A Provider-agnostic Approach
to Multi-cloud Orchestration using a Constraint Language

Daniel Baur, Daniel Seybold, Frank Griesinger, Hynek Masata and Joérg Domaschka

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.
10.1109/CCGRID.2018.00032

A Provider-agnostic Approach to Multi-cloud
Orchestration using a Constraint Language

Daniel Baur, Daniel Seybold, Frank Griesinger
Inst. for Information Resource Management
Ulm University, Germany
{firstname.lastname } @uni-ulm.de

Abstract—Cloud computing and its computing as an utility
paradigm provides on-demand resources allowing the seamless
adaptation of applications to fluctuating demands. While the
Cloud’s ongoing commercialisation has lead to a vast provider
landscape, vendor lock-in is still a major hindrance. Recent
outages demonstrate that relying exclusively on one provider is
not sufficient. While existing cloud orchestration tools promise
to solve the problems by supporting deployments across multiple
cloud providers, they typically rely on provider dependent models
forcing prior knowledge of offers and obstructing flexibility in
case of errors. We propose a cloud provider-agnostic application
and resource description using a constraint language. It allows
users to express resource requirements of an application without
prior knowledge of existing offers. Additionally, we propose a
discovery service automatically collecting available offers. We
combine this with a matchmaking algorithm representing the
discovery model and the user-given constraints in a constraint
satisfaction problem (CSP) that is then solved. Finally, we ma-
nipulate this discovery model during runtime to react on errors.
Our evaluation shows that using a constraint-based language is
a feasible approach to the provider selection problem, and that
it helps to overcome vendor lock-in.

I. INTRODUCTION

Cloud computing and its paradigm of computing as an
utility [1] provides on-demand compute, storage, and network
resources to its users. This enables users to tailor the consumed
resources specifically to the current application requirements
and thus, to horizontally (or vertically) scale the application
in times of higher or lower demand respectively. Making full
use of these advantages requires automation, and hence an
adaptive system.

The ongoing commercialisation of cloud computing has led
to a vast offer landscape making it increasingly difficult to
select a matching offer for an application. The reluctance of
cloud providers to implement existing standards like OCCI [2]
further aggravates this fact, as it causes a massive vendor lock-
in once a particular provider has been chosen. This situation is
worsened as current failures of cloud providers [3] have shown
that relying exclusively on a single cloud provider may harm
reliability and availability. It is therefore desirable to achieve
architectures allowing the use of multiple cloud providers at
the same time increasing application resilience and avoiding
vendor lock-in [4].

These needs led to the raise of cloud orchestration tools
(COTs) [5], that promise to overcome above problems by

Hynek Masata
CE-Traffic, a.s.
Praha, Czech Republic
hynek.masata@ce-traffic.com

Jorg Domaschka
Inst. for Information Resource Management
Ulm University, Germany
joerg.domaschka@uni-ulm.de

allowing the parallel use of multiple cloud providers. More-
over, they promise to realise an adaptive system automatically
managing the deployment and the runtime adaptation of the
application. Yet, existing tools require the user to define cloud
provider-specific identifiers when modelling (i.e. describing)
the application resource requirements, (i) forcing the user to
have detailed knowledge about the provider landscape and
(ii) locking the application to the initially selected provider
preventing re-selection in case of failures.

To overcome these problems we present Cloudiator [6]
that comes with a cloud-agnostic modelling language. Based
on our agnostic model, this paper provides the following
contributions:

e we present a constraint language based approach to

achieve a provider-agnostic requirement language

« we provide the necessary features, architecture and im-

plementation to deploy a provider-agnostic model

« we provide an evaluation, showing that our approach is

feasible

The remainder of this paper is structured as follows: Sec-
tion II discusses the concept of a provider-agnostic model in
detail by giving the problem statement and introducing our
approach. Sections III - VI then describe our approach in more
detail. Afterwards Section VII shows how we implemented
the approach in our framework, before Section VIII evaluates
our approach. Finally, we discuss related work in Section IX
before Section X concludes the paper.

II. PROVIDER-AGNOSTIC APPLICATION MODEL

For the remainder of the paper we assume the following
use case. A (cloud) user wants to deploy an application that
consists of several independent components using on-demand
(compute) resources. Those resources are offered in the form
of nodes (e.g. virtual machines) by (cloud) providers. Each
component is deployable on a set of nodes, while the number
of nodes may vary during the application’s runtime. The
deployment will start with a minimum set of nodes for each
component, that will be increased during runtime by horizontal
scaling.

A description of such an application with respect to COTs is
typically separated into two different domains: one describing
the steps necessary to deploy the individual components of
the application on arbitrary nodes (e.g. by providing scripts)

and one describing the resource demands and/or constraints
that apply for this node. However, to achieve a provider-
agnostic resource description one needs to use a declarative
approach to express resource demands on common properties
(e.g. number of cores, amount of RAM) offered by multiple
cloud providers, instead of using an imperative approach that
explicitly references provider specific identifiers. In contrast to
a provider dependent model, a provider-agnostic resource de-
scription offers two main advantages: i) it eases the description
itself, as the modeller does not need to know cloud specific
details and existing offers, but ii) also allows changing the
provider during runtime if e.g. a provider suffers an outage.

The importance of both aspects becomes clear, when taking
a closer look at the related problems. Data available at Cloud-
Harmony' suggests that over 20000 different configurations
for nodes exists (c¢f. Section VIII). As we assume that a user
not only wants to select one node per component but a set of
nodes across multiple cloud providers, the number of possible
configurations is the permutation (unordered, repeatable) of
all available resource offers that is given by % with 7
being the number of resources to choose from, and n being
the number of configurations offered by providers. Even with a
low number of nodes i = 3 this leads to ~ 1.3 x 10*2 possible
configurations for the CloudHarmony data, rendering a manual
selection impossible. With respect to error handling, recent
outages of AWS US-EAST-1 region [7] and Google Compute
Engine [8] showed that relying on a single region or cloud
provider may have serious impacts on an application’s avail-
ability. Provider-dependent application models, however, rely
on provider specific identifiers for the resource description. If
one of these offers is no longer available, e.g. due to a failure
of the provider, the description is no longer deployable. Using
a provider-agnostic model, only the current resource selection
becomes invalid, but can be replaced by a new selection no
longer taking the failed provider into consideration.

Using this declarative approach leads to a resource selection
problem. Typically, a node at a cloud provider is defined by
i) a hardware flavour defining its computational resources,
ii) a (virtual) location defining the datacenter the node will
be placed in and iii) an image defining its basic setup
like operating system. Each of these node building blocks
provides several properties that will later define the started
node. Let H = {ap,,...,an,} be the attributes defining a
hardware flavour that e.g. include the amount of cores or RAM,
I={ay,,...,as,} the attributes that define an image (e.g. the
operating system) and L = {ar,,...,ar,} be the attributes
that define a location (e.g. the city the data centre is placed
in). One offer given by a cloud provider is then defined by
the tuple < H,I,L,p > where H, I, L defines the selected
hardware, image and location and p defines the price of this
combination. A node n is then a selection of one of these
offers, depicted by the union of the attributes HUIUL . As one
may select multiple nodes, a placement decision is given by a
node configuration representing a set of nodes N = nyq, ..., n;.

Ihttps://cloudharmony.com

The resource demand of the user is given by a set of constraints
C = ¢y, ..., c; that target the different attributes of a node. A
valid placement decision is therefore given by a selected set
of nodes N where each node n € N fulfils the constraints
imposed by the user.

Achieving a provider-agnostic resource description thus
needs to solve four main challenges: i) a discovery mecha-
nism collecting possible configurations from providers , ii) a
declarative language, allowing the user to express his resource
demand independent from provider specific details, iii) a
resource selection mechanism matching the user’s demands to
the available offers and iv) a mechanism reacting on changes
in the provider landscape.

We therefore propose a discovery mechanism (cf. Sec-
tion III) that automatically populates a discovery model with
provider information retrieved from the APIs of different
providers. Additionally, we provide a constraint-language
based declarative resource description (cf. Section IV), allow-
ing the user to express demands for a set of resources by
referencing attributes of the discovery model. Our matchmak-
ing mechanism (cf. Section V) then transforms the discovery
model and the user expressed constraints into a CSP and
solves the generated problem. Finally, we show how we can
implement error handling by modifying our discovery model
during runtime (cf. Section VI).

III. DISCOVERY

The task of the discovery process is to incarnate the dis-
covery model, represented by the discovery package of our
class model in Figure 1. The package features three main
entities defining a computing resource: Location, Image and
Hardware. In addition, it holds a Cloud entity representing a
cloud provider and a Price entity for storing the prices of the
offers.

Discovery.

+ cloud

Cloud
i + cloudType : CloudType

1
1+ cloud

Price

+hardware + prices

+ price : float

1

+ hardware N
J Y

+ locations | 1 + « +parent @ 4
+ location|

+nodes | »

1

+location

. +image
+ locations ‘| -

+ operatingSystem

Fig. 1: Cloudiator Discovery Model

A Location represents (virtual) locations offered by a
provider. They are stored in a hierarchical relationship with
the scopes host, (availability) zone and region. Images rep-
resent the basic setup of a node, e.g. the operating system.
Hardware (flavours) define the computational resources of a
node by number of cores, disk space and RAM.

The compositions between Cloud, Location, Image and
Hardware represent an is offered by relation, meaning that
those offers are provided by this provider. The associations be-
tween Location, Image and Hardware represent an is available
in relation depicting that the Image respectively the Hardware
are solely available in those locations. This caters for the fact
that especially in private clouds some hardware or images may
be restricted to a specific location.

The discovery package also contains a notion of price. Our
model defines the price as a function of Hardware, Image and
Location, as the price for a specific hardware configuration
varies based on location and image (i.e. license fees apply).
We currently normalise the prices for an one hour interval in
USD. More complex pricing models are left for future work.

While our application model is provider agnostic, there may
be users that still want to explicitly reference a specific offer.
For this purpose, the model has two identifier fields: id and
providerld. The providerld is the original identifier issued by
the provider. As this identifier might not be unique across
multiple providers or even regions the id field contains a stable,
globally unique identifier.

Collecting the necessary information imposes some chal-
lenges: i) the information is subject to change as cloud
providers may update their offers, ii) while the information is
publicly available for public clouds, it is not for private clouds,
iii) the eligible offers may differ based on the user. To cope
with those challenges, we automatically collect the information
directly from the providers’ APIs. This ensures up-to-dateness
and correctness of data, while ensuring that the offers are
usable by the authenticated user. As the information provided
by providers is subject to semantic and syntactic differences
we use our abstraction layer to harmonise the different data
formats (cf. Section VII).

As the information provided by APIs may not be sufficient
and lack important meta-data, we use other sources to enrich
the data. For public cloud providers the service CloudHarmony
provides data like geographical locations and prices. As such
information is not available for private cloud providers, we
either offer the user to provide the meta-data as tags directly
within the cloud middleware or to manually edit the discovered
offers.

The general collection flow consists of the following steps:
(1) user creates a new cloud by providing his username,
credentials and optionally an endpoint and a configuration,
(2) the discovery agent collects all offers visible by the user
and (3) if necessary the data is enriched by meta-data. Steps
(2) and (3) are repeated periodically.

Collection Function | Description

Collection.sum(a) Represents the sum of all values of the given

attribute a. Only valid for numerical properties.

Collection.avg(a) Represents the average of all values of the given

attribute a. Only valid for numerical properties.

Collection.max(a) Represents the maximum value of the given at-

tribute a. Only valid for numerical properties.

Collection.min(a) Represents the minimum value of the given at-

tribute a. Only valid for numerical properties.

Collection.count(c) Represents the number of elements that satisfy

the constraint c.

TABLE I: Collection Functions

IV. RESOURCE DESCRIPTION

We use a declarative approach to define the resource de-
scription, using a constraint language to specify the require-
ments as e.g. proposed by [9] on a per component basis. The
constraint language is translated into a CSP that is solved in
the matchmaking process (cf. Section V).

The CSP is defined by a set of constraints Cy, Cs, ..., C), and
a set of variables X3, Xo, ..., X,, each having a Domain D;
defining possible values for the respective variable. A solution
is an assignment of values v; to all variables X; := v;, ... under
v; € D; that satisfies all constraints. A constraint consists of
a variable and an expression defining rules the variable needs
to fulfil.

We represent all possible variables that can be used within
constraints by the class’ attributes of our discovery model
depicted in Figure 1. For example the attribute core of the
Hardware class will be represented by variable allowing the
user to express constraints with respect to required cores.
The types of the variables are given by the type of their
corresponding attribute. They can be enumerations, strings,
numeric values, boolean values, collections and collection
functions (cf. Table I).

As expression we support i) arithmetic expressions using the
operators +, —, *, /, ii) logical expressions using the operators
= #, >,<, <, >, A\, V, = and iii) custom expressions to
handle collection variables (cf. Table II). Those expression also
allow the user to express an optimisation criteria. We currently
allow only one optimisation criteria and leave multi-objective
optimisation for future work.

For example the requirement a node with at least 4 cores
and 2048 MB RAM can be expressed with the constraints
node.cores > 4 and node.mbRam > 2048.

To allow the user to express constraints targeting the in-
terplay of multiple nodes we explicitly model the Component
to Node relationship as 1:n. As discussed earlier, we intro-
duce collection specific functions and expressions allowing
to express constraints for this relationship. Listing 1 provides
example constraints targeting a component.

Listing 1: Constraint Example

{
"name": "StreamingComponent",
"requirements": |

// one node needs to be in Germany
"nodes.exists (location.country = 'de')"

Collection Expression
Collection.forAll(c)

Description

All elements in the collection are subject to the
expressed constraint c.

At least one element exists in the collection
that satisfies the constraint c.

Enforces uniqueness of all value assignments
to the attribute a.

Enforces all value assignments to attribute a to
be equal.

Maximises the expression e.

Minimise the expression e.

TABLE II: Collection Expressions

T

Abstraction Layer

Collection.exists(c)

Collection.unique(a)

Collection.allEqual(a)

Maximise(e)
Minimise(e)

> mnsomation O
............. » Reference

Constraint Based
Resource Description

Discovery Model

Classes e : Objects

Attribute
Relationships

|Attributes

Class
Relationships

| Values

| Constraints |

Variables

Constraint Satisfaction Problem

| Domains |

Fig. 2: Matchmaking Process

// at least two nodes need to have four or more cores

"nodes.count(hardware.cores >= 4) >= 2",

// all nodes need to be in a different location

"nodes.unique (location)",

// all nodes need to have at least two cores

"nodes . forAll (hardware.cores >= 2)",

// all nodes need to have at least 1024 MB of RAM

"nodes . forAll (hardware.ram >= 1024)",

// if a node has four or more cores its RAM needs to be
larger or equal 4096

"nodes . forAll (hardware.cores > 4 —> hardware.ram >
4096)",

// image needs to be Ubuntu 16.04 64—bit

"nodes . forAll (image.os.osFamily = OSFamily: :UBUNTU) ",
"nodes . forAll (image.os.version = "16.04")",
"nodes . forAll (image.os.osArchitecture = OSArch: :AMD64)" |

// we need a total amount of at least 15 cores
"nodes .sum(hardware.cores) >= 15"
// minimise the total costs of all nodes

"minimise (nodes.sum(price))"

}

V. MATCHMAKING

The task of the matchmaking is to find a valid node
configuration, whenever i) a component is deployed or ii)
our autoscaling engine or the user triggers a scale-in or out
adding/removing a node or iii) we need to restore a node
failure (c¢f. Section VI).

As described in Section II our problem is to find a node
configuration N representing a set of nodes N = ny,...,n,.
A valid node configuration and therefore a solution to the
matchmaking problem is a node configuration that fulfils the
CSP C consisting of multiple constraints ¢, ¢; A ... A ¢;. The
optimal solution to the CSP is the solution that minimises resp.
maximises the objective function given by the user.

To be able to solve the CSP, we translate the user given
constraints (c¢f. Section IV) and the discovery model (cf.
Section III) to a CSP that is then solved. For creating the CSP
we follow the transformation process depicted in Figure 2:
i) we represent the class attributes of the discovery model
as variables in the CSP and use the ii) values assigned
to the attributes in the object model as domains for those
variables. Furthermore, we iii) represent the class and attribute
relationships as additional constraints before iv) translating the
user defined constraints. The following sections, will depict
this transformation process in more detail.

A. Class Attributes

As described in Section IV we model every class attribute
as a variable of the CSP. As a node configuration contains %
node(s) where i is a natural number larger than 0 (i € N*)
the number of variables depends on the size of i.

With A being the set of all attributes a, we use the variable
V,,; to represent attribute a of the i-th node. As an example the
variable vcores,1 Will represent the attribute cores of the first
node. A node n; is represented by the union of all variables
for each attribute n; = |J,c 4 Va,i-

As we do not know how many nodes are needed to fulfil the
constraints imposed by the user, ¢ is unknown. We therefore
model it as parameter to the CSP generation logic.

B. Attribute Domain and Class structure

Let D, be the domain of possible values for the attribute a.
Let d, € D, be a possible value for a. Then the domain
for each attribute D, is given by all possible values for
the attribute a that were discovered during the discovery
process (cf. Section III). If the discovery model e.g. consists
of two hardware objects (some attributes are left out for
brevity) Hardware{id: t2.xlarge, cores: 4, ram: 16000} and
Hardware{id: t2.micro, cores: 1, ram: 1000} the domain for
the cores attribute is D.ores = {1,4} and the domain for the
ram attribute is Do, = {1000, 16000}.

With a; being an attribute of the class’ sets of attributes C1,
domains for the attributes of the same class are interdependent.
An assignment of a value to one of the attributes automatically
constraints the domain of other class attributes, as the discov-
ery model dictates possible value combinations. In the above
example, an assignment to the cores attribute cores := 4 will
restrict the domain of the ram attribute to D,.4,, = 16000 as
the discovery model only allows this combination of the two
attributes. The same restrictions apply vice versa.

To avoid having to model constraints for the cross product
of all attributes of a class, we either use the globally unique
id attribute of the class or an artificially generated object
identifier to model the constraints with respect to each other
attribute of the same class. This is done by expressing an if
then relationship for every possible value of the id attribute
with every other attribute of the class: Vd,y € D;q Vao €
Cl:id =dijy = aq = da,, where d,_, is the only value
of the domain D,_, that occurs with the given id. As the id
is unique the domain is guaranteed to hold only one value.

In the above example the Hardware{id: t2.xlarge, cores: 4,
ram: 16000} object would be represented by two constraints:
id = t2.xlarge = cores = 4 and id = t2.xlarge —
ram = 16000

As a is represented by multiple variables {v,,, 1, ..., Va,,,i }
for ¢ nodes (cf. Section V-A), this constraint is created for
every variable representing the attribute.

C. Relationship between classes

The same restrictions that are given by the structure inside
a class also apply to the relationships between classes. In
our case, we have to differentiate between 1:N (e.g. Cloud to
Hardware) and N:M relationships (e.g. Hardware to Location).

For 1:N relationships we can apply the same ruleset as
for attributes within a class, as a 1:N relationship is gen-
erally depicted by referencing the id of the I-side as an
attribute on the N-side. Taking Hardware{id: t2.xlarge, cloud:
aws.ec2} referencing the Cloud{id: aws-ec2, type: PUBLIC}
as an example, we will model the constraints idpqrqware =
t2xlarge = idjouq = aws.ec2.

To represent N:M relationships we again use the id-
attributes of both classes to represent the relationship. In
contrast to the attributes of a class, selecting the value of
one id attribute, will yield multiple possible values for the id
attribute of the relating class. For a relation between classes
A, B we therefore need to calculate the dependency domains
Dids,didA C Dq,, that depicts the domain of the id variable of
class B (idg) under the condition that the id variable of class
A is set to value d;q, € D;q, or vice versa. We then express
the constraints Vd;q, € Diq,:ida = diq, = 1tdp €
Didg,d;a A

Taking the example Hardware{id: t2.xlarge, location: {eu-
west-1, eu-central-1}} selecting Hardware as class A and
Location as class B we would calculate the dependency do-
main Djq,,..,;0..t2.0large = {eU-west-1, eu-central-1}. Using
this domain we would express the constraint: ¢dqrdware =
t2.xlarge = idpocation € {eu—west—1, eu—central—1}.

Again, we apply the constraint to all variables representing
the id attribute (cf. Section V-A).

D. User given constraints

For expressing the user given input we have to differentiate
between i) collection functions that will be represented as
additional variables in the CSP and ii) collection expressions
that will be expressed as constraints applying to the variables
of the CSP. The translation is depicted in detail in Table III
and Table IV, with n; being the ¢-th node.

E. Optimising the generated CSP

As a final step before solving the CSP we apply two
optimisation rules. We i) filter variables and constraints based
on their usage in the constraints given by the user and ii)
we use the forAll constraints given by the user to proactively
filter the domains. For step i) we check for each attribute
of the classes if it is contained in the constraints imposed
by the user. If an attribute is not contained, we remove all

Collection Function

Description

Collection.sum(a)

i
Vsum,a = Z Va,x
x=1

- T
Collection.avg(a) Vavg,a = 5 Vsum,a
Collection.max(a) Umaz,a = Max(Va,1, .-, Va,i)
Collection.min(a) Umin,a = Min(Va,1, ..., Va,i)
i
Vecount,c = Z C(n»'f)

Collection.count(c)

x=1
(n)= 0, if ny does not fulfil constraint ¢
¢ 1, if n, fulfils constraint ¢

TABLE III: Collection functions in the generated CSP

Collection Expression

Description

Collection.forAll(c)

Call = Cny N ... NCny
true, if n; fulfils ¢

Cn; = . .
" false, if n; does not fulfil constraint ¢

i

Collection.exists(c)

Cexists = Cny V ... V Cn;

Collection.unique(a)

_ Jtrue,i=1

Cy = .
Va,1 7£ Va,2; .-+ Va,i—1 7é Va,ir > 1

Collection.allEqual(a)

true, i =1
Ce = .
Va,1 = Va2, Va,i—1 = Va,i» © > 1

Maximise(e)

mazx(e)

Minimise(e)

min(e)

TABLE IV: Collection expressions in the generated CSP

variables and constraints applying to this attribute. The only
exception being the id attribute as it is required for depicting
structure and relationship requirements and to later allocate
the node from the given provider. Within step ii) we filter the
object incarnation of each class (given by the discovery model)
by applying the forAll constraints individually, as discovery
objects not fulfilling them can never be part of a solution.

FE. Solving the generated CSP

While the resulting linear, integer optimisation problem
(ILP) is in general NP-hard, the complexity of the resulting
problem heavily depends on i) the discovery model (number of
different cloud providers, number of offers each cloud provider
has), ii) the number of nodes ¢ that are required and iii) the
constraints and optimisation function given by the user. A
problem that e.g. only uses forAll-constraints can be easily
solved by filtering offers and selecting the most optimal one,
while constraints that target the interplay of multiple nodes
(e.g. SUM) are harder to solve.

However, as discussed in the start of this section, our
matchmaking algorithm is called at specific points of time,
meaning we can make the assumptions that: i) during the
initial deployment, the user wants to find a solution that has the
least nodes possible, ii) when scaling, the user wants to add a
single node, and keep existing ones and iii) when restoring
failures, the user wants to replace the failed node while
keeping others. Points ii) and iii) are especially important, as
migrations of existing nodes are typically costly in multi-cloud
environments. We therefore have two independent problems
that need to be solved: i) we have to find a solution for the

initial node size and ii) we have to find a solution for node
sizes ¢, that reuses the previous solution found for ¢ — 1.

For solving the problem for the initial node size we rely on
two black-box CSP solving techniques. The first approach uses
activity-based search (ABS) [10]. The second approach uses
a best-fit approach (BF), that relies on wdeg [11] for variable
selection. For value selection this approach uses a heuristic that
calculates the average relation to the optimisation function.
For this calculation we rely on the fact that our variables are
related to each other either by belonging to the same class or
via class relationships. If D, , is the domain of the variable
Uopt t0 be optimised, and the variable selected by wdeg vViydeqg
has the domain D we can first calculate the dependency
domain Dvom,dedﬁg that only holds the values of D, , that
occur when vyqgeq is assigned to value d,,, deq € D
Afterwards, we calculate the average of these values, and
assign the maximum or minimum value (for maximisation
resp. minimisation). As an example we assume the variable
Veountry has the domain D, ... = DE, FR, and we want
to minimise the price. We would first collect all individual
prices for DE =5,3,2,6 and FR = 2,1, 3,2 and afterwards
calculate the average values DE = 4 and FFR = 2. In this
example, we would therefore assign the vcountry first to F.R
and then to DFE. In our approach, both algorithms serve a
different purpose. While the task of ABS is to find an optimal
solution as fast as possible, the task of the BF approach is to
find the best-possible solution within the given time limit. To
find a solution we therefore execute both algorithms in parallel.
If an optimal solution is found within a fixed time limit, we
use this solution, otherwise we use the better solution found.

If we already have an existing solution (e.g. during scale-out
or while restoring node failures), we reuse the existing solution
during the generation of the variables (cf. Section V-A) by
adding the possibility of making them constants if a solution
for them already exists. Afterwards, we rely again on ABS
to solve the remaining variables. This ensures, that already
started nodes are reused in subsequent solutions, and reduces
the execution time significantly (c¢f. Section VIII). This is
important if we assume that the user typically wants fast-
reaction during scale-out and node failures.

The resulting algorithm is depicted in Listing 2. The algo-
rithm starts with a node size of one and an empty solution set.
Then, until reaching the target node size, it firsts generates the
CSP for the current node size and tries to solve it directly using
ABS and BEF, selecting the best solution found. If no solution
is found, it will try this again with a node size increased by
one. However, if the solver could find a solution for the given
node size, subsequent calls will reuse the existing solution.

Vwdeg

Vwdeg *

VI. ERROR HANDLING / RECOVERY

Our error handling consists of three actions: i) a continuous
error detection cycle detecting failures of nodes and providers,
ii) a categorisation step that derives the necessary changes to
the discovery model (cf. Section III) and iii) an error mitigation
step that reschedules the failed nodes.

Listing 2: Matchmaking Algorithm

discoveryModel ,
solution

input: constraints , timeout
output :
begin
def csp
def nodeSize «+ 1

def solution, abs,

targetNodeSize ,

bf < EMPTY

while nodeSize <= targetNodeSize

csp < generateCSP(constraints , nodeSize)
if solution == EMPTY
parallel
bf < solveBF(csp, timeout)
abs < solveABS(csp, timeout)
end
solution < best(bf, abs)
else
csp <« generateCSP(constraints , nodeSize, solution)
solution < solveABS(csp, timeout)
end
nodeSize++
end
return solution
end

We assume that the application itself is modelled in a
fault tolerant way. Fault tolerance means that it can tolerate
failures of single nodes e.g. by specifying requirements (cf.
Section IV) that force the usage of multiple providers, regions
or availability zones.

A. Error Detection

To detect errors we rely on two points of interaction with
the cloud provider. First, our discovery process (cf. Section III)
will continuously query the APIs of the providers and report
errors that occur during this communication. Additionally,
whenever a new node is started at a provider we report
errors based on responses we receive. In addition, we use
a Node watchdog to detect unexpected state changes and
unresponsiveness of allocated nodes. We use this additional
watchdog to cater for the fact that the API of the provider
may become unresponsive without affecting already running
nodes.

B. Error Categorisation

We categorise the errors based on the error code and
message received by the provider. As the APIs are typically
web-based a categorisation based on typical http status codes
is useful. The different error types that we distinguish are
described in Table V. As syntax and semantics of provider
errors may differ, we use an abstraction layer (cf. Section VII)
to harmonise them.

C. Error Mitigation

For error mitigation we apply a baseline set of retry func-
tionality. Each idempotent request will be retried a config-
urable amount of times to eliminate short-lived problems. In
addition, a clean-up agent will delete orphaned nodes and
component instances. For errors where detailed information
exists, we apply the mitigation strategies based on the cate-
gorisation as depicted in Table V. The mitigation strategies

Error Type Description Mitigation

Authorisation the user’s credentials | remove provider, in-
are invalid or privi- | form user
leges are insufficient.

NotFound desired offer is not | remove the offer
available

InsufficientResources | the region can not pro- | remove region
vide the desired re-
source or the user’s
quota is reached

IllegalRequest groups other request | remove region
errors

Unavailable the region is currently | remove region
not available or timed
out

ServerError groups other server er- | remove region
rors

TABLE V: Error Types and Mitigation

typically target provider regions, as in most cloud providers
they reflect separate installations of their middleware. Remov-
ing a region, will automatically remove all related offers (cf.
Section III). The offers will be removed for a configurable
timespan. Whenever we notice the failure of a node, we
reschedule the node, meaning that its resource description will
again pass the matchmaking process. As the discovery model
will no longer contain the failed provider and its offers, a new
valid solution will be selected.

VII. IMPLEMENTATION IN CLOUDIATOR

We have implemented our approach in the cross-cloud
orchestration toolset Cloudiator?.

The application model of Cloudiator is built on two con-
cepts: the concept of components depicting self-contained
deployable and executable artefacts and the concept of appli-
cations grouping components forming a possibly distributed
application. Each individual component defines a set of life-
cycle actions, that describe interface actions for each step in
the lifecycle of the component. These executable scripts install,
start and stop the component and additionally detect failure. In
addition, each component defines ports, depicting capabilities
it can provide to or it consumes from other components. An
application groups the components using the notion of commu-
nication, representing a directed channel between a provided
port and a required port. We attach our provider-agnostic
resource description on the component level. This means for
every component the user modelled in his application he can
attach constraints using our constraint language.

Cloudiator already provides an abstraction layer that hides
the syntactic and semantic differences of different cloud
providers and their APIs. It is built using jclouds®, but ad-
dresses shortcomings of the library [12]. We use this abstrac-
tion layer to retrieve the provider’s offers and transform them
into our common discovery model.

Cloudiator features a deployment engine able to allocate the
required nodes using the abstraction layer and installing our

Zhttp://cloudiator.org
3https://jclouds.apache.org/

deployment and monitoring agents on the nodes. When a node
is provisioned, the lifecycle agent is instructed to deploy the
component. When needed, Cloudiator derives a deployment
workflow from the inter-component communication dependen-
cies, ensuring that components start in a valid order.

In order to provide adaptation capabilities Cloudiator fol-
lows the MAPE-K [13] cycle. It implements the cycle by using
a rule language [14]. Using this language, the user can define
event patterns triggering scaling actions. These include vertical
and horizontal scaling in both directions. The scalability rule
language also allows the user to define the monitoring demand
by specifying sensors and aggregating the collected data using
mathematical functions [15].

We implement our matchmaking algorithm in the resource
broker component of Cloudiator. It is the resource broker’s
responsibility to compute matching offers, whenever a new
instance of a component needs to be deployed, be it for an
initial deployment or during auto-scaling. We rely on the
Choco solver [16] Java library for describing and solving the
CSP.

VIII. EVALUATION

During the evaluation, we want to explore how the different
CSP solving techniques activity-based search (ABS), best-fit
search (BF) and the iterative approach presented in Section V
perform with respect to runtime and solution quality on
different discovery data-sets.

A. Methodology

We evaluate our matchmaking using three different
discovery data-sets: i) an artificial, small data set (S),
ii) an artificial, large data set (L) and iii) a real-
world data set with data collected from CloudHarmony
(C). For the small dataset we use a single provider,
15 locations within distinct countries, four hardware of-
fers (Cores,RAM) = {(1,512), (2,1024), (4,2048), (8,4096) }
and one image. For the Ilarge dataset we use nine
providers each having 15 locations within distinct countries,
60 hardware offers (Cores,RAM) = {2,4,8,16,32,64} x
{512,1024, 2048, 4096, 8192, 16384} and 3 images. For both
artificial datasets we calculate the price as a function p =
(cores + ram/1000) = | x ¢ where [is a location price factor
from 1.0 - 1.14 and c is a provider price factor from 1.0
- 1.08. An offer from provider O with 4 cores and 4096
RAM in location 5 would therefore cost (4 + 4096/1000)
1.4 % 1.0 = 11.3344. For the CloudHarmony dataset we
crawl their provided API. We only use providers and offers
where CloudHarmony provides detailed pricing information.
As CloudHarmony typically lists multiple prices for one offer
based on the pricing model (e.g. reserved, on-demand and
spot) we select the cheapest one. This leads to a total offer
size of 60 possible nodes for S, 14580 for L and 21132 for C.
We use the example constraints depicted in Listing 1 assuming
that the location "DE’ has a price factor of 1.00.

Using the datasets described we execute seven experiments
for each data set. For both the ABS and the BF search we limit

the execution time to 1, 5 and 10 minutes to depict the solution
quality they can achieve during this time limit. In addition, we
execute the iterative approach, that reuses existing solutions of
previous steps. We repeat each experiment ten times depicting
the average values for costs and time. We omit cost datasets if
the solver did not find any solution. We execute our evaluation
on a workstation with an Intel Core i5-4570 CPU with 4 cores
(each having 3.20GHz) and 16384 MB of RAM.

B. Results

Figure 3 depicts our evaluation results. The graphs in
Figures 3a, 3b, 3c depict the execution times for the respective
experiments, while the Figures 3d, 3e, 3f show the best
solution found in the given time. We use 1 < ¢ <= 15 as
node size, as a solution to the CSP requires at least two nodes
(count constraint) and at most 15 (unique country constraint).

For the S dataset we can see that ABS can find an optimal
solution for up to seven nodes for all time limits. For eight
nodes ABS can no longer find an optimal solution, even when
using a 10 minute time limit. BF can solve the problem
optimally only for six nodes, while already requiring longer
than ABS. The iterative approach reusing existing solutions
significantly outperforms both ABS and BF time-wise. This
holds especially true, when considering that the solving time
is the time difference between the existing solution node
size and the target solution node size. With respect to costs,
all approaches perform well, even with a small time-limit
of one minute. However, the solution quality of ABS and
BF slightly decreases as soon as they are no longer finding
an optimal solution and they are then outperformed by the
iterative approach.

For the L dataset both ABS and BF can only find an optimal
solution for the minimum node size of two, where again
ABS outperforms BF. Again, the iterative approach performs
best with respect to time. With respect to costs, the solution
quality of ABS becomes bad as soon as it can no longer find
optimal solutions. The solution quality of BF stays stable,
but it can not find any solutions within the one minute time-
limit. Again, the iterative approach performs good, but gets
outperformed by BF for node sizes > 6. This is due to the
nodes.sum(hardware.cores >= 15) that for higher node sizes
can be fulfilled with smaller, thus cheaper, nodes. For the same
reason, the solution for a node size of 6 is cheaper than a node
size of 5.

For the C dataset we can see different results. In contrast
to both the S and the L dataset, the BF approach clearly
outperforms ABS with respect to time and it can find optimal
solutions for up to ten nodes while ABS finds the last optimal
solution for a node size of nine. The same holds true for costs,
where again the solution quality of ABS strongly decreases
as soon as it can not find an optimal solution. Again, the
iterative approach performs good with respect to time and
performance, but as in dataset L gets outperformed by BF for
node sizes > 5. Interestingly, all algorithms perform better on
C than on S with respect to finding optimal solutions. This can
be explained when considering the structure of the data sets.

While our artificial S and L datasets are very homogenous as
every cloud has the same offers the CloudHarmony data used
in C has a high heterogeneity. For example, while the cost
range for offers with two cores in S data set is [3.024 — 3, 447]
the range in C is [0.009 — 41.7]. This helps the algorithms to
quickly refute unfeasible selections. However, it also leads to
worse solution quality, if the optimal solution can not be found.

We can conclude, that the combination of both algorithms
ABS and BF can solve an initial placement for up to 15 nodes
in reasonable time, considering the three different data sets.
While ABS finds a optimal solution faster for the data sets
S and L, BF provides better solutions for C and if the time
limit is not sufficient. We can also conclude, that the iterative
approach presented, while sometimes outperformed in terms
of costs, can quickly provide solutions for auto-scaling and
node failures.

IX. RELATED WORK

Commercial and open-source cloud orchestration tools that
support multi-cloud or even cross-cloud deployment comprise
Cloudify*, Terraform® and Scalr®. However, their model is not
cloud provider-agnostic, as the user has to explicitly reference
a specific provider offer. This forces the user to (i) know all
provider offers during design time and (ii) renders different
placements due to e.g. failures impossible.

Typically, a cloud provider-agnostic language is achieved by
specifying requirements that target infrastructure properties.
TOSCA’s [17] node_filter or node capabilities and require-
ments specification allow the user to describe constraints by
referring to properties of the underlying host, e.g. defining an
allowed range for the number of cores. Yet, such descriptions
lack expressiveness as they automatically target all hosts of
this component and do not allow to express interdependencies
between attributes. Constraints such as [need a node in
Germany, US and Asia or If a node has 4 cores this implies
that it needs 4096 MB RAM are not expressible.

The following approaches represent and collect provider
information: Saloon [18] uses feature models from software
product lines to describe offers from cloud providers. While
this results in a generic description of available offers, Saloon
relies on an expert user to create these models. DrACO [19]
automatically discovers available offers and represents them
using TOSCA. They, however, crawl available offers from
public websites which does not work for private clouds.

[20] transform an UML diagram and OCL constraints to a
CSP. In contrast to our approach they do not use an object
model, but check the satisfiability of the OCL constraints

[21] use mixed integer linear programming (MILP) for
the resource selection and application placement under SLA
constraints also considering reconfiguration. They however
only consider four hardware-based dimensions (CPU, Mem-
ory, bandwidth and storage) where the user has to explicitly
state the requirements similar to TOSCA and evaluate their

“http://cloudify.co/
Shttps://www.terraform.io/
Shttps://www.scalr.com/

700 ——— T ———
ABS (Limit 1 Minute) —— ABS (Limit 1 Minute) ABS (Limit 1 Minute)
ABS (Limit 5 Minute) —— ABS (Limit 5 Minute) ABS (Limit 5 Minute)
600 r ABS (Limit 10 Mirfute) 600 1 r—ABS*(Cintit 10 Mirlute) 600 r ABS (Limit 10 Minute) R —
| Iterative | lterative Iterative
500 | BF (Limit 1 Minute) 500 | | BF (Limit 1 Minute) 500 | BF (Limit 1 Minute) /
BF (Limiy 5 Minute) —-— | BF (Limit 5 Minute) —=— BF (Limit 5 Minute) ——/
g 200 | BF (lelt““‘s 0 Minute) —— E 400 | | BF (Limit 10 Minute) —— E 200 | BF (Limit 10 Minute) *.4
Y o / °
E 300 f E 300 {/ E 300 ¢ — f
= = / [= |
200 | 200 200 |
/ /
100 100 100 F i
0 ; /‘ . : : : : : 0 H L . _ 0 -t
2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node Size Node Size Node Size
(a) Execution Time for S (b) Execution Time for L (c) Execution Time for C
70 T T T T T T T T T T 400 T T T T T T T T T T 4 T T T T
ABS (Limit 1 Minute) ABS (Limit 1 Minute)
65 | ABS (Limit 5 Minute) —— 350 | ABS (Limit 5 Minute) —— | 35
ABS (Limit 10 Minute) ABS (Limit 10 Minute) : £
60 Iterative Iterative \ /
55 | BF (Limit 1 Minute) 300 ¢ BF (Limit 5 Minute), —— Y 37
BF (Limit 5 Minute) —=— BF (Limit 10 Minute) \—— ,
50 | BF (Limit 10 Minute) 250 A/ 25
2 2 N 2
2 45| 2 200 7 2 2
o o R o
40 ¢ 150 | 15
35 ¢
100 1r
30
25 L 50 05 .,

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node Size

(d) Costs for s

0 S S S
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node Size

(e) Costs for L

0 1 L ,,—‘ L T I L L L L L L
2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node Size

(f) Costs for C

Fig. 3: Evaluation Results

approach with at most 20 VM types. [22] considers the same
dimensions, but also considers uncertainty of future demands.
[23] propose a cloud brokering mechanism that uses integer
programming to maximise performance while considering
user given constraints targeting total number of nodes, node
configuration and distribution across clouds. However, only
hardware related constraints are considered and the evaluation
is executed with 12 different VM types. [24] use particle
swarm to place scientific workflows in the cloud environment.
While their work also considers task dependencies, the het-
erogeneity of underlying resources and deadline constraints,
the resource selection is only based on two dimensions (cost
and processing capacity) and only 6 different types are con-
sidered during the evaluation. [25] use a genetic algorithm for
solving the resource selection problem, by considering three
basic dimensions (processing power, memory and storage) and
communication cost between different provider offers. [26],
model a bin-packing problem were a set of components is
assigned to multiple VM types and propose heuristics to solve
the given problem. Similar to our approach, they use a higher
number of dimensions (8) and evaluate their approach using up
to 10000 different VM types. While they also allow the user
to express constraints, their approach is similar to TOSCA,
while also targeting initial placement only.

To address failures, existing tools apply retry mechanisms
for failed requests or failed application components. Apache
jclouds e.g. automatically retries idempotent requests provid-
ing a low-level protection against communication failures.
Cloudify supports a heal workflow that redeploys a user

defined subgraph of the application in case of errors. Due to
its imperative modelling language Cloudify cannot deal with
provider failures as it would always reuse the same provider.

X. FUTURE WORK AND CONCLUSION

We have presented a provider-agnostic resource descrip-
tion language based on a constraint language to overcome
vendor lock-in. We combine the language with an automatic
discovery engine collecting the offers of different providers.
We implement a matchmaking engine, representing both the
constraints given by the user and the discovery model as a CSP
and propose an iterative algorithm solving it. Additionally, we
show that we can dynamically adapt the discovery model to
react to provider failures. The study of related work shows
that our language combined with a dynamic discovery model
achieves higher expressiveness and flexibility than existing
approaches typically targeting a very specific problem. Our
evaluation shows that our approach is feasible, even for a large
offer size.

There are several points for improvements in future work.
The iterative approach does not consider changing already
selected offers, which may result in suboptimal solutions
(cf. Section VIII). While reconfiguration is typically costly
in a multi-cloud environment, its costs may vary based on
the difference of the found solutions and could be included
in the selection process. While our constraint language is
more expressive than basic approaches targeting only single
properties of a host, we could achieve higher expressiveness
by e.g. adopting the Object Constraint Language OCL [27]

to express constraints on our discovery model. The same
holds true for the properties depicted in the diagram. We
currently focus mainly on attributes that are provided by
most providers APIs. However, we could further increase the
expressiveness by adding additional attributes, e.g. depicting
benchmarking and profiling results like computational power
or availability. Furthermore, the results of this paper will be
used in Gibbon [28], an availability evaluation framework for
distributed databases.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the EC’s Framework Programme HORIZON 2020 under
grant agreement number 731664 (MELODIC) and 732258
(CloudPerfect).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica et al., “Above the clouds: A berkeley view
of cloud computing,” Tech. Rep. UCB/EECS-2009-28,
University of California, Berkeley, Tech. Rep., 2009.

[2] Open Grid Forum, “Open Cloud Computing Interface -
Core,” 2011.

[3] H.S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D.
Satria, J. Adityatama, and K. J. Eliazar, “Why does the
cloud stop computing? lessons from hundreds of service
outages.” in SoCC, 2016.

[4] N. Grozev and R. Buyya, “Inter-cloud architectures and
application brokering: taxonomy and survey,” Software:
Practice and Experience, 2014.

[5] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B.
Hauser, and J. Domaschka, “Cloud orchestration features:
Are tools fit for purpose?” in UCC, 2015.

[6] J. Domaschka, D. Baur, D. Seybold, and F. Griesinger,
“Cloudiator: a cross-cloud, multi-tenant deployment and
runtime engine,” in 9th Symposium and Summer School
on Service-Oriented Computing, 2015.

[7] (2017) Summary of the Amazon S3 Service Disruption
in the Northern Virginia (US-EAST-1) Region. [Online].
Auvailable: https://aws.amazon.com/de/message/41926/

[8] (2016) Google Compute Engine Incident #16007.
[Online]. Available: https://status.cloud.google.com/
incident/compute/16007

[9] C. Liu and I. Foster, “A constraint language approach to

matchmaking,” in Research Issues on Data Engineering,

2004.

L. Michel and P. Van Hentenryck, “Activity-based search

for black-box constraint programming solvers,” Interna-

tional Conference on Integration of Artificial Intelligence

(Al) and Operations Research (OR) Techniques in Con-

straint Programming, 2012.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais,

“Boosting systematic search by weighting constraints,”

in Proceedings of the 16th European Conference on

Artificial Intelligence, 2004.

[10]

[11]

[22]

[23]

D. Baur and J. Domaschka, “Experiences from building
a cross-cloud orchestration tool,” in 3rd Workshop on
CrossCloud Infrastructures & Platforms, 2016.

J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, 2003.

K. Kiritikos, J. Domaschka, and A. Rossini, “Srl: A
scalability rule language for multi-cloud environments,”
in 6th International Conference on Cloud Computing
Technology and Science, 2014.

J. Domaschka, D. Seybold, F. Griesinger, and D. Baur,
“Axe: A novel approach for generic, flexible, and com-
prehensive monitoring and adaptation of cross-cloud ap-
plications,” in Advances in Service-Oriented and Cloud
Computing, 2016.

C. Prud’homme, J.-G. Fages,
Choco Documentation. [Online].
/Iwww.choco-solver.org

D. Palma and T. Spatzier, “Topology and orchestration
specification for cloud applications (tosca),” OASIS, Tech.
Rep, 2013.

C. Quinton, D. Romero, and L. Duchien, “Automated
selection and configuration of cloud environments using
software product lines principles,” in IEEE 7th Interna-
tional Conference on Cloud Computing, 2014.

A. Brogi, P. Cifariello, and J. Soldani, “Draco: Dis-
covering available cloud offerings,” Computer Science -
Research and Development, 2017.

J. Cabot, R. Claris, D. Riera et al., “Verification of
uml/ocl class diagrams using constraint programming,”
in ICSTW’08, 2008.

C. Secinti and T. Ovatman, “On optimizing resource allo-
cation and application placement costs in cloud systems.”
in CLOSER, 2014.

S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual
machine placement across multiple cloud providers,” in
APSCC, 2009.

J. Tordsson, R. S. Montero, R. Moreno-Vozmediano,
and I. M. Llorente, “Cloud brokering mechanisms for
optimized placement of virtual machines across multiple
providers,” Future Generation Computer Systems, 2012.
M. A. Rodriguez and R. Buyya, “Deadline based re-
source provisioning and scheduling algorithm for scien-
tific workflows on clouds,” IEEE Transactions on Cloud
Computing, 2014.

L. Heilig, E. Lalla-Ruiz, and S. VoB, “A cloud brokerage
approach for solving the resource management problem
in multi-cloud environments,” Computers & Industrial
Engineering, 2016.

P. Silva, C. Perez, and F. Desprez, “Efficient heuristics for
placing large-scale distributed applications on multiple
clouds,” in CCGrid, 2016.

Object Management Group (OMG), “Object constraint
language specification, version 2.4,” 2014.

D. Seybold, C. B. Hauser, S. Volpert, and J. Domaschka,
“Gibbon: An availability evaluation framework for dis-
tributed databases,” in OTM, 2017.

and X. Lorca,
Available: http:

