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Abstract—As high resolution automotive radars become more
common, so does their usage for next-generation functionalities
like advanced driver assistant systems and autonomous driving.
This creates the need for robust clustering techniques to distin-
guish among multiple extended objects like vehicles in the same
scenario. One especially challenging scenario is that of separating
two extended targets close to each other, each following its own
trajectory. This paper proposes a clustering algorithm based on
the analysis of the velocity profile to divide target points of
multiple vehicles into sub-clusters. The theoretical background
is explained and shown on simulation data. The algorithm is
verified using radar measurements of two extended vehicular
targets.

I. INTRODUCTION

In recent years, capabilities of automotive radars have
increased substantially. In [1], a high-resolution radar is used
to classify road users. In [2] an experimental radar system
is shown, that is able to detect dozens of target points per
road user in an automotive setting. These high performance
radars pave the way for new radar applications in the field of
advanced driver assistance systems and autonomous driving,
by allowing for estimating the dimensions and orientation
of road users in a scenario [3]. The estimation of motion
parameters like velocity and yaw rate using one or more radar
sensors was shown as well [4], [5], [6].

An integral part of each of these signal processing algo-
rithms for extracting properties of radar objects is the reliable
assignation of the measured target points to one or more
objects. Usually, due to its excellent performance and the
minimal a priori knowledge being necessary, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [7]
or one of its derivates is used for this task.

The clustering of radar data is usually done either in the
Cartesian domain, e.g., with a dynamically self-configuring
approach based on the density of the cluster [8] or in the
range-DoA domain to accommodate for the operating principle
of radar data [9]. This modification is extended in [10] to
include the dimension of velocity and [11] proposes a direct
application on the measured data in range, velocity, and
direction of arrival (DoA), with different radii for each domain
dependent on the radar system parameters.

The inclusion of the velocity domain in the clustering
process allows for separating spatially close objects, that are
moving in a way so that the resulting target points exhibit a
noticeably different radial velocity. In certain cases this makes
it possible to only rely on difference in radial velocity to

distinguish multiple objects. But in many cases, the velocity of
vehicles as measured by the radar sensor is very similar, e.g.,
if the vehicles are driving in a convoy, rendering this approach
impossible. In [12] a technique is shown to individually track
multiple extended radar objects. This approach relies on setting
up a track of the object as well as the vehicles moving with
distinctively different velocities.

In this paper, an approach is shown to distinguish spatially
close objects with similar but different motion, each following
its own trajectory. This approach is based on the analysis of
the velocity profile of a misclustered target list set, which —
due to the spatial adjacency of the objects — includes target
points belonging to both objects. This makes it possible to
repair the original cluster by dividing it up into sub-clusters
which contain only target points most likely to belonging
to one object. The necessary theoretical background is given
and illustrated by a simulation. The proposed algorithm chain
to solve the problem is presented and explained. Finally the
algorithm chain is validated using real radar measurements.

II. VELOCITY PROFILE ANALYSIS

To better understand the underlying idea of the algorithm,
it is helpful to recall the way, the measured radial velocity v, ;
of a single radar target point ¢ originating at the surface of a
moving, extended target, i.e., a vehicle, depends on the DoA
of the target point 6;, as well as the motion of the vehicle [5].
For a linear motion of the vehicle, described by its velocity
vector (vx,vy), this dependency is shown in Eq. (1), if a single
sensor is used. Similarly, if the vehicle is moving in a non-
linear fashion, i.e., a turn, v,; depends not on the velocity
vector, but instead on the yaw rate of the vehicle w and the
turning center (ZicR, yicr), as shown in Eq. (2).

Vpi = Ux cos(6;) + vy sin(6;) (1
Ur; = WYICR cos(6;) + (—wxicr) sin(6;) 2)
—— —_———
C s

In both equations, the prefactors of the trigonometric func-
tions can be substituted by two generic motion parameters C'
and S. If the radial velocities v; of multiple target points
belonging to a single vehicle are plotted versus their respective
DoA as sin(#;) in a so called velocity profile analysis (VPA)
diagram, the points mostly align in a linear fashion, which can
be described by the generic motion parameter set (C,.S).
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(b) velocity profile analysis plot.

Fig. 1. Radar simulation of two vehicles close together with similar velocities but different trajectories. The radar sensor is placed at (x5, y")=(0,0).

This is shown in Fig. 1, where two extended radar objects
with similar velocities of v;=1.5m/s and vo=1m/s, but
different trajectories, are simulated with 14 target points each
placed on their surfaces.

The resulting VPA plot can be seen in Fig. 1(b). While a
clustering algorithm considering range, DoA, and even veloc-
ity will most likely group all those target points into a single
cluster, it can be clearly seen that each point set is aligned on
its own straight line described by their respective (C, S) sets.
This makes it possible to separate them, at least partially, if
the two (C, S) sets can be determined from the target points,
which forms the basis for the proposed algorithm.

III. SUB-CLUSTERING USING VELOCITY PROFILES

To use the motion information to sub-cluster a mis-clustered
set containing target points of multiple moving objects, the
(C,S) sets have to be extracted first from the VPA. This is
done with a series of steps outlined in [4].

To accomplish this, first, a RANdom SAmple Consensus
(RANSAC) algorithm is used to find the first main direction
model of the targets. RANSAC will try to find the most
likely linear model of a set of points by randomly choosing
two sample points and counting the number of inlier points
which are located within a certain corridor around the direct
connection between those two points. This is repeated a set
number of times after which the model with the highest
number of inliers is chosen. As the algorithm has to prevent
detecting too many target points of both vehicles as inliers
at once, the corridor has to be chosen very narrow. After
extracting this first assumption, the model can be refined by
linearly optimizing the distance of the inliers to the model.

With the extracted model, the target points belonging to the
vehicle have to be selected for a new sub-cluster. Besides the
inlier points, this concerns the target points created by the
wheels of the vehicle. These present themselves in the VPA
as a chain of target points with very similar DoA but greatly
differing velocity due to the different wheel parts moving
within a velocity range of 0 <vyheel < 2Ucyr-

These wheel target points can be selected for the new sub-
cluster for the vehicle by a proposed solution called wheel
enveloping. Because the wheel target points are only visible,
if the main motion model has a noticeable extend in the DoA
domain, this method consists of dividing the angular range,

single cluster of multiple vehicles
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Fig. 2. Algorithm chain for the velocity profile based sub-clustering.

which is occupied by the inliers of the model into sub-ranges.
For every sub-range, a search for a chain of target points in
velocity-direction is performed, which is originating from the
model-based velocity value of this sub-range in both directions
and whose links are not more than a specified velocity value
Auvnax away from each other. At the first occurrence of a
velocity difference greater than Awy,, the chain is interrupted
and the remaining target points are not further taken into
account.

After the wheel enveloping, the points in the new sub-
cluster are removed from the original cluster. As shown in the
overview chart in Fig. 2, the process repeats — starting again
with the RANSAC step — until either the desired number of
iterations is reached or too few points are left to successfully
perform a motion model extraction. The remaining points form
their own cluster of points classified as clutter.

IV. MEASUREMENT DATA CHARACTERISTICS

To verify the proposed sub-clustering algorithm, measure-
ments were performed with a 77 GHz experimental radar
sensor [13] operating in time-division multiplexing (TDM)
multiple-input multiple-output mode. Its three transmitters and
eight receivers form a uniform linear array with % spacing
without overlapping virtual elements. The motion-induced
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Fig. 3. Scenario A: Both cars (
stationary (®), the moving car (®), or neither (®).

(b) Velocity profile analysis plot.
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(c) Sub-clustered target points.
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(c) Sub-clustered target points.

Fig. 4. Scenario B: The moving car is laterally oriented with respect to the radar. The front wheel is clearly visible. The algorithm assigns the target points

to the stationary (@), the moving car (®), or neither (®@).

phase error which leads to errors in the DoA estimation is
compensated as described in [14].

The TDM usually reduces the maximum unambiguous
velocity, which is restored by evaluating the phase trend along
the virtual aperture as described in [15]. The used bandwidth
of 2 GHz leads to a range resolution of 7.5cm. In total 258
frequency chirps are transmitted and with a chirp duration of
50us and a chirp repetition time of 60 us this results in a
velocity resolution of 0.13 m/s.

For the scenario, two cars were measured in front of the
sensor. One of them was oriented at an angle toward the
sensor and remained stationary throughout the measurement.
The other car was equipped with a global navigation satellite
system to obtain a ground truth information. It was driven
around and close to the stationary car.

V. MEASUREMENT EVALUATION

From the available measurement data, several snapshots
were selected in which both cars were close spatially as well
as in velocity. The target lists of these snapshots were first
subjected to a very rough clustering with a simple DBSCAN
using a high search radius of e =3 m, to accommodate for the
fact that stationary objects do not yield too many target points
as moving ones. The resulting cluster was subjected to the
algorithm chain with maximum loop iterations of N =2.

Scenario A (Fig. 3) was selected because both the moving
and stationary car are oriented in a similar fashion. The moving

car is currently in the process of accelerating toward the radar
sensor. The front of the car is visible on the radar image.

Fig. 3(b) shows the VPA diagram with colors being as-
signed after the sub-clustering chain. The target points of the
original cluster are colored to show them being detected as
part of the stationary car (e), the moving car (®), or neither of
them (possible clutter, ®). The straight lines of the same colors
as the target points represent the model extracted from them.

Fig. 3(c) shows the target points of the VPA plot in
Cartesian coordinates, coded in their corresponding colors,
together with the ground truth position of both cars (—).

The algorithm is successfully able to separate both cars.
Two target points belonging to the moving car do not support
the main motion model and are assigned to be clutter.

Fig. 4 shows scenario B, where the moving car is oriented
laterally to the radar sensor, making a turn towards the radar.
Mostly the front and left side of the car is visible in the radar
image. The targets of the front wheel are clearly visible.

Besides the target points of the main motions of both cars,
Fig. 4 (b) shows the distinctive chain of targets originating
from the wheel. As can be seen, the wheel enveloping algo-
rithm is working correctly to assign the wheel target points to
the moving car while still being able to correctly extract the
main motion model. This can also be seen in the Cartesian
plot n Fig. 4(c). A single target point was classified as not
belonging to either car and as such as clutter, which is not
displayed in the range of the VPA diagram.
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(b) Velocity profile analysis plot.
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(c) Sub-clustered target points.

Fig. 5. Scenario C: The moving car is orthogonally aligned with respect to the stationary one. The front wheel is clearly visible. The algorithm assigns the

target points to the stationary (@), the moving car (@), or neither (®).

In the third selected scenario C (Fig. 5) the moving car is
orthogonally aligned to the stationary car. It just starts to drive
backwards, away from the stationary car. The front wheel and
the left side of the moving car is visible in the radar image.

The associated VPA diagram (Fig. 5(b)) shows again the
clear assignation of the target points to their respective cars.
Again, the wheel enveloping algorithm successfully assigns the
wheel target points to the moving car.

This scenario is particularly challenging because velocities
of target points from both vehicles overlap. Nevertheless, the
algorithm is mostly able to correctly assign the target points to
their respective objects, as can be seen in Fig. 5 (c). Two target
points from the moving car are classified as not belonging to
either, but are also extreme outliers in the VPA diagram outside
of the plotted range. The target point falsely assigned to the
stationary car (®) can easily be removed from the other target
points due to its euclidean distance to the other points of the
sub-cluster.

VI. CONCLUSION

The proposed algorithm on the basis of extracting multiple
velocity profile models is able to divide a mis-clustered target
point set containing points belonging to different vehicles into
smaller sub-clusters containing only points of a single vehicle.
It is able to correctly perform a secondary sub-clustering
for closely adjacent extended radar objects, like cars, with
similar velocities but different trajectories, without the need
for too cautious clustering parameters. The wheel enveloping
sub-algorithm is correctly detecting target points belonging to
the wheels of the car and groups them together with their
respective main motion components. Some target points get
mis-assigned to either a stationary vehicle, or dismissed as
clutter, the former of which can usually be easily detected
because of their large distance the rest of the points. As such
the algorithm proves to be an effective secondary step after
a first rough clustering to repair mis-shaped clusters for the
subsequent mid-level signal processing steps.
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