
A Model-Driven Engineering Approach
for Flexible and Distributed Monitoring of Cross-Cloud Applications

Daniel Baur, Frank Griesinger, Yiannis Verginadis, Vasilis Stefanidis and Ioannis Patiniotakis

c� 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

10.1109/UCC.2018.00012

A Model-Driven Engineering Approach for Flexible
and Distributed Monitoring of Cross-Cloud

Applications
Daniel Baur, Frank Griesinger

Institute for Information Resource Management
Ulm University, Germany

{firstname.lastname}@uni-ulm.de

Yiannis Verginadis, Vasilis Stefanidis, Ioannis Patiniotakis
Institute of Communications and Computer Systems

National Technical University of Athens
Greece

jverg@mail.ntua.gr, stefanidis@central.ntua.gr, ipatini@mail.ntua.gr

Abstract—Cloud computing and its computing as a utility

paradigm offers on-demand resources, enabling its users to

seamlessly adapt applications to the current demand. With its

(virtually) unlimited elasticity, managing deployed applications

becomes more and more complex raising the need for automation.

Such autonomous systems leverage the importance to constantly

monitor and analyse the deployed workload and the underlying

infrastructure serving as knowledge-base for deriving corrective

actions like scaling. Existing monitoring solutions, however are

not designed to cope with a frequently changing topology. We

propose a monitoring and event processing framework follow-

ing a model-driven approach, that allows users to express i)
the monitoring demand by directly referencing entities of the

deployment context, ii) aggregate the monitoring data using

mathematical expressions, iii) trigger and process events based

on the monitoring data and finally iv) attach scalability rules

to those events. We accompany the modelling language with a

monitoring orchestration and distributed complex event process-

ing framework, capable of enacting the model in a frequently

changing multi-cloud infrastructure, considering cloud-specific

aspects like communication costs.

Index Terms—cloud computing, monitoring, complex event

processing

I. INTRODUCTION

Cloud computing and its paradigm of computing as a
utility [1] provides on-demand compute, storage and network
resources to its users. This enables users to seamlessly adapt
the allocated resources to the current demand of the application
by applying horizontal (or vertical) scale operations in times of
higher respectively lower demand. However, to make full use
of this elasticity, the adaptation process requires automation
and hence an adaptive system.

This need lead to the development of cloud orchestration
(management) tools [2] that automate the deployment and the
management of an application across multiple cloud providers.
For this purpose, they typically follow a model-driven en-
gineering (MDE) approach, where the user first describes
his application and the required resources using a modelling
language, e.g. the Topology and Orchestration Specification
for Cloud Applications (TOSCA [3]) or the Cloud Application
Modelling and Execution Language (CAMEL [4]). Following
the MDE paradigm implies the use of tools that typically

apply the MAPE [5] loop by monitoring the current context
of the application and apply scalability rules to either scale-
out or scale-in individual components of the application.
Thus, it is very important to constantly monitor and analyse
infrastructures health status to detect situations that may reveal
adaptation needs or optimisation opportunities. Monitoring
delivers the knowledge that is required to make appropriate
mitigation decisions with respect to the adopted infrastructure
and deployed applications.

Yet, most traditional monitoring tools are badly suited for
monitoring cloud deployments [6] especially in multi-cloud
scenarios for two main reasons: i) they are designed for
static or slowly changing infrastructures, ii) they are not
aware of cloud specific attributes like monetary costs for
data transmission across region or cloud boundaries. Applying
such tools in an elastic, thus quickly changing environment
may lead to the following problems: i) in dynamic placement
scenarios, where the underlying infrastructure is derived or
even may change during runtime (e.g. by matchmaking or
placement algorithms) a infrastructure centric approach is not
possible, ii) typically the superset of monitoring information
is gathered on all allocated resources wasting storage and
network resources, iii) all data is stored in a central database
where it is processed to derive e.g. aggregated values and
trigger events again consuming network resources and iv) the
tools need to be manually adapted to follow the changing
infrastructure or handle the increased load.

To overcome these shortcomings we propose an adaptive
and distributed monitoring and event processing framework
accompanying our existing cloud orchestration tool. We adopt
a model-driven engineering approach for depicting the moni-
toring demand and the processing of monitoring data. We fur-
ther propose an architecture capable of automatically adapting
the monitoring demand to either changes i) in the monitor-
ing demand expressed by the user or ii) in the underlying
topology that is composed of allocated resources and deployed
applications. In addition, we adopt the architecture to the
cloud environment reducing costly cross-region/-cloud traffic
and achieve an architecture that automatically scales with the
monitored system.

The remainder of this paper is structured as follows: First,
Section II gives background information establishing a com-
mon understanding of the vocabulary and previous work used
throughout the paper. Second, Section III gives an overview of
our approach depicting a high-level architecture. Afterwards,
Sections IV and V depict the architecture and implementation
of the monitoring and the distributed complex event processing
in detail. Subsequently, Section VI discusses related work in
this area before Section VII concludes the paper.

II. BACKGROUND

As our work is partly build upon existing work this section
will briefly explain the concepts used within this paper. In
addition, this section establishes a running example, that is
referenced in later sections of the paper.

A. Cloudiator

Cloudiator [7]–[9] is a cross-cloud orchestration engine, ca-
pable of acquiring resources from a multi-cloud environment,
and deploying (possibly) distributed applications across these
resources.

The application model of Cloudiator is runtime-driven,
consisting of three main entities: i) a Job as a logical group
of multiple ii) Tasks that depict the workload that needs to
be executed on an allocated resource (e.g. running a MySQL
server or executing a batch file) by exporting Interfaces and
iii) Processes that depict the instantiation of a Task currently
running on an allocated resource. For resources, Cloudiator
uses the abstract concept of a Node, that can represent a virtual
machine started at an IaaS provider, but also existing servers
or even PaaS components.

Cloudiator relies on a provider-agnostic application model,
meaning that it does not reference any provider specific details
like identifiers. Instead it is based upon an application focused
requirement specification relying on a constraint language
[10] that recently was extended to also support constraints
expressed in the Object Constraint Language (OCL) [11].
To enact the requirements expressed by the user, Cloudiator
automatically discovers offers of previously registered cloud
providers. Cloudiator translates the discovered offers into
constraints that are combined with the constraints provided
by the user to form a constraint satisfaction problem (CSP).
This CSP is then solved to derive the infrastructure resources
(e.g. virtual machines) required for hosting the workload.

An (abbreviated) example for a job description is given in
Listing 1. It defines a three-tier installation of MediaWiki1, that
consists of three individual tasks: i) a load balancer splitting
load across (possibly) multiple instances of the wiki, ii) the
wiki application itself and iii) a database storing the content.

The deployment process of Cloudiator is split into two
phases: i) the allocation phase where Cloudiator retrieves
the requirements attached to each Task defined in the job
model, then solves the resulting CSP and contacts the cloud
provider APIs to allocate the resources for each Task and the ii)

1https://www.mediawiki.org/

Listing 1: Job Description Example

name: mediawiki

tasks:

- name: wiki

ports:

- type: PortRequired

name: WIKIREQMARIADB

- type: PortProvided

name: WIKIPROV

port: 80

interfaces:

- type: LifecycleInterface

preInstall: ./preInstall.sh

install: ./install.sh

postInstall: ./postInstall.sh

start: ./start.sh

requirements:

- constraint: nodes->forAll(hardware.cores

>= 2),!

type: OclRequirement

- constraint: nodes->forAll(hardware.ram >=

2048),!

type: OclRequirement

- constraint:

nodes->forAll(image.operatingSystem =

'UBUNTU')

,!

,!

type: OclRequirement

- name: loadbalancer

ports: ...

interfaces: ...

requirements: ...

- name: database

ports: ...

interfaces: ...

requirements: ...

communications:

- portRequired: WIKIREQMARIADB

portProvided: MARIADBPROV

- portRequired: LOADBALANCERREQWIKI

portProvided: WIKIPROV

deployment phase were Cloudiator connects to the allocated
resources and creates Processes by executing the workload
attached to each Task.

B. Scalability Rule Language

To express the scalability requirements we rely on the
Scalability Rule Language (SRL) [12] that allows to i) define
(raw) metrics representing the current state of the system (e.g.
CPUUsage representing the CPU usage of one node), ii) derive
composite metrics by expressing mathematical operations on
raw metrics (e.g. calculate the average) iii) trigger (simple)
events based on threshold violations (e.g. if average CPU
usage of the last five minutes is above 90% trigger event),
iv) concatenate events by logical operations (e.g. if event OR
event) and finally v) attach scaling actions to events (e.g. if
event then scale component horizontally).

Listing 2: Scalability Rule example
P r o v i d e s t h e f o r m u l a t o c a l c u l a t e t h e
CPU Average (MEAN)
c o m p o s i t e m e t r i c CPUAverage {

m e t r i c f o r m u l a Formula Average {
f u n c t i o n a r i t y : UNARY
f u n c t i o n p a t t e r n : REDUCE

MEAN(CPUUsage)
}

}
C o n t e x t t h a t u s e s t h e CPUAverage f o r m u l a
t o c a l c u l a t e t h e a v e r a g e o f a l l nodes
c o m p o s i t e m e t r i c c o n t e x t CPUAvgMetr icContextAl l {

m e t r i c : CPUAverage
window : 5 min
s c h e d u l e : 1 min
q u a n t i f i e r : ALL

}
C o n t e x t t h a t u s e s t h e CPUAverage f o r m u l a t e
t o c a l c u l a t e t h e a v e r a g e o f each node
c o m p o s i t e m e t r i c c o n t e x t CPUAvgMetricContextAny {

m e t r i c : CPUAverage
window : 1 min
s c h e d u l e : 1 min
q u a n t i f i e r : ANY

}
c o n d i t i o n > 5 0 . 0
m e t r i c c o n d i t i o n CPUAvgMetr icCondi t ionAl l {

c o n t e x t : CPUAvgMetr icContextAl l
t h r e s h o l d : 5 0 . 0
compar i son o p e r a t o r : >

}
c o n d i t i o n > 8 0 . 0
m e t r i c c o n d i t i o n CPUAvgMetricCondit ionAny {

c o n t e x t : CPUAvgMetricContextAny
t h r e s h o l d : 8 0 . 0
compar i son o p e r a t o r : >

}
d e f i n e s a s c a l e o u t o f t h e wik i t a s k
h o r i z o n t a l s c a l i n g a c t i o n H o r i z o n t a l S c a l i n g W i k i {

t y p e : SCALE OUT
t a s k : w ik i

}
e v e n t i s f i r e d i f CPUAvgMetr icCondi t ionAl l
c o n d i t i o n i s v i o l a t e d
non�f u n c t i o n a l e v e n t CPUAvgMetricNFEAll {

m e t r i c c o n d i t i o n : CPUAvgMetr icCondi t ionAl l
}
e v e n t i s f i r e d i f CPUAvgMetricCondit ionAny
c o n d i t i o n i s v i o l a t e d
non�f u n c t i o n a l e v e n t CPUAvgMetricNFEAny {

m e t r i c c o n d i t i o n : CPUAvgMetricCondit ionAny
}
combines b o th non�f u n c t i o n a l e v e n t s
u s i n g AND o p e r a t o r
b i n a r y e v e n t p a t t e r n CPUAvgMetricBEPAnd {

l e f t e v e n t : CPUAvgMetricNFEAll
r i g h t e v e n t : CPUAvgMetricNFEAny
o p e r a t o r : AND

}
d e f i n e s t h a t h o r i z o n t a l s c a l i n g a c t i o n
i s e x e c u t e i f e v e n t i s r a i s e d
s c a l a b i l i t y r u l e C P U S c a l a b i l i t y R u l e {

e v e n t : CPUAvgMetricBEPAnd
a c t i o n s [H o r i z o n t a l S c a l i n g]

}

An (abbreviated) example for a scalability rule is given in
Listing 2, defining the rule: if the average CPU load on all
nodes hosting the wiki application is above 50% over the last
five minutes and the average CPU load on one node hosting
the wiki is above 80% over the last minute then horizontally
scale the wiki task.

Deployment
Model

Monitoring
Model

Aggregation &
Events

Scaling Actions

references

references

references

references

Orchestration

Event Processing Manager

Node

Process

Monitoring
Agent

DCEP
Agent

Data Flow

Control Flow

Manage

Manage

Manage

Tr
ig

ge
r S

ca
lin

g
Ac

tio
ns

Monitoring
Data

Monitoring
Data

Aggregated Data &

Events

Process & Node
Events

Monitoring
Orchestration

Fig. 1: High-level architectural overview

III. OVERVIEW

Figure 1 gives an overview to our model-driven monitoring
approach. We ask the user to provide a model, consisting
of four sub-models referencing each other: i) the deployment
model depicting the (application) workload that needs execu-
tion and its infrastructure requirements (cf. Section II-A), ii) an
application-centric monitoring model depicting the modelling
demand by referencing entities of the deployment model (cf.
Section IV-A), iii) an aggregation and event model allowing
to derive higher level metrics (e.g. by aggregation) and trigger
events (e.g. on thresholds violations) and iv) a model depicting
scaling actions that are attached to previously defined events
(cf. Section II-B).

To be able to constantly adapt the monitoring demand and
to achieve a distributed processing of the gathered data, the
architecture consists of three high-level components: i) an
orchestration component handling allocation of resources and
the deployment, the ii) monitoring orchestration handling the
monitoring and iii) the DCEP component handling aggregation
of monitoring data and events. The Orchestration component
is external to the monitoring system, but is responsible for
announcing topology changes to the monitoring system, e.g. if
new resources are allocated or new processes are deployed. As
all state changes within our tool are announced using events,
the monitoring system can easily subscribe to events it is inter-
ested in. The Monitoring Orchestration component takes the
monitoring model as input and subscribes to aforementioned
events of the orchestration layer. Whenever topology changes
are announced it i) derives the new demand and ii) connects
to the Monitoring Agents to enact it. The same applies to
the Event Processing Manager that reconfigures the DCEP
agents. The DCEP Agents receive (raw) monitoring data
collected from the Monitoring Agents and aggregate those
metrics and evaluate threshold conditions to trigger events in
a distributed manner. If events are triggered that are connected
to scalability rules, the event processing manager calls the
orchestration layer that enacts the change.

IV. MONITORING FRAMEWORK

The task of the monitoring framework is to collect the raw
metrics (cf. Section II-B) and pass them to the DCEP frame-
work described in Section V that aggregates and processes

those metrics and triggers scaling events. For this purpose
it consists of three components: i) a modelling Language
allowing the user to define the monitoring demand ii) the mon-
itoring orchestration whose task is to instruct the monitoring
agents to load the correct sensors based on which workload is
running on each node iii) and the monitoring agents that run
on every managed node and are responsible for collecting the
monitoring information.

A. Monitoring Model

To capture the monitoring demand, we rely on the user
providing a model as depicted in Figure 2. The user can define
multiple Monitors each gathering a defined metric using a
Sensor. A Sensor may be represented by a PushSensor that
starts a telnet server on the optionally defined port or a random
port that will be advertised to the running process by the
orchestration layer. This telnet server can then be used by the
running process to propagate (application specific) monitoring
data (cf. Section IV-C). Additionally a PullSensor represents
a (traditional) Sensor were data is gathered by executing logic
collecting data from the underlying node, operating system or
the running process. For this purpose the PullSensor refers
to a class name loading the logic and optionally an URL
where the logic can be loaded from. A PullSensor runs at a
defined Schedule depicting the frequency at which the data is
gathered. A DataSink defines the endpoint where the collected
monitoring data will be reported. The default DataSink is
the DCEP framework (cf. Section V) but the user may add
multiple other DataSinks like time series databases e.g. for
historical storage or visualisation. Several Tags can be attached
to a monitor. A Tag provides context information in the
form of key-value pairs, that is later attached to the gathered
sensor data. By default, the monitoring framework attaches
information about the environment the sensor is running on
(e.g. the id of the node) and entities it relates to (e.g. task
or process). This information is crucial for the aggregation
process as it allows the DCEP framework (cf. Section V) to
correlate the gathered monitoring data. Finally, the Target links
the monitoring model to the application model described in
Section II-A. A monitor can be either linked to a Job, a Task, a
Process or a Node. The linking follows the depicted hierarchy,
meaning that if the user e.g. links the monitor to a specific Job,
all Tasks of this Job and subsequently all Processes and Nodes
corresponding to the Job will be monitored. Additionally,
the user may express a query constraint in OCL, to further
limit the target entities by targeting their underlying attributes.
The query job.tasks.processes.node->select(n

| n.cloud.type = CloudType::Private) will e.g.
monitor all nodes that belong to the target job and are running
on a private cloud.

Listing 3 gives an example of a monitor, monitoring the
CPU usage on all nodes where a process of the Wiki task of
the MediaWiki job is installed.

Monitor
id: string
metric: string

Sensor

PullSensor
className: string
url: string
configuration: map<string,string>

PushSensor
port: int

Schedule
unit: TimeUnit
period: long

Target
query: string

DataSink
type: DataSinkType
configuration: map<string,string>

Tag
key: string
value: string

Job

Task

Process

Node

targets1..* 1..*

uses
0..*

1

runs at1..* 1

reports to

1..*

1..*

has

1..*

1..*

has
1

1..*

instantiated as
1

0..*

runs on
1..*

1

Fig. 2: Monitoring Demand

Listing 3: CPU Usage example

metric: CPUUsage

targets:

- type: Task

identifier: wiki

sensor:

type: PullSensor

className: org.cloudiator.CPUSensor

schedule:

unit: SECONDS

period: 5

sinks:

- type: INFLUX

configuration:

INFLUX_URL: http://example.org:8086

B. Monitoring Orchestration

The monitoring orchestration component is responsible for
i) capturing the monitoring demand by the user (cf. Section 2)
and ii) connecting the deployment layer (cf. Section II-A) with
the monitoring layer by instructing the monitoring agents to
load the correct sensors based on the monitoring demand given
by the user, and the running entities started by the deployment
layer.

The basic workflow of the monitoring orchestration is
shown in Figure 3. It depicts the main components of the
monitoring framework: i) the monitoring agent running on
nodes and ii) the monitoring orchestration component. In
addition, it depicts two other components the monitoring
orchestration interacts with: i) the node agent responsible for
allocating new resources and ii) the process agent, responsible
for executing workload on the allocated nodes.

As first step (1), the user registers the monitoring demand
either via a YAML syntax as depicted in Figure 2 that is parsed
and translated into API calls by a client, or directly via the
RESTful API exposed by the monitoring orchestration compo-
nent. The expressed demand is stored in an internal database
(2). Afterwards, the monitoring orchestration subscribes to
events (3) submitted from the node agent and process agent,
announcing changes in the topology i.e. whenever a new node

Process

Agent

Monitoring
Orchestration

Process Agent Node Agent

RE
ST

Data Flow

Control Flow

Data Sinks

Database
Define
Demand

Subscribe
Subscribe

Process Events Node Events

Store Demand

Derive Sensors

1

3
44

3

2

5

Install Sensors7

Gather data

Report Data

8

Install Agent6

9

Fig. 3: Monitoring Orchestration Workflow

respectively a new process is started or terminated. Whenever
a corresponding event is received (4) by the orchestration
component, it retrieves the monitoring demand given by the
user and matches it to the retrieved event based on the
condition expressed by the target entity (and optionally by the
filter expression formulated within) (5). Whenever the new
process or node matches and thus is required to be monitored,
the orchestration component will install the agent on the target
machine (if not installed yet) (6). Afterwards it will contact
the agent, and reconfigure it (7) to start the required sensors
also providing context information with respect to the event
triggering the reconfiguration (using the tags entity described
in Section IV-A). Finally, the agent will gather the monitoring
data (8) and report it to the configured data-sinks (9). This
process is covered in more detail in Section IV-C.

Whenever the topology of the deployed job (processes
or nodes) changes, or the user makes modifications to the
monitoring model a reconfiguration process is triggered. In this
case, the already enacted model (stored within the monitoring
agents) is also considered when deriving the required sensors.
The calculated difference is finally configured within the
already running agents.

C. Monitoring Agent
The task of the monitoring agent is to monitor the un-

derlying node or processes running on the same node the
agent is deployed on. Figure 4 gives an detail overview of the
agent’s architecture. The agent exposes a RESTful interface

that is used by the monitoring orchestration component (cf.
Section IV-B) to configure the agent during runtime, e.g. if
the user changes the monitoring model or a new process is
spawned on the node the agent is running on. The request is
forwarded to the Agent Controller which is responsible for
managing all entities of the agent.

The monitoring agent employs three strategies to gather
monitoring data: i) sensors actively gathering data on the
underlying host by executing code gathering the metric ii)
telnet sockets that allow the running process to push data
to the monitoring agent and iii) adapters interfacing with
third-party monitoring tools giving access to existing sensor
implementations. Sensors are Java programs implementing

Rest Interface

Sensor

Reporting
Interface

Reporting
Interface

Sensor Adapter

Agent Controller

Data
Sink

Telnet Telnet

Buffer

Buffer
Monitor Controller

Context Context

Context Context Context

Data Flow

Control Flow

Data
Sink

DCEP

Disk
Usage

CPU
Usage

active
users

response
time

Telegraf

Fig. 4: Monitoring Agent Architecture

the gathering logic. We provide by default multiple sensors
gathering system information like CPU, memory, disk and
network usage by either relying on management interfaces
provided by the Java virtual machine (JVM) or the SIGAR
API2. In addition, we provide an abstract implementation for
sensors, that facilitates the development of custom sensors,
that can be loaded during runtime. After loading the sensor,
it is run at the user-defined schedule. The Telnet servers
provide the possibility for running processes to actively push
monitoring data to the agent following a simple line based
protocol: <metric name/ id, value, timestamp>. As multiple
processes may run on the same node, the agent is capable
of starting multiple servers on different ports, to be able to
correctly correlated context information. To ensure that only
applications installed on the same node can interact with
the telnet server, it only listens on the local interface by
default. Finally, the agent provides Adapters to existing sensor
frameworks (currently Telegraf3 is supported) giving access to
a large variety of already implemented sensors.

Internally, the monitoring agent relies on two concepts of
monitoring data i) (raw) measurements (value and timestamps)
that are emitted by the sensors and ii) metrics that originate
from measurements but contain additional context information
and are bound to one data sink. This allows to e.g. duplicate
measurements for multiple data sinks or annotate sensor data
with different contexts. The Monitor Controller is responsible
for converting the (raw) measurements to metrics taking the
context of the sensors into account and route the metrics to
each data sink.

Finally, Reporting Interfaces provide the implementation
for publishing the metrics to data sinks. They are responsible
for converting the data format of the monitoring agent to the
target format of the data sink and finally transmit it. Currently,
the agent supports multiple time series databases (InfluxDB4,

2https://github.com/hyperic/sigar
3https://www.influxdata.com/time-series-platform/telegraf/
4https://www.influxdata.com/time-series-platform/influxdb/

KairosDB5, Druid6) and message queues (Kafka7, ActiveMQ8)
but support for different databases and queues can be provided
by implementing the required conversion and publishing logic.
For each reporting interface, the agent uses Buffers to cater
for the fact that it may be more efficient to report multiple
metrics at once and to be able to overcome short term network
outages. Since the buffers may delay the reporting of metrics,
they can be disabled.

V. DISTRIBUTED COMPLEX EVENT PROCESSING (DCEP)

Besides implementing a flexible and adequate way for
deploying monitoring sensors in cross-clouds application sce-
narios (cf. Section IV), it is critical to accommodate the
appropriate flexible framework which is able to cope with
an unknown and unbounded number of monitoring events,
aggregate, filter and correlate them in order to guide appli-
cation adaptations according to the scalability requirements
expressed (cf. Section II-B). In this section, we discuss the
details of such a framework that we call Distributed Complex
Event Processing (DCEP) framework.

A. DCEP Architecture

In previous work [13], we have introduced a distributed
complex event processing architecture that follows automati-
cally the infrastructural resources commissioned at any given
time for efficiently monitoring their health status and detecting
optimisation opportunities. This novel approach refers to an
Event Processing Network (EPN) [13] as seen in Figure 5.
The approach was introduced for efficiently distributing over
several virtualised resources that may span multiple cloud
providers to monitor the deployment of multi-cloud applica-
tions and reconfigure them based on the perceived workload
fluctuations and health status of the underlying infrastructures.
This mechanism is flexible enough since it uses a hierar-
chical event processing approach to avoid message flooding
incidents that may stall the processing of monitoring events
and may delay the detection of optimisation opportunities.
In order to achieve this, on each private or public node, a
Distributed Event Processing Agent (DCEP) is deployed (Fig-
ure 5) that encapsulates: i) publish/subscribe functionalities
(based on ActiveMQ9) for efficiently propagating monitoring
events and ii) rich event processing capabilities (based on the
powerful ESPER10 engine) for hierarchically processing all
the intercepted monitoring data (i.e. bringing the processing
closer to the infrastructure that produces the monitoring data).
The communication among the layered DCEP Agents and
Event Processing Manager, occurs using secure protocols,
namely HTTPS and SSH. We note that this approach is
based on the publish/subscribe paradigm which is superior
to any other time-based polling approach, with respect to a

5https://kairosdb.github.io/
6http://druid.io/
7https://kafka.apache.org/
8http://activemq.apache.org/
9https://activemq.apache.org/
10http://www.espertech.com/esper/

Fig. 5: Conceptual Architecture of a DCEP for Monitoring Cross-
Cloud Applications

dynamic environment where the location of the event sources
is not known beforehand and can change at any given time
upon a reconfiguration decision. Moreover, the introduction
of this layered approach allows for proper filtering of events
that are allowed to reach the upper levels of this topology.
In this way, we achieve the minimum network bandwidth
consumption for monitoring purposes while at the same time
we guarantee the immediate and efficient detection of situa-
tions that dictate mitigation actions. With respect to the event
processing capabilities, we use efficient CEP engines able to
perform fast and complex correlations and processing of events
over certain time or event sliding windows. Of course, the
size of these windows has a direct impact on the heap size
that should be available to the DCEP Agent. Furthermore,
in cases where there is a need for persisting all the events
transmitted then our approach could be combined with the
use of a time-series database per each cloud used. Obviously,
the adoption of a time-series database just for its querying
and alerting capabilities would have a significant impact to
the event processing expressivity that can be supported.

B. Translating Scalability Requirements to Hierarchical Com-
plex Event Patterns

Listing 4: SRL to EPL rules translation algorithm
1 : a l g o r i t h m s r l 2 e p l i s
2 : i n p u t : SRL model s r l
3 : o u t p u t :
4 : DAG {} , / * Decompos i t ion graph * /
5 : S2T [] , / * Sensor�to� t a r g e t l i s t * /
6 : E2A [] , / * Event�to�a c t i o n l i s t * /
7 : R2L [] / * EPL Rule�to�Leve l l i s t * /
8 : / * P r o c e s s SRL model * /
9 : s c r u l e s G e t S c a l a b i l i t y R u l e s (s r l)
1 0 : f o r each s c a l a b i l i t y r u l e in s c r u l e s do
1 1 : e v e n t Get Event (s c a l a b i l i t y r u l e)
1 2 : a c t i o n Get Ac t ion (s c a l a b i l i t y r u l e)
1 3 : E2A E2A [[even t , a c t i o n]
1 4 : node Find Node (DAG, e v e n t)

1 5 : i f node = ; then
1 6 : node Add Root (DAG, e v e n t)
1 7 : node!Leve l Get Leve l (s r l , e v e n t)
1 8 : Decompose Event (DAG, node)
1 9 : e l s e
2 0 : i f no t I s R o o t (DAG, node) then
2 1 : Make Root (DAG, node)
2 2 : end i f
2 3 : end i f
2 4 : end f o r
2 5 : f o r each s i m p l e e v e n t in Get Lea f s (DAG) do
2 6 : c o n d i t i o n
2 7 : G e t C o n d i t i o n (s r l , s i m p l e e v e n t)
2 8 : o p e r a t o r
2 9 : G e t C o n d i t i o n O p e r a t o r (c o n d i t i o n)
3 0 : m e t r i c G e t C o n d i t i o n M e t r i c (c o n d i t i o n)
3 1 : Upda te S imple Even t (DAG, s i m p l e e v e n t ,
3 2 : o p e r a t o r , m e t r i c)
3 3 : end f o r
3 4 : f o r each r a w m e t r i c in Get Lea f s (DAG) do
3 5 : s e n s o r Get Senso r (Camel , r a w m e t r i c)
3 6 : t a r g e t
3 7 : G e t T a r g e t (s r l , r a w m e t r i c)
3 8 : S2T S2T [[s e n s o r , t a r g e t]
3 9 : Update Raw Metr ic (DAG, raw met r i c , s e n s o r)
4 0 : end f o r
4 1 : / * G e n e r a t e EPL Rules and Event T op i c s * /
4 2 : f o r each node in Get Al l Nodes (DAG) do
4 3 : node! t o p i c C r e a t e E v e n t T o p i c (node)
4 4 : name Get Name (node)
4 5 : o p e r a t o r G e t O p e r a t o r (node)
4 6 : l e v e l Get Leve l (node)
4 7 : c h i l d r e n G e t C h i l d r e n (DAG, node)
4 8 : r u l e Genera te EPL Rule (name , t o p i c ,
4 9 : o p e r a t o r , l e v e l , c h i l d r e n)
5 0 : R2L R2L [[r u l e , node�>l e v e l]
5 1 : end f o r
5 2 : procedure Decompose Event i s
5 3 : i n p u t even t , DAG
5 4 : o u t p u t DAG
5 5 : b e g i n
5 6 : i f I s C o m p o s i t e E v e n t (e v e n t) then
5 7 : ope r G e t C o m p o s i t i o n O p e r a t o r (e v e n t)
5 8 : c h i l d r e n G e t C o n s t i t u e n t s (e v e n t)
5 9 : node Find Node (DAG, e v e n t)
6 0 : node! o p e r a t o r ope r
6 1 : f o r each c h i l d in c h i l d r e n do
6 2 : node ' Find Node (DAG, c h i l d)
6 3 : i f node ' = ; then
6 4 : node ' Add Node (DAG, even t , c h i l d)
6 5 : node '!Leve l Get Leve l (Camel , c h i l d)
6 6 : Decompose Event (DAG, c h i l d)
6 7 : end i f
6 8 : end f o r
6 9 : end i f
7 0 : end

An important step in the overall process of deploying a
DCEP for monitoring multi-cloud applications is the trans-
lation of the expressed rules in the SRL, to complex event
processing patterns, which will be used in the various DCEP
agents. Our implementation of the translation algorithm gen-
erates rules in the Event Processing Language (EPL) used by
the ESPER CEP engine.

The translation algorithm involves the analysis of the

scalability rules in the SRL model and the extraction of
variables corresponding to monitored values (called metrics).
Scalability rules correlate specific trigger events with scaling
actions (e.g. scale in/out) that reconfigure a current placement
topology (steps: 9-13 of Listing 4). Events and metrics can
either be composite (i.e. calculated using simpler events or
metrics), or simple. For this reason the translation algorithm
decomposes events/metrics into a multi-root, directed acyclic
graph (DAG) called decomposition graph. Each trigger event
and each metric variable directly used in an expression be-
comes a root in the decomposition graph (steps: 14-23 of
Listing 4). The roots are then recursively decomposed into
their simplest components. Subsequently, simple events are
converted into equivalent metric expressions (SRL defines
simple events as metric expressions violating a threshold -
steps: 25-33 of Listing 4). Again metric variables are extracted
and decomposed into simple metrics, which are measured
using specific sensors (steps: 34-40 of Listing 4). Care is taken
to avoid inserting the same event/metric in the decomposition
graph more than once. Eventually, the DAG is traversed and
EPL rules are generated for every node (steps: 41-51 of
Listing 4). Each node represents a specific application event
type or metric variable, associated to a monitoring level. Nodes
representing composite structures include information about
the composition operation, while the node’s children are the
components being composed (steps: 52-69 of Listing 4). Based
on the structure type (event or metric variable), the monitoring
level as well as the composition operator, a suitable EPL rule
template is used to produce the corresponding EPL rule. The
produced EPL rules are grouped per monitoring level. These
rulesets are then used to initialize the CEP engines of DCEP
Agents, based on their position in the EPN (i.e. 1st level DCEP
Agents receive Level 1 EPL ruleset etc.). The Event Processing
Manager is responsible to send the rulesets to the appropriate
DCEP Agents through secure communication channels (i.e.
SSH).

Next, the main logic and the decomposition procedure of
the translation algorithm are given in pseudo code (Listing 4).
For the sake of brevity the implementation of various trivial,
auxiliary subroutines used in pseudocode are omitted. Their
functioning is easily deduced from their name (e.g. Get Level
for acquiring the monitoring level of a node). The algorithm
takes the target SRL as input. The outputs of the algorithm
are the decomposition graph as well as various associative
arrays correlating trigger events to actions, sensors to their
targets and EPL rules to monitoring levels. Obviously the size
and complexity of the SRL model influence the performance
of the translation algorithm. However, since SRL translation
to EPL rules occurs at multi-cloud application bootstrap and
only when the application is remodelled, the performance of
the algorithm is considered a minor issue.
C. An illustrative example

To clarify the algorithm, we apply it to the SRL example
given in Listing 2. The algorithm generates the decomposition
graph as depicted in Figure 6, which is used to create the

CPUAvgMetricBEPAnd
AND [L3]

CPUAvgMetricNFEAll
- [L3]

CPUAvgMetricNFEAny
- [L3]

CPUAvgMetricConditionAll
> 50.0 ALL [L3]

CPUAvgMetricConditionAny
> 80.0 ANY [L3]

CPUAverage
MEAN [L1/L3]

CPUUsage
- [L1]

Win: 1min Sched: 1min
Qtfr: ANY Task: Wiki

Win: 5min Sched: 1min
Qtfr: ALL Target: Wiki

Win: n.a. Sched: 1sec
Qtfr: ALL Task: Wiki

Sensor: CPUSensor
Sched: 1sec Task: Wiki

Event or Metric
Operator [Level]

Decomposition
Relation

Metric parameters
wrt parent-child
decomposition

Window
Schedule
Quantifier
Task

Fig. 6: Decomposition graph of the example

event streams and the EPL rules that will form the monitoring
topology of the multi-cloud application. The decomposition
process is as following.

• Retrieve scalability rules from SRL model: CPUScala-
bilityRule

• Extract trigger events: CPUAvgMetricBEPAnd
• Extract corresponding scaling actions: HorizontalScaling-

Wiki
• Save into Event-to-Action map, including affected task:

[CPUAvgMetricBEPAnd, HorizontalScalingWiki, Wiki]
• Add trigger event as decomposition graph root: CPUAvg-

MetricBEPAnd
• Acquire roots grouping and update node info: 3rd level
• Decompose root event into simple events, if composite:

CPUAvgMetricBEPAnd is a binary event pattern, i.e. it is
composite, therefore decomposition is needed

– Get composition operator: AND
– Get constituent events (left, right): CPUAvgMetricN-

FEAll, CPUAvgMetricNFEAny
– Add constituent events in decomposition graph as

CPUAvgMetricBEPAnds children
– Acquire children groupings and update nodes info:

again 3rd level
• Recursively decompose children nodes, if compos-

ite: CPUAvgMetricNFEAll and CPUAvgMetricNFEAny
events are both non-functional event, i.e. simple events

• Get the metric condition of each simple event and add
them as (sole) children under the corresponding events:
CPUAvgMetricConditionAll and CPUAvgMetricConditio-
nAny

• For metric conditions:
– Get metric conditions’ operators and thresholds and

update nodes info: > 50.0, > 80.0
– Get metric conditions’ metrics: CPUAverage for both

metric conditions

– Add constituent metric into decomposition graph as
metric condition nodes child. Both metric condition
nodes have the same child: CPUAverage

– Acquire child grouping and update child node info:
3rd level

– Get metric parameters (window, schedule, related
task and quantifier) for metric conditions and update
decomposition relations (i.e. vertices from parent to
children) info: Win5Min Schedule1Min ALL Wiki and
Win1Min Schedule1Min ANY Wiki

– Recursive decomposition of child metric, if compos-
ite: CPUAverage is composite, therefore decomposi-
tion is required:
⇤ Get composition operator / formula: MEAN
⇤ Get constituent metrics: CPUUsage
⇤ Add constituent metric in decomposition graph as

CPUAverage’s child
⇤ Acquire child grouping and update node info:

1st level
⇤ Get metric parameters (schedule, quantifier and

related application component) for metric, from
corresponding metric context and update decom-
position relation info: Schedule1Sec ALL Wiki

– Recursive decomposition of new child metric: CPU-
Usage is a raw metric, therefore no further decom-
position is possible

– Get the corresponding monitor, sensor, interval and
target and update the node info: CPUSensor, Inter-
val1Seconds, Wiki

– Save sensor and target pair in Sensor-to-Target map,
including interval parameters: [CPUSensor, Wiki, In-
terval1Seconds]. At this point decomposition graph
is as depicted in Figure 6.

– Generate Event Topics by traversing decom-
position graph and update graph nodes with
the event topic names. For example, for the
CPUAvgMetricBEPAnd node an event topic named
L3 CPUAvgMetricBEPAnd will be created in third
level event broker, where the corresponding events
will be published.

– Generate EPL rules by traversing decomposition
graph. For each graph node an EPL rule must be gen-
erated (except for simple events or metric conditions
bound to simple events). The generated rules will be
stored in EPL Rule-to-Level map. For example the
CPUAverage and its context CPUAvgMetricContex-
tAll are represented in EPL as Listing 5 shows.

Listing 5: CPU Average in EPL
i n s e r t i n t o CPUAverageAll (m e t r i c V a l u e ,

t a r g e t , l e v e l , t imes t amp)
s e l e c t

avg (m e t r i c V a l u e) a s m e t r i c V a l u e ,
t a r g e t a s t a r g e t ,
3 a s l e v e l ,
c u r r e n t t i m e s t a m p () a s t imes t amp

from CPUUsage# t i me (5 min)

o u t p u t l a s t e v e r y 1 min

VI. RELATED WORK

This section will discuss related work in i) the area of
monitoring systems and ii) the area of distributed complex
event processing.

A. Monitoring

Traditional monitoring tools like Ganglia11 or Nagios12

are typically used to monitor static or slowly changing in-
frastructures warranting manual configuration. However, in
a rapidly changing environment as given by the elasticity
and dynamic of Cloud Computing and adaptive systems, the
manual configuration is infeasible.

Most cloud providers offer there own proprietary monitor-
ing solutions. Amazon e.g. offers CloudWatch13 to monitor
infrastructure and applications deployed on their premises.
Similarly, Ceilometer14 provides a monitoring solution for
Openstack15 based clouds. However, relying on cloud provider
specific monitoring solutions leads to vendor lock-in and
is impossible in cross-cloud scenarios, where a user wants
to allocate resources across multiple cloud providers to e.g.
increase fault tolerance.

The works by [6], [14], [15] provide a taxonomy and
overview across existing monitoring solutions.

[16] proposes a monitoring architecture able to combine
multiple (external) monitoring sources using adapters and a
query language able to access those sources at the same time,
however requiring the user to handle the monitoring itself.
JCatascopia [17] proposes a distributed architecture using mul-
tiple monitoring servers and agents that use a variation of the
publish-subscribe messaging pattern to configure the monitor-
ing demand using a central database for storage and evaluation.
In contrast, we use a hierarchical, distributed event processing
scheme not requiring central storage. Varanus [18] achieves
in-situ monitoring by relying on a peer-to-peer network of
monitoring agents and an event based programming model to
evaluate the data stored in-memory across multiple selected
nodes. There approach still warrants manual configuration of
the agents and programming of the aggregation logic which
we overcome by using a model-driven approach.

Cloudify16, a cloud orchestration tool based on the TOSCA
modelling language also allows the user to express monitoring
demand and scalability actions. In contrast to our approach
however, the monitoring is statically defined on infrastructure
level during the design phase and can not be changed during
runtime.

11http://ganglia.sourceforge.net
12https://www.nagios.org
13https://aws.amazon.com/cloudwatch/
14https://docs.openstack.org/ceilometer
15https://www.openstack.org/
16https://cloudify.co/

B. Distributed Complex Event Processing
Monitoring and efficiently analysing data for recognising the

need for application placement reconfigurations correspond to
challenging tasks that require sophisticated tools and methods.
Event processing is a method of tracking and analysing
streams of data about application-related or infrastructural-
related health status occurrences that happen (i.e. events), and
issuing some alerts based on them. Complex event processing
(CEP), corresponds to event processing that combines data
for inferring patterns of events that may suggest more com-
plicated circumstances [19]. CEP systems [20] are valuable
in digesting and processing a multitude of event streams.
Their big advantage is the ability to collect information from
various heterogeneous data sources and filter, aggregate or
combine them over defined periods of time (i.e. time win-
dows). The idea of using CEP for monitoring infrastructures
and applications has been applied with respect to two types
of architectural approaches: centralised and distributed. The
centralised CEP architecture is based on a single CEP engine
which processes all monitored data and detects patterns by
using rules. On the other hand, the distributed CEP architecture
consists of a set of cooperating CEP engines that exchange
messages and are able to more efficiently detect event patterns
by considering rules that differ according to the proximity
of the processing engine to the event source. In existing
centralised CEP approaches [21], [22], [23] huge bandwidth
and computational capabilities are required and usually they
lack robustness and scalability because of the single point of
failure when processing vast amounts of health status data. On
the other hand, the distributed CEP architectures such as the
parallel CEP processing architecture of Hirzels [24] and the
work of Ku et al. [25], present better performance in terms
of data processing throughput, due to workload sharing across
multiple CEP engines, and establish better scalability results
without any risk of single point of failure. Nevertheless, all
these cases are bound to the use of simple infrastructures (i.e.
only private resources or only cloud resources used from a
single provider), a fact that limits, by default, the capability
to detect reconfiguration opportunities in real, complex infras-
tructures that the modern organisations nowadays adopt.

VII. FUTURE WORK AND CONCLUSION

We have presented a MDE based approach that uses a model
to allow a user to express i) the monitoring demand related
to his application/workload, ii) derive aggregated metrics by
expressing mathematical operations on the gathered monitor-
ing data, iii) trigger and process events by placing conditions
on the gathered or derived data and finally iv) react on events
by executing scaling actions. We accompany the model with
a monitoring orchestration framework capable of enacting the
expressed monitoring demand in a cross-cloud environment
and a DCEP framework able to process the gathered data in
a distributed manner.

While we have yet to thoroughly evaluate our approach, we
can show the viability of our approach taking the CPUAverage
metric as an example. Transmitting the CPU usage from the

resources to a central database would lead to the transmission
of one message*instance/second as this represents the schedule
at which it is measured. Calculating the average directly on
each virtual machine and only transmitting the result reduces
the amount of messages to message*instances/minute thus
reducing the traffic significantly. While this comes at the cost
of an increased overhead on each node, the scalability of our
approach should outweigh this.

There are several points for improvement in future work.
Currently, our monitoring approach is mainly focused on
Infrastructure as a Service (IaaS) clouds, as we rely on access
to the underlying host to gather data. While we are able to
support other types of deployments (e.g. PaaS) by running a
global monitoring agent where applications running in such
an environment can report monitoring data to, this counteracts
our distributed approach. Generally, it would be interesting
to rely on the mechanisms offered by the providers in such
cases. One approach could e.g. transform monitoring demands
and scalability rules to the provider-specific languages, while
more complex expressions are evaluated by our framework.
With respect to the DCEP framework, we currently rely on
the user to express the event level (cf. Figure 5) at which
an expression is computed. This static assignment could be
improved by relying on an algorithm automatically deriving
the optimal placement of the computation based on e.g.
the network costs/latency or the workload/utilisation on the
allocated resources.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the EC’s Framework Programme HORIZON 2020 under
grant agreement number 731664 (MELODIC), 732667 (RE-
CAP) and 732258 (CloudPerfect).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica et al., “Above the
clouds: A berkeley view of cloud computing,” Tech. Rep. UCB/EECS-
2009-28, University of California, Berkeley, Tech. Rep., 2009.

[2] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B. Hauser, and
J. Domaschka, “Cloud orchestration features: Are tools fit for purpose?”
in UCC, 2015.

[3] D. Palma and T. Spatzier, “Topology and orchestration specification for
cloud applications (tosca),” OASIS, Tech. Rep, 2013.

[4] A. Rossini, K. Kritikos, N. Nikolov, J. Domaschka, F. Griesinger,
D. Seybold, D. Romero, M. Orzechowski, G. Kapitsaki, and
A. Achilleos, “The cloud application modelling and execution language
(camel),” 2017.

[5] B. Jacob, R. Lanyon-Hogg, D. Nadgir, and A. Yassin, A Practical Guide
to the IBM Autonomic Computing Toolkit, ser. IBM redbooks. IBM
Corporation, International Technical Support Organization, 2004.

[6] J. S. Ward and A. Barker, “Observing the clouds: a survey and taxonomy
of cloud monitoring,” Journal of Cloud Computing, vol. 3, no. 1, p. 24,
2014.

[7] D. Baur, S. Wesner, and J. Domaschka, “Towards a model-based
execution-ware for deploying multi-cloud applications,” in European
Conference on Service-Oriented and Cloud Computing. Springer, 2014,
pp. 124–138.

[8] J. Domaschka, D. Baur, D. Seybold, and F. Griesinger, “Cloudiator:
a cross-cloud, multi-tenant deployment and runtime engine,” in 9th
Symposium and Summer School on Service-Oriented Computing, 2015.

[9] D. Baur and J. Domaschka, “Experiences from building a cross-cloud
orchestration tool,” in 3rd Workshop on CrossCloud Infrastructures &
Platforms, 2016.

[10] D. Baur, D. Seybold, F. Griesinger, H. Masata, and J. Domaschka,
“A provider-agnostic approach to multi-cloud orchestration using a
constraint language,” in 2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), May 2018, pp. 173–
182.

[11] Object Management Group (OMG), “Object constraint language speci-
fication, version 2.4,” 2014.

[12] K. Kritikos, J. Domaschka, and A. Rossini, “Srl: A scalability rule
language for multi-cloud environments,” in 6th International Conference
on Cloud Computing Technology and Science, 2014.

[13] V. Stefanidis, Y. Verginadis, I. Patiniotakis, and G. Mentzas, “Dis-
tributed complex event processing in multiclouds,” in Proceedings of the
7th European Conference on Service-Oriented and Cloud Computing,
September 2018.

[14] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring:
A survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013.

[15] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P. P. Jayaraman,
S. U. Khan, A. Guabtni, and V. Bhatnagar, “An overview of the
commercial cloud monitoring tools: research dimensions, design issues,
and state-of-the-art,” Computing, vol. 97, no. 4, pp. 357–377, Apr
2015. [Online]. Available: https://doi.org/10.1007/s00607-014-0398-5

[16] B. König, J. A. Calero, and J. Kirschnick, “Elastic monitoring framework
for cloud infrastructures,” IET Communications, vol. 6, no. 10, pp. 1306–
1315, 2012.

[17] D. Trihinas, G. Pallis, and M. Dikaiakos, “Monitoring elastically adap-
tive multi-cloud services,” IEEE Transactions on Cloud Computing, pp.
1–1, 2015.

[18] J. S. Ward and A. Barker, “Cloud cover: monitoring large-scale clouds
with varanus,” Journal of Cloud Computing, vol. 4, no. 1, p. 16, 2015.

[19] O. Etzion, P. Niblett, and D. C. Luckham, Event processing in action.
Manning Greenwich, 2011.

[20] W. A. Higashino, “Complex event processing as a service in multi-cloud
environments,” 2016.

[21] G. Cugola and A. Margara, “Processing flows of information: From data
stream to complex event processing,” ACM Computing Surveys (CSUR),
vol. 44, no. 3, p. 15, 2012.

[22] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “Approaching the internet
of things through integrating soa and complex event processing,” in
Handbook of research on demand-driven web services: Theory, tech-
nologies, and applications. IGI Global, 2014, pp. 304–323.

[23] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar,
“Application-level performance monitoring of cloud services based on
the complex event processing paradigm,” in Service-Oriented Computing
and Applications (SOCA), 2012 5th IEEE International Conference on.
IEEE, 2012, pp. 1–8.

[24] M. Hirzel, “Partition and compose: parallel complex event processing,”
in Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems. ACM, 2012, pp. 191–200.

[25] T. Ku, Y. Zhu, K. Hu, and L. Nan, “A novel distributed complex event
processing for rfid application,” in Convergence and Hybrid Information
Technology, 2008. ICCIT’08. Third International Conference on, vol. 1.
IEEE, 2008, pp. 1113–1117.

