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Abstract
The dynamics of any quantum device is altered by its interaction with the surrounding environ-
ment. This thesis discusses the impact of noise in a scenario of quantum frequency estimation
and techniques to control the dynamics between interacting quantum systems, as well as a
method to tailor memory effects in the dynamics of an experimentally relevant system.
The first part of the thesis focuses on how to achieve the best possible frequency estimation
in the presence of noise. In particular, we exploit a quantum metrology setting where N two
level systems are employed as probes to estimate the amplitude of a field which alters their
level splitting in a linear fashion. Thereby, we invoke a microscopic derivation of the spin-
boson model to describe the appearing noise effects. We distinguish two main situations, the
phase-covariant one, ensuring that the action of the noise commutes with the encoding of the
parameter, and the non-phase-covariant one breaking this symmetry. We clarify the origin of
this commutativity, that is ensured by the secular approximation. Subsequently, we perform a
sensitivity analysis on the level of a single probe. Here, it turns out not only that the inclusion
of non-phase-covariant terms may increase the achievable precision, but importantly, also that
the noise terms themselves are able to contain relevant information on the frequency, a fact
that is commonly neglected in the current literature. Moreover, as our microscopic approach
covers all classes of dissipative dynamics, it provides an exhaustive picture in which all the
different asymptotic scalings of precision naturally emerge when the probes are used in parallel.
In particular, as soon as the noise terms exhibit temporal correlations, we observe the Zeno
limit 1/N3/2 for any dynamics except the case where the noise is completely transversal to the
encoding of the frequency. In the latter case, we demonstrate that a novel scaling of 1/N7/4

arises.
The second part of the thesis is instead dedicated to the development of techniques for quantum
sensing and control.
Single probe quantum systems have also become a promising candidate as nanoscale spectrome-
ters. Here, we present a method which enables effortless detection of spurious signals generated
by finite-width pulses in quantum sensing experiments and apply it to recently proposed dynam-
ical decoupling sequences for accurate spectral interpretation. We first study the origin of these
fake resonances and quantify their behavior in a situation that involves the measurement of a
classical magnetic field. In particular, we show that a change of the initial phase of the sensor
or, equivalently, of the decoupling pulses, leads to oscillations in the spurious signal intensity
while the real resonances remain intact. Finally, we extend our results to the quantum regime
for the unambiguous detection of remote nuclear spins by utilization of a nitrogen-vacancy
center in diamond.
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In the process of constructing robust multi-qubit quantum registers, the pairwise coupling of
individual systems is a challenging task, further complicated by noise originating from other
qubits in the register. We propose to solve this issue with an adiabatic on and off switching of
the coupling Hamiltonian. If this is performed according to a Gaussian shape, the coupling
between off resonant systems falls of exponentially with their frequency detuning. The idea
is motivated via a derivation utilizing first order average Hamiltonian theory and extended
to higher orders by employing the adiabatic theorem. We demonstrate that this modulation
yields a highly improved rotating wave approximation, that is even valid in a regime where
coupling and transition frequency are on the same order. Conversely, this accelerated averaging
is accompanied with a speedup in the performance of quantum gates. In order to be able to
implement this adiabatic modulation physically, we present a dynamical decoupling sequence
that assembles an effective Hamiltonian that mimics the adiabatic modulation. Numerical
simulations confirm the validity of that approach and demonstrate high selective addressing and
high fidelity quantum gates in the vicinity of a second frequency and furthermore the removal
of side oscillations in sensing spectra.
Memory effects in the evolution of an open quantum system represent a long term topic of
interest. Here, we investigate, theoretically and experimentally, the nitrogen-vacancy center in
diamond as a flexible platform for a systematic exploration of the regime of non-Markovian
dynamics. More specifically, we show that the degree of non-Markovianity of the electron spin
in the nitrogen-vacancy center can be tuned continuously, where the inherent nitrogen spin
serves as a regulator of the imposed dynamics. Our analysis of the collected experimental data
is performed employing Bayesian inference methods, allowing to draw conclusions from a
minimal data set, while predicting the ability to tune the non-Markovianity continuously.
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and Prof. Dr. Rafał Demkowicz-Dobrzański for helping with the semidefinite programming
and answering questions concerning the general theory of parameter estimation. More than
once, they exposed details that I would have otherwise overseen. Furthermore, I thank
Joachim Rosskopf for the fast introduction to the PyMC3 library. Also I am grateful to
Prof. Dr. Fedor Jelezko, Thomas Unden, Philipp J. Vetter and everybody who contributed
to the NV center FID and non-Markovianity measurements.

The thesis itself is a lengthy project and there are numerous eyes that corrected endless typos
and grammar issues, but also give helpful input and suggestions on how to improve the
manuscript further. Consequently, I want to thank Alexander Nüßeler, Julen S. Pedernales,
Martin Pietsch, Andrea Smirne, Thomas Theurer and Zhenyu Wang for proofreading my
drafts. Their careful study greatly improved the quality of the following pages.
Needless to say, the atmosphere at the office is greatly influenced by the people at the Institute of
Theoretical Physics. I want to thank all of them, regardless of whether they are still a member of
the group or already left to pursue their interests in different groups or industry, for distracting
and interesting discussions during lunch and coffee breaks, also on topics apart from physics.
Especially, I want to mention Pelayo Fernández-Acebal, with whom I had the pleasure to
share the office since we both started our stay at the institute. Furthermore, I want to thank
my fellow students many of whom I know since I started studying physics in 2009. Some of
them also took the route of a PhD and I hope they all soon accomplish their thesis, too. Our
Wednesday lunch breaks where always a highlight during the week.
Finally, I want to acknowledge my parents, Heike and Christian. There is no doubt, I would
not have made it to this point or anywhere else, without their constant support, motivation and
advice. I know, you always say you won’t understand anything that comes beyond this page.
However, that is completely irrelevant. Neither did I a few years ago and I still wouldn’t if it
wasn’t for you. That is what counts. Thank you so much for everything.

Jan Friedrich Haase

vi



Contents

Introduction and Overview 1

I. Preliminaries 7

1. A Primer on Open Quantum Systems 9
1.1. Closed versus Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . 9
1.2. Master Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1. Time-Convolutionless - Master Equation . . . . . . . . . . . . . . . 14
1.3. Matrix Representation of linear Qubit Maps . . . . . . . . . . . . . . . . . . 16
1.4. Non-Markovianity of Quantum Evolutions . . . . . . . . . . . . . . . . . . . 17

1.4.1. A Measure of non-Markovianity . . . . . . . . . . . . . . . . . . . . 21
1.5. Phase-Covariant versus non-Phase-Covariant Dynamics . . . . . . . . . . . . 23

2. The Nitrogen-Vacancy Center in Diamond 25
2.1. The Level Structure and its Consequences . . . . . . . . . . . . . . . . . . . 25

2.1.1. Ground State Spin Dynamics . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2. Peculiarities of the Electron Spin Readout . . . . . . . . . . . . . . . 30

2.2. Hamiltonian of the NV Center . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1. The NV Center as a Qubit . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2. Coherent Quantum Control . . . . . . . . . . . . . . . . . . . . . . . 34

3. Basic Principles of Dynamical Decoupling 37
3.1. The Filter Function Approach . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2. Effective Hamiltonian Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3. Pulse Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1. CPMG and the XY-Family . . . . . . . . . . . . . . . . . . . . . . . 50

vii



Contents

3.3.2. Adaptive-XY Sequences . . . . . . . . . . . . . . . . . . . . . . . . 52

II. Noisy Frequency Estimation in the Framework of
Quantum Metrology 55

4. Noisy Quantum Metrology:
Frequency Estimation 57
4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2. The Frequency Estimation Protocol - Analyzing a Specific Measurement Pro-

cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1. The Cramér-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2. Noiseless Estimation with Entangled States - Obtaining Heisenberg

Limited Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3. The Impact of Noise: Lindbladian Dephasing . . . . . . . . . . . . . 67

4.3. Ultimate Precision Limits - Analyzing Arbitrary Quantum Channels, Initial
States and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1. Quantum Fisher Information and Quantum-CRB . . . . . . . . . . . 70
4.3.2. Achieving Maximal Precision - Bounding the QFI . . . . . . . . . . 72
4.3.3. Saturation of the (Quantum-)CRB . . . . . . . . . . . . . . . . . . . 75

4.4. Realistic Bounds on the Precision . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1. The Zeno-Limit under Phase-Covariant Noise . . . . . . . . . . . . . 79
4.4.2. Transversal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3. Arbitrary, non-Phase-Covariant Noise . . . . . . . . . . . . . . . . . 82
4.4.4. Motivating Toy Model . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5. Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1. The Role of non-Markovianity . . . . . . . . . . . . . . . . . . . . . 84
4.5.2. Precision, Accuracy and Sensitivity . . . . . . . . . . . . . . . . . . 85
4.5.3. Ultimate Precision without Entanglement . . . . . . . . . . . . . . . 88
4.5.4. Geometrical Distance of Quantum States . . . . . . . . . . . . . . . 88

4.6. Beyond the Independent Noise Model: Correlations and Control . . . . . . . 90
4.6.1. Correlated Noise and Interacting Probes . . . . . . . . . . . . . . . . 90
4.6.2. External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7. Time Dependent Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



Contents

5. Realistic Bounds on the Precision:
An Analysis Involving a Microscopic Noise Model 97
5.1. Spin-Boson Model: Weak-Coupling Master Equation and Secular Approximation 98

5.1.1. Second-Order TCL-Master Equation . . . . . . . . . . . . . . . . . . 99
5.1.2. Secular Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2. Solutions in the High-Temperature Regime . . . . . . . . . . . . . . . . . . 104
5.2.1. The Short-Time Evolution . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2. Finite-Time Evolution for an Ohmic Spectral Density . . . . . . . . . 107

5.3. Single-Qubit Quantum Fisher Information . . . . . . . . . . . . . . . . . . . 110
5.3.1. Short-Time Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.2. Finite-Time Analysis for the Ohmic Spectral Density . . . . . . . . . 116

5.4. N-Probe Quantum Fisher Information and Achievable Metrological Limits . 118
5.4.1. Asymptotic Scaling of the Ultimate Estimation Precision . . . . . . . 119
5.4.2. Finite-N Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6. Open Questions in Quantum Metrology 127

III. Quantum Control 131

7. Field Detection with Real Pulses 133
7.1. Detection of a Classical AC-Signal . . . . . . . . . . . . . . . . . . . . . . . 134
7.2. Identifying Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1. A Criteria to Detect Spurious Resonances . . . . . . . . . . . . . . . 141
7.2.2. Effects of Pulse Errors. . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.3. Remark on Pulse Phases . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3. Detection of a Quantum Signal . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4. Spurious Resonances of Quantized Signal Sources . . . . . . . . . . . . . . . 144

7.4.1. A Scheme for Quantum Emitters . . . . . . . . . . . . . . . . . . . . 144
7.4.2. Numerical Results in NV-based Schemes . . . . . . . . . . . . . . . 145
7.4.3. Distinguishing Close Peaks . . . . . . . . . . . . . . . . . . . . . . 147

7.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

ix



Contents

8. Soft Control of Quantum Interactions 149
8.1. Generic Model for Temporal Control of Quantum Interactions . . . . . . . . 151

8.1.1. Leading-Order Effects and Soft Quantum Control . . . . . . . . . . . 152
8.1.2. Higher-Order Effects and Adiabatic Average Hamiltonian . . . . . . 154

8.2. An Implementation using Dynamical Decoupling . . . . . . . . . . . . . . . 156
8.3. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3.1. Improving the Rotating Wave Approximation . . . . . . . . . . . . . 158
8.3.2. Sensing and Quantum Gates . . . . . . . . . . . . . . . . . . . . . . 161

8.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9. Controllable Non-Markovianity for an Electron Spin in Diamond 167
9.1. Introduction to Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . 169
9.2. Modeling and Measuring the Sample Dynamics . . . . . . . . . . . . . . . . 171

9.2.1. The Role of Correlations and a non-Markovian Evolution . . . . . . . 175
9.3. Measuring the Free Induction Decay . . . . . . . . . . . . . . . . . . . . . . 177

9.3.1. Bayesian Modeling of Free Induction Decay . . . . . . . . . . . . . 179
9.4. Tuning the Non-Markovianity . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.4.1. Bayesian Inference Model for Tuneable non-Markovianity . . . . . . 184
9.4.2. Details of the Obtained Posterior Distribution . . . . . . . . . . . . . 187

9.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Concluding Remarks - Outlook 191

Bibliography 195

Appendix 227

A. Metrology 229
A.1. Derivation of CRB and FI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.2. Microscopic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.2.1. Equivalence with an Engineered Coupling Hamiltonian . . . . . . . . 230
A.2.2. Derivation of the TCL Master Equation . . . . . . . . . . . . . . . . 231
A.2.3. Solutions of the Master Equation in the High Temperature Limit . . . 234
A.2.4. Differential Equations for the Density Matrix Elements in the case of

Ohmic Spectral Densities . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2.5. Semigroup Limit of the Ohmic Spectral Density . . . . . . . . . . . 236

x



Contents

A.2.6. A General Formula for the Single Probe QFI of PC Dynamics . . . . 237
A.2.7. Expectation Value of the Parity Operator using GHZ-States . . . . . . 237

B. Quantum Control 239
B.1. Calculation of the Overlap Integral . . . . . . . . . . . . . . . . . . . . . . . 239
B.2. Signal for an XY-8 Sequence Employing Realistic Pulses . . . . . . . . . . . 240

B.2.1. Ideal Signal after a single XY-8 Sequence . . . . . . . . . . . . . . . 240
B.2.2. Impact of the Second Order . . . . . . . . . . . . . . . . . . . . . . 241

B.3. High Selective Coupling using Soft Quantum Control . . . . . . . . . . . . . 242
B.3.1. Adiabatic evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
B.3.2. Calculation of Energy Shifts using the Adiabatic Theory . . . . . . . 243
B.3.3. Improved RWA: Two Qubits . . . . . . . . . . . . . . . . . . . . . . 244
B.3.4. Continuous Dynamical Decoupling and Hartmann-Hahn Resonance . 245
B.3.5. Variation of the Fourier Coefficients in the Simulations of the Soft

Quantum Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

xi





Introduction and Overview

Noise, either quantum or classical [1–4], is certainly an ubiquitous and inevitable feature any
quantum device striving for technological applications has to deal with [5–9]. It poses additional
challenges on our abilities to make accurate statements about parameters we measure [6,10–13]
and decreases the fidelity of operations we perform to manipulate quantum systems [8, 14–16].
On the other hand, the description of quantum noise alone introduced a completely new and
exciting field in the study of quantum theory. While noise represents a restrictive factor in many
situations encountered experimentally and theoretically, it is nevertheless one of the reasons for
the great variety of attempts tackling these restrictions, whether it is to understand fundamental
limitations or to push these boundaries via the aid of sophisticated control strategies.

Generally, the action of noise is by no means a vacuous process but possesses distinctive
features [2–4]. For instance, it may exhibit temporal correlations and, in fact, all results in
this thesis are in one way or the other connected to this key characteristic. In frequency
space, temporally uncorrelated noise yields a flat spectrum [17], while temporal correlations
yield a variety of pronounced spectral features. Therefore widely denoted as colored noise,
the occurrence of temporal correlations allows the derivation and development of various
fascinating results which have often proven to be advantageous when compared to uncorrelated
white noise.
A paradigmatic situation is encountered in the field of quantum metrology. Here, colored
noise is observed to be less harmful when compared to white noise [18, 19]. On the other
hand, the motivation to develop physical architectures for widespread applications relies on the
distinct spectral features colored noise provides. Crucially, the recognition of special patterns
in the noise spectrum allows the accurate discrimination of individual constituents assembling
the environment as it is done in sensing applications [9, 13]. At the same time, it offers the
possibility to employ the environmental subsystems responsible for those features in quantum
information [14, 20], computation [21, 22] and simulation tasks [23, 24].
In this thesis, we address the analysis of fundamental restrictions in quantum metrology
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Introduction and Overview

(Chapters 4 and 5), but also provide instruments to detect (Chapter 7), circumvent, employ
(Chapter 8) and explore (Chapter 9) the impact of noise in different scenarios.
The field of metrology discusses the achievable precision of protocols aimed to estimate the
value of a chosen parameter [18, 19, 25, 26]. Any protocol operating at the quantum level
evermore suffers from the fact that quantum mechanics is a probabilistic theory, which naturally
sets a lower bound on the achievable precision [27–30]. Importantly, this limit is less restrictive
when quantum resources, such as entanglement, are included into the protocol [31–33]. On the
other hand, this quantum improvement is extremely fragile under the impact of noise and easily
lost [34, 35]. Nevertheless, it is known that colored noise is able to maintain at least part of the
advantage that quantum features provide over classical strategies [36–39]. Here, we approach
the scenario of frequency estimation, where one considers qubit-like probes in a Ramsey-type
protocol to sense an external field that affects their energy splitting in a linear fashion. To obtain
a maximized precision, one optimizes the three stages of the protocol, preparation of the initial
state, encoding time and employed measurement [40–43]. We present an in-depth study of the
ultimate attainable precision under the impact of noise that is acting during the encoding stage
and originating from uncoupled harmonic oscillators, i.e., we employ the spin-boson model [44].
Previous studies in this field have shown that the achievable precision is highly sensitive to
the chosen noise regime [34, 37, 39, 45, 46]. We distinguish two main situations, the one being
called non-phase-covariant noise, which conversely describes all regimes which do not fulfill
the condition of phase-covariance [47–49]. The latter is characterized by the commutativity
of the frequency encoding and the noise, that is, all terms describing the dynamics due to the
noise commute with the encoding Hamiltonian. Crucially, as we are going to clarify, such a
regime is always guaranteed by the secular approximation [50]. Using a single probe, we show
that the inclusion of non-phase-covariant terms can significantly increase the precision, while
being detrimental in other situations. Moreover, we point out that the frequency dependence
of the noise terms, i.e., the rates appearing in a quantum master equation, generally contains
relevant information improving the precision. Nevertheless, this assertion does not hold for
all spectral densities used to describe the spin-bath coupling. In particular, a so called Ohmic

spectral density does not imply these dependencies. However, usually the dependencies of
the rates are either neglected or unclear due to the lack of a microscopic model. The master
equations are then postulated, together with their phenomenological rates, whose purpose is to
mimic the (experimentally) observed dynamics in a small range of parameters.
We further perform an analysis of the scaling of the precision, when N probes are used in
parallel. Here, the ultimate limit is given by the so called Heisenberg Limit, 1/N2, which is
substantially more favorable but under the impact of noise immediately decays to the standard
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quantum limit, 1/N [19]. That is particularly unfortunate, since the latter is achievable by
classical strategies as well. A recent work however showed that, as long as the noise is colored
and phase-covariant, the precision is asymptotically bounded by the Zeno-Limit 1/N3/2 [39].
We study an analogous situation employing the microscopic spin-boson model characterized by
an Ohmic spectral density. Including non-phase-covariant terms, we demonstrate numerically
that this limit is universal for any dynamics altered by colored noise, except the situation where
the action of the noise is completely transversal to the encoding of the parameter. The latter is a
special case, where we observe the emergence of a novel scaling of 1/N7/4, which is the greatest
scaling observed so far under noisy conditions. Furthermore, applying the right approximations
and choosing appropriate model parameters, we reproduce all the so far disconnected situations
encountered in the literature, providing a thorough and comprehensive study of the ultimate
achievable precision from a vivid microscopic perspective.

The devices one aims to implement for quantum technologies pose very specific requirements
on the physical quantum system itself. In many cases, the total system is in fact a conglomerate
of many constituents, while one specific part represents a "hub" which is utilized to selectively
interact with a chosen constituent of the remaining "resource" system. Transferring this abstract
concept to sensing applications, the hub assembles the quantum sensor which interacts, for
example with a molecule from whom one aims to determine its chemical composition and
spacial structure [5, 9, 13, 51–53]. On the other hand, when constructing a quantum register,
the hub serves as a control unit that one desires to interact selectively with individual building
blocks of the register, to either utilize them as a memory [54, 55] or for quantum simulation,
communication and information tasks [23,56–58]. Importantly, it is necessary that gates applied
to manipulate one of the target systems do not alter the state of other constituents [22, 59].
Crucially, both applications are very well connected in the sense that they require the individual
and high selective addressing of single frequencies in the colored spectrum assembled by the
resource system. In the first case, the desired information about the molecule is encoded into
the different features of the spectrum, while in the second case distinct peaks indicate the target
frequencies of transitions where information can be stored in the register. The ability to sense
and control different constituents in an interacting cluster of quantum systems is hence an
inevitable prerequisite in a manifold of technological applications.
Nevertheless, whether proposed methods are indeed functional is an obvious question one has
to address. In this thesis, we choose the nitrogen-vacancy center in diamond [60, 61] as the
working platform for the control methods we are describing. Due to its excellent properties
concerning experimental effort necessary for preparation, readout and manipulation, its long
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coherence and relaxation times, this atom-like defect has qualified itself as one of the most
promising candidates to assemble a robust qubit required for the applications mentioned above.
It furthermore assembles the hub to access the even more robust nuclear spin qubits which
naturally appear in diamond [16, 62, 63, H7].

A standard technique providing individual addressing is dynamical decoupling [64–66], the
working horse of current quantum sensing experiments and well suited for the isolation of a
sought-after signal out of the noisy fog [67–70, H1, H7]. Naturally, realistic implementations
of pulsed dynamical decoupling sequences suffer under drawbacks induced by experimental
limitations. In order to reduce these limitations, imperfections in the control pulses such as
amplitude and detuning errors, are counteracted by a sophisticated design of the employed pulse
sequence where the pulse phases follow an ingenious pattern [71–73]. These try to refocus
appearing pulse errors, such that they average out periodically when a specific number of
pulses is applied. Here, we approach the issue that these pulse sequences can lead to spurious
responses [74] when the controlled system is employed as a spectrometer.3 More specifically,
we first study the detection of a classical oscillating field and show that these spurious responses
appear at even integer multiples of the true responses. Thereby we make the crucial observation
that a spurious response is easily identified by modulating the phase of the sensor’s initial
state, or equivalently, the phase of the applied pulse sequence. We prove analytically that the
amplitude of a spurious response is highly sensitive to changes in these phases, while real
resonances are basically unaffected. Hence we provide an effortless and quick criterion to expel
doubtful parts of a recorded spectral response. The validity of the analytic calculations is then
finally verified and illustrated with numerical simulations of the employed sensing protocols in
realistic situations where we employ the nitrogen-vacancy center as a quantum sensor.

Indeed, the task of generating a selective coupling between two quantum systems of choice
is generally a challenge, even for advanced dynamical decoupling sequences. The crucial

3 At this point one should mention the impressive success story of nuclear magnetic resonance (NMR), since
many of the concepts enabling recent results on spectroscopy of, e.g., single molecules [51–53] are derived
from this essential discovery. In 1938, Rabi et. al. laid the fundamentals to the field with "A new method of
measuring nuclear magnetic moment" [75]. Shortly after, Purcell observed "Resonance Absorption by Nuclear
Magnetic Moments in a Solid" (which was paraffin) in 1946 [76]. The same year, Bloch published "The
Nuclear Induction Experiment" [77], where he describes his experimental arrangement to measure "the signals
from protons contained in a variety of substances". Rabi was awarded the Physics Nobel Prize in 1944, Purcell
and Bloch shared the prize in 1952. Since then, the field evolved fruitfully, yielding magnetic resonance of
molecules and electrons [78] (Ramsey, Physics Nobel Prize 1989), methods to resolve the three-dimensional
structure of proteins (Wüthrich, Chemistry Nobel Prize 2002) and finally magnetic resonance imaging, where
the 2003 Medicine Nobel Price was awarded to Lauterbur and Mansfield.
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bottleneck is determined by the frequency detuning of the transitions one aims to couple
selectively. For all standard techniques, the coupling between these transitions exhibits a power-
law dependence, i.e., it decreases slowly since the coupling strength is inversely proportional
to the detuning. Hence, in a system where the transition frequencies are densely distributed,
individual addressing is strongly aggravated.
We put forward the idea of soft quantum control and propose to solve this issue with an adiabatic
on and off switching of the coupling Hamiltonian. If this is performed according to a Gaussian
shape, the coupling between off resonant systems falls off exponentially with their detuning.
We motivate this idea via a derivation utilizing first order average Hamiltonian theory [79] and
explicitly show the exponential improvement in the individual addressing. Furthermore, by
employing the adiabatic theorem [80], we develop a theory which also includes higher order
corrections and we subsequently present two applications. The first one is a highly improved
rotating wave approximation that is even valid in the strong coupling regime where coupling
and transition frequency are of the same order of magnitude. This enables the execution of gates
with a much improved fidelity. Conversely, the accelerated averaging is accompanied with a
decrease of the required time in case the coupling is weaker. In order to be able to implement
this adiabatic modulation physically, we present a modified dynamical decoupling sequence that
assembles an effective Hamiltonian mimicking the desired evolution. Numerical simulations
confirm the validity of that approach and demonstrate high selective addressing of spins whose
resonance frequencies are separated by only 4.4 kHz. Additionally, the demonstrated capability
of individual addressing is also shown to enable high fidelity quantum gates. An interesting and
important aspect is furthermore the removal of side oscillations in sensing spectra, where the
usual sinc-form [81] of a peak is replaced by a Gaussian shape. This aspect contributes to an
unambiguous identification of peaks, especially if the obtained spectra are dense.
This thesis closes with the experimental and theoretical investigation of a convenient system
allowing to tailor memory effects in the noise itself. The appearance of these memory affects is
associated with a dynamics that is non-Markovian [82–84]. This class of dynamics is gener-
ating broad interest, especially since it has been shown that a system’s memory of the past is
advantageous in a manifold of applications [85–91]. Furthermore, it is important to understand
the impact of different characteristics of noise when exploiting nanoscale systems for quantum
technologies, since they always alter the dynamics and hence suitable countermeasures need to
be designed [92]. Platforms that provide non-Markovian dynamics for a detailed investigation
of the associated effects in the desired applications are rarely available. Besides allowing
memory effects, such a platform should also provide the possibility to remove the latter to
enable comparable studies. The controlled creation of non-Markovian dynamics has been

5



Introduction and Overview

accomplished in optical systems [93–99] and ion traps [100]. Here, we present the electron
spin of a nitrogen-vacancy center as a solid state system with tuneable non-Markovianity. The
inherent nitrogen spin of the color center naturally interacts with the electron spin [101] and
can hence serve as an intrinsic regulator of the degree of non-Markovianity [102, 103]. In
fact, the degree is fully controllable, from completely Markovian up to some maximum value
of the chosen non-Markovianity measure. Crucially, our system does not require intervening
during the evolution, since the non-Markovianity is only defined by the initial preparation of the
nitrogen nuclear spin. Hence, the evolution is completely determined by the quantum nature of
the two subsystems, including back action. Furthermore, since no control during the evolution
is required, this time can be employed completely for the study of non-Markovian effects, e.g.,
in a simulator, under the effect of pulse sequences or in a sensor. The conducted experiment is
divided into two parts. In the first part, we characterize the environment around the nitrogen-
vacancy center to exclude any uncontrollable non-Markovian effects. In the second step, we
show that the degree of non-Markovianity is fully controllable. To analyze the data, we employ
a method based on Bayesian inference [104–106]. To do so, we develop a cohesive model,
that takes not only the theoretical details, but also the experimental peculiarities into account,
such as the different read-out contrast that is determined by the nuclear spin state of the nitrogen.

The thesis at hand is divided into three main parts. In Part I, we introduce auxiliary preliminaries
from the theory of open quantum systems (Chapter 1), the nitrogen-vacancy center in diamond
(Chapter 2) and give a short introduction to dynamical decoupling (Chapter 3). Following
is Part II which starts with an overview of recent results derived in the context of quantum
frequency estimation in Chapter 4. Subsequently, we introduce the microscopic model in
Chapter 5 and analyze the restrictions it imposes on the estimation precision. All results
concerned with quantum control are contained in Part III. Here, we propose an easy criterion to
detect spurious resonances in sensing spectra in Chapter 7, introduce the soft quantum control
method for high fidelity quantum gates in Chapter 8 and lastly, present the nitrogen-vacancy
center as a flexible platform to explore non-Markovian effects in Chapter 9.
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Chapter 1
A Primer on Open Quantum Systems

The theory of open quantum systems is an essential field in quantum mechanics. The secure
and well behaved world of closed quantum systems1 is always obliterated when the system
is taken from the paper and transferred into the lab. Not only do we have to adapt results
derived for closed systems due to the interaction with the surrounding environment, but the
whole theory necessary to describe the different types of dynamics observed becomes richer,
e.g., modifications of the fundamental Schrödinger equation to include environmental effects is
already a complex field on its own.
This section aims to address the concepts, tools and characterizations required for the work at
hand. For detailed in-depth study of the topic, the reader is referred to the books and reviews at
the references [1–4, 14, 82, 83].

1.1. Closed versus Open Quantum Systems

The initial state of a closed system ρS (t0) ≡ ρ0 evolves according to the unitary operator U

governed by the associated Hermitian Hamiltonian HS in the Hilbert spaceHs of the closed
system. For the sake of simplicity, the Hamiltonian is considered time independent during this
section. The solution of the Schrödinger equation of motion is then immediately given by (from
now on we set ~ = 1)

ρ(t) = U (t − t0) ρ0 U†(t − t0) = e−i(t−t0)HS ρ0 ei(t−t0)HS . (1.1)

1Whether one might speak of "well behaved" when having quantum theory in mind is already a philosophical
question itself, going well beyond the scope of this work. However, it is just that dissent from our everyday
experiences in the "classical" world which renders the properties of quantum mechanics fascinating.
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Crucially, due to the cyclic properties of the trace, this structure preserves the purity of the
system [14], i.e. tr

[
ρ(t)2

]
is conserved and furthermore equal to one for pure states2.

However, in realistic scenarios, the system of interest is in contact with an environment, which
unavoidably alters the evolution of the system. Usually this leads to decoherence and relaxation
processes, i.e. a decay of coherences and populations respectively3. In such a case, the system
is referred to as an open (quantum) system. To obtain a description of the open system, one
modifies the Hamiltonian in a way such that it contains the free Hamiltonian of the environment
HE (often also called bath) and a Hamiltonian Hint introducing the coupling terms, leading to

H = HS ⊗ 1E + 1S ⊗ HE + Hint, (1.2)

where 1S and 1E are identity operators on the specific spaces to lift the operators of different
subspaces into the extended Hilbert spaceHS+E = HS ⊗ HE . From now on, we will implicitly
assume the tensor product with the identity and neglect it for brevity.
The open system and the environment form a closed system whose dynamics is governed by
the unitary operator corresponding to the Hamiltonian H, starting from the total initial state
ρSE (0). The state of the open system is obtained via the partial trace over the environmental
degrees of freedom [2, 4], i.e.

ρ(t) = trE
[
USE (t − t0) ρSE (t0) U†SE (t − t0)

]
= trE

[
e−i(t−t0)HSE ρSE (t0) ei(t−t0)HSE

]
. (1.3)

Usually the explicit form of the unitary operators USE (t − t0) escapes our access due to the
sheer size of the environment, or technical restrictions which forbid its observation during
an experiment. From a different point of view, the structure of the specific environment and
therefore the Hamiltonians HE and Hint are often not known exactly. In such cases, one
introduces a model which mimics the dynamics observed in experiments, e.g. the spin-boson
model [44] as we will do later in this work. A further hurdle is the choice of an initial state for
the combined system. Specifically, the state of the environment ρE (t0) = trS

[
ρSE (t0)

]
is not

known in general, while in an even more complex case ρSE (t0) can carry correlations between
the open system and the environment.
The disregarding of the latter case, i.e. assuming the initial state to be a product such that
ρSE (t0) = ρ0 ⊗ ρE (t0), allows for the derivation of powerful equations of motion for the state

2Pure states are the sates fully described by a vector |ψ〉 in the corresponding Hilbert space, while an arbitrary
state is represented by a convex mixture of those, i.e. ρ =

∑
i pi |ψi〉 〈ψi | with

∑
i pi = 1 and all pi ≥ 0.

3Here we consider finite dimensional open systems, where the coherence elements are given by the off-diagonal
elements of ρ(t), while the populations are fixed by the diagonal elements. Also note that coherence is a basis
dependent property, e.g. no coherence is present in the basis diagonalizing ρ(t) [107].
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of the open system and it is realistic for several settings. These equations are so called quantum
master equations, and we will review them in Section 1.2.1. Furthermore, uncorrelated initial
states enable us to identify an analogous relation to Eq. (1.1),

ρ(t) = Λt←t0

[
ρ0

]
=

R∑
r=1

Kr (t, t0) ρ0 K†r (t, t0). (1.4)

Here Λt←t0 is a so called dynamical map [4] or quantum channel [14] evolving the state of the
open system from time t0 to t. We already stress that the notion of the two time points, t0 and t,
is important as the successive application of the same dynamical map is not correct in general
(see also Section 1.4). For the second equality we used the Kraus-representation of Λt←t0 ,
invoking the Kraus operators Kr (t, t0) fulfilling

∑R
r=1 K†r (t, t0)Kr (t, t0) = 1 which guarantees

the preservation of the trace of ρ0. Here, R ≤ (dim ρ)2 is the so called rank of the evolution. It
is important to stress that this representation exists iff the dynamical map Λt←t0 is completely

positive (CP) [14, 108, 109]. That is, for Λt←t0 acting on a space of dimension d it has to hold
that

(
Λt←t0 ⊗ ID

)
[Π] ≥ 0 for any Π ≥ 0, (1.5)

where ID is the identity map on an extending Hilbert space of dimension d ≥ D and Π is an
arbitrary, positive-semidefinite operator on the extended space [82]. A weaker criteria is the
positivity (P) of the map, i.e. the criteria in Eq. (1.5) has to hold only for D = 1. However,
this is often considered as insufficient since a positive map does not necessarily preserve the
positivity of an extended system. Such situation naturally appears when the open system
is entangled with another quantum system. Furthermore, any dynamical map is required to
preserve hermiticity, i.e. Λt←t0[ρ]† = Λt←t0[ρ†] and the trace, i.e. tr

[
Λt←t0[ρ]

]
= tr

[
ρ
]
. A

map following all of these requirements for D = 1 is called positive and trace preserving (PTP).
Such a map actually represents a physical evolution, i.e. it maps density operators to density
operators. However, as mentioned, one conveniently demands the stronger characterization
and requires the map to be completely positive and trace preserving (CPTP) as this allows the
arbitrary extension of the Hilbert space4, e.g. by additional ancillas. Nevertheless, is worth
mentioning that the characterization of CPTP maps is less involved than the one of PTP maps.
For CPTP maps, CP is directly certified via the positivity of the Choi matrix or rather the
Choi-Jamiołkowski-isomorphism [108, 109].

4Note that these requirements are trivially fulfilled for the dynamical map generating a unitary evolution, i.e.
Λt←t0 [ρ0] = Λt−t0 [ρ0] = U (t − t0) ρ(t0) U† (t − t0).
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1.2. Master Equations

A quantum master equation (ME) is a differential equation dictating the evolution of an open
quantum system. The key result leading to the commonly known structure of a time-local5 ME
is the famous theorem by Gorini, Kossakowski, Sudarshan [110] and independently proven by
Lindblad [111]. The theorem tells the following:
For any evolution that can be described via a family of Kraus operators

ρ(t) = Λt←t1

[
ρ(t1)

]
=

R∑
r=1

Kr (t, t1) ρ1 K†r (t, t1), (1.6)

valid for any couple of times t and t1 with t ≥ t1 ≥ t0, the time-local generator L(t)[•] of the
corresponding ME is of the form

d
dt
ρ(t) = L(t)

[
ρ(t)

]
= −i

[
H (t), ρ(t)

]
+

d2−1∑
r=1

γr (t)
[
Vr (t)ρ(t)Vr (t)† −

1
2
{Vr (t)†Vr (t), ρ(t)}

]
.

(1.7)

Here, d = dim[ρ(t)], γr (t) are possibly time dependent but positive decay rates, and we have
possibly time dependent operators Vr (t) and H (t) where the latter is furthermore self-adjoint.6
Additionally we have the anti-commutator {A,B} = AB + BA.
In contrast to Eq. (1.4), the family of Kraus operators characterized here holds for any combina-
tion of t ≥ t1 ≥ t0 and is not restricted to a fixed combination t0 and t ≥ t0. Consequently, all
of those maps fulfill the composition law

Λt3←t1 = Λt3←t2 ◦ Λt2←t1 ∀ t3 ≥ t2 ≥ t1 ≥ t0. (1.8)

Importantly, each of these maps Λ is CP. This composition manifests an crucial property of
the evolution which is called CP-divisibility [82]. In Section 1.4 we will see that, in general,
CP-divisibility cannot be taken for granted in the evolution of open quantum systems. Note,
also if CP-divisibility does not hold, one will be able to write the ME in the form of Eq. (1.7)
but, in this case, the coefficients γr (t) may take also negative values.

5The evolution of ρ(t) only depends on the state of the system at the current time point specified by t and is
independent of the previous history. Crucially, this is not equivalent to the definition of quantum Markovianity
which will be defined in Section 1.4.

6Note that the original works considered only time independent generators, a proof for time dependent generators
can be found in [4]
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A special case of the composition law is encountered when the generator L(t) ≡ L is time
independent. The ME in (1.7) is then usually called Lindblad equation and its solution is then
formally given by

ρ(t) = e(t−t1)L ρ(t1), ∀t ≥ t1 ≥ t0, (1.9)

where the corresponding maps hence form a so called semigroup. Crucially, the maps belonging
to that semigroup only depend on the length of the evolved time interval, Λt2←t1 = Λt2−t1 , and
the composition law 1.8 is reduced to [4, 82]

Λt2+t1 = Λt2 ◦ Λt1 ∀t1, t2 ≥ 0, (1.10)

which is the semigroup composition law. We remark that Λ0 = I represents the identity map.
Commonly a master equation is divided into two parts: first a unitary evolution governed by
the commutator of the state and the Hamiltonian H (t), and second a part which is called the
dissipator D (t). The latter captures the non-unitary influence of the environment onto the open
system and one writes

d
dt
ρ(t) = L(t)

[
ρ(t)

]
= −i[H (t), ρ(t)] +D (t)

[
ρ(t)

]
. (1.11)

Formally, any time-local generator is related to the corresponding dynamical map by the Dyson

expansion,

Λt←t0 = T←e
∫ t

t0
dτL(τ)

=

∞∑
k=0

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtk L(t1) . . .L(tk ), (1.12)

where T← is the chronological time-ordering operator. The dynamical map obtained by solving
the master equation is by no means guaranteed to be positive or even completely positive when
the Dyson expansion is used and only the first K ≥ 0 terms of the series are considered. Then
on has to pay particular care, e.g., P or CP may then be violated at longer evolution times.
This is a rather axiomatic approach to the evolution of open quantum systems, which is very
useful to characterize the properties of the dynamics. In particular all conditions for CP, trace
and hermiticity preservation are sufficiently fulfilled when the ME is of the form given in
Eq. (1.7), while the latter two even hold if the rates γr (t) are not positive for all times [4]. These
characterizations come in handy when one derives the dynamics of an open system from a
microscopic model, as we are in Chapter 5. Hence, in the next section we will approach further
peculiarities on has to take into account.
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1.2.1. Time-Convolutionless - Master Equation

To derive a closed form of the master equation ruling the evolution of an open system subject
to the noise fixed by the Hamiltonian in Eq. (1.2), we may exploit a perturbative approach,
assuming that the system is weakly coupled to the environment. In particular, this approach
yields the time-convolutionless (TCL) master equation [2,112], which has the form of an infinite
series ordered by powers of an overall coupling constant. Including terms up to the second
order, its general form in the interaction picture is given by (denoting as ρ̃(t) the open system
state in the interaction picture with respect to HS + HE)

d ρ̃(t)
dt

= −

∫ t

t0

dτ trE
[ [

Hint(t),
[
Hint(τ), ρ̃(t) ⊗ ρE

] ] ]
, (1.13)

where Hint(t) is the interaction Hamiltonian Hint in the interaction picture. We stress that during
the derivation of this equation, no approximations other than the weak coupling assumption have
to be employed. The separable form of the total quantum state ρ(t) ⊗ ρE is a direct consequence
when employing the Nakajima-Zwanzig projection operator technique [113, 114], while the
equation is local in time due to the expansion of the integral kernel in the time-convolutionless
approach. Let us remark that, usually, the separable system-bath state is artificially introduced
by performing the Born approximation [2]. It is assumed that the bath is much larger than the
system (i.e. the absolute number of states is larger) and hence the total bath state is not changed.
Time-locality is introduced by artificially changing the time argument in the system state7 to
t. One should note that there is no physical reason why this replacement would be justified
separately from the Markov approximation that is invoked subsequently. Under the premise
that all functions corresponding to the evolution of the environment8 in Eq. (1.13) decay on a
much faster timescale than the one relevant for a change in ρ̃(t), one extends the upper bound
of the integral to infinity. In other words, one assumes that the integrand is effectively zero
for all times but the current one. This introduces an effectively "coarse-grained" timescale [2]
where all the dynamics of the environment is expiring during short intervals we are not able to
resolve. Importantly, on has to keep in mind that the ME is an effective description of the open
system dynamics, and ρ(t) ⊗ ρE should not be confused with the true physical state of the total
system [115].
The interaction Hamiltonian can always be brought into the form of a sum of product operators,

7Note that in Eq. (1.13) the time argument of ρ̃ would be τ if the derivation would not have been carried out
using the TCL approach, see e.g. [2].

8These are the correlation functions of the environment. One assumes that these are essentially delta peaked,
i.e. the environment carries no memory. Hence the name Markov approximation. However, the latter is not
necessary to obtain a Markovian evolution of a quantum system as we discuss in Section 1.4.
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Hint =
∑
α Sα ⊗ Eα with Sα (Eα) being operators acting on the open system (environment).

Using the weak coupling assumption [i.e. the time-convolutionless expansion to the second
order given in Eq. (1.13)] the master equation can be brought into the practical form of Eq. (1.7).
We now specify it in the Schrödinger picture, where it reads

d
dt
ρ(t) = −i

[
H′S (t), ρ(t)

]
+

d2−1∑
r=1

γr (t)
[
Vr (t)ρ(t)Vr (t)† −

1
2
{Vr (t)†Vr (t), ρ(t)}

]
. (1.14)

The Hamiltonian H′S (t) is the sum of the open system’s free Hamiltonian and an additional Lamb
shift contribution which can depend on time, H′S (t) = HS + HLS (t). We stress that the decay
rates γr (t) are now not guaranteed to be positive, i.e. they may take negative values for limited
time intervals or even for the complete evolution. As mentioned above, γr (t) ≥ 0 ∀ t,r iff the
evolution is CP-divisible [82] and consequently the dynamical maps possesses a representation
via Kraus operators, Eq. (1.6). For rates γr (t) < 0 at some arbitrary time, the CP-divisibility
is broken and even the CP of the map Λt←t0 is not necessarily warranted, therefore one has to
resort to the Choi-Jamiołkowski-isomorphism to verify CP.
Nevertheless, the just mentioned Markov approximation in combination with the secular

approximation ensure that the resulting ME induces a CP dynamics. The secular approximation
neglects terms in the ME which oscillate sufficiently fast such that they are averaged out during
the timescale on which the open system decays (see Section 5.1.2 for an example). More
specifically, these approximation induce the semigroup dynamics, i.e. we have the Lindblad
ME

d
dt
ρ(t) = −i

[
H′S, ρ(t)

]
+

d2−1∑
r=1

γr

[
Vr ρ(t)V †r −

1
2
{V †r Vr , ρ(t)}

]
, (1.15)

where the solutions are given by Eq. (1.9). To that end, note that the secular approximation is
not a necessary but (along with the Markov approximation) a sufficient condition to obtain a
semigroup dynamics, see for example the derivation of a semigroup limit in Appendix A.2.6
for the microscopic model in Section 5.2.2.
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1.3. Matrix Representation of linear Qubit Maps

This section has been first published in [H3] and, in large parts, has been taken from there.

The transformations introduced by some dynamical maps can appear to be quite complex and
unintuitive. Moreover, as we will see later, different types of transformations can substantially
alter the results obtained in frequency estimation tasks. Here we provide a geometric repre-
sentation of the dynamical map which will allow us to build some intuition on the dynamics
introduced. Note that due to the dimension of systems with more than two levels, the illustrative
representation we are going to discuss here and in Section 1.5 only exists for qubits, however
the technical aspect of the result can be generalized easily.
We use a representation of qubit quantum channels, which relies on the Hilbert-Schmidt scalar
product on the Hilbert space of the linear operators on finite-dimensional Hilbert spaces, and
which is directly linked to the action of the channels on the Bloch sphere. For further details
the reader is referred to [116–122].
Recall that the Hilbert-Schmidt scalar product among two linear operators ξ and χ is defined as

〈ξ, χ〉 = tr
[
ξ† χ

]
. (1.16)

Hence, given the orthonormal basis of operators {τα}α=0,...,3 = {1/
√

2,σ j/
√

2} j=x,y,z acting on
C

2, with σ j the Pauli matrices, any qubit state ρ can be represented as

ρ =

3∑
α=0

〈τα, ρ〉 τα =
1
2

(
1 + ~r · ~σ

)
. (1.17)

Here, ~σ is the vector of Pauli matrices and ~r is the Bloch vector associated with the state
ρ, which has components r j = tr

[
σ j ρ

]
for j = x, y, z and must fulfill |~r | ≤ 1 to guarantee

positivity. As well-known, any qubit state is in one-to-one correspondence with a vector inside
of a unit sphere centered at the origin, i.e., the Bloch sphere.
In the same way, any linear map Ξ acting on the qubit operators can be represented as a 4 × 4
matrix by means of the relation

Ξ[ρ] =

3∑
αβ=0

DΞ
αβ〈τβ, ρ〉 τα DΞ

αβ = 〈τα,Ξ[τβ]〉. (1.18)
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Thus, given the CPTP dynamical map Λ, the most general form of the matrix DΛ associated
with it reads

DΛ =




1 ~0T

~v V


 , (1.19)

where ~v is a real 3 dimensional column-vector, ~0T is a 3 dimensional row-vector of zeros
and V a real 3-by-3 matrix. The first row guarantees the preservation of the trace, the real
coefficients guarantee the Hermiticity preservation, while the general conditions for the CP can
be found in reference [116]. Using Eqns. (1.17-1.19), one can easily see that the action of the
dynamical map Λ on a state ρ associated with a Bloch vector ~r simply corresponds to the affine
transformation

~r −→ ~v + V~r , (1.20)

where ~v describes translations of the Bloch sphere, while V describes rotations, reflections and
contractions. The latter point can be shown via the singular value decomposition, which allows
us to write the 3 × 3 real matrix V as [116]

V = Rϕ1
n1 DRϕ2

n2 , (1.21)

where Rϕ1
n1 and Rϕ2

n2 are two rotation matrices, about the axis n̂k by the angle ϕk for k = 1,2,
while D is a diagonal matrix D = diag

{
dx ,dy,dz

}
. Then |d j | describes the contraction along

the j-axis (|d j | ≤ 1 to guarantee the positivity of the dynamics), and d j < 0 implies a reflection
with respect to the plane perpendicular to the j-axis.

1.4. Non-Markovianity of Quantum Evolutions

To date, even the fundamentals of non-Markovianity in quantum evolutions are still a frequently
addressed problem, lacking a unified and commonly accepted definition [84]. This surely
originates in the fact that a straightforward definition in analogy to the conditional probabilities
of a classical stochastic process is not possible [82].
Consider a stochastic process fixed by a random variable X(t) at time t. For the sake of
simplicity, we assume X(t) to be discrete, i.e. at each time tn it takes a value xn which is chosen
from a discrete set {x (m)

n }m∈N. The stochastic process is a Markov process if the probability
for X(t) to take the vale xn at tn conditioned on the previous history is only determined by
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the value xn−1 at tn−1, i.e. earlier values at t < tn−1 have no influence. Mathematically, we
formulate this in terms of conditional probabilities,

P(xn, tn |xn−1, tn−1; xn−2, tn−2; . . . ; x0, t0) = P(xn, tn |xn−1, tn−1)

for all tn ≥ tn−1 ≥ tn−2 ≥ . . . ≥ t0 and

for all x0, x1, x2, . . . xn.

(1.22)

The reduction to conditional probabilities only depending on the previous value (xn−1) is
obviously in harmony with the notion that a Markovian process possesses no memory of earlier
times.
The fundamental problem of transferring this definition to the quantum regime is the following.
In case the stochastic process is referred to a classical system, sampling of the probabilities
at times ti is feasible. Contrary, in a quantum mechanical setup each measurement would
disturb the system and hence alter the statistics of the process at later times. Moreover, quantum
mechanics allows a variety of different measurements, consequently a possible detection of
non-Markovianity would require an assignment to the measurement chosen. However, we
ultimately desire a criteria characterizing the dynamics of the system rather than the outcomes
of a particular measurement.
Consequently, finding an ansatz for a universal definition of non-Markovianity is a fiddly task.
On the one hand, it is desired to follow the classical case as close as possible, on the other hand,
verification of (non-) Markovianity should be experimentally feasible. From the numerous
definitions that have been put forward [4, 83, 84], we present the sole two which are important
for the discussions in the later parts of this work.

CP - Divisibility

Put forward by Rivas, Huelga and Plenio (hence also called RHP-criteria), this definition char-
acterizes non-Markovianity via the divisibility of a dynamical map [103]. This characterization
of a Markovian process is motivated by the divisibility of a classical Markovian process. In
particular, for a classical stochastic process the probabilities of the random variables X (tn−1)
and X (tn) can be connected via a transition matrix T(xn, tn |xn−1, tn−1) according to the relation

P(xn, tn) =
∑
xn−1

T(xn, tn |xn−1, tn−1)P(xn−1, tn−1), (1.23)

where the sum runs over all possible values of xn−1. A stochastic process, whose transition
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matrices for t3 ≥ t2 ≥ t1 ≥ t0 satisfy∑
x2

T(x2, t2 |x1, t1) = 1, (1.24)

T(x2, t2 |x1, t1) ≥ 0, (1.25)

T(x3, t3 |x1, t1) =
∑
x2

T(x3, t3 |x2, t2)T(x2, t2 |x1, t1), (1.26)

is called divisible. Crucially, for a Markovian process T(x2, t2 |x1, t1) = P(x2, t2 |x1, t1) and on
the level of one point probabilities divisibility coincides with Markovianity9 [82]. This property
is suitable for the definition of a quantum Markovian process. By relating the dynamical maps
Λt2←t1 to the transition matrices T(x2, t2 |x1, t1), we replace Eq. (1.24) with the preservation of
the trace and Eq. (1.25) with complete positivity. Remaining is the composition law, Eq. (1.26),
which we like to convert for a quantum evolution into the one stated in Eq. (1.8), however we
introduce a slight modification, i.e. we have

Λt3←t1 = Φt3←t2 ◦ Λt2←t1 ∀ t3 ≥ t2 ≥ t1 ≡ t0. (1.27)

In contrast to 1.8, the time t1 is fixed to the initial time t0. By Φt3←t2 we denote the propagator

from time t2 to t3 and importantly, this propagator does not have to be a CPTP map. Finally,
we define any quantum evolution, whose family of dynamical maps can be decomposed ac-
cording to the modified composition law in Eq. (1.27) where indeed Φt3←t2 is a CPTP map,
as a quantum Markovian evolution. Therefore, any CP-divisible dynamics is Markovian. In
particular, note that Eqs. (1.8) and (1.27) coincide here. Conversely, any evolution that cannot
be decomposed as such, that is when the propagator Φt3←t2 is not a CPTP map, represents a
quantum non-Markovian evolution.

Trace Distance

The definition via the trace distance has been proposed by Breuer, Laine and Piilo (BLP-
criteria) [102]. It is stated, that iff the evolution is Markovian, the trace distance for any two
states ρ and σ is either decreasing or constant in time, i.e.

| |ρ(t2) − σ(t2) | |1 ≤ ||ρ(t1) − σ(t1) | |1 ∀ t2 ≥ t1, (1.28)

where | |A| |1 = tr
[√

AA†
]

is the trace norm. The motivation behind this definition is the memory

9Note that there are classical non-Markovian processes which are divisible [82].
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property of non-Markovian processes: Note that the trace distance

D[ρ(t1),σ(t1)] =
1
2
| |ρ(t1) − σ(t1) | |1 (1.29)

describes the distinguishability of the two states [123]. Therefore, one considers loss of distin-
guishability as a flow of information from the system to the environment, and vice versa, an
increase of the distinguishability as a backflow of information. The loss of distinguishability is
generally associated with Markovian processes.

Let us make a few remarks concerning the implication and history of the above definitions.
The RHP-criteria and the BLP-criteria are not equivalent. It can be shown that every CP-
divisible dynamics fulfills the contractive property of the trace distance in Eq. (1.28), while
the converse is not true [82]. However, note that in the case of a pure dephasing dynamics,
all common definitions of non-Markovianity coincide [124]. Hence the RHP-criteria is in
closer relation to the classical notion of a Markovian process to be without memory, since
according to the BLP-criteria there exist processes which are not CP-divisible and at the same
time do not decrease the trace distance. On the other hand, since the CP-divisibility is based
on the dynamical maps, it requires progress tomography [125, 126] to be fully characterized
experimentally. At the same time, only two states with an increasing trace distance are required
to identify a dynamics as non-Markovian (note however that in general the estimation of the
state also requires state-tomography [127]). In an optimal case, these states are orthogonal and
lay on the boundary of the set of physical states [128]. Hence, the trace distance also serves as
a useful witness.
An evolution according to a semigroup ("semigroup evolution") was historically defined to
be the criteria for a Markovian evolution, as it corresponds to an evolution governed by the
Lindblad equation (1.15). Due to its positive and constant rates in the dissipator it is also
referred to as time-homogeneous Markovian [82]. As mentioned in Section 1.2.1, the constant
rates are achieved by the Markov approximation in the derivation of this master equation [2].
Thereby it is assumed that the environmental correlations are essentially delta peaked and the
corresponding frequency spectrum approaches the flat distribution of white noise [17]. In the
same way, these delta correlations are associated with a memoryless environment and on this
account with the resulting Markovian dynamics of the open system. Therefore, on might refer
to a semigroup evolution as an open system undergoing quantum white noise.
Furthermore, note that positive, but time dependent rates γr (t) in the Lindblad-form of Eq. (1.7)
guarantee a Markovian evolution by both the RHP- and BLP-criteria and the dynamics are
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referred to as time-inhomogeneous Markovian [82]. On the other hand, rates which are negative
at some times t ≥ 0 result in non-Markovian dynamics according to the RHP-criteria, however,
one may construct examples where the trace distance according to the BLP-criteria is non-
decreasing [129].
Finally, we want to mention that the specific definition of non-Markovianity, apart from the
semigroup composition law, does not play any role for the interpretation of the results presented
in this work.

1.4.1. A Measure of non-Markovianity

The question, whether a given dynamics is non-Markovian, possesses a binary answer, at least
if the definition of non-Markovianity is fixed. Nevertheless, one may desire to refine this
answer by quantifying, "how non-Markovian" a given dynamics actually is. This refinement is
provided by a proper measure assigning the degree of non-Markovianity to the dynamics. Due
to the deviant definitions, it is a natural consequence that also different measures have been
proposed [82, 83, 102, 103, 130–132].
Since we will require a measure of non-Markovianity in Chapter 9 to quantify a pure dephasing
dynamics, we will dedicate this section to the introduction of a measure based on the trace
distance definition of non-Markovianity [102]. We stress again that the measure according to
any other definition would yield a quantitatively equal result (all detections of non-Markovianity
would coincide, but the measures would have different values) [124].
Recalling the trace distance in the previous section, we define the rate of change of the latter as

R (t, ρ,σ) =
d
dt

D[ρ(t),σ(t)] =
1
2

d
dt
����Λt←t0

[
ρ(t0)

]
− Λt←t0 [σ(t0)] ����1. (1.30)

There is a backflow of information and hence non-Markovianity if R (t, ρ,σ) > 0, i.e. Eq. (1.28)
is violated. Hence, a natural way to quantify the degree of non-Markovianity is to measure that
backflow by integration over these times, i.e. we have the measure

N
(
Λt←t0

)
= max

ρ(t0),σ(t0)

∫ t

t0

dτ R (τ, ρ,σ) Ind
[
R (τ, ρ,σ) > 0

]
, (1.31)

where Ind[•] is an indicator function taking the value 1 for a true statement and zero otherwise.
Obviously, the measure is zero for all dynamics where the trace distance is non-increasing.
The maximization over possible initial states is a consequence of our demand that the measure
should quantify the non-Markovianity degree of the map inducing the dynamics and not a
particular realization of latter. A convenient expression of the integral can be found in terms of
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a sum, i.e. we write

N (Λt←t0 ) = max
ρ(t0),σ(t0)

∑
m

D(τ′m, ρ,σ) − D(τm, ρ,σ), (1.32)

where m labels all intervals (τm, τ
′
m) with D(τ′m, ρ,σ) − D(τm, ρ,σ) > 0.

Let us discuss an essential example. Consider a qubit undergoing a pure dephasing dynamics.
In the basis that diagonalizes its free Hamiltonian, the corresponding state at any time t can
always be written as

ρ(t) =




p
√

p(1 − p)e−Γ(t)+iϕ(t)√
p(1 − p)e−Γ(t)−iϕ(t) (1 − p)


 (1.33)

where ϕ(t) denotes a possibly time dependent phase and Γ(t) is the decoherence function [2],
while p parametrizes the population of the basis states. The initial state is given for t = t0. For
any given p, the state σ(t) maximizing the trace distance10 D

[
ρ(t0),σ(t0)

]
can be obtained

via ρ(t) employing the transformations φ(t) 7→ φ(t) + π and p 7→ 1 − p.
Calculation of the trace distance yields

D(t, ρ,σ) = e−Γ(t)
√

e2Γ(t) (1 − 2p)2 − 4(p − 1)p. (1.34)

Crucially, this expression is exactly equivalent to the length of the Bloch vector ~r (t) of the
state ρ(t) (see Section 1.3 above). By virtue of Eq. (1.32) we hence arrive at the measure of
non-Markovianity for a qubit undergoing pure dephasing dynamics

N =
∑

m

r (τ′m) − r (τm), (1.35)

where m labels all intervals(τm, τ
′
m) where r (τm′) > r (τm). We add the following remark. The

coherence of a qubit state can be quantified by the length of projection of its Bloch vector into
the xy plane of the Bloch sphere [107]. Since p is constant for a pure dephasing dynamics, it is
absolutely enough to observe the evolution of the qubit’s coherence to quantify the degree of
non-Markovianity in its dynamics.

10These states directly oppose each other on the Bloch sphere [a concept we are introducing in Section 1.3], i.e.
their Bloch vectors only differ in a global sign. Moreover, note that this observation holds for any time t, not
just for t = t0.
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1.5. Phase-Covariant versus non-Phase-Covariant Dynamics

This section has been first published in [H3] and, in large parts, has been taken from there.

The nature of the noise strongly influences the metrological bounds on the achievable precision
in frequency estimation we are going to explore in Chapters 4 and 5. Thereby, a crucial role
is played by the phase-covariance (PC) [47–50] of the noise. Weather the noise is PC or
non-phase-covariant (NPC) can have a heavy impact on the achievable precision, hence, it is
worth presenting explicitly an intuitive way to differentiate between the two kinds of dynamics,
which we will intensively exploit in Chapter 5.
Phase-covariance is straightforwardly characterized by a commutation relation on the level of
dynamical maps. The requirement is defined through the condition that the channel generating
the evolution commutes with any rotation Rz[•] = exp (−iφσz) • exp (iφσz) of the qubit’s state
around the z axis, i.e.

[
Λt2←t1 ,Rz

]
= Λt2←t1 ◦ Rz − Rz ◦ Λt2←t1 = 0 (1.36)

for any arbitrary angle φ. For the case that the free evolution is also in the z direction, a
colloquial formulation would be that the free evolution and the action of the noise commute.
Phase-covariance results in a particular geometry of the available transformations made through
the channel, where it is now convenient to employ the matrix form of linear maps introduced in
the last Section 1.3. Such a representation of the dynamical maps allows us to easily detect PC
dynamical maps out of all the possible transformations of the Bloch sphere: for any fixed time,
a dynamical map satisfies Equation (1.36) if and only if its matrix representation reads

DΛ
PC =




1 0 0 0
0 d cos ξ −d sin ξ 0
0 d cos ξ d sin ξ 0
vz 0 0 dz



. (1.37)

With reference to the general form of a qubit dynamical map in Equation (1.19) and the
decomposition in Equation (1.21), we see that PC maps are identified by: equal contractions
along the x̂ and ŷ axes (D = diag {d,d,dz}), a translation only along the ẑ-axis (~v = {0,0,vz})
and a rotation only about the z-axis, which we get by setting n̂1 = ẑ and ϕ1 = ξ, while Rϕ2

n2 = 1

(other completely equivalent choices can be made, since D commutes with the rotations about
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Figure 1.1.: Transformations of NPC and PC dynamics on the Bloch sphere. (a): The NPC
dynamics can be viewed as a general affine transformation Eq. (1.20) of the Bloch
sphere (see Section 1.3) contracting it to an ellipsoid that is parametrized by (in
order): a rotation Rϕ1

n1 , contractions dx ,dy,dz, along the three axes, a reflection,
a second rotation Rϕ2

n2 and a translation by a vector ~v (for simplicity, we denote
the two rotations by a single R above). (b): PC dynamics is then obtained by a
restriction to transformations that forces the cylindrical symmetry (indicated by
a circular arrow) of the ellipsoid around the ẑ axis to be conserved. (Figure first
published in [H6])

the ẑ axis). Of course, PC maps include only the affine transformations of the Bloch sphere
commuting with the rotation about the ẑ axis, while NPC maps include also rotations about any
axis different from the ẑ-axis, translations with non-zero components along the x̂ and ŷ axes
and unequal contractions along the x̂ and ŷ axes, see Figure 1.1.
Finally and crucially for our purposes, let us recall that given a PC dynamics, the functional
form of the corresponding master equation can be univocally characterized and it reads [39]

dρ(t)
dt

= − i
[
(ω0 + h(t))σz, ρ(t)

]
+ γ+(t)

(
σ+ρ(t)σ− −

1
2

{
σ−σ+, ρ(t)

})
+ γ−(t)

(
σ−ρ(t)σ+ −

1
2

{
σ+σ−, ρ(t)

})
+ γz (t)

(
σz ρ(t)σz − ρ(t)

)
,

(1.38)

for some, possibly time dependent, real coefficients h(t), γ+(t), γ−(t), γz (t). Equivalently, in
the other direction, any master equation of the form as in Equation (1.38) will give rise to
a PC dynamics. In particular, one can show that starting from the ME Eq. (1.38) the affine
representation of the map must take form Eq. (1.37) [39]. From a physical point of view, the
ME in Eq. (1.38) includes the common noise processes of dephasing [γz (t)], emission [γ−(t)]
and absorption [γ+(t)].
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Chapter 2
The Nitrogen-Vacancy Center in Diamond

The nitrogen-vacancy center (NV) is a color1 defect in diamond. First discovered in the
seventies [134, 135], in recent years it has enjoyed lots of attention and has become a widely
used experimental platform in quantum sensing, quantum computation, quantum simulation,
quantum metrology and quantum information [5, 8, 9, 21]. Its increasing usage in these fields
surely has to be ascribed to reasonable experimental effort, as many of its advantages still
persist at room temperature, such as long coherence times [136, 137], optical readout and
initialization [138]. Advanced manufacturing processes of diamond crystals, like chemical
vapor deposition [139, 140] or high-temperature-high-pressure methods [141] pave the way
for the controlled creation of nearly impurity-free samples of the host material, avoiding
otherwise persistent noise sources. The NV centers themselves are generated by ion beam
implementation [142, 143] and delta-doping [144–146]. However, a deterministic creation,
especially at specifically picked locations, is still an unsolved task [142].
In the following, we illustrate the basic properties of the NV center which will become important
in the course of Part III of this work. There, the NV center serves as an experimental platform
for illustration purposes. For an in depth description of the NV center and its properties we
refer to the review by Doherty et al. [61].

2.1. The Level Structure and its Consequences

The NV is a point defect in the diamond lattice [Figure 2.1 (a)], where it replaces two adjacent
carbon atoms. It consists of a nitrogen at the first lattice site, while the other one remains

1These defects "colorize" the otherwise translucent diamond. NV centers give a diamond a pink tint [133].
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vacant. The diamond lattice belongs to the face-centered cubic point group with a two atomic
basis, which results in four possible spatial orientations of the defect [147]. The C3ν symmetry
of the defect [134], together with its charge state completely determine the level structure
[135, 148–155]. Importantly, the rotational symmetry axis connects the vacancy and the
nitrogen spin and defines the quantization (ẑ) axis.2 The three dangling carbon bonds donate
three electrons to the NV, while the nitrogen atom possesses two free electrons. Together with
an additional electron of an external donor, the NV center can form a negatively charged state3,
which has an electronic spin of S = 1 [151, 156, 157]. In the electronic ground state, this forms
a spin triplet 3A with a zero field splitting of ∆ = 2π · 2.87 GHz [135, 158, 159] between the
|ms = 0〉 and |ms = ±1〉 states [153, 160, 161]. Interaction with the inherent nitrogen nuclear
spin results in further hyperfine splitting of the |ms = ±1〉 states, depending on the nitrogen
isotope, e.g., A‖ = 2π · 2.14 MHz for the 14N isotope [101,162] with I = 1. This isotope further
possesses a quadrupole splitting Q = 2π · 5.01 MHz. This splitting is sketched in Figure 2.1 (b)
to (e).
While the manipulation of the electronic spin states was found achievable via a microwave

drive [163], the preparation and readout of the electron spin is performed by optical excitation
of the 3A state into the electronic 3E excited state. This transition is spin preserving, i.e. the
population distribution in the |ms〉 levels is not touched. The decay back to the 3A state,
however, is strongly spin selective. The excited |ms = 0〉 state radiatively decays into its
ground state, while the excited |ms = ±1〉 mainly passes through a non-radiative inter-system
crossing to a metastable singlet state between the excited and the ground state [159].4 The latter
also decays preferentially into the |ms = 0〉 ground state, i.e. this total transition is not spin
preserving [166, 167]. Firstly, this results in a higher intensity if the initial state is |ms = 0〉
compared to |ms = ±1〉 and hence this difference in luminescence is used to determine the
electron spin state. Secondly, optical pumping for sufficiently long time polarizes the electron
spin into the |ms = 0〉 ground state. Conveniently, these mechanisms can be observed at room
temperature, too [138].
The spin states are sensitive to the to magnetic fields. Often, an externally applied field
along the symmetry axis of the NV center is employed to lift the degeneracy between the
|ms = ±1〉 states due to the Zeeman effect.5 In this work, we employ the |ms = 0〉 and

2Note that this also sets a preferred coordinate system when the NV center is employed for sensing applications.
3The neutrally charged state of the NV is not considered in this work.
4The exact path of the decay is yet to be sorted out completely, as there is also evidence of two singlet states

separated by a radiative 1042 nm infrared transition [156,164,165]. However, the detailed level structure is not
important for this thesis, hence we will work with one single singlet.

5Also other directions are possible, however this may lead to a tilted quantization axis and therefore new
eigenstates which are mixtures of the free |ms〉 states.
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Figure 2.1.: Properties of the nitrogen-vacancy center. Panel (a) illustrates the geometry of
the NV center. It exhibits a symmetry for rotations of 2π/3 around the axis (blue)
connecting the nitrogen atom (green) and the vacancy (white circle), which is
furthermore chosen as the ẑ axis. The other three possible orientations of the NV
are marked in red. The corresponding simplified energy-level scheme is shown in
panels (b)-(e). The orbital 3A electronic spin ground state is excited by a green
laser (532 nm, green arrow) into the 3E excited state [panel (b)]. The fine structure
illustrated in (c) shows the zero field splittings of the ground state spin triplet and
the excited state respectively (blue arrows). Subsequently to optical excitation,
the state decays according to the electronic spin state. Spin preserving radiative
decay into the 3A state is indicated by the red arrows (600 to 800 nm, the noted
637 nm correspond to the zero-phonon line [60]). The excited |ms = ±1〉 states
preferentially decay by a non-radiative path (black arrows) through the intermediate
singlet to the |ms = 0〉 ground state. Note that the excited |ms = 0〉 also possesses a
finite probability to pass through the singlet. This induces a difference in photolumi-
nescence for the different excited states and enables polarization into |ms = 0〉. An
external magnetic field along the ẑ axis of magnitude Bz lifts the degeneracy of the
|ms = ±1〉 states, see panel (d). The yellow arrows mark the artificial qubits chosen
in this work and therefore also the transitions driven by microwaves. Around 500 G
the |ms = 0〉 and |ms = −1〉 states cross, which together with the hyperfine splitting
in (e) caused by a 14N spin result in either crossing or repelling states. Since the
the 14N nuclear spin represents a spin-1 system, it possesses a quadrupole splitting
Q, additionally to the hyperfine constant A‖ . The hyperfine structure for |ms = 1〉
is not shown here.
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one of the |ms = ±1〉 states as our working transition for the artificial qubit. Furthermore, the
application of the external magnetic field close to 500 G sets the steady state for optical pumping
to |ms = 0,mI = +1〉 [168]. This is due to a spin level anticrossing in the 3E state which allows
energy conserving spin flip-flop processes between the electron and nitrogen spin.

2.1.1. Ground State Spin Dynamics

The NV center’s electron spin interacts with multiple quantum systems naturally occurring
inside of the surrounding diamond. Depending on the type of the diamond [133, 141, 169],
different elements besides carbon can occur. In NV related experiments, this is mainly nitrogen
which appears naturally or as a residue from nitrogen implementation. As a consequence, also
other types of defects occur [158], e.g., nitrogen P1 centers (which carry an electron spin), or va-
cancies that haven’t been converted to NV centers during the manufacturing process [142, 146].
Further noise originates from the diamond surface because of the dangling bonds of the most
upper carbon layer [170–173]. However, for NV centers located deep (few µm) in a diamond
of low nitrogen content6, the dominant coupling antagonists are 13C nuclear spins-1/2. 13C is a
stable and naturally occurring isotope of carbon, appearing with a natural abundance of 1.1%,
on the other hand, the most abundant 12C isotope (98.9%) carries no spin.
The detrimental consequences of the interaction with these impurities are decoherence effects
(dephasing), i.e., relaxation of the transversal spin components. At the most basic level, the
coupling to the impurities can be understood as a fluctuating magnetic field introducing random
phase shifts on the electron spin [174, 175]. The longitudinal decay driving the population
distribution into an equilibrium state originates from transitions induced between the different
magnetic sublevels of the NV electron spin. This decay is mainly governed by phonons in the
diamond lattice and hence a great temperature dependence is expected.

To characterize the effects of these processes, we distinguish three timescales (or rates, which
are given by the inverse of these times).

• The homogeneous dephasing time or coherence time T2. This time is usually measured
via a Hahn echo [176] or extended via multipulse dynamical decoupling sequences,
see Section 3. Spin-spin interactions of the NV center and other impurities result in
correlation processes decreasing the purity of the reduced NV spin state. The T2 time
increases with higher magnetic field amplitudes but saturates in the strong field regime

6This is a so called type-IIa diamond, where the nitrogen content is basically undetectable (<1 ppm) [61, 169].
Diamond containing single substitutional nitrogen impurities is usually categorized as type-Ib.
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beyond 300 G [175, 177, 178]. Contributions originating from other electronic spins
freeze out below 20 Kelvin [179]. Naturally, another crucial factor is given by the
impurity concentration. In a 13C depleted diamond, T2 ∼ 1.8 ms was measured [136]
(at room temperature), while using multipulse sequences showed T2 ∼ 3.3 ms (at room
temperature) and T2 = 580 ms (at liquid-nitrogen temperature of 77 K) [137]. In diamond
with natural 13C abundance, T2 has been pushed to about a second, employing a cryogenic
temperature of 3.7 K [180].

• The inhomogeneous dephasing time T∗2 characterizes the so called free induction decay

(FID) recorded by a Ramsey measurement [78]. Inhomogeneous dephasing is an effect
that appears when measurements of ensembles are considered. There, one may speak of
a simultaneous measurement of multiple systems or repeated measurements of a single
system. In this context it is caused by slight inhomogenities in the applied fields or
due to slow fluctuations of other impurities in the diamond lattice, that vary locally
from system to system or between separate measurement cycles. Since echo techniques
refocus these slow fluctuations during each single run, for non-echo techniques like the
Ramsey measurement one has T∗2 ≤ T2 [61]. The FID decay is therefore also strongly
dependent on the magnetic field and the temperature [175, 181] and usually happens
on the order of a few µs. In Chapter 9, we measure T∗2 ≈ 22.26 µs for an ultra pure
diamond (13C abundance 0.01%), while for natural abundance it is predicted to be around
4 µs [175, 181].

• The spin relaxation time T1, sometimes also called spin-lattice relaxation time. This time
scale is rather independent from the magnetic field (besides an anomaly at around 600 G
which appears in nitrogen rich samples), but highly temperature dependent as it is mainly
caused by phonon induced transitions between the magnetic sublevels. [61, 179]. These
phonons freeze out with decreasing temperature. A relaxation time of T1 ∼ 508 ms has
been observed at 77 K [137], while at 3.7 K, a relaxation time of greater than one hour has
been reported [180]. Even at room temperature one usually finds that T1 ∼ 6 ms [137,179],
which is far longer than any dynamics we examine in the work present at hand. Hence
for all calculations in this work we follow the usual practice and neglect these relaxation
processes.

We stress that these timescales are not as disconnected as they appear. The relation between
T2 and T∗2 has already been mentioned. However, another crucial relation is set by T1 ≥ T2/2,
which is a necessary condition for the evolution to be physically well defined, in particular
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CP7 [50]. However, in [137] it is argued that before reaching that limit, spin-phonon coupling,
which may only be removed at very low temperatures, contributes to the T2 process.

2.1.2. Peculiarities of the Electron Spin Readout

Figure 2.2.: Readout of NV centers. The photon counts during optical cycles driven by laser
illumination are shown in (a). The red curve displays the curves for a spin state in
|ms = 0〉, while the grey curves show lower rates due to the non-radiative pathway
illustrated in Figure 2.1. Depending on the spin state of the 14N spin, these darker
count rates differ. The responsible mechanism is shown in (b). The diagram shows
the sequence of events happening in the 3E state. The non-radiative decay is marked
with black arrows. The state yielding the least photons is |ms = −1,mI = −1〉 in
the top left. After passing through the ground state and subsequent excitation (grey
dotted arrows), the |ms = 0,mI = −1〉 state may undergo a total spin conserving flip
flop dynamics (blue arrow) to |ms = −1,mI = 0〉 and hence pass again through the
singlet state. This can be repeated analogously, until |ms = 0,mI = 1〉 is reached.
This is the steady state where most cycles include the radiative pathway. Note that
this scheme allows polarization of the 14N state into |mI = 1〉.

As mentioned before, the readout of the electron spin state is performed by optical excitation and
collection of the resulting fluorescence. Nevertheless, there is a particularity of this process that
will become relevant in Section 9.4.1. During illumination, the system undergoes optical cycles
between the 3A and 3E states, increasing the collected number of photons [166]. Especially,
this is the case for the |ms = 0〉 state resulting in the high photon counting rate shown in
Figure 2.2 (a). On the other hand, starting from the |ms = ±1〉 states the system gets trapped
in the singlet state, which has a lifetime of ≈ 150 − 450 ns [153, 164], see Figure 2.1. Hence,
no optical cycles are performed during this time and the initial fluorescence drops [166, 167],

7Strictly speaking, this relation is only true for systems with a single transition, i.e. qubits. For multiple levels, the
harmonic mean of all coherence times approaches the harmonic mean of all relaxation times from above [50].
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resulting in the lower fluorescence curves in Figure 2.2 (a). However, the preferential decay of
the singlet state into |ms = 0〉 leads to the convergence of the counting rate onto a stable value.
This value is lower compared to the initial counting rate recorded for |ms = 0〉, since this state
also possesses a final probability to pass through the singlet state [182].
For a critical magnetic field strength of about 500 G, important details are added to the procedure.
Here, the |ms = 0〉 and |ms = −1〉 states of the 3E state become degenerate, and together with
the nitrogen spin some of the |ms,mI〉 states exhibit a level-anticrossing due to the interaction
of electron and nitrogen spin. The strong orthogonal hyperfine interaction of around 40 MHz
(for 14N ) allows for flip-flop8 interactions in the 3E level [182, 183]. Depending on the
state of the nitrogen spin at the start of the readout, the system passes up to three times
through the singlet before finally being polarized into |ms = 0,mI = +1〉 [182], see the scheme
in Figure 2.2. Naively speaking, the polarization inversion of the 14N from |mI = −1〉 →
|mI = 0〉 → |mI = 1〉 can be "consumed as a fuel" to increase the number of dark optical cycles.
On the one hand, this provides a method to increase the contrast9 between the |ms = 0〉 and
|ms = ±1〉 state up to three times [182], on the other hand this effect has to be kept in mind
when the electron spin state is read out and the nitrogen spin is a crucial part of the dynamics,
as we will encounter in Chapter 9.

2.2. Hamiltonian of the NV Center

In the course of this work, we exclusively consider dynamics taking place in the orbital ground
state manifold of the NV center. The corresponding free Hamiltonian contains the zero field
splitting and a term for the Zeeman interaction [61, 157, 184]. It reads

H0 = ∆S2
z + γe ~B · ~S, (2.1)

where ~S = x̂Sx + ŷSy + ẑSz is a "vector" containing the spin-1 operators Sx,y,z, γe ≈ −2π ·
2.8 MHz/G is the gyromagnetic ratio of the electron and ~B = x̂Bx + ŷBy + ẑBz a magnetic field
applied externally10. Usually, one chooses ~B along the symmetry axis of the NV center, i.e.
Bx = By = 0, to lift the degeneracy between the |ms = ±1〉 spin states.
As discussed in Section 2.1.1, the electron spin couples to several other systems present in the

8The formulation "flip-flop" characterizes an interaction between two spins that conserves the total spin of the
system. For example in Figure 2.2 (b), all flip-flop interactions conserve the the sum ms + mI . Conversely, a
"flip-flip" interaction does not conserve the total spin.

9By contrast we mean the area between the different photon count curves shown in Figure 2.2 (a).
10Note that, ~S is not a vector in R3, likewise ~B · ~S is not a scalar product. It rather is a sloppy notation for∑3

j=1(~S) j ( ~B) j =
∑

j=x,y,z BjSj .
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diamond host. The free Hamiltonian of those impurities and their coupling to the NV center
can be written as

HE = −

N∑
j=1

γ j Bz I z
j +

N∑
j<l

~I jC jl~Il and HNV−E =

N∑
j=1

~SA j~I j (2.2)

respectively, where A j (C jl) is the hyperfine tensor between the electron spin and nuclear
spin j (nuclear spins j and l). The impurities interact as well with the magnetic field, hence
γ j is their gyromagnetic ratio leading to a Larmor frequency of |γ j Bz |. For 13C one has
γC = 2π · 1.07 · 10−3 MHz/G. The hyperfine tensor

A j = Aiso
j 1 + Adip

j , (2.3)

is composed of two contributions, namely the isotropic Fermi contact interaction Aiso
j and an

anisotropic dipolar interaction Adip
j [155, 185]. The contact interaction is proportional to the

electron spin density at the location of the defect. This density is highly localized at the position
of the vacancy and vanishes practically at distances larger than ≈ 0.75 nm. Hence the coupling
to distant spins is mainly dipolar. For the inherent nitrogen spin, A j is diagonal [101, 157, 162].
The coupling tensor C jl between constituents of the bath is usually purely dipolar. Hence the
tensors conveniently realize the forms

~SAdip
j
~I j =

µ0

4π
γeγ j

r3
j


~S · ~I j −

3(~S · ~r j )(~r j · ~I j )

r2
j


(dipolar), (2.4)

~SAiso
j
~I j =

8
3π

µ0

4π
γeγ j ρs (~r j )

(
Sx I j

x + Sy I j
y + Sz I j

z

)
(Fermi contact), (2.5)

~I jC jl~Il =
µ0

4π
γ jγl

r3
jl


~I j · ~Il −

3(~I j · ~r jl )(~r jl · ~Il )

r2
jl


(dipolar), (2.6)

where ~r j (~r jl = ~r j − ~rl) is the vector connecting the NV and the j-th impurity (bath spin j and
l), r j = |~r j | (r jl = |~r jl |) and µ0 is the vacuum permeability. The electron spin density ρs (~r j )
has to be determined from ab initio calculations using density functional theory [155, 157, 185].

The large zero field splitting ∆ of the NV center prohibits dynamics which flip the electron
spin, hence we neglect these terms by virtue of the secular approximation11 [181, 188]. This

11Note that we are using the term secular approximation following the convention of the community working on
NMR, which is however different from that mentioned earlier exploited in the community of open quantum
systems, where it is applied during the microscopic derivation of a ME. The approximation used here would be
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can be motivated in a frame rotating with respect to ∆S2
z , where all terms proportional to

Sx and Sy will oscillate with an angular frequency ∆ = 2π · 2.87 GHz. The strength of the
dipolar coupling Adip decreases with r−3, in particular for 13C spins it is on the order of
∼ 2π · 20 kHz(nm/r)3. 13C spins located at the nearest neighbor positions possess coupling
constants of about ≈ 2π · 100 MHz, which are still one order of magnitude below ∆. Therefore,
all oscillating terms are efficiently suppressed. Consequently, the tensor A j can be effectively
reduced to a vector ( ~A j )k = (A j )z,k , k = x, y, z. Then, the total Hamiltonian of the NV and the
bath after the secular approximation reads

H = ∆S2
z + γeBzSz −

N∑
j=1

γ j Bz I z
j + Sz

N∑
j=1

~A j~I j +

N∑
j<l

~I jC jl~Il . (2.7)

However, the validity of approximation has to be examined carefully. When the externally
applied magnetic field is different from zero, one has to ensure that the spin transitions of
the NV center are farther off-resonant with the transitions the of impurities in the bath. In
particular, at 514 G the |ms = 0〉 ↔ |ms = −1〉 transition is on resonance with the splitting of
P1 centers [189]. Moreover, at 1030 G the |ms = 0〉 and |ms = −1〉 states experience a level
anticrossing, hence the transition frequency and the coupling strength become comparable.
Therefore, energy-exchanging process cannot be neglected.
For brevity and simplicity, we neglect the interactions between different bath spins in the
following, nevertheless include them in performed simulations. Importantly, note that the
secular approximation induces a pure dephasing dynamics of the NV center, as the free
Hamiltonian now commutes with the terms describing the interaction. From now on we
assume that all conditions for the secular approximation to hold are valid and we remove the
free terms of the NV center, i.e., the first two in Eq. (2.7), by moving to a rotating frame.

2.2.1. The NV Center as a Qubit

Most protocols in quantum sensing, algorithms in quantum simulation and computation are
designed to employ qubits for their specific tasks. The NV center represents a system suitable
for the creation of an artificial qubit. From the three electron spin levels, one may choose the
subspace of |ms = 0〉 and one of the |ms = ±1〉 states to assemble the qubit. Due to the large
zero field splitting, populations in this subspace are relatively protected against losses into the
remaining space. With Sz =

∑
ms=0,±1 ms |ms〉 〈ms |, the Pauli operator σz = |ms〉 〈ms | − |0〉 〈0|

referred to as a rotating wave approximation, as it is performed on the global Hamiltonian. It can be shown
that these approximations are generally not equivalent [186, 187]. In the context of NMR, the term rotating
wave approximation is popular for situations where classical fields act on a quantum object.
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and the identity 1 = |ms〉 〈ms | + |0〉 〈0| of the chosen subspace, we obtain

HTLS =
ms

2
σz

N∑
j=1

~A j~I j −

N∑
j=1

(
γ j Bz ẑ −

ms

2
~A j

)
~I j , (2.8)

by invoking the identity ms |ms〉 〈ms | = ms (σz + 1)/2. We emphasize that this picture already
gives a direct insight into why individual addressing of nuclear spins in the diamond lattice
is possible to achieve. In particular, this is true even for spins of the same species, i.e. if
γ j = γk for j , k. The Larmor frequency of each nuclear spin, γ j Bz ẑ − ms

2
~A j , is determined

by its hyperfine coupling to the NV electron spin. The latter strongly depends on the specific
position of the nuclear spin with respect to the NV center, see Eq. (2.4), therefore each Larmor
frequency is unique. Hence, the absolute value ω j of the Larmor frequency of the j-th spin and
its quantization axis ω̂ j are given as

ω j =
����γ j Bz ẑ −

ms

2
~A j
���� =

√(
γ j Bz −

ms

2
Az

j

)2
+

m2
s

4

[(
Ax

j

)2
+

(
Ay

j

)2
]
, (2.9)

ω̂ j =
γ j Bz ẑ − ms

2
~A j

���γ j Bz ẑ − ms

2
~A j
���

=
~ω j

ω j
. (2.10)

This unique shift in the Larmor frequency of each spin enables individual addressing as we
show in Section 3. Without this feature, one would have to rely on artificial methods to shift the
frequencies locally, e.g., a gradient in the strength of the magnetic field applied externally.

2.2.2. Coherent Quantum Control

The ability to perform coherent manipulations of the NV center is an absolute necessity for
all applications exploiting its quantum features. More explicitly, we desire the possibility
to perform rotations on its electron spin state. This coherent control is a crucial ingredient
that allows the implementation of dynamical decoupling sequences which we will discuss in
Chapter 3. On a more fundamental level, this control is required for preparation and readout of
states that are not eigenstates of the free Hamiltonian in Eq. (2.7).
As mentioned in Section 2.1, we can drive transitions of the NV center electron spin via a
microwave drive [163]. Employing a semiclassical description, we add the microwave drive to
the free Hamiltonian in Eq. (2.1) and choose already ~B = Bz ẑ, thus

H (t) = H0 + HMW(t) = ∆S2
z + γeBzSz +

√
2Ω cos (ωMW t + ϕ) Sx , (2.11)
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where ωMW and ϕ are the microwave-frequency and phase of the applied field, while Ω is the
associated Rabi-frequency. This Hamiltonian is only capable of driving transitions between
|0〉 ↔ |±1〉, while the so called double quantum transitions |1〉 ↔ |−1〉 are forbidden. In order
to address only the single transition |0〉 ↔ ��m′s〉, we choose ωMW = ∆ + m′sγeBz + δ. Here, δ is
a possible detuning of the driving frequency which we assume to be small compared to γeBz

and ∆. In a rotating frame with respect to the free part, we write the Hamiltonian as

H′MW(t) =
Ω

2

∑
ms=±1

[(
eiϕeit[2∆+(ms+m′s )γeBz+δ] + e−iϕeit[(ms−m′s )γeBz−δ]

)
|ms〉 〈0| + H.c.

]
.

(2.12)

At first, we neglect all the contributions whose oscillation frequency is dominated by 2∆ by
virtue of the rotating wave approximation (RWA) [190]. Surely, this is only justified provided
that |Ω| � |2∆ + (ms + m′s)γeBz + δ |. In typical NV experiments, high Rabi frequencies reach
Ω ∼ 2π × 30 MHz, hence ∆ is larger by three orders of magnitude ensuring this condition to be
satisfied. When a similar condition also holds for the second frequency, where |ms − m′s | = 1,
i.e. |Ω| � |2γeBz − δ |, we can further approximate the Hamiltonian to

H′MW(t) ≈
1
2
Ω

(
e−i(δt+ϕ)σ+ + ei(δt+ϕ)σ−

)
, (2.13)

where the rising and lowering operators are given as σ+ = ��m′s〉 〈0| and σ− = |0〉
〈
m′s�� respec-

tively. The third level, ms , m′s and ms , 0, is completely eliminated from the dynamics. The
remaining time dependence of this Hamiltonian can be removed conveniently by noting that it
is the interaction picture Hamiltonian of

H′′MW = −
δ

2
σz +

1
2
Ω

[
cos(ϕ)σx + sin(ϕ)σy] , (2.14)

with respect to − δ2σ
z. The abbreviations σx = |0〉

〈
m′s��+ ��m′s〉 〈0| and σy = i |0〉

〈
m′s��−i ��m′s〉 〈0|

are just the Pauli operators in the subspace spanned by {|0〉 , ��m′s〉}, as employed already in
Section 2.2.1.
Often, the coherent control is implemented as a pulse performing the desired operation (or a
sequence of pulses as we will investigate in Chapter 3). During the course of this thesis, we
employ box pulses. This means that the Rabi frequency is constant and the action of the pulse
is generated by the Hamiltonian in Eq. (2.14). The phase ϕ represents the so called phase of the

pulse and fixes the axis around which the state’s Bloch vector is rotated. The phase of the pulse
determines the angle between the rotation axis and the the x̂ axis of the Bloch sphere. Crucially,
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the detuning of the drive now assembles a free Hamiltonian tilting the rotation axis out of the
xy plane.
Let us finally exemplify the control with two essential pulses. For the sake of simplicity, we
assume a perfectly resonant drive and thus choose δ = 0 in the following. The evolution
operator corresponding to the Hamiltonian in Eq. (2.14) is given by

U (t, ϕ) = cos
(
Ωt
2

)
1 − i sin

(
Ωt
2

) [
cos(ϕ)σx + sin(ϕ)σy] , (2.15)

and we can identify two important evolution times defining:

1. the π/2-pulse. For Ωt = π/2 one has

Uπ/2(ϕ) =
1 − i

[
cos(ϕ)σx + sin(ϕ)σy]

√
2

, (2.16)

which mixes populations and coherences, e.g., one has |0〉 →
(
|0〉 − ie−iϕ ��m′s〉) /√2.

This pulse is crucial for the transformation of the NV spin state to perform initialization
and readout of states that are sensitive to fields parallel to the quantization (z)-axis, which
we will employ in Section 4.2. Thereby recall that only population differences of the σz

eigenstates can be read out experimentally, see Section 2.1.2. For example, eigenstates of
σx are orthogonal to the ones of σz and thus one would always obtain 〈σz〉 = 0.

2. the π-pulse. For Ωt = π one obtains instead

Uπ (ϕ) = −i
[
cos(ϕ)σx + sin(ϕ)σy] , (2.17)

which implements the transformation |0〉 ↔ ��m′s〉 up to a global phase. Hence, this pulse
inverts the populations of σz eigenstates. These pulses are the essential building blocks
for dynamical decoupling sequences as they allow to refocus undesired phase evolutions
(see Chapter 3).
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Chapter 3
Basic Principles of Dynamical Decoupling

Dynamical decoupling (DD) is a strategy to perform modulations on the system of interest, such
that unintended effects induced by an environment are averaged out at a specifically chosen
time of evolution. The approach proposed by Viola et al. [191,192] is based on the idea that the
noise acting on the system ultimately possesses a temporal correlation, i.e. its action during a
short time interval may be regarded as constant1. Naively speaking, when the system suffers
under this effect, one performs a transformation on the system after half of that interval such
that during the second half the environment reverses the effect by itself.
To illustrate this idea, let us describe a Hahn echo sequence [176] where a qubit experiences
dephasing noise. For that, we assume a model of random unitary evolutions. Consider a set
of a static Hamiltonians with random but constant amplitudes, {H j = γB jσ

z/2}, j ∈ N. The
corresponding evolution reads

ρ(t) =
∑

j

p(B j ) e−i
tγBj

2 σz

ρ0 ei
tγBj

2 σz

, (3.1)

where p(B j ) is the probability for the amplitude B j to appear. The state ρ(t) hence represents
an ensemble average of all the trajectories j and a measurement of the state constitutes then as a
selection of one of those trajectories. Let us examine the effect of DD on one of those trajectories.
The chosen initial state illustrated in Figure 3.1 (a) is given by an equally weighted superposition
of the eigenstates, |0〉 and |1〉. During the free evolution of length τ/2, Figure 3.1 (b), this state
rotates around the ẑ axis changing the phase relation between |0〉 and |1〉. Now, a π-pulse is

1This assertion may be assumed incorrect for the case of a semigroup dynamics, i.e. white noise. However
and importantly, noise is regarded as delta correlated if the decay of the correlation functions appears on a
practically non-accessible timescale [2]. Hence, under white noise, DD is impossible.
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Figure 3.1.: Hahn Echo on the Bloch Sphere. The initial spin state is represented by the blue
arrow in panel (a). During a free evolution, the state rotates around the ẑ-axis with
a constant angular velocity and hence collects a phase illustrated by the yellow
surface in (b). Other possible trajectories are indicated with black dotted arrows. A
π-Pulse around the axis defined by the initial state flips the phase of the state. The
path of the state during rotation is marked by the green path in panel (c), where
it is assumed that rotation around ẑ is frozen, i.e. much slower than the pulse.
Subsequently, after the same evolution time as from (a) to (b), the state in (d)
coincides with the initial one in (a). The total path of the state is shown as the
sequence of red and green arrows. This scheme may be repeated, decoupling the
state stroboscopically at each instance it arrives in panel (d).

applied, corresponding to a rotation around the x̂ axis by an angle π, see Figure 3.1 (c). For
the sake of simplicity, we assume this pulse to be instantaneous, or equivalently that the free
dynamics is frozen during the pulse application. The subsequent evolution, again of length τ/2
cancels the previous phase evolution [Figure 3.1 (d)] and we arrive at the initial state2

|0〉 + |1〉
√

2

τ/2
→

eiγBj τ/4 |0〉 + e−iγBj τ/4 |1〉
√

2

π
→

eiγBj τ/4 |1〉 + e−iγBj τ/4 |0〉
√

2

τ/2
→
|1〉 + |0〉
√

2
.

(3.2)
The total evolution for the ensemble average can be written accordingly. Note that a π-pulse
inverting the populations of the given initial state can be modeled by Rπ = exp{−iπσx/2},
therefore we have

ρ(t) =
∑

j

p(B j ) e−i
tγBj

4 σz

Rπe−i
tγBj

4 σz

ρ0 ei
tγBj

4 σz

R†πei
tγBj

4 σz

=
∑

j

p(B j ) σx ρ0 σ
x

=σx ρ0 σ
x = ρ0.

(3.3)

2Note that we suppress possible global phases.

38



Here, the last equality is true since ρ0 constitutes an eigenstate of σx as it was chosen above.
Nevertheless, if we allow ρ0 to present an arbitrary, even unknown state, the application of a
further pulse around the x̂ axis would bring the state back to the initial one. Clearly, each of
those trajectories refocuses itself during the time τ which is illustrated by the black arrows in
Figure 3.1. At this point it is intuitive that one may perform multiple of these cycles of length τ
which stroboscopically return the quantum state to the initial one.
The original proposal in 1998 [191] indeed only covered decoherence affecting a qubit undergo-
ing pure dephasing dynamics, but was quickly generalized to any unknown couplings between
an arbitrary system and the environment [192–194]. Since then, many theoretical [64,195–198]
and experimental [68, 199–205] works followed3, demonstrating the power of the approach.
On the other hand, one should recall that these approaches are based on ideas stemming from
nuclear magnetic resonance (NMR) spectroscopy [56] developed by Rabi in 1938 [75] and,
in particular the Spin (Hahn) Echo published by Hahn in 1950 [176], which is a refocusing
technique as exemplified above. Nevertheless, one should remark that the precise type of
DD employed here is termed pulsed dynamical decoupling, since there exist also approaches
employing continuous driving fields [207, 208].
DD is used as a tool for the spectral decomposition of signal fields [64, 68, 70, 199, 209], which
is best described by the filter formalism presented in Section 3.1. Likewise, it represents a neat
method to create two-qubit-gates [56, 203, 204] where one is modulated by DD control. The
best illustration of the gate’s dynamics is the calculation of effective Hamiltonians presented in
Section 3.2, but before moving to these approaches we introduce some common notations and
particularities.

Assume that a sequence of N instantaneous π-pulses which are applied at times t j with j =

1,2,3 . . . ,N . In the course of this thesis, we stick to pure dephasing dynamics which is
sufficient to describe the dynamics of the NV center required here (see Section 2.2.1). We
farther focus on a single trajectory. This represents exactly the case covered in the effective
Hamiltonian approach, while the ensemble average, as done in the filter formalism can be
performed afterwards (as also done above). We assume a single field B(t) along the ẑ axis,
which is now allowed to be time dependent. In principle we may imagine that as a collection
of not necessarily in-phase fields where each is oscillating with a different frequency, or a
randomly fluctuating field.
The unitary operator Uj = exp{−iκfree,jσ

z/2} dictating the free evolution after the j-th pulse is

3The references given here are only exemplary and much more can be found throughout this work. However,
comprehensive reviews are found in [13, 16, 56, 92, 206].
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completely determined by the collected phase

κfree,j =

∫ t j+1

t j
dτ γB(τ). (3.4)

An instantaneous π-pulse is farther written as4 Rπ = exp{−iπσx/2}. At this point, it is
convenient to note that (up to a global phase)

RπUj Rπ = Rπe−iκfree, jσ
z/2Rπ ∝ eiκfree, jσ

z/2, (3.5)

an thus a π-Pulse has the effect σz 7→ −σz. Therefore, we write the total evolution operator as

U = UN . . . Rπ U3 Rπ U2 Rπ U1 Rπ U0 =

 e−
i
2Kfree(t,N )σz

, N even

R†π e−
i
2Kfree(t,N )σz

, N odd.
(3.6)

Here, the total phase collected over the whole time of the sequence Kfree(t,N ) is given by
[64, 191]

Kfree(t,N ) =

N∑
j=0

(−1) j κfree,j =

∫ tN+1

t0

dτ F (τ)γB(τ), (3.7)

where t0 is the initial time and tN+1 = t the end of the evolution. The effect of the π-pulses is
accounted by the prefactor (−1) j which takes care of the fact that the effective phase evolution
changes the sign after a pulse. The change of the sign may also be conveniently written as
a modulation function F (t) which takes the values ±1 depending on the number of pulses
already applied. Obviously, for Kfree(t,N ) = 0 we achieve U = 1 and the system is completely
decoupled5.

To gain further insight we revisit the Hahn echo but consider an oscillating field B(t) = B sinωt

instead of the static one. There is only one pulse to be applied, hence N = 1. Choosing
additionally t0 = 0, t1 = τ/2 and t2 = τ results in the same pulse spacing as above. One
straightforwardly derives

Kfree(τ,1) =
2γ
ω

sin2
(
ωτ

4

)
cos

(
ωτ

2

)
. (3.8)

For this phase to vanish, we have different choices for τ:

4Note that we chose σx here which corresponds to a rotation around the x̂ axis. We will mention more advanced
choices which introduce an alternation in the pulse phase later 3.3.

5In the case that N is odd, we apply another pulse Rπ at the end of the evolution to achieve the identity operator.
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• τ = l 4π
ω , l ∈ N+: This corresponds to a natural averaging of the phase due to the

oscillatory nature of the signal. Indeed, here we have κfree,j ≡ 0 ∀ j and the pulses are
placed at the nodes of the sinusoidal field.

• τ = (2l − 1) πω , l ∈ N+: For this choice the averaging is due to the pulses, i.e. they set
cos(ωτ/2) ≡ 0.

We emphasize that the latter result, despite its simplicity, is quite general, as it basically
represents one building block of a DD sequence of equidistant pulses; the Hahn echo is just
iterated multiple times. See also Section 3.1 and Chapter 7 for further details. Surely, as
soon as more frequencies are present, i.e. the Hamiltonian contains multiple fields of different
amplitude and frequency, the problem quickly becomes rather involved, but this case can be
treated efficiently via the filter formalism described in Section 3.1. However, one can already
build an intuition of how fields with multiple frequencies can be suppressed. Therefore, recall
the case of the constant field, where the precise value of τ does not play any role. This
observation serves as a motivation for the limiting case: Imagine τ is reduced such that the
quickest B(t) is perceived approximately constant by the system. Then the DD refocusing
works as described above in case the pulses can still be applied at τ/2 [191], i.e. τ is not
too short. Indeed, for that situation to apply, we require τ � ω−1, where ω represents the
fastest frequency in the environment. In practice, such an approach is ultimately limited by
the available Rabi frequencies Ω for the π-pulses. For these to be still treated as instantaneous,
π/Ω = tpulse � ω−1 needs to hold, i.e. even the fastest dynamics can be considered frozen
during the pulse (in Chapter 7 this condition is relaxed). Naturally, the Rabi frequency cannot
be increased arbitrarily, as it is limited by the maximal available amplitude E of the driving
field as Ω ∼ E [190]. Furthermore, high driving amplitudes result in heating processes of the
probe (intensity ∼ |E |2). For NV centers, this can lead to decoherence and relaxation processes
due to the excitation of phonons in the diamond lattice, or in some other cases may also destroy
the probe, e.g., when DD protocols are used on biological materials.
Moreover, let us already take a leap ahead of Chapter 7, where we show how the interplay
of the time τ with the frequencies appearing in B(t) results in a change of Kfree, enabling to
employ the same approach for sensing applications, where the aim is to characterize B(t) [13].

3.1. The Filter Function Approach

The filter function approach is an often invoked tool [64, 81, 198, 210–213] as its simplicity
and illustrative capabilities stand out when compared to the effective Hamiltonian picture.
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In many cases, the environment can be efficiently represented with a classical stochastic
process [174,214,215]. Considering the spectrum of the environment then renders it unnecessary
to specify the explicit form of the environment Hamiltonian. That said, the filter function
approach is widely used in noise spectroscopy as it allows the experimental extraction of the
possibly continuous spectral function of the environment [171, 209].
For illustrative purposes, let us discuss the simple Hamiltonian

H (t) =
b(t)

2
F (t)σz, (3.9)

where b(t) is the amplitude of a stationary6 random process with 〈b(t)〉 = 0 where 〈•〉 denotes
the ensemble average over the possible realizations of b(t). As seen in the previous section, a
population-inverting π-pulse effectively results in σz 7→ −σz, hence we include the modulation
function F (t) of Eq. (3.7) directly into the Hamiltonian and write it as

F (t) =

N∑
j=0

(−1) j
Θ(t j+1 − t)Θ(t − t j ), (3.10)

where in total N pulses are applied at times t j , except for t0 = 0 and tN+1, while t j ≤ t j+1

and Θ(•) is the Heaviside step function. In other words, F (t) either takes the value 1 or −1
depending on whether an even or odd number of pulses has been applied prior to time t. Due
to the pure dephasing dynamics ensuring [H (t),H (t′)] = 0, the calculation of the dynamics is
straightforward. Since the Hamiltonian is diagonal, it will only act on the phase of an initial
state. Hence we can write the state’s coherence element as7

ρ10(t) = ρ10(0)
〈
e−iKfree(t)

〉
≡ ρ10(0)e−ξ (t)

Kfree(t) =

∫ t

0
dτ b(τ)F (τ),

(3.11)

where we define ξ (t) as the decoherence function. If the stochastic process is Gaussian, i.e.
Kfree(t) obeys a Gaussian distribution, one can use Wick’s theorem to prove that

6By stationary we mean that for all times t, the random values for b(t) are drawn according to the same probability
distribution.

7Note that contrary to Eq. (3.6) no distinction between even and odd pulse numbers has to be made here. That
is, because for equivalent B(t) = b(t), the state-trajectory governed by Eq. (3.6) is fundamentally different
than the one induced by the Hamiltonian (3.9). At an arbitrary time during the evolution, they generally do not
coincide. However, at the final time they yield the same phase Kfree. Their final states are equivalent for even
N . These observations are quickly confirmed by comparing the individual trajectories on the Bloch sphere.
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〈
exp {−iKfree(t)}

〉
= exp

{
−

〈
Kfree(t)2

〉
/2

}
[215], which we use in Appendix B.1 to show that

ξ (t) =
1

2π

∫ ∞

0
dω S(ω) fω (t), where

fω (t) =
�����
∫ t

0
dτ e−iωτF (τ)

�����
2

=
1
ω2

�������

N∑
j=0

(−1) j
(
e−iωt j+1 − e−iωt j

) �������
2 (3.12)

is the filter function given by the absolute value of the Fourier transformed modulation function.
The spectrum S(ω) of the environment is given by the Fourier transform of the two time
correlation function 〈b(0)b(t)〉 and contains information about the spectral components of the
environment.
Equation (3.12) is also known as the overlap integral of the spectrum and the filter function.
The system only couples to frequencies where fω (t) , 0, i.e. by tuning the modulation F (t) we
are able to precisely control the system-environment coupling. Let us note here, that although
we used a classical stochastic process in the Hamiltonian, the overlap integral is also exact for a
pure dephasing spin-boson model where the environment is fully quantum. For that model, the
result given in [2] reads

ξspin−boson(t) =

∫ ∞

0
dω J (ω) coth

(
βω

2

)
1 − cosωt

ω2 . (3.13)

Defining S(ω) = πJ (ω) coth (βω/2), with J (ω) the spectral density and β the inverse temper-
ature, we arrive exactly at Eq. (3.13) when we calculate the filter for a free evolution (i.e. no
pulses, F (t) ≡ 1∀ t):

fω (t) =

∫ t

0
dτ1

∫ t

0
dτ2 F (τ1)F (τ2)eiω(τ1−τ2) =

∫ t

0
dτ1

∫ t

0
dτ2 eiω(τ1−τ2)

= 2
1 − cosωt

ω2 = 4
sin2(ωt/2)

ω2 .

(3.14)

At last, we employ the illustrative strength of the filter formalism to demonstrate the interplay
between the number of pulses and the number of periods of a DD sequence. Therefore, let
us first set a fixed evolution time T during which we apply N pulses in such a way that they
correspond to a concatenation of Hahn echos. This construction is shown in Figure 3.2 (a).
Obviously, we have the special cases N = 0, corresponding to a free evolution, and N = 1 that
assembles the standard Hahn echo of length T . In the following we restrict to even N ≥ 2,
where T/N is also given as the spacing between two pulses. Comparing this relation with
τ = (2l − 1) πω derived above, we can rearrange it and obtain ω = πN

T (2l − 1). Calculating fω (t)

43



The Filter Function Approach

Figure 3.2.: Properties of the filter function. Choosing N pulses during a fixed time T results
in a higher switching rate of F (t), panel (a). The corresponding filter function
shows a peak (or "window") at πN/T and corresponding higher harmonics, see (b).
A schematic noise spectrum is illustrated with a grey shading. Crucially, the only
sequence showing a non-vanishing filter function at ω = 0 is the free evolution
N = 0, marked in blue. The succession of M periods of length T [panel (c)] ensures
that the width of the peaks decrease. For a large number of successions, this width
is approximately proportional to M−1 as illustrated in (d). Note that the peaks have
been normalized here, the actual height is proportional to M2. Therefore one can
conclude: For a fixed T , the position of the peaks is determined by N while M
controls the height and width.

via the Fourier transform of F (t), we observe that fω (t) shows local maxima at exactly these
frequencies, see Figure 3.2 (b) for a sketch. Sometimes, these peaks are also called "windows"
since they determine which parts of the spectrum [grey shading in panel (b)] are felt by the
system. From here it becomes clear that, to decouple the system, one has to increase N such
that the first peak (l = 1) has no overlap with the spectrum8. In principle, we can repeat this
N-pulse sequence M times, i.e. applying M · N pulses during a time M · T , as illustrated
in Figure 3.2 (c). This does not change the location of the peaks, but changes their width.
Figure 3.2 (d) illustrates this effect for an l = 1 peak. This is one of the major challenges in the
engineering of advanced DD sequences [70, 216, H1], as this determines the selectivity of the
sequence. The more narrow these peaks are, the more precise the frequency ω = πN

T (2l − 1) is
targeted, suppressing dilution through other frequency components.
Obviously there exist different combinations of N , M and T which yield the same sequences.
Hence, one usually fixes N = 2 as this results in a modulation function of period T employing a
minimal number of pulses9. We denote the corresponding DD-frequency by ωDD = 2π/T which

8Note, that it is just a general recipe. There might exist spectra which possess holes such that it is enough to
overlay those with the windows of the filter.

9Thereby note that N = 0 is not considered (free evolution), while uneven N are periodic in a mathematical
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furthermore fixes the position of the first (l = 1) peak in fω (t), while the spacing between
subsequent pulses is given by π/ωDD. The frequencies ωDD(2l − 1) are usually called higher

harmonics (one usually restricts l to odd integer numbers to write lωDD). For a large number of
periods, the width of the peaks is approximately ∼ M−1. Finally, a DD sequence yielding this
specific modulation function was first introduced by Carr, Purcell, Meiboom and Gill, hence it
is usually termed CPMG-sequence [217, 218].

3.2. Effective Hamiltonian Picture

The effective Hamiltonian picture provides a simple way to illustrate the conditions required for
single spin addressing. In particular, using DD one aims to engineer an effective Hamiltonian
that only contains a coupling term to the desired target spin. In contrast to the filter function
approach, the assumption of a Gaussian random process or a bath that can be mapped to a
bosonic bath is not necessary. Let us directly employ the Hamiltonian of a qubit subspace of the
NV center already noted in Equation (2.8) where we have J nuclei, not necessarily of the same
species. The effect of the pulses has been discussed in the section above, hence we analogously
include the modulation into the Hamiltonian and arrive at

H (t) =
ms

2
σzF (t)

J∑
j=1

~A j~I j −

J∑
j=1

ω jω̂ j~I j . (3.15)

In a rotating frame with respect to the free part of the nuclear spins, we arrive at10

HI (t) =
ms

2
σzF (t)

N∑
j=1

[
~ax

j cos(ω jt) + ~ay
j sin(ω jt) + ~az

j

]
~I j , (3.16)

where

~ax
j = ~A j − ω̂ j (ω̂ j · ~A j ),

~ay
j = ω̂ j × ~A,

~az
j = ω̂ j (ω̂ j · ~A j ).

(3.17)

sense but their physical implementation requires then N + 1 pulses to decouple the state completely, compare
Eq. (3.6).

10Note that we used the identity

ei~I~rϕ~I~ae−i~I~rϕ = ~I
{ [
~a − ~r (~r · ~a)

]
cos(ϕ) − (~r × ~a) sin(ϕ) + ~r (~r · ~a)

}
for a vector ~r and a scalar ϕ.
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It is convenient to note that the vectors ~aαj (α = x, y, z) are pairwise orthogonal, which allows
the identification of new spin operators in the rotating frame, Iαj ≡ ~I j · ~aαj /|~a

α
j |. Furthermore, it

is that |~ax
j | = |~a

y
j | ≡ a⊥j , which we define as the perpendicular coupling constant. Equivalently,

we define the parallel coupling component along the quantization axis of the nuclear spin in the
rotating frame, i.e. a‖j ≡ |~a

z
j | = ω̂ j · ~A j .

For a moment, let us focus on the modulation function F (t). While in theory this function
can represent arbitrary pulse sequences only composed of π-pulses, here we want to further
assume that it is an even [i.e. F (−t) = F (t)] periodic function. The periodicity is a useful
feature when non-instantaneous pulses are considered, as pulse errors can be averaged out by
specific pulse phase constructions, as we will mention in Section 3.3. These assumptions allow
to cast the modulation as a Fourier series, F (t) =

∑∞
l=1 f l cos(lωDDt), where ωDD is the DD

frequency defining the period by F (t + 2π/ωDD) = F (t) (compare also the example treated in
Section 3.1). Consequently we have the Fourier coefficients f l =

∫ ∞
−∞

dt F (t) cos(lωDDt), with
f l = 0 for even l as the function is symmetric (also f0 = 0 because of the zero mean). The terms
corresponding to different l are called the different harmonics for F (t). For a conventional
pulse series, e.g., the CPMG series of Sections 3.1 and 3.3, one finds that f l = 4 sin(πl/2)/(πl),
where l > 0.
Plugging these definitions into the Hamiltonian yields

HI (t) =
ms

2
σz

∞∑
l=1

f l cos(lωDDt)
J∑

j=1

{
a⊥j

[
I x

j cos(ω jt) + I yj sin(ω jt)
]

+ a‖j I z
j

}
, (3.18)

where it is already justified to neglect terms proportional to I z
j since F (t) oscillates with zero

mean. Let us target nuclear spin n with harmonic lDD, i.e. we require lDDωDD = ωn. Moreover,
we use that I±j = (I x

j ±iI yj )/2 and neglect all terms oscillating with the sum of two frequencies by
virtue of the RWA. Subsequently we can distinguish different contributions in the Hamiltonian

HI (t) =
ms

8
σz

[
f lDD a⊥n

(
I+
n + I−n

)
+

∞∑
l=1

l,lDD

J∑
j=1

f l a⊥j
(
e−i(ωn l/lDD−ω j )t I+

j + ei(ωn l/lDD−ω j )t I−j
)

+

J∑
j=1
j,n

f lDD a⊥j
(
e−i(ωn−ω j )t I+

j + ei(ωn−ω j )t I−j
) ]
,

(3.19)

where most of them are off-resonant but require different conditions under which these can be
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suppressed. To neglect the terms in the second and third line, it is required that

lDD
���a⊥j ��� � ���ωnl − ω j lDD

��� (3.20)

and

f lDD
���a⊥j ��� � ���ωn − ω j

��� (3.21)

hold for any j , n respectively. Fulfilling these conditions is particularly challenging. For
a strong magnetic field, i.e. |γ j Bz | � | ~A j | we have ω j ∼ |γ j Bz | [see Eq. (2.9)] and the first
condition in Eq. (3.20) reduces to

lDD
���a⊥j ��� � ���Bz (γnl − γ j lDD)��� . (3.22)

This explains possible overlap of different harmonics between target spins of different species,
i.e. there might be a combination of gyromagnetic ratios and harmonics such that |γ j l −

γnlDD | � 1. We stress here that the effect is not the one of spurious harmonics which we will
discuss later in Section 7.2. In the filter function formalism, this condition corresponds to the
windows in the filter, which appear periodically at higher frequencies and may lay on a further
peak in the spectrum S(ω) [see the discussion at the end of Section 3.1 and Figure 3.2 (b)]. For
identical species with gyromagnetic ratio γ, we obtain

lDD
���a⊥j ��� � |γBz | |(l − lDD) | ⇒ ���a⊥j ��� lDD � |γBz | , (3.23)

where we used that |l − lDD | ≥ 1. Obviously, we can always fulfill the condition for equal
species by increasing the strength of the external field. The second condition, Eq. (3.21),
represents the fact that the Larmor frequencies need to possess a finite detuning, otherwise
they are indistinguishable. In the filter formalism, this is represented by the finite width of the
window. For a high magnetic field, the detuning yields

f lDD
���a⊥j ��� � ���ωn − ω j

��� ≈
����Bz

(
|γn | − |γ j |

)
+

ms

2

[
sgn

(
γ j

)
Az

j − sgn (γn) Az
n

] ���� =
1
2
���Az

j − Az
n
��� ,

(3.24)
where the equality on the right is true for targets of the same species, i.e. γ j = γn, and we
introduced the sign function sgn (•). Crucially, increasing the magnetic field might not help
in the case at hand, especially for unique species. Then, one can only decrease f lDD to match
the condition. Conventionally, this is done by using a higher harmonic of the DD sequence, i.e.
increasing lDD while keeping ωDDlDD = ωn constant. This will yield a decreased f lDD , e.g., for
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a CPMG sequence we have f lDD ∼ 1/lDD. On the other hand, lDD also appears on the left-hand
side of Eq. (3.20), hence increasing the used harmonic is simultaneously increasing the risk
of potential influences of other harmonics. Thus, this trade-off has to be well considered. A
solution to this dilemma will be presented in Section 3.3.2 where we introduce a pulse sequence
that grants control over f lDD without using higher harmonics.

Nevertheless, assuming that both conditions are satisfied, we arrive at the effective Hamiltonian
targeting spin n,

Heff,n =
ms

4
f lDD a⊥n σ

z I x
n , (3.25)

realizing coherent control on the target spin via the NV center. In the case shown here, rotations
of the spin around the x̂ axis can be performed. If we would have chosen an antisymmetric
modulation function F (t), the Fourier expansion would consist of sin functions and the spin
would rotate around the ŷ axis [22]. Let us further remark that rotations around ẑ can not be
performed by these methods, since the σz I z

n terms are always removed due to the averaging.
However, a different scheme enabling also such a gate has been proposed [219].
A crucial difference in the description of DD using either the effective Hamiltonian approach
or the filter formalism is that the latter only influences the phase of the system qubit, while
the former describes the interaction to a nuclear spin. Hence, only the Hamiltonian approach
explicitly reveals the backaction of the nuclear spin, which allows the application of gates via
the electron spin. In particular, the electron-nuclear spin pair can become entangled. In sensing
scenarios, it is exactly this correlating process which ultimately yields a signal, while in the
filter formalism this is less clear. In fact, the origin of the coherence modulation described
by Eq. (3.12) is disconnected from a microscopic model describing the environment, hence
quantum features are excluded.

3.3. Pulse Sequences

Unavoidably, the application of a population inverting pulse is not perfect. In practice, different
kinds of errors altering the obtained signals are introduced. Relaxing the assumption of an
instantaneous pulse as employed until now, the two main sources of signal distortion are
detuning and amplitude errors. For a detuning error to occur, the pulse drive is off-resonant, i.e.
δ , 0 in Eq. (2.14). Amplitude errors are observed when the rotation angle is not matched, e.g.
Ωtpulse , π for a π-pulse. The reasons behind their appearance are manifold. Detunings can
originate from the side of the device generating the pulse, e.g., an arbitrary waveform generator
which slightly fluctuates in the frequency generated. However, also the system itself might

48



Pulse Sequences

experience drifts in its resonance frequency originating from thermal fluctuations or interaction
with other noise sources nearby. For example, the nitrogen spin in the case of NV centers can
induce shifts in the transition frequency of up to 1 MHz due to the hyperfine interaction [74].
Amplitude errors occur when the duration of the application of the field and the corresponding
Rabi frequency do not match. This results in a pulse which rotates more or less than the desired
angle, caused by either fluctuations in the generated power (Ω fluctuates) or imprecise on/off

toggling (tpulse varies). Further errors one might think of are errors in the timing of the precise
moment where the pulse is applied or the phase of the applied field determining the phase of the
pulse (see Section 2.2.2). However, the latter two are generally under sufficiently good control,
at least in setups operating with NV centers which we are primarily discussing here. Therefore,
we will neglect those imperfections.
The main approach to overcome these errors is a sophisticated use of the pulse phases introduced
in Section 2.2.2. In the context of NMR, a whole forest of sequences has been presented
[71–73, 217, 218], whose purpose was to achieve a robust experimental implementation of the
refocusing, in order to increase the number of pulses resulting in longer evolution times and
increasing the frequency sensitivity (compare Section 3.1). It turned out to be favorable when
the rotation axis of the pulses is alternated according to a suitable pattern which results in
"destructive interference" of the errors, i.e. they are averaged out. Therefore, a combination
of considerably poor quality pulses is still able to assemble a robust sequence [72]. Naturally,
these concepts found their way into the field of dynamical decoupling of quantum systems
aiming at the realization of the modulation F (t) [65, 66, 220–222, H1]. Importantly, pulse
errors are neither included in the filter formalism (Section 3.1) nor the effective Hamiltonian
approach (Section 3.2), as both deal with ideal, instantaneous pulses. Nevertheless, if one
manages to suppress the mentioned errors, the restriction to instantaneous pulses is not critical.
Both approaches will accurately predict the obtained dynamics given the pulses are applied fast
enough, i.e. tpulse is the fastest timescale involved in the dynamics. Surely, the regime where
this assertion holds has to be defined properly.
Another aspect of engineered pulse sequences are the development of sophisticated modulation
functions, which add control of further features of the filter function. A common approach
is to deviate from the common π/ωDD pulse spacing by altering the distribution of the pulse
locations or add further pulses in between [70, 196, 216, 223, H1]. We will exploit this concept
in Chapter 8 to design a sequence which transforms the typical sinc shape [81] of the peaks in
the filter function into a Gaussian shape.
However, let us first introduce the sequence patterns we require throughout this work.
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3.3.1. CPMG and the XY-Family

Carr-Purcell-Meiboom-Gill (CPMG) sequences [217, 218] and the sequences of the XY-family
[71, 73] generate the same modulation function F (t) with equidistant pulses as displayed in
Figure 3.3 (a). Hence both sequences yield equivalent filter functions and effective Hamiltonians.
However, the CPMG-sequence only invokes one pulse phase for all the pulses. It turns out that
this is a good choice for longitudinal states (i.e. their initial phase is equivalent to the pulse
phase modulo π). In fact, Figure 3.1 displays exactly this specific case. Contrary, for transversal
states, pulse errors quickly accumulate, which introduces additional decoherence effects11 [65].
The XY-family relies on an alternating pulse phase and additional symmetric constructions,
which preserves states with an arbitrary initial phase. One denotes an arbitrary but chosen pulse
phase ϕ by X. Consequently the pulse phase denoted by Y is then given by ϕ + π/2. The two
mostly used constructions are given in Table 3.1, where the order of the dimensionless expansion
parameter η denotes the order where errors appear. The orders can be straightforwardly
calculated employing equally spaced pulses and a pulse operator of the form

Rπ (ϕ) = exp
{
−i
π

Ω

[
δ̃ησz + (Ω + ε̃η)

(
σx cos ϕ + σy sin ϕ

)]}
, (3.26)

where the tilde denotes quantities rescaled in terms of η, while δ, ε are small detuning and
amplitude errors respectively [indeed, compare Eq. (2.14)].

Table 3.1.: Pulse phases and error suppression in the XY-family of DD sequences. The
overline denotes an additional phase shift of π.

phase order of the errors

XY-4 XYXY O(η2)

XY-8 XYXY YXYX O(η3)

XY-16 XYXY YXYX XYXYYXYX O(η4)

All of these sequences are already remarkably robust. CPMG has been demonstrated to yield
good coherence protection with up to 10.000 pulses in NV centers [137] and rare-earth-doped
crystals [224] as well as 10.000 pulses according to the XY-8 pattern in NV centers [180].
Furthermore, an XY-16 sequence consisting of over one million pulses was implemented for
a phosphorus nuclear spin in silicon [225]. Finally, let us note that for all CPMG and XY

11Note that the CPMG sequence shares this effect with the Uhrig-DD sequences, which also apply all pulses
around a single axis but vary the spacing between the pulses [196].
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sequences, the Fourier series of F (t) is given by

F (t) =

∞∑
l=1

f l cos(lωDDt) where f l =
4
lπ

sin
(
πl
2

)
, (3.27)

which restricts the available set of effective Hamiltonians [recall Eq. (3.18)] that is producible,
since the only way to change the amplitude a⊥n f lDD is to move to a different harmonic. Moreover,
each application of an XY-k sequence requires an integer number M of k/2 DD periods, i.e.
an XY-k sequence has at last the evolution time πk/ωDD. Therefore, the set of rotation angles
Mkπ f lDD a⊥n /ωDD is discontinuous, which finally restricts the assembly of arbitrary gates. On
this account, the development of a pulse sequence granting continuous control over f lDD is
motivated, which indeed is the subject of the next section.
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3.3.2. Adaptive-XY Sequences

The ideas of this section have been developed in publication [H1].

The key feature of the adaptive-XY (AXY) sequences [H1] is the removal of the strict inverse
proportionality f l ∝ l−1 of the Fourier components for the modulation function of the CPMG
and XY sequences [see Eq. (3.27)]. Instead, a more sophisticated method to specify their value
is provided. Besides removing the disadvantage of discrete rotation angles as mentioned briefly
at the end of Section 3.2, the AXY sequences drastically simplifies the addressing of single
targets (i.e. specific frequency components) by decoupling the conditions given in Eqs. (3.20)
and (3.21).
The AXY sequences extend the XY-family by adding another layer of complexity. Let us
refer to Figure 3.3. As shown in panel (a) and (b), the first step is the consideration of a
usual XY-4 (XY-8) sequence as given in Table 3.1. For the new second step, the sequence is
modified such that around each π pulse four additional π-pulses are applied. This construction
is interpreted as a composite pulse now consisting of five consecutive population inverting
pulses, see Figure 3.3 (c). The five consecutive pulses possess a non-equal spacing which is
characterized by the quantities ξ1 and ξ2. At the same time they are stringently symmetric
around the third pulse. The third pulse is located at the instant in time where the conventional
sequences introduced above would apply their single pulse. Emerging from the fact that ξ1 and
ξ2 can be chosen from a certain parameter range to tune different properties in a desired manner,
depending on the individual problem at hand, these sequences were given the prefix "adaptive".
A seeming drawback in the design of the sequence is the requirement of five times more pulses
compared to the conventional XY sequences. Consequently, it has to be designed circumspectly
to suppress pulse errors as much as possible. Fortunately, the KDD sequence [221] proposes
a ten pulse pattern, where the first five pulses realize the phases π/6 − 0 − π/2 − 0 − π/6,
while the phases for the next five pulses are shifted by π as shown in Figure 3.3 (c). As a
result, these five-pulse building blocks are associated with either an adaptive-X or an adaptive-Y
pulse. It turns out that despite the KDD sequence was developed for equally spaced pulses,
the symmetric construction of the AXY composite pulses in an AXY-4 (AXY-8) sequence
suppresses pulse errors including the first (second) order terms [H1].
The modulation function F (t) describing the effect of the AXY sequence is sketched in Fig-
ure 3.3 (d). Calculating the Fourier series of the modulation function leads to the Fourier
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Figure 3.3.: The pulse scheme of the XY and AXY sequences. The AXY sequences are an
extension of the XY sequences. A standard modulation function of CPMG or XY-k
with four pulses is displayed in (a) via the blue solid curve. The first and third
harmonic of the corresponding Fourier series are drawn in red and green (dashed)
respectively. The equidistant pulse spacing is fixed by ωDD, where two pulses are
applied per period. The pulses toggling the sign of F (t) are shown in (b). Here,
an XY-4 sequence has been chosen exemplary. Pulses are applied at the moments
where cos(ωDDt) = 0. For the AXY sequence, around each π-pulse, four additional
pulses are applied, building either a composite-X pulse (yellow) or composite-Y
pulse (blue), see panel (c). The pulse phases ϕi are specified according to the KDD
sequence and noted as (π)ϕi , while the pulse spacing inside the composite pulses is
determined by ξ1 and ξ2. We remark that both composite pulses possess the same
interpulse-spacing. The red curve marks the first harmonic of F (t). Hence, the
central pulse is applied at the same time as it would have been done in a usual XY
sequence. This is also illustrated by the modulation of the AXY sequence shown
in (d).
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coefficients

f l (ξ1, ξ2) =
4
lπ

 ∑
j=1,2

(−1) j
[
(−1)k − 1

]
sin

[
2πl

(
1
4
− ξ j

)]
+ sin

(
l
π

2

) , (3.28)

where it is evident that the parameters ξ1, ξ2 change the coefficients without changing the
harmonic l. To close this section, we now present two convenient choices of ξ1 and ξ2 that
allow to suppress the influence of a neighboring harmonic.

1. Let us choose lDDωDD = ωtarget with lDD = 1. The flexible pulse spacing allows to fix
f2 = f3 = f4 = 0, while f1 = f lDD can be tuned to any value | f1 | < 4|1 − 2 cos π

9 |/π. In
particular, this is true for a pulse spacing

ξ1/2 =
1
4
−

1
2π

arctan
±(2 f1π − 12)w1 +

√
3w2

√
6
√
w2 − 96 f1w1π ± w2

1

√
3w2

, (3.29)

where we have the functions w1 = 4− f1π and w2 = w1[960−144 f1π−12( f1π)2+( f1π)3].

2. If one desires to apply less pulses during the same evolution time, one can use the third
harmonic lDD = 3 to address the target frequency. Then, one may choose f1 = f2 = f4 =

0, while a desired value for f3 needs to fulfill | f3 | <
π
4 . One arrives at

ξ1/2 =
1

2π
arctan

√√√
4√

5 + π f3 ∓ 1



2

− 1. (3.30)

We remark that these are just two possible examples where the sequence enables control of two
Fourier coefficients at the same time. Finding the solutions, requires to solve a system of two
equations fixed by Eq. (3.28) (thereby recall that f l = 0 for l = 0 and any even l).
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Noisy Frequency Estimation in the
Framework of Quantum Metrology
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Chapter 4
Noisy Quantum Metrology:
Frequency Estimation

Large parts of this chapter are published in [H6].

Parameter estimation within the framework of quantum metrology is a paradigmatic example
of the advantage provided by the use of quantum features when compared to a classical
setting [18]. Increasing attention to the field has put it into context with quantum technologies
striving for commercial applications [6, 7]. At its core lies a framework for the most precise
estimation of physical parameters possible [11–13, 226, 227], where specialized measurement
protocols can surpass the Standard Quantum Limit (SQL) of precision which is governed by
classical statistics [29]. The recent progress allows for a wide spectrum of applications in
magnetometry [228,229], the determination of atomic transition frequencies [31,32], biological
imaging [230], the stabilization of atomic clocks [231, 232] or the detection of gravitational
waves1 [235–238].
Besides many other quantum features improving the precision in quantum estimation (or
equivalently "sensing") experiments [227], great effort has been dedicated to the examination
of multi-probe scenarios whose inter-probe entanglement allows to surpass the SQL [19] by
means of a scaling in the number of probes employed. For example, implementation of the

1Unarguably, one of the most sensational results is the experimental observation of gravitational waves [233].
However, these results have been obtained by pushing conventional laser technology to its edge, accompanied
by numerous other noise stabilization mechanisms. Nevertheless, at higher detection frequencies (> 70 Hz)
they were operating at the SQL [234].
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latter has been demonstrated in NMR experiments [239, 240].
During the course of this chapter, we will give an introduction to the particular case of frequency

estimation. Thereby it is of greatest importance to discuss the protocol employed for the
estimation process of the frequency, where we consider the so called parallel estimation with

an independent noise model. This discussion, along with an introduction to the mathematical
tools and procedures are given in Sections 4.2.1 and 4.3, where we also cover a basic example
to derive the ultimate limit which is set by the Heisenberg Limit. Nevertheless, this limit
only holds for unitary evolutions, hence examinations of the ultimate precision limits under
the influence of noise are contained in Section 4.4. After some final remarks in Section 4.5
concerning, e.g. the role of non-Markovianity or terminology appearing in different research
areas, we will go beyond the discussed model and have a brief review of correlated noise or
time dependent control and encoding methods in Sections 4.6.1 and 4.7.
We already want to stress that basic theory presented in this chapter has its origins in classical
estimation theory [29] and is by no means due to a quantum mechanical phenomenon, as the
connection to quantum mechanics only arises solely from the statistical nature of quantum
measurements. Any theory, may it be quantum or classical, that contains probabilistic outcomes
is a suitable candidate for the application of the tools presented here. To give a concrete example,
we will start this chapter in Section 4.1 with the analysis of a coin toss.
For further reading we also refer to the reviews on quantum enhanced metrology with atomic
ensembles [226], trapped ions and cold atoms [11] or optical interferometry [12].

4.1. Motivation

Let us first present a simple estimation problem, which allows us to illustrate how most basic
notions and tools we are going to discuss in the coming sections have their roots in classical
statistics and, in particular, in the quantification of measurement errors. We want to exemplify
this along the lines of the following example.
Imagine, one has N identical coins, where a flip of an individual coin either gives heads with
probability ph or tails with pt . We stress that the only necessity to introduce these probabilities
is our lack of knowledge of the exact initial conditions of the coin flip. The introduction of these
probabilities is a way to describe the experiment statistically, while each flip and the subsequent
observation of head or tail is completely deterministic and will depend on certain parameters of
the coin which are too complicated to access, hence we resort to the much simpler quantification
of the coin via its probabilities for heads and tails. To that end, one way to proceed is to flip
each coin ν times to estimate ph. Then, the probability variable X describing the number of
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heads after νN tosses is distributed according to binomial distribution

B(X = x |ph, νN ) =



νN

x


 px

h (1 − ph)νN−x , (4.1)

with x the number of heads found. Our best guess for ph is then obviously p̂h = x/(νN ): we
simply take the ratio between the number of observed heads and the total number of tosses.
Indeed, ph coincides with the expectation value 〈X/(νN )〉. However, due to the finite quantities
N and ν, our guess will carry an error. A natural way to quantify this error is the variance

var
[
p̂h

]
= var

[
X
νN

]
=

ph(1 − ph)
νN

. (4.2)

Note that the variance is never equal to zero, besides the two special cases ph = 0,1, while the
best strategy is to flip as many coins as often as possible. However, it is important to stress
that the probabilities used to calculate the variance are not known as they themselves are the
parameters to be estimated. As a consequence, the variance will never vanish in practice since
the certain determination of the probabilities would require an infinite number of tosses.
To go a step further, we now assume that we are able to determine a parameter which changes
the result of a coin toss, let’s say its roundness r. Therefore, using the statistical model, it
will change the probability of finding head and we assume that we know the deterministic
dependence ph(r). An estimate of r is then immediately given by the inverse function2
r (ph) = p−1

h (r) and we can use error propagation to find the variance on our estimate of r ,

var [r̂] =
var

[
p̂h(r)

]
[dph(r)/dr]2 =

ph(r)[1 − ph(r)]
νn

[
dph(r)

dr

]−2

. (4.3)

In essence, it will turn out that this equation (or slight variations) is the working horse for estima-
tion tasks we will deal with in the following. While we will perform generalizations to include
the particularities of quantum mechanics in our theoretical descriptions, any quantification in
sensing experiments can be linked to it [13].
Indeed we may compare the results above with an experiment utilizing quantum coins, i.e. two
level systems (qubits). We replace the coins by N qubits, each in the state |x+〉, an eigenstate of
the Pauli spin matrix σx . Instead of a toss, we perform a unitary operation U = exp (−iφσz/2)
and measure the survival probability ps of the state (note that this is conceptually a Ramsey

2This function is not always guaranteed to exist. However, we may assume here that for all practical situations
this is possible at least in a small region around r .
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experiment [78]):

ps = |〈x+ |U |x+〉|
2 = cos2 φ

2
. (4.4)

Following the same ideas as above, we determine ps by the number of qubits found in |x+〉

divided by νN , consequently var
[
p̂s

]
and var

[
φ̂
]

are immediately given by Eqs. (4.2) and (4.3)
respectively.
We can directly use these relations to derive a well known bound in frequency estimation
following [34]. Here the role of φ is taken by ω0t where ω0 is the frequency to estimate (i.e. the
role of r) while t represents the time required to perform the unitary transformation. Because
this time limits the number of repetitions, we also rephrase ν = T/t in terms of a total time T

that we have at our disposal to perform the measurement. Hence, we use Eq. (4.3) and obtain

var [ω̂0] =
1

nνt2 =
1

ntT
. (4.5)

This equation manifests the so called Shot Noise Limit [28] or Standard Quantum Limit (SQL).
While this term is used in the context of experiments involving quantum mechanics, its true
origin lies, as we saw above, in the finite sample size of the underlying probability distribution.
In other words, this effect is inevitable when dealing with randomly distributed data. Crucially,
in quantum mechanics every experiment includes probability as an inherent feature. Thereby
note that quantum mechanics is a probability theory itself, however, it is non-contextual. In
other words, there are no deterministic processes which are ignored due to inaccessibility.
With the recent developments in quantum technologies, promising sensors exploiting quantum
mechanics have been put into the near future, explaining the rising interest in the field of
quantum metrology.
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4.2. The Frequency Estimation Protocol - Analyzing a
Specific Measurement Procedure

In this section, we want to analyze a specific measurement setup, in particular, we will use a
Ramsey protocol [78] that we utilize to measure the energy separation in a qubit. Indeed, the
Ramsey experiment is nothing else than the quantum coins introduced in the section before.
Imagine we possess N atoms and each can be modeled by two levels with a splitting of ω0 (we
take ~ = 1 throughout the whole work). For any of those atoms, we can assume the Hamiltonian
H0 = ω0σ

z/2. Following the Ramsey scheme outlined in Figure 4.1 (a), we initialize each
qubit in its ground state |0〉 and apply a Hadamard gate Ch which brings each of these qubits
into an equally weighted superposition (|0〉 + |1〉) /

√
2. Subsequently, these atoms are let to

evolve freely for a time t where they will collect a phase ω0t such that the state is given by(
|0〉 + exp(−iω0t) |1〉

)
/
√

2. A second Hadamard gate will transfer the phase onto a population
difference, which we measure via a suitable detector. The probability to find the qubit in |0〉 is
then

pω0,t (|0〉) =
���〈0|Che−itω0σ

z/2Ch |0〉
���
2

= cos2 ω0t
2
. (4.6)

Indeed, we have Ch |0〉 = |x+〉 and thus everything is totally equivalent to the quantum coin
example made in the introduction. However, the Ramsey experiment clearly illustrates the three
stages present in a quantum frequency estimation protocol (FEP), see Figure 4.1, which will be
the topic in the following. Other configurations are indeed possible [19,26]. The first step is the
preparation of an input state for the probe. Here, the probes are the qubits and the preparation
is represented by the initialization and the application of the first Hadamard gate. It is followed
by the encoding which lasts for a time t. The third step is then the measurement of the probe,
where we include the second Hadamard gate.
Crucially, any specification of an achievable precision needs to be on a common ground. For
that matter, we choose the number of probes N and the total time T as the resources we have at
our disposal. In particular, we assume the preparation and measurement process not to consume
any resources, meaning the time needed for preparation and readout is negligibly small. An
analysis relaxing this assumption can be found in [241].

4.2.1. The Cramér-Rao Bound

As for the Ramsey setup, we will restrict to frequencies which are a linear parameter in the
Hamiltonian H0. Throughout this review, ω0 always denotes the parameter (or frequency) to
be estimated. We already emphasize that in this context a probe denotes the reduced quantum
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Figure 4.1.: The frequency estimation protocol. (a) Shows a single probe Ramsey type
protocol for the quantum coins described in the main text. A Hadamard gate Ch
creates a state sensitive to the field during the free evolution U. After a second
Hadamard gate, the state is measured and the sequence is repeated. In (b), the
N probes are prepared in a GHZ state via the Hadamard and CNOT gates. The
free evolution acts independent on each probe, which is the main characteristic
of the FEP. Subsequently, the state is disentangled which allows to perform a
measurement on the first probe only. Note that for other setups than the Ramsey
scheme, the building blocks in the FEP may appear substantially different. All
elements of (b) are assigned to either the preparation (blue), the encoding (green)
or the measurement stage (red). These stages are generalized in the cFEP in panel
(c). For the preparation, any state involving all N probes is considered, while the
product Λ(N )

ω0,t = Λ⊗N
ω0,t is allowed to describe any physical transformation, while

the POVM invoked to describe the measurement has the only restriction to be
independent of ω0. (Figure first published in [H6])

system we utilize for the estimation. This will become important later when noise is introduced
into the system.
In general, a completed cycle of the FEP can be repeated several times. Obviously, the number
of repetitions is fixed by the total time divided by the interrogation time, ν = T/t. After each
of these cycles, an outcome is detected. We collect all of these outcomes in the vector ~x. To
deduce ω0 from the outcomes, an estimator ω̂(~x) is constructed. Depending on the measured
outcomes, the estimator yields an estimate ω̂(~x) = ω̃0 of the true value ω0. Let’s emphasize
here that the estimator itself is a random variable, as the input (outcome of the measurement,
i.e. the observation) is a random variable itself, i.e. ~x is one specific realization of the random
variable ~X. Therefore, it is possible to calculate different moments of the estimator’s probability
distribution. We stress that the expectation value denoted by 〈•〉~x is taken with respect to the
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possible collections of outcomes ~x, i.e.

〈•〉~x =
∑
~x

pω0 (~x) • . (4.7)

The sum runs over all possible realizations of outcomes with pω0 (~x) being the probability that
~x is the realization obtained via the FEP. Note that we focus here and in the following on the
case where we have a discrete set of possible outcomes. Indeed, the whole description can be
generalized (straightforwardly) to the case of a continuous set of outcomes. For the sake of
brevity, we adopt the notation pω0 (~x) for the conditional probability p(~x |ω0) to obtain the set
~x given the parameter ω0. However, after the data collection, we can think of pω0 (~x) as the
likelihood function for ω0 because the observations have already been made. Then, pω0 (~x) may
be interpreted as a function of ω0 quantifying how well different values would agree with the
observed data set.
The explicit form of the estimator is not important for the further calculations, but we will
always focus on estimators with the two following properties [29, 30].

• Unbiasedness, that is
〈
ω̂(~x)

〉
~x = ω0. A biased estimator would yield

〈
ω̂(~x)

〉
~x = ω0 + β

where we have the bias β , 0.

• Consistency, that is for all ν > ν′ there are ε (ν′), δ(ν′) > 0 such that the probability
P( |ω̃0 − ω0 | < ε ) > 1 − δ. Recall that ν describes the number of repetitions. In other
words, in the case of an infinitely large sample size, i.e. dim(~x) = ξ → ∞, we have
limξ→∞ ω̂(~x) = ω0.

Note that consistency implies asymptotic unbiasedness, meaning that any bias β vanishes for a
large sample size. We stress that the converse is not true, see Fig.4.2 for an illustration.
We define the precision of an estimator in terms of its mean squared error ∆2ω̂ (MSE),

∆
2ω̂ =

〈(
ω̂(~x) − ω0

)2
〉
~x
, (4.8)

which is a natural choice as it measures the expected squared distance of the estimate ω̃0 from
the true value ω0. In particular, the MSE coincides with the variance of an unbiased estimator,
defined as var

[
ω̂(~x)

]
=

〈(
ω̂(~x) − 〈ω̂〉~x

)2
〉
~x
. While we will focus on unbiased estimators in the

following, we will keep the notion of MSE instead of the variance.
For any unbiased estimator, its MSE can be bounded from below by the Cramér-Rao bound
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Figure 4.2.: Properties of the estimator. Both panels show the probability density (blue) for
an arbitrary estimator, for an arbitrary large data set ~x. Likewise, the second curve
represents the probability density for an enlarged data set. The estimator in (a)
is consistent: further data collection removes any bias, while the probability to
find |ω̃0 − ω0 | < ε increases (shaded regions). Contrary, the estimator in panel (b)
is only asymptotically unbiased, as the shape of the probability density does not
change. (Figure first published in [H6])

(CRB) [29, 30], which we derive in Appendix A.1. It reads

∆
2ω̂ ≥

1
νFcl

[
pω0

] , where Fcl
[
pω0

]
=

∑
~x

[∂pω0 (~x)/∂ω0]2

pω0 (~x)
(4.9)

is the (classical) Fisher Information (FI). Here, the sum runs over all possible collections of
outcomes ~x and pω0 is the same distribution as in Eq. (4.7). Any estimator achieving equality
in the CRB is termed efficient, but it is not a priori given that one can always find and estimator
of that kind [29].
The Fisher Information is a non-negative quantity which is additive for uncorrelated events [12],
i.e.

Fcl[p(1,2)
ω0 ] = Fcl[p(1)

ω0 ] + Fcl[p(2)
ω0 ], (4.10)

where p(1,2)
ω0 (~x1,~x2) = p(1)

ω0 (~x1)p(2)
ω0 (~x2) is the joint probability distribution for the two events.

This is of practical interest, as we will consider subsequent repetitions of the FEP which are
uncorrelated by definition. Crucially, it is that additivity which is responsible for the ν in
denominator of the CRB in Eq. (4.9). Hence we are also able to give a precise meaning to ~x

in the context of the FEP, which now contains the possible single run outcomes. Conversely,
schemes employing an adaptive strategy, e.g. successively changing the measurement apparatus
according to some prior acquired knowledge about ω0, are not subject to the formulation in
Eq. (4.9), i.e. for them one cannot employ the sum given by Eq. (4.10). We will briefly discuss
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these strategies in Section 4.6.
Furthermore, the FI is a local quantity, as it only depends on the value of probability distribution
at the true value of the parameter and the first derivative. We may expand the probability
distribution determining the observations,

pω0+δω (~x) = pω0 (~x) +
∂pω0 (~x)
∂ω0

δω + O(δω2), (4.11)

where all terms fixing the FI are contained. Therefore, all distributions coinciding in zeroth and
first order possess the same FI.
To exemplify the formalism now introduced, we directly calculate Eq. (4.3) for the setup
considered in the introduction, without passing through the Bernoulli distribution. We assume
the FEP to be repeated ν times. After each cycle, the possible outcome of each qubit is either
|0〉 or |1〉, hence ~x = (|0〉 , |1〉). Thereby keep in mind that each qubit is independent from the
other. Using the additivity property, we first obtain Fcl[ΠN

n=1pn
ω0,t] = NFcl[pω0,t], then we note

that 1 − pω0,t (|0〉) = pω0,t (|1〉) which plugged into the CRB directly becomes the Eq. (4.3) with
ph 7→ pω0,t (|0〉). Furthermore, utilization of Eq. (4.6) directly yields the SQL Eq. (4.5).
For a further remark, note that the CRB in Eq. (4.9) is directly connected to the error propagation
formula, as the FI is nothing else than the variance of an efficient, unbiased estimator. A more
general derivation (see Appendix A.1) of the CRB for the estimator ĝω0 of a function gω0 which
is dependent on ω0 yields [30]

∆
2ĝω0 ≥

1
Fcl[pω0]

(
∂gω0

∂ω0

)2

, (4.12)

but of course it still holds that for a suitable estimator of ω0, ∆2ω̂ ≥ (Fcl[pω0])−1. The
combination yields (for efficient estimators)

∆
2ĝω0 = ∆

2ω̂

(
∂gω0

∂ω0

)2

⇔ ∆
2ω̂ =

∆2ĝω0(
∂gω0/∂ω0

)2 , (4.13)

which is exactly the error propagation formula. Crucially, Eq. (4.9) and (4.13) coincide if
gω0 ≡ pω0 and ∆2ĝω0 is the variance of the distribution. Furthermore, for the estimation via any
suitable observable Oω0 , which in particular is an observable dependent on ω0, we can choose
gω0 = 〈Oω0〉 and arrive at

∆
2ω̂ =

〈
O2
ω0

〉
−

〈
Oω0

〉2

(
∂
〈
Oω0

〉
/∂ω0

)2 . (4.14)
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4.2.2. Noiseless Estimation with Entangled States - Obtaining
Heisenberg Limited Precision

In this section, we will show that quantum features can indeed improve the achievable precision
below the SQL. Therefore, we use all N probes together in a modified Ramsey setup. We stress
again that all N probes are absolutely equal and each local Hamiltonian is of the form given
in terms of ω0σ

z/2. The modified setup, see Figure 4.1 (b), applies the Hadamard gate only
on the first qubit, while there are controlled-not gates C (1,n)

not on the n-th qubit, where the first
qubit acts as the control. Instead of preparing the equally weighted superposition N times, this
arrangement creates an entangled GHZ-state [242] using the eigenstates of σz,

N∏
n=2

C (1,n)
not C (1)

h

N⊗
m=1

|0〉m =
|0〉⊗N + |1〉⊗N

√
2

= |GHZ〉 . (4.15)

After the encoding, the gates are applied in the reverse order and the state of the first qubit
is measured. The probability of finding it in |0〉 is pω0,t ( |0〉) = cos2(Nω0t/2) and a direct
combination with the CRB [or Eq. (4.3)] yields (for an efficient estimator)

∆
2ω̂HL =

1
νt2N2 =

1
tT N2 . (4.16)

This scheme achieves a lower bound than the SQL, by an astounding factor of 1/N , although
we used the same number N of probes and total time T as before. This limit, scaling with N−2,
is named the Heisenberg Limit (HL). It was argued to be the best achievable precision [33] and
indeed, this bound can be seen as an instance of the Heisenberg uncertainty relation [27, 243].
Later in Section 4.3.1, we will see how this connection can be made.
The role of entanglement in the preparation of the input state to obtain the HL has been
extensively studied [18, 244–246]. Indeed, the presence of entanglement is a strict requirement
in the context of qubit probes in the FEP as considered here. However, we want to stress that
it is not true that entanglement is a necessary ingredient to beat the SQL or even achieve the
HL in isolated quantum systems, when different estimation schemes are considered. We will
comment on the latter in Sec. 4.5.3 and exemplify that a scaling similar to the HL can also be
reached using a single probe repetitively.
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4.2.3. The Impact of Noise: Lindbladian Dephasing

In a real world experiment, the evolution of the probes is unavoidably affected by noise. To
give a flavor of the works presented later in this draft, we calculate an explicit example of
an evolution effected by noise. Each probe is then an open quantum system [2, 4], whose
evolution is crucially shaped by the environment surrounding the probe. For the illustration of
the peculiarities due to the presence of noise during the encoding stage, we restrict to a very
specific kind of noise, i.e. we demand the noise to act independently but identically on each
probe. Additionally, it has to be Markovian [82]. For simplicity, we restrict to pure dephasing,
i.e. the probe’s Hamiltonian commutes with the Hamiltonian introducing the noise, or in other
words, in the basis which fixes σz, pure dephasing only damps the coherence elements of
the probe’s density matrix. This kind of noise can be seen, e.g., as a random fluctuation of
the frequency, i.e., the parameter to be estimated. The evolution is then modeled by a master
equation of Lindblad form,

dρ
dt

= −i[H0, ρ] + γ
(
σz ρσz − ρ

)
, (4.17)

where γ is a constant describing the decay strength of the noise.
We now repeat the calculations for the Ramsey scheme. For the scheme using N probes
in parallel, we mark all quantities with the subscript "sep" (for separable), while the setup
entangling the probes gets the subscript "ent". We arrive at the probabilities

psep
ω0,t ( |0〉) =

1 + e−γt cosω0t
2

, (4.18)

pent
ω0,t (|0〉) =

1 + e−Nγt cos Nω0t
2

, (4.19)

respectively, where we recognize the N times higher oscillation frequency for the entangled
state, however the exponential decay term stemming from noise obtains the same amplification.
A subsequent calculation of the CRB yields

∆
2ω̂sep ≥

1 − e−2γt cos2ω0t

NTte−2γt sin2ω0t
, (4.20)

∆
2ω̂ent ≥

1 − e−2Nγt cos2 Nω0t

N2Tte−2Nγt sin2 Nω0t
. (4.21)

Indeed, these expressions are much more involved than the corresponding results for the
noiseless cases, Eqs. (4.5) and (4.16), and intuitively it is clear that the precision ought to
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possess an optimal interrogation time topt. Note that for t large enough, the derivatives of the
probabilities in Eq. (4.21) with respect to ω0 vanish, which in turn causes the FI to vanish and
hence the CRB diverges, see Eq. (4.9). This is also the case for t = 0, hence there has to be an
optimal time of interrogation. To find this optimal point of operation, we minimize the CRB
over the interrogation time, yielding

tsep
opt =

kπ
2ω0

!
=

1
2γ
⇒ ∆

2ω0
sep ≥

2γe
NT

, (4.22)

tent
opt =

kπ
2nω0

!
=

1
2Nγ

⇒ ∆
2ω0

ent ≥
2γe
NT

, (4.23)

where k is an integer number. The achievable precision is exactly the same for both cases.
This leads to the conclusion that product and entangled states (strategies) are metrological
equivalent under local dephasing lindbladian noise. While this is certainly true for the scaling
in the number of particles, a constant improvement of a factor 1/e can be achieved by using
different entangled states (instead of GHZ) and measurement strategies [34, 42, 43].
At this point, let us stress a subtlety related with Eqs. (4.22) and (4.23) which involve a cyclic
dependence on ω0, γ and the optimal time, while ω0 is actually unknown. Importantly, these,
and the following limits derived on ∆2ω̂ are always understood as the best possible precision
achievable. One may always interpret these limits as a second step estimation process, where ω0

is known roughly and the rest of the strategy is adapted according to the current knowledge. This
may even be done by the choice of a suitable coordinate frame, see for example Appendix A.2.1.
For a more detailed discussion of this issue, see also Section 4.3.3.
Note that the just derived bounds for a single probe (N = 1) can be associated with the T2 limit
in quantum sensing [13, 229]. Here it is used that γ = 1/T2, which results in an optimal time
topt = T2/2, and therefore the precision is said to be T2 limited.
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4.3. Ultimate Precision Limits - Analyzing Arbitrary
Quantum Channels, Initial States and Measurements

To evaluate the highest achievable precision of a measurement device operating in the quantum
regime, it is necessary to specify additional boundary conditions. At first, let us mention the
possibility of different initial states which can be prepared. As we have already seen, the
employment of entanglement yields a higher scaling of the achievable precision in the number
of probes. Second, during the encoding period, the noise affects the system. While this may
also be the case for a classical measurement device, here the noise can be purely quantum, e.g.
the interaction with a quantized radiation field [1, 2]. And third, one can consider different
possible measurement procedures. Realistically however, experimental realizations often limit
this pool to a finite set.

Consequently, we consider a framework where these possibilities are taken into account.
Therefore we generalize the FEP to the frequency estimation protocol for arbitrary quantum

channels (cFEP) within the independent noise model and arbitrary initial states as well as
arbitrary measurements. It is sketched in Figure 4.1 (c). In a first step, the N probes are
prepared in an arbitrary but known state. The specific properties of this state, i.e., whether
it carries coherence or correlations, are transferred to an optimization involving all possible
input states. Subsequently, the probes evolve for the encoding time t. The evolution of each
single probe’s reduced state is described via a completely positive and trace preserving (CPTP)
dynamical map [4] or equivalently a CPTP quantum channel [14]. We denote this channel by
Λω0,t which acts on the total input state ρ(N )

0 of all N probes as

ρ(N )
ω0,t = Λ

⊗N
ω0,t

[
ρ(N )

0

]
. (4.24)

The definition of the total map as the product of each single qubit channel, i.e. Λ⊗N
ω0,t =⊗N

n=1Λ
(n)
ω0,t , is a necessity of the independent noise model. It ensures that all probes undergo

the same evolution, i.e. the impact of noise on each probe is individual but identical, while it
forbids direct and environmentally mediated interactions of the probes during the interrogation
time. The index ω0 reminds that the channel possesses a dependence on the parameter to be
estimated.
The last step in the protocol is the measurement. Again, this is kept completely general in terms
of the allowed measurements, i.e. they may be local on a single probe or global measurements
on an arbitrary number of the probes. Needless to say, the choice of the measurement will
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fix the probability distribution of outcomes, which in turn fixes the Fisher Information and
therefore the CRB. In this section, we will see how in the quantum framework it is possible
to get an explicit form for the best possible precision, maximized over all the measurement
procedures.

4.3.1. Quantum Fisher Information and Quantum-CRB

Indeed, a chosen measurement transfers a statistical operator (quantum state) to a (classical)
probability distribution. A generic quantum measurement is described by a positive operator

valued measure (POVM), {Mx }x whose elements are positive-semidefinite operators associated
with outcome x for which it holds

∑
x Mx = 1. Choosing a POVM fixes the probability

distribution p(N )
ω0,t , i.e. the probability to obtain outcome x is p(N )

ω0,t (x) = tr
[
Mx ρ

(N )
ω0,t

]
. Following

[27, 41], the maximization of the FI over all POVMs yields the Quantum-Fisher-Information

(QFI)
FQ

[
ρ(N )
ω0,t

]
:= max
{Mx }x

Fcl[p(N )
ω0,t (x)] = tr

[
ρ(N )
ω0,t L

2
ω0,t

]
. (4.25)

Here, Lω0,t is the symmetric logarithmic derivative (SLD) of the state ρ(N )
ω0,t , which itself

completely determines the QFI. Note that here we restrict to POVMs independent of ω0,
otherwise additional contributions appear [247]. The SLD is implicitly defined as

∂ρ(N )
ω0,t

∂ω0
=

1
2

(
Lω0,t ρ

(N )
ω0,t + ρ(N )

ω0,t Lω0,t
)
, (4.26)

which is an instance of the Lyapunov equation [248] and more ore less states one of the core
problems in quantum metrology. There exists an explicit solution to this equation, namely in
the basis that diagonalizes ρ, Lω0,t can be expressed as

Lω0,t =
∑

{ j,k |pj j+pkk,0}

2
p j j + pkk

〈 j |
∂ρ(N )

ω0,t

∂ω0
|k〉 | j〉 〈k | , (4.27)

where p j k = 〈 j | ρ(N )
ω0,t |k〉. However, the involved diagonalization renders this problem nu-

merically infeasible for systems of large dimension. If the state ρ(N )
ω0,t is pure, i.e. ρ(N )

ω0,t =

��ψω0,t
〉 〈
ψω0,t

�� the QFI immediately reduces to (we suppress the index ω0, t for readability)

FQ
[
|ψ〉

]
= 4

(〈
∂ω0ψ

��∂ω0ψ
〉
− ��〈ψ ��∂ω0ψ

〉��2) . (4.28)
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Using this equation, it is straightforward to calculate the QFI in case of a noiseless, i.e. a unitary
evolution. Assuming we can write the encoding Hamiltonian in the form H = ω0Hred, with
some suitable ω0-independent Hermitian operator Hred, the quantum channel is directly given
by Λω0,t[•] = U •U† with U = exp (−itω0Hred) and one arrives at

FQ[U |ψ〉] = 4t2
∆

2 Hred��|ψ〉. (4.29)

Crucially, ∆2Hred��|ψ〉 is nothing else but the variance of the reduced Hamiltonian3 Hred generat-
ing the dynamics taken with respect to the initial state |ψ〉. Note that for H = ω0Hred the QFI is
always independent of ω0 itself [10].
We emphasize that the statistical operator ρ(N )

ω0,t is the quantum state of all N particles at once
and may contain correlations between the different subsystems. This reduces the additivity of
the QFI to the case of uncorrelated states, i.e. FQ[ρ⊗N

ω0,t] = NFQ[ρω0,t], since this is the only
case where the measurements are indeed independent [43]. Analogously to the classical case,
this could be thought of as either a parallel measurement on N probes or an N times repetition
of the same measurement on a single probe. Furthermore, the QFI is convex under incoherent
mixtures of quantum states [249], i.e. for valid states ρ,σ,τ with ρ = λ σ + (1 − λ) τ and
0 ≤ λ ≤ 1 we have

FQ[ρ] ≤ λ FQ[σ] + (1 − λ) FQ[τ]. (4.30)

Hence, any mixing of states cannot increase the QFI.
An equivalent definition of the QFI can be given in terms of a purification ��Ψω0,t

〉
of the

state ρ(N )
ω0,t . By lifting the state into an Hilbert space extended by HE , the common state can

expressed via a pure state vector ��Ψω0,t
〉
, where ρ(N )

ω0,t = trE
[��Ψω0,t

〉 〈
Ψω0,t

��] . Then, the QFI can
be expressed as the minimum over these purifications [42, 43, 250]

FQ[ρ(N )
ω0,t] = 4 min

Ψω0, t

〈
∂ω0Ψω0,t

��∂ω0Ψω0,t
〉
. (4.31)

Indeed, the crucial role of the QFI is due to the fact that it bounds the achievable precision
for any possible measurement. Recalling the CRB in Eq. (4.9) and the definition of the QFI
in Eq. (4.25), we arrive in fact at the Quantum Cramér-Rao Bound (QCRB), stating that the
estimation error, minimized over any possible measurement for any initial state ρ(N )

0 , is lower

3Note that here it is straightforward to derive the connection to the Heisenberg inequality: Instead of estimating
ω0 one directly measures the interrogation time, i.e. all derivatives in Eq. (4.28) are taken with respect to
t instead of ω0. The result FQ = 4∆2H in combination with the QCRB in Eq. (4.32) yields the desired
energy-time Heisenberg inequality.
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bounded by
∆

2ω̂ ≥ min
t∈[0,T]

t

T FQ
{
Λ⊗N
ω0,t

[
ρ(N )

0

] } . (4.32)

Note that we explicitly mention the minimization to be performed over the interrogation time to
obtain the optimal performance for the particular input state ρ(N )

0 .
To simplify the notation, from now on we will denote a derivation with respect to ω0 with a
simple overdot, i.e. ∂ω0• = •̇.

4.3.2. Achieving Maximal Precision - Bounding the QFI

For the aim of finding the maximal achievable precision for an arbitrary quantum channel, the
maximization of the QFI with respect to the initial state is inevitable. While we already removed
the necessity of specifying a measurement (POVM) in Section 4.3.1, here we will explore how
the optimization of the QFI with respect to the input state can be performed efficiently. The
only "free" parameters left are then the encoding time t and the quantum channel itself. In any
case, the result of the input state optimization will indeed depend on the channel, hence it is
meaningful to define the channel − QFI (cQFI), which for a given channel is the maximum
FI at a time t achievable when input state and readout are optimal. We define the cQFI as
in [35, 43],

F [Λ⊗N
ω0,t] = max

ρ(N )
0

FQ
{
Λ
⊗N
ω0,t[ρ

(N )
0 ]

}
. (4.33)

The task of maximization quickly becomes involved, although due to the convexity of the QFI,
Eq. (4.30), the set of states over which the optimization in Eq. (4.33) has to be performed can
be confined to pure states. For an increasing probe number, it is not a priori given that the
optimal input state grows trivially with N , e.g. like the GHZ states in Section 4.2.2, but non-
trivial correlations may become important for some channels when N is increased. Since the
dimension of the state grows exponentially with N , numerical computation becomes infeasible
even for small N rendering the cQFI out of reach for examinations of an asymptotic scaling law.
However, the cQFI can be bounded in terms of the Kraus operators representing the channel
on the single probe level. Therefore, we will give an idea of the procedure in the single probe
cQFI and state the result for the arbitrary N case.
To avoid the calculation of the SLD, one utilizes the purification-based definition of the QFI,
Eq. (4.31). The channel at any fixed time t, Λω0,t (t), can be regarded as a unitary evolution of
the system in an extended Hilbert space, i.e. Hext = HS ⊗ HE , and subsequent tracing over of
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this extension, using the Stinespring dilation theorem [14]. Specifically we have

Λω0,t[ρ0] =trE
[
Uω0 (t) ρ0 ⊗ ρE U†ω0

(t)
]

=
∑

j

K j (t,ω0) ρ0 K†j (t,ω0) (4.34)

where K j (t,ω0) are the Kraus operators representing Λω0,t and ρE is a state of the extending
subspace, which can always be assumed to be pure in terms of a purification performed on the
extending subspace. Since the convexity of the QFI restricts ρ0 to be pure, ρ0 ⊗ ρE is pure
and hence we can invoke Eq. (4.31). All purifications of ρ0 can then be reached by rotating
the fixed ρE with a unitary operator acing only on the extending subspace, Vω0 ρEV †ω0 [42, 43].
Note that these unitary operators will in general depend on the frequency ω0 itself. Thanks to
the locality of the QFI, we are allowed to write this unitary operators in terms of a Hermitian
matrix h independent from ω0, Vω0 = exp (−ihω0). Note that after performing the partial trace
using the rotated environmental state, the whole transformation boils down to a rotation of the
channel’s Kraus operators, i.e. we have K̃i (ω0, t) =

∑R
j (Vω0 )i j K j (ω0, t) with R the rank of the

channel (note that this conversely implies that the dimension ofHE is at least R). Taking the
trace yields the cQFI as

F [Λω0,t] =4 max
ρ0

min
h

tr


R∑
i=1

˙̃Ki (t,ω0) ρ0
˙̃K†i (t,ω0)


,

where

˙̃Ki (t,ω0) =K̇i (t,ω0) − i
R∑

j=1

hi j K j (t,ω0),

(4.35)

while higher order terms in ω0 in ˙̃Ki (t,ω0) do not contribute due to the mentioned locality of
the QFI. We want to emphasize that the environment used to employ Stinespring’s theorem and,
at the same time, the purification to obtain the cQFI is not necessarily a physical environment,
but merely a theoretical construct to avoid calculations involving the SLD.
The remaining maximization over (pure) input states ρ0 is still a tedious task, especially for
complicated channels or high dimensional systems. Importantly, the order of min and max
cannot be exchanged. Nevertheless, it turned out that an upper bound to the cQFI, based on
the representation just calculated, can be efficiently determined, as it allows to exchange the
order of the optimizations and hence the maximizations over input states can be performed.
This approach has been named channel extension and the idea is the following [250]: One
extends the channel by an, at least equally large Hilbert space. In particular, one assumes an
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arbitrary number of ancilla systems which are not affected by the application of the quantum
channel. However, if measurements on the new total space are considered, the information
content measured by the cQFI can only grow, i.e. it is F [Λω0,t] ≤ F [Λω0,t ⊗ I]. The total state
of the system and the ancillas |ΨSA〉 may be entangled, but can be assumed to be pure. After
performing the partial trace over the (artificial) ancillas, one obtains [see Eq. (4.31)]

F [Λω0 (t) ⊗ I] =4 max
ρS

min
h

tr

ρS

R∑
i=1

˙̃K†i (t,ω0) ˙̃Ki (t,ω0)


=4 min
h

������
������

R∑
i=1

˙̃K†i (t,ω0) ˙̃Ki (t,ω0)
������
������

(4.36)

with | | • | | the operator norm.4 In the second equality, we used that ρS = trA [|ΨSA〉 〈ΨSA |] is
now mixed and thus both optimization domains are convex. Hence we are able to exchange the
order of min and max by virtue of the minmax theorem [251] and, subsequently, the maximum
over the states can be calculated by means of the Cauchy-Schwarz inequality. In particular,
maxρS tr

[
ρs A

]
= | |A| | for any operator A since ρS is positive with tr

[
ρS

]
= 1.

In principle, for the case of N probes building up the cFEP the single probe result could be
derived directly, however, the problematic exponential increase of Hilbert space’s dimension
remains. Luckily, one can further bound the channel extended cQFI for N probes in terms
of the single channel Kraus operators. When the global channel for the common state of the
probes is given by Λ⊗N

ω0,t , it can be shown that [43, 250]

F [Λ⊗N
ω0,t] ≤ F [(Λω0,t ⊗ 1)⊗N ]

≤ 4N min
h(N )

[
| |αK̃ | | + (N − 1) | | βK̃ | |

2
]
≡ F ↑[Λ⊗N

ω0,t], (4.37)

with

αK̃ =

R∑
i=1

˙̃K†i (t,ω0) ˙̃Ki (t,ω0),

βK̃ = i
R∑

i=1

˙̃K†i (t,ω0) K̃i (t,ω0).

We stress the dependence of the optimal h on the number of probes, i.e. the minimization has
to be performed for every N . It has been discussed that indeed, this bound provides useful
estimates of the QFI for all N , even in the asymptotic regime N → ∞ [35, 43] and, in fact, this
will be the basis for the results presented in the next sections. Indeed, the extended cQFI in

4Note that a norm is naturally induced by the Hilbert-Schmidt scalar product, 〈A,B〉 = tr
[
A†B

]
.
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Eq. (4.36) and the bound in Eq. (4.37) coincide for N = 1, as well as if there exists a Kraus
representation, i.e., h, such that | | βK̃ | | = 0 (in this case one can show [43] that the second
inequality in Eq. (4.37) is saturated). In the latter case, it might still be convenient to consider
Kraus representations such that | | βK̃ | | , 0 and the optimal h in Eq. (4.37) for each finite value
of N . This provides the so-called finite-N channel extension method, which plays a crucial
role in frequency estimation, in order to determine how the optimal evaluation time depends
on N and, hence, the best possible scaling of the precision obtained by optimizing also over
t [39, 43]. In any case, the bound requires intensive numerical effort, but can be cast into
a semidefinite program to perform the minimization efficiently [35, 43]. Note that, besides
this channel extension method, also other methods have been proposed and developed in the
literature [35, 42, 252].

4.3.3. Saturation of the (Quantum-)CRB

Let us now discuss the attainability of the (Q)CRB. The first thing on has to keep in mind is that
one is free to choose t � T which increases the number of repetitions ν = T/t. This provides
more measurement data gathered over the total time T , and hence can lead to a better precision
which then improves at a classical rate ∼ 1/ν.
The chain of inequalities for the (Q)CRB mentioned so far is given by

∆
2ω̂ · T

(1)
≥ min

t

t
Fcl

(2)
≥ min

t

t
FQ

(3)
≥ min

t

t
F

(4)
≥ min

t

t
F ↑

, (4.38)

which has been bounded by several optimization procedures.

Inequality (1). — In fact, one should keep in mind that the saturability of inequality (1) is a
non-trivial issue and strongly depends on the properties of the estimator and therefore classical
data processing [10]. We already mentioned that any efficient estimator which is unbiased will
achieve the CRB, however, such an estimator may not even exist globally, i.e. for any arbitrary
value of ω0.
An often constructed estimator is the maximum likelihood estimator (MLE) which profits
from the collection of a large data set (Consider for example the estimator for a sample
mean x̄ =

∑ν
i=1 xi/ν). Specifically, it is the estimator maximizing the likelihood pω0 (~x) from

Section 4.2.1. One can show that the asymptotic probability distribution of the MLE is a normal
distribution with mean ω0 and variance Fcl, i.e. saturating the CRB [29]. While always being
consistent, one also has to keep in mind that an MLE may only be asymptotically unbiased, i.e.
the bias β vanishes asymptotically for a large sample size.
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On the other hand, in the regime of a finite data set, saturation is as mentioned not guaranteed in
general. More specifically, this is true at least on a global level, i.e. irrespective of the true value
ω0. In particular, a globally efficient estimator can only be found if the underlying probability
density belongs the so called exponential family [29]. Crucially, the normal distribution belongs
to that family and hence the asymptotic saturability can be understood as an instance of the
central-limit-theorem [29, 253].
However, one can always follow a local approach to saturate the CRB locally at a point
ω0 = ωL, where one constructs a locally unbiased estimator which satisfies a local unbiasdness
condition [12, 254],

∂

∂ω0
〈ω̂(~x)〉~x

�����ω0=ωL

= 1. (4.39)

Indeed, when this condition is imposed during the derivation of the CRB, one exactly obtains
Eq. (4.9) with the only restriction that it is only valid (i.e. equality can be reached) for an
interval ω0 = ωL ± δω, as one also restricts the FI to this interval, which on the other hand
is a local quantity anyway, see Eq. (4.11). One is tempted to believe that such a constraint
renders the whole formalism impractical, as this restriction is very much present in nearly every
estimation scheme since a globally unbiased estimator can almost never be constructed in a
useful manner, or can’t even be found for the problem at hand [29]. The usefulness of the local
approach traces back to the fact that one often possesses preliminary information about the
parameter, such that the scheme becomes applicable to the measurement of small fluctuations
in the parameter as it is done in atomic clocks [232], gravitational wave detectors [236, 238]
or as in a quantum sensing scenario named "slope detection" [13] employing for example
nitrogen-vacancy centers in diamond [229] for magnetometry. Furthermore, one can think of
the protocol as a "second step estimation", where one roughly determines the parameter first
and applies the presented protocol for further refinement. Indeed, the local approach may be
considered as the one giving the lowest bound hence its analysis may be regarded as the most
optimistic one, therefore the derived limits can be considered fundamental. Additionally, the
call for locality may be relaxed by allowing adaptive measurements, that is a sequence of MLE
estimators based on locally unbiased estimates is consistent and asymptotically efficient [254].
For an approach employing an estimation of the whole parameter range, one has to resort to
Bayesian inference techniques to frequency estimation [255]. Here one requires a new notion of
the Heisenberg limit, in particular ∆2ω̂ ∼ π2/N2 [256]. Saturation of the latter is then achieved
employing adaptive schemes, as examined in [257].

Inequality (2). — The second inequality turns into an equality by choosing the POVM which
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maximizes the FI Fcl. In particular, this POVM is given in terms of the projectors into the
eigenbasis of the SLD operator [41], which in most cases turns out not to be a practical,
realizable choice. In the specific case of a unitary evolution we know that Eq. (4.29) holds, and
then the optimal measurement (and input state!) are given by an equally weighted superposition
of eigenstates belonging to the Hamiltonian H, as this state maximizes the variance [19],
compare Eq. (4.29). More precisely, for the Hamiltonian H =

∑N
n=1ω0H (n)

red (where all H (n)
red are

identical), the SQL is achieved by the product state |ψ〉⊗N where

|ψ〉 = argmax
|φ〉

∆
2Hred ||φ〉, (4.40)

while the HL is achieved by

���ψ (N )
〉

=
|µmax〉

⊗N + |µmin〉
⊗N

√
2

, (4.41)

with ��µmax/min
〉

the eigenvectors belonging to the maximal (minimal) eigenvalues of Hred. These
states are trivially also the ones maximizing the cQFI and are therefore able to saturate all
bounds given in Eq. (4.38).

Inequality (3). — The saturation of the bound given by the cQFI F is given if all the conditions
set by the maximization procedures of the FI are fulfilled. This requires the knowledge of an
optimal (here, optimal is referred to the scaling and not the saturation of the CRB) input state
for the QFI. In the case of a unitary evolution, these can be found by maximizing the variance of
the Hamiltonian, as mentioned in the previous paragraph. For a general open-system dynamics,
i.e. an arbitrary quantum channel, the state maximizing the cQFI cannot be generally found
explicitly. However, note that if one finds a state and a measurement procedure such that t/Fcl

has the same scaling as t/F , one can also argue that the optimal strategy will have such a
scaling, as long as the classical CRB (1) is saturated as well.

Inequality (4). — This inequality may never be saturated, as the cQFI F ↑ is an upper bound on
the cQFI F itself. However, its scaling with the probe number may be reached asymptotically
(N → ∞), apart from a possible parameter independent constant. Analogously to the arguing
for inequality (3), if one finds a state and a measurement procedure such that t/Fcl has the same
scaling as t/F ↑, given the saturation of the classical CRB (1), the optimal strategy will possess
the same scaling.

77



Realistic Bounds on the Precision

4.4. Realistic Bounds on the Precision

The cFEP has been under heavy investigation, to determine the best precision achievable under
different circumstances and, in particular, the different kinds of noise during the encoding time.
The main question is whether the ultimate limit is given by the SQL, or how close one can
reach the HL. Thereby one has to keep in mind that these limits have to be understood in an
asymptotic sense, i.e. the number of available probes N is large and tends to infinity. That is,
as we will see, due to the competition of the parameter encoding and the noise removing the
imprinted information. Moreover, the noise may collapse the state such that no further encoding
is even possible5. As the influence of the noise is stronger pronounced the more probes are
involved in the entangled state, it is rather intuitive to assume that the optimal time when the
measurement should be performed approaches zero when the number of probes is increased6.
Therefore, the focus of interested is put on the ultimate limit one can achieve with any number
of probes, i.e. "how fast" the precision decreases when N is increased.
As already explained in Section 4.3.3, the attainability of the QCRB employing the cQFI F
as a lower bound to the achievable precision can be shown (at least up to a constant factor) by
evaluating the precision, as quantified by the FI, for a specific measurement and initial state. For
that reason, let us note that for all the cases presented in this section, it is enough to consider
GHZ-states as the input and the parity operator, Px =

⊗N
n=1 σ

x
(n) [258] as the subsequent

measurement. Using error propagation, Eq. (4.14), and that ∆2Px =
〈
Px (t)2

〉
− 〈Px (t)〉2 = 1 −

〈Px (t)〉2 the error can be written as

∆
2ω̂P · T = t

1 − 〈Px (t)〉2

���〈Ṗx (t)〉���
2 , (4.42)

where further calculation can be found in [46,H3], Section 5.4 and Appendix A.2.7. That bound
provides a chain of inequalities

∆
2ω̂P · T ≥ ∆2ω̂ · T ≥

t
F [Λ⊗N

ω0,t]
≥

t
F

[
(Λω0,t ⊗ 1)⊗N ] ⇒ ∆

2ω̂ · T ∼
1

N κ
, (4.43)

where we justify the implication from the fact that when both sides approach 0 in the limit
N → ∞ as N−κ, the same will be true for ∆2ω̂ · T .

5Obviously, a state ρ ∼ 1 has lost all its coherence and hence the phase can not evolve anymore.
6While from a physical perspective this statement may seems intuitive, at last for all noise dynamics where the

steady state commutes with the parameter imprinting Hamiltonian, it is mathematically not clear a priori and
has to be checked carefully. In fact, this has only been shown rigorously for the Zeno scaling presented in
Section 4.4.1.
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4.4.1. The Zeno-Limit under Phase-Covariant Noise

Let us start with a scenario where the induced noise during the evolution is phase-covariant, as
explained in Section 1.5.
It has been shown that for any FEP where the encoding channel is phase-covariant, i.e. in
accordance with Eq. (1.36), the ultimate precision is always bounded from below [39] by the
asymptotic scaling

∆
2ω̂Zeno,PC · T ≥

C
N3/2 , (4.44)

for a suitable (N-independent) constant C. Furthermore, it was shown that such a limit can
always be achieved (at most up to the constant factor) by means of a GHZ state. First encounters
with this scaling have been presented in [36,37], where it has been linked to the quadratic decay
of transition probabilities in the environment on short time scales and was hence called the
Zeno-Limit (ZL). A general derivation for the case of pure dephasing can also be found in [38].
Indeed, as shown in [39], the Zeno scaling emerges for all evolutions whose dynamics deviate
from a dynamical semigroup (see Section 1.4, Equation (1.10)) at short time scales, while the
precision collapses immediately to the SQL when the rates γ j (t) in Eq. (1.7) are replaced by
constants [34]. In particular, the optimal interrogation time has been proven to scale as

tZeno,PC
opt ∝

1
N1/2 , (4.45)

for any evolution (apart from the unrealistic case of a full revival), thus showing explicitly how
the optimal estimation strategy relies on measurements on shorter and shorter time scales.

Note that a Lindbladian (semigroup) evolution corresponding to constant rates in Eq. (1.7)
is generally an approximation to the real dynamics, as it relies on a coarse grained time res-
olution [2], which neglects times where the environmental correlation functions are not yet
decayed. However, the total evolution of the system and the bath is always governed by a
unitary evolution of a possibly time dependent Hamiltonian H (t). Hence given an initial pure
state of the system |ψS〉 and the total state |ψ〉 = |ψS〉 ⊗ |ψE〉, the short time survival probability
of the reduced state can be written as [39]

〈ψS |Λt
[
|ψS〉 〈ψS |

]
|ψS〉 = 1 − αSt2 + O(t3), (4.46)

which is always of the order O(t2) and αS = 〈ψ | H (0)2 |ψ〉 − 〈ψS | trE
[
H (0) |ψ〉 〈ψ | H (0)

]
|ψS〉.

Consequently we can understand a dynamics which is accurately described by a Lindblad
master equation as a type of dynamics where the "Zeno regime" (i.e. the regime where terms
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Figure 4.3.: Geometric picture for the precision for a single probe (N = 1). The distance
of two quantum states, i.e. the distance between two neighboring probability
distributions, can be visualized by two Bloch vectors of same length who only
differ in a small phase angle dφ. Note that rigorously one should understand these
as the projection of some Bloch vectors into the xy plane. Decoherence processes
decrease the length of these vectors (and their projections), hence the states are
approaching each other, see the transition from green to red. (Figure first published
in [H6])

quadratic in time are relevant) is not accessible. Moreover, since the information about ω0 is
encoded in the phase of the qubit’s state, for the special single probe case (i.e. N = 1) it was
possible to show that the length of the Bloch vector’s projection into the xy plane determines
the achievable precision. In this respect one may observe geometrically the balance between a
long evolution time and the decoherence processes diminishing the achievable precision, for
that compare also Fig. 4.3.
Both affect the distance between the projections of the two states ρω0,t and ρω0+dω0,t , which
is given by the line element r (t) dφ(t) = r (t) t dω0 where r (t) is the length of the projection
and dφ(t) = t dω0 the phase difference. Obviously, the function r (t) and t counteract each
other. While t increases the phase difference and hence provides a better distinguishability of
the states, r (t) pulls the projections towards the origin and thereby decreases the precision.
We want to emphasize again, that this limit is asymptotic, i.e. it is reached for a larger
number of probes which in turn shifts the optimal interrogation time into the short time regime.
This shifting can be motivated by the fact that entangled states do not only share their phase
evolution, but also collectively gather fluctuations induced by the noise. Hence, the noise is
naively speaking "∼ N-times stronger", i.e. the phase evolution is lost quicker. In the short time
regime, the only time order left to contribute is the second one as shown above, which then
yields the mentioned scaling.
Remark.— Note that the Zeno scaling can also emerge non-asymptotically, when the function
dictating the transversal contraction of the Bloch sphere is always of second order in time. Then
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the scaling is immediately Zeno-like, e.g., for Gaussian decay envelopes as we will encounter
in Section 9.3 for the NV center.

4.4.2. Transversal Noise

A special case is set by noise which is perpendicular to the direction of the frequency encoding,
which is normally chosen as ẑ. Usually one speaks about the direction of the noise at the level
of the master equation associated with the dynamics. That is, a dissipator of the form

D (t)[ρ] = γ(t)
(
αxσ

x ρσx + αyσ
y ρσy − ρ

)
, (4.47)

with αx + αy = 1 induces transversal noise (i.e. the noise direction is perpendicular to the
direction of the encoding, here ẑ). Specifically, for a constant rate γ(t), this dissipator was
analyzed in [45] and it was found that the ultimate precision is improved beyond the Zeno limit,
yielding

∆
2ω̂⊥,SG · T &

1
N5/3 ,

t⊥,SG
opt ∼ N−1/3.

(4.48)

Crucially, transversal noise is not phase-covariant, i.e. the condition in Eq. (1.36) does not hold.
In particular, the inclusion of PC breaking terms (which are exactly the ones neglected by the
secular approximation [50, H3]), allows for non-isotropic contractions of the Bloch sphere in x̂

and ŷ direction. As will also be presented in Section 5.3.1, non-phase-covariant dynamics then
become sensitive to the initial phase of input states of the cFEP, which is fixed by the relation
of αx and αy. Indeed, a dependence of the initial phase was also predicted in [46], where the
noise model was applied to a specific setup in atomic magnetometry [259].
For completeness, we do a leap ahead of Chapter 5 and already present the scaling for per-
pendicular but non-semigroup noise. The precision in such a scenario is ultimately bounded
by

∆
2ω̂⊥ · T &

1
N7/4 ,

t⊥opt ∼ N−1/4.

(4.49)

Importantly, both scalings, Eq. (4.49) and (4.48), are reached by a parity measurement of GHZ
states, see Section 5.4. The latter scaling, N−7/4, is the best so far achieved using the cFEP
employing the independent noise model.
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4.4.3. Arbitrary, non-Phase-Covariant Noise

The dynamics under non-phase covariant, non transversal noise are a mostly unexplored cat-
egory so far when regarded in the context of frequency estimation. It is not too long, that
these types of dynamics became important, as the secular approximation performed in the
master equation has been a rather standard procedure. Recent technological advances however
presented methods to access timescales of the system’s dynamics where the contribution of the
non secular terms is not averaged out.

Since an NPC generator does not possess a specific form [conversely they are defined by
not being PC, i.e. of the form in Eq. (1.38)], it is involved to derive analytic results for the
QCRB. While again being a preview of Section 5.4, here we state the only numerical evidence
so far. We found that the ultimate scaling may also be given by the Zeno limit iff the decay rate
γ(t) is time dependent and the noise is not completely orthogonal to the parameter encoding,
i.e.

∆
2ω̂Zeno,NPC · T &

1
N3/2 . (4.50)

Indeed, pure dephasing components along the encoding of the parameter are always PC, hence
they should limit the precision as explained in Sec. 4.4.1. Indeed, in Appendix A.2.6 we show
that the information content in the FI is directly proportional to the length of the Bloch vector’s
projection into the xy plane, extending the result of [39], where it was already argued that pure
dephasing is indeed the most detrimental noise in the estimation scheme. In other words, pure
dephasing contributions are the limiting noise factors and when additional noise is added to
the (even arbitrary small but not negligible dephasing) dynamics, the precision cannot increase.
While this seems intuitive, we want to stress that this must not be the case when the asymptotic
limit is not reached or when one has a probe-independent constant improvement in mind. In
particular, in Sections 5.3.1 and 5.3.2 we demonstrate that NPC contributions can increase the
single probe QFI on short times when the considered model is kept slightly more general.

4.4.4. Motivating Toy Model

To motivate the presented limits pictorially, we dedicate this section to a simple toy model.
More precisely, the aim is to illustrate why transversal noise yields an improved scaling and
any pure dephasing contribution automatically fixes the precision to be Zeno limited.
Therefore recall that the Ramsey sequence effectively measures the evolved phase of a coherent
input state and the precision is fixed by the variance of a corresponding observable which is
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Figure 4.4.: Toy model for the different directions of the noise. After the protocol described
in the main text (after the second π/2 rotation), the different outcomes of 〈σz〉

are marked with blue triangles (θ = π/2), red squares (θ = 0) and green circles
(θ = π/4). Every x component of the noise is along the positive x axis. The right
panel shows a histogram of the appearances of the expectation value. Note the
much narrower distribution for the transversal case. (Figure first published in [H6])

measured afterwards. For qubit probes, the variance of Pauli operators is completely determined
by their expectation value. Let’s assume that the dynamics during the free evolution is governed
by the Hamiltonian

H =
ω0

2
σz + η

[
σx cos(θ) + σz sin(θ)

]
, (4.51)

where η is the amplitude of a noise process. If an experiment including multiple runs is
performed, a value for η is chosen at random, but it is fixed for the different runs of the
experiment (corresponding to ν in Eq. (4.9)). We assume that the drawn amplitudes have zero
mean and are distributed according to a Gaussian distribution. Consequently, we interpret the
measured expectation as a single realization (corresponding to one specific realization of ~x)
drawn from the distribution of possible outcomes. In the experiment, for each run we prepare
an equally weighted superposition of the σz eigenstates analogously to Section 4.2. Let us
now consider 3 cases: (i) For pure dephasing we have θ = π/2, (ii) for transversal noise we
have θ = 0 and for a third case (iii) we assume θ = π/4. We simulate the evolution via the
unitary generated by the Hamiltonian (4.51) such that we have a total evolution of ω0t = π/2.
Every result plotted on the Bloch sphere shown in Figure 4.4 corresponds to the outcome of a
different experiment. A π/2 rotation around the x axis transforms the phase information of the
states onto a population difference, where we can extract the distribution of 〈σz〉, see Figure 4.4,
where the width of the distribution is drastically reduced for case (ii) when compared to the
cases (i) and (iii), which themselves yield pretty similar results. Note that for case (i), the
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non-negative expectation values are a result of the particular geometry in combination with
small values of η.
To that end, this gives a motivation for why transversal noise is a special case, while any
longitudinal component will reduce the scaling to the ZL.

4.5. Remarks

4.5.1. The Role of non-Markovianity

Figure 4.5.: Role of non-Markovianity in pure dephasing. Each optimal point (red circles)
of a non-Markovian decay process (dashed and dotted blue lines) can be reached
by Markovian processes (blue solid lines), therefore demonstrating that the solely
non-Markovianity of the dynamics cannot provide an advantage over Markovian
dynamics. The only exception is the case of a full revival as shown by the green
curve and marked by the red square. This point cannot be reached via a Markovian
dynamics and decay rates γr > 0. (Figure first published in [H6])

The role of non-Markovianity in topics referring to quantum metrology is, by far, not sorted
out yet. For sure, this also due to the varying definitions around, see Section 1.4. However, we
stress that for the configuration of the cFEP non-Markovianity does not play any role when it
comes to the ultimate limits in the asymptotic regime. A detailed analysis and the proof for
phase covariant noise is given in [39], but we give an intuition in the following.
As shown in [39] and argued in Sec. 4.4.1, performing measurements at shorter and shorter
time scales is crucial in order to overcome the SQL. This not only implies that, as said, the key
property is the violation of the semigroup composition law on short time scales (rather than a
specific form of non-Markovianity), but one can also show that, apart from the unrealistic case
of a full revival, performing a measurement on longer time scales (e.g. waiting for a back-flow
of information) would be in any case detrimental and furthermore reducing the scaling of the
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error to the SQL. Now, such a strong result is certainly a consequence of the asymptotic regime
N → ∞ taken into account in [39]. However, one can easily argue that non-Markovianity is not
really a necessary resource for the FEP, even in the finite-N regime.
Crucially, note that all the FIs defined above are local quantities in time, i.e. they can not
capture any temporal correlation in the evolution of the state. In other words, they only take
the instantaneous state of the system into account. E.g. as mentioned already in Sec. 4.4.3,
the achievable precision depends on the available coherence orthogonal to imprinting of ω0.
Any dynamics, whose value of coherence coincide at a given point yield the same cQFI, which
means that even if the cQFI increases in time during one evolution due to non-Markovianity,
one will always find a different Markovian dynamics reaching the same QFI at the same time
and thus providing the same precision. This argument is illustrated in Fig. 4.5. Nevertheless,
we stress that non-Markovianity can be of course of practical advantage, given a specific setting
and hence a restricted set of available dynamics.
Moreover, note that the temporal derivative of the QFI has been proposed as a measure of
non-Markovianity as it quantifies the information flow between the system and the environment
[260].

4.5.2. Precision, Accuracy and Sensitivity

In this paragraph we would like to clarify some terms commonly encountered in the literature
and often used interchangeably. The notions of an accurate and precise measurement can
be linked to properties of the estimator [30]. Any unbiased estimator is accurate. Therefore,
asymptotic unbiasedness also guarantees an accurate measurement in the asymptotic regime.
The notion of precision is surely connected to the variance of the estimator and for unbiased
estimators it is equal to the MSE. Importantly, precision is a term describing the closeness of
results obtained by repeated performances of the experiment (as long as the true value does
not change), the results may still be biased away from the true value, see the illustration in
Fig. 4.6. Note that any efficient estimator is accurate and precise as it is consistent. In particular,
any MLE is precise and accurate in the asymptotic regime. A further term often used when
quantifying the performance of quantum sensing experiments is sensitivity [13, 229]. Note that
this term may be misleading in a broader context, since other communities use the term noise

equivalent power (NEP) η while referring to the same concept [261, 262]. At the same time,
sensitivity is then referred to the slope of the response curve [263, 264]. NEP is a measure of
the signal-to-noise ratio (SNR), specifically it is defined as the signal yielding the SNR = 1.
Since this depends on the resources at hand, one usually chooses a fixed total time of T = 1 s.
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Figure 4.6.: Precision and Accuracy. Imagine throws onto a dartboard, each consecutive hit is
marked with a circle. The player of board (a) is accurate and precise, as his throws
have a small spread and are distributed around the center. The player on (b) is very
precise but lacks accuracy. His throws also possess a narrow distribution, however
around a point which is displaced from the center of the target. The throws of the
last player on (c) are evenly but widely distributed around the center, therefore
he is accurate without possessing any precision. To connect this illustration with
the estimation task treated in this work, every throw onto the dartboard has to be
associated with a whole experiment which is conducted. (Figure first published
in [H6])

For a response curve or signal ST (ω0) and the noise σT (ω0) we have the SNR

SNR =
ST (ω0)
σT (ω0)

. (4.52)

Here we include the possibility to repeat measurements and denote the affiliation to the specific
total time in the index T . This may change the response itself but crucially the repetitions
reduce the noise, typically by a factor

√
T/t where t is the duration of a single run, compare the

discussion in Section 4.1. We emphasize that in practical applications σT (ω0) is a sum of noise
contributions from different sources, e.g. electrical noise, counting errors of quantized signals
like photons or precisely the quantum shot noise (or projection noise) [28].
In principal the NEP is given by ST (ω0) = σT (ω0) for T = 1s, however it is convenient to
express it in terms of the quantity to estimate. Since the sensor needs to be calibrated to a
known reference point ωL, we express the response as (recall ω0 = ωL + δω)

ST (ω0) ≈ ST (ωL) +
∂ST (ω0)
∂ω0

�����ω0=ωL

δω, (4.53)

and therefore we arrive at the NEP (note that the
√

Hz is required to obtain the desired units of
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η)

δω = σT (ω0)

������
∂ST (ω0)
∂ω0

�����ω0=ωL

������


−1 �����T=1 s
= η
√

Hz. (4.54)

Thereby the value of ST (ωL) is a bias which is known via the calibration and we set it to zero
without any loss of generality and we prefer δω to be positive, hence we take the absolute
value of the derivative. The NEP shares similarities with the error propagation Eq. (4.13) and
we may indeed interpret δω as the upper limit in precision when we understand the sensing
experiment as a task of frequency matching, where we aim to tune ωL as close as possible to
ω0. Particularly, ST (ω0) is then the expectation value of a quantum mechanical observable and
σT (ω0) its standard deviation. Furthermore, the requirement of local estimation is implied by
Eq. (4.53) where the derivative is the sensitivity of the sensor. However, as mentioned, one
needs to keep in mind that some communities refer to the concept of NEP as sensitivity of
the sensor. Consequently, they require a different term for the local slope ∂ST/∂ω0 and hence
introduce the concept of responsivity [262].

For illustration purposes, let us rederive the NEP (i.e. the sensitivity) of a single probe
Ramsey experiment as used for magnetometry of a magnetic field, i.e. ω0 = γaB is deter-
mined by the Zeeman interaction of the atomic probe (gyromagnetic ratio γa) with a magnetic
field of amplitude B. Here, ST (ω0) is given by the survival probability of the initial state,
Eq. (4.18), and σT (ω0) represents the shot noise. As already mentioned, the shot noise is given
by σT (ω0) =

√
ST (ω0)[1 − ST (ω0)]/ν with ν = T/t. Plugging these expressions into Eq. (4.54)

yields

δω =

√
e−2γt − cos2(ωt)
√

tT |sin(ωt) |

������T=1 s

, (4.55)

which is minimized in two steps. A first optimization finds ω = π/(2t) and further minimizing
over t yields the optimal time topt = 1/(2γ). Translating this into the NEP for the field amplitude
yields

δB =

√
2e
γa/γ

1
1 s

=

√
2e
γaT∗2

√
Hz

⇒ η =

√
2e
γaT∗2

and [η] = [B]
√

Hz
−1

(4.56)

In the last step we used that the coherence time of the probe is given by T∗2 = 1/γ. Note that
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the NEP η is given in terms of the units of the parameter (here B) divided by
√

Hz giving a
reference to the integration time of T = 1 s.

4.5.3. Ultimate Precision without Entanglement

As we have seen, in parallel estimation strategies a necessary condition to overcome the SQL
with respect to the number N of probes is the entanglement among the latter. However, it has
been shown that the same precision can be achieved in a sequential strategy where, instead of
N initially entangled probes, one has an N-step protocol with one single probe [265, 266]. For
the case of a unitary operator exp (−itω0σ

z/2) which is applied N times to an initially equally
weighted superposition of |0〉 and |1〉, one obtains the state of the probe after the interrogation
time as (|0〉 + e−iNω0t |1〉)/

√
2 and the survival probability is hence given by

pω0,t =
1 + cos(Nω0t)

2
, (4.57)

yielding the scaling 1/N2 of the precision. However, note that in practice such a protocol is
also challenging to implement, as the setup has to stabilized, also against noise, during the total
duration Nt of the experiment.
On the other hand, in case of a bosonic systems whose indistinguishable particles constitute
the probe, it is more natural to treat them all together as an isolated quantum system. Then,
from such a perspective, one may interpret the HL to be attainable with N bosonic particles,
i.e., N excitations of a single bosonic mode (given a perfect phase reference) [227, 267].
However, one has to note that such states still carry particle entanglement which is, contrary
to mode entanglement, necessary to obtain a quantum advantage in non-sequential schemes.
Nevertheless, these details goes far beyond the scope of this review but can be found in [12,268].

4.5.4. Geometrical Distance of Quantum States

Let us briefly note the connection between the (quantum) Fisher-Information and the distin-
guishability of different quantum states. Therefore note that, besides in this work we are
focusing on frequency estimation, the achievable precision for any other parameter λ can be
analyzed using the formalism presented here by making the identification ω0 7→ λ in the
Eqs. (4.9) and (4.32)7.

7Thereby one has to keep in mind that this replacement concerns the derivative in the FI, while the functional
dependence of the applied channel may not be a one-to-one replacement. For example, in the scenario of phase
estimation one is interested to find the product λ = ω0t.
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As we already noted during the introduction, the problem of a finite estimation precision is
emerging from the fact that probability theory is involved in the performance of measurements.
Based on classical probability theory, in [269] a notion of statistical distance between two
probability distributions was introduced. If one parameterizes these distributions as pλ , the
distance between pλ1 and pλ2 can be defined as the shortest path between the two, calculated
in the space of all pλ . An intuitive measure of the length is given in terms of the probabilities
which can be distinguished along the path. In the case that pλ is referred to N possible outcomes,
the length (note the appearance of the FI)

l =
1
2

∫ λ2

λ1

dλ

 N∑
n=1

1
pλ (n)

[
dpλ (n)

dλ

]2


1
2

(4.58)

is minimized to yield the statistical distance

d(pλ1 ,pλ2 ) = arccos




N∑
n=1

√
pλ1 (n) pλ2 (n)


 . (4.59)

This result has then been transferred to the quantum regime where an N dimensional pure
state |ψλ〉 is measured. Crucially, here the probabilities pλ (n) will depend on the chosen
measurement basis and hence a further optimization can be performed. In particular, the
optimal measurement basis includes one of the states itself, which yields

d
(��ψλ1

〉
, ��ψλ2

〉)
= arccos ��〈ψλ1

��ψλ2

〉�� . (4.60)

Therefore, the distinguishability directly relates to the angle enclosed by two states in the
Hilbert space. This result can be transformed into a metric for neighboring pure states |ψλ〉 and
|ψλ+δλ〉 giving the Fubini-Study metric [270] and in [41] a generalization for mixed states is
presented. The statistical distance for two states is then given by the Bures distance [117]

dB (ρλ1 , ρλ2 ) = arccos F (ρλ1 , ρλ2 ) = arccos tr
[√
√
ρλ1 ρλ2

√
ρλ2

]
(4.61)

where F denotes the Fidelity [14]. Interestingly, for neighboring states this equation can be
expanded yielding

dB (ρλ1 , ρλ2 ) =
1
2

√
FQ[ρλ] δλ + O(δλ2), (4.62)

which shows the connection between the QFI and the notion of statistical distance between
quantum states.
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4.6. Beyond the Independent Noise Model: Correlations and
Control

By now it should be clear that the cFEP employing the independent noise model is an idealiza-
tion. In addition, the bounds mentioned so far may be the ultimate bounds in an asymptotic
regime, however, current realizations of the protocol in experimental setups struggles to achieve
this regime. On top, there can be correlations in the noise affecting the individual probes and
the probes may also interact with each other in principle. Furthermore one can think of control
methods during the interrogation time, which may suppress noise, perform error correction,
or increase the sensitivity to the frequency to be estimated. The details of these techniques
go beyond the scope of this work, however we want to complete it by mentioning the recent
progress in the field.

4.6.1. Correlated Noise and Interacting Probes

The cFEP sets fixed requirements onto the setup to be analyzed. Indeed, the boundary conditions
of independent and identical noise are rather an idealization. Despite the fact that this provides
an accurate description of the noise in many circumstances, there are certainly situations of
interest where correlations of the noise are actually relevant. On top, the different probes are
prohibited to interact during the interrogation time, also a necessity which is not always given.
Especially in the context of probes which are desired to be prepared in an entangled state, where
corresponding methods relying on the inter-probe interaction exist.
However, it is not a priori given that these flaws in a realization of the cFEP are a disadvantage.
Considering pure dephasing, it was shown that noise which is spacially correlated along the
used probes can beat the SQL with Lindbladian [271–273] and non-Lindbladian noise [274]. In
particular, it was shown that for some antisymmetric entangled preparations of the input state,
the correlations in the noise allow for the identification of decoherence free subspaces (DFS)
which in turn even allow for the restoration of the HL. In [272] it was calculated that the spatial
length over which the correlations decay is crucial for the achievable scaling and HL manifests
for correlation lengths longer than the chain of probes. This infinite correlation length was
implicitly assumed in [271] where a linear chain of trapped ions was investigated. To exemplify
the latter, consider a master equation describing the evolution of total state evolving under
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correlated dephasing. The state contains N probes, with N even. It may take the form

d
dt
ρ(N )
ω0,t = − i

[
H, ρ(N )

ω0,t

]
+ γ

(
V ρ(N )

ω0,tV −
1
2

{
V 2, ρ(N )

ω0,t

})
,

when, e.g.,

H =
ω1

2

N/2∑
n=1

σz
(n) +

ω2

2

N∑
n=N/2+1

σz
(n) + ξ (t)

√
γ

N∑
n=1

σz
(n),

(4.63)

where V =
∑N

n=1 σ
z
(n) and ξ (t) is a delta correlated, zero mean stochastic process, i.e. white

noise. Note, that a state which is part of the DFS has to satisfy V |ψDFS(t)〉 = 0 at all times.
One way to construct such a subspace is the following. Therefore, note that the first two terms
in the Hamiltonian can be rearranged as

H0 =
ω1 − ω2

4




N/2∑
n=1

σz
(n) −

N∑
n=N/2+1

σz
(n)


 +

ω1 + ω2

4
V. (4.64)

Then, an input state of the form

|ψ〉 =
1
√

2




N/2⊗
n=1

|1〉
N⊗

n=N/2+1

|0〉 +
N/2⊗
n=1

|0〉
N⊗

n=N/2+1

|1〉


 (4.65)

fulfills the DFS criteria and can be used to measure the frequency ω0 = ω1−ω2. Interestingly, if
one does not exploit the existence of theses DFS, under the conditions of correlated noise GHZ
states dephase on a timescale ∝ N−2 compared to an uncorrelated preparation when employed
on conventional Ramsey spectroscopy, i.e. all ions possess an equal splitting. This effect was
called superdecoherence [275], implying that GHZ states are strongly disadvantageous. Indeed,
it was found that the precision using GHZ states is then independent of N , and furthermore, for
optimized input states it was demonstrated that a constant, N independent part prevails in the
precision, i.e.

∆
2ω̂ ≈

γC1

T
+

√
γC2

√
T N1.8

, (4.66)

where C1 and C2 are some constants determined numerically. To that end, the example presented
may suggest that the assumption of local noise in the cFEP is an optimistic one, yielding a better
precision than for correlated noise. On the other hand, this is no longer true in the special case
of an appearing DFS where finally the HL can be reached. In any case, the precise comparison
of the two scenarios is under investigation.
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Another, until now only briefly investigated scenario are probes interacting among each other.
Whether the parameter independent interaction of the probes can increase the precision is yet to
be fully explored. It was shown that the estimation of the amplitude of a transverse field in an
Ising-Hamiltonian can be performed with Heisenberg limited precision [276] and similar results
have been derived for estimation procedures close to phase transitions [277]. Furthermore,
there are investigations for the case when the frequency to be estimated is given by the coupling
constant of k-body interactions. Precisely, the total encoding Hamiltonian has the form

H = ω0




N∑
n=1

h(n)
0




k

(4.67)

where h(n)
0 is the same operator for each probe. Such a case is clearly operating outside

the framework of the cFEP described until here, as the best precision achievable under such
evolution scales as N−2k [278, 279]. Remarkably, for initial product states this scaling is only
slightly altered to N−(2k−1) and in specific cases it is enough to consider separable measurements
to achieve the optimal scaling, while the scaling is also maintained under Lindbladian dephasing
[280]. An experiment involving Bose-Einstein-Condensates was proposed [281] and performed
[282]. Despite the simplified preparation of the initial input product state, the experimental
difficulty is shifted to the generation of a k-body Hamiltonian (in this case k = 2 was realized).
It is worth stressing that such a scheme also uses exclusive quantum resources as entanglement
is generated during the interrogation time. This is in contrast to the cFEP introduced here,
where the entanglement is injected during the input state preparation and interaction during the
interrogation time is not considered.

4.6.2. External Control

A natural approach to an increase of precision is the suppression of noise acting on the probes.
Within the cFEP, this corresponds to multiple applications of the channel during the interrogation
time, but between the channels it is allowed to perform unitary operations. Assuming time-
homogeneous Lindbladian noise, bounds under infinitely fast control have been found. In
particular for qubit probes, it was shown that rank one Pauli noise can be eliminated completely,
as long as it is not parallel to the imprinting of the parameter [283]. Therefore, assume a probe
which evolves according to a semigroup generated by the master equation

d
dt
ρ(t) = −i

[
ω0

2
σz, ρ

]
+ γ

[
σ̄ ρ(t)σ̄† − ρ(t)

]
, (4.68)
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where σ̄ = cos(ϑ)σx + sin(ϑ)σz, while it is initially prepared in an entangled GHZ state with
a noiseless ancilla (we refer to Chapter 5 for further details on the ME). We define a logical
qubit (the so called "code space") via the the subspace {|↑ 1〉 , |↓ 0〉} with σ̄ |↑ (↓)〉 = |↓ (↑)〉
and some arbitrary reference basis {|0〉 , |1〉} for the ancilla. Integrating the master equation
over a small time step dt and projecting into the code space via PC = |↑ 1〉 〈↑ 1| + |↓ 0〉 〈↓ 0|
and the error space (implicitly defined by PE = 1 − PC) yields

ρC (dt) =ρ(1 − γ dt) − i
ω0

2
[
κ, ρ

]
dt + O(dt2),

ρE (dt) =γ σ̄ρσ̄ dt + O(dt2),
(4.69)

respectively. Note that we implicitly assume the tensor product ⊗1A for the ancilla space. In
case an error emerges, σ̄ is applied to ρE (dt), otherwise the system remains unmodified. After
the correction, the system is in a mixed state ρ(dt) = ρC (dt) + σ̄ ρE (dt)σ̄. Rearranging the
terms, yields the differential equation

d
dt
ρ = −i

ω0

2
[
κ, ρ

]
(4.70)

in the limit dt → 0. This corresponds to a unitary evolution with the effective Hamiltonian κ =

cos2 ϑ σz − sin 2ϑ σx/2, hence the error correction rotates the encoding basis. However, now
the analysis of Section 4.2.2 applies. The eigenvalues of κ are given by ± cos ϑ, representing
the only penalty of the scheme, which is a slower encoding of the parameter. Importantly, as
soon as ϑ = π/2, the noise and the encoding are parallel and the error correction also removes
all information of ω0 encoded during dt.
Importantly, this result has been generalized recently to any finite-dimensional probe [279,284],
showing that one can always restore the HL, if the encoding Hamiltonian is not contained in
the linear span of the identity 1 and the Lindblad operators Vk , V †k , V †k Vj , ∀k, j. In particular, if
there is a dephasing term H = αVdephasing with some constant α, the HL can not be reached,
confirming the detrimental role of pure dephasing (see Section 4.4.3 and the related discussion).
Relaxing the requirement of a time-homogeneous noise process, it was shown that dynamical
decoupling restores the ZL [285]. However, since dynamical decoupling is limited by the
correlation time of the environment [192], one resorts to error correction schemes, which in
general can be applied on the time scales of the effects of the noise [14, 286, 287]. While these
base on the idea to prolong the coherence time [288,289] (with an experimental implementation
[290]), limiting processes as spontaneous emission may be corrected by observation of the
environment [291]. Furthermore, a way to utilize open quantum systems is the engineering
of noise processes which drive the probes back into the code space [292, 293]. A different
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approach was aimed to preserve the QFI itself, rather than the input state [294]. Recently, it
was also observed that for time-homogeneous processes a continuous measurement [295] of the
environment [296] restores the HL. While the strict derivation of this result is challenging, one
can intuitively understand that the observation of the environment closes the system and the
evolution can be interpreted as unitary.

4.7. Time Dependent Encoding

Recently, interesting progress has been made for the case of time dependent encoding Hamilto-
nians. Before examining the setting we should stress that in that context the term "frequency
estimation" is often referred to the frequency of an ac-signal [13] and thus differs from the
definition we adapted in this work. Furthermore, instead of estimating the precision for the best
scaling in N one is rather interested in the scaling with the available time T , which for time
independent encodings is usually given as ∆2ω ∼ T−2, compare Section 4.1,Section 4.2.3 and
Section 4.2.2. However, with time dependent encodings this scaling can be overcome. A trivial
example is the Hamiltonian

H f (t) = f (ω0, t) G (4.71)

where G is a time independent Hermitian operator and f (ω0, t) a real valued function. Employ-
ing Eq. (4.29), the QFI yields

FQ[U |ψ〉] = 4



∂
∫ t

0 f (ω0, τ) dτ

∂ω0




2

∆
2G���|ψ〉. (4.72)

Obviously, depending on the form of f (ω0, t) the precision ∆2ω ≥ F−1
Q can take different

scalings in t or equivalently in T . As exploited in [297], the application of a suitable control
Hamiltonian to some time dependent encoding may transform the Hamiltonian to the one in
Eq. (4.71). An elegant way to construct a suitable control Hamiltonian for any time dependent
encoding was presented in [298], starting from the observation that FQ[U |ψ〉] = 4var[H(ω0, t)],
where H(ω0, t) = −iU (ω0, t) ∂U (ω0, t)/∂ω0 and U (ω0, t) is the unitary operator generating
the evolution governed by an arbitrary time dependent Hamiltonian. It was shown that the
applied control Hamiltonian should be constructed such that it steers the input state on the
path of optimal sensing states as the system evolves. Analogously to the time independent
case examined in [19], this state is always given by an equally weighted superposition of the
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instantaneous eigenstates of H(ω0, t) with the instantaneous maximum (µmax(t)) and mini-
mum (µmin(t)) eigenvalues. Hence at each time t we have |ψt〉 ∝ |µmax(t)〉 + |µmin(t)〉 with
H(ω0, t)

���µjt)
〉

= µj(t)
���µj(t)

〉
and the QFI yields

FQ
[
|ψt〉

]
=

[∫ t

0
µmax(τ) − µmin(τ) dτ

]2

. (4.73)

To consider an explicit example, it was shown that the precision in estimating ω0 when encoded
by H (t) = −B [σx cos(ω0t) + σz sin(ω0t)] scales as ∆2ω ≥ 1/B2T4, which is then also the
best precision achievable for that setting. Contrary, it is worth mentioning that estimating the
amplitude B, i.e. the frequency we were focusing on in all other chapters of this review, scales
as ∆2B ≥ 1/4T2. The analytic form of the control Hamiltonian can be found in [298], but one
should mention that in general this control depends on the frequency to be estimated. While
this seems contradictive, it is enough to recall that the estimation is performed locally. Hence,
using a close estimate for the frequency in the control Hamiltonian also improves the precision,
as can be seen in [297]. Furthermore, [298] showed that one can use an adaptive scheme, where
estimations of the parameter are used as a feedback for the control and the quartic scaling is
then reached in an asymptotic regime of repetitions. A further example of the application of a
control Hamiltonian can be found in [299], where the estimation of the speed of a Landau-Zener
sweep also shows the quartic scaling in the total time.
A time dependent encoding of the form H (t) = A sin(ω0t)σz has been studied experimentally,
exploiting a nitrogen-vacancy center in diamond [300, 301] or involving a superconducting
transmon circuit coupled to a waveguide cavity [302]. The latter used a control Hamiltonian
constructed via the methods in [298], indeed showing a scaling ∼ T−4 for times shorter than
the coherence time of the probe. Regarding the scheme employing nitrogen-vacancy centers, a
different control was employed where the limiting factor was set by the coherence time of the
signal itself. Dividing the total time into small blocks where a dynamical decoupling sequence
and a subsequent measurement are performed, the total FI is the sum of the FI of the different
measurements. That results in a scaling of

∆
2ω ∼

1
T3T2

, (4.74)

which holds as long as T is smaller than the coherence time of the signal and the coherence
time of the probe T2.
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Chapter 5
Realistic Bounds on the Precision:
An Analysis Involving a Microscopic Noise
Model

This chapter has been published in [H3] and large parts have been taken from there.

The analysis of precision bounds in quantum metrology is commonly performed by defining
a master equation which describes the open system evolution. In the last years, that lead to
a bunch of different results for the ultimate bounds, where each is valid for a specific type
of dynamics (i.e. type of quantum channel), e.g. a pure dephasing semigroup [34], an NPC
semigroup introducing orthogonal noise [45], non-markovian pure dephasing dynamics [38]
and the most general result derived so far covering any PC dynamics [39] (see Section 4.4.1 for
the latter). On the following pages, we will present a model which is microscopically motivated
and is able to reproduce all of the bounds derived so far. Furthermore, it sheds light into the
unexplored regime of NPC dynamics, where only the special case presented in [45] has been
examined so far (see the first part of Section 4.4.2).
In particular, the model considered here is represented by a qubit as the probe, coupled to an
environment consisting of an infinite number of non-interacting harmonic oscillators. Crucially,
the coupling can be tuned to reproduce any coupling direction, from parallel to orthogonal.
Depending on the operating regime, different approximations of the dynamics are valid yielding
either NPC or PC, likewise as semigroup or non-semigroup dynamics. While hence providing
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regimes where each of the previously derived limits apply, in Section 5.4 we also identify a
completely unknown limit valid for the case of NPC orthogonal noise which does not form a
semigroup. Moreover, we argue that any NPC noise that possess a noise component parallel to
the parameter imprinting will ultimately follow the limits derived for PC.
The asymptotic limits set aside, another crucial aspect well be covered. When defining the
quantum channel via an artificial master equation, the natural parameter dependence of the
noise rates is usually neglected. Starting with Section 5.3, we will explore how the different
properties of PC and NPC dynamics contribute to the QFI and that the contributions induced by
the noise rates can change the QFI by non-negligible amounts.

5.1. Spin-Boson Model: Weak-Coupling Master Equation
and Secular Approximation

As emphasized in Chapter 4, we assume that the probes are affected identically and indepen-
dently by their environments, so that the global dynamics is fixed by the one-particle dynamics,
see Figure 4.1 (c) and Equation (4.24). Therefore, we focus on the microscopic derivation of
the open-system dynamics of one probe, which we present in the following. In particular, we
model our sensing qubit with the widely used spin-boson model for quantum dissipation [44].
Within this model the environment corresponds to a set of non-interacting harmonic oscillators
linearly coupled to the system, which may be directly interpreted as interactions with a radi-
ation field or a phononic (crystal lattice) background. This model provides us with the most
general description of the corresponding open two-level system dynamics, including special
cases such as pure dephasing [2] or purely transversal noise [303]. The Hamiltonian of the
spin-boson model consists of the two-level system Hamiltonian H0, the free Hamiltonian HE of
the environment and the interaction Hamiltonian HI , which sum up to (~ = 1)

H =H0 + HE + HI =
ω0σ

z

2
+

∑
n

ωna†nan

+

(
cos ϑ

σx

2
+ sin ϑ

σz

2

)
⊗

∑
n

(
gnan + g∗na†n

)
.

(5.1)

The system’s frequency ω0 represents the encoded frequency, while an and a†n are the bosonic
annihilation and creation operators of the bath mode n of frequency ωn, which is coupled to
the two-level system with the strength gn. The parameter ϑ defines the coupling angle, i.e.,
the angle between the x-axis and the direction of the coupling operator (in the xz-plane): for
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ϑ = π/2 we have pure dephasing (or parallel, with respect to H0) interaction, while for ϑ = 0
we have purely transversal (or perpendicular) interaction.
Finally, note that the Hamiltonian is physically equivalent to a transformed Hamiltonian where
the system only couples via σz to the environment, but both σz and σx are included in the
system Hamiltonian; e.g., this would describe an experimental realization where the system is
driven by the application of an off-axis magnetic field (see Appendix A.2.1).

5.1.1. Second-Order TCL-Master Equation

To obtain a closed form of the master equation ruling the evolution of the probe subject to the
noise fixed by Equation (5.1), we exploit the perturbative approach of the TCL master equation
introduced in Section 1.2.1, assuming that the system is weakly coupled to the environment.
Recall that its general form in the interaction picture is given by

d ρ̃(t)
dt

= −

∫ t

0
dτ trE

[ [
HI (t),

[
HI (τ), ρ̃(t) ⊗ ρE

] ] ]
,

where HI (t) is now the the interaction Hamiltonian HI in the interaction picture with respect to
H0 + HE as fixed by the Hamiltonian in Eq. (5.1). In Appendix A.2.2, we describe how to get
the desired master equation for the reduced system density matrix starting from the the general
form of the TCL expansion, Eq. (1.13). At this point, let us just briefly introduce the main
required quantities to define such a master equation, along with their physical meaning. First,
the interaction Hamiltonian in the interaction picture is given by

HI (t) = eiH0t
(
cos ϑ

σx

2
+ sin ϑ

σz

2

)
e−iH0t ⊗ B(t), (5.2)

where
B(t) =

∑
n

(
gne−iωntan + g∗neiωnta†n

)
(5.3)

is the interaction picture of the environmental operator appearing in the interaction Hamiltonian,
see Equation (5.1). The partial trace over the environment introduces the two-time correlation
function trE

[
B(t)B(τ)ρE

]
of the environment under its free dynamics, along with its complex

conjugate trE
[
B(τ)B(t)ρE

]
. This function encompasses the whole relevant information about

the environment needed to characterize the open-system evolution in the weak coupling regime:
as we will see, it fixes each coefficient of the master equation. In addition, if the initial state of
the bath is thermal, i.e.

ρE (0) =
exp{−βHB}

Z
, (5.4)
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with the inverse temperature β and Z = tr
[
exp{−βHB}

]
, since [HB, ρE (0)] = 0 the correlation

function only depends on the difference of its time arguments t − τ 1. Therefore we can define
the correlation function C(t) via

trE
[
B(t)B(τ)ρE

]
= trE

[
B(t − τ)B(0)ρE

]
≡ C(t − τ). (5.5)

Using the definition of B(t) in Equation (5.3), this expression can be written as

C(t) =
∑

n

g2
n

[
N (ωn)eiωnt + (N (ωn) + 1)e−iωnt

]
, (5.6)

where N (ωn) = trE
[
a†nanρE

]
represents the average number of excitations in the bath mode n.

For the considered thermal state it is given by [2]

N (ω) =
1

eβω − 1
=

1
2

[
coth

(
βω

2

)
− 1

]
. (5.7)

The bath correlation function C(t) is conveniently expressed in terms of the spectral density of
the environment, which is defined by

J (ω) =
∑

n

g2
nδ(ω − ωn). (5.8)

This quantity describes the density of the bath modes weighted with the square of their individual
coupling strength to the system. In fact, the bath correlation function (5.6) can be written as

C(t) =

∫ ∞

0
dω J (ω)

[
N (ω)eiωt + (N (ω) + 1)e−iωt

]
=

∫ ∞

−∞

dω eiωt N (ω) [J (ω)Θ(ω) − J (−ω)Θ(−ω)]

≡

∫ ∞

−∞

dω eiωt j (ω).

(5.9)

In the second line we used the formal identity −N (−ω) = N (ω)+1 [see Equation (5.7)] in order
to introduce the function j (ω), i.e., the anti-Fourier transform of the bath correlation function2.

1This can be straightforwardly derived when using the noted commutation relation and the cyclic property of the
trace: For u(t) = e−itHB we have tr

[
u(t)Bu† (t)u(τ)Bu† (τ)ρE (0)

]
= tr

[
u(t)Bu† (t)u(τ)BρE (0)u† (τ)

]
=

tr
[
u† (τ)u(t)Bu† (t)u(τ)BρE (0)

]
. Note also that B(0) ≡ B.

2Often j (ω) is referred to as the spectrum and corresponds to S(ω) introduced in Section 3.1. Nevertheless, note
that there is a factor of 2π in the definition and we keep separate notations since S(ω) was introduced for a
classical, stationary stochastic and Gaussian process, while here we consider the special case of a thermal state
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The Heaviside stepfunction Θ(ω) keeps track of the fact that J (ω) is defined only for positive
frequencies. Finally, the relation in Equation (5.9) allows us to perform the continuum limit
straightforwardly by replacing the spectral density in Equation (5.8) with a smooth function of
the frequency bath modes [2].
As said, the bath correlation function C(t) or, equivalently, the bath spectral density J (ω) along
with the initial state of the bath fix the reduced master equation in the weak coupling regime:
since we are dealing with the second order perturbative (TCL) expansion, only the two-time
correlation function C(t) is involved, while the bath multi-time correlation functions would
only be involved in higher order terms (see also the recent [304]). As shown in Appendix A.2.2,
the master equation (back in the Schrödinger picture) is then given by

dρ(t)
dt

=L(t)[ρ(t)] = −i
[
H0 + HLS(t), ρ(t)

]
+

∑
j,k=±,z

bk j (t)
(
σk ρ(t)σ†j −

1
2

{
σ†jσk , ρ(t)

})
,

(5.10)

where we introduced the function

Γ(ς, t) =

∫ t

0
dτeiςτC(τ) (5.11)

for ς = ±ω0,0 while the Hamiltonian correction is fixed by the elements

HLS
11 (t) =

cos2 ϑ

4
Im{Γ(ω0, t)}

HLS
10 (t) =HLS∗

01 (t) = −
i cos ϑ sin ϑ

4

×

(
Re{Γ(0, t)} −

1
2

(
Γ
∗(−ω0, t) + Γ(ω0, t)

))
HLS

00 (t) =
cos2 ϑ

4
Im{Γ(−ω0, t)} ,

(5.12)

for the bath and the second order TCL expansion. However, the most crucial difference is the symmetry the
functions. It was assumed that S(ω) = S(−ω), which is in general not true for j (ω). In Section 5.2 we show
that this is only true if the initial state of the bath is at a high temperature.
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with HLS
i j (t) = 〈i | HLS(t) | j〉 for i, j = 0,1, and the coefficients read

bzz (t) =
sin2 ϑ

2
Re{Γ(0, t)}

b++(t) =
cos2 ϑ

2
Re{Γ(−ω0, t)}

b−−(t) =
cos2 ϑ

2
Re{Γ(ω0, t)}

b+−(t) = b∗−+(t) =
cos2 ϑ

4
(
Γ(−ω0, t) + Γ∗(ω0, t)

)
bz+(t) = b∗+z (t) =

sin ϑ cos ϑ
4

(
Γ(0, t) + Γ∗(−ω0, t)

)
bz−(t) = b∗−z (t) =

sin ϑ cos ϑ
4

(
Γ(0, t) + Γ∗(ω0, t)

)
.

(5.13)

Let us stress that we did not invoke the Born-Markov approximation [2] in our derivation—the
above time-local master equation includes fully general non-Markovian effects and it will
provide us with a satisfactory description of the noisy evolution of the probes as long as the
interaction with the environment is weak enough (i.e., the higher orders of the TCL expansion
can be neglected). In addition, we are taking into account the dependence of the coefficients of
the dissipative part of the master equation on the free system frequency ω0, see Equation (5.13),
i.e., on the parameter to be estimated. This is a natural consequence of the detailed microscopic
derivation of the system dynamics [2], in contrast with the phenomenological approaches,
where the master equation is postulated on the basis of the noise effects to be described. Let us
emphasize that only in the case of pure dephasing, for which ϑ = π/2 and all dissipative terms
in Eq. (5.13) apart from bzz (t) vanish, the dissipative part of the master equation can be assured
not to depend on ω0. Otherwise, this is not generally the case unless a special choice of J (ω) is
made (e.g., discussed later in Section 5.2.2).

5.1.2. Secular Approximation

Finding an explicit solution to the master equation in Equation (5.10) is in general a complicated
task, even after fixing the explicit form of the spectral density of the bath modes. On the other
hand, the structure of the dynamics can be simplified considerably by making the so-called
secular approximation [2, 112, 186, 187], which relies on a time-scale separation between the
system free-evolution time τ0 and the relaxation time τR of the system subject to the interaction
with the environment. Whenever the free dynamics is much faster than the dissipative one, i.e.,
τ0 ∼ ω

−1
0 � τR, one can neglect terms oscillating with e±iω0t because they will be averaged
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out to 0 over a time interval of the order of τR. If we apply this approximation to the weak
coupling master equation, see in particular Equation (A.14), all off-diagonal elements of the
coefficient matrix bk j (t) in Equation (5.10) and the off-diagonal elements of the Hamiltonian in
Equation (5.12) vanish, so that one is left with the master equation

dρ(t)
dt

= − i

H0 +

HLS
11 (t)
2

σz, ρ(t)


+ b++(t)
(
σ+ρ(t)σ− −

1
2
{σ−σ+, ρ(t)}

)
+ b−−(t)

(
σ−ρ(t)σ+ −

1
2
{σ+σ−, ρ(t)}

)
+ bzz (t)

(
σz ρ(t)σz − ρ(t)

)
,

(5.14)

where all the non-zero coefficients are still those of Equation (5.13). This master equation can be
explicitly solved for generic coefficients b++(t),b−−(t),bzz (t) and HLS

11 (t) (see, e.g., [39, 305]).
Crucially, we see how the secular master equation in Equation (5.14) precisely corresponds
to the most general form of a master equation associated with a PC qubit dynamics recalled
in Section 1.5, see Equation (1.38). Hence the difference between secular and non-secular
dynamics provides us with a direct physical explanation of the difference between PC and
NPC dynamics. The complete (weak-coupling) dynamics described by the master equation in
Equation (5.10) will generally lead to NPC dynamical maps, represented by generic matrices
DΛ(t) as in Equation (1.19) and corresponding to a completely general affine transformation
of the Bloch sphere. Instead, if one applies the secular approximation, thus getting the master
equation in Equation (5.14), the resulting dynamics is PC and will be then characterized by
dynamical maps with a structure as in Equation (1.37), see also Figure 5.1(a) and (b). In
other words, within this framework, the distinction between PC and NPC dynamics precisely
corresponds to the distinction between dynamics within or outside the secular regime, i.e., the
regime τ0 � τR where the secular approximation is well-justified. Needless to say, and as we
will see explicitly in the next sections, the two kinds of dynamics describe also qualitatively
different open-system evolutions. As a paradigmatic example, one can easily see how for any
secular master equation the populations and coherences are decoupled, while the inclusion of
non-secular terms leads to a coupling between them. The latter can be relevant for different
phenomena, such as exitonic transport [89,306], or the speed of the evolution in non-Markovian
dynamics [307, 308]. Finally, note that general constraints on the variation of the coherences
for a given variation of the populations in the presence of a generic completely positive phase
covariant map have been recently derived in [50].
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Figure 5.1.: Various dynamical regimes of the weak-coupling spin-boson model in the
Bloch sphere picture. (a): The NPC dynamics specified by Eqs. (5.10-5.12) can
be viewed as a general affine transformation Eq. (1.20) of the Bloch sphere, see
also Sections 1.3 and 1.5. (b): PC dynamics Eq. (5.14) is then obtained by applying
the secular approximation. (c): High-temperature limit of the spin-boson model
forces a general map of the NPC dynamics to be unital, i.e., the translation, ~v = 0,
to vanish. (d): When both high-temperature and secular approximations apply, the
resulting quantum map in the Bloch representation is both cylindrically symmetric
and unital. (Figure first published in [H3])

5.2. Solutions in the High-Temperature Regime

In order to get analytic solutions for the NPC dynamics, which will also be useful to compare
the different impact of NPC and PC dynamics on the metrological properties of the probes,
let us restrict to the case of a bath at a high temperature. Because of that, we can treat the
function j (ω) in the bath correlation function C(t), see Equation (5.9), as a symmetric function
of ω: for large values of the temperature, i.e., small values of β, one has that N (ω) ≈ 1/(βω),
see Equation (5.7), and therefore j (ω) ≈ j (−ω). Looking at the correlation function in
Equation (5.9)), we see that in this regime C(t) ≈ C∗(t) thus we have Γ(−ω0, t) ≈ Γ∗(ω0, t),
see Equation (5.11). Together with Equation (5.13), we then obtain

bzz (t) =
sin2 ϑ

2
Γ(0, t)

b+−(t) =b∗−+(t) =
cos2 ϑ

2
Γ(−ω0, t)

b++(t) =b−−(t) = Re{b+−(t)}

bz+(t) =b∗+z (t) = b∗z−(t) = b−z (t) =
sin ϑ cos ϑ

4
(
Γ(0, t) + Γ∗(−ω0, t)

)
,

(5.15)
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while the Hamiltonian correction is given by

HLS
11 (t) =

cos2 ϑ

4
Im{Γ(ω0, t)}

HLS
10 (t) =HLS∗(t)01(t) =

i cos ϑ sin ϑ
4

(Re{Γ(0, t)} − Γ(−ω0, t)))

HLS
00 (t) =

cos2 ϑ

4
Im{Γ(−ω0, t)} .

These identities can be exploited to simplify the structure of the master equation, and hence
of the corresponding dynamical map. In A.2.3, we show explicitly that the constraints in
Equation (5.15) imply the matrix form

DΛ(t) =




1 ~0T

~0 V (t)


 , (5.16)

so that the translations of the Bloch sphere can be neglected and thus the dynamics can
be described by unital maps, i.e., such that Λ(t)[1] = 1, see Figure 5.1(c). Note that the
unitality of the reduced map is a general consequence of the high temperature limit T → ∞, in
which the initial state of the bath becomes maximally mixed [309]. By further applying the
singular value decomposition to the matrix V (t) one can get the geometrical picture associated
with the dynamical map, in terms of rotations and contractions of the Bloch sphere, see
Section 1.3. Indeed, an analogous result holds if we start from the PC master equation, see
Equation (5.14), and in the Figure 5.1(c-d) one can see a graphical representation of the
corresponding transformations of the Bloch sphere.
We will present, in particular, two different solutions of the high-temperature master equations
(the PC and NPC ones); namely, for short times and a generic spectral density, as well as for an
Ohmic spectral density at any time.
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5.2.1. The Short-Time Evolution

As explained in Appendix A.2.3, using the Dyson series of Equation (1.12) we obtain the
short-time solution of master equation (5.10) as:

DΛ(t)
(3) =




1 0 0 0

0 1 −
ω2

0t2

2 −
1
2αt2 sin2 ϑ −ω0t + q 1

2αt2 cos ϑ sin ϑ

0 ω0t − q 1 −
ω2

0t2

2 −
αt2

2
1
3αω0t3 cos ϑ sin ϑ

0 1
2αt2 cos ϑ sin ϑ − 1

3αω0t3 cos ϑ sin ϑ 1 − 1
2αt2 cos2 ϑ




(5.17)

where

α =

∫ ∞

−∞

dω j (ω) ≈
∫ ∞

0
dω

2J (ω)
βω

and (5.18)

q =
ω0t3

6

[
α(1 + 2 sin2 ϑ) + ω2

0

]
. (5.19)

Truncating the Dyson series is justified due to the the weak-coupling approximation, while we
have kept the terms up to the third order (and not only to the second order) for a reason which
will become clear when we evaluate the QFI of the corresponding evolved state in Section 5.3.1.
Note that despite the precise value ω0 is not known in the metrological scheme, we assume
that the condition ω0 � α is satisfied. The short time dynamical maps do not depend on the
specific form of spectral density, but only on the global parameter α. Furthermore, evaluating
the eigenvalues of the Choi matrix reveals that the map is CP [109].
Repeating the same calculations for the PC master equation in Equation (5.14) in the secular
approximation, we arrive at

DΛ(t)
(3),PC =




1 0 0 0

0 1 −
ω2

0t2

2 −
αt2

4

(
1 + sin2 ϑ

)
−ω0t + q 0

0 ω0t − q 1 −
ω2

0t2

2 −
αt2

4

(
1 + sin2 ϑ

)
0

0 0 0 1 − 1
2αt2 cos2 ϑ



.

(5.20)
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5.2.2. Finite-Time Evolution for an Ohmic Spectral Density

Here, in order to be able to characterize the reduced dynamics at any time t, we focus on a
particular specific spectral density of the bath—the Ohmic spectral density:

J (ω) = λωe−ω/ωc , (5.21)

where λ quantifies the global strength of the system-environment interaction, while ωc sets
the cut-off frequency which defines the relevant environmental frequencies in the open-system
dynamics. We further assume that ωc � ω0, so that the dependence of Γ(ς, t) on ς can be
neglected and Γ(ω0, t) ≈ Γ(−ω0, t) ≈ Γ(0, t), as then, see Eqs. (5.9) and (5.11):

Γ(±ω0, t) ≈
λ

β

∫ t

0
dτ

∫ ∞

−∞

dωei(±ω0+ω)τ

×
(
e−ω/ωcΘ(ω) + eω/ωcΘ(−ω)

)
=

2λ
β

∫ t

0
dτe±iω0τ

∫ ∞

0
dωe−

ω
ωc cos(ωτ)r

=
2λ
β

∫ t

0
dτe±iω0τ

ωc

1 + ω2
cτ2
≈

2λ
β

∫ t

0
dτ

ωc

1 + ω2
cτ2

,

(5.22)

where in the first and last approximated equalities we used the high-temperature condition
and ω0/ωc � 1, respectively. The coefficients of the master equation in Equation (5.13) then
simplify to

bzz (t) =
sin2 ϑ

2
Γ(0, t)

b++(t) = b+−(t) = b−+(t) = b−−(t) =
cos2 ϑ

2
Γ(0, t)

bz+(t) = b+z (t) = bz−(t) = b−z (t) =
sin ϑ cos ϑ

2
Γ(0, t),

(5.23)

while the Hamiltonian correction, HLS(t), vanishes. We stress that it is the specific choice of
Ohmic spectral density that assures the coefficients of the master equation to be independent of
ω0—a fact, typically taken for granted in quantum metrology scenarios [12, 39, 43, 45, 46, 284,
310].
Now, using Equation (5.23) one can easily see (e.g., by diagonalizing the matrix with elements
given by the coefficients b j k (t)) that the time-local master equation can be written as

dρ(t)
dt

= −i
[
H0, ρ(t)

]
+ γ(t)

(
σ̄ ρ(t)σ̄† − ρ(t)

)
, (5.24)
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where the rate γ(t) and the dissipative operator σ̄ are given by

γ(t) =
1
2
Γ(0, t) =

λ

β
arctan (ωct)

σ̄ = cos ϑσx + sin ϑσz .

(5.25)

It is worth noting that the dissipative part of the master equation is fixed by one single operator σ̄,
i.e., we have the most general qubit rank-one Pauli noise, recently proved to be correctable in the
semigroup case (γ(t) = const) in quantum metrology by ancilla-assisted error-correction [283]
(see in particular Section 4.6.2), which has been demonstrated experimentally for transversal
coupling, ϑ = 0, in reference [290]. In addition, the only noise rate γ(t) is a positive function
of time, which, as introduced in Section 1.2.1, guarantees not only the CP of the dynamics, but
also that the dynamical maps can be always split into CP terms. In this case, one speaks of
(CP)-divisible dynamics, which coincides with the definition of Markovian quantum dynamics
put forward in [103]; see also [82] and Section 1.4. As expected, in the limit of an infinite
cut-off, ωc → ∞, the rate goes to a positive constant value, γ(t) → πλ/(2β), so that we recover
a Lindblad time-homogeneous (semigroup) dynamics [112]; see Appendix A.2.5, where we
also give the explicit form of the corresponding dynamical maps for ϑ = 0, π/2, i.e., transversal
and pure dephasing noise-types, respectively.
Finally, note that a purely transversal interaction Hamiltonian (ϑ = 0) yields a purely transversal
master equation equation, i.e., the only dissipative operator σ̄ = σx in Equation (5.24) is
orthogonal to H0, which is generally not guaranteed for arbitrary spectral densities. σ̄ = σx

characterizes what is usually known in the literature [45,46] as (and what we mentioned already
in 4.4.2) transversal noise.
Let us now consider the corresponding dynamics under the secular approximation that provides
us with a PC dynamics. The coefficients in the third line of Equation (5.23) along with b+−(t)
are set to 0 and we are thus left with the PC master equation

dρ(t)
dt

= −i
[
H0, ρ(t)

]
+ γ(t)

∑
j=±,z

d j

(
σ j ρ(t)σ†j −

1
2

{
σ†jσ j , ρ(t)

})
(5.26)

with d+ = d− = cos2 ϑ, while dz = sin2 ϑ. Once again, the dynamics is CP and due to
the positivity of γ(t) and the d js it is even CP-divisible. Despite having now three different
dissipative operators, these claims hold because there is only one single time-dependent function
which defines all the rates.
In Figure 5.2 we illustrate the different dynamics geometrically by comparing the different
evolutions of the open system for the NPC dynamics described by Equation (5.25) and the
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Figure 5.2.: Qubit evolution in the Bloch sphere picture for the resulting NPC Eq. (5.24)
and PC Eq. (5.26) dynamics (orange and blue, respectively). In (a-c) the evolution
parameter ϑ = π/4 is chosen, so that when starting from an equator state, (a-b),
the NPC dynamics clearly differs from PC leading to a rotation around an axis
that is tilted away from z. Initializing the qubit in an excited state, (c), the PC
dynamics yields just a decay to a completely mixed state, while for NPC the
rotational behavior is still manifested. In (d), perfectly transversal (ϑ = 0) coupling
is considered to illustrate that even though for both NPC and PC an equatorial state
evolves in the xy plane, the secular approximation of PC strongly modifies the
speed of contraction. (Figure first published in [H3])

PC dynamics fixed by Equation (5.26), respectively, see Appendix A.2.4. In Figures 5.2(a-c),
we report the evolution for the same dynamics (i.e., the same ω0,ωc, λ, β and ϑ), for the three
different initial conditions which correspond to the three canonical orthogonal axes in the
Bloch sphere. Of course, this is enough to detect all the possible linear transformations that
the set of states undergoes during the evolution. In the PC dynamics we have contractions
and rotations about the z-axis, as well as equal contractions along the x- and y-axes. These
are all transformations commuting with the unitary rotation about the z-axis, as recalled in
Section 1.5. On the other hand, in the non-secular dynamics we can observe a rotation about an
axis with components in the plane perpendicular to the z-axis, which clearly breaks the phase
covariance of the dynamics. Figure 5.2(d) is devoted to illustrate another NPC effect, which is
already present in the dynamics in Figures 5.2(a-c), but is not clearly observable due to the other
transformations of the Bloch sphere. We consider a dynamics where ϑ = 0, thus excluding any
rotation apart from that about the z-axis 3. As we see, the NPC dynamics introduces different
contractions along the x and y directions, contrary to the PC case. The effects on parameter
estimation of the rotations about the x- and y-axes, as well as the different contractions along
them will be investigated in Section 5.3.2.
Finally, note that although the non-secular terms introduce a transient behavior, which departs
from the secular (i.e., PC) evolution, the system relaxes, in any case, to the fully mixed state.

3Once again, this could be shown by exploiting a block-diagonal structure of the generator L(t) and thus of the
resulting dynamical maps; compare with Appendix A.2.3.
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When probe systems can be interrogated within the transient dynamics, metrological advances
may arise, as discussed in the following sections.

5.3. Single-Qubit Quantum Fisher Information

We are now in a position to study the precision that can be reached in frequency estimation
under the general dynamics considered here. We start by addressing the case of a single probe,
which already enables us to point out some relevant differences in the behavior of the QFI under
a PC and a NPC dynamics, respectively. In Section 5.4, we focus on the asymptotic scaling
with the number N of probes.
As recalled in Section 4.3, the QFI fixes the maximum achievable precision via the QCRB in
Equation (4.32). For a single qubit probe, one can directly evaluate the QFI by diagonalizing
the state ρω0 (t) at time t, see Equation (4.27). Here, instead, we use a different and equivalent
formulation of the QFI [311], which directly connects it to the Bloch sphere picture of the probe
dynamics. Given the Bloch vector ~r (0) associated with the initial state ρ(0) and recalling that
we are dealing only with unital dynamics, see Section 5.2, so that the affine transformation of
the Bloch sphere in Equation (1.20) reduces at any time t and for any ω0 to ~r (0) → Vω0 (t)~r (0),
the QFI at time t > 0 can be expressed as

FQ
[
ρω0 (t)

]
=
���V̇ω0 (t)~r (0)���

2
+

(
Vω0 (t)~r (0) · V̇ω0 (t)~r (0)

)2

1 − ��Vω0 (t)~r (0)��2
; (5.27)

the second term is set to 0 for pure states, i.e., for times where |Vω0 (t)~r (0) | = 1. We remind
that we mark the derivative with respect to the parameter by a dot, i.e., V̇ω0 ≡ ∂Vω0/∂ω0. In the
following, we focus on initially pure states, i.e., |~r (0) | = 1, since any mixture would decrease
the QFI as a consequence of its convexity [12]. It is then convenient to move to spherical
coordinates and adequately parametrize pure states by ~r = {sin θ cos φ,sin θ sin φ,cos θ}.

5.3.1. Short-Time Limit

Thus, let us start by looking at the short-time expansion of the QFI in Equation (5.27). The
spherical parametrization provides us with a clear relation among the short-time QFI for the
NPC and PC dynamics, see Eqs. (5.17) and (5.20), respectively. As a matter of fact, the first
non-trivial term (i.e., the first contribution to FQ which is induced by the noise and therefore the
first contribution where FQ differs between NPC and PC dynamics) in the QFI is of the order t4

and it is fixed by those terms up to t3 in Vω0 (t) and V̇ω0 (t). Let us motivate this directly via the
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purification based representation of the QFI in Eq. (4.31)

FQ[ρ(t)] = 4 min
ψ
〈ψ | U̇†(t)U̇ (t) |ψ〉 = 4 min

ψ
〈ψ |

∞∑
k,l=0

U̇†k U̇l tk+l |ψ〉 , (5.28)

where ψ are possible purifications of ρ(t). Here we assumed that the unitary operators on
the extended space possess the power series U (t) =

∑∞
k=0 Uk tk . Since it is required that

FQ[ρ(0)] = 0, a necessary condition4 is that U̇0 = 0 and hence the observation follows
immediately, i.e. the n-th order in the QFI is fully determined by the order n − 1 of the linear
map (which can always be expressed as a unitary on an extended Hilbertspace by virtue of
Stinespring’s dilation theorem).
After a straightforward calculation, we arrive in fact at

F (4)
Q,PC = sin2 θ t2 −

1
3
α sin2 θ

(
1 + sin2 ϑ

)
t4,

F (4)
Q = F (4)

Q,PC + αt4 sin θ
(

1
3

cos θ sin 2ϑ cos φ

+
sin2 φ (sin ϑ cos θ + cos ϑ cos φ sin θ)2 /4

cos θ cot θ − 2 tan ϑ cos φ cos θ + (cos−2 ϑ − cos2 φ) sin θ

)
.

(5.29)

The maximum value of the QFI for a PC dynamics is obtained for ϑ = 0, i.e., for a pure
transversal Hamiltonian [45] and for θ = π/2, i.e., for a state lying on the equator of the Bloch
sphere; moreover, the dephasing noise, i.e., ϑ = π/2, is the most detrimental in this regime.
Although the expression for F (4)

Q in the NPC case is too cumbersome to yield a comprehensible
analytical solution for a state which maximizes the QFI in the short time limit, even for a fixed
value of the parameter ϑ, we report an approximated evaluation later in this Section 5.3.1.
As can be directly inferred comparing the two formulas in Equation (5.29), a crucial difference
between PC and NPC dynamics is that in the former case the QFI only depends on the initial
distance of the Bloch vector from the z-axis and hence on the angle θ, while the NPC terms
introduce a dependence of the QFI on the direction of the Bloch vector itself and therefore on
the angle φ. Such a dependence is a consequence of the non-commutativity of the encoding
Hamiltonian with the action of the noise. For any PC dynamical map Λω0,PC, if we rotate the
state ρ about the z-axis by a certain angle φ, we have that

FQ
[
Λω0,PCUφ[ρ]

]
= FQ

[
UφΛω0,PC[ρ]

]
= FQ

[
Λω0,PC[ρ]

]
, (5.30)

4Note that this is trivially given for any unitary which can be generated via a time independent Hamiltonian,
i.e. U (t) = e−it (Hω0 +HA ) where HA is the ancilla Hamiltonian acting on the extending space and Hω0 is the
encoding Hamiltonian.
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by virtue of Equation (1.36) and equivalently the invariance of the QFI under rotations indepen-
dent from the parameter to be estimated.
Now, the contributions due to the NPC terms are able to enhance the QFI, as can be seen
in Figure 5.3(a), where we illustrate the behavior of the difference ∆FQ ≡ F (4)

Q − F (4)
Q,PC as a

function of the initial conditions. Besides the dependence on the initial phase φ, one can clearly
observe the presence of several areas where the NPC terms do increase the QFI. Moreover,
there are two maxima of the increment, one in the neighborhood of φ = 0 and one in the
neighborhood of φ = π; we plot ∆FQ for values φ ∈ [0, π], since it is a symmetric function
under the reflection φ → 2π − φ, see Equation (5.29). In the plot, we fixed ϑ = π/4 but the
behavior is qualitatively the same for different values of ϑ. Indeed, ∆FQ goes to 0 for ϑ going
to π/2 since for a pure dephasing Hamiltonian the secular approximation has no effect, so that
the dynamical maps in Equation (5.17) and Equation (5.20) coincide.
Moreover, the presence of NPC terms can enhance the value of the QFI maximized over all the
initial conditions and hence enlarge the maximal achievable precision. This is explicitly shown
by taking into account the states lying on the equatorial plane of the Bloch sphere, which as
said maximize F (4)

Q,PC. For θ = π/2, the second relation in Equation (5.29) reduces to

F (4)
Q = F (4)

Q,PC +
αt4

4

(
cos4 ϑ cos2 φ sin2 φ

sin2 ϑ cos2 φ + sin2 φ

)
, (5.31)

which clearly shows that the maximum value of F (4)
Q,PC can be actually overcome for any value

of ϑ , π/2. In Figure 5.3 (b), we plot the increase of the QFI due to the NPC terms for
θ = π/2, while varying the initial phase φ and mixing angle ϑ. The QFI with the NPC terms
is always bigger or equal than F (4)

Q,PC and the maximum enhancement occurs for φ close to kπ

with k = 0,1,2 and the pure transversal noise corresponding to ϑ = 0. However, the latter
condition depends on the specific choice of the initial state: for θ , π/2 one can have the
maximal amplification due to the NPC terms for non-zero values of ϑ.
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Figure 5.3.: Difference between NPC and PC QFI at short time scales and contributions
due to the dependence of the master-equation rates on ω0. (a-b): Difference
(adimensional) between the QFI of NPC and the PC dynamics, ∆FQ/(αt4) =

(F (4)
Q − F (4)

Q,PC)/(αt4), as a function of: (a) φ and θ for a fixed coupling angle

ϑ = π/4; (b) of φ and ϑ for states maximizing F (4)
Q,PC in Equation (5.31) at θ = π/2.

(c): Increase of the QFI at short time-scales for PC and NPC dynamics when the
ω0 dependence of the noise rates is taken into account, here δFQ = (FQ − F̃Q)/FQ.
The inset shows the QFI plotted exactly and after neglecting the dependence of the
noise rates on ω0 (denoted by •̃).

States Maximizing the Short Time NPC Expression

We provide an approximate evaluation of the maximum of the short-time expression of the
NPC-QFI, see Equation (5.29), to gain some understanding of the dependence of the optimal
QFI on the initial state also for NPC dynamics. Importantly, this explicitly demonstrates the
dependence of the initial state on its initial phase. To second order in time, we have F (4)

Q = F (4)
Q,PC

and the QFI is maximal for θ = π/2. We assume this to be around the optimal input even if the
fourth order is considered. Taking the derivative of F (4)

Q with respect to φ we obtain

∂F (4)
Q,

∂φ

�������θ=π/2
=
ατ4 cos4 ϑ sin φ cos φ

(
sin2 ϑ cos4 φ − sin4 φ

)
2
(
sin2 ϑ cos2 φ + sin2 φ

)2 . (5.32)

The derivative can be solved for its root depending on φ which yields:

θopt ≈
π

2
and φopt = arctan

{√
sin ϑ

}
. (5.33)

The (quasi-) optimality of this choice has been checked numerically, confirming that the value
of the optimal φopt is more sensitive to changes in the bath-coupling angle ϑ than in the value
of θ.
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Different Contributions to the QFI.

To get a more quantitative and general understanding of the different contributions fixing the
QFI in PC and NPC dynamics, let us move a step back and recall them explicitly.
First, the non-commutativity between the noise and the free evolution will induce some specific
contributions to the QFI, typical of the NPC regime. For illustration, let us use the decomposition
L(t) = H (t) + D (t), where H (t) = −i

[
H0 + HLS(t), ·

]
is the Hamiltonian term, while

D (t) =
∑

i j bi j (t)
(
σi · σ

†

j − (1/2)
{
σ†jσi, ·

})
represents the dissipator. In the PC case we have

that [H (t),L(t)] = 0 which does not hold for NPC dynamics, as can be directly checked, for
instance, by comparing Equation (5.14) and Equation (5.10). Recalling the Dyson expansion
in Equation (1.12), we have to consider products of H (t) and D (t) at each different times,
e.g., terms asH (t1)D (t2) . . .H (tk ), to obtain the dynamical maps fixing the evolution of the
probes. If the Hamiltonian and the dissipative part do not commute, then the dependence on
ω0 withinH (t) will mix with the dissipative terms contained in D (t) and will be thus spread
among more parameters of the dynamical map at time t or, equivalently, on more features of
the Bloch vector at time t, possibly enhancing the QFI. In particular, this mechanism leads to
the dependence of the QFI on the phase of the probes initial state in the NPC case, a feature
which is not shared with the PC case, see Equation (5.30).
Second, the noise terms themselves depend on ω0: As already pointed out in Section 5.1.1 the
coefficients of the master equation will in general contain a dependence on the parameter to
be estimated. To quantify explicitly such a phenomenon, we compared, for both PC and NPC
dynamics, the QFI which is obtained including the dependence of the rates on ω0, with the
QFI where such a dependence is disregarded. In particular, in the latter case we replace the
dependence of the coefficients bi j (t), HLS

i j (t) on ω0 with the dependence on a generic frequency
Ω, and only after that the QFI has been evaluated, we set Ω = ω0. Let us denote this auxiliary
object as F̃Q, contrary to the former calculations of the QFI which have been denoted by FQ.
We stress that that F̃Q is actually the object utilized in more phenomenological approaches to
quantum metrology, where the master equation is postulated to describe some specific kinds of
noise, rather than microscopically derived so that the contributions due to the dependence of
the rates on ω0 are not accounted for. On the other hand, let us mention that in [312] the role of
the dependence of the emission and absorption rates on the free system frequency for a qubit
system coupled to a Gaussian classical noise has been investigated.
Figure 5.3(c) summarizes the effects of the two contributions described above. In the main
panel we plot the percentage increase δFQ = 100(FQ − F̃Q)/FQ for both PC and NPC QFI.
We see that in both cases the dependence on ω0 of the noise terms non-negligible and the
compliance of these noise terms can increase the QFI way beyond the value of the auxiliary
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QFI, e.g. reaching 10% for NPC and 15% for PC at αt2 ≈ 0.6.

In the case of the PC dynamics, we can derive a very intuitive geometrical picture of the
information encoding. In Appendix A.2.6 we show that the auxiliary QFI F̃Q,PC(t) is simply
proportional to t2Dz (t)2 where Dz (t) is the length of the projection of the Bloch vector into
the xy plane, see Equation (A.31). Hence the information about the frequency we want to
estimate, i.e. the rotation speed about the z-axis, is fully enclosed into the distance of the Bloch
vector from the rotation axis. Crucially, if we take the dependence of the rates on ω0 into
account, some further contributions to the QFI will appear, see Equation (A.32). There is one
additional term due to the dependence of Dz (t) on ω0 and a second term in accordance with
Equation (1.37), which contains the noise parameters vz (t) and d(t). By construction, these
two terms are positive for any PC dynamics, so that the dependence of the rates on ω0 will
always yield an improvement on the estimation precision, as already indicated in Figure 5.3(c).

The time course of the QFI provides us with direct access to the contribution of the non-
commutativity by comparing FQ,PC and FQ,NPC in the inset of Figure 5.3(c). This effect is even
more relevant than the contribution due to the dependence of the noise rates on ω0 and, in any
case we can further confirm that the inclusion of nonsecular terms modifies significantly the
one-probe QFI, as already discussed referring to Figure 5.3(a) and (b).
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Figure 5.4.: Difference at finite times between the QFIs of NPC and PC dynamics for
baths of Ohmic spectral density. Time evolution of the QFI for different initial
states and values of ϑ. The NPC curves are shown in orange (light grey) and
black for, respectively, ω0 = 1 and ω0 = 5, while the PC curve after the secular
approximation is shown in blue (dark grey) and it describes both the case of ω0 = 1
and ω0 = 5; the noise parameter is λ/β = 0.1. The insets show the corresponding
evolution of the Bloch vector, here NPC in orange (light grey), PC in blue (dark
grey). The initial conditions are the following: a) φ = π/2, θ = π/2 ϑ = 0, b)
φ = 0, θ = π/2 ϑ = 0, c) φ = 0, θ = π/2 ϑ = π/4, d) φ = 0, θ = π/4 ϑ = π/4.
(Figure first published in [H3])

5.3.2. Finite-Time Analysis for the Ohmic Spectral Density

In this paragraph we examine the behavior of the QFI for finite times, when the dynamics
are dictated by the master equation expressed in Eqs. (5.24) and (5.26). This will allow us to
analyze more in detail the difference between the NPC and the PC contributions to the QFI.
The results presented in this section are numeric, calculated using Equation (5.27) and the
same parametrization of the Bloch vector as before. Figure 5.4 contains the foundation of the
following discussion.
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Let us first note that the dependence on the initial phase φ already mentioned above affects the
whole time evolution of the NPC-QFI. Figures 5.4 (a-b) show the evolution with ϑ = 0 for an
initial state in an equally weighted superposition, i.e., a state in the x̂ − ŷ plane of the Bloch
sphere (θ = π/2), but with initial phases φ = π/2 and φ = 0, respectively. Comparing the two
figures, one observes that the initial phase is of no relevance for PC dynamics on the whole
timescale, while the NPC dynamics introduces a dependence on φ. The NPC contributions
enhance the maximum value of the QFI and shift its position, depending on the value of the
initial phase.
For the Ohmic spectral density considered here, the noise terms do not depend on ω0, see
Section 5.2.2, so that F̃Q (t) = FQ (t) and the same result holds for the PC case. Hence, FQ,PC(t)
is directly fixed by the distance of the Bloch vector from the z-axis, along with the elapsed time
t, see Equation (A.31) in Appendix 5.3.1, while the further contributions within the NPC-QFI
FQ (t) can be fully ascribed to the non-commutativity of the Hamiltonian and dissipative part,
see the discussion in the previous paragraph.
While the independence of the QFI from the parameter to be estimated in the PC case can
be readily shown [39, 43], we can see from Figure 5.4 that the NPC-QFI depends on ω0. In
particular, with growing values ω0, the NPC-QFI converges to its PC counterpart: higher values
of ω0 imply a faster free dynamics of the system, which thus reduces the relevance of NPC
terms and increases the validity of the secular approximation, see Section 5.1.2.
We further observe that the overall effect of the NPC terms can yield an increase or a decrease
of the QFI, depending on the time interval considered. On the one hand, the NPC terms induce
a contraction in the x-y plane, which is no longer isotropic. Comparing the evolution of the
QFIs in Figures 5.4 (a-b) with the evolution of the Bloch vector in the insets, it is clear how
the non-isotropic contractions can bring the Bloch vector further or closer to the z-axis, thus
increasing or decreasing the QFI. On the other hand, as mentioned in the previous paragraph,
due to the non-commutativity of the dynamics additional information about ω0 is enclosed
in other features of the Bloch vector; the action of decoherence itself adds some information
about ω0 to the information imprinted by the rotation about the z-axis given by the Hamiltonian
encoding.
The delicate interplay of the different mechanisms of production and annihilation of the QFI
is also illustrated in Figures 5.4 (c-d). Here we consider values of ϑ different from 0, so
that the states initially on the equator of the Bloch sphere are no longer confined to the xy-
plane. Comparing Figures 5.4 (b) and (c), we see how the introduced NPC rotation partially
counterbalances the oscillations due to the non-isotropic contraction. Furthermore, the role of
the different NPC terms strongly depends on the initial state. As an example, Figure 5.4 (d)
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shows the strongest (relative) enhancement of the maximum value of the QFI due to the action
of both the NPC rotations and contractions.

5.4. N-Probe Quantum Fisher Information and Achievable
Metrological Limits

In this final section, we want to explore the QFI for an estimation utilizing multiple probes, up
to the asymptotic limit N → ∞. In this way, we will also provide a complete picture for the
model at hand of the different scalings of the error in the presence of noise, including semigroup
or non-semigroup noise, as well as phase-covariant or non phase-covariant one.
As recalled in Section 4.3.2, evaluating the QFI becomes a more and more difficult task, with
the increasing of the dimensionality of the probing system. However, since we are assuming
a non-interacting probe system subject to independent and identical noise, we can invoke the
bound presented in Equation (4.36) exploiting the finite-N channel extension method [35, 43]
to calculate F

[
(Λω0,t ⊗ 1)⊗N

]
. We emphasize again, that this method yields an upper bound

on the cQFI F
[
Λ⊗N
ω0,t

]
.

In addition, to investigate the attainability of the bound, we will consider a measurement of the
parity operator Px =

⊗N
k=1 σ

x
(k) [258], which as mentioned in Section 4.4 will follow all the

observed scalings in the examined cases. In particular, focusing on an initial GHZ state, one
finds here

〈Px (t)〉 =
1
2

{ [
ξ (t) + i χ(t)

]N
+

[
ξ (t) − i χ(t)

]N
+

[
1 − (−1)N

]
ς (t)N

}
, (5.34)

where ξ (t), χ(t) and ς (t) are proper time- and frequency-dependent functions depending on
the single probe dynamics, obtained as in [46] and Appendix A.2.7, from which Equation (4.42)
can be evaluated numerically. Note that the last term only contributes if N is an even number
and hence the precision may heavily change when N is changed by one. However, for all the
cases examined here, we have ς (t) = 0.
We focus on the case of an Ohmic spectral density, which provides us with numerically easily
solvable differential equations for any time t, cut-off frequency ωC and coupling strength.
Furthermore, by taking the limit ωC → ∞ we recover the semigroup limit as mentioned in
Sec. 5.2.2 and Appendix A.2.5, which will be useful to compare our results to those already
known in the literature.
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5.4.1. Asymptotic Scaling of the Ultimate Estimation Precision

The starting point is the master equation given by Equation (5.24). In particular, we considered
three different NPC noise scenarios: the first two cases of a purely transversal noise, i.e., ϑ = 0,
for a non-semigroup [see Figure 5.5(a)] and for a semigroup [Figure 5.5(b)] dynamics. As a
third case, we chose noise with a (small) longitudinal component fixed by ϑ = π/100 for a
non-semigroup dynamics [see Figure 5.5(c)]. In Figure 5.5(a-c) we report the numerical study
of t/F ↑

[
ρ(N ) (t)

]
, which fixes a lower bound to the estimation error, see Eqs. (4.32) and (4.36),

along with the estimation error for the parity measurement, ∆2ω̂0,PT , see Equation (4.42). As
clearly observed in Figure 5.5, the two quantities have the same asymptotic scaling, therefore
the bound is achievable, at most up to a constant factor. Hence we can infer the scaling with
respect to N of the error ∆2ω̂T for the optimal estimation strategy by virtue of Equation (4.43)
which we recall as

∆
2ω̂PT ≥ ∆2ω̂T ≥

t
F

[
(Λω0,t ⊗ 1)⊗N ] ⇒ ∆

2ω̂T ∝
1

Nη
.

Table 5.1 contains the values of the optimal scaling η for the different NPC noise scenarios as
inferred from our numerical analysis, along with the corresponding PC scaling behavior (i.e.,
those for the dynamics after the secular approximation, see Equation (5.26)) taken from [39,43].
The optimal scaling of the estimation error for the full NPC dynamics is fixed by two key
features: Whether we have a semigroup or a non-semigroup evolution and the direction of the
noise fixed by the angle ϑ. The presence of a time-dependent rate γ(t) as in Equation (5.25)
always leads to an improved scaling, with respect to the constant rate γ of the semigroup
evolution; in particular, for any ϑ , 0 we have the Zeno η = 3/2 scaling, associated with the
linear increase of the rate γ(t) for short times [37,39]. Moreover, we numerically find the novel
η = 7/4 scaling for a non-semigroup, purely transversal noise.
We stress that for any value of ϑ different from 0 the full NPC dynamics leads to the same

scaling behavior as in the corresponding PC case. We can say that the transversal noise
represents a special case of NPC noise, which might be seen as a "purely NPC noise". For
any ϑ , 0, the dissipative part of the master equation given in Equation (5.24) together
with the resulting dynamical maps, will have a component longitudinal to the parameter
imprinting, fixing the asymptotic scaling to the less favorable one proper to PC dynamics and
hence extending the Zeno regime recalled in Section 4.4.1 to the scenario governed by NPC
noise. This result, already known for the semigroup regime [45] (see also Section 4.4.2), is
here extended to the non-semigroup case. Summarizing, we can conclude that the ultimate
achievable estimation precision can overcome the SQL whenever we have a non-semigroup
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Figure 5.5.: Sensing with N probes in parallel undergoing NPC Ohmic dynamics
Eq. (5.24). The panels (a) to (c) show the MSE as functions of N that is attained
with the parity measurement and GHZ inputs, ∆2ω̂0,PT of Equation (4.42) (blue
circles), in comparison with the general lower bound on the error, t/F ↑

[
ρ(N ) (t)

]
with F ↑ defined in Equation (4.37) (orange crosses); both minimized over the round
duration t with corresponding optimal topt plotted within the insets (in matching
colors). In cases, (a) ϑ = 0 and ωc = 10, (b, semigroup) for ϑ = 0 and ωc → ∞,
and (c) ϑ = π/100 and ωc = 10; in all the three cases α = 1. All the curves are
normalized with respect to their values at N = 1; the grey areas mark the regions
below the HL and above the SQL scalings respectively, while the green dashed
line follows the scaling N−η , with the different η denoting the asymptotic scaling
observed. The panel (d) shows the ratio F ↑/t (orange) for the upper bound on the
QFI and the inverse error 1/(∆2ω̂0,PT ) (blue) for N = 160 and the same parameters
shown in (a). Panel (e) illustrates the dependency of the MSE on ϑ for N = 160 as
a polar plot. Solid lines correspond to t/F ↑

[
ρ(N ) (t)

]
, while dashed lines represent

∆2ω̂0,PT . NPC noise is colored in orange, PC noise in blue and the NPC semigroup
limit in green. Note that the lines for the semigroup cases are reduced by a factor
200. (Figure first published in [H3])
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η NPC PC NPC, semigroup PC, semigroup
ϑ = 0 7/4 3/2 5/3 1
ϑ , 0 3/2 3/2 1 1

Table 5.1.: Ultimate scaling exponent, η in Equation (5.4.1), of the optimal estimation error
∆2ω̂0T for different types of noise in the asymptotic limit of N → ∞.

(short-time) evolution, irrespective of the direction of the noise, or in the cases where we have a
purely transversal noise, irrespective of whether we have a semigroup or not.
Interestingly, similar results have been derived recently [313] for rather different, infinite
dimensional probing systems. The probes are prepared in Gaussian states and undergo a
Gaussian dynamics, possibly non-semigroup and NPC. The NPC contributions are induced by
the presence of squeezing in the initial bath state. Also there the optimal asymptotic scaling
of the error is also found to be the same for PC and NPC dynamics, going from the SQL for a
semigroup to the Zeno limit for a linear increase of the dissipative rates. Such a transition for a
PC evolution of a Gaussian system has been shown also in [314].

Analytic Estimation for Pure Dephasing

The calculation in this section has previously been published in [H6].

As an example, we show here that the induced Zeno scaling can also be calculated analytically
if the noise is pure dephasing and hence PC. That is, the direction of the noise is parallel to
the signal encoding, i.e. ϑ = π/2. For a Ramsey measurement, we can calculate the CRB
analogously to [37]. Employing GHZ states (compare also Sec.4.2.3) we determine the survival
probability

pω0,t =
1
2

{
1 + exp

[
−

Nλ
β

(
t arctan(tωc) −

log(1 + t2ω2
c )

2ωc

)]
cos (Ntω0)

}
. (5.35)

Since the short time expansion yields pω0,t ≈ 1 − t2(N2ω0
2 − λNωC/β)/4 + O(t3), we expect

the precision to be bound by the Zeno limit. Calculating the CRB employing the survival
probability in Eq. (5.35), the subsequent derivations of the CRB with respect to ω0 and t yield

121



N-Probe Quantum Fisher Information and Achievable Metrological Limits

the optimality conditions,

topt =
kπ

2Nω0
and

β = 2Nλ topt arctan(ωCtopt),
(5.36)

where the second one is a transcendental equation. Expanding it to second order in t, which is
justified by the results of [39], we find topt ≈

√
β/2λωC N which results in the optimal precision

as

∆
2ω̂ · T &

√
2λωC

βN3 e

√
2λN
βωC

arctan
(√

βωC
2λN

) (
1 +

βωC

2λN

)− λN
βωC

→

√
2λωCe
β

1
N3/2 (N → ∞),

(5.37)

and is indeed scaling according to the Zeno limit. Additionally, it is possible to show that an
infinitely short Zeno regime immediately yields the SQL. Therefore, remember that the model is
described by a Lindblad equation when taking the limit ωC → ∞, which reduces the correlation
time of the environment to zero. Estimating these limits in Eq. (5.35) and (5.36), we obtain
topt = β/πλN and the optimal precision is scaling according to the SQL, ∆2ω̂ · T ≥ πeλ/βN .

Note that the Zeno scaling can also emerge non-asymptotically, when the function dictating
the transversal contraction of the Bloch sphere, i.e., along x̂ and ŷ direction, is always of
second order in time. Then the scaling is immediately Zeno-like, which is the case for, e.g.,
for Gaussian envelopes, as they are encountered in NV centers which we will examine in
Section 9.3.

5.4.2. Finite-N Behavior

The plots in Figure 5.5 (a-c) allow us to get some interesting information also about the behavior
of the estimation error for a finite number of probes, showing that the asymptotic scaling is
approached in a possibly non-trivial way.
First of all, we note that for smaller values of N , the lower bound to the estimation precision
t/F ↑

[
ρ(N ) (t)

]
and the error under parity ∆2ω̂0,PT seem to follow the SQL and then, only for

intermediate and high values of N , the two quantities converge to the asymptotic behavior,
approaching it always from above. This was already shown for a semigroup NPC noise, also
with a longitudinal component (see [45], in particular Figure 5.1) and here we see how the same
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happens for a non-semigroup NPC noise. Actually, the effect is even more pronounced for a
non-semigroup non-transversal noise, where the asymptotic behavior emerges only if almost
104 probes are used, see Figure 5.5 (c). Additional numerical studies (not reported here) show
that the asymptotic scaling is approached earlier when the coupling to the bath is increased.
Even if it is clear that the finite-N behavior do not spoil the validity of the different scalings
pointed out in the previous paragraph, it should also be clear the relevance of such behavior
in many experimental frameworks, when, indeed, the high-N regime might be not achievable.
In such situations, the experimental data would follow a scaling which is different from the
asymptotic one for all practical purposes.
In addition, the behavior of the estimation error for finite values of N provides us with a
more complete understanding of the specific role played by the geometry of the noise, i.e. the
coupling angle ϑ. In Figure 5.5 (e) we study t/F ↑

[
ρ(N ) (t)

]
and ∆2ω̂0,PT , but now for different

values of ϑ ∈ [0, π/2] and a fixed number of probes N = 160. For this value of N and ϑ = 0
the two quantities have essentially already reached their asymptotic values, see Figure 5.5 (a),
while this is not the case for ϑ , 0, see Figure 5.5 (c). Now, Figure 5.5 (d) shows how both
t/F ↑

[
ρ(N ) (t)

]
and ∆2ω̂0,PT change continuously with the variation of ϑ. They increase from

ϑ = 0 up to ϑ = π/2, with the increment being more pronounced for values of ϑ close to 0. The
sudden transition between different scalings for, respectively, ϑ = 0 and ϑ , 0 is a peculiarity
of the asymptotic limit, N → ∞. Furthermore, this also confirms that noise in the direction
of the parameter imprinting is more detrimental than any other direction, if the absolute noise
strength is kept identical.
As a final remark, note that the optimal time of the estimation error for a parity measurement as a
function of N has discrete jumps between smooth periods, see the lower insets in Figures 5.5 (a-
c). These jumps originate from the fact that ∆2ω̂0,PT does possess multiple local maxima
instead of one global maxima as t/F ↑

[
ρ(N ) (t)

]
does, see Figure 5.5 (d). The jump occurs

when the global maximum of ∆2ω̂0,PT changes to a different peak, which was only a local
maximum before. On the other hand, for large values of N ∆2ω̂0,PT will converge to a function
with only one local maximum, as the following ones have been damped off, so that the optimal
time will stay a smooth function of N . The jumps in the optimal evaluation time for a parity
measurement can be observed also in the polar plot in Figure 5.5 (e), in terms of non-smooth
variation as a function of ϑ.

123



Conclusions

5.5. Conclusions

We have exploited a detailed analysis of the spin-boson model, which is a general, well-known
and widely used noise model, to investigate how the ultimate achievable limits to frequency
estimation are affected by the different microscopic features of the interaction between the
quantum probes and their environment, and furthermore, provide a cohesive model realizing all
the known limits so far. Hence, we used common tools of the theory of open quantum systems
to extend the characterization of noisy quantum metrology beyond the common framework,
where the description of the noise is usually postulated on a phenomenological basis.
First, we derived the master equation fixing the dynamics of the probes, employing the second
order TCL expansion. Thereby, we clarified that the distinction between phase-covariant and
non-phase-covariant noise, which plays a key role in frequency estimation [39], corresponds to
the distinction between secular and non-secular dynamics. Moreover, we characterized explicitly
the dependence of the noise rates, as well as of the correction to the system Hamiltonian, on
the free frequency of the probes, i.e., on the parameter to be estimated. This is another aspect
commonly overlooked in phenomenological approaches to noisy metrology.
Then, employing a solution to the master equation in the short time regime, valid for any spectral
density, and a solution on the whole time scale for an Ohmic spectral density, we investigated the
single probe QFI and hence how the microscopic details of the model influence the estimation
precision. In particular, we compared the differences between the effects of, respectively, phase-
covariant and non-phase-covariant dynamics. The non-secular contributions can both increase
or decrease the QFI, also depending on the initial condition, as they lead to a dependence of
the QFI on the initial phase of the probes state. However, in general, the maximum (over time)
QFI is higher in the non-phase covariant case, due to the positive contributions induced by
the non-commutativity of the noise and the free Hamiltonian. Furthermore, we examined the
mentioned dependence of the noise terms on the estimated frequency. While for non-secular
dynamics no definite statement can be made, we found that this dependence is always beneficial
for secular dynamics.
In the last part of the chapter, we moved to the regime of multiple probes and gave a complete
characterization of the possible asymptotic scalings of the estimation precision, putting results
already existing in the literature onto a common ground, as well as exploring new regimes. In
particular, we extended the validity of the super-classical Zeno scaling N−3/2 onto non-phase-
covariant, non-semigroup dynamics, as long as the noise possesses any infinitesimal component
parallel to the encoding direction of the parameter (i.e. ϑ , 0). Furthermore, we identified the
novel N−7/4 scaling for ϑ = 0, i.e., for a non-phase-covariant and non-semigroup dynamics,
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due to a coupling with the environment fully orthogonal to the direction of the encoding of the
parameter.
Concluding, the analysis in this chapter offers a complete and physically motivated characteri-
zation of the scenarios where one can actually achieve super-classical precision in frequency
estimation in the presence of (independent) noise. In addition, the microscopic characterization
of the probes dynamics enabled us to present an in depth study of the influence of the micro-
scopic details of the probe-environment interaction on the precision. The adopted scheme can
be directly linked to widely used sensing scenarios as exploited with color-centers in diamond,
superconducting qubits or optomechanical setups.
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Chapter 6
Open Questions in Quantum Metrology

The field of quantum metrology truly is a rich field with multifaceted applications in other areas
of physics. For example, the progress in the development of sensors operating in the quantum
regime will enable to improve the detection of gravitational waves by the LIGO cooperation
who have successfully demonstrated an enhanced sensitivity of their Michelson interferometer
by employing squeezed states of light [236, 238, 315] as proposed by Caves in 1981 [316].
Furthermore, atomic clocks start employing protocols enhanced by quantum entanglement [231]
and quantum enhanced position measurements of lipid granules have been demonstrated in
living cells [317, 318]. The latter case exemplifies that quantum enhanced metrology is also
useful to reduce other side effects of a measurement while maintaining a precision that may
also be achievable employing a classical strategy. In the specific case, squeezed light reduced
the required laser intensity on the living cells which prevented the sample from overheating and
hence enabled to perform the measurements in the first place.

Despite the recent developments, the fundamental theory concerning the role of noise in quan-
tum enhanced parameter estimation is still in its infancy. Let us draw the picture along the
lines discussed in the previous Chapters 4 and 5. We have been able to fill gaps concerning
the asymptotic scaling of the precision in the number of probes, however, a rigorous analytic
proof of the results is pending, so far the results presented are only numeric. Likewise, the
asymptotic behavior of the optimal encoding time was only proven for PC noise. Even if such
an all-embracing proof arrives, sorting out the asymptotic scalings achievable for any type of
dynamic appearing in the cFEP, whether PC or NPC, semigroup or non-semigroup, the most
practical questions remain.
From which number of probes the scaling is considered to follow the asymptotics? Given the
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dynamics during the encoding, is it possible to obtain that probe number in terms of the underly-
ing microscopic model? Furthermore, it will be crucial to translate these optimal scalings back
to actual physical setups. There is now a confined set of states that can be prepared employing
multiple probes. Which state is the optimal one and which measurement should be performed?
Although we proved the attainability of each scaling with a parity measurement of GHZ states,
let us admit that this discovery followed rather from intuition than mathematical reasoning.
There exists no procedure constructing the optimal measurement out of the QFI, under the
restriction of physical implementability (thereby note that the measurement basis defined by
the SLD-operator might not fulfill that criteria). Equivalently, there exists no reliable method to
find the N-probe entangled state yielding the best performance. This state may obey a highly
complex structure of correlations. For example, see already the early work by Huelga et. al. [34]
where, even for a pure dephasing semigroup, the optimal state was not given by a GHZ state
but a complicated partially entangled state. For sure the prepared initial state also influences the
optimal measurement and possibly obeys a completely different structure for different values
of N (although, one could imagine that this is only important until the asymptotic scaling is
reached). Obviously, the optimal states also need to be confined to a set of states available in
the experimental setup.
Let us now discuss the conditions required for the cFEP itself. How realistic is the assumption
of uncorrelated environments? We have seen in Section 4.6.1 that taking correlations in the
environment into consideration can change the situation completely. This question is more
basic as one may consider at first and probably studied too little, given the amount of results
taking that assumption for granted; even the generation of the initial state may correlate the
otherwise disconnected environments, see for example a method for generating entanglement
between two NV centers [319]. Crucially, the preparation of an entangled state takes time.
Realistically, this preparation time should be included into the analysis of the cFEP, in particular
since the preparation method itself will most probable also depend on the probe number and
the same has to be assumed for the measurement stage. Moreover, during this preparation
and readout time, noise will unavoidably already act on the system. While one may partially
counteract this noise with control methods as DD or error correction, in the end the encoding
time will be reduced, and importantly, this effect becomes more pronounced as entangled states
are increasingly fragile when subjected to noise - which is the core of the challenge. Taking
these considerations into account, what are the effects on the MSE? Are the ultimate scalings
still attainable? Does this set an ultimate upper bound on the maximal number of probes itself,
because otherwise during the preparation stage the state decoheres completely?
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Control methods, such as error correction or dynamical decoupling are popular tools to prolong
the coherence time or correct for flipping errors of the probe system. The first approaches
to transfer these ideas into the framework of quantum metrology (we covered them briefly
in Section 4.6.2) are promising but still suffering under two major constraints. Firstly, the
assumption of "infinitely fast control" is by far not realizable in practice. Control pulses and
error correction steps take finite amounts of time which need to be considered in future works.
Secondly, the considered dynamics obey the semigroup composition law and hence exclude
time-inhomogeneous and non-Markovian processes. Clearly, the later two are unarguably more
involved to analyze, as after each correction step one needs to invoke the unique map Λti+1←ti .
In particular, denoting the map performing the correction step by EC of length τ, the total
channel has to be written as

Λ = ... ◦ Λt3←t2+τ ◦ EC ◦ Λt2←t1+τ ◦ EC ◦ Λt1←t0 .

On the other hand, we stress that the main achievements of the results restoring the HL is not
the restoration of the latter itself, but the ability to transform the open system into an effectively
closed system. In principle, one can construct an argument along the lines of the one made for
non-Markovianity in Section 4.5.1. The QCRB only takes the instantaneous state into account,
the evolution beforehand does not play any role. Hence, the scaling for any control method
imitating a free evolution with a possibly reduced amplitude of the encoded parameter will show
the HL, as it determined by the QFI in Eq. (4.29). One should also remark, that these methods
exclude noise which is parallel to the parameter encoding. However, these noises normally
represent the main challenge since the states employed are most sensitive along the encoding
direction. Furthermore, the additional resources necessary for the application of the control
methods, like the energy required to correct flipping errors or the ancillas for error correction,
should be taken into account.

To conclude, let us exemplary mention the work by Schmitt et. al. [300], where the total
experimental time available has been used more efficiently. Here, instead of repeating a single
measurement as in the cFEP, a scheme of subsequent measurements was used to detect the
frequency of an oscillating field. This chronological order of observations allowed to extend the
precision limit to the coherence time of the signal, while the coherence time of the probe takes
a subordinate role (see also the last paragraph of Section 4.7). Taking experimental restrictions
into account, the development of schemes employing control or neat measurement schemes
making more efficient use, i.e., providing the ability to employ a more efficient estimator, out of
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the given resources could be the spirit for short term applications. Moreover, the answers to the
questions raised above, concerning realistic preparation and readout schemes, are essential for
the design of experiments which aim to implement the quantum advantage of entanglement as a
standard tool in quantum technologies beyond the current proofs of principle.
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Chapter 7
Field Detection with Real Pulses

The following sections are based on the work published in [H2]. Reprinted excerpts with
permission from [H2]. Copyright (2016) by the American Physical Society.

In Chapter 2 we introduced the NV center in diamond. In current quantum sensing experiments
involving the latter, DD pulse sequences of Section 3.3 such as the CPMG [217, 218], or the
XY family [71, 73, 221] are used to design a set of filter functions [64, 199, 210, 320] along the
lines of Section 3.1. These filter functions are only transmissive for particular frequencies due
to the refocusing of the undesired couplings.
The operating principle to detect an external signal, either classical or quantum [321], corre-
sponds to having the NV center, i.e., the quantum sensor, evolving under the action of these
decoupling pulses and the signal. Whenever the generated filter is permeable for a certain
frequency component of the signal, the quantum sensor gathers a phase that will be subsequently
measured leading to a spectrum that characterizes its environment [64, 68, 69, 205, 209, 322].
A filter function is created by a sequence of microwave π-pulses applied on the NV center. We
covered the basics of DD, Section 3, under the premise of perfect, instantaneous pulses which
are applied while the remaining dynamics are frozen. Nevertheless, what is observed in case
this assumption is relaxed?
For standard DD sequences such as the CPMG or the XY family, the expected resonances can
only occur at the frequencies lωDD, where l are odd integers and ωDD = π/tfree for a pulse
interval of tfree [68, 205]. In the same manner DD schemes employing composite pulses, like
the AXY-sequences in Section 3.3.2, admit a similar description [66]. However it has been
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recently shown [74] that, due to the finite width of the applied pulses, the quantum sensor still
accumulates a phase if lωDD/k matches the signal frequency ωac or, equivalently, ωDD = αωac

with α = k/l. Here k ∈ N with the maximum value of k defined by the outer period of the
sequence, and odd numbers of k are excluded by symmetric sequences [74]. Therefore the
spurious responses with k , 1 lead to spectral ambiguities and to a misinterpretation of the
signals present in the environment. In particular, the k = 4 spurious resonance of a 13C spin
may be falsely interpreted as the k = 1 resonance of a hydrogen spin.
In this chapter we show that spurious responses in the measured spectrum can be identified
and separated from the real ones by controlling the initial phase of the quantum sensor or the
phase of the decoupling pulses. More specifically, we show how the intensity of the spurious
peaks changes when we vary this phase while the real peaks do not change in the spectrum.
Furthermore, we show how this method can be combined with the AXY-sequences to yield an
accurate characterization of the spin environment.
We organized the chapter as follows: In Section 7.1 we cover the detection of classical fields
and motivate our method by studying the behavior of the spurious signals in Section 7.2. In
Sections 7.3 and 7.4 we apply the method to the quantum regime where, in particular, we will
make use of an NV center in diamond as the quantum sensor. Furthermore we will combine our
protocol with the AXY pulse sequences to demonstrate accurate spin detection [172, H1, H7].

7.1. Detection of a Classical AC-Signal

To understand the presence and detection of spurious resonances we first describe the detection
of a classical signal by summarizing the necessary quantities introduced in Section 2. Therefore,
we consider a sensor spin subjected to a static magnetic field, ~B = Bz ẑ, and driven by a classical
ac-field, i.e., the external signal, applied in the same ẑ direction with angular frequency ωac

and amplitude B. For the case of an NV based sensor, we choose the ẑ-direction along the NV
symmetry axis as described in Section 2.2. In addition we consider the action of microwave
π-pulses for both coherence protection (compare Section 3) of the sensor spin and detection
of the ac-field. The relevant Hamiltonian in a rotating frame with respect to the static Bz field
reads (~ = 1, compare also Eq. (2.14))

H (t) = msγnB sin(ωact + θ)
σz

2
− δ

σz

2
+ Hc, (7.1)
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where σµ, µ = x, y, z are Pauli matrices of the subspace {|0〉 , |ms〉}, θ is the initial phase of the
ac-field, and δ a possible detuning of the driving field. The control Hamiltonian

Hc =
1
2
Ω(t)[cos (ϕi + ϑ) σx + sin (ϕi + ϑ)σy] (7.2)

is applied stroboscopically, i.e. Ω(t) switches periodically between 0 and a constant value Ω,
leading to the action of the decoupling π-pulses on the sensor spin. The pulse-phase ϕi controls
the rotation axis in the x − y plane, while ϑ sets an overall phase on the pulses which we set to
zero for the following calculations.
In the sensing protocol we are going to utilize, the sensor spin is initialized in the state described
by the density matrix

ρ0 =
1
2




1 e−iφ

eiφ 1


 , (7.3)

where φ corresponds to the initial phase of the state. After applying a DD pulse sequence, the
density matrix of the central spin becomes ρωDD (t) and we consider the transition probability

P(ωDD) = 1 − Tr[ρωDD (t)ρ0] (7.4)

as the measured spectrum. We stress that the dependencies in ρωDD (t) are not disconnected.
In fact, fixing ωDD and a number of DD periods automatically fixes t. Equivalently, fixing
ωDD and t fixes the number of DD periods to be applied. Throughout this work, we are rather
using the number of periods, while the evolution time and number of pulses then depend on the
chosen pulse sequence.1
In NV based setups, the initial state can be achieved via optical polarization into the |ms = 0〉
state and a subsequent π/2-pulse to obtain ρ0. To find P, a second π/2 pulse is applied to
ρωDD (t), converting collected phases into a difference in the populations which may then be
read out as described in Section 2.1.2.
The effects of the control pulses and the ac-field on ρ0 can be described by a sequence of
rotations

Rn̂(κ) = e−iκn̂·~σ/2 (7.5)

on the central spin, where ~σ = (σx ,σy,σz)T . For instantaneous π-pulses around an axis
lying in the x − y plane we have κ = π, n̂z = 0 and the effect of each pulse corresponds to a

1For example, for 10 repetitions of an XY-8 sequence where each repetition contains 4 DD periods, we have
M = 4 · 10 = 40 DD periods and thus M · N = 80 pulses (recall Section 3.1, N = 2). When the pulse spacing
is fixed as π/ωDD, the length of one XY-8 sequence is immediately given by TXY−8 = 8(2π/ωDD) and hence
we have t = 10 · TXY−8 = M · (2π/ωDD) = 160π/ωDD.
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change σz 7→ −σz, as it was already studied in Section 3. As indicated by Eq. (3.4), the free
evolution between π-pulses corresponds to a rotation around the z-axis and gives rise to a phase
accumulation

κfree,j =

∫ t j+1

t j
dτ γnB sin(ωacτ + θ)

=
γnB
ωac

[
cos(ωact j + θ) − cos(ωact j+1 + θ)

]
,

(7.6)

induced by the ac-field during the free evolution between the times t j and t j+1 where the pulses
are applied. In this manner one can find, for ideal control, that the measured signal is given by
the total phase in Eq. (3.7), P(ωDD) = sin2

[∑N
j=0(−1) j κfree,j/2

]
[323], where N is as before the

number of pulses applied. This signal depends on the initial signal phase θ, but is independent
of the initial phase φ of the sensing state. The effect of the detuning δ, which can be treated as
static noise as shown in Equation (7.1), would be ideally removed by the DD sequence. For
instantaneous pulses, we calculate the signal achieved by a CPMG sequence with M periods
(or equivalently an XY sequence as they realize the same modulation function, see Section 3.3)
and obtain

PCPMG(ωDD) = sin2

2γnB sec

(
πωac
2ωDD

)
sin

(
θ +

2πMωac
ωDD

)
sin2

(
πωac
4ωDD

)
sin

(
2πMωac
ωDD

)
ωac


. (7.7)

Tuning the DD sequence on resonance, such that ωDD = ωac/l with l odd (i.e. using higher
harmonics), one finds that

PCPMG(ωDD)��resonance = sin2
(

2γn MB sin θ
ωac

)
, (7.8)

while for any even l the signal vanishes. For experiments where no control over θ is available,
the signal would have to be averaged leading to a loss in contrast [67]. For example, the
expectation value for a uniformly distributed phase for the CPMG signal above is given by

〈PCPMG(ωDD)〉θ =

∫ 2π

0
dθ

PCPMG

2π

=
1
2

1 − J0


4γnB ���sec

(
πωac
2ωDD

) ��� sin2
(
πωac
2ωDD

)
sin

(
2Mπωac
ωDD

)
ωac



 ,
(7.9)

where J0[•] is the zeroth Bessel function of the first kind.

136



Identifying Spurious Responses

7.2. Identifying Spurious Responses

Figure 7.1.: Interplay of the control- and driving fields. (a) Visualization of the actual control
axis at the present of signal fields on the Bloch sphere. The vectors of the driving
field (blue) and the ac-field (green) add to the total driving (pink, chained) and
set the angle β j out of the x − y plane. The rotation of the Bloch vector ~r = 〈~σ〉
is shown in yellow (short chained). (b) Locations of the X (blue) and Y (orange)
pulses with respect to the ac field for α = 1 and θ = 0. The height of each square
pulse is proportional to the tilting angle β. (c) and (d) are the illustrations similar
to (b) but for α = 2 and α = 4, respectively. (Reprinted figure with permission
from [H2]. Copyright (2016) by the American Physical Society.)

The spurious resonances are caused by non-instantaneous π-pulses. To capture the physics
of spurious resonances, recall that we consider π-pulses with constant amplitudes and with
a pulse duration tpulse = π/Ω. For the sake of simplicity in the following discussion we will
assume δ = 0, see Equation (7.1). The presence of the ac-field during tpulse of the j-th pulse
changes the rotation axis by an angle β j out of the x − y plane, see Figure 7.1 (a). The
value of β j is set by the relative strengths of the ac-field and the j-th pulse at time t j , i.e.,
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β j = tan−1
[
γnB sin

(
ωact j + θ

)
/Ω

]
. Here we assume that the ac field experiences almost no

change during tpulse, resulting in the condition2 tpulse � 1/ωac. In the following we consider
a typical experimental situation where the signal amplitude, γnB, is small compared with Ω
leading to β j ≈ βmax sin

(
ωact j + θ

)
, where βmax ≈ γnB/Ω � 1.

Now, we study the effect of β j on the widely used XY-8 sequence [66] by tuning the ratio
α = ωDD/ωac. The ideal signal after a single application of the XY-8 sequence is given by
Eq. (7.8) with M = 4 (see also Appendix B.2.1, Eq. (B.5)). As expected, this ideal signal is
completely independent of the initial phase φ of the sensor spin. In fact, for βmax , 0 the
influence of the tilt arises in higher orders of βmax, which we characterize in the following.
As it can be seen in Figure 7.1 (b) we apply the DD sequence such that the tilt of the axis is
maximal, which we expect to be the worst possible case, therefore we set θ = 0. At the same
time, as shown by Eq. (7.8), this sets the signal equal to zero when operating at resonance, such
that the only signal accumulation is due to the tilting angle βmax. In addition, we have that for
α = 1 and equally-spaced pulses, β j is constant up to a sign change, i.e., | β j | = | βmax | ∀ j, see
Figure 7.1 (b). Hence, during pulses the state is rotated around the axis

n̂α=1
j =




cos ϕ j cos βmax

sin ϕ j cos βmax

(−1) j sin βmax




(7.10)

We apply an XY-8 sequence with 8 pulses, where the evolution operator is a generalization of
Eq. (3.6),

Uα=1
XY8 =Rẑ (κfree,8)Rn̂α=1

8
(π)Rẑ (κfree,7)Rn̂α=1

7
(π)Rẑ (κfree,6)Rn̂α=1

6
(π)Rẑ (κfree,5)Rn̂α=1

5
(π)Rẑ (κfree,4)

× Rn̂α=1
4

(π)Rẑ (κfree,3)Rn̂α=1
3

(π)Rẑ (κfree,2)Rn̂α=1
2

(π)Rẑ (κfree,1)Rn̂α=1
1

(π)Rẑ (κfree,0),

(7.11)

and find that for small tilting angles βmax we have

Pα=1 = 16
[
1 − sin

(
2γnB
ωac

− 2φ
)]
β6

max + O(β7
max). (7.12)

The result in Eq. (7.12) tells us that when the frequency ωDD is tuned to ωac (note that α = 1)
the sensor is only marginally affected by the presence of the tilting angle. Therefore, a change

2This assumption means that the rotation axis is indeed constant during the pulse. Of course, in a real setting the
rotation axis itself will be time depend as the instantaneous amplitude of the field changes. Hence it will rotate
around an axis orthogonal to the directions fixed by the ac-field and the direction of the pulse, but always lies
in the surface spanned by the two.
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on the initial phase φ would have almost no effect on the observed spectrum.
In contrast, according to Figure 7.1 (c), for a decoupling frequency such that ωDD = 2ωac we
have the rotation axis

n̂α=2
j =




cos ϕ j cos β j

sin ϕ j cos β j

sin β j



, (7.13)

and after the application of an XY-8 sequence we obtain

Pα=2 = 8

cos
(
γnB
√

2ωac

)2

×

1 + sin



2(
√

2 − 1)γnB
ωac

+ 2φ





 β2
max + O(β3

max).

(7.14)

Here the signal is already affected by the square of the tilting angle which is the reason for a
spurious resonance to appear.
For the fourfold frequency, ωDD = 4ωac, and γnB/ωac � 1 we have that the transition
probability is

Pα=4 ≈ 2
(√

2 − 2
) [

sin(2φ) − 1
]
β2

max + O(β3
max), (7.15)

which also contains the second order of βmax and as it can be seen in Figure 7.1 (d) the rotation
axis corresponding to consecutive X (or Y) pulses are always different.

In Figure 7.2 (a) we have analytically computed [see Eq. (B.6) in Appendix B.2.2] the impact
of the phase φ of the initial spin state on the factors accompanying the second order in the
tilting angle. Thereby we consider different values of the ωDD frequencies after the application
of a single XY-8 sequence under the assumption γnB/ωac � 1. From that figure we can extract
important conclusions.

• For the frequencies ωDD with k = 1 and 1/α = l = 1,3,5, . . . there is no dependence on
β2

max. Hence these resonances are independent up to the order β6
max, therefore the effect

of φ is entirely negligible for short pulses. Note that for the case θ = π/2 we will find no
spurious contribution as the pulses are located on the nodes of the ac-field thus we have
βmax = 0.

• Importantly, for the cases l = 3,5, . . . the collected error is completely equivalent to the
l = 1 case as the field in the moment of pulse application is exactly the same.
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Figure 7.2.: Phase dependence of the measured spectrum. (a) Impact of the second order in
the tilting angle for the XY-8 sequence as a function of 1/α and the phase angle
φ. The colored lines mark the corresponding cuts for (b) where we compare the
analytical results (solid lines) of Eqs. (7.12), (7.14), and (7.15) with a numerical
simulation (dots) of the behavior of the transition probability P under the Hamilto-
nian given in Eq. (7.1) for ωac = 2π × 1 MHz, γnB = 2π × 0.12 MHz , θ = 0, and
βmax = 0.012. (Reprinted figure with permission from [H2]. Copyright (2016) by
the American Physical Society.)

• For other values of α where spurious resonances appear, the dependence on φ can be
clearly observed.

Furthermore the vertical lines in Figure 7.2 (a) correspond to the cases α = 1,2,4 that we
have previously discussed in Eqs. (7.12), (7.14) and (7.15), respectively, and a numerical check
shown in Figure 7.2 (b) stresses the agreement with those analytical expressions. In addition,
Figure B.1 in the Appendix shows the equivalent of Figure 7.2 (a), but for three applications of
the XY-8 sequence. Here, the phase-dependent accumulation is even more pronounced while
the width of the resonances is decreased.
Crucially, the calculation shown in Appendix B.2.2 for three applications of the sequence also
explains why there is no spurious resonance observed in the case that α = 3. While for a single
application the obtained signal is P3 ∼ β2

max cos2(φ), after three consecutive applications the
second order is canceled and one arrives at P3 ≈ O(β3

max). Hence, the accumulation of the
spurious signal is averaged out.

This dependence on the phase φ motivates the development of a criteria to identify spurious
resonances as we will do in the following.
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7.2.1. A Criteria to Detect Spurious Resonances

According to the behavior predicted by Eqs. (7.12), (7.14) and (7.15) we are able to suppress
and enhance the signal by tuning the initial phase φ of sensor spin states when the resonances
are spurious. Therefore, we can detect a spurious resonance by the oscillation of its associate
peak’s height when choosing different initial phases of the state. More specifically, after the first
experiment and the recording of the spectrum Pφ1 , we repeat the experiment with a different
initial phase to obtain Pφ2 . In this manner for every real resonance we will have

Pφ1 = Pφ2 + O(β6
max) ≈ Pφ2 , (7.16)

meaning that the effect of the tilting angle is negligible. On the contrary, spurious resonances
differ already at the order β2

max. Hence by comparing Pφ1 and Pφ2 the real resonances can be
identified.
A further improvement concerning resolution on spurious peaks can be made by recording
multiple initial phases to construct a spectrum of spurious resonances. In this respect one can
define the following quantity

W = max
φi ,φ j

���Pφi − Pφ j

��� , (7.17)

where the maximum is taken over all recorded initial phases. W contains all the peaks but the
real resonances because in this case Pφi ≈ Pφ j ∀φi, φ j leading to W ≈ 0. It is important to stress
that this criteria is one-directional. In particular, in the case of having multiple ac-fields with
frequencies ωac,j and some of them are integer multiples of another one, i.e. ωac,k = µωac,l , the
real resonances ωac,l can not be distinguished from the spurious contribution of ωac,k .

7.2.2. Effects of Pulse Errors.

We derived the above criteria for pulses which are only disturbed by the action of the ac-field
during the pulse time. However, a real situation will also suffer from the presence of a detuning
δ, see Eq. (7.1), and flip-angle errors caused by fluctuations in the Rabi frequency Ω in Hc. For
the following analysis we will consider static errors in δ and Ω. Note that this condition can
be justified by assuming that both δ and Ω are slowly varying. The detuning δ of the applied
control field from the transition frequency of the sensing qubit, see Eq. (7.1), tilts the rotation
axis out of the x − y plane by an angle γ that can be quantified as γ = tan−1(δ/Ω) ≈ δ/Ω if
δ � Ω. In addition, an error on Ω results in non perfect π pulses with an angle of rotation π + ξ.
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We can collect all possible deviations into a single parameter by defining βmax = β̃η, γ = γ̃η,
ξ = ξ̃η and expand the signal with respect to η. Note that we assume all errors to be constant
in time and small, but of the same order of magnitude such that the different proportionality
constants are enough to characterize the impact of the error. A repetition of the calculation for
finding Eq. (7.12) yields

Pα=1 =
1
4

[
4 β̃2 − 4γ̃2 + ξ̃2

]2
×

[(
2 β̃ + ξ̃

)
cos φ +

(
2 β̃ − ξ̃

)
sin φ)

]2
η6 + O(η7), (7.18)

while Pα=2 and Pα=4 do not change in the second order of η, since the specific construction of
the XY-8 sequences suppresses these errors, see Table 3.1 in Section 3.3. Therefore, our criteria
is valid to identify spurious peaks under the presence of error sources.

7.2.3. Remark on Pulse Phases

It is worth to mention that the preparation of the initial state in the x−y plane with different initial
phases φ j , or different choices of the rotation axis for the decoupling pulses are interchangeable.
The later can be achieved by a variation of ϑ in Eq. (7.2). More specifically, a preparation in
ρ = |+x〉〈+x | and choosing the rotation axis Xϑ j and Yϑ j = Xϑ j+

π
2

is equivalent to the situation
described throughout the paper. When both phases are changed, the equations above still hold
if one makes the identification φ 7→ φ − ϑ.

7.3. Detection of a Quantum Signal

In what follows, we replace the classical ac-field by a quantum system interacting with the
sensor spin. The main concept however is equivalent to the classical signal illustrated in Sec-
tion 7.1. The transition probability of the initial state ρ0 to an orthogonal one still corresponds
to the measured spectrum. However, the collected phase is now more challenging to calculate.
Here we make use of the two approaches to dynamical decoupling presented in Chapter 3.

The first one being the filter formalism, which directly determines the coherence ξωDD (t)
of the state ρωDD (t) in terms of the overlap integral given in Eq. (3.12) (where we also mark the
explicit dependence on ωDD). Independent of the initial phase, for the initial state in Eq. (7.3)
one finds

P(ωDD) =
1 − e−ξωDD (t)

2
. (7.19)

142



Detection of a Quantum Signal

At this point, let es remark that this spectrum only takes values on the interval [0,1/2]. However,
any other definition of the spectrum where the value of ξωDD (t) is able to be extracted would be
valid. For example, the length of the state’s Bloch vector normalized to its initial value would
also produce a usable spectrum. By varying the application frequency of the DD pulses via
tuning of the spacing between the pulses, i.e. changing the modulation function, one shifts the
position of the peaks in the filter function which ultimately determines the value of ξωDD (t),
because as mentioned in Section 3.1, it is

ξωDD (t) =
1

2π

∫ ∞

0
dω S(ω) fω (t,ωDD). (7.20)

From the measurement of the different ξωDD (t), the desired information about S(ω) can be
subsequently extracted from P(ωDD), for example following the method presented in [209].
As mentioned before, this method allows for a general spectroscopic examination, as it captures
the effect of the environment and the signal source in the spectral function S(ω), while the true
underlying microscopic structure is of subordinate importance.
Contrary to that, the effective Hamiltonian approach in Section 3.2 requires detailed knowledge
of the underlying dynamics, apart of the parameter values that should be determined. Further-
more, one has to assume some initial state of the quantum system the sensor is interacting with.
Let’s assume that the DD sequence is applied such that the resonance condition with the n-th
spin (the target) in the bath is fulfilled. Then, employing the effective Hamiltonian in Eq. (3.25)
and for an initial product state of the sensor and the target spin, ρ0 ⊗ ρn, we obtain the signal

P(ωn) =
1 − Re{Ξ(t)}

2
= sin2

(
1
8

a⊥n f lDDmst
)
. (7.21)

Here, Ξ(t) is the coherence modulation of the sensor spin after the application of the partial
trace over the target spin degrees of freedom. In particular,

Ξ(t) = trn
[
〈ms | e−itHeff,n |ms〉 ρn 〈0| eitHeff,n |0〉

]
, (7.22)

where the state ρn can be an arbitrary one. Note that, of course, here Heff,n can be replaced with
any Hamiltonian which is not in resonance, even a free one where no DD pulses are applied.
This holds, as long as the underlying dynamics is pure dephasing which ensures the block
diagonal structure of the Hamiltonian. In particular, for the NV center H =

∑
ms

Hms |ms〉 〈ms |

where Hms = 〈ms | H |ms〉. This construction only holds as long as no transitions between
the |ms〉 states are induced. Therefore, this provides an efficient way to perform numerical
simulations starting from the Hamiltonian (3.15) to obtain the spectrum for arbitrary DD
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frequencies. Of course, when the number of nuclear spins increases, one has to switch to
numerical algorithms which allow the calculation of the high-dimensional system, like, e.g.
the disjoint-cluster-expansion [177] (requires a diluted spin bath) or the cluster-correlation-
expansion [324, 325].
On the other hand, the inclusion of real pulses of finite width tpulse can only be performed by
consideration of the full Hamiltonian which includes a pulse Hamiltonian analogous to the
form of Eq. (2.14). Then, both the filter formalism approach and the effective Hamiltonian
description fail.

7.4. Spurious Resonances of Quantized Signal Sources

7.4.1. A Scheme for Quantum Emitters

In the following we will demonstrate the transcription of the criteria for spurious resonances
of signals emitted by a quantum system. For the theory derived in Section 7.2 to apply, we
first need to identify the corresponding quantities. In a quantum setting the classical field is
replaced by one or more nuclei, each of them oscillating at its own Larmor frequency, and
coupled differently to the sensor spin, as it is also the case for NV centers, Section 2.2. For the
sake of simplicity, we stick to a single remote spin. In that case the free evolution of the system
is dictated by the Hamiltonian

H = ωcσ
z − ωIz + ~σA~I ≈ ωcσ

z − ωIz + σz ~A~I, (7.23)

where A is the hyperfine tensor describing the interaction between the sensor and the target spin.
We assumed that the energy splitting is much larger than the interaction with the remote spin,
ωc � |Ai,j | ∀i, j = x, y, z, while at the same time we demand ωc � ω. Therefore the central
spin does not flip and we applied the secular approximation which removes the corresponding
flip-flop terms and leaves the hyperfine vector

(
~A
)

j
= Az,j . In a rotating frame of the free

energy terms ωcσ
z − ωIz we obtain the following Hamiltonian

HI (t) = σz
[
Ax cos(ωt)Ix − Ay sin(ωt)Iy + Az Iz

]
. (7.24)

Hence the levels of the central spin are shifted by the amplitudes Ai which are the analogue
to the amplitude of the classical field. Note that the first two contributions at the right hand
side of Eq. (7.24) reassemble the cases θ = 0 and θ = π/2 simultaneously. Thus, if we want
to use our criteria for the identification of spurious resonances when driving the system with
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the Hamiltonian presented in Eq. (7.2), we have to ensure that | ~A| � Ω which is the condition
giving rise to small tilting angles.
The regime where this condition holds is easily satisfied in NV based schemes, that we will
comment below, as typical couplings to remote 13C spins are around 2π × 20 kHz(nmd)3 (with
d being the distance between the NV center and each nuclear spin), while driving frequencies
can be easily selected around 2π × 30 MHz.

7.4.2. Numerical Results in NV-based Schemes

A widely used sensor spin corresponds to an NV center, which we already reviewed intensively
in this work. Consequently, we will employ it to exemplify the detection of spurious resonances.
The Hamiltonian of an NV center and its surrounding nuclear spins within the secular approxi-
mation and without control is given in Eq. (2.7). As shown in Section 2.2.1 we restrict to the
subspace containing only the electronic spin states |ms = 0〉, |ms = 1〉 which we choose as our
sensing qubit. In the rotating frame of the NV electron spin we also add the control term given
in Section 2.2.2, Eq. (2.14) and arrive at the Hamiltonian dictating the evolution under control

H (t) = −
∑

j

~ω j · ~I j +
σz

2

∑
j

~A j · ~I j − σ
z δ

2
+

1
2
Ω(t)

[
cos(ϕn)σx + sin(ϕn)σy] , (7.25)

where Ω(t) = Ω during the pulses and equal to zero otherwise. The pulse phase ϕn is adjusted
according to the n-th pulse of the chosen DD sequence defined in Section 3.3. Every nuclear
spin rotates with its own Larmor frequency |~ω j | =

���γ j Bẑ − 1
2
~A j
���, see Eq. (2.9).

In Fig. 7.3 we illustrate the oscillation of spurious peaks which we use for their detection and
discrimination from real peaks. We present the spectrum that results from the interaction of
an NV center with a remote 13C spin (γC = 2π × 1.0705 kHz/G) at a distance of r ≈ 1.19 nm
from the NV center and located in one of the available diamond lattice positions. This gives
rise to a hyperfine coupling ~A = 2π × (15.0 6.4 11.9)T kHz. The applied field strength of the
external magnetic field reads Bz = 100 G. Concerning the possible error sources we have taken
into account that the nitrogen atom inherent to the NV center might change the energy splitting
of the electronic spin due to a hyperfine interaction of up to ∼ 2π × 1 MHz [61, 74] when the
intrinsic nitrogen spin is not polarized. The detuning is stable because of the long T1 time of the
nitrogen spin. Therefore, we choose δ = 2π × 1 MHz in our numerical simulations and include
a relatively large 3% error in the Rabi-frequencyΩ which is set to be 2π × 30MHz. We compare
the spectra obtained for AXY-8 and XY-8 sequences for 70 periods of the corresponding DD
protocols, meaning 2800 pulses for AXY-8 and 560 pulses for XY-8.
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Figure 7.3.: Simulation of Pφ for a NV center coupled to a single spin. Pφ, employing
the XY-8 (blue) and AXY-8 (orange) sequence and different initial phases of
π/4, 0, −π/4 is shown in each row from top to bottom. The graphs in column (a)
show the large resonance for α = 1 and the smaller α = 4/5 resonance. In the
columns (b),(c),(d) the spurious peaks for α = 4/3, 2, 4 are displayed respectively.
The α = 1 resonance corresponds to a sensing time of T ≈ 2.4 ms. The green
chained curves represent an XY8 sequence but with no error in the Rabi-frequency.
(Reprinted figure with permission from [H2]. Copyright (2016) by the American
Physical Society.)

We choose Ω(t) in a way such that the AXY-8 sequence is assembled with f1 = 4/(5π) (see
Section 3.3.2), while the coefficient for XY-8 is always fixed to f1 = 4/π for the first harmonic
contribution. We run the simulation with three initial phases φ = 0 and φ = ±π/4. The
important parts of the spectra are shown in Fig. 7.3. We can clearly distinguish the spurious
peaks from the real peaks. The spurious resonances in Fig. 7.3 (b), (c) and (d) change the peak
heights under the varying initial phase which makes them easy to detect. The AXY-8 sequence
shows less amplitude in the α > 1 spurious peaks, as it reduces the effective coupling to the
remote spins by f1 (a fraction of 1/5 as compared to the one of XY-8) and therefore reduces the
tilting angle. In addition it employs rotations around 6 axis instead of 2 as XY-8 does and is
therefore more robust against the accumulation of the fake signal. Also see the green dashed
line which illustrates the sensitivity of XY8 with respect to errors in the Rabi-frequency in
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comparison with the blue line. The occurrence of the α = 4/3 resonance [Figure 7.3 (b)] in
the AXY-8 sequence is due to the large detuning and the high peak at α = 4/5 [Figure 7.3 (a)]
results because of the larger Fourier coefficient for f5 compared to a standard XY sequence
with equally spaced pulses. However, this resonance is also easy to detect.

7.4.3. Distinguishing Close Peaks

Figure 7.4.: Simulation of Pφ for an NV center with a hydrogen and a strongly coupled
carbon spin under the control of AXY sequences. (a) and (b) show results for
f1 = 4/(1.2π) and f3 = 4/(1.2π) respectively. The red (dark grey) arrow in (b)
indicates the position of the hydrogen resonance, the green (light grey) arrow in (c)
the 13C resonance. (b) and (c) show the effect when changing the initial phase from
0 to π/4. All calculations are performed with ∆ = 2π × 1 MHz, Ω = 2π × 20 MHz
and δ = 0.03 × Ωtpulse. Here, 1920 decoupling pulses are used which corresponds
to a sensing time T ≈ 23.9 µs for the α = 1 and T ≈ 71.7 µs for the α = 1/3
resonance of the hydrogen atom. (Reprinted figure with permission from [H2].
Copyright (2016) by the American Physical Society.)

Spurious resonances can induce false identification of detected nuclear spins [74]. For example,
1H has a gyromagnetic ratio of γ1H = 2π × 4.2576 kHz/G thus with Bz = 600 G we expect a
resonance peak at ≈ 2π × 2.555 MHz. Unfortunately, NV center based detection of hydrogen
suffers from the natural occurrence of 13C spins in the diamond lattice [74]. These carbon spins
produce a spurious resonance peak at approximately 1.0057 times the resonance frequency of
the hydrogen spin since their Larmor frequency at this field is around 2π × 0.642 MHz. Hence
their α = 4 resonance will appear around the Larmor frequency of the hydrogen.3 As long as
the absence of 13C is not ascertained by independent means, the detection of hydrogen can not
be achieved unambiguously. We use our recently introduced AXY-8 sequence and the above
defined criteria to identify the spurious resonances.

3We stress here, that this is not an instance where the single spin addressing condition in Equation (3.20) fails,
since it takes only real resonances into account.
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For the following simulations we are guided by the data presented in [74]. Here, a hydrogen
spin with ~AH = 2π × (14.5 0 500)T kHz is considered. We assume a carbon spin with
~AC = 2π × (103, 103, 73)T kHz (rC ≈ 0.59 nm) at one of the possible positions in the diamond
lattice surrounding the NV center. The magnetic field is tuned to B = 1836 G.
Figure 7.4 (a) shows the transition probability in the region of the expected hydrogen resonance
for α = 1 (k = l = 1) and f1 = 4/(1.2π) using the parameters mentioned below the plot. From
here it is not clear, to which element this peak has to be assigned, whether this peak indeed
represents a real resonance or if it is spurious. Increasing the selectivity of the AXY-8 sequence
by changing the sequence to α = 1/3 (k = 1, l = 3) and f1 = 0, as well as f3 = 4/(1.2π),
leads to the spectrum (b). This choice of parameters clearly shows the resonance peak of
the hydrogen and marks the spurious 13C resonance, which can be identified undoubtedly by
changing the phase as shown in Figure 7.4 (c). Again, note that even if there would be no
13C present, the constant height of the hydrogen peak under the phase cycling proofs that the
peak is a real resonance of a present interacting spin.

7.5. Conclusion

We have illustrated the field detection employing a quantum sensor using pulse sequences,
both from classical oscillating fields, as well as quantum fields. In particular, we left the
regime of instantaneous pulses and explored the appearing effect of abnormal phase collection,
leading to additional resonance peaks. Subsequently we have defined a criteria that allows the
identification of these spurious resonances as they appear in widely used dynamical decoupling
schemes of the XY-family which can be easily implemented in existing experimental setups as
it only requires a phase change of the applied pulses. To understand its working mechanism,
we first calculated the effect of a XY-8 decoupling sequence for detection of a single classical
ac-field and motivated the definition by the different leading orders of the tilting angle of
the rotation axis, which is responsible for the appearance of spurious resonances. A further
calculation verified the validity of the criteria in a quantum setting under the sufficient condition
of a strong enough driving field used for the π-pulses. Later, we applied the criteria to an NV
center coupled to a single spin where we illustrated the working principle in a fully quantum
setting. As a second example, we solved the detection uncertainty of hydrogen atoms when
using NV centers by employing the AXY-8 sequence.
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Chapter 8
Soft Control of Quantum Interactions

The technique presented in this chapter has been proposed in [H4]. Reprinted excerpts with
permission from [H4]. Copyright (2018) by the American Physical Society.

The quest of identifying suitable platforms to pursue applications in quantum information
[22, 180, 326], quantum simulation [23] or quantum sensing [13], is by far more than a scout-
ing challenge of different materials or artificial architectures [327–329], which assemble the
"hardware" of the desired quantum device. Technological applications [8, 15, 330] do not solely
require the provision of physical qubits. Often these qubits are arranged as an interacting
quantum cluster, for instance the 13C nuclear spins employed in diamond [59, 69, 331–333]
or the 29Si nuclear spins that appear in silicon carbide [334, 335], as well as Eu3+ ions in
stoichiometric rare-earth crystals [336, 337].
Another integral part on the journey to future applications is the development of proper "soft-
ware" that allows the realization of manipulations on single constituents and exerts desired
protocols providing selective coupling among multiple parties assembling that cluster of quan-
tum systems. One example of such software is given by the dynamical decoupling sequences in
Chapter 3, where the individual addressing of nuclear spins represents the major challenge. In
fact, the individual addressing represents a crucial requirement in applications where the "hard-
ware", like the NV center, is employed as a quantum sensor. It allows the determination of the 3D
structure of single molecules of interest in bio-chemistry and medicine [5, 9, 185, 338–341, H7]
and enables the utilization of nearby single spins as a memory to design quantum sensing
protocols that show enhanced sensitivity and resolution [54, 55, 219, 290, 342, 343]. Likewise,
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these nuclear spins could serve as a quantum register to assemble a quantum repeater [57], or
when coupled to an electron spin, are an important resource to build a robust optical interface
for quantum networks [58, 63].
Let us examine the addressability problem in more detail. It can be reduced to the situa-
tion shown in Figure 8.1 (a) where a control qubit (CQ) interacts with multiple resource
qubits (RQs) [344, 345]. In order to exert control on a certain RQ the characteristic frequency
ω0 of the CQ is tuned to the resonance frequency ω j of the RQ via a continuous drive that
exploits the Hartmann-Hahn resonance [322, 346, 347] (see also Appendix B.3.4) or the appli-
cation of pulsed dynamical decoupling [66, 68, 204–206] (Section 3.2). As we will show in
Section 8.1.1, the time independent coupling c j between the CQ and each RQ is responsible for
the slow decay of the spectral responses which are proportional to c j/δ0,j . In particular, these
responses decay in a power-law manner with respect to the energy mismatch δ0,j = ω0 − ω j

( j > 0 for RQs). As a result, when the energy distribution of the different RQ is too dense
compared to their coupling strength, other off-resonant RQs will considerably perturb the CQ
and vice versa, see Figure 8.1 (b). This prohibits the high-fidelity addressing of the desired
target RQ. Note that this is a practical instance of the second decoupling condition in Eq. (3.21),
which is particularly challenging for realistic settings where the RQs only slightly differ in their
resonance frequencies.
In this chapter, we are tackling the addressability problem and propose the technique of
soft temporal quantum control. The key characteristic of this control method is shaping of
the interactions, such that they are weakened at the beginning and the end of the evolution.
This technique enables on-resonant coupling within a desired set of target systems, while
efficiently avoiding unwanted off-resonant contributions originating from other systems in the
environment. With the specific case of Gaussian soft control, off-resonant effects are suppressed
by the mismatch δ0,j as exp(−σ2δ2

0,j/2), see Figure 8.1 (c), achieving high-selective coupling.
In order to explain the working mechanism of the technique, we develop an average Hamiltonian
theory, Section 8.1.1, which deals with the cases of either a constant or a time-dependent
coupling and illustrates the exponential decay of the couplings with respect to the frequency
mismatch. Next, we take high-order virtual transitions into account by invoking the quantum
adiabatic theorem in Section 8.1.2. Thus we provide an accurate description of the dynamics
even for situations involving strong perturbations (i.e. couplings) and long evolution times.
Subsequently, we present a protocol to implement the soft Gaussian control via dynamical
decoupling. More specifically, we will show how the AXY sequences from Section 3.3.2 are
suitable to realize the Gaussian temporal modulation of the coupling. Then two applications of
our method are following. First, Section 8.3.1 illustrates the realization of an efficient RWA,
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Figure 8.1.: Advantages of a temporal shaping of the coupling. (a) Illustration for the con-
trol qubit and resource qubits. (b) For the case of constant a coupling c j , the
off-resonant response decays slowly c j/δ0,j (blue lines) with the energy mismatch
δ0,j . The overlaps (grey areas) on the frequency response prohibit high-fidelity
selective coupling. (c) With the soft coupling proposed in this work the off-resonant
response decays exponentially (see the orange lines), which allows high-fidelity
addressing. (Reprinted figure with permission from [H4]. Copyright (2018) by the
American Physical Society.)

where we strongly suppress all fast oscillating terms in a three-body Hamiltonian. Second,
Section 8.3.2 contains a demonstration how the method adjusts frequency spectra obtained via
dynamical decoupling by removing side oscillations and enables highly-selective two-qubit
gates for quantum sensing and computing.

8.1. Generic Model for Temporal Control of Quantum
Interactions

Let us explore the effects emerging from temporal control exerted on the coupling between
quantum systems. For that, we consider the standard Hamiltonian used to describe open
quantum systems as given in Eq. (1.2). However, the distinction between HS and HE is not
necessary here, since for the desired application the roles of system and environment are diluted.
For example, in a central spin model like we have for the NV center, every 13C is a potential
RQ while at the same time it acts as noise when not addressed. Furthermore, the approach we
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are going to present does not require tracing over environmental degrees of freedom. Hence
the distinction is not required. Thus we unite H0 = HS + HE and consider the Hamiltonian
H = H0 + Hint, where now H0 is the free Hamiltonian for the the quantum registers, while

Hint = λ(t)
∑
α

cαVα (8.1)

describes their interactions which we aim to control selectively. To model the soft control, we
introduced λ(t) which is a dimensionless, time-dependent global factor. The coupling operators
Vα may contain single-body or n-body operators with strength cα (i.e. the norm of Vα is equal
to one). Note that α labels an arbitrary number of interaction terms.
Considering the eigenvalues ω j and the projection operators P(ω j ) = |ω j〉〈ω j |, the free
Hamiltonian can be diagonalized yielding H0 =

∑
j ω jP(ω j ). Consequently, we write the

interaction in the same basis such that

Hint = λ(t)
∑
α,j,k

cαVω j ,ωk
α , (8.2)

where each Vω j ,ωk
α ≡ P(ω j )VαP(ωk ) fulfills1

[HS,V
ω j ,ωk
α ] = (ω j − ωk )Vω j ,ωk

α . (8.3)

The terms Vω j ,ωk
α describe the interactions between states of the total system with an energy

mismatch of δ j,k ≡ ω j − ωk . In coupled quantum networks, the free states with energies ω j

are determined by (possibly) multiple constituents of the network.2 For the sake of enhanced
selectivity, our target is to suppress the terms Vω j ,ωk

α in Eq. (8.2) for which ω j , ωk , and to
keep those with δ j,k = 0. Especially, these are terms where the coupled states |ω j〉 and |ωk〉 are
degenerate. We will achieve this goal by an adequate shaping of the parameter λ(t).

8.1.1. Leading-Order Effects and Soft Quantum Control

The calculation of an effective Hamiltonian can give precious insight to the underlying dynamics.
Analogously to the procedure presented in Section 3.2, we employ a rotating frame with respect

1The operators Vω j ,ωk
α are thus called eigenoperators of H0 corresponding to the eigenfrequency ω j − ωk .

2Assume for example two qubits with H0 = (ν1σ
z
1 + ν2σ

z
2 ), then ω1,4 = ±(ν1 + ν2)/2 and ω2,3 = ±(ν1 − ν2)/2,

where the corresponding states are |ω1〉 = |11〉, |ω2〉 = |10〉, |ω3〉 = |01〉, |ω4〉 = |00〉. If the two qubits are
tuned to resonance, this corresponds to the formation of pair of degenerate states, i.e. for ν1 = ν2 we have
ω2 = ω3 = 0.
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to H0 and use Eq. (8.3). It is then straightforward to calculate that Hint becomes

H′int(t) = λ(t)
∑
α,j,k

cαVω j ,ωk
α eiδ j,k t . (8.4)

In the absence of a modulation of λ, i.e. λ(t) = λ0, unwanted terms in Vα may be neglected
by the RWA provided that δ j,k is sufficiently large compared with λ0cα. To motivate how the
modulation of λ(t) improves this situation, we calculate the leading-order average Hamiltonian
in the rotating frame by using the Magnus expansion [79, 348] for a time interval [−T/2,T/2].
This average Hamiltonian reads

H̄ (1)
int =

1
T

∫ T/2

−T/2
dtH′int(t) =

∑
α,j,k

cα g(δ j,k ) Vω j ,ωk
α , (8.5)

where the averaging factor

g(δ j,k ) =
1
T

∫ T/2

−T/2
dtλ(t)eiδ j,k t (8.6)

is completely determined by λ(t). For the conventional case of a constant λ(t) = λ0, we have

g(δ j,k ) = gC(δ j,k ) ≡ λ0
sin

(
Tδ j,k/2

)(
Tδ j,k/2

) . (8.7)

In this manner, unwanted terms in Vα are suppressed by a large energy mismatch δ j,k as they
are decreasing the value of gC(δ j,k ). We remark that although the special matching condition
Tδ j,k/2 = nπ (n = 1,2, . . .) for g(δ j,k ) = 0 can be achieved for a single RQ with special values
of the evolution time T , it is hard to accomplish for multiple RQs. Alternatively, by selecting
λ0 sufficiently small, the off-resonant interactions can be more efficiently suppressed with the
associated improvement in the addressing for the resonant terms. This is the precise effect when
higher harmonics are used in dynamical decoupling, see Section 3.2 and specifically Eq. (3.21),
or the employment of an AXY sequence where the corresponding Fourier coefficient is tuned
sufficiently small, see Section 3.3.2, which also tries to ensure Eq. (3.21). See also [H7] for an
specific application of the latter.

However, from Eqs. (8.5) and (8.7) the effects introduced by off-resonant terms decay slowly as
a power law λ0cα/δ j,k with respect to the energy mismatch δ j,k . A natural way to increase the
selectivity is then to decrease λ0. However, that as well carries the undesired effect of reducing
the coupling with the resonant terms δ j,k = 0, since g(0) = λ0. Crucially, the decrease of the
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desired coupling prolongs the time which is required to collect phase for sensing or perform
gates for computation. Hence, both operations become more influenced by present noise.
From Eq. (8.6), we find that by using a time-dependent soft modulation, i.e., λ(t) is small at
the beginning and at the end of the quantum evolution, the non-resonant terms can be removed
with greater fidelity. More specifically, we find that the Gaussian temporal modulation

λ(t) = λ0 exp
[
−t2/(2σ2)

]
, (8.8)

has the corresponding averaging factor

g(δ j,k ) = gM(δ j,k ) ≡ λ0η(σ,T ) exp
(
−

1
2
σ2δ2

j,k

)
, (8.9)

where

η(σ,T ) =

√
π

2
σ

T


erf



T − 2iσ2δ j,k

2
√

2σ


 + erf



T + 2iσ2δ j,k

2
√

2σ





(8.10)

and erf(x) = 2√
π

∫ x
0 dze−z2

is the error function. A simple inspection of Eq. (8.9) reveals that the
effective couplings cαgM(δ j,k ) decay exponentially with δ j,k . Hence, we expect the selectivity
to be dramatically improved. We want to remark that this temporal shaping scheme shares
interesting similarities with the control by Gaussian pulses of classical fields [56], however,
in that case, the shaping is exerted on the coupling between quantum systems where quantum
back-action plays a significant role on both sides [349].

8.1.2. Higher-Order Effects and Adiabatic Average Hamiltonian

Although the leading-order average Hamiltonian H̄ (1)
int in Eq. (8.5) describes well the dynamics

for T � 1/max|cα |, if strong coupling constants are present, higher-order corrections [79, 348]
have to be included in order to have an accurate description of the dynamics for larger times.
While the evaluation of higher order terms is involved in the general case, we will now show
that the soft quantum control scheme allows for an easy description of the system propagator
including high-order corrections when executed in an adiabatic manner. To this end we first
analyze the propagator

UD(T ) = e−i
∫ T /2
−T /2 dt HD(t)

, (8.11)

which is fixed by HD(t) = H0 + λ(t)
∑
α cα

∑
j Vω j ,ω j

α , i.e., the free Hamiltonian together with
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the desired on-resonance interactions. In the latter, all Vω j ,ω j
α operators commute with H0, see

Eq. (8.3). Hence HD(t) can be diagonalized in the common eigenbasis |ψD
n 〉 (n = 1,2, . . .) of

H0 and Vω j ,ω j
α . Note that this commutativity is also the reason that the evolution operator in

Eq. (8.11) does not require a time-ordering and since H0 is constant, the eigenstates |ψD
n 〉 are

also constant.3 Therefore UD(T ) =
∑

n e−iφD
n (T ) |ψD

n 〉〈ψ
D
n | is as well diagonal in the basis {|ψD

n 〉}

and the dynamic phases φD
n (T ) include the effect of energy shifts coming from Vω j ,ω j

α .
If the whole Hamiltonian H is considered, the time-ordered evolution

U = T← exp
[
−i

∫ T/2

−T/2
H (t)dt

]
(8.12)

is generally non-diagonal in the basis {|ψD
n 〉} and the terms not-commuting with H0, i.e. all

Vω j ,ωk
α where j , k, will cause unwanted transitions between the different |ψD

n 〉 states.
However, when the soft control is included one can efficiently eliminate the unwanted inter-
actions caused by Vω j ,ωk

α , even for long evolution times T . At the boundaries of the interac-
tion times, −T/2 and T/2, λ(t) has negligible values and therefore the system’s eigenstates
coincide with those of HD(±T/2), since HD(±T/2) ≈ H0 and H (±T/2) ≈ H0. More pre-
cisely, under the condition of adiabatic evolution [350, 351], there are no transitions among
the different states |ψD

n 〉. In particular, this is due to the instantaneous eigenstates |ψH
n (t)〉

of H (t) being non-interacting. Consequently, the propagator at the end of the evolution is
U ≈

∑
n e−iφn (T ) |ψD

n 〉〈ψ
D
n |, where φn(T ) are the associated dynamic phases, while the geometric

phases vanish because λ(t) returns to its original value [80] see Appendix B.3.1. In this manner
U takes the same form as UD and the adiabatic average Hamiltonian and the corresponding
evolution operator for the soft quantum control scheme

H̄ =
∑

n

[
φn(T )/T

]
|ψD

n 〉〈ψ
D
n |,

Ū = e−iH̄T =
∑

n

e−iφn (T ) |ψD
n 〉〈ψ

D
n |

(8.13)

are diagonal in the same basis as HD. Furthermore, Ū includes all the high-order energy shifts.
In the following we illustrate our general theory via two important applications.

3Note that this argument is in principle the same as for noisy pure dephasing dynamics, where no transitions
between eigenstates of the system Hamiltonian can be introduced.
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... XYXY
X     Y     X     Y

YXYX ...

Figure 8.2.: The protocol of soft control implemented via the AXY sequences. For optimal
robustness, the AXY sequences are executed in their AXY-8 pulse scheme, where
after each four composite pulses the spacing in the latter is changed. Panel (a)
shows is this procedure in the lowest row, while the upper rows are basically taken
from Figure 3.3. Changing the parameters ξ1, ξ2 accordingly, results in panel (b)
where f lDD assembles the continuous function λ(t) in discrete steps. (Reprinted
figure with permission from [H4]. Copyright (2018) by the American Physical
Society.)

8.2. An Implementation using Dynamical Decoupling

Let us dedicate this section to the demonstration of how the soft quantum control might be
implemented into an experimental scheme employing dynamical decoupling. Surely, the results
derived above indicate appealing properties when employed for the control of resources qubits.
However, not every physical platform provides a direct control over the couplings. Crucially, the
type and strength of the coupling is given by the nature of the system itself, e.g. for NV centers
the direction and the strength of the hyperfine coupling vector is set according to Eq. (2.4), i.e.
by the relative position of the NV and impurity.
For the sake of simplicity, we consider a central spin model where the central spin undergoes
pure dephasing dynamics. In a frame rotating with the free energy terms, we may write the
corresponding Hamiltonian with time dependent coupling as [compare Eqs. (3.16) and (3.18)]

H (t) = λ(t)
1
2
σz

0

∑
j

[
a⊥j

(
σ+

j eiω j t + σ−j e−iω j t
)

+ a‖jσ
z
j

]
. (8.14)

Here, λ(t) directly reminds of the modulation function F (t) used in Section 3, except this
function is only allowed to take the values ±1, see Eq. (3.10). In the following, we now show
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a way to circumvent this issue. Therefore, recall Section 3.2 which discusses the effective
Hamiltonian approach to DD, where a critical point in the derivation of the effective Hamil-
tonian was the value of the chosen Fourier coefficient f lDD , which in the end determined the
coupling strength to the target frequency. Furthermore, recall the AXY-sequences introduced in
Section 3.3.2 which enable control over these coefficients. Thereby it is important to note that
the desired coefficient is created through the periodicity of the modulation, i.e. one requires at
last one period of two composite pulses. We hence use the AXY-sequences to construct λ(t)
via the coefficients f lDD in a digitalized manner, by changing the interpulse spacing every four
composite pulses. Figure 8.2 (a) shows the added layer of complexity to the AXY-sequences
illustrated in Figure 3.3, Figure 8.2 (b) the digitalized function λ(t). Hence, we call the resulting
sequence Gaussian AXY-sequences.
To that end, let us mention a few important points concerning this implementation. The pulse
spacing is changed every four composite pulses to maintain the robustness against pulse errors
including the first order. Nevertheless, according to Table 3.1, AXY-8 also removes the second
order of the pulse errors. Hence we shift every second AX-4 period by a phase of π/2, which
then assembles one AXY-8 period in terms of the pulse phases. If we assume that f lDD changes
only slightly between each four composite pulses, i.e., they are almost the same, this will lead
to a comparable robustness to the AXY-8 sequence. Furthermore, for symmetric modulations
as the Gaussian one in Figure 8.2 (b), each block of four composite pulses that appears in
the first half of the sequence, appears with pulse phase shifted by π/2 and exactly the same
pulse spacing in the second half of the sequence. If the errors are static, this may also yield an
improved robustness.
We also emphasize, that the implementation via DD has a welcoming advantage. Crucially, it
protects the control qubit against unwanted noise terms which are not faded by the Gaussian
control. More explicitly, in the central spin model considered here, the terms ∼ a‖jσ

z
j do not

oscillate and hence are not detuned from the central spin. These terms result in a fluctuating
magnetic field which emerges from the collection of the nuclear spins and destroys the central
spin’s coherence (see also Section 3.1). Naturally, under DD these terms are averaged out and
the coherence is protected.
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8.3. Applications

8.3.1. Improving the Rotating Wave Approximation

In this section, we apply the soft quantum control to a generic model of two body interactions.
More specifically, we demonstrate how the soft quantum control mechanism is suitable for an
efficient elimination of the counter rotating (or often also called non-energy-conserving), but
also fast oscillating terms over a continuous time-interval and even for long evolution times. The
persistent impact of the fast oscillating terms is difficult to remove due to the limit of available
resources for selective control on realistic quantum systems (e.g., for singlet-triplet qubits in
semiconductor quantum dots [352, 353]). As an example, we consider a control qubit (index 0)
and two equally strong coupled resource qubits (index 1, 2) with the interaction Hamiltonian

Hint =cλ(t)σx
0

(
σx

1 + σx
2

)
= cλ(t)

(
P0,1 + Q0,1 + σx

0σ
x
2

)
where

P0,1 =σ+
0σ
−
1 + σ−0 σ

+
1 ,

Q0,1 =σ+
0σ

+
1 + σ−0 σ

−
1 .

(8.15)

Here, Q0,1 is the counter rotating term.4 We aim to couple qubit 0 purely with qubit 1 via the
flip-flop term P0,1 without involving the perturbation Q0,1. Therefore we choose the energies

H0 =
ω

2

(
σz

0 + σz
1

)
+
ω2

2
σz

2 (8.16)

such that qubit 2 is off-resonant with ω2 = 3ω. In a regime where the RWA can be applied
efficiently, we are able to approximate a high-fidelity swap gate between the qubits 0 and 1.
The perfect swap gate would be generated by the corresponding target Hamiltonian

Htarget =
1
2
ω̃

(
σz

0 + σz
1

)
+

1
2
ω̃2σ

z
2 + c̃

(
σ+

0σ
−
1 + H.c.

)
, (8.17)

which the governs the dynamics via the associated propagator Utarget = e−iHtargetT . The frequen-
cies and coupling marked with a tilde correspond to corrected energies and couplings, where
the shifts appear due to the interaction among the different qubits. These corrected energies
can be obtained by using the adiabatic average Hamiltonian according to Eq. (8.13) (see also
Appendix B.3.2 for an analytic example considering two qubits).
Let us now formulate the task as follows. Our aim is to tune λ(t) such that the evolution

4Note, there exist also such terms for the second qubit, i.e. Q0,2 and P0,2. However, here we want to suppress all
terms involving the second qubit.
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Figure 8.3.: Fidelities under the RWA. (a) Fidelity to the target evolution without unwanted
coupling by using the constant-amplitude coupling. (b) As in (a) but using the
Gaussian soft coupling such that we obtain the same target evolution. Curves in (c)
and (d) show cross-sectional plots [cuts marked with black dashed lines for (c) and
white dashed lines for (d)] in the constant-amplitude case of (a) [red solid lines], or
for the Gaussian shaped coupling case of (b) [blue dashed lines]. It is easy to see
that the soft quantum control scheme keeps a high fidelity even for a relatively large
ratios c/ω at long evolution times T . (Reprinted figure with permission from [H4].
Copyright (2018) by the American Physical Society.)

governed by H (t) = H0 + Hint(t) and the one generated by Htarget at the final time are effectively
the same. In particular, we aim to achieve

U (T ) = T←e−i
∫ T /2
−T /2 dτ H0+Hint(τ)

= e−iT Htarget = Utarget(T ), (8.18)

where U (T ) is the evolution under the soft quantum control. To succeed, we select the following
parametrization for the Gaussian,

σ =
T

4
√

2
and λ0 =

[
√

2πσerf
(

T

2
√

2σ

)]−1

. (8.19)
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Naturally, the width of the Gaussian, σ, is the most crucial but also most sensitive parameter
participating in the problem. To decouple of resonant transitions efficiently, the width has to be
chosen as large as possible, since this results in a narrow frequency window where interactions
are not suppressed. This is an intuitive result from the averaging function in Eq. (8.6), which
can be understood as a Fourier transform. On the other hand, when σ is chosen too large, one
obtains a constant coupling as the limiting case.
We measure the gate fidelity according to [354]

F =

���tr
[
UtargetU†

] ���
tr

[
UU†

] . (8.20)

The numerical results for various energies and couplings are displayed in Figure 8.3 (a) for
the standard constant coupling, i.e., no modulation, and in (b) for the Gaussian modulation.
Inspection of the plots reveals that the soft quantum control reaches much higher fidelities over
a wide range of parameters (blue region), and we stress that in particular this is the case for
strong couplings (c > ω) where the RWA usually starts to fail. Panels (c) and (d) in Figure 8.3
show cuts through the maps in panels (a) and (b), the constant coupling with a red solid line
and the Gaussian coupling as a blue dashed line. From here, one can clearly observe that the
constant coupling requires much longer averaging times to approach a high fidelity. Naturally
during these times, relaxation and decoherence processes will decrease the fidelity further.
Furthermore, locating the points of high fidelity in the standard approach becomes increasingly
difficult when more qubits are involved. For that, compare also Appendix B.3.3 where we
illustrate the same example without the off resonant qubit 2.
Note that our approach is fundamentally different from adiabatic elimination [355, 356]. Adia-
batic elimination is aimed at coupling certain target levels by a virtual transfer of excitations
through other mediator states that are removed from the dynamics, thus generating an evolution
in the reduced Hilbert space of the target states. Instead our objective is to efficiently suppress

unwanted interaction terms in the Hamiltonian through a soft modulation of the coupling
constants, without reducing the dimension of the whole Hamiltonian and without having to use
other states as mediators. Hence, our method allows to switch off unwanted interactions among
the qubits in a highly selective manner and to perform high-fidelity quantum gates as we will
demonstrate later.
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8.3.2. Sensing and Quantum Gates

The soft quantum control mechanism allows high-fidelity interactions between weakly coupled
qubits while it avoids perturbations that arise from the surroundings. As we have seen in the
last section, these could arise due to other, possibly strongly coupled qubits. In this section, we
will take the mechanism a step further and illustrate its capabilities when implemented via DD,
employing the digitized formalism we described in Section 8.2.
As usual throughout this work, the platform of choice is the NV center in diamond. Despite
this growing habit, this platform is especially suitable here since the electron-nuclear hyperfine
coupling offers a medium to control the 13C nuclear spins via the NV electron spin and we thus
have exactly the arrangement displayed in Figure 8.1. Furthermore, the NV center represents
an excellent platform for quantum information processing, quantum sensing and quantum
networks [5,9,13,23,58,63,345], while it offers extraordinary capabilities to be manipulated by
a huge number of DD pulses [137, 180]. The calculations in Chapter 3 show that under pulsed
DD (or a continuous drive [322, 347], see Appendix B.3.4) on two NV electron states forming
the control qubit, the 13C Larmor frequencies ω j are shifted by their individual hyperfine
coupling [see Eq. (2.8)], providing the frequency differences δ j,n = ω j − ωn for selective
addressing, as stated in Eq. (3.24). Nevertheless, the equation also reveals that the frequency
differences are on the level of the hyperfine coupling, i.e.

���δ j,n
��� ≈ ���~A j − ~An

��� . (8.21)

Consequently, the electron-nuclear interactions are typically of the same order of magnitude
which imposes an enormous challenge on the design of highly-selective coupling. Especially
when the number of accessible nuclear spins in such a register should be increased which
is typically achieved for a higher concentration of 13C , the individual addressing becomes
incomparably more difficult.
To demonstrate the advantages of the soft quantum control, we compare different protocols
for single spin addressing in Figure 8.4, by using a model with two spectrally close nuclear
spins. The couplings among themselves are small but taken into account in the simulations.
Thereby we choose a strongly coupled (spin A) and a weakly coupled spin (spin B) whose
Larmor frequencies are separated by less than 5 kHz in a magnetic field of Bz = 400 G. The
couplings are shown in Table 8.1.
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Table 8.1.: Parameters of the spins used for the simulation presented in Figure 8.4. The
Larmor frequencies are calculated for 13C spins in a magnetic field Bz = 400 G.

ω
2π kHz

a‖
2π kHz

a⊥
2π kHz

spin A, weak 441.91 27.25 17.45

spin B, strong 437.54 16.93 55.45

We start with the presentation of frequency spectra as introduced in Chapter 7, obtained via
various methods.
As shown in Figure 8.4 (a) a frequency scan obtained via a continuous, constant drive exploiting
the Hartmann-Hahn resonance condition [322, 347] (see also Appendix B.3.4) does not resolve
the two 13C nuclei even for a longer sensing time T because of the slow power-law decay of
the signal around the resonance position. Importantly, note that the width of the peak is about
2π × 75 kHz.
As a next step, we implement a standard AXY sequence from Section 3.3.2 employing a small
f lDD = f3 = 0.271 at the third harmonic lDD = 3. The signal of 128 composite pulses is plotted
in Figure 8.4 (b) with a red line. The obtained signal reveals greater details than the scheme
employing the continuous drive, however it also reduces the coupling to the target spins. The
resonance position of the weakly coupled spin A is expected at 3ωDD = 441.91 kHz and marked
with the white (dashed) line. However it turns out that the resonance signal of spin A is heavily
disturbed by the influence of the strongly coupled spin B, causing the indentation in the signal.
Indeed, this can be seen directly from the single spin signals we computed by neglecting the
other spin respectively. These curves are shown with dotted lines in green and blue. At the
resonance position of spin A, there is a significant contribution of the strongly coupled spin
B caused by one of its side oscillations. Hence, we can conclude that spin A is impossible to
address individually using the AXY sequences, since the width of addressed frequencies is still
too large.
For the simulation of the curve in panel (c), we employ the Gaussian AXY sequence as de-
scribed in Section 8.2. Changing f lDD (with lDD = 3) in the AXY sequences for every unit with
four composite pulses, we implement λ(t) in a digitized manner while preserving the robustness
of the sequences against experimental control errors. We choose λ0 = maxt λ(t) = 0.6171,
while σ corresponds to 11 periods of the DD sequence. For the precise values of f3, i.e. λ(t),
we refer to Appendix B.3.5. This yields the red solid curve in Figure 8.4 (c) which demonstrates
the significant enhancement in the addressability and resolves the weak spin flawlessly. In
addition, it removes all side peaks around the spin resonances, which is of great advantage
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Figure 8.4.: The soft quantum control employed via AXY-sequences. (a)-(c) Signal of tran-
sition probabilities, originating from two nuclear spins with the Larmor frequencies
ωA = 2π × 441.91 kHz and ωB = 2π × 437.54 kHz. More details can be found
in Table 8.1. (a) Hartmann-Hahn resonance spectrum with a total sensing time
T ≈ 54 µs (red) or T ≈ 435 µs (blue). (b) Signal for the AXY sequences (red
solid line) operating at the third harmonic employing 128 composite pulses. The
single-spin contributions are drawn with dashed lines and corresponding shading.
The Fourier coefficient f3 = 0.271 is chosen to maximize the signal (green) one
from the spin with Larmor frequency ωA. The target signal centered at the vertical
white dashed-dotted line is destroyed by the strong perturbation (blue) originating
from spin B. (c) Varying f3 of the AXY sequences in (b) according to the Gaussian
shape clearly resolves the two spins. (d) The fidelity (blue solid curve) of the gate
Utarget = e−i π4 σ

z
0σ

x
1 ⊗ I2 as a function of the microwave detuning error δ by using

the Gaussian AXY sequence with a Rabi frequency Ω = 2π × 20 MHz in the
rectangular pulses. The red dashed line is the case for a mismatch of 5% in Ω.
To realize the gate Utarget, f3 has been reduced by a factor of two when using the
parameters indicated by the vertical dashed-dotted line in (c). (Reprinted figure
with permission from [H4]. Copyright (2018) by the American Physical Society.)
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when fitting dense signals [69] and avoids false identification of the signal peaks in particular in
the presence of spurious resonances like in Section 7.4.3 [74, 357, H2].

This great addressability suggests the employment of the Gaussian AXY sequence as a method
to apply robust, high-fidelity quantum gates on desired nuclear qubits. For example, a perfect
gate rotating spin A around its x̂-axis by an angle φ possesses the evolution operator

Utarget = e−i φ2 σ
zσx

A ⊗ IB. (8.22)

Note that this operator corresponds exactly to an evolution according to the effective Hamilto-
nian (3.25) where ms f lDD a⊥A/4 = φ/t. For the soft control, we adapt that notion to

φ = ms
a⊥A
4

∫ T/2

−T/2
dτ λ(τ) = ms

a⊥A
4

∫ T/2

−T/2
dτ λ0e

− τ2

(2σ)2 . (8.23)

We calculate the fidelity for the gate for the same sequence parameters as employed for the
spectrum given in Figure 8.4 (c) but choose the variation of f3 such that the target spin only
performs a half rotation, i.e. φ = π/2. In fact, this corresponds to half the λ0 employed for the
simulations in Figure 8.4 (c), since at the resonance position a π rotation is fulfilled (see also
Figure B.3). We include an energy shift of the strongly coupled nuclear spin equivalent to the
example above, Section 8.3.1, and choose the Rabi frequency of the pulses asΩ = 2π × 20 MHz.
The fidelity is shown in Figure 8.4 (d) for different values of possible detunings of the decoupling
pulses, where the blue curve represents a perfect match of the Rabi frequency and the pulse
time tpulse while the red curve includes a five percent error in Ω. Remarkably, the obtained
fidelity is always well above 99%, even for detunings of 2 MHz which is twice as much as we
would expect in an NV based setting [61, 74]. On the contrary, the fidelities achieved by the
Hartmann-Hahn or AXY protocol under the same conditions are very low (e.g., 57% for AXY)
because of the poor spin addressing [see Figure 8.4 (a),(b)].
Note that the enhanced spectral resolution by the soft control can be used to improve the
controllability of interacting spin clusters [180,185,219,338,H7] and nuclear-spin decoherence-
free subspaces [326].

8.4. Conclusions

We proposed the mechanism of soft quantum control which enables highly selective coupling
between different on-resonance constituents of composite quantum systems. The method
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introduces a time-dependent, Gaussian shaped modulation of the coupling constants in addition
to the matching of resonance frequencies. This results in an exponentially improved suppression
of off-resonant couplings. We motivated the form of the modulation by a first order average
Hamiltonian. To include strongly interacting quantum systems which are not covered by the
average Hamiltonian theory, we furthermore we established an adiabatic theory. Here, we
developed an average adiabatic Hamiltonian, which is even valid under the presence of strong
coupling terms to undesired parts of the Hilbert space.
To underline the capabilities of our model, we showed two direct applications of our protocol.
First an improved RWA, which is now also valid in the strong coupling regime, that is when the
energy splitting of the resonant systems is on the same order of magnitude as their coupling
strength. Moreover, the method guaranties continuous intervals of high fidelity with the
approximated Hamiltonian. That is, the averaging effect of the fast oscillating terms is not only
valid for isolated points in time. Second, we demonstrated how the soft quantum control can
be combined with DD techniques. In particular, we showed how it can introduces effectively
by modifying the AXY sequences developed in an earlier work. This enables the addressing
of weakly coupled nuclear spins under the presence of strong perturbations, originating from
impurities with close resonance frequencies. We presented a realistic example employing the
NV center in diamond. Moreover, the method is of general applicability and can be useful for
the coherent manipulations of quantum registers and spectroscopic challenges in a wide range
of systems such as stoichiomeric rare earth ion systems, spin defects and single dopants in
solids, as well as spin-boson systems.
Finally, we also remark that the technique goes well beyond realizing the proposed Gaussian
shape. In principle, many different shapes can be realized. The presented method hence also
provides the possibility to engineer the shape of the averaging factor in Eq. (8.6), or equivalently
the filter function in DD based scheme, Eq. (3.12), to meet the needs of the problem at hand.
For example, windows at other frequencies than odd multiplies of ωDD can be introduced by
adding an oscillatory component to λ(t). A Gaussian shape of small width yields a broad
window where one can address a wide range of target frequencies at once. This might be
of interest for schemes that, e.g., employ frequency specific Hamiltonian engineering for
hyperpolarization [358].
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Chapter 9
Controllable Non-Markovianity for an
Electron Spin in Diamond

The results presented in this chapter are published in [H5]. Reprinted excerpts with permission
from [H5]. Copyright (2018) by the American Physical Society.

What ever quantum system is under investigation, there is always, the unavoidable impact of
undesired noise altering the state of the observed system [1–4]. With quantum technologies
striving for commercial applications [5, 8, 9, 15, 21], it is essential to understand, first the origin
of the noise, but second, also the effect of the noise onto the employed quantum state and the
accompanied consequences for the application of interest, as there are quantum computing [14],
quantum cryptography [359], quantum simulation [24], quantum sensing [13] and quantum
metrology [18]. In some cases, the structure and the coupling of the environment allow for
a mutual exchange of information, and more specifically, information once drained out of
the system of interest may flow back at a later time. One usually denotes such a dynamic as
non-Markovian.
Apparently, different properties of the noise may render its impact less harmful. For example,
the Chapters 4 and 5 demonstrate that colored noise outperforms white noise (i.e. uncorrelated
noise) in terms of the achievable precision when estimating the transition frequency of a
qubit. Moreover, dynamical decoupling, as introduced in Chapter 3, solely keeps its refocusing
abilities when the noise possesses a finite correlation time. Further practical applications of these
non-Markovian processes have been recognized in the creation of entangled states [86, 360],
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energy transport in biological complexes [87, 89] and several other fields [37, 39, 85, 86, 88, 90,
361, 362, H3].
We dedicated Section 1.4 to the theoretical description of non-Markovianity and how it can be
introduced to characterize the dynamics of open quantum systems. As mention there, in the
last years, numerous works appeared developing methods and tools to quantify the degree of
non-Markovianity [82, 83, 102, 103, 130–132, 363]. More specifically, several measures have
been defined with the aim to quantify, how (non-)Markovian a dynamics is. These works are
accompanied by experimental investigations enabling extended control over this degree, with
realizations in trapped ions [100] and photonic setups [93–99].
In this chapter, we are theoretically and experimentally investigating the realization of a system
which enables continuous tunability of its degree of non-Markovianity, i.e., its quantification
according to a specific measure. More specifically, the NV center in diamond provides this
flexible platform where the inherent nitrogen nuclear spin acts as a natural source of non-
Markovianty during the genuine open-system evolution of the electron spin. For the control,
we manipulate the polarization of the nitrogen spin to induce collapses and revivals on the
electronic spin coherence, while the polarization direction of the nitrogen spin defines the
amplitude of these collapses and revivals. In other words, one of the system’s key features is
the fact that the source of non-Markovianity is intrinsic to the system itself, instead of being
artificially generated by an external signal generator acting as a source of correlated noise.
Here, we performed the data analysis using Bayesian inference to keep the amount of necessary
data acquisition to a minimum. Hence, we start this chapter with an introduction to the concept
and terminology concerning the latter in Section 9.1. Following in Section 9.2 is the theoretical
description of the model and the underlying processes leading to the non-Markovian dynamics.
The experimental investigation afterwards is divided into two parts. First, we analyze an FID
measurement performed on the NV center in Section 9.3.1. The reason for the latter is the
environment of the NV center. As described in Section 2.2, it may be highly complex and
in some instances, e.g., when single strongly coupled 13C spins are present, is already able
to induce non-Markovianity. In fact, we ensure that the only source of non-Markovianity
in our selected probe is the nitrogen nuclear spin, which in turn allows to set the degree of
non-Markovianity to zero, and importantly, allows an interpolation of the non-Markovianity
measure from data collected at short evolution times after initialization. Second, the dynamics
of the NV centers electron spin is tuned through different degrees of non-Markovianity by
specific preparations of the nitrogen spin. The details of the analysis and results are contained
in Section 9.4.2.
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9.1. Introduction to Bayesian Inference

The problem of assigning observed outcomes to possible causes, is a daily faced problem in
science. We may categorize possible causes with numbers which we call probabilities. Contrary
to a frequentist approach, where these probabilities are understood as the relative number of
occurrences of precisely that cause (in the limit of infinite observations), the Bayesian approach
takes probabilities as a measure of certainty, i.e., how much one believes a certain cause to
be the true one. Within the Bayesian approach, all causes, e.g. parameters to be inferred
are probability distributions themselves, while the frequentist approach assumes them to be
constant. For an in-depth review on Bayesian inference, see the references [104–106].
We denote a random variable for the parameters by Θ and a corresponding value by θ. Note
that in general θ can be a vector. The corresponding probability distribution is then written as
P (Θ). Let us introduce a second random variable for the measured data, X, where a specific
realization is denoted by x. The probability, to make certain observation X = x, i.e. a data point
or a whole set of data, given some model Θ is then the conditional probability

P (X = x |Θ = θ) =
P (X = x,Θ = θ)
P (Θ = θ)

. (9.1)

Note that the probability in the nominator on the r.h.s. denotes the probability to find x and
θ, while the l.h.s. is the probability to find x given θ. From now on we will drop the notation
like Θ = θ for probabilities and use the value alone, while we keep the calligraphic random
variables for the probability distributions.
Instead of the probability to make a specific observation x, we are rather interested in the
parameter θ. Hence, we can formulate the conditional probability the other way round, i.e.

P (θ |x) =
P (x, θ)
P (x)

. (9.2)

Usually, we do not have access to P (x, θ). Hence, we combine Eqs. (9.1) and (9.2) to obtain
Bayes theorem,

P (θ |x) =
P (x |θ)P (θ)
P (x)

. (9.3)

This theorem describes the desired object, i.e. the posterior probability distribution P (Θ|X = x).
This object quantifies how certain we are that a given Θ = θ is the cause of the outcome X = x.
The r.h.s. of the theorem is specified in the following way. The likelihood function for Θ
is P (X|Θ). While it is a probability distribution for X given Θ, we can also think of it as a
function weighting the values of Θ to the usually fixed, since observed, values X = x. The so
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called prior distribution P (Θ) is a powerful way to include prior knowledge of the parameter.
For example, a flat distribution would correspond to no prior information. However, in the
application described in the main text, e.g. for estimates of a coupling constant, we may
choose a Gaussian distribution with a mean value determined in earlier experiments. The only
remaining quantity is the evidence P (X). While we are able to express

P (X) =

∫
dθ P (X|Θ = θ) P (Θ = θ), (9.4)

we note that this quantity only serves as a normalization constant, hence we can neglect it and
write Bayes theorem as

P (Θ|X) ∝ P (X|Θ) P (Θ) (9.5)

Therefore, the posterior distribution is always totally determined by the likelihood function and
the prior distribution.

Possessing the posterior distribution allows the calculation of marginal probabilities, in case
Θ has more than one dimension. The marginal distribution for one specific dimension of Θ
quantifies the probability distribution for this dimension alone, irregardless of the distributions
in other dimensions. In other words, if we have the parameter θ = (θ1, θ2, . . . , θn) then the
marginal distribution for θi is given by

P (θi |x) =

∫
S

dθ1dθ2 . . . dθi−1dθi+1 . . . dθn P (θ |x), (9.6)

where S is the image of θ̃ = (θ1, . . . , θi−1, θi+1, . . . , θn).
We can also use the posterior distribution to calculate a posterior predictive. Integrating over θ
yields the posterior predictive distribution

P (Y|X = x) =

∫
Θ

dθ P (Θ = θ |X = x) P (Y|Θ = θ) (9.7)

where Y is a second set of observations, which has not yet been detected in a real experiment.
This is a powerful tool to first validate the obtained posterior distribution, but it can also be used
to predict further observations due to the causes specified with the parameters in Θ.
Usually, the posterior distribution cannot be calculated analytically and even a numerical
solution requires increasingly large effort, when the number of random variables increases.
However, one can use Markov-Chain-Monte-Carlo (MCMC) methods to sample the r.h.s.
of Eq. (9.3) efficiently. This technical detail goes far beyond the scope of this thesis and
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many examples of these methods can be found in [105, 106]. Here we use the No-U-Turn
Sampler [364], an extension to the Hamilton-Monte-Carlo MCMC algorithm [365]. The
models in this thesis have been implemented using the PyMC3 software package for the Python
programming language [366].
Using these algorithms, the obtained posterior distribution is given in terms of the relative
frequencies with which a specific realization of Θ appears. Calculating the marginals, gives the
relative frequencies of the values of a single parameter. The point estimate, which we denote
by an overbar •̄, is then given by the median of the marginal posterior distribution (we neglect
multimodal distributions in this work). However, the uncertainty in this value is determined
by the shape of the distribution. A natural way to summarize the form of the distribution with
least effort is the interval of highest posterior density (HPD). The HPD specifies the interval
of values, which all have a higher probability than the values outside the HPD. Usually, the
HPD is taken to cover a larger proportion of the distribution, e.g., as we also chose in the main
text, 95% of all values which occurred during the sampling. An easy analogy is the width of a
standard derivation, which contains 95.45% of its values within a region of width 4σ around its
mean value. In case the marginal posterior distribution would be Gaussian, the HPD and the
4σ region would be equivalent.

9.2. Modeling and Measuring the Sample Dynamics

Chapter 2 already contains an extensive introduction into NV centers. However, let us quickly
recall the necessary terminology and quantities, along with the specific details required for this
very specific setup. The diamond used in this chapter is a low nitrogen (< 1 ppb) electronic
grade diamond, grown by chemical vapor deposition with a depleted 13C concentration of
0.2 % (natural concentration 1.1 %) to prolong the coherence time. Interaction with the inherent
nitrogen nuclear spin results in a hyperfine splitting of the |±1〉 states (see Figure 2.1), depending
on the nitrogen isotope, here 14N (I = 1), which possesses a parallel hyperfine coupling of
A‖ ≈ 2π · 2.14 MHz [101]. We identified a native NV center, located deep (few µm) below
the diamond surface to reduce its detrimental impact. The Hamiltonian of this configuration is
given by [61] (compare also Section 2.2)

Hlab =∆S2
z + γeBzSz + QI2

z + γN Bz Iz

+ Sz A‖ Iz + A⊥
(
Sx Ix + Sy Iy

)
+ HR

(9.8)
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Figure 9.1.: Pulse scheme and theoretical modeling of the dynamics. The sequence for the
Ramsey experiments in (a) consists of a preparation phase, where the polarization
pulse initializes the electron spin in |0〉, the pulse R(φ) controls the population
of the 14N spin, two π/2 pulses (either x or y phase) on the electron spin and the
subsequent readout. During the free period t, the spins undergo the conditional
evolution illustrated in (b). If the electron spin populates |−1〉, it produces a
hyperfine field which induces rotations of the 14N spin. Therefore the pair switches
continuously between a product (top) and an entangled state (bottom). Note that the
roles of 14N and electron spin are interchangeable. This switching coincides with
the oscillations in the coherence in (c), where the points of maximal correlation
correspond to the points of minimal coherence. (Reprinted panels (a) and (b) with
permission from [H5]. Copyright (2018) by the American Physical Society)

where Iµ (µ = x, y, z) are the 14N spin-1 operators, the 14N gyromagnetic ratio is labeled
by γN and we have the quadrupole splitting Q and orthogonal interaction A⊥. An applied
field of Bz = 453 G lifts the degeneracy between the |±1〉 states as usual, but further allows
initialization into the |ms = 0,mI = 1〉 state as shown in Section 2.1.2. The Hamiltonian HR

contains all remaining terms originating from the environment of the NV, e.g., 13C spins and
other nitrogen impurities, including their coupling to the electron spin, but may also be seen
as an effective Hamiltonian responsible for experimental imperfections [171, 181]. Couplings
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between the 13C spins to 14N spins are neglected, since their dipolar coupling strength is about
0.63 Hz(nm/d)3, where d is their separation in nm. Hence their interaction will not appear on
the microsecond timescale observed in the following.1 We apply the secular approximation due
to the large zero field splitting ∆ � A⊥ ≈ 2π · 2.70 MHz [101], which prohibits flips of the
14N spin and also removes all terms in HR not coupling to Sz [181] (ensuring that [Sz,HR] = 0).
Because all free energy terms commute with the remaining interaction Hamiltonian Sz A‖ Iz,
these terms can be removed in a rotating frame yielding

H = Sz A‖ Iz + HR. (9.9)

We employ the electron spin as a noise sensor for the environment choosing the subspace
spanned by the |0〉 and |−1〉 state as an artificial qubit. Because of the pure dephasing Hamil-
tonian, the reduced density matrix of the electron spin only experiences a modulation of the
coherence elements. Hence, the FID is efficiently measured by a Ramsey experiment, whose
scheme is sketched in Figure 9.1 (a). The electron spin preparation and readout is achieved
optically, utilizing the mechanisms presented in Chapter 3. A wire spanned over the diamond
surface is used to realize coherent manipulations of the electron spin transition (microwave)
or nitrogen spin transitions (radio-frequency).2 At the chosen strength of the magnetic field,
the nitrogen nuclear spin is polarized in the |mI = 1〉 state by optical pumping [168] and it
can be rotated by a radio frequency pulse R(φ) to a desired state ρ(N ). It is not a crucial
requirement that this state is coherent. We will examine the role of the 14N spin in more detail
in Section 9.2.1.
After polarization, a π/2 pulse flips the electron spin to the superposition state |ψ〉 = (|0〉 +

|−1〉)/
√

2. For a time t the system will evolve freely, depending on the electron spin state
as depicted in Figure 9.1 (b), i.e. according to the conditional Hamiltonian Hi = 〈i | H |i〉.
Assuming an initial product state, ρ = ρ(e) ⊗ ρ(N ) ⊗ ρ(R), with ρ(e) = |ψ〉 〈ψ | and ρ(R) arbitrary,
the dynamic of the electron spin is completely described by the coherence modulation, i.e.

ρ(e)
0,−1(t) = 〈0| trN,R

[
ρ(t)

]
|−1〉 ∝ trN,R

[
e−itH0 ρ(N ) ⊗ ρ(R)eitH−1

]
, (9.10)

where trN,R [•] denotes the partial trace over the nitrogen and the bath degrees of freedom.
Assuming no residual population left in |1〉, the length of the Bloch vector associated with the

1Note that a similar argument would hold for a bath of electron spins, e.g., emerging from P1 centers. Their
coupling to the nitrogen spin of the NV is around 5 kHz(nm/d)3 and therefore becomes important on the
microsecond timescale.

2The corresponding Hamiltonians are suppressed in Eq. (9.8) as they are only utilized for preparation and readout
and therefore are not part of the dynamics of interest.
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qubit in the {|0〉 , |−1〉} subspace is equivalent to the coherence. This length can directly be
calculated as

r (t) =

√
tr

[
σx

(e) ρ
(e)
0,−1(t)

]2
+ tr

[
σ

y
(e) ρ

(e)
0,−1(t)

]2

= |L(t) |
√

p2
0 + p2

1 + p2
−1 + 2p0(p1 + p−1) cos(A‖t) + 2p1p−1 cos(2A‖t),

(9.11)

where L(t) = tr
[
e−it〈0|HR |0〉ρ(R)eit〈−1|HR |−1〉

]
and pi is the initial population in the state |mI = i〉

of the nitrogen spin, while σµ
(e), µ = x, y are the Pauli operators in the {|0〉 , |−1〉} subspace

of the electron spin. Using the normalization constraint p1 + p−1 + p0 = 1, we parametrize
p1 = p cos2(φ/2), p0 = p sin2(φ/2) and p−1 = 1 − p where φ is a mixing angle and p the
amount of population in the desired subspace of |mI = 0,1〉. For the readout, the electron spin is
rotated back to the z-axis (either around x or y, such that the respective component of the Bloch
vector is measured) and after a subsequent readout pulse the fluorescence light is recorded
proportional to r (t). During the measurement, we refocus the position of the NV center every
40 seconds to overcome drifts in the optical setup. A precise measurement of the microwave
transition frequency of the electron spin every 300 seconds ensures the elimination of possible
transition frequency detunings during the experiment.
The detailed calculation of L(t) quickly becomes tedious, as it requires explicit knowledge
about the Hamiltonian HR. On timescales well below the T1 relaxation time of the population
decay, the pure dephasing dynamics assumed above has been verified by a wide range of experi-
ments [181] and analytic calculations [175]. We stress again, that this is a consequence of the
large zero field splitting ∆. One of the main contributions to HR are impurities in the diamond
sample like the 13C spins. Furthermore, HR can contain effects originating from the surface of
the diamond probe, which have been examined by noise spectroscopy in [171] showing that it
is sufficient to consider a model only inducing dephasing noise. At last, the mentioned drifts
in the optical setup or temperature fluctuations during the experiment time slightly shift the
resonance line of the electron spin. While being reduced by repeated refocusing steps during
the data collection, this effect leads to random phase fluctuations between repetitions of the
same experimental runs which ultimately results in an effective decoherence process when
averaging over the experimental data (see also the definition of the T∗2 time in Section 2.1.1).
While the noise originating from impurities could be written explicitly in the case the exact
couplings would be known [see Chapter 2.2, in particular the last three terms in Eq. (2.7)],
due to their large number it is justified to model their effect by a magnetic field randomly
fluctuating in amplitude according to a classical Gaussian process [174, 214, 299], that we have
also considered in Section 3.1. The effect of the surface and the experimental subtleties can
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also be included into the statistics of the process.
Indeed, taking all these effects into account results in a challenging estimation of L(t). However,
it can often be modeled effectively as an exponential function L(t) = exp

[
−

(
t/T∗2

)n]
, where

n = 1 for ensemble measurements and n = 2 for single realizations [175].

To measure the degree of non-Markovianity in the system, we recall Section 1.4.1 where we
introduced the trace distance as a suitable quantification. In particular, the example of a pure
dephasing qubit dynamics fits exactly to the model introduced here. Therefore, we measure the
non-Markovianity using Eq. (1.35), i.e.,

N =
∑

m

r (τ′m) − r (τm),

where r (t) is now given by Eq. (9.11) and the sum collects all intervals (τm, τ
′
m) with r (τ′m) −

r (τm) > 0.

9.2.1. The Role of Correlations and a non-Markovian Evolution

In case of a noiseless evolution and perfect pulses, the evolution of the total system of electron
and nitrogen spin can be exemplified as follows. The state after application of the radio
frequency pulse on the 14N spin is given by

|ψ0〉 =
|0〉 + |−1〉
√

2
⊗ |φ0〉 ,

where |φ0〉 = sin
φ

2
|mI = 0〉 + cos

φ

2
|mI = 1〉 ,

(9.12)

and we kept the parametrization of the nitrogen spin state as in the previous section. During the
evolution governed by the Hamiltonian in Eq. (9.9), we have the state

|ψ(t)〉 =
|0〉 ⊗ |φ0〉 + |−1〉 ⊗ |φ(t)〉

√
2

,

where |φ(t)〉 = sin
φ

2
|mI = 0〉 + cos

φ

2
eit A‖ |mI = 1〉 .

(9.13)

The state |ψ(t)〉may represent an entangled state between the electron and nitrogen spin. Hence,
correlations have built up between the two subsystems, which are responsible for the coherence
oscillations of the reduced electron spin state, see also Figure 9.2.1. For 〈φ(t) |φ0〉 = 0, we
even obtain a Bell-state and the coherence of the electron spin after tracing vanishes completely.
We plot the overlap of the states |φ0〉 and |φ(t)〉 in Figure 9.2 (a) and the length of the electron
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Figure 9.2.: Connection of the entanglement, Bloch vector length and purity. In (a) the
overlap of the states |φ0〉 and |φ(t)〉 is plotted. Clearly, at points where these
are orthogonal the length of the Bloch vector in (b) is zero, hence the total state
represents a Bell state. As a consequence, the purity of the electron spin state in
(c) shows its minimal value at these points, indicating that the state is maximally
mixed. Subsequently, when t A‖ progresses, the 14N nuclear and the NV electron
spin get decorrelated which results in an increasing coherence and purity.

spin’s Bloch vector in Figure 9.2 (c), where the connection between the electron spin coherence
and the overlap of the 14N spin states is clearly observable. After a minimum (red area), the
overlap increases and the state |ψ(t)〉 becomes separable again. Note that this situation is also
shown in explicitly in Figure 9.1 (c). Furthermore, performing the partial trace over the nitrogen
degrees of freedom yields the reduced state of the electron spin

ρ(e) (t) =
1
2

(|0〉 〈0| + |−1〉 〈−1|) +
1
2

[(
sin2 φ

2
+ cos2 φ

2
eit A‖

)
|−1〉 〈0| + h.c.

]
. (9.14)

From here, we calculate the purity of the state as shown in Figure 9.2, which, as expected,
shows the same behavior as the length of the Bloch vector. Hence, this case clearly illustrates
the connection between the entanglement of the two spin qubits, the coherence of the electron
spin and the purity of the latter.

Importantly, the reduced state of the electronic spin, Eq. (9.14) is independent of coherences in
the nitrogen spin. In particular, the same reduced electronic state is obtained, whatever mixing
of the nitrogen is assumed. Following the reasoning in Section 7.3, the state of the electron spin
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during the free evolution can be written as

ρ(e) (t) =
1
2

(|0〉 〈0| + |−1〉 〈−1|) +
1
2

[
trN

[
e−it A‖ Iz ρ(N )

]
|−1〉 〈0| + H.c.

]
, (9.15)

where the coherences of the nitrogen spin state are irrelevant. For example, we may have

ρ(N ) = sin2
(
φ

2

)
|mI = 0〉 〈mI = 0| + cos2

(
φ

2

)
|mI = 1〉 〈mI = 1| . (9.16)

After performing the trace, this yields exactly Eq. (9.14). Therefore, the nature of the corre-
lations between the two spins it is not as important since they cannot be distinguished by a
measurement on the electron spin only.

9.3. Measuring the Free Induction Decay

In a preliminary experiment we explore the agreement of the FID envelope induced by HR

with a monotonic decay to exclude contributions to a non-Markovian evolution. Therefore,
polarization of the 14N spin is performed such that p0 = 1 ,and R(φ) ≡ 1. This enables a
measurement of |L(t) |, see Eq. (9.11). Figure 9.3 shows the FID envelope in terms of the
collected photoluminescence (PL). We model the observed likelihood distribution by a normal
distribution with a mean µ = r (t) exp(−c0) + d and |L(t) | = exp

(
−

∑5
i=1 aiti

)
. For a detailed

description of the modeling, see also Section 9.3.1 below. Here, c0 is a constant to normalize the
measured contrast and d a possible bias in the asymptotic regime. After 50000 iterations of the
chosen sampling algorithm (see the introduction to Bayesian estimation in Section 9.1), we plot
the red curve using the medians of the sampled parameters and the marginals of the posterior
distribution for all ai in the insets. The experimentally measured contrast at specific times is
shown with black dots. The FID envelope is well characterized by L(t) = exp

[
−

(
t/T∗2

)2
]
, i.e.,

the dynamic is fully (time-inhomogeneous) Markovian. Crucially, note that non-Markovian
characteristics can only appear if at least one of the ai is negative, i.e., the polynom

∑5
i=1 aiti is

decreasing at some arbitrary time. We extract the characteristic timescale from the marginal
of a2 (we take the median as the point estimate and denote it by •̄) and obtain T∗2 = 22.262 µs

where the 95% high posterior density interval (HPD) (i.e. 95% of sampling values lie in that
region) is [21.878, 22.868] µs. Coherence envelopes of this form are extremely useful for
frequency estimation using entangled states, since the Gaussian decay ensures a super-classical
scaling of the estimation error with the number of probes [37, 39, H3], see also Section 4.4.1.
A careful examination of the short time regime reveals oscillations in the FID curve (see inset
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Figure 9.3.: FID of curve of the NV center in units of the measured photoluminescence
(PL). The negligible values of the decay constants āi in the top right histogram of
sampled values supports the purely Gaussian shape of L(t). The histogram in the
lower left assembles the distribution for T∗2 with the HPD interval marked by the
horizontal line. From the initial oscillations at short times, the Bayesian method
can extract also other parameters (distributions not shown), as p = 0.972 with
HPD [0.943, 1], φ = 0.191 with HPD [0.151, 0.227] and A‖ = 2π · 2.143 MHz
where HPD 2π · [2.137, 2.148] MHz. (Reprinted figure with permission from [H5].
Copyright (2018) by the American Physical Society.)

in Figure 9.3), suggesting that the nitrogen spin is not fully polarized, as confirmed by the
Bayesian method exploiting Eq. (9.11) of our model. The procedure is able to extract the
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different contributions to the decay stemming from the bath, which are collected L(t), but also
the parameters describing the 14N spin. For the latter, we obtain the coupling strength A‖ and
the parameters φ, p (values see Figure 9.3) for the population distribution, up to the symmetry
in |mI = ±1〉 which is not resolvable in such experiment, see Eq. (9.11).

9.3.1. Bayesian Modeling of Free Induction Decay

Recall the expression for the length of the Bloch vector, Eq. (9.11), where our assumption for
L(t) is of the form

L(t) = e−
∑5

i=1 ai t i . (9.17)

As a first step, we define the parameters to be inferred. We remind ourselves that due to
the normalization of the probabilities, we have the parametrization p1 = p cos2(φ/2), p0 =

p sin2(φ/2) and p−1 = 1 − p. Therefore, we define the parameters θ = ({ai}, φ,p, A‖ ,d,c0,σ).
We are looking for the coefficients {ai} fixing the FID envelope, the populations of the nitrogen
spin, the parallel coupling constant A‖ and the asymptotic bias of the readout contrast d. The
parameter c0 represents the normalization constant of the measured PL. To account for further
errors, we define σ as the standard deviation of the measurements in the experiment. Each data
point j of the FID envelope in Figure 9.3 is uniquely determined by its time t j and its value,
let us call it x j . We construct the likelihood function in the following way, also sketched in
Figure 9.4 (a). Each value x j of the corresponding random variable in X = (X1, . . . ,Xn) is
assumed to be a draw from a normal distribution with variance σ2 and an expectation value
µ(t j ) = [r (t j ) −c0 + d]��θ , i.e. we have

P (X|θ) ∝ exp
{
−

[X − µ(T ) |θ]2

2σ2

}
(9.18)

where we use the vector of measurement times T = (t1, . . . , tn). Prior distributions for the
parameters θ are also assumed either to be normal distributions around their expected value,
e.g., A‖ ∼ N (2π · 2.14 MHz,σA‖ ), or a positive half normal distribution, since c0 and all ai ≥ 0.
Note that the origin of σ is not explicitly specified, but it is an inherent quantity of the model.
As mentioned above, it accounts for error sources not explicitly specified in the model. On the
other hand, an unnaturally large σ may also indicate a falsely specified model.
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Figure 9.4.: Sketch of the Bayesian FID modeling and oscillations in the length of the
electron spin’s Bloch vector. (a) - Each measurement result, like the one marked
in red is assumed to be the result of a random draw with the probability distribution
sketched in blue. (b) - The curves show oscillations in the Bloch vector length for
three initial preparations of the nitrogen spin. Note the difference in amplitude and
offset but equality in frequency and phase. The curve for φ = 0 (blue triangles)
is supposed to show no oscillations theoretically, but of course it is influenced in
practice by fluctuations in the measurement. (Reprinted figure with permission
from [H5]. Copyright (2018) by the American Physical Society.)

9.4. Tuning the Non-Markovianity

An imperfectly polarized 14N spin, i.e., a coherent or incoherent mixture of Iz eigenstates,
induces oscillations of the electron spin coherence (see Figure 9.3 and Section 9.2.1). Con-
sequently the reduced electron spin state undergoes a non-Markovian evolution. Vice versa,
any population of the 14N spin state undergoes the conditional evolution governed by the
Hamiltonian (9.9). At the point of maximal achievable correlations [Figure 9.1 (b), bottom],
the reduced state of the electron spin has reached its point of minimal coherence. Following is
an increase in coherence corresponding to a reduction of correlations between the two spins.
For an incoherent mixture of the nitrogen spin, the correlation would be classical. However, the
induced effect on the reduced state of the electron spin would be the same as it is discussed in
Section 9.2.1. Consequently, changing the orientation of the polarization of the nitrogen spin
allows to control the non-Markovianity of the electron spin in a continuous manner.
In order to measure experimentally the amount of non-Markovianity, we follow again the
Ramsey scheme, Figure 9.1 (a). Subsequently to the polarization, the nitrogen spin population
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Figure 9.5.: Illustration of the collected data and the connection to the non-Markovianity
measure. For the sale of visibility in plot (a), we only show 3 exemplary data sets
of the total 14 which have been collected. The angle of each set collected for the
analysis is shown via a red dot at t = 0, which also illustrates the measurement
contrast depending on the polarization direction of the nitrogen spin. All curves
have two full revivals at the same position as the one for φ = 3π/4 (orange dots).
From this data, one can compute the modified measure of non-Markovianity N ′

which results in panel (b). Each curve for a single instance of φ results in a single
point of N ′ (compare also the next Figure 9.6). (Reprinted figure with permission
from [H5]. Copyright (2018) by the American Physical Society.)

can be manipulated coherently by a resonant radio-frequency pulse R(φ) to create the nuclear
spin state |ψI〉 = sin (φ/2) |mI = 0〉 + cos (φ/2) |mI = 1〉. The corresponding pulse length is
previously determined by a Rabi measurement between the two spin states (|mI = −1〉 is not
used in this work). Since observed shifts of the electronic transition (microwave-)frequency
do not exceed ∼ 2π · 10 kHz, the transition (radio-)frequency between the nitrogen nuclear
spin states is assumed to be constant due to the smaller gyromagnetic ratio.3 Hence, it is not
refocused during the measurement. We track the evolution of the electron spin for 14 different
values of φ up to a maximum time of T = 1.226 µs and record the oscillations in the coherence,
where some examples are shown in Figure 9.4 (b) and Figure 9.5 (a). The fluorescence signal

3The shifts in the transition frequencies are mainly due to drifts in the applied magnetic field, hence the induced
detunings are proportional to the individual gyromagnetic ratio.
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corresponds to the absolute value of the Bloch vector length4, which changes due to continuous
correlation and decorrelation of the electron spin and nitrogen nuclear spin. Furthermore, due
to the pure diamond sample and the short evolution time, we may regard the evolution as
essentially decoherence free, since for the coherence time determined by the FID measurements
we have L(T ) = exp[−(T/T∗2 )2] ≈ 1.
Let us now briefly describe the probabilistic model for this specific setup, while the following
Section 9.4.1 contains a detailed description of the modeling. First, note that a theoretical
measure of non-Markovianity as defined in Eq. (1.35) requires post-processed data, e.g., fits.
Otherwise, fluctuations will dominate the measure, e.g., for a constant coherence function
fluctuations of the measurement results accumulate and give a positive measure. For example,
observe the blue curve in Figure 9.4 (b) corresponding to φ = 0. Here, fluctuations would
introduce non-Markovianity artificially, while according to Eq. (9.11) a vanishing measure of
non-Markovianity is expected. To avoid this issue, we exploit the oscillatory nature of the modu-
lation and stop the recording of the oscillation before finishing an integer number of periods, i.e.,
for a time that is not an integer multiple of 2π/A‖ . The requirement for an increase of the coher-
ence in Eq. (1.35) is then relaxed and the sum runs over all intervals, such that the fluctuations in
the data are averaged out, resulting in a measurement proportional to the oscillation amplitude.
The model for the measure then possesses the simple form N ′(φ) = C(φ){r[φ,p(φ),T] − 1}
where C(φ) is a parameter describing the variable measurement contrast [182] outlined in
Section 2.1.2 and 1 − p(φ) the population left in |mI = −1〉. The modeling of these functions
will be given in the next section via Eq. (9.20) and Eq. (9.21), respectively. However, Figure 9.5
illustrates the connection between the measured coherence oscillations, the observed values of
N ′(φ) and the contrast C(φ).
We infer the model on the measured data to obtain the information of these functional depen-
dencies along the lines of the scheme laid out in the upper part of Figure 9.6. As shown in
Figure 9.5, the Ramsey measurements are used to evaluate N ′(φ). Crucially, all of these data
sets are interpreted as observations and fed into the likelihood distribution, which we construct
in detail in Section 9.4.1. However, as before, the expectation values are determined according
to the theoretical models of N ′(φ) and r (φ, t), while the prior distributions are taken as normal
distributions around physically reasonable values (see Section 9.4.2). Afterwards, the obtained
posterior distribution and the corresponding HPD parameter set Θ̄ are used to predict N ′(φ)
for different values of φ by drawing multiple samples of possible parameter sets Θ from the
posterior distribution P (Θ|X), where X is now associated with the measured Data.

4As mentioned above, the second π/2-pulse is either performed along the x̂ or the ŷ axis, giving the respective
components of the Bloch vector. From these values the length of the vector can be calculated.
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Figure 9.6.: Scheme and Results of the Bayesian analysis for the measure of non-
Markovianity. Ramsey measurements are performed for different values of φ
(top left, only φ = 2π/3 is shown, black circles) and the non-Markovianity measure
N ′ (lower plot, black circles) is evaluated, which are both fed as observations into
the likelihood distribution. The expectation value of the likelihood is constructed
according to N ′, while the prior distributions are taken as normal distributions.
The HPD parameter set Θ̄ can be plugged into the model defining the likelihood,
which results in the maximum a posteriori inference (red curve) to the Ramsey
data. The posterior distribution is sampled for different and, crucially, not measured
values of φ. This results in an expectation value 〈N ′〉 which is taken with respect
to the posterior, shown as the red curve in the lower plot along with the blue
region marking the standard deviation. The black dotted line corresponds to the
theory result neglecting the varying readout contrast and remaining population in
|mI = −1〉. (Reprinted figure with permission from [H5]. Copyright (2018) by the
American Physical Society.)
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The theoretical and experimental results are reported in Figure 9.6. In the lower part, black
dots mark N ′(φ) for the 14 measured instances of φ. The theory curve according to Eq. (1.35)
in black (dotted) is rescaled to match the values of the contrast. Its deviation from the red
curve, which illustrates the expectation value of N ′(φ) sampled with respect to the posterior
distribution, is due to the fact that the Bayesian model includes the angle dependent contrast
and the nitrogen population left in |mI = −1〉. In other words, the posterior distribution
predictions of our parameters, together with the model in Eq.(9.11) enable us to estimate further
measurement outcomes of the experiment. We show the standard deviation of the sampling as
the blue region, which covers most of the actual measurements. This standard deviation is due
to error sources not included explicitly in the model, e.g., remaining population of the electron
spin in |ms = 1〉 or drifts in the experimental setup.

9.4.1. Bayesian Inference Model for Tuneable non-Markovianity

Analogously to Section 9.3.1, let us illustrate the model employed for the inference of the
parameters describing the non-Markovian dynamics of the NV center. Given the pure dephasing
dynamics of the electron spin, it is enough to monitor its modulated coherence evolution as
outlined in Section 9.2. To demonstrate controllable non-Markovianity, we monitored the
length of the Bloch vector for 14 different initial preparations of the nitrogen spin, i.e., different
values for φ determining the pulse length of the radio frequency field in Figure 9.1 (a). In the
following, we want to illustrate the construction of the model used for the Bayesian inference.

1. We aim to describe the whole collected data by a common function, i.e., a model which
gives the value of the coherence depending on the given point in time and the rotation
angle of the nitrogen spin. The Bloch vector is still described by Eq. (9.11). Since we
parametrized the population of the nitrogen spin in terms of φ and p, we have

r (t, φ) =

{
2(1 − p)p cos(2A‖t) cos2

(
φ

2

)
+

4 − p(8 − 7p) + p2 cos(2φ)
4

+ p cos(A‖t)[2 − p + p cos(φ)] sin2
(
φ

2

) } 1
2

.

(9.19)

Since the final time of the free evolution was chosen as t ≤ T = 1.226 µs, we assume
L(T ) ≈ L(0) ≈ 1 because of the long coherence time provided by the low 13C concentra-
tion.

2. Three of the 14 data sets are shown in Figure 9.5 (a). The red curve at t = 0 (red circles
mark the position of other data sets) illustrate the dependence of the readout contrast
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on φ. See Section 2.1.2 for an explanation of this effect. To take this dependence into
account, we model the contrast via

C(φ) = Ca cos (Cν φ) + Cb, (9.20)

where Cβ are unknown constants to model amplitude (a), frequency (ν) and offset (b) of
the modulation. Each of these is chosen as normally distributed.

3. Analogously to the contrast, we need to parametrize p in terms of φ. This is less
straight forward, however a suitable parametrization can be found by mimicking Rabi
oscillations found in driven three level systems in a ladder configuration, i.e., the dynamics
governed by the Hamiltonian in (2.11) where the driving term is off-resonant to the desired
transition. We assume

p(φ) = 1 −
[
pb + pa sin(pν φ + pϕ)

]
. (9.21)

4. Next, we need to define the measure of non-Markovianity. Note the fluctuations for φ = 0
(blue triangles) and φ = 2π (green squares) in Figure 9.5. Ideally, these measurements
would correspond to a constant which results in a zero value of the non-Markovianity
measure. However, equally distributed fluctuations will be eliminated when we sum
over all differences instead of only the positive ones. This results in the definition of the
measure N ′. Calculating the measure analytically, we arrive at

N ′(φ) = C(φ)
n−1∑
i=1

[
r (ti+1, φ) |p=p(φ) − r (ti, φ) |p=p(φ)

]
= C(φ)

[
r (T, φ) |p=p(φ) − 1

]
,

(9.22)

which was already given in the previous section. The result for the measured data
sets is also shown in Figure 9.5 (b). Note that we always have r (T, φ) ≤ 1 leading
always to N ′(φ) ≤ 0. However, because of the periodicity of r (t, φ) in time is fixed
by A‖ for all angles φ, this does not change the meaningfulness of the measure. In
particular, because the induced oscillation has the same frequency for all φ and at t = T

all trajectories of r (t, φ) are in phase, the amplitude of the oscillation is sufficient to
quantify the non-Markovianity of the evolution.

5. The Bayesian inference model for the measure of non-Markovianity possesses a parallel
structure. Crucially, our inferred parameters need to be fitted to the modulations of the
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coherence, while they are at the same time required to describe the measure of non-
Markovianity. That is, we have the parameters θ = ({Cβ}, {pα}, A‖) which need to hold
for all observed coherence data X . However, we distinguish between the angle labels for
the coherence φ and the non-Markovianity measure φN for clarity. We rewrite Bayes
theorem as

P (θ,σ,σN |X ) ∝P (X |θ,σ,σN ) P (θ,σ,σN )

=Pr (Xφ |θ,σ) PN (XφN |θ,σN )

× P (θ) P (σ) P (σN ),

(9.23)

where we could split the likelihood function, since these variables are conditionally
independent5 in our probability model and mutually just depend on deterministically
collected data. By σ (σN ) we mark the standard deviation of the normal distribution
used to model the likelihood function Pr (PN ). These distributions have the expectation
values r (t, φ) |p(φ) and N ′(φN ) respectively [compare also Eq. (9.18)].

6. We formulate the posterior predictive distribution according to Eq. (9.7).

At last, let us formulate the following remark. The model presented here may appear to be too
complicated. Obviously, as soon as the parameters θ = ({Cβ}, {pα}, A‖) have been inferred, the
maximum posteriori inference curve r (t, φ) |p(φ) is known. Consequently, on can calculateN (φ)
on the whole parameter range of φ and t. Moreover, employing the parameters determined
during the FID decay in Section 9.3.1 enables the calculation of the non-Markovianity even
for evolution times greater than T = 1.226 µs. However, this would entail the calculation of an
involved error propagation for all parameters involved. The circumnavigation of such aspects is
the beauty of Bayesian inference, the errors are inherent to the model and manifest in the finite
width of the obtained posterior distribution, together with explicit parameters modeling noise
sources which are not taken into account explicitly in the model. Here, this role is played by
the widths σ.

5Two events A and B conditioned on Y are conditional independent if P (A ∩ B |Y ) = P (A|Y )P (B |Y ).
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9.4.2. Details of the Obtained Posterior Distribution

Figure 9.7.: Resulting models with parameters inferred by the Bayesian analysis. In (a)
we plot the maximum posterior value (red curve) for the nitrogen population in the
subspace |mI = 0,1〉. The HPD interval is marked by the grey area and the blue
squares indicate angles for which we measured the length of the Bloch vector. We
emphasize that the blue squares do not represent a measured value of the population.
However, in (b) we are able to compare our modeling of the contrast (red curve)
with the contrast directly after initialization (blue squares) and the first two full
revivals (green triangles, black circles). The HPD interval is set by the grey area.
(Reprinted figure with permission from [H5]. Copyright (2018) by the American
Physical Society.)

We infer the posterior distribution for the model of the non-Markovianity measure as introduced
above. The results are summarized in the following Table 9.1, where the first two columns
specify the properties of the prior normal distribution and the second two columns the point
estimate (median of the marginal) and the HPD interval.

Table 9.1.: Parameters of the Bayesian Inference for the non-Markovianity measure.

µ σ point estimate HPD
Ca 1 0.1 0.046 [0.044, 0.047]
Cν 0.3 0.1 1.030 [1.011, 1.050]
Cb 1 0.1 0.261 [0.260, 0.262]
pa 0.02 0.01 0.034 [0.023, 0.044]
pν 1.5 0.1 1.738 [1.611, 1.858]
pb 0.02 0.01 0.102 [0.091, 0.112]
pϕ 0 0.3 -0.528 [−0.904, −0.134]

A‖ /(rad/µs) 4.2π 0.5 2π 2.169 2π [2.165, 2.173]
σN 0 1 0.060 [0.037, 0.096]

The value for the σ values describing the standard deviations of each coherence function is not
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explicitly shown here, but the maximum posterior value for the largest of these is 0.018.

In Figure 9.7 we illustrate the dependence of the population p(φ) and the contrast C(φ) on
the polarization direction of the nitrogen spin. The plot in panel (a) shows the amount of
population in the desired subspace of |mI = 0,1〉. We remark again that the analytic solutions
cannot distinguish between |mI = ±1〉. We assign the finite offset from unity to an imperfect
polarization (i.e. < 100%) of the nitrogen before the radio-frequency pulse. At φ = 0 we can
get a hint of the efficiency of the polarization. The red curves shows the maximum posterior
value p̄(0) = 0.915, while the HPD interval (grey area) is fixed by [0.891 0.943]. During the
pulse, population leaks to the |mI = −1〉 state due to a non-vanishing Rabi frequency between
|mI = 0〉 and |mI = −1〉, which is leading to the shown curve.
The change of contrast is plotted in Figure 9.7 (b). Along with the inferred curve, we also
plotted the coherence data at t = 0 [blue squares, corresponds to the red curve in Figure 9.5 (a)]
and the first two full revivals (green triangles, black circles), i.e. r (tk , φ) = 1, which occur at

tk = k
2π
A‖
, k ∈ N. (9.24)

These times correspond to a totally decorrelated product state (see Section 9.2.1), i.e., the state
of the electron spin is equivalent at all these points. Therefore the contrast is only determined by
the polarization direction of the nitrogen spin which enables the comparison with our modeling
of the contrast without calculating the impact of correlations. We remark, that from this plot we
can again confirm that the assumption of a decoherence free evolution, i.e., L(t) ≈ 1, is justified.
Otherwise, the coherence values of later times would strictly show less contrast than the ones at
earlier times, which is not the case here. In particular, this is due to the long coherence time of
the sample and the Gaussian shape of the envelope.

9.5. Conclusions

In this chapter, we experimentally demonstrated the control of the degree of non-Markovianity
in the dynamics of an NV electron spin. To that end, we first developed the theory to model
the origin of the coherence modulations induced by a continuous correlation and decorrelation
process with the nitrogen spin. In a first step, we examined the FID envelope and employed
a Bayesian probabilistic model to ensure that the degree of non-Markovianity induced by the
residual noise background in the diamond host is actually zero. This background is mainly
resulting from the nuclear spin environment of the NV center. Subsequently, we exploited the
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inherent 14N spin to induce modulations on the electron spin coherence. The 14N provides
us with a natural source of non-Markovianity, which, depending on its initial preparation,
will be able to exchange a certain amount of information with the electron spin, influencing
the evolution of the latter. Despite of the initial control the 14N remains a natural source of
non-Markovianity as no further interventions after the preparation have to be performed. The
experimental effort for data collection is kept sufficiently low by using Bayesian techniques.
These methods allow to predict the shape of the considered non-Markovianity measure, while
also modeling the peculiarities that appear in the experimental realization.
Let us also mention that the scheme presented may be extended by the utilization of strongly
coupled 13C spins or interacting NV centers. Two NV centers located close enough are dipolar
coupled to each other and evolve exactly under the same type of Hamiltonian, Eq. (9.9), as
the coupled pair of electron and nitrogen spin in a single NV center. Surely, I z has to be
replaced by Sz of the second NV center’s electron spin, while the coupling constant will also
be different. In particular, this has been exploited to create entangled states between two NV
centers [319]. However, we want to mention that the deterministic creation of such suitable
pairs still represents a challenge [142], although it offers the possibility to achieve different
modulation frequencies by varying the distance between the NV centers which affects the
coupling constant. Hence, the construction of a network consisting of NV centers to explore
non-Markovian evolutions, indeed represents a challenging but also promising approach to
introduce further possibilities to control the induced dynamics.
Using the same technique as described here, additional parameters to shape the evolution can
be introduced. Further modifications could be implemented as well via a classical driving with
random, but temporally correlated amplitude.
In summary, the configuration investigated here allows the assembly of an experimental platform
with intrinsic non-Markovianity. This provides a building block for the systematic investigation
of memory effects in the performance of, e.g., quantum sensors and quantum metrology
protocols, as well as facilitating the controllable inclusion of memory in quantum simulations
of open quantum system dynamics.
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This thesis provides novel ways to manipulate, explore and exploit systems evolving accord-
ingly to quantum dynamics. We proposed a technique, that employs a time dependent coupling
between different constituents of a complex quantum system to remove off-resonant interactions.
Moreover, a variable platform to test the impact of non-Markovian dynamics has been demon-
strated, accompanied with an elaborate data analysis to reduce the necessary experimental
effort. The thesis further contributes to the understanding of fundamental limits in frequency
estimation employing entangled quantum probes. Throughout the whole work, a clear emphasis
lies on the microscopic approach to derive, characterize and classify the obtained results.

The chapters 4 and 5 extensively discuss the role of entanglement in quantum metrology under
the impact of noise. From a fundamental point of view, the ultimate scaling of the achievable
precision in the number of probes employed is close to be settled. At least in the widely used
parallel estimation scheme of identical probes, where all the fundamental limits have been
presented in the thesis at hand and are summarized in Table 5.1. Eventually, the only remaining
piece of theory to be fully addressed is a rigorous analytic proof for non-phase-covariant noise.
For a detailed discussion of the issues going beyond this analysis we refer to Chapter 6, which
already raises important questions and uncovers possible directions for future works. However,
we highlight that these open questions mainly concern real world implementations. The avail-
able theory thins out when dealing with interacting probes and correlated noise. Crucially, the
achievable precision in these settings can differ drastically from the one obtained for the parallel
estimation scheme employing non-interacting probes and environments, but also provide new
perspectives, such as decoherence-free subspaces [272, 274]. A further important direction is
the development of techniques or algorithms that find an optimal input state for a given quantum
channel that encodes the parameter. Concurrently, such an algorithm would optimally take the
constraints of the physical platform, employed for the realization of the scheme, into account.
Moreover, including quantum control into the framework of quantum metrology is a promising
candidate to increase the achievable precision, without necessarily introducing entanglement.
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Quantum control by itself is an integral component of quantum information science and
technology. From the preparation of demanded states and the engineering of desired dynamics,
to the transformation into states that one is able to read out, it is key to any application that will
successfully exploit quantum features in the future. Importantly, all these operations have to be
performed taking the restrictions of the physical platform one utilizes to realize the experiment
into account. One of the most basic requirements of a developed control technique is ease of
implementation, but moreover robustness against control errors. That is, it should not introduce
further errors in the dynamics that it aims to engineer. In fact, the latter is highly challenging
but encouraging progress is made. While DD sequences are already well developed and robust
sequences consisting over 10000 pulses [180] or qubits with a coherence time of six hours [224]
have been demonstrated, quantum error correction is catching up. In particular, the "break-even"
point, i.e., the point at which the lifetime of a logical qubit is increased beyond the lifetimes of
the physical qubits, has been reached very recently [367].
In the context of quantum sensing, the fields of quantum control and metrology are strictly
connected. Recent theoretical results suggest that the combination of the latter, especially error
correction, can lead to very effective suppression of environmental noise and therefore increase
the precision in the estimation of Hamiltonian parameters [279, 283, 284, 310]. Nevertheless,
these approaches suffer from the assumption of an infinitely fast control and future works need
to relax that requirement. Very recent results have taken a different direction, i.e., employing
quantum control techniques that provide access to measurement data which has advantages in
classical data processing [297, 300–302]. This route has also been shown to resolve chemical
shifts with a resolution of 1 Hz in nanoscale NMR [368]. For future extensions of these methods,
they may also be combined with entanglement, which should yield an even higher precision
by making use of the advantage provided by this unique quantum feature. In any case, until
entanglement can be incorporated efficiently into the sensor architecture, neat data acquisition
protocols are a promising intermediate step and moreover, they will not loose their importance
once the quantum advancement is reached.

Additionally, high selectivity and suppression of noise to enhance the T2 times which typically
limit the achievable precision, require the application of hundreds of DD pulses. Furthermore,
as we have discussed in Chapter 7, high amplitude pulses are more favorable as they minimize
the impact of the free dynamics due to their short duration. These short pulses are achieved by
utilizing high amplitudes in the driving field realizing the pulses. In practice, these conditions
ultimately lead to heating processes in the employed sensing device. Especially in applications

192



Concluding Remarks - Outlook

involving biological material or even in vivo probes, heating is detrimental. In optical spec-
troscopy experiments, squeezed light is an option to enhance the resolution without increasing
the intensity of the used light [230, 318]. However current solid state quantum sensors have
not been able to employ this quantum advantage effectively. Other solutions to these crucial
issues can be the development of shaped pulses that reduce the irradiated power but effectively
act as box pulses [369], or techniques that reshuffle the succession of pulses employed by
conventional sequences to exhaust their addressing capabilities. The latter idea lead to the soft
quantum control protocol presented in Chapter 8.
The presented soft quantum control is not only applicable in quantum sensing tasks. It further
provides a method to selectively address and control different constituents of large, interacting
quantum cluster by means of one control qubit. This is of particular interest for quantum infor-
mation, quantum simulation and quantum communication tasks. We demonstrated the protocol
on an NV center in diamond, which is a promising candidate to be the control qubit of q register
of nuclear spin qubits. For example, entanglement distillation [58], quantum teleportation
between NV centers separated by three meters [370], but also control over five carbon nuclear
spins [63] has been achieved. However, the deterministic creation of NV centers, especially
their positioning in the host material, still represents an unsolved challenge which deserves
high priority in future research. On the other hand also ion traps [371, 372] or superconducting
circuits [20, 373] are promising platforms were first realizations of computing devices with up
to nineteen qubits [374] have already been demonstrated [375–377].

In all applications mentioned so far, noise plays a fundamental role due to its ubiquitous
appearance in all practical realizations involving quantum systems. Nevertheless, it has been
shown that the impact of noise can be at least partially diminished by exploiting suitable
features that it may have. For example, non-Markovian noise has been proven to enable
quantum teleportation with mixed states [88]. Moreover, it is experimentally verified that
temporal correlations lead to an increasing robustness for quantum communication employing
superdense coding [378] and it also manifests that non-Markovian effects may play an integral
part in energy harvesting biomolecular structures [89]. Another interesting area is dissipative
state preparation, where it was already shown that non-Markovianity enables the generation
of entangled states [86, 379]. These findings certainly motivate the further exploration of the
characteristics of non-Markovian noise and its associated advantages.
In Chapter 9 of the thesis, we presented the electron spin of an NV center as a versatile and
simple platform for characterizing non-Markovian dynamics in a well controlled environment.
The control of non-Markovianity in an NV center via the manipulation of the natural sources of

193



Concluding Remarks - Outlook

noise in the system at hand represents a relevant step towards the full control of non-Markovian
dynamics in solid-state systems. In particular, since the non-Markovian noise can be generated
at will. Indeed, this property will have an important impact on different fields, in particular
when the system’s size is extended, maybe exploiting one of the proposals made in Section 9.5.
The thus created architecture might then be employed for the quantum simulation of a dynamics
which is affected by colored noise.
More importantly, however, as a fully controllable system, it may yield further insight on how
to engineer a specific open system evolution which fully exhausts the features provided by the
environment, whether it is for quantum computing, simulation or high precision sensing.
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assisted noisy quantum interferometry. Phys. Rev. A 90, 063619 (2014).

[313] M. Jarzyna and M. Zwierz. Parameter estimation in the presence of the most general
Gaussian dissipative reservoir. Phys. Rev. A 95, 012109 (2017).

[314] C. L. Latune, I. Sinayskiy and F. Petruccione. Quantum force estimation in arbitrary
non-Markovian Gaussian baths. Phys. Rev. A 94, 052115 (2016).

[315] R. Schnabel. Squeezed states of light and their applications in laser interferometers.
Phys. Rep. 684, 1 (2017).

[316] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693
(1981).

219



Bibliography

[317] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor and W. P. Bowen.
Biological measurement beyond the quantum limit. Nat. Photonics 7, 229 (2013).

[318] M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor and W. P. Bowen.
Subdiffraction-Limited Quantum Imaging within a Living Cell. Phys. Rev. X 4, 011017
(2014).

[319] F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer,
P. Neumann et al. Room-temperature entanglement between single defect spins in
diamond. Nat. Phys. 9, 139 (2013).

[320] R. de Sousa. Electron Spin as a Spectrometer o Nuclear-Spin Noise and Other Fluctua-

tions, pp. 183–220. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

[321] G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim,
A. Wojcik et al. Nanoscale imaging magnetometry with diamond spins under ambient
conditions. Nature 455, 648 (2008).

[322] P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri,
T. Teraji et al. Detecting and Polarizing Nuclear Spins with Double Resonance on a
Single Electron Spin. Phys. Rev. Lett. 111, 067601 (2013).

[323] A. Z. Chaudhry. Utilizing nitrogen-vacancy centers to measure oscillating magnetic
fields. Phys. Rev. A 90, 042104 (2014).

[324] W. Yang and R.-B. Liu. Quantum many-body theory of qubit decoherence in a finite-size
spin bath. Phys. Rev. B 78, 085315 (2008).

[325] W. Yang and R.-B. Liu. Quantum many-body theory of qubit decoherence in a finite-size
spin bath. II. Ensemble dynamics. Phys. Rev. B 79, 115320 (2009).

[326] M. A. Perlin, Z.-Y. Wang, J. Casanova and M. B. Plenio. Controlling Spectrally In-
distinguishable Nuclear Spins for a Decoherence-Free Subspace. ArXiv:1708.09414

(2017).

[327] Y. Makhlin, G. Schön and A. Shnirman. Quantum-state engineering with Josephson-
junction devices. Rev. Mod. Phys. 73, 357 (2001).

[328] I. Buluta, S. Ashhab and F. Nori. Natural and artificial atoms for quantum computation.
Rep. Prog. Phys. 74, 104401 (2011).

220



Bibliography

[329] J. M. Gambetta, J. M. Chow and M. Steffen. Building logical qubits in a superconducting
quantum computing system. npj Quant. Inf. 3, 2 (2017).

[330] X. Rong, D. Lu, X. Kong, J. Geng, Y. Wang, F. Shi, C.-K. Duan and J. Du. Harnessing
the power of quantum systems based on spin magnetic resonance: from ensembles to
single spins. Adv. Phys. X 2, 125 (2017).

[331] G.-Q. Liu, H. C. Po, J. Du, R.-B. Liu and X.-Y. Pan. Noise-resilient quantum evolution
steered by dynamical decoupling. Nat. Commun. 4, 2254 (2013).

[332] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima,
J. Isoya et al. Quantum error correction in a solid-state hybrid spin register. Nature 506,
204 (2014).

[333] V. V. Mkhitaryan, F. Jelezko and V. V. Dobrovitski. Highly selective detection of
individual nuclear spins with rotary echo on an electron spin probe. Sci. Rep. 5, 15402
(2015).

[334] P. G. Baranov, I. V. Il’in, E. N. Mokhov, M. V. Muzafarova, S. B. Orlinskii and J. Schmidt.
EPR identification of the triplet ground state and photoinduced population inversion for
a Si-C divacancy in silicon carbide. J. Exp. Theor. Phys. Lett. 82, 441 (2005).

[335] H. Seo, A. L. Falk, P. V. Klimov, K. C. Miao, G. Galli and D. D. Awschalom. Quantum
decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935
(2016).

[336] R. Ahlefeldt, W. Hutchison and M. Sellars. fill me. J. Lumin. 130, 1594 (2010).

[337] R. L. Ahlefeldt, M. R. Hush and M. J. Sellars. Ultranarrow Optical Inhomogeneous
Linewidth in a Stoichiometric Rare-Earth Crystal. Phys. Rev. Lett. 117, 250504 (2016).

[338] F. Shi, X. Kong, P. Wang, F. Kong, N. Zhao, R.-B. Liu and J. Du. Sensing and atomic-
scale structure analysis of single nuclear-spin clusters in diamond. Nat. Phys. 10, 21
(2013).

[339] W.-L. Ma and R.-B. Liu. Angstrom-Resolution Magnetic Resonance Imaging of Single
Molecules via Wave-Function Fingerprints of Nuclear Spins. Phys. Rev. Applied 6,
024019 (2016).

221



Bibliography

[340] J. M. Boss, K. Chang, J. Armijo, K. Cujia, T. Rosskopf, J. R. Maze and C. L. Degen.
One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond
Quantum Sensor. Phys. Rev. Lett. 116, 197601 (2016).

[341] W.-L. Ma and R.-B. Liu. Proposal for Quantum Sensing Based on Two-Dimensional
Dynamical Decoupling: NMR Correlation Spectroscopy of Single Molecules. Phys. Rev.

Applied 6, 054012 (2016).

[342] I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K. De Greve, R. Evans,
R. Gertner et al. Nuclear magnetic resonance detection and spectroscopy of single
proteins using quantum logic. Science 351, 836 (2016).

[343] Y. Matsuzaki, T. Shimo-Oka, H. Tanaka, Y. Tokura, K. Semba and N. Mizuochi. Hybrid
quantum magnetic-field sensor with an electron spin and a nuclear spin in diamond. Phys.

Rev. A 94, 052330 (2016).

[344] Q. Chen, I. Schwarz and M. B. Plenio. Dissipatively Stabilized Quantum Sensor Based
on Indirect Nuclear-Nuclear Interactions. Phys. Rev. Lett. 119, 010801 (2017).

[345] J. Casanova, Z.-Y. Wang and M. B. Plenio. Arbitrary nuclear-spin gates in diamond
mediated by a nitrogen-vacancy-center electron spin. Phys. Rev. A 96, 032314 (2017).

[346] S. R. Hartmann and E. L. Hahn. Nuclear Double Resonance in the Rotating Frame. Phys.

Rev. 128, 2042 (1962).

[347] J. Cai, F. Jelezko, M. B. Plenio and A. Retzker. Diamond-based single-molecule magnetic
resonance spectroscopy. New J. Phys. 15, 013020 (2013).

[348] E. S. Mananga and T. Charpentier. On the Floquet–Magnus expansion: Applications in
solid-state nuclear magnetic resonance and physics. Phys. Rep. 609, 1 (2016).

[349] N. Zhao, Z.-Y. Wang and R.-B. Liu. Anomalous Decoherence Effect in a Quantum Bath.
Phys. Rev. Lett. 106, 217205 (2011).

[350] Z.-Y. Wang and M. B. Plenio. Necessary and sufficient condition for quantum adiabatic
evolution by unitary control fields. Phys. Rev. A 93, 052107 (2016).

[351] K. Xu, T. Xie, F. Shi, Z.-Y. Wang, X. Xu, P. Wang, Y. Wang, M. B. Plenio et al. Breaking
the quantum adiabatic speed-limit by jumping along geodesics. ArXiv:1711.02911

(2017).

222



Bibliography

[352] M. P. Wardrop and A. C. Doherty. Exchange-based two-qubit gate for singlet-triplet
qubits. Phys. Rev. B 90, 045418 (2014).

[353] J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra and
A. Yacoby. High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quant.

Inf. 3, 3 (2017).

[354] X. Wang, C.-S. Yu and X. Yi. An alternative quantum fidelity for mixed states of qudits.
Phys. Lett. A 373, 58 (2008).

[355] B. T. Torosov and N. V. Vitanov. Adiabatic elimination of a nearly resonant quantum
state. J. Phys. B At. Mol. Opt. Phys. 45, 135502 (2012).

[356] N. V. Vitanov, A. A. Rangelov, B. W. Shore and K. Bergmann. Stimulated Raman
adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).

[357] J. E. Lang, J. Casanova, Z.-Y. Wang, M. B. Plenio and T. S. Monteiro. Enhanced
Resolution in Nanoscale NMR via Quantum Sensing with Pulses of Finite Duration.
Phys. Rev. Applied 7, 054009 (2017).

[358] I. Schwartz, J. Scheuer, B. Tratzmiller, S. Müller, Q. Chen, I. Dhand, Z. Wang, C. Mueller
et al. Pulsed polarisation for robust DNP. ArXiv:1710.01508 (2017).

[359] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden. Quantum cryptography. Rev. Mod. Phys.

74, 145 (2002).

[360] M. B. Plenio and S. F. Huelga. Dephasing-assisted transport: quantum networks and
biomolecules. New J. Phys. 10, 113019 (2008).

[361] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco and J. T. Stockburger. Optimal Control
of Open Quantum Systems: Cooperative Effects of Driving and Dissipation. Phys. Rev.

Lett. 107, 130404 (2011).

[362] B. Bylicka, D. Chruscinski and S. Maniscalco. Non-Markovianity and reservoir memory
of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720
(2014).

[363] G. Torre, W. Roga and F. Illuminati. Non-Markovianity of Gaussian Channels. Phys.

Rev. Lett. 115, 070401 (2015).

223



Bibliography

[364] M. D. Hoffman and A. Gelman. The No-U-turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593 (2014).

[365] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech.

Rep. Technical Report No. CRG-TR-93-1, University of Toronto (1993).

[366] J. Salvatier, T. V. Wiecki and C. Fonnesbeck. Probabilistic programming in Python using
PyMC3. PeerJ Comp. Sci. 2, e55 (2016).

[367] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio
et al. Extending the lifetime of a quantum bit with error correction in superconducting
circuits. Nature 536, 441 (2016).

[368] D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park and R. L. Walsworth. High-
resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555,
351 (2018).

[369] J. Casanova, Z.-Y. Wang, I. Schwartz and M. B. Plenio. Shaped Pulses for Energy
Efficient High-Field NMR at the Nanoscale. ArXiv:1805.01741 (2018).

[370] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J.
Tiggelman, R. N. Schouten et al. Unconditional quantum teleportation between distant
solid-state quantum bits. Science 345, 532 (2014).

[371] C. Piltz, T. Sriarunothai, S. S. Ivanov, S. Wölk and C. Wunderlich. Versatile microwave-
driven trapped ion spin system for quantum information processing. Sci. Adv. 2 (2016).

[372] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich and W. K.
Hensinger. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3 (2017).

[373] M. H. Devoret and R. J. Schoelkopf. Superconducting Circuits for Quantum Information:
An Outlook. Science 339, 1169 (2013).

[374] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell,
N. Didier et al. Unsupervised Machine Learning on a Hybrid Quantum Computer.
ArXiv:1712.05771 (2017).

[375] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush,
A. G. Fowler et al. Digitized adiabatic quantum computing with a superconducting
circuit. Nature 534, 222 (2016).

224



Bibliography

[376] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow and J. M.
Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets. Nature 549, 242 (2017).

[377] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant,
B. Chiaro et al. A blueprint for demonstrating quantum supremacy with superconducting
qubits. Science 360, 195 (2018).

[378] B.-H. Liu, X.-M. Hu, Y.-F. Huang, C.-F. Li, G.-C. Guo, A. Karlsson, E.-M. Laine,
S. Maniscalco et al. Efficient superdense coding in the presence of non-Markovian noise.
EPL 114, 10005 (2016).

[379] C. Cormick, A. Bermudez, S. F. Huelga and M. B. Plenio. Dissipative ground-state
preparation of a spin chain by a structured environment. New J. Phys. 15, 073027 (2013).

225





Appendix

227





Appendix A
Metrology

A.1. Derivation of CRB and FI

Let us first define the Fisher score, which is the derivative of the logarithm probability defining
the frequency of outcomes [30], i.e.

sω0 =
∂qω0 (~x)
∂ω0

where qω0 (~x) = ln pω0 (~x). (A.1)

Using
∫

d ~xpω0 (~x) = 1 and derivation with respect to ω0, it is straight forward to show that〈
sω0

〉
= 0.

Now assume that ĝω0 is the estimator of a function gω0 which is dependent on the parameter ω0.
The estimator may possess a possibly parameter dependent bias, hence

〈
ĝω0 (~x)

〉
= gω + βω.

We further have

∂

∂ω0

〈
ĝω0 (~x)

〉
=

〈
ĝω0 (~x)sω0

〉
=

〈 [
ĝω0 (~x) −

〈
ĝω0 (~x)

〉] [
sω0 −

〈
sω0

〉] 〉
= cov

[
ĝω0 (~x), sω0

]
,

(A.2)

where the second equality is obtained by effectively adding zeros because of the vanishing
expectation value of the Fisher score. Invoking the Cauchy-Schwarz-Inequality we arrive at the
bound

〈
ĝω0 (~x)sω0

〉2
≤ var

[
ĝω0 (~x)

]
var

[
sω0

]
⇔ var

[
ĝω0 (~x)

]
≥

〈
ĝω0 (~x)sω0

〉2

var
[
sω0

] . (A.3)
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This can be brought into form of the CRB introduced above. Therefore, note that for the MSE
we have ∆2ĝω0 = var

[
ĝw

]
+ β2

ω0
and the Fisher Information is exactly the variance of the fisher

score. We hence obtain

∆
2ĝω0 ≥

[
∂
∂ω0

〈
ĝω0 (~x)

〉]2

Fcl[pω0]
+

〈
ĝω0 (~x) − gω0

〉2

=

[
∂
∂ω0

(
gω0 + βω0

)]2

Fcl[pω0]
+ β2

ω0

≥
1

Fcl[pω0]

(
∂gω0

∂ω0

)2

,

(A.4)

where the last inequality becomes equal for βω0 = 0. The last line is exactly Eq. (4.12) and
for gω0 ≡ ω0 we arrive at the CRB stated in Eq. (4.9). Recall also that the FI is additive for
uncorrelated events which provides the factor ν at the latter equation.

A.2. Microscopic Model

Large parts of this section are based on material previously published in [H3].

A.2.1. Equivalence with an Engineered Coupling Hamiltonian

Despite the fact that the Hamiltonian given in Equation (5.1) can arise as the natural model for
specific systems, we can also engineer this type of coupling out of a pure dephasing spin-boson
Hamiltonian by a continuous driving of the central spin. Therefore consider the Hamiltonian

H̃ =
ωσz

2
+
Ωσx cos(ωLt)

2
−
σz

2
⊗

∑
n

(
gnan + g∗na†n

)
+ HB, (A.5)

where Ω is the associated Rabi frequency of the driving with the frequency ωL, e.g. these
correspond to amplitude and frequency of a driving laser. In a frame rotating with the frequency
ωL we employ the rotating wave approximation with respect to that frequency and arrive at

H̃′ =
ω − ωL

2
σz +

Ω

2
σx −

σz

2
⊗

∑
n

(
gnan + g∗na†n

)
+ HB . (A.6)

230



Microscopic Model

Inserting the substitutions ω − ωL = −ω0 sin ϑ, Ω = −ω0 cos ϑ and transforming the Hamilto-
nian with the help of the unitary matrix

U =




sec(ϑ)(sin(ϑ)−1)
√

sin(ϑ)+1
√

2

√
1−sin(ϑ)(sec(ϑ)+tan(ϑ))

√
2√

sin(ϑ)+1
√

2
1√

2
√

sec(ϑ)(sec(ϑ)+tan(ϑ))


 , (A.7)

directly yields the Hamiltonian (5.1), H = U†H̃′U , described in the main text. Note that due to
the linearity of the substitutions and the parameter-independent unitary transformation, if one
knows the driving laser frequency and amplitude, ωL and Ω, the parameter estimation of ω0 is
fully equivalent to the estimation of ω.

A.2.2. Derivation of the TCL Master Equation

In this Appendix, we briefly sketch the derivation of the weak-coupling master equation in
Equation (5.10) and we provide the expression of the coefficients b j k (t) where j, k = {+,−, z},
as well as the correction to the Hamiltonian HLS(t) in terms of the bath correlation function
C(t).
Recall that we start from Equation (1.13), which is obtained as the second order term in the
expansion of the TCL master equation in the interaction picture, assuming an initial product
state but without any assumption about the form of the global state at time t [103]. The master
equation is then readily obtained following the derivation described in [112], the only difference
being that we keep the integration at the r.h.s. of Equation (1.13) from 0 to t, since we are
not making the Born-Markov approximation. Hence, following [112], we expand the system
operator in the interaction Hamiltonian in Equation (5.1), i.e.,

A =

(
cos ϑ

σx

2
+ sin ϑ

σz

2

)
, (A.8)

via the projectors in the eigenspaces of the system free Hamiltonian,

H0 =
∑
ε

ε Π(ε ), (A.9)

where ε1 = ω0/2, ε2 = −ω0/2, Π1 = |1〉 〈1| and Π2 = |0〉 〈0|. Thus, we define

A(ς) =
∑

ε ′−ε=ς

Π(ε ) AΠ(ε′), (A.10)
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and we have
A =

∑
ς

A(ς) =
∑
ς

A†(ς). (A.11)

Note that in our case ς can take the values ±ω0 and 0. Explicitly,

A(0) =
sin ϑ

2
σz

A(−ω0) =
cos ϑ

2
σ+

A(ω0) =
cos ϑ

2
σ−.

(A.12)

The decomposition of the interaction operator in Equation (A.11) allows us to express the
interaction Hamiltonian HI (t) as

HI (t) =
∑
ς

e−iςt A(ς) ⊗ B(t) =
∑
ς

eiςt A†(ς) ⊗ B(t). (A.13)

Replacing these expansions in Equation (1.13), using Equation (A.12) and replacing the
integration variable τ with t − τ, one arrives at [112]

d
dt
ρ̃(t) =

∑
ςς′

ei(ς′−ς)t
Γ(ς, t)

[
A(ς) ρ̃(t)A†(ς′) − A†(ς′) A(ς) ρ̃(t)

]
+ H.c.

=Γ(0, t)
{

sin ϑ cos ϑ
4

[
e−iω0t (

σz ρ̃(t)σ− − σ−σz ρ̃(t)
)

+ eiω0t (
σz ρ̃(t)σ+ − σ+σ

z ρ̃(t)
)]

+
sin2 ϑ

4
[
σz ρ̃(t)σz − ρ̃(t)

]}
+ Γ(−ω0, t)

{
cos2 ϑ

4

[
σ+ ρ̃(t)σ− − σ−σ+ ρ̃(t) + e2iω0tσ+ ρ̃(t)σ+

]
+

sin ϑ cos ϑ
4

eiω0t [
σ+ ρ̃(t)σz − σzσ+ ρ̃(t)

]}
+ Γ(ω0, t)

{
cos2 ϑ

4

[
e−2iω0tσ− ρ̃(t)σ− + σ− ρ̃(t)σ+ − σ+σ− ρ̃(t)

]
+

sin ϑ cos ϑ
4

e−iω0t [
σ− ρ̃(t)σz − σzσ− ρ̃(t)

]}
+ H.c..

(A.14)

Here H.c. stands for Hermitian conjugate and we introduced the functions

Γ(ς, t) =

∫ t

0
dτeiςτC(τ). (A.15)
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Recall that C(t) is defined in Equation (5.9). We still need to separate the Hamiltonian and
the dissipative contributions of the dynamics. Before doing so, we go back to the Schrödinger
picture via ρ̃(t) = eiH0t ρ(t)e−iH0t , which adds a contribution −i

[
H0, ρ(t)

]
and removes all the

phase terms e±iω0t and e±2iω0t in the previous equation (since e−iH0tσ±eiH0t = e∓iω0tσ±, while
e−iH0tσzeiH0t = σz). If we now define

cςς′ (t) =Γ(ς, t) + Γ∗(ς′, t)

dςς′ (t) =
1
2i

(
Γ(ς, t) − Γ∗(ς′, t)

)
,

(A.16)

we can write Equation (A.14) in the Schrödinger picture as

d
dt
ρ(t) = − i


H0 +

∑
ς,ς′

dςς′ (t)A†(ς′)A(ς), ρ(t)


+
∑
ς,ς′

cς,ς′ (t)
(
A(ς)ρ(t) A†(ς′) −

1
2

{
A†(ς′) A(ς), ρ(t)

})
,

(A.17)

which can be written as the master equation (5.10) in the main text, when Equation (A.12) is
used. Thereby, exploiting Eq. (A.16), the coefficients are fixed as in Equation (5.13), i.e.,

bzz (t) =
sin2 ϑ

2
Re{Γ(0, t)} =

sin2 ϑ

2

∫ t

0
dτ Re{C(τ)}

b++(t) =
cos2 ϑ

2
Re{Γ(−ω0, t)} =

cos2 ϑ

2

∫ t

0
dτ Re

{
C(τ)e−iω0τ

}
b−−(t) =

cos2 ϑ

2
Re{Γ(ω0, t)} =

cos2 ϑ

2

∫ t

0
dτ Re

{
C(τ)eiω0τ

}
b+−(t) = b∗−+(t) =

cos2 ϑ

4
(
Γ(−ω0, t) + Γ∗(ω0, t)

)
=

cos2 ϑ

2

∫ t

0
dτ Re{C(τ)} e−iω0τ

bz+(t) = b∗+z (t) =
sin ϑ cos ϑ

4
(
Γ(0, t) + Γ∗(−ω0, t)

)
=

sin ϑ cos ϑ
4

∫ t

0
dτ

[
C(τ) + eiω0τC∗(τ)

]
bz−(t) = b∗−z (t) =

sin ϑ cos ϑ
4

(
Γ(0, t) + Γ∗(ω0, t)

)
=

sin ϑ cos ϑ
4

∫ t

0
dτ

[
C(τ) + e−iω0τC∗(τ)

]
,

(A.18)

while the Hamiltonian contribution due to the interaction with the environment is given by
HLS(t) =

∑
ς,ς′ dςς′ (t)A†(ς′)A(ς), which corresponds to Equation (5.12) in the main text, that
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is,

HLS(t) =




HLS
11 (t) HLS

01 (t)
HLS

01 (t) HLS
00 (t)


 , (A.19)

where

HLS(t) =




cos2 ϑ
4

∫ t
0 dτ Im

{
eiω0τC(τ)

}
i sin ϑ cos ϑ

4

∫ t
0 dτ Re{C(τ)} (1 − e−iω0τ)

−i sin ϑ cos ϑ
4

∫ t
0 dτ Re{C(τ)} (1 − eiω0τ) cos2 ϑ

4

∫ t
0 dτ Im

{
e−iω0τC(τ)

} 
 .

(A.20)

Summarizing, starting from the global Hamiltonian in Equation (5.1), after introducing the
environmental correlation function C(t) in Equation (5.9) and the system’s operators in Equa-
tion (A.10), one directly gets the weak-coupling master equation via the Eqs. (A.15)-(A.17).

A.2.3. Solutions of the Master Equation in the High Temperature Limit

As said in the main text, we can use the approximation j (ω) ≈ j (−ω) to simplify the structure
of the master equation in the high temperature regime. First, note that since L(t) is a linear map
acting on the space of linear operators in C2, we can represent it via a 4 × 4 matrix, using the
same representation recalled in Section 1.3, see Equation (1.18). In particular, the coefficients
in the dissipative part of the generator as in Equation (5.15) imply the matrix representation of
L(t) as

DL(t) =




0 ~0T

~0 L(t)


 . (A.21)

Explicitly, using the definition of Γ(ω0, t) and Γ(0, t) in Equation (5.11), as well as HLS(t) in
Equation (A.19) and j (ω) ≈ j (−ω), we end up with

DL(t) =




0 0 0 0
0 − sin2(ϑ) f1(0, t) −ω0 cos(ϑ) sin(ϑ) f1(ω0, t)

0 ω0 + cos2(ϑ) f2(ω0, t)
− sin2(ϑ) f1(0, t)
− cos2(ϑ) f1(ω0, t)

cos(ϑ) sin(ϑ) f2(ω0, t)

0 sin(ϑ) cos(ϑ) f1(0, t) 0 − cos2(ϑ) f1(ω0, t),




.

(A.22)
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where

f1(ω0, t) =

∫ ∞

−∞

dω j (ω)
sin(t(ω − ω0))

ω − ω0

f2(ω0, t) =

∫ ∞

−∞

dω j (ω)
cos(t(ω − ω0)) − 1

ω − ω0
.

(A.23)

Indeed, applying the same constraint on the secular master equation in Equation (5.14), we get
the PC master equation, where the coefficients in the last line of Equation (5.15) are set to 0,
along with HLS

10 (t) = HLS
01 (t)∗ in Equation (A.19). The corresponding time-local generator is

hence given by

DL(t)
PC =




0 0 0 0

0
− sin2(ϑ) f1(0, t)

−
cos2(ϑ)

2 f1(ω0, t)
−ω0 −

cos2(ϑ)
2 f2(ω0, t) 0

0 ω0 +
cos2(ϑ)

2 f2(ω0, t)
− sin2(ϑ) f1(0, t)

−
cos2(ϑ)

2 f1(ω0, t)
0

0 0 0 − cos2(ϑ) f1(ω0, t)




. (A.24)

Now, the form of the time-local generator as in Equation (A.21) implies the form for the
dynamical map as in Equation (5.16). By means of the Dyson expansion, Equation (1.12), we
see that the block-diagonal structure of the generator directly implies the same block-diagonal
structure of the dynamical map. Thus, we get Equation (5.16) with

V (t) = T←e
∫ t

0 dτL(τ) . (A.25)

A.2.4. Differential Equations for the Density Matrix Elements in the case
of Ohmic Spectral Densities

Due to the simple master equations in the Ohmic regime described in Section 5.2.2, Eqs. (5.25)
and (5.26), it is more convenient to solve the dynamics taking into account the evolution of the
elements of the system’s density matrix, ρi j (t) = 〈i | ρ(t) | j〉 for i, j = 0,1.
For the NPC dynamics, the master equation in Equation (5.25) is equivalent to the following
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system of equations [of course, ρ01(t) = ρ∗10(t) and ρ00(t) = 1 − ρ11(t)]:

d
dt
ρ11(t) = cos2 ϑγ(t) (1 − 2ρ11(t)) + 2 cos ϑ sin ϑγ(t)Re{ρ10(t)}

d
dt
ρ10(t) = − iω0ρ10(t) − sin ϑ cos ϑγ(t)(1 − 2ρ11(t))

− (1 + sin2 ϑ)γ(t)ρ10(t) + cos2 ϑγ(t)ρ∗10(t),

(A.26)

which can be easily solved numerically. For the PC dynamics, Equation (5.26) leads us to

+

d
dt
ρ11(t) = cos2 ϑγ(t)(1 − 2ρ11(t))

d
dt
ρ10(t) =

(
−iω0 − (2 − cos2 ϑ)γ(t)

)
ρ10(t).

(A.27)

Contrary to the NPC case, populations and coherences are decoupled. Indeed, the solution of
this system of equations reads

ρ11(t) = e−2 cos2 ϑ
∫ t

0 dτγ(τ) ρ11(0) + cos2 ϑ

∫ t

0
dτe−2 cos2 ϑ

∫ t

τ
dτ′γ(τ′)γ(τ)

ρ10(t) = e−iω0t−(2−cos2 ϑ)
∫ t

0 dτγ(τ) ρ10(0).
(A.28)

In Figure 5.2 we reported the evolution of the Bloch vector ~r (t) for different initial conditions
for ρ(0). Indeed, the components of the vector ~r (t) are directly related to the matrix elements
of the corresponding state, see Section 1.3. Finally, the CP of the dynamics is guaranteed by
the master equations themselves, as mentioned in the main text of Section 5.2.2.

A.2.5. Semigroup Limit of the Ohmic Spectral Density

Taking the limit ωC → ∞, the decay rate given by Equation (5.25) becomes time independent,

γs = lim
ωC→∞

λ

β
arctan(ωCt) =

π

2
λ

β
. (A.29)

In the NPC case, this yields the generator

DLNPC(t) =




0 0 0 0
0 −2γs sin2(ϑ) −ω0 γs sin(2ϑ)
0 ω0 −2γ 0
0 γs sin(2ϑ) 0 −2γs cos2(ϑ)



. (A.30)
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A.2.6. A General Formula for the Single Probe QFI of PC Dynamics

Using the characterization of PC dynamics presented in Section 1.5 and the formula for the
QFI in Equation (5.27), we will provide some analytic formulas for the one-probe QFI of a PC
dynamics; for the sake of generality, we will not restrict to the unital case (i.e., to the T → ∞

regime for the spin-boson model, see Figure 5.1). Any PC dynamical map can be written as
in Equation (1.37), where ξ = ω0t + ϕ and, in general, also the other coefficients vz,dz,d will
depend both on ω0 and on t. However, if we neglect for a moment the dependence of the noise
rates (for a PC dynamics bii (t), i = ±, z) on ω0, it is easy to see that the dependence on ω0 will
be enclosed only in ξ, that is the coefficient due to the unitary component of the map. In this
case the QFI, which we denote as F̃Q,PC (t), will be simply given by

F̃Q,PC(t) =
t2

2
Dz (t)2, (A.31)

where Dz (t) =
√

x(t)2 + y(t)2 = |d(t) |
√

x(0)2 + y(0)2 is the distance of the state at time t

from the z-axis and we have used Cartesian coordinates to define the Bloch vector ~r (t) =

{x(t), y(t), z(t)}. Instead, if we include the dependence of the noise parameters on ω0, we
obtain the ’full’ QFI

FQ,PC (t) =
1
2

(
t2Dz (t,ω0)2 + Ḋz (t,ω0)2 + ż(t,ω0)2

)
+

1
2

(
Dz (t,ω0)2ḋ(t,ω0)/d(t,ω0) + z(t,ω0) ż(t)

)2

1 − Dz (t,ω0)2 − z2(t,ω0)
,

(A.32)

where for the sake of compactness we used explicitly that z(t,ω0) = vz (t,ω0) + z(0)dz (t,ω0)
Note that all the contributions are positive; in particular 1 − Dz (t,ω0)2 − z2(t) ≥ 0 due to the
positivity of the dynamics.

A.2.7. Expectation Value of the Parity Operator using GHZ-States

In the Heisenberg picture, the dynamics of the parity operator is governed by

Px (t) =

N⊗
k=1

Λt,ω0[σx
(k)] =

N⊗
k=1

[
ξ (t)σx

(k) + χ(t)σy
(k) + ς (t)σz (k)

]
, (A.33)

where the second equality is an expansion of Px (t) into the Pauli basis (note that Px (t) is
traceless). Importantly, the expansion coefficients are independent of k since the channel acts
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identically and independently on every probe. For the calculation of 〈Px (t)〉 we exploit that the
parity operator is still a product, hence employing the GHZ state in the basis of σz as defined
in Equation (4.15), we directly arrive at Equation (5.34). Obviously, the coefficients depend
on the dynamics induced by Λω0,t , however, these can be efficiently evaluated numerically. An
analytic solution for transversal semigroup noise is given in [46].

238



Appendix B
Quantum Control

B.1. Calculation of the Overlap Integral

Let us briefly describe how the final form of the overlap integral is derived. Therefore we
start with Eq. (3.11). As mentioned, for a Gaussian process, it is only required to calculate
the variance

〈
Kfree(t)2

〉
. Importantly, the integral [here Kfree(t)] of a Gaussian process (here

b(t)) is still Gaussian, i.e. the distribution for the random variable K (t), P[K (t) = Kfree(t)] is
normal. Since we stated 〈b(t)〉 = 0 it follows 〈Kfree(t)〉 = 0. This implies that Wick’s theorem
holds, i.e.

〈
Kfree(t)n〉 =

0, n odd
(2n)!
2nn!

〈
Kfree(t)2

〉n/2
, n even.

(B.1)

Using Eq. (B.1), it is straightforward to show the identity〈
exp {−iKfree(t)}

〉
= exp

{
−

〈
Kfree(t)2

〉
/2

}
. Due to the linearity of the expectation value we

then write

〈
Kfree(t)2

〉
=

∫ t

0
dτ1

∫ t

0
dτ2 〈b(τ1)b(τ2)〉 F (τ1)F (τ2)

=

∫ t

0
dτ1

∫ t

0
dτ2 〈b(0)b(τ1 − τ2)〉 F (τ1)F (τ2)

=

∫ t

0
dτ1

∫ t

0
dτ2

∫ ∞

−∞

dω
S(ω)
2π

e−iω(τ1−τ2) F (τ1)F (τ2),

(B.2)
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where the first line is due to the linearity of the expectation value and for the second line
we assumed that the process is stationary. In particular, the two-point correlation function
C(τ1, τ2) = 〈b(0)b(τ1 − τ2)〉 = C(τ1−τ2) of a stationary process only depends on the difference
of the time arguments. For the last equality we employed the spectrum S(ω), i.e. the Fourier
transform of the correlation function,

S(ω) =

∫ ∞

−∞

dt C(t)eiωt and respectively C(t) =
1

2π

∫ ∞

−∞

dω S(ω)e−iωt . (B.3)

Noting that F (t) is a real function, we write

fω (t) =

∫ t

0
dτ1 e−iωτ1 F (τ1) ×

∫ t

0
dτ2 eiωτ2 F (τ2) =

�����
∫ t

0
d τe−iωτF (τ)

�����
2

(B.4)

Finally, to arrive at (3.12) we need to mention that S(ω) is an even function, hence we can
restrict the integration starting at zero and compensate by a factor of two.

B.2. Signal for an XY-8 Sequence Employing Realistic Pulses

This section has already been published in [H2]. Reprinted excerpts with permission from [H2].
Copyright (2016) by the American Physical Society.

B.2.1. Ideal Signal after a single XY-8 Sequence

The definitions of the Hamiltonians and sequences in Section 7.1 allow us to calculate the first
order of the signal in βmax. It turns out, that the corresponding result is independent of the
tilting angle to first order, hence represents the ideal signal after the application of a single unit
of the XY-8 sequence (8 pulses):

P(1)
α,θ =

1
2

{
1 − cos

[
16Bγn

(
cos

(
3π
4α

)
+ cos

(
5π
4α

)
+ cos

(
11π
4α

)
+ cos

(
13π
4α

) )

×
sin

(
π

4α

)3
sin

(
4π
α + θ

)
ωac

]}
+ O(β2

max).

(B.5)

Note that the zero-th order contribution in βmax (i.e., P(1)
α,θ with βmax = 0) is independent of φ.

However, higher orders on βmax can provide a dependence on φ. For βmax = 0, this equation
represents the ideal signal.
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B.2.2. Impact of the Second Order

Figure B.1.: Impact of the second order after three applications of the XY-8 sequence.
The values for the figure are calculated using Eq. (B.7). (Reprinted figure with
permission from [H2]. Copyright (2016) by the American Physical Society.)

With the definitions given in Section 7.1, we can calculate the spectrum for a single application
of the XY-8 sequence (8 π-pulses) as

P(1)
α ≈

{[
sin

(
π

2α

)
− sin

(
5π
2α

)
+ sin

(
11π
2α

)
− sin

(
15π
2α

) ]
cos φ

+

[
sin

(
3π
2α

)
− sin

(
7π
2α

)
+ sin

(
9π
2α

)
− sin

(
13π
2α

) ]
sin φ

}2

β2
max + O(β3

max),

(B.6)

which is valid under the assumption γnB/ωac � 1. This result gives P(1)
α=3/β

2
max ≈ 9 cos2(φ)/4

and will thus oscillate under a changing initial phase. However, after three applications of the
XY-8 sequence (24 π-pulses), we obtain the signal

P(3)
α ≈

{
16 cos

(
π

4α

)4
[

sin
(

7π
2α

)
− sin

(
9π
2α

)
+ sin

(
23π
2α

)
− sin

(
25π
2α

)
+ sin

(
39π
2α

)
− sin

(
41π
2α

) ]2 [
cos φ + 2 cos

(
2π
α

)
cos φ

− sin φ + 2 cos
(
π

α

)
(sin φ − cos φ)

]2}
β2

max + O(β3
max).

(B.7)

Interestingly, for α = 3 we have P(3)
α ≈ O(β3

max) . The same calculation can be done for other
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odd numbers of α > 1. Consecutive applications show that after nα sequences, for α > 1
and n ∈ N, the corresponding signal is again zero, thus for these resonances no accumulation
of phase is accomplished. Fig. B.1 shows Eq. (B.7) for different values of 1/α and φ. This
sequence requires three times the evolution time as used for Figure 7.2 (a), thus the peaks are
much narrower and it can be observed how the spurious signal accumulation is only present at
certain relations of ωDD/ωac while it is highly phase dependent.

B.3. High Selective Coupling using Soft Quantum Control

This appendix consists of material that has been partly published already in [H4]. Reprinted
excerpts with permission from [H4]. Copyright (2018) by the American Physical Society.

B.3.1. Adiabatic evolution

In the following, we briefly describe the evolution generated by a time dependent Hamiltonian
that changes in an adiabatic manner [80]. Starting from the initial time t0, a quantum state at
time t may be always decomposed into the eigenstates of the Hamiltonian, i.e. we may write

|Ψ(t)〉 =
∑

n

cn(t)e−iφn (t) |ψn(t)〉 , (B.8)

where all the basis vectors fulfill the eigenvalue equation H (t) |ψn(t)〉 = En(t) |ψn(t)〉 and we
have the dynamic phase

φn(t) =

∫ t

0
dτ En(τ). (B.9)

Using the Schrödinger Equation and the decomposition above, it is straightforward to show that
the coefficients cn(t) fulfill the differential equation

∂tcn(t) = − cn(t) 〈ψn(t) |
[
∂t |ψn(t)〉

]
−

∑
m,n

cn(t)
〈ψm(t) | [∂t H (t)] |ψn(t)〉

En(t) − Em(t)
e−i[φn (t)−φm (t)].

(B.10)

Note that energy crossings En(t) − Em(t) = 0 are problematic, however, this issue can be solved
by performing a more involved analysis [350]. Under the adiabatic theorem, we assume that
the change in time of H (t) is extremely small, hence we neglect the second line of the latest
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equation. Using the solution given by that differential equation, we find that

|Ψ(t)〉 =
∑

n

cn(0)eiγn (t)e−iφn (t) |ψn(t)〉 , (B.11)

where γn(t) is the so called geometric phase given by the solution to Eq. (B.10),

γn(t) = i
∫ t

0
dτ 〈ψn(τ) |

[
∂τ |ψn(τ)〉

]
. (B.12)

Let us finally note the following concerning the case we are dealing with when employing the
soft quantum control method. The time dependence of the states |ψn(t)〉 is due to the parameter
λ(t) in the Hamiltonian. Let us use

∂t |ψn(t)〉 = ∂λ |ψn[λ(t)]〉 ∂tλ(t), (B.13)

so that the geometric phase becomes

γn(t) = i
∫ λ(t)

λ(0)
dλ 〈ψn[λ(t)]|

[
∂λ |ψn(λ(t))〉

]
, (B.14)

which is obviously equal to zero for λ(0) = λ(t).

B.3.2. Calculation of Energy Shifts using the Adiabatic Theory

In Section 8.3.1 we have shown that the soft quantum control scheme can efficiently eliminate
oscillating terms while keeping desired energy-conserving interactions. However, during the
derivation of the effective evolution operator in Eq. (8.13), we mentioned that the dynamic
phases may contain higher order energy shift. Here, we will exemplify the calculation of such
shifts by considering a two-qubit Hamiltonian,

H (t) =
ω

2
(σz

0 + σz
1) + λ(t)cσx

0σ
x
1 . (B.15)

To simplify the calculation, we first note that the subspaces Sa = {|11〉 , |00〉} and Sb =

{|10〉 , |01〉} are disconnected in H (t) by denoting as |1(0)〉 the eigenstates of σz
j with the

eigenvalues 1 (-1). In terms of the Pauli operators for the pseudo spin in each of the two
subspaces, the Hamiltonian H (t) can be written as

H (t) = ωσz
a + cλ(t)σx

a + cλ(t)σx
b , (B.16)
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where σz
a = |11〉 〈11| − |00〉 〈00| and σx

a = |11〉 〈00| + H.c. are the Pauli operators in the sub-
space Sa and σx

b = |10〉 〈01| + H.c. is the Pauli operator in the subspace Sb. Note that operators
for different subspaces commute. The total field strength on the pseudo spin is given by the
instantaneous eigenvalues of H (t), in the subspace Sa it is fixed by the

√
ω2 + c2λ2(t) while

the field strength for Sb is cλ(t) which can be obtained by diagonalizing Eq. (B.16). Similarly,
we have

Htarget = ω̃σz
a + c̃σx

b , (B.17)

with the corresponding field strengths of ω̃ and c̃ = c. For adiabatic modulation on λ(t)
(including the cases for λ(t) = 1 and soft coupling), the dynamic phases [Eq. (B.9)] driven by
H (t) are the same as the case for Htarget in case the field strength ω̃ is given by

ω̃ =
1
T

∫ T/2

−T/2
dt

√
ω2 + c2λ2(t) (B.18)

which we obtain by comparing the dynamic phase for the subspace Sa with the one generated
by Htarget. The energy shifts ω̃ −ω include all the high-order effects of the average Hamiltonian
theory. The dynamic phase for the subspace Sb is

∫ T/2
−T/2 dt cλ(t) = cT .

B.3.3. Improved RWA: Two Qubits

To supplement the example given in Section 8.3.1, we remove the second resource qubit from
the model. This simplifies the illustration of the incapability of the standard approach to
suppress the RWA terms efficiently. The total Hamiltonian becomes

H (t) =
ω

2

(
σz

0 + σz
1

)
+ cλ(t)σx

0σ
x
1 . (B.19)

As in the main text, we want to selectively preserve only the flip-flop interaction between the
qubits. Explicitly, we would like to obtain the target Hamiltonian after RWA

Htarget =
1
2
ω̃

(
σz

0 + σz
1

)
+ c̃

(
σ+

0σ
−
1 + H.c.

)
, (B.20)

where the parameters take into account the energy shifts as shown in Appendix B.3.2. In
Fig. B.2 the equivalent of Figure 8.3 of the main text is shown. While the Gaussian modulation
shows a smooth transition to constantly high fidelities, the standard method achieves high
fidelity only for discrete values of ωT . Note that these discrete points for high fidelity in the
standard method will change if there is a different number of qubits in the system (compare
Figure 8.3) and in general are hard to predict in complex systems.
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Figure B.2.: Fidelities to the target two-qubit dynamics. The figure is equivalent to Fig-
ure 8.3. The Gaussian shapes are realized with the parameters σ = T/(4

√
2) and

1/λ0 =
√

2πσerf
(

T
2
√

2σ

)
which ensures the same target evolution as in the constant

amplitude case. (a) and (b) show the constant amplitude and Gaussian modulation
respectively. The curves for the Gaussian shapes [blue dashed lines in (c) and (d)]
illustrate the same characteristic asymptotic behavior as for the three qubit case,
while the constant amplitude undergoes significantly less modulation as only a
single frequency is left in the model. (Reprinted figure with permission from [H4].
Copyright (2018) by the American Physical Society.)

B.3.4. Continuous Dynamical Decoupling and Hartmann-Hahn
Resonance

Continuous dynamical decoupling is a different approach to the suppression of noise and sensing.
It employs the dressed states formed by the application of a continuous drive and exploits the
so called Hartmann-Hahn resonance. Starting from the total Hamiltonian in Eq. (2.11), we
replace Ω(t) by a constant Rabi frequency ΩRabi. Following the same arguments as outlined
in Section 2.2.2 and Section 2.2.1, the Hamiltonian is written in a frame rotating with the NV
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center’s free energy terms and the qubit approximation applied,

HCD =
ΩRabi

2
σx

0 −
∑

j

~ω j~I j +
ms

2
σz

0

∑
j

~A j · ~I j . (B.21)

Here we made the convenient choice φ = 0 and ωMW is exactly on resonance with the driven
transition determined by the choice of ms.
Moving into a rotating frame with respect to the new free terms (the first two terms) yields the
coupling Hamiltonian which is oscillating with the frequencies ΩRabi ± ω j . Provided that the
couplings ~A j are large enough, we can neglect all terms where ΩRabi − ω j , 0. Note that we
assume ΩRabi ≥ 0 while the ω j are positive by construction, see Eq. (2.9). Thereby we have the
famous Hartmann-Hahn resonance condition generating the effective Hamiltonian

ΩRabi = ωn ⇒ HCD,eff =
ms

2
a⊥n (σ̃−0 I+

n + σ̃+
0 I−n ) (B.22)

where the tilde marks operators in the dressed basis of the NV center, |±〉 = ( |0〉 ± |ms〉)/
√

2.
Here we already assumed that the terms ∼ a‖j I z

j average out completely, as they are oscillating
with ΩRabi.
For the sensing protocol exploiting Hartmann-Hahn resonance, one continuously drives the NV
electron spin for a time T . Between subsequent runs, ΩRabi is changed. To record a spectrum,
one scans the Rabi frequency over a desired interval [23, 322]. By matching the dressed-state
energy ΩRabi to the energies ω j of the nuclear spins, electron-nuclear flip-flop processes are no
longer suppressed by the energy mismatch and change the population of the dressed electron
qubit according to HCD,eff , resulting in signals in the spectrum [23, 322].
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B.3.5. Variation of the Fourier Coefficients in the Simulations of the Soft
Quantum Control

The employed Fourier coefficients depending on the current number of DD periods are shown
in Figure B.3.

Figure B.3.: Employed Fourier coefficients for the Gaussian-AXY sequences in Figure 8.4.
Squares with white fill correspond for to the sensing sequence in Figure 8.4 (c),
colored squares to gate illustrated in Figure 8.4 (d). A blue square indicates two
subsequent composite pulses with phases X and Y, while red squares realize the
reversed order. The total sequence realizes 64 periods, i.e. 128 composite pulses.
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Quantum metrology in noisy environments. contributed talk, Quantum Optics IX, Gdańsk,
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