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Introduction

The wave properties of matter in quantum mechanics first postulated by de Broglie in
1923 [1] as well as Einstein’s theory of general relativity [2] have radically changed our
perception of the world at the beginning of the twentieth century. While each theory
is extremely successful and well tested within its range of validity, a unification of both
theories has so far resisted any attempt.
However, the advances in precision of modern matter-wave interferometers have paved
the way to designing experiments at the interface of gravity and quantum mechanics.
Indeed, quantum mechanical devices are on the brink of becoming sensitive enough to
challenge predictions of general relativity such as the weak equivalence principle or set
bounds on alternative gravitational theories.
Reaching sensitivities required for these experiments necessitates a careful assessment
of deleterious effects some of which might be atom-atom interactions or the influence
of the gravitational potential of the laboratory setup itself. Estimation of the size of
such effects calls for refined theoretical tools for the description of light-pulse atom
interferometry which is the subject of the present thesis.

Early development
Today’s atom interferometers are based on almost a century of theoretical and exper-
imental research. The first evidence for the wave properties of electrons by Davisson
and Germer in 1927 [3] as well as of molecules [4] and of neutrons [5] opened up the pos-
sibility to design matter-wave interferometers. Profiting from an increased coherence
in neutron interferometers made out of perfect synthetic nickel crystals [6], Colella,
Overhauser and Werner first measured the phase induced by the linear gravitational
field in Ref. [7] and by the rotation of the Earth [8]. See Ref. [9] for a general review
on neutron interferometry.
Since atoms have a larger mass than neutrons and consequently a shorter de Broglie
wave length and are moreover less sensitive to electric stray fields compared to elec-
trons because they do not carry a charge [10], attention turned towards interferometry
with neutral atoms. The first interferometer was realized by Carnal and Mlynek in a
double-slit configuration [11] but it was soon pointed out that laser light provides more
controllability thanks to the internal structure of the atoms. In addition, internal state
labeling [12] allows for a simplified read out at the exit ports.
In contrast to a conventional light interferometer, in matter-wave interferometers in
which the atoms are coherently manipulated with laser beams, the atoms take the role
of the light while lasers act as mirrors. Diffraction of atoms on standing laser beams
was utilized in a measurement of the Sagnac effect [13]. In contrast, Kasevich and Chu
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8 Introduction

resolved the gravitational acceleration in Ref. [14] employing short laser pulses. These
light-pulse interferometers constitute the main focus of this thesis. For a general review
on atom interferometry we refer to the Refs. [15, 16].

High-precision atom interferometry
Benefiting from these pioneering experiments, large amounts of effort were spent in the
following years on the development of refined setups, which resulted in a tremendous
increase in accuracy. Alternative diffraction mechanisms to Raman scattering like
Bragg diffraction [17–20] and double Bragg diffraction [21] were developed which render
the interferometer phase less sensitive to state-dependent influences since only one
internal state is occupied during the whole interferometer time.
Modern light-pulse interferometers are high-precision inertial sensors when used as
gyroscopes to measure rotations [22–24], as accelerometer to measure absolute accel-
erations [14, 25–30], or as gradiometers to resolve tidal effects of the gravitational
field [31–34]. The best absolute gravimeter currently reaches impressing accuracies of
∆g/g = 7 · 10−12, where g is the linear gravitational acceleration.
Apart from applications in navigation and geodesy, atom light-pulse interferometers
have opened perspectives for probing fundamental constants such as the Newton grav-
itational constant [33, 35–38], where atom interferometers can already compete with
classical tests [33], and the fine-structure constant [39–42] for which the currently best
determined value was obtained in Ref. [42].

The weak equivalence principle
Matter-wave interferometers also allow precise tests of fundamental physics, as for
example the weak equivalence principle [43, 44] which states that a non-self gravitating
test particle should experience the same gravitational acceleration irrespectively of its
mass and internal composition. As a cornerstone of general relativity, violations would
directly hint towards unknown physics [45]. Experimentally possible violations can be
parameterized by

η(A,B) = 2
a(A)− a(B)

a(A) + a(B)
(1)

where a is the acceleration of two test masses A and B, respectively. The seminal
experiments conducted by Eötvös [46] at the end of the nineteenth century yielded a
value of η = 10−8. Further classical tests with torsion balances [47], lunar laser ranging
[48] and in the MICROSCOPE satellite [49] have so far increased the accuracy to the
η = 10−13 level.
The advance in sensitivity of matter-wave interferometers in recent years provided a
promising technique to extend the tests to the quantum domain. Differential accelera-
tion measurements known as common-mode rejection [50, 51] between the two species
employed results in a high degree of immunity with respect to vibration noise. Up to
now these dual-species interferometers have reached sensitivities of about η ∼ 10−8 in
experiments with two different rubidium isotopes [52–55], two different atomic species
[56] and in a differential acceleration measurement between bosonic and fermionic
atoms [52, 57].
In order to reach sensitivities in quantum tests of the weak equivalence principle below
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the current η = 10−13 level where violations might appear, further advances in accu-
racy are required. The differential phase due to linear gravitation in a Mach-Zehnder
interferometer is given by the celebrated formula

φ = −kgT 2 (2)

where ~k is the effective momentum transfer of the laser pulses on the atoms and T is
half of the total interrogation time. Consequently, further enhancement of sensitivity
can be achieved by large-momentum-transfer techniques [58–61], that is, by increasing
k, or by longer interrogation times T , which enters Eq. (2) quadratically. However, the
free-fall time on Earth is limited to about a second by the size of the laboratory [29,
61]. This problem can be circumvented by relocating the experiments to microgravity
environments.

The Quantus project
Supported by the German Aerospace Center (DLR), the QUANTUS project aims at
developing compact and robust devices for long-time interferometry in microgravity.
Miniaturized laser systems and on-chip production of Bose-Einstein condensates [62,
63] have led to remarkable robustness of setups surviving accelerations of up to 50g
in the Bremen drop tower [64] which serves as a test bed for future high-precision
measurements. Experiments in microgravity on parabola flights [65], in the drop tower
[66, 67] and in sounding rockets [68] laid the foundation for future dedicated space
missions on the international space station (ISS) [69, 70] or in satellites [71, 72] to
probe the weak equivalence principle below the 10−15 level.
The huge advance in precision also requires refined theoretical tools as more and more
formerly neglected effects like stray fields, gravitational effects of the laboratory setup
itself, black-body radiation etc. become relevant. The insight that all these influences
are extremely small but important to be taken into account calls for the development
of a consistent perturbative description. In addition, to compare the sizes of influences
of different origin and to check to which order each effect must be taken into account,
the method should be simple and straightforward.
In chapter 1 we present a new approach to calculate phase and contrast of light-pulse
interferometers which satisfies all these requirements. After deriving the formalism, we
apply it to a number of examples to illustrate its mechanism.

Interferometry with Bose-Einstein condensates
Employing Bose-Einstein condensates as high-flux atom sources for interferometry [19,
20, 26] considerably enhances coherence properties of an interferometer compared to,
for instance, a noncondensed thermal input state. Furthermore, the small momentum
width of an ultracold Bose-Einstein condensate directly translates into smaller expan-
sion rates of the atomic clouds during the interferometer sequence, in particular when
combined with delta-kick collimation [73, 74].
Bose-Einstein condensation is a fascinating phenomenon, however, intricate from a
fundamental point of view. In chapter 2 we review the mathematical tools necessary for
a profound understanding, required for both experimentalists and theorists who work
in this field. Subsequently, we contrast number-conserving to spontaneous symmetry-
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breaking approaches in respect of an application to atom interferometry with Bose-
Einstein condensates.
Despite the numerous merits of Bose-Einstein condensates as atom sources, these sys-
tems are intrinsically self interacting. Atom-atom interactions, however, bring about
new detrimental effects which are difficult to control. Even though some salient fea-
tures like mean-field shifts due to imperfect laser pulses can be assessed to some ex-
tent, analytic descriptions are in general unsatisfactory and one cannot refrain from
numerical simulations. However, naive implementations on a grid of the extent of the
interferometer are generally numerical intractable. Hence, in chapter 3 we develop a
description in terms of comoving frames with each interferometer branch in a general
second-quantized description and derive validity conditions for this approach. Working
in second quantization further enables future work that builds on our results to include
thermal and quantum fluctuations in a description beyond mean-field.
Particle-particle interactions not only introduce mean-field effects but also result in
phase diffusion [75, 76] which derogates the phase relation between the interferometer
arms and limits the accuracy to which the relative phase can be determined. In chapter
4 we derive a two-mode approximation from the general framework presented in chapter
3 and show that phase diffusion also takes a prominent role in long-time interferometry
with Bose-Einstein condensates even when the wave packets are allowed to expand
considerably prior to the first laser pulse in order to decrease the effect of interactions.



Chapter 1

Light-pulse atom interferometry with
noninteracting particles

Light-pulse atom interferometers [12–14] consist of a series of light pulses that coher-
ently drive transitions between motional states which establish different interferometer
arms. After some interrogation time the atoms are redirected and finally recombined.
The probability of finding an atom in one of the exit ports forms an interference pat-
tern which is dependent on the relative phase accumulated between the interferometer
arms.
In this chapter we will address the theoretical description of light-pulse interferometers.
In recent years, a large number of different methods have been proposed to calculate
phase and contrast of atom interferometers. Pioneered by Storey and Cohen-Tannoudji
[77], path-integral methods have become a powerful tool in the context of atom inter-
ferometry [78–80]. In a seminal series of papers [81–84] Bordé and coworkers pursued
an approach borrowed from the theory of optics. To illustrate how the interpretation
of phases based on these approaches might be misleading, Schleich et al. developed a
representation-free approach [85] which purely relies on operator algebra. It was further
advanced by Kleinert et al. in Ref. [86] to treat path-independent harmonic potentials.
Other representation-free descriptions that describe the motion along the interferom-
eter arms from the perspective of comoving frames were developed in Refs. [87–90].
Finally, we mention a description in phase space put forward in Ref. [91].
Clearly, all these descriptions are equivalent within their range of validity but, de-
pending on the problem, one or the other method might be more suited to streamline
calculations or to arrange the result in a particularly transparent form.
After a brief introduction into the underlying theory of light-pulse interferometry in
Sec. 1.1, we will present two formalisms for the calculation of phase and contrast. In
Sec. 1.2 we transform into the comoving frames associated with each trajectory of the
interferometer. In Sec. 1.3 we will develop a perturbative approach which will prove
to be highly efficient in case of small perturbing effects on the interferometer.
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12 Chapter 1. Light-pulse atom interferometry with noninteracting particles

1.1. Descriptions of light-pulse atom interferometers

In this section we will first describe all tools necessary to describe light-pulse atom
interferometry. This includes the concept of internal and external states, the definition
of the Hamiltonian, a discussion of light-matter interaction, and the introduction of
particular geometries like the Mach-Zehnder interferometer.

1.1.1. Internal and external degrees of freedom

Mathematically, an atom interferometer requires at least two linearly independent
states. In a superposition, each of the states acquires a different phase during the free
evolution time. After mixing the states and projecting onto one of them, the phase
difference can be read out. More generally we assume a Hilbert space H = He ⊗ Hi,
which is the tensor product of an infinite dimensional external Hilbert space He and
a finite dimensional internal Hilbert space Hi with dimension Ni. The most general
wave function then takes the form

|ψ(t)〉 =

Ni∑
j=1

cj(t) |ψj(t)〉 ⊗ |j〉 . (1.1)

The ket |j〉 denotes the internal state and |ψj〉 is the external wave function. Note that
the internal Hilbert space is not necessarily spanned by the energy levels of an atom,
as e.g. in the case for Raman diffraction, but can also correspond to states which label
a momentum ladder in the case of Bragg or double-Bragg diffraction. This subtlety
will be discussed in much more detail in chapter 3.

1.1.2. Hamiltonian

Next, we turn to the Hamiltonian describing an interferometer. Throughout this chap-
ter it will be given by sum

Ĥ = Ĥe + ĤL (1.2)

where ĤL is the laser-atom interaction Hamiltonian which drives transitions between
internal states whereas the external Hamiltonian Ĥe is diagonal in this basis, conse-
quently does not mix internal states. More specifically

Ûe(td, ti) |ψj(ti)〉 ⊗ |j〉 = Ûe,j(td, ti) |ψj(ti)〉 ⊗ |j〉 = |ψj(td)〉 ⊗ |j〉 (1.3)

where ti denotes the initial time, td the detection time or final time and Ûe is the
time-evolution operator with respect to Ĥe. At this stage the explicit form of the
Hamiltonians is not required to understand the underlying principles, therefore the
specification will be postponed to later sections. In chapter 3, in the context of a
description in the language of second quantization, we will additionally add particle-
particle interaction.
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1.1.3. General interferometer sequence

In the sum, Eq. (1.2), the laser-atom interaction Hamiltonian is only nonvanishing
during the short laser pulses and mirrors of duration ∆tj during the intervals [tj, tj +
∆tj] where the laser is turned on. In the time between the pulses the time-evolution
is solely determined by the external Hamiltonian such that a general interferometer
sequence can be cast into the form

Û(td, ti) = Ûe(td, tn + ∆tn)Û(tn + ∆tn, tn)Ûe(tn, tn−1 + ∆tn−1) . . . Ûe(t1, ti)

= Ûe(td, tn)Ŝ(tn)Ûe(tn, tn−1) . . . Ûe(t1, ti) . (1.4)

In the second line we changed to the interaction picture with respect to Ĥe and defined

Ŝ(tj) = T exp

{
− i

~

∫ tj+∆tj

tj

dt Û †e (t, tj)ĤL(t)Ûe(t, tj)

}
, (1.5)

which we will refer to as beam-splitter operator. At first glance, in the second line of
Eq. (1.4) this operator seems to act for an infinitely short time since the intervals ∆tj
do not appear explicitly. Inspection of Eq. (1.5) reveals that the integral still extends
over the interaction zones and time ordering cannot be disregarded. The replacement
of the operator in the integral by an effective Hamiltonian times a delta function
in time which obviates the time-ordering operator will be referred to as delta-pulse
approximation. Formally, this can always be achieved by e.g. resorting to the Magnus
expansion [92], which, however, leads practically to an infinite series if even convergence
can be achieved. We will learn about more viable methods to derive the delta-pulse
approximation in chapter 3.

1.1.4. Light-matter interaction

Before evaluating sequences like the one from Eq. (1.4) in more detail, we need to fur-
ther specify the atom-light interaction. In the simplest case, the atoms interact with
two counterpropagating laser beams that have a frequency difference ∆ω = ωb − ωa,
where ωa and ωb are the frequencies of the two beams. The lasers drive a two-photon
process via an ancillary state within the same internal state in the case of Bragg diffrac-
tion, Fig. 1.1.a, or between two states in case of Raman diffraction, Fig. 1.1.b. In the
latter, the atoms are put into a superposition of the internal states. As the absorption
and emission of a photon is associated with the momentum transfer ~k = ~(ka + kb),
where ka and kb are the respective wave numbers of the lasers, the external wave func-
tion corresponding to each internal state will subsequently separate spatially leading to
different interferometer branches. Similarly, in the case of Bragg diffraction the lasers
drive transitions between momentum states which again establish the interferometer
branches. For the sake of a simple discussion in this section we focus on Raman diffrac-
tion. As the lasers are strongly detuned with respect to the ancillary state, it can be
adiabatically eliminated [85] and we obtain an effective two-level description. Thus,
the internal Hilbert space consists of the two internal states |1〉 and |2〉. Within the
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atom
a) b)

ωb ωa ωb ωa

Figure 1.1.: Different diffraction schemes for atom interferometry. a) Bragg diffrac-
tion. A two-level atom interacts with two counterpropagating laser beams.
The absorption of a “blue” photon is associated with a momentum transfer in
positive momentum direction (the arrows depicted in the atoms are understood
as drawn in an energy-momentum diagram). Since the laser frequencies are
strongly detuned with respect to the atomic transition, the atom undergoes
a two-photon process back to the initial internal state. b) Raman diffraction.
Contrary to a), the laser beams are incident on a three-level atom and the
frequencies are chosen such that the transition to a different internal state is
resonant.

simple delta-pulse approximation the action of the beam-splitter operators take the
form [93]

Ŝθj(tj) |ψ1〉 ⊗ |1〉 = cos(θj/2) |ψ1〉 ⊗ |1〉+ i sin(θj/2)e+ikẑ+iϕL(tj) |ψ1〉 ⊗ |2〉
Ŝθj(tj) |ψ2〉 ⊗ |2〉 = cos(θj/2) |ψ2〉 ⊗ |2〉+ i sin(θj/2)e−ikẑ−iϕL(tj) |ψ2〉 ⊗ |1〉 . (1.6)

Each laser-pulse imprints the laser phase ϕL(tj), the phase difference of the lasers at
t = tj. In Eq. (1.6) a θj = π/2 pulse sets the atoms in an equal superposition of the
internal states, while a θj = π pulse inverts the internal states. The multiplication
with the exponential exp(±ikẑ) implies the momentum transfer ±~k.
A more detailed analysis of the diffraction process can be found in Refs. [94–103], just
to name a few.
The method of adiabatic elimination and the application to Bragg and other diffraction
schemes in the context of second quantization will be investigated more rigorously in
chapter 3.

1.1.5. Mach-Zehnder Interferometer

We now turn to the Mach-Zehnder (MZ) interferometer sequence [14] and explicitly
calculate its phase. As schematically depicted in Fig. 1.2, it consists of the pulse
sequence π/2-π-π/2, thus the total time-evolution operator is

Û(td, ti) = Ûe(td, t3)Ŝπ/2(t3)Ûe(t3, t2)Ŝπ(t2)Ûe(t2, t1)Ŝπ/2(t1)Ûe(t1, ti) (1.7)

with the initial state |ψ(ti)〉 = |ψ1(ti)〉 ⊗ |1〉. Using Eq. (1.3) and Eq. (1.6), we obtain
the probability of finding an atom in |2〉 at the end of the sequence

P|2〉 = | 〈2| Û(td, ti) |ψ(ti)〉 |2 =
1

2

(
1−R

[
〈Û †1(td, ti)Û2(td, ti)〉eiϕL

])
. (1.8)
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ti

t

z

t1 t2 t3 td

π/2
π

π/2

Figure 1.2.: Schematic picture of a Mach-Zehnder geometry. The initial wave func-
tion is put into an equal superposition of the internal states by a π/2 pulse at
t = t1. As a result of the momentum transfer, the two parts of the wave func-
tion corresponding to the internal states subsequently separate spatially, are
redirected by a π pulse at t = t2, which inverses the internal states. Finally, a
second π/2 pulse at t = t3 mixes the states and the relative phase accumulated
along the two interferometer branches is read out by measuring the number of
particles in one of the internal states.

In Eq. (1.8) the expectation value is understood to be taken with respect to the initial
external state |ψ1(ti)〉 and

ϕL = ϕL(t1)− 2ϕL(t2) + ϕL(t3) (1.9)

collects the phases imprinted by the laser pulses. In this work the product Û †1 Û2 will
be referred to as overlap operator since it encodes all the information about the time
evolution along the interferometer branches needed for the calculation of phase and
contrast. In the case of the MZ geometry it abbreviates the operators

Û2(td, ti) ≡ Ûe,2(td, t3)eikẑÛe,1(t3, t2)e−ikẑÛe,2(t2, t1)eikẑÛe,1(t1, ti)

Û1(td, ti) ≡ Ûe,2(td, t2)eikẑÛe,1(t2, ti) , (1.10)

which correspond to the motion along the two paths in the MZ interferometer. With
the help of the overlap operator we changed to a branch-dependent description which is
solely expressed in terms of the diagonal elements of the external time-evolution oper-
ator and the momentum kicks. It will be the main topic of the present chapter to bring
the overlap operator into a more accessible form. To this end, we first combine each
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operator product in Eq. (1.10) to one time-evolution operator by simply incorporating
the exponentials exp(±ikẑ) into the external Hamiltonian and by redefining

Ĥ(t) = Ĥe + ĤL(t) (1.11)

for each interferometer branch separately with the effective laser-atom interaction
Hamiltonian

ĤL = −
∑
j

~kj ẑδ(t− tj) (1.12)

within the delta-pulse approximation. Due to the delta function in Eq. (1.12), the
time ordering of the time-evolution operator will automatically put the exponential
at the right position. As we will show later in this chapter, for a particle in a linear
gravitational field with the external Hamiltonian

Ĥe =
p̂2

2m
+mgr̂ (1.13)

where m is the mass of the particle and g the linear gravitational acceleration, and
equal interrogation times t2 − t1 = t3 − t2 ≡ T , the overlap operator reduces to a
c-number Û †1 Û2 = eiϕ and we find the relation [104]

ϕ = −kgT 2 . (1.14)

For this simple form of the overlap operator we further obtain

P|2〉 =
1

2
[1− cos(ϕ+ ϕL)] , (1.15)

which displays an interference pattern. In the more general case

〈Û †1 Û2〉 = Ceiϕ . (1.16)

The real number C ≤ 1 is called contrast or visibility of the interferometer. If C = 1
the interferometer is referred to as closed, otherwise as open.

1.1.6. Laser phases and gravimetry

Light-pulse atom interferometers are high-precision inertial sensors. As such, they can
be employed to measure the absolute value of the gravitational acceleration [14, 25,
28, 29] with high precision. In Sec. 1.1.4 we introduced the laser phase ϕL(tj). It takes
an important role in the context of gravimetry, which will be discussed in the follow-
ing. The atoms moving along the two interferometer arms of an MZ interferometer
accumulate the relative phase ϕ = −kgT 2 induced by the linear gravitational poten-
tial. Between the laser pulses the atoms fall freely and gain velocity. Consequently,
the lasers which are supported to defy gravity need to be chirped [105], that is, the
frequency difference must be dynamically modulated to compensate for the Doppler-
shifted atomic resonance. This time-dependence of the phase can be achieved by an
acousto-optic modulator. In the previous section we saw from Eq. (1.8) that the laser
phase contributes to the total phase of the interferometer, which makes a precise control



Chapter 1. Light-pulse atom interferometry with noninteracting particles 17

absolutely crucial. Contrary to the optical frequencies of the lasers, the much smaller
frequency difference ∆ω can experimentally be well controlled by comparing to an rf
reference source [78, 106]. For the linear chirp

∆ω(t) = αt (1.17)

in addition to compensation of the Doppler shift due to linear motion and internal-
state-energy differences we find the total interferometer phase

ϕ+ ϕL = −(kg + 2α)T 2 , (1.18)

which exactly vanishes for α = −1/2kg. Leaving the total interferometer time T
unchanged, one scans the phase by varying the chirping rate of the lasers [25]. From
the common minimum of Eq. (1.15) for at least two different interferometer times [63]
we infer g = −2α/k in the case of laser pulses aligned with the direction of the linear
gravitational field.

1.2. Transformation to comoving frames

In the previous section we defined the overlap operator and showed how it connects
to the paths of an interferometer. In this section we will derive a formalism to access
this operator by transforming into comoving frames attached to each local wave packet
moving along the arms of the interferometer. This method has already been used in the
literature in similar forms in Refs. [87, 107–111], was put in modern form in Refs. [88,
89], and was recently generalized to interferometry in curved space time [90].
This section serves mainly as a revision of this formalism, but it will be rederived in
the following by using a particularly simple notation and by relying solely on operator
algebra. This derivation will serve as a starting point for a generalization of the for-
malism to atom interferometers with interacting particles within a second-quantized
approach in chapter 3.

Displacement operators

The formalism in this section as well as in chapter 3 relies on the concept of displacement
operators. This operator has already been extensively used in the context of atom
interferometry, for instance in Refs. [86–90, 107, 108, 111]. In this work, we closely
follow the notation of [86] and define a displacement operator as

D̂(χ) = e−
i
~χ

TJ ξ̂ (1.19)

where
χ = (χr,χp)T (1.20)

is a six-dimensional, possibly time-dependent vector which denotes the position and,
respectively, momentum displacement. Note that with the notation in Eq. (1.20) we
defined a column vector even though both χr and χp are already three-dimensional
column vectors. In the same spirit we define the six-dimensional phase-space operator

ξ̂ = (r̂, p̂)T (1.21)
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and introduced the matrix
J =

(
0 1
−1 0

)
(1.22)

with 1 being the three-dimensional identity matrix. The definition, Eq. (1.19), appears
to be most useful when we calculate the action of a displacement operator on a quantum
state in position representation

〈r| D̂(χ) |ψ〉 = e−
i
2~χ

pχr e
i
~χ

pr ψ (r − χr) , (1.23)

which is, apart from an additional phase factor, a translation by χp in momentum
and by χr in position space. A proof of Eq. (1.23) can be found in App. A where we
review and prove some of the most important properties and identities of displacement
operators.

Hamiltonian

As outlined in Sec. 1.1.5, after finding the overlap operator for a specific interferometer
geometry we define a Hamiltonian

Ĥ = H(ξ̂, t) (1.24)

for each interferometer path. This Hamiltonian contains the atom-laser interaction in
the form

ĤL = −
∑
n

~knr̂ δ(t− tn) , (1.25)

which we generalized to describe laser pulses pointing in arbitrary directions. Note that
the laser-atom interaction Hamiltonian is in general different for each interferometer
branch. Furthermore, we disregard trivial phases due to the energies of the internal
states.

1.2.1. Outline of the method

In many cases the separation of the interferometer branches, induced by the laser pulses,
is much larger than the size of the local wave packets moving along the interferometer
arms [89]. Thus, it is easily recognized that a description in comoving frames attached
to each local wave packet is much more convenient. The transformation to these frames
will remove all linear contributions to the Hamiltonian including the laser-atom inter-
action. Guided by this insight, we transform a general external time-evolution operator
according to

Û(t, ti) = eiφD̂(χ) ÛR(t, ti)D̂
†(χi) (1.26)

where ÛR is the time-evolution operator with respect to the reduced Hamiltonian

ĤR = H(ξ̂ + χ)− ∂H(χ)

∂χ

T

ξ̂ −H(χ) , (1.27)
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which generates the time evolution in the comoving frame. To simplify notation, we
omitted the explicit time dependence of φ, χ and H. The six-dimensional displacement
vector χ satisfies the equations of motion

χ̇ = J ∂H(χ)

∂χ
, χ(ti) = χi (1.28)

and the symplectic matrix J was defined in Eq. (1.22). For a proof of Eq. (1.26) we
evaluate the derivative of the displacement operator in Eq. (A.15) and furthermore use
Eq. (A.14). The ordinary differential equation, Eq. (1.28), constitutes the set of the
classical Hamilton equations of motion

χ̇r =
∂H(χ)

∂χp
and χ̇p = −∂H(χ)

∂χr
(1.29)

with the initial conditions χr(ti) = χri and χp(ti) = χpi . The additional phase in
Eq. (1.26) is calculated from the differential equation

~φ̇ =
1

2
(χ̇rχp − χ̇pχr)−H(χ) , (1.30)

which becomes after partial integration and with the help of Eq. (1.29)

φ =
1

~

∫ t

ti

dt′
(
∂H(χ)

∂χp
χp −H(χ)

)
− 1

2~
(χpχr − χpiχri ) . (1.31)

The expression within the parenthesis looks very familiar. Indeed, it is the classical
Lagrange function, the integral over it the classical action S. This insight allows us to
obtain the simple result

Û(t, ti) = e
i
~S−

i
2~(χpχr−χpi χri )D̂(χ) ÛRD̂

†(χi) . (1.32)

It is important to note that so far we have not made any restrictions, that is, the Hamil-
tonian can be of any possible nonlinear form in ξ̂. When we now apply Eq. (1.32) to
the overlap operator which is the product of the two branch-dependent time-evolution
operators, we obtain

Û †1 Û2 = e
i
~∆S− i

2~∆χr(χp1+χp2)D̂(χi)Û
†
R,1D̂(∆χ)ÛR,2D̂

†(χi) (1.33)

by combining the two displacement operators with the help of the “composition rule”,
Eq. (A.10). The relative phase-space displacement is denoted by

∆χ = χ2 − χ1 (1.34)

and
∆S = S2 − S1 (1.35)

is the classical action difference along the two paths. The contribution to the phase
in addition to the classical action difference was termed separation phase in Refs. [87,
112].
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Interpretation of the transformation

In the introduction to this section we claimed that transformation, Eq. (1.26), removes
the linear part of the Hamiltonian. This becomes most evident when we Taylor expand
around χ

H(ξ̂ + χ) = H(χ) +
∂H(χ)

∂χ

T

ξ̂ +
1

2
ξ̂T∂

2H(χ)

∂χ2
ξ̂ + ∆Ĥ (1.36)

where ∆Ĥ includes all the terms higher than second order. When we substitute this
expansion into Eq. (1.27), the reduced Hamiltonian becomes

ĤR =
1

2
ξ̂T∂

2H(χ)

∂χ2
ξ̂ + ∆Ĥ , (1.37)

where the linear terms of the Taylor expansion are now compensated. It is important to
stress that so far we allowed general anharmonic Hamiltonians. One might object that
in this case the notion of classical paths is of no physical relevance since the Ehrenfest
theorem is only valid for at most harmonic Hamiltonians. While this statement is true,
ifH is a smooth function of χ over the size the local wave packets in each interferometer
arm, the effects of the higher-order derivatives decrease order by order. In this case,
the Ehrenfest theorem is still approximately valid and χ can be interpreted as classical
trajectory. However, it is important to note that even for strong anharmonicities the
transformation is exact and might still simplify calculations. Only the paths χ do not
allow for an interpretation as classical trajectories.

Initial conditions

In the derivation above, the initial condition χi could be chosen completely arbitrarily.
However, the choice

χi = 〈ξ̂〉 (1.38)

where the expectation value is with respect to the initial state |ψ(ti)〉 is particularly
useful. In this case we can shift the initial wave function as

|ψ〉 = D̂(χi)|ψ̃〉 , (1.39)

where now 〈ψ̃|ξ̂|ψ̃〉 = 0 as can be easily seen by applying Eq. (A.14). When we now
wish to calculate the expectation value of Eq. (1.33), the displacement operators with
respect to the initial position in phase space cancel, hence

〈Û †1 Û2〉 = e
i
~∆S− i

2~∆χr(χp1+χp2)〈ψ̃|Û †R,1D̂(∆χ)ÛR,2|ψ̃〉 . (1.40)

During the evolution with respect to ĤR, the wave function |ψ̃〉 will approximately
rest at the minimum of the reduced potential and its evolution is determined solely by
harmonic and higher-order contributions to the potentials.
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Closed interferometer

The interferometer is closed if in Eq. (1.33) the displacement ∆χ = 0, which corre-
sponds to a closed trajectory in phase space, and furthermore Û †R,1ÛR,2 = 1 due to
perfect overlap. For this case we arrive at the celebrated formula

Û †1 Û2 = e
i
~∆S , (1.41)

which follows from the Feynman path-integral formalism in [77]. In the framework of
the formalism described in this section, Eq. (1.41) follows from Schrödinger quantum
mechanics in a very simple fashion.
The formula, Eq. (1.40), is the main result of this section. It will be further investigated
in the following in the context of the local linear and local harmonic approximation.

1.2.2. Local linear approximation

In Sec. 1.2.1 we showed by Taylor expansion that only terms of second and higher order
in position and momentum operators appear in the reduced time-evolution operator.
Given the Hamiltonian

Ĥ =
p̂2

2m
+ V (r̂) (1.42)

with a smooth potential V̂ , we now neglect second-and higher-order derivatives of V̂ .
Thus, the time evolution of the wave packets in the two comoving frames is determined
by the same reduced Hamiltonian

ÛR = exp

{
− i

~
p̂2

2m
(t− ti)

}
(1.43)

for every path. When we recall the definition of the displacement operator and the
identity

Û †Rr̂ÛR = r̂ +
p̂

m
(t− ti) , (1.44)

it is straightforward to show that

Û †RD̂(∆χ)ÛR = D̂(∆χ̃) (1.45)

where we introduced the abbreviation

∆χ̃ =

(
∆χr − ∆χp

m
(t− ti),∆χp

)T

. (1.46)

These considerations help us arrive at the final result for the overlap operator in the
local linear approximation

Û †1 Û2 = e
i
~∆S− i

2~∆χr(χp1+χp2)D̂(∆χ̃) , (1.47)

where we employed Eq. (1.33).
Before we turn to the local harmonic approximation a few remarks are in order. First,
we note that Eq. (1.47) is exact for linear potentials. In the case of small nonlinear
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contributions to the Hamiltonian one is soon confronted with consistency issues and
one should be careful with this approximation.
It is important to point out that the displacement operator in the overlap operator in
Eq. (1.47) is not with respect to the classical trajectories, given by ∆χ, as one could
expect naively, but rather with respect to Eq. (1.46). This takes into account the
expansion dynamics of the wave packet, when we evaluate the expectation value of the
overlap operator with respect to the initial state.

1.2.3. Local harmonic approximation

In this section we proceed to the next-order approximation known as local harmonic
approximation. We neglect all derivatives higher than second order in Eq. (1.37), hence
only keep harmonic contributions so that with Eq. (1.33) the overlap operator becomes

Û †1 Û2 = e
i
~∆S− i

2~∆χr(χp1+χp2)Û †R,1D̂(∆χ)ÛR,2 (1.48)

where

ÛR,j = T exp

{
− i

~

∫ t

ti

dt′
1

2
ξ̂TAj ξ̂

}
(1.49)

with the abbreviation
Aj =

∂2H(χj)

∂χ2
j

. (1.50)

Note that A is in general time dependent. The index j labels the two different paths.
The meaning of Eq. (1.48) is obvious. In order to calculate the expectation value of
the overlap operator take the initial wave function and propagate it with Eq. (1.49)
individually for each branch. Think e.g. of the standard Hamiltonian

Ĥ =
p̂2

2m
+

1

2
m r̂TΓr̂ , (1.51)

then the initial wave function only experiences an expansion (contraction, rotation)
in position space due to the Gaussian Hamiltonian. As a second step use these wave
functions to calculate the expectation value of the displacement operator. Alternatively,
we can again commute the reduced time-evolution operators with the displacement
operator

Û †R,1(t, ti)D̂(∆χ)ÛR,2(t, ti) = D̂(T−1
1 (t, ti)∆χ)Û †R,1(t, ti)ÛR,2(t, ti) (1.52)

with the time-evolution matrix

Tj(t, ti) = T exp

{∫ t

ti

dt′JAj(t′)
}
. (1.53)

With the help of Eq. (1.52) we rewrite Eq. (1.48) as

Û †1 Û2 = e
i
~∆S− i

2~∆χr(χp1+χp2)D̂(T−1
1 ∆χ)Û †R,1ÛR,2 . (1.54)
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Thus, for arbitrary time-dependent quadratic Hamiltonians, however, the same on both
interferometer branches, the two reduced-time evolution operators cancel and Eq. (1.54)
reduces to

Û †1 Û2 = e
i
~∆S− i

2~∆χr(χp1+χp2)D̂(T−1∆χ) . (1.55)

In this case the calculation shows that it is sufficient to solve a set of ordinary differ-
ential equations instead of propagating an infinite dimensional Schrödinger equation
in position space. When we consider general potentials, the local harmonic potentials
are always different at different positions, so that the two reduced time-evolution op-
erators do not cancel. One now either has to evaluate the actual time evolution of the
initial state due to ÛR,1 and ÛR,2, or resort to the approximative methods discussed in
Sec. 1.3.

1.2.4. Beyond harmonic approximation: Numerical simulation

Even in the most general case of Eq. (1.37) the transformation is still useful, when
we assume that the evolution through the interferometer is mainly due to the linear
potential (including the laser pulses) and the effect of the harmonic and higher-order
contributions is significant to some extent but does not completely alter the overall
displacement of the local wave packets. In this case eliminating the linear part of the
potential allows one to numerically simulate the evolution for both wave packets on a
grid of the spatial extent of the wave packet rather than the extent of the interferometer.

1.3. Perturbative methods

In the previous section we described a method to calculate phase and contrast of an
interferometer. Even though the formalism allows the intuitive interpretation in terms
of comoving frames, it entails the following problems: For general anharmonic perturb-
ing potentials, one first has to solve the full classical equations of motion, in general
numerically. After the transformation, Eq. (1.26), the Hamiltonian in the comoving
frames still contains the complicated perturbing potentials for which an analytic solu-
tion is generally not known. We can now either numerically simulate the Schrödinger
equation in the comoving frames or further proceed perturbatively if the perturbation
is small. Since we calculate the dynamical phase, proportional to the classical action,
to all orders in the perturbation potential, we have to check carefully for consistency
in order to take into account the effect of the perturbing potential in the reduced
time-evolution operator to the correct order.
Realizing that the perturbations are usually small, when for example resulting from
gravity gradients or the gravitational potential caused by the laboratory setup, a per-
turbative treatment that allows for direct access to the overlap operator would be
much more transparent. The new method derived in this section provides a consistent
perturbative expansion of phase and contrast in powers of the perturbing potentials.
Apart from a treatment of quite general anharmonic Hamiltonians, the method is also
capable of dealing with time-dependent perturbations. The aim of this section is to
develop this formalism.



24 Chapter 1. Light-pulse atom interferometry with noninteracting particles

Let the Hamiltonian be given by the sum

Ĥj(t) = H0,j(ξ̂, t) + εH ′j(ξ̂, t) (1.56)

where j = 1, 2 label the possibly time-dependent Hamiltonians along the paths of an
atom interferometer. In this section all Hamiltonians are path dependent. This will
only be explicitly indicated by an index when it is necessary and otherwise might lead
to confusion. The Hamiltonian in Eq. (1.56) separates into two parts. The first, Ĥ0,
is a simple Hamiltonian that allows an analytic solution of the Heisenberg equations
of motion, that is, it contains at most harmonic potentials. A typical form of the
unperturbed Hamiltonian for one of the branches is

Ĥ0 =
p̂2

2m
+mgr̂ −

∑
n

~knr̂ δ(t− tn) (1.57)

even though the following discussion is more general. The second part, εĤ ′, contains
e.g. anharmonic potentials, which will be treated perturbatively, since it is proportional
to ε which is supposed to be small.
The calculation now aims at contrast C and phase ϕ, defined by Eq. (1.16), as a
power series in terms of ε. In order to obtain a representation-free description of
the MZ interferometer, Schleich et al. [85] proceeded the following way: Because an
interferometer can be described by a sequence of time-evolution operators intersected
by the exponentials exp(±ikẑ), these can be combined to one exponential in the case of
time-independent Hamiltonians with the help of the Baker-Campbell-Hausdorff (BCH)
series

e−
i
~ Ĥ1T e−

i
~ Ĥ2T = e−

i
~ Ĥ1T− i

~ Ĥ2T− 1
2~2 [Ĥ1,Ĥ2]T 2+... . (1.58)

When trying to adapt this method to Hamiltonians like Eq. (1.56), the following prob-
lems arise. Apart from being only valid for time-independent Hamiltonians, Eq. (1.58)
is an expansion in powers of T , thus only valid for small T . Since the Hamiltonian is
the sum of Ĥ0 and εĤ ′, even the nth-order commutator involves first-order terms in
ε. One way to circumvent this problem would be a change into the interaction picture
with respect to Ĥ0. Then, however, Ĥ ′ becomes time dependent and Eq. (1.58) is not
valid anymore.
We therefore need to pursue an alternative perturbation method which can be viewed
as a generalization of the BCH series for time-dependent Hamiltonians.

1.3.1. Path ordering

We gain deeper insight into the problem when we consider the sequence

Û †1(t, ti)Û2(t, ti) = T exp

{
i

~

∫ t

ti

dt Ĥ1(t)

}
T exp

{
− i

~

∫ t

ti

dt Ĥ2(t)

}
(1.59)

where T denotes the anti time-ordering operator and the Hamiltonians are completely
arbitrary. Realizing that the time-ordering operator on the right-hand side orders -
reading from right to left - from ti to t, the anti time-ordering operator subsequently
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orders from t back to ti. We can combine the product by introducing a time contour
γ and the path-ordering operator Tγ which orders time along this contour. With this
concept Eq. (1.59) is rewritten as

Û †1(t, ti)Û2(t, ti) = Tγ exp

{
− i

~

∫
γ

dt Ĥ(t)

}
(1.60)

where we defined the Hamiltonians on the contour depicted in Fig. 1.3.
It was Schwinger [113] and Keldysh [114] who first introduced this method in the
context of thermal quantum field theory.

ti

td
Ĥ(t) = Ĥ2(t) for t on γ2 ,

Ĥ(t) = Ĥ1(t) for t on γ1 .

γ2

γ1ti

t1 t2 t3 ... tn

Figure 1.3.: Sketch of the integration path. In order to combine Eq. (1.60) to one
time-ordered exponential, we formally introduce a path-ordering operator. The
integral runs over γ2, where Ĥ(t) = Ĥ2(t) from t = ti to the final interferometer
time td and then returns back to ti over γ1, where Ĥ(t) = Ĥ1(t). At times
t = t1, ..., tn laser pulses affect the wave packets on γ1 or γ2.

An excellent introduction into this concept can be found in the textbook [115] and the
references therein. At first sight this method does not seem very helpful since Eq. (1.60)
still involves the rather formal path-ordering operator. However, the Magnus expansion
[92] helps us get rid of Tγ and we write

Û †1(t, ti)Û2(t, ti) =exp

{
− i

~

∫
γ

dt Ĥ(t)

− 1

2~2

∫
γ

dt

∫ t

γ

dt′
[
Ĥ(t), Ĥ(t′)

]
+ ...

}
. (1.61)

The Magnus expansion is a formal series to write a time-ordered exponential as the
exponential of an operator without time ordering. Unlike the Dyson expansion, it is
performed in the exponent, which makes this method particularly useful for the case
considered here.

1.3.2. Closed unperturbed interferometer

In the previous section we discussed the concept of path ordering and the Magnus
expansion. We are now in the position to formulate the perturbation expansion for the
Hamiltonian given by Eq. (1.56). Let us for simplicity first turn to a closed interferom-
eter with respect to the unperturbed Hamiltonian. Note that even if the unperturbed
interferometer is closed, the perturbing Hamiltonian will not only introduce a correction



26 Chapter 1. Light-pulse atom interferometry with noninteracting particles

to the phase but also - among other effects - slightly perturb the trajectories, resulting
in open interferometers. The assumption of a closed unperturbed interferometer allows
us to write

Û †1(td, ti)Û2(td, ti) = eiφ0 Tγ exp

{
− i

~
ε

∫
γ

dtH ′(ξ̂(t), t)

}
. (1.62)

First, we transformed into the interaction picture with respect to Ĥ0,j and used the
fact that the unperturbed interferometer is closed, that is,

Û †0,1(td, ti)Û0,2(td, ti) = eiφ0 (1.63)

where Û0,j are the time-evolution operators for path j with respect to the unperturbed
Hamiltonians. The phase in Eq. (1.63) is related to the classical action difference,
∆S0, with respect to the unperturbed Hamiltonian, as was shown in Sec. 1.2, or can
be calculated by the method which will be derived in example 1. By changing to the
interaction picture, we also have to transform the perturbing Hamiltonian according
to

Ĥ ′j(t)→ Û †0,j(t, ti)H
′
j(ξ̂, t)Û0,j(t, ti) = H ′j(ξ̂(t), t) (1.64)

where
Û †0,j(t, ti)ξ̂Û0,j(t, ti) = ξ̂(t) (1.65)

are the solutions of the Heisenberg equations of motion. Since the unperturbed Hamil-
tonian is at most quadratic in ξ̂, explicit expressions can be obtained for ξ̂(t). For the
unperturbed Hamiltonian, Eq. (1.57), we obtain

r̂(t) = r̂ +
p̂

m
t+ rc(t) ,

p̂(t) = p̂+ pc(t) (1.66)

where rc(t) and pc(t) are determined by the classical trajectories. For an open MZ
interferometer in a linear potential in z direction the solutions can be inferred from
Fig. 1.4.
Transforming into the interaction picture, the path-ordered exponential in Eq. (1.62)
has become proportional to ε. Consequently, with the help of the Magnus expansion
we arrive at a perturbation expansion in powers of ε

Û †1(td, ti)Û2(td, ti) = exp

{
i
∞∑
n=0

εnφ̂n

}
. (1.67)

Comparing with Eq. (1.61), we obtain the first-and second-order contributions

φ̂1 = −1

~

∫
γ

dtH ′(ξ̂(t), t) (1.68)

φ̂2 =
i

2~2

∫
γ

dt

∫ t

γ

dt′
[
H ′(ξ̂(t), t), H ′(ξ̂(t′), t′)

]
. (1.69)
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In general the expansion, Eq. (1.67), does not terminate. The nth-order term involves
combinations of nth-order nested contour integrals over nested commutators as given
by the Magnus expansion. Depending on the problem, the evaluation of the nested
contour integrals can be rather involved. It is therefore desirable to obtain expressions
with integrals extending only over the interval [ti, td]. For that reason we derive an
alternative form of the standard Magnus expansion in App. B.1 and provide explicit
expressions up to third order. The first two terms of the infinite series are

φ̂1 = −1

~

∮
dt Ĥ ′(t) , (1.70)

φ̂2 = − i

2~2

∫ td

ti

dt

∫ td

t

dt′ [Ĥ ′+(t), Ĥ ′−(t′)] (1.71)

with Ĥ ′+ = Ĥ ′2 + Ĥ ′1 and Ĥ ′− = Ĥ ′2 − Ĥ ′1.

Connection to the previous section

Suppose the Hamiltonian
Ĥ = Ĥ0 + εV ′(r̂, t) (1.72)

where H0 is again given by Eq. (1.57) and V ′ is supposed to be smooth around the
unperturbed trajectories. After changing into the interacting picture with respect to
the unperturbed Hamiltonian, we Taylor-expand the potential around the unperturbed
trajectories of the interferometer

V ′(rc(t)+ˆ̄r, t) = V ′(rc(t))+∂iV
′(r)|r=rc(t) ˆ̄xi(t)+

1

2
∂i∂jV

′(r)|r=rc(t) ˆ̄xi(t)ˆ̄xj(t) ... (1.73)

where r̂ = (x̂1, x̂2, x̂3)T and ˆ̄r = r̂ + p̂
m
t. The variance of ˆ̄r is related to the size of the

wave packet. Thus, Eq. (1.73) is an expansion in the ratio of the width of the local
wave function to the change of the potential. If the potential is sufficiently smooth,
we neglect all terms but the first in Eq. (1.73) to obtain a first-order correction of the
phase in ε

ϕ = φ0 −
1

~
ε

∮
dt V ′(ξ̂(t), t) =

1

~

∮
dt {L0(t)− εV ′(rc(t))} , (1.74)

where we made use of Eq. (1.41) to relate the unperturbed phase to the Lagrange
function L0 corresponding to the Hamiltonian Ĥ0. Hence, for smooth potentials and
ε small it is sufficient to integrate the perturbing potential along the unperturbed tra-
jectories. Note the key difference compared to Eq. (1.33) in which we have to integrate
the Lagrange function with respect to the perturbed trajectories which is much more
involved since the trajectories itself first must be determined either numerically or per-
turbatively. It is therefore worthwhile realizing that Eq. (1.33) and Eq. (1.41) yield
identical results for a closed unperturbed interferometer, when neglecting wave-packet
effects, and to first order in ε.
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Expectation value of exponential operators

Before we turn to a few examples, it is important to mention that we still need to
evaluate the expectation value of the exponential of operators. For small values of ε
the cumulant expansion [116, p. 928] can be extremely helpful. For an operator Â it
states

〈eÂ〉 = exp

( ∞∑
n=1

κn
n!

)
(1.75)

if existent, where the cumulants are defined by

κn =
dn

dtn
ln〈eÂt〉

∣∣∣
t=0

. (1.76)

Applying the cumulant expansion to Eq. (1.67), we obtain to third order in ε

ϕ = φ0 + ε〈φ̂1〉+ ε2〈φ̂2〉+ ε3
(
−1

6
〈φ̂3

1〉+
1

2
〈φ̂2

1〉〈φ̂1〉 −
1

3
〈φ̂1〉3 + 〈φ̂3〉

)
+ ... (1.77)

and

ln(C) = −1

2
ε2
(
〈φ̂2

1〉 − 〈φ̂1〉2
)
− ε3

(
1

2
〈φ̂1φ̂2 + φ̂2φ̂1〉 − 〈φ̂1〉〈φ̂2〉

)
+ ... (1.78)

for phase and contrast by separating complex and real parts. We now invoke the
following argument. When we are only interested in the lowest-order contribution to
phase and contrast we can neglect the influence of φ̂2 since it only enters as a correction
to the phase. In this sense the expansion is still consistent after neglecting 〈φ̂2〉 even
though ε2 appears in the contrast.
It is important to note that truncating Eq. (1.75) at a certain order does not neces-
sarily lead to good approximations. Depending on the size of ε and the perturbation
Hamiltonian, there might, however, exist an optimal number of terms one takes into
account which need to be estimated individually for every situation.

Initial conditions

The Magnus expansion of the overlap operator is completely independent of the initial
wave function. Let us again assume a state

|ψ〉 = D̂(χi)|ψ̃〉 (1.79)

with 〈ψ̃|ξ̂|ψ̃〉 = 0.
In the following we will present two equivalent approaches to include the initial condi-
tions into the calculation. Depending on the aim of the calculation, one or the other
method might provide more insight.
In the first method we calculate the overlap operator as a function of ξ̂. In order to
obtain its expectation value with respect to |ψ〉, we use Eq. (A.14), thus replace

ξ̂ → ξ̂ + χi (1.80)
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everywhere in the overlap operator to subsequently calculate its expectation value with
respect to |ψ̃〉. Performing the calculation this way highlights that, independent of the
geometry, the phase of a closed interferometer is independent of the initial velocity
and position of the wave packet. Note that the reverse statement is also true. The
phase of an open interferometer necessarily depends on the initial conditions. It was
pointed out in Ref. [117] that this fact limits the accuracy of tests of the equivalence
principle. The nonclosure of the interferometer resulting for instance from gravity
gradients introduces a phase dependent on the initial relative position and velocity
of the atomic clouds of the two atomic species employed, which cannot be controlled
accurately enough. A solution to this problem was provided in Ref. [118] and will be
discussed and generalized in Sec. 1.3.4.
In the second method we substitute the operators according to Eq. (1.80) before we
perform the Magnus expansion. This results in the replacement

rc(t) → r0 + v0t+ rc(t)

pc(t)→ mv0 + pc(t) (1.81)

in the classical trajectories.
Independent of the method used, the expectation value of functions of r̂ and p̂ with
respect to |ψ̃〉 becomes particularly simple since all moments of these operators are
automatically centered.

1.3.3. Examples

After developing the perturbation theory in the previous sections, we apply the method
to a number of examples. First, we present a fast calculation of a general interferometer
sequence in the linear gravitational potential. This example is followed by an analysis
of the leading-order perturbation effects on phase and contrast by a harmonic potential.
The subsequent example will extend the discussion to a second-order description of the
gravitational potential including cubic anharmonicities.

Example 1: General interferometer sequence in the linear gravitational
potential

In this example we present a fast way to obtain an explicit expression for the overlap
operator of a light-pulse interferometer in a linear gravitational field. The Hamiltonian
reads

Ĥj(t) =
p̂2

2m
+mgẑ − f (j)

L (t)ẑ , (1.82)

where the function f (j)
L (t) is branch dependent in the sense

f
(j)
L (t) =

∑
n

~k(j)
n δ(t− tn) . (1.83)

Here, j labels the path and n the laser pulses. Note that this notation assumes that
each laser pulse acts simultaneously on both interferometer arms. In case a laser pulse
acts exclusively on one branch, simply choose the respective k(j)

n = 0 on the other
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t = T0 t = T0 + 2T −∆Tt = T0 + T

2a

ẑ(t) = ẑ + p̂
m
t+ vr(t− T0)− 1

2
gt2

p̂(t) = p̂+mvr −mgt

ẑ(t) = ẑ + p̂
m
t+ vrT − 1

2
gt2

p̂(t) = p̂−mgt

ẑ(t) = ẑ + p̂
m
t+ vr(t− T − T0)− 1

2
gt2

p̂(t) = p̂+mvr −mgt

ẑ(t) = ẑ + p̂
m
t− 1

2
gt2

p̂(t) = p̂−mgt

Exit port 2

Exit port 1

ẑ(t) = ẑ + p̂
m
t− 1

2
gt2

p̂(t) = p̂−mgt
1a

2b

1b

Figure 1.4.: Sketch of a Mach-Zehnder in the linear gravitational field. After an
initial free fall time T0 the interferometer sequence is generated by three laser
pulses at t = T0, t = T +T0 and t = T0 + 2T −∆T . Next to the interferometer
paths the Heisenberg equations of motions with respect to the unperturbed
Hamiltonian, Eq. (1.82), are depicted, where vr = ~k

m is the recoil velocity. The
arrows define the integration direction over the contour γ.

without loss of generality. In order to apply the perturbation formula we must specify
the unperturbed Hamiltonian and choose

Ĥ0 =
p̂2

2m
+mgẑ . (1.84)

Even though the perturbation by the laser pulses is far from being small, we can still
apply the above perturbation formula since, as we will recognize, the Magnus expansion
terminates at second order. For this reason a calculation with the help of the BCH
series as shortly described in the beginning of this section was also possible [85]. The
interaction picture with respect to Hamiltonian, Eq. (1.84), is readily calculated. It
results in the transformation

ẑ → ẑ +
p̂z
m
t− 1

2
gt2 . (1.85)



Chapter 1. Light-pulse atom interferometry with noninteracting particles 31

We now apply Eq. (1.67) together with Eq. (1.70) and Eq. (1.71). Since the unperturbed
Hamiltonian is branch independent, we find φ0 = 0. With fL− = f

(2)
L − f

(1)
L the first-

order contribution is calculated as

φ̂1 = −1

~

∫ td

ti

dtH ′−(ξ̂(t), t) =
1

~

∫ td

ti

dt fL−(t)

(
ẑ +

p̂z
m
t− 1

2
gt2
)

=
1

~
(∆χpẑ −∆χzp̂z) + φg (1.86)

where we defined the relative momentum and position displacement

∆χp = ~
∑
n

k(−)
n , ∆χz = − ~

m

∑
n

k(−)
n tn , (1.87)

in the case of an open geometry and the gravitational phase

φg = −1

2
g
∑
n

k(−)
n t2n (1.88)

due to the motion in the gravitational field. We furthermore introduced the notation
k

(±)
n = k

(2)
n ± k(1)

n . Finally, we evaluate the second-order contribution which we define
as kinetic phase

φk ≡ φ̂2 = − i

2~2

∫ td

ti

dt

∫ td

t

dt′
[
H ′+(ξ̂(t), t), H ′−(ξ̂(t′), t′)

]
=

1

2m~

∫ td

ti

dt

∫ td

t

dt′ fL+(t)fL−(t′)(t′ − t)

=
1

2m

∫ td

ti

dt fL+(t)
N∑
j=1

k
(−)
j (tj − t)Θ(t < tj)

=
~

2m

N∑
j=2

j−1∑
n=1

k
(−)
j k(+)

n (tj − tn) , (1.89)

where we introduced the Heaviside function
∫ td
t

dt′ δ(t′ − tj) = Θ(t < tj) and N is the
total number of laser pulses. This phase can be employed in recoil measurements to
infer ~/m in order to determine the fine-structure constant [39]. In summary, we can
write

Û †1(td, ti)Û2(td, ti) = D̂(∆χ)eiφg+iφk . (1.90)
The momentum and, respectively, position displacement is determined by Eq. (1.87),
the gravitational phase by Eq. (1.88) and the kinetic phase by Eq. (1.89).
As an example we now consider an MZ interferometer with the laser pulses at t0 = 0,
t1 = T , and t2 = 2T . We slightly modify the momentum transfer of the laser pulses
by replacing k → k + ∆k1 at t1 and k → k + ∆k2 at t2 and generalize the discussion
above to nonaligned laser pulses. The result of this example will be needed for the
discussion of open interferometers in Sec. 1.3.4. We find

Û †1(td, ti)Û2(td, ti) = exp

{
−i(k −∆k1 + 2∆k2)gT 2 + ivr(∆k2 −∆k1)T − i

~
∆χTJ ξ̂

}
(1.91)
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with

∆χr = −2(∆vr2 −∆vr1)T

∆χp = m(∆vr2 − 2∆vr1) (1.92)

and the recoil velocities are related to the wave numbers by ∆vrj = ~∆kj/m.
The result of this example can be easily generalized to branch-independent harmonic
potentials. One then recovers the formalism of Ref. [86].

Example 2: Harmonic potential

In this example we discuss the impact of gravity gradients or, in general, harmonic
potentials on phase and contrast of an interferometer. While these results have been
known for many years, we show how straightforward the calculation becomes with our
method. We will furthermore generalize the following calculation to include anhar-
monicities in the subsequent example.
Experimentally, the insensitivity to linear accelerations of double-loop also known as
butterfly geometries (see for instance Fig. 2 in Ref. [10]) offers a possibility to measure
gravity gradients. The advantage of the dual-cloud set up in Refs. [31, 51] is the im-
munity to spurious effects like platform vibrations due to the differential measurement
known as common-mode rejection. These gradiometers have important applications
for testing fundamental physical constants [33] and future perspectives in geodesy [32].
An increase in the accuracy of gradiometers [50] allows to measure gradient effects
in Ref. [34], which are related to proper-time differences [118], by using a coherent
superposition of two interferometers rather than two independent ensembles.
In App. B.3 we expand the gravitational potential of the Earth on the surface to
third order in the inverse of its radius. The z axis is chosen in direction of the linear
acceleration g and we disregard the zero-order term as it only introduces an irrelevant
global phase. To second order, the perturbation reads

V (r̂) = mgẑ +
1

2
mΓ

(1)
ij x̂ix̂j , (1.93)

where repeated indices are summed over and Γ(1) symmetric. We furthermore identify
the local acceleration g ∼= 9.81m/s2. We now consider a closed interferometer with
respect to the linear Hamiltonian, Eq. (1.82), and calculate the first-order contribution.
From the discussion in Eq. (1.66) we obtain for the Heisenberg equations of motion

x̂j(t) = ˆ̄xj(t) + zc(t)δjz (1.94)

with
ˆ̄xj(t) = x̂j +

p̂j
m
t . (1.95)

Note again that the path-dependent classical trajectory zc is calculated with respect to
the unperturbed Hamiltonian without the perturbing harmonic potential. According
to Eq. (1.68) the first order is obtained as the integral over the perturbation potential
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evaluated at the Heisenberg equations of motion. This results in

φ̂1 = −m
2~

∮
dt
{

2Γ
(1)
zj zc(t)ˆ̄xj(t) + Γ(1)

zz zc(t)
2
}

= ϕ1 −
1

~
χTJ ξ̂ . (1.96)

The integral over the term quadratic in ˆ̄x(t) is zero since it is path independent since
it does not contain zc. The fact that also higher-order nested contour integrals over
path-independent functions vanish is further investigated in App. B.2. In Eq. (1.96),

ϕ1 = −m
2~

Γ(1)
zz fϕ1 (1.97)

is the first-order correction to the phase and the displacement is given as

χpj = −mΓ
(1)
zj fχp1

χrp = Γ
(1)
zj fχr1 . (1.98)

The functions f only depend on the interferometer geometry. The explicit expres-
sions are collected in App. B.3 where we also calculate them exemplarily for an MZ
interferometer. Thus, we obtain with the cumulant expansion, Eq. (1.77) and (1.78),
exemplarily for an MZ interferometer with initial velocity v0 = 0 of the atomic cloud

ϕ = φ0 + 〈φ̂1〉 = −kgT 2 +
7

12
Γ(1)
zz gkT

4 − Γ(1)
zz

~k2

2m
T 3 (1.99)

and
ln(C) = −1

2
Var(φ̂1) = − 1

2~2

(
χpTΣrrχ

p + χrTΣppχ
r
)

(1.100)

where we introduced the covariance matrix

Σ =

(
Σrr Σrp

(Σrp)T Σpp

)
(1.101)

defined by

Σjk =
1

2
〈ξ̂j ξ̂k + ξ̂kξ̂j〉 − 〈ξ̂j〉〈ξ̂k〉 . (1.102)

Furthermore we set the cross correlations Σrp = 0 for an initial state which is supposed
to be the ground-state of some potential. Note that 〈ξ̂〉 = 0 in general as we included
the initial conditions into the classical equations of motion.
The expression for the contrast, Eq. (1.100), is valid for a wide range of input states
but generally only for C ≈ 1, otherwise the cumulant expansion cannot guarantee an
accurate approximation. In the case of the Gaussian input state [119], in position
representation

ψ(r) =
1

(2π)3/4 (detΣrr)
1/4

exp

{
−1

4
rTΣ−1

rr r

}
, (1.103)

the cumulant expansion terminates at second order and Eq. (1.100) is exact. For
this state, we find additionally Σpp = ~2

4
Σ−1
rr . Due to the influence of the perturbing
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potential, the interferometer is not closed, and the contrast drops to zero at the moment
the terms in Eq. (1.100) become of the order of one. In Sec. 1.3.4 we will discuss open
interferometers and generalize mitigation strategies for the loss of contrast.
There are multiple ways to obtain the above results. Here, we presented a straightfor-
ward derivation by means of the path-dependent perturbation theory. Of course, the
results can be easily extended to include non-aligned momentum transfers and p̂jx̂k
terms resulting e.g. from Coriolis forces in rotating coordinate systems.

Example 3: Gravitational potential to second order in R−1

In the previous example we calculated the influence of the gravitational potential of
the Earth to first order in the inverse of its radius on a closed interferometer. Now we
extend the discussion to second order. For this calculation it is important to realize
that we cannot simply apply Eq. (1.71) to the potential, Eq. (1.93). Since the third
derivative of the gravitational potential also scales with 1/R2, we need to include the
cubic correction into the potential in the form

V (r̂) =
1

2
mΓ

(1)
ij x̂ix̂j +

1

2
mΓ

(2)
ijk x̂ix̂jx̂k (1.104)

with Γ(1) ∼ R−1 and Γ(2) ∼ R−2. For the derivation and the explicit values of Γ
(1)
ij

and Γ
(2)
ijk we again refer to App. B.3.1. In the following calculation we will denote the

origin of terms by a subscript on the functions f . The application of Eq. (1.70) to
the perburbing potential, Eq. (1.104), results in the first-order terms calculated in the
previous example (labeled by subscript 1) and a second-order contribution (in R−1)
from the anharmonicities (labeled by subscript 2). Additionally, second-order terms
arise from Eq. (1.71) applied to the harmonic part of the potential (labeled by subscript
3). The latter terms will be calculated next. Evaluating the commutator[

Ĥ+(t), Ĥ−(t′)
]

= im~
{

2[Γ(1)]2iz zc−(t′) ˆ̄xi(t)

+ [Γ(1)]2zz zc+(t)zc−(t′)
}

(t′ − t) +O(1/R3) , (1.105)

with zc± = z
(2)
c ± z(1)

c , where again the superscript denotes the path, and with the help
of the relation [

ˆ̄xi(t), ˆ̄xj(t
′)
]

=
i~
m

(t′ − t)δij , (1.106)

we arrive at
φ̂2 = −m

2~
[Γ(1)]2zzfϕ3 −

m

~
[Γ(1)]2jz

(
mx̂jfχp3 + p̂jfχr3

)
. (1.107)

The calculation of contributions stemming from the cubic terms to first order in the
Magnus expansion is straightforward and left to the reader. Collecting all terms, we
arrive at the final result

Û †1(td, ti)Ûd(td, ti) = exp

{
i

(
φ0 + ϕ1 −

1

~
χTJ ξ̂ − 1

2~
ξ̂TAξ̂

)}
. (1.108)
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The first term is the phase of the unperturbed interferometer, e.g. φ0 = −kgT 2 for an
MZ interferometer. The next term provides a correction to the phase

ϕ1 = −m
2~
(
Γ(1)
zz fϕ1 + Γ(2)

zzzfϕ2 + [Γ(1)]2zzfϕ3

)
. (1.109)

The functions f are again listed in App. B.3.2. The coefficients for the linear terms in
ξ̂ are

χp,j = −m
{

Γ
(1)
zj fχp1 +

3

2
Γ

(2)
zzjfχp2 + [Γ(1)]2jzfχp3

}
χr,j = Γ

(1)
zj fχr1 +

3

2
Γ

(2)
zzjfχr2 + [Γ(1)]2jzfχr3 . (1.110)

The matrix

A =

(
Arr Arp

(Arp)T App

)
(1.111)

consists of four blocks. Each element is proportional to Γ
(2)
zjk and defined by

Arrjk = 3mΓ
(2)
zjkfA1 , Arpjk = 3Γ

(2)
zjkfA2 , Appjk = 3

1

m
Γ

(2)
zjkfA3 . (1.112)

The terms quadratic in ξ̂ account for distortion effects due to different expansion
dynamics of the wave packet in the cubic potential along different paths. This effect
goes beyond the formalism [86] developed for path independent harmonic potentials.

Application to an atomic-fountain experiment

In order to get a feeling for the size of the contributions, we apply the results to an
atomic fountain experiment [61, 120] which is depicted in Fig. 1.5. For the initial
velocity

v0 = gT − vr

2
(1.113)

in z direction of the atomic cloud it is a symmetric MZ setup. The wave packet is
accelerated to this velocity by a launching pulse at t = 0 right after the release from
the trap. Again, the unperturbed interferometer is closed and we obtain the familiar
result

φ0 = −kgT 2 (1.114)

for the phase, independent of the initial velocity v0. Next, we calculate the Heisenberg
equations of motions. As before, they are read off Fig. 1.4 with T0 = ∆T = 0.
For interferometer times of about 1.5 s corresponding to the free-fall time in a 10m
tower, the corrections from the gravitational field are extremely small so that an ap-
proximate treatment in the form of the expansion, Eq. (1.75), is valid. The exponent
in Eq. (1.108) is correct to order 1/R2 and it is therefore sufficient to truncate the
cumulant expansion at the variance.
We obtain the phase to order R−2 by the expectation value of Eq. (1.108) as

ϕ = φ0 + ϕ1 +
1

2~
tr(AΣ) , (1.115)
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~k

~k ~k

z

t = T

t = 0 t = 2T

v0

Figure 1.5.: Atomic fountain setup. After switching off the trap, the atoms are
accelerated and enter the MZ configuration with initial mean velocity v0. If the
half interferometer time T is chosen according to Eq. (1.113), the interferometer
is symmetric to t = T .

where we used
〈2χTJ ξ̂ + ξ̂TAξ̂〉 = tr(AΣ) (1.116)

with the covariance matrix Σ. This expression can be further simplified with the help
of Eq. (1.112) to

tr(AΣ) = 3tr

{
Γ(2)
z

(
ΣrrmfA1 + 2ΣrpfA1 + Σpp 1

m
fA3

)}
(1.117)

with Γ
(2)
zjk = (Γ

(2)
z )jk. Inserting the explicit form of Γ(1) and Γ(2) from App. B.3 into

Eq. (1.117), the final expression for the phase reads

ϕ = φ0 +R−1mg

~
fϕ1 −R−2mg

~

(
2gfϕ3 + fϕ2 −

3

2
∆2
rfA1 −

3

2m2
∆2
p fA3

)
(1.118)

with

∆2
r = ∆x2 + ∆y2 − 2∆z2 and ∆2

p = ∆p2
x + ∆p2

y − 2∆p2
z (1.119)

where ∆O = 〈Ô2〉 12 denotes the standard deviation of the operator Ô and we assumed
Σrp = 0 for the initial state. Remarkably, as can be inferred from Eq. (1.119), the
phase due to the different expansion dynamics along the paths cancels for a symmetric
initial state.
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Next, we calculate the contrast by evaluating the variance

Var

{
−i

(
1

~
χTJ ξ̂ +

1

2~
ξ̂TAξ̂

)}
= − 1

~2
χTJΣJ Tχ+O

(
R−3

)
, (1.120)

which is independent of A since it is already of the order of 1/R2. The result in
Eq. (1.120) was already obtained in Eq. (1.100), consequently the contrast for the
Gaussian initial state, Eq. (1.103), with Σpp = ~2

4
Σ−1
rr reads

ln(C) = − 1

2~2
χpTΣrrχ

p − 1

8
χrTΣ−1

rr χ
r . (1.121)

This expression contains terms of O(1/R3), but we emphasize that the result is only
correct to second order and higher-order terms need to be neglected consistently.
So far the calculation applies to general interferometer geometries via the functions f
which are defined in App. B.3. Apart from the general definition we also state in this
appendix the explicit values for an MZ interferometer with general initial velocity. For
the special choice, Eq. (1.113), we obtain

fϕ1 =
5

6
gvrT

4, fϕ2 =
11

20
g2vrT

6 +
1

8
v3

rT
4, fϕ3 = − 59

180
gvrT

6

fA1 = vrT
2, fA3 =

7

6
vrT

4 . (1.122)

In Fig. 1.6 we compare the different contributions to the phase for a factorizing Gaussian
input state with ∆xj∆pj = ~/2. Furthermore, we choose a disk-shaped state with
∆x = ∆y = 2∆z for a nonvanishing ∆r and ∆p to get a feeling for the size of distortion
effects.

Discussion

We conclude this example by the following remarks. In Eq. (1.118) the first term within
the parenthesis stems from the second-order treatment in the Magnus expansion with
respect to the harmonic part of the potential, whereas the second term is the first-
order result of the cubic part. A comparison for the considered interferometer shows
that the terms are of the same order of magnitude, the presumption at the beginning
of this example was therefore correct. For a consistent calculation to second order in
the radius of the Earth one needs to include the cubic terms in the expansion of the
gravitational potential.
It is interesting to note that in Eq. (1.118) the specific form of the interferometer
sequence enters the equations only through the functions f . Therefore, Eq. (1.118) is
valid for general sequences. One simply needs to calculate the functions f defined in
App. B.3.
The Taylor expansion of the gravitational potential and the Magnus expansion of the
overlap operator are effectively an expansion in the ratio of l/R � 1, where l is the
characteristic size of the interferometer. For l ≈ 10m this parameter is smaller than
10−5.
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Figure 1.6.: Atomic-fountain experiment in the gravitational potential. The fig-
ure shows the absolute values of the phase contributions up to second order
in the inverse of the Earth’s radius. The phase of the unperturbed interfer-
ometer is φ0 = −kgT 2 and first-and second-order contributions are stated in
Eq. (1.118). The purple line shows the phase 1

2~tr(AΣ) emergent from non-
perfect overlap of the wave packets due to different expansion dynamics with
respect to different local harmonic potentials. Even the second-order contri-
butions, apart from phases due to distortion effects, will become relevant in
near-future applications for example in a setup to determine influences of rela-
tivistic effects. The numerical values are obtained for 87Rb with k ≈ 3·108 m−1,
∆x = ∆y = 2∆z = 100µm and ∆pi = ~/(2∆xi), valid for an initial Gaussian
state.

Although we restricted the discussion to the simple case of laser pulses aligned with g, a
generalization is straightforward and will be done in example 4. Furthermore, velocity-
dependent forces appearing in rotating coordinate systems can be easily included.
One can again observe the advantage of the expansion in ε over the expansion in T as
done in Eq. (1.58). Terms of the order of T 6 appear in fϕ3, that is, already at second
order in R−1 one would have to apply the BCH series to at least 6th order, which seems
quite impossible.
Finally, we note again that it is particularly easy to calculate the expectation value
of the overlap operator since this must be done with respect to the initial state. In
addition to that, when the cumulant expansion is valid, it is even sufficient to know
only the first few moments of the initial wave function.
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1.3.4. Open unperturbed interferometers

In the previous section we realized that, although the unperturbed interferometer is
closed, a perturbation may lead to open interferometers. Experimentally, nonclosure
is sometimes introduced deliberately by a slight asymmetry in the laser-pulse timing
to extract the quantity to be measured by a phase shear [67, 121]. However, open
interferometers arising from gravity gradients [88] or rotations [29] in general introduce
an undesirable dependence of the interferometer phase on the initial conditions of the
wave packet and to a loss of contrast.
One way to overcome this problem is to slightly open the unperturbed interferometer to
exactly compensate for these effects. Such mitigation strategies have been proposed for
rotations by using tip-tilt mirrors [122] and for gravity gradients by varying the pulse
timing [88, 89] or by slightly changing the momentum transfer of the π pulse in an
MZ interferometer [118]. Recently, these methods have been implemented successfully
[123, 124].
Motivated by these ideas, we aim at a generalization to include anharmonicities into
the method. This will be done in detail in example 4 for the case of the anharmonic
Hamiltonian, Eq. (1.104), and additional gravitational potentials stemming from the
mass distribution of the laboratory setup.
But let us first discuss the general formalism for open unperturbed interferometers.
The Hamiltonian is again the sum

Ĥj(t) = Ĥ0,j(t) + εĤ ′j(t) (1.123)

of a simple Ĥ0, given by Eq. (1.57), and a complicated but small εĤ ′. In order to
calculate the overlap operator, we transform as before into the interaction picture with
respect to the unperturbed Hamiltonian

Û †1(td, ti)Û2(td, ti) = eiφ0Û †1,H(td, ti)D̂(∆χ0)Û2,H(td, ti) (1.124)

Here, we used the fact that the overlap operator with respect to Eq. (1.57) can always
be cast as a phase and a displacement operator

Û †0,1(td, ti)Û0,2(td, ti) = eiφ0D̂(∆χ0) . (1.125)

When we change into the interaction picture we also need to replace the momentum
and position operators in the perturbation Hamiltonian by the solution of the Heisen-
berg equations of motion, generated by Ĥ0, which, as before, take the form given in
Eq. (1.66). This is denoted by the subscript H on the time-evolution operators.
Next, we interchange the displacement operator with the time-evolution operator to
its left. Since D̂ is unitary, we need to replace

H ′1(ξ̂(t), t)→ D̂†(∆χ0)H ′1(ξ̂(t), t)D̂(∆χ0) , (1.126)

that is, by using Eq. (A.14), we substitute

rc(t) → ∆χr0 +
∆χp0
m

t+ rc(t)

pc(t)→ ∆χp0 + pc(t) (1.127)
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in the equations of motion for Ĥ ′1. We are now in the position to apply the Magnus
expansion to the product Û †1,HÛ2,H in exact correspondence to the discussion of the
closed unperturbed interferometer. This results in the general expression

Û †1(td, ti)Û2(td, ti) = D̂(∆χ0)exp

{ ∞∑
n=0

εnφ̂n

}
, (1.128)

which consists of a displacement operator multiplied by the exponential of the infinite
series obtained by the Magnus expansion of the overlap operator. One could argue that
it would be advantageous to combine the product to one exponential. However, in case
∆χ0 is large, the expectation value of Eq. (1.128) is simpler to calculate. In contrast,
if ∆χ0 scales with ε, we can combine the product of the displacement operator and the
exponential using the BCH formula to the desired order. In conclusion, we reduced
the problem of an open interferometer to the closed situation already discussed in the
previous sections.

Example 4: Generalized mitigation strategy for open interferometers

In example 3 we considered an MZ interferometer in the gravitational field up to
second order in the inverse of the Earth’s radius. As manifested by the nonvanishing
operator-valued terms in the overlap operator, this interferometer does not close. It
was shown in Ref. [118] that by a slight modification of the momentum transfer in the
π pulse, the interferometer can be forced to close again. We will show that this result
can be generalized to mitigate also the effect of the cubic contributions in the Taylor
expansion of the gravitational potential of the Earth as well as the influence of nearby
mass distributions by modifying additionally the momentum transfer of the last laser
pulse.

Gravitational potential of the earth

We first consider the gravitational potential of the Earth. As was discussed in example
3, it is characterized by its smoothness, meaning that each term in the Taylor expansion
decreases by another factor of 1/R. Let the perturbing potential again be given by

V (r̂) =
1

2
mΓ

(1)
ij x̂ix̂j +

1

2
mΓ

(2)
ijk x̂ix̂jx̂k (1.129)

where Γ(1) and Γ(2) are chosen fully symmetric. We calculate the overlap operator in
the following up to second order in Γ(1) and to first order in Γ(2). Consistency conditions
will be derived at the end of this example but for the gravitational potential of the
Earth they will be well satisfied.
The overlap operator for the open unperturbed interferometer with k → k + ∆k1 for
the middle π pulse and k→ k+∆k2 for the third π/2 pulse has been calculated already
in example 1. In Eq. (1.92) we found explicit expressions for the displacements, which
we provide again here,

∆χr0 = −2(∆vr2 −∆vr1)T

∆χp0 = m(∆vr2 − 2∆vr1) . (1.130)
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Next, we repeat the calculation performed for the gravitational potential with harmonic
and cubic perturbations but in contrast to example 3 we need to account for the open
unperturbed interferometer. In this calculation we will not specify the phase, but rather
focus on the operator-valued terms. To close again the interferometer, ∆χ0 obviously
must be chosen of the order of O(Γ(1),Γ(2)). Thus, we combine the two exponentials
in Eq. (1.128) to a single one with the help of the BCH series. Comparison with the
calculation in example 3 shows that φ̂1 ∼ Γ(1)ξ̂ + Γ(2)ξ̂ + Γ(2)ξ̂ξ̂ and φ̂2 ∼ [Γ(1)]2ξ̂.
Consequently, all commutators in the BCH either result in c-numbers, thus phases
which are not discussed in the present consideration, or lead to terms which scale
beyond the order considered here. In conclusion we can write the result as

Û †1(td, ti)Ûd(td, ti) = exp

{
i

(
ϕ− 1

~
∆χTJ ξ̂ − 1

2~
ξ̂TAξ̂

)}
(1.131)

where ϕ is some phase and

∆χ = ∆χ0 + ∆χ1 + ∆χ2 + ∆χ3 . (1.132)

The displacements are defined in App. B.3.3 and calculated for the MZ interferometer
with well defined launching velocity v0, not to be confused with the small uncontrollable
initial velocity, whose influence will be discussed at the end of this example. It is
important to recall that for the calculation in App. B.3.3 we not only have to consider
the modified trajectories (due to the modified laser pulses), but also need to take into
account the fact that the unperturbed interferometer is open. At the beginning of this
section we showed that this is done by changing the classical trajectories according
to Eq. (1.127) on path 1. Note that ∆χ0 ∼ Γ(1), thus to the order considered here
this modification is only necessary for ∆χ1, for the other displacements it is even
sufficient to integrate along the trajectories of the standard closed MZ interferometer.
Furthermore, we introduce the notation

(Γ(2)a)ij = Γ
(2)
ijkak and (bTΓ(2)a)i = Γ

(2)
ijkbjak (1.133)

for vectors a and b and recall that Γ(2) is fully symmetric. In order to remove the
operator-valued terms linear in ξ̂, we solve for ∆χ = 0 with the result

∆vr1 = −1

2
Γ(1)vrT

2 +
1

24
[Γ(1)]2vrT

4 +
5

8
vT

r Γ(2)(gT − 2v0 − vr)T
3

∆vr2 = −1

4
vT

r Γ(2)(2gT − 2v0 − vr)T
3 , (1.134)

which can easily be verified by substituting Eq. (1.134) together with the expressions
calculated in App. B.3.3 back into Eq. (1.132). Remarkably for a symmetric atomic
fountain experiment as depicted in Fig. 1.5 with v0 = gT − vr/2 we find ∆vr2 = 0,
thus it is sufficient to only modify the momentum transfer of the π pulse.
For the validity of the perturbative approach some conditions have to be fulfilled which
we discuss next. By comparing the sizes of the terms in the Hamiltonian together with
a dimension analysis, we conclude

Γ(1)T 2 � 1 , Γ(2)gT 4 � 1 , Γ(2)gT 2 � Γ(1) , (1.135)
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and we used vr � gT . The first two conditions ensure that the perturbative treatment
of harmonic and cubic terms is valid individually, the third makes sure that a treatment
to first order in Γ(2) and to second order in Γ(1) is consistent. For the gravitational
potential of the Earth all these conditions are satisfied, in particular we even showed
in example 3 that the second-order terms in Γ(1) are of the same size as the first-order
terms in Γ(2).

Gravitational potential of nearby mass distributions

In the case of nearby mass distributions, however, the situation can become quite
different. The potential is in general not sufficiently smooth so that a Taylor expansion
of the potential over the size of the interferometer is not valid anymore. Instead, we
employ the local harmonic approximation, which was introduced in Eq. (1.73), that
is, we expand the potential locally around the trajectories of the wave packets up to
second order. For the gravitational potential V = mΦ(s) which we add to the perturbing
potential, Eq. (1.129), we obtain the first-order expression

φ̂
(s)
1 = ϕ(s) − i

~
m

∮
dt g(s)(t)ˆ̄r(t)− i

2~
m

∮
dt ˆ̄r(t)TΓ(s)(t)ˆ̄r(t) (1.136)

where g(s)
i (t) = ∂iΦ

(s)(r)|r=rc(t) and Γ
(s)
ij (t) = ∂i∂jΦ

(s)(r)|r=rc(t). This results in the
displacements

∆χp(s) = −m
∮

dt g(s)(t)

∆χr(s) =

∮
dt g(s)(t)t . (1.137)

Since the absolute value of the gravitational potential of the nearby mass distributions
is extremely small compared to the gravitational potential of the Earth, a first-order
calculation (in the Magnus expansion) is sufficient. Furthermore, we can again evaluate
all functions at the trajectories of the standard MZ interferometer. Choosing the recoil
velocities in Eq. (1.130) to compensate the expressions in Eq. (1.137) results in the
additional recoil velocities

∆v
(s)
r1 =

∮
dt g(s)(t)

(
t

2T
− 1

)
∆v

(s)
r2 =

∮
dt g(s)(t)

(
t

T
− 1

)
, (1.138)

which can simply be added to the expressions in Eq. (1.134) to the order considered
here. For completeness we also state the contributions quadratic in ξ̂

Arr
(s) = m

∮
dtΓ(s)(t), Arp

(s) =

∮
dtΓ(s)(t)t, App

(s) =
1

m

∮
dtΓ(s)(t)t2 . (1.139)

With Eq. (1.138) we found two simple expressions for how we should change the mo-
mentum transfer of the laser pulses in an experiment to close the interferometer trajec-
tories. Note that g(s) in general is not aligned with the z axis so that also the direction
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of the momentum transfer must be slightly changed. This should be experimentally
achievable using tip-tilt mirrors [118].

Initial conditions

With Eq. (1.134) and Eq. (1.138) we found a way to eliminate all terms linear in
ξ̂. However, the overlap operator still contains quadratic terms. Fortunately, phase
contributions dependent on the initial conditions originating from these terms are small
as we will show in the following. To this end, we write as in Eq. (1.79)

|ψ〉 = D̂(χi)|ψ̃〉 (1.140)

where χi = (ri,mvi)
T describes the small uncontrollable initial condition of the state

and 〈ψ̃|ξ̂|ψ̃〉 = 0. Using Eq. (A.14) for the expectation value of the overlap operator
introduces the additional phase ϕi = −χT

i Aχi/2~. With the help of the explicit ex-
pressions derived in App. B.3.3, this phase can be shown to be additionally suppressed
by the factor vi/vr � 1 compared to those contributions which would arise without
employing the compensation technique.

Contrast

Finally, we calculate the contrast after employing the elimination technique. With the
help of the cumulant expansion we obtain

C = exp

{
−1

2
Var

(
1

2~
ξ̂TAξ̂

)}
. (1.141)

The variance is most easily calculated in Wigner representation for a general Gaussian
input state [125]

W (r,p) =
1√

(2π)6det(Σ)
exp

{
−1

2
ξTΣ−1ξ

}
(1.142)

by using the Wigner-Weyl representation [126] of the operator in Eq. (1.141), with the
result

ln(C) = − 1

4~2
tr
(
AΣAΣ

∗)
. (1.143)

In Eq. (1.143) we introduced the abbreviation

Σ = Σ +
i~
2
J , (1.144)

which is a positive semidefinite matrix [127]. The trace in Eq. (1.143) is always larger
than or equal to zero, consequently C ≤ 0 as it should. Typically, this loss of contrast
which results from the diminished overlap due to different expansion dynamics along
the paths of the interferometer is small and can be disregarded.
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1.3.5. Particle-particle interaction

When Bose-Einstein condensates are used as highly-coherent atom sources one needs to
account for the mutual interaction between the particles. Fortunately, in many cases
the wave function is initially allowed to expand (in position space) before the first
laser pulse is applied, which significantly reduces the strength of the particle-particle
interaction. It is often sufficient to treat the BEC on a mean-field level, thus one
propagates the order parameter with the Gross-Pitaevskii equation until right before
the first laser pulse. From that point on one neglects interactions and the Schrödinger
equations provides a sufficiently accurate description. For that reason, the theory of
this chapter can still be employed when this propagated GP state is used as initial input
state. Note that this is only true for perfect laser pulses so that the number of particles
on each branch is perfectly balanced and mean-field phases cancel. Furthermore, one
has to make sure that distortion effects and phases can be neglected that arise from
the split of the order parameter in two wave packets.
In the next chapter we will discuss the impact of particle-particle interactions in much
more detail by starting from a second-quantized treatment. This will help us assess
interaction effects, some of which are spurious, others might even be used to increase
the performance of an atom interferometer.

1.4. Summary

In this chapter we considered two powerful formalisms to calculate phase and contrast
of atom light-pulse interferometers.
The first method, which has already been used by several authors, simplifies the theo-
retical treatment of an interferometer by describing the evolution in comoving frames.
The transformation to these frames removes the motion due to linear potentials and the
laser pulses, hence the local wave packets only evolve according to residual nonlinear
potentials. We first provided a straightforward derivation in which we obtained the
result by mere operator algebra. Furthermore, we derived an exact formula for general
potentials which does not rely on the local harmonic approximation. This method is
particularly suited to be applied in the case of potentials smooth in a neighborhood of
the local wave packets but possibly strongly anharmonic over the extent of the inter-
ferometer. Even in the case of completely general potentials, the formalism extremely
decreases the computational effort in numerically exact simulations.
In the second part of this chapter we presented a new approach which is able to
account for arbitrary perturbation Hamiltonians, however, proportional to a small
factor ε. By deriving a generalization of the Magnus expansion, we arrived at an
elegant perturbative expansion of phase and contrast in powers of ε. In a number
of examples we illustrated the method and showed to what extent even complicated
calculations are streamlined within this formalism. Finally, we discussed mitigation
strategies for gravity gradients and generalized the methods to take into account the
effect of anharmonicities in the gravitational potential of the Earth as well as the
influence of nearby mass sources.
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Bose-Einstein condensation

Bose-Einstein condensation (BEC) was first proposed by Einstein, when he extended
the ideas of the Indian physicist Bose [128], who investigated photons at thermal equi-
librium, to massive noninteracting particles [129] which are nowadays called bosons.
As a result of the exchange symmetry of the bosonic wave function, all particles should
occupy the lowest energy eigenfunction at ultralow temperatures, leading to a macro-
scopic matter wave.
Intensive work was required on the theoretical side [130, 131] and sophisticated cooling
techniques had to be developed until 70 years later BEC was for the first time exper-
imentally discovered in dilute alkali gases in 1995 by Cornell, Wieman, and Ketterle
[132, 133]. They were awarded the Nobel Prize only six years later [134, 135].
Ultracold quantum gases offer remarkable controllability. Not only parameters like
particle number or the trap frequency can be experimentally well controlled but even
interactions among the particles can be tuned via Feshbach resonances [136] from
attractive to strongly repulsive, thus providing unique possibilities to study many-body
effects.
A Bose-Einstein condensate can be viewed as a coherent nonlinear matter wave which
gives rise to phenomena like solitons [137] or the formation of vortices [138]. The
extraordinary coherence properties also make BECs a preferable source for atom inter-
ferometry.
Nowadays, Bose-Einstein condensates are routinely produced in many laboratories for
many types of atomic species all over the world.
In this chapter we will shortly review the theoretical framework of Bose-Einstein con-
densation. Starting with the mathematical definition of BEC in Sec. 2.1, we will revisit
the question of relative phase between two BECs which have never “seen” each other in
Sec. 2.2. The answer to this question will guide us to the philosophical perspective on
Bose-Einstein condensation which is suited best for the description of atom interfer-
ometry. Finally, in Sec. 2.3 we will briefly discuss the stationary and time-dependent
Thomas-Fermi approximation.

45
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2.1. Definition of Bose-Einstein condensation

What is Bose-Einstein condensation? At first sight the answer seems to be straightfor-
ward. A system is Bose-Einstein condensed if there exists a macroscopically occupied
energy eigenstate. This definition, however, becomes highly nontrivial in interacting
systems, where single-particle states are not defined anymore and the idea of BEC
becomes obscure.

2.1.1. Penrose-Onsager criterion

These problems where resolved in the seminal work by Penrose and Onsager [139] in
which they resorted to the (time-dependent) reduced one-particle density matrix

ρ (r, r′, t) = 〈Ψ̂†(r′)Ψ̂(r)〉 . (2.1)

Here, Ψ̂(r) is the field operator in second quantization that annihilates a particle in
the state |r〉 and satisfies the well-known bosonic commutation relations[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r − r′) and
[
Ψ̂(r), Ψ̂(r′)

]
= 0 , (2.2)

reflecting the symmetry of the many-particle wave function under exchange of two
particles.
A system is Bose-Einstein condensed if the one-particle density matrix shows exactly
one macroscopic eigenvalue N0, that is,∫

d3r′ ρ (r, r′, t)φj(r
′, t) = Njφj(r, t) with one N0 ∼ O(N) (2.3)

in the thermodynamic limit and all others Nj ∼ O(1) for j 6= 0, where N is the
total number of particles in the system. The eigenfunctions φj(r, t) are referred to
as natural orbitals. They constitute a complete set of orthogonal functions as the
one-particle density matrix is hermitian. The criterion in Eq. (2.3) serves as a very
general definition of Bose-Einstein condensation, valid for interacting systems even out
of equilibrium. For mesoscopic systems the Penrose-Onsager criterion is applicable in
the form that one N0 must exist which is large compared to all other eigenvalues.
We are able to reconcile this rather mathematical definition with the intuitive one
stated at the beginning of this section when we represent the Schrödinger-picture field
operator in the unambiguous basis of natural orbits

Ψ̂(r) =
∑
j

âj(t)φj(r, t) , (2.4)

where the annihilation operator âj(t) satisfies the standard commutation relations[
ân(t), â†m(t)

]
= δnm . (2.5)

A system is said to have undergone Bose-Einstein condensation when one mode func-
tion of the field operator represented in the basis of natural orbitals is occupied by a
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macroscopic fraction of the total particle number. This function is called condensate
mode.
At first sight, the Penrose-Onsager criterion might not seem helpful as it cannot pre-
dict the existence of BEC for a given Hamiltonian. However, it does not only serve
as a stringent mathematical definition of Bose-Einstein condensation but is also the
starting point for the construction of modern number-conserving theories which will
be discussed in Sec. 2.2.2.
Finally, we mention that the concept of off-diagonal long-range order [140] is also closely
related to the definition of Bose-Einstein condensation in the case of homogeneous
systems.

2.1.2. Hamiltonian

In the previous section we discussed the Penrose-Onsager criterion as a definition of
Bose-Einstein condensation. We now specify the Hamiltonian of an interacting BEC
which again is most easily done in second quantization. For bosons of massm subjected
to an external potential V (r, t) the Hamiltonian reads

Ĥ =

∫
d3r Ψ̂†(r)H(r, t)Ψ̂(r) +

g

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (2.6)

with the single-particle operator

H(r, t) = − ~2

2m
∆ + V (r, t) . (2.7)

In addition, we replaced the general two-body interaction potential by a contact po-
tential

U(r − r′) = g δ(r − r′) (2.8)

where g = 4π~2as/m and the parameter as is the s-wave scattering length. This
substitution is generally a good approximation for weakly interacting, dilute samples
and short-range interactions [141]. Note that we did not include three- and higher-
order interaction terms. These can be neglected in most cases, where the samples are
dilute enough [142].
With the help of the Heisenberg equation of motion

i~
d

dt
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
(2.9)

we arrive at the dynamical equation for the field operator Ψ̂(r, t)

i~
d

dt
Ψ̂(r, t) =

(
− ~2

2m
∆ + V (r) + g Ψ̂†(r, t)Ψ̂(r, t)

)
Ψ̂(r, t) , (2.10)

where we used the relations in Eq. (2.2). This equation accounts for the full quantum
behavior of the system. In the next section we will discuss the conceptual background
of Bose-Einstein condensation, which eventually leads to the Gross-Pitaevskii equation
and its generalizations as an approximate solution to Eq. (2.10) for a Bose-Einstein
condensed system.
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2.2. Conceptual background of Bose-Einstein
condensation

We begin by revisiting the question raised by Anderson in Ref. [143] if two Bose-
Einstein condensates which have never “seen” each other exhibit a well defined relative
phase. On a fundamental level this breaks down to the question whether the quantum
state for the two condensates (for simplicity we only consider two modes) is more like
|Ψ〉 =

∣∣N/2, N/2〉 or |Ψ〉 = |N/2, N/2〉. In the former case each condensate is in a
coherent state which consists of a superposition of Fock states with only on average N
particles but a well defined relative phase. In the latter case the system is described
by a twin-Fock state with exactly N particles and there is no predetermined phase
relation.
In Ref. [144] it was pointed out that the question is only meaningful when a mea-
surement is performed. After some numerical work done in Ref. [145], it was shown
in Ref. [146] that a definite relative phase between two twin-Fock states with initially
ill-defined phase relation builds up in the measurement process. In each run of the
experiment the phase is completely random and unpredictable. Thus, the two states
cannot be distinguished experimentally. Furthermore, a dynamical spread of the rela-
tive phase was predicted in Ref. [144], which quickly removes any predetermined phase
relation.
In fact both philosophical perspectives can be used to construct successful formalisms
for the description of Bose-Einstein condensates, namely U(1) symmetry-breaking
methods as opposed to number-conserving theories. In the following we will there-
fore compare both methods with the aim to understand which of them is better suited
for the description of atom interferometry.

2.2.1. U(1) symmetry-breaking methods

The Hamiltonian in Eq. (2.6) is invariant under global U(1) transformations. We can
break this symmetry by adding the infinitesimal sources [147]

ĤS = ε

∫
d3r

(
η∗(r)Ψ̂(r) + η(r)Ψ̂†(r)

)
(2.11)

to the Hamiltonian. A system is then said to exhibit spontaneous symmetry breaking
(SSB) if

lim
ε→0

lim
N→∞

〈Ψ̂(r)〉ε = ψ(r, t) 6= 0 (2.12)

where N → ∞ denotes the appropriate thermodynamic limit. The spatial- and time-
dependent function ψ is called the order parameter of the system. The average in
Eq. (2.12) is understood as Bogoliubov quasi average [147] which implicitly includes
the symmetry-breaking term, Eq. (2.11). Note that spontaneous symmetry breaking
is always defined in the thermodynamic limit. For mesoscopic systems or if we inter-
changed the limits in Eq. (2.12), the result would always be zero.
Showing that SSB implies BEC, one furthermore realizes that the order parameter is
equivalent to the condensate mode function in the thermodynamic limit defined via the
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Penrose-Onsager criterion. Assuming spontaneous symmetry breaking, we separate the
Schrödinger-picture-field operator

Ψ̂(r) = ψ(r, t) + δΨ̂(r, t) (2.13)

into the order parameter and the fluctuation operator δΨ̂(r, t) with, by definition,
zero expectation value. Bogoliubov showed [148] that adding infinitesimal sources and
this Bogoliubov operator shift becomes asymptotically equivalent inside all correlation
functions. The fluctuation operator then attains bosonic commutation relations.
We will explain in Sec. 2.2.2 that not only SSB implies BEC but that Bose-Einstein
condensation is also sufficient for spontaneous symmetry breaking. Thus, we conclude
that if a system exhibits BEC, an infinitesimal perturbation of the form Eq. (2.11) is
enough to render the replacement, Eq. (2.13), asymptotically exact with a nonvanishing
order parameter inside all correlation functions.
The philosophy behind the U(1) symmetry-breaking approach to BEC is the assump-
tion that it is justified to follow the same concept for mesoscopic systems with finite
particle number [149]. In this sense the approach is an extrapolation from the thermo-
dynamic limit to finite systems. It is important to keep in mind that this assumption
leads to the problems discussed later in this section. However, if carefully addressed,
the U(1) symmetry-breaking approach has proven to be a viable method for the de-
scription of Bose-Einstein condensates. Guided by these insights, we will derive the
Gross-Pitaevskii equation and its generalization in the following.

Gross-Pitaevskii equation

When we substitute Eq. (2.13) into Eq. (2.10) and assume a negligible fraction of
noncondensate atoms, that is, one neglects the fluctuation operator, we arrive at the
celebrated Gross-Pitaevskii equation (GPE)

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∆ + V (r) + g |ψ(r, t)|2

)
ψ(r, t) , (2.14)

first derived by Gross and Pitaevskii [150, 151] to study qualitatively the behavior of
superfluid helium. Since the discovery of Bose-Einstein condensation in dilute, weakly
interacting gases this equation has been applied with enormous success as a description
for the ground state and the dynamical properties like the existence and structure of
vortices.
Because of the similarity to the Schrödinger equation in position representation, Eq. (2.14)
is sometimes referred to as nonlinear Schrödinger equation.

Beyond the Gross-Pitaevskii approximation

For completeness we shortly comment upon methods which generalize the Gross-
Pitaevskii equation to include condensate, thermal effects, quantum fluctuations, as
well as their mutual interaction. For a comprehensive review on Bose-Einstein conden-
sates at finite temperature we refer the reader to Ref. [152].
In the Hartree-Fock Bogoliubov approach [112, 148, 153] one substitutes the decomposi-
tion, Eq. (2.13), into the Hamiltonian, Eq. (2.6), retains all products of the fluctuation
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operator, but performs decoupling approximations motivated by Wick’s theorem [154,
155]. By this procedure the Hamiltonian becomes quadratic and can be diagonalized
with the help of the Bogoliubov transformation. The result is a dynamical equation,
similar to the Gross-Pitaevskii equation, however, coupled to a system of Bogoliubov-
de Gennes equations for each noncondensate mode. Note that the anomalous average
m(r) = 〈δΨ̂(r)δΨ̂(r)〉 needs to be appropriately renormalized [156]. Even though
successfully applied to various situations, e.g. in the self-consistent simulation of the
ground state of a BEC interacting with a thermal cloud [157], one problem is the enor-
mous computational effort needed to propagate a large number of Bogoliubov modes
for time-dependent situations. Furthermore, as a result of the decoupling approxima-
tion, the interaction between condensate and thermal cloud are only taken into account
at a mean-field level.
These problems were solved within the ZNG theory named after Zaremba, Nikuni
and Griffin [158], see also the excellent book [159] and the references therein. In this
approach the generalized Gross-Pitaevskii equation which describes the condensate is
coupled to a dynamical equation in phase space similar to the Boltzmann equation.
The interaction between condensate and thermal cloud as well as among noncondensate
atoms is accounted for by collision integrals. Note, however, that this theory is only
valid when thermal effects are large compared to quantum fluctuations, that is, for
sufficiently high temperatures.
Semiclassical field simulations [160] and projected GPE methods [161, 162] generalize
the ZNG formalism. At sufficiently high temperatures the set of modes which are
considerably occupied define an energy cut-off which is important to choose correctly.
The respective annihilation operators are then replaced by c-numbers. Time- and
spatial averaging over the nonlinear interplay between the modes allows to compare the
simulation to the outcome of experiments. These methods were reviewed in Ref. [163].
The truncated Wigner approximation [164] additionally accounts for the quantum fluc-
tuations of the modes by deriving a phase-space-distribution equation for the field
operator, followed by the truncation at second-order derivatives. Finally, one con-
verts the equation into a stochastic equation of a form similar to the Gross-Pitaevskii
equation.

Problems of the U(1) symmetry-breaking methods

There are several severe problems associated with the notion of spontaneous U(1)
symmetry-breaking in the context of Bose-Einstein condensation.
First, when we substitute Eq. (2.13) into Eq. (2.3), the order parameter ψ(r, t) can
only be identified as the condensate mode when∫

d3r δΨ̂†(r, t)ψ(r, t) = 0 (2.15)

during the time-evolution. This is, however, not the case in mesoscopic systems.
Second, when we substitute the decomposition, Eq. (2.13), into the Hamiltonian,
Eq. (2.6), and keep terms to second order in the fluctuation operator, it turns out
that the resulting Hamiltonian cannot be diagonalized. This problem, also referred to
as the “problem of the missing eigenvector”, was solved in Ref. [165] by complementing
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the incomplete set of eigenvectors to a full basis. This leads to a linear divergence of
fluctuations which is interpreted as phase diffusion [75] but quickly renders the Bogoli-
ubov approximation inconsistent.
Third, we assumed a nonvanishing expectation value of the field operator. This requires
that the system is in a superposition of different particle-number states. However,
an ultracold gas, i.e. a Bose-Einstein condensate plus the thermal cloud, should be
considered a closed system [166] with a definite number of particles.
Motivated by these problems Castin, Dum and Gardiner proposed number-conserving
methods which are discussed in the next section. These approaches are much more
intuitive, however, mathematically more cumbersome.

2.2.2. Number-conserving approaches: Theory of Castin, Dum
and Gardiner

In these theories, put forward in Refs. [167, 168], one explicitly enforces the orthogonal-
ity between condensate mode and fluctuation operator by using the Penrose-Onsager
criterion as a starting point for the construction of the theory. This leads to a non-
local Bogoliubov Hamiltonian which, as opposed to the symmetry-breaking approach,
can now be diagonalized. Furthermore, we note that in this approach the number of
particles is conserved by construction. In Ref. [169, 170] this method was further ad-
vanced to allow a self-consistent treatment of condensate and noncondensate dynamics
and was generalized to describe n-component condensates in Ref. [171]. The number-
conserving Bogoliubov groundstate was investigated in Refs. [172, 173]. We also refer
the reader to the overview of number-conserving theories in Ref. [174]. In the following
brief discussion of this approach we mainly follow Ref. [169].
To this end, we assume a definite number of N particles in a closed system and write
the Schrödinger-picture field operator as

Ψ̂(r) = â0(t)φ0(r, t) + δψ̂(r, t) . (2.16)

Here, the condensate mode is identified by the Penrose-Onsager criterion. In meso-
scopic systems it is the eigenvector of the reduced density matrix with the largest
eigenvalue. Note the main difference between the Eqs. (2.16) and (2.13). In the
number-conserving approach we do not replace the annihilation operator of the con-
densate mode function by a c-number. Since we are not adding symmetry-breaking
terms, the U(1) symmetry and the number of particles are preserved.
In the next step we have to find a fluctuation operator. One possible choice is

Λ̂(r, t) =
1√
N0(t)

â†0(t)δψ̂(r, t) . (2.17)

This definition qualifies as a suitable fluctuation operator for the following reasons.
First, it has zero expectation value in a nontrivial manner, which can easily be proved
with the help of the Penrose-Onsager criterion. Second, it scales with the number
of noncondensed atoms and can therefore be used as parameter for a perturbative
expansion in the ratio of noncondensed to condensed atoms.
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When we express the Hamiltonian in terms of the condensate annihilation operator and
this fluctuation operator and calculate the Heisenberg equations of motion of the field
operator, we obtain the standard time-dependent GPE for the condensate mode func-
tion. Truncating the Hamiltonian at second order in the fluctuation operator, results in
a Bogoliubov Hamiltonian, which in contrast to the symmetry-breaking standard form
contains a nonlocal projection operator. This operator ensures explicitly the orthogo-
nality between condensate and Bogoliubov modes. For that reason, the second-order
Hamiltonian can be diagonalized, thereby solving the “problem of the missing eigenvec-
tor”, discussed in the previous section. The result is a set of generalized Bogoliubov-de
Gennes equations for the dynamical evolution of the noncondensate atoms.
Thus, the number-conserving approach solves all the problems of the U(1) symmetry-
breaking formalism. However, the nonlocality of the Bogoliubov de-Gennes equations
requires large computational effort when e.g. the time evolution of a large number of
modes is simulated in real 3D situations.

Relation between the U(1) symmetry-breaking and number-conserving
methods

Finally, we comment upon the relation between the U(1) symmetry-breaking and
number-conserving approach. Recently Lieb et al. showed in Refs. [175, 176] that U(1)
symmetry breaking is necessary and sufficient for Bose-Einstein condensation, see also
the comprehensive reviews of the proof in Refs. [177, 178]. But how do we reconcile
this result with the fact that we have nowhere broken the symmetry in the number-
conserving approach? For this purpose one must simply realize that the concept of
SSB is defined in the thermodynamic limit, for which both approaches coincide. The
proof by Lieb et al. simply states that given a system with one macroscopic eigenvalue
of the reduced density matrix, we will always obtain a nonvanishing expectation value
of the field operator according to Eq. (2.12) when we add the symmetry-breaking terms
to the Hamiltonian. Thus, there is no contradiction whatsoever. Still, the notion of
spontaneous symmetry breaking in the context of Bose-Einstein condensation remains
controversial.

2.2.3. Describing atom interferometry

In the previous section we realized that the symmetry-breaking and number-conserving
approach as a description for Bose-Einstein condensates lead to identical results in the
thermodynamic limit. But which method is better suited for the description of atom
interferometry with a finite number of particles? In order to address this question, we
rewrite the field operator as

Ψ̂(r) = 〈â0〉φ0(r) + (â0 − 〈â0〉)φ0(r) + δΨ(r) ≡ 〈â0〉φ0(r) + δΨ′(r) , (2.18)

where we omitted all time arguments for the sake of simplicity. Thus, in the symmetry-
breaking approach, where 〈â0〉 6= 0, fluctuations in the number of condensate atoms
are incorporated in the fluctuation operator. When we discuss interferometry with
different internal states, we will realize in chapter 3 that a beam-splitting process sets
the condensate in a coherent superposition of the two internal states. As a result, the
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number fluctuations of each state are of the order of
√
N0. In the symmetry-breaking

approach this fact is taken into account by complementing the eigenvectors of the
nondiagonalizable Bogoliubov Hamiltonian to a complete basis [165] leading to phase
diffusion as was discussed in Sec. 2.2.1.
In the number-conserving theory these fluctuations are already incorporated at the
Gross-Pitaevskii level in form of a set of Gross-Pitaevskii equations for each particle-
number eigenstate [167]. This set can be solved perturbatively and naturally reduced
to the two mode approximation. For a more detailed discussion we refer to chapter 4.
A numerical analysis together with a semianalytical treatment of the Bogoliubov-de
Gennes equations for the release of a BEC out of a spherical symmetric harmonic
trap reveals that the fraction of noncondensed atoms is of the order 10−3 so that their
influence can be neglected at leading order.
Finally, we mention that the calculations are often performed within the grand-canonical
ensemble even for a closed system. This should be seen as a mathematical trick which
extremely simplifies calculations but is also a good approximation for the closed system
[179].
In summary, we conclude that the number-conserving approach is better suited for the
description of atom interferometry since it allows for a much more intuitive treatment
of leading-order interaction effects.

2.3. Thomas-Fermi approximation

In this final section we briefly address an approximate analytical solution to the GPE
known as Thomas-Fermi approximation [130].

2.3.1. Groundstate

First we derive the time-independent Gross-Pitaevskii equation

µψ(r) =

(
− ~2

2m
∆ + V (r) + g|ψ(r)|2

)
ψ(r) (2.19)

by substituting the separation ansatz

ψ(r, t) = ψ(r)e−iµ t/~ (2.20)

into Eq. (2.14). Here, in contrast to the Schrödinger equation, the nonlinear eigenvalue
µ is the chemical potential and not the energy [130]. Suppose that the potential in
Eq. (2.19) is smooth so that the ground-state density will behave smoothly as well.
This assumption helps us recognize that the second derivative of the ground-state
wave function is small compared to the other terms and we will therefore neglect the
Laplace operator in Eq. (2.19). Thus, we obtain to a good approximation

n(r) =
1

g
[µ− V (r)]+ (2.21)

where n is the particle density and the + indicates that Eq. (2.21) must be set to zero
where the density would otherwise be negative. The simple solution, Eq. (2.21), allows
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us to explicitly determine the relation µ = µ(N) between the chemical potential and
the number of particles for a harmonic potential V (r) = 1

2
m
∑

i ω
2
i x

2
i to be

µ =
~ωho

2

(
15Nas
aho

) 2
5

(2.22)

with the harmonic oscillator length aho =
√

~/mwho and the averaged trap frequency
ωho = (ωxωyωz)

1
3 . For the validity of the Thomas-Fermi approximation the condition

ωho

ωi

(
15Nas
aho

) 2
5

� 1 (2.23)

needs to be satisfied [142].
We conclude this section with a numerical comparison between the solution of Eq. (2.19)
and the Thomas-Fermi approximation for a spherically symmetric, harmonic potential
for different numbers of 87Rb atoms. The result is depicted in Fig. 2.1. We observe how
the Thomas-Fermi approximation (red line) better approximates the exact solution
(blue curve), the better the Thomas-Fermi condition in Eq. (2.23) is satisfied. For
N = 105 particles, which is comparable to the particle numbers in typical experiments
[63], there is almost no difference. The approximation fails only close to the edge of the
cloud, where the density reaches zero. Nevertheless, Fig. 2.1 shows that the Thomas-
Fermi approximation accurately describes the ground-state wave function for typical
parameter ranges.

2.3.2. Scaling approach

In the previous section we discussed the stationary case. In the case of harmonic trap-
ping by the potential

V =
1

2
m
∑
j

ωj(t)
2x2

j (2.24)

the Thomas-Fermi approximation allows for a generalization to dynamical situations
by making use of a scaling ansatz [180–182]

ψ(r, t) =
1√

Πjλj(t)
e−iβ(t)e

im
2~

∑
j

λ̇j(t)

λj(t)
x2j ψ(xi/λi(t), 0) (2.25)

if the initial state is described by the Thomas-Fermi-ground state ψ(r, 0). Substituting
Eq. (2.25) into the time-dependent Gross-Pitaevskii equation, this leads to

~β̇(t) =
µ

Πjλj(t)
(2.26)

and to the ordinary differential equations for the scaling parameters

λ̈k(t) =
ωk(0)2

λk(t)Πjλj(t)
− ωk(t)2λk(t) (2.27)



Chapter 2. Bose-Einstein condensation 55

0 1 2 3
0

50

100

r/aho

n
a
3 h
o

N = 103

0 1 2 3 4 5
0

100

200

300

r/aho

n
a
3 h
o

N = 104

0 2 4 6
0

200

400

600

r/aho

n
a
3 h
o

N = 105

0 2 4 6 8 10
0

500

1,500

r/aho

n
a
3 h
o

N = 106

Figure 2.1.: Ground-state density distribution of a Bose-Einstein condensate in an
isotropic harmonic trap. The red line is determined by the analytic Thomas-
Fermi approximation, the blue line corresponds to the result of the numerical
simulation of the time-independent Gross-Pitaevskii equation, Eq. (2.19). The
simulation has been performed for different numbers of 87Rb atoms. The pa-
rameters arem = 1.44·10−25kg, ωho = 90Hz, a = 98.98a0 with the Bohr radius
a0 = 5.29 · 10−11m. Thus, a/aho ≈ 1.8 · 10−3.

with the initial conditions λj(0) = 1 and λ̇j(0) = 0.
Recently, the scaling approach was generalized to rotating traps in Ref. [183], where it
was pointed out that the scaling transformation is also useful for numerical simulations.
Rescaling the Gross-Pitaevskii equation reduces the computational effort dramatically,
for example when simulating the expansion dynamics of a BEC after the release from
a trap.
The formalism can be generalized further by including linear potentials [184–186]. It is
interesting to notice that the scaling transformations can be obtained by mere operator
algebra. One defines an appropriate scaling operator which allows then to include linear
potentials as well as p̂r̂ terms present in rotating coordinate systems.
Finally we note that one can even treat small time-dependent modulations of the
Thomas-Fermi profile analytically for example due to weak anharmonic potentials. To
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this end, one expands the perturbations into the complete set of collective oscillations
[187–189] thereby reducing the problem to a set of ordinary differential equations for
the time dependence of the expansion parameters. For an isotropic trap these can be
solved analytically as a function of the scaling parameter.

2.4. Summary

In summary, we reviewed some technical aspects of the modern understanding of Bose-
Einstein condensation.
Starting from the definition of BEC according to Penrose and Onsager, we shed
some light at two different philosophical points of view on Bose-Einstein condensa-
tion, namely whether one should describe it as a closed system with a definite number
of particles or one should break the U(1) symmetry, which violates the conservation
of the particle number. These two perspectives lead to the two competing theories,
namely the U(1) symmetry-breaking method and the number-conserving approaches.
As was shown by Lieb et al., in the thermodynamic limit Bose-Einstein condensation
and spontaneous U(1)-symmetry breaking are equivalent. However, in mesoscopic sys-
tems, which real physical systems always are, differences appear and we concluded
that the number-conserving approach is better suited for the description of atom in-
terferometry for the following reasons. First, it is more intuitive and second, it allows
to describe phase diffusion due to superpositions of particle-number states already at
Gross-Pitaevskii level. It then naturally reduces to the two-mode approximation.
In the last part of this chapter we introduced the stationary and time-dependent
Thomas-Fermi approximation which will be needed in chapter 4 and discussed its
range of validity.



Chapter 3

Interferometry and second
quantization

So far, the description of atom interferometry has been in first quantization. But
for large numbers of particles, in particular when we want to assess the effects of
particle-particle interaction, this description soon becomes impractical if not impos-
sible. Also, for a discussion of particle-number fluctuations over the exit ports, spin
and momentum-state squeezing or the accuracy of a measurement, we have to consider
the exchange statistics of the particles. These problems are automatically taken into
account when working in second quantization [190, 191].
The influence of particle-particle interaction on atom interferometers, which is intrinsic
to Bose-Einstein condensates, is manifold and must be carefully considered. Mean-field
induced phase shifts during the separation of the wave packets have been considered
within an effective 1D model in Refs. [192–195]. The main contribution was found
to originate from asymmetries in the atomic population of interferometer branches,
resulting from imperfect laser pulses or the effect of interactions during the pulses
[196]. Moreover, it was realized in [192] that interaction effects during the separation
lead to small additional velocities of the atomic clouds, which lead to phase shifts and
to a loss of contrast.
A second important impact is a derogation of the phase, known as phase diffusion,
which afflicts the accuracy of phase measurements. A thorough discussion of this effect
will be found in chapter 4.
The aim of the present chapter, however, is not to asses the different possible effects
due to interactions but rather to provide a general framework of atom interferometry
in second quantization in which it will turn out to be possible to extremely reduce
the computational effort of numerical simulations and to set the stage for a deeper
discussion of phase diffusion in chapter 4. We will translate the results of chapter
1 into this language, thereby generalizing the formalism to include particle-particle
interaction and superpositions of particle-number states.
After a brief discussion of the method of second quantization in Sec. 3.1, we will
adapt the formalism of adiabatic elimination to this language in Sec. 3.2 and derive
effective laser-atom coupling schemes. Next, we will discuss the MZ interferometer
with Raman diffraction in Sec. 3.3. The generalization to multiple-path geometries
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and other diffraction schemes is presented in Sec. 3.4 and constitutes the main result
of this chapter.

3.1. Second quantization

The start of this chapter is a brief review of the formalism of second quantization. For
each internal state j we introduce the field operator Ψ̂j(r). Every pair of field operators
satisfies the bosonic commutation relations[

Ψ̂i(r), Ψ̂†j(r
′)
]

= δijδ(r − r′) and
[
Ψ̂i(r), Ψ̂j(r

′)
]

= 0 , (3.1)

which generalize Eq. (2.2) to the case of different internal states. The field operators
can be expanded into a complete set of mode functions or orbitals

Ψ̂j(r) =
∑
k

〈r |ϕk〉 âjk (3.2)

where j labels the internal and r the external degree of freedom. The set {|ϕk〉}∞k=0 can
be chosen arbitrarily as long as it is orthogonal and complete. The index k signifies
the mode function, with respect to which the creation and annihilation operators are
defined. These operators satisfy the well-known relations[

âjk, â
n†
m

]
= δkmδjn, (3.3)

all other possible combinations like
[
âjk, â

n
m

]
are zero. As the mode functions can be

chosen quite generally, they do not necessarily have to be the energy eigenfunctions of
some one-particle Hamiltonian. It is particularly helpful to pick the Gross-Pitaevskii
ground state as the first element of the set of mode functions, when Bose-Einstein
condensates are described. The other modes are then chosen to create a complete and
orthogonal set.

3.1.1. Notation

In this chapter we will denote the action of a first-quantized operator Â on a field by
a calligraphic letter without hat

AΨ̂(r) ≡
∫

d3r′ 〈r| Â |r′〉 Ψ̂(r′) . (3.4)

For example the action of a displacement operator on a field operator reads within this
convention

DΨ̂j(r) =

∫
d3r′ 〈r| D̂ |r′〉 Ψ̂(r′) = e−

i
2~χ

pχr e
i
~χ

pr Ψ̂j(r − χr) . (3.5)

For detailed properties of displacement operators we refer to App. A and C.1.2. In order
to avoid confusion, we will always denote first-quantized time-evolution operators and
Hamilton operators by the calligraphic letters Û and Ĥ, respectively.
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3.1.2. Expansion in mode functions

We now consider the many-body state |Ψ〉 with its phase-space distribution centered in
phase space and the set of mode functions {〈r |ϕk〉}∞k=0 with respect to which the field
operator Ψ̂(r) is expressed. We furthermore suppose that this set of mode functions
is particularly suited in the sense that for example only a few modes are occupied.
Now we assume the same state but displaced by χ = (χr,χp)T. In this case it will
prove useful to expand the field operator with respect to the displaced mode functions
〈r |ϕ′k〉 = 〈r| D̂ |ϕk〉. Hence, we introduce a new field operator Ψ̂′(r) by writing

Ψ̂(r) =
∑
k

〈r |ϕ′k〉 â′k ≡ DΨ̂′(r) (3.6)

where
Ψ̂′(r) =

∑
k

〈r |ϕk〉 â′k . (3.7)

Thus, expressing all observables in terms of Ψ̂(r) = DΨ̂′(r) effectively corresponds to
a transformation into the center of the state in phase space. In the same way we can
include arbitrary phase factors in the field operator. After clarifying the underlying
principle in Eq. (3.6), we henceforth disregard the prime on the field operator when
performing this replacement. Finally, we note that the commutation relations are left
invariant under this transformation.

3.2. Hamiltonian

In this section we introduce the Hamiltonian in second quantization. It is represented
by the sum

Ĥ = Ĥe + ĤL (3.8)

where ĤL accounts for the light-matter interaction and Ĥe is the external Hamiltonian
which conserves the number of particles in each internal state. Thus it commutes with∫

d3r Ψ̂†j(r)Ψ̂j(r). It can be further decomposed into

Ĥe = ĤF + ĤI (3.9)

with the free Hamiltonian ĤF consisting only of one-body operators and the particle-
particle interaction Hamiltonian ĤI, which includes two-body and in principle higher-
order operators. In the following three sections we will define and analyze these Hamil-
tonians in more detail.

3.2.1. The free part of the Hamiltonian

The free part of the external Hamiltonian is simply a standard first-quantized one-body
Hamiltonian in second quantized form, that is,

ĤF =
∑
j

∫
d3r Ψ̂†j(r)Hj(t)Ψ̂j(r) (3.10)
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where Ĥj(t) typically is

Ĥj(t) =
p̂2

2m
+ Vj(r̂, t) . (3.11)

Note again that in Eq. (3.10) the notation defined in Eq. (3.4) has been employed.
Within this convention we abbreviated

Hj(t)Ψ̂(r) =

∫
d3r′ 〈r| Ĥj(t) |r′〉 Ψ̂(r′) . (3.12)

The action of the time-evolution operator with respect to Eq. (3.10) on a field operator
can be expressed in terms of the first-quantized operator

Ûj(t, ti) = T exp

{
− i

~

∫ t

ti

dt′ Ĥj(t
′)

}
(3.13)

as
Û †F(t, ti)Ψ̂j(r)ÛF(t, ti) = Uj(t, ti)Ψ̂j(r) , (3.14)

which is verified in App. C.1. The reason why we chose to work in second quantization
was the straightforward way to include interactions. Thus, in the next section we state
and motivate the explicit form of the interaction Hamiltonians used in this work.

3.2.2. The interaction Hamiltonian

For nonrelativistic systems the second quantized particle-particle interaction Hamilto-
nian is of the form [142]

ĤI =
1

2

∑
j,k,n,l

∫
d3r d3r′ Ψ̂†j(r)Ψ̂†k(r

′)Vjknl(r − r′)Ψ̂n(r)Ψ̂l(r
′) . (3.15)

When we neglect spin-changing processes and furthermore replace the exact interaction
potential by an effective contact potential [141], which is generally a good approxima-
tion for ultracold, dilute and weakly interacting samples, the interaction Hamiltonian
becomes

ĤI =
1

2

∫
d3r

{∑
n

gnΨ̂†n(r)Ψ̂†n(r)Ψ̂n(r)Ψ̂n(r) +
∑
n 6=l

gnlΨ̂
†
n(r)Ψ̂n(r)Ψ̂†l (r)Ψ̂l(r)

}
(3.16)

with symmetric gnl = gln. Hamiltonian, Eq. (3.16), will be further particularized in
later sections to Bragg diffraction

ĤI =
g

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (3.17)

where only one internal state is important and to Raman diffraction

ĤI =

∫
d3r

(g1

2
Ψ̂†1(r)Ψ̂†1(r)Ψ̂1(r)Ψ̂1(r) +

g2

2
Ψ̂†2(r)Ψ̂†2(r)Ψ̂2(r)Ψ̂2(r)

+ g12Ψ̂†1(r)Ψ̂1(r)Ψ̂†2(r)Ψ̂2(r)
)

(3.18)
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where an additional excited state takes part in the dynamics. So far we have considered
the free and the interaction Hamiltonian. In the next section we will turn to the light-
matter interaction and derive a simple formalism to perform adiabatic elimination of
ancillary states in second quantization to obtain effective coupling schemes.

3.2.3. Light-matter interaction and adiabatic elimination

In the present section we will introduce the last part of the Hamiltonian, the semiclas-
sical laser-atom interaction. Starting from a general coupling scheme, we will derive a
powerful method to obtain effective Hamiltonians capable of describing a large variety
of different processes such as Raman-, Bragg-, and double-Bragg diffraction. In order
to obtain effective equations one ordinarily applies the so called adiabatic elimination
[85]. In this approach, one first derives the equations of motion for the wave functions
corresponding to each internal state. Only integrating the fast oscillating terms al-
lows one to approximately integrate these equations, eliminate the ancillary states and
reduce the problem to smaller time scales. This at first sight very simple procedure,
however, involves the following subtleties. Since one needs to perform the calculation
in the interaction picture with respect to Ĥe as the full evolution is generated by the
sum, Eq. (3.8), how to include the quartic interaction into this formalism? How to pro-
ceed when the coupling scheme involves many different internal states? Moreover, it is
a priori unclear how to generalize the procedure to include higher-order contributions.
We answer these questions in the formalism presented here by treating the problem on
a more general level. This leads to at first sight cumbersome expressions, however, the
careful bookkeeping of relevant time scales, ranging from kHz to THz, essential for the
adiabatic elimination, is most easily done for a general Hamiltonian. Furthermore, it
allows us to treat the three different coupling schemes discussed in this work with the
same formalism and the underlying processes stand out most clearly. We show how
to consistently neglect potentials and particle-particle interaction and in principle to
include higher-order contributions.
We assume two manifolds of states as depicted in Fig. 3.1. The transition frequencies
ωij between states in different manifolds are supposed to be much larger than the
characteristic transition frequencies ∆ωi within each manifold. The system is driven
by lasers with frequency ωL of the order of ωij, however strongly detuned by ∆ with
respect to the atomic transition frequencies. The sizes of the parameters are listed
in Table 3.1. In the dipole approximation [197] after application of the rotating-wave
approximation the laser-atom interaction Hamiltonian can be cast in the form

ĤL =

∫
d3r

∑
j

~ωjΨ̂†j(r)Ψ̂j(r) +

∫
d3r

(∑
j,k

~λjk(r, t)e−iωLtΨ̂†j(r)Ψ̂k(r) + H.c.

)
.

(3.19)
The first contribution describes the energy of the internal states which we keep in ĤL

rather than in the free Hamiltonian for reasons which will become clear further below.
The second contribution accounts for coupling between the states due to the lasers.
Note that coupling only appears between states of different manifolds. The spatial-
and time-dependent functions λjk(r, t) oscillate only with frequencies of the order of
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ωL ∼ 1015Hz

∆ ∼ 1011Hz

ωij ∼ 1015Hz

∆ωi ∼ 109Hz

Figure 3.1.: General level scheme discussed in this section. Two manifolds of closely
lying states with frequency difference ∆ωi within the manifolds are coupled
by a characteristic laser frequency ωL, which is strongly detuned by ∆ with
respect to the transition frequencies ωij between the two manifolds.

∆ωi as we extracted a characteristic laser frequency ωL in Eq. (3.19). The modulation
of the electric fields due to the switching of the lasers, which leads to an additional time
dependence of λ, is supposed to happen on much smaller time scales. Transforming
to the interaction picture with respect to the first term in Eq. (3.19) results in the
replacement

Ψ̂I
j(r) = Ψ̂j(r)e−iωjt . (3.20)

The external Hamiltonian Ĥe is invariant under the above transformation per defini-
tion since it conserves the number of particles in each internal state from which the
invariance under the above transformation follows immediately. Thus, Eq. (3.20) only
affects the laser-atom interaction Hamiltonian for which we obtain

Ĥ I
L =

∫
d3r

(∑
j,k

~λjk(r, t)ei∆jktΨ̂†j(r)Ψ̂k(r) + H.c.

)
(3.21)

where we defined the detuning ∆jk = ωjk−ωL between the characteristic laser frequency
and ωjk = ωj − ωk is the atomic transition frequency. From now on we will always
assume that transformation, Eq. (3.20), has been made and disregard the superscript
“I”. As we show in App. C.2, we can replace Eq. (3.21) by the effective Hamiltonian

Ĥeff
L =

1

2

[
F̂ (t), ĤL(t)

]
(3.22)

with

F̂ =

∫
d3r

(∑
j,k

λjk(r, t)

∆jk

ei∆jktΨ̂†j(r)Ψ̂k(r)− H.c.

)
. (3.23)
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For a given laser-atom interaction Hamiltonian all what is left to do is to calculate
the commutator, Eq. (3.22). Before we elucidate in three examples how powerful this
method is, let us comment on its validity. In App. C.2 we show that as a main condition
λ/∆� 1 needs to be true. A comparison with Table 3.1 and Fig. 3.2 shows that this
is indeed true for the experimental parameters discussed in this work. Furthermore,
the rate of change of the field operators in the interaction picture with respect to the
external Hamiltonian as well as the rate of change of λ have to be much smaller than
∆. As we discuss in App. C.2, these conditions are well satisfied.

Bragg diffraction

As a first example we study Bragg-diffraction [198, 199]. Consider a two-level atom ex-
posed to two counterpropagating laser beams as depicted in Fig. 3.2.a. The frequencies
are far detuned from atomic resonance and the electric field is given by

Ê = Eb(t)e
i(kbẑ−ωbt+ϕL,b) +Ea(t)e

i(−kaẑ−ωat+ϕL,a) + H.c. . (3.24)

In the language of this section this corresponds to one state in each manifold. Moreover,
the experimental parameters are supposed to resemble those given in Table 3.1. In the
dipole approximation, the Hamiltonian reads

ĤL = ~ωe |e〉〈e|+ ~
{[

Ωb(t)e
i(kbẑ−ωbt+ϕL,b) + Ωa(t)e

i(−kaẑ−ωat+ϕL,a)
]
|e〉〈g|+ H.c.

}
.

(3.25)
The Rabi frequencies are defined as Ωj = −〈e| d̂Ej |g〉 /~ with the atomic dipole op-
erator d̂. Translating this Hamiltonian to second quantization, performing the trans-
formation Eq. (3.20) and defining the characteristic laser frequency, ωL ≡ ωa, the
second-quantized Hamiltonian assumes the form

ĤL = ~
∫

d3r
(

Ψ̂†e(r)λ(r, t)ei∆tΨ̂g(r) + H.c.
)

(3.26)

with ∆ = ωe − ωa and the abbreviation

λ(t, r) = Ωbe
i(kbz−∆ωt+ϕL,b) + Ωae

i(−kaz+ϕL,a) (3.27)

where ∆ω = ωb − ωa � ∆. Note that we omit the implicit time dependence of the
Rabi frequencies from now on for better readability. With the help of Eq. (3.22) and
Eq. (3.23) we arrive at the effective Bragg-diffraction Hamiltonian

Ĥeff
L = ~

∫
d3r

{
|Ωa|2 + |Ωb|2

∆
+
[
Ωei(kz−∆ωt+ϕL) + H.c.

]} [
Ψ̂†e(r)Ψ̂e(r)− Ψ̂†g(r)Ψ̂g(r)

]
(3.28)

where we defined ϕL = ϕL,b−ϕL,a and k = ka+kb as well as the effective Rabi frequency
Ω = ΩbΩ

∗
a

∆
. Assuming an initial occupation only of the groundstate, all field operators

corresponding to the upper state can be omitted since all transition elements of the
Hamiltonian were eliminated. Restricting the discussion only on this subspace of the
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full Hilbert space, the first term in the first brackets only leads to a global phase and
can therefore be disregarded. Thus, we find the simple result

Ĥeff
L = −~Ω(t)

∫
d3r Ψ̂†g(r)Ψ̂g(r) eikz+iϕL(t) + H.c. (3.29)

and we redefined the laser phase ϕL(t) ≡ ϕL −∆ωt.

atom
a) c)

b)

mirror

λ/4 plate

ωb ωa ωb ωa

ωb, σ1 ωa, σ1

ωa, σ2 ωb, σ2

Figure 3.2.: Schematic picture of the three diffraction processes described in this
work. a) Bragg diffraction. A two-level atom is exposed to two counterprop-
agating laser beams. The absorption of a “blue” photon is associated with a
momentum transfer in positive momentum direction (the arrows depicted in
the atoms are understood as drawn in an energy momentum diagram). Since
the laser frequencies are strongly detuned with respect to the atomic transi-
tion, the atom undergoes a two-photon process back to the initial internal state
together with the stimulated emission of a “red” photon in negative direction,
leading to an additional momentum kick in positive direction. Therefore the
total momentum transfer is ~(ka + kb). b) Raman diffraction. Contrary to
a), the laser beams are incident on a three-level atom and the frequencies are
chosen such that only the transition to a different internal state is resonant.
c) Double-Bragg diffraction. The atom is exposed to two pairs of counterprop-
agating laser beams. Due to the orthogonal polarizations σ1 and σ2 spurious
transitions are suppressed, leading to the diffraction process of a) but in posi-
tive and negative momentum direction, simultaneously.

Double-Bragg diffraction

In this laser-atom coupling scheme, which was developed in Ref. [21] and experimen-
tally realized in [202], two light fields of orthogonal polarization are incident from
the same direction. Having passed the atom, the light beams are retro reflected and
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Table 3.1.: This table shows the different frequency scales relevant for the description
of the diffraction processes. It is important to carefully take into account the
different scales ranging from kHz to THz. We emphasize that the numbers
below should be understood as rough order-of-magnitude estimates. They are
typical values for the 87Rb D2-transition hyperfine structure found in Ref. [200].
We also refer the reader to Ref. [201].

ωjk Frequency difference between manifolds 1015/s
ωL Characteristic laser frequency 1015/s
∆ Detuning 1011/s
∆ωi Frequency difference within one manifold 1010/s
Ωa, Ωb (∼ λ) Single-photon Rabi frequency 108/s
∆ω Laser frequency difference 104/s - 1010/s
Ω Effective Rabi frequency 105/s
ωr Recoil frequency 104/s (cf. Sec. 3.5.4)
ν Velocity selectivity 103/s (cf. Sec. 3.5.4)

the polarization is rotated by a λ/4 plate. The process is depicted schematically in
Fig. 3.2.b. In this setup one state in the lower manifold is coupled to two states in the
upper manifold. The first-quantization Hamiltonian then reads [21]

Ĥ =~ωe+ |e+〉 〈e+|+ ~ωe− |e−〉 〈e−|

+ ~
{

Ω+

[
ei(kaẑ−ωat+ϕ+

L,a) + ei(−kbẑ−ωbt+ϕ+
L,b)
]
|e+〉 〈g|

+ Ω−
[
ei(−kaẑ−ωat+ϕ−L,a) + ei(kbẑ−ωbt+ϕ−L,b)

]
|e−〉 〈g|+ H.c.

}
. (3.30)

Following Eq. (3.20)-(3.23), we first transform into the interaction picture with respect
to the level energies. Defining again the characteristic laser frequency ωL ≡ ωa, the
second-quantized Hamiltonian becomes with ∆+ = ωe+ − ωa and ∆− = ωe− − ωa

ĤL = ~
∫

d3r
(
λ+ei∆+tΨ̂†e+(r)Ψ̂g(r) + λ−ei∆−tΨ̂†e−(r)Ψ̂g(r) + H.c.

)
. (3.31)

In Eq. (3.31) we furthermore introduced the abbreviations

λ± = Ω±
(

ei(±kaz+ϕ±L,a) + ei(∓kbz−∆ωt+ϕ±L,b)
)

(3.32)

where the laser frequency difference is ∆ω = ωb−ωa as before. Hamiltonian, Eq. (3.31),
is of the form, Eq. (3.21), it is therefore straightforward to perform the adiabatic
elimination. This yields

Ĥeff
L = −~

∫
d3r

{
|λ+|2

∆+

+
|λ−|2

∆−

}
Ψ̂†g(r)Ψ̂g(r) . (3.33)

Setting ∆+ ≈ ∆− and Ω+ = Ω−, Eq. (3.33) reduces to

Ĥeff
L = −~Ω

∫
d3r

{
e−ikz+iϕ+

L (t) + eikz+iϕ−L (t) + H.c.
}

Ψ̂†g(r)Ψ̂g(r) (3.34)
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with ϕ±L = ϕ±L,b − ϕ±L,a − ∆ωt and k = ka + kb as before. Moreover, we omitted
constant terms as in the case of Bragg diffraction since they only lead to a global
phase. Furthermore, we defined the effective Rabi frequency Ω = |Ω±|2

∆±
.

Raman diffraction

In the third example we will derive the effective Hamiltonian for Raman diffraction [12,
203]. Therefore, we assume two counterpropagating laser beams with the electric field
identical to the one in Eq. (3.24). In contrast to Bragg diffraction we now consider a
three-level atom with two states, |g1〉 and |g2〉 in the lower and one state |e〉 in the upper
manifold. A schematic picture of this setup can be seen in Fig. 3.2.c. We furthermore
assume that there is no coupling within the lower manifold. The second-quantized
Hamiltonian then becomes

ĤL = ~
∫

d3r
{
λ(r, t)ei∆eg1 tΨ̂†e(r)Ψ̂g1(r) + λ(r, t)ei∆eg2 tΨ̂†e(r)Ψ̂g2(r) + H.c.

}
. (3.35)

As before, we defined ωa as the characteristic laser frequency and introduced λ as in
Eq. (3.27). Moreover, for the sake of simplicity we assumed that the dipole-matrix
elements of the coupling between the pair of states |e〉 and |g1〉 as well as |e〉 and |g2〉
are the same. In addition to that we transformed into the interaction picture according
to Eq. (3.20) and defined ∆eg1 = ωe−ωg1−ωa and ∆eg2 = ωe−ωg2−ωa. With the help
of Eq. (3.22) and Eq. (3.23), the effective Hamiltonian for Raman diffraction becomes

Ĥeff
L =− ~

2

∫
d3r

{
|λ|2

∆eg1

Ψ̂†g1(r)Ψ̂g1(r) +
|λ|2

∆eg2

Ψ̂†g2(r)Ψ̂g2(r)

+
|λ|2

∆eg1

ei(∆eg1−∆eg2 )t Ψ̂†g2(r)Ψ̂g1(r) +
|λ|2

∆eg2

e−i(∆eg1−∆eg2 )t Ψ̂†g1(r)Ψ̂g2(r) + H.c.

}
.

(3.36)

In deriving Eq. (3.36) we already omitted terms of the form Ψ̂†e(r)Ψ̂e(r) since no
coupling elements between the exited state and the two lower states appear. If initially
all particles reside in |g1〉 or |g2〉, the transition to |e〉 will be strongly suppressed.
Depending on the choice of ∆ω, one can now either drive Bragg diffraction, that is,
transitions between the same internal states, or - what we want to do here - induce
transitions between |g1〉 and |g2〉. For that purpose one proceeds as follows. First, we
expand |λ|2 as in Eq. (3.28). The result consists of a constant term and an oscillating
one with ∆ω. When we recall that ∆ωi ≡ ∆eg1 −∆eg2 = ωg2 − ωg1 ≈ 109 from Table
3.1 and choose ∆ω ∼ ∆ωi, we are able to neglect all the rapidly oscillating terms in
Eq. (3.36). The remaining constant terms constitute the AC Stark shift. It can be
compensated for by modulating the laser intensities of the counterpropagating laser
beams. Then Eq. (3.36) takes the simple form

Ĥeff
L = −~Ω(t)

∫
d3r eikz+iϕL(t) Ψ̂†g2(r)Ψ̂g1(r) + H.c. (3.37)

with the laser phase ϕL(t) = ϕL − ∆ωt + ∆ωi. Note that we also included ∆ωi into
the laser phase. With Eq. (3.22) and Eq. (3.23) we found a simple way to perform
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adiabatic elimination within our second-quantized framework. Now that we have at
hand this formalism we will try to calculate the MZ sequence in second quantization
in the following sections.

3.3. Mach-Zehnder interferometer with Raman
diffraction

In the previous section we eliminated the ancillary states and derived effective laser-
atom interaction Hamiltonians for Bragg, double Bragg and Raman diffraction.
In the case of weak coupling between the atom and the light field it is in a wide field
of experimental cases a well-established approximation to assume infinitely short laser
pulses and replace the atom-light interaction by effective two-level systems (or three-
level systems in the case of double-Bragg diffraction). Invoking this so called delta-pulse
approximation, we will also include the external dynamics between the pulses into the
consideration and study interferometers with noninteracting particles in Sec. 3.3.4 as
a warm-up exercise. As it will turn out, it is straightforward to transfer the formalism
derived in Sec. 1.3 to this situation. This method, however, fails when we include
interactions in Sec. 3.3.5. We will then realize that the transformation to the comoving
frames which was presented in Sec. 1.2 serves as an effective guide also in the interacting
case. However, it will turn out to be only applicable to interferometer sequences with
exactly two interferometer paths. This conjuncture reflects the two commuting field
operators corresponding to the two internal states in the case of Raman diffraction.
Thus, to highlight the essential features, we start by discussing the Mach-Zehnder
interferometer employing Raman diffraction in Sec. 3.3.5, where this requirement is
fulfilled. A generalization of this formalism capable of treating arbitrary interferometer
geometries as well as the application to Bragg- and double-Bragg diffraction will be
presented in Sec. 3.4.

3.3.1. Delta pulses

In Sec. 1.1.3 we already mentioned the concept of delta pulses. For the discussion in
this section we assume that this approximation is valid, thus we replace the Raman
atom-light interaction Hamiltonian, Eq. (3.37) by

ĤL(t) = −~θj
2
δ(t− tj)

∫
d3r

(
Ψ̂†2(r)eikjr+iϕL,jΨ̂1(r) + H.c.

)
(3.38)

for a laser pulse at t = tj, where ϕL,j = ϕL(tj) is the laser phase at this instant of
time. The pulse area is defined as θj = 2

∫ tj+∆tj
tj

dtΩ(t), where ∆tj is the duration of
the jth pulse. Furthermore, we generalized the Hamiltonian to the case of nonaligned
laser pulses and changed the labeling of the states. In Sec. 3.5.3 and Sec. 3.5.4 we will
reassess the delta-pulse approximation, present a rigorous derivation, and show how to
consistently take into account higher-order corrections.
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The time-evolution operator with respect to Eq. (3.38) is readily calculated. For a
pulse at tj we define the delta-pulse beam splitter as

Ŝθj(tj) ≡ Û(t+j , t
−
j ) = exp

{
i
θj
2

∫
d3r

(
Ψ̂†2(r)eikjr+iϕL,jΨ̂1(r) + H.c.

)}
(3.39)

where t−j (t+j ) denotes two points of time slightly before (after) tj. The time integral
over the delta function collapses and no time-ordering operator is necessary.

3.3.2. Beam splitter

The action of the delta-pulse beam-splitter operator on a field operator can now easily
be calculated. Here, we only state the results

Ŝ†θΨ̂2(r)Ŝθ = cos (θ/2) Ψ̂2(r) + i sin (θ/2) eikr+iϕLΨ̂1(r)

and

Ŝ†θΨ̂1(r)Ŝθ = cos (θ/2) Ψ̂1(r) + i sin (θ/2) e−ikr−iϕLΨ̂2(r) . (3.40)

The expressions in Eq. (3.40) are most easily proved by treating θ as a dynamical
variable and solving the corresponding equations of motion for the field operators. A
π/2-pulse sets the atoms in an equal superposition of the internal states, that is,

Ŝ†π/2Ψ̂2(r)Ŝπ/2 =
1√
2

[
Ψ̂2(r) + ieikr+iϕLΨ̂1(r)

]
,

Ŝ†π/2Ψ̂1(r)Ŝπ/2 =
1√
2

[
Ψ̂1(r) + ie−ikr−iϕLΨ̂2(r)

]
. (3.41)

In the same spirit, a π-pulse

Ŝ†πΨ̂2(r)Ŝπ = ieikr+iϕLΨ̂1(r) ,

Ŝ†πΨ̂1(r)Ŝπ = ie−ikr−iϕLΨ̂2(r) (3.42)

inverses the internal states. For general interferometer sequences with many pulses all
quantities need to be additionally indexed, as done in Eq. (3.39), i.e. we label kj, θj
and ϕL,j for a laser pulse at tj.

3.3.3. Full interferometer sequence

Having derived explicit expressions for the beam-splitter operators in the previous
section, we now turn to the most general interferometer sequence

Û(td, ti) = Ûe(td, tn)Ŝθn(tn)Ûe(tn, tn−1)Ŝθn−1(tn−1) ... Ŝθ1(t1)Ûe(t1, ti) . (3.43)

As before, Ûe is the time-evolution operator with respect to the sum of the free and
the interaction Hamiltonian. We are now in the position to calculate for instance the
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number difference between the two exit ports which is given by the action of the total
time-evolution operator, Eq. (3.43), on the operator

δN̂ = N̂1 − N̂2 =

∫
d3r

(
Ψ̂†1(r)Ψ̂1(r)− Ψ̂†2(r)Ψ̂2(r)

)
. (3.44)

Note that Ûe commutes with δN̂ since both the free and the interaction Hamiltonian
are internal-state preserving.

3.3.4. No interactions

To gain an elementary understanding of sequence, Eq. (3.43), we first set the interaction
equal to zero, that is, Ĥe = ĤF and assume for simplicity the same free Hamiltonian
for both internal states. This helps us show the identity

Û †FeikrΨ̂(r)ÛF = eikrÛ †FΨ̂(r)ÛF =

∫
d3r′ eikr 〈r| Û |r′〉 Ψ̂(r′) = eikrUΨ̂(r) (3.45)

and similarly for the action of a beam splitter, e.g. a π/2 pulse,

Ŝ†π/2UΨ̂2(r)Ŝπ/2 =

∫
d3r′ 〈r| Û |r′〉 Ŝ†π/2Ψ̂2(r′)Ŝπ/2

=
1√
2

(
UΨ̂2(r) + iUeikrΨ̂1(r)

)
. (3.46)

Note the different ordering of U and the exponential of ikr in Eq. (3.45) compared to
the second term in Eq. (3.46). The attentive reader will already have realized where
the discussion leads to. Every laser pulse splits the field operator and creates a new
interferometer path by the multiplication with the operator eikr̂ which corresponds to
the momentum imprint of ~k. In contrast, for the free evolution the field operators are
simply propagated by the first-quantized time-evolution operator Û . With the help of
this insight the calculation of the action of a sequence like Eq. (3.43) on an operator
O(Ψ̂†(r), Ψ̂(r)) becomes a straightforward exercise. One simply exploits Eqs. (3.45)
and (3.46) to obtain the transformation of the field operators and subsequently sub-
stitutes the result in O. All what is left to do is the manipulation of first-quantized
operators.
As an example let us discuss the Mach-Zehnder interferometer in more detail. It
corresponds to the sequence

Û(td, t1) = Ŝπ/2(t3)Ûe(t3, t2)Ŝπ(t2)Ûe(t2, t1)Ŝπ/2(t1) (3.47)

and we measure the number-difference operator, Eq. (3.44). Note that we disregarded
the external time-evolution operator from t3 to td at the very left of the sequence in
Eq. (3.47) since it commutes with δN̂ . In the following calculation we disregard all
laser phases for the sake of clarity. We will include them again below by replacing
kj r̂ → kj r̂ + ϕL,j. We obtain for the MZ sequence

Û †Ψ̂1(r)Û =
i

2
[U2 − U1] e−ik1rΨ̂2(r)− 1

2
[U1 + U2] Ψ̂1(r) (3.48)
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and

Û †Ψ̂2(r)Û =
i

2
eik3r [U1 − U2] Ψ̂1(r)− 1

2
eik3r [U1 + U2] e−ik1rΨ̂2(r) (3.49)

where we defined the time-evolution operators

Û2(t3, t1) = Û(t3, t2)e−ik2r̂Û(t2, t1)eik1r̂ (3.50)

and

Û1(t3, t1) = e−ik3r̂Û(t3, t2)eik2r̂Û(t2, t1) (3.51)

along the two paths of an MZ interferometer. If initially all particles occupy state |1〉,
we obtain

δN ≡ 〈δN̂〉 =

∫
d3rR

(
〈Ψ̂†1(r)U †1U2Ψ̂1(r)〉eiϕL

)
. (3.52)

The expectation value is understood to be taken with respect to the initial state and
we again included the laser phase ϕL = ϕL,1 − 2ϕL,2 + ϕL,3. In the case of a closed
interferometer we find Û †1 Û2 = eiϕ and Eq. (3.52) further simplifies to

δN = Ncos(ϕ+ ϕL) (3.53)

where N is the total number of particles. Even for the general case of an open in-
terferometer we reduced the problem to the calculation of the first quantized overlap
operator which was done in chapter 1.

3.3.5. Interactions - Transformation to the comoving frames

In the previous section we translated the results of chapter 1 into the language of
second quantization. We still need to perform a deeper analysis of the delta-pulse
approximation but this will not lead to any major issues. The main reason for discussing
the theory in second quantization is of course the straightforward way to include atom-
atom interactions. However, apart from formally writing down the sequence as in
Eq. (3.43) there seems to be no way for a further simplification since a first-quantized
Û with

Û †e Ψ̂(r)Ûe = UΨ̂(r) (3.54)

when Ĥe contains a quartic interaction term does not exist. We showed in a direct
approach, which is not detailed here, how to find subtle ways to represent the total time-
evolution operator as the product of one operator which reproduces the noninteracting
result and a second one which contains lengthy terms stemming from transformations
of the interaction Hamiltonian. However, these hideous terms are hard to interpret
and one does not get deeper insight into the problem.
There is another possible approach, which is a straightforward generalization of the
formalism presented in Sec. 1.2. By transforming into the comoving frame of each local
atomic cloud, we eliminate the linear potential as well as the linear motion generated
by the laser pulses. This transformation is advantageous for the following reasons:
For weak interactions and anharmonic potentials the time evolution of the clouds in
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these frames is governed, apart from small corrections, by their free expansion. Thus,
the interferometer can be numerically simulated on a grid of the size of the atomic
wave packets rather than the separation of the arms. Moreover, from the theoretical
perspective, the phases accumulated due to the motion along the interferometer paths
can be clearly separated from those due to additional effects like atom-atom interaction.
Suppose that an atomic cloud is initially located around χj in phase space. As described
in Sec. 3.1.2, we transform to the initial comoving frames by replacing the field operators

Ψ̂j(r)→ eiφjDjΨ̂j(r) (3.55)

where j labels the internal state and φj is some initial phase. A note about convention:
For the sake of better readability we will abbreviate the displacement operator at initial
time D̂(χ) by simply D̂, if dependent on time we write D̂(t) instead of D̂(χ(t)).
In this section the Hamiltonian will again be given by the sum

Ĥ = ĤF + ĤI + ĤL . (3.56)

But how does the transformation into the comoving frames affect the Hamiltonian and
the time evolution? In order to address this question we first express the Hamiltonian
in terms of the displaced field operators according to Eq. (3.55). The free Hamiltonian
becomes

ĤF =
∑
j

∫
d3r

[
DjΨ̂j(r)

]†
Hj(t)DjΨ̂j(r) . (3.57)

For the transformation to the comoving frames we need to replace Eq. (3.57) by the
reduced Hamiltonian

ĤR =
∑
j

∫
d3r Ψ̂†j(r)HR

j (r, t)Ψ̂j(r) . (3.58)

The explicit form of this Hamiltonian will be specified further below, of course it will
closely resemble the reduced Hamiltonian, Eq. (1.27). The replacement can easily be
achieved by first transforming the time-evolution operator with respect Eq. (3.56) into
the interaction picture with respect to ĤF. Secondly, we reverse the interaction picture
with respect to ĤR

Û(t, ti) =T exp

{
− i

~

∫ t

ti

dt′
(
ĤF + ĤI + ĤL

)}
=ÛF(t, ti)T exp

{
− i

~

∫ t

ti

dt′ Û †F(t′, ti)
(
ĤI + ĤL

)
ÛF(t′, ti)

}
=ÛD(t, ti)T exp

{
− i

~

∫ t

ti

dt′
(
ĤR + Û †D(t′, ti)

[
ĤI + ĤL

]
ÛD(t′, ti)

)}
. (3.59)

In the third line we defined
ÛD = ÛFÛ

†
R . (3.60)

When we calculate the action of ÛD on the shifted field operators DjΨ̂j(r), we use

exp(D̂†jĤD̂j) = D̂†jexp(Ĥ)D̂j (3.61)



72 Chapter 3. Interferometry and second quantization

to remove the unitary displacement operators from the exponent in the free time-
evolution operator and subsequently make use of transformation, Eq. (1.26),

Û †DDjΨ̂j(r)ÛD = Dj UF,jU †R,jΨ̂j(r) = eiφj(t)Dj(t)Ψ̂j(r) (3.62)

where ÛF,j and ÛR,j are the respective first-quantized time-evolution operators. The
reduced Hamiltonian hence reads

ĤR
j (t) = Hj[ξ̂ + χj(t)]−

∂Hj[χj(t)]

∂χj(t)

T

ξ̂ −Hj[χj(t)] . (3.63)

Recall the definition ξ̂ = (r̂, p̂)T of the six-dimensional phase-space operator from
chapter 1. As was shown in Sec. 1.2, the evolution of χj(t) is determined by the
classical Hamilton equations of motion with the initial condition χj(ti) = χj and the
phase is calculated as

φj(t) = φj(ti) +
1

~
Sj(t)−

1

2~
(
χpj(t)χ

r
j(t)− χ

p
j(ti)χ

r
j(ti)

)
(3.64)

with the classical action Sj along path j. The initial phase φj = φj(ti) can be freely
chosen. Before we apply this formalism to a Raman interferometer, we summarize the
main result of this section. It states:

First, express every operator in terms of the displaced field operators DjΨ̂j(r). Sec-
ond, replace the free Hamiltonian, given by Eq. (3.57) by the reduced Hamiltonian,
Eq. (3.63). Third, substitute everywhere in the calculation D̂j → eiφj(t)D̂j(t).

3.3.6. The Raman-MZ interferometer with interactions

We now return to the MZ sequence and put our newly acquired knowledge into practical
use. In Eq. (3.43) we already discussed a general interferometer sequence. In the case
of an MZ interferometer it becomes

Û(td, ti) = Ûe(td, t3)Ŝπ/2(t3)Ûe(t3, t2)Ŝπ(t2)Ûe(t2, t1)Ŝπ/2(t1)Ûe(t1, ti) (3.65)

where Ĥe, in contrast to Sec. 3.3.4, now includes the interaction Hamiltonian, Eq. (3.18).
For simplicity we shall assume that initially all particles occupy state |1〉 and the ob-
servable to be measured is again the number-difference operator, Eq. (3.52). First, we
note that the time-evolution operator on the very left in Eq. (3.65) commutes with this
operator, hence it is sufficient to only consider the evolution until t = t3. Second, we in-
terchange the π-pulse beam splitter with the external time-evolution operator to its left.
Since the two operators do not commute, this is achieved by inserting Ŝπ(t2)Ŝ†π(t2) = 1.
Subsequently, we act with Ŝπ/2(t3) and Ŝπ(t2) on the number-difference operator

Ŝ†π(t2)Ŝ†π/2(t3)δN̂Ŝπ/2(t3)Ŝπ(t2) = −i

∫
d3r

(
Ψ̂†1(r)Ψ̂2(r)e−i(2k2r−k3r) − H.c.

)
, (3.66)

where we made use of the beam-splitter transformations, Eq. (3.41) and Eq. (3.42).
Note that we again omitted the laser phases for the sake of simple expressions, we will
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again include them at the end of the calculation. By inserting unity as explained, the
expression Ŝ†π(t2)Ûe(t3, t2)Ŝπ(t2) appears. Since the beam splitter operator is unitary,
we can raise it in the exponent and define the new free Hamiltonian for t ∈ [t2, t3]

ˆ̃H1 = e−ik2r̂Ĥ2eik2r̂ and
ˆ̃H2 = eik2r̂Ĥ1e−ik2r̂ . (3.67)

Moreover, we need to replace
g11 ↔ g22 (3.68)

in the interaction Hamiltonian. Commuting the π-pulse beam splitter to the left and
defining new Hamiltonians between t2 and t3 has effectively removed the beam splitter
at t2. Thus, the field operators now rather describe the interferometer paths than
the internal state. This interpretation together with the interferometer geometry is
depicted in Fig. 3.3. Next, in the spirit of the previous section, we transform to the
comoving frames, which are carried along the two paths. For that we replace

Ψ̂2(r)→ eiφ2D2Ψ̂2(r) , (3.69)

where χ2 will be chosen later such that Ψ̂2(r) exactly matches Ψ̂1(r) at t1. The dashed
line in Fig. 3.3 shows the path of Ψ̂2(r) before t1. Since initially only path 1 is occupied,
we will refer to the dashed line in Fig. 3.3 as fictitious input port. Path 1 starts at
χ1 = 0, hence no replacement of Ψ̂1(r) is necessary.

Transformation to the comoving frames

Having realized that after moving the π-pulse beam splitter to the left, the field opera-
tors correspond to the two paths in the MZ interferometer, we define the free evolution
operator along path 1

ÛF,1(t3, ti) = ÛF,2(t3, t2)eik2r̂ÛF,1(t2, ti) . (3.70)

Following Sec. 3.3.5, we obtain by using Eq. (3.62) with χ1(ti) = 0 and φ1 = 0

Û †D(t3, ti)Ψ̂1(r)ÛD(t3, ti) = ŨF,1(t3, t2)UF,1(t2, ti)U †R,1(t3, ti)Ψ̂1(r)

= e−ik2rUF,1(t3, ti)U †R,1(t3, ti)Ψ̂1(r)

= e−ik2reiφ1(t3)D1(t3)Ψ̂1(r) (3.71)

and we furthermore recalled Eq. (3.67). Combining Eq. (3.70) to one time-evolution
operator by including the laser pulse again in the form of a delta function in time, the
reduced Hamiltonian after the transformation to the comoving frame is with respect
to Ĥ1 for t ∈ [ti, t2] and with respect to Ĥ2 for t ∈ [t2, t3]. Furthermore, the laser
pulse vanishes in the comoving frame as before. The trajectory χ1(t) is determined
by the classical Hamilton equations of motion and the phase φ1(t) is calculated using
Eq. (3.64).
Similarly, we define

ÛF,2(t3, ti) = eik3r̂ÛF,1(t3, t2)e−ik2r̂ÛF,2(t2, ti) , (3.72)
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the free time-evolution operator along path 2. With this definition we obtain

Û †D(t3, ti)e
iφ2D2Ψ̂2(r)ÛD(t3, ti) = ŨF,2(t3, t2)UF,2(t2, ti)D2eiφ2U †R,2(t3, ti)Ψ̂2(r)

= ei(k2−k3)r UF,2(t3, ti)D2eiφ2U †R,2(t3, ti)Ψ̂2(r)

= ei(k2−k3)reiφ2(t3)D2(t3)Ψ̂2(r) (3.73)

in the same spirit as for path 1. At first sight the calculations in Eq. (3.71) and Eq. (3.73)
appear quite lengthy and complicated. Note, however, that the result allows a straight-
forward interpretation in terms of field operators (in the Schrödinger picture) which are
carried along the interferometer paths due to the time-dependent displacement opera-
tor. Thus, if initially an atomic cloud is located at the origin, this simply means that
the displacement operator accounts for the motion of the cloud along the interferometer
paths. In order to find a way to more intuitively derive this result, we will approach
the calculation of this section from a slightly different point of view in Sec. 3.4, which
will eventually allow us to treat general interferometer geometries.

Matching condition and laser-atom interaction

So far we transformed the free Hamiltonian to the comoving frames, which has intro-
duced the time-dependent displacement of the field operators along the classical trajec-
tories. We will discuss the impact of this transformation on the interaction Hamiltonian
further below but first, we turn to the initial phase and position of the field operator
corresponding to path 2, which so far were completely arbitrary. This ambiguity will
be fixed in the following by matching the trajectories at the remaining beam splitter
at t1. Indeed, when we substitute Ψ̂j(r) → eiφj(t)Dj(t)Ψ̂j(r) in Eq. (3.39), we can
eliminate the exponential eikr̂ by choosing the matching conditions

χr2(t1) = χr1(t1)

χp2(t1) = χp1(t1) + ~k . (3.74)

In addition to the matching of position and momentum, we eliminate any dependency
of the beam splitter on a phase in App. C.3.1 by choosing φ2 appropriately. After some
algebra, this choice leads to

φ2(t) = ϕL(t1) +
1

~

∫ t

ti

dt′L 2(t′)− 1

2~
[
χpj(t)χ

r
j(t)− χ

p
1(ti)χ

r
1(ti)

]
(3.75)

with the Lagrange function

L 2(t) = Lj(t) + ~kχr1(t)δ(t− t1) (3.76)

where j = 1 for ti ≤ t ≤ t1 and j = 2 for t > t1. The interpretation of Eq. (3.75)
is obvious. It is the phase acquired along the real physical path, that is, along path
1 from ti to t1 and along path 2 for later times. Thus, the matching conditions for
position, momentum, and phase eliminate the dependency on the fictitious input port
and replace it by the actual path. With these considerations the resulting beam-splitter
Hamiltonian at t1 simplifies to

Û †DĤL(t)ÛD = −~θ1

2
δ(t− t1)

∫
d3r

(
Ψ̂†2(r)Ψ̂1(r) + H.c.

)
, (3.77)
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matching point

Ψ̂1(r)

Ψ̂2(r)

ti t1 t2 t3

2

1

td

Figure 3.3.: Visualization of the two paths of an MZ interferometer. After inter-
changing the π-pulse beam splitter with the adjacent external time-evolution
operator, the field operators describe the two interferometer paths rather than
the internal states. As a result, the transformation introduced in Sec. 3.3.5
corresponds to a change into the comoving frames carried along the two paths.
At t1 the field operators are matched in order to eliminate any dependence on
the external degrees of freedom from the atom-laser interaction Hamiltonian.
The dashed line is referred to as fictitious input port as the occupation of Ψ̂2(r)
is zero until t1.

which does neither transfer momentum nor imprint a phase. Finally, we mention that
the fictitious input port still remains present in the external Hamiltonian for t < t1.
However, here only Ψ̂1 is occupied so that this fact is of no physical consequences.

Atom-atom interaction

At the end of this section we discuss the interaction Hamiltonian. Fortunately, this is a
straightforward exercise since due to the bilinear form of the interaction Hamiltonian,
the phase factors in Eqs. (3.71) and (3.73) cancel and one simply needs to replace
Ψ̂j(r)→ Dj(t)Ψ̂j(r). Hence,

ĤI =

∫
d3r

{g1

2
Ψ̂†1(r)2Ψ̂1(r)2 +

g2

2
Ψ̂†2(r)2Ψ̂2(r)2

+g12[D1(t)Ψ̂1(r)]†D1(t)Ψ̂1(r)[D2(t)Ψ̂2(r)]†D2(t)Ψ̂2(r)
}
, (3.78)

where we used Eq. (C.8) to show that the displacement operators drop out of the first
two terms. The time-dependent relative displacement between the field operators in
the second line of Eq. (3.78) accounts for the separation of the clouds between t1 and t3.
Most remarkable is the fact that for a sufficiently small extension of the atomic clouds
they do not overlap most of the time. Furthermore, in the case of weak interactions,
distortion effects due to the dynamical separation of the atomic clouds are small and
the second line of Eq. (3.78) can be neglected so that the interaction Hamiltonian
becomes time independent. In fact, this approximation will be used in chapter 4 to
study two-mode squeezing.
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Summary and discussion

When we substitute Eqs. (3.71) and (3.73) into Eq. (3.66), recall the full MZ sequence,
Eq. (3.65), and combine the two displacement operators with the help of the composi-
tion rule, Eq. (A.10), we obtain the final result

Û †(td, ti)δN̂Û(td, ti) = −i

∫
d3r Û †MZ(t3, ti)

{
Ψ̂†1(r)D(∆χ)Ψ̂2(r)eiφMZ − H.c.

}
ÛMZ(t3, ti)

(3.79)

where ∆χ = χ2(t3)− χ1(t3) and the Mach-Zehnder phase reads

φMZ = ϕL +
1

~
∆S(t3)− 1

2~
∆χr(t3) [χp2(t3) + χp1(t3)] . (3.80)

The total laser phase abbreviates ϕL = ϕL,1−2ϕL,2 +ϕL,3 and ∆S(t3) = S2(t3)−S1(t3)
is the classical action difference along the two paths. The remaining time evolution
operator ÛMZ contains the reduced one-body Hamiltonians, the laser-atom interaction
Hamiltonian at t = t1 without momentum transfer and phase imprint as well as the
interaction Hamiltonian, Eq. (3.78).
In summary, we provided a formalism in which the local atomic clouds along the paths
are described from their comoving frames. Working in second quantization, we included
particle-particle interaction into this framework, providing a natural generalization to
Sec. 1.2. Indeed, in the limit of zero interactions, Eq. (3.80) reduces to Eq. (1.33). We
stress that this formalism is exact also for arbitrary potentials as long as the delta-pulse
approximation is valid. Describing atom interferometers from the comoving frames, a
numerical simulation of the Gross-Pitaevskii equation becomes computationally less
demanding when the simulation is performed on a grid of the size of the atomic clouds
rather than the extent of the whole interferometer. However, it is important to mention
that the theory is limited to interferometer geometries where exactly two paths are
present, as for example in the MZ interferometer or in butterfly geometries. In the next
section we will generalize this formalism to multi-path sequences and other diffraction
schemes like Bragg diffraction or double-Bragg diffraction.

3.4. More complex interferometer geometries

In the preceding section we discussed the MZ interferometer employing Raman diffrac-
tion. In this context we demonstrated how to relate the two field operators corre-
sponding to the two internal states to the exactly two paths in an MZ interferometer.
However, how do we for instance describe a multiple-path geometry? Even in an MZ
interferometer with imperfect π pulse one in principle needs to take into account spuri-
ous branches. More fundamentally, how do we treat Bragg diffraction, where only one
internal state is present during the whole interferometer sequence and the mapping
between internal state and path breaks down? In this section we aim at a solution
to this problem by introducing different field operators for every interferometer path.
These will only satisfy approximate bosonic commutation relations but the conditions
for an accurate approximation will generally turn out to be well satisfied.
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3.4.1. Decomposing phase space

Now we turn to this problem more formally by decomposing phase space into small
disjoint boxes Ωj = Ωr

j ×Ωp
j of the same size, centered at χj and labeled by the double

index j for the momentum and position direction. Special importance will be assigned
to Ω0 = Ωr

0×Ωp
0, the volume around the origin in phase space. Furthermore, we define

the operator

Π̂ =

∫
Ωr0

d3r |r〉〈r|
∫

Ωp0

d3p |p〉〈p| , (3.81)

which at first sight might look like a projector on Ω0 in phase space as it is the product of
the respective position and momentum projectors. However, it is important to note that
Π̂ itself is not a projector. The reason for this is that a projection in momentum space
alters the distribution in position space and vice versa, as described by Heisenberg’s
uncertainty principle. This is visualized in more detail in Fig. 3.4. Indeed, if Π̂ was a
projector, we could prepare states violating the uncertainty principle. Let us illuminate
this effect from a slightly different angle by defining:
A state |ψ〉 is said to have support on Ω0 if 〈p |ψ〉 and 〈r |ψ〉 are only different from
zero for p ∈ Ωp

0 and r ∈ Ωr
0. If this is true, the application of Eq. (3.81) leaves the

state invariant, since

Π̂ |ψ〉 =

∫
Ωr0

d3r |r〉〈r|
∫

d3p |p〉〈p |ψ〉 =

∫
d3r |r〉〈r |ψ〉 = |ψ〉 . (3.82)

As 〈p |ψ〉 is zero outside of Ωp
0, we extended the integral over the full momentum space

and recalled the decomposition of unity
∫

d3p |p〉〈p| = 1. The same argument holds for
the subsequent projection in position space. In contrast, if the state only differs from
zero outside Ωr

0 and Ωp
0, the action of Π̂ on this state produces zero. Clearly, if |ψ〉 has

support on Ω0, it is also left invariant by Π̂†. We now define the operator

Π̂j = D̂j Π̂ D̂†j , (3.83)

which is the product of the position and momentum projector on Ωj as discussed in
App. C.3.2. The displacement operator on the right side first shifts the phase-space
distribution from Ωj to Ω0, followed by the action of Π̂, after which the state is displaced
back to Ωj. Clearly, a state with support on Ωj stays invariant under the action of Π̂j

in the same spirit as realized in Eq. (3.82). Next, we define

|ψj〉 = Π̂j |ψ〉 . (3.84)

The crucial insight is that if |ψj〉 has support on Ωj the operator Π̂j acts as a projector
since

Π̂2
j |ψ〉 = Π̂j |ψj〉 = |ψj〉 = Π̂j |ψ〉 , (3.85)

where we used Eq. (3.84) twice and Eq. (3.82). In the following we will show that if Π̂j

acts as a projector for all j on a given quantum state, we can introduce field operators
for each path, which satisfy bosonic commutation relations on Ω0.
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Figure 3.4.: Action of the operator Π̂ on a quantum state. The crucial difference
between the two rows is the different width of the box in position space. First
row: The state has support on Ωp

0 as well as Ωr
0, that is, the projection in

momentum and subsequently in position space leaves the state invariant. Con-
sequently, Π̂ acts as a projector. Second row: The state has support inside
Ωp

0 but the projection on Ωr
0 in position space cuts off the state (dashed line

vs. solid line). After Fourier transforming, the momentum representation has
changed with respect to the initial state. As the subsequent application of Π̂
again alters the state, it does not act as a projector.

3.4.2. Path-dependent field operators

So far the discussion has been in first quantization. We are now confronted with the
problem of how to transfer the insights we gained into second quantization. Since a
field operator is associated with a phase-space distribution only by the many-particle
state |Ψ〉, when we refer to the ‘position- and momentum distribution of a field’, we
always implicitly mean the expectation values with respect to |Ψ〉

〈Ψ̂†(r)Ψ̂(r)〉 and 〈Ψ̂†(p)Ψ̂(p)〉 . (3.86)

We begin by decomposing unity in App. C.3.2 as

1 =
∑
j

D̂j Π̂ D̂†j , (3.87)

which we insert into the mode expansion of the field operator

Ψ̂(r) =
∑
n

〈r |n〉 ân =
∑
j

〈r| D̂j

∑
n

Π̂D̂†j |n〉 ân ≡
∑
j

DjΨ̂j(r) . (3.88)
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As before, we can multiply each field operator with an arbitrary phase, which we omit
for more clarity in the expressions. The equation might as well be inverted

Ψ̂j(r) =
∑
n

〈r| Π̂D̂†j |n〉 ân =

∫
d3r′ 〈r| Π̂D̂†j |r′〉 Ψ̂(r′) = ΠD†jΨ̂(r) . (3.89)

With these definitions we turn to the commutation relations of the new field operators.
Using Eq. (3.89) and [Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), it is straightforward to show that[

Ψ̂j(r), Ψ̂†l (r
′)
]

= δΩ
jl(r − r′) 6= δ(r − r′)δjl (3.90)

with the incomplete delta function

δΩ
jl(r − r′) = 〈r| Π̂D̂†jD̂lΠ̂

† |r′〉 . (3.91)

The commutation relations in Eq. (3.90) are not bosonic as expected. However,
Eq. (3.91) should be thought of in a distributional sense. Given the function f(r) =
〈r |f〉 with support on Ω0, we find∫

d3r′ δΩ
jl(r − r′)f(r′) = 〈r| Π̂D̂†jD̂lΠ̂

† |f〉 = f(r)δjl , (3.92)

where we recalled that Π̂† |f〉 = |f〉. The state only remains in Ω0 if j = l, otherwise
it becomes displaced to a different box in phase space and the subsequent action of Π̂
yields zero. If f has support on the complement of Ω0, Eq. (3.92) is zero.

Methodology

In the previous section we realized that the path-dependent field operators satisfy
bosonic commutation relations with respect to the incomplete delta function. In this
paragraph we will lay out a formalism based on this insight.
In the case of light-pulse interferometry, the field operator in momentum representation
disintegrates into parts closely located around multiples of ~k. The momentum spread
of these local atomic clouds can be estimated for a Bose-Einstein condensate trapped in
a harmonic potential [142] as ∆p/~k ∼ 1/kR� 1, where R is the initial Thomas-Fermi
radius. Furthermore, the interaction energy converted into kinetic energy during the
expansion after switching off the trap leads to only a slight change of this result [183].
In the same manner for large arm separation the local clouds with the same mean
momentum never overlap in position space. As can be seen from the definition of the
path-dependent field operators, Eq. (3.89), the displacement operators shift the local
atomic clouds to the origin of momentum- and position space. As we will realize further
below, this again corresponds to a transformation to the comoving frames. From the
considerations made above we conclude that it is meaningful to assume that there exists
a decomposition of phase space and path-dependent field operators at each instance
of time so that Π̂ acts as a projector on Ψ̂j(r). For that reason the incomplete delta
function defined in Eq. (3.91) will reduce to the usual delta function times Kronecker
delta as we will see in the following calculations. In the comoving frames the time
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Figure 3.5.: Allocation of approximate bosonic field operators to each path. a) A laser
pulse drives transitions between branches separated by multiples of ~k. For
sufficiently small momentum spread of the local clouds we can assign bosonic
field operators to each path. In this picture the laser pulses simply change the
population of the fields at the intersections of the paths. In the following we
will refer to the space-time point where one momentum branch is plit in many
as vertex of an interferometer. b) Description of an MZ interferometer as an
eight-port interferometer, where we take into account only the resonant paths.
Initially, all particles reside in path 1, illustrated by the solid density profile.
Over the course of the interferometer the laser pulses successively populate the
paths corresponding to the fictitious input ports.

evolution is governed by the free expansion of the cloud, only slightly distorted by the
residual (weak) potential and particle-particle interaction.
We now introduce a field operator for each interferometer path. As can be seen in
Fig. 3.5, we promote the interferometer to a multi-port geometry, the paths correspond
to the solutions of the classical Hamilton equations of motion with respect to the free
Hamiltonian. The laser pulses couple the paths and exchange population between
them. Every path which becomes populated by the laser pulse is interpreted as a
fictitious input port into which the vacuum is fed. For each laser pulse we will derive
matching conditions similar to Sec. 3.3.6 between the incoming populated field and the
vacuum of a new path in a way that no momentum is transferred from the perspective
of the comoving frames.
During a Bragg pulse the laser-atom interaction drives transitions between many paths.
In our formalism each corresponds to a path-dependent field operator. This is depicted
in Fig. 3.5.a. The case of a MZ interferometer, where in the lowest-order approximation
we only take into account the resonant paths, is illustrated in Fig. 3.5.b.
The formalism is based on the insight that the Gross-Pitaevskii equation can be de-
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coupled when applied to a state with support only on clearly separated subsets of
momentum space. This idea was originally exploited in the context of nonlinear fiber
optics [204] and referred to as slowly varying envelope approximation. The applica-
tion to Bose-Einstein condensates was pioneered by Trippenbach et al. [205] and was
utilized to treat interaction effects during the cloud separation after a Kapitza-Dirac
pulse in Refs. [195, 206]. In the present work this idea is formalized, generalized to
second quantization, to include potentials and atom-light interaction, and to general
interferometer geometries.

3.4.3. Dynamical evolution

Having defined new field operators, we now turn to the time evolution. In the fol-
lowing three paragraphs we subsequently discuss the free Hamiltonian, the interaction
Hamiltonian, and the laser-atom interaction Hamiltonian.

Free Hamiltonian

In Eq. (3.88) we assigned a field operator to each trajectory and a displacement operator
which initially shifts the boxes associated with each local atomic cloud to the origin of
phase space. As the local wave packets move during the interferometer time (mainly in
position space), the boxes around them do so as well. Representing the field operator
as in Eq. (3.88), we will show in the following that the transformation to the comoving
frame of each field operator correspond to a shift of the time-dependent position of the
boxes to the center of Ω0. Thus, we will be able to describe the whole time evolution
within the interferometer from the perspective of Ω0.
The free Hamiltonian is again given by

ĤF =

∫
d3r Ψ̂†(r)H(r)Ψ̂(r) , (3.93)

which we would like to replace by the reduced Hamiltonian, Eq. (3.63),

ĤF → ĤR =
∑
j

∫
d3r Ψ̂†j(r)HR

j Ψ̂j(r) (3.94)

for each trajectory. The evolution with respect to this Hamiltonian is governed by
dispersion effects and the influence of (small) harmonic as well as anharmonic contri-
butions but the position of the center of the cloud will only slightly be modified. We
now calculate the Heisenberg equations of motion with respect to Eq. (3.94)

i~
d

dt
Ψ̂j(r, t) =

[
Ψ̂j(r, t), ĤR

]
=
∑
n

∫
d3r′ δΩ

jn(r − r′)HR
n Ψ̂n(r′, t)

= HR
j Ψ̂j(r, t) . (3.95)

Here, we used the commutation relation, Eq. (3.90), assumed that initially Ψ̂n(r) has
support on Ω0 for all n and that this property is preserved during the time evolution
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with respect to ĤR
n . In this case Eq. (3.95) is exact, however, for real systems this

result will at all times be only approximately correct. The solution to Eq. (3.95) is

Û †RΨ̂j(r)ÛR = UR,jΨ̂j(r) . (3.96)

In order to perform the replacement ĤF → ĤR in the full time-evolution operator,
we proceed along the lines of Eq. (3.59). We transform into the interaction picture
with respect to ĤF and subsequently reverse it with respect to ĤR. Defining as before
ÛD = ÛFÛ

†
R, we obtain

Û †DΨ̂(r)ÛD = ÛR

∑
j

UFDjΨ̂j(r)Û †R =
∑
j

UFDjU †R,jΨ̂j(r) =
∑
j

eiφj(t)Dj(t)Ψ̂j(r) .

(3.97)
We first used the result of App. C.1.1 and recalled the definition of the new field
operators, Eq. (3.88). In the second step we applied Eq. (1.26), which leads to time-
dependent displacement operators. Also recall the abbreviation D̂(t) ≡ D̂(χ(t)). The
trajectory is determined by the classical Hamilton equations of motion and the dynam-
ical phase is related to the classical action along the path by

φj(t) = φj +
1

~

∫ t

ti

dt′ Sj(t
′)− 1

2~
(
χpj(t)χ

r
j(t)− χ

p
jχ

r
j

)
, (3.98)

where we again included an initial phase φj. Note again that variables without time
argument are supposed to be evaluated at t = ti.
In summary we showed in this paragraph that if Ψ̂j(r) has support on Ω0 during the
evolution with respect to ĤR

j , we simply need to replace

ĤF → ĤR (3.99)

and
Û †DΨ̂(r)ÛD =

∑
j

eiφj(t)Dj(t)Ψ̂j(r) , (3.100)

everywhere else in the calculation. By this replacement we effectively remove the main
part of the time evolution from the interferometer, namely the motion of the atomic
clouds along the interferometer trajectories. The residual motion is simply given by
the time evolution inside the comoving frames.

Interaction Hamiltonian

So far we only considered the free Hamiltonian. Now we extend the ideas of the
previous section to interacting systems and investigate which additional conditions we
need to require on the state and the decomposition of phase space. Performing the
transformation, Eq. (3.59), replaces

Ψ̂(r)→ Û †DΨ̂(r)ÛD =
∑
j

eiφj(t)Dj(t)Ψ̂j(r) (3.101)
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in the interaction Hamiltonian, Eq. (3.17),

ĤI =
g

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) . (3.102)

We show in App. C.3.3 that the equations of motion with respect to the transformed
interaction Hamiltonian can be written as

i~
d

dt
Ψ̂j(r, t) =g

∑
coupl.

eiφjmlk(t)
[
D†j(t)Dm(t)Ψ̂m(r, t)

]†
×
[
D†j(t)Dl(t)Ψ̂l(r, t)

] [
D†j(t)Dk(t)Ψ̂k(r, t)

]
, (3.103)

where the phase is

φjmlk(t) = φl(t) + φk(t)− φj(t)− φm(t) . (3.104)

The sum in Eq. (3.103) runs over all indices in momentum space with

∆χpjmlk(t) = χpl (t) + χpk(t)− χ
p
j(t)− χpm(t) ∼= 0 (3.105)

and only takes into account terms with support on Ωr
0. As shown in App. C.3.3 we need

to impose a stronger condition on the momentum distributions of the field operators,
namely they must have support on only a third of Ωp

0. The relative displacement
in Eq. (3.105) approximately connects the centers of the boxes in momentum space.
We assume that three times the width of the momentum distribution displaced by this
deviation still has support on Ωp

0. If satisfied, Eq. (3.103) is exact and the field operators
Ψ̂j(r) remain supported on Ω0. From the perspective of the comoving frames the
separation of the atomic clouds (e.g. later originating from the interaction with a laser),
enters the equation by the time-dependent displacement operators in the interaction
Hamiltonian. It is important to note that the assumptions made above need to be
carefully reviewed for each choice of a decomposition of phase space and interferometer
geometry but the approximation is generally well suited for the experiments discussed
in this work.

Laser-atom interaction

Finally, we turn to the last part of the Hamiltonian, the atom-light interaction. In
this paragraph we investigate Bragg diffraction but other schemes, e.g. double Bragg
diffraction do not pose any fundamental difficulties. After adiabatic elimination of the
exited state, the effective laser-coupling Hamiltonian reads

ĤL = −~Ω(t)

∫
d3r Ψ̂†(r)Ψ̂(r) eikr+iϕL(t) + H.c. , (3.106)

which was derived in Eq. (3.29). After performing transformation, Eq. (3.59), the
equation of motion with respect to Eq. (3.106) is obtained as

i~
d

dt
Ψ̂m(r, t) = −~Ω(t)

∑
n,j

∫
d3r′ δΩ

mn(r − r′) B̂nj(r
′, t) (3.107)



84 Chapter 3. Interferometry and second quantization

with the operator-valued function

B̂nj(r, t) = D†n(t)
[
eikr+iϕL(t) + H.c.

]
Dj(t)eiφj(t)−iφn(t)Ψ̂j(r, t) . (3.108)

It remains to show that B̂nm either has support on Ω0 or on its complement. Conse-
quently, δΩ

jm reduces to the product of a delta function and a Kronecker delta and the
convolution in Eq. (3.107) only selects those terms supported on Ω0. Thus, the final
result is

i~
d

dt
Ψ̂m(r, t) = −~Ω(t)

∑
coupl.

D†m(t)
[
eikr+iϕL(t) + H.c.

]
Dj(t)eiφj(t)−iφm(t)Ψ̂j(r, t) .

(3.109)
The sum only runs over those j which correspond to coupled boxes in momentum
space, defined by

χpm − χ
p
j ± ~k ∼= 0 (3.110)

and of course only takes into account the field operators with nonvanishing overlap
in Ωr

0. Again the approximate sign in Eq. (3.110) signifies that the momentum dis-
placements only initially point to the center of the momentum boxes. Finally, we
introduce the laser-atom interaction Hamiltonian which reproduces the equation of
motion, Eq. (3.108), which reads

Û †DĤLÛD = −~Ω(t)

∫
d3r

∑
coupl.

Ψ̂†n(r)D†n(t)eikrDj(t)Ψ̂j(r) ei[φj(t)−φn(t)+ϕL(t)] + H.c. .

(3.111)
This result means that we simply have to insert the sum over path-dependent field
operators, Eq. (3.100), into the laser-atom interaction Hamiltonian and then only have
to take into account these terms which are coupled via the condition, Eq. (3.110).

3.4.4. Matching conditions

In this section we complete the discussion by introducing matching conditions for tra-
jectory and phase in correspondence to Sec. 3.3.6. As mentioned before, we can include
an arbitrary phase in Eq. (3.88) for each field operator. Thus, this definition leaves the
initial conditions undetermined not only for χj but also for φj for every fictitious input
field. To fix this ambiguity, we impose the following matching conditions for adjacent
momentum boxes

χpn(t1)− χpj(t1)− ~k = 0

χrn(t1)− χrj(t1) = 0 , (3.112)

exemplary for a laser pulse starting at t = t1. These conditions have the following
meaning. In position space we match the center of the local clouds, in momentum
space we match the mean momenta modulo ~k, which is transferred by the laser pulse.
For the phase we define

φj(t1)− φn(t1) + ϕL(t1) +
1

2
kχrj(t1) = 0 . (3.113)
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The procedure is completely equivalent to the discussion in Sec. 3.3.6. As explained
in this section and App. C.3.1, χj(t) and φj(t) attain the interpretation of trajectory
and phase along the physical path of the interferometer. However, due to the finite
pulse length, the matching conditions cannot completely eliminate the dependency on
spatial- and time-dependent phase factors in the laser-atom interaction Hamiltonian in
contrast to Sec. 3.3.6, where we invoked the delta-pulse approximation. Nevertheless,
the Hamiltonian can be further simplified and used for numerical simulations. This
will be discussed in Sec. 3.5.2.

3.4.5. Summary

In the previous sections we assigned approximate bosonic field operators to each path
of an interferometer. After the slightly technical and lengthy derivations, the summary
in this section is supposed to serve as a guide for a straightforward application of the
formalism.
After decomposing phase space in rectangular boxes and transforming to the comoving
frames, we require that Π̂ acts as a projector on every field operator and that this
attribute is kept during the entire evolution. The projector property of Π̂ is guaran-
teed for small momentum and position width of the local atomic clouds compared to
the width of the phase-space boxes and for sufficiently weak nonlinear potentials and
interactions. Having checked the mentioned prerequisites, one replaces the free by the
reduced Hamiltonian

ĤF → ĤR (3.114)

and everywhere else, including in the operator to be measured,

Ψ̂(r)→
∑
j

eiφj(t)Dj(t)Ψ̂j(r) . (3.115)

The displacement operators are defined with respect to the classical trajectories and
φj(t) is related to the classical action by Eq. (3.98). In the particle-particle interaction
and laser-atom interaction Hamiltonian we only keep coupled products of field opera-
tors defined by Eq. (3.105) and Eq. (3.110) and with nonvanishing overlap in position
space. The field operators then satisfy bosonic commutation relations.
After defining matching conditions in order to eliminate the ambiguous initial con-
ditions φj and χj for each fictitious input port, the laser-atom Hamiltonian becomes
independent of phase- and spatial-dependent factors at the beginning of each laser pulse
and can therefore efficiently be implemented numerically or used as a starting point
for the delta-pulse approximation. This will be discussed in more detail in following
sections.
By the decomposition of phase space, we transformed the whole evolution within the
interferometer to Ω0, however, at the cost of having to solve an infinite hierarchy of
coupled equations for the field operators. Since the coupling to higher-order momentum
boxes is strongly suppressed, it will turn out to be sufficient to only take into account
a few non-resonant branches.
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3.5. Applications

After the rather formal derivation in the previous sections, we apply the formalism to a
number of examples. In Sec. 3.5.1 we start by deriving the explicit form of the observ-
ables measured in an interferometer experiment. The Gross-Pitaevskii approximation
allows to efficiently implement the formalism numerically in Sec. 3.5.2. In contrast,
we further pursue the delta-pulse approximation analytically in Sec. 3.5.3 and 3.5.4.
Finally, we apply the formalism to an MZ interferometer in Sec. 3.5.5.

3.5.1. Observables

The observable we seek to measure is the number of particles in a certain exit port of
an interferometer. This is equivalent to the number of particles occupying an interfer-
ometer branch which corresponds to a field operator. Hence, the operator for e.g. path
n is

Ô =

∫
d3r Ψ̂†(r)Dn(t)ΠD†n(t)Ψ̂(r) , (3.116)

which reads after performing transformation, Eq. (3.59)

Û †DÔÛD =

∫
d3r Ψ̂†n(r)Ψ̂n(r) . (3.117)

3.5.2. Numerical simulation

In this section, we show how to implement the formalism numerically. For this task we
return to the laser-atom interaction Hamiltonian, Eq. (3.111). First we merge the two
displacement operators between the two field operators together with the exponential
exp(kr) using the composition rule, Eq. (A.10). Second, for each time-dependent
quantity C(t) we introduce the notation

C(t) = C(t1) + δC(t) . (3.118)

With the help of the conditions Eq. (3.112) and Eq. (3.113) we match the trajectories
at t = t1 and find the result

D̂†n(t)eikr̂D̂j(t) ei[φj(t)−φn(t)+ϕL(t)] = D̂ [δχj(t)− δχn(t)] eiφnj(t) (3.119)

with the time-dependent phase

φnj(t) =
1

2~
[
δχn(t)TJχn(t1)− δχj(t)TJχj(t1) + δχn(t)TJ δχj(t)

]
+ δϕL(t)− δφn(t) + δφj(t) . (3.120)

It is important to stress that at t = t1 Eq. (3.119) reduces to unity and Eq. (3.120)
vanishes. Thus, the laser-atom interaction Hamiltonian does not contain any phase-
and spatial-dependent factors anymore at this specific point of time. We already applied
matching conditions in Sec. 3.3.6. Note that the discussion here is much more general
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as we allow finite pulse lengths. Indeed, due to the time dependence of the displacement
operators, perfect matching is only achieved at t = t1 but the displacement at later
times is small thanks to the extremely short laser-atom interaction time and it is caused
only by the residual nonlinear potentials.
This insight is the main result of this chapter. Introducing path-dependent field op-
erators has led us to a formalism which allows to remove trivial contributions to
the motion, for example the linear motion originating from the laser pulses or the
free fall in the gravitational field. This fact makes a numerically exact simulation
of a light-pulse interferometer particularly simple as we detail in the following: Af-
ter calculating the Heisenberg equations of motion for the field operators, we replace
Ψ̂n(r, t) → 〈Ψ̂n(r, t)〉 = Ψn(r, t) in the spirit of the Gross-Pitaevskii approximation.
Each order parameter evolves according to the respective reduced Hamiltonian. In the
interaction Hamiltonian one needs to implement the time-dependent relative shifts of
the order parameters induced by the displacement operators. In the laser-atom inter-
action Hamiltonian one chooses a certain number of paths one would like to take into
account and truncates the hierarchy at this number. For Bragg diffraction in the deep
Bragg regime it is often sufficient to take into account only three non-resonant paths
of the momentum ladder [21].
Realizing that the relative displacements of the order parameters and the time-dependent
phase factors during the laser pulse are extremely small, the numerical implementation
forms a set of coupled Gross-Pitaevskii equations which can be simulated on a grid of
the size of the atomic clouds rather than the extent of the interferometer. Interestingly,
it is even sufficient to simulate the GPEs on a grid of the size of the initial atomic cloud
when using the scaling approach described in Sec. 2.3.2. After outlining the numerical
simulation, we return to analytical methods for the beam splitters in the following
sections.

3.5.3. Delta-pulse approximation

In the previous sections we established the path-dependent formalism in its general
form. Starting from this result, we will successively introduce approximations until we
recover the description in its simplest form. We first adopt the delta-pulse approxi-
mation in the present section, particularize the discussion to linear gravitational fields
in Sec. 3.5.4 and finally apply the results to an MZ interferometer in Sec. 3.5.5. In
Sec. 3.4.3 we obtained the exact result

ĤL = −~Ω(t)

∫
d3r

∑
coupl.

Ψ̂†n(r)D†n(t)eikrDj(t)Ψ̂j(r) eiφj(t)−iφn(t)+iϕL(t) + H.c. , (3.121)

which relies on the projector properties of Π̂. In this and the following section we derive
the delta-pulse approximation in a rigorous manner. Suppose the laser is switched on
at t = t1. First, we express the time-dependent phase and the displacement operator
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as

D̂j(t)e
iφj(t) = ÛF(t, ti)D̂j Û †R,j(t, ti)

= ÛF(t, t1)ÛF(t1, ti)D̂j Û †R,j(t1, ti)Û
†
R,j(t, t1)

= ÛF(t, t1)D̂j(t1)eiφj(t1)Û †R,j(t, t1) (3.122)

by making again use of Eq. (1.32). Therefore, the product in Eq. (3.121) can be cast
in the form

D̂†n(t)eikr̂D̂j(t) eiφj(t)−iφn(t)+iϕL(t) =ÛR,n(t, t1)D̂†n(t1)D̂(χF(t))D̂j(t1)Û †R,j(t, t1)

× eiφj(t1)−iφn(t1)+iϕF(t)+iϕL(t) (3.123)

where we defined χF and ϕF implicitly via

Û †F(t, t1)eikr̂ ÛF(t, t1) = D̂(χF(t))eiϕF(t) . (3.124)

Note that contrary to App. C.3.1, in this section χF is time dependent but as before
χF(t1) = (0, ~k)T. Moreover, writing the product in Eq. (3.124) as a displacement
operator times a phase factor, implicitly assumes a harmonic approximation to the free
Hamiltonian during the laser pulse.
As was explained in Sec. 1.1.3, the first step in the delta-pulse approximation is the
transformation into the interaction picture with respect to the external Hamiltonian.
When we neglect atom-atom interactions during the laser pulse, this change of picture
exactly removes the reduced time-evolution operators on the very left and right of
the operator product in Eq. (3.123). Merging the three displacement operators by
subsequent application of the composition rule, Eq. (A.10), and furthermore making
again use of the matching conditions

χn(t1)− χj(t1)− χF(t1) = 0 (3.125)

for the trajectory and

φj(t1)− φn(t1) + ϕL(t1)− 1

2~
χT

F(t1)Jχj(t1) = 0 (3.126)

for the phase, we arrive at the final result of this section

Ĥ I
L = −~Ω(t)

∫
d3r

∑
coupl.

Ψ̂†n(r)D(δχF(t))Ψ̂j(r) eiϕnj(t) + H.c. . (3.127)

In Eq. (3.127) we defined the residual time-dependent phase

ϕnj(t) =
1

2~
[χn(t1) + χj(t1)]TJ δχF(t) + δϕL(t) + ϕF(t) (3.128)

where δϕL(t) and δχF(t) are defined by Eq. (3.118). The Hamiltonian in Eq. (3.127)
still is time dependent, therefore time-ordering in the time-evolution operator is still
necessary. In the next section we further particularize the Hamiltonian to an interfer-
ometer in the linear gravitational field.
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3.5.4. Interferometry in the linear gravitational field

In this section we turn to an MZ interferometer employing Bragg diffraction. For
simplicity we assume a linear gravitational potential, corresponding to the free Hamil-
tonian

Ĥ =
p̂2

2m
+mgẑ , (3.129)

and neglect interactions during the laser pulse. Next, we decompose phase space. The
laser-atom interaction Hamiltonian induces transitions between multiples of ~k and
we therefore choose the center of the momentum boxes around χpn = n~k as initial
conditions. The values of the momenta at t = t1 are

χpn(t1) = n~k − gmt1
χpj(t1) = j~k − gmt1 (3.130)

where g = (0, 0, g)T. With the help of the coupling conditions, Eq. (3.125), we con-
clude from Eq. (3.127) that

Ĥ I
L = −~Ω(t)

∫
d3r

∑
n

Ψ̂†n(r)D(δχF(t))Ψ̂n−1(r) eiϕn,n−1(t) + H.c. . (3.131)

For each momentum box we introduce several field operators corresponding to boxes
in position space. Thus, Eq. (3.131) is individually valid at each vertex of the interfer-
ometer where the momentum branches are mixed.
Finally, we calculate

ϕF = −1

2
kg(t− t1)2 (3.132)

and
δχpF(t) = 0 and δχrF(t) = −~k

m
(t− t1) (3.133)

with the free Hamiltonian by comparing to Eq. (3.124) and come to the following
expression for the phase

ϕn,n−1(t) = ωr(2n− 1)(t− t1)− 1

2
kg(t2 − t21) + δϕL(t) (3.134)

where we defined the recoil frequency ωr = ~k2/2m. For resonance the laser phase
ϕL(t) = ϕL −∆ω(t)t is chirped according to

∆ω(t) = ωr + αt . (3.135)

For the choice α = −1/2kg, any dependence on g vanishes and we find the final result
with the resonant transition n = 0↔ n = 1

Ĥ I
L = −~Ω(t)

∫
d3r

∑
n

{
Ψ̂†n(r)eiντeiωr2(n−1)τ Ψ̂n−1(r) + Ψ̂†n(r)e−iντe−iωr2nτ Ψ̂n+1(r)

}
(3.136)

where we introduced the abbreviation τ = (t − t1). This result was already found in
Ref. [21], where it was presented in first-quantized form. The operator ν̂ = kp̂/m is
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referred to as velocity-selectivity operator. It accounts for the Doppler shift due to the
finite momentum spread of the state. Recall that the transformation to the comoving
frames shifts the phase-space distribution of each local atomic cloud to the origin.
Thus, the momentum distribution of each field operator is strongly bounded around
zero and the effect of the velocity selectivity is small.
When we neglect ν̂ and all terms in Eq. (3.136) oscillating with nonzero multiples of
ωr we recover the effective two-level Hamiltonian

Ĥ I
L = −~Ω(t)

∫
d3r Ψ̂†1(r)Ψ̂†0(r) + H.c. (3.137)

for an SU(2) interferometer.
In order to take also into account nonresonant paths, the method of averaging can be
employed, which was first introduced in Ref. [207] and reformulated in Refs. [21, 208].
With the help of this formalism one systematically derives effective time-independent
Hamiltonians in powers of ε = Ω/ωr ≈ 0.1 [21], leaving for the moment aside the effect
of the velocity selectivity. While preserving unitarity, as the expansion takes place
in the exponent, it comes at the cost of still having to calculate matrix exponential
functions. Even when computer algebra systems are employed, this becomes a hideous
task as more and more higher-order branches are taken into account.
We analysed in detail how to cope with this problem in the case of single-Bragg diffrac-
tion, but we will only briefly discuss the results in the following. The simplest way is to
perform a naive Dyson expansion. However, it diverges due to the appearance of secu-
lar terms already at second order. A possible way to overcome this problem is to first
transform into the interaction picture with respect to the effective two-level system and
then perform the Dyson expansion. In this case the secular terms describe a beating of
the Rabi oscillations with a frequency of the order of 1/ωr which makes the expansion
valid over several Rabi cycles. In fact, this leads to surprisingly concise terms which
very accurately match the numerically exact solution but for an expansion to order ε2
it is easily shown that one needs to go to fourth order in the Dyson expansion. At
first sight, this seems to be an impossible endeavor due to the cumbersome expres-
sions. However, it is important to note that in most integrals involved it is sufficient to
only integrate the fast oscillating terms. This leads to a remarkably simple analytical
formalism which should be applicable also to Raman, double-Bragg or further more
exotic coupling schemes. A perturbative method that really is an expansion in powers
of ε can presumably be obtained by renormalizing secular terms, see e.g. [209–211], but
is left for further investigations.
For ν̂ � Ω we additionally include the effects of velocity selectivity by Taylor expanding
eiν̂t e.g. to second order followed by the expansion outlined above. In the same spirit
one can take into account the effects of inaccurate chirping (phases proportional to
t2 in the exponent) or harmonic potentials (phases including the position operator)
[96]. However, it is important to mention that realistic laser pulses are smooth and in
general not box shaped. Still, approaching the problem as described allows to derive
general delta-pulse beam splitter, in which semianalytical functions that involve the
general pulse shapes, enter as transition elements.
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3.5.5. The Mach-Zehnder Interferometer

At the end of this section we apply the theory to an MZ interferometer. In order to
focus on the main principles, we again restrict the consideration to a linear gravitational
field and furthermore take only into account resonant momentum branches, that is, the
laser-atom interaction Hamiltonian, Eq. (3.137), must be slightly generalized to the
respective vertices of the interferometer as we will see further below. Supposing that
initially all particles reside in |1〉, we introduce the decomposition of phase space and
define the field operators

Ψ̂(r) =
4∑
j=1

eiφj(t)Dj(t)Ψ̂j(r) (3.138)

according to Fig. 3.5. We consider the particle-number difference between the two exit
ports, which is given by

δN̂ =

∫
d3r

(
Ψ̂†4(r)Ψ̂4(r)− Ψ̂†3(r)Ψ̂3(r)

)
(3.139)

according to Sec. 3.5.1. Moreover, we assume weak interactions, either resultant from
tuning the interaction strength by a Feshbach resonance or from waiting with the first
laser pulse until the BEC has sufficiently expanded. In the case of repulsive interactions
the local atomic clouds repel each other during the separation after the laser pulse and
gain a small additional velocity. As we showed by a full 3D GPE simulation and
by analytical methods in the Thomas-Fermi approximation, this velocity is extremely
small, however, should be carefully taken into account for high-precision measurements.
In the analytical approach one expands perturbations to the radial symmetric Thomas-
Fermi profile into the complete set of collective oscillations [187]. The time-dependence
then follows ordinary differential equations which allow analytical solutions in terms of
hypergeometric functions.
We now address the laser-atom interaction Hamiltonian. Neglecting all spurious branches,
the effect of velocity selectivity and the quadratic time dependence of the phase due
to nonperfect chirping, we obtain from Eq. (3.136) the three laser-atom interaction
Hamiltonians for t = t1, t2 and t3

ĤL = −~Ω1δ(t− t1)

∫
d3r Ψ̂†2(r)Ψ̂1(r) + H.c. (3.140)

ĤL = −~Ω2δ(t− t2)

∫
d3r

(
Ψ̂†4(r)Ψ̂2(r) + Ψ̂†3(r)Ψ̂1(r)

)
+ H.c. (3.141)

ĤL = −~Ω3δ(t− t3)

∫
d3r Ψ̂†3(r)eiφMZD(∆χ)Ψ̂4(r) + H.c. . (3.142)

It is important to mention that Eq. (3.142) contains a displacement operator and the
phase φMZ. This is because at the final vertex both incoming fields are occupied and
there is no fictitious input port to eliminate this dependency. Relabeling the upper
path with index u and the lower with b in order to avoid confusion with the labeling
of the field operators, the phase and the relative displacement operator become

φMZ = ϕL +
1

~
∆S(t3)− 1

2~
∆χr [χpu(t3) + χpb(t3)] (3.143)
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and ∆χ = χu(t3) − χb(t3) in complete accordance with Sec. 3.3.6. The total laser
phase is ϕL = ϕL,1−2ϕL,2 +ϕL,3 and ∆S(t3) = Su(t3)−Sb(t3) as before. In Eq. (3.141)
each pair, namely Ψ̂1(r) and Ψ̂4(r) as well as Ψ̂2(r) and Ψ̂3(r) correspond to the same
momentum box but are defined on different position boxes. Consequently, they are
treated as independent bosonic field operators.
Next, we need to calculate the action of the beam splitter operators on the observable.
In Eq. (3.40) we already used beam-splitter transformations which contained a mo-
mentum displacement. The generalization to the displacement operator in Eq. (3.142)
is straightforward, one simply replaces eikr̂ → D̂(∆χ). Thus, we conclude

Û †(td, ti)ÔÛ(td, ti) = −i

∫
d3r Û †MZ(t3, ti)

{
Ψ̂†1(r)eiφMZD(∆χ)Ψ̂2(r)− H.c.

}
ÛMZ(t3, ti) ,

(3.144)
where we additionally commuted the π-pulse according to Eq. (3.141) to the left in the
interferometer sequence. Thus, Ψ̂4(r) → iΨ̂2(r) and Ψ̂3(r) → iΨ̂1(r) everywhere for
times larger than t2. The residual time-evolution operator then reads

ÛMZ(td, ti) = Ûe(t3, t1)Ŝπ/2Ûe(t1, ti) (3.145)

where the beam splitter is with respect to Eq. (3.140) and the external Hamiltonian

Ĥe(t) = ĤR + ĤI(t) (3.146)

is expressed in the comoving frames, consequently ĤR = p̂2/2m for all branches. Re-
sorting to Hamiltonian, Eq. (3.17), we furthermore conclude

HI =
g

2

∫
d3r Ψ̂†1(r)Ψ̂†1(r)Ψ̂1(r)Ψ̂1(r) (3.147)

for t ∈ [ti, t1] and

ĤI(t) =
g

2

∫
d3r

{
Ψ̂†1(r)2Ψ̂1(r)2 + Ψ̂†2(r)2Ψ̂2(r)2 + 4n̂1(r − χrb(t)) n̂2(r − χru(t))

}
(3.148)

for t ∈ [t1, t3]. In Eq. (3.148) we introduced the abbreviation n̂j(r) = Ψ̂†j(r)Ψ̂j(r).
Note the factor 4 in Eq. (3.148) as opposed to the factor 2 in Eq. (3.78) in the case of
two different internal states. Moreover, we disregarded in Eq. (3.147) and Eq. (3.148)
unoccupied field operators. This assumes that initially even when including the thermal
cloud and quantum fluctuations, the state remains well inside the initial phase-space
box. The position displacements correspond to the two paths of the interferometer,
namely

χru(t) =
~k
m

(t− t1)

χrb(t) = 0 (3.149)

for t ∈ [t1, t2] and

χru(t) =
~k
m

(t2 − t1)

χrb(t) =
~k
m

(t− t2) (3.150)



Chapter 3. Interferometry and second quantization 93

for t ∈ [t2, t3], where we removed the contribution −1/2gt2 from the free fall in the
linear gravitational potential by redefining the integration variable in the interaction
Hamiltonian.
It is worthwhile to note that the result in this section for Bragg diffraction is completely
equivalent to the derivation for Raman diffraction in Sec. 3.3.6 apart from the factor
2 in the interaction Hamiltonian. Finally, we mention that one could also generalize
the discussion to butterfly interferometers. Note, however, that one cannot completely
eliminate the external degrees of freedom for this geometry in the case of an open in-
terferometer since the displacement operators introduce a small relative shift after each
loop. When simulated numerically in the GPE approximation, one simply displaces
the order parameters at this instance of time.

3.6. Summary

At the end of this chapter we summarize the results. We started by presenting a method
for the adiabatic elimination of ancillary states to obtain effective Hamiltonians for the
laser-atom interaction in second quantization. By carefully separating various time
scales, we arrived at a simple method which allows to treat a wide range of different
coupling schemes. In this formalism the adiabatic elimination becomes straightforward.
One only needs to evaluate a commutator.
After some calculations in order to get familiar with the method of second quantization,
we introduced field operators for every path of an interferometer and showed under
which conditions these fields become bosonic. We included the interaction Hamil-
tonian and laser-atom interaction Hamiltonian into the description and provided an
intuitive interpretation of the formalism. Introducing path-dependent field operators
corresponds to a transformation into the comoving frame of each interferometer path.
In these frames the description of the interferometer becomes particularly simple as
the whole evolution takes place within a small region around the center of phase space.
This allows to perform a full simulation of an n-port interferometer e.g. within the
Gross-Pitaevskii approximation with manageable computational effort for arbitrary
long interferometer times. Furthermore, the kinetic phase resultant from the motion
along different paths can be separated from those contributions stemming from the
particle-particle interaction. Most remarkably, if certain conditions on the local atomic
clouds are satisfied, the formalism is exact.
Finally we showed which approximations are necessary to recover the standard formal-
ism in which the interaction with the laser is modelled by infinitely short pulses.





Chapter 4

Sensitivity and two-mode squeezing

With the advance of atom interferometry interest was also directed towards limits for
the accuracy of phase measurements. As opposed to the standard quantum limit [212],
Yurke soon identified the Heisenberg scaling as ultimate lower bound for fermionic par-
ticles [213] relying on the SU(2) angular momentum algebra [214] in his proof. This
result was generalized later to bosons in Ref. [215]. Since atoms, unlike photons, inter-
act among each other, the nonlinear interaction Hamiltonian leads to a spread of the
relative phase distribution between two separated samples. This phenomenon known
as phase diffusion was conceived first by Leggett and Sols in Ref. [75], employing an
approximate phase model for the Josephson Hamiltonian, see also Ref. [216] for a rigor-
ous derivation of this approach. Lewenstein and You found phase diffusion within the
U(1) symmetry-breaking formalism for Bose-Einstein condensates [165, 217], which was
reconciled later with the number-conserving approaches discussed in Sec. 2.2.2. This
effect was also discovered in guided double-well interferometers [76, 218]; see also the
comment [144] and reply [219]. Instead of viewing phase diffusion as detrimental to the
accuracy of measurements, Kitagawa et al. [220] and Wineland et al. [221] introduced
the notion of spin squeezing to even enhance the precision of phase measurements.
Spurred by these results, strong theoretical effort was further addressed to this field in
the following years, either in order to reduce phase diffusion or to design experimental
protocols to achieve strong spin squeezing. Apart from general theoretical considera-
tions [222–225] the adiabatic splitting process of a BEC in a potential by ramping up
a barrier was found to produce states with reduced particle fluctuations between the
two wells [226–229] which can be enhanced by employing optimal control techniques
[230]. In addition, the role of excited states during the splitting process was studied
[231]. In Refs. [232–236] the impact of phase diffusion was investigated and possible
schemes were developed to reduce its effect.
On the experimental side, reduced particle number fluctuations were shown in Ref. [237]
and spin squeezing between two internal states was demonstrated by reducing the
overlap of the wave functions [238], by tuning the interaction strength via a Feshbach
resonance [239] and by creating entanglement with the help of spin-changing collisions
[240].
It is often stated [63, 88] that effects of interaction can be neglected in light-pulse
interferometers with Bose-Einstein condensates. Before the first laser pulse the BEC is

95
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allowed to expand, which should sufficiently reduce mean-field interactions. However,
as we will show in the present chapter, this assertion is wrong when the phase sensitivity
for a measurement of the particle number at each exit port is considered. This will
be shown in Sec. 4.2, where we calculate the sensitivity of an MZ interferometer as a
function of the initial expansion period and the time of delta-kick collimation. We will
find a dramatic deviation from the standard quantum limit.

4.1. Two-mode approximation

In order to calculate the phase sensitivity of an MZ interferometer, we need to introduce
a few mathematical tools. In this section we first present an elegant derivation of the
two-mode approximation and subsequently express all operators in terms of angular
momentum operators [214].
In chapter 3 we already reduced the Mach-Zehnder sequence to

Û †(td, ti)δN̂Û(td, ti) = −i

∫
d3r Û †MZ(t3, ti)

{
Ψ̂†1(r)Ψ̂2(r)eiφMZ − H.c.

}
ÛMZ(t3, ti) .

(4.1)
In the case of Raman diffraction the field operators label different internal states, while
in the case of Bragg diffraction they correspond to different interferometer paths. In
contrast to Eq. (3.79) and Eq. (3.144) no relative displacement operator appears in
Eq. (4.1) since we restrict the discussion to a closed interferometer. As a result, the
phase also reduces to

φMZ = ϕL +
1

~
∆S(t3) (4.2)

where we recalled the laser phase ϕL = ϕL,1−2ϕL,2+ϕL,3 and ∆S(t3) = S2(t3)−S1(t3) is
the classical action difference along the two paths of the interferometer. The remaining
MZ time-evolution operator reads

ÛMZ = Ûe(t3, t1)Ŝπ/2 (4.3)

where Ûe is the time-evolution operator associated with the external Hamiltonian in
the comoving frames. This Hamiltonian is of the form

Ĥe = ĤR +
g

2

∫
d3r

{
Ψ̂†1(r)Ψ̂†1(r)Ψ̂1(r)Ψ̂1(r) + Ψ̂†2(r)Ψ̂†2(r)Ψ̂2(r)Ψ̂2(r)

}
, (4.4)

where we assumed g1 = g2, which is approximately true for Raman interferometry and
exact for Bragg diffraction schemes where only one internal state is present. Further-
more, we assumed that the splitting time of the wave packets is much smaller than the
total interferometer time, hence we neglect the term containing time-dependent dis-
placement operators. As distortion effects on the local atomic clouds during this time
are small for sufficiently weak interactions, Eq. (4.4) is a good approximation. Further-
more, for simplicity we will assume a linear gravitational potential, thus the reduced
Hamiltonian is state- and path independent and is simply given by ĤR = p̂2/2m. The
restriction to an at most globally harmonic potential is important, otherwise in the
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case of path-dependent potentials, mean-field effects appear during the whole interfer-
ometer time and one should resort to solving the Gross-Pitaevskii equation. By adding
and subtracting the term g

∫
d3r Ψ̂†1(r)Ψ̂1(r)Ψ̂†2(r)Ψ̂2(r) in Eq. (4.4), we define

ĤGP = ĤR +
g

2

∫
d3r

{
Ψ̂†1(r)2Ψ̂1(r)2 + Ψ̂†2(r)2Ψ̂2(r)2 + 2Ψ̂†1(r)Ψ̂1(r)Ψ̂†2(r)Ψ̂2(r)

}
.

(4.5)
As one can easily recognize, the Hamiltonian ĤGP commutes with the operator within
the parenthesis in Eq. (4.1) as long as the reduced Hamiltonian ĤR is path independent.
Thus, in the interaction picture with respect to ĤGP, the external Hamiltonian becomes

Ĥ I
e = g

∫
d3r Û †GPΨ̂†1(r)Ψ̂1(r)Ψ̂†2(r)Ψ̂2(r)ÛGP = g

∫
d3r |φGP(r, t)|4 â†1â1â

†
2â2+O(

√
N) .

(4.6)
In Sec. 2.2.2 we discussed the number-conserving approaches to Bose-Einstein conden-
sation. To lowest order we replaced the Heisenberg field operator Ψ̂j(r, t) ≈ âjφGP(r, t),
where âj is time independent to this order and the mode function φGP(r, t) evolves ac-
cording to the Gross-Pitaevskii equation. We furthermore assumed the same mode
function for both interferometer paths. We suppose that all particles initially reside in
the groundstate |ψ〉 = 1/

√
N ! â†N1 |0〉. Applying a π/2 pulse to this state, we obtain

Ŝπ/2 |ψ〉 =
1√
N !2N

[
â†1 − iâ†2

]N
|0〉 , (4.7)

which corresponds to a binomial distribution over the two paths of the interferometer
with variance 〈δN̂2〉 − 〈δN̂〉2 =

√
N when we expand the parenthesis. For that reason

the nonlinear Hamiltonian, Eq. (4.6), induces a nontrivial dephasing. This effect will be
discussed in more detail in Sec. 4.2. However, before that we need to introduce further
theoretical tools which are particularly useful for the discussion of interferometers in
the two-mode approximation.

Representation of states

Here, we provide possible ways to represent the general state for a two-mode system
with N particles. Due to the exchange symmetry of the wave function, there are
exactly N + 1 orthogonal states, which can be chosen as the eigenfunctions of the
particle difference operator. These Dicke states [241] are defined as

|j,m〉 ≡ 1√
(j +m)!(j −m)!

(â†1)j+m(â†2)j−m |0〉 (4.8)

where j = N/2 and −j ≤ m ≤ j. Equivalently, a state can be expanded in the
overcomplete set of coherent spin states [242]

|θ, φ〉 =
1√
N !

[
cos(θ/2)â†1 + sin(θ/2)e−iφâ†2

]N
|0〉 (4.9)

with θ ∈ [0, π] and φ ∈ [0, 2π).



98 Chapter 4. Sensitivity and two-mode squeezing

Angular momentum algebra

We now introduce the angular momentum operators [214]

L̂x =
1

2

(
â†1â2 + â†2â1

)
L̂y =

i

2

(
â†2â1 − â†1â2

)
L̂z =

1

2

(
â†1â1 − â†2â2

)
, (4.10)

which satisfy the commutation relations [Li, Lj] = iεijkLk. The N + 1 Dicke states
are simultaneous eigenstates of L̂z and L̂2 = L̂2

x + L̂2
y + L̂2

z. A general state can be
represented on a sphere by means of the Q function [243–245]

Q(θ, φ) =
N + 1

4π
|〈θ, φ |ψ〉|2 , (4.11)

where θ is interpreted as polar angle and φ as azimuthal angle. Since every linear in-
terferometer in the two-mode approximation can be represented by subsequent unitary
transformations of the form

Ŝiθ = exp
{
−iθL̂i

}
(4.12)

with i = (x, y, z), it is sometimes referred to as SU(2) interferometer. The beam-
splitter operators Ŝiθ rotate a state about the respective axis on the Bloch sphere. The
explicit transformations are summarized in Ref. [214], we quote the result in App. D.1.
Using these operators, we are now in the position to rewrite sequence, Eq. (4.1), as
follows

−i

∫
d3r

{
Ψ̂†1(r)Ψ̂2(r)eiφMZ − H.c.

}
= 2 sin(φMZ)L̂x + 2 cos(φMZ)L̂y

= −2Ŝz†φMZ
Ŝx†−π/2L̂zŜ

x
−π/2Ŝ

z
φMZ

. (4.13)

The time-evolution operator ÛMZ contains nonlinear interaction terms and cannot be
represented by the beam splitters defined in Eq. (4.12). The question how this operator
can be included in the description in terms of angular momentum operators will be
addressed next.

Squeezing Hamiltonian

In the previous section we introduced angular momentum operators and expressed the
MZ sequence in terms of these operators. We now turn to the nonlinear interaction
Hamiltonian, Eq. (4.6). We start by noting that

â†1â1â
†
2â2 = −L̂2

z + N̂2/4 , (4.14)

where the operator N̂ = â†1â1+â†2â2 is merely a constant which can be disregarded since
the total number of particles is fixed. Thus, the MZ time-evolution operator becomes

ÛMZ = Ŝsq(ξ)Ŝx−π/2 (4.15)
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where we defined the squeezing operator [220]

Ŝsq(ξ) = exp
{
−i2ξL̂2

z

}
, (4.16)

which is a function of the time-dependent squeezing parameter [236]

ξ̇(t) =
g

2~

∫
d3r |φGP(r, t)|4 . (4.17)

Hence, with these definitions the full time-evolution operator for an MZ interferometer
reads

Û = Ŝx−π/2 Ŝ
z
φMZ

ÛMZ (4.18)

and ÛMZ is given by Eq. (4.15). In the following we will calculate the phase sensitivity
of the interferometer in the case of ξ 6= 0.

4.2. Interaction reduces sensitivity

In the preceding section we introduced the squeezing operator. In order to assess the
effect of this operator on the accuracy of the phase ∆φ, we apply the formula [213]

∆φ2 =
∆L̂2

z∣∣∣∂〈L̂z〉∂φ

∣∣∣2 . (4.19)

Here, L̂z is the Heisenberg operator with respect to the time-evolution operator defined
in Eq. (4.18) and the expectation values are understood to be taken with respect to
the initial state |j, j〉. Equivalently, this can be written as

∆φ2 =
∆L̂2

x

〈L̂y〉2
+ cot2(φMZ)

∆L̂y

〈L̂y〉2
, (4.20)

where we used Ŝx−π/2 Ŝ
z
φMZ

to act on L̂z and the expectation values are now taken with
respect to the state ÛMZ |j, j〉 = Ŝsq(ξ) |−π/2, 0〉. The exact solution, summarized in
App. D.2, is furthermore approximated for N � 1, Nξ2 � 1 and Nξ > 1 as

∆φ ≈
√

1

N
+ 4Nξ2 + 8N2ξ4cot2(φMZ) (4.21)

where ∆φ denotes the phase sensitivity of the MZ interferometer. For ξ = 0 this
uncertainty reduces to the standard quantum limit or shot-noise limit

∆φsql =
1√
N
, (4.22)

which reflects the aforementioned binomial distribution over the Dicke states. For finite
interactions, however, ∆φ is considerably larger than the standard quantum limit. To
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Figure 4.1.: Q function of a squeezed coherent spin state for N = 600 particles. a)
Coherent spin state: The Q function approaches a Gaussian distribution for
large particle numbers. b) Squeezed state: While the variance in z direction
stays invariant, ∆L̂x strongly increases. So does L̂y as the state starts to bend
around the Bloch sphere. When appropriately rotated about the y axis, we can
decrease the particle-number fluctuations. c) Extremely squeezed state: As the
distribution has completely whirled around the sphere, it does not contain any
information about the phase anymore.

illustrate this effect, which is referred to as phase diffusion, we plot the Q function of
a squeezed coherent spin state in Fig. 4.1.
In the following we estimate the size of ξ for values comparable to the experimental
parameters of a QUANTUS II experiment and calculate the phase uncertainty. Obvi-
ously, Eq. (4.21) is minimal for the angle φMZ = φmin = π/2, which will therefore be
fixed to this value in the present consideration. Invoking the Thomas-Fermi approxi-
mation and the scaling approach for an isotropic trap, Eq. (4.17) can be represented
as [233]

ξ =
1

7

(
15as

aho

) 2
5

N−
3
5 γ (4.23)

where as is the s-wave scattering length, aho =
√

~/mω the harmonic oscillator length,
ω the initial trap frequency and N the total number of particles. The time evolution
of the Gross-Pitaevskii wave function only appears in the factor

γ =

∫ t3

t1

dt′
ω

λ(t′)3
(4.24)

where t1 and t3 are the times of the first and last laser pulses after the release of
the Bose-Einstein condensate from the trap at t = 0. The scaling factor of the Bose-
Einstein condensate is determined by Eq. (2.27). The integral can in principle be solved
analytically, which leads to lengthy expressions in terms of hypergeometric functions.
But for a simple order-of-magnitude estimation we resort to a numerical solution.
The result is depicted in Fig. 4.2. We vary the time between release and delta-kick
collimation, while keeping the subsequent period until the first laser pulse constant at
20ms.
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Figure 4.2.: Impact of phase diffusion on the accuracy of a phase measurement, when
the particle-number difference operator is measured. In the figure each line
corresponds to one choice for the expansion time before delta-kick collimation,
while keeping the subsequent time until the first laser pulse constant at 20ms.
The phase accuracy is then calculated according to Eq. (4.21) at the optimal
angle φMZ = φmin = π/2. It can clearly be seen from the figure that phase dif-
fusion considerably affects the phase accuracy. For a given half interferometer
time T there is a trade off since it is generally better to wait longer, which, how-
ever, implies longer experimental preparation times and larger atomic clouds.
The numerical values are chosen for 87Rb: as = 100a0, where a0 is the Bohr
radius, the number of particles is N = 106 and the initial frequency of the trap
is ω = 30Hz.

We conclude that the influence of phase diffusion is important and non-negligible. If
one does not wait long enough, until the density of the BEC has decreased (note the
cubic scaling with 1/λ3 in Eq. (4.24)), one can easily find

∆φ

∆φsql

≈ 10 (4.25)

already at interferometer times of 100ms.
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Overcoming phase diffusion

Is there a way to minimize or even remove the problem of phase diffusion? To answer
this question, we slightly modify the total time-evolution operator, Eq. (4.18), by
changing the angle of the last rotation about the x-axis

Û = Ŝx−θ Ŝ
z
φMZ

Ŝsq(ξ) Ŝx−π/2 . (4.26)

Indeed, minimizing the phase uncertainty with respect to φMZ and θ yields as before
φmin = π/2 and

θmin = arctan

(
N

2〈L̂zL̂x + L̂xL̂z〉

)
≈ −arctan

(
1

2Nξ

)
. (4.27)

When we again approximate this expression for N � 1, Nξ2 � 1 and N > 1, we arrive
at

∆φ

∆φsql

=

√
1 +

32

3
ξ6N4 + ... . (4.28)

Due to the high power of ξ the phase accuracy deviates only extremely slowly from
the standard quantum limit. However, since the minimal rotation angle, defined in
Eq. (4.27), quickly approaches θmin = 0, the contrast decreases as well. In fact

C ∼ 1

2ξN
, (4.29)

which quickly approaches zero. Thus, this method is only practical for extremely weak
squeezing.
Is there another way to circumvent the problem of phase diffusion or even use it to
enhance the performance of an interferometer? The most simple way in the case of
Bragg diffraction is to reduce phase diffusion by switching off the interactions employing
a Feshbach resonance [246, 247]. However, in Raman interferometry the resonances of
both internal states cannot be addressed simultaneously.
On the other hand, one can in principle use squeezing to increase the sensitivity. Here,
a squeezed state must be rotated appropriately before it is fed into the interferometer
as input state. Then phase accuracy approximately becomes [220]

∆φ

∆φsql

=

√
1

4N2ξ2
+

8

3
ξ4N2 (4.30)

with the minimal value
∆φ ∝ 1

N
5
6

, (4.31)

which is close to the ultimate Heisenberg limit ∆φ = 1/N . However, it is important to
note that due to the intrinsic multimode-structure of a Bose-Einstein condensate, one
should include thermal and quantum fluctuations into the calculation. Using Bogoli-
ubov theory, Sørensen and coworkers [248, 249] were not able to find a considerable de-
viation from the two-mode result. In a series of papers [250–254] it was shown with the
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help of semiclassical field simulations that finite-temperature effects and spontaneous
emission strongly limit the possible squeezing strength. Nevertheless, for ultracold tem-
peratures and weak interactions it should still be possible to considerably surpass the
shot-noise limit. Indeed, in the theoretical work [255, 256] the superposition of a BEC
in two internal states was investigated within the truncated Wigner approach. Due
to the slight difference of the scattering lengths, time-dependent density modulations
occur during which the overlap between the condensates decreases, leading to strong
squeezing.
Before we conclude this section, we want to comment on the Fisher information, a
tool to assess the information stored in a probability distribution. It unfolds its power
together with the Cramer-Rao bound [257, 258], which provides a lower bound for unbi-
ased estimators after having specified the measurement observable. In Refs. [259, 260]
the Fisher information was generalized to quantum observables, leading to an ultimate
lower bound for unbiased estimators. Recently, the Fisher information was applied in
the context of atom-light pulse interferometry for measurements of the gravitational
acceleration in order to discuss the optimal observables to measure [261, 262].

4.3. Summary

In this chapter we described the effect of self interaction of a BEC on the accuracy of a
phase measurement. Following the approach of Ref. [214] we first represented all beam
splitters in terms of angular-momentum operators and presented an intuitive derivation
of the spin-squeezing operator with the help of the number-conserving approaches to
Bose-Einstein condensation. Next we investigated phase diffusion which we illustrated
with the help of theQ function. Then we applied these concepts to a typical QUANTUS
experiment, that is, for the case of a measurement of the number-difference operator
between the two exit ports. We realized that phase diffusion considerably derogates
the sensitivity of an interferometer even when the Bose-Einstein condensate is allowed
to expand before the first laser pulse is applied. Finally, we commented upon possi-
ble methods to use spin squeezing to enhance the performance of an interferometer
and briefly described existing concepts to relate the phase sensitivity to the measured
observable.





Summary

The phenomenal advance in sensitivity of light-pulse atom interferometers over the
last decades and expected further increase requires a thorough consideration of all the
relevant influences to the phase measured in interferometers. This task needs partic-
ularly adapted and refined theoretical tools to consistently compare the magnitudes
of relevant effects. In this thesis we achieved this goal by a perturbative approach
valid for noninteracting particles. To obtain a simplified description of interferome-
try with interacting Bose-Einstein condensates, we derived a general second-quantized
framework.
In chapter 1 we first reviewed a description of light-pulse atom interferometry in terms
of comoving frames where one follows the atoms along each interferometer branch. In
these frames where linear potentials including the laser-atom interaction vanish the
evolution is solely determined by distortion effects of the wave-packet. We streamlined
the transformation to these frames, which we obtained by mere operator algebra. We
stress that the method is exact for the case of noninteracting particles and infinitely
short laser pulses. Apart from being intuitive, the approach is particularly useful in
the case of large and strongly varying anharmonic potentials, as for example present
in a guided interferometer. Here, the transformation serves as a first step before the
local harmonic approximation or before a subsequent numerical exact simulation.
In the second part of chapter 1 we presented a new method built on the insight that
small effects are best assessed within a perturbative description. Mathematically, the
approach combines the concept of path ordering known from quantum field theory
with the Magnus expansion. In previous approaches one approximately solves for the
interferometer trajectories generated by the full Hamiltonian including the perturba-
tion. In contrast, our method is based on the trivial interferometer trajectories with-
out including the perturbation so that approximate calculations of trajectories become
superfluous. We mention that the method is valid for arbitrary anharmonic and time-
dependent perturbations. In a number of examples we subsequently illuminated the
mechanism of the formalism and generalized mitigation strategies for gravity gradients
by including anharmonicities in the gravitational potential of the Earth and the influ-
ence of nearby mass sources. Future work could for example aim at a generalization to
incorporate finite-time duration effects of laser pulses.
Bose-Einstein condensation is a fascinating phenomenon but mathematically sophis-
ticated from a fundamental perspective. Chapter 2 serves as a review of the theo-
retical foundations of BEC and is addressed to both theorists and experimentalists
who work in this field. We revisited the old question of the relative phase between
two Bose-Einstein condensates and contrasted spontaneous symmetry-breaking with
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number-conserving approaches. This helped us realize that the latter model is better
suited for the application to light-pulse atom interferometers.
Employing Bose-Einstein condensates as high-flux coherent atom sources for matter-
wave interferometry requires theoretical tools for a careful description of interaction
effects. However, even within the mean-field approximation, analytic methods are
unsatisfactory due to the lack of generality and accuracy. Thus, in chapter 3 we set
up a framework in the language of second quantization which generalizes the comoving
description to arbitrary interacting systems. Furthermore, the small momentum spread
of ultracold BECs after magnetic lensing as well as the large arm separation allowed us
to utilize a path-dependent description by assigning approximate bosonic field operators
to each interferometer path.
In conclusion, chapter 3 should be regarded as a solid framework for future imple-
mentations of 3D numerical simulations of full multi-path interferometer experiments
including fully resolved laser-atom interaction. The second-quantized approach not
only reduces in the simplest approximation to a mean-field description in terms of
a coupled system of Gross-Piatevskii equations but also offers possibility to include
beyond mean-field effects like thermal and quantum fluctuations.
Additionally, the transformation to comoving frames does not only considerably reduce
computational demands but also separates all phases resulting from the center-of-mass
motion of the atoms along the interferometer branches. The subsequent simulation of
the reduced dynamics in the comoving frames elucidates additional phases originating
solely from particle-particle and laser-atom interaction.
The number-conserving point of view on matter-wave interferometry with Bose-Einstein
condensates naturally results in a single-mode approximation for each interferometer
path. Within this description we expressed the Hamiltonian for a two-path interfer-
ometer in terms of angular momentum operators [214] in chapter 4 and showed that
phase diffusion considerably derogates the sensitivity of an interferometer even if the
Bose-Einstein condensate is allowed to expand before the first laser pulse. We outlined
some ideas to mitigate the effect of phase diffusion and in turn described existing con-
cepts to enhance the performance utilizing particle-particle interactions. Experimental
realization of these methods, however, seems to be highly ambitious in state-of-the-art
light-pulse atom interferometers.
In summary, we considered some important aspects relevant for high-precision interfer-
ometry. For negligible particle-particle interaction we derived a powerful perturbative
approach to calculate contrast and phase. In the case where interactions become rele-
vant we set up a theoretical framework in second quantization which generalizes existing
comoving descriptions.
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Appendix A

Displacement operators

In this appendix we first review some of the most important properties and identities
of displacement operators. Second, we calculate the time derivative in the case of time-
dependent arguments. Finally, we calculate the expectation value with respect to a
general state which is invariant under a parity transformation.

General properties

Displacement operators are defined as

D̂(χ) = e−
i
~χ

TJ ξ̂ (A.1)

with the six-dimensional vector χ = (χr,χp)T, the phase-space vector operator ξ̂ =
(r̂, p̂)T, and the symplectic matrix

J =

(
0 1
−1 0

)
(A.2)

where 1 is the three-dimensional identity matrix. With the help of the Baker–Campbell–
Hausdorff formula, we write the displacement operators as the product of the three ex-
ponentials

D̂(χ) = e
i
~ (χpr̂−χrp̂) = e−

i
2~χ

pχr e
i
~χ

pr̂ e−
i
~χ

rp̂ = e
i
2~χ

pχr e−
i
~χ

rp̂ e
i
~χ

pr̂ . (A.3)

In order to determine the action of a displacement operator on a quantum state in
position representation, we first note that

e
i
~χ

pr̂ |p〉 = |p+ χp〉 , e−
i
~χ

rp̂ |r〉 = |r + χr〉 (A.4)

by inserting a complete set of momentum and position states. From Eq. (A.4) together
with Eq. (A.3) we conclude

D̂(χ) |r〉 = e
i
2~χ

pχr e
i
~χ

pr |r + χr〉 , (A.5)

D̂(χ) |p〉 = e−
i
2~χ

pχr e−
i
~χ

rp |p+ χp〉 . (A.6)
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With the help of these expressions, it is easy to show that

〈r| D̂(χ) |r′〉 = e−
i
2~χ

pχr e
i
~χ

pr δ(r − r′ − χr) (A.7)

and thus we obtain the action of a displacement operator on a quantum state in position
representation as

〈r| D̂(χ) |ψ〉 = e−
i
2~χ

pχr e
i
~χ

pr ψ (r − χr) . (A.8)

The inverse of a displacement operator is readily obtained as

D̂−1(χ) = D̂†(χ) = D̂(−χ) , (A.9)

which we conclude from its exponential form.
The following important identities are proved in Ref. [86].
The composition rule

D̂(χ1)D̂(χ0) = D̂(χ1 + χ0) e−
i
2~χ

T
1 Jχ0 (A.10)

where
χT

1 Jχ0 = χr1χ
p
0 − χ

p
1χ

r
0 . (A.11)

The sandwich rule
D̂(−χ)D̂(χ0)D̂(−χ) = D̂(χ0 − 2χ) , (A.12)

the formula
D̂†(χ)D̂(χ0)D̂(χ) = D̂(χ0) e

i
~χ

TJχ0 (A.13)

as well as
D̂†(χ) ξ̂ D̂(χ) = ξ̂ + χ . (A.14)

Derivative of D̂

Suppose the argument of the displacement operator χ = χ(t) is time dependent. The
time derivative of the displacement operator is then calculated as

i~
d

dt
D̂ = χ̇TJ

(
ξ̂ − 1

2
χ

)
D̂ . (A.15)

The proof is straightforward. First, separate the operator according to Eq. (A.3).
Second, take the derivative of each exponential individually and third, recombine the
displacement operator by using Eq. (A.14).
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Expectation value of a displacement operator

Suppose a state can be written as

|ψ〉 = D̂(〈ξ̂〉)|ψ̃〉 (A.16)

where 〈ξ̂〉 is with respect to |ψ〉 and |ψ̃〉 is invariant under a parity transformation,
meaning that P̂ |ψ̃〉 = |ψ̃〉, where P̂ is the parity operator. Since P̂ †D̂P̂ = D̂†, it is
straightforward to show that the expectation value

〈ψ̃|D̂(χ)|ψ̃〉 = C (A.17)

is real. Together with Eq. (A.13) we then find

〈ψ| D̂(χ) |ψ〉 = C e
i
~ 〈ξ̂〉TJχ , (A.18)

and identify C as the contrast. Note, however, that C is in general a complex quantity.
For example an input state after magnetic lensing is still centered, that is, with zero
momentum and position expectational value, but not parity invariant [89]. Thus,
we obtain a complex expectation value of a displacement operator which additionally
introduces phases.





Appendix B

Path-dependent perturbation theory

In this appendix we present supplementing material for the perturbative methods de-
veloped in Sec. 1.3. We first generalize the standard Magnus expansion in App. B.1 to a
direct expansion of the overlap operator. Subsequently, we show in App. B.2 that the
nested contour integrals over path-independent functions vanish. Finally, we Taylor
expand the gravitational potential up to third order in the inverse of Earth’s radius in
App. B.3 and calculate explicitly the functions f needed for calculations in Sec. 1.3.

B.1. Magnus expansion of the overlap operator

In this appendix we generalize the standard Magnus expansion. The result will be a
nonlinear integral equation for the exponent of the combined overlap operator, which
must be solved perturbatively. In the derivation we will generalize the informal proof
given in Ref. [263] for the standard Magnus expansion. We begin by defining

Û †1(t, ti)Û2(t, ti) = eΩ̂(t,ti) (B.1)

in which we insert the general group property of a time-evolution operator

Û(t, ti − δt) = Û(t, ti)Û(ti, ti − δt) , (B.2)

resulting in
eΩ̂(t,ti−δt) ∼= e

i
~ Ĥ1(ti)δteΩ̂(t,ti)e−

i
~ Ĥ2(ti)δt (B.3)

to first order in δt. The three exponentials are now combined to one with the help of
the Baker–Campbell–Hausdorff formula. For general operators X and Y the explicit
form of the BCH series is enormously cumbersome but to linear order in one of the
operators, say Y , the remarkable simple, explicit form can be derived [264]

eXeY = exp

{
X +

∞∑
k=0

(−1)k
Bk

k!
[X, Y ]k +O(Y 2)

}
. (B.4)

Here, [., .]k is the usual nested commutator and Bk are the Bernoulli numbers [116]
with

B0 = 1, B1 = −1/2, B2 = 1/6, ... . (B.5)
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To linear order in X, the right-hand side of Eq. (B.4) takes exactly the same form with
X ↔ Y but without the alternating sign (−1)k. As a result, the combination of the
product of three exponentials reads

eZeXeY = exp

{
X +

∞∑
k=0

Bk

k!

[
X,Z + (−1)k Y

]
k

+ ...

}
(B.6)

to linear order in Z and Y . Identifying Z = i
~Ĥ1(ti)δt and Y = − i

~Ĥ2(ti)δt as well as
X = Ω̂(t, ti), we obtain

eΩ̂(t,ti−δt) = exp

{
Ω̂(t, ti) +

i

~

∞∑
k=0

Bk

k!

[
Ω̂(t, ti), Ĥk(ti)

]
k
δt+O(δt2)

}
(B.7)

with the abbreviation

Ĥk(ti) =

{
−Ĥ−(ti) for k even
Ĥ+(ti) for k odd

(B.8)

where Ĥ+ = Ĥ2 + Ĥ1 and Ĥ− = Ĥ2− Ĥ1. When we equate the exponents in Eq. (B.7),
subtract Ω̂(t, ti), divide by δt and take the limit δt → 0, we arrive at the differential
equation

∂Ω̂(t, ti)

∂ti
= − i

~

∞∑
k=0

Bk

k!

[
Ω̂(t, ti), Ĥk(ti)

]
k

(B.9)

with the initial condition Ω̂(ti, ti) = 0. This highly nonlinear equation can be formally
integrated

Ω̂(t, ti) =
i

~

∫ t

ti

dt′
∞∑
k=0

Bk

k!

[
Ω̂(t, t′), Ĥk(t

′)
]
k

(B.10)

and solved iteratively by the ansatz Ω̂ =
∑∞

k=1 ε
kΩ̂k and Ĥk → εĤk. With Ωk = iφk,

the first three terms are

φ̂1(td, ti) = −1

~

∫ td

ti

dt1 Ĥ−(t1) (B.11)

φ̂2(td, ti) = − i

2~2

∫ td

ti

dt1

∫ td

t1

dt2 [Ĥ+(t1), Ĥ−(t2)] (B.12)

φ̂3(td, ti) =
1

4~3

∫ td

ti

dt1

∫ td

t1

dt2

∫ td

t2

dt3

{
[Ĥ+(t1), [Ĥ+(t2), Ĥ−(t3)]]

+
1

3
[Ĥ−(t2), [Ĥ−(t3), Ĥ−(t1)]]

+
1

3
[Ĥ−(t3), [Ĥ−(t2), Ĥ−(t1)]]

}
. (B.13)

In principle, higher-order terms can be calculated. However, just as in the standard
Magnus expansion, the terms quickly become cumbersome. Note that in the derivation
presented above the two Hamiltonians only appear in the form Ĥ+ and Ĥ−.
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B.2. Integrals over path-independent functions

In this appendix we show that the nth-order nested contour integrals over a path-
independent function vanish. Clearly, the integral∫

γ

dtf(t) = 0 (B.14)

if f1(t) = f2(t) where the index on f denotes path 1 or 2 of the contour. We can easily
convince ourselves by induction that this result is also true for the nth-oder nested
integral. To this end, we define

h(t) ≡
∫ t

γ

dt′f(t′) (B.15)

and evaluate h(t) on both parts of the contour. On γ1 we find

h1(t) =

∫ t

ti

dt′ f1(t′) (B.16)

and on γ2

h2(t) =

∫ td

ti

dt′ f1(t′) +

∫ t

td

dt′ f2(t′) =

∫ t

ti

dt′ f1(t′) = h1(t) , (B.17)

where we made use of f1(t) = f2(t). Thus, h(t) is path independent. The path
independence of higher-order integrals then follows simply by induction.

B.3. Phase and contrast in the gravitational
potential

In this appendix we first expand the gravitational potential up to third order on the
surface of the Earth and state the explicit values of the functions f for an MZ inter-
ferometer in this potential.

B.3.1. Expansion of the gravitational potential

The energy of a particle with mass m in the Newton gravitational potential reads

V (r) = −GmM
r

(B.18)

where G is the gravitational constant and M the mass of the Earth. The origin of the
coordinate system coincides with the center of the Earth. We can shift it to the surface
by replacing z → z+R with the radius R of the Earth and subsequently Taylor expand
about r = 0 of the new coordinate system

V (r) = mgz +
1

2
m
[ g
R

(x2 + y2 − 2z2) +
g

R2
(2z3 − 3zx2 − 3zy2) + ...

]
, (B.19)
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where we disregarded an irrelevant energy offset and identified the local acceleration
g = GM

R2
∼= 9.81m/s2. When we furthermore introduce the symmetric tensors Γ

(1)
ij and

Γ
(2)
ijk, we bring Eq. (B.19) to the form

V (r) = mgz +
1

2
m
[
Γ

(1)
ij xixj + Γ

(2)
ijkxixjxk + ...

]
(B.20)

where repeated indices are summed over. The elements of the tensors are thus

Γ(1)
xx = Γ(1)

yy =
g

R
(B.21)

and

Γ(1)
zz = −2

g

R
. (B.22)

All other components vanish and Γ(1) is therefore diagonal. Furthermore,

Γ(2)
zzz = 2

g

R2
, (B.23)

Γ(2)
xxz = Γ(2)

xzx = Γ(2)
zxx = − g

R2
(B.24)

and

Γ(2)
yyz = Γ(2)

yzy = Γ(2)
zyy = − g

R2
. (B.25)

All other components vanish and Γ(2) is symmetric in all indices. With Γ
(2)
zjk = (Γ

(2)
z )jk

we can also state it in matrix form as

Γ(2)
z = − g

R2

1 0 0
0 1 0
0 0 −2

 . (B.26)

In Eq. (B.19) we expanded the gravitational potential in powers of R−1, accordingly
the ratio of the nth-order and the (n+ 1)th-order term in the expansion scales as

Γ(n+1)ln+1

Γ(n)ln
∼ l

R
� 1 (B.27)

where l is a characteristic size of the interferometer. Consider for example an experi-
ment in a 10m tower in the gravitational potential of the Earth. For l = 10m we find
the extremely small value l/R ∼ 10−6 so that an expansion of the interferometer phase
in terms of this parameter should be extremely accurate.
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B.3.2. Corrections by the gravitational potential to second
order with initial launching velocity

In the calculation of the influence of the gravitational field on an MZ interferometer
to second order with closed unperturbed interferometer, the following integrals appear
in Sec. 1.3.3. We include an initial velocity v0 but set z0 = 0 and T0 = 0. We find the
expressions

fχp1 =

∮
dt zc(t) = vrT

2 (B.28)

fχr1 =

∮
dt zc(t)t = vrT

3 (B.29)

fϕ1 =

∮
dt zc(t)

2 = −7

6
gvrT

4 + (2v0 + vr)vrT
3 (B.30)

fϕ2 =

∮
dt zc(t)

3 =
31

20
g2vrT

6 − 9

4
g(2v0 + vr)vrT

5 +
1

2
(7v2

0 + 7v0vr + 2v2
r )vrT

4 (B.31)

fϕ3 =

∫ td

ti

dt

∫ td

t

dt′ zc+(t)zc−(t′)(t− t′) =
31

180
gvrT

6 − 1

4
(2v0 + vr)vrT

5 (B.32)

fχp2 = fϕ1 (B.33)

fχp3 =

∫ td

ti

dt

∫ td

t

dt′ zc−(t′)(t− t′) = − 7

12
vrT

4 (B.34)

fχr2 =

∮
dt zc(t)

2t = −3

2
gvrT

5 +
7

6
(2v0 + vr)vrT

4 (B.35)

fχr3 =

∫ td

ti

dt

∫ td

t

dt′ zc−(t′)(t− t′)t = −1

4
vrT

5 (B.36)

fA1 = fχp1 (B.37)
fA2 = fχr1 (B.38)

fA3 =

∮
dt zc(t)t

2 =
7

6
vrT

4 . (B.39)

Note that the definitions of the functions f stated above apply to completely general
but closed interferometer geometries. Only after the second equal sign we particularized
the calculation to an MZ sequence with initial velocity v0.
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B.3.3. Corrections by the gravitational potential to second
order with initial launching velocity and open
unperturbed interferometer

In this appendix we provide the expressions of the integrals needed for the calculation
of the overlap operator of an open unperturbed interferometer under the influence of
small harmonic and cubic contributions in the Hamiltonian. We consider an MZ in-
terferometer with slightly modified momentum transfer in the second and third laser
pulse, more specifically the recoil velocities are vr → vr + ∆vr1 for the second and
vr → vr + ∆vr2 for the third laser pulse. As described in Sec. 1.3.4, we have to in-
clude the displacement ∆χ0 ∼ Γ(1) of the unperturbed interferometer into the classical
trajectories, however, to the order considered here this is only necessary in Eq. (B.42)
and Eq. (B.43), for the other expressions it is sufficient to chose the trajectories of the
standard closed MZ interferometer. Note that we include an initial launching velocity
v0 and employ the matrix notation defined in Eq. (1.133). The expressions are

∆χr0 = −2(∆vr2 −∆vr1)T (B.40)
∆χp0 = m(∆vr2 − 2∆vr1) (B.41)

∆χr1 =

∮
dtΓ(1)rc(t)t =

1

3
Γ(1)(3vr −∆vr1 + 4∆vr2)T 3 (B.42)

∆χp1 = −m
∮

dtΓ(1)rc(t) = −mΓ(1)(vr −∆vr1 + 2∆vr2)T 2 (B.43)

∆χr2 =
3

2

∮
dt rc(t)

TΓ(2)rc(t)t = −9

4
gTΓ(2)vrT

5 +
7

4
vT

r Γ(2)(2v0 + vr)T
4 (B.44)

∆χp2 = −3

2
m

∮
dt rc(t)

TΓ(2)rc(t) =
7

4
mgTΓ(2)vrT

4 − 3

2
mvT

r Γ(2)(2v0 + vr)T
3 (B.45)

∆χr3 =

∫ td

ti

dt

∫ td

t

dt′ [Γ(1)]2rc−(t′)(t− t′)t = −1

4
[Γ(1)]2vrT

5 (B.46)

∆χp3 = −m
∫ td

ti

dt

∫ td

t

dt′ [Γ(1)]2rc−(t′)(t− t′) =
7

12
m[Γ(1)]2vrT

4 (B.47)

Arr = 3m

∮
dtΓ(2)rc(t) = 3mΓ(2)vrT

2 (B.48)

Arp = 3

∮
dtΓ(2)rc(t)t = 3Γ(2)vrT

3 (B.49)

App =
3

m

∮
dtΓ(2)rc(t)t

2 =
7

2m
Γ(2)vrT

4 . (B.50)

The expressions, Eq. (B.40) and Eq. (B.41), are valid for the MZ interferometer with
slightly modified momentum transfer. The other equations are valid for arbitrary inter-
ferometer geometries, only after the second equal sign we particularized the calculation
to the MZ interferometer.



Appendix C

Interferometer and second
quantization

In this appendix we showcase the detailed calculations which lead to the results dis-
cussed in chapter 3. We start by collecting some important properties of first quantized
operators acting on field operators in App. C.1. As an example we briefly consider dis-
placement operators. In App. C.2 we provide supplementary material on adiabatic
elimination for field operators and carefully discuss the different time scales of the
problem. For the transformation to the comoving frames in Sec. 3.3 and Sec. 3.4 we
prove some relevant properties in App. C.3.

C.1. First-quantized operators and field operators

In this section we introduce a compact notation for first-quantized operators which act
on the space of mode functions. In this work we denote these operators without hat
and write for instance

AΨ̂(r) ≡
∫

d3r′ 〈r| Â |r′〉 Ψ̂(r′) (C.1)

for the action of an operator Â on a field operator.

C.1.1. Time-evolution with respect to a one-body Hamiltonian

We start by discussing how a field operator evolves with respect to the one-body Hamil-
tonian

Ĥ =

∫
d3r Ψ̂†(r)H(t)Ψ̂(r) . (C.2)

To this end, we calculate the Heisenberg equation of motion

i~
d

dt
Ψ̂H(r, t) =

∫
d3r′ 〈r| Ĥ(t) |r′〉 Ψ̂H(r′, t) , (C.3)
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where the index H denotes the Heisenberg picture with respect to Hamiltonian, Eq. (C.2).
The equation admits the solution

Ψ̂H(r, t) =

∫
d3r′ 〈r| Û(t, ti) |r′〉 Ψ̂(r′) = U(t, ti)Ψ̂(r) (C.4)

with the first-quantized time-evolution operator

Û(t, ti) = T exp

{
− i

~

∫ t

ti

dt′ Ĥ(t′)

}
. (C.5)

For the proof simply substitute Eq. (C.4) into to the equation of motion, Eq. (C.3).

C.1.2. Displacement operators and second quantization

In the spirit of the definition Eq. (C.1), the action of a displacement operator on a field
operator is denoted by

DΨ̂(r) =

∫
d3r′ 〈r| D̂ |r′〉 Ψ̂(r′) = e−

i
2~χ

pχr e
i
~χ

pr Ψ̂(r − χr) , (C.6)

where we used Eq. (A.7). Similarly, the one-body Hamiltonian with respect to a
displaced field operator might be written as

Ĥ =

∫
d3r d3r′

[
D1Ψ̂(r)

]†
〈r| Ĥ |r′〉D2Ψ̂(r′)

=

∫
d3r d3r′Ψ̂†(r) 〈r| D̂†1ĤD̂2 |r′〉 Ψ̂(r′)

=

∫
d3r Ψ̂†(r)D†1HD2Ψ̂(r) , (C.7)

where we again employed the definition, Eq. (C.1).
Finally, note that for general displacement operators we have the identity∫

d3r
[
D1Ψ̂(r)

]† [
D2Ψ̂(r)

]†
D3Ψ̂(r)D4Ψ̂(r)

=

∫
d3r Ψ̂†(r)

[
D†1D2Ψ̂(r)

]†
D†1D3Ψ̂(r)D†1D4Ψ̂(r) . (C.8)

For the proof simply use Eq. (C.6) and redefine the integration variable.

C.2. Adiabatic elimination

In this appendix we derive the formulas of Eq. (3.22) and Eq. (3.23) presented in
Sec. 3.2.3. In order to avoid the complications associated with the standard approach
of adiabatic elimination, we use a more systematic formalism in which we explicitly
manipulate the time-evolution operator rather than working with the equations of
motion in the Heisenberg picture. This allows us to neglect two-body interactions and
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one-body potentials in a more systematic way and in principle to extend the theory to
higher-order contributions. In order to assess the complicated time evolution generated
by Hamiltonian, Eq. (3.21), we first resort to a simplified version, e.g.

Ĥ(t) = ~
∫

d3r
(
λei∆tΨ̂†1(r)Ψ̂2(r) + H.c.

)
(C.9)

where λ is now merely a real constant and we assume λ� ∆. It is important to recall
that due to the explicit time dependence in Eq. (C.9), the time-evolution operator is
not

Û(t, 0) = T exp

{
− i

~

∫ t

0

dt′ Ĥ(t′)

}
6= exp

{
λ

∆

(
1− ei∆t

) ∫
d3r Ψ̂†1(r)Ψ̂2(r)− H.c.

}
(C.10)

where we simply disregarded the time-ordering operator. Transforming a field opera-
tor into the Heisenberg picture with respect to the wrong time-evolution operator in
Eq. (C.10) would lead to a power series in terms of λ

∆
� 1 and transitions between

the internal states would be suppressed by this factor. The correct result is of course
obtained as follows. Derive the equations of motion in the Heisenberg picture and
integrate them iteratively, that is,

Ψ̂1(r, t) = Ψ̂1(r)− iλ

∫ t

0

dt′ ei∆t′Ψ̂2(r, t′)

Ψ̂2(r, t) = Ψ̂2(r)− iλ

∫ t

0

dt′ e−i∆t′Ψ̂1(r, t′) , (C.11)

resulting in, e.g. for Ψ̂1(r),

Ψ̂1(r, t) = Ψ̂1(r)− λ

∆

(
ei∆t − 1

)
Ψ̂2(r) +

[
λ2

∆2

(
ei∆t − 1

)
− i

λ2

∆
t

]
Ψ̂1(r) + ... . (C.12)

Again, we observe powers of λ
∆
� 1, but also the term λ2

∆
t. This term arises solely from

the time-ordered structure of the time-evolution operator. Choosing the laser interac-
tion time such that this term is of the order of unity shows that transitions between
the internal states result from these secular terms. Before we transfer this insight to
the full Hamiltonian, Eq. (3.21), we note that a general time-evolution operator with
respect to a Hamiltonian Ĥ can be cast in the form

Û(t, ti) = e−F̂ (t)Ûeff(t, ti)e
F̂ (ti) (C.13)

and we choose
i~

d

dt
F̂ (t) + Ĥ(t) = 0 . (C.14)

In order to determine the explicit form of Ĥeff , we solve Eq. (C.13) for Ûeff and subse-
quently differentiate with respect to time on both sides. With the help of the derivative
of the exponential map [265]

d

dt
eF̂ (t) =

i

~

∞∑
j=0

1

(j + 1)!

[
F̂ (t), Ĥ(t)

]
j
eF̂ (t) (C.15)



122 Appendix C. Interferometer and second quantization

where [. , .]j denotes the nested commutators, we conclude

Ĥeff(t) =
∞∑
j=1

j

(j + 1)!

[
F̂ (t), Ĥ(t)

]
j
. (C.16)

A similar identity was used in Ref. [208]. The result, Eq. (C.13), will now help us
separate the two different scalings encountered in Eq. (C.12). To this end, we start
from the full Hamiltonian

Ĥ = Ĥe + ĤL , (C.17)

where we recall the laser-atom interaction Hamiltonian, Eq. (3.21),

ĤL =

∫
d3r

(∑
j,k

~λjk(r, t)ei∆jktΨ̂†j(r)Ψ̂k(r) + H.c.

)
(C.18)

and the external Hamiltonian Ĥe which includes one-body as well as two-body oper-
ators. When we transform into the interaction picture with respect to Ĥe and subse-
quently separate the time-evolution operator according to Eq. (C.13), we arrive at

Û(t, ti) = Ûe(t, ti)e
−F̂ (t)Ûeff(t, ti)e

F̂ (ti) (C.19)

where F̂ now solves the differential equation

i~
d

dt
F̂ + Ĥe

L = 0 . (C.20)

The superscript e denotes the interaction picture with respect to Ĥe. Consequently,
the effective laser-atom interaction Hamiltonian reads

Ĥeff(t) =
∞∑
j=1

j

(j + 1)!

[
F̂ (t), Ĥe

L(t)
]
j
. (C.21)

An approximate solution to Eq. (C.20) is obtained by only integrating the rapidly
oscillating exponential in Eq. (C.18), that is,

F̂ (t) =

∫
d3r

(∑
j,k

λjk(r, t)

∆jk

ei∆jktΨ̂e†
j (r, t)Ψ̂e

k(r, t)− H.c.

)
. (C.22)

The quality of this approximation can be estimated by substituting Eq. (C.22) back
into Eq. (C.20). This results in three contributions stemming from the time dependence
of the exponential, of λ, and of the Heisenberg-picture field operators.

Derivative of the exponential

The derivative of the exponential ei∆jkt simply removes ∆jk in the denominator and
therefore reverses the integration. The approximation, Eq. (C.22), is thus justified if
the time derivative of the other terms is much smaller compared to Ĥe

L.
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Derivative of λ(r, t)

The time dependence of λ, which oscillates of the order of the laser frequency differences
∆ω, leads to another contribution. This term thus scales as ∆ω

∆
∼ 10−7 when compared

to Ĥe
L. The rate of change of the overall modulation of the electric field due to the

finite pulse length is about the same size.

Derivative of the interaction-picture field operators

The third contribution necessitates slightly more effort. It stems from the external mo-
tion of the atom during the laser pulse, i.e. from the derivative of the time-dependence
of the field operators in the interaction picture. For the following analysis we approxi-
mate

Ĥe =

∫
d3r Ψ̂†(r)HΨ̂(r) (C.23)

with the one-body Hamiltonian Ĥ = p̂2/2m+ V̂ , that is, we treat the particle-particle
interaction as an effective mean-field potential. Recall that λ consists of the sum of
terms of the form eikz. Thus, we obtain∫

d3r Ψ̂e†
j (r, t)eikzΨ̂e

k(r, t) =

∫
d3r d3r′Ψ̂†j(r) 〈r| eikẑ(t) |r′〉 Ψ̂k(r

′) (C.24)

where ẑ(t) is the position operator in the Heisenberg picture with respect to Hamilto-
nian, Eq. (C.23). We estimate its size as

z(t) ∼ 1

m
[∆p+ ~k +∇V (∆z)t] t (C.25)

where ~k is the momentum of the particle and ∆p as well as ∆z denote the momentum
and position width of the state. Hence, the rate of change of Eq. (C.24) is of the order
of k d

dt
z(t) ∼ (k∆p+ ~k2 + k∇V (∆z)t)/m. For k ≈ 107/m, the momentum width of a

Bose-Einstein condensate, the gravitational potential V = mgẑ and a laser-interaction
time of about 10−5s the rate of change is of the order of 104/s, therefore many orders
of magnitude smaller than ∆. The contribution of the mean-field particle-particle
interaction potential can be estimated to be even smaller. (Recall from chapter 2 that
the density modulation of a Bose-Einstein condensate in a trap is very smooth and its
spatial derivative becomes very small.)
In the discussion above we justified the approximate solution, Eq. (C.22). However, we
need to calculate an infinite number of complicated nested commutators in Eq. (C.21).
However, as we will show in the following, all commutators of order higher than one
can be neglected. Before that, let us disregard the two exponentials e−F̂ (t) and eF̂ (ti)

in Eq. (C.19) since even their largest contribution is of the order of λ/∆ � 1. Fur-
thermore, we reverse the interaction picture with respect to Ĥe. As the approximate
integration of Eq. (C.22) has left the interaction-picture field operators unaffected, we
simply replace the Heisenberg by the Schrödinger picture field operators. We now com-
pare the sizes of the terms in the expansion, Eq. (C.21). Since we assumed that only
states in different manifolds couple, the operators in ĤL and F̂ only contain products
of field operators corresponding to different manifolds. As a result the terms in the



124 Appendix C. Interferometer and second quantization

commutator [F̂ , Ĥ] oscillate only with a frequency comparable to the energy differences
in one manifold. The size of the first-order commutator in the time-evolution operator
thus scales as λ2

∆
t ∼ 1. We are now left with the task to show that all contributions for

j > 1 in Eq. (C.21) are negligible compared to the first. Indeed, depending on whether
or not the rapidly oscillating terms cancel in the higher-order nested commutators, the
jth contribution scales at most as λj+1

∆j t. Using t ∼ ∆
λ2

we estimate the size of the jth
contribution to be smaller than

(
λ
∆

)j−1 � 1.
In summary we found a very simple algorithm for the method of adiabatic elimination.
Given a laser-atom interaction Hamiltonian, Eq. (C.18) simply define

F̂ (t) =

∫
d3r

(∑
j,k

λjk(r, t)

∆jk

ei∆jktΨ̂†j(r)Ψ̂k(r)− H.c.

)
(C.26)

and replace in
Ĥ = Ĥe + ĤL (C.27)

the laser-atom interaction Hamiltonian by

ĤL → Ĥeff
L =

1

2

[
F̂ (t), ĤL(t)

]
. (C.28)

Remarkably, for a given atom-light interaction Hamiltonian we only need to calculate
a commutator to obtain the effective coupling scheme. How the effective Hamiltonian
arises from the commutator is shown in detail for the case of Bragg, double-Bragg and
Raman scattering in Sec. 3.2.3.

C.3. Path-dependent field operators

In this section we state and prove identities needed in Sec. 3.3 and Sec. 3.4. We start
with the derivation of matching conditions for the field operators during the laser pulse
to eliminate fictitious input ports. After decomposing unity in Sec. C.3.2, we show in
Sec. C.3.3 how to include the interaction Hamiltonian into the formalism presented in
Sec. 3.3 and Sec. 3.4.

C.3.1. Elimination of the fictitious input ports from the
calculation of the phase

In this appendix we derive matching conditions for the field operators. As a conse-
quence the beam splitter will - at least in the delta-pulse approximation - only act
on the internal degrees of freedom. After the transformation to the comoving frames,
terms like∫

d3r Ψ̂†n(r)D†n(t1)eikrDj(t1)Ψ̂j(r)eiϕL(t1)−iφn(t1)+iφj(t1) !
=

∫
d3r Ψ̂†n(r)Ψ̂j(r) (C.29)

appear in the laser-atom interaction Hamiltonian for a laser pulse at t = t1, where
ϕL(t1) is the laser phase evaluated at t1 and φj(t1) and φn(t1) are the phases accumu-
lated along the interferometer paths. Supposing that Ψ̂n(r) corresponds to a fictitious
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input port, the aim of this section is to choose χn(t1) and φn(t1) in a way that the
equal sign in Eq. (C.29) is correct.
This is easily achieved for the choice

χF(t1) + χj(t1)− χn(t1) = 0 (C.30)

ϕL(t1)− φn(t1) + φj(t1)− 1

2~
χF(t1)TJχj(t1) = 0 (C.31)

by combining the product of the two displacement operators and the exponential
exp(ikr̂) with the help of the composition rule, Eq. (A.10), and we defined χF(t1) =
(0, ~k)T. For t > t1 the phase of the field operator corresponding to the fictitious input
port is thus calculated with the help of Eq. (3.64)

φn(t) = φn(t1) +
1

~

∫ t

t1

dt′Ln(t′)− 1

2~
[χpn(t)χrn(t)− χpn(t1)χrn(t1)]

= ϕL(t1) +
1

~

∫ t1

ti

dt′Lj(t
′) +

1

~

∫ t

t1

dt′Ln(t′)

− 1

2~
[
χpn(t)χrn(t)− χpj(ti)χrj(ti)

]
+

1

2~
[
χpn(t1)χrn(t1)− χpj(t1)χrj(t1)− χF(t1)TJχj(t1)

]
. (C.32)

When we recall that χpF = ~k and χrF = 0, the last line in Eq. (C.32) becomes

χpn(t1)χrn(t1)− χpj(t1)χrj(t1)− χF(t1)TJχj(t1) = 2~kχrj(t1) (C.33)

by using again the matching condition, Eq. (C.30). Thus, we arrive at the rather simple
expression

φn(t) = ϕL(t1) +
1

~

∫ t

ti

dt′L n(t′)− 1

2~
[
χpn(t)χrn(t)− χpj(ti)χrj(ti)

]
. (C.34)

The Lagrange function in Eq. (C.34) is

L n(t) = ~kχrj(t)δ(t− t1) +

{
Lj(t) for ti ≤ t < t1
Ln(t) for t1 ≤ t

(C.35)

and
χn(t) =

{
χj(t) for ti ≤ t ≤ t1
χn(t) for t1 < t

. (C.36)

The meaning of this remarkable result is the following: By choosing the initial phase
φn(ti) appropriately, the phase assigned to a field operator introduced at a fictitious
input port is simply given by the phase accumulated along the actual physical path
of the interferometer. At the laser pulse we need to collect the laser phase ϕL(t1)
with positive sign if the momentum transfer is positive. As shown in Fig. 3.5.a) a
laser pulse populates many paths and one should consider also nonresonant paths.
These fictitious input ports only couple to other fictitious paths. Thus, when taking
into account higher-order paths, one needs to recursively repeat the path- and phase
matching. The calculation above is then easily generalized. For a fictitious input port
corresponding to a transfer between paths separated by l~k, the field operator collects
l times the laser phase in Eq. (C.34) and ~k→ l~k in Eq. (C.35).
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C.3.2. Properties of Π̂

In this section we show how to represent unity as sum over products of position and
momentum projectors. To this end, we decompose phase space into 6-dimensional
boxes Ωj = Ωr

jr × Ωp
jp

with the double index j = (jr, jp). The displacement to the
center of each box is determined by the phase-space vector χj. We now define the
operator

Π̂ =

∫
Ωr0

d3r |r〉〈r|
∫

Ωp0

d3p |p〉〈p| (C.37)

where Ω0 is the set around the origin. Recognizing that

D̂jΠ̂D̂
†
j =

∫
Ωr0

d3r D̂j|r〉〈r|D̂†j
∫

Ωp0

d3p D̂j|p〉〈p|D̂†j

=

∫
Ωr0

d3r|r + χrj〉〈r + χrj |
∫

Ωp0

d3p |p+ χpj〉〈p+ χpj | , (C.38)

where we employed Eqs. (A.5) and (A.6), we find the decomposition of unity∑
j

D̂jΠ̂D̂
†
j =

∫
Ωr0

d3r
∑
j

|r + χrjr〉〈r + χrjr |
∫

Ωp0

d3p|p+ χpjp〉〈p+ χpjp|

=
∑
j

∫
Ωrjr

d3r|r〉〈r|
∫

Ωpjp

d3p|p〉〈p|

= 1 . (C.39)

This result is intuitively clear. The operator Π̂ is simply the product of the unity
operator expressed in momentum and position eigenstates for the subset of states with
support on Ω0. The unity for the full Hilbert space is then composed by the sum over
all unity operators for states with support on Ωj.

C.3.3. Simplifying the interaction Hamiltonian

In this appendix we investigate for which conditions we can extend the path-dependent
interferometer formalism to particle-particle interaction. By applying Eq. (3.59), we
need to replace

Ψ̂(r)→ Û †DΨ̂(r)ÛD =
∑
j

eiφj(t)Dj(t)Ψ̂j(r) (C.40)

in the interaction Hamiltonian, Eq. (3.17), for Bragg scattering

ĤI =
g

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) . (C.41)

Using Eq. (3.90), the equation of motion for the field operator Ψ̂j(r) with respect to
this Hamiltonian is obtained as

i~
d

dt
Ψ̂j(r, t) = g

∑
n,m,l,k

∫
d3r′ δΩ

jn(r − r′)Ânmlk(r′, t) (C.42)
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where

Ânmlk(r, t) = eiφnmlk(t)
[
D†n(t)Dm(t)Ψ̂m(r, t)

]† [
D†n(t)Dl(t)Ψ̂l(r, t)

] [
D†n(t)Dk(t)Ψ̂k(r, t)

]
,

(C.43)

and the phase is
φnmlk(t) = φl(t) + φk(t)− φn(t)− φm(t) . (C.44)

In the following we show that for a given choice (n,m, l, k) of indices, Ânmlk either has
support on Ω0 or on its complement. The convolution with δΩ

jn then exactly selects
those indices corresponding to support on Ω0. Recall again that we implicitly mean
by ‘position- and momentum distribution of a field’ the expectation values, Eq. (3.86),
with respect to the quantum state of the system.
For position space the argument is simple. Most of the time there is no overlap between
the field operators due to the time-dependent relative displacement. During periods
with nonvanishing overlap, Ânmlk either has support on Ωr

0 or on its complement if each
field operator has support on Ωr

0. The convolution with the incomplete delta function in
Eq. (C.42) then only selects those tuples of indices (n,m, l, k) corresponding to support
on Ωr

0.
A similar argument holds for momentum space. Let us rewrite Eq. (C.43) as

Ânmlk(r, t) ∼
1

(2π~)
9
2

e
i
~∆χpnmlk(t)r

∫
d3p1d3p2d3p3 ei(p2+p3−p1)r/~ Ψ̂†m(p1, t)Ψ̂l(p2, t)Ψ̂k(p3, t)

(C.45)
where we defined

∆χpnmlk(t) = χpl (t) + χpk(t)− χ
p
n(t)− χpm(t) (C.46)

and disregarded phase factors which are not important for this discussion. Next, we
calculate the momentum distribution of Â by a Fourier transformation as

Ânmlk(p, t) =
1

(2π~)3

∫
d3p1d3p2 Ψ̂†m(p1, t)Ψ̂l(p2, t)Ψ̂k(p1 − p2 −∆χpnmlk(t) + p, t) .

(C.47)
First we note that this expression is only different from zero for the indices with

∆χpnmlk(t)
∼= 0 (C.48)

because otherwise the overlap in momentum space is zero. But due to the convolution
integrals the momentum distribution is three times as wide as the one of each field [206].
In order to guarantee that Â has support on Ω0 for those indices satisfying Eq. (C.48)
and vanishes otherwise, we additionally need to require that each field has support in
momentum space on only a third of the width of Ω0. This argument provides us with
the condition

3∆p+ |∆χpnmlk| � ~k (C.49)

where ∆p is the width of the momentum distribution of a field operator and ~k is the
size of the momentum box. If true, Ânmlk remains supported on Ωp

0.
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The equation of motion with respect to the interaction Hamiltonian then reads

i~
d

dt
Ψ̂j(r, t) =g

∑
coupl.

eiφjmlk(t)
[
D†j(t)Dm(t)Ψ̂m(r, t)

]†
×
[
D†j(t)Dl(t)Ψ̂l(r, t)

] [
D†j(t)Dk(t)Ψ̂k(r, t)

]
(C.50)

where the coupled indices are defined by the condition

∆χpjmlk(t)
∼= 0 . (C.51)

In conclusion we showed that the path-dependent formalism for field operators is also
capable of including interactions when the additional constraints on the momentum
widths of the states are satisfied.



Appendix D

Sensitivity and two-mode squeezing

In this appendix we quote the results of Refs. [214, 220], which are needed for the
calculations in chapter 4.

D.1. Transformation of angular momentum
operators

We start by summarizing the transformations of the angular momentum operators with
respect to the beam splitters

Ŝiθ = exp
{
−iθL̂i

}
. (D.1)

In Ref. [214] these are calculated as

Ŝx†θ L̂xŜ
x
θ = L̂x (D.2)

Ŝx†θ L̂yŜ
x
θ = cos(θ)L̂y − sin(θ)L̂z (D.3)

Ŝx†θ L̂zŜ
x
θ = sin(θ)L̂y + cos(θ)L̂z (D.4)

Ŝy†θ L̂xŜ
y
θ = cos(θ)L̂x + sin(θ)L̂z (D.5)

Ŝy†θ L̂yŜ
y
θ = L̂y (D.6)

Ŝy†θ L̂zŜ
y
θ = −sin(θ)L̂x + cos(θ)L̂z (D.7)

Ŝz†θ L̂xŜ
z
θ = cos(θ)L̂x − sin(θ)L̂y (D.8)

Ŝz†θ L̂yŜ
z
θ = sin(θ)L̂x + cos(θ)L̂y (D.9)

Ŝz†θ L̂zŜ
z
θ = L̂z . (D.10)

These expressions are simply rotations and can equally be expressed in terms of rotation
matrices [214].
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D.2. Expectation values with respect to the
squeezed state

In this section we provide the first and second moments of the angular momentum
operators calculated with respect to

|ψ〉 = Ŝsq(ξ) Ŝx−π/2 |j, j〉 . (D.11)

Initially all particles occupy the ground state, which is subsequently rotated about the
x axis and then subjected to the squeezing operator with parameter ξ. This results in
[220]

〈L̂x〉 = 0 (D.12)

〈L̂y〉 =
N

2
cos (2 ξ)N−1 (D.13)

〈L̂z〉 = 0 (D.14)

∆L̂2
x =

N

8
(N + 1)− N

8
(N − 1) cos (4 ξ)N−2 (D.15)

∆L̂2
y =

N

8
(N + 1) +

N

8
(N − 1) cos (4 ξ)N−2 − N2

4
cos (2 ξ)2N−2 (D.16)

∆L̂2
z =

N

4
(D.17)

〈L̂xL̂y + L̂yL̂x〉 = 0 (D.18)

〈L̂xL̂z + L̂zL̂x〉 = −N
2

(N − 1) sin(2ξ) cos(2ξ)N−2 (D.19)

〈L̂yL̂z + L̂zL̂y〉 = 0 . (D.20)

These expressions are used in Sec. 4.2 to show how phase diffusion derogates the inter-
ferometer phase.
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