi+j+1)

= E(11Ai f̂j+1(Xx,i, ..., Xx,i+j−1, T (βi+j)Xx,i+j−1 + ηi+j , βi+1, ..., βi+j , βi+j+1))

=

∫
[0,∞)×V

E(11Ai f̂j+1(Xx,i, ..., Xx,i+j−1, T (βi+j)Xx,i+j−1 + η̃, βi+1, ..., βi+j , β̃))dP(βi+j+1,ηi+j)(β̃, η̃)

=

∫
[0,∞)×V

P(Ai)Ef̂j+1(Xx,0, ..., Xx,j−1, T (βj)Xx,j−1 + η̃, β1, ..., βj , β̃)dP(βi+j+1,ηi+j)(β̃, η̃)

=

∫
[0,∞)×V

P(Ai)Ef̂j+1(Xx,0, ..., Xx,j−1, T (βj)Xx,j−1 + η̃, β1, ..., βj , β̃)dP(βj+1,ηj)(β̃, η̃).

Now, appealing to Lemma 5.2.7 yields, that (Xx,0, ..., Xx,j−1, β1, ..., βj) is Fxj -B(V j)⊗[0,∞)j-measurable.

(Note that this is indeed possible, since x is also an independent initial leading to extinction, see Remark

5.2.14.) Moreover, it is plain that (βj+1, ηj) is independent of Fxj . Consequently, we get

E11Ai f̂j+1(Xx,i, ..., Xx,i+j , βi+1, ..., βi+j+1) = P(Ai)Ef̂j+1(Xx,0, ..., Xx,j−1, Xx,j , β1, ..., βj , βj+1),

which gives (5.6).

Now the actual claim is proven by the aid of (5.6). Firstly, appealing to Lemma 5.2.7.ii) and Proposition

5.2.10 yields

E

11Af

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ


 =

∞∑
i=n

∞∑
j=1

E

11Ai11{ex(n+1)=i+j}f

 αi+j∫
αi

Ξ(Xx(τ))dτ

 .
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In addition, we have

αi+j∫
αi

Ξ(Xx(τ))dτ =

i+j−1∑
k=i

βk+1∫
0

Ξ(T (τ)Xx,k)dτ =

j−1∑
k=0

βk+i+1∫
0

Ξ(T (τ)Xx,k+i)dτ

Combining the former and the latter equality implies

E

11Af

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ


 =

∞∑
i=n

∞∑
j=1

E

11Ai11{ex(n+1)=i+j}f

j−1∑
k=0

βk+i+1∫
0

Ξ(T (τ)Xx,k+i)dτ

 .

For all j ∈ N, introduce ĥj : V j × [0,∞)j × R, by

ĥj(y0, ..., yj−1, b1, ..., bj) := f

j−1∑
k=0

bk+1∫
0

Ξ(T (τ)yk)11V2
(yk)dτ

 .

Invoking Remark 2.2.5 and Remark 5.2.2, gives that [0,∞)×V 3 (τ, y) 7→ Ξ(T (τ)y)11V2(y) is B([0,∞))⊗
V -B(W )-measurable. Moreover, working as in the proof of Lemma 5.2.12 yields that Ξ(T (·)y)11V2(y) ∈
L1([0, t];W ) for all t > 0 and y ∈ V . Consequently, [31, Proposition 2.1.3] yields that (y, t) 7→
t∫

0

Ξ(T (τ)y)11V2
(y)dτ is, for each y, as mapping in t continuous, and by [31, Proposition 2.1.4] it is

for each t ∈ [0,∞), as a mapping in y, B(V )-B(W )-measurable. Consequently, this mapping is

B(V )⊗B([0,∞))-B(W )-measurable, see [1, Lemma 4.51].

Using these observations, it is plain to deduce that ĥj is B(V j)-B([0,∞)j)-B(R)-measurable for all

j ∈ N. Moreover, each ĥj is obviously bounded.

For all j ∈ N, introduce ĝj : V j × [0,∞)j × R, by

ĝj(y0, ..., yj−1, b1, ..., bj) := 11{T (bk)yk−1 6= 0,∀k = 1, ..., j − 1, T (bj)yj−1 = 0}, ∀j ∈ N \ {1}

and ĝ1(y0, b1) := 11{T (b1)y0 = 0}. Then ĝj is obviously bounded, and by the aid of Remark 2.2.5 also

B(V j)⊗B([0,∞)j)-B(R)-measurable.

Moreover, appealing to Lemma 5.2.8.i) yields

ĥj(Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j) = f

j−1∑
k=0

βi+k+1∫
0

Ξ(T (τ)Xx,i+k)dτ

 , ∀i ≥ n, j ∈ N

almost surely. In addition, for all ω ∈ Ai, we have

ĝj(Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j)(ω) = 11{ex(n+1)=i+j}(ω), ∀i ≥ n, j ∈ N.
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Consequently, putting it all together yields

E

11Af

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ




=

∞∑
i=n

∞∑
j=1

E
(

11Ai ĝj(Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j)ĥj(Xx,i, ..., Xx,i+j−1, βi+1, ..., βi+j)
)

=

∞∑
i=n

∞∑
j=1

P (Ai)E
(
ĝj(Xx,0, ..., Xx,j−1, β1, ..., βj)ĥj(Xx,0, ..., Xx,j−1, β1, ..., βj)

)
= P (A)

∞∑
j=1

E
(
ĝj(Xx,0, ..., Xx,j−1, β1, ..., βj)ĥj(Xx,0, ..., Xx,j−1, β1, ..., βj)

)
.

In addition, it is straightforward that

ĝj(Xx,0, ..., Xx,j−1, β1, ..., βj)(ω) = 11{ex(1)=j}(ω).

Using this, while having in mind Lemma 5.2.8.i), gives

E

11Af

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ


 = P (A)

∞∑
j=1

E

11{ex(1)=j}f

j−1∑
k=0

βk+1∫
0

Ξ(T (τ)Xx,k)dτ


= P (A)

∞∑
j=1

E

11{ex(1)=j}f

 αex(1)∫
0

Ξ(Xx(τ))dτ



Finally, as ex(1) ∈ N a.s. and as A ∈ Fxex(n) was arbitrary, we obtain

E

11Af

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ


 = P (A)E

f
 αex(1)∫

0

Ξ(Xx(τ))dτ

 ,

for all A ∈ Fxex(n), which implies the claim, by the very definition of the conditional expectation.

Lemma 5.2.16. Let (Ξ, (W, || · ||W )) ∈ SLV2(V ), n ∈ N \ {1} and x : Ω → V an independent initial

leading to extinction. Then the mapping defined by

Ω 3 ω 7→

αex(n)(ω)∫
αex(n−1)(ω)

Ξ(Xx(τ, ω))dτ,

is Fxex(n)-B(W )-measurable.
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Proof. As (Fxex(m))m∈N is a filtration, it suffices to prove that
αex(n)∫

0

Ξ(Xx(τ))dτ is Fxex(n)-B(W )-measurable,

for all n ∈ N. To this end, introduce j ∈ N as well as B ∈ B(W ) and observe that
αex(n)∫

0

Ξ(Xx(τ))dτ ∈ B

 ∩ {ex(n) = j} =


j−1∑
k=0

βk+1∫
0

Ξ(T (τ)Xx,k)dτ ∈ B

 ∩ {ex(n) = j}. (5.7)

As demonstrated in the proof of Lemma 5.2.15, (t, v) 7→
t∫

0

Ξ(T (τ)v)11V2
(v)dτ is B([0,∞)) ⊗ B(V )-

B(W )-measurable. Consequently, since Xx,k and βk+1 are Fxk+1-B(V )-measurable and Fxk+1-B([0,∞))-

measurable, resp., for all k = 0, ..., j − 1, we get that

j−1∑
k=0

βk+1∫
0

Ξ(T (τ)Xx,k)dτ =

j−1∑
k=0

βk+1∫
0

Ξ(T (τ)Xx,k)11V2
(Xx,k)dτ

is Fxj -B(W )-measurable, where the equality holds almost surely. This gives, while having in mind (5.7)

as well as Lemma 5.2.7.iii) that
αex(n)∫

0

Ξ(Xx(τ))dτ ∈ B

 ∩ {ex(n) = j} ∈ Fxj

and the claim follows.

Proposition 5.2.17. Let (Ξ, (W, || · ||W )) ∈ SLV2
(V ) and let x : Ω → V be an independent initial

leading to extinction. Then the sequence

(
αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ

)
n∈N

is i.i.d., with

αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ =

αex(1)∫
0

Ξ(Xx(τ))dτ (5.8)

in distribution, for all n ∈ N.

Proof. Let B ∈ B(W ) be given, and set f := 11B , where f : W → R. Then f is obviously bounded and

B(W )-B(R)-measurable. Consequently, appealing to Lemma 5.2.15 yields

P

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ ∈ B

 = Ef

 αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ

 = Ef

 αex(1)∫
0

Ξ(Xx(τ))dτ

 ,

which implies (5.8).
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Consequently, it remains to show that

P

 αex(2)∫
αex(1)

Ξ(Xx(τ))dτ ∈ B1, ...,

αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ ∈ Bn

 =

n∏
k=1

P

 αex(k+1)∫
αex(k)

Ξ(Xx(τ))dτ ∈ Bk

 (5.9)

for all B1, ..., Bn ∈ B(W ) and n ∈ N.

(5.9) is trivial if n = 1. So assume it holds for n−1 ∈ N and let us prove it for n. To this end, introduce

B1, ..., Bn ∈ B(W ) and fk := 11Bk . Then employing Lemma 5.2.15, Lemma 5.2.16, (5.9) and (5.8) yields

P

 αex(2)∫
αex(1)

Ξ(Xx(τ))dτ ∈ B1, ...,

αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ ∈ Bn


= E

n−1∏
k=1

fk

 αex(k+1)∫
αex(k)

Ξ(Xx(τ))dτ

E

fn
 αex(n+1)∫

αex(n)

Ξ(Xx(τ))dτ

∣∣∣Fxex(n)




=

n∏
k=1

P

 αex(k+1)∫
αex(k)

Ξ(Xx(τ))dτ ∈ Bk


and the claim follows.

Lemma 5.2.18. Let (Ξ, (W, || · ||W )) ∈ SLV2
(V ) and let x : Ω→ V be an independent initial leading to

extinction. Then, the assertion

αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ ∈ L2(Ω;W )

is valid for all n ∈ N.

Proof. The desired measurability follows a fortiori from Lemma 5.2.16. Moreover, employing Proposition

5.2.17 yields that it suffices to prove that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

<∞.

To this end, note that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

≤ E

 αex(1)∫
0

||Ξ(Xx(τ))||W dτ

2

≤ E

ex(1)−1∑
k=0

βk+1 (c1||Xx,k||V2 + c2)

2

,

where the second inequality follows from Lemma 5.2.12.i), Assumption 5.2.1.iii) and Lemma 5.2.8.i).
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Now introduce η0 := x, for notational conveniences. Moreover, by the aid of Assumption 5.2.1.iii) and

Lemma 5.2.8.i), it is easy to verify inductively that

||Xx,k||V2 ≤
k∑
j=0

||ηk||V2 , ∀k ∈ N0. (5.10)

Consequently, we get

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

≤ E

ex(1)−1∑
k=0

βk+1(c1

k∑
j=0

||ηk||V2 + c2)

2

.

Hence, we also have

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

≤
∞∑
m=1

E


m−1∑
k=0

βk+1(c1

k∑
j=0

||ηk||V2 + c2)

2

11{ex(1)=m}

 .

Consequently, appealing to Cauchy-Schwarz’ inequality implies

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

≤
∞∑
m=1

E

m−1∑
k=0

βk+1(c1

k∑
j=0

||ηk||V2
+ c2)

4


1
2

P(ex(1) = m)
1
2 . (5.11)

Now upper bounds for each factor of each summand of the preceding series will be derived.

So let m ∈ N be arbitrary but fixed. Then the triangle inequality, the independence of (βk)k∈N and

(ηm)m∈N as well as the fact that each of these sequences is identically distributed, yields

E

m−1∑
k=0

βk+1(c1

k∑
j=0

||ηk||V2
+ c2)

4


1
4

≤
m−1∑
k=0

||βk+1||L4(Ω)

c1 k∑
j=0

|| ||ηk||V2
||L4(Ω) + c2


= ||β1||L4(Ω)c1|| ||η1||V2

||L4(Ω)
m(m+ 1)

2
+ ||β1||L4(Ω)c2m

≤ m2
(
||β1||L4(Ω)c1|| ||η1||V2

||L4(Ω) + ||β1||L4(Ω)c2
)
.

Note that ||β1||L4(Ω) <∞ and || ||η1||V2
||L4(Ω) <∞, by Assumption 5.2.3.ii).

Consequently, by introducing C :=
(
||β1||L4(Ω)c1|| ||η1||V2

||L4(Ω) + ||β1||L4(Ω)c2
)2
<∞, we get

E

m−1∑
k=0

βk+1(c1

k∑
j=0

||ηk||V2
+ c2)

4


1
2

≤ Cm4, ∀m ∈ N. (5.12)
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Now for all m ∈ N \ {1} we have

P(ex(1) = m) ≤ P(T (βk)Xx,k−1 6= 0, ∀k = 1, ...,m− 1).

Consequently, employing Assumption 5.2.1.ii), which is possible due to Lemma 5.2.8.i), yields

P(ex(1) = m) ≤ P(−κβk + ||Xx,k−1||ρV1
> 0, ∀k = 1, ...,m− 1)

Hence by appealing to Lemma 5.2.9 we get

P(ex(1) = m) ≤ P

(
−κ

m−1∑
k=1

βk +

m−2∑
k=1

||ηk||ρV1
+ ||η0||ρV1

> 0

)
= P

(
m−1∑
k=1

−κβk + ||ηk−1||ρV1
> 0

)
,

for all m ∈ N \ {1}. Now let ν := E(−κβ1 + ||η0||ρV1
), which is negative by Assumption 5.2.3.iii).

Consequently, we have

P(ex(1) = m) ≤ P

(∣∣∣∣∣
m−1∑
k=1

−κβk + ||ηk−1||ρV1
− ν(m− 1)

∣∣∣∣∣ > |ν|(m− 1)

)
(5.13)

for all m ∈ N \ {1}. Hence, combining (5.11), (5.12) and (5.13) yields

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

≤ C +

∞∑
m=2

Cm4P

(∣∣∣∣∣
m−1∑
k=1

−κβk + ||ηk−1||ρV1
− ν(m− 1)

∣∣∣∣∣ > |ν|(m− 1)

) 1
2

Moreover, it is plain that m ≤ 2(m− 1) for all m ≥ 2 and consequently m4 ≤ 16(m− 1)4, which yields

by employing Cauchy Schwarz’ inequality that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξ(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

W

≤ C + 16C

∞∑
m=1

m4P

(∣∣∣∣∣
m∑
k=1

−κβk + ||ηk−1||ρV1
− νm

∣∣∣∣∣ > |ν|m
) 1

2

≤ C + 16C

( ∞∑
m=1

m−1−ε̂

) 1
2
( ∞∑
m=1

m9+ε̂P

(∣∣∣∣∣
m∑
k=1

−κβk + ||ηk−1||ρV1
− νm

∣∣∣∣∣ > |ν|m
)) 1

2

.

It is common knowledge that the first series in the preceding expression is finite. Consequently, the

claim follows if the second is finite as well. To this end, note that the sequence (−κβk + ||ηk−1||ρV1
)k∈N

is i.i.d. with mean ν. Consequently, [21, Theorem 1] yields

∞∑
m=1

m9+ε̂P

(∣∣∣∣∣
m∑
k=1

−κβk + ||ηk−1||ρV1
− νm

∣∣∣∣∣ > |ν|m
)
<∞,
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if (and only if) −κβ1 + ||η0||ρV1
∈ L11+ε̂(Ω), which is true by Assumption 5.2.3.ii).

Note that (ϕ,R) ∈ SLV2
(V ), where ϕ : V → R is the function which is constantly one. This plain

fact, together with Proposition 5.2.17 and Lemma 5.2.18 yields the following quite useful corollary.

Corollary 5.2.19. Let x : Ω → V be an independent initial leading to extinction. Then the sequence

(αex(n+1) − αex(n))n∈N is square integrable and i.i.d with αex(n+1) − αex(n) = αex(1) in distribution.

Proving our SLLN requires the following very simple lemma, which might be available somewhere

in the literature:

Lemma 5.2.20. Let (U, || · ||U ) be a separable Banach space. Moreover, let (Ym)m∈N ⊆ M(Ω;U)

be such that there is a Y ∈ M(Ω;U), with lim
m→∞

Ym = Y almost surely. Finally, let (Nt)t≥0, with

Nt : Ω → N, be such that each Nt is F-2N-measurable and lim
t→∞

Nt = ∞ almost surely. Then the

convergence lim
t→∞

YNt = Y takes place with probability one.

Proof. Let M ∈ F be a P-null-set such that lim
m→∞

Ym(ω) = Y (ω) and lim
t→∞

Nt(ω) = ∞ for all

ω ∈ Ω \ M . Now fix one of these ω ∈ Ω \ M and note that there is for each ε > 0 an m0 ∈ N
such that ||Ym(ω) − Y (ω)||U < ε for all m ≥ m0. In addition, we can find a t0 ∈ [0,∞) such that

Nt(ω) ≥ m0 for all t ∈ [t0,∞). Consequently, we get ||YNt(ω)(ω) − Y (ω)||U < ε for all t ≥ t0, which

yields the claim.

The results proven so far already enable us to prove the desired SLLN. But, to also prove our CLT, a

version of Anscombe’s CLT in type 2 Banach spaces and some clarifications regarding Gaussian random

variables taken values in separable Banach spaces are needed:

Remark 5.2.21. Let (W, || · ||W ) be a separable Banach space with dual space W ′. Moreover, 〈·, ·〉W
denotes the duality between W and W ′.

(W, || · ||W ) is said to be of type 2, if: There is a constant C > 0 such that for all n ∈ N, X1, ..., Xn ∈
L2(Ω;W ) which are centered and independent, we have

E

∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
∣∣∣∣∣
2

W

≤ C
n∑
k=1

E||Xk||2W .

The main feature of such Banach spaces is that these are precisely the Banach spaces where every

centered, square integrable i.i.d. sequence still fulfills the CLT, see [26, Theorem 10.5].

Now let Y ∈ M(Ω;W ). Then Y is called Gaussian, if 〈Y, ψ〉W is Gaussian for all ψ ∈ W ′. (Note that

by this definition constant random variables are Gaussian as well.) In addition, for a (not necessarily

Gaussian) random variable Y ∈ L2(Ω;W ), we call the mapping CovW (Y ) : W ′ ×W ′ → R, where

CovW (Y )(ψ1, ψ2) := E(〈Y − EY, ψ1〉W 〈Y − EY, ψ2〉W ), ∀ψ1, ψ2 ∈W ′,

the covariance of Y . It is plain to verify that the right-hand-side expectation in the preceding equation

indeed exists.
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Moreover, if Y ∈ M(Ω;W ) is Gaussian, then particularly Y ∈ L2(Ω;W ), see [37, p. 5]. In addi-

tion, analogously to the real-valued case, the distribution of Y is still uniquely determined by EY and

CovW (Y ), see [37, p. 5].

In the sequel, it will be written Y ∼ NW (µ,Q) whenever Y ∈ M(Ω;W ) is Gaussian, with mean µ and

covariance Q. Of course, if W = R this is abbreviated by N(µ, σ2), where σ2 := Q(Id, Id) is the variance

of Y .

Last but not least, let us remark, that as usually we say that lim
m→∞

Ym = Y in distribution, where

Ym, Y ∈M(Ω;W ), if lim
m→∞

Ef(Ym) = Ef(Y ), for all f : W → R which are continuous and bounded.

The following theorem is a version of Anscombe’s theorem in type 2 Banach spaces. This theorem

might be available somewhere in the literature, but the present author was unable to find it. The proof

works analogously to the proof of the real-valued version of Anscombe’s theorem, since the standard

CLT as well as Kolmogorov’s inequality both hold if (and only if) the underlying Banach space is of type

2. Since it is just from the theorem itself far from obvious that its proof carries on to random variables

taking values in type 2 Banach spaces, the proof will be given. For a treatment of the real-valued case,

see [17, Theorem 3.2].

Afterwards, this section’s main result will be formulated.

Theorem 5.2.22. Let (W, ||·||W ) be a separable Banach space of type 2, introduce (Ym)m∈N ⊆ L2(Ω;W ),

(Nn)n∈N, where Nn : Ω→ N is F-2N-measurable and (θn)n∈N ⊆ (0,∞). Moreover, assume that

i) (Ym)m∈N is i.i.d. and EY1 = 0 and

ii) lim
n→∞

θn =∞ and lim
n→∞

Nn
θn

= 1 in probability.

Then the convergence

lim
n→∞

1√
θn

Nn∑
k=1

Yk = lim
n→∞

1√
Nn

Nn∑
k=1

Yk = Z, (5.14)

takes place in distribution, where Z ∼ NW (0,CovW (Y1)).

Proof. Firstly, the claim is trivial if Y1 = 0 a.s., so assume w.l.o.g. Y1 6= 0. Now, introduce Sn :=
n∑
k=1

Yk,

Ŝn := 1√
n
Sn for all n ∈ N and let us start by proving the second equality in (5.14). Appealing to the

CLT in type 2 Banach spaces, see [19, Corollary 3.3 and Remark 1.1], yields lim
n→∞

Ŝn = Z in distribution.

Now set θ̃n := dθne and note that clearly lim
n→∞

Ŝθ̃n = Z in distribution and lim
n→∞

Nn
θ̃n

= 1 in probability.

Moreover, as ŜNn = (Ŝθ̃n +
SNn−Sθ̃n√

θ̃n
)
√

θ̃n
Nn

for all n ∈ N, Slutsky’s theorem3 yields that the second

equality in (5.14) follows, if

lim
n→∞

SNn − Sθ̃n√
θ̃n

= 0, (5.15)

3We were unable to find a direct reference for Slutsky’s theorem in the Banach space setting. However, this is easily
deduced from [10, Theorem 3.9] and the continuous mapping theorem.
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in probability.

So let us prove (5.15). To this end, let ε > 0, δ ∈ (0, 1), rn := dθ̃n(1− δ)e and Rn := bθ̃n(1 + δ)c for all

n ∈ N. And note that it is plain that

P
(
||SNn − Sθ̃n ||W > ε

√
θ̃n

)
≤ P

(
||SNn − Sθ̃n ||W > ε

√
θ̃n,

∣∣∣∣Nnθ̃n − 1

∣∣∣∣ ≤ δ)+ P
(∣∣∣∣Nnθ̃n − 1

∣∣∣∣ > δ

)

for all n ∈ N. Moreover, as
∣∣∣Nn
θ̃n
− 1
∣∣∣ ≤ δ if and only if Nn ∈ [rn, Rn], we get

P
(
||SNn − Sθ̃n ||W > ε

√
θ̃n,

∣∣∣∣Nnθ̃n − 1

∣∣∣∣ ≤ δ) ≤ P
(

max
m=rn,..,Rn

||Sm − Sθ̃n ||W > ε

√
θ̃n

)
,

for all n ∈ N. In addition, note that

max
m=rn,..,Rn

||Sm − Sθ̃n ||W ≤ max
m=rn,..,θ̃n−1

∣∣∣∣∣∣
∣∣∣∣∣∣

θ̃n∑
k=m+1

Yk

∣∣∣∣∣∣
∣∣∣∣∣∣
W

+ max
m=θ̃n+1,..,Rn

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
k=θ̃n+1

Yk

∣∣∣∣∣∣
∣∣∣∣∣∣
W

= max
m=1,..,θ̃n−rn

∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

Yθ̃n+1−k

∣∣∣∣∣
∣∣∣∣∣
W

+ max
m=1,..,Rn−θ̃n

∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

Yk+θ̃n

∣∣∣∣∣
∣∣∣∣∣
W

where we set max
m=a,..,b

(·) := 0, if a > b.

Using this, together with the well known inequality P (X1 + X2 > t) ≤ P(2X1 > t) + P(2X2 > t), for

any X1, X2 ∈ M(Ω;R), t > 0 and Kolmogorov’s inequality in type 2 Banach spaces (see [19, Theorem

6.1]), yields that there is a constant C > 0 such that

P
(

max
m=rn,..,Rn

||Sm − Sθ̃n ||W > ε

√
θ̃n

)
≤ 4CE||Y1||2W

ε2θ̃n
(θ̃n − rn) +

4CE||Y1||2W
ε2θ̃n

(Rn − θ̃n),

for all n ∈ N. Now let ε′ > 0 be arbitrary but fixed and choose 0 < δ < min
(

ε2ε′

8CE||Y1||2W
, 1
)

, then we get

P
(

max
m=rn,..,Rn

||Sm − Sθ̃n ||W > ε

√
θ̃n

)
≤ 4CE||Y1||2W

ε2θ̃n
(Rn − rn) ≤ 8CE||Y1||2W

ε2
δ ≤ ε′.

Conclusively, putting it all together yields lim sup
n→∞

P
(
||SNn − Sθ̃n ||W > ε

√
θ̃n

)
≤ ε′, which implies

(5.15), since ε′ > 0 can be chosen arbitrarily small. Finally, the first inequality in (5.14) now follows

from the second one and Slutsky’s theorem.

Theorem 5.2.23. Let (Ξ, (W, || · ||W )) ∈ SLV2
(V ) and let x : Ω→ V be an independent initial leading

to extinction. Moreover, introduce ν := 1
E(αex(1))

E

(
αex(1)∫

0

Ξ(Xx(τ))dτ

)
. Then the convergence

lim
t→∞

1

t

t∫
0

Ξ(Xx(τ))dτ = ν, (5.16)
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takes place almost surely in (W, || · ||W )4. Moreover, if (W, || · ||W ) is of type 2, then

lim
t→∞

1√
t

 t∫
0

Ξ(Xx(τ))dτ − tν

 = Z, (5.17)

in distribution, as elements of (W, || · ||W )5, where Z ∼ NW (0, Q) and the covariance is given by

Q := CovW

(√
1

E(αex(1))

αex(1)∫
0

Ξ(Xx(τ))− νdτ

)
.

Proof. Until explicitly stated otherwise, (W, || · ||W ) is not necessarily of type 2.

Firstly, note that both expectations occurring in the definition of ν are indeed finite by Proposition

5.2.17, Lemma 5.2.18 and Corollary 5.2.19. Now, introduce Ξν : V → W , by Ξν(v) := Ξ(v) − ν for all

v ∈ V ; and (Yk)k∈N0 , with Yk : Ω → W for all k ∈ N0, by Yk :=
αex(k+1)∫
αex(k)

Ξν(Xx(τ))dτ for all k ∈ N and

Y0 :=
αex(1)∫

0

Ξν(Xx(τ))dτ . Finally, let L(t) : Ω→ N0 be defined by L(t) := max(k ∈ N0 : αex(k) ≤ t) for

all t ≥ 0, where ex(0) := 0

Now we will proceed by proving the following assertions, from which (5.16) as well as (5.17) will follow

quickly.

i) Eαex(1) > 0 and lim
t→∞

L(t)+1
t = 1

Eαex(1)
almost surely.

ii) Ξν ∈ SLV2
(V ) and consequently (Ym)m∈N ⊆ L2(Ω;W ) is centered, i.i.d. and Ym = Y0 in distribu-

tion for all m ∈ N.

iii) lim
t→∞

1√
t

(
t∫

0

Ξν(Xx(τ))dτ −
L(t)+1∑
k=1

Yk

)
= 0 almost surely.

Proof of i). Firstly, note that P(L(t) < ∞, ∀t ≥ 0) = 1, since: Employing Corollary 5.2.19 and the

usual SLLN on the line yields

lim
k→∞

1

k
αex(k) = lim

k→∞

1

k
αex(1) +

k − 1

k

1

k − 1

k−1∑
j=1

(αex(j+1) − αex(j)) = Eαex(1) > 0, (5.18)

almost surely, where the last inequality follows from αex(1) ≥ α1 > 0 almost surely. Consequently, if

there were a t ≥ 0 such that P(L(t) =∞) > 0, then

0 < P(L(t) =∞) = P(αex(k) ≤ t, ∀k ∈ N) ≤ P( lim
k→∞

1

k
αex(k) −

t

k
≤ 0) = 0.

Hence, P(L(t) < ∞) = 1 for a given t, which yields P(L(t) < ∞, ∀t ≥ 0) = 1, as the paths of L(t) are

clearly increasing with probability one.

4This of course means convergence for P-a.e. ω ∈ Ω with respect to || · ||W . So far it seems redundant to write ”almost
surely w.r.t. || · ||W ”, instead of just ”almost surely”. But later on we will choose W as a subspace of V , which makes it
necessary to emphasize w.r.t. which norm the almost sure convergence is taking place.

5Again, in the next theorem it becomes clear why we emphasize on the fact that these are elements of (W, || · ||W ).
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Moreover, it is plain to verify that the simple but quite useful inequality

αex(L(t)) ≤ t ≤ αex(L(t)+1), ∀t ≥ 0 (5.19)

takes place with probability one. Particularly, we have

αex(L(t))

L(t) + 1
≤ t

L(t) + 1
≤
αex(L(t)+1)

L(t) + 1

for all t ≥ 0, almost surely. Furthermore, thanks to (5.18), it is plain that also lim
k→∞

1
kαex(k−1) = Eαex(1)

almost surely. Consequently, if lim
t→∞

L(t) + 1 = ∞ a.s., then employing (5.18), Lemma 5.2.20, the

previous inequality as well as the sandwich lemma give i). Hence, i) follows once lim
t→∞

L(t) =∞ a.s. is

proven.

To this end, let M ∈ F be a P-null-set, such that αex(k)(ω) is well-defined for all k ∈ N0 and such that

lim
k→∞

1
kαex(k)(ω) = Eαex(1), for all ω ∈ Ω \M . Now fix one these ω and note that there is for a given

ε > 0 a k0 ∈ N, such that
∣∣ 1
kαex(k)(ω)− Eαex(1)

∣∣ < ε for all k ≥ k0. Hence, choosing ε = Eαex(1) yields

the existence of a k0 ∈ N, with 0 < αex(k)(ω) < 2kEαex(1) for all k ≥ k0, and hence

sup
t≥0

L(t)(ω) ≥ sup
k≥k0

L(2kEαex(1))(ω) ≥ sup
k≥k0

k =∞.

Finally, this implies lim
t→∞

L(t) = ∞ a.s., since M is a P-null-set and L has paths that increase with

probability one.

Proof of ii). Employing Remark 5.2.11.ii) yields that Ξν ∈ SLV2(V ). Consequently, appealing to Lemma

5.2.18 as well as Proposition 5.2.17 yields all claims in ii), except for EYk = 0 for all k ∈ N0. But this

is plain, since Yk = Y0 in distribution gives

EYk = EY0 = E

 αex(1)∫
0

Ξν(Xx(τ))dτ

 = E

 αex(1)∫
0

Ξ(Xx(τ))dτ

− νEαex(1) = 0,

for all k ∈ N0.

Proof of iii). Let us start by proving that

lim
t→∞

1√
t

αex(L(t)+2)∫
αex(L(t))

||Ξν(Xx(τ))||W dτ = 0 (5.20)

with probability one. Firstly, ii) and Remark 5.2.11.i) yield (||Ξv||W ,R) ∈ SLV2
(V ). Consequently,

invoking Lemma 5.2.18 and Proposition 5.2.17 yields that

(αex(n+1)∫
αex(n)

||Ξν(Xx(τ))||W dτ

)2

n∈N

is inte-
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grable and i.i.d. Hence by appealing to the SLLN on the line we get

lim
n→∞

1

n

 αex(n+1)∫
αex(n)

||Ξν(Xx(τ))||W dτ


2

= lim
n→∞

1

n

n∑
k=1

 αex(k+1)∫
αex(k)

||Ξν(Xx(τ))||W dτ


2

− n− 1

n

1

n− 1

n−1∑
k=1

 αex(k+1)∫
αex(k)

||Ξν(Xx(τ))||W dτ


2

= 0

almost surely. Consequently, we also get

lim
n→∞

1√
n

αex(n+1)∫
αex(n−1)

||Ξν(Xx(τ))||W dτ

= lim
n→∞

√
n− 1

n

1√
n− 1

αex(n)∫
αex(n−1)

||Ξν(Xx(τ))||W dτ +
1√
n

αex(n+1)∫
αex(n)

||Ξν(Xx(τ))||W dτ

= 0.

almost surely. In addition, i) enables us to apply Lemma 5.2.20 to the preceding equality, which gives

lim
t→∞

1√
L(t) + 1

αex(L(t)+2)∫
αex(L(t))

||Ξν(Xx(τ))||W dτ = 0

almost surely; this yields (5.20) by employing i) once more. Finally, appealing to (5.19), while having

in mind (5.20), yields

lim
t→∞

1√
t

∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

Ξν(Xx(τ))dτ −
L(t)+1∑
k=1

Yk

∣∣∣∣∣∣
∣∣∣∣∣∣
W

≤ lim
t→∞

1√
t

∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

Ξν(Xx(τ))dτ −

αex(L(t)+2)∫
0

Ξν(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
W

+
1√
t

∣∣∣∣∣∣
∣∣∣∣∣∣
αex(1)∫

0

Ξν(Xx(τ))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
W

≤ lim
t→∞

1√
t

αex(L(t)+2)∫
αex(L(t))

||Ξν(Xx(τ))||W dτ

= 0,

with probability one.

Now (5.16) will be proven. Firstly, ii) and the SLLN in separable Banach spaces, see [26, Corollary
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7.10], enable us to conclude that lim
n→∞

1
n

n∑
k=1

Yk = 0 a.s. Using this, as well as Lemma 5.2.20 and i) gives

lim
t→∞

1

t

L(t)+1∑
k=1

Yk = lim
t→∞

L(t) + 1

t

1

L(t) + 1

L(t)+1∑
k=1

Yk = 0,

with probability one. Conclusively, Appealing to the previous equality, while having in mind iii), implies

lim
t→∞

∣∣∣∣∣∣
∣∣∣∣∣∣1t

t∫
0

Ξ(Xx(τ))dτ − ν

∣∣∣∣∣∣
∣∣∣∣∣∣
W

≤ lim
t→∞

1√
t

1√
t

∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

Ξν(Xx(τ))dτ −
L(t)+1∑
k=1

Yk

∣∣∣∣∣∣
∣∣∣∣∣∣
W

+

∣∣∣∣∣∣
∣∣∣∣∣∣1t

L(t)+1∑
k=1

Yk

∣∣∣∣∣∣
∣∣∣∣∣∣
W

= 0,

with probability one, which proves (5.16).

Finally, let us prove (5.17). Consequently, from now on it is assumed that (W, || · ||W ) is a type 2 Banach

space. Let (tn)n∈N ⊆ (0,∞) be such that lim
n→∞

tn =∞ and (θn)n∈N, by θn := tn
Eαex(1)

for all n ∈ N and

note that i) yields lim
n→∞

L(tn)+1
θn

= 1 almost surely, and particularly in probability. Moreover, in light of

ii), it is obvious that the sequence ( 1√
Eαex(1)

Yn)n∈N is also centered, square integrable, i.i.d. and that

each 1√
Eαex(1)

Yn is distributed as 1√
Eαex(1)

Y0. These results enable us to employ Theorem 5.2.22, which

yields

lim
n→∞

1√
tn

L(tn)+1∑
k=1

Yk = lim
n→∞

1√
θn

L(tn)+1∑
k=1

1√
Eαex(1)

Yk = Z,

in distribution. Finally, invoking iii) yields

lim
n→∞

1√
tn

 tn∫
0

Ξ(Xx(τ))dτ − tnν

− 1√
tn

L(tn)+1∑
k=1

Yk = 0,

almost surely and consequently

lim
n→∞

1√
tn

 tn∫
0

Ξ(Xx(τ))dτ − tnν

 = Z,

in distribution, by [10, Theorem 3.1], which gives the claim as (tn)n∈N was arbitrary. (By the very

definition of convergence in distribution it is clear that it suffices to consider sequences.)

Now note that for Ξ : V → V2 with Ξ(v) := v, if v ∈ V2 and Ξ(v) := 0, if v ∈ V \ V2, it is easy

to verify that (Ξ, (V2, || · ||V2
)) ∈ SLV2

(V ). Moreover, for ξ : V → R with ξ(v) := ||v||V2
if v ∈ V2 and
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ξ(v) := 0 for v ∈ V \ V2, we also get (ξ,R) ∈ SLV2
(V ). Using these facts together with the preceding

theorem and Lemma 5.2.12.i) yields the following corollary.

Corollary 5.2.24. Let x : Ω → V be an independent initial leading to extinction. Then the following

assertions hold.

i) lim
t→∞

1
t

t∫
0

Xx(τ)dτ = ν1 almost surely in (V2, || · ||V2
), where ν1 := 1

E(αex(1))
E

(
αex(1)∫

0

Xx(τ)dτ

)
.

ii) lim
t→∞

1
t

t∫
0

||Xx(τ)||V2
dτ = ν2 almost surely, where ν2 := 1

E(αex(1))
E

(
αex(1)∫

0

||Xx(τ)||V2dτ

)
.

iii) lim
t→∞

1√
t

(
t∫

0

||Xx(τ)||V2
dτ − tν2

)
= Z2 in distribution, where Z2 ∼ N(0, σ2) and σ2 ∈ [0,∞) is

given by σ2 := 1
E(αex(1))

E

(
αex(1)∫

0

||Xx(τ)||V2 − ν2dτ

)2

.

iv) If (V2, || · ||V2
) is in addition of type 2, then lim

t→∞
1√
t

(
t∫

0

Xx(τ)dτ − tν1

)
= Z1 in distribution, as

elements of (V2, || · ||V2), where Z1 ∼ NV2(0, Q) and Q := CovV2

(√
1

E(αex(1))

αex(1)∫
0

Xx(τ)− ν1dτ

)
.

5.3 Examples

Let us start this section by applying the results of the previous section to the semigroup introduced in

Remark 2.2.7.i).

Before doing so, let us remark, that as in the previous section (βm)m∈N denotes a sequence of (0,∞)-

valued i.i.d. random variables. Moreover, we set αm :=
m∑
k=1

βk. for all m ∈ N and α0 := 0.

Remark 5.3.1. Let ρ1 ∈ (0, 1) and set Tρ1(t)v := sgn(v) (−t+ |v|ρ1)
1
ρ1
+ for all v ∈ R and t ∈ [0,∞).

This is the family of mappings introduced in Remark 2.2.7.i). Note that, by this same remark (Tρ1(t))t≥0

is a time-continuous, contractive semigroup on R. Now, we apply the results of the previous section to

(Tρ1(t))t≥0, with V = V1 = V2 = R, κ = 1 and ρ = ρ1.

Firstly, note that Assumption 5.2.1 is obviously fulfilled. Moreover, introduce a sequence (ηm)m∈N of

real-valued i.i.d. random variables, assume that (βm)m∈N and (ηm)m∈N are independent of each other,

and that the following moment conditions hold: Eη4
m <∞, there is a ε̂ > 0, such that E|ηm|ρ1(11+ε̂) <∞

and Eβ11+ε̂
m < ∞, and last but not least that −Eβm + E|ηm|ρ1 < 0. Then, Assumption 5.2.3 holds by

construction.

Moreover, let x ∈ M(Ω;R) be an independent initial leading to extinction, i.e. assume that x is jointly

independent of (βm)m∈N and (ηm)m∈N, and E|x|2ρ1 < ∞. Furthermore, let x ∈ M(Ω;R) be as in

Remark 5.2.14 and ex(1) be as in Definition 5.2.5.v).

Finally, (X(ρ1)
x (t))t≥0 and (X(ρ1)

x (t))t≥0 denote the process generated by ((βm)m∈N, (ηm)m∈N, x, Tρ1) in R
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and ((βm)m∈N, (ηm)m∈N, x, Tρ1) in R, respectively. Then, the following assertions instantly follow from

Corollary 5.2.24:

i) lim
t→∞

1
t

t∫
0

X(ρ1)
x (τ)dτ = ν1 almost surely, where ν1 := 1

E(αex(1))
E

(
αex(1)∫

0

X(ρ1)
x (τ)dτ

)
.

ii) lim
t→∞

1
t

t∫
0

|X(ρ1)
x (τ)|dτ = ν2 almost surely, where ν2 := 1

E(αex(1))
E

(
αex(1)∫

0

|X(ρ1)
x (τ)|dτ

)
.

iii) lim
t→∞

1√
t

(
t∫

0

|X(ρ1)
x (τ)|dτ − tν2

)
= Z2 in distribution, where Z2 ∼ N(0, σ2

2) and σ2
2 ∈ [0,∞) is given

by σ2
2 := 1

E(αex(1))
E

(
αex(1)∫

0

|X(ρ1)
x (τ)| − ν2dτ

)2

.

iv) lim
t→∞

1√
t

(
t∫

0

X(ρ1)
x (τ)dτ − tν1

)
= Z1 in distribution, where Z1 ∼ N(0, σ2

1) and σ2
1 ∈ [0,∞) is given

by σ2
1 := 1

E(αex(1))
E

(
αex(1)∫

0

X(ρ1)
x (τ)− ν1dτ

)2

.

Note that even though the semigroup considered in Remark 5.3.1 acts on R, none of the statements

5.3.1.i)-iv) is trivial. But, of course we did not go through all the trouble of proving the results in

Section 5.2 for separable Banach spaces, to then just considered a semigroup acting on R. So let us turn

to our more sophisticated example: The weighted p-Laplacian evolution equation for ”small” p.

Firstly, let us recall some notations introduced in Section 3.2: Let n ∈ N \ {1}, p ∈ (1,∞) \ {2} and

let ∅ 6= S ⊆ Rn be an open, connected and bounded sets of class C1. Moreover, γ : S → (0,∞), denotes

the weight function, i.e. we assume γ ∈ L∞(S), γ
1

1−p ∈ L1(S) and that there is a γ0 : Rn → R with

γ0 ∈Mp(Rn) such that γ0|S = γ a.e. on S. In addition, we set

p0 := inf{q > 1 : γ
1

1−q ∈ L1(S)}.

Moreover, Ap : D(Ap) → 2L
1(S) denotes the p-Laplace operator introduced in Definition 3.2.2, and

Ap : D(Ap) → 2L
1(S) denotes its closure, see Definition 3.2.4 for the definition and Theorem 3.2.5 for

the fact that this is the closure of Ap. In addition, note that Ap is m-accretive and densely defined, see

Theorem 3.2.5.

Finally, (TAp(t))t≥0, where TAp : L1(S)→ L1(S) for all t ≥ 0, denotes the semigroup associated to Ap,
see Remark 3.2.6.

Of course, the main difficulty in applying the results of Section 5.2 to a semigroup, is verifying

Assumption 5.2.1.ii). In our case, this is thanks to Theorem 3.5.6 possible, if

p ∈
(
p0(n− 2)

n+ 2
+ p0, 2

)
6= ∅. (5.21)
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Throughout the remainder of this section, we assume that (5.21) holds. Note that both statements in

(5.21) are assumptions, i.e. it has to be assumed that the interval in (5.21) is non-empty and that p lies

in this interval.

Consequently, thanks to Theorem 3.5.6, we have

||TAp(t)v||2−pL2(S) ≤ (−κ1t+ ||v||2−pL2(S))+,

for all t ≥ 0 and v ∈ L2
0(S), where the constant κ1 ∈ (0,∞) denotes, throughout the remainder of this

section, the constant introduced in (3.42). (The space L2
0(S) was introduced in Remark 3.3.4.)

Now let us state the needed stochastic assumptions/notations: Let, (ηm)m∈N ⊆M(Ω;L1(S)) denote

an i.i.d. sequence which is independent of (βm)m∈N, assume ηm ∈ L2
0(S) almost surely and that the

following moment conditions hold: There is a constant ε̂ > 0 such that β11+ε̂
m , ||ηm||(2−p)(11+ε̂)

L2(S) ∈ L1(Ω)

and −κ1Eβm + E||ηm||(2−p)L2(S) < 0.

Furthermore, let x ∈M(Ω;L1(S)) and ex(1) be as in Remark 5.2.14 and Definition 5.2.5.v), respectively.

Now, let x ∈M(Ω;L1(S)) be jointly independent of (βm)m∈N and (ηm)m∈N; assume that x ∈ L2
0(S) a.s.

and ||x||2(2−p)
L2(S) ∈ L

1(Ω). Finally, X(p)
x : [0,∞) × Ω → L1(S) and X(p)

x : [0,∞) × Ω → L1(S), denote the

process generated by ((βm)m∈N, (ηm)m∈N, x, TAp) in L1(S); and ((βm)m∈N, (ηm)m∈N, x, TAp) in L1(S),

respectively.

Theorem 5.3.2. Assume ||ηm||L2(S) ∈ L4(Ω) and introduce ν := 1
E(αex(1))

E

(
αex(1)∫

0

X(p)
x (τ)dτ

)
. More-

over, recall that we assume (5.21). Then the convergence

lim
t→∞

1

t

t∫
0

X(p)
x (τ)dτ = ν,

takes place almost surely in (L2(S), || · ||L2(S)). Moreover, we have

lim
t→∞

1√
t

 t∫
0

X(p)
x (τ)dτ − tν

 = Z,

in distribution, as elements of (L2(S), || · ||L2(S)), where Z ∼ NL2(S)(0, Q) and the covariance is given

by Q := CovL2(S)

(√
1

E(αex(1))

αex(1)∫
0

X(p)
x (τ)− νdτ

)
.

Proof. This follows from Corollary 5.2.24.i),iv), more precisely: Choose (V, || · ||V ) = (L1(S), || · ||L1(S)),

(V1, || · ||V1) = (L2
0(S), || · ||L2(S)), (V2, || · ||V2) = (L2(S), || · ||L2(S)), κ = κ1 and ρ = 2− p in Section 5.2,

then: Remark 3.2.6.iv) yields that L2(S) is an invariant space w.r.t to TAp and thanks to Lemma 3.3.5

L2
0(S) is also an invariant space w.r.t. TA. Thus, Assumption 5.2.1.i) is fulfilled. Moreover, Remark

3.2.6.iv) yields Assumption 5.2.1.iii). In addition, Assumption 5.2.1.ii) follows from Theorem 3.5.6, and

it is plain that the injections L2(S) ↪→ L1(S) and L2
0(S) ↪→ L1(S) are continuous. Thus, Assumption
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5.2.1 holds. Moreover, Assumption 5.2.3 holds by construction. Finally, it is well known that L2(S) is a

type 2 Banach space, see [19, Theorem 3.4], and thus both claims follow from Corollary 5.2.24.i),iv).

Theorem 5.3.3. Let q ∈ [1,∞) be given. Moreover, assume x, ηm ∈ Lq(S) a.s., ||ηm||Lq(S) ∈ L4(Ω),

introduce ν := 1
E(αex(1))

E

(
αex(1)∫

0

||X(p)
x (τ)||Lq(S)dτ

)
and recall that we assume (5.21). Then the conver-

gence

lim
t→∞

1

t

t∫
0

||X(p)
x (τ)||Lq(S)dτ = ν,

takes place almost surely. Moreover,

lim
t→∞

1√
t

 t∫
0

||X(p)
x (τ)||Lq(S)dτ − tν

 = Z

in distribution, where Z ∼ N(0, σ2) and σ2 ∈ [0,∞) is given by

σ2 :=
1

E(αex(1))
E

 αex(1)∫
0

||X(p)
x (τ)||Lq(S) − νdτ

2

.

Proof. Analogously, all assertions follow at once from Corollary 5.2.24.ii),iii), by choosing

(V, || · ||V ) = (L1(S), || · ||L1(S)), (V1, || · ||V1
) = (L2

0(S), || · ||L2(S)), (V2, || · ||V2
) = (Lq(S), || · ||Lq(S)),

κ = κ1 and ρ = 2− p in Section 5.2.

Remark 5.3.4. Let us emphasize once more that we formulated Theorem 5.3.2 and Theorem 5.3.3 under

the assumption that (5.21) holds. Note that, if n = 2 and p0 = 16, then
(
p0(n−2)
n+2 + p0, 2

)
= (1, 2). Thus,

in this case both theorems are applicable for all p ∈ (1, 2).

In the next chapter, we will obtain a SLLN and a CLT by assuming (among other things) that a semigroup

fulfills a decay assumption which is in the spirit of Proposition 3.5.9. As expected, we then also apply

these theoretical results to TAp and obtain a SLLN and a CLT for p ∈ (2,∞).

6See Remark 3.4.3 for a simple criteria ensuring p0 = 1.
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Chapter 6

A Markov Process Approach to

ACPRM-Processes

6.1 Outline & Highlights

In this chapter, we establish that ACPRM-processes are time-homogeneous Markov processes, if the

involved random variables fulfill certain distributional assumptions. Moreover, we exploit this fact to

prove an SLLN and a CLT, if the underlying semigroup fulfills in addition a polynomial decay assump-

tion.

For being able to outline this in greater detail, let us introduce some notations: Let (V, || · ||V ) be a

separable Banach space and let (T (t))t≥0 be a time-continuous, contractive semigroup on V . Moreover,

recall that (Ω,F ,P) is a complete probability space, let (ηm)m∈N and (βm)m∈N be i.i.d. sequences that

are independent of each other; where the former consists of V -valued random variables and the latter of

(0,∞)-valued, exponentially distributed random variables. Moreover, let x be a V -valued random vari-

able which is jointly independent of (βm)m∈N and (ηm)m∈N. Finally, Xx denotes the process generated

by ((βm)m∈N, (ηm)m∈N, x, T ) in V .

This chapter’s first highlight is that (Xx(t))t≥0 is (w.r.t. the completion of its natural filtration) a

time-continuous Markov process - which is a property the fulfilled by the solutions of many SPDEs, see

[27, Chapter 4]. For proving this, it is crucial that (βm)m∈N is not any i.i.d. sequence, but one consisting

of exponentially distributed random variables. Moreover, due to the contractivity and time-continuity

of (T (t))t≥0, the transition semigroup of (Xx(t))t≥0 has the e-property and the Feller property. For

proving these results, we only need the assumptions that have been stated in this introduction so far.

But obtaining more sophisticated results, requires the following polynomial decay assumption regarding

(T (t))t≥0: There is a dense and separable Banach space (W, || · ||W ) ⊆ V with continuous injection,
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which is an invariant space w.r.t. T and such that there are constants κ, ρ ∈ (0,∞) such that

||T (t)w1 − T (t)w2||W ≤
(
κt+ ||w1 − w2||

− 1
ρ

W

)−ρ
, ∀t ∈ [0,∞) (6.1)

and w1, w2 ∈ W . Moreover, we have to assume that ||ηk||V ∈ L2(Ω) and that T (t)0 = 0 for all

t ∈ [0,∞). The latter is due to the nonlinearity indeed not necessarily true, but it is ”usually” easily

verified whether it holds.

As we shall see, (6.1) enables us to derive upper bounds for ||Xx(t)||V and ||Xx(t) − Xy(t)||V , where

y is another V -valued random variable which is jointly independent of (βm)m∈N and (ηm)m∈N. These

bounds, together with the e-property allow us to conclude by the aid of the results in [39], that the

transition function of (Xx(t))t≥0 possesses a unique invariant probability measure µ̄ : B(V ) → [0, 1].

From there, we infer that

lim
t→∞

1

t

t∫
0

ψ(Xx(τ))dτ = (ψ) :=

∫
V

ψ(v)µ̄(dv), (SLLN)

with probability one, for any Lipschitz continuous ψ : V → R. Once this is achieved we will employ the

results in [18] to prove that: If, in addition the constant ρ appearing in (6.1) fulfills ρ > 1
2 , then there

is a σ2(ψ) ∈ [0,∞) such that

lim
t→∞

1√
t

 t∫
0

ψ(Xx(τ))dτ − t(ψ)

 = Y ∼ N(0, σ2(ψ)), (CLT)

in distribution, for any Lipschitz continuous ψ : V → R.

Finally, we will illustrate the applicability of these results with two examples: The weighted p-Laplacian

evolution equation for ”large” p, and the semigroup (Tρ2(t))t≥0 introduced in Remark 2.2.7.ii). By the

aid of the latter semigroup, we will see that (CLT) can fail if (6.1) only holds for a ρ ∈ (0, 1
2 ]; particularly,

even if ρ = 1
2 .

In our p-Laplacian example, we will prove that (SLLN) holds for any p ∈ (2,∞) and that (CLT) holds

if p ∈ (2, 4).

As mentioned, proving that Xx is a time-homogeneous Markov process possessing the Feller and

the e-property, works without any asymptotic assumptions on the involved semigroup. Thus, these

facts might be exploited by others to derive long time results regarding Xx, under different asymptotic

assumptions on the involved semigroup.

Finally, let us briefly outline this chapter’s structure: In Section 6.2 we demonstrate that (Xx(t))t≥0

is a time-homogeneous Markov process and show that it possesses the Feller and the e-property. Section

6.3 is this section’s centerpiece, it is proven there that the transition function of (Xx(t))t≥0 has a unique

invariant probability measure (Proposition 6.3.3) that it fulfills the SLLN (Theorem 6.3.6) as well as
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the CLT (Theorem 6.3.10). Finally, in Section 6.4 we illustrate the applicability of these results at hand

of the aforementioned examples.

6.2 The Markov Property

Throughout this section (V, || · ||V ) denotes a separable (real) Banach space and (T (t))t≥0 denotes a

time-continuous, contractive semigroup on V . Moreover, recall that M(Ω;V ) :=M(Ω,F ;V ).

In addition, we introduce the spaces BM(V ), Cb(V ), Lipb(V ) and Lip(V ) as the spaces of all functions

ψ : V → R which are bounded and measurable, continuous and bounded, Lipschitz continuous and

bounded, and Lipschitz continuous, respectively. In addition, for any Lipschitz continuous function ψ,

we denote its Lipschitz constant by Lψ.

Throughout this section, (ηm)m∈N ⊆ M(Ω;V ) denotes an i.i.d. sequence. In addition (βm)m∈N,

where βm : Ω → (0,∞), is an i.i.d. sequence of exponentially distributed random variables, with

parameter θ ∈ (0,∞). Furthermore, we assume that (ηm)m∈N and (βm)m∈N are independent of each

other.

Now, set αm :=
m∑
k=1

βk for all m ∈ N, introduce α0 := 0 and N : [0,∞)× Ω→ N0 by

N(t) :=

∞∑
m=0

m11{αm ≤ t < αm+1}, ∀t ∈ [0,∞). (6.2)

Moreover, for any x ∈M(Ω;V ), we denote by (Xx,m)m∈N0
the sequence and by Xx : [0,∞)×Ω→ V the

process generated by ((βm)m∈N, (ηm)m∈N, x, T ) in V . In addition, we introduce the filtration (Fxt )t≥0,

by Fxt := σ0(Xx(τ); τ ∈ [0, t]),1 for all t ∈ [0,∞) and any x ∈M(Ω;V ). Moreover, whenever necessary

we identify a v ∈ V with the random variable which is constantly v, and use this convention to introduce

P : [0,∞)× V ×B(V )→ [0, 1] as

P (t, v, B) := P(Xv(t) ∈ B) = PXv(t)(B), (6.3)

for all v ∈ V , t ∈ [0,∞) and B ∈ B(V ). Finally, an x ∈ M(Ω;V ) is called an independent initial, if x

is jointly independent of (ηm)m∈N and (βm)m∈N. Note that any v ∈ V is obviously an independent initial.

The purpose of this section is to show that Xx is for any independent initial x ∈ M(Ω;V ) a time

homogeneous Markov process with transition function P and initial distribution Px. In addition, we

will establish some basic properties of these quantities.

Remark 6.2.1. Let x ∈ M(Ω;V ). Appealing to the strong law of large numbers yields lim
m→∞

αm = ∞

almost surely. Consequently, on a set Ω̃ ∈ F of full P-measure, we can find for each ω ∈ Ω̃ and t ∈ [0,∞)

1See Remark 2.2.9 for our conventions regarding σ-algebras.
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precisely one m ∈ N0, s.t. t ∈ [αm(ω), αm+1(ω)). Thus, we get

P
(
Xx(t) = T (t− αN(t))Xx,N(t), ∀t ≥ 0

)
= 1.

In addition, it is well known that (N(t))t≥0 is a homogeneous Poisson process with intensity θ.

The following continuity result will be frequently employed in this (and the next) section:

Lemma 6.2.2. Let (η̂m)m∈N ⊆ M(Ω;V ) and x, x̂ ∈ M(Ω;V ). Moreover, let X̂x̂ be the processes

generated by ((βm)m∈N, (η̂m)m∈N, x̂, T ) in V . Then the assertion

||Xx(t)− X̂x̂(t)||V ≤ ||x− x̂||V +

N(t)∑
k=1

||ηk − η̂k||V , ∀t ∈ [0,∞) (6.4)

holds on Ω.

Proof. Let t ∈ [0,∞) be given and set Mt := {ω ∈ Ω : t < sup
m∈N

αm(ω)}. Note that Xx(t) = X̂x̂(t) = 0

on Ω \Mt, thus (6.4) holds on Ω \Mt. Moreover, on Mt we have by contractivity of (T (t))t≥0 that

||Xx(t)− X̂x̂(t)||V = ||T (t− αN(t))Xx,N(t) − T (t− αN(t))X̂x̂,N(t)||V ≤ ||Xx,N(t) − X̂x̂,N(t)||V ,

where (X̂x̂,m)m∈N0
denote the sequences generated by ((βm)m∈N, (η̂m)m∈N, x̂, T ) in V , respectively. Con-

sequently, it suffices to prove that

||Xx,m − X̂x̂,m||V ≤ ||x− x̂||V +

m∑
k=1

||ηk − η̂k||V , ∀m ∈ N0.

For m = 0 this is clear and for m ∈ N0 we get ||Xx,m+1− X̂,x̂,m+1||V ≤ ||Xx,m− X̂x̂,m||V + ||ηm+1− η̂m+1||V ,

which yields the claim by induction.

Lemma 6.2.3. The mapping defined by [0,∞)×V ×Ω 3 (t, v, ω) 7→ Xv(t, ω) is B([0,∞))⊗B(V )⊗F-

B(V )-measurable. Consequently, if ψ ∈ BM(V ), then [0,∞) × V 3 (t, v) 7→ Eψ(Xv(t)) is B([0,∞)) ⊗
B(V )-B(R)-measurable

Proof. Invoking Lemma 2.2.6.v) yields that Xv is B([0,∞)) ⊗ F-B(V )-measurable, for any v ∈ V .

Moreover, we infer from Lemma 6.2.2 that V 3 v 7→ Xv(t, ω) is continuous for all t ∈ [0,∞) and ω ∈ Ω.

Consequently, [0,∞)× V × Ω 3 (t, v, ω) 7→ Xv(t, ω) is B([0,∞))⊗B(V )⊗ F-B(V )-measurable, by [1,

Lemma 4.51].

Finally, let ψ ∈ BM(V ), then the boundedness of ψ yields that the expectation at hand exists; and

the already proven measurability result (together with [31, Prop. 2.1.4]) enables us to conclude the

remaining claim.
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Theorem 6.2.4. Let x ∈M(Ω;V ) be an independent initial. Then (Xx(t))t≥0 is a Markov process with

respect to (Fxt )t≥0, i.e.

P(Xx(t+ h) ∈ B|Fxt ) = P(Xx(t+ h) ∈ B|Xx(t)), (6.5)

almost surely, for all t, h ∈ [0,∞) and B ∈ B(V ). In addition, P is a time homogeneous transition

function, that is

i) B(V ) 3 B 7→ P (t, v, B) is a probability measure on (V,B(V )), for all t ∈ [0,∞) and v ∈ V ,

ii) P(0, v, B) = 11B(v) for all v ∈ V and B ∈ B(V ),

iii) P (·, ·, B) is B([0,∞))⊗B(V )-B([0, 1])-measurable for any B ∈ B(V ) and

iv) P fulfills has the Chapman-Kolmogorov property, i.e. P (t + h, v,B) =
∫
V

P (h, v̂, B)dP (t, v, dv̂) for

all t, h ∈ [0,∞), v ∈ V and B ∈ B(V ).

Moreover, (Xx(t))t≥0 is time homogeneous (with initial distribution Px) and transition function P , i.e.

P(Xx(t+ h) ∈ B|Fxt ) = P (h,Xx(t), B), (6.6)

almost surely, for all t, h ∈ [0,∞) and B ∈ B(V ).

Proof. The assertions i) and ii) are trivial. Moreover, the third follows from Lemma 6.2.3.

Proving the remaining assertions is more involved and will occupy us for some time. Let us start

with some preparatory observations. To this end, let t, h ∈ [0,∞), v ∈ V and B ∈ B(V ) be given;

and introduce Fm : V × [0,∞)m × V m → V , for all m ∈ N, by F1(y, b, n) := T (b)y + n and

Fm(y, b1, .., bm, n1, .., nm) := T (bm)Fm−1(y, b1, .., bm−1, n1, .., nm−1) + nm for all y, n, n1, .., nm ∈ V ,

b1, .., bm ∈ [0,∞) and m ∈ N \ {1}.
Appealing to Remark 2.2.5 yields that F1 is continuous and it then follows inductively that each Fm

has this property and is therefore B(V )⊗B([0,∞)m)⊗B(V m)-B(V )-measurable.

Now, for the sake of space let η̂τ,m := (ηN(τ)+1, .., ηN(τ)+m), for all m ∈ N, τ ∈ [0,∞) and

β̂τ,m := (αN(τ)+1 − τ, βN(τ)+2, .., βN(τ)+m) if m ≥ 2 and β̂τ,1 := αN(τ)+1 − τ for all τ ∈ [0,∞) and

let us prove inductively that

Xx,N(τ)+m = Fm(Xx(τ), β̂τ,m, η̂τ,m), ∀τ ∈ [0,∞), (6.7)

almost surely for all m ∈ N.

If m = 1, we get by the semigroup property and Remark 6.2.1 that

Xx,N(τ)+1 = T (αN(τ)+1 − τ)Xx(τ) + ηN(τ)+1 = F1(Xx(τ), αN(τ)+1 − τ, ηN(τ)+1)

almost surely. Moreover, if (6.7) holds for an m ∈ N we get

Xx,N(τ)+m+1 = T (βN(τ)+m+1)Xx,N(τ)+m + ηN(τ)+m+1
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= T (βN(τ)+m+1)Fm(Xx(τ), β̂τ,m, η̂τ,m) + ηN(τ)+m+1

= Fm+1(Xx(τ), β̂τ,m, βN(τ)+m+1, η̂τ,m, ηN(τ)+m+1),

which yields (6.7). Consequently, on {N(τ + h) = N(τ)}, we have

Xx(τ + h) = T (τ + h− αN(τ))Xx,N(τ) = T (h)Xx(τ), ∀τ, h ∈ [0,∞). (6.8)

up-to a P-null-set and on {N(τ + h) = N(τ) +m}, where m ∈ N, we have

Xx(τ + h) = T (τ + h− αN(τ)+m)Fm(Xx(τ), β̂τ,m, η̂τ,m), ∀τ, h ∈ [0,∞), (6.9)

up-to a P-null-set. These two results will turn out to be useful to prove (6.5) and (6.6). But before we

can do so some distribution results have to be established, namely

I) For all m ∈ N, we have that (αN(t)+1 − t, .., αN(t)+m − t, ηN(t)+1, .., ηN(t)+m, N(t + h) − N(t)) is

in distribution equal to (α1, .., αm, η1, .., ηm, N(h)).

II) For all m ∈ N, we have that (αN(t)+1, βN(t)+2, .., βN(t)+m, ηN(t)+1, .., ηN(t)+m, N(t+ h)−N(t)) is

independent of Fxt .

Proof of I). Let z1, .., zm ∈ [0,∞), B1, .., Bm ∈ B(V ) and C ⊆ N0. Then, as (ηm)m∈N is i.i.d and

independent of (αm)m∈N we get

P(αN(t)+k − t ≤ zk, ηN(t)+k ∈ Bk, k = 1, ..,m, N(t+ h)−N(t) ∈ C)

= P(ηk ∈ Bk, k = 1, ..,m)

∞∑
j=0

P(αj+k − t ≤ zk, k = 1, ..,m, N(t+ h)−N(t) ∈ C, N(t) = j)

= P(ηk ∈ Bk, k = 1, ..,m)P(N(zk + t)−N(t) ≥ k, k = 1, ..,m, N(t+ h)−N(t) ∈ C)

where the last equality follows from

{αk ≤ τ} = {N(τ) ≥ k}, ∀τ ∈ [0,∞), k ∈ N0, (6.10)

up to a P-null-set. Since (N(t))t≥0 is a homogeneous Poisson process, it is now easily verified that the

distribution of (N(z1 + t)−N(t), .., N(zm + t)−N(t), N(t+ h)−N(t)) is independent of t. Using this

and (6.10) yields

P(N(zk + t)−N(t) ≥ k, k = 1, ..,m, N(t+ h)−N(t) ∈ C) = P(αk ≤ zk, k = 1, ..,m, N(h) ∈ C).

Combining the preceding two calculations, while having in mind the independence of (ηm)m∈N and

(αm)m∈N gives i).

Proof of II). Since βN(t)+k = αN(t)+k − αN(t)+k−1 for all k ∈ N \ {1}, it suffices to prove that

(αN(t)+1, .., αN(t)+m, ηN(t)+1, .., ηN(t)+m, N(t + h) − N(t)) is independent of Fxt . The latter is obvi-

ously true if (αN(t)+1 − t, .., αN(t)+m − t, ηN(t)+1, .., ηN(t)+m, N(t+ h)−N(t)) is independent of Fxt .
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Now introduce Στ := σ(A ∩ B : A ∈ ΣNτ , B ∈ σ0(ηk, k ∈ N0)), for all τ ∈ [0,∞), where (ΣNτ )τ≥0

denotes the completion of the natural filtration of (N(τ))τ≥0 and η0 := x and let us prove that

Fxt ⊆ Σt and ηN(t)+j is Σt −B(V )−measurable for all j ∈ N. (6.11)

The second assertion is clearly true, since

{ηN(t)+j ∈ B} =

∞⋃
k=0

{ηk+j ∈ B, N(t) = k} ∈ Σt, ∀B ∈ B(V ).

Now, note that Σt contains by construction every P-null-set. Consequently, the first assertion follows

if Xx(s) is Σt-B(V )-measurable, for each s ∈ [0, t], which will be verified now: So let s ∈ [0, t], then

appealing to (6.8) and (6.9) (with τ = 0 and h = s there) yields, for a given B ∈ B(V ), that

{Xx(s) ∈ B} = {T (s)x ∈ B,N(s) = 0} ∪

( ∞⋃
n=1

{T (s− αn)Fn(x, β1, .., βn, η1, .., ηn) ∈ B, N(s) = n}

)
,

up to a P-null-set. It is plain that the first set in the preceding equation is an element of Σt. Moreover,

for each k ∈ {1, .., n} and z ∈ [0,∞) we have {αk ≤ z, N(s) = n} = {N(z) ≥ k,N(s) = n}. If z ≤ s,

this set is clearly in ΣNs and if z > s, we have N(z) ≥ N(s), which gives {N(z) ≥ k,N(s) = n} =

{N(s) = n} ∈ ΣNs ; thus in any case {αk ≤ z, N(s) = n} ∈ Σt. Consequently, as βk = αk − αk−1, we

obtain that βk11{N(s)=n} is Σt-B([0,∞))-measurable, for all k = 1, .., n and n ∈ N.

Hence, we get

{T (s− αn)Fn(x, β1, .., βn, η1, .., ηn) ∈ B, N(s) = n}

= {T (s− (β1 + ..+ βn)11{N(s)=n})Fn(x, β111{N(s)=n}, .., βn11{N(s)=n}, η1, .., ηn) ∈ B, N(s) = n},

is in Σt, for all n ∈ N by the measurability of Fn and T , which concludes the proof of (6.11).

Now let n ∈ N z1, .., zm ∈ [0,∞), B1, ..Bm, D1, .., Dn ∈ B(V ), C ⊆ N0 and s1, .., sn ∈ [0, t]. As

(N(τ))τ≥0 is a Poisson process, it is clear that (N(z1 + t)−N(t), .., N(zm + t)−N(t), N(t+ h)−N(t))

is independent of ΣNt . Consequently, as σ0(ηk, k ∈ N0) is independent of all ΣNτ , for τ ∈ [0,∞), we get

that (N(z1 + t)−N(t), .., N(zm + t)−N(t), N(t+h)−N(t)) is independent of Σt and that this random

vector’s distribution does not depend on t. Hence, employing (6.10) and (6.11) yields

P(αN(t)+k − t ≤ zk, ηN(t)+k ∈ Bk, k = 1, ..,m, N(t+ h)−N(t) ∈ C, Xx(sj) ∈ Dj , j = 1, .., n)

= P(N(zk + t)−N(t) ≥ k, ηN(t)+k ∈ Bk, k = 1, ..,m, N(t+ h)−N(t) ∈ C,Xx(sj) ∈ Dj , j = 1, .., n)

= P(N(zk) ≥ k, k = 1, ..,m, N(h) ∈ C)P(ηN(t)+k ∈ Bk, k = 1, ..,m, Xx(sj) ∈ Dj , j = 1, .., n)

= P(αk ≤ zk, k = 1, ..,m,N(h) ∈ C)P(ηN(t)+k ∈ Bk, k = 1, ..,m, Xx(sj) ∈ Dj , j = 1, .., n).
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Moreover, we have

P(ηN(t)+k ∈ Bk, k = 1, ..,m,Xx(sj) ∈ Dj , j = 1, .., n)

=

∞∑
i=0

i∑
i1,.,in=0

P(ηi+k ∈ Bk, k = 1, ..,m, N(t) = i,N(sj) = ij , T (sj − αij )Xx,ij ∈ Dj , j = 1, .., n)

Now it is easily verified that Xx,i is σ(x, β1, .., βi, η1, .., ηi) for any i ∈ N0. (For i = 0 this is trivial, for

i ∈ N this follows from (6.7) by putting τ = 0 there.)

Consequently, since i1, .., in ∈ {0, .., i} in the sum of the preceding calculation, we get by the imposed

independence assumptions

P(ηN(t)+k ∈ Bk, k = 1, ..,m,Xx(sj) ∈ Dj , j = 1, .., n) = P(ηk ∈ Bk, k = 1, ..,m)P(Xx(sj) ∈ Dj , j = 1, .., n).

Finally, putting it all together while having in mind (I) yields

P(αN(t)+k − t ≤ zk, ηN(t)+k ∈ Bk, k = 1, ..,m, N(t+ h)−N(t) ∈ C, Xx(sj) ∈ Dj , j = 1, .., n)

= P(αk ≤ zk, ηk ∈ Bk k = 1, ..,m,N(h) ∈ C, )P(Xx(sj) ∈ Dj , j = 1, .., n)

= P(αN(t)+k − t ≤ zk, ηN(t)+k ∈ Bk k = 1, ..,m,N(t+ h)−N(t) ∈ C, )P(Xx(sj) ∈ Dj , j = 1, .., n),

which proves (II).

Now (6.5) and (6.6) will be deduced from I)-II) as well as (6.8) and (6.9).

Firstly, I) enables us to conclude that (t + h − αN(t)+m, β̂t,m, η̂t,m, N(t + h) − N(t)) is in distribution

equal to (h− αm, β̂0,m, η̂0,m, N(h)), since βN(t)+m = (αN(t)+m − t)− (αN(t)+m−1 − t), for all m ∈ N.

Now, thanks to II) and I) we can apply well known properties of conditional probabilities (cf. [15, Prop.

1.43]) in the following two calculations; where in the first line of the first calculation (6.8) and in the

first line of the second one (6.9) is used.

E(11B(Xx(t+ h))11{N(t+h)=N(t)}|Fxt )(ω) = E(11B(T (h)Xx(t))11{N(t+h)=N(t)}|Fxt )(ω)

=

∫
Ω

11B(T (h)Xx(t, ω))11{N(t+h)=N(t)}(ω̃)P(dω̃)

=

∫
Ω

11B(T (h)Xx(t, ω))11{N(h)=0}(ω̃)P(dω̃)

and

E(11B(Xx(t+ h))11{N(t+h)=N(t)+m}|Fxt )(ω)

= E(11B(T (t+ h− αN(t)+m)Fm(Xx(t), β̂t,m, η̂t,m))11{N(t+h)=N(t)+m}|Fxt )(ω)

=

∫
Ω

11B(T (t+ h− αN(t)+m(ω̃))Fm(Xx(t, ω), β̂t,m(ω̃), η̂t,m(ω̃)))11{N(t+h)=N(t)+m}(ω̃)P(dω̃)

103



=

∫
Ω

11B(T (h− αm(ω̃))Fm(Xx(t, ω), β̂0,m(ω̃), η̂0,m(ω̃)))11{N(h)=m}(ω̃)P(dω̃),

for all m ∈ N and P-a.e. ω ∈ Ω.

Moreover, for any v ∈ V , it is easily verified by induction that Xv,m = Fm(v, β̂0,m, η̂0,m) for all m ∈ N
a.s. Consequently, we get

P (h, v,B) =

∞∑
m=0

E
(
11B(T (h− αm)Xv,m)11{N(h)=m}

)
= E

(
11B(T (h)v)11{N(h)=0}

)
+

∞∑
m=1

E
(

11B(T (h− αm)Fm(v, β̂0,m, η̂0,m))11{N(h)=m}

)
,

for all v ∈ V . Hence, combining the preceding three calculations yields

P(Xx(t+ h) ∈ B|Fxt )(ω) =
∞∑
m=0

E(11B(Xx(t+ h))11{N(t+h)=N(t)+m}|Fxt )(ω) = P (h,Xx(t, ω), B)

for P-a.e. ω ∈ Ω, which proves (6.6). Consequently, invoking iii) gives that the random variable

P(Xx(t + h) ∈ B|Fxt ) is (after a possible modification on a P-null-set) σ(Xx(t))-B([0, 1])-measurable,

which yields P(Xx(t + h) ∈ B|Fxt ) = E(P(Xx(t + h) ∈ B|Fxt )|Xx(t)) a.s., which implies (6.5) by the

tower property of conditional expectations.

Finally, as x was arbitrary, (6.6) holds for all independent initials, which is well known to imply iv) -

for the sake of completeness: Appealing to (6.6) yields

P (t+ h, v,B) = E(P(Xv(t+ h) ∈ B|Fvt )) = EP (h,Xv(t), B) =

∫
V

, P (h, v̂, B)P (t, v, dv̂),

for all v ∈ V , where the equality of the third and the fourth expression follow from the change of measure

formula for expectations, which also holds for vector-valued random variables, see [10, p. 25].

Remark 6.2.5. Throughout this chapter, let (Q(t))t≥0, where Q(t) : BM(V ) → BM(V ), denote the

family of mappings, defined by

(Q(t)ψ)(v) := Eψ(Xv(t)) =

∫
V

ψ(v̂)P (t, v, dv̂), (6.12)

for all ψ ∈ BM(V ), v ∈ V and t ∈ [0,∞).

Now, this section concludes by deriving some basic properties of our Markov process. Particularly,

the e-property established in the following lemma, opens the door to useful results which enable one

to conclude that a (transition function of a) Markov process on a polish state space possesses a unique

invariant probability measure, see [39] for more details.

Lemma 6.2.6. The family of mappings (Q(t))t≥0 has the Feller and the e-property, that is
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i) Feller Property: Q(t)ψ ∈ Cb(V ) for all ψ ∈ Cb(V ).

ii) e-property: For all ψ ∈ Lipb(V ), v ∈ V and ε > 0, there is a δ > 0, such that for all v̂ ∈ V , with

||v̂ − v||V < δ, we have |(Q(t)ψ)(v)− (Q(t)ψ)(v̂)| < ε for all t ≥ 0.

Moreover, the following assertions hold for any independent initial x ∈M(Ω;V ).

iii) (Xx(t))t≥0 has almost surely càdlàg paths and is continuous in probability.

iv) The mapping [0,∞) 3 t 7→ Eψ(Xx(t)) is continuous, whenever ψ ∈ Cb(V ); in particular, (Q(·)ψ)(v)

is continuous for all ψ ∈ Cb(V ) and v ∈ V .

v) The filtration (Fxt )t≥0 fulfills the usual conditions, i.e. it is complete and right-continuous.

vi) The stochastic process (Xx(t))t≥0 is (Fxt )t≥0-progressive.

Proof. The required boundedness in i) is plain and the desired continuity follows from Lemma 6.2.2 and

dominated convergence.

Proof of ii). Let ψ ∈ Lipb(V ) and assume that it is not constantly zero, since the claim is trivial in this

case. Moreover, let v ∈ V and ε > 0 be given and introduce δ := ε
2Lψ

. Then employing the services of

Lemma 6.2.2 once more yields

|(Q(t)ψ)(v)− (Q(t)ψ)(v̂)| ≤ LψE||Xv(t)− Xv̂(t)||V ≤ Lψ||v − v̂||V < ε, ∀t ≥ 0

for all v̂ ∈ V , with ||v − v̂||V < δ, which proves ii).

Proof of iii). Thanks to Remark 6.2.1, it follows from Lemma 2.2.6.vi) that Xx has almost surely càdlàg

paths. In light of this, it remains to prove that Xx is left-continuous in probability. So let t0 ∈ (0,∞),

t ∈ [0, t0] and ε > 0 and note that

P(||Xx(t)− Xx(t0)||V > ε) ≤ P(||Xx(t)− Xx(t0)||V > ε, N(t) = N(t0)) + P (|N(t)−N(t0)| ≥ 1).

Moreover, the contractivity of (T (t))t≥0 yields

||Xx(t)− Xx(t0)||V = ||T (t− αN(t0))Xx,N(t0) − T (t− αN(t0))T (t0 − t)Xx,N(t0)||V
≤ ||Xx,N(t0) − T (t0 − t)Xx,N(t0)||V

on {N(t) = N(t0)}, up-to a P-null-set. Conclusively, as Poisson processes are well-known to be stochas-

tically continuous and as (T (t))t≥0 is time-continuous, we get

lim
t↗t0

P(||Xx(t)− Xx(t0)||V > ε) ≤ lim
t↗t0

P(||Xx,N(t0) − T (t0 − t)Xx,N(t0)||V > ε, N(t) = N(t0)) = 0,

which proves iii).

Proof of iv). Let (tm)m∈N be converging to a given t ∈ [0,∞). Then, we get by iii) (and by pass-

ing to a subsequence if necessary) that lim
m→∞

||Xx(tm) − Xx(t)||V = 0 almost surely. Consequently,
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lim
m→∞

ψ(Xx(tm)) = ψ(Xx(t)) a.s. and by dominated convergence also in L1(Ω), which gives iv).

Finally, the desired completeness in v) holds by construction, the right-continuity follows from [13, The-

orem, p. 556], which is indeed applicable due to i) and Lemma 2.2.6.iv); and vi) follows from v) and

Lemma 2.2.6.iv), by [31, Prop. 2.2.3].

6.3 The SLLN and the CLT

Let the notations of the previous section prevail, that means: (V, || · ||V ) is a separable Banach space and

((ηm)m∈N, (βm)m∈N, T ) is a fixed triplet, where (ηm)m∈N ⊆M(Ω;V ) is an i.i.d. sequence, (βm)m∈N is an

i.i.d. sequence which is independent of (ηm)m∈N and each βm is exponentially distributed with parameter

θ ∈ (0,∞), and (T (t))t≥0 is a time-continuous contractive semigroup on V . Moreover, (N(t))t≥0 is the

Poisson process arising from (βm)m∈N and (αm)m∈N0
is the process’ sequence of arrival times.

Again we refer to an x ∈M(Ω;V ) which is independent of ((ηm)m∈N, (βm)m∈N) as an independent initial,

and denote by Xx and (Xx,m)m∈N0
the sequence and the process generated by ((βm)m∈N, (ηm)m∈N, x, T )

in V . Moreover, set P (t, v, B) := P(Xv(t) ∈ B) and (Q(t)ψ)(v) := Eψ(Xv(t)), for every v ∈ V , t ∈ [0,∞),

B ∈ B(V ) and ψ ∈ BM(V ).

In addition, we assume throughout this entire section that

||ηk||V ∈ L2(Ω), ∀k ∈ N, (6.13)

where Lq(Ω) := Lq(Ω,F ,P;R) for every q ∈ [1,∞). Moreover, we impose the following assumption

regarding (T (t))t≥0.

Assumption 6.3.1. There is a separable Banach space (W, ||·||W ), with W ⊆ V , such that the following

assertions hold.

i) The injection W ↪→ V is continuous and W is dense in (V, || · ||V ).

ii) W is an invariant space with respect to T .

iii) There are constants κ, ρ ∈ (0,∞) such that ||T (t)w1−T (t)w2||W ≤
(
κt+ ||w1 − w2||

− 1
ρ

W

)−ρ
for all

w1, w2 ∈W and t ∈ [0,∞).

iv) T (t)0 = 0 for all t ∈ [0,∞).

Throughout this entire section, Assumption 6.3.1 is assumed to hold. Particularly, (W, || · ||W ) and

κ, ρ ∈ (0,∞) are such that 6.3.1.i)-iii) are fulfilled. In addition, C > 0 denotes the operator norm of

the injection W ↪→ V ; hereby, we exclude the trivial case C = 0, since C = 0 implies W = {0} and by

density V = {0}.

The following estimates will play a fundamental role in this entire section, it is needed in the proofs

of all of our main results, which are: Proposition 6.3.3, Theorem 6.3.6, Theorem 6.3.10 and Corollary

6.3.11. The remaining results of this section simply serve to keep the exposition more structured, but
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are probably not of independent interest.

As mentioned introductory, proving the CLT requires the additional assumption ρ > 1
2 . It will be stated

explicitly whenever this additional assumption is needed.

Lemma 6.3.2. Let x ∈M(Ω;V ) be an independent initial. Then the inequality

||Xx(t)||V ≤ Cκ−ρ(t− αN(t))
−ρ, ∀t > 0, (6.14)

takes place with probability one. In addition, if y ∈M(Ω;V ) is another independent initial we have

||Xx(t)− Xy(t)||V ≤ Cκ−ρt−ρ, ∀t > 0, (6.15)

almost surely.

Proof. Let us start by proving (6.14). To this end, let (η̃m)m∈N ⊆M(Ω;V ) and x̃ ∈ M(Ω;V ), assume

η̃m, x̃ ∈ W for all m ∈ N, almost surely and introduce (X̃(t))t≥0 and (x̃m)m∈N0
as the process and the

sequence generated by ((βm)m∈N, (η̃m)m∈N, x̃, T ) in V , respectively.

Then, appealing to Lemma 2.2.6.vii) yields x̃m ∈ W for all m ∈ N0 and X̃(t) ∈ W for all t ≥ 0 almost

surely.

Hence, employing Assumption 6.3.1.iii) and iv) yields

||X̃(t)||V ≤ C||T (t− αN(t))x̃N(t)||W ≤ C
(
κ(t− αN(t)) + ||x̃N(t)||

− 1
ρ

W

)−ρ
≤ Cκ−ρ(t− αN(t))

−ρ (6.16)

for all t > 0 almost surely.

Now let us infer (6.14) from (6.16). To this end, let (Γn)n∈N, where Γn : V → V , be a sequence of

B(V )-B(V )-measurable mappings, such that

Γn(V ) ⊆W, ∀n ∈ N and lim
n→∞

Γn(v) = v, ∀v ∈ V. (6.17)

Since W is dense in (V, || · ||V ), such a sequence exists, see Lemma 4.3.11. Now, for every n ∈ N, let

(Xn(t))t≥0 be the process generated by ((βm)m∈N, (Γn(ηm))m∈N ,Γn(x), T ) in V . Then, as Γn(V ) ⊆W ,

(6.16) yields ||Xn(t)||V ≤ Cκ−ρ(t − αN(t))
−ρ for all t > 0 and n ∈ N almost surely. (If one sets

(η̃m)m∈N = (Γn(ηm))m∈N and x̃ = Γn(x) for a given n ∈ N, then X̃ = Xn). Moreover, appealing to

Lemma 6.2.2, while having in mind (6.17), yields

||Xx(t)||V ≤ lim
n→∞

||x− Γn(x)||V +

N(t)∑
m=1

||ηm − Γn(ηm)||V + Cκ−ρ(t− αN(t))
−ρ = Cκ−ρ(t− αN(t))

−ρ,

for all t > 0, with probability one. Consequently, (6.14) is proven and it remains to verify (6.15).

In addition, to the existing notations, let ỹ ∈ M(Ω;V ), assume ỹ ∈ W almost surely and introduce

(Ỹ (t))t≥0 and (ỹm)m∈N0
as the process and the sequence generated by ((βm)m∈N, (η̃m)m∈N, ỹ, T ) in V ,

respectively.
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Of course, we then also have Ỹ (t), ỹm ∈ W for all t ≥ 0 and m ∈ N0, with probability one. Now let us

verify inductively that

||x̃m − ỹm||W ≤
(
καm + ||x̃− ỹ||−

1
ρ

W

)−ρ
, a.s. ∀m ∈ N0. (6.18)

If m = 0, (6.18) is even an equality. And if it holds for an m ∈ N0 we get by applying Assumption

6.3.1.iii) and then the induction hypothesis that

||x̃m+1 − ỹm+1||W ≤
(
κβm+1 + ||x̃m − ỹm||

− 1
ρ

W

)−ρ
≤
(
καm+1 + ||x̃− ỹ||−

1
ρ

W

)−ρ
,

with probability one, which proves (6.18). Using this, while employing the services of 6.3.1.iii) once

more gives

||X̃(t)− Ỹ (t)||V ≤ C||T (t− αN(t))x̃N(t) − T (t− αN(t))ỹN(t)||W

≤ C

(
κ(t− αN(t)) + ||x̃N(t) − ỹN(t)||

− 1
ρ

W

)−ρ
≤ C

(
κ(t− αN(t)) + καN(t) + ||x̃− ỹ||−

1
ρ

W

)−ρ
≤ C (κt)

−ρ
,

for all t > 0 with probability one. Now, for every n ∈ N, let (Y n(t))t≥0 be the process generated

by ((βm)m∈N, (Γn(ηm))m∈N ,Γn(y), T ) in V . Then, as Γn(V ) ⊆ W , the preceding calculation yields

||Xn(t) − Y n(t)||V ≤ C (κt)
−ρ

for all t > 0 and n ∈ N almost surely. Finally, Lemma 6.2.2 enables us

to conclude that

||Xx(t)− Xy(t)||V ≤ C (κt)
−ρ

+ ||x− Γn(x)||V + ||y − Γn(y)||V + 2

N(t)∑
m=1

||ηm − Γn(ηm)||V ,

for all t > 0 and n ∈ N with probability one, which yields the claim by recalling (6.17) and letting n to

infinity.

Proposition 6.3.3. The transition function P possesses a unique invariant probability measure, i.e.

there is one, and only one, probability measure µ : B(V )→ [0, 1], such that∫
V

P (t, v, B)µ(dv) = µ(B), ∀t ≥ 0, B ∈ B(V ). (6.19)

Proof. Appealing to Theorem 6.2.4 as well as Lemma 6.2.6.i)-iii) yields, by virtue of [39, Theorem 1],
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the existence of a unique invariant probability measure, if we can prove that

lim inf
t→∞

1

t

t∫
0

P (||Xv(t)||V < ε)dτ > 0, ∀ε > 0, v ∈ V.

So fix ε > 0 as well as v ∈ V and recall the well-known fact that P(τ − αN(τ) > q) = exp(−θq)11[0,τ)(q)

for all τ, q ∈ [0,∞). Now, introduce q := κ−1ε−
1
ρC

1
ρ .

Then we get by Lemma 6.3.2 that

lim inf
t→∞

1

t

t∫
0

P (||Xv(τ)||V < ε)dτ ≥ lim inf
t→∞

1

t

t∫
0

P (Cκ−ρ(τ − αN(τ))
−ρ < ε)dτ

= lim inf
t→∞

1

t

t∫
0

P (τ − αN(τ) > q)dτ

= exp(−θq),

which is obviously strictly positive.

Remark 6.3.4. In the remainder of this section, µ̄ : B(V ) → [0, 1], denotes the uniquely determined

probability measure fulfilling (6.19). Moreover, we call an x̄ ∈M(Ω;V ) which is an independent initial

with P(x̄ ∈ B) = µ̄(B), for all B ∈ B(V ), an independent, stationary initial.

As µ̄ is unique, it is ergodic, see [38, Theorem 3.2.6] for a proof and [38, Theorem 3.2.4] for a couple

of useful equivalent definitions of ergodicity, commonly used in the literature.

Furthermore, if x̄ ∈ M(Ω;V ) is an independent, stationary initial, then the Markov process (Xx̄(t))t≥0

is strictly stationary, see [20, Lemma 8.11]. Moreover, (Xx̄(t))t≥0 is also ergodic (in the sense that the

shift invariant σ-algebra is P-trivial), which one easily deduces from [9, Prop. 2.2] by appealing to [38,

Theorem 3.2.4.ii)].

Finally, L2(µ̄) := L2(V,B(V ), µ̄) and for any ψ ∈ L2(µ̄) we set (ψ) :=
∫
V

ψ(v)µ̄(dv) and introduce

L2
0(µ̄) := {ψ ∈ L2(µ̄) : (ψ) = 0}.

Lemma 6.3.5. Let x ∈M(Ω;V ) be an independent initial. Then ||Xx(t)||V ∈ L2(Ω) for all t ∈ (0,∞).

In particular, the following assertions hold.

i) ψ(Xx̄(t)) ∈ L2(Ω), for all t ∈ [0,∞), ψ ∈ Lip(V ) and independent stationary initials x̄ ∈M(Ω;V ).

ii) Lip(V ) ⊆ L2(µ̄).

Proof. Let t > 0 and x ∈M(Ω;V ) be an independent initial. Then we get by employing the services of

Lemma 6.2.2 and Lemma 6.3.2 that

||Xx(t)||V ≤ ||Xx(t)− X0(t)||V + ||X0(t)||V ≤ Cκ−ρt−ρ +

N(t)∑
m=1

||ηm||V
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almost surely. Consequently, ||Xx(t)||V ∈ L2(Ω) holds, if
N(t)∑
m=1
||ηm||V ∈ L2(Ω). But the latter is true by

the Blackwell-Girshick equation, which is applicable since (||ηk||)k∈N ⊆ L2(Ω) is i.i.d. and independent

of (N(t))t≥0, which is (as it is a Poisson process) in particular square integrable.

Now, note that, due to stationary, 6.3.5.i) holds for one t ∈ [0,∞) if and only if, it holds for every

t ∈ [0,∞). So assume t > 0, then we get |ψ(Xx̄(t))| ≤ Lψ||Xx̄(t)||V + |ψ(0)|, which is already known to

be square integrable. Finally, 6.3.5.ii) follows from 6.3.5.i), since ||ψ||2L2(µ̄) = E
(
ψ(x̄)2

)
.

Theorem 6.3.6. Let ψ ∈ Lip(V ) and x ∈M(Ω;V ) be an independent initial. Then the convergence

lim
t→∞

1

t

t∫
0

ψ(Xx(τ))dτ = (ψ), (6.20)

takes place with probability one.

Proof. Firstly, note that the left hand side integral exists, since Lemma 6.2.3 and Lemma 6.2.6.iii) yield

that [0, t] 3 τ 7→ ψ(Xx(τ, ω)) is B([0, t])-B(R)-measurable and for P-a.e. ω ∈ Ω bounded, respectively.

Now let x̄ ∈M(Ω;V ) be an independent stationary initial. Then appealing to [38, Theorem 3.3.1] yields

lim
t→∞

1

t

t∫
0

ψ(Xx̄(τ))dτ = (ψ), (6.21)

almost surely, for all ψ ∈ Lip(V ). (This theorem is indeed applicable, since µ̄ is ergodic, (Xx̄(t))t≥0 is

stationary, stochastically continuous and since Lip(V ) ⊆ L2(µ̄).)

Conclusively, recalling Lemma 6.3.2 gives

lim
t→∞

∣∣∣∣∣∣1t
t∫

0

ψ(Xx̄(τ))− ψ(Xx(τ))dτ

∣∣∣∣∣∣ ≤ LψCκ−ρ lim
t→∞

1

t

t∫
1

τ−ρdτ = 0,

almost surely, which yields combined with (6.21) the claim.

The task ahead of us that remains is proving the CLT, which will be achieved by the results in

[18]. Applying the results in [18] requires to extend the family of mappings (Q(t))t≥0 to a linear, time-

continuous, contractive semigroup on L2(µ̄). To aid the reader who is not too familiar with Markov

processes, let us outline why this is possible.

Remark 6.3.7. Let t ∈ [0,∞) be given. Then for any V̂ ∈ B(V ), with µ̄(V̂ ) = 1, we get by the

invariance of µ̄ that there is a set Ṽ ∈ B(V ), with µ(Ṽ ) = 1, such that P(Xv(t) ∈ V̂ ) = 1, ∀v ∈ Ṽ .

Moreover, if ψ = 11B, where B ∈ B(V ), then the invariance of µ̄ gives∫
V

Eψ(Xv(t))µ̄(dv) =

∫
V

ψ(v)µ̄(dv). (6.22)
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Moreover, by linearity in ψ, (6.22) also holds for all step functions. Now let ψ ∈ L2(µ̄) be arbitrary, then

there are step functions (ψm)m∈N with lim
m→∞

ψm = ψ in L2(µ̄) and µ̄-a.e. Hence, for µ̄-a.e. v ∈ V we

get lim
m→∞

ψm(Xv(t)) = ψ(Xv(t)) a.s. Consequently, applying Fatou’s Lemma (twice) and (6.22) yields

∫
V

E
(
ψ(Xv(t))2

)
µ̄(dv) ≤ lim inf

m→∞

∫
V

E
(
ψm(Xv(t))2

)
µ̄(dv) = lim inf

m→∞

∫
V

ψm(v)2µ̄(dv) = ||ψ||2L2(µ̄) <∞.

Hence, for µ̄-almost every v ∈ V , Eψ(Xv(t)) exists and we infer from Jensen’s inequality that∫
V

(
Eψ(Xv(t))

)2
µ̄(dv) ≤ ||ψ||2L2(µ̄), ∀ψ ∈ L

2(µ̄). (6.23)

Consequently, we can extend the domain of each Q(t) to L2(µ̄), i.e. from now on Q(t) : L2(µ̄)→ L2(µ̄),

with (Q(t)ψ)(v) := Eψ(Xv(t)), for all t ∈ [0,∞), v ∈ V and ψ ∈ L2(µ̄).

Using this and Theorem 6.2.4.iv) yields that (Q(t))t≥0 is a linear, contractive semigroup on L2(µ̄),

see [42, Theorem 1, p. 381] for a detailed proof. (Hereby, linear of course means Q(t)(aψ1 + bψ2) =

aQ(t)ψ1 + bQ(t)ψ2 for all ψ1, ψ2 ∈ L2(µ̄), a, b ∈ R and t ≥ 0.)

It seems to be mathematical common knowledge that this semigroup is (due to stochastic continu-

ity and contractivity) time-continuous. But, the present author was unable to find any proof of this

assertion, therefore let’s do that:

Lemma 6.3.8. The family of mappings (Q(t))t≥0 is a linear, time-continuous contractive semigroup

on L2(µ̄).

Proof. In light of Remark 6.3.7, it remains to prove the time continuity. So let (hm)m∈N be a null-

sequence, let t ∈ [0,∞) and assume w.l.o.g. that t+ hm ≥ 0 for all m ∈ N. Now let ψ ∈ L2(µ̄), choose

ε > 0 and ϕ ∈ Cb(V ) such that ||ψ − ϕ||L2(µ̄) <
ε
2 . Then, by stochastic continuity of (Xv(t))t≥0, and

passing to a subsequence if necessary, we have lim
m→∞

ϕ(Xv(t + hm)) = ϕ(Xv(t)) almost surely. Thus,

the boundedness of ϕ yields (by dominated convergence) that lim
m→∞

(Q(t + hm)ϕ)(v) = (Q(t)ϕ)(v) for

all v ∈ V . Consequently, employing Lebesgue’s theorem once more gives lim
m→∞

Q(t + hm)ϕ = Q(t)ϕ in

L2(µ̄). Using this, as well as the contractivity of Q gives

lim
m→∞

||Q(t+ hm)ψ −Q(t)ψ||L2(µ̄) ≤ 2||ψ − ϕ||L2(µ̄) + lim
m→∞

||Q(t+ hm)ϕ−Q(t)ϕ||L2(µ̄) ≤ ε,

which yields the desired time continuity, as ε > 0 was arbitrary.

Lemma 6.3.9. Let ψ ∈ Lip(V ) and set ψc := ψ − (ψ). Then ψc ∈ L2
0(µ̄) and

||Q(t)ψc||L2(µ̄) ≤ LψCκ−ρt−ρ,

for all t > 0.

Proof. Clearly, ψc ∈ Lip(V ), thus ψc ∈ L2(µ̄) by Lemma 6.3.5.ii). Moreover, ψc is obviously centered.

In addition, by stationary we get (ψ) = Eψ(Xx̄(t)), where x̄ ∈ M(Ω;V ) is an independent, stationary
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initial. Using this and invoking Lemma 6.3.2 yields

||Q(t)ψc||2L2(µ̄) =

∫
V

(
E[ψ(Xv(t))− ψ(Xx̄(t))]

)2
µ̄(dv) ≤ (LψCκ

−ρt−ρ)2

and the claim follows.

Theorem 6.3.10. Assume ρ > 1
2 , let ψ ∈ Lip(V ) and x ∈ M(Ω;V ) be an independent initial. Then

there is a σ2(ψ) ∈ [0,∞) such that

lim
t→∞

1√
t

 t∫
0

ψ(Xx(τ))dτ − t(ψ)

 = Y ∼ N(0, σ2(ψ)), (6.24)

in distribution. Moreover, we have

σ2(ψ) := lim
t→∞

1

t
E

 t∫
0

ψc(Xx̄(τ))dτ

2

= lim
t→∞

1

t
Var

 t∫
0

ψ(Xx̄(τ))dτ

 , (6.25)

where x̄ ∈M(Ω;V ) is an arbitrary stationary, independent initial and ψc := ψ − (ψ).

Proof. Appealing to Lemma 6.3.9 gives ψc ∈ L2
0(µ̄) as well as

∞∫
1

1√
t
||Q(t)ψc||L2(µ̄)dt ≤ LψCκ−ρ

∞∫
1

t−ρ−
1
2 dt,

which is finite, since ρ > 1
2 . Consequently, as we already know that (Xx̄(t))t≥0 is a stationary, ergodic,

(F x̄t )t≥0-progressive Markov process with time-continuous, contractive semigroup (Q(t))t≥0, we get by

[18, Corollary 3.2 and Theorem 3.1] that

lim
t→∞

1√
t

t∫
0

ψc(Xx̄(τ))dτ = Y ∼ N(0, σ2(ψ)), (6.26)

in distribution and that σ2(ψ) is indeed given by the first equality in (6.25). Moreover, the second

equality in (6.25) is trivial, since ψc(Xx̄(τ)) = ψ(Xx̄(τ))− E(ψ(Xx̄(τ))) by stationarity.

Now, note that clearly

1√
t

 t∫
0

ψ(Xx(τ))dτ − t(ψ)

 =
1√
t

t∫
0

ψ(Xx(τ))− ψ(Xx̄(τ))dτ +
1√
t

t∫
0

ψc(Xx̄(τ))dτ, ∀t > 0

which yields, in light of (6.26), that (6.24) holds, if the first summand in the previous express converges
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almost surely to zero. But recalling that ρ > 1
2 and invoking Lemma 6.3.2 yields

lim
t→∞

∣∣∣∣∣∣ 1√
t

t∫
0

ψ(Xx(τ))− ψ(Xx̄(τ))dτ

∣∣∣∣∣∣ ≤ LψCκ−ρ lim
t→∞

1√
t

t∫
1

τ−ρdτ = 0,

with probability one.

Now this section concludes by summarizing Theorem 6.3.6 and Theorem 6.3.10 for the probably

most prominent Lipschitz continuous map from V to R, namely || · ||V .

Corollary 6.3.11. Let x ∈M(Ω;V ) be an independent initial and x̄ ∈M(Ω;V ) a stationary indepen-

dent initial. Then the following assertions hold.

i) lim
t→∞

1
t

t∫
0

||Xx(τ)||V dτ = ν with probability one, where ν :=
∫
V

||v||V µ̄(dv) = E||x̄||V .

ii) If ρ > 1
2 , then lim

t→∞
1√
t

(
t∫

0

||Xx(τ)||V dτ − tν
)

= Y ∼ N(0, σ2) in distribution, where σ2 ∈ [0,∞),

with σ2 = lim
t→∞

1
tVar

(
t∫

0

||Xx̄(τ)||V dτ
)

.

6.4 Examples

Let us start demonstrating the applicability of the results from Sections 6.2 and 6.3 by considering the

semigroup introduced in Remark 2.2.7.ii). The example considered there, also serves to demonstrate

that the assumption ”ρ > 1
2” in Theorem 6.3.10 cannot be dropped.

Example 6.4.1. Let ρ2 ∈ (0,∞) and let (Tρ2(t))t≥0 denote the family of mappings introduced in Remark

2.2.7.ii), i.e. Tρ2(t)v := sgn(v)
(
t+ |v|−

1
ρ2

)−ρ2
for all v ∈ R and t ≥ 0. Then (Tρ2(t))t≥0 is according

to this same remark a time-continuous, contractive semigroup on R.

Now let us verify Assumption 6.3.1 with V = W = R, ρ = ρ2 and κ := 2−
1
ρ2 . Firstly, Assumption

6.3.1.i),ii) are trivial. Verifying Assumption 6.3.1.iii) is slightly more involved, and requires to prove

i) Tρ2(t)v1 + Tρ2(t)v2 ≤
(
κt+ (v1 + v2)−

1
ρ2

)−ρ2
, for all t ∈ [0,∞), v1, v2 ≥ 0 and

ii) Tρ2(t)v1 − Tρ2(t)v2 ≤
(
κt+ (v1 − v2)−

1
ρ2

)−ρ2
, for all t ∈ [0,∞), v1, v2 ≥ 0 with v1 ≥ v2.

Proof of i). Firstly, the convexity of [0,∞) 3 x 7→ x1+ 1
ρ2 yields x1+ 1

ρ2 + y1+ 1
ρ2 ≥ 2−

1
ρ2 (x + y)1+ 1

ρ2 for

all x, y ∈ [0,∞). Now set f(t) := Tρ2(t)v1 + Tρ2(t)v2, for all t ∈ [0,∞). Then we get

f ′(t) = −ρ2

(
(Tρ2(t)v1)1+ 1

ρ2 + (Tρ2(t)v2)1+ 1
ρ2

)
≤ −ρ2κ (Tρ2(t)v1 + Tρ2(t)v2)

1+ 1
ρ2 = −ρ2κf(t)1+ 1

ρ2 ,

for all t > 0. Consequently, as f is (particularly locally) Lipschitz continuous, i) follows from Lemma

3.5.2.
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Proof of ii). Firstly, it is easily verified that x1+ 1
ρ2−y1+ 1

ρ2 ≥ (x−y)1+ 1
ρ2 ≥ κ(x−y)1+ 1

ρ2 for all x ≥ y ≥ 0.

Moreover, note that Tρ2(t)v1 ≥ Tρ2(t)v2, since v1 ≥ v2 ≥ 0. Now, set f(t) := Tρ2(t)v1 − Tρ2(t)v2, then

we get

f ′(t) = −ρ2

(
(Tρ2(t)v1)1+ 1

ρ2 − (Tρ2(t)v2)1+ 1
ρ2

)
≤ −ρ2κ (Tρ2(t)v1 − Tρ2(t)v2)

1+ 1
ρ2 = −ρ2κf(t)1+ 1

ρ2 ,

for all t > 0. Consequently, employing Lemma 3.5.2 once more yields ii).

Now, one easily infers from i), ii) and Tρ2(t)(−v) = −Tρ2(t)v, for all v ∈ R that

|Tρ2(t)v1 − Tρ2(t)v2| ≤
(
κt+ |v1 − v2|−

1
ρ2

)−ρ2
, ∀t ∈ [0,∞), v1, v2 ∈ R.

Finally, it is plain that Tρ2(t)0 = 0 for all t ≥ 0; thus, (Tρ2(t))t≥0 is a time-continuous, contractive

semigroup fulfilling Assumption 6.3.1 with V = W = R, ρ = ρ2 and κ = 2−
1
ρ2 . Now, let (ηm)m∈N ⊆

L2(Ω) be an i.i.d. sequence and let (βm)m∈N be an i.i.d. sequence of Exp(θ)-distributed random variables,

where θ ∈ (0,∞). In addition, assume that both sequences are independent of each other and let,

for any independent initial x ∈ M(Ω;R), X(ρ2)
x : [0,∞) × Ω → R denote the process generated by

((βm)m∈N, (ηm)m∈N, x, Tρ2) in R. Then, as the identity is Lipschitz continuous, it follows from Theorem

6.3.6 and Theorem 6.3.10 that

iii) lim
t→∞

1
t

t∫
0

X(ρ2)
x (τ)dτ = Ex̄ a.s., for any independent initial x ∈ M(Ω;R) where x̄ ∈ M(Ω;R) is a

stationary, independent initial, and

iv) if in addition ρ2 >
1
2 , then we have lim

t→∞
1√
t

(
t∫

0

X(ρ2)
x (τ)dτ − tEx̄

)
= Y ∼ N(0, σ2) in distribution,

for any independent initial x ∈M(Ω;R), where σ2 = lim
t→∞

1
tVar

(
t∫

0

X(ρ2)
x̄ (τ)dτ

)
.

Now let us demonstrate that the assumption ρ2 >
1
2 in iv) cannot be dropped. To this end, assume ηk = 0

for all k ∈ N, then X(ρ2)
x (t) = Tρ2(t)x for any independent initial x ∈M(Ω;R). Since Tρ2(t)0 = 0 for all

t ≥ 0, x̄ = 0 is the (in this case even almost surely unique) stationary, independent initial. Consequently,

we have Ex̄ = Var

(
t∫

0

X(ρ2)
x̄ (τ)dτ

)
= 0 and iv), with x = 1 and without additional assuming ρ2 >

1
2 ,

would imply

lim
t→∞

1√
t

t∫
0

(τ + 1)
−ρ2 dτ = 0, ∀ρ2 > 0, (6.27)

which is now, due to the lack of randomness, simply convergence in R. But obviously, (6.27) is true if

and only if ρ2 >
1
2 .

Even though the semigroup considered in the previous example only acted on R and not an infinite

dimensional Banach space, it is worth mentioning that neither 6.4.1.iii) nor 6.4.1.iv) are trivial.
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Now, let us turn to our p-Laplacian semigroup for large p. Firstly, let us recall some notations: Let

n ∈ N \ {1}, p ∈ (1,∞) \ {2} and let ∅ 6= S ⊆ Rn be an open, connected and bounded sets of class C1.

Moreover, γ : S → (0,∞) denotes the weight function, i.e. we assume γ ∈ L∞(S), γ
1

1−p ∈ L1(S) and

that there is a γ0 : Rn → R with γ0 ∈Mp(Rn) such that γ0|S = γ a.e. on S.

Moreover, Ap : D(Ap) → 2L
1(S) denotes the p-Laplace operator introduced in Definition 3.2.2, and

Ap : D(Ap) → 2L
1(S) denotes its closure, see Definition 3.2.4 for the definition and Theorem 3.2.5 for

the fact that this is the closure of Ap. In addition, note that Ap is m-accretive and densely defined, see

Theorem 3.2.5.

Finally, (TAp(t))t≥0, where TAp : L1(S)→ L1(S) for all t ≥ 0, denotes the semigroup associated to Ap,
see Remark 3.2.6.

Now, in the remainder of this section we assume

p ∈ (2,∞) and

∫
S

γ
2

2−p dλ <∞. (6.28)

Note that(6.28) already implies
∫
S

γ
1

1−p dλ < ∞, see Remark 3.5.8. Moreover, by this same Remark,

(6.28) holds if p
2 > p0. (See Remark 3.4.2 for the definition of p0.)

Finally, set

κ2 := (p− 2)2−(p−2)

∫
S

γ
2

2−p dλ


2−p
2

C−pS,2,

where CS,2 denotes the Poincaré constant of S in L2(S), see Remark 3.4.1.

Thanks to Lemma 3.3.6 and Proposition 3.5.9, we can apply the results of Section 6.2 and Section

6.3 now. Hereby, note the following: For any q ∈ [1,∞), we have: If we restrict each TAp(t) to Lq0(S),

then (thanks to Lemma 3.3.6) (TAp(t))t≥0 is a time-continuous contractive semigroup on Lq0(S). Hereby

we just have made (and will continue to make) the following minor abuse of notation: We denote

(TAp(t))t≥0 viewed as a semigroup on L1(S) and (TAp(t))t≥0 viewed as a semigroup on Lq0(S), by the

same latter, namely (TAp(t))t≥0.

Theorem 6.4.2. Let q ∈ [1, 2] and let (ηk)k∈N ⊆ M(Ω;Lq0(S)) be an i.i.d. sequence. Moreover, let

(βm)m∈N be another i.i.d. sequence which is independent of (ηk)k∈N and assume that βm ∼ Exp(θ)

for all m ∈ N, where θ ∈ (0,∞). In addition, assume ||ηk||Lq(S) ∈ L2(Ω) for all k ∈ N. More-

over, let x ∈ M(Ω;Lq0(S)) be an independent initial, i.e. independent of ((ηk)k∈N, (βk)k∈N) and let

X(p)
x : [0,∞) × Ω → Lq0(S) be the process generated by ((βk)k∈N, (ηk)k∈N, x, TAp) in Lq0(S), where

(TAp(t))t≥0 is viewed as a semigroup on Lq0(S). Finally, note that we assume (6.28).

Then (X(p)
x (t))t≥0 is a time-homogeneous Markov process (w.r.t. the completion of its natural filtration)

which possesses a unique invariant probability measure µ̄ : B(Lq0(S)) → [0, 1]. In addition, for any
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ψ ∈ Lip(Lq0(S)), the convergence

lim
t→∞

1

t

t∫
0

ψ(X(p)
x (τ))dτ =

∫
Lq0(S)

ψ(v)µ̄(dv) := (ψ), (6.29)

takes place with probability one, and if additionally p ∈ (2, 4), then there is a σ2(ψ) ∈ [0,∞) such that

lim
t→∞

1√
t

 t∫
0

ψ(X(p)
x (τ))dτ − t(ψ)

 = Y ∼ N(0, σ2(ψ)), (6.30)

in distribution.

Proof. By Lemma 3.3.6, (TAp(t))t≥0 is a time continuous, contractive semigroup on Lq0(S). Conse-

quently, by choosing V = Lq0(S) in Section 6.2 it follows from Theorem 6.2.4 that X(p)
x is a time-

continuous Markov process.

Moreover, it follows from Lemma 3.3.6 and Proposition 3.5.9 that (TAp(t))t≥0 fulfills Assumption 6.3.1,

where we choose V = Lq0(S), W = L2
0(S), ρ := 1

p−2 and κ = κ2. Consequently, appealing to Proposition

6.3.3 yields the existence of a unique invariant probability measure and Theorem 6.3.6 implies (6.29).

Finally, (6.30) follows from Theorem 6.3.10, since p ∈ (2, 4) implies ρ > 1
2 .

Remark 6.4.3. In accordance with Corollary 6.3.11, (6.29) and (6.30) hold (under the assumptions of

Theorem 6.4.2) of course particularly for ψ := || · ||Lq(S).

Remark 6.4.4. As demonstrated in Remark 6.4.1, the assumption ”ρ > 1
2” in Theorem 6.3.10 cannot

be dropped. This gives some evidence that (6.30) might also fail if p 6∈ (2, 4). But let us point out that

we were unable to find a concrete counterexample showing that (6.30) fails if p 6∈ (2, 4).

Remark 6.4.5. Note that Theorem 6.4.2 was formulated under Assumption (6.28); and that Theorem

5.3.2 as well as Theorem 5.3.3 were formulated under Assumption (5.21). Let us compare these two

assumptions:

Firstly, it is clear that for a given value of p, at most one of these two assumptions can hold. Moreover,

note that, if n = 2 and γ ≥ c a.e. on S, for a constant c > 0, then (5.21) reduces to p ∈ (1, 2) and (6.28)

reduces to p ∈ (2,∞). Thus, in this case, we can either apply Theorem 5.3.2 and 5.3.3 or Equation

(6.29), for any possible value of p ∈ (1,∞) \ {2}, if the random quantities (βm)m∈N, (ηm)m∈N and x

fulfill the respective assumptions stated in these theorems.
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Chapter 7

The randomized weighted

p-Laplacian evolution Equation

7.1 Outline & Highlights

The purpose of this chapter is to extend the results developed for the deterministic weighted p-Laplacian

evolution equation in Chapter 3, to the randomized case. By that we mean that we will replace the

occurring weight function as well as the initial by a vector-valued random variable. Consequently, we

will study the problem
U ′(t)(ω) = div

(
g(ω)|∇U(t)(ω)|p−2∇U(t)(ω)

)
on S,

g(ω)|∇U(t)(ω)|p−2∇U(t)(ω) ·Υ = 0 on ∂S,

U(0)(ω) = u(ω),

(7.1)

for P-a.e. ω ∈ Ω and a.e. t ∈ (0,∞), where: (Ω,F ,P) is (as usually) a complete probability space,

p ∈ (1,∞) \ {2}, S ⊆ Rn is a non-empty, open, bounded and connected set of class C1, n ∈ N \ {1},
g ∈ L1(Ω;L1(S)) fulfills 0 < g1 ≤ g ≤ g2 <∞ almost surely, for some constants g1, g2 ∈ (0,∞), Υ is the

unit outer normal on ∂S, and u ∈ L1(Ω;L1(S) is an initial. Hereby, we set L1(S) := L1(S,B(S), λ;R),

where λ is the n-dimensional Lebesgue measure, and Lq(Ω;V ) := Lq(Ω,F ,P;V ) for any q ∈ [1,∞) and

separable Banach space (V, || · ||V ).

We will employ nonlinear semigroup theory to establish that this equation has a unique solution and

derive asymptotic properties of the solution.

Before being able to rigorously describe our results, we have to fix some notations: Note that if

γ ∈ L1(S), with 0 < g1 ≤ γ ≤ g2, then γ fulfills all assumptions the weight function in Chapter 3 had to

fulfill, and in this case, the weighted Sobolev space W 1,p
γ (S) introduced in Section 3.2 (Equation (3.8)),

is equal to W 1,p(S). Now, let Adp(γ) : D(Adp(γ)) → L1(S) denote the p-Laplace operator introduced in
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Definition 3.2.2, i.e.: (f, f̂) ∈ Adp(γ), if f, f̂ ∈ L1(S), f ∈W 1,p(S) ∩ L∞(S) and∫
S

γ|∇f |p−2∇f · ∇ϕdλ =

∫
S

f̂ϕdλ, ∀ϕ ∈W 1,p
γ (S) ∩ L∞(S).

This operator is indeed single-valued, see Lemma 3.3.1.

The reason why we denote this operator now by Adp(γ) and no longer simply by Ap, is that we need a

notation that indicates that this operator depends on γ. Moreover, the superscribe ”d” (for determin-

istic) is necessary to be able to better distinguish it from the operator introduced next. We are aware

that this is an inconsistency in our own notation and that we could have denoted this operator in all

preceding chapters by Adp(γ) instead of Ap. We chose note to do so, since doing that would have caused

an unnecessarily long and inconvenient notation.

In this chapter, we will introduce a random p-Laplace operator Arp : D(Arp)→ L1(Ω;L1(S)) and demon-

strate that this operator is characterized by: For any f, f̂ ∈ L1(Ω;L1(S)) we have (f, f̂) ∈ Arp if and

only if (f(ω), f̂(ω)) ∈ Adp(g(ω)) for P-a.e. ω ∈ Ω.

We use this operator to show that: The closure of Arp, which we denote by Arp : D(Arp)→ 2L
1(Ω;L1(S)),

is m-accretive and densely defined. Thus (thanks to Theorem 2.1.7) the initial value problem

0 ∈ U ′(t) +ArpU(t), for a.e. t ∈ (0,∞), U(0) = u, (7.2)

has, for any u ∈ L1(Ω;L1(S)) a uniquely determined mild solution.

Once this is achieved, we proceed by proving that (7.2) also has a uniquely determined strong solution.

To be able to outline how this works, let us introduce some more notations: Let (Tra(t))t≥0 denote the

semigroup associated to Arp; thus, for any u ∈ L1(Ω;L1(S)), Tra(·)u is the unique mild solution of (7.2).

Moreover, for any γ ∈ L1(S), with g1 ≤ γ ≤ g2, let (Tdet(t, γ))t≥0 denote the semigroup associated to

Adp(γ), where Adp(γ) is the closure of Adp(γ).

We will prove that

P ({ω ∈ Ω : (Tra(t)u)(ω) = Tdet(t, g(ω))u(ω)}) = 1, (7.3)

for all u ∈ L1(Ω;L1(S)) and t ∈ [0,∞). This, together with the properties of (Tdet(t, γ))t≥0 devel-

oped in Chapter 3 will enable us to conclude by the aid of Theorem 2.1.12 that Tra(·)u is, for any

u ∈ L1(Ω;L1(S)), also the uniquely determined strong solution of (7.2).

Besides these existence/uniqueness results, we will also derive interesting asymptotic results. Firstly,

(7.3) enables us to transfer the results from Chapter 3 , to the current setting: For example, we have:

i) If t ∈ [0,∞) and u ∈ L1(Ω;L1(S)), then (Tra(t)u)S = (u)S almost surely, where (v)S := 1
λ(S)

∫
S

vdλ

for all v ∈ L1(S) and (u)S(ω) := (u(ω))S for all ω ∈ Ω. (Follows directly from Lemma 3.3.5.)

ii) If q ∈ [1,∞) and u ∈ Lq(Ω;Lq(S)), then lim
t→∞

Tra(t)u = (u)S in Lq(Ω;Lq(S)). (Follows fairly
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directly Theorem 3.4.13.)

iii) If u ∈ L1(Ω;L1(S)), with u ∈ L2(S) a.s., then ||Tra(t)u − (u)S ||L1(S) ≤ c1||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p ,

a.s. for all t > 0, where c1 > 0 can be determined explicitly. (Follows directly from Corollary

3.4.9.)

Of course, we can (and will) also extend many other asymptotic results from Chapter 3 to the current

setting, such as Theorem 3.4.10, Theorem 3.5.6 and Theorem 3.5.10.

Besides these results, which are direct consequences of the results in Chapter 3, we are also going to

derive upper bounds for the tail function of ||T (t)u− (u)||2L2(S), assuming that p ∈ [ 2n
n+2 , 2) \ {1}; more

precisely: Introduce u ∈ L1(Ω;L1(S)) with u ∈ L2(S) almost surely. Then we have: If r ∈ [1,∞) and

∆u ∈ L2r(Ω), where ∆u := ||u− (u)S ||2L2(S), then

P

∫
S

(Tra(t)u− (u)S)2dλ > α

 ≤ (1

t

)r
2

log(α+ 1)
c2
(
E(∆u)E((1 + ∆u)2r)

) 1
2 , (7.4)

for any α, t ∈ (0,∞); and if there is even an ε > 0 such that eε∆u ∈ L1(Ω), we have

P

∫
S

(Tra(t)u− (u)S)2dλ > α

 ≤ exp
(
−t 1

2 c3

) 2 exp
(
ε
2

)
log(α+ 1)

(E(∆u)E (exp (ε∆u)))
1
2 , (7.5)

for any α, t ∈ (0,∞).

Hereby c2, c3 ≥ 0 are constants which can be determined explicitly.

This chapter is structured as follows: Section 7.2 contains the basic assumptions/notations needed

in this chapter. Particularly, the needed operators are introduced there. In Section 7.3 we develop

some basic properties of these operators and prove that (7.2) has a unique mild solution. Then, we

proceed in Section 7.4 by deriving the identity (7.3) and prove that the mild solution is also a strong

one. Afterwards, in Section 7.5 we establish the asymptotic results i)-iii). Finally, Section 7.6 deals with

the tail function bounds (7.4) and (7.5).

Moreover, this chapter contains two appendices: In the first, we answer some technical measurability

questions which occur while defining Arp and derive a result regarding the measurability of the L∞(S)-

norm of vector-valued random variables; and in the second we provide some delicate results about

Adp(γ), its closure and their resolvents as well as a certain denseness result, which are needed to prove

the existence and uniqueness of mild solutions of (7.2).

7.2 Notation

Let us start by recalling some notations that where also used in Chapter 3: Throughout this entire

chapter, let n ∈ N \ {1}, p ∈ (1,∞) \ {2} and let ∅ 6= S ⊆ Rn be an open, connected and bounded set
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of class C1.

Moreover, λ denotes the Lebesgue measure on Rn, | · | the euclidean norm on Rn, and x · y is the

canonical inner product of any x, y ∈ Rn. In addition, we introduce the short-cut notations Lq(S) :=

Lq(S,B(S), λ;R) and Lq(S;Rn) := Lq(S,B(S), λ;Rn), for all q ∈ [1,∞]. As usually, W 1,1
Loc(S) denotes

the space of weakly differentiable functions and ∇f denotes the weak derivative of any f ∈W 1,1
Loc(S). In

addition, for any q ∈ [1,∞), W 1,q(S) denotes the Sobolev space of once weakly differentiable functions,

such that ϕ ∈ Lq(S) and ∇ϕ ∈ Lq(S;Rn); and as usually C∞c (S) is the space of infinitely often

continuous differentiable, compactly supported functions ϕ : S → R.

Finally, the reader is reminded that (Ω,F ,P) denotes a complete probability space and that

Lq(Ω;V ) := Lq(Ω,F ,P;V )

for any separable Banach space (V, || · ||V ) and all q ∈ [1,∞). This is furhter abbreviated by Lq(Ω), if

V = R.

Remark 7.2.1. Now let us introduce some new notations used throughout this chapter: For all

0 < ε1 < ε2 <∞, we set

i) L1
ε1,ε2(S) := {f ∈ L1(S) : ε1 ≤ f ≤ ε2 a.e. on S} and

ii) L1
ε1,ε2(Ω;L1(S)) := {f ∈ L1(Ω;L1(S)) : P({ω ∈ Ω : f(ω) ∈ L1

ε1,ε2(S)}) = 1}.

Note that L1
ε1,ε2(S) is closed w.r.t. || · ||L1(S), thus L1

ε1,ε2(S) ∈ B(L1(S)).

Furthermore, τk : R → R, where k ∈ (0,∞), always denotes the standard truncation function, i.e.

τk(x) := x, if |x| < k and τk(x) := ksgn(x). Moreover, for any f : S → R, τk(f) : S → R is defined by

τk(f) := τk(f(·)) and for f : Ω→ L1(S), τk(f) : Ω→ L1(S) is defined by τk(f)(ω) := τk(f(ω)).

In addition, we introduce the spaces

iii) τ(L1(Ω;L1(S))) := {τk(f)| f ∈ L1(Ω;L1(S)), k ∈ (0,∞)} and

iv) L1,∞(Ω;L1(S)) := {f ∈ L1(Ω;L1(S))| P(f ∈ L∞(S)) = 1}.

Finally, throughout this chapter, let 0 < g1 ≤ g2 <∞ be fixed constants and let g ∈ L1
g1,g2(Ω;L1(S))

be a fixed function.

Now, note the following: If γ ∈ L1
g1,g2(S), then γ ∈ L∞(S), γ > 0,

∫
S

γ
1

1−p dλ < ∞, and: If we set

γ0 : Rn → (0,∞), by γ0 := γ on S, and γ0 := g1 on Rn \ S, then γ0 ∈Mp(R
n) (see Remark 3.2.1), with

γ = γ0 on S. Thus, any γ ∈ L1
g1,g2(S) fulfills all assumptions, the fixed weight function in Chapter 3

had to fulfill. In particular, g(ω) is for P-a.e. ω ∈ Ω, a suitable choice as a weight function in Chapter

3. Moreover, note that W 1,p
γ (S) = W 1,p(S) for all γ ∈ L1

g1,g2(S), where W 1,p
γ (S) is the Sobolev space

introduced in (3.8) .

Now, let us re-introduce the operators considered in Chapter 3 using the introductory mentioned

new notation:

120



Definition 7.2.2. Let γ ∈ L1
g1,g2(S) and introduce the single-valued operator Adp(γ) : D(Adp(γ))→ L1(S)

by: (f, f̂) ∈ Adp(γ) if and only if the following assertions hold.

i) f ∈W 1,p(S) ∩ L∞(S).

ii) f̂ ∈ L1(S).

iii)
∫
S

γ|∇f |p−2∇f · ∇ϕdλ =
∫
S

f̂ϕdλ for all ϕ ∈W 1,p(S) ∩ L∞(S).

Moreover, let Adp(γ) : D(Adp(γ)) → L1(S) be the closure of Adp(γ), i.e. (f, f̂) ∈ Adp(γ), if there are

sequences ((fm, f̂m))m∈N ⊆ Adp(γ) such that lim
m→∞

fm = f in L1(S) and lim
m→∞

f̂m = f̂ in L1(S).

Thus, for any γ ∈ L1
g1,g2(S), we can apply the results of Chapter 3 to Adp(γ) and Adp(γ) . Particularly,

Adp(γ) is indeed single-valued, see Lemma 3.3.1.

Of course, we could have given the explicit definition of Adp(γ) as in Definition 3.2.4, but this technical

definition is not needed in this chapter.

Now, let us define the random counterparts of the operators introduced in the previous definition. Some

questions concerning measurability occur during their definition. Answers to these question can be

found in Appendix 7.G.

Definition 7.2.3. Let Arp : D(Arp) → 2L
1(Ω;L1(S)) be such that (f, f̂) ∈ Arp if and only if the following

assertions hold.

i) f ∈ L1(Ω;L1(S)) and P(f ∈W 1,p(S) ∩ L∞(S)) = 1.

ii) f̂ ∈ L1(Ω;L1(S)).

iii) P
(∫
S

g|∇f |p−2∇f · ∇ϕdλ =
∫
S

f̂ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞(S)

)
= 1.

Moreover, let Arp : D(Arp)→ 2L
1(Ω;L1(S)) be the closure of Arp.

7.3 Mild Solutions of the randomized weighted p-Laplacian evo-

lution Equation

The purpose of this section is to prove that the initial value problem (7.2) has for any u ∈ L1(Ω;L1(S))

precisely one mild solution. This will be achieved by the aid of Theorem 2.1.7. That means, we have to

verify that Arp is densely defined and m-accretive.

For proving this, some technical properties of Adp(γ) have to be established. These technical re-

sults and their proofs have been moved to Appendix 7.H. Moreover, the denseness of the spaces

τ(L1(Ω;L1(S))) and L1,∞(Ω;L1(S)) in L1(Ω;L1(S)) is also proven in Appendix 7.H.

Particularly, none of the proofs in Appendix 7.H relies on any result in this section.
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The Lemmata 7.3.1-7.3.4 are essentially a collection of useful properties of the considered operators.

These results are on the one hand of extreme importance for the next sections, and on the other hand,

they build the path to an estimate which yields particularly the accretivity of Arp, see Proposition 7.3.5.

Lemma 7.3.6, together with Appendix 7.H, brings us in the position to prove that Arp is m-accretive,

which is achieved in Theorem 7.3.7. Finally, it will be established that Arp, and a fortiori also Arp, has

dense domain, which then implies the first main result of this chapter, namely the existence of unique

mild solutions of (7.2).

Lemma 7.3.1. The operator Arp is single-valued.

Proof. Let (f, f̂), (f, f̃) ∈ Arp. Then we get∫
S

(f̂ − f̃)ϕdλ = 0, ∀ϕ ∈W 1,p(S) ∩ L∞(S)

with probability one. Consequently, f̃ = f̂ a.e. on S with probability one, i.e. f̂ = f̃ as elements of

L1(Ω, L1(S)).

Lemma 7.3.2. Let f, f̂ ∈ L1(Ω;L1(S)). The following assertions are equivalent.

i) (f, f̂) ∈ Arp

ii) P
({
ω ∈ Ω : (f(ω), f̂(ω)) ∈ Adp(g(ω))

})
= 1

Proof. Let f, f̂ ∈ L1(Ω;L1(S)). Then we have

{ω : (f(ω), f̂(ω)) ∈ Adp(g(ω))}

= {ω : f ∈W 1,p(S) ∩ L∞(S),

∫
S

g|∇f |p−2∇f · ∇ϕdλ =

∫
S

f̂ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞(S)},

which yields, by invoking Lemma 7.G.1 and Lemma 7.G.2 that the event {ω : (f(ω), f̂(ω)) ∈ Adp(g(ω))}
is measurable. Moreover, the former equality also yields the equivalence of i) and ii).

Lemma 7.3.3. Let (f, f̂) ∈ Arp. Then we have

P
({
ω ∈ Ω : (f(ω), f̂(ω)) ∈ Adp(g(ω))

})
= 1.

Proof. As (f, f̂) ∈ Arp, there is, by passing to a subsequence if necessary, a sequence ((fm, f̂m))m∈N ⊆ Arp
such that

lim
m→∞

(fm(ω), f̂m(ω)) = (f(ω), f̂(ω)), for P-a.e. ω ∈ Ω, in L1(S)2.

Consequently, Lemma 7.3.2 yields that we have, up to a P-nullset

{ω ∈ Ω : (f(ω), f̂(ω)) ∈ Adp(g(ω))
}
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= {ω ∈ Ω : ∃(Fm(ω), F̂m(ω))m∈N ⊆ Adp(g(ω)), lim
m→∞

(Fm(ω), F̂m(ω)) = (f(ω), f̂(ω)), in L1(S)2
}

⊇ {ω ∈ Ω : lim
m→∞

(fm(ω), f̂m(ω)) = (f(ω), f̂(ω)), in L1(S)2
}

= Ω.

Hence {ω ∈ Ω : (f(ω), f̂(ω)) ∈ Adp(g(ω))
}

is, up to a P-nullset, equal to Ω. Therefore this event is

F-measurable, because (Ω,F ,P) is complete, and occurs with probability one.

Lemma 7.3.4. Let (f, f̂) ∈ Arp and assume f ∈ L1,∞(Ω;L1(S)). Then (f, f̂) ∈ Arp.

Proof. Invoking Lemma 7.3.3 yields that (f(ω), f̂(ω)) ∈ Adp(g(ω)) for P-a.e. ω ∈ Ω. As also f(ω) ∈
L∞(S) for P-a.e. ω ∈ Ω, we have, by virtue of Lemma 3.3.1 that (f(ω), f̂(ω)) ∈ Adp(g(ω)) for P-a.e.

ω ∈ Ω. This yields the claim by Lemma 7.3.2.

Proposition 7.3.5. Let (f, f̂), (h, ĥ) ∈ Arp, α ∈ (0,∞), q ∈ [1,∞] and assume that f − h+α(f̂ − ĥ) ∈
Lq(S) with probability one. Then we have

P
({
ω ∈ Ω : ||f(ω)− h(ω)||Lq(S) ≤ ||f(ω)− h(ω) + α(f̂(ω)− ĥ(ω))||Lq(S)

})
= 1. (7.6)

Particularly, Arp as well as Arp, are accretive.

Proof. We have, by virtue of Lemma 7.3.3, that (f(ω), f̂(ω)), (h(ω), ĥ(ω)) ∈ Adp(g(ω)) for P-a.e. ω ∈ Ω.

This implies (7.6), since Adp(g(ω)) is for P-a.e. ω ∈ Ω, a completely accretive operator, see Theorem

3.2.5.

Moreover, (7.6) yields particularly that ||f − h||L1(Ω;L1(S)) ≤ ||f − h + α(f̂ − ĥ)||L1(Ω;L1(S)), i.e. Arp is

accretive. This obviously implies that Arp is accretive as well.

Lemma 7.3.6. Assume that g is simple, i.e. there is an m ∈ N, γ1, ..., γm ∈ L1(S) and disjoint sets

Ω1, ...,Ωm ∈ F , such that
m⋃
k=1

Ωk = Ω and

g(·) =

m∑
k=1

γk11Ωk(·). (7.7)

Moreover, let h ∈ L1,∞(Ω;L1(S)). Then the mapping defined by

Ω 3 ω 7→ (Id+Adp(g(ω)))−1h(ω)

is F-B(L1(S))-measurable.1

Proof. Let h ∈ L1,∞(Ω;L1(S)) be arbitrary but fixed and assume that g is given by (7.7). Moreover,

assume w.l.o.g. that none of the Ωk is a P-nullset.

Since g1 ≤ g ≤ g2 a.e. on S with probability one, it is clear that g1 ≤ γk ≤ g2 a.e. on S for each

k = 1, ...,m.

1See Remark 2.1.9 for the definition of the resolvent (Id+Ad
p(g(ω)))−1.
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Moreover, as h(ω) ∈ L∞(S) for P-a.e. ω ∈ Ω, Lemma 7.H.1.i) yields that the mapping ϕ : Ω → L1(S)

defined by

ϕ(ω) := (Id+Adp(g(ω)))−1h(ω), for P-a.e. ω ∈ Ω

is well-defined.

For a given k ∈ {1, ...,m} and all ω ∈ Ωk except for a P-null-set, we have ϕ(ω) = (Id+Adp(γk))−1h(ω).

Consequently, Lemma 7.H.1.ii) yields

ϕ(ω) =

m∑
k=1

11Ωk(ω)(Id+Adp(γk))−1h(ω) =

m∑
k=1

11Ωk(ω)(Id+Adp(γk))−1h(ω), for P-a.e. ω ∈ Ω.

Moreover, (Id + Adp(γk))−1 is L1(S)-continuous for all k = 1, ...,m, see Lemma 7.H.1.iii). Hence,

the mapping (Id + Adp(γk))−1 is B(L1(S)) − B(L1(S))-measurable. As h ∈ L1(Ω;L1(S)), it follows

that Ω 3 ω 7→ (Id + Adp(γk))−1h(ω) is F-B(L1(S))-measurable as it is the composition of measurable

functions. Consequently, Ω 3 ω 7→ 11Ωk(ω)(Id +Adp(γk))−1h(ω) is also F-B(L1(S))-measurable, which

yields the measurability of ϕ.

Theorem 7.3.7. We have

L1,∞(Ω;L1(S)) ⊆ R(Id+Arp). (7.8)

Consequently, the following assertions hold.

i) R(Id+Arp) is a dense subset of L1(Ω;L1(S)).

ii) Arp is m-accretive.

Proof. Lemma 7.H.3 yields that (7.8) implies i). Moreover, it is plain that R(Id + Arp) ⊆ R(Id +Arp).
Consequently, (7.8) implies that R(Id+Arp) is also dense. Moreover, as Arp is accretive and closed, we

have that R(Id+Arp) is closed, cf. [8, Proposition 2.18]. Consequently, (7.8) implies i) as well as ii).

Now prove inclusion (7.8). Let h ∈ L1,∞(Ω;L1(S)).

Let f : Ω→ L1(S) be defined by f(ω) := (Id+ Adp(g(ω)))−1h(ω) for P-a.e. ω ∈ Ω. This is well-defined

by Lemma 7.H.1.i).

Now introduce f̂ : Ω→ L1(S) by f̂(ω) := Adp(g(ω))f(ω) for P-a.e. ω ∈ Ω.

Trivially, h = f + f̂ by construction. Consequently the claim follows if (f, f̂) ∈ Arp. Proving this result

is divided in the following steps.

(I) f as well as f̂ are F-B(L1(S))-measurable.

(II) f, f̂ ∈ L1(Ω;L1(S)).

(III) (f, f̂) ∈ Arp.
Proof of (I). Since f̂ = h− f it suffices to prove that f is F-B(L1(S))-measurable.

As g ∈ L1
g1,g2(Ω;L1(S)), there is a sequence of simple functions (γm)m∈N ⊆ L1

g1,g2(Ω;L1(S)) such that

lim
m→∞

γm(ω) = g(ω) in L1(S) for P-a.e. ω ∈ Ω.
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Consequently, it follows by virtue of Lemma 7.H.2 that

f(ω) = (Id+Adp(g(ω)))−1h(ω) = w - lim
m→∞

(Id+Adp(γm(ω)))−1h(ω), in L1(S) for P-a.e. ω ∈ Ω,

i.e. f is, by Lemma 7.3.6, almost surely the L1(S)-weak limit of F-B(L1(S))-measurable functions and

consequently it is itself F-B(L1(S))-measurable.

Proof of (II). As particularly h ∈ L1(Ω;L1(S)), it suffices to prove that f ∈ L1(Ω;L1(S)).

The needed measurability condition has been proven in (I).

As (f(ω), f̂(ω)) ∈ Adp(g(ω)) for P-a.e. ω ∈ Ω and as Adp(g(ω)) is completely accretive, we obtain in

particular ∫
S

|f(ω)|dλ ≤
∫
S

|f(ω) + f̂(ω)|dλ =

∫
S

|h(ω)|dλ for P-a.e. ω ∈ Ω.

This obviously implies
∫
Ω

||f(ω)||L1(S)dP(ω) ≤
∫
Ω

||h(ω)||L1(S)dP(ω) <∞, i.e. f ∈ L1(Ω;L1(S)).

Proof of (III). We have f, f̂ ∈ L1(Ω;L1(S)) and trivially (f(ω), f̂(ω)) ∈ Adp(g(ω)) P-a.e. ω ∈ Ω, which

yields (III) by Lemma 7.3.2.

Lemma 7.3.8. D(Arp) as well as D(Arp) are dense subsets of (L1(Ω;L1(S)), || · ||L1(Ω;L1(S))).

Proof. As D(Arp) ⊆ D(Arp), it suffices to prove the claim for D(Arp). Moreover, Lemma 7.H.3 yields that

it suffices to prove that

τ(L1(Ω;L1(S))) ⊆ D(Arp)
L1(Ω;L1(S))

.

Let h ∈ τ(L1(Ω;L1(S))) and introduce k ∈ (0,∞), h̃ ∈ L1(Ω;L1(S)) such that h = τk(h̃).

As Arp is m-accretive there is for each m ∈ N a uniquely determined pair of functions (fm, f̂m) ∈ Arp,
such that

h = fm +
1

m
f̂m.

Moreover, the last equation yields, by observing that obviously (0, 0) ∈ Arp and by recalling Proposition

7.3.5 that

||fm(ω)||L∞(S) ≤ ||fm(ω) +
1

m
f̂m(ω)||L∞(S) = ||h(ω)||L∞(S) ≤ k, ∀m ∈ N and for P-a.e. ω ∈ Ω.

Consequently, we have in particular fm ∈ L1,∞(Ω;L1(S)) and hence it follows, by invoking Lemma 7.3.4

that (fm, f̂m) ∈ Arp for each m ∈ N.

Hence the claim follows if we prove that

lim
m→∞

fm = h, in L1(Ω;L1(S)). (7.9)
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Firstly, (fm, f̂m) ∈ Arp yields (fm(ω), f̂m(ω)) ∈ Adp(g(ω)) for P-a.e. ω ∈ Ω, cf. Lemma 7.3.2. Moreover,

h(ω) ∈ L∞(S), h(ω) = fm(ω) + 1
m f̂(ω), i.e. fm(ω) = (Id+ 1

mA
d
p(g(ω)))−1h(ω) for all m ∈ N and P-a.e.

ω ∈ Ω. Consequently, we obtain by virtue of Remark 3.5.5 and Lemma 7.H.1.ii) that

lim
m→∞

||fm(ω)− h(ω)||L1(S) = 0, for P-a.e. ω ∈ Ω.

Finally, observe that ||fm(ω)−h(ω)||L1(S) ≤ 2kλ(S) for all m ∈ N, and P-a.e. ω ∈ Ω, which yields (7.9),

by virtue of dominated convergence.

Theorem 7.3.9. Arp is densely defined and m-accretive. Thus, for any u ∈ L1(Ω;L1(S)), the initial

value problem (7.2) has a uniquely determined mild solution.

Proof. Follows from Theorem 2.1.7, Theorem 7.3.7 and Lemma 7.3.8.

7.4 Strong Solutions of the randomized weighted p-Laplacian

evolution Equation

Throughout everything which follows (Tra(t))t≥0 denotes the semigroup associated to Arp, see Definition

2.1.8. Moreover, for any γ ∈ L1
g1,g2(S), we denote by (Tdet(t, γ))t≥0 the semigroup associated to Adp(γ).

Consequently, (Tdet(t, γ))t≥0 is precisely the semigroup we considered in Chapter 3 - A fact which will

be exploited frequently in all of the following sections.

The prime objective of this section is to establish that t 7→ Tra(t)u is, for any u ∈ L1(Ω;L1(S)), not

only a mild, but also a strong solution of (7.2), which will be achieved by the aid of Theorem 2.1.12 and

the results in Chapter 3. Moreover, we will then also derive some basic properties of (Tra(t))t≥0.

Let us start with the following useful result connecting the deterministic and the random semigroup:

Theorem 7.4.1. Let u ∈ L1(Ω;L1(S)) and t ∈ [0,∞). Then we have

P ({ω ∈ Ω : (Tra(t)u)(ω) = Tdet(t, g(ω))u(ω)}) = 1.

Proof. Let u ∈ L1(Ω;L1(S)) and t̃ ∈ (0,∞).

Firstly, it will be proven inductively that

((Id+ t̃Arp)−mu)(ω) = (Id+ t̃Adp(g(ω)))−m(u(ω)), ∀m ∈ N and for P-a.e. ω ∈ Ω. (7.10)

So let m = 1 and introduce f := (Id+ t̃Arp)−1u. Consequently, there is an f̂ ∈ Arpf such that f+ t̃f̂ = u.

As (f, f̂) ∈ Arp, we have (f(ω), f̂(ω)) ∈ Adp(g(ω)) for P-a.e. ω ∈ Ω, see Lemma 7.3.3.

Since obviously f(ω) + t̃f̂(ω) = u(ω) for P-a.e. ω ∈ Ω we obtain that f(ω) = (Id+ t̃Adp(g(ω)))−1(u(ω))

for P-a.e. ω ∈ Ω and consequently

((Id+ t̃Arp)−1u)(ω) = f(ω) = (Id+ t̃Adp(g(ω)))−1(u(ω)) for P-a.e. ω ∈ Ω,
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i.e. (7.10) is proven for m = 1. The proof of the induction step works analogously and will be skipped.

Now let t ∈ [0,∞) be given and choose t̃ := t
m in (7.10). Then we get((

Id+
t

m
Arp
)−m

u

)
(ω) =

(
Id+

t

m
Adp(g(ω))

)−m
u(ω), ∀m ∈ N and P-a.e. ω ∈ Ω. (7.11)

Moreover, the exponential formula (Theorem 2.1.10) yields, by passing to a subsequence if necessary,

that

lim
m→∞

((
Id+

t

m
Arp
)−m

u

)
(ω) = (Tra(t)u)(ω), for P-a.e. ω ∈ Ω in L1(S).

Analogously, we also have by virtue of the exponential formula that

lim
m→∞

(
Id+

t

m
Adp(g(ω))

)−m
u(ω) = Tdet(t, g(ω))u(ω), for P-a.e. ω ∈ Ω, in L1(S),

which yields the claim.

Theorem 7.4.2. Let u ∈ L1(Ω;L1(S)). Then (Tra(·)u)|(0,∞) is locally Lipschitz continuous and right

differentiable. Thus, (Tra(·)u)|(0,∞) ∈W 1,1
Loc((0,∞);L1(Ω;L1(S))) and

0 ∈ T ′ra(t)u+ArpTra(t)u, for a.e. t ∈ (0,∞), Tra(0)u = u,

i.e. Tra(·)u is not only the mild, but also the uniquely determined strong solution of (7.2).

Proof. Thanks to Theorem 2.1.12 (and Theorem 7.3.9) it indeed suffices to prove the local Lipschitz

continuity and the right differentiability on (0,∞).

The desired Lipschitz continuity follows directly from Remark 3.2.6.vi) (with q = 1) and Theorem 7.4.1,

more precisely: Let [ε1, ε2] ⊆ (0,∞), then the two aforementioned results yield: For all t, t+h ∈ [ε1, ε2],

where h ≥ 0 we have

||(Tra(t+ h)u)(ω)− (Tra(t)u)(ω)||L1(S) ≤ h
2

|p− 2|t
||u(ω)||L1(S) ≤ h

2

|p− 2|ε1
||u(ω)||L1(S) (7.12)

for P-a.e. ω ∈ Ω; which of course implies

||Tra(t+ h)u− Tra(t)u||L1(Ω;L1(S)) ≤ h
2

|p− 2|ε1
||u||L1(Ω;L1(S)),

for all t, t+ h ∈ [ε1, ε2], with h ≥ 0.

To prove the desired right differentiability, let (hm)m∈N ⊆ (0,∞) be a null-sequence, and let, for any

γ ∈ L1
g1,g2(S), Adp(γ)◦ : L1(S) → L1(S) denote the infinitesimal generator of Tdet, which exists, see

Remark 3.2.6.v).
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Firstly, note that the domain invariance of Tdet(·, γ) yields

lim
m→∞

1

hm
(Tdet(t+ hm, γ)v − Tdet(t, γ)v) = −Adp(γ)◦Tdet(t, γ)v, (7.13)

in L1(S), for all v ∈ L1(S), γ ∈ L1
g1,g2(S) and t > 0. Now introduce the mapping ζ : (0,∞) →

L1(Ω, L1(S)) by ζ(t)(ω) := −Adp(g(ω))◦Tdet(t, g(ω))u(ω), for all t > 0 and P-a.e, ω ∈ Ω, which is indeed

well-defined, since: For each t > 0 and ω ∈ Ω, with g1 ≤ g(ω) ≤ g2, ζ(τ)(ω) exists. Moreover, (7.13),

together with Theorem 7.4.1, implies

lim
m→∞

∣∣∣∣∣∣∣∣ 1

hm

(
(Tra(t+ hm)u)(ω)− (Tra(t)u)(ω)

)
− ζ(t)(ω)

∣∣∣∣∣∣∣∣
L1(S)

= 0,

for P-a.e. ω ∈ Ω and any fixed t > 0. Thus, each ζ(t) is F-B(L1(S))-measurable, since it is the almost

sure limit of F-B(L1(S))-measurable functions and (Ω,F ,P) is complete. Moreover, thanks to (7.12)

and u ∈ L1(Ω;L1(S)), we can apply dominated convergence to the preceding equation, which yields

that indeed ζ(t) ∈ L1(Ω;L1(S)) and

lim
m→∞

∣∣∣∣∣∣∣∣ 1

hm

(
Tra(t+ hm)u− Tra(t)u

)
− ζ(t)

∣∣∣∣∣∣∣∣
L1(Ω;L1(S))

= 0,

for all t > 0, which implies that Tra(·)u is right differentiable on (0,∞).

Proposition 7.4.3. Let u, u1, u2 ∈ L1(Ω;L1(S)), q ∈ [1,∞] and t ∈ [0,∞). Moreover, assume that

u, u1, u2 ∈ Lq(S) a.s. Then the following assertions hold.

i) P
({
ω ∈ Ω : ||(Tra(t)u1)(ω)− (Tra(t)u2)(ω)||Lq(S) ≤ ||u1(ω)− u2(ω)||Lq(S)

})
= 1,

ii) P
({
ω ∈ Ω : ||(Tra(t)u)(ω)||Lq(S) ≤ ||u(ω)||Lq(S)

})
= 1.

Proof. Follows trivially from Remark 3.2.6.iii),iv) and Theorem 7.4.1.

Theorem 7.4.4. Let u ∈ L1,∞(Ω;L1(S)). Then we have

−T ′ra(t)u = ArpTra(t)u, for a.e. t ∈ (0,∞). (7.14)

Proof. Theorem 7.4.2 yields that (Tra(t)u,−T ′ra(t)u) ∈ Arp for a.e. t ∈ (0,∞). Consequently, it follows

by virtue of Lemma 7.3.4 that it suffices to prove P(Tra(t)u ∈ L∞(S)) = 1, for a.e. t ∈ (0,∞). But

this is a trivial consequence of Proposition 7.4.3.ii).

Theorem 7.4.4 finishes the discussion on existence and uniqueness results. The remaining part of

this chapter is devoted to determine the asymptotic behavior of (Tra(t))t≥0.
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7.5 Stability Results

This section opens the investigation on asymptotic results regarding Tra. Thanks to Theorem 7.4.1, it

is straightforward to transfer the asymptotic results from Chapter 3 to the current setting.

As in Chapter 3, we denote by (v)S the average of any v ∈ L1(S), i.e. (v)S := 1
λ(S)

∫
S

vdλ. Moreover,

for any q ∈ [1,∞), we denote by CS,q the Poincaré constant of S in Lq(S), see Remark 3.4.1.

Now, for any u : Ω → L1(S), introduce the real-valued random variable (u)S : Ω → R, by

(u)S(ω) := (u(ω))S . Moreover, for any u ∈ L1(Ω;L1(S)), with P(u ∈ L2(S)) = 1, we denote by

∆u : Ω→ [0,∞) the real-valued random variable defined by

∆u(ω) := ||u(ω)− (u(ω))S ||
2
L2(S),

for P-a.e. ω ∈ Ω.

Theorem 7.5.1. Let u ∈ L1(Ω;L1(S)). Then (Tra(t)u)S = (u)S almost surely, for all t ∈ [0,∞).

Moreover, all of the following assertions hold.

i) If u ∈ L2(S) a.s., then ||Tra(t)u− (u)S ||L1(S) ≤ CS,1λ(S)
p−1
p

(
2

g1|p−2|

) 1
p

∆
1
p
u

(
1
t

) 1
p a.s. for all t > 0.

ii) If u ∈ Lp(S) a.s. and p > n, then ||Tra(t)u − (u)S ||L∞(S) ≤ C∗S,δλ(S)
1

1+δ

(
2

λ(S)g1|p−2|

) 1
p

∆
1
p
u

(
1
t

) 1
p ,

a.s. for all t > 0 and δ ∈ (n − 1, p − 1) where C∗S,δ = C̃S,1+δ

(
C1+δ
S,1+δ + 1

) 1
1+δ

, and C̃S,1+δ is the

operator norm of the continuous injection W 1,1+δ(S) ↪→ L∞(S).

iii) If p ∈
(

(n−2)
n+2 + 1, 2

)
6= ∅ and u ∈ L2(S) a.s., then ||Tra(t)u − (u)S ||

2−p
L2(S) ≤

(
−κ̂1t+ ∆

2−p
2

u

)
+

a.s., for all t > 0, where κ̂1 := (2− p)

(
C̃pS

(
C

2n
n+2

S, 2n
n+2

+ 1

)np+2p
2n

λ(S)
np+2p−2n

2n g−1
1

)−1

and C̃S is the

operator norm of the continuous injection W 1, 2n
n+2 ↪→ L2(S).

iv) If p ∈ (2,∞), then ||Tra(t)u − (u)S ||L1(S) ≤ λ(S)
1
2 κ̂

1
2−p
2

(
1
t

) 1
p−2 a.s., for all t > 0, where we set

κ̂2 := (p− 2)22−pg1λ(S)
2−p
2 C−pS,2.

Proof. That (Tra(t)u)S = (u)S a.s., for all t ∈ [0,∞), follows from Lemma 3.3.5 and Theorem 7.4.1.

Now, let us prove i). Fix t > 0 and assume u ∈ L2(S) a.s. Then it follows from Theorem 7.4.1 and

Corollary 3.4.9 that

||(Tra(t)u)(ω)− (u)S(ω)||L1(S) ≤ CS,1

∫
S

g(ω)
1

1−p dλ


p−1
p (

2

|p− 2|

) 1
p

∆u(ω)
1
p

(
1

t

) 1
p

,
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for P-a.e. ω ∈ Ω, which yields i) since g ≥ g1 almost surely.

The claims ii)-iv) are all proven identically to the proof of i): One uses g ≥ g1 a.s., together with

Theorem 7.4.1 to deduce: ii) from Theorem 3.4.10, iii) from Theorem 3.5.6 and iv) from 3.5.10.

In contrary to the deterministic case Theorem 7.5.1.iii) does not imply that the semigroup extincts

in finite time, i.e.: Under the assumptions of Theorem 7.5.1.iii), there of course is for P-a.e. ω ∈ Ω, a

time t(ω) ∈ (0,∞), which depends on ω, such that ||Tra(t(ω))u(ω) − (u)S(ω)||L2(S) = 0, but this does

not necessarily imply ||Tra(t∗)u− (u)S ||L1(Ω;L2(S)) = 0 for a deterministic constant t∗ ∈ (0,∞).

Now let us conclude this short section by deriving an analogous version of Theorem 3.4.13:

Theorem 7.5.2. Let q ∈ [1,∞) and u ∈ Lq(Ω;Lq(S)). Then we have

lim
t→∞

Tra(t)u = (u)S , in Lq(Ω;Lq(S)). (7.15)

Proof. Let (tm)m∈N ⊆ (0,∞) be such that lim
m→∞

tm = ∞. Then appealing to Theorem 3.4.13 and

Theorem 7.4.1 yields

lim
m→∞

||Tra(tm)u− (u)S ||
q
Lq(S) = 0,

almost surely. Moreover, Remark 3.2.6.iv) and Theorem 7.4.1 enable us to conclude that

||Tra(tm)u− (u)S ||
q
Lq(S) ≤ (||u||Lq(S) + ||(u)S ||Lq(S))

q, ∀m ∈ N,

almost surely. Thus, as the right hand side of the previous inequality is an element of L1(Ω), it follows

from Lebesgue’s theorem that

lim
m→∞

∫
Ω

||Tra(tm)u− (u)S ||
q
Lq(S)dP = 0,

which means that (7.15) holds.

7.6 Decay Estimates of the Tail Function for ”small” p.

The purposes of this Section is to prove the estimates (7.4) and (7.5).

Remark 7.6.1. Let v ∈ L2(S) and γ ∈ L1
g1,g2(S). Throughout the remaining part of this section

hv,γ : [0,∞)→ [0,∞) denotes the function defined by

hv,γ(t) := log

∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ+ 1


for any t ∈ [0,∞).
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The basic technique to obtain a bound on the tail function of ||Tra(t)u− (u)S ||2L2(S) is as follows: We

use Markov’s inequality to bound the tail function by
E(log(||Tra(t)u−u(u)S ||

2
L2(S)

+1))

log(α+1) . And afterwards we

use Theorem 7.4.1 together with an upper bound on hv,γ to get an upper bound on the tail function of

||Tra(t)u− u(u)S ||2L2(S). Finally, some technical calculations yield the results (7.4) and (7.5).

The following well known lemma (which is a version of Grönwall’s inequality) builds the foundation for

bounding hv,γ . The proof works exactly like the proof of Lemma 3.5.1 and will be omitted.

Lemma 7.6.2. Let h : [0,∞) → [0,∞) be locally Lipschitz continuous. Moreover, set b := h(0) and

assume that there is a β > 0 such that

h′(t) + βh(t) ≤ 0, for a.e. t ∈ (0,∞). (7.16)

Then we have

h(t) ≤ b exp(−βt)

for all t ∈ [0,∞).

Remark 7.6.3. Recall that CS,q denotes the Poincaré constant of S in Lq(S), q ∈ [1,∞). In addition,

C̃S, 2n
n+2

denotes the operator norm of the continuous injection W 1, 2n
n+2 (S) ↪→ L2(S). Note that 2n

n+2 < n,

consequently Sobolev’s embedding theorem yields the existence of such an injection.

Lemma 7.6.4. Let γ ∈ L1
g1,g2(S) and introduce v ∈ D(Adp(γ)). Then hv,γ is locally Lipschitz continuous.

Moreover, Tdet(t, γ)v ∈W 1,p(S) for every t ∈ (0,∞) and

h′v,γ(t) ≤ −2

∫
S

γ|∇Tdet(t, γ)v|pdλ

∫
S

(
v − (v)S

)2

dλ+ 1

−1

(7.17)

for a.e. t ∈ (0,∞).

Proof. At first the local Lipschitz continuity will be established. Let τ > 0 be given. Then appealing to

Lemma 3.5.3 and Lemma 3.3.3 gives that the mapping defined by [0, τ ] 3 t 7→
∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ

is Lipschitz continuous. This, together with the commonly known inequality

| log(x+ 1)− log(y + 1)| ≤ |x− y|, ∀x, y ∈ [0,∞).

yields the Lipschitz continuity of hv,γ |[0,τ ].

As v ∈ D(Adp(γ)) ⊆ L∞(S), we get by Remark 3.2.6.iv),v) that Tdet(t, γ)v ∈ D(Adp(γ)) ∩ L∞(S) for

all t ∈ (0,∞). Thus, employing Lemma 3.3.1 yields Tdet(t, γ)v ∈ D(A) ⊆W 1,p(S) for all t ∈ (0,∞).

131



Consequently, it remains to prove (7.17). Firstly, we infer from Lemma 3.5.3 and Lemma 3.3.3 that

∂

∂t

∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ = −2

∫
S

γ|∇Tdet(t, γ)v|pdλ, for a.e. t ∈ (0,∞). (7.18)

Moreover, it follows from Lemma 3.3.3 and Remark 3.2.6.iv) that∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ ≤
∫
S

(
v − (v)S

)2

dλ, ∀t ∈ [0,∞).

This, together with (7.18), yields

∂

∂t
hv,γ(t) =

−2
∫
S

γ|∇Tdet(t, γ)v|pdλ

∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ+ 1
≤ −2

∫
S

γ|∇Tdet(t, γ)v|pdλ

∫
S

(
v − (v)S

)2

dλ+ 1

−1

for a.e. t ∈ (0,∞).

Lemma 7.6.5. Let γ ∈ L1
g1,g2(S), introduce v ∈ D(Adp(γ)) and set m := 2n

n+2 . Moreover, assume

p ∈ [m, 2) \ {1}. Then we have

hv,γ(t) ≤ −h′v,γ(t)
1

p
max

(
C̃2
S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p , 1

)∫
S

(
v − (v)S

)2

dλ+ 1

 ,

for a.e. t ∈ (0,∞).

Proof. Firstly, we infer from Sobolev’s embedding theorem and (Tdet(t, γ)v)S = (v)S that∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ ≤ C̃2
S,m

(
||Tdet(t, γ)v − (v)S ||

m
Lm(S) + ||∇Tdet(t, γ)v||mLm(S;Rn)

) 2
m

.

Using this and Poincaré’s inequality yields

∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ ≤ C̃2
S,m

(
CmS,m + 1

) 2
m

∫
S

|∇Tdet(t, γ)v|mdλ

 2
m

, ∀t ∈ [0,∞), (7.19)

which is finite as p ≥ m and Tdet(t, γ)v ∈W 1,p(S), by Lemma 7.6.4.

Consequently, it follows from p ≥ m, γ ≥ g1, (7.19) as well as Hölder’s inequality that

hv,γ(t) ≤ log

C̃2
S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p

∫
S

γ|∇Tdet(t, γ)v|pdλ

 2
p

+ 1

 , ∀t ∈ [0,∞).
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Now it is plain that C̃2
S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p ≤ max(C̃2

S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p , 1) and

hence employing Bernoulli’s inequality yields

hv,γ(t) ≤ max

(
C̃2
S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p , 1

)
log


∫
S

γ|∇Tdet(t, γ)v|pdλ

 2
p

+ 1

 (7.20)

for all t ∈ [0,∞).

Consequently, (7.20) and the well known inequalities x
2
p + 1 = x

2
p + 1

2
p ≤ (x+ 1)

2
p and log(x+ 1) ≤ x

for all x ≥ 0 imply

hv,γ(t) ≤ max

(
C̃2
S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p , 1

)
2

p

∫
S

γ|∇Tdet(t, γ)v|pdλ.

Finally, the claim follows from the preceding inequality and (7.17).

Lemma 7.6.6. Let γ ∈ L1
g1,g2(S), introduce v ∈ L2(S), set m := 2n

n+2 and assume p ∈ [m, 2) \ {1}.
Then we have

log

∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ+ 1

 ≤ 2||v − (v)S ||L2(S) exp

(
−C∗S,m,p,g1t

1 + ||v − (v)S ||2L2(S)

)
, (7.21)

for every t ∈ [0,∞), where

C∗S,m,p,g1 = p

(
max

(
C̃2
S,m

(
CmS,m + 1

) 2
m g
− 2
p

1 λ(S)
p−m
p , 1

))−1

. (7.22)

Proof. Firstly, assume v ∈ D(Adp(γ)) and introduce β := C∗S,m,p,g1

(
1 + ||v − (v)S ||2L2(S)

)−1

. Then we

have, by recalling Lemma 7.6.5, that h′v,γ(t) + βhv,γ(t) ≤ 0 for a.e. t ∈ (0,∞) which yields, by invoking

Lemma 7.6.2 that hv,γ(t) ≤ hv,γ(0) exp(−βt) for every t ∈ [0,∞) and therefore

log

∫
S

(
Tdet(t, γ)v − (v)S

)2

dλ+ 1

 ≤ log

∫
S

(
v − (v)S

)2

dλ+ 1

 exp

(
−C∗S,m,p,g1t

1 + ||v − (v)S ||2L2(S)

)
.

Consequently, as log(x2 + 1) ≤ 2x for all x ≥ 0 we obtain

log

∫
S

(
v − (v)S

)2

dλ+ 1

 = log(||v − (v)S ||
2
L2(S) + 1) ≤ 2||v − (v)S ||L2(S).

Thus, combining the preceding two inequalities yields (7.21) for v ∈ D(Adp(γ)).

Now let v ∈ L2(S) and introduce (vk)k∈N ⊆ D(Adp(γ)) such that lim
k→∞

vk = v in L2(S). Such a sequence

exists, se Lemma 3.5.4.
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Then trivially lim
k→∞

(vk)S = (v)S , and we get by contractivity that lim
k→∞

Tdet(t, γ)vk = Tdet(t, γ)v in

L2(S).

As the mappings [0,∞) 3 x 7→ log(x+ 1) and [0,∞) 3 x 7→ exp(−(x+ 1)−1C∗S,m,p,g1t) are continuous,

the claim follows.

Remark 7.6.7. In the sequel C∗S,m,p,g1 denotes the constant defined in (7.22). The previous lemma

brings us in the position to prove the main result of this section.

Theorem 7.6.8. Let u ∈ L1(Ω;L1(S)), with u ∈ L2(S) a.s., t ∈ (0,∞), α > 0 and assume that

p ∈ [m, 2) \ {1}, where m := 2n
n+2 . Then all of the following assertions hold.

If ∆u ∈ L1(Ω), then

P

∫
S

(Tra(t)u− (u)S)2dλ > α

 ≤ 2

log(α+ 1)

(
E(∆u)E

(
exp

(−2tC∗S,m,p,g1
1 + ∆u

))) 1
2

. (7.23)

If there is an r ∈ [1,∞) such that ∆u ∈ L2r(Ω), then

P

∫
S

(Tra(t)u− (u)S)2dλ > α

 ≤ (1

t

)r
2

log(α+ 1)

(
r

2C∗S,m,p,g1

)r (
E(∆u)E((1 + ∆u)2r)

) 1
2 . (7.24)

If there is an ε > 0 such that eε∆u ∈ L1(Ω), then

P

∫
S

(Tra(t)u− (u)S)2dλ > α

 ≤ exp

(
−t 1

2

(
εC∗S,m,p,g1

2

) 1
2

)
2 exp( ε2 )

log(α+ 1)
(E(∆u)E (exp (ε∆u)))

1
2 .

Proof. Proof of (7.23). Firstly, note that [0,∞) 3 x 7→ log(x + 1) is obviously nonnegative, increasing

and strictly positive on (0,∞). Consequently, we have by virtue of Markov’s inequality and by recalling

Lemma 7.6.6 as well as Theorem 7.4.1 that

P

∫
S

(Tra(t)u− (u)S)2dλ > α

 ≤ 2

log(α+ 1)

∫
Ω

∆u(ω)
1
2 exp

(−C∗S,m,p,g1t
1 + ∆u(ω)

)
dP(ω)

which verifies (7.23) by applying Cauchy-Schwarz’ inequality. (Moreover, note that the assumption on

∆u ensures that the first expectation exists and the the second one exists trivially.)

Throughout the remaining part of this proof, let ∆̃u := 1
1+∆u

.

Now inequality (7.24) follows from the succeeding estimate, where relation (7.23) is used.

trP

∫
S

(Tra(t)u− (u)S)2dλ > α
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≤ tr
2

log(α+ 1)

(
E(∆u)E

(
exp

(−2tC∗S,m,p,g1
1 + ∆u

))) 1
2

=
2(E(∆u))

1
2

log(α+ 1)

(
E
(

(2r−1∆̃uC
∗
S,m,p,g1)−2r exp

(
r log

(
(2r−1∆̃uC

∗
S,m,p,g1t)

2
)
− 2tC∗S,m,p,g1∆̃u

))) 1
2

≤ 2(E(∆u))
1
2

log(α+ 1)

(
E
(

(2r−1∆̃uC
∗
S,m,p,g1)−2r exp

(
r2r−1∆̃uC

∗
S,m,p,g1t− 2tC∗S,m,p,g1∆̃u

))) 1
2

=
2

log(α+ 1)

(
r

2C∗S,m,p,g1

)r (
E(∆u)E

(
(1 + ∆u)2r

)) 1
2 .

Thus, it remains to verify the last tail bound. For the sake of brevity, let β :=
(

1
2εC

∗
S,m,p,g1

) 1
2 . The

desired estimate easily follows from (7.23), more precisely: Thanks to (7.23) we have

exp
(
t
1
2 β
)
P

∫
S

(Tra(t)u− (u)S)2dλ > α


≤ 2 (E(∆u))

1
2

log(α+ 1)

(
E
(

exp
(

2t
1
2

(
β − t 1

2C∗S,m,p,g1∆̃u

)
11{β > t

1
2C∗S,m,p,g1∆̃u}

))) 1
2

≤ 2 (E(∆u))
1
2

log(α+ 1)

(
E

(
exp

(
2t

1
2 β11

{
t
1
2 <

β

C∗S,m,p,g1∆̃u

}))) 1
2

≤ 2 (E(∆u))
1
2

log(α+ 1)

(
E

(
exp

(
2

β2

C∗S,m,p,g1
(1 + ∆u)

))) 1
2

=
2

log(α+ 1)
exp

(ε
2

)
(E(∆u)E (exp (ε∆u)))

1
2 ,

which completes our proof.

Remark 7.6.9. Let u ∈ L1(Ω;L1(S)), with P(u ∈ L2(S)) = 1 and assume p ∈ [ 2n
n+2 , 2) \ {1}. Then we

have: If there is an ε > 0 such that eε∆u ∈ L1(Ω), then ∆u ∈ L2r(Ω) for all r ∈ [1,∞), and of course

also ∆u ∈ L1(Ω).

Thus, if eε∆u ∈ L1(Ω) for an ε > 0, then all three bounds in Theorem 7.6.8 are applicable.

Particularly, if u : Ω → L1(S) is Gaussian with P(u ∈ L2(S)) = 1, then it is well-known that there is

an ε > 0, such that eε∆u ∈ L1(Ω,F ,P). Consequently, we can apply all three bounds if u is Gaussian

and P(u ∈ L2(S)) = 1.

7.G Appendix: Measurability Questions concerning Ar
p

The following two lemmas reveal that all events occurring in the definition of Arp are indeed measurable

and that all occurring integrals are well-defined as well as finite. The remaining two results of this

section are concerned with the measurability of the Lq(S)-norm of vector-valued random variables.
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Lemma 7.G.1. The set W 1,p(S) ∩ L∞(S) is B(L1(S))-measurable. Let f ∈ L1(Ω;L1(S)) and assume

P(f ∈W 1,p(S) ∩ L∞(S)) = 1. Then the following assertions hold.

i) f is F-B(Lp(S))-measurable.

ii) ∇f is F-B(Lp(S;Rn))-measurable.

iii) The mapping Φ : Lp(S;Rn) → Lp̃(S;Rn) defined by Φ(ϕ) := |ϕ|p−2ϕ for all ϕ ∈ Lp(S;Rn) is

continuous, where p̃ := p
p−1 .

iv) The mapping defined by Ω 3 ω 7→ g(ω)|∇f(ω)|p−2∇f(ω) ∈ Lp̃(S;Rn) is F-B(Lp̃(S;Rn))-measurable,

where p̃ := p
p−1 .

Proof. At first it will be proven that L∞(S) ∈ B(L1(S)).

Introduce K(κ) := {f ∈ L∞(S) : ||f ||L∞(S) ≤ κ} and note that obviously L∞(S) =
⋃
κ∈N

K(κ) and that

each of the K(κ) is closed w.r.t. || · ||L1(S). Consequently, L∞(S) is the countable union of L1(S)-closed

sets and therefore L∞(S) ∈ B(L1(S)).

Moreover, as the injection W 1,p(S) ↪→ L1(S) is continuous, and (W 1,p(S), || · ||W 1,p(S)) is separable,

W 1,p(S) ∈ B(L1(S)) follows from Remark 5.2.2; in fact, we even have B(W 1,p(S)) ⊆ B(L1(S)).

Consequently, as L∞(S), W 1,p(S) ∈ B(L1(S)), we get L∞(S) ∩W 1,p(S) ∈ B(L1(S)).

Proof of i). Follows from Remark 5.2.2, which is applicable since the injection Lp(S) ↪→ L1(S) is

continuous and Lp(S) is separable.

Proof of ii). It follows from Remark 5.2.2, that f is F-B(W 1,p(S))-measurable. Thus, as ∇ : W 1,p(S)→
Lp(S;Rn) is continuous, ii) holds as well.

Proof of iii). Let ϕ ∈ Lp(S;Rn) and let (ϕm)m∈N ⊆ Lp(S;Rn), such that lim
m→∞

ϕm = ϕ in Lp(S;Rn).

We have, by passing to a subsequence if necessary, that there is an h ∈ Lp(S) such that lim
m→∞

ϕm = ϕ

a.e. on S and |ϕm| ≤ |h| a.e. on S for each m ∈ N. Moreover, the continuity of Rn 3 x 7→ |x|p−2x yields

lim
m→∞

Φ(ϕm) = Φ(ϕ) a.e. on S. (7.25)

In addition,

|Φ(ϕm)− Φ(ϕ)|p̃ ≤ (|ϕm|p−1 + |ϕ|p−1)p̃ ≤ 2p̃|h|p ∈ L1(S), ∀m ∈ N.

This yields, by virtue of dominated convergence, that lim
m→∞

Φ(ϕm) = Φ(ϕ) in Lp̃(S;Rn).

Proof of iv). It is obvious that P(g ∈ Lp(S)) = 1. In addition, g is by assumption F-B(L1(S))-

measurable. Consequently, we get that g is F-B(Lp(S))-measurable. Moreover, ii) and iii) yield that

Ω 3 ω 7→ |∇f(ω)|p−2∇f(ω) is F-Lp̃(S;Rn)-measurable.

Moreover, it is now easily verified that g|∇f |p−2∇f is F-B(L1(S;Rn))-measurable.

In addition, as |∇f |p−2∇f ∈ Lp̃(S;Rn) a.s. and particularly g ∈ L∞(S) almost surely, we get

g|∇f |p−2∇f ∈ Lp̃(S;Rn) a.s. and iv) follows from Remark 5.2.2.
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Lemma 7.G.2. Let f, f̂ ∈ L1(Ω;L1(S)) and assume P(f ∈W 1,p(S)∩L∞(S)) = 1. Then the Lebesgue

integrals ∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ and

∫
S

f̂(ω)ϕdλ (7.26)

exist for any given ϕ ∈W 1,p(S) ∩ L∞(S) and P-a.e. ω ∈ Ω. Moreover, the mappings defined by

Ω 3 ω 7→
∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ and Ω 3 ω 7→
∫
S

f̂(ω)ϕdλ (7.27)

are F-B(R)-measurable for any ϕ ∈W 1,p(S) ∩ L∞(S).

Finally, we haveω ∈ Ω :

∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ =

∫
S

f̂(ω)ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞(S)

 ∈ F ,
and Arp is well-defined.

Proof. Firstly, note that the assertions concerning f̂ stated in (7.26) and (7.27) are trivial.

Moreover, for ϕ ∈ W 1,p(S) ∩ L∞(S), we have a fortiori ∇ϕ ∈ Lp(S;Rn) which yields, by virtue of

Lemma 7.G.1.iv), that the left-hand-side integral in (7.26) exists with probability one and also that the

left-hand-side mapping in (7.27) is F-B(R)-measurable.

Now the final assertion in this lemma will be proven. Firstly, note thatω ∈ Ω :

∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ =

∫
S

f̂(ω)ϕdλ

 ∈ F (7.28)

for any given ϕ ∈W 1,p(S) ∩ L∞(S).

Introduce L∞k (S) := {f ∈ L∞(S) : ||f ||L∞(S) ≤ k} for every k ∈ N. One verifies immediately

that W 1,p(S) ∩ L∞k (S) is a closed subset of W 1,p(S) w.r.t. || · ||W 1,p(S) . Moreover, it is well known

that (W 1,p(S), || · ||W 1,p(S)) is separable and that subsets of separable spaces are separable as well.

Consequently, for each k ∈ N there is a countable set D(k) ⊆W 1,p(S) ∩ L∞k (S) fulfilling

D(k) = W 1,p(S) ∩ L∞k (S),

where the closure is taken w.r.t. || · ||W 1,p(S).

Now introduce γ ∈ L1
g1,g2(S) and (F, F̂ ) ∈ (W 1,p(S) ∩ L∞(S)) × L1(S). It will be proven that: For a

given k ∈ N, ∫
S

γ|∇F |p−2∇F · ∇ϕdλ =

∫
S

F̂ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞k (S), (7.29)
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if and only if ∫
S

γ|∇F |p−2∇F · ∇ϕdλ =

∫
S

F̂ϕdλ, ∀ϕ ∈ D(k). (7.30)

Firstly, note that (7.29) obviously implies (7.30).

Now assume that (7.30) holds. Let ϕ ∈ W 1,p(S) ∩ L∞k (S) be arbitrary but fixed and introduce

(ϕm)m∈N ⊆ D(k) such that lim
m→∞

ϕm = ϕ in W 1,p(S).

As γ|∇F |p−2∇F ∈ Lp̃(S;Rn) and as particularly lim
m→∞

∇ϕm = ∇ϕ in Lp(S;Rn) we obtain that

lim
m→∞

∫
S

γ|∇F |p−2∇F · ∇ϕmdλ =

∫
S

γ|∇F |p−2∇F · ∇ϕdλ.

Moreover, as particularly lim
m→∞

ϕm = ϕ in Lp(S) we obtain, by passing to a subsequence if necessary,

that lim
m→∞

(ϕm − ϕ)F̂ = 0 a.e. on S. Since clearly |(ϕm − ϕ)F̂ | ≤ 2k|F̂ | ∈ L1(S) we obtain by virtue of

dominated convergence that

lim
m→∞

∫
S

F̂ϕmdλ =

∫
S

F̂ϕdλ.

This yields that (7.30) implies (7.29).

Finally, we obtain by using W 1,p(S)∩L∞(S) =
⋃
k∈N

(W 1,p(S)∩L∞k (S)) and the equivalence of (7.29)

and (7.30) thatω ∈ Ω :

∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ =

∫
S

f̂(ω)ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞(S)


=

⋂
k∈N

ω ∈ Ω :

∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ =

∫
S

f̂(ω)ϕdλ, ∀ϕ ∈ D(k)


=

⋂
k∈N

⋂
ϕ∈D(k)

ω ∈ Ω :

∫
S

g(ω)|∇f(ω)|p−2∇f(ω) · ∇ϕdλ =

∫
S

f̂(ω)ϕdλ

 ,

which implies, using (7.28), the claim as D(k) is countable for each k ∈ N.

Remark 7.G.3. Let q ∈ (1,∞), f ∈ L1(Ω;L1(S)) and assume P(f ∈ Lq(S)) = 1. Then, thanks to the

separability of (Lq(S), || · ||Lq(S)), it follows from Lusin-Souslin’s Theorem (see [22, Theorem 15.1]) that

Ω 3 ω 7→ ||f(ω)||Lq(S) is F − B(R)-measurable. This holds, as the following lemma reveals, also for

q =∞.

Lemma 7.G.4. Let f ∈ L1(Ω;L1(S)) and assume P(f ∈ L∞(S)) = 1. Then the mapping defined by

Ω 3 ω 7→ ||f(ω)||L∞(S) is F −B(R)-measurable.
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Proof. As P(f ∈ L∞(S)) = 1, we have particularly P(f ∈ Lm(S), ∀m ∈ N) = 1. Consequently f

is F − B(Lm(S)) measurable for any m ∈ N. This yields that Ω 3 ω 7→ ||f(ω)||Lm(S) is F − B(R)-

measurable. Moreover, we have for P-a.e. ω ∈ Ω that

||f(ω)||L∞(S) = lim
m→∞

||f(ω)||Lm(S).

Consequently, Ω 3 ω 7→ ||f(ω)||L∞(S) is the almost sure limit of F −B(R)-measurable functions and

therefore itself F −B(R)-measurable.

7.H Appendix: Technical Results to prove the Existence and

Uniqueness of mild Solutions

All results of this section serve to prove that (7.2) has a unique mild solution. Hereby, some simple

properties of Adp(γ), its closure and their resolvents are collected in Lemma 7.H.1. In Lemma 7.H.2, we

prove that the resolvent of Adp(γ) depends in some sense continuously on γ ∈ L1
g1,g2(S), and in the last

lemma, we prove two density results.

Lemma 7.H.1. Let γ ∈ L1
g1,g2(S). The following assertions hold.

i) L∞(S) ⊆ R(Id+Adp(γ)).

ii) (Id+Adp(γ))−1|L∞(S) = (Id+Adp(γ))−1|L∞(S).

iii) (Id+Adp(γ))−1 is L1(S)-continuous.

Proof. A proof of i) can be found in [3, Prop. 3.5].

Proof of ii). Let h ∈ L∞(S) and let (f, f̂) ∈ Adp(γ) and (F, F̂ ) ∈ Adp(γ), be the uniquely determined

functions fulfilling h = f + f̂ and h = F + F̂ , i.e. f = (Id+Adp(γ))−1h and F = (Id+Adp(γ))−1h.

The complete accretivity of Adp(γ) yields F << F + F̂ and consequently F << h. This implies

F ∈ L∞(S), since h ∈ L∞(S). Hence, it follows by virtue of Lemma 3.3.1 that (F, F̂ ) ∈ Adp(γ).

Conclusively, we have, by uniqueness, that f = F .

Finally, iii) is an immediate consequence of the accretivity of Adp(γ).

Lemma 7.H.2. Let (γm)m∈N ⊆ L1
g1,g2(S) and assume that there is γ ∈ L1(S) such that

lim
m→∞

γm = γ, in L1(S).

Then

w - lim
m→∞

(Id+Adp(γm))−1h = (Id+Adp(γ))h, in L1(S),

for any h ∈ L∞(S).
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The following proof is long and technical. Moreover, the proof works similar to the one of [3, Prop.

3.5] which states the range condition L∞(S) ⊆ R(Id + Adp(γ)). Proving the range condition works by

showing that a certain resolvent converges. As in our case, it is easy to see that the resolvent converges

to a limit, but it is very challenging to show that this is the correct limit. And the delicate technique

which is used to show that the limit is the correct one, is the same as in [3]. As it is, on a first glance,

not that obvious that these proofs work similar, the proof of Lemma 7.H.2 will be given here.

Proof. Firstly, observe that, by passing to a subsequence if necessary, lim
m→∞

γm = γ a.e. on S. Moreover,

it is clear that |γ| ≤ g2 a.e. on S. This implies |γm − γ|max(p,p̃) ≤ (2g2)max(p,p̃), where p̃ := p
p−1 .

Consequently, since λ(S) <∞ it follows by virtue of dominated convergence that

lim
m→∞

γm = γ, in Lp(S) and in Lp̃(S). (7.31)

Let fm := (Id + Adp(γm))−1h for each m ∈ N and f := (Id + Adp(γ))−1h. Additionally introduce

f̂m := Adp(γm)fm for all m ∈ N and f̂ := Adp(γ)f .

Note that by construction f + f̂ = h = fm + f̂m for each m ∈ N. Moreover, we have

fm << fm + f̂m = h, ∀m ∈ N, (7.32)

by complete accretivity.

Consequently, ||fm||Lp(S) ≤ ||h||Lp(S) <∞ for each m ∈ N. As Lp(S) is reflexive this implies, by passing

to a subsequence if necessary, that there is an F ∈ Lp(S) such that

w - lim
m→∞

fm = F in Lp(S). (7.33)

Now introduce F̂ := h− F . Then

w - lim
m→∞

f̂m = F̂ in Lp(S), (7.34)

as f̂m = h− fm for each m ∈ N.

Now it will be verified that

F ∈W 1,p(S) ∩ L∞(S). (7.35)

Proof of (7.35). First of all it follows from (7.32), (7.33) and by the virtue of [7, Corollary 2.7] that

F << h and consequently F ∈ L∞(S). Hence, particularly F ∈ Lp(S).

Moreover, (fm, f̂m) ∈ Adp(γm) together with (7.32) yields

||∇fm||pLp(S;Rn) =

∫
S

|∇fm|pdλ ≤
1

g1

∫
S

γm|∇fm|pdλ =
1

g1

∫
S

fmf̂mdλ ≤
2

g1
λ(S)||h||2L∞(S). (7.36)

Consequently, by passing to a subsequence if necessary, there is an F = (F1, ...,Fn) ∈ Lp(S;Rn) such
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that w - lim
m→∞

∇fm = F in Lp(S;Rn). This, together with (7.33), implies for all ϕ ∈ C∞c (S) that

∫
S

F
∂

∂xj
ϕdλ = lim

m→∞

∫
S

fm
∂

∂xj
ϕdλ = lim

m→∞
−
∫
S

ϕ
∂

∂xj
fmdλ = −

∫
S

ϕFjdλ,

i.e. F ∈W 1,1
Loc(S) and ∇F = F. Consequently, (7.35) holds and also

w - lim
m→∞

∇fm = ∇F in Lp(S;Rn). (7.37)

Now observe that (7.36) yields

|| |∇fm|p−2∇fm||p̃Lp̃(S;Rn)
=

∫
S

|∇fm|(p−1)p̃dλ =

∫
S

|∇fm|pdλ ≤
2

g1
λ(S)||h||2L∞(S).

Consequently, by passing to a subsequence if necessary, there is a ζ ∈ Lp̃(S;Rn) such that

w - lim
m→∞

|∇fm|p−2∇fm = ζ in Lp̃(S;Rn). (7.38)

Now it will be proven that∫
S

γζ · ∇ϕdλ =

∫
S

F̂ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞(S). (7.39)

For ϕ ∈ C∞(S)2, (7.36) implies that∫
S

∣∣|∇fm|p−2∇fm · ∇ϕ
∣∣p̃ dλ ≤ ∫

S

|∇fm|p|∇ϕ|p̃dλ ≤ || |∇ϕ|p̃||L∞(S)
2

g1
λ(S)||h||2L∞(S) <∞,

for all m ∈ N.

This yields, by virtue of Hölder’s inequality and (7.31) that

lim
m→∞

∣∣∣∣∣∣
∫
S

(γm − γ)|∇fm|p−2∇fm · ∇ϕdλ

∣∣∣∣∣∣ ≤ lim
m→∞

||γm − γ||Lp(S)|| |∇fm|p−2∇fm · ∇ϕ||Lp̃(S) = 0

for all ϕ ∈ C∞(S).

Using this, (7.34) as well as (7.38) yields (7.39) for ϕ ∈ C∞(S). Moreover, for arbitrary

ϕ ∈W 1,p(S)∩L∞(S), there is, as S is of class C1, a sequence (ϕm)m∈N ⊆ C∞(S) such that lim
m→∞

ϕm = ϕ

2C∞(S) denotes the space of all functions ϕ : S → R which are infinitely often continuously differentiable, such that ϕ
and all its partial derivatives can be extended continuously to the boundary of S
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in W 1,p(S). Hence, as γζ ∈ Lp̃(S;Rn) and F̂ = h− F ∈ L∞(S) ⊆ Lp̃(S), we obtain∫
S

F̂ϕdλ = lim
m→∞

∫
S

F̂ϕmdλ = lim
m→∞

∫
S

γζ · ∇ϕmdλ =

∫
S

γζ · ∇ϕdλ,

which verifies (7.39).

Now observe the following: If

ζ = |∇F |p−2∇F, (7.40)

then (7.39) yields ∫
S

γ|∇F |p−2∇F · ϕdλ =

∫
S

F̂ϕdλ, ∀ϕ ∈W 1,p(S) ∩ L∞(S).

This, together with (7.35) implies (F, F̂ ) ∈ Adp(γ).

Since it has been already established that h = F + F̂ and since also h = f + f̂ as well as (f, f̂) ∈ Adp(γ)

the accretivity of Adp(γ) yields

||f − F ||L1(S) ≤ ||f − F + f̂ − F̂ ||L1(S) = ||h− h||L1(S) = 0.

Consequently, (7.40) implies f = F and it follows by virtue of (7.33) that

w - lim
m→∞

(Id+Adp(γm))−1h = w - lim
m→∞

fm = F = f = (Id+Adp(γ))−1h in Lp(S).

Conclusively, since Lp(S)-weak convergence implies L1(S)-weak convergence, the claim follows once

(7.40) is proven.

The delicate proof of (7.40) is preceded by the proofs of the following four statements.

We have, by passing to a subsequence if necessary:

(I) lim sup
m→∞

∫
S

γm|∇fm|p ≤
∫
S

FF̂dλ.

(II) w - lim
m→∞

γm∇fm = γ∇F in Lp(S).

(III) w - lim
m→∞

γm|∇fm|p−2∇fm = γζ in Lp̃(S;Rn).

(IV) lim
m→∞

∫
S

(γ − γm)|ϕ|pdλ = 0 for all ϕ ∈ Lp(S;Rn).

Proof of (I). Firstly, (7.32) implies that ||fm||L2(S) ≤ ||h||L2(S). Consequently, (fm)m∈N has, by passing

to a subsequence if necessary, an L2(S)-weakly convergent subsequence, converging to an f̃ ∈ L2(S).

Moreover, it is plain that f̃ = F and therefore∫
S

F 2dλ ≤ lim inf
m→∞

∫
S

f2
mdλ. (7.41)
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Conclusively, it follows by virtue of (7.33) as well as (7.41) that

lim sup
m→∞

∫
S

γm|∇fm|pdλ ≤ lim sup
m→∞

∫
S

fmhdλ− lim inf
m→∞

∫
S

f2
mdλ =

∫
S

FF̂dλ.

Proof of (II). Firstly, note that (7.36) yields

||γm∇fm||pLp(S;Rn) =

∫
S

γpm|∇fm|pdλ ≤
gp2
g1

2λ(S)||h||2L∞(S) <∞, ∀m ∈ N.

Consequently, by passing to a subsequence if necessary, there is an α ∈ Lp(S;Rn) such that

w - lim
m→∞

γm∇fm = α in Lp(S;Rn). (7.42)

Moreover, we have for any ϕ ∈ L∞(S;Rn), by virtue of Hölder’s inequality, Cauchy-Schwarz’ inequality,

(7.36) and (7.31) that

lim
m→∞

∣∣∣∣∣∣
∫
S

(γm − γ)∇fm · ϕdλ

∣∣∣∣∣∣ ≤ lim
m→∞

||γm − γ||Lp̃(S)|| |ϕ| ||L∞(S)

(
2

g1
λ(S)||h||L∞(S)

) 1
p

= 0.

Consequently, we obtain for any ϕ ∈ L∞(S;Rn) by invoking (7.37) and (7.42) that∫
S

(α− γ∇F ) · ϕdλ = lim
m→∞

∫
S

γm∇fm · ϕ−∇fm · ϕγdλ = 0.

This clearly implies α = γ∇F . Hence, (7.42) implies (II).

Proof of (III). Firstly, note that it follows by virtue of (7.36) that

||γm|∇fm|p−2∇fm||p̃Lp̃(S;Rn)
≤ gp̃2

∫
S

|∇fm|pdλ ≤
gp̃2
g1

2λ(S)||h||2L∞(S).

Consequently there is, by passing to a subsequence if necessary, an α ∈ Lp̃(S;Rn) such that

w - lim
m→∞

γm|∇fm|p−2∇fm = α in Lp̃(S;Rn).

Moreover, we have for any ϕ ∈ L∞(S;Rn), by virtue of Hölder’s inequality, Cauchy-Schwarz’ inequality,

(7.36) and (7.31) that

lim
m→∞

∣∣∣∣∣∣
∫
S

(γm − γ)|∇fm|p−2∇fm · ϕdλ

∣∣∣∣∣∣ = 0.
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Consequently, we obtain for any ϕ ∈ L∞(S;Rn) by recalling (7.38) that∫
S

(α− γζ) · ϕdλ = lim
m→∞

∫
S

(γm|∇fm|p−2∇fm − γ|∇fm|p−2∇fm) · ϕdλ = 0.

This implies α = γζ.

Proof of (IV). Since particularly lim
m→∞

γm−γ = 0 in L1(S) we have, by passing to a subsequence if neces-

sary, that lim
m→∞

(γ − γm)|ϕ|p = 0 a.e. on S for any given ϕ ∈ Lp(S;Rn). Since plainly

|(γ − γm)|ϕ|p| ≤ 2g2|ϕ|p ∈ L1(S), dominated convergence yields (IV).

Proof of (7.40). Let ϕ ∈ Lp(S;Rn). First of all it is a direct consequence of Cauchy-Schwarz’ inequality

for the Euclidean norm that

γm(|∇fm|p−2∇fm − |ϕ|p−2ϕ) · (∇fm − ϕ) ≥ 0, ∀m ∈ N

and consequently∫
S

γm|ϕ|p−2ϕ · (∇fm − ϕ)dλ ≤
∫
S

γm|∇fm|p−2∇fm · (∇fm − ϕ)dλ, ∀m ∈ N, ϕ ∈ Lp(S;Rn).

(Hereby the existence of both integrals is a direct consequence of the boundedness of γm and Hölder’s

inequality.)

The last yields, by using at first (II) and (IV), then the last inequality, and finally (I) as well as (III)

that ∫
S

γ|ϕ|p−2ϕ · (∇F − ϕ)dλ ≤
∫
S

FF̂ − γζ · ϕdλ, ∀ϕ ∈ Lp(S;Rn), (7.43)

Now note that it follows from fm ∈ D(Adp(γm)) that particularly fm ∈W 1,p(S)∩L∞(S). Consequently,

by (7.39) we get ∫
S

γζ · ∇fmdλ =

∫
S

F̂ fmdλ, ∀m ∈ N. (7.44)

Now note that combining (7.33), (7.37) and (7.44) yields∫
S

γζ · ∇Fdλ =

∫
S

F̂Fdλ

Consequently, we infer from (7.43) that∫
S

γ|ϕ|p−2ϕ · (∇F − ϕ)dλ ≤
∫
S

γζ · (∇F − ϕ)dλ, ∀ϕ ∈ Lp(S;Rn). (7.45)
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Now note that ∇F ∈ Lp(S;Rn) which implies that ∇F −αϕ is, for any α ∈ (0,∞) and ϕ ∈ Lp(S;Rn) a

valid choice as a test function in (7.45). Hence, using ∇F −αϕ as a test function in (7.45) and dividing

the resulting equation by α yields∫
S

γ|∇F − αϕ|p−2(∇F − αϕ) · ϕdλ ≤
∫
S

γζ · ϕdλ, ∀ϕ ∈ Lp(S;Rn), α ∈ (0,∞). (7.46)

It is obvious that

lim
α↓0

γ|∇F − αϕ|p−2(∇F − αϕ) · ϕ = γ|∇F |p−2∇F · ϕ a.e. on S

for a given ϕ ∈ Lp(S;Rn). Now let ε > 0 and α ∈ (0, ε). Then one instantly verifies that

|γ|∇f − αϕ|p−2(∇F − αϕ) · ϕ| ≤ g2(|∇F |+ ε|ϕ|)p−1|ϕ| a.e. on S

for any ϕ ∈ Lp(S;Rn). Now it is a direct consequence of Hölder’s inequality that the right-hand-side

of the last inequality is in L1(S) for any ϕ ∈ Lp(S;Rn). Hence, it follows by virtue of dominated

convergence that

lim
α↓0

∫
S

γ|∇F − αϕ|p−2(∇f − αϕ) · ϕdλ =

∫
S

γ|∇F |p−2∇F · ϕdλ.

Consequently, it follows by recalling (7.46) that∫
S

γ|∇F |p−2∇F · ϕdλ ≤
∫
S

γζ · ϕdλ, ∀ϕ ∈ Lp(S;Rn).

Conclusively, replacing ϕ by −ϕ implies∫
S

(γ|∇F |p−2∇F − γζ) · ϕdλ = 0, ∀ϕ ∈ Lp(S;Rn).

Finally, this yields γ|∇F |p−2∇F − γζ = 0 a.e. on S which implies (7.40) since particularly γ 6= 0 a.e.

on S.

Lemma 7.H.3. τ(L1(Ω;L1(S))) as well as L1,∞(Ω;L1(S)) are dense subsets of L1(Ω;L1(S)).

Proof. Firstly, note that clearly τ(L1(Ω;L1(S))) ⊆ L1,∞(Ω;L1(S)) which implies that it suffices to prove

the claim for τ(L1(Ω;L1(S))).

Now let f ∈ L1(Ω;L1(S)) and introduce fk := τk(f) for each k ∈ N.

As lim
k→∞

τk(s) = s for each s ∈ R it is clear that lim
k→∞

fk(ω) = f(ω) a.e. on S for every given ω ∈ Ω, up

to a P-nullset.
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Since |fk(ω)− f(ω)| ≤ 2|f(ω)| ∈ L1(S), Lebesgue’s theorem yields

lim
k→∞

||fk(ω)− f(ω)||L1(S) = 0, for P-a.e. ω ∈ Ω.

Moreover, ||fk(·)− f(·)||L1(S) ≤ 2||f(·)||L1(S) ∈ L1(Ω), which implies, by applying Lebesgue’s Theorem

again, that lim
k→∞

fk = f in L1(Ω;L1(S)).
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Chapter 8

Summary & Outlook

In this thesis, we have established numerous existence, uniqueness and asymptotic results. At first,

we demonstrated that the p-Laplacian semigroup (TAp(t))t≥0 fulfills an L∞-Lp-contraction principle

for ”large” p (Theorem 3.4.10), that (TAp(t))t≥0 extincts in finite time for ”small” p (Theorem 3.5.6);

and we have derived a decay estimate for ||TAp(t)v − (v)S ||L1(S) which is independent of the initial

v ∈ L1(S), if p ∈ (2,∞) and γ is sufficiently integrable, see Theorem 3.5.10. Moreover, as a side-effect

of our L∞-Lp-contraction principle, we also obtained a regularity result on the Hölder continuity of this

semigroup, see Remark 3.4.11.

Even though these are strong results, it might be possible to improve them. Particularly, investigating

the space (or time) regularity of solutions in greater detail is an interesting way to continue the research

on the weighted p-Laplacian evolution equation.

Afterwards, we had developed an existence/uniqueness and asymptotic theory for ACPRM-processes.

In Chapter 4, we have introduced the notions of strong and mild solutions of (ACPRM) and derived

convenient criteria guaranteeing the existence of a unique strong/mild solution, see Proposition 4.3.10

and Theorem 4.3.12. Moreover, we exemplified the applicability of these results at hand of (TAp(t))t≥0

as well as the two real-valued semigroups introduced in Remark 2.2.7. In addition, we have seen that

the mild/strong solution of (ACPRM) must be an ACPRM-process. This fact is highly owed to the

structure of the noise term ”η(t, z)NΘ(dt ⊗ z)”, which is a pure-jump noise. It might be possible, to

extend this to continuous noise by employing the theory of inhomogeneous abstract Cauchy problems,

but in this case it seems very unlikely that the solution still admits a representation formula which is as

nice as it is in the current setting. Nevertheless, doing that is an interesting (and probably challenging)

task.

In addition, we have devoted two chapters of this thesis to the asymptotic behavior of ACPRM-processes.

In Chapter 5 we exploited a finite extinction assumption on the involved semigroup, to derive an SLLN

and a CLT for vector-valued functionals of ACPRM-processes, see Theorem 5.2.23 and Corollary 5.2.24.

This required, among other things, that the noise terms (βm)m∈N and (ηm)m∈N are i.i.d. sequences,

which are independent of each other and jointly independent of the initial x. Even though our proofs
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heavily relied on these i.i.d.-assumptions, there is a chance that they can be relaxed: As outlined in

Remark 5.2.6 the results in Chapter 5, rely on the fact that the sequence

(
αex(n+1)∫
αex(n)

Ξ(Xx(τ))dτ

)
n∈N

is

an i.i.d.-sequence. This raises the intriguing question, whether some weaker distributional assumptions

on (βm)m∈N, (ηm)m∈N and x imply that the sequence of integrals fulfill some similar weaker conditions,

which are still good enough to derive an SLLN and a CLT. Of course, one runs the risk, that one cannot

prove an SLLN and a CLT for vector-valued functionals anymore, but only for real-valued ones.

Moreover, in Chapter 6 we demonstrated that ACPRM-processes are time-homogeneous Markov pro-

cesses, if the noise terms (βm)m∈N and (ηm)m∈N are i.i.d. sequences, which are independent of each other

and jointly independent of the initial x, and if each βm is exponentially distributed, see Theorem 6.2.4.

The present author does not believe, that any of these conditions can be dropped. As demonstrated,

these results enable one to prove an SLLN (see Theorem 6.3.6), if the underlying semigroup decays

polynomially, and even a CLT (see Theorem 6.3.10), if this polynomial decay is sufficiently fast - but

in contrary to the results in Chapter 5 only for real-valued, Lipschitz continuous functionals. Hereby,

it is worth noting that establishing the Markov property, did not require any decay assumptions on the

involved semigroup, and that the proofs in Section 6.3 relied on the general results in [39] and [18].

Thus, it might be possible that one can prove an SLLN and a CLT under different decay assumptions,

employing techniques similar to those used in Section 6.3.

Finally, in Chapter 7 we demonstrated that the weight function occurring in the weighted p-Laplacian

evolution equation, can be replaced by an L1(S)-valued random variable g, fulfilling 0 < g1 ≤ g ≤ g2,

for some constants g1, g2 ∈ (0,∞). We managed to derive existence and uniqueness of strong solu-

tions for the resulting equation (see Theorem 7.4.2), were able to transfer the asymptotic results for

the p-Laplacian semigroup to the new randomized case (Section 7.5), and last but not least we derived

bounds for the tail function if p is ”small”, see Theorem 7.6.8. One obvious way of extending these

results, is trying to derive tail function bounds for ”large” p. Another (probably way more challenging)

generalization would be to weaken the assumptions on g, such that g(ω) fulfills for P-a.e. ω ∈ Ω, the

assumptions the weight function γ in Chapter 3 had to fulfill. This change is not as innocuous as it

seems on a first glance: Firstly, we then would have to work with a ”random” Sobolev space W 1,p
g(ω)(S),

and secondly the (long and delicate) proof of Lemma 7.H.2 fails in this case.

In conclusion, we have gained new insights into the asymptotic behavior of the p-Laplacian semigroup,

developed an existence/uniqueness and asymptotic theory for ACPRM-processes, and have extended the

weighted p-Laplacian evolution equation to the randomized case.

The present author hopes that others will apply the results developed here, that the reader found the

theory presented in this monograph appealing; and, of course that this thesis might encouraged one, to

refine the developed results in one of the aforementioned ways.
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Notation

Ap p-Laplace operator, see Definition 3.2.2

Ap Closure of Ap, see Definition 3.2.4

B(M) Borel σ-Algebra on a topological space (M, τ)

λ Lebesgue measure

Lq(K,Σ, µ;V ) Usual Bochner spaces, see Remark 2.2.8

Lq0(S) Elements of Lq(S,B(S), λ;R) which are centered, see Remark 3.3.4

M(K,Σ;M) Space of Σ-B(M)-measurable functions, see Remark 2.2.1

∇ ∇ϕ is the vector of weak derivatives of a weakly diff. function ϕ, see Section 3.2

(Ω,F ,P) Complete Probability Space

PY The law of a random variable Y , see Remark 2.2.10

(TAp(t))t≥0 The p-Laplacian semigroup, see Remark 3.2.6

(Tρi(t))t≥0 See Remark 2.2.7

W 1,1
Loc((0,∞);V ) V -valued functions which are loc. abs. cont. and diff. a.e., See Definition 2.1.2

Xx An ACPRM-process, see Definition 2.2.2 and Remark 2.2.4

x · y Inner product of any x, y ∈ Rm, where m ∈ N.

| · | Euclidean norm on Rm, where m ∈ N.
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[3] F. Andreu, J.M. Mazón, J. Rossi, J. Toledo, Local and nonlocal weighted p-Laplacian evolution

Equations with Neumann Boundary Conditions, Publ. Math. 55, pp. 27-66 , 2011

[4] F. Andreu , J.M. Mazón, S. Segura de León, J. Toledo, Quasi-linear elliptic and parabolic

Equations in L1 with nonlinear boundary Conditions, Adv. in Math. Sci. and Appl., pp. 183-213 ,

1997

[5] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and

Cauchy Problems, Birkhäuser, 2010
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Hochschule mit Promotionsrecht eine Zulassung zur Promotion beantragt noch habe ich den Doktorgrad

Dr.rer.nat. bereits erworben oder bin bisher in einem früheren Promotionsverfahren für den Doktor-
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