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Abstract—In automotive sensor networks the spatial
distribution of the radar sensors allows to unveil additional
information about the target objects. For example, the different
angles to a target provide an increased robustness, and the wide
sensor distances allow for a single snapshot motion estimation.
This is even possible with single-channel radar sensors, but
the reliability of the output highly depends on the condition
that single scattering points are jointly detected. This paper
presents an algorithm which associates single detections of a
target over multiple sensors by utilizing the ego-motion of the
vehicle. Further, it is shown how all target detections can be
assessed and how reliable detections can be identified to improve
subsequent processing steps like target localization. The proposed
processing is validated by radar measurements at 77 GHz.

I. INTRODUCTION

Over the last years radar sensors became essential
components of many driver assistance systems. Multiple radar
sensors around a car are already used for dedicated assistance
systems without being jointly evaluated. These trends towards
a 360° coverage of the traffic scene around the car make
sensor networks very interesting. This work covers a network
of single-channel radar sensors. Such simple sensors allow to
estimate the range and radial velocity of a target. In contrast
to state-of-the-art automotive radars with multiple receive
channels, the angle information of a target has to be calculated
jointly from the measurements of multiple sensors observing
a common field of view (FoV). A presumption for the related
localization algorithms, like the multilateration, is that all
sensors detect a common scattering point [1]. However, this is
hardly met in automotive scenarios with extended targets [2].
Here, the probability of joint detections is lowered due to the
comparably high range resolution and the possibly large spatial
distribution of the sensors, as well as the angle dependent radar
cross-sections of targets [3]. This paper shows an approach
to associate the detections of stationary targets between the
sensors that observe a common FoV. Further, a robustness
measure for each target is derived, which allows to differentiate
between point targets and extended targets.

II. SYSTEM SETUP

The proposed system utilizes very simple single-channel
radar sensors. These sensors are operated with a chirp sequence
modulation [4] that allows to estimate the range and radial
velocity of a target.

Multiple simple sensors are spatially distributed on a
moving platform, e.g. a car, as depicted in Fig. 1. At
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Fig. 1. Exemplary spatial distribution of 3 sensors around a car [5].

least 3 sensors cover a common FoV to enable the use
of multilateration techniques. A joint trigger signal ensures
simultaneous measurements of all sensors in the network. The
center frequencies of all sensors are shifted respectively to
avoid interference among sensors in the network. Hence, it can
be assumed that all sensors provide independent monostatic
measurements of a common scene.

ITI. COOPERATIVE TARGET DETECTION

The flowchart of the cooperative target detection algorithm
is briefly illustrated in Fig. 2. In the following, each step is
described in detail.

A. Target Extraction

The input of the algorithm is the raw time-domain data
of each sensor. This data has a 2D-shape with the size of
(samples X chirps). In the first processing step, the 2D discrete
Fourier transform is used to derive the range and radial velocity
information, resulting in a range-Doppler matrix for each
sensor [4].

A 2D-ordered statistic constant false alarm rate (OS
CFAR) [6] is used in the range-Doppler domain to extract the
targets detected by each sensor. Several detections are usually
extracted per target after applying a CFAR algorithm. Thus, a
2D peak search ensures the extraction of nearby targets. A low
decision threshold is applied to the sensors while extracting the
targets to gather as many targets as possible. This is favorable
when estimating the ego-motion, as well as helping to provide
a better knowledge about the surrounding targets in the scene.

B. Ego-motion Estimation

The next step is to estimate the ego-motion of the vehicle,
whereby the approach in [7] is followed. The range information
of the detected targets is used by the multilateration technique



Ego-motion
Estimation

! Target
Raw Data —> . &
Y Extraction

Association

Target Localization —l

Assessed Targets
with Locations

Target Assessment 4T

Clutter
Suppression

Fig. 2. Algorithm overview. The dashed processing step is individual to every sensor, whereas the following steps include all sensors jointly.

to calculate the intersection points between the range circles.
This results in true target and ghost target intersections [8]. The
angle between each intersection point and the corresponding
sensors is calculated. Ghost targets arising from inter-range
intersections lead to incorrect angles, thus, an increasing
number of ghost targets would consequently result in an
inaccurate ego-motion estimation. For that reason, a spatial
filtering technique for point targets, referred to as matched
filter, is first used to reduce the ghost intersections before
applying the random sample consensus (RANSAC) algorithm
as explained in [7]. More reliable results were achieved after
applying this filter.

After estimating the sensors velocity profile, it is now
possible to calculate the angle at which a stationary target is
located using the detection of a single sensor only. This is done
using the sensor velocity vector along with the radial velocity
of a target relative to the sensor. Using the measured range and
calculated angle, the target locations can also be computed.

C. Target Association

After determining the location of the targets detected by
each of the sensors, the aim is to extract a common target list
out of the individual target lists. This process involves several
steps that are explained next.

1) Partners Computation

To find out if a target is common between all sensors,
one of the sensors .S; is set as the master sensor while its
detection T, is assumed to be a true target. The position of
T, relative to the other sensors S, (j # 1), is then computed.
They are referred to as the “partners” of T',. Partners can be
seen as the supposed target locations if all sensors are detecting
the same target. Partners of a target are computed using the
calculated target locations, the known sensor positions as well
as the estimated ego-motion. This procedure is repeated such
that each of the sensors in the network is once set as the master
sensor, whereby its detected target is assumed to be the true
target and the partners of this target are computed accordingly.

2) Target Association

By comparing the detected targets and the computed
partners of each sensor, targets detected by multiple sensors
can be associated as illustrated in Fig. 3. Deviations between
the detections and partners of a sensor usually occur due to
inaccuracies in the estimated ego-motion, target geometry as
well as the limited radar resolution. Thus, some tolerances
should be allowed when comparing the detections and partners
of a sensor. This comparison is performed in the range-Doppler
domain. An error function is used to combine the deviations
in the range and Doppler dimensions, in which the deviations

are weighted based on their respective radar resolutions.
This weighted error function is normalized to the maximum
tolerable range and Doppler deviations and is expressed as
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Here, eg and ¢, are the deviations in range and radial
velocity between the detection Ts, of sensor S; and the
partner calculated from the true target Ty, relative to S;
respectively. The parameters AR and Awv, represent the
respective resolutions of a chirp sequence radar. Given that
the deviation between a target and its corresponding partner
relative to a sensor is smaller than the allowed range and
Doppler tolerance (ug, iy, ), targets detected by different
sensors can be cooperatively related to extract a common target

list.
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Fig. 3. The range-velocity plots of the detected targets (@) and the computed
partners (O) relative to each sensor. ( ), (-: :-) and (.'_\) correspond to
a triple, double, and single detected targets respectively.

3) Master Sensor Assignment

After extracting a common list of targets, one master sensor
needs to be assigned to each target in the scene. This is done
using the normalized weighted error function in (1). The sensor
leading to the minimum sum of errors between the targets and
partners is assigned as the master sensor.

Considering sensor S; as the master sensor, the sum of the
normalized weighted errors between the detections Ts; and



the estimated partners of T, relative to the sensors S; is first
calculated. The minimum sum of errors, when each of the
sensors is set as the master sensor, can be calculated as

N
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Here, N, is the number of sensors and the sensor S;

corresponding to Wy, min is assigned as the master sensor for

the common target.

An example of the association procedure is illustrated in
Fig. 3, in which only that case is depicted where each target is
already assigned to a master sensor. As it can be observed, not
all targets are detected by all sensors. Hence, common targets
are divided into triple, double, and single detected targets based
on the number of detecting sensors.

D. Clutter Suppression

The low decision threshold applied while extracting the
targets detected by the sensors leads to an increase in the
probability of false alarms. To counter that, a simple clutter
suppression technique is applied to reduce the detections that
might correspond to clutter.

Targets detected by only one sensor are the least reliable
among all targets detected by the sensors. Therefore, clutter
suppression based on a histogram approach is applied to all
single detections. A histogram is computed based on the
signal-to-noise ratio (SNR) to study the distribution of the
targets. From that, the upper bound of the most frequent SNR
bin is set as a threshold to minimize the single detections.
Any target that is detected by a single sensor with an SNR
less than the assigned threshold is removed from the common
target list and is no more considered in the further processing.
This significantly reduces the number of single detected targets
which minimizes the clutter detection probability.

E. Target Localization

The range information of the detections corresponding
to a target are combined using the multilateration technique
to determine the unique target locations. The location of a
triple detected target is optimized in the region of intersection
of the three range circles such that the distance between
the target location and all range circles is minimized. For a
double detected target, the location is simply considered as
the intersection between the corresponding range circles that
lies within the FoV of the sensors.

F. Target Assessment

An assessment is performed to evaluate how robust the
detections of the sensors are. This provides a very useful
information to the higher level processing algorithms about
the surrounding targets in the traffic scene. The assessment is
based on four scores that are dependent on different criteria.
The values of the scores are defined in the range of [0, 1] and
are all combined to calculate the robustness score.

Detection score: A target is ideally detected by all sensors
which cover this angle area. Hence, the more sensors detecting
a certain target, the higher is its detection score.

Inlier score: Detections that were used to estimate the
ego-motion have a combination of range and radial velocity
that supports the common motion profile [7]. Targets that are
associated with such detections have a higher reliability.

Weight score: The deviations between the detected targets
and partners can also be used as a score to assess the
robustness. Thus, the minimum sum of the weighted error
in (2) is used to calculate the weight score of a target.
The minimum sum of errors is averaged over the number of
detecting sensors for a fair comparison between the targets.

SNR score: The SNR score of a target is dependent
on the SNR of the received signal after reflection. This in
turn depends on the type of the reflecting target, its radar
cross-section (RCS) and the angle of arrival of the received
signal. The SNR score of a target is calculated as the
maximum SNR of the corresponding detections normalized to
the maximum SNR of all targets.

Robustness score: The overall score is calculated as the
sum of all scores whereby the detection, inlier, and weight
scores are assigned with their full weight, while the SNR score
is assigned with half of its weight only. This is due to the
general fluctuating and unstable behavior of the SNR. The
robustness score is normalized to the maximum sum of all
scores, which is 3.5.

IV. MEASUREMENT RESULTS

The proposed cooperative target detection algorithm is
tested on real measurement data. The location of all targets
detected by the sensors in one of the measurement frames
is illustrated in Fig. 4 against the ground-truth locations.
Three 77 GHz sensors are mounted on a platform, that was
moved along the z-axis. The target scenario contained 5 corner
reflectors and a stationary car. It can be observed that 4
of the corner reflectors were detected by the sensors, while
one of the reflectors was not detected due to the blockage
of the parked car to the line of sight (LOS). Furthermore,
5 points corresponding to the car were detected. By examining
the preceding and subsequent frames, it can be deduced that
detections not corresponding to ground-truth targets are not
stable and could correspond to clutter from the street or from
an asphalt-grass edge that was in the scene.
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Fig. 4. Tllustration of the estimated (X) vs. ground-truth target locations.
Point targets (A) and extended targets (Car) are depicted separately.



A. Ego-motion Estimation

The accurate estimation of the velocity profile is crucial
for the cooperative target detection. By calculating the error
between the estimated ego-motion and the ground-truth motion
measured by an accurate GNSS and IMU, it can be observed
from the results illustrated in Fig. 5 that an estimation error less
than 0.39m/s is achieved in 95% of the frames. This shows
that the applied decision threshold enables the extraction of
reliable detections which in turn allows for a very accurate
snapshot motion estimation in majority of the frames.

A big advantage of the proposed assessment method is
that even the failure in estimating the ego-motion can still
be identified from the detection score of the targets. This is
because an inaccurate ego-motion estimation would lead to the
wrong association of the detections between the sensors. A
failure in the cooperative relation of the sensors targets will in
turn cause the number of single detections to increase. Such an
effect could be directly observed in the mean of the detection
score of the targets (cf. Section III-F), which is significantly
reduced by the increase in the estimation error as illustrated

in Fig. 5.
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Fig. 5. The estimation error of the ego-motion vs. mean detection score (MDS)
of the detected targets per frame.

B. Assessment Scores

Another advantage of the presented assessment method is
that it allows to differentiate between single-point and extended
targets. This is possible due to the different properties of both
target groups which are utilized by the assessment scores. The
ego-motion is based on the assumption that all sensors are
detecting the same exact point of a target. This affects the
detection, inlier, and weight scores of a target. The SNR scores
of point targets are also higher than that of the extended ones
due to the RCS of the objects.

The results illustrated in Fig. 6 show that there is a
significant difference between the mean of the robustness score
of the point targets to that of the extended ones. The value of
the robustness scores of the point targets is 81.9% on average,
while that of the extended targets is 34.5%. In other words,
the difference in the mean of the robustness scores of both
target groups is 47.4% on average. Furthermore, it could be
observed from Fig. 6, that there exists a separation distance of
approximately 8.7% between the minimum score of the point
targets and the maximum of the extended ones. Such a large
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Fig. 6. The mean robustness score of point targets (—) vs. extended targets
(- - -). The minimum and maximum scores of the target groups are separated.

difference in the overall assessment score could be used to
classify the targets into single-point and extended targets, a
feature that could be used by the higher level algorithms to
process each of the target groups accordingly.

V. CONCLUSION

An approach for the association of stationary target
detections between different radars in a network of very
simple sensors is shown. It utilizes the ego-motion of
the vehicle and does not depend on localization errors
of the multilateration. Single snapshot measurements are
sufficient and no tracking is needed for the proposed
approach. The presented assessment method allows to directly
distinguish between stationary extended and point targets.
This information is valuable for subsequent algorithms, like
target localization or target classification. The approach was
evaluated with radar measurements at 77 GHz.
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