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Research Context and Summary of Research
Papers

1 Field of Research

This cumulative thesis contributes to the field of optimal retirement planning, optimal re-
tirement product design and optimal asset allocation in the context of collective investment
problems.

In Germany and many other developed countries, the retirement system can be divided into
three pillars: mandatory state pension systems, occupational pensions and private pensions.
An aging society and the ongoing low interest rate environment lead to a reduced retirement
income from the first pillar, forcing individuals to plan appropriately for their retirement in the
second and third pillar. To deal with the current societal challenges, an enormous variety of
retirement plans is available and new retirement plans are developed both in the second and
third pillar.

The first three research papers in this thesis focus on the third pillar. In particular, we con-
sider novel retirement products which shift the longevity risk (risk of outliving one’s financial
resources in retirement) towards policyholders. Various such innovative products have recently
appeared in the academic literature and the question arises how beneficial they are for policy-
holders and insurers. While the first paper in this thesis addresses both the policyholder’s and
the insurer’s perspective, the second and third paper focus exclusively on the policyholder’s
point of view, where the third paper takes account of subjective beliefs the policyholder might
have. To assess the benefits of retirement plans from a policyholder’s perspective, expected
utility has been frequently used in the literature to find optimal payoff structures or to com-
pare different retirement plans (cf. Yaari’s famous pioneering article Yaari (1965) as well as
Yagi and Nishigaki (1993), Mitchell (2002), Davidoff et al. (2005), Milevsky and Huang (2011),
Milevsky and Salisbury (2015, 2016), Peijnenburg et al. (2016), Huang et al. (2017) and Chen
et al. (2019)). The first three papers in this thesis contribute to this literature and the field
of optimal retirement planning by introducing, modeling and analyzing the attractiveness of
novel types of retirement plans.
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The main application of the last two papers lies in the second pillar. In occupational pensions,
a shift towards lower guarantees can be observed. In many countries, occupational pension
schemes no longer promise guarantees to employees but instead provide a retirement income
which depends substantially on the performance of the financial market experienced during
the accumulation phase (cf. OECD (2016)). In the academic literature, it is common that
employees are, during the accumulation phase, modeled as investors in a financial market. Using
an expected utility framework, it is then possible to derive the optimal continuous-time trading
strategy and the resulting optimal wealth level. For a single investor, this procedure is well-
documented, covered in many textbooks (for example Korn (2014)) and goes back to Merton
(1969, 1971). Utility maximization problems under portfolio insurance (minimum guarantees)
is also covered in the literature, see, for example, Grossman and Vila (1989), Basak (1995),
Grossman and Zhou (1993, 1996), Browne (1999), Tepla (2001), Jensen and Sørensen (2001),
Deelstra et al. (2004), El Karoui et al. (2005), Gabih et al. (2009) and Chen et al. (2018). The
last two papers of this thesis contribute to the literature on optimal asset allocation by analyzing
novel types of optimization problems where individuals with heterogeneous risk preferences are
tied together in their investment decision and invest collectively under portfolio insurance.

2 Motivation and Objectives

Ongoing low interest rates along with growing life expectancies are challenging modern societies
all over the world. Life insurers, policyholders and governments are searching for possible ways
to tackle these issues.

One of these recent developments has been the resurrection of the so-called tontine, named
after its inventor Lorenzo de Tonti. Tontines used to be a popular source of retirement income
from the 17th to the 19th century (see, for example, Milevsky (2014, 2015), Milevsky and
Salisbury (2015, 2016) and Li and Rothschild (2019)). The idea of a tontine is that a group
of policyholders shares the mortality risk and that the insurance company only serves as an
administrator. Along with tontines, so-called pooled annuity funds or group self-annuitization
schemes have appreared. These innovative retirement products basically follow a tontine-like
structure and many efforts have been made to explore the potential and optimal design of these
products in today’s world, see, for example, Piggott et al. (2005), Valdez et al. (2006), Stamos
(2008), Qiao and Sherris (2013), Donnelly et al. (2013, 2014) and Donnelly (2015). In such
products, the unsystematic mortality risk can (initially) be diversified by a large enough pool,
whereas the systematic mortality risk, which affects all policies in the same direction, cannot.

When priced actuarially fair, life annuities give retirees greater lifetime utility than tontines
(see also Milevsky and Salisbury (2015)). When realistic safety loadings or risk margins are
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taken into consideration, tontines can be preferred to annuities (cf. Milevsky and Salisbury
(2015) and Chen et al. (2019)). Tontines and annuities can be seen as two extreme cases of
retirement products, as annuities leave the insurer with all the longevity risk, while tontines
leave the policyholders with (almost) all of the longevity risk. As a consequence, there have also
been suggestions for combining the advantages of both products, for example, in Chen et al.
(2019) and Weinert and Gründl (2017). While Chen et al. (2019) present a new retirement
product called tonuity, which is a tontine at early retirement ages but switches to an annuity
at a predetermined switching time, Weinert and Gründl (2017) focus on how the policyholders
can optimally invest fractions of their wealth in tontines and annuities. In this context, the
first two research questions of this thesis are

1. How can we design new retirement products which lead to a better risk sharing between
policyholders and insurers than tontines, where policyholders carry most of the longevity
risk, and annuities, where insurers carry all the longevity risk?

2. Can tontines still be a beneficial supplementary product in addition to annuities for some
policyholders, especially in the presence of risk loadings? How attractive is the newly
introduced tonuity compared to a portfolio consisting of an annuity and a tontine?

In the first paper, we come up with a novel approach of combining annuities and tontines by
forming a tontine with minimum guaranteed payments. We follow Donnelly and Young (2017)
on the design of the product and extend their findings by showing that a Milevsky and Salisbury
(2015)-tontine with minimum guarantee can be attractive to both policyholders and insurers.
In the second paper, we aim to further analyze the attractiveness of the innovative retirement
plan tonuity introduced in Chen et al. (2019). In particular, we want to compare it to two
additional combinations of annuities and tontines: One which we call antine, working like a
reversed tonuity, and a portfolio consisting of a tontine and an annuity, where the individual
may choose her own payoff structure of both products.

The third research question, which is still in the context of tontines, is motivated by a comment
made by Adam Smith, who pointed out already back in 1776 that an over- or underestimation
of one’s life expectancy affects the perceived attractiveness of a retirement product (cf. Smith
(1776)). Today, this question is still highly relevant. For example, Wu et al. (2015) point out
that annuities look overpriced for an investor who is pessimistic about her longevity. Milevsky
and Salisbury (2015) also briefly mention that subjective mortality beliefs might impact the
willingness to purchase tontines. This brings us to the third research question:

3. Given the main result in Milevsky and Salisbury (2015), that an annuity always yields a
higher expected lifetime utility level than a tontine if both products are fairly priced, is it
possible that some individuals prefer a tontine over an annuity under subjective mortality
beliefs? And if so, what are the main driving factors behind this result?
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This question is answered in the third research paper: We find that, indeed, tontines can
be preferred over annuities under subjective mortality beliefs. Surprisingly, the main driving
factor behind the tontine’s relative attractiveness is not that an individual believes that she
lives longer than her peers, but instead that she underestimates the remaining lifetimes of the
other policyholders relative to the remaining lifetimes assumed by the insurer.

Another development in the light of the recent societal challenges, apart from the resurrection
of tontines, is the question how occupational pension schemes shall be designed. In industrial-
ized countries, defined benefit (DB) and defined contribution (DC) pension schemes are still the
two main types of occupational retirement plans. In a DB scheme, the sponsoring companies
basically promise their employees a guaranteed pension payment. In a DC scheme, on the other
hand, sponsoring companies, and often also their employees, pay deterministic contributions
to an external pension fund where the capital is invested in financial assets. The benefit at
retirement therefore depends on the performance of the investment returns experienced during
the membership, i.e. the market risk is carried completely by the employees instead of the
employers. In the last years, in most developed countries there has been a shift from DB to-
wards DC plans, as guarantees are difficult to maintain given the current societal challenges.
Broeders and Chen (2010) name, among further causes, also the changing pension regulation
and the asset-liability-mismatch risk as reasons behind this shift. Further factors responsible
for this conversion can also be found, for example, in Aaronson and Coronado (2005). Nat-
urally, the question will be asked whether giving up deterministic guarantees is the correct
reform implemented in occupational pension schemes, whether such a drastic risk transfer from
the employers to the employees might worsen the benefits of the employees too substantially,
and whether hybrid plans combining the advantages of DC and DB plans are the future of
occupational pension schemes. A simple example of such a hybrid plan is a DC pension plan
with minimum guarantees that ensures that the employees obtain a certain benefit when they
retire. In Germany, for instance, such guarantees used to be prescribed by law in all pension
schemes, and “pure” DC-like schemes, without any guarantees, did not exist at all until 2018
when the “Betriebsrentenstärkungsgesetz” came into effect and the new occupational pension
scheme “Zielrente” was introduced.

It is common that individual pension plan members contribute to a collectively organized
pension fund instead of handling the investments of their contributions on their own. Such
collectively administered pension funds often cannot reflect each plan member’s risk preferences
accordingly (see, for example, Alserda et al. (2019) and Frijns (2010)). Modeling the individual
plan members with heterogeneous risk preferences as investors in a financial market who are
joint together and invest collectively allows us to analyze the following two research questions:

4. How do guarantees, sharing rules and management fees affect the retirement benefits of
investors with heterogeneous risk preferences who are tied together in their investment
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decisions? What consequences do the results imply in the context of occupational pension
schemes? How shall minimum guarantees be prescribed by law in these schemes? Can
we come up with a better guarantee design than the prescribed fixed guarantees?

5. How do the results change if the need for guarantees is directly modeled in the utility
function? How do the results depend on the financial market assumed? How is each
individual affected if a more realistic market with stochastic instead of constant volatility
is considered?

In the fourth paper, the fourth research question is tackled. We consider a collective of indi-
viduals with heterogeneous risk preferences who are tied together in their investment decisions
and delegate a fund manager to invest their initial wealth in a Black-Scholes financial mar-
ket, under portfolio insurance. Concerning the portfolio insurance constraint, we consider two
cases: a deterministic and a flexible state-dependent guarantee. We include management fees
and assume that the investors in the collective can be divided into two groups, each with a
different willingness to pay the fee. Finally, the fifth paper answers the last research question.
In this paper, we set ourselves in a more realistic financial market with stochastic volatility
in the sense of Heston (1993). Additionally, we no longer incorporate portfolio insurance as a
constraint but instead directly include the demand for guarantees in the utility functions of the
individuals under consideration.

The following section provides a detailed summary of each of the five research papers.

3 Summary of Research Papers

Research Paper 1: Options on tontines: An innovative way of combining
annuities and tontines

In this paper, we follow Donnelly and Young (2017) and present an innovative way of combining
annuities and tontines by designing a tontine with a minimum guarantee. While Donnelly and
Young (2017) extend the product design in Donnelly et al. (2014) by a guaranteed benefit, we
extend the tontine design from Milevsky and Salisbury (2015). Further extending Donnelly
and Young (2017), who analyze the fair price of the guarantee from the policyholder’s per-
spective, we analyze the attractiveness of this new product both from the policyholder’s and
from the insurer’s perspective. We compare it to conventional annuities and tontines (with no
guarantees). The paper is joint with An Chen and is published in Insurance: Mathematics and
Economics.
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As the title of this paper suggests, the new product involves options on tontines. We design the
product in such a way that the payoff at each time is given by a guaranteed retirement income
and a call option on a tontine multiplied by a surplus participation rate which lies between 0 and
1. The main goal of this design is to achieve a better risk-sharing between the policyholders and
the insurers. Following standard actuarial techniques (see, for example, Olivieri and Pitacco
(2011)), we assume that the insurer uses a risk-neutral pricing measure to price annuities,
tontines and the newly formed product. By choosing a risk-neutral pricing measure, a safety
loading is implicitly included in the premium of each retirement product. After setting the
initial contract value of tontines with minimum guarantees equal to the initial investment of
the policyholder, we are able to determine the fair participation rate for a given guarantee,
tontine payment and initial investment. As expected, a high guarantee level implies a low fair
surplus participation rate, which consequently results in a payoff close to an annuity. A low
guarantee, on the other hand, leads to a high surplus participation rate and a more volatile
payoff. Therefore, by varying the guarantee and the resulting fair surplus participation rate,
the insurer is able to provide not only one but a whole range of products to policyholders with
different risk aversions. The fairness condition provides a reasonable foundation to compare
various tontines with minimum guarantees.

To determine the attractiveness of the new product from a policyholder’s perspective, we con-
sider an expected utility framework, as it is common in this stream of literature. For a given
tontine payoff, we determine the utility-maximizing amount of guarantee for a policyholder
along with the corresponding fair surplus participation rate. As our results show, a natural
tontine as introduced in Milevsky and Salisbury (2015) with a rather low minimum guarantee
can yield the highest expected utility level to the majority of risk-averse individuals under rea-
sonable parameter choices. The natural tontine is designed in such a way that its payoff to a
single policyholder remains constant over time if deaths in the pool occur exactly as expected.
In addition to serving different risk appetites, our product also manages to serve different liquid-
ity needs of policyholders. As an example, we determine the optimal contracts for individuals
whose liquidity needs remain constant over time and whose liquidity needs increase with age.

To examine the benefits of the insurer from selling tontines with minimum guarantee, we are
inspired, for example, by Li and Hardy (2011) and Olivieri and Pitacco (2019) and focus on the
present value of net losses (or present value of unexpected cash flows). In particular, insurers
are modeled differently than policyholders as we do not assume expected utility preferences
for the insurers. Based on the present value of future losses, we determine and compare the
loss probability and the conditional expected loss faced by three different insurance companies,
where each of the three sells exclusively one of the three products: annuity, tontine (with no
guarantee) and the new tontine with minimum guarantee. Our results show that a natural
tontine with minimum guarantee can outperform a conventional annuity in the expected condi-
tional loss, while yielding an (almost) identical loss probability. It indicates that tontines with
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minimum guarantees can be a desirable product from an insurer’s perspective.

In total, the first paper yields one possible answer to the first research question. Of course, there
exist many ways to combine annuities and tontines to achieve a better risk sharing between
policyholders and insurers, as can already be observed in the literature provided above. The
combination proposed in the first paper is new to the literature and the analyses carried out
directly show that the product can be more attractive than annuities and tontines (with no
guarantees) to the policyholders and more attractive than annuities to insurers. Therefore, it
has the desirable feature of leading to a better risk sharing between policyholders and insurers.

Research Paper 2: On the optimal combination of annuities and tontines

In the second paper, we present another way of combining annuities and tontines, a product
which we call antine. The introduction of this new retirement plan is, however, only a small
novelty in this paper, as the antine is constructed in a very similar way as the tonuity introduced
in Chen et al. (2019): While the tonuity starts with tontine-like payments at early retirement
ages and switches to annuity-like payments at older ages, the antine works exactly the other way
around (annuity first, tontine afterwards). The main novelty in this paper is the comparison of
the relative attractiveness of the tonuity, the antine and a portfolio consisting of a conventional
tontine and annuity under safety loadings. This paper is joint work with An Chen and Thorsten
Sehner and is published in the ASTIN Bulletin: The Journal of the International Actuarial
Association.

In this article, we again include risk capital charges in the premium calculation and compare
the three retirement plans tonuity, antine and the portfolio (consisting of a tontine and an
annuity) from the perspective of a policyholder with constant relative risk aversion (CRRA)
and no bequest motive. Unlike the first paper, this paper solely considers the policyholder’s
perspective and not the insurer’s. Safety loadings are taken into account by using the expected
value premium principle for premium calculations. The results obtained in this article could,
however, be extended to other premium principles (for instance, the famous variance or standard
deviation principles). Extending Chen et al. (2019), we explicitly derive the utility-maximizing
payoff of the tonuity and the antine under safety loadings. The utility-maximizing payoffs of
the annuity and tontine in the portfolio can only be determined numerically. Our numerical
analyses show that the optimal payoffs of the tontine and the annuity are carefully chosen
in such a way that the annuity payments increase at ages where the tontine income is most
volatile, i.e. the payment streams of the two products supplement each other. By allowing the
individual to choose the payoff structure of the annuity and tontine in the portfolio freely, our
article differs substantially from Weinert and Gründl (2017) who maximize the utility over the
amount of the initial wealth invested in a given tontine. An additional difference to Weinert and
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Gründl (2017) is that the tontine they consider is the Sabin (2010) tontine, while we focus on
the Milevsky and Salisbury (2015) tontine. As the two payoffs are chosen jointly, the resulting
optimal annuity payoff differs substantially from optimal annuity payoffs in the literature (cf.
Yaari (1965), Milevsky and Huang (2011), Milevsky and Salisbury (2015)). The optimal payoff
of the tontine in the portfolio, on the other hand, coincides roughly with optimal tontine designs
discussed in the literature (cf. Milevsky and Salisbury (2015) and Chen et al. (2019)). Having
determined the optimal income streams in the portfolio, we can also implicitly determine the
fractions of wealth initially invested in the annuity and the tontine, respectively.

We show that the expected lifetime utility generated by the optimal portfolio is always at least
as high as that of the optimal tonuity or antine. This result can be proven by showing that
any tonuity and antine payoff can be replicated by a policyholder who invests simultaneously
in an annuity and a tontine and chooses their payoff structures accordingly. We further derive
theoretical assumptions regarding the loadings of the tontine and the annuity under which a
pure investment in either one of them is optimal and under which a simultaneous investment
in both is optimal. If the annuity loading is smaller than or equal to the tontine loading,
investing 100% in the annuity is optimal. If the annuity loading drastically exceeds the tontine
loading, investing 100% in the tontine is optimal. By “drastically”, we mean an unrealistically
high annuity loading of potentially more than 100%, depending on the actual parameters used.
That is, under realistic assumptions on the loadings, a simultaneous investment in both annuity
and tontine is optimal. In our numerical analyses, we find that the expected lifetime utility
obtained from the tonuity gets fairly close to that of the portfolio. Additionally, we observe
that the tonuity is likely to deliver a higher expected lifetime utility than the antine. In fact, a
nontrivial antine (that is, an antine which is not an annuity or a tontine) is already outperformed
by an annuity or a tontine in our parameter setup.

All in all, the second paper delivers a partial answer to the first and a full answer to the
second research question. First, we see that, in the presence of risk loadings, a tontine can be
a beneficial supplement to annuities. Additionally, this paper confirms again that the tonuity
can be an attractive retirement product from a policyholder’s perspective. Since the optimal
payoffs of the annuity and the tontine in the portfolio are rather complicated, the tonuity could
provide a simpler alternative to many policyholders as it only requires one switch from tontine
to annuity and delivers nearly the same level of expected utility as the optimal portfolio.

Research Paper 3: Optimal retirement products under subjective
mortality beliefs

In the third research paper, we aim to find out whether the result in Milevsky and Salisbury
(2015) (annuities yield a higher expected lifetime utility than tontines under actuarially fair

8



Research Context and Summary of Research Papers

premiums) still holds if we include subjective mortality beliefs in the model. By subjective
mortality beliefs, we mean a systematic over-or underestimation of one’s lifetime compared to
the survival curves the insurer uses for pricing. We include two sources of subjective mortality
beliefs from the perspective of a single policyholder: (i) Subjective mortality beliefs for herself,
regarding her own remaining lifetime, and (ii) subjective mortality beliefs concerning other
policyholders in the tontine, that is, her peers’ remaining lifetimes. This paper is submitted to
a special issue of Insurance: Mathematics and Economics on behavioral insurance.

It is well-documented in the literature that individuals tend to have subjective beliefs about
their life expectancy (see, for example, Hurd and McGarry (2002), O’Brien et al. (2005), Green-
wald and Associates (2012), Bucher-Koenen et al. (2013), Elder (2013) and Wu et al. (2015)).
An over- or underestimation of one’s own and others’ remaining lifetimes strongly affects the
perceived attractiveness of a certain retirement product. Based on the empirical findings, there
seems to be a clear tendency for people at younger ages to underestimate their life expectancy,
while both under- and overestimations are documented at older ages in various studies. Ac-
cording to the literature review in Wu et al. (2015), there is also a clear tendency that women
tend to underestimate their overall life expectancy more than men, and younger cohorts more
than older cohorts.

Based on these diverging findings about subjective mortality beliefs at older ages, we allow for
both over- and underestimation of one’s own and others’ survival curves relative to the survival
curve used by the insurer, which is used as a benchmark. We follow Milevsky and Salisbury
(2015) and Chen et al. (2019) and derive the (perceived) optimal payout functions of an annuity
and a tontine under subjective mortality beliefs in an expected utility framework. Similarly as
Milevsky and Salisbury (2015), we set ourselves in the actuarially fair pricing framework. In
our model, we assume that there are three different survival curves for any x-year old in play:
the one used by the insurer (denoted by tpx for any t ≥ 0), the one assumed by an individual for
herself (denoted by tp̃x) and the one assumed by the individual for other policyholders (denoted
by tp̂x).

We prove that the expected lifetime utility of a tontine increases, the more a policyholder
underestimates the survival curve of her peers, while an annuity is not affected by this underes-
timation. Further, we prove that there exists a critical pool size for which, once it is exceeded,
the tontine is always preferred over the annuity under mild assumptions regarding the subjec-
tive mortality beliefs. The main driver behind this result is that the policyholder believes that
her peers live shorter than the insurer has assumed. Numerically, we find that the subjective
belief that a policyholder lives longer (tp̂x < tp̃x) or shorter (tp̂x > tp̃x) than her peers only
plays a negligible role for this result. In the numerical analyses, we also show that the critical
pool size for which the tontine is preferred might already be as small as 3. Additionally, we
show that annuities can be perceived as overpriced (too expensive) from the perspective of a
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policyholder who underestimates her life expectancy, lowering the resulting expected lifetime
utility. A tontine’s perceived price, on the other hand, is hardly affected by subjective beliefs
concerning the policyholder’s subjective beliefs for herself.

Thus, the third paper delivers an answer to the third research question: It is, in fact, possible
that tontines generate a higher expected lifetime utility than annuities, even if both products
are fairly priced. The main assumption for this result is an underestimation of the survival
probabilities of one’s peers compared to the actuarial bases applied by the insurer. Subjective
mortality beliefs have recently been considered as a possible explanation for the annuity puzzle
(see, for example, Poppe-Yanez (2017), Caliendo et al. (2017) and O’Dea et al. (2019)). Our
article contributes to this literature by the inclusion of tontines and a comparison of annuities
and tontines under subjective mortality beliefs.

Research Paper 4: Optimal collective investment: The impact of sharing
rules, management fees and guarantees

In the fourth research paper, we consider a collective of investors in a financial market who are
tied together in their investment decision to invest collectively in the financial market. The
investors can be seen as employees who, in an occupational pension context, delegate a fund
manager to invest their total wealth collectively. As the title of the article suggests, we include
different designs of portfolio insurance constraints and management fees in the optimization
problem and analyze different sharing rules. By sharing rule, we mean the fraction of the
(state-dependent) terminal wealth that a single investor obtains from the collective investment
at maturity. The fourth article is a joint project with An Chen and Thai Nguyen and has been
revised and resubmitted to the Journal of Banking and Finance.

To assess the effects of management fees, we assume that there are two types of investors in the
collective: Group 1 has access to the complete and arbitrage-free market and, thus, investors
in this group can invest on their own. They could still prefer fund delegation over investing on
their own because asset management costs time and energy (cf. Kim et al. (2016)). Group 2
has limited access to the financial market and relies on fund delegation. Therefore, investors
in Group 1 are ready to pay a lower fee for fund delegation than those in Group 2. Assuming
that the fund manager charges an average fee, in our analysis, investors in Group 1 receive less
than what they are entitled to and those in Group 2 more than they are entitled to.

Additionally, each of the individuals in the collective may demand a certain guarantee. The fund
manager then sets up a collective investment strategy such that all these individual guarantees
are met. Inspired by Dumas (1989), Karatzas et al. (1990), Xia (2004), Pazdera et al. (2016)
and Branger et al. (2018), we assume that the fund manager uses a collective utility function
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which is given by a weighted sum of the individual utility functions and carries a maximum
operator which implies that the fund manager aims to achieve the highest utility level for a
given vector of weights. The fund manager then maximizes this utility function under two types
of portfolio insurance constraints: In the first case, the optimal terminal wealth needs to meet
a deterministic guaranteed payment which is already known from the beginning. In the other
case, we advocate a flexible guarantee framework, that is, the optimal terminal wealth needs to
meet a flexible guarantee payment which could be, for example, a market index. In our case,
the flexible guarantee consists of a (smaller) deterministic guaranteed payment known from
the beginning and a state-dependent payment becoming known at maturity, which is chosen as
a fraction of the optimal terminal wealth resulting from the individual optimization problem.
Having determined the collective optimal terminal wealth for both types of portfolio insurance
schemes, we also derive the optimal dynamic strategy explicitly.

Once the optimal terminal wealth and trading strategy are obtained, we use a state-dependent
sharing rule to return to each investor her share of the total terminal payoff. The sharing
rule is designed state-dependently because the main objective of the fund manager is to meet
the individual guarantee levels required by each person. Additionally, three sharing rules are
considered to distribute the bonus exceeding the collective guarantee. One of these takes into
account individual guarantee and wealth levels and is chosen to satisfy the concept of financial
fairness (see, for example, Bühlmann and Jewell (1979), Schumacher (2018), Boelaars and
Broeders (2019) and Orozco-Garcia and Schmeiser (2019)). The second one only accounts for
the initial wealth levels and is used, for example, in Jensen and Nielsen (2016), and the last
one only takes account of the pool size.

In the deterministic guarantee framework, we find that all investors in Group 1 suffer a loss
through fund delegation. In Group 2, on the other hand, there can be a few investors that benefit
from the collective investment. These are the ones with a rather high risk aversion, since the
guarantee imposes too drastic losses on investors with low risk aversion. As one would expect,
the first of the sharing rules mentioned above is the fairest one. Under the second and third one,
investors who demand low guarantees finance the relatively higher guarantees of the remaining
investors. Under the third sharing rule, investors with low initial wealth additionally benefit
from those with a higher wealth. Under the state-dependent guarantee framework, we find
the following: In Group 1, still all the investors suffer a loss through fund delegation. These
are, however, lower than in the deterministic guarantee framework, especially for investors
with a low risk aversion. In this sense, a state-dependent guarantee which depends on the
market performance serves each investor with a different risk aversion in a better way than a
deterministic guarantee. In Group 2, there can still be investors who benefit from the collective
investment. Regarding the sharing rules, the third sharing rule performs worst for Group 1 and
best for Group 2 while the first and second yield (almost) identical results.

11
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In total, the fourth research paper provides answers to the fourth research question. It shows
that deterministic guarantees embedded in DC schemes deteriorate the benefits of employees
and that a more flexible guarantee can lead to higher expected utility levels than the frequently
prescribed deterministic guarantees. Regarding the management fees, we find that even in
Group 2 not all the members benefit when receiving more than they are entitled to because the
guarantee constraint imposes too drastic utility losses.

Research Paper 5: A collective investment problem in a stochastic
volatility environment: The impact of sharing rules

In the fifth research paper, we set ourselves in a similar setting as in the fourth paper, i.e.
we again consider a collective of investors who can be seen as employees in a collectively
administered pension fund. The most important differences to the fourth paper are that we
consider a more realistic financial market setting allowing for a stochastic volatility of the stock
and that guarantees are no longer a constraint to the optimization problem but instead directly
taken into account in the utility functions. In this setting, we want to figure out whether it is
possible to achieve individual optimal solutions in a collectively administrated fund. Further,
we analyze the effects of the stochastic volatility in comparison to the Black-Scholes model since
the assumption of a constant volatility is a well-known weakness of the Black-Scholes model.
In particular, we analyze different sharing rules under a Black-Scholes and a Heston model and
compare the results obtained in both markets. This paper is again joint with An Chen and
Thai Nguyen and has been submitted to the Annals of Operations Research.

Similarly as in the fourth paper, each of the individuals in the collective may demand a certain
subsistence level / guarantee. The fund manager’s investment strategy again aims at meeting
all these individual guarantee levels. Due to the guarantees embedded in the individual utility
functions, the utility function used by the fund manager can be considered as a generalization
of the collective utility function used in the fourth research paper. Extending Branger et al.
(2018), we consider two financial market models: We briefly start with the classical Black-
Scholes model and then extend the analysis to a more general model where the volatility of the
stock is itself a stochastic process driven by a Brownian motion. To be precise, we model the
stochastic volatility process in the sense of Heston (1993), that is, we use a square-root process
as in the interest rate model in Cox et al. (1985).

Since the stochastic volatility process involves risks that are not traded, the financial market
is incomplete. This makes the optimization problem in the stochastic volatility market more
complex than in the constant volatility case. Optimization problems in general incomplete
markets including stochastic volatility models have been considered extensively in the literature.
For common utility functions (power utility in particular) the solution is available in closed
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form using dynamic programming (see, for example, Pham (2002), Fleming and Hernández-
Hernández (2003), Chacko and Viceira (2005), Kraft (2005) and Liu (2006)). In our collective
setting, this approach seems not to be possible, which is why we (artificially) complete the
financial market using derivatives. This approach is also well-documented in the literature and
applied, for instance, in Liu and Pan (2003), Branger et al. (2008, 2017), Escobar et al. (2018)
and Chen et al. (2018). Due to the (artificial) market completeness, we can determine the
optimal terminal wealth levels and the dynamic trading strategies explicitly in both financial
markets using the static martingale approach (see, for example, Cox and Huang (1989)).

In both financial markets, we show that it is possible that each individual in the collective
receives her individual optimal terminal wealth under the use of a state-dependent sharing rule
and the imposition of financial fairness (defined similarly as in the fourth paper). Our compar-
ison of sharing rules shows that losses occur to all investors in the collective if a financially fair
linear sharing rule is applied. If the linear sharing rule does not fulfill the fairness condition,
some individuals in the collective are better off, but the majority of investors is worse off than
in the individual optimization problem. Our comparison between the constant and stochastic
volatility framework reveals that all individuals are worse off in the stochastic volatility model.
That is, all the losses are larger and all the gains are smaller compared to the constant volatility
model.

To make a long story short, this paper answers the fifth research question. Under the differ-
ent modeling approach for the guarantees, we see that individual optima are achievable in the
collective, given that a financial fairness criterion and a state-dependent sharing rule are used.
That is, in contrast to the fourth paper, this paper’s message is that guarantees do not neces-
sarily deteriorate the benefits of the employees and that it is possible to achieve an investment
strategy and a sharing rule under which no losses occur, even with guarantees. Under more
practical linear sharing rules, a market with stochastic volatility leads to (on average) higher
losses for each individual in the collective, since the stochastic volatility market involves more
risks than the classical Black-Scholes market with constant volatility. When using linear shar-
ing rules, the financial fairness criterion can still account for a fair distribution of the terminal
wealth, although individual optimal solutions are no longer available. Under linear sharing
rules which do not reflect a financial fairness criterion, some investors benefit at the cost of
others.
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Abstract

Increases in the life expectancy, the low interest rate environment and the tightening

solvency regulation have led to the rebirth of tontines. Compared to annuities, where in-

surers bear all the longevity risk, policyholders bear most of the longevity risk in a tontine.

Following Donnelly and Young (2017), we come up with an innovative retirement product

which contains the annuity and the tontine as special cases: a tontine with a minimum

guaranteed payment. The payoff of this product consists of a guaranteed payoff and a

call option written on a tontine. Extending Donnelly and Young (2017), we consider the

tontine design described in Milevsky and Salisbury (2015) for designing the new product

and find that it is able to achieve a better risk sharing between policyholders and insur-

ers than annuities and tontines. For the majority of risk-averse policyholders, the new

product can generate a higher expected lifetime utility than annuities and tontines. For

the insurer, the new product is able to reduce the (conditional) expected loss drastically

compared to an annuity, while the loss probability remains fairly the same. In addition,

by varying the guaranteed payments, the insurer is able to provide a variety of products

to policyholders with different degrees of risk aversion and liquidity needs.

Keywords: Annuity, tontine, option pricing, optimal retirement products, net loss anal-

ysis
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1 Introduction

Annuities provide a life-long payment stream to policyholders and thus, yield efficient protec-

tion against longevity risk. Therefore, they are thought to be very desirable retirement products

from a policyholder’s perspective (Yaari (1965), Mitchell (2002), Davidoff et al. (2005), Peij-

nenburg et al. (2016)). In practice, however, annuitization rates remain low (see for instance

Hu and Scott (2007), Brown (2007), Benartzi et al. (2011), Milevsky (2013) and the references

therein). The tightening solvency regulation, the ongoing low interest rate environment, and

the increases in life expectancies in OECD countries (cf. OECD (2016))1 might drive up the

price of annuities further and, consequently, annuitization rates are not going to increase in the

near future. Insurers and customers are searching for new, more attractive retirement prod-

ucts. Products which have attracted vast attention from academics and practitioners in this

context are tontines and pooled annuity funds. For tontines, we refer the interested reader,

for instance, to Sabin (2010), Milevsky (2015), Milevsky and Salisbury (2015, 2016) and Li

and Rothschild (2019), for pooled annuity funds to Piggott et al. (2005), Valdez et al. (2006),

Stamos (2008), Qiao and Sherris (2013), Donnelly et al. (2014), Donnelly (2015) and Donnelly

and Young (2017). In these products, in contrast to annuities, a pool of policyholders shares

the longevity risk. Although tontines provide an attractive alternative to annuities, particularly

when it comes to longevity risk sharing, they might leave the policyholders with rather volatile

payments at advanced retirement ages. If many policyholders in the pool live very long, the

payments of the tontine might not be sufficient to provide sustainable retirement income at old

ages. All in all, both annuities and tontines are well-formed sources of retirement income which

both have their own advantages and disadvantages.

As a direct transition from annuities to tontines might be a too drastic step for many poli-

cyholders and insurers, we are searching for attractive alternatives for both parties. Naturally,

the question arises whether the advantages of annuities and tontines can be combined to form

a product which is cheaper than annuities and shifts the longevity risk not completely, but only

partially towards the policyholder. Can we come up with an innovative retirement product

which leads to a better risk sharing between the policyholders and the insurers than annu-

ities, where insurers bear all the longevity risk, and than tontines, where policyholders bear

most of the longevity risks? The newly introduced “tonuity” in Chen et al. (2019), whose

payment starts with a tontine-like payment and switches to an annuity-like payment after a

fixed switching time, can be considered as an attempt in this direction. Following the idea of

Donnelly and Young (2017) who came up with an innovative retirement product providing a

1Note that although the life expectancy tends to increase across OECD countries, not all developed countries
show such a trend. For example, in the United States, life expectancies have decreased in recent years (Murphy
et al. (2018)) and the United Kingdom has experienced a drastic slowdown in life expectancy improvements
from 2011 on (Evans (2018)).
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minimum guaranteed payment in a mortality risk-sharing scheme, we introduce a similar class

of products which we call tontines with minimum guarantees. The small novelty in our paper

is that the options are written on the Milevsky and Salisbury (2015) tontine. The payoff of

this product can be seen as a sequence of guaranteed annuity payments and call options on

a tontine multiplied by a surplus participation rate. For each time, if the underlying tontine

payment performs worse than the guaranteed level, the policyholder ends up with the guarantee

payment, otherwise additionally endowed with a surplus participation.

We assume that the insurer uses risk-neutral pricing techniques to price annuities, tontines

and the newly formed product involving options on tontines. By choosing the risk-neutral

pricing measure prudently, a safety loading is implicitly included in the premium of each retire-

ment product. Following standard actuarial techniques (see, for example, Olivieri and Pitacco

(2011)), we set the initial contract value of tontines with minimum guarantees equal to the

initial investment of the policyholder. Assuming the tontine payoff and the initial investment

of the policyholder to be fixed, this enables us to determine the fair participation rate on the

surplus for a given guarantee. As expected, a higher guarantee level implies a lower fair surplus

participation rate, which consequently makes the payoff of the new product closer to an annu-

ity. If, on the other hand, the guarantee is lowered, the surplus participation rate increases and

the payoff becomes more volatile. The analysis of the fair combinations of the guarantee and

participation rate shows that tontines with minimum guarantees allow the insurer to provide

a rich variety of products to various policyholders. The fairness condition provides a reason-

able foundation to compare various tontines with minimum guarantees. Note that Donnelly

and Young (2017) also analyze fair valuation. However, the focuses of their and our paper do

differ. We go beyond the fair valuation and further study (quantify) the attractiveness of new

products, both from the policyholder’s and the insurer’s perspective. Fair valuation only serves

as a constraint in the utility maximization problem of the policyholders.

To concretely examine the attractiveness of the new product for a given policyholder, we con-

sider an expected utility framework. From a relatively new online book of William F. Sharpe

(see Sharpe (2017)), it has been pointed out that using expected utility theory (advocated by

traditional economists) is at least instructive to see whether the traditional approaches are

helpful, also in the context of life insurance and retirement products. Expected utility has

been frequently used in the literature on optimal retirement products to evaluate annuities

(full guarantees) (see, e.g., Yaari’s famous pioneering article Yaari (1965) or Yagi and Nishigaki

(1993), Mitchell (2002), Davidoff et al. (2005) and Peijnenburg et al. (2016)), tontines (with

no guarantees), and to compare these products by computing the lifetime utility resulting from

holding these products (see, e.g., Milevsky and Salisbury (2015, 2016)).2 Assuming constant

2For instance, in Milevsky and Salisbury (2015) and Chen et al. (2019), it is shown that annuities deliver a
higher expected lifetime utility level than tontines when actuarially fair premiums are applied, while tontines
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relative risk aversion (CRRA) preferences,3 we determine the optimal fair combination of the

guaranteed amount and the surplus participation rate for tontines with minimum guarantees

which maximizes the expected lifetime utility of the considered policyholder. By allowing the

individuals to choose their own optimal guarantee and surplus participation, the new product

is able to serve policyholders with different risk aversion levels.

In our numerical analyses, we follow the suggestion made by Milevsky and Salisbury (2015)

for an implementation of tontines in today’s world and use a so-called natural tontine as the

underlying for our new product. In a natural tontine, the payments from the insurer to the

pool of policyholders decrease in exact proportion to the survival probabilities. In other words,

its payoff to a single policyholder remains constant over time if deaths in the pool occur exactly

as expected. An additional nice feature of this tontine design is that it is optimal for log-utility

maximizers and nearly optimal for CRRA utility maximizers with relative risk aversions differ-

ent from one (cf. Milevsky and Salisbury (2015)). As our results show, such a natural tontine

with a rather low minimum guarantee can yield the highest expected utility level to the ma-

jority of risk-averse individuals under a reasonable set of parameter choices. In our parameter

setup, the only exceptions are individuals with a rather low relative risk aversion, for whom a

pure natural tontine (with no guarantee), is optimal. Our results are consistent with Milevsky

and Salisbury (2015) and supplement it by the inclusion of a minimum guarantee in the payoff

of natural tontines. In addition to serving policyholders with various risk aversion levels, the

new product also manages to serve different liquidity needs of policyholders. For instance, we

determine the optimal contracts for individuals who have increasing liquidity needs at more

advanced retirement ages.

While Chen et al. (2019) analyze the attractiveness of tonuities solely from the policyholder’s

perspective, this article also aims to assess the benefits of the insurer from selling the new

product. We are inspired, for example, by Bauer and Weber (2008), Li and Hardy (2011),

Cairns (2013), Kling et al. (2014) and Olivieri and Pitacco (2019) and model insurers’ benefits

can be preferred over annuities when appropriate safety loadings are taken into account. Note that this result
is different from Døskeland and Nordahl (2008) in which life insurance contracts considered are exposed solely
to equity risk. They find that the expected utility achieved from a product with a guarantee cannot be higher
than a product with no guarantee. As also noted in Chen et al. (2015), the conclusion drawn from Døskeland
and Nordahl (2008) does not hold generally, when other non-financial risks are included in the products.

3As pointed out by Sharpe (2017) and many others, power utility (preferences with constant relative risk
aversion) is the most frequently used utility function to capture the preferences of individuals. For example,
Levy (1994) mentions in the conclusion that “we find strong evidence for the DARA (decreasing absolute risk
aversion) hypothesis, but the IRRA (increasing relative risk aversion) hypothesis is strongly rejected. Investors
tend to show decreasing relative risk aversion (DRRA) or, at best, constant relative risk aversion (CRRA) but
by no means IRRA. This evidence enhances Arrow’s assertion that the DARA is observed in daily behavior
of investors and that the IRRA has less intuitive evidence.” In addition, in the book of Campbell and Viceira
(2002), it is pointed out that the long-run behavior of the economy suggests that the long-run risk aversion
cannot strongly depend on wealth, which motivates economically the use of the power utility. Note that of the
literature on optimal retirement spending mentioned above, the majority also uses CRRA preferences.
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differently than the policyholders’ (not using expected utility). We use the (random) present

value of future losses to examine the risks contained in retirement products. We then determine

the loss probability and the conditional expected loss faced by three different insurers: One

sells annuities exclusively, another one sells only pure tontines (with no guarantees), and the

last one sells only tontines with minimum guarantees. Our results show that tontines with

minimum guarantees can lead to a smaller loss probability than pure tontines and, on the other

side, a drastically lower conditional expected loss than annuities. The latter result shows par-

ticularly that tontines with minimum guarantees can be a desirable complementary alternative

retirement product to annuities. An insurer could introduce the new product additionally to

the conventional annuity products to lower its potential losses.

The remainder of the article is structured as follows: Section 2 describes the basic model

setup, in particular the assumptions regarding the mortality model and the design of annuities

and tontines. Section 3 presents the new tontine with a minimum guarantee along with the

definition of fairness. In Section 4, we examine the attractiveness of the new product from

the policyholder’s point of view, and in Section 5 from the insurer’s point of view. Section 6

concludes the article.

2 Model setup

In this section, we describe the model setup used throughout the article. We follow, for exam-

ple, Yaari (1965) and Milevsky and Salisbury (2015) and consider a continuous-time setting,

extending the tontine design described in Milevsky and Salisbury (2015).

2.1 A simple stochastic mortality model

For simplicity, we ignore financial market risk in this article and solely focus on the mortality

risk. We assume a stochastic mortality risk model which is rather simple, but allows us to

distinguish two sources of mortality risk: Unsystematic (or idiosyncratic) and systematic (or

aggregate) mortality risk. The unsystematic mortality risk stems from the fact that lifetimes

of individuals are unknown but still follow some mortality law. This risk component can be

diversified away through pooling, i.e., this risk tends to disappear for large enough portfolios.

The systematic mortality risk stems from the fact that we are not able to determine the actual

“true” mortality law with certainty. This risk component hits all policies in the same direc-

tion. In the context of retirement products, this component can be identified as the so-called

longevity risk, that is, the risk of an overall unanticipated decline in mortality rates (see, for

example, Pitacco et al. (2009)). When it is present, even with a large portfolio there is a resid-

ual part of risk that cannot be eliminated.
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For any x -year-old policyholder, the best-estimate t -year survival probability is denoted by

tpx which can be computed from some continuous-time mortality law. We incorporate uncer-

tainty in this mortality law in a similar way as, for example, Lin and Cox (2005) by applying

a random shock ε to the best-estimate survival probabilities. Given the shock ε , the shocked

survival curve is given by tp
1−ε
x . This shock covers the systematic mortality risk described

above. We assume that ε is a continuous random variable taking values in (−∞, 1) almost

surely whose density is denoted by fε(·) . The special case without longevity shock is simply

obtained by setting ε = 0 .

2.2 Annuity and tontine

An annuity contract continuously provides a deterministic payment stream {c(t)}t≥0 to a

policyholder until death. We denote by ζε the remaining future lifetime of the policyholder,

with ε being the random longevity shock as defined in Section 2.1. The payment stream of the

annuity can then be expressed as

bA(t) := 1{ζε>t} c(t) . (1)

While in an annuity, the longevity risk is borne by the insurance company, in a tontine contract

it is shared among a homogeneous pool of n ≥ 1 policyholders who are of the same age.4 The

unsystematic mortality risk can initially be diversified by a large enough pool size n . The

systematic risk, on the other hand, cannot be diversified, as this type of risk affects all the

policyholders in the same direction. At older ages, as the pool size decreases, the remaining

policyholders are left with both systematic and unsystematic risk (see also Chen et al. (2019)).

We follow the specific tontine design described by Milevsky and Salisbury (2015): Denoting

by Nε(t) the number of policyholders alive at time t , each policyholder receives nd(t)/Nε(t) ,

where d(t) is a deterministic payment stream specified at the beginning of the contract. In

total, this yields the following continuous payment stream to a policyholder for each t ≥ 0 :5

bOT (t) := 1{ζε>t}
nd(t)

Nε(t)
. (2)

In particular, as in an annuity product, the tontine provides an income for life, where the

income provided by the tontine (2) depends on the number of survivors Nε(t) and is, thus,

more volatile than that of an annuity (1). Note that, conditional on the considered policyholder

still being alive and given ε , the remaining number of individuals being alive at time t > 0

4That is, the insurer carries the longevity risk of the last survivor in the pool.
5For the case Nε(t) = 0 we define bOT (t) := 0 .
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follows a binomial distribution, that is, (Nε(t) − 1 | ζε > t, ε) ∼ Bin (n− 1, tp
1−ε
x ) , where we

make use of the (conditional) independence of the pool members.

3 A tontine with a minimum guarantee

In the following, we present a new product which aims to combine the advantages of annuities

and tontines. In many developed countries, individuals are not willing to give up guaranteed

payments. For example, in all occupational pension schemes in Germany, a minimum guarantee

used to be prescribed by law until very recently in 2018. Only from this year on, a “pure defined

contribution”-like scheme with no guarantees for the beneficiaries, the so called “Zielrente”, has

existed in Germany. As the unstable payments of the tontine are one of its main disadvantages

from a policyholder’s point of view, we propose that the insurance company selling the tontine

provide a minimum guarantee to the policyholders. Let g(t) ≥ 0 for all t ≥ 0 define the

minimum level of guarantee required by the policyholder. A tontine with a minimum guarantee

g(t) delivers the payoff

bOTG(t) := 1{ζε>t}

(
g(t) + αmax

{
nd(t)

Nε(t)
− g(t), 0

})
. (3)

Note that this payoff depends substantially on the guarantee g(t) and the surplus participation

rate α . It contains the annuity and the tontine as the following boundary cases:

• α = 0 : In this case, equation (3) simplifies to an annuity with payoff 1{ζε>t}g(t) to a

single policyholder.

• g(t) = 0 for all t ≥ 0 : In this case, (3) simplifies to a pure tontine (with no guarantee)

with payoff 1{ζε>t}
nαd(t)
Nε(t)

to a single policyholder. Note that α simply works like a rescal-

ing parameter in this case. In this specific pure tontine, the predetermined withdrawal

plan is described by (αd(t)) . The reason why we include α in the payoff (3) is that it

resembles the common feature of a surplus participation in life and pension insurance.

In the following, we only consider pre-specified payout functions d(t) ≥ 0 for some t ≥ 0 .

That is to say, the only choice variables left in the payoff (3) are the guarantee g(t) and

the surplus participation rate α . In subsequent sections, we will not determine any optimal

tontine payout functions and assume that d(t) is fixed by the insurer. Note that the payoff

(3) consists of the guarantee and a call option written on a tontine. More specifically, the

underlying of this option is the tontine payoff paid to a surviving individual policyholder, i.e.,

nd(t)/Nε(t) . It is a function of the number of the surviving policyholders, with initially in total

n policyholders agreeing to enter the same insurance pool. If the tontine payoff outperforms
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the guarantee, i.e., Nε(t) ≤ nd(t)
g(t)

, the policyholder obtains the guarantee payment g(t) and

additionally participates in the surplus with a participation rate α ∈ [0, 1] , otherwise she

obtains the guarantee payment. With this specific design of the retirement product, we aim

to come up with a product which leads to a better risk sharing between the policyholders and

the insurers than annuities, where insurers bear all the longevity risk, and tontines, where

policyholders bear most of the longevity risks. In addition, various combinations of (g(t), α)

allow policyholders with different risk aversions and liquidity needs to choose their desirable

products (see Section 4). From the insurer’s viewpoint, issuing the new innovative products

shall expose them to less longevity risk than annuities, and to more longevity risk than tontines

(see Section 5).

3.1 Fair tontines with minimum guarantees

Following standard actuarial techniques (cf. Olivieri and Pitacco (2011)), a contract which

provides the payoff (3) for a single up-front premium of W0 is called fair if the pair (g(t), α)

is chosen such that

V0 ({bOTG(t)}t≥0) = W0 , (4)

where V0(·) denotes the initial market value computed under a risk-neutral pricing measure

Q . More discussions about the choice of Q are provided in the following subsection. Lemma

3.1 delivers a criterion for the fairness of contracts.

Lemma 3.1. For a guaranteed payout function g(t) , the participation rate α∗ which makes

the pair (g(t), α∗) a fair contract is given by

α∗ =
W0 − V0

(
{g(t)1{ζε>t}}t≥0

)

V0

({
max

{
nd(t)
Nε(t)
− g(t), 0

}
1{ζε>t}

}
t≥0

) . (5)

For this fair participation rate α∗ , it holds α∗ ∈ [0, 1] if and only if

W0 ≥ V0
(
{g(t)1{ζε>t}}t≥0

)
(6)

W0 ≤ V0
(
{g(t)1{ζε>t}}t≥0

)
+ V0

({
max

{
nd(t)

Nε(t)
− g(t), 0

}
1{ζε>t}

}

t≥0

)
. (7)

Proof. The fairness condition (4) can be written as

W0 = V0
(
{g(t)1{ζε>t}}t≥0

)
+ αV0

({
max

{
nd(t)

Nε(t)
− g(t), 0

}
1{ζε>t}

}

t≥0

)
. (8)
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Solving equality (8) for α delivers (5). From (5), it is then straightforward to see that α∗ ≥ 0

is equivalent to (6) and that α∗ ≤ 1 is equivalent to (7).

That is, if α > 0 , the guarantee g(t) has to be chosen smaller than in the case where α = 0

for the contract to be fair. If a policyholder would like to participate in the surpluses generated

by the tontine, she has to give up a small part of her guarantee in exchange. If α = 1 , we

obtain

bOTG(t) = 1{ζε>t}

(
g(t) + max

{
nd(t)

Nε(t)
− g(t), 0

})

= 1{ζε>t}

(
nd(t)

Nε(t)
+ max

{
g(t)− nd(t)

Nε(t)
, 0

})
. (9)

In this case, a contract with V0

({
nd(t)
Nε(t)

1{ζε>t}
}
t≥0

)
≥ W0 and a positive guarantee cannot be

fair. That is, the tontine payoff in a tontine with a positive minimum guarantee should be set

smaller than that in a pure tontine (with no guarantee) by the insurer. From (9) we also see

that the payoff of the new product can be rewritten as that of a tontine plus a put option on

the tontine in case α = 1 . Note that a fair participation rate greater than 1 or smaller than

zero can theoretically result. In the context of surplus participation, though, it makes sense for

us to focus on fair participation rates α∗ ∈ [0, 1] .

3.2 Risk-neutral valuation

As the market for insurance is incomplete, there is no unique price resulting from an arbitrage-

free pricing. Various methods have been introduced to price mortality- or longevity-linked

securities (see e.g. Cairns et al. (2006), Bauer et al. (2010), and the references therein). We

rely on the so-called risk-neutral pricing method. The insurer chooses, for pricing purposes, a

risk-neutral probability measure Q among the infinitely many risk-neutral probability measures

existing in incomplete arbitrage-free markets. The probability measure Q then accounts for

both unsystematic and systematic mortality risk. By fixing a risk-neutral probability Q , we

are assuming a given Sharpe ratio/risk premium for longevity risk.6 7 Strictly speaking, when

determining the pricing measure Q , a real-life insurance company should take account of all of

6Note that we do not deal with equilibrium pricing of the new product, the tontine with a minimum guarantee.
It would imply that we first need to determine the optimal demand of the agents for this product for a given
Sharpe ratio. The equilibrium Sharpe ratio then results from the market clearing condition for the considered
longevity derivative market. In the present paper, we stay in a framework where an exogenously given pricing
measure Q is used for pricing the retirement products. The more challenging task of equilibrium pricing is left
for further research.

7Bauer et al. (2010) point out that the risk premium for a longevity derivative shall be smaller than or equal
to the risk premium within an annuity policy. They find that the Sharpe ratios implied by UK pension annuities
are significantly smaller than those from the equity market.
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its insurance business, in particular examine whether there exist some natural hedges between

issued various products. An insurer who sells annuities and simultaneously traditional life

insurance contracts is exposed to less longevity risks than an insurer selling purely annuities.

In the present paper, our main purpose is to compare various retirement products (tontines

with a minimum guarantee versus annuities or pure tontines), we assume for simplicity that the

insurers under consideration sell purely retirement products (cf. Section 5). In the following,

let us denote the best-estimate survival curve under the pricing measure Q by tp̃x . We assume

that the insurer is prudent when charging premiums for contracts. As it is assumed that only

retirement products are considered, a prudent way of pricing means a higher survival probability

under the pricing measure Q , i.e.,

tp̃x ≥ tpx , (10)

where tpx denotes the real-world survival curve. Note that the choice of the pricing measure

Q (or tp̃x ) can depend on the pool size n . A larger pool size will lead to less longevity risks

included in the retirement products, as unsystematic risks can be partly eliminated by increas-

ing the pool size. This point will be further elaborated in the numerical section. For simplicity,

we further assume that the shock ε follows the same distribution under both measures. As-

sumption (10) implies that the overall survival probability is also greater under Q than under

P , that is,

tp̃x ·mε(− ln tp̃x) =EQ
[
1{ζε>t}

]
=

∫ 1

−∞
tp̃

1−ϕ
x fε(ϕ)dϕ

≥
∫ 1

−∞
tp

1−ϕ
x fε(ϕ)dϕ = E

[
1{ζε>t}

]
= tpx ·mε(− ln tpx),

where mε(·) is the moment generating function of the shock ε , whose existence is assumed in

the following. The higher the survival probability under Q , the more conservative and prudent

the insurer is when setting prices for retirement products. Denoting by r the risk-free interest

rate, the initial value of a tontine with a minimum guarantee can be determined as

V0 ({bOTG(t)}t≥0) = EQ
[∫ ∞

0

e−rtbOTG(t)dt

]

= α

∫ ∞

0

e−rtEQ
[
tp̃

1−ε
x EQ

[
max

{
nd(t)

Nε(t)
− g(t), 0

} ∣∣∣∣ ζε > t, ε

]]
dt

+

∫ ∞

0

e−rtg(t)tp̃xmε(− log tp̃x)dt

= α

∫ ∞

0

e−rtEQ

[
n−1∑

k=0

max

{
nd(t)

k + 1
− g(t), 0

}(
n− 1

k

)(
tp̃

1−ε
x

)k+1 (
1− tp̃

1−ε
x

)n−1−k
]

dt

+

∫ ∞

0

e−rtg(t)tp̃xmε(− log tp̃x)dt
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= α

∫ ∞

0

e−rt
n−1∑

k=0

max

{
nd(t)

k + 1
− g(t), 0

}(
n− 1

k

)
EQ
[(

tp̃
1−ε
x

)k+1 (
1− tp̃

1−ε
x

)n−1−k]
dt

+

∫ ∞

0

e−rtg(t)tp̃xmε(− log tp̃x)dt

= α

∫ ∞

0

e−rt
n−1∑

k=0

max

{
nd(t)

k + 1
− g(t), 0

}(
n− 1

k

)∫ 1

−∞

(
tp̃

1−ϕ
x

)k+1 (
1− tp̃

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt

+

∫ ∞

0

e−rtg(t)tp̃xmε(− log tp̃x)dt.

Using equation (5), we are now able to derive the fair α∗ for any given tontine payoff d(t) and

any guarantee g(t) . Note that, for α∗ to be between 0 and 1, inequalities (6) and (7) need to

be fulfilled. Furthermore, the initial values of the annuity and pure tontine (with no guarantee)

can be obtained as boundary cases by setting α = 0 and g(t) = 0 , respectively.

Let us consider a numerical example. Based on Milevsky and Salisbury (2015), we consider the

so-called natural tontine, whose payoff is given by d(t) := EQ
[
1{ζε>t}

]
d0 = tp̃xmε(− log tp̃x)d0 ,

where d0 is a constant. If the number of surviving policyholders in the tontine evolves exactly

as expected, that is, Nε(t) = nEQ
[
1{ζε>t}

]
for any t , this tontine payoff to one policyholder

is constant over time and given by

nd(t)

Nε(t)
=
nEQ

[
1{ζε>t}

]
d0

nEQ
[
1{ζε>t}

] = d0 .

Due to its neat structure, this tontine design is recommended by Milevsky and Salisbury (2015)

for an implementation of tontines in today’s world. Note that this tontine design is only referred

to as natural tontine in this specific model setup. It is typical for pooled annuity funds (see the

literature on page 1 of this article) to also have this property. For example, the payments of

the pooled annuity fund already considered in Piggott et al. (2005) remain constant over time

as well if deaths in the pool occur exactly as expected (when disregarding financial market risk).

For our base case, we assume a constant guarantee, that is, g(t) = g for all t ≥ 0 . The

base case parameters are summarized in Table 1.

Guarantee Pool size Natural tontine
g(t) = g = 7.5 n = 150 d0 = 10

Premium Initial age Risk-free rate
W0 = 100 x = 65 r = 0.04

Modal ages at death (P and Q) Dispersion coefficient Longevity shock
m = 80, m̃ = 84 β = 10 ε ∼ N(−∞,1](−0.0035, 0.08142)

Table 1: Base case parameter setup.
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A few remarks regarding our parameter choice:

• The best-estimate survival probabilities tpx and tp̃x are assumed to follow the well-known

Gompertz-law (Gompertz (1825)) as used, for example, in Gumbel (1958), Milevsky and

Salisbury (2015) and Chen et al. (2019). In other words, we assume that

tpx = ee
x−m
β

(
1−e

t
β

)
, tp̃x = ee

x−m̃
β

(
1−e

t
β

)

with β > 0 being the dispersion coefficient and m > 0 , m̃ > 0 being the modal

ages at death. The modal age at death used for pricing is larger than for the real-

world measure for (10) to be fulfilled. Our parameter choice concerning the Gompertz

parameters is rather typical and results in an expected remaining lifetime of EP [ζε] =∫∞
0

∫ 1

−∞ tp
1−ϕ
x fε(ϕ) dϕ dt ≈ 14.180 under P and EQ[ζε] =

∫∞
0

∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ) dϕ dt ≈

17.040 under Q . As the average life expectancy across OECD countries was 80.5 (77.8

for men and 83.1 for women) in 2013 (OECD (2016)), we believe that this is a reasonable

parameter choice. For the parameters of the random longevity shock ε we follow Chen

et al. (2019).

• To check whether the fair surplus participation α∗ is between 0 and 1, we take a look at

conditions (6) and (7). It is easy to verify that both conditions are satisfied. Note that

the choice of our tontine payoffs leads to an initial value of the tontines which is larger

than the initial investment, that is, V0

({
nd(t)
Nε(t)

1{ζε>t}
}
t≥0

)
> W0 . By this assumption,

we include pure tontine products in our analysis: If we set g(t) = 0 and compute the fair

participation rate α∗ for the resulting product, we obtain α∗ < 1 . Consequently, the fair

participation rate α∗ lies between 0 and 1 for all nonnegative choices of the guarantee.

Before we perform a sensitivity analysis for the fair surplus participation α∗ , let us demonstrate

the effect of the pricing measure Q on the initial value of the annuity and the pure tontine.

Let us denote by V A
0 (Ξ) and V OT

0 (Ξ) the initial values of the annuity and the pure tontine

taken under the probability measure Ξ ∈ {P,Q} . Then, the ratio

SLX =
V X
0 (Q)− V X

0 (P )

V X
0 (P )

(11)

can be considered as the safety loading the insurer charges for the two retirement products

X ∈ {A,OT} . We consider an annuity with constant payoff g(t) = g and a pure natural

tontine with payoffs as given in Table 1. The resulting safety loadings are given in Table 2.

The higher the safety loading, the more prudently the insurer charges the premium. If the price

of a product is influenced more substantially by the prudence assumption, more longevity risk

is contained in the product. While both safety loadings increase in m̃ , we can see that the use
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m̃ Annuity (SLA) Natural tontine (SLOT )
80 0 0
84 0.143 0.002
88 0.283 0.006

Table 2: Safety loadings SLX as given in (11) for the annuity and the pure natural tontine.
The parameters are taken from Table 1 (particularly, m = 80 ), where the guarantee is used as
annuity payment.

of the risk-neutral measure Q mainly increases the safety loading of the annuity. Concerning

the natural tontine, we observe that it is hardly affected by the use of the risk-neutral measure,

compared to the annuity. That is, using a prudent life table, the safety loading of an annuity

is much larger than that of a natural tontine. In other words, much more longevity risk is

involved in annuities than in natural tontines.

Table 3 provides a sensitivity analysis of the fair factor α∗ depending on the choice of the

constant guarantee g = g(t) . For each guarantee, we determine α∗ such that the fairness con-

dition (4) is fulfilled. Table 3 shows that there is a negative relation between the guaranteed

Guarantee Fair participation rate
g = 6.5 α∗ = 0.60
g = 7 α∗ = 0.53
g = 7.5 α∗ = 0.44
g = 8 α∗ = 0.30
g = 8.5 α∗ = 0.07

Table 3: Fair α∗ = α∗(g) as given in (5) depending on the choice of the constant guarantee
g(t) = g . The parameters are taken from Table 1.

payment g and the resulting fair participation rate α∗ . Since we assume the tontine payoff to

be given, the fair share of the surplus α∗ needs to decrease if the guarantee increases. It is a

natural result as the contract value of the new product increases both in the guarantee and in

the participation rate.

Figure 1 shows the fair α∗ depending on the modal age at death used for pricing m̃ along

with the initial value of the guarantee (see numerator in (5)) and the option on the tontine (see

denominator in (5)). We observe in Figure 1 (a) that the fair participation rate α∗ decreases in

m̃ . That is, the more prudent the insurer is (higher m̃ ), the lower the fair participation rate α∗

becomes. For a more prudent insurer, a substantially higher fee will be charged for providing

the guarantee part (see Figure 1 (b) and also Table 2). In other words, the initial value of the

guaranteed payments with g(t) = g = 7.5 goes up if a more prudent pricing measure is used

( m̃ increases). Let us now consider the initial value of the option on the tontine. Recall that
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(a) Fair participation rate (b) Initial values

Figure 1: Optimal participation rate α∗ , the initial value of the guarantee (see numerator
in (5)) and the option on the tontine (see denominator in (5)) depending on the modal age
at death m̃ of the pricing measure m̃ . The remaining parameters are chosen as in Table 1
(particularly, g = 7.5 ).

it can be written as

V0

({
max

{
nd(t)

Nε(t)
− g(t), 0

}
1{ζε>t}

}

t≥0

)

=

∫ ∞

0

e−rt
n−1∑

k=0

max

{
nd(t)

k + 1
− g(t), 0

}(
n− 1

k

)∫ 1

−∞

(
tp̃

1−ϕ
x

)k+1 (
1− tp̃

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt.

In Figure 1 (b), we see that the initial value of the option on the natural tontine increases in m̃ .

Note that an increase in m̃ affects both the individual’s survival 1{ζε>t} and the number of sur-

viving pool members Nε(t) . For the natural tontine, the payout function d(t) = EQ
[
1{ζε>t}

]
d0

is directly affected by an increase in m̃ , which offsets the effect of m̃ on Nε(t) . Consequently,

the effect on 1{ζε>t} dominates for the natural tontine and the initial option value increases in

m̃ .

As already pointed in the previous texts, it makes sense to choose the pricing measure Q

which depends on the pool size n . Theoretically, when n goes to infinity, the pricing Q ac-

counts exclusively for the systematic mortality risk, while for a finite n , it contains both the

unsystematic and systematic mortality risk. In our context, if we use an n value smaller than

our benchmark case, we could choose a higher tp̃x (by choosing a higher modal age at death

m̃ ). On the contrary, we could choose a lower m̃ leading to a lower tp̃x . To examine the effect

of the pricing measure Q dependent on the pool size n , we carry out some numerical analyses

for two additional cases: n = 50 , m̃ = 86 and n = 300 , m̃ = 82 .
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Analogously to Table 3, Table 4 provides a sensitivity analysis of the fair participation rate α∗

depending on the constant guarantee g assuming different specifications of the pricing measure

Q which depends on the pool size n .8 We observe that under n = 50 and m̃ = 86 a lower fair

Guarantee Fair participation rate

n = 50, m̃ = 86
g = 6.5 α∗ = 0.46
g = 7 α∗ = 0.37
g = 7.5 α∗ = 0.24
g = 8 α∗ = 0.05

n = 300, m̃ = 82
g = 6.5 α∗ = 0.76
g = 7 α∗ = 0.72
g = 7.5 α∗ = 0.67
g = 8 α∗ = 0.58

Table 4: Fair α∗ = α∗(g) as given in (5) depending on the choice of the constant guarantee
g(t) = g . We consider two cases: n = 50 , m̃ = 86 (more prudent insurer with rather small
pool size) and n = 300 , m̃ = 82 (less prudent insurer with larger pool size). The remaining
parameters are taken from Table 1.

surplus participation results than in Table 3 (using n = 150 and m̃ = 84 ). Under n = 300

and m̃ = 82 , on the other hand, a higher surplus participation rate is obtained. This effect of

m̃ on the fair participation rate has already been observed in Figure 1. For a more prudent

insurer, a substantially higher fee will be charged for providing the guarantee part. To keep

the contract fair, as a compensation, a lower participation rate results for the same guarantee

g and a higher m̃ .

In the following two sections, we analyze the attractiveness of the new product to the indi-

vidual policyholders and to the insurers, respectively. The analyses will be done under the

real-world measure P over the possible fair combinations of (g(t), α∗) . In order to avoid un-

necessary repetition, we decide to use the fair combinations given in Table 3 for the subsequent

analyses.

4 Policyholder’s perspective

In this section, we analyze how tontines with guarantees can serve different individuals’ pref-

erences. Let u(x) = x1−γ
1−γ be a CRRA utility function with a risk aversion parameter γ > 0 ,

8Note that Table 4 only covers constant guarantee values up to 8 and not 8.5 like Table 3. The reason for
this that the parameter choice n = 50 , m̃ = 86 , g = 8.5 would deliver a negative fair surplus participation
rate which we do not consider in our analysis.

Research Papers 1 Options on tontines

39



γ 6= 1 and ρ be the subjective discount factor of the policyholder. Further, define χ(t) :=

g(t) + αmax
{
nd(t)
Nε(t)
− g(t), 0

}
as the payoff to a living policyholder. We introduce the policy-

holder’s expected discounted lifetime utility as

U
(
{χ(t)}t≥0

)
:= E

[∫ ∞

0

e−ρtu (χ(t))1{ζε>t}dt

]

=

∫ ∞

0

e−ρt
n−1∑

k=0

u

(
g(t) + α∗max

{
nd(t)

k + 1
− g(t), 0

})(
n− 1

k

)

·
∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt,

(12)

where equation (12) can be obtained in a similar way as the initial value of the product. The

policyholder now aims to maximize her expected discounted lifetime utility over all possible

combinations (g(t), α∗) , where

α∗ = α∗({g(t)}t≥0)

=
W0 −

∫∞
0
e−rtg(t)tp̃xmε(− log tp̃x)dt

∫∞
0
e−rt

∑n−1
k=0 max

{
nd(t)
k+1
− g(t), 0

}(
n−1
k

) ∫ 1

−∞
(
tp̃

1−ϕ
x

)k+1 (
1− tp̃

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt

(13)

is the fair participation rate as in (5). To be more precise, we consider the following optimization

problem:

max
(g(t),α∗)

U
(
{χ(t)}t≥0

)
subject to (13).

Note that the maximum operator is not differentiable. Therefore, no implicit or explicit solution

for the optimal choice of g(t) can be derived. Consequently, the only possible way to determine

the optimal guarantee g(t) is to calculate the expected utility (12) for all possible choices of g(t)

and then find the maximum among these. Therefore, we only consider certain parameterized

choices of the guarantee g(t) , specifically the following three cases:

• Constant guarantee (CG): We set g(t) = g , that is, the policyholders require the same

minimum guarantee at all times during the retirement phase. The initial value of this

guarantee is given by

V0
(
{g(t)1{ζε>t}}t≥0

)
= g

∫ ∞

0

e−rttp̃xmε(− log tp̃x)dt.

• Continuously increasing guarantee (CIG): We set g0(t) = g0e
δt , where δ ≥ 0 is a guar-

anteed interest rate issued by the insurer. The initial value of this guarantee is given
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by

V0
(
{g0(t)1{ζε>t}}t≥0

)
= g0

∫ ∞

0

e(δ−r)ttp̃xmε(− log tp̃x)dt.

• Discretely increasing guarantee (DIG): The guarantee is chosen as

g1(t) =




g1, for t ∈ [0, z − x)

κg1, for t ≥ z − x
,

where κ > 1 is a deterministic factor and z ≥ x is some predetermined age at which

the policyholder would like to increase her minimum guarantee. The initial value of this

guarantee is given by

V0
(
{g1(t)1{ζε>t}}t≥0

)

= g1

(∫ z−x

0

e−rttp̃xmε(− log tp̃x)dt+ κ

∫ ∞

z−x
e−rttp̃xmε(− log tp̃x)dt

)
.

The latter two guarantee choices are chosen to represent the observed pattern that individuals

tend to have higher liquidity needs at old ages than at (relatively) young ages in the retirement

phase (see, for example, Weinert and Gründl (2017)).9 The base case parameters δ , κ and z

are given in Table 5. In Table 6, we display the optimal (initial) levels of guarantee along with

the resulting fair participation rate depending on the risk aversion γ for the three different

guarantee designs.

Guaranteed interest rate Guarantee increasing factor Age of increase
δ = r = 0.04 κ = 1.5 z = 75

Table 5: Additional base case parameters to Table 1.

γ 0.5 2 4 6 8 10
CG (g∗, α∗) 0, 0.86 0, 0.86 0.52, 0.85 2.05, 0.82 2.96, 0.80 3.76, 0.78
CIG (g∗0, α

∗) 0, 0.86 0, 0.86 0.11, 0.86 0.44, 0.85 0.63, 0.85 0.84, 0.84
DIG (g∗1, α

∗) 0, 0.86 0, 0.86 0.30, 0.86 1.23, 0.84 1.77, 0.82 2.25, 0.81

Table 6: Optimal guarantees along with the fair participation rate for the natural tontines with
minimum guarantees depending on the risk aversion γ . The parameters are taken from Tables
1 and 5 and we assume that ρ = r .

In Table 6, we make similar observations for all three guarantee designs. As the risk aversion

increases, the optimal guarantee increases and the fair participation rate decreases. Note that

9Note that other patterns of liquidity need are also observed in the literature. Therefore, our analysis of
increasing guarantees should be seen as one example for non-constant liquidity needs instead of a thorough
analysis of all the liquidity needs that have been observed. For a detailed analysis of retirement consumption
behavior, see, for example, Blanchett (2013).
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the fair participation rate never becomes 0, which would correspond to an annuity being the

best source of retirement income. In other words, the annuity is outperformed by a natural

tontine with a minimum guarantee for all risk aversions considered. In this sense, a natural

tontine with a minimum guarantee can serve each individual’s risk appetite better and actually

forms a whole range of retirement plans for various risk aversions and liquidity needs. Compared

to pure tontines (with no guarantees), tontines with minimum guarantees still perform better

for the majority of individuals. Only to individuals with a rather low risk aversion, that

is, γ ∈ {1/2, 2} , the pure natural tontine is the optimal source of retirement income in our

parameter setup. In total, our results are consistent with Milevsky and Salisbury (2015),

who “propose the natural tontine as a reasonable structure for designing tontine products in

practice.” Our analyses confirm this suggestion and supplement it by the inclusion of a minimum

guarantee in the payoff of natural tontines.

5 Insurer’s perspective

While Chen et al. (2019) consider the attractiveness of their tonuity exclusively from the policy-

holder’s perspective, we want to analyze whether the insurer can benefit from the new tontines

with guarantees as well. As it is less natural to assume a utility function for the insurance

company, we consider other important quantities of interest from the insurer’s perspective. In-

spired by, for example, Bauer and Weber (2008), Li and Hardy (2011), Cairns (2013), Kling

et al. (2014) and Olivieri and Pitacco (2019), we consider the (random) present value of future

losses.10 To assess the risks contained in retirement products, we apply two risk measures to

this random variable, which are both described in detail below.

5.1 A single cohort

Let LX denote the (random) present value of future liabilities of retirement product X ∈
{A,OT,OTG} . We consider three different insurance companies, each selling one type of

contract. The first one sells annuities exclusively, the second one sells pure natural tontines

(with no guarantees) and the last one sells only natural tontines with minimum guarantees.

It could be the situation that the first insurer attracts individuals with high risk aversion, the

second one serves individuals with low risk aversion and the third one is attractive to individuals

with medium risk aversion. Each insurer holds a portfolio of n policyholders with the same age

and risk aversion who all purchase the same type of retirement plan. At each time t ≥ 0 , the

insurers pay (1), (2) and (3), each multiplied by the number of policyholders still alive Nε(t) ,

10The provided literature considers similar or comparable quantities of interest to the insurer. For example,
Olivieri and Pitacco (2019) consider the present value of future profits which is simply the present value of
future losses multiplied by (−1) .
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respectively. Consequently, the (random) present value of future liabilities LX can, for each

retirement plan (or each insurer), be expressed in the following way:

• Insurer one with annuities:

LA =

∫ ∞

0

Nε(t)e
−rtc(t)dt . (14)

• Insurer two with pure tontines (with no guarantees):

LOT =

∫ ∞

0

e−rtnh(t)1{Nε(t)>0}dt , (15)

where h(t) denotes the deterministic payment stream of the pure tontine contract, fixed

at the beginning of the contract.

• Insurer three with tontines with minimum guarantees:

LOTG =

∫ ∞

0

e−rt
(
Nε(t)g(t) + α∗max {nd(t)−Nε(t)g(t), 0}1{Nε(t)>0}

)
dt . (16)

Then, we consider the (random) present value of future losses defined by

L̃X := LX − nW0 = LX − nEQ [LX ] (17)

for X ∈ {A,OT,OTG} . In particular, all three insurance companies receive the same premium

W0 per contract at time 0 . In Figure 2, we show the histograms of 100000 realizations of L̃X of

an annuity, a pure natural tontine, and a natural tontine with a constant minimum guarantee.

The annuity payoff c(t) and the payoff of the pure tontine h(t) are chosen such that the up-

front premium W0 is equal to their initial market values, respectively. The constant guarantee

of the tontine with a minimum guarantee is the utility maximizing guarantee for a risk aversion

of γ = 6 , that is, g = 2.05 (see Table 6). The resulting fair participation rate is α∗ = 0.82 (see

also Table 3). The remaining parameters are chosen as in Table 1. We observe the following:

• Panel (a) and (b): The pure natural tontine creates lower losses than the annuity. Fur-

thermore, the pure tontine creates losses more frequently than the annuity. The reason

for these patterns is the decreasing payoff structure of the natural tontine, which leads to

a distribution which is skewed to the left. If more policyholders survive than expected,

only low payments are made to the remaining policyholders. The trade-off for this is the

rather limited “upside potential” of the natural tontine compared to the annuity.

• Panel (c): The natural tontine with a minimum guarantee combines the advantages of

the annuity and the pure natural tontine. It creates lower and less frequent losses than
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(a) Annuity (b) Pure natural tontine

(c) Natural tontine with a minimum guarantee

Figure 2: Histograms of the present value of future losses for a constant annuity, a pure natural
tontine, and a natural tontine with a constant minimum guarantee. The parameters are chosen
as in Table 1, except for the constant guarantee, which is g = 2.05 . The fair participation rate
is α∗ = 0.82 (see also Table 6).

an annuity. Compared to the pure natural tontine, the natural tontine with a guarantee

creates higher losses, but losses occur less frequently.

To further assess the performance of the different retirement plans we now introduce two risk

measures: We consider the overall loss probability P
(
L̃X > 0

)
and the conditional (expected)

present value of future losses per contract 1
n
E
[
L̃X
∣∣ L̃X > 0

]
which determines the average

loss per contract in case a loss occurs. In Table 7, we provide both risk measures for the

three different retirement products. Table 7 supports the conclusions drawn from Figure 2.

The natural tontine with a minimum guarantee performs better than the annuity in both

risk measures. For the given parameters, it particularly manages to reduce the conditional

expected loss by more than 95% compared to the annuity, while simultaneously yielding a

slightly lower loss probability. Compared to the pure natural tontine, the natural tontine with
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P
(
L̃X > 0

)
1
n
E
[
L̃X
∣∣ L̃X > 0

]

Annuity 0.0012 1.23
Pure natural tontine 0.1169 0.01

Natural tontine with a guarantee 0.0009 0.06

Table 7: Risk measures for a constant annuity, a pure natural tontine, and a natural tontine
with a constant minimum guarantee. The parameters are chosen as in Table 1, except for the
constant guarantee, which is g = 2.05 . The fair participation rate is α∗ = 0.82 (see also Table
6).

a guarantee performs worse concerning the conditional expected loss and better concerning the

loss probability.

5.2 Multiple cohorts

To further investigate the flexibility of tontines with minimum guarantees, we now assume that

each insurer holds a portfolio of k different cohorts. We denote the initial size of each cohort

by ni and the size of each cohort at time t ≥ 0 by N
(i)
ε (t) for all i = 1, . . . , k , k ≥ 1 . We

assume that, given the shock ε , the cohorts are independent of each other. Insurer one only

allows the cohorts to differ in size, that is, the (random) present value of future liabilities of

the annuity is the following slight generalization of (14):

LcA =
k∑

i=1

∫ ∞

0

N (i)
ε (t)e−rtc(t)dt.

Insurer two allows the cohorts to differ in size and consequently, also has to allow them to differ

in the payout functions, denoted by hi(t) , as each hi(t) depends on the pool size ni . The

(random) present value of future liabilities of the overall portfolio of pure tontines is thus the

following generalization of (15):

LcOT =
k∑

i=1

∫ ∞

0

e−rtnihi(t)1{
N

(i)
ε (t)>0

}dt.

Insurer three allows the cohorts to differ in size and guarantee. We denote the guarantee of each

cohort by g(i)(t) and the resulting fair participation rate by α∗i . Note that the tontine payout

function of the tontines with minimum guarantees d(t) does not vary between the cohorts, that

is, all the cohorts purchase the new products building on similar underlying tontines. Note,

however, that the tontines are only identical in their payout function and differ in the mortality

experienced. The (random) present value of future liabilities of the overall portfolio of tontines
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with minimum guarantees can then be generalized from (16) to

LcOTG =
k∑

i=1

∫ ∞

0

e−rt
(
N (i)
ε (t)g(i)(t) + α∗i max

{
nid(t)−N (i)

ε (t)g(i)(t), 0
}
1{

N
(i)
ε (t)>0

}
)

dt.

Similarly as in equation (17) for one cohort, the present value of future losses is given by

L̃cX := LcX −W0

k∑

i=1

ni , (18)

where X ∈ {A,OT,OTG} . Table 8 provides the similar risk measures as Table 7 for the

following parameter setup:

• There are k = 2 cohorts, each with size n1 = n2 = 150 .

• Cohort one has guarantee g(1) = 2.05 , the second cohort has g(2) = 3.76 , that is, the

utility maximizing guarantees of the natural tontine for risk aversions of γ = 6 and

γ = 10 , respectively (see Table 6). The corresponding fair participation rates are given

by α∗ = 0.82 and α∗ = 0.78 , respectively (see also Table 6).

• All the remaining parameters are taken from Table 1.

P
(
L̃X > 0

)
1
n
E
[
L̃X
∣∣ L̃X > 0

]

Annuity 0.0003 1.03
Pure natural tontine 0.0346 0.01

Natural tontines with guarantees 0.0003 0.08

Table 8: Risk measures for a constant annuity, a pure natural tontine, and a natural tontine
with a constant minimum guarantee for two cohorts with size n1 = n2 = 150 . The guarantees
of the cohorts are g(1) = 2.05 and g(2) = 3.76 , and the fair participation rates are α∗ = 0.82
and α∗ = 0.78 , respectively (see also Table 6). All the remaining parameters are taken from
Table 1.

Primarily, we are interested in whether the tontines with guarantees still manage to outperform

the annuity. Concerning the loss probability, the annuity now delivers an (almost) identical

value as the natural tontines with guarantees. However, the natural tontines with guarantees

still reduce the expected conditional loss by more than 92% . Apart from these observations, the

relation between the pure natural tontine and the natural tontine with a minimum guarantee

does not change compared to the case with one cohort.
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6 Conclusion

In this article, we follow Donnelly and Young (2017) and present a new approach of combining

annuities and tontines by considering options on tontines, where the tontine design is based on

Milevsky and Salisbury (2015). The resulting product can be seen as a tontine with a minimum

guarantee: For each point in time, it consists of a guaranteed annuity-like component and a

call option written on a tontine multiplied by a surplus participation rate. In this sense, the

new product eliminates the risk that policyholders have to face volatile and, potentially, ex-

tremely low payments at old ages, which is one of the main disadvantages of tontines from the

policyholders’ perspective. Extending Donnelly and Young (2017), we analyze the new product

in an expected utility framework. We show that a natural tontine with a minimum guarantee

outperforms both an annuity and the comparable pure tontine (with no guarantee) for different

risk aversion parameters. By allowing individuals with different types of risk aversion to choose

their optimal guarantee, we show that the new product provides a whole range of retirement

plans which are able to serve different risk appetites and liquidity needs. Further extending

Donnelly and Young (2017), we provide an analysis which shows that a tontine with a mini-

mum guarantee can also be attractive from an insurer’s point of view: Compared to annuities,

they can reduce the conditional expected loss drastically while yielding an (almost) identical

loss probability. Consequently, they provide a new type of retirement plan which can possibly

contain less risk than annuities for the insurer.

As we, in this article, solely use natural tontines in our illustrative examples, a possible ex-

tension of our article could be the consideration of additional tontine designs. For example,

Milevsky and Salisbury (2015) also consider the historical tontine design, which they call flat

tontine, whose payout function is, in contrast to the natural tontine, constant over time. That

is, the payments to a single policyholder increase over time in this tontine design. Such a pay-

ment profile would be of special interest to individuals who have higher liquidity needs at older

ages than at younger ages, which is often observed among retirees (see, for example, Weinert

and Gründl (2017)).
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ABSTRACT

Tontines, retirement products constructed in such a way that the longevity
risk is shared in a pool of policyholders, have recently gained vast attention
from researchers and practitioners. Typically, these products are cheaper than
annuities, but do not provide stable payments to policyholders. This raises the
question whether, from the policyholders’ viewpoint, the advantages of annu-
ities and tontines can be combined to form a retirement plan which is cheaper
than an annuity, but provides a less volatile retirement income than a tontine.
In this article, we analyze and compare three approaches of combining annu-
ities and tontines in an expected utility framework: the previously introduced
“tonuity”, a product very similar to the tonuity which we call “antine” and a
portfolio consisting of an annuity and a tontine. We show that the payoffs of a
tonuity and an antine can be replicated by a portfolio consisting of an annuity
and a tontine. Consequently, policyholders achieve higher expected utility lev-
els when choosing the portfolio over the novel retirement products tonuity and
antine. Further, we derive conditions on the premium loadings of annuities and
tontines indicating when the optimal portfolio is investing a positive amount
in both annuity and tontine, and when the optimal portfolio turns out to be a
pure annuity or a pure tontine.
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1. INTRODUCTION

Annuities provide (life-)long payment streams to the policyholder and thus,
constitute a possible way to build protection against the increasing threat of
the individual’s incapability to keep her living standards at older ages. They
have been considered as very desirable retirement products from a policy-
holder’s perspective (see, e.g., Yaari, 1965; Mitchell, 2002; Davidoff et al.,
2005; or Peijnenburg et al., 2016). However, in practice, annuitization rates
have remained rather low (see, for instance, Hu and Scott 2007 and Inkmann
et al. 2010). This phenomenon is already well known as the “annuity puzzle” in
the academic world, and there exists a variety of literature exploring the main
drivers responsible for this puzzle. Literature reviews can be found, for exam-
ple, in Brown (2007) or Milevsky (2013). An overview of existing puzzles in
life insurance can be found in Gottlieb (2012). Recent attempts to tackle the
annuity puzzle include but are not limited to Poppe-Yanez (2017), Caliendo
et al. (2017), Chen et al. (2018) and O’Dea and Sturrock (2019). Due to the
tightening solvency regulation and the low interest rate environment, it yet
seems unlikely that retirees are going to annuitize more of their wealth in the
near future. Consequently, insurers and customers are searching for new, more
attractive retirement products. In this context, tontine products, which were
a popular source of retirement income back in the 17th, 18th and 19th cen-
turies (see Milevsky and Salisbury, 2015), have attracted vast attention from
academics and practitioners. For details about tontines, we refer the interested
reader, for instance, to Sabin (2010), Milevsky (2015), Milevsky and Salisbury
(2015, 2016), or Li and Rothschild (2019).1 One of the main properties of
tontines, in contrast to annuities, is that a pool of policyholders shares the
longevity risk. In this sense, tontines and annuities are two extreme types of
retirement products constructed in such a way that the longevity risk is, in the
case of tontines, (almost) fully borne by the policyholders or, in the case of
annuities, fully by the insurer.

Naturally, the question arises whether the advantages of annuities and ton-
tines can be combined to form a product which is cheaper than an annuity
and shifts the longevity risk not completely, but only partially toward the
policyholder. Possible ways of combining annuities and tontines are already
examined in Weinert and Gründl (2017) and Chen et al. (2019). Chen et al.
(2019) present a new retirement product called “tonuity” which is a tontine at
early retirement ages, but switches to an annuity at a predetermined switching
time. Weinert and Gründl (2017) focus on how the policyholder can optimally
invest fractions of her wealth in tontines and annuities in a cumulative prospect
theory framework, where the tontine design is taken from Sabin (2010). In
this article, we compare various combinations of annuities and tontines in
a classical expected utility framework to find the “best” product from the
policyholder’s viewpoint, where we focus on the tontine design from Milevsky
and Salisbury (2015). For this, we include not only the tonuity and a portfolio
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consisting of an annuity and a tontine, but also a new product which we call
“antine”. The antine works similarly as the tonuity: it provides annuity-like
payments at early retirement ages and, after a prespecified switching time,
switches to tontine-like payments at older ages. All these three combinations
of tontines and annuities contain the original products (annuity and tontine)
as special cases.

In contrast to Chen et al. (2019), we extend their study by additionally
considering and analyzing the portfolio and the novel concept of the antine,
and comparing them with the tonuity. Further, we analytically investigate
the impact of premium loadings on the decision about the optimal retirement
product. Our resulting findings are hence all-new and importantly contribute to
the discussion on optimal retirement products. Our article can also be consid-
ered as a straightforward extension toMilevsky and Salisbury (2015), where we
take more retirement products into consideration. Compared to Sabin (2010)
who deals with different ages, genders and initial contributions, we consider a
simplified case with homogeneous policyholders. However, while Sabin (2010)
focuses on how a fair tontine between members of different groups can be
designed, we go beyond this and study utility-maximizing payoffs of various
products.

According to Milevsky and Salisbury (2015), in an actuarially fair pric-
ing framework, annuities yield a higher level of expected utility than tontines.
However, more realistically, by adding appropriate safety loadings to the
prices of these products, it is possible that tontines outperform annuities (see
Milevsky and Salisbury 2015 or Chen et al. 2019). In the present article, we
set ourselves in this more realistic setting and determine the utility-maximizing
payoffs of the tonuity, the antine and the portfolio of an annuity and a tontine
for a risk-averse policyholder with no bequest motive. While for the tonuity
and the antine an explicit solution is available, the case with the portfolio
requires us to rely on numerical procedures to determine the optimal annuity
and tontine payoffs. The optimal payoff of the tonuity can be considered as a
direct generalization of the optimal tonuity payoff in Chen et al. (2019) who
derive the utility-maximizing payoff without incorporating safety loadings.
The antine payoff can be determined analogously to the payoff of the tonuity.
While, in the portfolio, the optimal payoff of the tontine coincides roughly with
optimal tontine designs discussed in the literature (cf. Milevsky and Salisbury,
2015; Chen et al., 2019), the corresponding annuity payoff structure deviates
substantially from this literature as it first increases and then decreases rather
strongly, leading to a bell-shaped curve. The reason for this structure is that
the annuity provides secure payments at times when the tontine provides the
most volatile payments. At rather advanced retirement ages, the tontine pay-
ments are relatively high due to the few surviving policyholders, which leads to
a decrease in the annuity payoff. Based on these optimal income streams, we
can implicitly determine the fractions of wealth initially invested in the annuity
and the tontine, respectively.
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Our main theoretical result shows that, from the policyholder’s point of
view, a portfolio consisting of an annuity and a tontine can outperform any
tonuity and antine. The reason for this is that, under the considered structure of
the (loaded) premiums, any tonuity and antine payoff can be replicated by such
a portfolio, given the initial premiums of the three retirement plans are iden-
tical. Throughout this article, we incorporate safety loadings in the premiums
using the expected value principle. Nevertheless, this main theoretical result
remains valid when other premium calculation principles, like the variance or
the standard deviation principle, are applied. Moreover, we derive conditions
for the loadings of the tontine and the annuity, under which a pure annuity,
a pure tontine, or an investment in both of them is utility-maximizing: if the
annuity loading is smaller than or equal to the tontine loading, it is optimal to
invest all initial wealth in the annuity. If the annuity loading drastically exceeds
the tontine loading, a pure investment in the tontine is optimal. Under realis-
tic loadings, that is, the annuity loading is reasonably larger than the tontine
loading, an investment in both annuity and tontine yields the maximal utility.

In our numerical analysis, the expected lifetime utility of the optimal tonu-
ity does get very close to that of the optimal portfolio. Given that the optimal
payoffs of the tontine and the annuity in the portfolio are rather complex,
this finding indicates that a single switch from tontine to annuity might be a
more useful and simpler way for practice, although the optimal combination of
annuities and tontines is, in fact, not the tonuity. Further, the newly proposed
antine seems not to be a desirable product from the policyholder’s perspec-
tive and is frequently outperformed by the tonuity. This is probably due to the
design of the antine which leaves policyholders with volatile payments in the
advanced retirement ages and is still rather expensive compared to tontines.

The remainder of the article is structured as follows: Section 2 describes
the basic model setup, where, in particular, the assumptions regarding the
mortality model and the design of the considered retirement products are dis-
cussed. In Section 3, we derive the optimal payoffs of the different retirement
products and the optimal level of expected utility of each retirement plan. In
Section 4, we theoretically and numerically compare the attractiveness of the
different combinations of annuities and tontines from a policyholder’s per-
spective. Section 5 concludes the article and is followed by appendices, where
supplementary proofs and a pseudocode for the numerical determination of
the optimal annuity and tontine payoffs in the portfolio are provided.

2. MODEL SETUP

In this section, we describe the basic model setup used throughout the remain-
der of our article. We start by describing our mortality model and continue by
introducing the designs of the retirement plans under consideration.
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2.1. Mortality model

We consider a simple mortality model which allows us to distinguish between
two types of mortality risk: unsystematic or idiosyncratic mortality risk stems
from the fact that the lifetime of a person is unknown, but still follows a certain
mortality law, and can thus be diversified. Systematic or aggregate mortal-
ity risk stems from the fact that the true underlying mortality law cannot be
determined with certainty. This type of mortality risk cannot be diversified and
affects all the policies of an insurer in the same direction. Further explana-
tions on these two different aspects of mortality risk are given, for example,
in Piggott et al. (2005). We use the usual actuarial notation tpx for the best-
estimate survival curve of an x-year-old policyholder over time t≥ 0. These
best-estimates can be computed from continuous-time mortality laws which
are usually obtained from publicly available life tables. We follow Lin and
Cox (2005) to incorporate the systematic mortality risk in the mortality law by
applying a random shock ε to the best-estimates. The shocked survival curve is
then given by tp1−ε

x . The shock ε is a continuous random variable, whose density
is denoted by fε( · ) and which takes values in (− ∞, 1). Note that by restricting
the shock ε to the interval (− ∞, 1), the shocked survival probabilities tp1−ε

x
still possess all the important properties we require from survival probabili-
ties: first of all, they are still probabilities as they lie between zero and one.
Furthermore, they fulfill the property tp1−ε

x = sp1−ε
x · t−sp1−ε

x+s for all 0≤ s≤ t. As
the shock affects all the policyholders in the same direction, it cannot be diver-
sified by choosing the initial pool size large enough and is thus an important
component in our model to capture the systematic mortality risk. The special
case with no longevity shock is obtained by setting ε = 0.

2.2. Retirement products

We consider an individual endowed with an initial wealth amounting to v> 0
who can buy one of the following five retirement plans. The first two are the
annuity and the tontine. The remaining three are then combinations of the
annuity and the tontine and contain the annuity and the tontine as special
cases. In this section, we introduce the payoffs of the retirement products and
determine their gross premiums obtained using the expected value principle.

2.2.1. Annuity and tontine
Let us first consider an annuity contract. Following Yaari (1965), we assume
that by buying such a contract, the policyholder continuously receives the
deterministic payment c(t) which starts immediately and continues until her
death. To denote the random remaining future lifetime of the policyholder,
we use Tε that takes account of the random longevity shock ε introduced
above. Then, the payoff of the annuity to the policyholder at any time t can
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be expressed as

bA(t)= 1{Tε>t}c(t). (2.1)

Here, 1B is the indicator function that is equal to one if event B occurs and zero
otherwise. By deploying the expected value principle, we can write the initially
charged gross premium for the annuity as follows:

P̃A
0 = (1+CA)PA

0 , (2.2)

where CA ≥ 0 describes the proportional risk loading applied in the context of
the annuity. The corresponding net premium PA

0 can be obtained, by noting
that

(
1{Tε>t}

∣∣ε)∼Bernoulli
(
tp1−ε
x

)
, as (see also Equation (2.4) in Chen et al.,

2019 for a detailed derivation)

PA
0 =E

[∫ ∞

0
e−rtbA(t) dt

]
=

∫ ∞

0
e−rt

tpx mε(− ln tpx) c(t) dt, (2.3)

where r is the risk-free interest rate and mε(s)=E [esε ] for s ∈R is the moment-
generating function of ε.

Next, let us consider a tontine contract. We use n ∈N to denote the initial
number of homogeneous policyholders holding the same tontine contract. The
policyholders can be considered as identical copies of each other. Note that,
as we focus on the comparison between the different combinations of annu-
ities and tontines, we keep the tontine modeling rather simple. Nevertheless,
dealing with heterogeneity between the individuals in our context surely opens
up an interesting perspective for future research (cf. Milevsky and Salisbury,
2016). By choosing the pool size n large enough, it is possible for the insurer
to diversify the unsystematic mortality risk. However, it is not possible for the
insurer to diversify the systematic mortality risk for this risk influences all the
members in the pool in the same way. At older ages, when the pool size has
decreased, the remaining policyholders are left with both systematic and unsys-
tematic risk. We useNε(t) to denote the random number of policyholders in the
pool who are still alive at time t. Following Milevsky and Salisbury (2015), the
continuous payoff at any time t to a single policyholder in the pool, who holds
a tontine contract, is then given by

bOT (t)= 1{Tε>t}
n

Nε(t)
d(t), (2.4)

where d(t) is a deterministic payoff function specified at contract initiation.
When Nε(t) equals zero, the tontine payoff is set equal to zero. While an annu-
ity provides a deterministic payoff to a living policyholder, the future tontine
payment to a living policyholder is a random variable depending on the num-
ber of pool members alive. Note that the payoff in (2.4) is paid out to a single
policyholder. From the insurer’s perspective, the payment nd(t) is made at each
time t. This payment is made until the last policyholder has died. The insurer
carries the longevity risk of the last living policyholder in the pool. That is,
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while in an annuity, the insurer promises a guaranteed payment to each single
policyholder, in the tontine it is only promised to the pool, which leaves the
policyholders with most of the mortality risk.

Conditional on the considered policyholder still being alive, given the
longevity shock ε, and assuming the lifetimes of the policyholders to be inde-
pendent, the number of surviving individuals follows a binomial distribution,
that is,

(Nε(t)− 1|Tε > t, ε) ∼Bin
(
n− 1, tp1−ε

x

)
. (2.5)

Similar to the case of the annuity described above, the gross premium for the
tontine initially charged is specified through

P̃OT
0 = (1+COT )POT

0 , (2.6)

where COT ≥ 0 describes the proportional risk loading applied in the context
of the tontine. Using the property in (2.5) and the binomial theorem, the net
premium POT

0 of the tontine is computed as (see also Equation (2.5) in Chen
et al., 2019 for a detailed derivation)

POT
0 =E

[∫ ∞

0
e−rtbOT (t) dt

]
=

∫ ∞

0
e−rt

∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ d(t) dt.

(2.7)

In general, note that, for the magnitudes of the proportional risk loadings,
it makes sense to assume CA >COT . This is due to the fact that within an annu-
ity product, the insurer carries the entire longevity risk, while the policyholders
carry most of the longevity risk within a tontine product. Additionally, it is
reasonable to assume that the loading for the tontine decreases in the pool size
as less unsystematic risk is then involved in the tontine product. Note that,
typically, the risk loadings should carefully reflect the risks associated with a
retirement product. The setting we consider allows for very general risk load-
ings and still allows us to determine explicit solutions for the optimal payoffs
of at least some of the retirement products, but is, due to its simplicity, not as
accurate as the one in Chen et al. (2019). We solve this issue by carefully set-
ting the loadings according to the values provided in Chen et al. (2019) in the
numerical section.

2.2.2. Portfolio
Assume now that the policyholder can combine an annuity and a tontine by
initially investing in both products. The resulting payoff of this portfolio at
any time t is given by

bAT (t)= 1{Tε>t}

(
cAT (t)+ n

Nε(t)
dAT (t)

)
, (2.8)
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where cAT (t) and dAT (t) are the payoff functions of the annuity and the tontine
constituting the portfolio, respectively. In caseNε(t) is equal to zero, the payoff
in (2.8) is defined to be zero, similarly as the tontine payoff. The more wealth is
invested in the annuity, the closer the payoff of the portfolio gets to an annuity-
like payoff, and analogously for the tontine. The initial single gross premium
for the portfolio is plainly given by

P̃AT
0 = P̃A,AT

0 + P̃OT ,AT
0 = (1+CA)P

A,AT
0 + (1+COT )P

OT ,AT
0 , (2.9)

where PA,AT
0 and POT ,AT

0 are defined similarly as in Equations (2.3) and (2.7)
with the payoffs c(t) and d(t) replaced by cAT (t) and dAT (t), respectively. That
is, the gross premium of the portfolio corresponds to the gross premium of
the contained annuity plus the gross premium of the contained tontine. Hence,
both proportional loading factors CA and COT appear in the above formula.

2.2.3. Tonuity
As the second way of combining the tontine and the annuity, we consider the
tonuity with a prespecified switching time τ ≥ 0, originally introduced in Chen
et al. (2019). Until time τ , the payoff to the policyholder coincides with that of
the tontine. From time τ on, the payoff switches to the payoff of the annuity.
Note that τ is not a random variable, but a constant fixed at contract initia-
tion. This product provides the policyholder a secure payoff at more advanced
retirement ages. At any time t, the payoff of a tonuity to a policyholder having
a residual lifetime Tε is given by

b[τ ](t)= 1{0≤t<min{τ ,Tε }}
n

Nε(t)
d[τ ](t)+ 1{τ≤t<Tε }c[τ ](t), (2.10)

where d[τ ](t) and c[τ ](t) are the payoff functions of the tontine and the annuity
constituting the tonuity, respectively. Recall that Nε(t) is the number of partic-
ipants still alive at t and n is the initial number of participants. When choosing
τ = ∞, we obtain the payoff of a tontine and when choosing τ = 0, we deal
with an annuity. To determine the gross premium of a tonuity, we assume that
the insurer again applies the expected value principle with proportional loading
COT to the part of the payoff which corresponds to the tontine and the expected
value principle with loading CA to the part of the payoff which corresponds to
the annuity. Consequently, the total premium for a tonuity is given by

P̃[τ ]
0 = (1+COT)POT ,τ

0 + (1+CA)P
A,τ
0 , (2.11)

where the tonuity-specific premium parts POT ,τ
0 and PA,τ

0 are implicitly defined
via the corresponding overall net premium which can be taken from Equation
(4.2) in Chen et al. (2019):

P[τ ]
0 =E

[∫ ∞

0
e−rtb[τ ](t) dt

]
=

∫ τ

0
e−rt

∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ d[τ ](t) dt
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+
∫ ∞

τ

e−rt
tpx mε(− ln tpx) c[τ ](t) dt

=POT ,τ
0 +PA,τ

0 .
(2.12)

Note that using the two safety loading factors COT and CA also for
the tonuity allows us to make reasonable comparisons between the different
combinations of annuities and tontines, as is done in Section 4.

2.2.4. Antine
Inspired by tonuities, the third way of combining the tontine and the annuity
is to start with annuity-like payments until a prespecified switching time σ ≥ 0,
after which tontine-like payments are made. Due to its structure, we name this
new contract antine. At any time t, the payoff of an antine to a policyholder
having a residual lifetime Tε is given by

b[σ ](t)= 1{0≤t<min{σ ,Tε }}c[σ ](t)+ 1{σ≤t<Tε }
n

Nε(t)
d[σ ](t), (2.13)

where c[σ ](t) and d[σ ](t) are the payoff functions of the annuity and the tontine
constituting the antine, respectively. When choosing σ = ∞, we obtain the pay-
off of an annuity and when choosing σ = 0, we deal with a tontine. The gross
premium of an antine is determined similarly as for the tonuity. We assume
that the insurer again applies the expected value principle with proportional
loading CA to the part of the payoff which corresponds to the annuity and
the expected value principle with loading COT to the part of the payoff which
corresponds to the tontine. Consequently, the total premium for the antine is
given by

P̃[σ ]
0 = (1+CA)P

A,σ
0 + (1+COT)POT ,σ

0 , (2.14)

where the antine-specific premium parts PA,σ
0 and POT ,σ

0 are implicitly defined
via the corresponding overall net premiumwhich can be computed analogously
as for the tonuity:

P[σ ]
0 =E

[∫ ∞

0
e−rtb[σ ](t) dt

]
=

∫ σ

0
e−rt

tpx mε(− ln tpx) c[σ ](t) dt

+
∫ ∞

σ

e−rt
∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ d[σ ](t) dt

=PA,σ
0 +POT ,σ

0 .

(2.15)

Similarly as for the tonuity, we, for reasons of comparison, use the two distinct
loading factors CA and COT also for the antine.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2019.37
Downloaded from https://www.cambridge.org/core. Ulm University, on 06 May 2020 at 16:09:10, subject to the Cambridge Core terms of use, available

Research Papers 2 On the optimal combination of annuities and tontines

61



104 A. CHEN, M. RACH AND T. SEHNER

3. OPTIMAL PAYOFF AND EXPECTED UTILITY

In this section, we derive the optimal payoff and the corresponding optimal
level of expected utility for each of the retirement plans introduced in the pre-
vious section. To avoid redundancy, we only focus on the tonuity, the antine
and the portfolio consisting of an annuity and a tontine. Note that the pure
annuity and the pure tontine are contained in each of these three combined
products, which is why there is no need to study them separately.

Before we start with the detailed consideration, let us first, in the style,
for example, of Yaari (1965), generally introduce the policyholder’s expected
discounted lifetime utility as

U
({χ(t)}t≥0

)=E
[∫ ∞

0
e−ρtu (χ(t)) 1{Tε>t} dt

]
, (3.16)

where

χ(t)=

⎧⎪⎪⎨⎪⎪⎩
cAT (t)+ n

Nε (t)
dAT (t), for portfolio,

1{0≤t<τ } n
Nε (t)

d[τ ](t)+ 1{τ≤t}c[τ ](t), for tonuity,

1{0≤t<σ }c[σ ](t)+ 1{σ≤t} n
Nε (t)

d[σ ](t), for antine,

(3.17)

denotes the payoff of each retirement plan to a living policyholder. Note that
we do not include a bequest motive in the utility of the policyholder. Instead,
we assume that the policyholder has already set aside money to take care of the
bequest motive beforehand, for example, by buying an insurance contract. The
initial wealth v in our setting is therefore not the entire wealth she holds. This
stipulation also allows us to compare our results with, for instance, Milevsky
and Salisbury (2015), where the bequest motive is neglected as well. Further,
we assume that u(z)= z1−γ

1−γ
for z> 0 is a constant relative risk aversion (CRRA)

utility function with a risk aversion parameter γ > 0 adhering to γ �= 1 and ρ

is the subjective discount rate of the policyholder. The policyholder chooses
the deterministic payoff functions c·(t) and d·(t) in χ(t), so that (3.16) is max-
imized under the following budget constraint: her initial wealth v is fully used
to purchase the corresponding retirement product. The purchase prices of the
three products coincide with the different gross premiums and are thus given in
(2.9), (2.11) and (2.14). Consequently, for j=AT , [τ ], [σ ], the budget constraint
is generally given by

v= P̃j
0. (3.18)

As the optimal payoffs of the tonuity and the antine can be determined explic-
itly, in contrast to the optimal payoff of the portfolio, we first discuss the
optimization problems of the tonuity and antine before we deal with the
portfolio. Let us start with the tonuity.
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ON THE OPTIMAL COMBINATION OF ANNUITIES AND TONTINES 105

3.1. Tonuity

Translating the outlined policyholder’s goal into the framework of the tonuity
leads to the following optimization problem:

max
(c[τ ](t), d[τ ](t))t∈[0,∞)

E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{τ ,Tε }}u

(
n

Nε(t)
d[τ ](t)

)

+1{τ≤t<Tε }u
(
c[τ ](t)

) )
dt

]
subject to v= P̃[τ ]

0 = (1+COT)POT ,τ
0 + (1+CA)PA,τ

0 .

(3.19)

Theorem 3.1 provides the solution to optimization problem (3.19).

Theorem 3.1. For a tonuity with a switching time τ , the optimal payoff functions
are given by

d∗
[τ ](t)=

e
(r−ρ)t

γ

(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[τ ] (1+COT)

1/γ
(∫ 1

−∞
(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ for all t ∈ [0, τ )

(3.20)

and

c∗
[τ ](t)=

e
(r−ρ)t

γ

λ
1/γ
[τ ] (1+CA)

1/γ
for all t ∈ [τ ,∞), (3.21)

where the optimal Lagrangian multiplier λ[τ ] is given by

λ[τ ] =
⎛⎜⎝1
v

⎛⎜⎝∫ τ

0
(1+COT)

1− 1
γ e

(
1
γ

−1
)
rt− 1

γ
ρt

(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1 dt

+
∫ ∞

τ

(1+CA)
1− 1

γ e
(

1
γ

−1
)
rt− 1

γ
ρt
tpx mε(− ln tpx) dt

))γ

(3.22)

and κn,γ ,ε(tpx) by

κn,γ ,ε(tpx)=
n∑

k=1

(
n
k

)(
k
n

)γ ∫ 1

−∞

(
tp1−ϕ
x

)k (
1− tp1−ϕ

x

)n−k
fε(ϕ) dϕ. (3.23)
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106 A. CHEN, M. RACH AND T. SEHNER

TABLE 1

BASE CASE PARAMETER SETUP.

Initial wealth Pool size Risk aversion
v= 300 thousand euros n= 1000 γ = 6

Risk-free rate Subjective discount rate Risk loadings
r= 0.01 ρ = r CA = 4%, COT = 0.01%

Initial age Gompertz law Longevity shock
x= 65 m= 88.721, β = 10 ε ∼N(−∞,1)

(−0.0035, 0.08142
)

The expected discounted lifetime utility is then given by

U[τ ] =E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{τ ,Tε }}u

(
n

Nε(t)
d∗
[τ ](t)

)

+ 1{τ≤t<Tε }u
(
c∗
[τ ](t)

) )
dt

]
= λ[τ ]

1− γ
v.

(3.24)

Proof. See Appendix A.1. �
Note that the special cases τ = ∞ and τ = 0 lead to the tontine and the annuity,
respectively. A further important observation resulting from Theorem 3.1 is
that the optimal annuity payoff (3.21) is constant for all switching times if ρ =
r, which is in line with Yaari (1965). It is also shown, for example, in Yagi
and Nishigaki (1993) that constant annuities are suboptimal for individuals,
whose subjective discount rate differs from the risk-free interest rate. If the
subjective discount rate exceeds (falls below) the risk-free interest rate, that is,
ρ > r (ρ < r), the annuity payoff (3.21) is decreasing (increasing) over time.

As Theorem 3.1 holds for any τ , it is also possible for a specific policy-
holder to numerically find the optimal switching time τ ∗ for the tonuity such
that the highest lifetime utility is achieved for this policyholder. More detailed
explanations on the optimal switching time of a tonuity can also be found in
Chen et al. (2019). We denote the optimal payoff functions resulting from τ ∗

by d∗
[τ ∗](t) and c

∗
[τ ∗](t). In order to obtain τ ∗, we can compute the expected utility

levels for sufficiently many values of τ increasing from 0 to, for example, 55,
and then choose the switching time τ ∗ which yields the highest expected life-
time utility. More details on the behavior of the optimal switching time τ ∗ can
be found in Section 4.2.

In order to illustratively show how the optimal payoff of the tonuity can
look like, we fix the parameter values summarized in Table 1 as our base case
parameter setup.

Note the following remarks about our choice of parameters:

• To determine the value of the initial wealth v, we follow the estimation of
Royal London (2018). They state that an average (British) employee needs
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ON THE OPTIMAL COMBINATION OF ANNUITIES AND TONTINES 107

to invest around 260 thousand pounds sterling, which approximately corre-
sponds to 300 thousand euros, in the private pension provision to keep her
standard of living in the retirement phase beginning at the age of 65 years.

• In their simulation study of group self-annuitization schemes, Qiao and
Sherris (2013) frequently apply a pool size of 1000 which we adopt for our
analyses.

• For the risk-free rate, we choose a fairly low value to conform with the
current situation in many European countries. As an example, consider
Germany, where the average risk-free rate of investment in 2019 equals only
1.1% (see Statista, 2019).

• The values of the risk loadings are guided by the results for the risk capital
charge in Chen et al. (2019). In this way, the reasonable assumption that
CA >COT discussed in Section 2.2.1 remains in force.

• The best-estimates tpx of the survival probability are assumed to follow
the well-known Gompertz law (see Gompertz, 1825) as used, for example,
in Gumbel (1958) or Milevsky and Salisbury (2015). In other words, we
assume that

tpx = e
e
x−m

β

(
1−e

t
β

)
, (3.25)

with β > 0 being the dispersion coefficient and m> 0 being the modal age
at death. The chosen values for β and m stem from Milevsky and Salisbury
(2015).

• Regarding the chosen probability distribution for the shock ε, we comply
with Chen et al. (2019) and assume that it follows a truncated normal distri-
bution on (−∞, 1), that is,N(−∞,1)

(
μ, ν2

)
. In accordance with the European

Solvency II Directive, the parameters μ and ν are determined in such a way
that the expected survival probabilities E

[
tp1−ε
x

]
from our simple internal

model are close to the best-estimate survival probabilities tpx.

For the base case, the optimal switching time of the tonuity is given by τ ∗ = 27
as the maximal utility is attained at this time when considering {0, 1, . . . , 54, 55}
as the possible choices for τ . Figure 1 shows the mean and the range bordered
by the 0.01- and the 0.99-quantiles of the appropriate optimal tonuity payoff
to the policyholder with respect to her age. The determination of all depicted
quantities is done numerically and is based on the assumption that the individ-
ual is always alive, so that, at any time t, the applied optimal tonuity payoff is
here given by

1{0≤t<τ ∗}
n

Nε(t)
d∗
[τ ∗](t)+ 1{τ ∗≤t}c∗

[τ ∗](t). (3.26)

As the only randomness in the optimal payoff stems from the uncertain
future number of living policyholders in the pool, it is clear that, after the
switch to the annuity at time τ ∗ = 27, that is, when the policyholder turns 92
years, the two examined quantiles coincide and equal the constant annuity pay-
ment. As long as the tontine defines the tonuity, that is, while the individual
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108 A. CHEN, M. RACH AND T. SEHNER

FIGURE 1: Mean and 0.01-/0.99-quantile range of the optimal payoff of the tonuity with τ ∗ = 27 depending
on age. The parameters are chosen as in Table 1 and the constant discretization step size of the age range as

0.05. The plot is based on the assumption that the considered policyholder is always alive.

is between 65 and 92 years old, the payoff uncertainty overall increases as
time goes by, where the possible upward movement, especially if the age gets
closer to 92 years, intensifies considerably faster. This growing volatility trend
is accompanied by a slight increase in the average payoff to the policyholder
which however drops weakly afterward to also match the constant annuity
payment for the remaining time.

3.2. Antine

The optimization problem for antines can be presented very similarly as for
tonuities. Here, c[σ ](t) and d[σ ](t) are chosen in such a way that the correspond-
ing expected discounted lifetime utility is maximized and that the appropriate
budget constraint is met:

max
(c[σ ](t), d[σ ](t))t∈[0,∞)

E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{σ ,Tε }}u

(
c[σ ](t)

)
+1{σ≤t<Tε }u

(
n

Nε(t)
d[σ ](t)

))
dt

]
subject to v= P̃[σ ]

0 = (1+CA)PA,σ
0 + (1+COT)POT ,σ

0 .

(3.27)

Theorem 3.2 provides the optimal payoff and expected discounted lifetime
utility for the antine by analogy with Theorem 3.1.

Theorem 3.2. For an antine with a switching time σ , the optimal payoff functions
are given by

c∗
[σ ](t)=

e
(r−ρ)t

γ

λ
1/γ
[σ ] (1+CA)

1/γ
for all t ∈ [0, σ ) (3.28)
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and

d∗
[σ ](t)=

e
(r−ρ)t

γ

(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[σ ] (1+COT)

1/γ
(∫ 1

−∞
(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ for all t ∈ [σ ,∞),

(3.29)

where the optimal Lagrangian multiplier λ[σ ] is given by

λ[σ ] =
(
1
v

(∫ σ

0
(1+CA)

1− 1
γ e

(
1
γ

−1
)
rt− 1

γ
ρt
tpx mε(− ln tpx) dt

+
∫ ∞

σ

(1+COT)
1− 1

γ e
(

1
γ

−1
)
rt− 1

γ
ρt

·
(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1 dt

⎞⎟⎠
⎞⎟⎠

γ
(3.30)

and κn,γ ,ε(tpx) is defined as in (3.23). The expected discounted lifetime utility is
then given by

U[σ ] =E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{σ ,Tε }}u

(
c∗
[σ ](t)

)
+1{σ≤t<Tε }u

(
n

Nε(t)
d∗
[σ ](t)

))
dt

]
= λ[σ ]

1− γ
v.

(3.31)

Proof. The proof can be carried out in the same way as the proof of
Theorem 3.1. �
Note that the optimal annuity and tontine payoffs within the antine, (3.28)
and (3.29), structurally coincide with those of the tonuity ((3.21) and (3.20))
and differ only in the intervals on which they are defined. In particular, the
optimal annuity payoff is again decreasing, constant, or increasing over time if
ρ > r, ρ = r, or ρ < r, respectively.

As Theorem 3.2 holds for any σ , it is again possible, by the same
method as before, to numerically find the integer optimal switching time σ ∗ ∈
{0, 1, . . . , 54, 55} for the antine such that the highest lifetime utility is achieved
for a specific policyholder. The resulting optimal payoff functions are then
denoted by c∗

[σ ∗](t) and d
∗
[σ ∗](t).

Similar to the case of the tonuity, we subsequently briefly analyze the opti-
mal payoff of the antine graphically when applying the base case parameter
setup specified in Table 1. The corresponding optimal switching time of the
antine is given by σ ∗ = 0 as the highest lifetime utility is attained at this time
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110 A. CHEN, M. RACH AND T. SEHNER

FIGURE 2: Mean and 0.01-/0.99-quantile range of the optimal payoff of the antine with σ ∗ = 0 depending on
age. The parameters are chosen as in Table 1 and the constant discretization step size of the age range as 0.05.

The plot is based on the assumption that the considered policyholder is always alive.

when considering {0, 1, . . . , 54, 55} as the possible choices for σ . That is, opti-
mally, the antine coincides with a tontine as the (theoretical) switch from the
annuity to the tontine occurs right at the outset. In Figure 2, we present,
depending on the policyholder’s age, the applied optimal antine payoff, that is,

1{0≤t<σ ∗}c∗
[σ ∗](t)+ 1{σ ∗≤t}

n
Nε(t)

d∗
[σ ∗](t)=

n
Nε(t)

d∗
[σ ∗](t). (3.32)

As Figure 2 displays features of a pure tontine, we can, for a very long period,
detect the same trend behavior as in Figure 1 referring to the tonuity when the
tontine defines the tonuity: the payoff uncertainty increases over time, where
the possible upward movement grows to a much greater extent, so that, at
ages around 105 years, the payoff can potentially even far exceed 100 thou-
sand euros. As a consequence thereof, the average payoff to the policyholder
increases until these high ages. However, we can also observe that this average
payoff declines afterward. This is due to the fact that the chances to receive
lower payments than expected remain, whereas the ones to receive larger pay-
ments than expected rapidly diminish. Eventually, the average payoff flattens
out and any type of uncertainty in the payoff stops as it is extremely likely
that the tontine pool contains only the considered policyholder from the age
of around 114 years on and that all the other participants have passed away
earlier. Note that, in general, dents in the upper and lower quantile curves can
appear at older ages, as is the case with Figure 2, due to the rising effect of a
death of another participant in the tontine pool in this age range on the payoff.

3.3. Portfolio

In contrast to the optimization problems for the tonuity and the antine, the
optimization problem for the case with a portfolio consisting of an annuity
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and a tontine cannot be solved explicitly. It can be written as:

max
(cAT (t), dAT (t))t∈[0,∞)

E
[∫ ∞

0
e−ρt1{Tε>t}u

(
cAT (t)+ n

Nε(t)
dAT (t)

)
dt
]

subject to v= P̃AT
0 = P̃A,AT

0 + P̃OT ,AT
0 .

(3.33)

In this retirement plan, the individual maximizes her utility simultaneously over
the payoff functions cAT (t) and dAT (t). Thus, within the utility maximization
problem, not only the optimal structures of cAT (t) and dAT (t) are determined,
but also implicitly the fractions of initial wealth invested in the annuity and
the tontine.2 The Lagrangian function corresponding to optimization problem
(3.33) can be calculated as

L=
∫ ∞

0
e−ρtE

[
1{Tε>t}u

(
cAT (t)+ n

Nε(t)
dAT (t)

)]
dt+ λAT

(
v−P̃A,AT

0 −P̃OT ,AT
0

)
=

∫ ∞

0
e−ρtE

[
tp1−ε
x E

[
u
(
cAT (t)+ n

Nε(t)
dAT (t)

)∣∣∣∣Tε > t, ε
]]

dt

+ λAT

(
v− P̃A,AT

0 − P̃OT ,AT
0

)
=

∫ ∞

0
e−ρtE

[
tp1−ε
x

n−1∑
k=0

u
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n− 1
k

) (
tp1−ε
x

)k
· (1− tp1−ε

x

)n−1−k
]
dt+ λAT

(
v− P̃A,AT

0 − P̃OT ,AT
0

)

=
∫ ∞

0
e−ρt

n−1∑
k=0

u
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n− 1
k

) ∫ 1

−∞

(
tp1−ϕ
x

)k+1 (
1−tp1−ϕ

x

)n−1−k

· fε(ϕ) dϕ dt+ λAT

(
v− P̃A,AT

0 − P̃OT ,AT
0

)
,

(3.34)

where λAT is the Lagrangian multiplier. The first-order conditions with respect
to cAT (t), dAT (t) and λAT are given as

∂L
∂cAT (t)

= e−ρt
n−1∑
k=0

u′
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n− 1
k

)
·
∫ 1

−∞

(
tp1−ϕ
x

)k+1 (
1− tp1−ϕ

x

)n−1−k
(3.35)

· fε(ϕ) dϕ − λAT (1+CA)e−rt
tpx mε(− ln tpx)

!= 0,
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∂L
∂dAT (t)

= e−ρt
n−1∑
k=0

u′
(
cAT (t)+ n

k+ 1
dAT (t)

)
n

k+ 1

(
n− 1
k

) ∫ 1

−∞

(
tp1−ϕ
x

)k+1

· (1− tp1−ϕ
x

)n−1−k
fε(ϕ) dϕ − λAT (1+COT )e−rt

·
∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ

!= 0 (3.36)

and

v= P̃AT
0 . (3.37)

As the first derivative of a CRRA utility function of a sum is generally not
equal to the corresponding sum of the first derivatives of this utility function,
the system of equations given in (3.35)–(3.37) can only be solved numerically
for the optimal payoff functions and the Lagrangian multiplier.

Although the system of equations (3.35)–(3.37) can only be solved numer-
ically, there are quite a few general conclusions that we can draw from this
system of equations. They are summarized in Proposition 3.3.

Proposition 3.3. Consider problem (3.33). Then the following holds true (with the
same notations as in Theorem 3.1):

1. The solution to problem (3.33) is a 100% investment in the annuity, that is, the
solution is dAT (t)= 0, cAT (t)= c∗

[0](t) and λAT = λ[0], if and only if CA ≤COT.
2. If and only if

CA ≥Ccrit
A := (1+COT ) max

t≥0

κn,γ+1,ε(tpx)
∫ 1

−∞
(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ

κn,γ ,ε(tpx)tpx mε(− ln tpx)
− 1,

(3.38)

the solution to problem (3.33) is a 100% investment in the tontine, that is, the
solution is dAT (t)= d∗

[∞](t), cAT (t)= 0 and λAT = λ[∞].
3. Consequently, if and only if

COT <CA <Ccrit
A , (3.39)

the optimal solution to problem (3.33) is investing in both annuity and tontine.

Proof. See Appendix A.2. �
In Table 2, we present the critical annuity loading Ccrit

A in dependence of the
risk aversion γ . We observe that the critical loading increases in the risk aver-
sion. For an investor with a CRRA of 0.5, an annuity loading of 21% prevents
her from investing in the annuity at all. The more risk averse the policyholder
is, the more she prefers an annuity over a tontine which is reflected in a higher
loading this policyholder is willing to pay. From γ = 2 on, the loading is unre-
alistically high as it is nearly 100% and even greater for larger values of γ .
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TABLE 2

CRITICAL ANNUITY LOADING Ccrit
A AS DEFINED IN

(3.38) DEPENDING ON THE RISK AVERSION (COT = 0.01%).

γ 0.5 2 4 6 8

Ccrit
A 0.21 0.96 2.12 3.93 6.86

The parameters (except for γ ) are taken from Table 1.

Hence, this critical magnitude needs to be extremely large such that a pure ton-
tine becomes optimal for the policyholder or so that there is no investment in
the annuity at all.

In Appendix B, we provide a pseudocode for the numerical determination
of c∗

AT (t) and d∗
AT (t) under general parameters. Once these two functions are

determined, it is possible to compute their initial market value and, conse-
quently, the fractions of wealth initially invested in the annuity and the tontine.
The optimal fraction of initial wealth invested in the annuity is the gross pre-
mium of the annuity computed from the optimal annuity payoff divided by the
initial wealth. From this quantity, we can determine how the initial wealth of
the policyholder shall be split optimally between the tontine and the annuity in
the beginning. Further details on this are discussed in Section 4.2.

As for the tonuity and the antine, we also show the numerical mean and
0.01-/0.99-quantile range of the (approximately) optimal payoff of the portfo-
lio in Figure 3(a) underlying again the base case parameter setup as given in
Table 1. Given the survival of the policyholder, the applied optimal portfolio
payoff at any time t is here given by

c∗
AT (t)+

n
Nε(t)

d∗
AT (t). (3.40)

For a better understanding of the curve progressions in Figure 3(a), we addi-
tionally depict, in Figure 3(b), the related optimal payoff functions c∗

AT (t) and
d∗
AT (t) of the portfolio. Here, we can see that, particularly in the first half of the
considered age range, the optimal tontine payoff function d∗

AT (t) decreases in
age and hence behaves similarly to what, for example, Milevsky and Salisbury
(2015) find for optimally designed tontines in their framework. In the second
half, the values for d∗

AT (t) are rather close to zero and do not seem to differ
significantly anymore. Note that the payoff of the tontine in Figure 3(b) is not
the payoff to a single individual and has to be multiplied by n

Nε (t)
. Especially at

extremely old ages, d∗
AT (t) is scaled by the factor n which explains why the steep

decline in annuity payments occurs at extremely old ages and why d∗
AT (t) is not

exactly zero at these old ages. Note that this payoff structure can only occur
because the payoff nd∗

AT (t) is guaranteed to the pool of policyholders by the
insurer. Concerning the optimal annuity payoff, we note that, after quite a long
time of playing no role for the optimal portfolio payoff at all, this payoff is first
drastically increasing and then decreasing, opposed to, for instance, a constant
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FIGURE 3: (a) Mean and 0.01-/0.99-quantile range of the optimal payoff of the portfolio consisting of an
annuity and a tontine depending on age. The parameters are chosen as in Table 1 and the constant

discretization step size of the age range as 0.05. The plot is based on the assumption that the considered
policyholder is always alive. (b) Optimal payoff functions of the portfolio consisting of an annuity and a

tontine depending on age. The parameters are chosen as in Table 1 and the constant discretization step size of
the age range as 0.05.

annuity which turns out to be optimal in the tonuity and the antine if ρ = r. We
therefore detect in Figure 3(b) that the policyholder defers the annuitization for
some time before aiming at obtaining annuity payments at an increasing (and
later on decreasing) rate, whereas the tontinization is desired right at the begin-
ning of her retirement with a decreasing (and later on slightly increasing) rate.
The reason for this structure is that the annuity provides secure payments at
times when the tontine provides the most volatile payments (see also Figure 2).
Right after contract initiation, the number of the tontine members is fairly sta-
ble. At extremely advanced retirement ages, the tontine payments are, again,
stable, because there is only a very low probability for any other survivor to be
left. Therefore, at these ages, no stable annuity payments are required. These
are only necessary for ages between (in this example approximately) 89 and 116
years, where most policyholders die and, consequently, the payments of the
tontine are most volatile. It is important to bear in mind that, as we consider
a very general approach for the portfolio optimization problem, the individ-
ual can freely decide on the payoff structures of both the annuity and the
tontine in the portfolio. Hence, at the optimum, it is possible to obtain such
payoff functions as c∗

AT (t) in Figure 3(b). In our result, it seems that c∗
AT (t) and

d∗
AT (t) complement each other. As these payoffs are completely determined by
solely maximizing the benefits of the policyholder, they might not be provided
in practice. However, our analysis might still be interesting for those insurers
who aim to offer products which best suit the needs of the customers to improve
their competitiveness on the market. Concerning Figure 3(a), we overall make
the following further observations: For a long time, there is always a certain
degree of uncertainty in the optimal portfolio payoff. As the tontine, which
involves randomness, prevails at earlier ages, Figure 3(a) actually resembles
Figure 1 in the first several years following the withdrawal from working life.
Afterward, the payoff uncertainty declines over the years as the annuity, which
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stabilizes the payments, becomes more and more significant. From the age of
around 107 years until the age of around 114 years, we see that the chances
to receive quite low payments, compared to the expectation, grow again. The
decrease in c∗

AT (t) and the slight increase in d∗
AT (t) in this age range, together

with the presumption that, in contrast to what is expected, other policyhold-
ers in the tontine pool could nevertheless be alive at such high ages, can give
reasons for this observation. After the age of around 114 years, it is however
highly probable that the event that all the other policyholders are dead occurs,
which leads to a virtually deterministic payoff for the remaining time.

4. COMPARISON OF RETIREMENT PLANS

In this section, we compare the expected lifetime utilities of the policyholder
under the different retirement plans if their payoffs are optimally chosen, as
elaborated in Section 3. We start with a theoretical comparison, where the
main finding of our article is presented. Afterward, a concise numerical section
follows.

4.1. Theoretical findings

Although we cannot determine the optimal payoff functions of the portfolio
consisting of an annuity and a tontine analytically, as discussed in Section 3.3,
we are able to explicitly compare the optimal expected utility of the portfo-
lio with those resulting from the tonuity and the antine. Our appropriate key
result is formulated in Proposition 4.1 which is generally valid and states that
the optimal expected utility of the portfolio is always at least as high as that
of the tonuity and of the antine. It bases on the fact that, for any switching
time, any payoff of a tonuity or an antine can be replicated by a policyholder
holding a portfolio of an annuity and a tontine, given the initial premiums of
the retirement plans are identical. Note that, as we require no restrictions for
the switching times, it is clear that this statement also holds for the optimal
switching times τ ∗ and σ ∗ which we intensively use for our analyses in the next
section.

Proposition 4.1. We denote by U[τ ], U[σ ] and UAT the optimal levels of expected
utility resulting from problems (3.19), (3.27) and (3.33), respectively. In partic-
ular, we assume that the premiums charged for the three retirement plans follow
the expected value principle as introduced before. Then, it holds

UAT ≥U[τ ], UAT ≥U[σ ] (4.41)

for all possible switching times τ and σ , and for all possible risk loadings CA

and COT.
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Proof. We denote by A[τ ], A[σ ] and AAT the sets of admissible solutions
of optimization problems (3.19), (3.27) and (3.33), respectively, that is, the
elements of these sets fulfill the respective budget constraints. Note that the
payoffs of any tonuity and antine can be replicated by a portfolio consisting of
an annuity and a tontine by choosing the payoffs of the annuity and the tontine
appropriately. Let us, as an example, consider a tonuity with a switching time
τ and payoffs d[τ ](t) for 0≤ t< τ and c[τ ](t) for t≥ τ which satisfy the budget
constraint v= (1+COT )P

OT ,τ
0 + (1+CA)P

A,τ
0 for fixed v, COT and CA. We can

define

cAT (t)=
{

0, for 0≤ t< τ ,
c[τ ](t), for t≥ τ , dAT (t)=

{
d[τ ](t), for 0≤ t< τ ,
0, for t≥ τ ,

(4.42)

as the payoffs of the portfolio. Having defined the payoffs of the portfolio, it is
also clear that the budget constraint of the portfolio is satisfied as

v= (1+COT )P
OT ,τ
0 + (1+CA)P

A,τ
0 = P̃OT ,AT

0 + P̃A,AT
0 , (4.43)

with P̃OT ,AT
0 and P̃A,AT

0 being the gross premiums of an annuity and a tontine
with payoffs dAT (t) and cAT (t), respectively. Consequently, the gross premiums
of the portfolio and the tonuity are equal if the portfolio generates exactly the
same payoff as the tonuity under our choice of the premiums. This whole line
of reasoning works similarly for an antine and therefore, we overall obtain

A[τ ] ⊆AAT , A[σ ] ⊆AAT . (4.44)

As a consequence, the optimal level of expected utility of the portfolio is always
at least as high as the optimal level of expected utility resulting from a tonuity
and from an antine with a given switching time. �

Remark 4.2. Throughout this article, we assume that the premiums of the
three retirement plans are determined by the expected value principle. However,
Proposition 4.1 still holds if another premium principle is applied. Important is
that the premium principle still leads to the same premium level for the different
combinations of an annuity and a tontine. Then, any payoff which is an admissible
solution to the tonuity (antine) problem is also admissible to the portfolio prob-
lem. For example, the result of Proposition 4.1 remains valid under the famous
variance and standard deviation principles. For a review of existing premium prin-
ciples, we refer, for example, to Young (2014). For illustrative purposes, let us
consider again the tonuity in comparison with the portfolio and the variance prin-
ciple: if the same method to define the gross premiums of combining products as
before is used, which distinguishes between the annuity and the tontine parts, then,
by means of (2.8), the gross premium of the portfolio is given by
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P̃AT
0 =E

[∫ ∞

0
e−rt1{Tε>t}cAT (t) dt

]
+CAVar

[∫ ∞

0
e−rt1{Tε>t}cAT (t) dt

]
+E

[∫ ∞

0
e−rt1{Tε>t}

n
Nε(t)

dAT (t) dt
]

+COT

·Var
[∫ ∞

0
e−rt1{Tε>t}

n
Nε(t)

dAT (t) dt
]
,

(4.45)

and the one of the tonuity satisfying the budget constraint, that is, v= P̃[τ ]
0 ,

can be derived similarly by means of (2.10). If the portfolio payoff functions
are now chosen as in (4.42), it is clear that the portfolio budget constraint
v= P̃[τ ]

0 = P̃AT
0 is also fulfilled. By this fact and the same arguments as in the proof

of Proposition 4.1, the portfolio still provides the highest (or at least the same)
level of expected utility (as the tonuity) under the variance principle.

4.2. Numerical findings

In the following, we aim at numerically studying the policyholder’s individual
benefits resulting from the purchase of the various retirement plans. Moreover,
our goal is also to learn more about the attractiveness of each retirement plan
when applying different parameter combinations. Specifically, we are able to
confirm the theoretical statement of Proposition 4.1 on the basis of concrete
exemplary numbers.

To make results easier to interpret, we introduce the certainty equivalent
CE as the level of the deterministic retirement payment that yields the same
expected utility as the given retirement plan with payoff {χ(t)}t≥0. That is, CE
is determined by

U
({CE}t≥0

)=U
({χ(t)}t≥0

)
, (4.46)

or equivalently,

CE=
(
(1− γ )U

({χ(t)}t≥0

) (∫ ∞

0
e−ρt

tpx mε(− ln tpx) dt
)−1

) 1
1−γ

, (4.47)

where U
({χ(t)}t≥0

)
is the expected discounted lifetime utility of the individual

as defined in (3.16). Note that the certainty equivalent is an increasing function
in U

({χ(t)}t≥0

)
.

Table 3 provides the optimal switching times and the corresponding result-
ing certainty equivalents for the tonuity and antine for different pool sizes n and
different tontine risk loadingsCOT . As already described before, it is reasonable
to assume that the loading COT decreases in the pool size n. For the depen-
dence of the loading COT on n, we take into account the findings of Chen et al.
(2019) regarding the safety loadings: For n= 100, we use 0.1% (Chen et al.,
2019 obtain 0.1089%), for n= 1000, we use 0.01% (Chen et al., 2019 obtain
0.0133%) and for n= 500, we linearly interpolate between these two values and
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TABLE 3

CERTAINTY EQUIVALENTS (IN THOUSAND EUROS) OF THE TONUITY, THE ANTINE AND THE
PORTFOLIO CONSISTING OF AN ANNUITY AND A TONTINE ALONG WITH THE OPTIMAL SWITCHING
TIMES AND THE FRACTION OF WEALTH INVESTED IN THE ANNUITY EMBEDDED IN THE PORTFOLIO,

RESPECTIVELY, FOR DIFFERENT POOL SIZES n AND DIFFERENT TONTINE LOADINGS COT .

n COT Tonuity Antine Portfolio

100 0.1% 16.13, τ ∗ = 21 15.91, σ ∗ = 0 16.14, P̃A,AT
0 /v= 0.14

500 0.06% 16.23, τ ∗ = 26 16.14, σ ∗ = 0 16.23, P̃A,AT
0 /v= 0.06

1000 0.01% 16.25, τ ∗ = 27 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.05

The other parameters are taken from Table 1.

TABLE 4

CERTAINTY EQUIVALENTS (IN THOUSAND EUROS) OF THE TONUITY, THE ANTINE AND THE
PORTFOLIO CONSISTING OF AN ANNUITY AND A TONTINE ALONG WITH THE OPTIMAL SWITCHING
TIMES AND THE FRACTION OF WEALTH INVESTED IN THE ANNUITY EMBEDDED IN THE PORTFOLIO,

RESPECTIVELY, FOR DIFFERENT ANNUITY LOADINGS CA.

CA Tonuity Antine Portfolio

0.02 16.27, τ ∗ = 24 16.18, σ ∗ = 0 16.29, P̃A,AT
0 /v= 0.09

0.03 16.26, τ ∗ = 25 16.18, σ ∗ = 0 16.28, P̃A,AT
0 /v= 0.07

0.04 16.25, τ ∗ = 27 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.05

0.05 16.24, τ ∗ = 28 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.04

The other parameters are taken from Table 1.

TABLE 5

CERTAINTY EQUIVALENTS (IN THOUSAND EUROS) OF THE TONUITY, THE ANTINE AND THE
PORTFOLIO CONSISTING OF AN ANNUITY AND A TONTINE ALONG WITH THE OPTIMAL SWITCHING
TIMES AND THE FRACTION OF WEALTH INVESTED IN THE ANNUITY EMBEDDED IN THE PORTFOLIO,

RESPECTIVELY, FOR DIFFERENT RISK AVERSIONS γ .

γ Tonuity Antine Portfolio

0.8 16.33, τ ∗ = 36 16.33, σ ∗ = 0 16.33, P̃A,AT
0 /v= 0.004

2 16.30, τ ∗ = 32 16.29, σ ∗ = 0 16.30, P̃A,AT
0 /v= 0.02

4 16.27, τ ∗ = 29 16.24, σ ∗ = 0 16.28, P̃A,AT
0 /v= 0.04

6 16.25, τ ∗ = 27 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.05

8 16.23, τ ∗ = 25 16.12, σ ∗ = 0 16.24, P̃A,AT
0 /v= 0.07

10 16.22, τ ∗ = 24 16.07, σ ∗ = 0 16.23, P̃A,AT
0 /v= 0.09

The other parameters are taken from Table 1.

obtain 0.06%. Since we would like to keep our numerical analysis as simple
as possible, we have decided to round the values in Chen et al. (2019) instead
of taking the exact values. Note that the parameters in Chen et al. (2019) also
differ slightly from ours and therefore, we only focus on the rougher magni-
tude when it comes to the risk loadings. Additionally, the certainty equivalents
of the portfolio consisting of an annuity and a tontine along with the optimal
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fraction of initial wealth invested in the annuity are provided for the different
pool sizes n and different tontine risk loadings COT . The optimal fraction of
initial wealth invested in the annuity can be determined as the gross premium
of the annuity (computed from the optimal annuity payoff) divided by the total
initial wealth. For the remaining parameters besides the pool size and the ton-
tine risk loadings, we use the base case parameter setup as given in Table 1.
Table 4 provides similar sensitivity analyses of the certainty equivalents for
the risk loading of the annuity CA. Finally, Table 5 provides similar sensitivity
analyses of the certainty equivalents for the risk aversion parameter γ . Note
that we have not included sensitivity analyses with respect to the subjective dis-
count rate ρ in these numerical studies as the effects of ρ seem negligible for
the given parameters. Overall, we make the following observations which are
all drawn only within our exemplary numbers. To support the readability of our
results, we have highlighted the main observations in italic letters:

• The tonuity and the antine are outperformed by the portfolio consisting of
an annuity and a tontine. As the certainty equivalents of the portfolio are
larger than those of the hybrid products tonuity and antine in all presented
tables, Proposition 4.1 is numerically confirmed here. Recall that the portfo-
lio allows the policyholder to combine the two retirement products annuity
and tontine in a more general way than prescribed by the tonuity and antine.
Strictly speaking, the tonuity and the antine can be seen as special cases of
the portfolio as it is possible to choose the payoffs of the portfolio in such a
way that they equal the payoffs of the tonuity or antine. Note, however, that
the certainty equivalent of the tonuity is only negligibly smaller than that of
the portfolio in all the cases considered, that is, a policyholder might as well
buy a tonuity with a single switch between tontine and annuity instead of
purchasing the rather complicated payoff structure of the annuity and the
tontine in the portfolio shown in Figure 3(b).

• Among the novel retirement plans tonuity and antine, the tonuity is the one
which performs better. In our parameter setup, we see that the tonuity always
yields a certainty equivalent greater than that of the antine and thus, is the
more attractive retirement product to the policyholder. In fact, a nontrivial
antine is, in our parameter setup, always outperformed by a tontine. This is
probably due to the design of the antine: when the switching time is high, the
price of the antine is close to that of the appropriate annuity, but it leaves
the individual holding the antine with a volatile payoff in her more advanced
retirement ages. On the contrary, if the switching time is low, the payoff of
the antine is close to that of the appropriate tontine, but the price of it might
be still noticeably higher than that of the tontine.

• The role of the tontine component becomes more prominent within the retire-
ment plans if the tontine pool size increases. This feature can be observed
in Table 3: If the pool size increases, the optimal switching time of the
tonuity increases as well. Furthermore, concerning the portfolio, individu-
als tend to invest higher fractions of their initial wealth in the annuity if the
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pool size declines. All this is mainly due to the well-known fact that a ton-
tine’s attractiveness increases with the pool size (see, for example, Milevsky
and Salisbury, 2015). Note that further components driving up the attrac-
tiveness of the tontine are decreasing tontine loadings (cf. Table 3) and an
increasing annuity loading (cf. Table 4).

• The role of the annuity component becomes more prominent within the retire-
ment plans if the risk aversion level of the policyholder increases. This feature
can be observed in Table 5: If the risk aversion increases, the optimal switch-
ing time of the tonuity decreases. Furthermore, concerning the portfolio,
individuals with a larger risk aversion tend to invest higher fractions of their
initial wealth in the annuity.

• Referring to the portfolio, the policyholder does not invest all her initial wealth
exclusively in an annuity or a tontine. From the fact that the fractions of
initial wealth invested in the annuity are above 0 and below 1, within our
exemplary numbers, neither a pure annuity nor a pure tontine is an attrac-
tive retirement plan for the majority of the policyholders. Instead, partial
annuitization combined with partial tontinization turns out to deliver the
highest expected lifetime utility for our parameter choices. This can also
be seen from Proposition 3.3 and from Table 2, where the critical annuity
loading Ccrit

A is always larger than the considered values for CA.

5. CONCLUSION

In this article, we consider three possibilities to combine annuities and tontines
and analyze and compare their attractiveness from a policyholder’s perspec-
tive in an expected utility framework. The three retirement plans we consider
are the tonuity previously introduced by Chen et al. (2019), a new product
which we call antine and a portfolio consisting of an annuity and a tontine.
Our theoretical and numerical results show that the portfolio outperforms any
tonuity and antine in the sense that it always delivers a higher expected lifetime
utility than the two novel products. The reason for this is that a policyholder
can choose the payoffs of the annuity and the tontine in the portfolio in such a
way that the payoff of any tonuity and antine is replicated with the same initial
investment. Consequently, the optimal level of expected utility stemming from
the portfolio can never fall below that of any tonuity and antine. Additionally,
we derive conditions regarding the loadings of the annuity and the tontine,
under which a pure investment in the annuity, the tontine and a combination
of both is optimal, respectively. We find that, under reasonable parameters, an
investment in both products delivers a higher expected lifetime utility than the
single products. In our parameter setup, we further find that the tonuity always
delivers a higher expected lifetime utility than the antine.

While in this article we exclusively focus on the policyholder’s perspective,
an interesting topic for future research might be an analysis of the three con-
sidered retirement plans from the insurer’s perspective. As it is less natural to
assume a utility function for the insurance company, we could consider other
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important quantities of interest from the insurer’s perspective, like the (ran-
dom) present value of future losses (cf. Bauer and Weber, 2008; Li and Hardy,
2011; Cairns, 2013; Kling et al., 2014; Olivieri and Pitacco, 2019). In a recent
article, Chen and Rach (2019), the authors analyze the attractiveness of options
on tontines also from the insurer’s point of view. The results obtained there
suggest that insurers can also benefit from selling hybrid products between
conventional annuities and tontines. Compared to annuities, it is likely that
the tonuity, antine and the portfolio of an annuity and a tontine also reduce
potential losses on the insurer’s side, as all these retirement plans carry less
risks for the insurer than a traditional annuity.
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NOTES

1. In addition to the traditional tontine, many innovative, longevity-risk-sharing retirement
products, for instance, pooled annuity funds or group self-annuitization schemes, have been
developed in recent years (see, e.g., Bernhardt and Donnelly, 2019 and the references therein).

2. Note that problem (3.33) is more general than the following optimization problem:

max
α∈[0,1]

E
[∫ ∞

0
e−ρt1{Tε>t}u

(
αc∗

[0](t)+ (1− α)
n

Nε(t)
d∗
[∞](t)

)
dt
]
, (5.48)

where c∗
[0](t) is the optimal annuity payoff and d∗

[∞](t) is the optimal tontine payoff as obtained
from Theorem 3.1 for the boundary cases τ = 0 and τ = ∞, respectively. Note that for the annu-
ity case, that is, τ = 0, the budget constraint is v= P̃A

0 . Similarly, for the tontine case, that is,
τ = ∞, the budget constraint is v= P̃OT

0 . In other words, in problem (5.48), where we max-
imize over a fraction of initial wealth, we do not have to consider a budget constraint, as
αP̃A

0 + (1− α)P̃OT
0 = αv+ (1− α)v= v holds for all α ∈ [0, 1]. Note that this describes already

the first difference between optimization problem (5.48) and the optimization problem (3.33).
Furthermore, as the optimization problem in (5.48) is, by assuming the payoff functions c∗

[0](t) and
d∗
[∞](t) to be given in advance, (a lot) less general than the portfolio problem (3.33), we observe
that under problem (5.48), it is no longer possible to replicate the payoff of any tonuity and antine.
In this problem, the individual can only decide upon the fraction α and not upon the payment
structure of the products in the portfolio. As a consequence, it is possible that the portfolio of an
annuity and a tontine can be outperformed by other combinations, for example, by a tonuity.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 3.1

Note that some of the steps within this proof are similar to the results in Chen et al. (2019).
Thus, a few derivations are shortened here and can be reviewed in the mentioned article.
We first recall that tp1−ε

x =E
[
1{Tε>t}

∣∣ε] and that it further holds (Nε(t)− 1|Tε > t, ε) ∼
Bin

(
n− 1, tp1−ε

x
)
. By means of these observations, we can write the Lagrangian function
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for our optimization problem in the following way:

L=
∫ τ

0
e−ρtE

[
1{Tε>t}

(
n

Nε(t)

)1−γ
]
u
(
d[τ ](t)

)
dt+

∫ ∞

τ

e−ρtE
[
1{Tε>t}

]
u
(
c[τ ](t)

)
dt

+ λ[τ ]

(
v− (1+COT )

∫ τ

0
e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ d[τ ](t) dt

− (1+CA)

∫ ∞

τ

e−rttpx mε(− ln tpx) c[τ ](t) dt
)

=
∫ τ

0
e−ρtκn,γ ,ε(tpx)u

(
d[τ ](t)

)
dt+

∫ ∞

τ

e−ρt
tpx mε(− ln tpx) u

(
c[τ ](t)

)
dt

+ λ[τ ]

(
v− (1+COT )

∫ τ

0
e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ d[τ ](t) dt

− (1+CA)

∫ ∞

τ

e−rttpx mε(− ln tpx) c[τ ](t) dt
)
,

where κn,γ ,ε(tpx) is explicitly calculated in Chen et al. (2019) and given by

κn,γ ,ε(tpx)=E

[
1{Tε>t}

(
n

Nε(t)

)1−γ
]

=
n∑

k=1

(
n
k

)(
k
n

)γ∫ 1

−∞

(
tp

1−ϕ
x

)k (
1−tp

1−ϕ
x

)n−k
fε(ϕ) dϕ.

By taking partial derivatives with respect to d[τ ](t) and c[τ ](t), we obtain the following first-
order conditions:

∂L
∂d[τ ](t)

= e−ρtκn,γ ,ε(tpx)d[τ ](t)
−γ − λ[τ ] (1+COT ) e−rt

∫ 1

−∞

(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

!= 0,

(A1)
∂L

∂c[τ ](t)
= e−ρt

tpx mε(− ln tpx) c[τ ](t)
−γ − λ[τ ] (1+CA) e−rttpx mε(− ln tpx)

!= 0. (A2)

Now, by solving (A1) for d[τ ](t), we get the following optimal tontine payoff:

d∗
[τ ](t)=

e
(r−ρ)t

γ
(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[τ ] (1+COT )1/γ

(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ for all t ∈ [0, τ ).

Similarly, by solving (A2) for c[τ ](t), we obtain the following optimal annuity payoff:

c∗[τ ](t)=
e
(r−ρ)t

γ

λ
1/γ
[τ ] (1+CA)1/γ

for all t ∈ [τ ,∞).
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Now, we can use the budget constraint to determine the optimal Lagrangian multiplier λ[τ ].
We have

v= (1+COT )

∫ τ

0
e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ d∗

[τ ](t) dt

+ (1+CA)

∫ ∞

τ

e−rttpx mε(− ln tpx) c∗[τ ](t) dt

=
∫ τ

0
e

(
1
γ −1

)
rt− 1

γ ρt
(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[τ ] (1+COT )1/γ−1

(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+
∫ ∞

τ

e

(
1
γ −1

)
rt− 1

γ ρt
tpx mε(− ln tpx)

1

λ
1/γ
[τ ] (1+CA)1/γ−1

dt.

As a consequence, we obtain

λ[τ ] =
⎛⎜⎝1
v

⎛⎜⎝∫ τ

0
(1+COT )

1− 1
γ e

(
1
γ −1

)
rt− 1

γ ρt
(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+
∫ ∞

τ

(1+CA)
1− 1

γ e

(
1
γ −1

)
rt− 1

γ ρt
tpx mε(− ln tpx) dt

))γ

.

The expected discounted lifetime utility is then given by

U[τ ] =
∫ τ

0
e−ρtE

[
1{Tε>t}

(
n

Nε(t)

)1−γ
]
u
(
d∗
[τ ](t)

)
dt+

∫ ∞

τ

e−ρtE
[
1{Tε>t}

]
u
(
c∗[τ ](t)

)
dt

=
∫ τ

0
e−ρtκn,γ ,ε(tpx)u

(
d∗
[τ ](t)

)
dt+

∫ ∞

τ

e−ρt
tpx mε(− ln tpx) u

(
c∗[τ ](t)

)
dt

= 1
1− γ

∫ τ

0
e−ρtκn,γ ,ε(tpx)

· e(1/γ−1)(r−ρ)t (κn,γ ,ε(tpx))1/γ−1

λ
1/γ−1
[τ ] (1+COT )1/γ−1

(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+ 1
1− γ

∫ ∞

τ

e−ρt
tpx mε(− ln tpx)

e(1/γ−1)(r−ρ)t

λ
1/γ−1
[τ ] (1+CA)1/γ−1

dt

= λ
1−1/γ
[τ ]

1−γ

⎛⎜⎝∫ τ

0
(1+COT )

1− 1
γ e

(
1
γ −1

)
rt− 1

γ ρt
(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+
∫ ∞

τ

(1+CA)
1− 1

γ e

(
1
γ −1

)
rt− 1

γ ρt
tpx mε(− ln tpx) dt

⎞⎟⎠
= λ

1−1/γ
[τ ]

1− γ
λ

1
γ

[τ ]v= λ[τ ]

1− γ
v.

�
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A.2. Proof of Proposition 3.3

1. Clearly, the budget constraint (3.37) is fulfilled when choosing dAT (t)= 0 and cAT (t)=
c∗[0](t). Now consider condition (3.35). We plug in dAT (t)= 0, cAT (t)= c∗[0](t) and
λAT = λ[0]:

∂L
∂cAT (t)

= e−ρt
n−1∑
k=0

u′ (c∗[0](t)) (
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[0](1+CA)e−rttpx mε(− ln tpx)

= e−ρtu′ (c∗[0](t))E

[n−1∑
k=0

(
n− 1
k

) (
tp1−ε
x

)k+1 (
1− tp1−ε

x

)n−1−k
]

− λ[0](1+CA)e−rttpx mε(− ln tpx)

= e−ρt
(
c∗[0](t)

)−γ
E

[
tp1−ε
x

n−1∑
k=0

(
n− 1
k

) (
tp1−ε
x

)k (
1− tp1−ε

x

)n−1−k

︸ ︷︷ ︸
=1

]

− λ[0](1+CA)e−rttpx mε(− ln tpx)

= 0.

Regarding condition (3.36), we obtain:

∂L
∂dAT (t)

= e−ρt
n−1∑
k=0

u′ (c∗[0](t)) n
k+ 1

(
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[0](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= e−ρtu′ (c∗[0](t)) n∑
j=1

(
n
j

) ∫ 1

−∞

(
tp

1−ϕ
x

)j (
1− tp

1−ϕ
x

)n−j
fε(ϕ) dϕ

− λ[0](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= e−ρtu′ (c∗[0](t)) ∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

− λ[0](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= λ[0](CA −COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ. (A3)

Clearly, (A3) is equal to zero if CA =COT . That is, the optimum is exactly achieved for
dAT (t)= 0 if CA =COT .
Let us now take a look at the second-order derivative:

∂2L
∂dAT (t)2

= e−ρt
n−1∑
k=0

u′′
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n

k+ 1

)2 (n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1

·
(
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ < 0,
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because u′′
(
cAT (t)+ n

k+1dAT (t)
)

< 0 for all values of cAT (t) and dAT (t). This implies that
∂L

∂dAT (t)
is strictly decreasing in dAT (t). Note that λ[0] is greater than zero for all choices

of CA. Therefore, the term in (A3) is smaller than zero for CA <COT . The expected
lifetime utility could thus be increased at dAT (t)= 0 ifCA <COT by choosing dAT (t) even
smaller than zero. Since we do not allow for negative payments of the tontine, the optimal
portfolio is thus again a 100% investment in the annuity resulting in the payoff c∗[0](t).

2. We now consider the first-order conditions for dAT (t)= d∗
[∞](t), cAT (t)= 0 and λAT =

λ[∞]. It is again clear that the budget constraint (3.37) is fulfilled. Regarding (3.35), we
obtain

∂L
∂cAT (t)

= e−ρt
n−1∑
k=0

u′
(

n
k+ 1

d∗
[∞](t)

)(
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)

= e−ρtu′ (d∗
[∞](t)

) n− 1∑
k=0

(
n

k+1

)1−(γ+1) (n−1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)

= e−ρt
(
d∗
[∞](t)

)−γ
n∑
j=1

(
j
n

)γ+1 (n
j

) ∫ 1

−∞

(
tp

1−ϕ
x

)j (
1− tp

1−ϕ
x

)n−j
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)

= e−rt
κn,γ+1,ε(tpx)

κn,γ ,ε(tpx)
λ[∞](1+COT )

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)
!≤ 0.

(A4)

Similarly as in the first part of this proof, we want the derivative to be smaller or equal
than zero for all t≥ 0. If it is equal to zero, the optimum is reached, if it is below zero,
the utility can be increased by choosing negative payoffs for the annuity which we do not
allow. Solving inequality (A4) (which has to hold for all t≥ 0) for CA delivers (3.38). We
still need to check whether (3.36) is fulfilled. We proceed as before:

∂L
∂dAT (t)

= e−ρt
n−1∑
k=0

u′
(

n
k+ 1

d∗
[∞](t)

)
n

k+ 1

(
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[∞](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= e−ρt
(
d∗
[∞](t)

)−γ
n∑
j=1

(
j
n

)γ (
n
j

) ∫ 1

−∞

(
tp

1−ϕ
x

)j (
1− tp

1−ϕ
x

)n−j
fε(ϕ) dϕ

− λ[∞](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ
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= e−ρt
(
d∗
[∞](t)

)−γ
κn,γ ,ε(tpx)− λ[∞](1+COT )e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= 0.

3. Condition (3.39) and the third part of Proposition 3.3 directly follow from the first and
the second part.

�

APPENDIX B. PSEUDOCODE FOR SOLUTION OF
PORTFOLIO PROBLEM (3.33)

The pseudocode given below delivers the optimal payoff functions c∗AT (t), d∗
AT (t) and the

Lagrangianmultiplier λAT . The objective is to simultaneously fulfill Equations (3.35)–(3.37).
Our code relies heavily on the bisection method, which we apply repeatedly in three while
loops until (3.35)–(3.37) are all (approximately) fulfilled.

1. Initialize n, γ , r, ρ, v, x, m, β, tol, CA, COT .
2. Specify a grid of time points t1, . . . , tN , where t1 = 0 and tN lies sufficiently far ahead in

the future.
3. Choose upper and lower bounds λu and λl for λ = λAT and set λ = 1

2 (λu + λl).

4. While
∣∣∣v− P̃A,AT0 − P̃OT ,AT0

∣∣∣> tol

(a) Choose upper and lower bounds du(ti) and dl(ti) for i= 1, . . . ,N. Set dAT (ti)=
1
2 (du(ti)+ dl(ti)).

(b) While maxi
∣∣∣ ∂L
∂dAT (ti)

∣∣∣> tol

i. Choose upper and lower bounds cu(ti) and cl(ti) for i= 1, . . . ,N. Set cAT (ti)=
1
2 (cu(ti)+ cl(ti)).

ii. While maxi
∣∣∣ ∂L
∂cAT (ti)

∣∣∣> tol

A. For all i with ∂L
∂cAT (ti)

> 0, set cl(ti)= cAT (ti).

B. For all i with ∂L
∂cAT (ti)

< 0, set cu(ti)= cAT (ti).

C. Set cAT (ti)= 1
2 (cu(ti)+ cl(ti)).

iii. For all i with ∂L
∂dAT (ti)

> 0, set dl(ti)= dAT (ti).

iv. For all i with ∂L
∂dAT (ti)

< 0, set du(ti)= dAT (ti).

v. Set dAT (ti)= 1
2 (du(ti)+ dl(ti)).

(c) Once cAT (ti) and dAT (ti) are computed for i= 1, . . . ,N, we can linearly interpolate
between these values. This enables us to compute P̃A,AT0 and P̃OT ,AT0 by numerical
integration.

(d) If v− P̃A,AT0 − P̃OT ,AT0 > 0, set λu = λ.
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(e) If v− P̃A,AT0 − P̃OT ,AT0 < 0, set λl = λ.
(f) Set λ = 1

2 (λu + λl).
5. Once the (approximately) “true” λ, c∗AT (ti) and d∗

AT (ti) are computed for i= 1, . . . ,N,
the optimal level of expected utility and the certainty equivalent can be computed by
numerical integration.

Since we know how the first-order conditions behave in c, d and λ, we know how to search
for the solutions using the bisection method and that it will deliver a correct solution and
converge, because it only terminates if the prespecified level of accuracy is reached.

The average computing time mostly depends on the discretization of the time axis and
the pool size n. The smaller the discretized time steps are, and the larger the pool size n is, the
longer it takes for the code to finish. We found that the discretization of the time axis does,
actually, not have a huge impact on the results, and have therefore chosen a discretization of
N = 100 steps from 0 to a maturity of 55. For this discretization and n= 100, the code only
needs about 1 min to determine the optimal payoffs and the resulting certainty equivalent
for one policyholder. For the current base case pool size n= 1000, it takes about 4 min.
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Abstract

Many empirical studies confirm that policyholder’s subjective mortality beliefs deviate

from the information given by publicly available mortality tables. In this study, we look

at the effect of subjective mortality beliefs on the perceived attractiveness of retirement

products, focusing on conventional annuities and tontines (where a pool of policyholders

shares the longevity risk). Given actuarially fair pricing with no subjective mortality

beliefs (that is, the insurer’s and the policyholder’s perceptions coincide), annuities yield

higher lifetime utility than tontines (see also Milevsky and Salisbury (2015)). Staying in

an actuarially fair pricing framework, we find that this result might be reversed if the

policyholder’s subjective survival probabilities for her peers are lower than the ones used

by the insurance company. We prove that, assuming such subjective beliefs, there exists

a critical tontine pool size from which on the tontine is always preferred over the annuity.

Keywords: Behavioral insurance, subjective mortality beliefs, optimal retirement prod-

uct design, tontine, annuity

JEL: G22, D81
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1 Introduction

The current low interest rate environment and the increasing life expectancy are challenging

the life insurance industry. Both insurance companies and retirees are searching for “desirable”

retirement products. A product which has recently gained a lot of attention in this context

is the so-called tontine. It used to be a popular source of retirement income from the 17th

to the 19th century (see for example Milevsky (2014, 2015), Milevsky and Salisbury (2015,

2016), Weinert and Gründl (2017), Chen et al. (2019) and Li and Rothschild (2019)).1 When

priced actuarially fair, life annuities give retirees greater lifetime utility than tontines (see also

Milevsky and Salisbury (2015)). When realistic safety loadings or risk margins are taken into

consideration, tontines can be preferred to annuities (cf. Milevsky and Salisbury (2015) and

Chen et al. (2019)). In the present article, we remain in the actuarially fair pricing framework

and analyze the optimal retirement decision under subjective mortality beliefs. In particular,

we aim to find out whether, under these subjective beliefs, tontines generate a higher lifetime

utility level than annuities.

It is well-documented in the literature that individuals tend to have subjective beliefs about

their own and others’ life expectancy. An over- or underestimation of this will strongly affect

the perceived attractiveness of a retirement product, as it has already been noted by Adam

Smith back in 1776 (cf. Smith (1776)). An extensive literature review of empirical findings

regarding these subjective mortality beliefs is provided in Section 2 of this article. In the ma-

jority of these articles, people were asked to estimate their life expectancy or probability of

survival towards a certain age and the results were compared to some reference data as, for

example, the estimates of the Government Actuary’s department. Based on the empirical find-

ings presented in Section 2, people at younger ages tend to be pessimistic about their future

lifetime, while, at older ages, various studies document both under- and overestimations of the

life expectancy and survival probabilities. In our model setup, we assume that the insurer uses

the best-estimate survival curve for pricing and we fix this survival curve as reference curve for

the subjective mortality beliefs of policyholders. That is, optimism and pessimism regarding

one’s future lifetime are assessed with respect to the best-estimate survival curve which the

insurer uses for pricing. Additionally, people seem to have subjective beliefs about the life ex-

pectancy of their peers, which might differ from the perception about their own life expectancy.

Therefore, we, in our model, allow a single individual to (additionally) believe that she lives

relatively longer or shorter than her peers. To be precise, we assume in our model that there

are three different survival curves for any x -year old policyholder: For any time t ≥ 0 , we

1In recent years, many products with a tontine-like structure have appeared. They are often called pooled
annuity funds or group self-annuitization, and many efforts have been made in recent years to explore the
potential and optimal design of these products in today’s world, see, for example, Piggott et al. (2005), Valdez
et al. (2006), Stamos (2008), Qiao and Sherris (2013), Donnelly et al. (2013, 2014) and Donnelly (2015).
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consider the t -year survival curve tpx used by the insurer and two subjective survival curves

( tp̃x , tp̂x ), representing the policyholder’s subjective mortality beliefs. Here, we distinguish

between the survival curves the individual assumes for herself (denoted by tp̃x ) and the ones

assumed by the individual for other policyholders (denoted by tp̂x ).

In the present article, we analyze the impact of subjective mortality beliefs on the optimal re-

tirement decision in an expected utility framework, taking tontines and annuities as examples.

If actuarially fair premiums are adopted to price annuities and tontines, annuities are preferred

to tontines (Milevsky and Salisbury (2015)). Following Milevsky and Salisbury (2015) and

Chen et al. (2019), we derive the optimal payout functions of an annuity and a tontine under

subjective mortality beliefs. We prove that a tontine’s attractiveness increases, the more a

policyholder underestimates the survival probabilities of other policyholders, while the annuity

remains unaffected by this underestimation. Moreover, we find that policyholders who system-

atically underestimate others’ survival curves compared to the survival curves assumed by the

insurer ( tp̂x < tpx ) prefer a tontine with a sufficiently large pool size over an annuity, even if

both products are fairly priced. We show that, under a certain condition, there is a critical

pool size N0 beyond which tontines are preferred over annuities. In our numerical analysis,

we also find that whether the policyholder believes that she lives longer ( tp̂x < tp̃x ) or shorter

( tp̂x > tp̃x ) than her peers does not seem to have a substantial impact on the choice between

a tontine and an annuity, particularly when the pool size of the tontine is large. Instead, the

subjective belief regarding one’s own survival curve (tp̃x) influences the optimal payoff struc-

ture of a tontine.

It is also well-acknowledged in the literature that annuities seem overpriced for an individ-

ual who is pessimistic about her life expectancy (see, for example, Wu et al. (2015)). Our

model is consistent with this observation as a pessimistic individual who underestimates her

own survival curve relative to that used by the insurer ( tp̃x < tpx ) has a different perception

regarding the premium charged. An analysis in an expected utility framework supports this

effect and shows that a lower expected utility level results if the policyholder perceives the

premiums charged for annuities as “too high”. Conversely, the policyholder’s utility increases

if she perceives the premium charged as “too low”. We conduct the same analysis for tontines

and find that the perception of the premium of a tontine, on the other hand, is hardly affected

by subjective mortality beliefs, particularly when the pool size is large. As a consequence,

subjective mortality beliefs concerning one’s own mortality affect the expected lifetime utility

of tontines to a rather low extent, in contrast to annuities.

The results of this paper have an interesting implication with respect to the annuity puzzle

which is a term used to describe the discrepancy between the theoretical demand for annu-

ities (see, for instance, Yaari (1965) and Peijnenburg et al. (2016)) and the fact that only few
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households voluntarily purchase an annuity (see, for example, Hu and Scott (2007), Inkmann

et al. (2010) and Lockwood (2012)).2 In this article, we connect to the literature on the an-

nuity puzzle by briefly showing that annuities are perceived as overpriced from a pessimistic

policyholder’s perspective (who underestimates her survival curve), see, for example, Wu et al.

(2015). This result can, to some extent, help explain the observed low demand for annuities.

Our article differs from the majority of the literature on the annuity puzzle by the inclusion

of tontines and analyses how subjective mortality beliefs affect the relative attractiveness of

annuities and tontines.

The remainder of this article is organized as follows: In Section 2, we provide a literature

review regarding subjective mortality beliefs. In Section 3, we describe the general model setup

used throughout this article. After that, we derive the optimal payout function of the annu-

ity and tontine for a risk-averse policyholder under subjective mortality beliefs in Section 4.

We also derive closed-form expressions for the individual’s expected discounted lifetime utility

from each product, which will enable us to compare the attractiveness of the different products.

In Section 5, we analyze the effects of subjective mortality beliefs on the optimal retirement

decision. Section 6 concludes the article. Proofs are collected in the Appendix.

2 Subjective mortality beliefs

The phenomenon that people tend to have their own, subjective beliefs regarding their own and

others’ life expectancy is not new in the literature. Such a phenomenon is of major relevance

in life insurance. For example, Bauer et al. (2014) analyze the effects of differing perceptions of

mortality on the life settlement market. Individuals might systematically over- or underestimate

their own and others’ life expectancy, affecting their willingness to buy retirement products like

annuities and tontines. Important empirical findings regarding subjective mortality beliefs

include, but are not limited to, the following:

• Bucher-Koenen et al. (2013) find that, in Germany, “men as well as women are pessimistic

about their life expectancy. Women (men) underestimate their life span by about 7

(6.5) years compared to the official records by the German statistical office.” The sample

consists of an equal share of males and females aged 26-60.

2There is already vast literature exploring the main drivers for this puzzle. For reviews of this literature,
we refer the interested reader, for example, to Milevsky (2013) and Benartzi et al. (2011). Further studies
related to our article in the context of behavioral insurance are, for example, Salisbury and Nenkov (2016),
Chen et al. (2016, 2018), Poppe-Yanez (2017), Caliendo et al. (2017) and O’Dea et al. (2019). Note that there
is more than one puzzle in life insurance, see for example Gottlieb (2012). However, the puzzle dealing with
underannuitization is probably the most famous one.
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• According to O’Brien et al. (2005), individuals in Great Britain underestimate their life

expectancies “by 4.62 years (males), 5.95 years (females) compared with the estimates

of the Government Actuarys Department”. Additionally, “people are optimistic: they

think they will live longer, on average, than people of their own age and sex: by 1.19

years (males), 0.76 years (females).” The sample covers ages from 16 to 99. While the

underestimation is larger for young than old people, there is still an underestimation of

2.83 years for males and 4.62 years for females at ages 60-69 which is the range of typical

retirement ages.

• In Greenwald and Associates (2012) the following results about American citizens are

established: “When asked to estimate how long the average person their age and sex can

expect to live, more than six in ten retirees (62 percent) and half of pre-retirees (57 per-

cent) provide a response that is below the average. Only about one-quarter overestimate

average life expectancy (19 percent of retirees and 28 percent of pre-retirees).”3 Addi-

tionally, a similar observation as in O’Brien et al. (2005) is made: “Despite the tendency

to underestimate population life expectancy, half of retirees (50 percent) and pre-retirees

(53 percent) appear to believe that the response they provide for their personal life ex-

pectancy is within one year of average life expectancy. Three in ten think their estimate

of personal life expectancy exceeds average life expectancy (31 percent of retirees and 32

percent of pre-retirees).”

• Wu et al. (2015) find that “respondents are pessimistic about overall life expectancy but

optimistic about survival at advanced ages, and older respondents are more optimistic

than younger.” To be precise, “younger cohorts underestimate survival (the 50-54 age

group underestimates life expectancy by more than eight years) while older cohorts tend

to overestimate, especially males (Ludwig and Zimper (2013)). (Males in the 70-74 age

group overestimate life expectancy by only one year, and females underestimate it by one

year.)” These observations are based on the Retirement Plans and Retirement Incomes:

Pilot Survey, conducted in May 2011 for Australian citizens.

• Elder (2013) analyzes the Health and Retirement study (HRS) which is a longitudinal

survey of American citizens above age 50. The most important finding for our article is

that that both men and women under age 65 underestimate the probability of survival

to age 75, but overestimate the probability of survival to age 85. A similar observation is

made in Hurd and McGarry (2002) who analyze the HRS as well.

There seems to be a clear tendency for younger people to underestimate their life expectancy

and survival probabilities, while both under- and overestimations can be observed at older ages.

3“Respondents were classified as retirees if they described their employment status as retiree, had retired
from a previous career, or were not currently employed and were either age 65 or older or had a retired spouse.
All other respondents were classified as pre-retirees.”
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Additional literature on this subject can, for example, be found in Wu et al. (2015). Further-

more, Payne et al. (2013) emphasize that individuals’ responses to questions assessing their

subjective mortality and longevity beliefs drastically depend on the framing of the question.

Therefore, we consider a general model for subjective mortality beliefs which allows for both

under- and overestimations of the life expectancy. We assume that the insurer uses the best-

estimate survival curve for pricing purposes. That is, if an individual under- or overestimates

her own or others’ life expectancy, this means, in our model, that the individual uses a lower

or higher survival curve, respectively, than the insurer does.

3 Model setup

In this section, we describe the basic model setup used throughout the remainder of our article.

In particular, we explain how the mortality and the subjective mortality beliefs are modeled

and how the two retirement products under consideration, the annuity and the tontine, are

designed. We ignore financial market risk to solely focus on the longevity risk. We start by

introducing the rather simple stochastic mortality model applied throughout the article before

getting to the retirement products and their actuarially fair premiums (determined within the

described mortality model).

3.1 A simple stochastic mortality model

There are two different kinds of mortality risk: Unsystematic, or idiosyncratic, mortality risk,

stems from the lifetimes of people being unknown but still following a certain mortality law.

Systematic, or aggregate mortality risk stems from the fact that we cannot certainly determine

the actual (“true”) mortality law. In the context of retirement products, this risk is also called

longevity risk. Further explanations regarding these two different aspects of mortality risk can

also be found, for instance, in Piggott et al. (2005). For any x -year-old policyholder, the

best-estimate t -year survival probability applied by the insurer is denoted by tpx , which can

be computed from some continuous-time mortality law, obtained from, e.g., publicly available

mortality tables. The insurer uses this survival curve for pricing the insurance contracts intro-

duced below.

As pointed out above, individuals tend to have their own, subjective estimates of others’ and

their own life expectancy. These subjective mortality beliefs will be incorporated by assuming

that the individual considered and the insurance company use different mortality tables. While

we denote by tpx the insurer’s best-estimate survival curve, we assume that an individual be-

lieves her own survival curve to be tp̃x and the survival curve for the other policyholders to
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be tp̂x . As mentioned in the introduction, we do not assume any “fixed” relation between

these survival curves as both under- and overestimation of the actual life expectancy can be

observed among retirees. From the policyholder’s perspective, these subjective survival curves

are applied to evaluate the attractiveness of the retirement products.

We incorporate uncertainty in this mortality law in a similar way as, for example, Lin and

Cox (2005) by applying a random shock ε to the survival curves such that the shocked survival

curves are given by tp
1−ε
x , tp̃

1−ε
x and tp̂

1−ε
x , respectively. For simplicity, we assume that the

same shock ε will be applied to the three survival curves. This shock covers the systematic

mortality risk described above. We assume that ε is a continuous random variable with density

fε(·) and support on (−∞, 1) . The special case in which no shock is applied is obtained by

setting ε = 0 .

3.2 Retirement products

We consider two different retirement products, the annuity and the tontine. Following Yaari

(1965), we assume a continuous-time stream of income for the retirement products. In an

annuity contract, any policyholder continuously receives an annuity payment c(t) until death.

Denoting by ζε the remaining future lifetime of the policyholder, where ε is the random

longevity shock as defined in the previous section, the payment stream of the annuity can be

written as

bA(t) := 1{ζε>t} c(t) . (1)

The actuarially fair premium charged by the insurer (using the survival curve tpx ) can be

obtained as

PA
0 = E

[∫ ∞

0

e−rtbA(t)dt

]

=

∫ ∞

0

e−rtE
[
1{ζε>t}

]
c(t) dt

=

∫ ∞

0

e−rtc(t)

∫ 1

−∞
tp

1−ϕ
x fε(ϕ) dϕ dt

=

∫ ∞

0

e−rttpx ·mε(− ln tpx) c(t) dt, (2)

where mε(s) := E[esε] is the moment generating function of the random variable ε and r is

the risk-free interest rate.

While in an annuity, the longevity risk is borne by the insurance company, in a tontine

contract it is shared among a pool of n ≥ 1 homogeneous policyholders, who are assumed to
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be identical copies of each other.4 While the unsystematic mortality risk can initially be diver-

sified by choosing the pool size n large enough, the systematic risk cannot, as this type of risk

affects the population as a whole. At older ages, however, the pool size will decrease, leaving

the remaining policyholders with both systematic and unsystematic mortality risk. Denoting

by Nε(t) the number of policyholders alive at time t , each policyholder receives n/Nε(t) mul-

tiplied by a payment stream d(t) specified at the beginning of the contract. Following Milevsky

and Salisbury (2015), this yields the following continuous payment stream for each t > 0 :

bT (t) :=

{
1{ζε>t}

nd(t)
Nε(t)

, if Nε(t) > 0,

0, else
. (3)

Note that, in contrast to the annuity payment (1), the tontine payment depends substantially

on the number of surviving policyholders Nε(t) . In the special case where the pool consists of

only one member, that is, n = 1 , and c(t) = d(t) , the tontine payoff (3) and the annuity payoff

(1) coincide. Note that, given a surviving individual, the number of pool members follows a

binomial distribution, that is, (Nε(t)−1 | ζε > t, ε) ∼ Bin (n− 1, tp
1−ε
x ) from the insurer’s point

of view. In particular, the insurer assumes the same survival probabilities for all individuals in

the pool. The actuarially fair premium of this contract can then be obtained as

P T
0 = E

[∫ ∞

0

e−rtbT (t)dt

]

=

∫ ∞

0

e−rtE
[
tp

1−ε
x E

[
nd(t)

Nε(t)

∣∣∣∣ ζε > t, ε

]]
dt

=

∫ ∞

0

e−rtE

[
n−1∑

k=0

n

k + 1

(
n− 1

k

)(
tp

1−ε
x

)k+1 (
1− tp

1−ε
x

)n−1−k
]
d(t) dt

=

∫ ∞

0

e−rtE

[
n∑

k=1

(
n

k

)(
tp

1−ε
x

)k (
1− tp

1−ε
x

)n−k
]
d(t) dt

=

∫ ∞

0

e−rtE
[
1−

(
1− tp

1−ε
x

)n]
d(t) dt

=

∫ ∞

0

e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕd(t) dt . (4)

As already pointed out in Chen et al. (2019), the actuarially fair premium for tontines (4)

differs from the formula in Milevsky and Salisbury (2015), where it is assumed that the payoff

to the pool d(t) will always be provided by the insurer even when there are no policyholders

left. The premium in (4) converges to the one in Milevsky and Salisbury (2015) if the pool size

n tends to infinity.

4Strictly speaking, the insurer carries the longevity risk of the last living person in the pool.
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3.3 Subjective perception of the premium

The insurer charges a premium based on its own best-estimate survival probabilities (see (2) and

(4)). Let us now examine how this premium is perceived from the policyholder’s point of view.

As the policyholder has different mortality beliefs than the insurer, she might perceive a product

as over- or underpriced. We denote the expected value operator under the subjective beliefs

of a policyholder by Ẽ[ · ] . The subjective premium of the annuity, using the policyholder’s

subjective survival curve, is given by

P̃A
0 = Ẽ

[∫ ∞

0

e−rtbA(t)dt

]

=

∫ ∞

0

e−rtẼ
[
1{ζε>t}

]
c(t) dt

=

∫ ∞

0

e−rtc(t)

∫ 1

−∞
tp̃

1−ϕ
x fε(ϕ) dϕ dt

=

∫ ∞

0

e−rttp̃x ·mε(− ln tp̃x) c(t) dt . (5)

The policyholder perceives the premium charged by the insurer for the annuity as “too high”

if the charged premium is higher than her perceived premium, that is, PA
0 > P̃A

0 (which is the

case if tpx > tp̃x ). Conversely, the premium charged by the insurer is perceived as “too low” if

PA
0 < P̃A

0 (which is the case if tpx < tp̃x ).

For the tontine, a single individual uses the survival curve tp̃x for herself and tp̂x for the

other policyholders in the pool. Using the policyholder’s subjective survival curves for herself

and others, the subjective premium of the tontine is given by

P̃ T
0 = Ẽ

[∫ ∞

0

e−rtbT (t)dt

]

=

∫ ∞

0

e−rtẼ
[
tp̃

1−ε
x Ẽ

[
nd(t)

Nε(t)

∣∣∣∣ ζε > t, ε

]]
dt

=

∫ ∞

0

e−rtẼ

[
tp̃

1−ε
x

n−1∑

k=0

n

k + 1

(
n− 1

k

)(
tp̂

1−ε
x

)k (
1− tp̂

1−ε
x

)n−1−k
]
d(t) dt

=

∫ ∞

0

e−rtẼ

[
tp̃

1−ε
x

tp̂1−εx

n∑

k=1

(
n

k

)(
tp̂

1−ε
x

)k (
1− tp̂

1−ε
x

)n−k
]
d(t) dt

=

∫ ∞

0

e−rtẼ
[
tp̃

1−ε
x

tp̂1−εx

(
1−

(
1− tp̂

1−ε
x

)n)
]
d(t) dt

=

∫ ∞

0

e−rt
∫ 1

−∞

tp̃
1−ϕ
x

tp̂
1−ϕ
x

(
1−

(
1− tp̂

1−ϕ
x

)n)
fε(ϕ) dϕd(t) dt . (6)
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In (6), the term
(
1− (1− tp̂

1−ϕ
x )

n)
is increasing in tp̂x . If the policyholder does not strongly

over- or underestimate her own survival curve compared to the remaining policyholders, the

term tp̃
1−ε
x

tp̂
1−ε
x

is close to 1. Hence, in this case, the subjective tontine premium is also overpriced

(underpriced) from the perspective of a policyholder who underestimates (overestimates) her

life expectancy compared to the insurer. Note however, that the magnitude of over- or under-

estimation is rather small and these effects mostly vanish as n gets larger and hardly play a

role for a large enough pool size.

To illustrate the patterns described above, we now consider a numerical example. Unless

stated otherwise, we always use the parameters summarized in Table 1. The survival curves

Net premium Pool size Risk-free rate
PA
0 = P T

0 = 1 n = 100 r = 0.02
Initial age Gompertz parameters Longevity shock
x = 65 m = 88.721, β = 10 ε ∼ N(−∞,1](−0.0035, 0.08142)

Table 1: Base case parameters.

tpx , tp̃x and tp̂x are assumed to follow the well-known Gompertz law (Gompertz (1825)) as

used, for example, in Gumbel (1958), Milevsky and Salisbury (2015) and Chen et al. (2019).

The Gompertz law is parameterized as

tpx = ee
x−m
β

(
1−e

t
β

)

with dispersion coefficient β > 0 and modal age at death m . The use of the Gompertz law

should be seen solely as one possible example for the survival curves which allows a rather

simple incorporation of subjective mortality beliefs. Note that it is not the primal goal of this

article to derive an accurate fit to real-life mortality data when using the Gompertz law, but

instead to provide a rather simple example for subjective mortality beliefs and their effects on

the optimal retirement decision. To demonstrate the effects of subjective mortality beliefs, we

vary the modal age at death to obtain the subjective survival curves as

tp̃x = ee
x−m̃
β

(
1−e

t
β

)
, tp̂x = ee

x−m̂
β

(
1−e

t
β

)

for subjective modal ages at death m̃ , m̂ > 0 . Note that we allow for the modal age at death

to vary between the insurer’s and the policyholder’s perceived survival curves, while we use, for

simplicity, the same dispersion coefficient for all three curves. That is, we have tacitly assumed

that the modal age at death does not depend on the dispersion coefficient and vice versa.5 The

5Note that this is only one possible example of subjective mortality beliefs, i.e. we could with some additional
effort analyze more evolved constructions. However, as the empirical studies in Section 2 lead to different
conclusions and depend on the framing of the questions, we prefer to choose a rather simple example of subjective
mortality beliefs for our numerical illustrations. In principle, it is possible to allow for simultaneous changes in
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reason for this is that the survival probability is increasing in the modal age at death for all

choices of x , β and t . Thus, the modal age at death allows us to easily control the subjective

mortality beliefs. For the Gompertz parameters, we follow Milevsky and Salisbury (2015), for

the parameters of the shock we follow Chen et al. (2019). As mentioned earlier already, the

insurer uses best-estimate survival probabilities. For example, if a policyholder underestimates

(overestimates) her own and others’ survival curves, this underestimation (overestimation) is

relative to the best-estimates used by the insurer, that is, we assume that tpx ≥ (≤)tp̃x and

tpx ≥ (≤)tp̂x for our numerical analyses. Using Gompertz-law and only allowing for the modal

age at death to differ between the survival curves, this results in the relations m ≥ (≤)m̃ and

m ≥ (≤)m̂ . We assume that the insurer uses the modal age m = 88.721 , which results in

an expected remaining lifetime of E[ζε] =
∫∞
0

∫ 1

−∞ tp
1−ϕ
x fε(ϕ)dϕdt ≈ 20.707 from the insurer’s

point of view (for an x = 65 -year old).

In Table 2, we provide the premium charged by the insurer and the subjective premiums

as expected by the policyholders for a constant annuity. The constant annuity payoff c(t) = c

is chosen such that PA
0 = 1 with the premium PA

0 given in (2). Note that the parameter m̂

does not affect the premium of the annuity in any way and can therefore be omitted in Table

2. It can be seen that the subjective premium of the annuity increases in the modal age at

Subjective modal age Annuity premium P̃A
0

m̃ = 80.5 0.7428
m̃ = 83 0.8197
m̃ = 88.721 1
m̃ = 92 1.1038
m̃ = 95 1.1979

Table 2: Subjective premium P̃A
0 (see (5)) of a constant annuity, given a fair premium PA

0 = 1 .
The parameters are as in Table 1, in particular, the insurance company’s modal age at death
is m = 88.721 .

death m̃ assumed by the policyholder. That is, an annuity seems more and more overpriced

the stronger an individual underestimates her survival curve. Conversely, an annuity appears

underpriced to a policyholder who overestimates her survival curve.

Table 3 provides the premium charged by the insurer and the subjective premium as expected

several parameters of the Gompertz law or to change the underlying mortality law. The former can be carried
out by using the so-called Compensation Law of Mortality (CLaM) taking into account that the lifetimes of
individuals with higher mortality hazard rates are also more volatile (for further details see, e.g., Gavrilov and
Gavrilova (1991, 2001) and Milevsky (2018)). In our Gompertz framework, this would imply that low modal
ages should be paired with high dispersion coefficients, as explicitly stated in Milevsky (2018). Choosing, for

example, (m,β) = (88.721, 10) and (m̂, β̂) = (80.5, 11) , we still obtain tp̂x < tpx on the set x + t < 150 .
That is, the parameters could be chosen in such a way that all our qualitative results in the numerical part still
remain valid. Hence, we have decided to choose a rather simple way to incorporate the subjective mortality
beliefs by changing the modal age at death.
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by the policyholders for a so-called natural tontine as introduced in Milevsky and Salisbury

(2015). The payoff of the natural tontine is, in our model setup, given by d(t) = E[tp
1−ε
x ] · d0 ,

where d0 is a constant. Note that the tontine payoff to a single individual in the pool remains

constant over time if deaths in the pool occur exactly as expected.6 The constant d0 is chosen

such that P T
0 = 1 with the premium P T

0 given in (4). As in this example, we want to focus on

the case where the policyholder has a different perception about the survival than the insurer

does, we assume that an individual’s survival curve assumed for herself coincides with that

assigned to others, that is, tp̃x = tp̂x . In Table 3, we can observe similar patterns as in Table 2.

Subjective modal age Tontine premium P̃ T
0

n = 10 n = 100 n = 1 000
m̃ = m̂ = 80.5 0.9472 0.9873 0.9966
m̃ = m̂ = 83 0.9704 0.9944 0.9988
m̃ = m̂ = 88.721 1 1 1
m̃ = m̂ = 92 1.0068 1.0005 1.0000
m̃ = m̂ = 95 1.0097 1.0006 1.0000

Table 3: Subjective premium P̃ T
0 (see (6)) of the natural tontine, given a fair premium P T

0 = 1 .
The parameters are as in Table 1, in particular, the insurance company’s modal age at death
is m = 88.721 .

Note however, that the tontine’s perceived premium P̃ T
0 is much less affected by subjective

mortality beliefs than the premium of the annuity. The effect vanishes almost completely for

large tontine pool sizes.

To summarize, we find that tontines’ perceived prices change much less substantially than

annuities’ due to a subjective survival curve perception. A pessimistic policyholder, assuming

her own survival curve to be lower than the one used by the insurer, will perceive an annuity

as overpriced while tontines are perceived as almost fairly priced. As it is usual in this stream

of literature (for example Yaari (1965), Yagi and Nishigaki (1993), Mitchell (2002), Davidoff

et al. (2005), Milevsky and Salisbury (2015), Peijnenburg et al. (2016) and Chen et al. (2019)),

the attractiveness of a retirement product is frequently examined in an expected utility frame-

work. To confirm our results in such a framework, we, in the following subsections, consider

an expected utility framework to figure out how subjective mortality beliefs affect the relative

attractiveness of annuities and tontines and whether a tontine is preferable over an annuity

under certain subjective mortality beliefs. We analyze whether the arguments about the pre-

mium perception in this section still hold true if the policyholder’s expected lifetime utility is

used for the product comparison. We start by deriving optimal payoff functions of annuities

and tontines in Section 4 and then compare the resulting attractiveness of both products in

6Due to its nice structure, Milevsky and Salisbury (2015) recommend this tontine design for an implemen-
tation of tontines in today’s world which is also why we have decided to choose this design for our numerical
demonstration.
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Section 5.

4 Optimal payoff and expected utility

In this section, we derive the optimal payoff and the corresponding expected lifetime utility of

the annuity and the tontine under subjective mortality beliefs. Our results can be seen as a

generalization of the theorems given in Milevsky and Salisbury (2015) and Chen et al. (2019).

We first introduce the policyholder’s expected discounted lifetime utility as

U
(
{α(t)}t≥0

)
:= Ẽ

[∫ ∞

0

e−ρt · u (α(t)) · 1{ζε>t}dt
]
, (7)

where {α(t)}t≥0 denotes the insurance product’s payoff, u(x) = x1−γ
1−γ is a CRRA utility func-

tion with a risk aversion parameter γ > 0 , γ 6= 1 and ρ is the subjective discount factor of

the policyholder. Note that the expected discounted lifetime utility is taken under the policy-

holder’s subjective expectation Ẽ[ · ] . Assuming that tp̃
1−ε
x = Ẽ

[
1{ζε>t}

∣∣ ε
]

, we incorporate the

subjective mortality beliefs in the individual’s decision. In the following two subsections, we

first consider an annuity with payoff α(t) = bA(t) , then a tontine with payoff α(t) = bT (t) .

4.1 Annuity

We assume that the individual aims to maximize her expected discounted lifetime utility under

the constraint that her initial wealth equals the premium charged by the insurer. The expected

discounted lifetime utility of an annuity is given by

U
(
{bA(t)}t≥0

)
=

∫ ∞

0

e−ρtẼ
[
1{ζε>t}

]
u(c(t)) dt

=

∫ ∞

0

e−ρttp̃x ·mε(− ln tp̃x)u(c(t)) dt.

To be more precise, we solve the following optimization problem to determine the optimal

annuity payment c(t) :

max
c(t)

U
(
{bA(t)}t≥0

)
= max

c(t)

∫ ∞

0

e−ρttp̃x ·mε(− ln tp̃x)u(c(t)) dt

subject to v = PA
0 =

∫ ∞

0

e−rttpx ·mε(− ln tpx) c(t) dt,

(8)

where v is the investor’s initial wealth and PA
0 is the premium charged by the insurer. The

solution of optimization problem (8) is given in Theorem 4.1.
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Theorem 4.1 For an annuity contract, the solution to problem (8) is given by the optimal

payout function

c∗(t) =
e

(r−ρ)t
γ

λ
1/γ
A

(
tp̃x ·mε(− ln tp̃x)

tpx ·mε(− ln tpx)

)1/γ

, (9)

where λA is the optimal Lagrangian multiplier given by

λA =


 1

PA
0

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt

∫ 1

−∞
tp

1−ϕ
x fε(ϕ)dϕ

(∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ)dϕ

∫ 1

−∞ tp
1−ϕ
x fε(ϕ)dϕ

)1/γ

dt



γ

.

The optimal level of expected utility is then given by

UA :=
λA

1− γP
A
0 . (10)

Proof. See Appendix A.1. �

Note that if there are no subjective mortality beliefs and if r = ρ , the optimal annuity payment

reduces to the constant λ
− 1
γ

A which is in line with Yaari (1965). In all the other cases, the

optimal annuity payoff is not constant and may increase or decrease over time. This implies

that constant annuities are sub-optimal for individuals whose subjective discount rate differs

from the risk-free interest rate, consistent with, for example, Yagi and Nishigaki (1993). Before

we analyze the effects of subjective mortality beliefs on the optimal payoff c∗(t) and the optimal

level of expected utility UA in Section 5, we derive the optimal tontine payoff in the following

subsection.

4.2 Tontine

This section is dedicated to determining the optimal withdrawal payment d(t) for the tontine.

The expected discounted lifetime utility of a tontine is given by

U
(
{bT (t)}t≥0

)
=

∫ ∞

0

e−ρt u(d(t)) Ẽ

[
1{ζε>t}

(
n

Nε(t)

)1−γ
]

dt,

where (Nε(t) − 1 | ζε > t, ε) ∼ Bin(n − 1, tp̂
1−ε
x ) from the policyholder’s perspective. The

policyholder has a different expectation about others’ survival, with the probability Ẽ [tp̂
1−ε
x ] .

Based on this, we obtain

κn,γ,ε(tp̂x, tp̃x) := Ẽ

[
1{ζε>t}

(
n

Nε(t)

)1−γ
]
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= Ẽ

[
tp̃

1−ε
x Ẽ

[(
n

Nε(t)

)1−γ ∣∣∣∣ ζε > t, ε

]]

= Ẽ

[
tp̃

1−ε
x

n−1∑

k=0

(
n

k + 1

)1−γ (
n− 1

k

)(
tp̂

1−ε
x

)k (
1− tp̂

1−ε
x

)n−1−k
]

= Ẽ

[
tp̃

1−ε
x

n∑

k=1

(
k

n

)γ (
n

k

)(
tp̂

1−ε
x

)k−1 (
1− tp̂

1−ε
x

)n−k
]

=
n∑

k=1

(
n

k

)(
k

n

)γ ∫ 1

−∞
tp̃

1−ϕ
x

(
tp̂

1−ϕ
x

)k−1 (
1− tp̂

1−ϕ
x

)n−k
fε(ϕ) dϕ . (11)

That is, we solve the following optimization problem:

max
d(t)

U
(
{bT (t)}t≥0

)
= max

d(t)

∫ ∞

0

e−ρt u(d(t))κn,γ,ε(tp̂x, tp̃x) dt

subject to v = P T
0 =

∫ ∞

0

e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕd(t) dt,

(12)

The solution to problem (12) is given in Theorem 4.2.

Theorem 4.2 For a tontine, the solution to problem (12) is given by the optimal payout func-

tion

d∗(t) =
e

(r−ρ)t
γ (κn,γ,ε(tp̂x, tp̃x))

1/γ

λ
1/γ
T

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

)1/γ , (13)

where λT is the optimal Lagrangian multiplier given by

λT =


 1

P T
0

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt (κn,γ,ε(tp̂x, tp̃x))

1/γ

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

)1/γ−1dt




γ

.

The expected discounted lifetime utility is then given by

UT :=
λT

1− γP
T
0 . (14)

Proof. See Appendix A.2. �

Although the optimal payout structure d∗(t) is much more complex than the optimal annuity

payment c∗(t) from (9), the optimal expected utility in (14) differs from (10) only through the

Lagrangian multiplier. In the following section, we will have a closer look at the effect of the

subjective mortality beliefs on the optimal payoff and expected utility of both annuities and

tontines.
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5 Effects of subjective mortality beliefs

In this section, we analyze the effect of the subjective mortality beliefs on the optimal retirement

decision. As explained in Section 3.1, we denote by tpx the insurer’s best-estimate survival

curve and by (tp̃x, tp̂x) the policyholder’s subjective survival curve used for herself and the

remaining policyholders in the pool, respectively.

5.1 Subjective mortality beliefs concerning oneself

We start by analyzing the effects of the individual’s subjective mortality beliefs about herself on

the optimal payoff and the optimal level of expected utility of the two products. In Figure 1, we

illustrate the effects of the subjective survival curve tp̃x on c∗(t) and d∗(t) . In the following

analysis, we always consider a policyholder with a risk aversion of γ = 3 and a subjective

discount factor of ρ = r = 0.02 . We basically make the same observation in the two panels in

(a) Annuity (b) Tontine, m = m̂ = 88.721

Figure 1: Optimal payoff of the annuity and the tontine for different choices of the survival

curve tp̃x = exp
(
e
x−m̃
β
(
1 − e

t
β
))

being a function of the modal age at death m̃ , where the
parameters are chosen as in Table 1 with γ = 3 and ρ = r .

Figure 1: If the individual believes that she lives shorter than the insurer has estimated, that

is, tp̃x < tpx (here m̃ = 80.5 and m̃ = 83 , respectively), the individual will buy a product

which provides a higher payment at the early retirement ages and a lower payment at the more

advanced retirement ages (compared to the case with tpx = tp̃x ). For the annuity, this leads

to decreasing payoffs. For the tontine, a more steeply declining payoff results (compared to

the case with tpx = tp̃x ). In the reverse case, that is, for a policyholder that is optimistic

with respect to her survival curve ( tp̃x > tpx , here m̃ = 92 and m̃ = 95 , respectively), the

individual buys a product which provides a lower payment at the early retirement ages and

a higher payment at the more advanced retirement ages. For the annuity, increasing payoffs
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result. For the tontine, less steeply declining payoffs (compared to the case with tpx = tp̃x ),

which slightly increase at very old ages, are obtained. Thus, living shorter in expectation has

the same effect as being less patient about the future: Individuals tend to consume more at

earlier retirement ages. Older ages are given less importance than earlier ages and therefore,

lower payments result at older ages. If, on the other hand, the individual expects to live longer

than the insurer assumes, the opposite is true.

We want to verify whether the perceived overpricing (underpricing) of annuities leads to a

lower (higher) utility level for the policyholders. For this purpose, we introduce problem (15).

A policyholder who assumes her own subjective survival curve to be tp̃x wants to choose the

optimal retirement product following the optimization problem:

max
c(t)

U
(
{bA(t)}t≥0

)
= max

c(t)

∫ ∞

0

e−ρttp̃x ·mε(− ln tp̃x)u(c(t)) dt

subject to v = P̃A
0 =

∫ ∞

0

e−rttp̃x ·mε(− ln tp̃x) c(t) dt.

(15)

Note that, in contrast to the optimization problem (8), the constraint in the optimization prob-

lem (15) is given in terms of the policyholder’s subjective premium P̃A
0 instead of the insurer’s

fair premium PA
0 .

For a more thorough analysis of the retirement products, we introduce certainty equivalents

CE defined as the level of constant retirement benefits that yield the same expected utility as

the annuity and tontine, respectively. In other words, we determine CE > 0 such that

U
(
{CE}t≥0

)
= U

(
{α(t)}t≥0

)
, (16)

or equivalently,

CE =

(
(1− γ)

(∫ ∞

0

e−ρttp̃xmε(− ln tp̃x)dt

)−1
· U
(
{α(t)}t≥0

)
) 1

1−γ

,

where U ({α(t)}t≥0) is the expected discounted lifetime utility of the individual as defined in

(7).

Comparing the results of optimization problems (8) and (15), we can see whether “perceived”

overpricing (underpricing) leads to a lower (higher) certainty equivalent CE for the policy-

holder. Table 4 presents the results for an annuity. The column “CE with premium PA
0 ” gives

the certainty equivalent obtained via optimization problem (8). The third column “CE with

premium P̃A
0 ” gives the CE obtained via optimization problem (15). If the third column gives

a higher value, problem (15) leads to a higher CE to the policyholder than problem (8) does.
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Subjective modal age CE with premium PA
0 CE with premium P̃A

0

Problem (8) Problem (15)
m̃ = 80.5 0.0629 0.0822
m̃ = 83 0.0619 0.0745
m̃ = 88.721 0.0611 0.0611
m̃ = 92 0.0613 0.0553
m̃ = 95 0.0618 0.0510

Table 4: Certainty equivalents (CE) of the annuity for problems (8) and (15), where the payoff
is the (subjective) utility maximizing payoff (9). The parameters are as in Table 1 with risk
aversion γ = 3 and subjective discount factor ρ = r .

The reason for this is that the policyholder perceives the premium charged by the insurer in

problem (8) as too expensive. We observe that this is the case if the policyholder underesti-

mates her survival curve ( m̃ < m ), in line with the results in Table 2. The reverse results hold

for a policyholder that is optimistic with respect to her survival curve ( m̃ > m ). These results

confirm the intuition about the premium perception analyzed in Section 3.3.

As the price of tontines is hardly influenced by tp̃x (see Section 3.3), we leave out the analogous

problem to (15) for tontines at this point. Instead, we analyze the main driving factor for a

tontine’s attractiveness in the following subsection.

5.2 Subjective mortality beliefs concerning others

In the previous subsection, we have analyzed how the policyholder’s survival curve for herself tp̃x

influences the annuity and the tontine. Note, however, that the survival curve the policyholder

assumes for everyone else tp̂x does not affect the payoffs or the expected utility of the annuity

in any way. Therefore, we need to analyze the influence of tp̂x on the expected utility of the

tontine if we want to find out which product is more preferable under subjective mortality

beliefs.

Proposition 5.1 The optimal level of expected utility of the tontine UT decreases in the sur-

vival curve for other policyholders tp̂x for all γ > 0 , γ 6= 1 . As a consequence, the certainty

equivalent of the tontine is also decreasing in tp̂x .

Proof. See Appendix A.3. �

The expected utility decreases in the survival curve of the other policyholders in the tontine

pool, so the more the individual under consideration underestimates tp̂x , the higher the ex-

pected utility of the tontine. If the individual believes that less individuals will survive a certain

time point t > 0 , for the same payoff to the pool d(t) , the surviving individual will receive (at
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least on average) a higher payout. As a consequence, the “perceived” expected utility of the

individual will be raised by this underestimation of the survival curve about the other policy-

holders in the pool.

This leads us to our main result, the comparison between the certainty equivalents (CE) of

annuity and tontine under subjective mortality beliefs. We are able to provide analytical re-

sults if systematic mortality risk is ignored, that is if ε ≡ 0 , see Theorem 5.2. For reasonable

parameter sets, these results still hold true if systematic mortality is introduced, see our later

numerical results.

Theorem 5.2 (Certainty equivalent comparison under subjective beliefs)

(a) If beliefs do not differ between policyholder and insurance company, that is if tpx = tp̃x =

tp̂x , we find that the CE of a tontine never (that is for any portfolio size n ∈ N ) exceeds

the CE of an annuity.

(b) Consider the case with systematic mortality risk. If

∫ 1

−∞
tp

1−ϕ
x fε(ϕ)dϕ >

(∫ 1

−∞ tp̃
1−ϕ
x

(
1

tp̂
1−ϕ
x

)1−γ
fε(ϕ)dϕ

∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ)dϕ

) 1
γ−1

, (17)

there exists a pool size N0 ∈ N such that the subjective CE of a tontine is (for any

portfolio size n ≥ N0 ) higher than the subjective CE of an annuity.

(c) Consider the case without systematic mortality risk ( ε ≡ 0 ). In this case, assump-

tion (17) simplifies to tp̂x < tpx .

Remark 5.3 (Theorem 5.2) Part (a) of Theorem 5.2 is not an unknown result and has al-

ready been proven in Milevsky and Salisbury (2015) in a scholar setting. The minor extensions

of our article compared to Milevsky and Salisbury (2015) are the inclusion of systematic mor-

tality risk by the shock ε and the use of a different tontine premium. Parts (b) and (c) of

Theorem 5.2 have, to the best of our knowledge, not been proven in the literature.

Proof:

(a) Consider the following optimization problem (with no subjective mortality beliefs):

max
α∈[0,1]

E
[∫ ∞

0

e−ρt1{ζε>t}u

(
αc∗(t) + (1− α)

n

Nε(t)
d∗(t)

)
dt

]
(18)

where c∗(t) is the optimal annuity payoff (9) and d∗(t) is the optimal tontine payoff

(13). In particular, it holds v = PA
0 = P T

0 , i.e. the individual maximizes her utility
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over the fraction of wealth invested in the annuity when having access to both optimal

annuities and tontines ( v = αPA
0 + (1 − α)P T

0 ). Note that this optimization problem

differs from Problems (8) and (12), as , in (18), we maximize over a fraction of initial

wealth. Therefore, we do not have to consider a budget constraint, since the individual

can only split her initial wealth v between the optimal annuity with initial value PA
0 = v

and the optimal tontine with initial value P T
0 = v . The objective function to Problem

(18) can be written as

F =

∫ ∞

0

e−ρtE
[
1{ζε>t}u

(
αc∗(t) + (1− α)

n

Nε(t)
d∗(t)

)]
dt

=

∫ ∞

0

e−ρtE
[
tp

1−ε
x E

[
u

(
αc∗(t) + (1− α)

n

Nε(t)
d∗(t)

)∣∣∣∣ζε > t, ε

]]
dt

=

∫ ∞

0

e−ρtE

[
tp

1−ε
x

n−1∑

k=0

u

(
αc∗(t) + (1− α)

n

k + 1
d∗(t)

)(
n− 1

k

)

(
tp

1−ε
x

)k (
1− tp

1−ε
x

)n−1−k]
dt

=

∫ ∞

0

e−ρt
n−1∑

k=0

u

(
αc∗(t) + (1− α)

n

k + 1
d∗(t)

)(
n− 1

k

)

∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt.

We determine the first-order derivative to find a solution to this optimization problem.

The first-order condition with respect to α is given by

∂F
∂α

=

∫ ∞

0

e−ρt
n−1∑

k=0

u′
(
αc∗(t) + (1− α)

n

k + 1
d∗(t)

)(
c∗(t)− n

k + 1
d∗(t)

)(
n− 1

k

)

∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt

!
= 0. (19)

Using (9) and some effort, we can verify that α∗ = 1 fulfills the first-order condition (19).

We still need to verify that α∗ = 1 is a maximum and that it is the only maximum of

the objective function. We can do this by taking a look at the second-order derivative:

∂2F
∂α2

=

∫ ∞

0

e−ρt
n−1∑

k=0

u′′
(
αc∗(t) + (1− α)

n

k + 1
d∗(t)

)(
c∗(t)− n

k + 1
d∗(t)

)2(
n− 1

k

)

∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ dt < 0,

since u′′
(
αc∗(t) + (1− α) n

k+1
d∗(t)

)
< 0 for all α ∈ [0, 1] . If the second-order derivative

is strictly negative, this implies that the first-order derivative is strictly decreasing in α .

Hence, ∂F
∂α

can only be equal to zero for exactly one value of α , which we have already
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found above (α∗ = 1) . From this, we also see that the first-order derivative has to be

greater than zero for all α < 1 . Consequently, the expected utility in Problem (18) is

increasing in α until it reaches its maximum at α = 1 . Particularly, a 100% investment

of initial wealth in the optimal annuity delivers a higher expected lifetime utility than a

100% investment in the optimal tontine.

(b) For the limiting (n→∞ ) tontine , we follow the proof of Theorem 4.2. Note first that by

the conditional law of large numbers (see, for example, Majerek et al. (2005) and Hanbali

et al. (2019)), we obtain, given the longevity shock ε , that the share of survivors under

subjective beliefs equals:

lim
n−→∞

(
Nε(t)

n

∣∣∣ε
)

= lim
n−→∞

tp̃
1−ε
x + (n− 1) · tp̂1−εx

n

∣∣∣
ε
−→ tp̂

1−ε
x .

We obtain, applying the dominated convergence theorem:

κ∞,γ,ε(tp̂x, tp̃x) := lim
n→∞

κn,γ,ε(tp̂x, tp̃x)

= lim
n→∞

Ẽ

[
1{ζε>t}

(
n

Nε(t)

)1−γ
]

= lim
n→∞

Ẽ

[
tp̃

1−ε
x E

[(
n

Nε(t)

)1−γ
∣∣∣∣∣ε, ζε > t

]]

= Ẽ

[
tp̃

1−ε
x

(
1

tp̂1−εx

)1−γ
]
.

For the annuity, we obtain the Lagrangian multiplier (see Theorem 4.1):

λA =


 1

PA
0

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt

∫ 1

−∞
tp

1−ϕ
x fε(ϕ)dϕ

(∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ)dϕ

∫ 1

−∞ tp
1−ϕ
x fε(ϕ)dϕ

)1/γ

dt



γ

.

In the limit n → ∞ , we obtain the Lagrangian multiplier for the limiting tontine (see

Theorem 4.2):

λT,n→∞ =

(
1

P T
0

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt ·
(
κ∞,γ,ε(tp̂x, tp̃x)

) 1
γ dt

)γ
.

Following Theorem 4.1 and 4.2, we know that the certainty equivalents of annuity and

tontine can be written as functions of the Lagrangian multipliers λA and λT , that is for

i ∈ {T,A} :

CE =
(
P i
0 · λi ·

(∫ ∞

0

e−ρt · tp̃xmε(− ln tp̃x) dt
)−1) 1

1−γ
. (20)
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Comparing the certainty equivalents of annuity and limiting tontine is thus equivalent to

comparing λ
1

1−γ
A and λ

1
1−γ
T,n→∞ . Using assumption (17), we obtain:

(∫ 1

−∞
tp

1−ϕ
x fε(ϕ)dϕ

)γ
·
∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ)dϕ

∫ 1

−∞ tp
1−ϕ
x fε(ϕ)dϕ

=

∫ 1

−∞
tp̃

1−ϕ
x fε(ϕ)dϕ ·

(∫ 1

−∞
tp

1−ϕ
x fε(ϕ)dϕ

)γ−1





<
∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ)dϕ ·

∫ 1
−∞ tp̃

1−ϕ
x

(
1

tp̂
1−ϕ
x

)1−γ
fε(ϕ)dϕ

∫ 1
−∞ tp̃

1−ϕ
x fε(ϕ)dϕ

, if γ ∈ (0, 1)

>
∫ 1

−∞ tp̃
1−ϕ
x fε(ϕ)dϕ ·

∫ 1
−∞ tp̃

1−ϕ
x

(
1

tp̂
1−ϕ
x

)1−γ
fε(ϕ)dϕ

∫ 1
−∞ tp̃

1−ϕ
x fε(ϕ)dϕ

, if γ > 1

=

∫ 1

−∞
tp̃

1−ϕ
x

(
1

tp̂
1−ϕ
x

)1−γ
fε(ϕ)dϕ = κ∞,γ,ε(tp̂x, tp̃x) .

This is equivalent to

λA





< λT,n→∞, if γ ∈ (0, 1)

> λT,n→∞, if γ > 1

which is again equivalent to λ
1

1−γ
A < λ

1
1−γ
T,n→∞ . From (20), we can immediately conclude

that the certainty equivalent of the limiting tontine exceeds the certainty equivalent of the

annuity.

Denoting by CE T,n an optimal tontine’s certainty equivalent with pool size n , we can

use basic properties of a converging series CE T,n −→CE T,n→∞ that there exists a pool

size N0 ∈ N such that the CE of a tontine CE T,n is (for any portfolio size n ≥ N0 )

higher than the CE of an annuity (this basic convergence result can be found in any

mathematical textbook covering the convergence of a sequence of real numbers, like, for

example, Schulz (2011)). �

We now analyze for which individuals a tontine might be preferable to an annuity, where the

individuals are distinguished by their relative risk aversion. For our numerical analysis, we

focus, for example, on the findings of Greenwald and Associates (2012) and O’Brien et al.

(2005) who state that people tend to underestimate their own and others’ life expectancy, that

is, they assign a value tp̃x < tpx and tp̂x < tpx , respectively. We consider the parameter setup

summarized in Table 1 along with the following three cases of subjective mortality beliefs:

• Case 1: m̃ = 82 , m̂ = 80.5 : In this case, the policyholder underestimates others’ life

expectancy by 6.183 years and her own by 5.128 years compared to the insurer. In

particular, the individual believes that she lives in expectation 1.055 years longer than

her peers.
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• Case 2: m̃ = 80.5 , m̂ = 82 : In this case, the policyholder underestimates others’ life

expectancy by 5.128 years and her own by 6.183 years compared to the insurer. In

particular, the individual believes that she lives in expectation 1.055 years shorter than

her peers.

• Case 3: m̃ = m̂ = 88.721 : In this case, there are no subjective mortality beliefs, that

is, tp̃x = tpx = tp̂x . This corresponds to the setting analyzed in Milevsky and Salisbury

(2015) and we mainly include this case to emphasize the importance of our results.

In Figure 2, the corresponding certainty equivalents are given for the annuity and the tontine.

The risk aversion parameters are equidistantly placed in the interval [0.1, 10] . Here, we consider

two different tontines, one with n = 10 policyholders and another one with n = 100 members.

We use very small pool sizes to emphasize that tontines with a low number of policyholders

can already be preferred to annuities. We make the following observation from Figure 2:

(a) Portfolio size n = 10 (b) Portfolio size n = 100

Figure 2: Certainty equivalent for different investors with the three cases explained above and
the remaining parameters chosen as in Table 1 with ρ = r = 0.02 .

• In both panels, we can see that the tontine is preferred by all individuals whose relative risk

aversion falls in the interval [0.1, 10] in case 1 and 2, whereas in case 3 all the policyholders

prefer the annuity over the tontine. The reason behind the tontine’s superiority for the

cases with subjective mortality beliefs is the underestimation of the survival curve used for

the remaining policyholders tp̂x . As we have already seen in Proposition 5.1, a decrease of

this survival curve leads to a higher certainty equivalent of the tontine, while the certainty

equivalent of the annuity remains completely unchanged.

• In both Panel (a) and (b), the individual’s survival curve assumed for herself tp̃x has

almost no effect on the tontine’s superiority over the annuity. This can be seen from the
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fact that both in case 1 ( tp̃x > tp̂x ) and case 2 ( tp̃x < tp̂x ) the tontine is preferred to the

annuity for all risk aversion parameters.

• One last effect we can observe here is that the number of policyholders in a tontine also

largely impacts the attractiveness of tontines. In both figures, the investors prefer the

tontine over the annuity. Comparing Panel (a) with n = 10 investors to Panel (b) with

n = 100 investors, we can see that the certainty equivalent of the tontine is significantly

increased when the pool is larger. We have already argued at the beginning of this article

that the unsystematic risk in a tontine can be diversified by a sufficiently large pool size

and it is well-known already that the attractiveness of a tontine increases with its pool

size (see for example Milevsky and Salisbury (2015) and Chen et al. (2019)).

We conclude our numerical analysis by providing the critical values N0 from Theorem 5.2 for

our base case parameter setup. We consider a policyholder with a risk aversion γ = 3 . We

can check numerically that condition (17) is fulfilled. Table 5 provides the critical pool sizes

N0 under the three cases considered in Figure 2. Under case 1, the critical pool size N0 that

Case N0

Case 1 2
Case 2 3
Case 3 -

Table 5: Critical pool size N0 as described in Theorem 5.2. The parameters are as in Table 1
with risk aversion γ = 3 and subjective discount factor ρ = r .

leads to larger certainty equivalent of the tontine compared to the annuity is already equal to

2. Under case 2, the critical pool size equals 3. Note that for case 3 no critical pool size N0

exists, due to Theorem 5.2 (a).7

To summarize the results in our parameter setup, we see that tontines can become more attrac-

tive to policyholders than annuities, if policyholders assume a smaller survival curve for their

peers than the insurer does. This effect is more pronounced if a larger pool size is considered,

as the attractiveness of tontines increases in the pool size.

6 Conclusion

In this article, we study the effects of subjective mortality beliefs on the optimal design of

annuities and tontines and their (relative) attractiveness to risk-averse policyholders. In an

7Figures of the certainty equivalents of the annuity and the tontine depending on n are available from the
authors upon request.
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actuarially fair pricing framework, subjective mortality beliefs have a substantial impact on the

choice between a tontine and an annuity. If individuals underestimate others’ life expectancy

compared to the life expectancy assumed by the insurer, the tontine becomes more attractive

than the annuity. In particular, if subjective beliefs are present and satisfy a certain condition,

there exists a critical pool size from which on the tontine is always preferred over the annuity.

The reason for this is that the policyholder believes that less individuals will survive in the

pool and, consequently, the share distributed to her will increase. Since annuitization rates

remain low and are unlikely to increase in the current low interest environment, this result

is of high relevance for the life insurance market as it shows that, under subjective mortality

beliefs, a tontine might be an attractive alternative to a conventional annuity. Additionally,

we find that policyholders who assume a lower survival curve for themselves than the insurer

does perceive annuities as overpriced and it lowers their lifetime utility, consistent with, for

example, Wu et al. (2015). Conversely, policyholders who overestimate their life expectancy

perceive underpricing of the annuities, which increases their lifetime utility. The premium of a

tontine, on the other hand, is only slightly affected by subjective mortality beliefs. In contrast to

annuities, an individual’s expected lifetime utility from the tontine is only marginally influenced

by the individual’s subjective survival curve assumed for herself.

An interesting generalization of our subjective beliefs model would be the inclusion of “money

illusion”, that is, the empirically observed tendency to think in nominal rather than in real

monetary terms (see, for example, Basak and Yan (2010)). Although the real terms matter,

people tend to think in nominal terms. We leave this question for future research.

References

Basak, S. and Yan, H. (2010). Equilibrium asset prices and investor behaviour in the presence

of money illusion. The Review of Economic Studies, 77(3):914–936.

Bauer, D., Russ, J., and Zhu, N. (2014). Adverse selection in secondary insurance markets:

Evidence from the life settlement market. In Proceedings of the NBER Insurance Workshop

2014.

Benartzi, S., Previtero, A., and Thaler, R. H. (2011). Annuitization puzzles. Journal of

Economic Perspectives, 25(4):143–64.

Bucher-Koenen, T., Kluth, S., et al. (2013). Subjective life expectancy and private pensions.

In Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global

Economic Order, number 79806. Verein für Socialpolitik/German Economic Association.

Caliendo, F. N., Gorry, A., and Slavov, S. (2017). Survival ambiguity and welfare. Technical

report, National Bureau of Economic Research.

Research Papers 3 Optimal retirement products under subjective mortality beliefs

115



Chen, A., Haberman, S., and Thomas, S. (2016). Cumulative prospect theory, deferred annuities

and the annuity puzzle. Available at SSRN: https://ssrn.com/abstract=2862792.

Chen, A., Haberman, S., and Thomas, S. (2018). The implication of the hyperbolic discount

model for the annuitisation decisions. Journal of Pension Economics & Finance, pages 1–20.

Chen, A., Hieber, P., and Klein, J. K. (2019). Tonuity: A novel individual-oriented retirement

plan. ASTIN Bulletin: The Journal of the IAA, 49(1):5–30.

Davidoff, T., Brown, J. R., and Diamond, P. A. (2005). Annuities and individual welfare.

American Economic Review, 95(5):1573–1590.

Donnelly, C. (2015). Actuarial fairness and solidarity in pooled annuity funds. ASTIN Bulletin:

The Journal of the IAA, 45(1):49–74.

Donnelly, C., Guillén, M., and Nielsen, J. P. (2013). Exchanging uncertain mortality for a cost.

Insurance: Mathematics and Economics, 52(1):65–76.

Donnelly, C., Guillén, M., and Nielsen, J. P. (2014). Bringing cost transparency to the life

annuity market. Insurance: Mathematics and Economics, 56:14–27.

Elder, T. E. (2013). The predictive validity of subjective mortality expectations: Evidence

from the health and retirement study. Demography, 50(2):569–589.

Gavrilov, L. A. and Gavrilova, N. S. (1991). The Biology of Life Span: A Quantitative Approach.

Harwood Academic Publishers, United Kingdom.

Gavrilov, L. A. and Gavrilova, N. S. (2001). The reliability theory of aging and longevity.

Journal of theoretical Biology, 213(4):527–545.

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality,

and on a new mode of determining the value of life contingencies. Philosophical transactions

of the Royal Society of London, 115:513–583.

Gottlieb, D. (2012). Prospect theory, life insurance, and annuities. The Wharton School

Research Paper No. 44. Available at SSRN: https://ssrn.com/abstract=2119041.

Greenwald and Associates (2012). 2011 risks and process of retirement rurvey report of findings.

Society of Actuaries. Prepared by Mathew Greenwald and Associates, Inc., Employee Benefit

Research Institute.

Gumbel, E. (1958). Statistics of Extremes. Columbia University Press, New York.

Hanbali, H., Denuit, M., Dhaene, J., and Trufin, J. (2019). A dynamic equivalence principle for

systematic longevity risk management. Insurance: Mathematics and Economics, 86:158–167.

3 Optimal retirement products under subjective mortality beliefs Research Papers

116



Hu, W.-Y. and Scott, J. S. (2007). Behavioral obstacles in the annuity market. Financial

Analysts Journal, 63(6):71–82.

Hurd, M. D. and McGarry, K. (2002). The predictive validity of subjective probabilities of

survival. The Economic Journal, 112(482):966–985.

Inkmann, J., Lopes, P., and Michaelides, A. (2010). How deep is the annuity market partici-

pation puzzle? The Review of Financial Studies, 24(1):279–319.

Li, Y. and Rothschild, C. (2019). Selection and redistribution in the irish tontines of 1773,

1775, and 1777. Journal of Risk and Insurance.

Lin, Y. and Cox, S. H. (2005). Securitization of mortality risks in life annuities. Journal of

Risk and Insurance, 72(2):227–252.

Lockwood, L. M. (2012). Bequest motives and the annuity puzzle. Review of economic dynam-

ics, 15(2):226–243.

Ludwig, A. and Zimper, A. (2013). A parsimonious model of subjective life expectancy. Theory

and Decision, 75(4):519–541.

Majerek, D., Nowak, W., and Zieba, W. (2005). Conditional strong law of large number. Int.

J. Pure Appl. Math, 20(2):143–156.

Milevsky, M. A. (2013). Life Annuities: An Optimal Product for Retirement Income. The CFA

Institute, Charlottesville.

Milevsky, M. A. (2014). Portfolio choice and longevity risk in the late seventeenth century: a

re-examination of the first english tontine. Financial History Review, 21(3):225–258.

Milevsky, M. A. (2015). King William’s Tontine: Why the Retirement Annuity of the Future

Should Resemble its Past. Cambridge University Press, Cambridge.

Milevsky, M. A. (2018). Swimming with wealthy sharks: longevity, volatility and the value of

risk pooling. Journal of Pension Economics & Finance, pages 1–30.

Milevsky, M. A. and Salisbury, T. S. (2015). Optimal retirement income tontines. Insurance:

Mathematics and Economics, 64:91–105.

Milevsky, M. A. and Salisbury, T. S. (2016). Equitable retirement income tontines: Mixing

cohorts without discriminating. ASTIN Bulletin: The Journal of the IAA, 46(3):571–604.

Mitchell, O. S. (2002). Developments in decumulation: The role of annuity products in financing

retirement. In Ageing, Financial Markets and Monetary Policy (eds. A.J. Auerbach and H.

Herrmann), pages 97–125. Springer, Berlin, Heidelberg.

Research Papers 3 Optimal retirement products under subjective mortality beliefs

117



O’Brien, C., Fenn, P., and Diacon, S. (2005). How long do people expect to live? Results and

implications. CRIS Research report 2005–1.

O’Dea, C., Sturrock, D., et al. (2019). Survival pessimism and the demand for annuities.

Technical report, Institute for Fiscal Studies.

Payne, J. W., Sagara, N., Shu, S. B., Appelt, K. C., and Johnson, E. J. (2013). Life expectancy

as a constructed belief: Evidence of a live-to or die-by framing effect. Journal of Risk and

Uncertainty, 46(1):27–50.

Peijnenburg, K., Nijman, T., and Werker, B. J. (2016). The annuity puzzle remains a puzzle.

Journal of Economic Dynamics and Control, 70:18–35.

Piggott, J., Valdez, E. A., and Detzel, B. (2005). The simple analytics of a pooled annuity

fund. Journal of Risk and Insurance, 72(3):497–520.

Poppe-Yanez, G. (2017). Mortality learning and optimal annuitization. Working

paper. Available at https://www.gc.cuny.edu/CUNY_GC/media/CUNY-Graduate-Center/

PDF/Programs/Economics/Other%20docs/mortannui.pdf.

Qiao, C. and Sherris, M. (2013). Managing systematic mortality risk with group self-pooling

and annuitization schemes. Journal of Risk and Insurance, 80(4):949–974.

Salisbury, L. C. and Nenkov, G. Y. (2016). Solving the annuity puzzle: The role of mortality

salience in retirement savings decumulation decisions. Journal of Consumer Psychology,

26(3):417–425.

Schulz, F. (2011). Analysis 1. Oldenbourg Verlag, München.

Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. W. Strahan

and T. Cadell, London.

Stamos, M. Z. (2008). Optimal consumption and portfolio choice for pooled annuity funds.

Insurance: Mathematics and Economics, 43(1):56–68.

Valdez, E. A., Piggott, J., and Wang, L. (2006). Demand and adverse selection in a pooled

annuity fund. Insurance: Mathematics and Economics, 39(2):251–266.

Weinert, J.-H. and Gründl, H. (2017). The modern tontine: An innovative instrument for

longevity risk management in an aging society. Available at SSRN: https://ssrn.com/

abstract=3088527.

Wu, S., Stevens, R., and Thorp, S. (2015). Cohort and target age effects on subjective survival

probabilities: Implications for models of the retirement phase. Journal of Economic Dynamics

and Control, 55:39–56.

3 Optimal retirement products under subjective mortality beliefs Research Papers

118



Yaari, M. E. (1965). Uncertain lifetime, life insurance, and the theory of the consumer. The

Review of Economic Studies, 32(2):137–150.

Yagi, T. and Nishigaki, Y. (1993). The inefficiency of private constant annuities. Journal of

Risk and Insurance, 60(3):385–412.

A Proofs

A.1 Proof of Theorem 4.1

We obtain the following Lagrangian function for our optimization problem:

L =

∫ ∞

0

e−ρtẼ
[
1{ζε>t}

]
u(c(t)) dt+ λA

(
PA
0 −

∫ ∞

0

e−rttpx ·mε(− ln tpx) c(t) dt

)

=

∫ ∞

0

e−ρttp̃x ·mε(− ln tp̃x)u(c(t)) dt+ λA

(
PA
0 −

∫ ∞

0

e−rttpx ·mε(− ln tpx) c(t) dt

)
.

Rearranging the first order condition delivers

c∗(t) =
e

(r−ρ)t
γ

λ
1/γ
A

(
tp̃x ·mε(− ln tp̃x)

tpx ·mε(− ln tpx)

)1/γ

.

Now we can use the budget constraint to determine the Lagrangian multiplier λA . We have

PA
0 =

∫ ∞

0

e−rttpx ·mε(− ln tpx) c
∗(t) dt

=

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt
tpx ·mε(− ln tpx)

(
tp̃x ·mε(− ln tp̃x)

tpx ·mε(− ln tpx)

)1/γ
1

λ
1/γ
A

dt .

As a consequence, we obtain

λA =

(
1

PA
0

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt
tpx ·mε(− ln tpx)

(
tp̃x ·mε(− ln tp̃x)

tpx ·mε(− ln tpx)

)1/γ

dt

)γ

.

The expected discounted lifetime utility is then given by

UA = Ẽ
[∫ ∞

0

e−ρt1{t<ζε} u(c∗(t)) dt

]

=

∫ ∞

0

e−ρttp̃x ·mε(− ln tp̃x)u(c∗(t)) dt

=
1

1− γ

∫ ∞

0

e−ρttp̃x ·mε(− ln tp̃x)
e

1−γ
γ

(r−ρ)t

λ
1−γ
γ

A

(
tp̃x ·mε(− ln tp̃x)

tpx ·mε(− ln tpx)

) 1−γ
γ

dt
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=

(
λ

1
γ

A

)γ−1

1− γ

∫ ∞

0

e−
1
γ
ρt+ 1−γ

γ
rt
tpx ·mε(− ln tpx)

(
tp̃x ·mε(− ln tp̃x)

tpx ·mε(− ln tpx)

) 1
γ

dt

=

(
λ

1
γ

A

)γ−1

1− γ λ
1
γ

AP
A
0 =

λA
1− γP

A
0 .

�

A.2 Proof of Theorem 4.2

We obtain the following Lagrangian function for our optimization problem:

L =

∫ ∞

0

e−ρt u(d(t)) Ẽ

[
1{ζε>t}

(
n

Nε(t)

)1−γ
]

dt

+ λT

(
P T
0 −

∫ ∞

0

e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕd(t) dt

)

=

∫ ∞

0

e−ρt u(d(t))κn,γ,ε(tp̂x, tp̃x) dt

+ λT

(
P T
0 −

∫ ∞

0

e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕd(t) dt

)
.

with κn,γ,ε(tp̂x, tp̃x) defined as in (11). The first order condition is equivalent to

d∗(t) =
e

(r−ρ)t
γ (κn,γ,ε(tp̂x, tp̃x))

1/γ

λ
1/γ
T

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

)1/γ .

Now we can use the budget constraint to determine the Lagrangian multiplier λT :

P T
0 =

∫ ∞

0

e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕd∗(t) dt

=

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt (κn,γ,ε(tp̂x, tp̃x))

1/γ

λ
1/γ
T

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

)1/γ−1dt .

As a consequence, we obtain

λT =


 1

P T
0

∫ ∞

0

e(
1
γ
−1)rt− 1

γ
ρt (κn,γ,ε(tp̂x, tp̃x))

1/γ

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

)1/γ−1dt




γ

.
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The expected discounted lifetime utility is then given by

UT := Ẽ

[∫ ∞

0

e−ρt1{t<ζε}

(
n

Nε(t)

)1−γ
u(d∗(t)) dt

]

=

∫ ∞

0

e−ρt κn,γ,ε(tp̂x, tp̃x)u(d∗(t)) dt

=
1

1− γ

∫ ∞

0

e−ρtκn,γ,ε(tp̂x, tp̃x)
e

1−γ
γ

(r−ρ)t (κn,γ,ε(tp̂x, tp̃x))
1−γ
γ

λ
1−γ
γ

T

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

) 1−γ
γ

dt

=

(
λ

1
γ

T

)γ−1

1− γ

∫ ∞

0

e−
1
γ
ρt+ 1−γ

γ
rt (κn,γ,ε(tp̂x, tp̃x))

1
γ

(∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ)dϕ

) 1−γ
γ

dt

=

(
λ

1
γ

T

)γ−1

1− γ λ
1
γ

TP
T
0 =

λT
1− γP

T
0 .

�

A.3 Proof of Proposition 5.1

Note that the optimal level of expected utility of the tontine UT given in (14) depends on tp̂x

only in terms of

κn,γ,ε(tp̂x, tp̃x) = Ẽ

[
tp̃

1−ε
x Ẽ

[(
n

Nε(t)

)1−γ ∣∣∣∣ ζε > t, ε

]]
.

To figure out the behavior of UT depending on tp̂x it thus suffices to determine the behavior

of κn,γ,ε(tp̂x, tp̃x) :

• It is increasing in tp̂x for γ > 1 . This can be seen as follows: We know that (Nε(t)− 1 |
ζε > t, ε) ∼ Bin(n− 1, tp̂

1−ε
x ) . It is shown in Milevsky and Salisbury (2015) that for any

random variable N(p) with N(p)− 1 ∼ Bin(n− 1, p) , it holds that

d

dp
Ẽ[f(N(p))] =

1

p
Ẽ [(N(p)− 1)(f(N(p))− f(N(p)− 1))] .

Therefore, we obtain

d

dtp̂1−εx

Ẽ

[(
n

Nε(t)

)1−γ ∣∣∣∣ ζε > t, ε

]

= n1−γ d

dtp̂1−εx

Ẽ
[
Nε(t)

γ−1 ∣∣ ζε > t, ε
]
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=
n1−γ

tp̂1−εx

Ẽ[(Nε(t)− 1)︸ ︷︷ ︸
≥0

(Nε(t)
γ−1 − (Nε(t)− 1)γ−1)︸ ︷︷ ︸

≥0

| ζε > t, ε] ≥ 0.

This implies that κn,γ,ε(tp̂x, tp̃x) is increasing in tp̂x as ε can only take values between

−∞ and 1 and thus, tp̂
1−ε
x is increasing in tp̂x . Since 1 − γ < 0 , the utility decreases

as tp̂x increases.

• Now let us consider the case γ ∈ (0, 1) : We obtain

d

dtp̂1−εx

Ẽ

[(
n

Nε(t)

)1−γ ∣∣∣∣ ζε > t, ε

]

=
n1−γ

tp̂1−εx

Ẽ[(Nε(t)− 1)(Nε(t)
γ−1 − (Nε(t)− 1)γ−1) | ζε > t, ε]

=
n1−γ

tp̂1−εx

Ẽ[(Nε(t)− 1)Nε(t)
γ−1 − (Nε(t)− 1)γ | ζε > t, ε]

=
n1−γ

tp̂1−εx

Ẽ[((Nε(t)− 1)Nε(t)
γ−1 − (Nε(t)− 1)γ)1{Nε(t)=1} | ζε > t, ε]

+
n1−γ

tp̂1−εx

Ẽ[(Nε(t)− 1)(Nε(t)
γ−1 − (Nε(t)− 1)γ−1)1{Nε(t)≥2} | ζε > t, ε]

=
n1−γ

tp̂1−εx

Ẽ[(Nε(t)− 1)︸ ︷︷ ︸
>0

(Nε(t)
γ−1 − (Nε(t)− 1)γ−1)︸ ︷︷ ︸

≤0

1{Nε(t)≥2} | ζε > t, ε] ≤ 0 .

This implies that κn,γ,ε(tp̂x, tp̃x) is decreasing in tp̂x . Since 1−γ > 0 , the utility decreases

as tp̂x increases.

The certainty equivalent defined in (16) increases in the expected utility, so it decreases in tp̂x

as well. �
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Abstract

Many pension beneficiaries are reluctant to give up guaranteed payments, as they be-

lieve that their benefits will deteriorate through this. In the present article, we design

and solve an optimal collective investment problem under a guarantee constraint. In this

problem, we incorporate heterogeneous risk preferences of individual plan members, whose

importance has recently been addressed in Alserda et al. (2019). We distinguish between

two types of investors (with different willingness to pay management fees) and study the

impact of guarantees, sharing rules and management fees on the individual investors’

benefits. Regarding the guarantees, we find that requiring deterministic guarantees dete-

riorates the benefits of investors with different risk aversions in both groups. A flexible

guarantee which consists of a deterministic and a state-dependent component turns out to

serve each investor’s risk appetite in a much better way than the deterministic guarantee.

To decently achieve fairness among various investors, careful considerations shall be given

to the design of the sharing rule.

Keywords: Collective investment problems, guarantee design, risk sharing

JEL: G11, G23
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1 Introduction

Different hybrid pension schemes which aim to combine the advantages of the traditional de-

fined benefit (DB) and defined contribution (DC) schemes have appeared across the developed

countries in the last years.1 An overview over a variety of existing plans can, for instance,

be found in Turner (2014). An important example would be the DB Underpin pension plan,

often also called floor-offset plan, which provides a guaranteed minimum benefit within a DC

plan to the employees. This type of pension schemes has already been studied extensively in

recent years, for example in Zhu et al. (2018) or Chen and Hardy (2009). Another example of

a hybrid pension plan of increasing importance (Kravitz (2016)) would be the Cash Balance

plan which is by law defined to be a DB plan although it actually works more like a DC plan.

For further details regarding Cash Balance plans we refer interested readers to Hardy et al.

(2014). As many employees are reluctant to give up guarantees, most of these hybrid schemes

include a minimum guarantee to the beneficiaries. An additional feature of pension schemes

is that investors often do not handle the investment of their contribution on their own, but

instead have a fund manager delegate their investment decisions. Naturally, the question will

be asked how the well-being of all the individual investors (beneficiaries) is affected by having

their capital invested in such a collective fund. The present article answers this question in

a collective utility-based continuous-time framework under a portfolio insurance constraint (a

deterministic or a flexible guarantee).

The recent work of Alserda et al. (2019) emphasizes the importance of taking account of het-

erogeneous risk preferences of pension plan members when setting up an investment strategy

for a collectively organized pension fund. In the present article, we design and solve a theoret-

ical collective investment problem, incorporating the heterogeneous risk aversions of the plan

members, as in Alserda et al. (2019). In addition, we allow the plan members to have different

access to the arbitrage-free and complete market and to require various guarantee levels, as we

aim to capture the fact that investors with various risk aversions require different degrees of

security in their investment outcomes. Typically, a more risk-averse investor requires a more

secure payment. We further analyze the effects of management fees, assuming that the collec-

tive of investors can be split into two groups: one group has free access, and the other group

limited access to the arbitrage-free and complete market. Accordingly, the investors in the two

groups are willing to pay different fees for fund delegation and we assume that an average fee is

charged by the fund manager. In our analysis, one group pays too much, and the other group

too little for what they are entitled to. We observe that those who are entitled to more than

1In a DB scheme, the sponsoring companies basically promise their employees a guaranteed pension payment.
In a DC scheme, on the other hand, sponsoring companies, and often also their employees, pay deterministic
contributions to an external pension fund where the capital is invested in financial assets. The benefit at
retirement therefore depends on the performance of the investment returns experienced during the membership,
which implies that the market risk is carried completely by the employees instead of the employers.
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they should obtain are more likely to benefit from the fund delegation. The magnitudes by

which the individual investors’ benefits are influenced depend highly on the sharing rules. The

term sharing rule refers to the rule applied by the fund manager to distribute the total terminal

wealth among the individual investors.2 We use state-dependent sharing rules to return to each

investor the individual guarantee plus a bonus whose magnitude depends on the performance

of the financial market, which is very similar to the payoff of a unit-linked life insurance, as

described, for example, in Brennan and Schwartz (1976).

We assume that the fund manager uses a collective utility function defined by a weighted

sum of the individual utility functions.3 The fund manager then maximizes this collective util-

ity function under two types of portfolio insurance constraints: In the first case, the optimal

terminal wealth needs to meet a deterministic guaranteed payment. To gain more flexibility, in

the other case, we assume that the optimal terminal wealth needs to meet a flexible guarantee

payment which consists of a (smaller) deterministic guaranteed payment and a state-dependent

payment which depends on the market state at maturity. It is a common goal for an investor

to exceed a certain, state-dependent benchmark, like a market index (see, e.g., Grossman and

Zhou (1993), Browne (1999) and Tepla (2001)). For both optimization problems, we derive the

collective optimal terminal wealth and optimal dynamic trading strategies.

We find that a deterministic guarantee framework deteriorates the well-beings of the majority of

the investors. Using state-dependent guarantees (which, in our case, consist of a deterministic

and a state-dependent component) allows for a lot of flexibility and enables investors with a low

risk aversion to (almost) obtain their individual optimum, while simultaneously allowing the

more risk-averse investors to demand high fixed guarantees. Under both guarantee schemes,

investors who have no access to the financial market benefit from the fund delegation if the

fee they are willing to pay largely exceeds the fee charged by the fund manager. If the fees of

both groups are close to each other, the vast majority of investors in both groups suffer losses

in utility. For this result, the sharing rule is also an important factor. We find that the sharing

rule should carefully reflect each investor’s initial contribution to the fund and guarantee level,

otherwise some investors benefit at the cost of other investors.

While the effects of heterogeneous risk preferences in a pool are analyzed in detail in Alserda

et al. (2019), our analysis focuses on the effects of portfolio insurance, sharing rules and man-

2The sharing rule could also be seen as an allocation rule used by the fund manager to allocate capital to
the different individuals in the collective. In the following, we will follow the literature on joint decisions under
uncertainty (provided below) and rely on the widely used term “sharing rule”.

3We are aware that the fund manager might have objectives that deviate from those of the collective and do
not consider it as her primal objective to maximize the benefits for the collective. Similar to Kim et al. (2016),
we ignore the agency problem between the fund manager and the collective. It seems a reasonable assumption
for a collectively organized pension fund.
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agement fees on the heterogeneous investors in the collective. Alserda et al. (2019) point out

that the utility of every individual plan member worsens through collective investments, as the

applied investment strategies in the collective pension fund are safer than implied by members’

preferences. The deterministic guarantee framework considered in this article provides a ratio-

nal explanation why a safer investment strategy is adopted and quantifies the utility loss for

each individual in the fund when the safer investment strategy is applied. The flexible guarantee

framework could provide a solution to the above issue as the heterogeneous risk preferences are

better incorporated in the collective investment problem when allowing the individual to choose

a flexible guarantee reflecting her own risk appetite. Hence, our results are highly relevant in

the context of occupational pension schemes as it is a heavily disputed question in today’s

world how pension schemes should be designed and how their investment strategies should be

determined (see, for example, Lucas and Zeldes (2009) in the context of public pensions).

Our paper contributes to the literature on pensions and optimal asset allocation under portfolio

insurance by the analysis of a collective DC scheme with guarantees. Note that the literature

on pensions often focuses on a single beneficiary (e.g. Broeders and Chen (2010) and Broeders

et al. (2011)) or assumes homogeneous risk preferences of plan members (e.g. Beetsma et al.

(2013)). This assumption is also often made in the literature analyzing different designs of port-

folio insurance in financial markets (see, for example, Grossman and Vila (1989), Basak (1995),

Grossman and Zhou (1993, 1996), Browne (1999), Tepla (2001), Jensen and Sørensen (2001),

Deelstra et al. (2004), El Karoui et al. (2005), Gabih et al. (2009) and Chen et al. (2018)). Our

paper is also closely related to literature in which a collective of investors faces a joint deci-

sion under uncertainty in a financial market (without portfolio insurance), for example Wilson

(1968), Amershi and Stoeckenius (1983), Huang and Litzenberger (1985), Dumas (1989), Wein-

baum (2009), Pazdera et al. (2016), Jensen and Nielsen (2016), Schumacher (2018), Branger

et al. (2018a) and Branger et al. (2018b). To the best of our knowledge, the existing literature

on collective decisions under uncertainty has not considered portfolio insurance constraints. In

this sense, our article combines the literature streams on collective investment and portfolio

insurance by considering collective optimal asset allocation problems under portfolio insurance.

The remainder of the paper is structured as follows. In Section 2 we start with reviewing

the individual optimization problem, which serves as a comparison basis throughout the paper.

As a next step, we assume that the two groups of investors are tied together in their investment

decision and solve the optimal collective investment problem under the deterministic guarantee

framework in Section 3. In Section 4, we introduce the flexible guarantee payment and solve

the optimal collective investment problem under the flexible guarantee framework. In both

Sections 3 and 4, we also answer the questions of how the investment strategies for the two

optimization problems can be derived and provide numerical analyses for investors’ well-beings.

In Chapter 5, a discussion of the practical relevance and implications of our findings can be
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found. Section 6 extends our baseline model to stochastic interest rates. Section 7 concludes

the paper and is followed by the appendix where some of the proofs are shown.

2 Model setup and review of individual optimization

problem

We consider a collective of n individual investors (pension beneficiaries). Investor i has an

initial wealth xi delegated to a fund manager for investment at time 0. Reasons for fund

delegation in general can be various: Individual investors might believe that fund managers

will perform better due to their professional skills. It might also be the case that individu-

als display investment inertia and prefer to delegate their investment decisions because asset

management costs time and energy (cf. Kim et al. (2016)). Delegation to a collective fund

manager is also motivated by risk sharing of non-marketable risks and economies of scale. In

an occupational pension context, it is common that individual pension plan members do not

administrate investments themselves, but instead contribute to a collectively organized pension

fund. Usually, the pension fund cannot fully reflect each individual’s risk preferences (see, for

example, Alserda et al. (2019) and Frijns (2010)). In this sense, the investors are tied together

and invest collectively.

We assume throughout this paper that each investor’s preferences are modeled by a CRRA

utility function Ui(x) = x1−γi
1−γi where γi 6= 1 , γi > 0 for i = 1, . . . , n . As pointed out by

Sharpe (2017), power utility (preferences with constant relative risk aversion (CRRA)) is the

most frequently used utility function to capture the preferences of individuals. We allow the

risk aversion parameters γi to be different for all investors to capture the heterogeneity in risk

preferences among pension plan members observed in Alserda et al. (2019).

2.1 Financial market and two groups of investors

We consider a finite-horizon [0, T ] -economy whose uncertainty is represented by a filtered

probability space ( Ω,F , {Ft}t∈[0,T ], P ). Let W = {Wt}t∈[0,T ] be a standard Brownian motion

under P and assume that the filtration {Ft}t∈[0,T ] is the augmented filtration generated by

W . For our analysis, we assume a Black-Scholes economy. To be more precise, there are two

assets traded in the market, a risk-free asset B earning a constant interest rate r ∈ R (which

might be negative) and a stock S following a geometric Brownian motion with instantaneous
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rate of return µ > r and volatility σ > 0 :

dBt = rBtdt, B0 = 1,

dSt = µStdt+ σStdWt, S0 = s. (1)

In this economy, the state price density process is uniquely determined by

ξt = exp

(
−rt− 1

2
η2t− ηWt

)
, η =

µ− r
σ

, (2)

or, equivalently,

dξt = −ξt (rdt+ ηdWt) , ξ0 = 1.

The random variable ξt reflects the state of the financial market at time t . Low values imply a

good performance of the market, high values imply a bad state. Additionally, for any contingent

T -claim with payoff VT , the time- t -price can be determined as

Vt = E
[
ξT
ξt
VT

∣∣∣∣ Ft
]

for all t ≤ T .

Note that the state price density has been frequently used in the literature, see for example

Dybvig and Ross (1987), Basak (1995), Jensen and Sørensen (2001), Boyle and Tian (2007)

and Chen et al. (2018).

Coming back to the n investors, we assume that they can be divided into two groups: Group

1 with n1 < n investors who have access to the complete and arbitrage-free market and can

in principle invest on their own, and Group 2 with n − n1 investors who do not have full

access to the complete and arbitrage-free market. The investors in Group 1 might still delegate

their asset management decisions, as they might want to save time and energy for other joyful

things (see Kim et al. (2016)). The investors in Group 2 might be more ready to delegate their

investment decision, as they benefit from professional skills of the fund manager. Without loss

of generality, we assume that investors i = 1, . . . , n1 are in Group 1 and that the remaining

investors i = n1 + 1, . . . , n are in Group 2. If both groups delegate their funds to the same

fund manager, Group 1 probably is ready to pay a lower fee than Group 2 for fund delegation.

We assume for simplicity that the fund manager charges a common fee for each. Using the

common fee can cause the presence of adverse selection, i.e. Group 1 might have less incentives

to stay in the collective. In the present article, we leave out this issue and assume that the

two groups of investors are tied together and the fund is collectively administered by a fund

manager, which is the case, e.g., in a collectively organized pension fund. Details on this setup

are provided in the following sections. In the remainder of this section, we will first review the
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optimal asset allocation problem of the fund manager investing on behalf of a single investor,

which will then serve as a benchmark in later sections.

2.2 Optimal investment for a single investor

The single-investor case is well-known and covered in many textbooks, like, for example, Korn

(2014). Our setting is slightly different by incorporating delegation fees. Let us assume ε1 ∈
(0, 1) and ε2 ∈ (0, 1) be the fee fractions that these two groups of investors are willing to pay

for fund delegation if the fund manager invests for them separately, where we assume ε1 < ε2 .

We use π(i) = {π(i)
t }t∈[0,T ] to denote the fraction of wealth that is, on behalf of investor i ,

invested in the risky asset. The remaining fraction is invested in the risk-free asset. After

subtracting the proportional fee εi = ε1 for i = 1, . . . , n1 and εi = ε2 for i = n1 + 1, . . . , n ,

the fraction of initial wealth invested in financial assets is then given by X
(i)
0 = (1− ε1)xi for

i = 1, . . . , n1 and X
(i)
0 = (1− ε2)xi for i = n1 + 1, . . . , n . The investment strategy π(i) shall

be chosen from the following admissible set for each investor i = 1, . . . , n :

A((1− εi)xi) :=

{
π(i)

∣∣∣∣ X
(i)
0 = (1− εi)xi, π(i) is progressively measurable,

X
(i)
t ≥ 0 for all t ≥ 0,

∫ T

0

(
π

(i)
t

)2

dt <∞
}
.

Here, X
(i)
t is the investor’s wealth process under the self-financing condition which satisfies the

following stochastic differential equation:

dX
(i)
t =

(
r + π

(i)
t (µ− r)

)
X

(i)
t dt+ σπ

(i)
t X

(i)
t dWt , X

(i)
0 = (1− εi)xi . (3)

The optimization problem which the fund manager solves on behalf of investor i is then given

by4

max
{π(i)
t }t∈[0,T ]∈A((1−εi)xi)

E




(
X

(i)
T

)1−γi

1− γi


 subject to (3). (4)

In a complete market, we can solve this dynamic optimization problem by using the static

martingale approach (see for example Cox and Huang (1989)), that is, by first finding the

4As this article deals with fund delegation, we assume that the individuals have set aside a fraction of
their initial wealth for consumption prior to the investment and only focus on the terminal wealth obtained at
maturity.
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optimal terminal wealth X
(i,∗)
T of the following static optimization problem:

max
X

(i)
T

E




(
X

(i)
T

)1−γi

1− γi


 subject to E

[
ξTX

(i)
T

]
= (1− εi)xi . (5)

It is well-known (cf. for example Karatzas and Shreve (1998)) that in a complete financial

market, any contingent claim whose initial market value is given by (1− εi)xi can be replicated

by a self-financing investment strategy starting with the same initial investment (1− εi)xi .
Hence, solving the dynamic problem (4) and the static problem (5) results in the same optimal

terminal payoff which is given by

X
(i,∗)
T = Ii(λiξT )

= (1− εi)xi exp

((
r +

1

2
η2

)(
1− 1

γi

)
T − 1

2
η2

(
1− 1

γi

)2

T

)
ξ
− 1
γi

T ,
(6)

where Ii(·) = (·)−
1
γi is the inverse marginal utility function and λi is the Lagrangian multiplier

which is determined such that the budget constraint is fulfilled. As usual in the literature on

optimal asset allocation, in (6) and subsequent sections, we express the optimal wealth and

investment strategy at time t ∈ (0, T ] in terms of the state price density ξt . Note that there

is a one-to-one negative relation between the state price density and the stock price by the

following equation:

ξt = exp

(
−rt− 1

2
η2t+

η

σ

(
µ− 1

2
σ2

)
t

)(
St
S0

)− η
σ

, (7)

which shows the state price density reflects the market state in the exact opposite way as the

stock price. Hence, all results can also be represented in terms of the stock price.

The optimal dynamic investment strategy associated with the payoff in (6) is given by the

so-called Merton strategy (see Merton (1971))

π
(i)
t =

µ− r
γiσ2

,

a constant fraction in the risky asset which corresponds to the adjusted Sharpe-ratio divided

by the individual relative risk aversion coefficient γi . The optimal individual terminal wealth

(6) solely serves as a benchmark and a comparison basis to the collective investment problem

below.
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3 Collective optimization with deterministic guarantees

In this section, we consider the collective optimization problem faced by the fund manager for

a collective of heterogeneous investors. In addition, we incorporate guarantee constraints in the

collective optimization problem.

3.1 Collective utility function

We assume that the n investors considered delegate a fund manager to invest the total initial

wealth x =
∑n

i=1 xi collectively. The fund manager charges a proportional fee ε̄ ∈ [ε1, ε2] from

each investor in the collective, independently of the group which this investor belongs to. That

is, the fund manager invests (1− ε̄)x in the capital market and retains ε̄x . For now, we allow

ε̄ to be a constant between ε1 and ε2 and specify it only in the numerical section. To capture

the risk preferences of each individual in the collective, we assume that the fund manager uses

the following utility function

UB(v) = max
v1≥0,...,vn≥0, v=

∑n
i=1 vi

n∑

i=1

βiUi(vi) , (8)

where B = (β1, . . . , βn) is a vector consisting of strictly positive numbers adding up to 1. This

collective utility function has been widely considered in the literature e.g. Dumas (1989), Xia

(2004), Karatzas et al. (1990), Pazdera et al. (2016) and Branger et al. (2018b). The utility

function carries a maximum operator, meaning that the fund manager aims to achieve the

highest utility level (or the highest total wealth level) for a given set of weighting factors. By

choosing a specific set of the weighting factors βi , i = 1, . . . , n , the fund manager can decide

how she weighs each individual investor in the collective investment problem.

It has been shown (for example in Branger et al. (2018b)) that UB is a strictly increasing

concave utility function whose inverse marginal utility is given by

IB(·) := (U ′B)−1(·) =
n∑

i=1

Ii

(
.

βi

)
. (9)

This analytical expression of the inverse marginal utility allows us to write down the optimal

solution to the collective terminal wealth in analytical form in the following section. From now

on, let Gdet
T ∈ [0, (1− ε̄)xerT ] be the deterministic guarantee that needs to be met by the fund

manager. An upper bound for the guarantee level is given to make sure that the optimization

problem (10) is feasible. Both the guarantee specification and the sharing rule used to redis-

tribute the total terminal payoff will be introduced in Section 3.4. For now it is not necessary

to make further assumptions regarding these quantities. It is, though, important to emphasize
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here that for the fund manager’s investment decision only the total level of guarantee Gdet
T

matters. The task of meeting all the individual guarantees will be discussed by designing an

appropriate sharing rule in Section 3.4.

Under the portfolio insurance with a deterministic guarantee, we obtain the following optimiza-

tion problem:

max
XT

E [UB (XT )] subject to E [ξTXT ] = (1− ε̄)x,

XT ≥ Gdet
T a.s.

(10)

Before we present the general solution to Problem (10) in the following subsection, we observe

the following cases:

• The case Gdet
T = (1− ε̄)xerT results in a 100% investment in the risk-free asset, because

this is the only admissible investment strategy.

• The case Gdet
T = 0 leads to an optimization problem with no guarantee constraint, as

covered, for example, in Branger et al. (2018b). Note that it is possible in this optimization

problem to achieve the individual optimal solutions (6) for each investor i . The main

assumption for this result is the choice of the weights βi which we will discuss in Section

3.5.

• Note that, for βi = 1 for some i and βj = 0 for all j 6= i , Problem (10) coincides with

the optimization problem considered in Jensen and Sørensen (2001) as the fund manager

only takes into account one single investor in the collective.

• If we assume βi = 1 for some i , βj = 0 for all j 6= i and Gdet
T = 0 , then we end up

with Problem (5) where the initial budget is given now by (1− ε̄)x instead of (1− εi)xi .

3.2 Optimal terminal wealth

In order to avoid redundancy, we leave out the derivation of the solution of the optimization

problem (10) in this section. It can be treated as a special case of Proposition 4.1 where we

deal with a flexible guarantee. Therefore, we directly jump to the solution of Problem (10):

X∗T = max
{
IB (λξT ) , Gdet

T

}
, (11)

where IB(·) = (U ′B)−1 (·) =
∑n

i=1 Ii

(
·
βi

)
is the inverse marginal utility function of the fund

manager given in (9) and λ is determined to make the budget constraint binding. The optimal

collective terminal wealth (11) is a decreasing function in the state price density ξT beyond

the total guarantee and stays at the guarantee level once it is reached. Having determined the
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optimal terminal payoff, we can use the martingale representation theorem to determine the

corresponding optimal investment strategy.

3.3 Investment strategy

In this setting, we provide a semi-analytical solution for the investment strategy. To do this,

we first introduce Lemma 3.1, where we point out that the guarantee can be expressed in terms

of IB(λξ̄) for some fixed value ξ̄ :5

Lemma 3.1. For any level of the guarantee Gdet
T ∈ [0, (1− ε̄)xerT ) we can find a unique value

ξ̄ ∈ [0,∞] such that

Gdet
T = IB

(
λξ̄
)
. (12)

In particular, we can make the following decomposition:

X∗T = max
{
IB (λξT ) , Gdet

T

}
= IB (λξT )1{ξT<ξ̄} +Gdet

T 1{ξT≥ξ̄}.

Proof: See Appendix A.1.

We can now explicitly determine the optimal wealth at t ∈ [0, T ) and the corresponding

self-financing investment strategy.

Proposition 3.2. The optimal wealth at time t ∈ [0, T ) is given by

X∗t =
n∑

i=1

Ii

(
λ

βi
ξt

)
ki(t)

(
1− Φ

(
d(t, ξt, ξ̄) + η

√
T − t

(
1− 1

γi

)))

+Gdet
T e−r(T−t)Φ

(
d(t, ξt, ξ̄) + η

√
T − t

)
,

(13)

where Φ(·) is the cumulative distribution function of the standard normal distribution,

ki(t) := e

(
1− 1

γi

)
(−r− 1

2
η2)(T−t)+ 1

2
η2
(

1− 1
γi

)2
(T−t)

(14)

and

d(t, ξt, ξ̄) :=
ln ξt − ln ξ̄ − r(T − t)− 1

2
η2(T − t)

η
√
T − t , (15)

5Note that Lemma 3.1 does not cover the case Gdet
T = (1− ε̄)xerT . However, for this case we already know

that the corresponding trading strategy is just investing 100% in the risk-free asset.
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with ξ̄ determined from (12). The optimal fraction of wealth invested in the risky asset is

obtained by

π∗t =
1

σX∗t

[
n∑

i=1

1

γi

(
λ

βi
ξt

)− 1
γi

ηki(t)

(
1− Φ

(
d(t, ξt, ξ̄) + η

√
T − t

(
1− 1

γi

)))

+
n∑

i=1

(
λ

βi
ξt

)− 1
γi

ki(t)ϕ

(
d(t, ξt, ξ̄) + η

√
T − t

(
1− 1

γi

))
1√
T − t

−Gdet
T e−r(T−t)ϕ

(
d(t, ξt, ξ̄) + η

√
T − t

) 1√
T − t

]
,

(16)

where ϕ(·) is the density of the standard normal distribution.

Proof: See Appendix A.2.

As mentioned before, the optimal wealth (13) and the optimal investment strategy (16) are

expressed in terms of ξt . Note that we can easily come up with an expression of these optima

in terms of the stock price St by using equation (7). A numerical analysis of the strategy given

in (16) is given in Section 3.5. Before coming to this, let us briefly introduce the sharing rule

used to redistribute the collective terminal wealth to each investor in the following subsection.

3.4 Sharing rules

In the above subsection, if the fund manager follows the suggested optimal investment strategy,

it is ensured that the fund value will always lie above or at the guaranteed level Gdet
T . A natural

choice of Gdet
T is to add up the individual guarantees

Gdet
T =

n∑

i=1

(1− ε̄)xiegiT ,

where gi ≤ r denotes the level of guaranteed interest rate that investor i requires which

might be negative. A negative value of gi implies egiT < 1 , which economically means that

investor i is only interested in obtaining a fraction of her net initial wealth ((1 − ε̄)xi) as a

guarantee from the fund manager. Here, we assume that the fund manager wants to serve each

investor i at least with her guaranteed amount corresponding to the initial wealth subtracted

by fees accumulated with an interest rate guarantee gi . This choice of individual guarantees

results in Gdet
T ≤ (1− ε̄)xerT . In order to ensure that each individual investor obtains a

terminal amount at least as high as her desired guarantee level, the fund manager needs to fix

a reasonable sharing rule. Note first that a simple linear sharing rule from which each investor

receives a fixed percentage of the terminal wealth cannot do the job. In what follows, we use
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X
(i)
T to denote investor i ’s terminal wealth obtained from the collective fund and we assume

that the total terminal wealth X∗T is redistributed to the participants in the following way:

• If X∗T = Gdet
T , each participant obtains her guarantee. We obtain X

(i)
T = (1− ε̄)xiegiT .

• If X∗T > Gdet
T , each investor receives the above individual guarantee plus a fraction of

the surplus X∗T −Gdet
T . We assume that the surplus part is shared proportionally among

the participants by the proportions (α1, . . . , αn) , where
∑n

i=1 αi = 1 . Then investor i ’s

payoff is given by X
(i)
T = (1− ε̄)xiegiT + αi

(
X∗T −Gdet

T

)
.

By using this state-dependent sharing rule, we assume that the fund manager’s primal goal

is to provide the desired guarantees to all the investors. In total, we can write the individual

payoff as:

X
(i)
T = (1− ε̄)xiegiT + αi

(
X∗T −Gdet

T

)

= (1− ε̄)xiegiT + αi
(
IB(λξT )−Gdet

T

)+
, (17)

where (v)+ := max{v, 0} , v ∈ R . The payoff to an investor in the collective is thus similar to

the payoff of a unit-linked life insurance, as described, for example, in Brennan and Schwartz

(1976): It is given by the individual guarantee and a bonus that is shared among all the partic-

ipants. The bonus in (17) can be seen as a call option with IB(λξT ) as underlying and strike

Gdet
T .

The question now is how the vector (α1, . . . , αn) shall be chosen. We consider the follow-

ing choices of proportional sharing rules:6

• Sharing rule 1 (SR 1): We choose the vector (α1, . . . , αn) in such a way that the

financial fairness condition as defined in Bühlmann and Jewell (1979) and Schumacher

(2018) is fulfilled. While these articles consider financial fairness in a risk exchange setting,

Orozco-Garcia and Schmeiser (2019) also analyze financial fairness in a life insurance

setting and Boelaars and Broeders (2019) in the context of collective defined contribution

schemes. In our setting with management fees, this results in a “pseudo financial fairness”

condition:

(1− ε̄)xi = E
[
ξT
(
(1− ε̄)xiegiT + αi

(
X∗T −Gdet

T

))]

= (1− ε̄)xie(gi−r)T − αiGdet
T e−rT + αi(1− ε̄)x.

6Following the terminology of Schumacher (2018), we limit ourselves to proportional sharing rules, i.e. each
investor receives a fixed percentage of the state-dependent terminal wealth. Proportional sharing rules are
within the class of linear sharing rules which would also allow a fixed amount to be added to or subtracted from
the fixed percentage.
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We use “pseudo” as the initial market value of what the individuals are entitled to is

equal to the net investments (1 − ε̄)xi after paying the delegation fee. Note that, as

ε1 < ε̄ < ε2 , the members in Group 1 receive less than what they are entitled to, while

those in Group 2 receive more than what they are entitled to. The above sharing rule

can be rearranged to

αi =
xi − xie(gi−r)T

x−∑n
j=1 xje

gjT e−rT
. (18)

This is a generalization of an often-used sharing rule provided below where only the

case without guarantee is considered (see Jensen and Nielsen (2016) and Branger et al.

(2018a)). In contrast to this literature, we apply the sharing rule (18) to the bonus

exceeding the collective guarantee. Additionally, we want to emphasize that the use of

our pseudo financially fair sharing rule only affects how the total terminal wealth is shared

and is not related to an efficiency criterion.

• Sharing rule 2 (SR 2): A popular sharing rule used in practice is a simpler form of SR

1 (see also Jensen and Nielsen (2016) or Branger et al. (2018a)):

αi(xi) =
xi
x
. (19)

• Sharing rule 3 (SR 3): An additional sharing rule which does not necessarily fulfill the

financial fairness condition is:

αi(n) =
1

n
. (20)

Both SR 2 and 3 are frequently used in practice, as they are very easy-to-communicate. A few

special cases can be listed:

• If all the individuals have the same initial wealth level, that is, xi = x
n

, then the sharing

rules (20) and (19) coincide.

• If all the individuals have the same initial wealth level, that is, xi = x
n

and all the

individual guarantee levels are identical, that is, gi = g ≤ r for all i = 1, . . . , n , then

the sharing rules SR 1, SR 2 and SR 3 coincide. Therefore, in our numerical analysis, we

consider cases with different initial wealth levels and guarantees.

While it is rather intuitive that Group 1 most likely suffers utility losses through the collective

investment under most sharing rules, it is not clear how each individual investor in Group 2 is

affected by the collective investment, the guarantee and the sharing rules.
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3.5 Numerical analyses

In this section we perform numerical analyses to illustrate the impact of the guarantee and

sharing rules on the investors in the collective. In particular, our aim is to find out how

each of the investor’s well-being is influenced by requiring a deterministic guarantee amount,

compared to her individual optimal solution under different sharing rules. To assess utility

losses and gains, we follow Jensen and Sørensen (2001) and Jensen and Nielsen (2016) by

considering the wealth equivalent, which is defined as the initial wealth level that is needed for

an investor to achieve the same level of expected utility in the individual optimal investment

problem as can be achieved with the initial wealth xi in the collective optimization problem.

A straightforward calculation shows that the optimal level of expected utility in the benchmark

optimization problem is given by

U∗i ((1− εi)xi) = E

[
(X

(i,∗)
T )1−γi

1− γi

]

=
1

1− γi
((1− εi)xi)1−γi e

(
r+ 1

2
(µ−r)2
γiσ

2

)
(1−γi)T

.

See also Jensen and Sørensen (2001). We denote by U i((1− ε̄)xi) the expected utility obtained

from the collective optimization problem with initial wealth xi and fee ε̄ . Following Jensen

and Sørensen (2001) and Jensen and Nielsen (2016), the mathematical definition of the wealth

equivalent WEi is

U∗i ((1− εi)WEi) = U i((1− ε̄)xi) ⇔ WEi =

(
U i((1− ε̄)xi)
U∗i (1− εi)

) 1
1−γi

. (21)

To make our analysis independent of the initial wealth levels, we divide the wealth equivalent

by the initial wealth to obtain

yi =
WEi

xi
. (22)

Collective investments are beneficial for an individual investor if yi ≥ 1 , otherwise the individ-

ual investor suffers a loss through the collective investment.

Throughout all the numerical analyses we use the following parameters:

• Following Branger et al. (2018b), we choose the weights βi as

βi =
1/λi∑n
j=1 1/λj

, (23)

where λi is the Lagrangian multiplier in (6). Note that the weights βi may not be
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chosen arbitrarily as they shall neutralize the units of the different utility functions. Let

us ignore the max-operator in UB and only focus on the units:

UB(v) =
n∑

i=1

βiUi(vi) =
1∑n

j=1 1/λj

n∑

i=1

1

λi
· v

1−γi
i

1− γi
,

where the monetary terms taken to a power cancel out the “unnecessary” units: 1/λi =

(1 − εi)xγii exp(. . . ) and v1−γi
i . Note that the constant in the power of v leads to the

unit being in monetary terms again in all summands. Treating all the other terms as

constants, there is no problem by adding up the terms in UB as they all have the same

unit.7 That is, for our theoretical results, we have tacitly assumed that the weights are

chosen in such a way that the units in the utility functions do not cause any problems. As

shown in Branger et al. (2018b), under this choice of weights individual optimal solutions

are achievable in Problem (10) if the collective guarantee is equal to zero. In other words,

in the following, we compare the collective optimization problem with individual fees and

no guarantees to a collective optimization problem with an average fee and guarantee

constraints.

• The parameters of the financial market are r = 0.02 , µ = 0.07 , σ = 0.12 , T = 1 .8

We consider the following parameter setup:

• The number of participants in the pool is n = 100 . Note that in the existing literature,

frequently only two investors are considered (see for example Dumas (1989), Weinbaum

(2009) and Jensen and Nielsen (2016)). While the assumed number of employees is

reasonable for small or medium size plans, there are usually more than 100 members in

most large pension plans.

• To capture the heterogeneity of risk preferences in pension plans (see for example Alserda

et al. (2019)), we assume that the risk aversion parameters of the investors in the collective

differ rather drastically.9 We follow Chiappori and Paiella (2011) who observe that relative

risk aversion (RRA) follows a right-skewed distribution.10 To keep our analysis simple and

tractable, we capture this right-skewness by assuming an exponential distribution which

7Note that a rather simple choice like βi = 1/n for all i = 1, . . . , n would imply that different units are
added up in the utility function UB which would lead to inconsistent results.

8For simplicity, we consider a rather short investment horizon. Note that our results do not change under
longer maturities.

9Note that our model setup is only one possible way of representing a collective of individuals with hetero-
geneous risk preferences. For example, Atmaz and Basak (2018) focus on the equilibrium price in the presence
of belief heterogeneity using a different modeling approach. To be precise, they assume that an investor’s type
is normally distributed and the representative investor maximizes the weighted average of individual investors’
utility.

10Note that there exist many findings in the literature that differ from Chiappori and Paiella (2011): For
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is shifted by a constant number to be in line with estimates on the RRA in Chiappori

and Paiella (2011). To be more precise, we design the two groups in the following way:

– Shaw (1996) finds that “more educated individuals are more likely to be risk takers”.

Therefore, Group 1 is the one with (on average) the lower RRA and Group 2 is the

one with (on average) the higher RRA. Chiappori and Paiella (2011) “find a small

but significant negative correlation between wealth and risk aversion”, a finding

which is also supported by Shaw (1996). Therefore, we assume that Group 1 is, in

total, more wealthy than Group 2. For simplicity, we assume, similar to Jensen and

Sørensen (2001), that xi = 1 for the first group. That is, for Group 1, the wealth

equivalent can be seen not only as an amount of capital but also as a percentage

of the initial wealth. The guaranteed interest rates of Group 1 are given by gi = 0

for all i = 1, . . . , n1 and the fee ε1 equals 0.25%. The investors in Group 2 have a

lower initial wealth level than Group 1 and demand a higher guarantee. Their initial

wealth levels are given by xi = 0.5 and their guaranteed interest rates are given by

gi = 0.01 for all i = n1 + 1, . . . , n . The fee that Group 2 is willing to pay is equal

to ε2 = 1% . We assume that the fund manager charges the average fee in such a

way that the fees in the two collective problems we compare are identical, i.e. as

ε̄x = ε1

n1∑

i=1

xi + ε2

n∑

i=n1+1

xi

⇔ ε̄ =
ε1
∑n1

i=1 xi + ε2
∑n

i=n1+1 xi

x
= 0.5%

which is in line with the values provided in Malkiel (2013). To emphasize the effects

of the fee structure on the well-being of each investor, we also consider the case

ε2 = 2.5% , i.e. ε̄ = 1% .

– We assume that the RRA coefficient of any individual does not fall below 0.35. This

assumption is based on Table 1 in Conine et al. (2017) who provide an excellent

literature review on estimates of RRA in the past. For Group 1 we have then

simulated n1 = n/2 exponentially distributed random variables with parameter

λ1 = 1/1.35 . For Group 2, we have simulated n − n1 = n/2 realizations of an

exponentially distributed random variable with parameter λ2 = 1/3 . To all these

realizations, we have added 0.35. The mean RRA in the collective is then 2.5 and the

median is 1.72, in line with Chiappori and Paiella (2011). Furthermore, Chiappori

and Paiella (2011) report that 25% of the population have a RRA above 3. In our

example, Barsky et al. (1997) find that 65% of their data shows a RRA above 3.76, 24% below 2 and 12%
between 2 and 3.76. Davies (1981) describes 3, 4 and 5 as most reasonable estimates of RRA and Azar (2010)
estimates 3.01 and 3.74 as interval bounds for the RRA. As we have decided to follow Chiappori and Paiella
(2011), our numerical analyses should only be seen as examples and other, different compositions of the RRAs
can also be implemented.
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sample, there are exactly 25% (i.e. 25 individuals) with a RRA above 3 as well.

Histograms of the RRA of the two groups and the collective (both groups put together)

are given in Figure 1. The actual γi values are available from the authors upon request.

(a) Group 1 (b) Group 2

(c) Collective (both groups)

Figure 1: Histograms of the RRA coefficients in Group 1, Group 2 and the collective (both
groups put together). For Group 1 we have simulated n1 = n/2 exponentially distributed
random variables with parameter λ1 = 1/1.35 . For Group 2, we have simulated n− n1 = n/2
realizations of an exponentially distributed random variable with parameter λ2 = 1/3 . Then,
we have added 0.35 to all the realizations.

The wealth equivalents for the two groups are provided in Figure 2. We observe the following:

• In both Groups, investors with a RRA below 3 suffer drastic losses due to the guarantee

constraint. Recall that 75% of the collective considered have such a RRA below 3.

• Group 1 / Panels (a) and (c): Naturally, the members of the first group have utility

losses as the average fee is higher than the fee they are willing to pay. All the investors
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(a) Group 1, ε2 = 1% (b) Group 2, ε2 = 1%

(c) Group 1, ε2 = 2.5% (d) Group 2, ε2 = 2.5%

Figure 2: Comparison of the wealth equivalents divided by initial wealth of the members of the
two groups ordered by RRA. For each group, the sharing rules 1 (18), 2 (19) and 3 (20) are
compared.

in this group suffer utility losses since their wealth equivalent divided by initial wealth is

below 1. The lower the RRA is, the more severe the loss in utility is. The first sharing

rule leads to the highest wealth equivalents. This is due to the fact that the first sharing

rule takes the guarantees into account. Since Group 2 demands a higher guarantee than

Group 1, Group 1 has to (at least partially) finance the guarantees of Group 2 in the

second and third sharing rule. The second sharing rule outperforms the third sharing

rule because the second one takes account of the initial wealth levels. As Group 1 is more

wealthy than Group 2, Group 1 suffers the largest losses under SR 3, because this sharing

rule does not reflect the investors’ initial wealth levels.

• Group 2 / Panels (b) and (d): Whether Group 2 benefits from the collective (and thus

cheaper) fee depends substantially on the magnitude of the fee. In Panel (d), investors

with a RRA above 4 (16 investors) benefit from the collective investment under the first
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sharing rule, investors with a RRA above 2.8 (21 investors) benefit from the collective

investment under the second sharing rule and investors with a RRA above 2 (26 investors)

benefit from the collective investment under the third sharing rule. The main reason for

this should be the lower fee ε̄ which returns more to Group 2 than they would be entitled

to without the collective investment. Note that mainly investors with a rather high RRA

benefit from the collective investment as the guarantee leads to drastic losses for investors

with a low RRA. In Panel (b), under SR 1 and SR 2, all the investors are worse off than

in the benchmark case since yi is below 1 for all investors. Under SR 3, investors with

a RRA above 3.3 (19 investors) benefit from the collective investment. Regarding the

sharing rules, the order of attractiveness is exactly opposite to Group 1. By demanding

higher guarantees, Group 2 benefits from Group 1 under the second sharing rule. Being

the less wealthy group, Group 2 additionally benefits from the more wealthy Group 1

under the third sharing rule.

Let us now take a look at the investment strategy. In Figure 3 we show the investment strategy

at time t = T/2 given in (16) depending on the stock return St/S0 for the fee ε2 = 1% ,

i.e. ε̄ = 0.5% .11 We have used equation (7) to express the strategy in (16) in terms of the

stock return St/S0 .12 As only 25% of the investors in the collective have a RRA above 3,

Figure 3: Optimal fraction of wealth invested in the risky asset at time t = T/2 depending
on the stock return at that time for ε̄ = 0.5% . We show the optimal collective investment
strategy with and without guarantee.

both optimal investment strategies suggest investing more than 100% of wealth in the risky

asset if the market performs well. Naturally, this fraction is lower under a portfolio insurance

constraint than with no constraint.

11A figure with ε2 = 2.5% , i.e. ε̄ = 1% looks almost identical to Figure 3, which is why we omit it here.
12Note that the investment strategy for the case with no guarantee can be obtained by letting Gdet

T tend to
0.
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In the numerical analysis, we have seen that investors are likely to suffer a loss from deter-

ministic guarantees. Especially investors with a RRA below 3 (which are 75% of the collective

in our case) suffer large losses from the guarantee. Investors in the collective can only be better

off compared to their benchmark optimization problem at the cost of other investors’ well-being.

As the deterministic guarantee framework provides a rationale why a safe investment strategy

is adopted, our results are to some extent consistent with the results of Alserda et al. (2019)

who observe that current asset allocations of pension plans are “safer than implied by members’

preferences”. In the following, we introduce a state-dependent guarantee scheme which is more

flexible and better suited for each investor’s risk appetite.

4 Optimization problem with state-dependent guaran-

tees

We learn from the above analyses that a deterministic guarantee is likely to deteriorate the

benefits of all investors in the pool. Inspired by Grossman and Zhou (1993), Browne (1999),

Tepla (2001) and Deelstra et al. (2004), we now consider the case where the fund manager

aims to exceed a more flexible, state-dependent guarantee which becomes known at maturity

T . As argued in these articles, it is often the goal of an investor to exceed a given state-

dependent benchmark, which might, for example, be a market index. In our case, we assume

that individuals (who do not invest on their own behalf) fix a deterministic guarantee part

plus a fraction of their own optimal terminal wealth as benchmark, where they can control the

magnitude of both components. This leads to the following total guarantee which the fund

manager needs to exceed:

GFle
T (ξT ) :=

n∑

i=1

(
(1− ε̄)pixiegiT +

(1− ε̄)
(1− εi)

(1− pi)X(i,∗)
T

)

= (1− ε̄)G+ (1− ε̄)
n∑

i=1

(1− pi)
(1− εi)

X
(i,∗)
T , (24)

where G =
∑n

i=1 pixie
giT is the sum of the deterministic guarantee components in (24) (divided

by (1 − ε̄) ), pi ∈ [0, 1] , gi < r and X
(i,∗)
T is the individual unrestricted terminal wealth of

investor i as given in (6) for all i = 1, . . . , n .13 Note that X
(i,∗)
T contains a component (1−εi) .

The state-dependent part in (24) represents an unrestricted terminal wealth starting with an

initial wealth (1− ε̄)xi . In other words, we lower the deterministic part of the guarantee and

add a state-dependent part which corresponds to a fraction of the optimal unrestricted terminal

wealth. Now each investor can choose for herself the fraction of the deterministic guarantee

13The flexible guarantee we present can be seen as one possible example of the many flexible guarantees that
can be realized in today’s world which could help increase welfare by lowering deterministic guarantees.
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which she is willing to give up. The lower the deterministic part of the guarantee is, the higher

(lower) the total flexible guaranteed payment gets if the market performs well (badly). So a

lower deterministic guarantee leads to a more risky, state-dependent guaranteed payoff. There

are two special cases that deserve further attention: If pi = 0 for all i , then every investor

wants to obtain her individual optimal terminal wealth. For pi = 1 for all i , we are back to the

optimization problem with a deterministic guarantee level. In addition, the choice of GFle
T (ξT )

ensures that the initial value of this total guarantee is not higher than the total initial wealth

(1− ε̄)x available for investment, that is, E
[
ξTG

Fle
T

]
≤ (1− ε̄)x .

We now proceed in the same manner as in Section 3: We start by deriving the optimal terminal

wealth followed by the optimal investment strategy and the optimal wealth at each time t < T .

Although these two subsections are more technical than the case with deterministic guarantees,

the methodology is exactly the same. We then come to a short discussion of sharing rules and

carry out the numerical analyses similar to Section 3.

4.1 Optimal terminal wealth

The optimization problem under the state-dependent guarantee (24) can be formulated as

follows:

max
XT

E [UB(XT )] s.t. E [ξTXT ] = (1− ε̄)x,

XT ≥ GFle
T (ξT ) a.s.

(25)

In the following proposition, we determine the optimal solution of this optimization problem.

Proposition 4.1. Assuming that pi > 0 for at least one i , the solution to the optimal terminal

wealth is given by

X̂∗T = max
{
GFle
T (ξT ), IB(λ̂ξT )

}
, (26)

where λ̂ makes the budget constraint binding.

Proof. For any single event ω ∈ Ω (any scenario of the financial market) and λ̃ > 0 given,

consider the following static optimization problem:14

X̂∗T (λ̃)(ω) := argmax
X≥GFle

T (ω)

(
UB(X)− λ̃ξT (ω)X

)
.

14Throughout this proof we use the notation GFle
T (ω) := GFle

T (ξT (ω)) .
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Due to the concavity of UB(·) , we get X̂∗T (λ̃)(ω) = IB(λ̃ξT (ω)) if IB(λ̃ξT (ω)) ≥ GFle
T (ω) and

X̂∗T (λ̃)(ω) = GFle
T (ω) if IB(λξT (ω)) < GFle

T (ω) , or equivalently

X̂∗T (λ̃)(ω) = max
{
IB(λ̃ξT (ω)), GFle

T (ω)
}
.

The solution of the above static problem defines X̂∗T (λ̃) := max{IB(λ̃ξT ), GFle
T (ξT )} which is

an FT -measurable random variable. Next, we will show that X̂∗T (λ̃) is an admissible terminal

wealth for problem (25) for some λ̃ > 0 . Indeed, consider Ψ(λ̃) := E
[
ξT max

{
IB

(
λ̃ξT

)
, GFle

T (ξT )
}]

.

It is clear that Ψ(λ̃) is continuous and decreasing in λ̃ , that limλ̃→0 Ψ(λ̃) = ∞ and that

limλ̃→∞Ψ(λ̃) = E [ξT (1− ε̄)G] < (1− ε̄)x . Therefore, by the theorem of intermediate values,

there exists λ̂ > 0 such that (1− ε̄)x = Ψ(λ̂) = E
[
ξT X̂

∗
T (λ̂)

]
, that is, X̂∗T (λ̂) is admissible.

Now we show that X̂∗T (λ̂) is an optimal solution of Problem (25). To this end, let YT be an

arbitrary admissible terminal payoff, that is, E [ξTYT ] = (1− ε̄)x and YT ≥ GFle
T (ξT ) . We have

E [UB(YT )] = E [UB(YT )] + λ̂((1− ε̄)x− E [ξTYT ])

= E
[
UB(YT )− λ̂ξTYT

]
+ λ̂(1− ε̄)x

≤ E
[

max
X≥GFle

T (ξT )

(
UB(X)− λ̂ξTX

)]
+ λ̂(1− ε̄)x

= E
[
UB(X̂∗T (λ̂))− λ̂ξT X̂∗T (λ̂)

]
+ λ̂(1− ε̄)x

= E
[
UB(X̂∗T (λ̂))

]
,

where we have used (1− ε̄)x = E
[
ξT X̂

∗
T (λ̂)

]
. Hence, we can conclude that X̂∗T (λ̂) is an

optimal solution.

If pi > 0 for at least one i , a unique solution to optimization problem (25) always exists and

is given by (26), since the present value of the guarantee GFle
T (ξT ) is smaller than the capital

initially invested. If pi = 0 for all i , on the other hand, then the present value of the guarantee

is given by E
[
ξTG

Fle
T (ξT )

]
= (1− ε̄)x . As a consequence, the solution to problem (25) has to,

necessarily, be given by X̂∗T = GFle
T (ξT ) =

∑n
i=1

(1−ε̄)
(1−εi)X

(i,∗)
T .15 Hence, problem (25) admits a

unique solution for all possible choices of the pi ’s.

Having determined the optimal terminal payoff, we can again compute the corresponding in-

vestment strategy in a similar way as in Section 3. Let us, however, point out that some further

assumptions need to be made to conduct similar analyses as for the case with a deterministic

guarantee.

15This can be seen as follows: If X̂∗
T < GFle

T (ξT ) with positive probability, then X̂∗
T cannot be admissible to

problem (25). If, on the other hand, X̂∗
T > GFle

T (ξT ) with positive probability, this would be a contradiction
to the budget constraint.

Research Papers 4 Collective investment: Sharing rules, management fees and guarantees

147



4.2 Investment strategy

Note that the optimal terminal wealth for problem (25) can be derived explicitly for all choices

of pi ’s. In this section, we show that the optimal investment strategies can be determined

for all the choices of pi ’s, too. However, an explicit derivation, similar to Section 3.3, is

only possible if we impose further conditions on the pi ’s. From Section 3.3, we learn that

the investment strategy for the optimization problem with a deterministic guarantee can be

determined explicitly, as we can find a unique critical value of the state price density ξ̄ which

allows us to decompose the optimal terminal wealth into two parts. A natural question arises

whether similar analyses can be carried out for the case with a flexible guarantee. The following

lemma deals with this question.

Lemma 4.2. If pi > 0 for at least one i and

n∑

i=1

1

γi
ξ
− 1
γi

T



(
λ̂

βi

)− 1
γi

− (1− pi)
(1− ε̄)
(1− εi)

λ
− 1
γi

i


 > 0 a.s., (27)

there exists a unique positive number ξ̂ such that

X̂∗T = IB

(
λ̂ξT

)
1{ξT<ξ̂} +GFle

T (ξT )1{ξT≥ξ̂}.

Proof: See Appendix A.3.

The assumption that pi > 0 for at least one i is no restriction at all, because the invest-

ment strategy for the case where pi = 0 for all i = 1, . . . , n is already known.16 It is, however,

important to note that condition (27) is satisfied if

(
λ̂

βi

)− 1
γi

− (1− ε̄)
(1− εi)

(1− pi)λ
− 1
γi

i > 0 for all i = 1, . . . , n. (28)

Equation (28) imposes an implicit condition for the choice of pi ’s. In other words, we can see

that we are unable to choose the pi ’s freely, if we want to determine the self-financing invest-

ment strategy in an explicit form. However, as λ̂ depends on all the different pi ’s, we cannot

easily come up with an explicit lower bound for all the pi ’s. If condition (27) is not fulfilled,

this means that there might be more than one intersection between GFle
T (ξT ) and IB(λ̂ξT ) .17

16As we know from Branger et al. (2018b), we can obtain the resulting collective terminal wealth by letting

Gdet
T tend to 0 in (16) and choosing βi = 1/λi∑n

j=1 1/λj
.

17For example, there might be two intersections. In this case, the flexible guarantee is effective in both good
and bad market scenarios. Hence, the guarantee would not only protect an individual from bad market scenarios
but could also offer some upside potential in good market scenarios compared to fixed guarantees.
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In this case, we need to rely on numerical procedures to determine the investment strategy.

One possible approach for this will be briefly described in Section 4.4.

Using the result of Lemma 4.2, we can again compute the optimal wealth at t ∈ [0, T ) and the

corresponding optimal self-financing investment strategy. Recall that η is defined in (2).

Proposition 4.3. Under the assumptions of Lemma 4.2, the optimal wealth at t ∈ [0, T ) is

given by

X̂∗t =
n∑

i=1

Ii

(
λ̂

βi
ξt

)
ki(t)

(
1− Φ

(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

)))

+ (1− ε̄)Ge−r(T−t)Φ
(
d(t, ξt, ξ̂) + η

√
T − t

)

+
n∑

i=1

(1− ε̄)
(1− εi)

(1− pi)Ii (λiξt) ki(t)Φ
(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

))
,

(29)

where ξ̂ is determined such that GFle
T (ξ̂) = IB(λ̂ξ̂) , while d(t, ξt, ξ̂) and ki(t) are defined as

in (15) and (14), respectively. The optimal fraction of wealth invested in the risky asset is then

given by

π̂∗t =
1

σX̂∗t




n∑

i=1

1

γi

(
λ̂

βi
ξt

)− 1
γi

ηki(t)

(
1− Φ

(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

)))

+
n∑

i=1

(
λ̂

βi
ξt

)− 1
γi

ki(t)ϕ

(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

))
1√
T − t

−(1− ε̄)Ge−r(T−t)ϕ
(
d(t, ξt, ξ̂) + η

√
T − t

) 1√
T − t (30)

+
n∑

i=1

(1− ε̄)
(1− εi)

(1− pi)
1

γi
(λiξt)

− 1
γi ηki(t)Φ

(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

))

−
n∑

i=1

(1− ε̄)
(1− εi)

(1− pi) (λiξt)
− 1
γi ki(t)ϕ

(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

))
1√
T − t

]
.

Proof: See Appendix A.4.

Again, the optimal wealth (29) and the investment strategy (30) are expressed in terms of

ξt . Similar to the deterministic guarantee case, we can easily come up with an expression of

these quantities in terms of the stock price St by using equation (7).

Research Papers 4 Collective investment: Sharing rules, management fees and guarantees

149



4.3 Sharing rules

Similar to Section 3, we assume that it is the primal goal of the fund manager to meet individual

guarantees. Thus, a linear sharing rule is again not applicable to the total terminal wealth and

we need to rely on a state-dependent sharing rule. We suggest that the total terminal wealth

X̂∗T be redistributed to the participants in the following way:

• Let us denote the payoff which investor i obtains from the collective fund by X̂
(i)
T . If the

guarantee is met, that is, X̂∗T = GFle
T (ξT ) , participant i obtains her individual flexible

guarantee, that is, X̂
(i)
T = (1− ε̄)pixiegiT + (1−ε̄)

(1−εi)(1− pi)X
(i,∗)
T .

• If the collective guarantee is exceeded, each investor receives the above individual guar-

antee plus the fraction of terminal wealth exceeding the total guarantee GFle
T (ξT ) is

shared proportionally among the participants. Each investor receives a fixed proportion

αi ∈ (0, 1) of this surplus, where we assume again that
∑n

i=1 αi = 1 . So the payoff ob-

tained by investor i is, in this case, given by X̂
(i)
T = (1− ε̄)pixiegiT + (1−ε̄)

(1−εi)(1−pi)X
(i,∗)
T +

αi

(
X̂∗T −GFle

T (ξT )
)

.

In total, the payoff can be written as

X̂
(i)
T = (1− ε̄)pixiegiT +

(1− ε̄)
(1− εi)

(1− pi)X(i,∗)
T + αi

(
X̂∗T −GFle

T (ξT )
)
. (31)

= (1− ε̄)pixiegiT +
(1− ε̄)
(1− εi)

(1− pi)X(i,∗)
T + αi

(
IB(λ̂ξT )−GFle

T (ξT )
)+

.

Investor i ’s payment consists of the desired flexible guarantee she requires and a fraction of

surplus participation which corresponds to an exchange option, that is, the option to exchange

the fund value for the flexible guarantee.

Similar to the deterministic guarantee, we choose the vector (α1, . . . , αn) in such a way that

the pseudo financial fairness criterion as defined in Section 3 is fulfilled, that is,

(1− ε̄)xi = E
[
ξT X̂

(i)
T

]

= (1− ε̄)pixie(gi−r)T + (1− ε̄)(1− pi)xi + αiE
[
ξT

(
X̂∗T −GFle

T (ξT )
)]
. (32)

We can now rewrite (32) as

αi =
xi − pixie(gi−r)T − (1− pi)xi
x−Ge−rT −∑n

i=1(1− pi)xi
. (33)

Note that this is a straightforward generalization of the result for the deterministic guarantee

given in (18): In the numerator we subtract the present value of the individual guarantee from
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the individual initial wealth, in the denominator we subtract the present value of the total

guarantee from the total initial wealth. Therefore, in this section, we refer to (33) as sharing

rule 1 (SR 1) and no longer consider (18). Apart from the sharing rule (33), we again consider

the sharing rules 2 and 3 (see (19) and (20)).

4.4 Numerical analyses

We will now have a closer look at the effects the flexible guarantee has on the wealth equivalent

of the different investors in the pool. We consider the same parameter setup and the same pool

of investors as in Section 3.5. We only slightly change the guarantee design in Group 1: We

assume that pi = 0.5 for all i = 1, . . . , n1 and, similar to Section 3.5, that the guaranteed

interest rates gi are equal to 0. The numerical results are given in Figure 4.

(a) Group 1, ε2 = 1% (b) Group 2, ε2 = 1%

(c) Group 1, ε2 = 2.5% (d) Group 2, ε2 = 2.5%

Figure 4: Comparison of the wealth equivalents of the members of the two groups ordered by
RRA. For each group, the sharing rules 1 (33), 2 (19) and 3 (20) are compared.

We observe the following:
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• Group 1 / Panels (a) and (c): At a first glance, the results for this group look

identical to Figure 2. However, the losses are now substantially smaller than for the

purely deterministic guarantee, especially for investors with a RRA below 3. The second

sharing rule performs negligibly better than the first one and the third performs, again,

worst, for the same reasons as in Figure 2.

• Group 2 / Panels (b) and (d): The results for Group 2 look almost identical to

Figure 2. In Panel (d), under SR 1 and 2, investors with a RRA above 4.4 (16 investors)

benefit from the collective investment. Under SR 3, investors with a RRA above 3.3 (19

investors) benefit from the collective investment. On the other hand, in Panel (b), all

the investors in Group 2 are worse off than in the benchmark case since yi is below 1

for all investors under all three sharing rules. In this sense, the flexible guarantee scheme

improves the fairness between the two groups because there are now less members in

Group 2 who benefit at the cost of Group 1 than in the deterministic guarantee setting.

Note that investors with a RRA below 3 in Group 2 still suffer drastic losses due to

the deterministic guarantee. Regarding the sharing rules, the order of attractiveness is

exactly opposite to Group 1.

In Figure 5, the investment strategy for the flexible guarantee case is plotted and compared

to the case with no guarantees. Regardless of whether condition (28) is fulfilled or not, we

can rely on numerical procedures to determine the investment strategy.18 We observe that the

Figure 5: Optimal fraction of wealth invested in the risky asset at time t = T/2 depending
on the stock return at that time for ε̄ = 0.5% . We show the optimal collective investment
strategy with and without guarantee.

investment strategy with guarantee is now more risky than in Figure 3. It is, of course, still

18If the condition (28) is not fulfilled, we can rely on Monte Carlo estimation procedures to determine one
path of the wealth process and then compute the derivative of the wealth for each point in time numerically.
Then we combine Itô’s formula with (3) to obtain a corresponding realization of the fraction invested in the
risky asset at each point in time. A detailed pseudo code is provided in Appendix A.5.
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dominated by the investment strategy with no guarantees. As in the case with a purely deter-

ministic guarantee, the investment strategy does not seem to depend largely on the average fee

ε̄ .

In total, we observe that the new, state-dependent guarantee is much more flexible than a

deterministic guarantee. It manages to take into account each investor’s risk preference and

allows for each investor to receive almost what would be optimal for this investor. Especially

less risk-averse investors are able to obtain (almost) their unrestricted optimum. Hence, by

allowing the plan members to choose a flexible guarantee, we are able to better incorporate

their heterogeneous risk preferences in the collective investment problem. An additional ad-

vantage of the flexible guarantee is (in our parameter setup) that SR 1 and 2 deliver nearly

identical results, i.e. the fund manager can rely on the rather simple SR 2 which is very easy

to communicate. This framework could provide a solution to the issue described in Alserda

et al. (2019) that strongly heterogeneous risk preferences of individual plan members are not

taken into account in the investment strategies of the collective pension fund, which potentially

lowers individuals’ utility levels drastically.

5 Practical relevance

Hybrid pension schemes are of increasing importance in today’s world and DC and/or hybrid

plans will be the future trend of occupational plans. As our results show, fixed guarantees in

collectively administered pension plans induce utility losses for all individual investors within

our numerical examples. Our results in the flexible guarantee framework show that even small

reductions in the deterministic guarantee can already reduce these losses in utility substantially,

especially for investors with a low risk aversion. Reducing the fixed guarantees and (partially)

replacing them by a state-dependent component could thus help reduce utility losses for pension

beneficiaries. For the flexible guarantee, for example, a market index could be used.

It is well believed that the shift towards DC schemes is beneficial to the employers, as they do

not have to set up high reserves to ensure the pension payments. This is especially the case

in the current low interest rate environment, as more capital is required to achieve the same

investment goal with lower interest rates. In contrast, it is also well believed that pure DC

schemes or releasing the guarantees fully will deteriorate the benefits of the pension beneficia-

ries. Our results show that moving away from the real guarantees does good to the beneficiaries

as well. If employees are reluctant to give up full guarantees, more flexible guarantees which are

state-dependent shall lead to a higher utility level than fixed guarantees. With such guarantees,

fund delegation can still occur without drastic losses in utility. Therefore, we could imagine

that flexible guarantees work better on a psychological level to employees than releasing the
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guarantees completely. Our results show that adding some flexibility in the design of the guar-

antee can put forward the reform in the occupational plans. It can lead to a better risk-sharing

between the employees and the employers.

The shift towards DC schemes and hybrid schemes like DC with minimum guarantees en-

hances the importance of investment strategies. As the optimal collective investment strategies

do differ from the individual optimal investment strategies, the fund manager needs to care-

fully consider the investment strategies. It has been pointed out in Alserda et al. (2019) and

Frijns (2010) that collectively organized pension funds often cannot reflect each individual’s

risk preferences and our findings support these observations on a quantitative level.

If the guarantee and wealth levels in the collectively administered pension fund differ, the

sharing rule applied by the fund manager should carefully reflect each investor’s initial con-

tribution and guarantee level, otherwise unfair distributions of the terminal wealth can result.

This implication can be drawn from our numerical analysis with different sharing rules. which

has shown that the impact of sharing rules can be substantial. In this sense, when fixing a

sharing rule, a compromise between the feature of being simple and interpretable and financial

fairness shall be accomplished.

Regarding the fairness, not only the sharing rule matters. The design of the management

fees and the financial expertise along with the willingness to pay fees of the plan members also

play an important role. The current setting with two groups that we consider is rather simple

and in real-world situations, there might be (by far) more than two groups in the collective.

Based on the findings of this article, it would, in this case, be likely that the group with the low-

est financial expertise benefits most and the group with the highest financial expertise suffers

most from the collective investment if the willingness to pay fees differs largely. In reality, we

could also think of the individual plan members filling out forms prior to the joint investment

to ensure a clear communication between the fund manager and the individual investors.

Concerning the individual beneficiaries, depending on their own risk preferences and other

features, our analysis lastly suggests that pension plans could be designed in a more individu-

alized way. While it is typically the case that the pension fund prescribes the same constant

guarantee level to all plan members (using e.g. a guaranteed interest rate), we might also think

of pension plans where all individuals demand their own (fixed of flexible) guarantee level. By

setting up the collective investment strategy and the sharing rule accordingly, each plan mem-

bers’ guarantee shall be satisfied, given that it fulfills the corresponding budget constraint.
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6 Optimal collective investment under stochastic inter-

est rates

As typically life and pension insurance contracts are long-term contracts, incorporating interest

rate fluctuation is of utmost importance and also more realistic. In this section, we will discuss

how our setting and results can be adjusted when a stochastic interest rate model is applied. For

simplicity, we disregard management fees in this section, i.e. we assume that ε1 = ε2 = ε̄ = 0 .

Throughout this section, they could be incorporated in the exact same way as in the previous

sections as a constant proportion of the initial investment charged by each individual.

Consider a probability space (Ω,F ,P) with the filtration {Ft}t∈[0,T ] generated by two in-

dependent Brownian motions W S and W r . For the instantaneous short interest rate r , we

consider a Vasicek model (Vasicek (1977)). That is, we assume that it is given by an Ornstein-

Uhlenbeck process

drt = a(b− rt)dt+ σrdW
r
t , (34)

where the rate of mean reversion a , the mean level b and the volatility σr > 0 are constant.

We assume furthermore that the market price of risk associated with r is given by a constant

λr > 0 . The first risky asset is a zero-coupon bond with maturity T whose time t risk-neutral

price is denoted by P (t, T ) . It is shown e.g. in Hull and White (1990) and Hainaut (2009)

that under P the dynamics of P (t, T ) are given by

dP (t, T )

P (t, T )
= rtdt− σrB(t, T )(dW r

t + λrdt), (35)

where B(t,H) := a−1(1−e−a(H−t)) . The second risky asset (a stock) is modeled by a geometric

Brownian motion which is correlated with the instantaneous rate:

dSt = rtStdt+ σSSt(dW
S
t + λSdt) + σSrSt(dW

r
t + λrdt), S0 > 0, (36)

where σS and σSr are positive constants.19 Given the couple of market prices of risk λ :=

19Note that the stock dynamics can be rewritten as

dSt = St(rt + νS)dt+ Stσ(
√

1− ρ2dWS
t + ρdW r

t ),

where σ2 := σ2
S + σ2

Sr is the stock volatility, ρ := σSr/
√
σ2
S + σ2

Sr is the correlation coefficient between the
stock and the interest rate and νS = σSλS + σSrλr .
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(λr, λS) , the pricing kernel is uniquely defined by

ξt := exp

{
−
∫ t

0

rsds−
1

2

∫ t

0

(λ2
r + λ2

S)ds−
∫ t

0

(λrdW
r
s + λSdW S

s )

}
. (37)

Now let (πSt , π
P
t ) be the vector of proportions of wealth invested in the stock and the zero-

coupon bond, respectively. The wealth process starting with X0 > 0 can be written by

dXt = (Xt − πSt Xt − πPt Xt)rtdt+
πSt Xt

St
dSt +

πPt Xt

P (t, T )
dP (t, T )

= Xt

(
(rt + νSπ

S
t + νPπ

P
t )dt+ σSπ

S
t dW S

t + (σSrπ
S
t − σrπPt B(t, T ))dW r

t

)
, (38)

where νS = σSλS +σSrλr and νP := −σrB(t, T )λr are the risk premiums of the stock and the

zero-coupon bond, respectively. Given the market price of risk, the market is complete and the

individual optimization problem (5) can be solved as in Section 2. The solution is provided in

Theorem 6.1 where we omit the i index for simplicity.

Theorem 6.1. In a Vasicek stochastic interest rate environment, the optimal investment strat-

egy of the individual problem is given by

πSt =
λS
γσS

; πPt =
1

B(t, T )

(
σSr
σSσr

λS
γ
− λr
σrγ

+
γ − 1

γ
B(t, T )

)
. (39)

Proof. Note first that given the market price of risk, the market is complete. The optimal

terminal wealth can be expressed by X∗T = (yξT )−1/γ , where y is the Lagrangian multiplier

defined by the budget constraint E[ξTX
∗
T ] = E[ξT (yξT )−1/γ] = x . By Lemma 6.4 we obtain

x = E[ξT (yξT )−1/γ] = (y)−1/γE[(ξT )γ̃] = (y)−1/γ exp{γ̃µξ0 + γ̃2(σξ0)2/2}, (40)

where γ̃ := (γ − 1)/γ and µξ0 and (σξ0)2 are defined in Lemma 6.4. Hence, y = x−γ exp{(γ −
1)µξ0γγ̃

2(σξ0)2/2} . Analogously, the optimal wealth is computed by

X∗t = E[ξT ξ
−1
t X∗T |Ft] = ξ

−1/γ
t (y)−1/γE

[(
ξT
ξt

)γ̃ ∣∣∣Ft
]

= ξ
−1/γ
t (y)−1/γ exp{γ̃µξt + γ̃2(σξt )

2/2}.
(41)

Note that the optimal wealth at time t can be expressed as X∗t = F (t, ξt, rt) for a deterministic

function F , for which, by applying the multi-dimensional Itô-formula, we obtain

dX∗t = Ftdt+ Fξdξt + Frdrt +
1

2

(
Fξξd < ξ, ξ >t +2Fξrd < ξ, r >t +Frrd < r, r >t

)
.

Note that Fξ = (−1/γ)X∗t /ξt , Fr = −X∗t γ̃B(t, T ) and dξt := −ξt(rtdt + λrdW
r
t + λSdW S

t ).
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Therefore we can represent

dX∗t = [ ] dt+ (1/γ)X∗t (λSdW S
t + λrdW

r
t ) + γ̃X∗t σrB(t, T )dW r

t .

Identifying the last dynamics with (38), we obtain (39).

Analogously we obtain the following optimal investment strategy for the collective problem.

Theorem 6.2. In a Vasicek stochastic interest rate environment, the optimal investment strat-

egy of the collective problem with no guarantee constraint is given by

πSt =
n∑

i=1

λS
γiσS

; πPt =
1

B(t, T )

n∑

i=1

(
σSr
σSσr

·λS
γi
− λr
σrγi

+
γi − 1

γi
B(t, T )

)
X i∗
t

X∗t
, (42)

where X∗t :=
∑n

i=1X
i∗
t with

X i∗
t = ξ

−1/γ
t (ỹ/βi)

−1/γi exp{γ̃iµξt + γ̃i
2(σξt )

2/2}, (43)

γ̃i := (γi − 1)/γi , and ỹ is the Lagrangian multiplier which satisfies the budget constraint

E
[
ξT

n∑

i=1

(
ỹ

βi
ξT

)− 1
γi

]
=

n∑

i=1

(ỹ/βi)
−1/γi exp{γ̃iµξ0 + γ̃i

2(σξ0)2/2} = x =
n∑

i=1

xi.

We now turn our attention to the optimization problem (10) under a fixed guarantee Gdet
T

whose optimal terminal wealth is given by

Xdet∗
T = max

{
IB (ỹξT ) , Gdet

T

}
= IB (ỹξT )1{ξT<ξ̄} +Gdet

T 1{ξT≥ξ̄},

where ξ̄ is the constant defined by Gdet
T = IB

(
ỹξ̄
)

, see Lemma 3.1.

Theorem 6.3. Assume Gdet
T ≤ x exp

(
−µξ0 − 1

2

(
σξ0

)2
)

, where µξ0 and σξ0 are given in Lemma

6.4. Then, the optimal wealth at time t ∈ [0, T ) is given by

Xdet∗
t =

n∑

i=1

(
ỹ

βi
ξt

)−1/γi

exp{γ̃iµξt + γ̃i
2(σξt )

2/2}
(

1− Φ
(
mξ(t, ξt, ξ̄) + γ̃iσ

ξ
t

))

+Gdet
T exp{µξt + (σξt )

2/2}Φ
(
mξ(t, ξt, ξ̄) + σξt

)
,

(44)

where γ̃i := (γi−1)/γi and mξ(t, ξt, ξ̄) :=
ln ξt−ln ξ̄+µξt

σξt
. The optimal fractions of wealth invested
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in the risky asset can then be obtained as

πS
∗

t =
λS

σSXdet∗
t

( n∑

i=1

1

γi

(
ỹ

βi
ξt

)−1/γi

exp{γ̃iµξt + γ̃i
2(σξt )

2/2}
(

1− Φ
(
mξ(t, ξt, ξ̄) + γ̃iσ

ξ
t

)

− 1

σξt

n∑

i=1

(
ỹ

βi
ξt

)−1/γi

exp{γ̃iµξt + γ̃i
2(σξt )

2/2}ϕ
(
mξ(t, ξt, ξ̄) + γ̃iσ

ξ
t

)

+
1

σξt
Gdet
T exp{µξt + (σξt )

2/2}ϕ(mξ(t, ξt, ξ̄) + σξt )

)
(45)

and

πP
∗

t =
πS
∗

t

B(t, T )

(
σSr
σr
− σS
σr

λr
λS

)

+
B(t, T )

Xdet∗
t B(t, T )

(
n∑

i=1

γ̃i

(
ỹ

βi
ξt

)−1/γi

exp{γ̃iµξt + γ̃i
2(σξt )

2/2}(1− Φ(mξ(t, ξt, ξ̄)))

− 1

σξt

n∑

i=1

(
ỹ

βi
ξt

)−1/γi

exp{γ̃iµξt + γ̃i
2(σξt )

2/2}ϕ(mξ(t, ξt, ξ̄))

+Gdet
T

1

σξt
exp{µξt + (σξt )

2/2}
(

Φ(mξ(t, ξt, ξ̄) + σξt ) + ϕ(mξ(t, ξt, ξ̄) + σξt )
))

. (46)

Proof. To ensure the feasibility of the optimization problem, we assume E
[
ξTG

det
T

]
≤ x .

This can be rearranged to Gdet
T ≤ x/E [ξT ] = x exp

(
−µξ0 − 1

2

(
σξ0

)2
)

, where we have used

Lemma 6.4.The optimal wealth at time t ∈ [0, T ) is given by the martingale property Xdet∗
t =

E[(ξT/ξt)X
det∗
T |Ft] . Using Lemma 6.4 we can show directly that for any q ∈ R ,

E[(ξT/ξt)
q
1 {ξT<ξ̄} |Ft] = exp{qµξt + q2(σξt )

2/2}
(

1− Φ
(
mξ(t, ξt, ξ̄) + qσξt

))
, (47)

and (44) follows directly from (47) by taking q = γ̃i , i = 1, · · ·n and q = 1 . To compute the

optimal strategy, it remains to look at the dynamics of Xdet∗
t using the two-dimensional Itô-

formula. Identifying the resulting dynamics of Xdet∗
t with (38) we obtain the optimal fractions

(πS
∗

t , π
P ∗
t ) given by (45) and (46).

Let us remark that ξ̄ ↗ +∞ when Gdet
T ↘ 0 , which implies that mξ(t, ξt, ξ̄)→ −∞ a.s. and

the result in Theorem 6.2 is recovered.

Lemma 6.4. Under P , ξT
ξt
| Ft has lognormal distribution with mean µξt and variance (σξt )

2
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given by

µξt =−
(

1

2
(λ2

r + λ2
S) + b

)
(T − t)− (rt − b)B(t, T ) (48)

(σξt )
2 =

∫ T

t

(σrB(u, T ) + λr)
2du+ λ2

S(T − t). (49)

Proof. It can be derived by using the dynamics of rt and Fubini’s theorem.

7 Conclusion

In our paper, we study the effects of differently structured guarantees, sharing rules and man-

agement fees imposed on a collective of investors with heterogeneous risk preferences being tied

together in their investment decision. The investors are divided into two groups, where Group

1 has access to the financial market and is thus ready to pay only a low fee for fund delegation

and Group 2 has no access to the financial market and is willing to pay a higher fee. The

analyses conducted in this paper are of high relevance for occupational pension schemes as the

question how pension schemes should be designed in today’s world is currently one of the most

disputed ones. In both the deterministic and the flexible guarantee framework, each investor

may demand her own individual guarantee. By adding these guarantees, the fund manager

responsible for the joint investment can make sure that each individual guarantee is met by

choosing a proper sharing rule.

Within our numerical examples, we have seen that deterministic guarantees are not benefi-

cial to the majority of investors in the collective and that only a minority of investors in the

collective might benefit from the lower average fee charged by the fund manager. While the

obvious solution to this problem is to remove the guarantee completely, our analysis reveals

that a proper design of the guarantee might also be a solution. We have considered a flexi-

ble guarantee consisting of a deterministic component and a fraction of the (state-dependent)

individual optimal terminal wealth. By designing the guarantee like this, the fund manager

is able to repay to the (relatively) less risk-averse investors (almost) their optimal terminal

wealth, while the more risk-averse investors are still able to demand high guarantees. As a

consequence, the utility levels of the investors in the pool, especially the ones with relatively

low risk aversion, can be increased significantly. It seems that providing the individual investors

a flexible guarantee allows the fund manager to better identify the individuals’ risk appetite,

which might help resolve the issue of not being able to incorporate the strongly heterogeneous

risk preferences of individual plan members in a collective investment problem described in

Alserda et al. (2019). Regarding the sharing rule, we find that it should carefully take into

account the investors’ initial contributions and guarantee levels, otherwise the terminal wealth
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is likely to be distributed in an unfair way.

An interesting question might now be how our results change if no CRRA, but a different

type of utility function would be used for the investors in the collective. In particular, the use

of modified power utility functions, which would result in a hyperbolic absolute risk aversion

(HARA), would lead to a completely new situation where the guarantee constraint would be

taken into account directly in the utility function. To make the setting more practical, we can

also include mortality risk into the individual benefits. As mortality risk cannot be completely

hedged by only trading the financial market, the new setting will be no longer a complete mar-

ket. Optimal stochastic control using Hamilton-Jacobi-Bellman equations can be applied to

solve the resulting optimization problem. Another possibility is to separate the mortality and

financial risks in individual payoffs and consider an equivalent non-concave optimization prob-

lem in a complete market. Non-concavity can be treated by using concavification techniques,

see e.g. Chen et al. (2019) and Nguyen and Stadje (2018). We leave these questions for future

research.
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A Proofs

A.1 Proof of Lemma 3.1

As Ii

(
λξT
βi

)
is strictly decreasing in ξT for all i = 1, . . . , n , IB (λξT ) is also strictly decreasing

in ξT . Additionally, for all i = 1, . . . , n , we clearly have Ii

(
λξT
βi

)
→ 0 as ξT → ∞ and

Ii

(
λξT
βi

)
→ ∞ as ξT → 0 . Therefore, IB(λξT ) behaves in the exact same way. We can

conclude that IB(·) is bijective on (0,∞) . Therefore, for any positive level of the guarantee

Gdet
T we can find a unique value ξ̄ > 0 such that

Gdet
T = IB

(
λξ̄
)
.

Since IB (λξT ) is strictly decreasing in ξT , it is clear that IB (λξT ) > Gdet
T for all ξT < ξ̄ and

IB (λξT ) ≤ Gdet
T for all ξT ≥ ξ̄ . Hence, we can make the following decomposition:

X∗T = max
{
IB (λξT ) , Gdet

T

}
= IB (λξT )1{ξT<ξ̄} +Gdet

T 1{ξT≥ξ̄}.

�
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A.2 Proof of Proposition 3.2

Note that {ξtX∗t }t∈[0,T ] is a martingale under P . Assuming ξ̄ > 0 fulfills (12), we get:

X∗t = E
[
ξT
ξt
X∗T

∣∣∣∣ Ft
]

= E
[
ξT
ξt
IB (λξT )1{ξT<ξ̄}

∣∣∣∣ Ft
]

+ E
[
ξT
ξt
Gdet
T 1{ξT≥ξ̄}

∣∣∣∣ Ft
]

= E
[
ξT
ξt
IB

(
λ
ξT
ξt
ξt

)
1{ ξT

ξt
< ξ̄
ξt

}
∣∣∣∣ Ft

]

︸ ︷︷ ︸
=(I)

+E
[
ξT
ξt
Gdet
T 1{ ξT

ξt
≥ ξ̄
ξt

}
∣∣∣∣ Ft

]

︸ ︷︷ ︸
=(II)

. (50)

Defining d(t, ξt, ξ̄) as in equation (15) and ki(t) as in (14), we can now compute the conditional

expectations (I) and (II) from (50):

(I) = E

[
n∑

i=1

(
λ

βi
ξt

)− 1
γi

(
ξT
ξt

)1− 1
γi

1{ ξT
ξt
< ξ̄
ξt

}
∣∣∣∣ Ft

]

=
n∑

i=1

(
λ

βi
ξt

)− 1
γi
∫ ∞

d(t,ξt,ξ̄)

e

(
1− 1

γi

)
(−r(T−t)− 1

2
η2(T−t)−zη

√
T−t) 1√

2π
e−

z2

2 dz

=
n∑

i=1

Ii

(
λ

βi
ξt

)
ki(t)

(
1− Φ

(
d(t, ξt, ξ̄) + η

√
T − t

(
1− 1

γi

)))
. (51)

The second expectation in (50) can be computed in the following way:

(II) = Gdet
T

∫ d(t,ξt,ξ̄)

−∞
e−r(T−t)−

1
2
η2(T−t)−η

√
T−tz 1√

2π
e−

z2

2 dz

= Gdet
T e−r(T−t)Φ

(
d(t, ξt, ξ̄) + η

√
T − t

)
. (52)

Adding (51) and (52), we end up with the wealth process as given in (13). From Itô’s lemma

and the dynamic wealth process of the fund manager (see equation (3) without the (i) -indexes),

we know that

∂X∗t
∂Wt

dWt = πtσX
∗
t dWt ⇔ π∗t =

∂X∗t /∂Wt

σX∗t
.

This directly delivers the investment strategy as given in (16). �

A.3 Proof of Lemma 4.2

We need to find out whether the two functions IB

(
λ̂ξT

)
and GFle

T (ξT ) have a unique in-

tersection ξ̂ > 0 . We assume that pi > 0 for at least one i . For ξT → ∞ we have
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GFle
T (ξT ) → (1− ε̄)G > 0 and IB(λ̂ξT ) → 0 . For ξT → 0 , on the other hand, we have

GFle
T (ξT ) → ∞ and IB(λ̂ξT ) → ∞ . Therefore, the two functions GFle

T (ξT ) and IB(λ̂ξT )

need to have at least one intersection. If they did not intersect, we would necessarily have

GFle
T (ξT ) > IB(λ̂ξT ) a.s. because of the limiting behavior analyzed before and since both func-

tions are strictly decreasing in ξT . This would, however, result in X̂∗T = GFle
T (ξT ) a.s. which

would be a contradiction to the budget constraint, since E[ξTG
Fle
T (ξT )] < (1− ε̄)x = E[ξT X̂

∗
T ] .

The uniqueness of this intersection can be shown by looking at the function

h(ξT ) = IB

(
λ̂ξT

)
−GFle

T (ξT )

=
n∑

i=1

ξ
− 1
γi

T



(
λ̂

βi

)− 1
γi

− (1− pi)
(1− ε̄)
(1− εi)

λ
− 1
γi

i


− (1− ε̄)G.

Under assumption (27), h(·) is strictly decreasing which can be seen by taking the first-order

derivative. This implies that the intersection ξ̂ is uniquely determined. Since h(·) is strictly

decreasing, we observe that IB

(
λ̂ξT

)
> GFle

T (ξT ) for all ξT < ξ̂ and IB

(
λ̂ξT

)
≤ GFle

T (ξT ) for

all ξT ≥ ξ̂ . Hence, we can make the following decomposition:

X̂∗T = max
{
GFle
T (ξT ), IB(λ̂ξT )

}
= IB

(
λ̂ξT

)
1{ξT<ξ̂} +GFle

T (ξT )1{ξT≥ξ̂}.

�

A.4 Proof of Proposition 4.3

Having computed ξ̂ by solving a fixed-point problem, we can determine the investment strategy

explicitly. First we note that {ξtX̂∗t }t∈[0,T ] is a martingale under P , so we get:

X̂∗t = E
[
ξT
ξt
X̂∗T

∣∣∣∣ Ft
]

= E
[
ξT
ξt
IB

(
λ̂ξT

)
1{ξT<ξ̂}

∣∣∣∣ Ft
]

+ E
[
ξT
ξt
GFle
T (ξT )1{ξT≥ξ̂}

∣∣∣∣ Ft
]

= E
[
ξT
ξt
IB

(
λ̂
ξT
ξt
ξt

)
1{ ξT

ξt
< ξ̂
ξt

}
∣∣∣∣ Ft

]

︸ ︷︷ ︸
=(I)

+E
[
ξT
ξt
GFle
T (ξT )1{ ξT

ξt
≥ ξ̂
ξt

}
∣∣∣∣ Ft

]

︸ ︷︷ ︸
=(II)

(53)

Defining ki(t) as in (14) and d(t, ξt, ξ̂) as in (15), we can now compute the conditional expec-

tations (I) and (II) from (53). The first one can be computed in the exact same way as in the
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case with the deterministic guarantee:

(I) =
n∑

i=1

Ii

(
λ̂

βi
ξt

)
ki(t)

(
1− Φ

(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

)))
. (54)

The second expectation in (53) needs to be split into two parts:

(II) = (1− ε̄)GE
[
ξT
ξt
1{ ξT

ξt
≥ ξ̂
ξt

}
∣∣∣∣ Ft

]
+

n∑

i=1

(1− ε̄)(1− pi)E
[
ξT
ξt
Ii

(
λi
ξT
ξt
ξt

)
1{ ξT

ξt
≥ ξ̂
ξt

}
∣∣∣∣ Ft

]

= (1− ε̄)Ge−r(T−t)Φ
(
d(t, ξt, ξ̂) + η

√
T − t

)

+
n∑

i=1

(1− ε̄)(1− pi)Ii (λiξt) ki(t)Φ
(
d(t, ξt, ξ̂) + η

√
T − t

(
1− 1

γi

))
.

(55)

Adding (54) and (55), we end up with the wealth process given in (29). From Itô’s lemma and

the dynamic wealth process of the fund manager (see equation (3) without the (i) -indexes),

we know that

∂X∗t
∂Wt

dWt = πtσX
∗
t dWt ⇔ π∗t =

∂X∗t /∂Wt

σX∗t
.

This directly delivers the investment strategy as given in (30). �

A.5 Pseudo code for the numerical calculation of the optimal in-

vestment strategy with flexible guarantees

1. Simulate one path of the Brownian motion {Wt}t∈[0,T ] .

2. Create N realizations of the state price density and the optimal terminal wealth given

the path of the Brownian motion, that is, ξT,i | Wt and X̂∗T,i | Wt for all t , i = 1, . . . , N .

3. Then, one realization of X̂∗t (Wt) is (approximately) given by

X̂∗t (Wt) = ξ−1
t (Wt)

1

N

N∑

i=1

(
ξT,iX̂

∗
T,i | Wt

)

for all t , so we obtain one path of X̂∗t .

4. From Itô’s lemma we know that

πt =
∂X̂∗t /∂Wt

σX̂∗t
,
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so we need to determine the derivative of X̂∗t numerically. We compute N realizations of

the state price density and the optimal terminal payoff given Wt±h , that is, ξT,i | Wt±h
and X̂∗T,i | Wt ± h for all t , i = 1, . . . , N , where h > 0 is an arbitrarily small number.

5. Then we can compute

X̂∗t (Wt ± h) = ξ−1
t (Wt ± h)

1

N

N∑

i=1

(
ξT,iX̂

∗
T,i | Wt ± h

)

and with these values, using the central difference method, the derivative can, for all t ,

be determined as

∂X̂∗t
∂Wt

=
X̂∗t (Wt + h)− X̂∗t (Wt − h)

2h
.
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Abstract

It is typical in collectively administered pension funds that employees delegate fund

managers to invest their contributions. In addition, many pension funds still need to

sustain guarantees (prescribed by law) in spite of the current low interest environment.

In this paper, we consider an optimal collective investment problem for a pool of investors

who (implicitly) demand minimum guarantees by deriving utility from the wealth exceed-

ing their guarantees in two financial market settings, one with a stochastic and one with

a constant volatility. We find that individual investors’ well-being will not be worsened

through the collective investment in both financial markets, as individual optimal solu-

tions are attainable if a financially fair state-dependent sharing rule is applied. When

more prevailing sharing rules like linear rules are applied, this holds no longer. Further-

more, the degree of sub-optimality imposed by linear sharing rules is more pronounced in

the stochastic volatility market than in the constant volatility market.

Keywords: Collective investment problems, stochastic volatility, portfolio insurance,

sharing rules

JEL: G11, G23

Research Papers 5 A collective investment problem in a stochastic volatility environment

171



1 Introduction

There exist various reasons for fund delegation in today’s world, one of the most prominent

examples being a collectively administered pension fund. There are two main types of occupa-

tional pensions schemes: In a defined benefit (DB) scheme, the sponsoring companies promise

their employees a guaranteed pension payment. In a defined contribution (DC) scheme, the

benefit at retirement depends on the performance of the investment returns experienced during

the plan membership. Consequently, in a DC scheme, the market risk is carried completely

by the employees instead of the employers.1 Very recently, people have started to believe that

hybrid pension plans combining the DC and DB plan might meet the requirements of employees

and employers even better. A key component of such hybrid schemes is to provide safety by

offering a minimum guarantee (which is lower than in pure DB schemes), and, simultaneously,

to let employees participate in potential upside scenarios of the markets.2 In such pensions,

fund managers shall take account of the guarantee requirement in their portfolio planning, while

simultaneously capturing the members’ risk preferences in the investment strategy to provide

acceptable bonuses to the members in well-performing markets. Another reason for fund dele-

gation, besides collectively administered pension funds, is explained, for example, in Kim et al.

(2016): Many households display investment inertia because handling investments costs time

and energy. The authors find that delegation can be beneficial for individual investors.

In this article, we consider an optimal investment problem of a fund manager who invests

on behalf of a collective of individuals requiring a minimum guaranteed payment in a stochas-

tic volatility framework. In a utility maximization framework, it is common in the literature

to assume that individuals implicitly satisfy their guarantee requirements by deriving utility

only from the residual wealth exceeding the guarantee,3 see, for example, Basak (2002), Balder

and Mahayni (2010) and Zieling et al. (2014).4 Each of the individuals in the collective may

demand a certain guarantee. We allow individuals with various degrees of risk aversion to

choose a different guarantee level. The utility function used by the fund manager is itself

1For further details on DB and DC schemes, see also OECD (2018).
2An overview over existing hybrid schemes can, for example, be found in Turner (2014). A literature review

on dynamic hybrid pension products is provided by Hambardzumyan and Korn (2019).
3Note that, in a Black-Scholes setting, the resulting optimal investment strategy for an individual investor

with such utility preferences is a so-called constant proportion portfolio insurance (CPPI) strategy, a rather
popular type of portfolio insurance strategies (see, for example, Black and Jones (1987), Black and Perold
(1992), Basak (2002) and, more recently, Temocin et al. (2018), and for the relevance of CPPI strategies in
practice see Pain and Rand (2008)). While this type of strategy is optimal for a single individual with risk
preferences as described above, we find that this result holds no longer for a collective of individuals who jointly
invest their initial wealth. Further details regarding this result and CPPI strategies are provided in Section 3.2
of this article.

4While we follow this first approach in this article, a second popular approach would be to impose a minimum
guarantee constraint in the utility maximization problem, as done, for example, in Jensen and Sørensen (2001)
and Hambardzumyan and Korn (2019).
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defined by an optimization problem in such a way that the weighted sum of the individual

utility functions is maximized for a given vector of positive weights. Due to the inclusion of

guarantee requirements, this is a generalization of a popular utility funciton (with no minimum

subsistence level) in the literature (see, for example, Dumas (1989), Karatzas et al. (1990),

Xia (2004), Pazdera et al. (2016) and Branger et al. (2018b)). The fund manager then sets

up a collective investment strategy such that all these individual guarantees are met. We not

only consider the Black-Scholes setting with a constant volatility, but also move beyond nor-

mally distributed returns and describe the evolution of the stock with a more general stochastic

volatility model in the sense of Heston (1993). A stochastic volatility model is more realistic

than a model with constant volatility, for it allows to explain stylized facts often observed in

financial markets such as heavy tails, volatility clustering, and the smile of implied volatilities

(see Cont and Tankov (2004)). In such a stochastic volatility model, which leads to bigger tail

risks, appropriate fund management under portfolio insurance becomes even more important

than in a model with normally distributed returns, because the probability of extremal market

scenarios increases (see Chen et al. (2018)). In this article, we are particularly interested in

finding out the influence of such a more realistic financial market modeling on the expected

utility of the individual investors, and comparing it to the constant volatility framework.

We show that, under both constant and stochastic volatility, individual optimal solutions are

achievable if a state-dependent sharing rule is applied to the optimal collective terminal wealth

and the financial fairness condition in the sense of Bühlmann and Jewell (1979) and Schu-

macher (2018) is imposed. In other words, individual welfare does not deteriorate in both

financial markets if an appropriate state-dependent sharing rule is applied. Under more pre-

vailing sharing rules, like linear ones, this result holds no longer, as linear sharing rules impose

a certain suboptimality to the collective (see, for example, Jensen and Nielsen (2016)). Then,

either all the individuals in the collective suffer a loss or an unfair distribution of the termi-

nal wealth, where some individuals benefit at the cost of others, results. To assess the losses

imposed by linear sharing rules in both financial markets, we compare the state-dependent

sharing rule to two linear sharing rules: one satisfying the financial fairness and one not. If the

linear sharing rule does not fulfill the fairness condition, some individuals in the collective are

better off, but the majority of investors is largely worse off than in the individual optimization

problem. When a financially fair linear sharing rule is applied, all the individuals suffer a (rel-

atively) small loss. In this sense, a financially fair linear sharing rule performs better from a

fund manager’s point of view who wants to consider all the individuals in the collective in a

fair way. A comparison between the constant and stochastic volatility framework reveals that

the degree of sub-optimality imposed by linear sharing rules is larger under stochastic volatility.

Individuals’ utility optimization in incomplete stochastic volatility markets has been considered

extensively in the literature (see, for example, Pham (2002), Fleming and Hernández-Hernández
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(2003), Chacko and Viceira (2005), Kraft (2005) and Liu (2006)). For common utility functions

(for example power utility), the solution is available in closed form by applying a separation

technique in the Hamilton-Jacobi-Bellman (HJB) equation resulting from the dynamic program-

ming principle. Unfortunately, such a separation technique seems impossible in our collective

utility maximization framework. Consequently, we rely on another way of solving the optimal

investment problem: We complete the financial market using derivatives. This approach is

well-documented in the literature and applied, for instance, in Liu and Pan (2003), Branger

et al. (2008, 2017), Escobar et al. (2018) and Chen et al. (2018). Following this approach, we

can determine the optimal terminal wealth levels and the dynamic trading strategies explicitly

for our collective utility maximization problem in the stochastic volatility framework using the

static martingale approach (see, for example, Cox and Huang (1989)). Solving the collective

optimization problem under a constant volatility less complicated, as the constant volatility

market is complete without adding derivatives. In this sense, our article contributes to the lit-

erature on utility maximization in incomplete stochastic volatility markets by the consideration

of a collective utility maximization problem.

The remainder of the paper is organized in the following way: Section 2 introduces the utility

preferences assumed for the individuals in the collective and, particularly, the collective utility

function used for modeling the fund manager’s preferences. Section 3 briefly presents the solu-

tion to the optimal collective investment problem in a constant volatility framework. Section 4

deals with the collective optimization problem in the Heston model which allows for stochastic

volatility. In Section 5, we show that individual optimal solutions can be achieved through the

collective investment under financial fairness and a state-dependent sharing rule. In Section 6,

we discuss different sharing rules and compare the well-being of the investors in the collective

under constant and stochastic volatility. Section 7 concludes the article and is followed by the

appendix with one proof.

2 Risk preferences

In this section, we describe the basic assumptions regarding the preferences of the individuals.

To model individual preferences, we mainly take account of the fact that the individuals are

interested in obtaining a minimum payment and building their utility on the (residual) wealth

exceeding the minimal guarantee.

2.1 Individual preferences

We consider a collective of n individuals on a financial market. Each of the investors assigns

her initial wealth xi to the fund manager for investment in financial assets at time 0 . We use
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a special type of HARA utility function of the form Ui,Gi(v) =
(v−Gi)

1−γi

1−γi with γi 6= 1 , γi > 0

for i = 1, . . . , n to model each investor’s preferences, where Gi is investor i ’s subsistence

level. This subsistence level will be referred to as a minimum guarantee that investor i is

interested in achieving from now on. The corresponding relative risk aversion is given by
γiv
v−Gi which is increasing in Gi and γi . In the special case that Gi = 0 , we obtain constant

relative risk aversion (CRRA) utility functions. Note that each investor derives her utility

only from the difference between the total terminal wealth and the guarantee. This preference

representation for individuals interested in sustaining a minimum guaranteed income is common

in the literature, see, for example, Basak (2002), Balder and Mahayni (2010) and Zieling et al.

(2014). The resulting inverse marginal utility function is denoted by

Ii,Gi(·) := (U ′i,Gi)
−1(·) = Gi + (·)−

1
γi .

2.2 Collective utility function

From now on, we assume that the n investors delegate a fund manager to collectively invest

their total initial wealth x =
∑n

i=1 xi on their behalf. Reasons for fund delegation can be dif-

ferent: For example, in an occupational pension context, it is common that beneficiaries do not

administrate their contributions themselves. Instead, contributions are collectively managed

by a pension fund manager. Another reason for fund delegation could be professional skills

and knowledge of the fund manager, leading individual investors to believe that investment

delegation is more beneficial for them than handling investments on their own. Further, Kim

et al. (2016) observe that many individuals display investment inertia as managing money costs

time and energy and show that delegation is valuable.

We assume that the fund manager does not charge any additional fees, so the total wealth

x is completely invested in financial assets. The fund manager’s primal goal is to provide in-

dividual guarantees, as it is the case, for example, in many occupational pension schemes that

are not of the pure DC type.5 In many other real-life fund delegation situations, fund managers

might be more interested in maximizing their own compensations from advising individual in-

vestors regarding the suitability of financial products. As in Kim et al. (2016), we assume that

the fund manager behaves more on behalf of individual investors, that is, the fund manager’s

utility function reflects the individuals’ utility and, more importantly, the fund manager aims

to meet individual guarantees. We denote by G the time-T -value of the collective guarantee

which the fund manager needs to meet. Unless stated otherwise, we will always assume that

this guarantee is equal to the sum of the individual guarantees, that is, G =
∑n

i=1G
i . Ad-

5For instance, in all German pension schemes, some sort of guarantee had been prescribed until very recently
in 2018 when a new pension scheme was introduced along with the “Betriebsrentenstärkungsgesetz”.
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ditionally, we want to emphasize that the case with no guarantee is included throughout this

article, as all the individual guarantees can always be set equal to zero.

Concerning the collective utility function (which the fund manager uses), we are inspired,

for example, by Dumas (1989), Karatzas et al. (1990), Xia (2004), Pazdera et al. (2016) and

Branger et al. (2018b). We assume that the fund manager uses the following (collective) utility

function which depends on the collective and individual guarantees:

UB,G : (G,∞)→ (0,∞), v 7→ UB,G(v) = max
v1≥G1,...,vn≥Gn

v=
∑n
i=1 vi

n∑

i=1

βiUi,Gi(vi) , (1)

where B = (β1, . . . , βn) is a vector consisting of strictly positive numbers adding up to 1.

The vector B controls how each individual investor is weighted in the collective investment

problem. Note that the utility of the fund manager is only defined for values exceeding the

collective guarantee. Lemma 2.1 states that uB,G is, in fact, a utility function, as it has already

been shown in Branger et al. (2018b) for the case where all the individual guarantees are equal

to zero.

Lemma 2.1. UB,G is a strictly increasing and concave function on (G,∞) for all G =∑n
i=1G

i with Gi ≥ 0 , whose inverse marginal utility is given by

IB,G(·) := (U ′B,G)−1(·) =
n∑

i=1

Ii,Gi

( ·
βi

)
. (2)

Proof. The collective utility function given in (1) is itself defined through an optimization

problem whose Lagrangian is given by

L =
n∑

i=1

βiUi,Gi(vi) + y

(
v −

n∑

i=1

vi

)
.

The first order conditions are

∂L
∂vi

= βiU
′
i,Gi(vi)− y = 0 ⇔ vi = Ii,Gi

(
y

βi

)
for all i = 1, . . . , n.

This results in

v =
n∑

i=1

Ii,Gi

(
y

βi

)
. (3)
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Now we define the function

IB,G : (0,∞)→ (G,∞), y 7→ IB,G(y) =
n∑

i=1

Ii,Gi

(
y

βi

)
.

Note that this function is strictly decreasing on (0,∞) , that limy→0 IB,G(y) = ∞ and that

limy→∞ IB,G(y) = G . Hence, for any v ∈ (G,∞) there exists a unique value y ∈ (0,∞)

such that IB,G(y) = v for which the optimization problem (1) attains its maximum at vi =

Ii,Gi
(
y
βi

)
. This maximum collective utility level is given by

UB,G(v) =
n∑

j=1

βjUj,Gj(vj) =
n∑

j=1

βjUj,Gj

(
Ij,Gj

(
y

βj

))
. (4)

The first order derivative of UB,G can now be determined as

U ′B,G(v) =
n∑

j=1

βjU
′
j,Gj

(
Ij,Gj

(
y

βi

))
I ′j,Gj

(
y

βj

)
dy

βjdv
= y

n∑

j=1

I ′j,Gj

(
y

βj

)
dy

βjdv
= y,

where the last equality can be obtained from taking the derivative with respect to v on both

sides of (3). This leads to

(U ′B,G)−1(y) = v =
n∑

i=1

Ii,Gi

(
y

βi

)
,

which completes the proof.

3 Constant volatility model

We start our analysis by a brief consideration of the classic Black-Scholes model which assumes

a constant volatility of the risky asset. It will serve as a comparison basis to the stochastic

volatility case specified in Section 4.

3.1 Financial market

We consider a financial market consisting of a risk-free asset B and a risky asset S . The

risk-free asset B is assumed to earn a constant interest rate r , that is,

dBt = rBtdt, B0 = 1. (5)
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Let {Wt}t∈[0,T ] be a standard Brownian motion on a probability space (Ω,F ,P) satisfying the

usual hypothesis. The risky asset S follows a geometric Brownian motion

dSt = µStdt+ σStdWt, S0 = s.

Here we assume that µ − r > 0 and σ > 0 . In this complete market, the state price density

process is uniquely determined by the following stochastic differential equation:

dξt = −ξt (rdt+ χdWt) , ξ0 = 1, χ =
µ− r
σ

.

The value ξt can be interpreted as the state of the economy at time t : The better the market

performs, the lower ξt gets. In the following sections, we will use this property to analyze the

performance of the (state-dependent) terminal wealth and investment strategy under different

market states. From now on, let Gi
t = e−r(T−t)Gi denote the time- t -value of the fixed level of

guarantee investor i requires, where Gi = Gi
T ∈ (0, xie

rT ) . We assume an upper bound for

the guarantee to ensure the feasibility of our optimization problems.

If we denote by {πt}t∈[0,T ] the fraction of total wealth which is invested in the risky asset

by the fund manager and assuming a self-financing trading strategy, the dynamics of the total

wealth {Xt}t∈[0,T ] are described by the following stochastic differential equation:

dXt = (r + πt(µ− r))Xtdt+ σπtXtdWt , X0 = x. (6)

The trading strategy {πt}t∈[0,T ] is chosen from the following set of admissible strategies:

A(x) :=

{
{πt}t∈[0,T ]

∣∣∣∣ X0 = x, {πt}t∈[0,T ] is progressively measurable,

Xt ≥ 0 for all t ≥ 0,

∫ T

0

π2
sds <∞ a.s.

}
.

3.2 Collective optimization problem

In a constant volatility framework, the collective optimization problem can be written down as

max
(πt)t∈[0,T ]

E [UB,G(XT )] subject to (6) . (7)

Due to the market completeness, this problem can be solved using the static martingale ap-

proach (Cox and Huang (1989)), that is, by solving the static optimization problem

max
XT

E [UB,G(XT )] subject to E [ξTXT ] = x (8)
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for the optimal terminal wealth XT and then determining the optimal trading strategy from

the optimal wealth. To ensure the feasibility of the optimization problem (8), we shall examine

the following two integrability conditions:

E [ξT IB,G(λξT )] <∞, (9)

E [UB,G (IB,G(λξT ))] <∞, (10)

for all λ > 0 . Condition (9) ensures that the initial market value of the terminal wealth is

finite for all possible values of the Lagrangian multiplier. Condition (10) ensures that the value

function is finite for all possible values of the Lagrangian multiplier. Note that both conditions

are fulfilled in our Black-Scholes financial market with (modified) power utility functions.

Due to the nice property of the collective utility function, particularly the explicit representa-

tion of the inverse marginal utility of UB,G , we obtain the solution of the optimization problem

(8) as

X∗T = IB,G(λξT ) =
n∑

i=1

Ii,Gi

(
λ

βi
ξT

)
=

n∑

i=1

(
Gi +

(
λ

βi
ξT

)− 1
γi

)
, (11)

where λ is the Lagrangian multiplier which can be uniquely determined from the budget

constraint E[ξTX
∗
T ] = x .

Remark 3.1. For n = 1 , Problem (8) is reduced to the individual optimization problem (taking

individual i with an initial wealth xi > Gie−rT as an example):

max
Xi
T

E
[
Ui,Gi(X

i
T )
]

subject to E
[
ξTX

i
T

]
= xi . (12)

The individual optimal solution for individual i is given by

X
(i,∗)
T = Ii,Gi(λiξT ), (13)

where λi can be determined explicitly from the budget constraint E[ξTX
(i,∗)
T ] = xi .
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From equation (11), we can derive the optimal wealth for any t ∈ [0, T ) as follows:

X∗t = E
[
ξT
ξt
X∗T

∣∣∣∣ Ft
]

= Gt + E

[
ξT
ξt

n∑

i=1

(
λ

βi
ξT

)− 1
γi

∣∣∣∣ Ft
]

= Gt +
n∑

i=1

E

[(
ξT
ξt

)1− 1
γi

(
λ

βi
ξt

)− 1
γi

∣∣∣∣ Ft
]

= Gt +
n∑

i=1

(
λ

βi
ξt

)− 1
γi

ki(t), (14)

where ki(t) := E
[(

ξT
ξt

)1− 1
γi

]
= e

(
1− 1

γi

)
(−r− 1

2
χ2)(T−t)+ 1

2
χ2
(
1− 1

γi

)2
(T−t)

. Applying Itô’s formula to

(14) and comparing it to the wealth dynamics in (6), we obtain the self-financing investment

strategy by equating the coefficients of dWt :

π∗t =
n∑

i=1

ki(t)

X∗t

(
λ

βi
ξt

)− 1
γi χ

σγi
, (15)

where the terms χ
σγi

are the individual Merton portfolios (Merton (1971)). For the special case

n = 1 , expression (15) simplifies as follows for an individual investor i :

π
(i,∗)
t =

χ

σγi
· ki(t) (λiξt)

− 1
γi

X
(i,∗)
t

=
χ

σγi
· X

(i,∗)
t −Gi

t

X
(i,∗)
t

=: mi ·
X

(i,∗)
t −Gi

t

X
(i,∗)
t

, (16)

where X
(i,∗)
t can be obtained from (14) by setting n = 1 . The strategy in (16) is a CPPI

strategy, where the multiplier mi is the Merton portfolio of investor i . It is a well-known result

that the strategy given in (16) is optimal for investors with modified power utility preferences

(see, for example, Basak (2002)). The idea behind a CPPI strategy is simple: To ensure that

the guarantee level Gi is met, the fraction of wealth
Git

X
(i,∗)
t

is invested in the risk-free asset.

The remainder
X

(i,∗)
t −Git
X

(i,∗)
t

, where X
(i,∗)
t −Gi

t is the so-called cushion, multiplied by mi is then

the fraction of wealth invested in the risky asset. Note, however, that the collective optimal

solution obtained in (15) is not a CPPI strategy. In this sense, there is a clear difference

between the optimal individual and collective investment strategy. There are going to be losses

in the collective expected utility if a CPPI investment strategy is applied by a fund manager.

It would then be interesting to analyze the suboptimality induced by using CPPI strategy on

the individual investors. We leave this analysis for future research.
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4 Collective investment under stochastic volatility

As motivated in the introduction, the assumption of a constant volatility may not reflect a

realistic financial market. In this section, we describe the evolution of the stock with a more

general stochastic volatility model in the sense of Heston (1993). In this stochastic volatility

setting, we solve the collective optimal investment problems, based on which we then study the

welfare implications to the individual investors.

4.1 Financial market

We assume that the volatility of the risky asset is itself driven by a stochastic process. While the

risk-free asset B remains as in (5), the drift and the volatility of the risky asset are now given

by µt and
√
Vt . Further, let {W (1)

t }t∈[0,T ] and {W (2)
t }t∈[0,T ] be two independent Brownian

motions in a probability space (Ω,F ,P) . The risky asset and its volatility are then assumed

to follow the Heston model (Heston (1993)):

dSt = St

(
µtdt+

√
VtdW

(1)
t

)
,

dVt = κ(V − Vt)dt+ δ
√
Vt

(
ρdW

(1)
t +

√
1− ρ2dW (2)

t

)
,

where ρ ∈ (−1, 1) is a correlation coefficient, V > 0 is the long-run mean for the variance,

κ > 0 is the speed of mean reversion and δ > 0 is the volatility of the variance.6 In particular,

the variance process follows a square-root process as used in the interest rate model in Cox

et al. (1985). To ensure that the variance is almost surely positive at all times, we assume

2κV ≥ δ2 and V0 > 0 (see Cox et al. (1985)).

The variance process contains the second source of risk which is not traded in the market

and cannot be hedged. Therefore, the underlying financial market is incomplete. In other

words, the market price for the second source of risk is not uniquely determined. A typical

way to proceed is to choose a market price of risk for both sources of randomness and make

the considered market artificially complete. This can be done by adding a derivative written

on the risky asset to the financial market. This approach is well-known in the literature, see,

for example, Liu and Pan (2003), Branger et al. (2008), Branger et al. (2017), Escobar et al.

(2018) and Chen et al. (2018). We start by assuming

µt − r√
Vt

= η1
√
Vt , (17)

6The perfect negative/positive correlation implies that the variance risk is fully hedgeable through trading
in the underlying asset. In this case, we return to a complete market setting. The solution to this problem is
then more similar to the constant volatility case.
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and define the volatility risk premium as η2
√
Vt , where η1 and η2 are constants. We set

W̃
(i)
t = W

(i)
t +

∫ t

0

ηi
√
Vsds

for i = 1, 2 . By Girsanov’s theorem, W̃
(1)
t and W̃

(2)
t are independent Brownian motions under

the probability measure P(η) , η := (η1, η2) , which is defined by

ζt :=
dP(η)

dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0

η1
√
VsdW

(1)
s −

∫ t

0

η2
√
VsdW

(2)
s −

η21 + η22
2

∫ t

0

Vsds

)

for any t ∈ [0, T ] . It is a density, as shown in Chen et al. (2018). Note that for the equivalent

martingale measure P(η) , the process

ξ
(η)
t = e−rt

dP(η)

dP

∣∣∣∣
Ft

= e−rtζt, t ∈ [0, T ],

is the corresponding pricing kernel or stochastic discounting process. The value ξ
(η)
t has a

similar interpretation as the state price density ξt in the constant volatility framework: The

lower ξ
(η)
t gets, the better the market performs. In the following sections, we express the

optimal wealth and investment strategy in terms of ξ
(η)
t and can thus easily interpret their

performance under different market states. In this market, for any derivative O on the risky

asset with some maturity T1 ≤ T , the no-arbitrage-price at time t ≤ T1 is now given by

Ot := E

[
ξ
(η)
T1

ξ
(η)
t

OT1

∣∣∣∣ Ft
]
.

Now let g be a smooth function such that Ot = g(t, St, Vt) (which exists as {St, Vt}t∈[0,T ] is a

Markov process). Since e−rtOt is a martingale under P(η) , Itô’s formula leads to

dOt = rOtdt+ gSSt
√
VtdW̃

(1)
t + δgV

√
Vt

(
ρdW̃

(1)
t +

√
1− ρ2dW̃ (2)

t

)
,

where gS and gV are the first order partial derivatives of g with respect to the risky asset and

the variance process. Now let πt denote the fraction of wealth invested in the risky asset S

and φt denote the fraction of wealth invested in the derivative O . The remainder 1− πt − φt
is invested in the risk-free asset. Assume that {πt, φt}t∈[0,T ] is self-financing. This yields the

5 A collective investment problem in a stochastic volatility environment Research Papers

182



following dynamics for the collective wealth process {Xt}t∈[0,T ] :

dXt = Xt

(
rdt+

(
πt + φt

gSSt + δρgV
Ot

)√
VtdW̃

(1)
t + φt

gV δ
√

1− ρ2
Ot

√
VtdW̃

(2)
t

)

= Xt

(
rdt+ Θ

(1)
t

√
VtdW̃

(1)
t + Θ

(2)
t

√
VtdW̃

(2)
t

)

= Xt

((
r + η1Θ

(1)
t Vt + η2Θ

(2)
t Vt

)
dt+ Θ

(1)
t

√
VtdW

(1)
t + Θ

(2)
t

√
VtdW

(2)
t

)
, (18)

where X0 = x , Θ
(1)
t is the hedge demand and Θ

(2)
t is the speculative demand, following, for

example, Liu and Pan (2003) and Chen et al. (2018). The hedge demand reflects the fund

manager’s position in the risk which is hedgeable by the risky asset. The speculative demand

reflects the fund manager’s position in the risk which cannot be hedged by trading in the risky

asset. In our optimization problem, the hedge and speculative demand will be determined

explicitly.

Before proceeding to the following sections, let us first state Lemma 4.1 which is of major

importance when determining the solutions of our optimization problems.

Lemma 4.1. Consider the following notation:

η+ := ρη1 +
√

1− ρ2η2,
η− :=

√
1− ρ2η1 − ρη2,

qi := 1− 1

γi
,

ai := qi η+δ
−1,

bi := qi

(
η+κδ

−1 +
η2+
2

+ (1− qi)
η2−
2

)
,

and assume that

κ2 + qi

(
2η+κδ + η2+δ

2 +
1

γi
η2−δ

2

)
≥ 0 for all i = 1, . . . , n. (19)

Then it holds

k
(η)
i (t) := E

[(
ξ
(η)
T

ξ
(η)
t

)qi ∣∣∣∣ Ft
]

= e−rqi(T−t)+κV ai(T−t)Ψi(T − t, ai, bi, Vt) (20)
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for all i = 1, . . . , n , where

Ψi(s, ai, bi, Vt) = exp (−Ai(s)− Vt(Bi(s)− ai)) ,

Ai(s) = −2κV

δ2
ln

(
2θie

(θi+κ)
s
2

δ2ai(eθis − 1) + θi(eθis + 1) + κ(eθis − 1)

)
,

Bi(s) =
ai
(
θi + κ+ eθis(θi − κ)

)
+ 2bi(e

θis − 1)

δ2ai(eθis − 1) + θi(eθis + 1) + κ(eθis − 1)
,

θi =
√
κ2 + 2biδ2 .

Proof. See Appendix A.

4.2 Collective optimization problem

The collective optimization problem under stochastic volatility can be expressed as:

max
(πt,φt)t∈[0,T ]

E [UB,G(XT )] subject to (18) . (21)

Let us first mention that optimization for a single investor in a market with stochastic volatility

has been considered extensively in the literature, see, for example, Pham (2002), Fleming

and Hernández-Hernández (2003), Chacko and Viceira (2005), Kraft (2005) and Liu (2006)

using the dynamic programming principle. For power utility functions, a closed-form solution

can be obtained by applying a separation technique together with a verification step. This

verification procedure is essential to make sure that the value function is finite (see, for example,

Kraft (2005)). To the best of our knowledge, the optimization problem (21) has not yet been

considered in the literature. In our collective framework, such a separation technique seems

not possible. Hence, dynamic programming does not allow us to achieve an explicit solution to

the value function and the investment strategies. Therefore, below, we solve Problem (21) by

relying on a martingale approach which results in an explicit solution. To this end, we complete

the market with an additional hedging instrument as discussed in the previous section. In

particular, our objective is the following static problem

max
XT

E [UB,G(XT )] subject to E
[
ξ
(η)
T XT

]
= x. (22)

In order to proceed with the collective utility maximization problem, we shall examine two

integrability conditions similar to (9) and (10) to ensure that the optimization problem (22) is
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well-defined:

E
[
ξ
(η)
T IB,G(λξ

(η)
T )
]
<∞, (23)

E
[
UB,G

(
IB,G(λξ

(η)
T )
)]

<∞, (24)

for all λ > 0 . Note that assumption (19) is sufficient for both conditions to be fulfilled: For

(23), this is straightforward to see. To show (24), we use (4) to obtain

E
[
UB,G

(
IB,G(λξ

(η)
T )
)]

= E

[
n∑

i=1

βiUi,Gi

(
Ii,Gi

(
λ

βi
ξ
(η)
T

))]

=
n∑

i=1

βi
1− γi

E

[(
λ

βi
ξ
(η)
T

)− 1−γi
γi

]
,

which leads to (19) again. Thus, roughly speaking, the verification result needed in the context

of HJB now boils down to the integrability assumption (24) in the martingale approach.

The solution of Problem (22) can be obtained from the Lagrangian approach as

X∗T = IB,G(λξ
(η)
T ) =

n∑

i=1

Ii,Gi

(
λ

βi
ξ
(η)
T

)
=

n∑

i=1

(
Gi +

(
λ

βi
ξ
(η)
T

)− 1
γi

)
, (25)

where λ is determined from the budget constraint.

Remark 4.2. For n = 1 , Problem (22) is reduced to the individual optimization problem

(taking individual i with an initial wealth xi > Gie−rT as an example):

max
Xi
T

E
[
Ui,Gi(X

i
T )
]

subject to E
[
ξ
(η)
T X i

T

]
= xi . (26)

The individual optimal solution for individual i is given by

X
(i,∗)
T = Ii,Gi(λiξ

(η)
T ), (27)

where λi can be determined explicitly from the budget constraint and is given by

λi =




xi −Gi
0

E
[(
ξ
(η)
T

)1− 1
γi

]




−γi

.

Using Lemma 4.1, we can now determine the optimal strategy of Problem (22) explicitly.

Proposition 4.3. Consider the optimization problem (22). Using the notations in Lemma 4.1,
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the optimal wealth at time t ∈ [0, T ) is given by

X∗t = X∗t

(
ξ
(η)
t , Vt

)
=

n∑

i=1

Gi
t +

(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t).

The optimal hedge and speculative demand are then given by

Θ
(1,∗)
t =

1

X∗t

n∑

i=1

(
η1
γi
− δρHi(T − t)

)(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t), (28)

Θ
(2,∗)
t =

1

X∗t

n∑

i=1

(
η2
γi
− δ
√

1− ρ2Hi(T − t)
)(

λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t), (29)

where Hi(s) := Bi(s)−ai . In particular, the optimal fraction of wealth invested in the derivative

and the risky asset at time t ∈ [0, T ) are then given by

φ∗t =

∑n
i=1

(
η2
γi
− δ
√

1− ρ2Hi(T − t)
)(

λ
βi
ξ
(η)
t

)− 1
γi k

(η)
i (t)

X∗t
gV δ
√

1−ρ2
Ot

,

π∗t =
1

X∗t

n∑

i=1

(
η1
γi
− δρHi(T − t)

)(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t)− φ∗t

gSSt + δρgV
Ot

.

Proof. Using Lemma 4.1, we obtain

X∗t = E

[
ξ
(η)
T

ξ
(η)
t

IB,G(λξ
(η)
T )

∣∣∣∣ Ft
]

=
n∑

i=1

E

[
ξ
(η)
T

ξ
(η)
t

(
Gi +

(
λ

βi
ξ
(η)
T

)− 1
γi

) ∣∣∣∣ Ft
]

=
n∑

i=1

Gi
t +

(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t). (30)

Next, we compute the optimal fractions of wealth invested in the risky asset π∗t and the

derivative φ∗t . Observe that

∂X∗t

∂ξ
(η)
t

= −
n∑

i=1

1

γi

(
λ

βi

)− 1
γi
(
ξ
(η)
t

)− 1
γi
−1
k
(η)
i (t) ,

∂X∗t
∂Vt

= −
n∑

i=1

(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t)Hi(T − t) .

We use Itô’s formula to represent the dynamics of the wealth process as

dX∗t = (drift)dt+
∂X∗t

∂ξ
(η)
t

dξ
(η)
t +

∂X∗t
∂Vt

dVt .
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Recall that

dξ
(η)
t = −ξ(η)t

(
rdt+ η1

√
VtdW

(1)
t + η2

√
VtdW

(2)
t

)
,

dVt = κ(V − Vt)dt+ δ
√
Vt(ρdW

(1)
t +

√
1− ρ2dW (2)

t ) .

This leads to

∂X∗t

∂ξ
(η)
t

dξ
(η)
t =

n∑

i=1

1

γi

(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t)

(
rdt+ η1

√
VtdW

(1)
t + η2

√
VtdW

(2)
t

)
,

∂X∗t
∂Vt

dVt = −
n∑

i=1

(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t)Hi(T − t)

(
κ(V − Vt)dt+ δ

√
Vt(ρdW

(1)
t +

√
1− ρ2dW (2)

t )
)
.

From this, together with (18), we obtain

Θ
(1,∗)
t X∗t

√
VtdW

(1)
t =

n∑

i=1

(
η1
γi
− δρHi(T − t)

)(
λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t)

√
VtdW

(1)
t ,

Θ
(2,∗)
t X∗t

√
VtdW

(2)
t =

n∑

i=1

(
η2
γi
− δ
√

1− ρ2Hi(T − t)
)(

λ

βi
ξ
(η)
t

)− 1
γi

k
(η)
i (t)

√
VtdW

(2)
t .

From the definitions of Θ
(1)
t and Θ

(2)
t as given in (18), it is straightforward to derive formulas

for π∗t and φ∗t .

Remark 4.4. As pointed out in Chen et al. (2018) (Appendix F), individual i ’s optimal hedge

and speculative demand in the case without guarantees are given by η1
γi
− δρHi(T − t) and

η2
γi
− δ
√

1− ρ2Hi(T − t) , respectively. Hence, the collective optimal hedge and speculative de-

mand are given as the sum of the optimal individual demands without guarantees, weighted by(
λ
βi
ξ
(η)
t

)− 1
γi k

(η)
i (t)/X∗t , which is individual i ’s surplus (see (30) for n = 1 ) divided by the

collective optimal wealth.

Let us consider a numerical example. The base case parameter choice is summarized in Table

1.7 Concerning the choice of the volatility parameters and the correlation, we follow Liu and

Pan (2003) whose choice of parameters is “in the generally agreed region” of the empirical

studies by Andersen et al. (2002), Pan (2002) and Eraker et al. (2003). Concerning the risk

premiums, we also follow Liu and Pan (2003). In particular, we assume that volatility risk is

negatively priced, as supported by the findings of Benzoni (1998), Chernov and Ghysels (2000),

Pan (2002) and Bakshi and Kapadia (2003). Note that the negative price of volatility risk leads

the investor to seek a short position in volatility risk. In other words, under negatively priced

volatility risk, an investor seeks a short position in derivatives with positive exposure to the

7For simplicity, we assume a rather short investment horizon. Our main qualitative arguments do not change
under a longer maturity.

Research Papers 5 A collective investment problem in a stochastic volatility environment

187



Volatility parameters Risk premiums Correlation
V0 = V = 0.132, κ = 5, δ = 0.25 η1 = 4, η2 = −6 ρ = −0.4

Risk-free rate, maturity Pool size Weights βi
r = 0.02, T = 1 n = 30 βi = (λi)

−1
∑n
i=1(λi)

−1 , i = 1, . . . , n

Degrees of risk aversion Initial wealth Guarantee

γi = 1
2

+ 9.5(i−1)
n−1 , i = 1, . . . , n xi = 1, i = 1, . . . , n Gi = 0.5, i = 1, . . . , n

Table 1: Base case parameters.

volatility risk. The choice of the weights βi is motivated by Section 5, where we show that the

collective terminal wealth (25) rewrites to the sum of individual terminal wealths (27) under

these weights.

In Figure 1 the optimal wealth at time t = 1/2 , the hedge demand and the speculative

demand are plotted as functions of the pricing kernel ξ
(η)
t and the instantaneous variance Vt

at t = 1/2 . We see that the optimal wealth and the hedge demand are increasing in the

(a) Optimal wealth (b) Hedge demand (c) Speculative demand

Figure 1: The optimal wealth X∗t , the hedge demand Θ
(1,∗)
t and the speculative demand

Θ
(2,∗)
t as functions of the pricing kernel ξ

(η)
t and the variance Vt at t = T/2 for the base case

parameter setup summarized in Table 1.

variance Vt and that the speculative demand is decreasing in Vt . The reason for the increase

of the wealth and the hedge demand in this example is assumption (17) along with the posi-

tive choice of η1 which imply that an increase in the volatility at time t yields a higher rate

of return per unit of volatility. The decrease of the speculative demand can be explained by

the negatively priced volatility risk ( η2 < 0 ). Regarding the pricing kernel, we observe that

well-performing markets (a low value of ξ
(η)
t ) lead to a higher wealth and hedge demand and

a lower speculative demand. Further, we see that the hedge demand is positive (long position)

while the speculative demand is negative (short position) in all scenarios. The reason for this

“reverse” behavior of the hedge and speculative demand in our parameter setup is the negative

volatility risk premium which results from choosing η2 smaller than zero.
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5 Achieving individual optimal solutions

In this section, we address the question how the optimal terminal wealth (25) can be shared

among the individuals in the collective. As it is the fund manager’s primal goal to meet

individual guarantees Gi , we assume that the fund manager starts by distributing to each

individual her guarantee Gi . Further, let (αi)i=1,...,n be any (possibly state-dependent) sharing

rule satisfying αi ≥ 0 for all i = 1, . . . , n and
∑n

i=1 αi = 1 . This sharing rule is applied to the

wealth exceeding the collective guarantee and determines the fraction of terminal surplus each

individual receives. That is, for any collective terminal wealth XT > G , investor i receives

X i
T = Gi + αi(XT − G) . Based on the optimal collective terminal wealth (25), a natural

candidate for the terminal wealth which investor i obtains is given by

X i
T = Ii,Gi

(
λ

βi
ξ
(η)
T

)
= Gi +

(
λ

βi
ξ
(η)
T

)− 1
γi

, (31)

that is,

αi(ξ
(η)
T ) =

(
λ
βi
ξ
(η)
T

)− 1
γi

X∗T −G
. (32)

Naturally, the question arises whether a fair way of sharing the surplus can be achieved by

a specific choice of the weights βi , as the sharing rule in (32) is not necessarily fair. With-

out fairness, there might be some individuals in the collective who profit from the collective

investment and some who suffer losses (compared to their individual investment). Let us now

assume that the financial fairness condition as considered in Bühlmann and Jewell (1979) or,

more recently, also in Schumacher (2018) is fulfilled. To be precise, we assume that the initial

market value of the terminal payoff received by each investor i equals the initial contribution

of this investor, that is,

xi = E
[
ξ
(η)
T Ii,Gi

(
λ

βi
ξ
(η)
T

)]
. (33)

In our setting, it is then possible to return to each investor her individual optimum as obtained

from Problem (22) for n = 1 .

Proposition 5.1. We assume that each investor in the collective receives the terminal wealth

given in (31). If we further impose the financial fairness condition (33), each investor in the

collective obtains her individual optimum as given in (27).
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Proof. Let us introduce the notation k
(η)
i = k

(η)
i (0) as defined in equation (20). The financial

fairness condition delivers

xi = E
[
ξ
(η)
T Ii,Gi

(
λ

βi
ξ
(η)
T

)]
= Gi

0 +

(
λ

βi

)− 1
γi

k
(η)
i ⇔ βi

λ
=

(
xi −Gi

0

k
(η)
i

)γi

.

Using the fact that the βi add up to 1, we obtain

λ =
1

∑n
i=1

(
xi−Gi0
k
(η)
i

)γi , βi =

(
xi−Gi0
k
(η)
i

)γi

∑n
j=1

(
xj−Gj0
k
(η)
j

)γj . (34)

For the case n = 1 , the budget constraint of Problem (22) can be written as

xi = E
[
ξ
(η)
T Ii,Gi

(
λiξ

(η)
T

)]
= Gi

0 + λ
− 1
γi

i k
(η)
i .

Plugging this expression into the two expressions given in (34), we obtain

λ =
1∑n

i=1(λi)
−1 , βi =

(λi)
−1

∑n
i=1(λi)

−1 . (35)

Consequently, each investor’s terminal payoff in (31) simplifies to Ii,Gi(λiξ
(η)
T ) .

Proposition 5.1 states that it is possible to achieve the individual optimal terminal wealth for all

the individuals in the collective. The main assumptions for this result are the financial fairness

and the use of a state-dependent sharing rule. This result is also valid under constant volatility

and can be proven in the exact same way by simply replacing ξ
(η)
T with ξT . In fact, this result

has already been proven in Branger et al. (2018b) in a Black-Scholes market for CRRA utility

functions (i.e. with all the individual guarantees being equal to zero).

Under the financial fairness condition, the sharing rule (32) can be simplified to the follow-

ing:

αi(ξ
(η)
T ) =

(
λiξ

(η)
T

)− 1
γi

∑n
j=1

(
λjξ

(η)
T

)− 1
γj

(36)

for all i = 1, . . . , n . A disadvantage of this sharing rule is, however, that it depends on the mar-

ket state at maturity and is, thus, not easy to communicate. Therefore, in the following section,

we consider two examples of more prevailing sharing rules which are easier to communicate.
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6 Linear sharing rules and welfare analysis

In practice, sharing rules that are easier to communicate, like linear (or affine) sharing rules,

are applied. We aim at finding out how these sharing rules affect individuals’ benefits in a

stochastic volatility setting and compare the results to a constant volatility setting. Following

the existing literature, we consider two further sharing rules in addition to the sharing rule

defined in (36):8

• Linear sharing rule (without financial fairness): One of the most frequently used

sharing rules in practice is the linear (or affine) sharing rule (α̃i)i=1,...,n defined by

α̃i =
xi
x
, i = 1, . . . , n. (37)

The shares that the individuals obtain from the total surpluses correspond to the shares

of their initial investment in the fund. This simple sharing rule is known at time 0 and

is thus easier to communicate than the state-dependent sharing rule (36). In addition, it

can be shown that this linear sharing rule does not necessarily fulfill the financial fairness

condition. It has been documented that this linear sharing rule is suboptimal, see, for

example, Jensen and Nielsen (2016) and Branger et al. (2018a). In our numerical analysis,

we will quantify the possible utility loss for the individuals.

• Financially fair linear sharing rule: A slight modification of (37) delivers the fair

sharing rule (α̂i)i=1,...,n which is defined as

α̂i =
xi −Gi

0

x−G0

, i = 1, . . . , n. (38)

It is straightforward to check that this sharing rule results in a financially fair payoff to

each individual.

Note that none of the two linear sharing rules manages to deliver the individually optimal

solutions to all the individuals in the collective. In the following, we compare the well-being of

the investors in the financial market under the sharing rules introduced above. To measure the

well-being of the investors, we rely on the certainty equivalent return introduced in Subsection

6.1. For our analysis, we assume that the weights βi are given as in (35).

8The sharing rules considered here are inspired by previous works concerning a collective of individuals facing
a joint decision under uncertainty. For example, Wilson (1968) and Huang and Litzenberger (1985) analyze the
Pareto optimality of sharing rules. Weinbaum (2009) considers two individuals with different utility functions
who are tied together by a social planner who uses a weighted sum of the individual utility functions and then
characterizes the optimal sharing rule implicitly. Jensen and Nielsen (2016) consider a similar social planner
whose sharing rule is initially fixed to be linear, though. Branger et al. (2018a) consider a rather similar setting
as Jensen and Nielsen (2016) but generalize the analysis to n investors instead of two.
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6.1 Certainty equivalent

For any investor i and a given terminal payoff X i
T , the certainty equivalent wealth is denoted

by CEi = CEi(X
i
T ) . It is defined as the deterministic wealth level which yields the same

expected utility as some terminal wealth X i
T :

Ui,Gi (CEi) = E[Ui,Gi(X
i
T )].

This results in

CEi = E
[
(αi(X

∗
T −G))1−γi

] 1
1−γi +Gi

for some sharing rule (αi)i=1,...,n . Under the state-dependent sharing rule (36), we can compute

the certainty equivalent of investor i in the Heston model as

CE∗i = Gi + E
[(
λiξ

(η)
T

)− 1−γi
γi

] 1
1−γi

= Gi + λ
− 1
γi

i E
[(
ξ
(η)
T

)1− 1
γi

] 1
1−γi

= Gi + λ
− 1
γi

i

(
k
(η)
i

) 1
1−γi . (39)

Under the linear sharing rule (37), for example, we can compute the certainty equivalent of

investor i in the Heston model as

C̃Ei = E
[
(α̃i(X

∗
T −G))1−γi

] 1
1−γi +Gi

= α̃iE
[
(X∗T −G)1−γi

] 1
1−γi +Gi

= α̃iE



(

n∑

j=1

(
λjξ

(η)
T

)− 1
γj

)1−γi



1
1−γi

+Gi, (40)

and an analogous calculation can be carried out for the linear sharing rule (38). Inspired by,

for example, Zieling et al. (2014) and Branger et al. (2018a), we now consider the certainty

equivalent return. It is defined as the deterministic rate of return yi = yi(X
i
T ) which delivers

the same utility as some state-dependent terminal wealth, that is,

Ui,Gi
(
xie

yiT
)

= E[Ui,Gi(X
i
T )] ⇔ yi =

1

T
ln

(
CEi(X

i
T )

xi

)
. (41)

The certainty equivalent return is easier to interpret than the certainty equivalent wealth,

particularly when individuals own different wealth levels.
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6.2 Numerical analysis

In Figure 2, we compare the certainty equivalent returns defined in (41). Panel (a) demonstrates

the certainty equivalent returns for the base case, where the parameters are listed in Table 1.

In particular, we have used in the base case that the initial wealth levels and the required

guarantees for all the individuals are identical, which implies that both linear sharing rules are

identical. In addition to the base case, we show in Panel (b) the case of a guarantee which

increases in γi . The guarantees for this case are chosen as

Gi = pixie
giT , pi =

i− 1

n− 1
, gi = −0.015 + 0.03

i− 1

n− 1
, i = 1, . . . , n. (42)

This illustrates a more realistic choice for the minimum guarantees: the more risk-averse an

individual is, the higher is the minimum guarantee chosen. In Figure 2, we observe the following:

(a) Base case (b) Base case with increasing guarantee

Figure 2: Certainty equivalent returns (41) of the investors in the collective. In Panel (a), the
base case is used while in Panel (b) we show the case given in (42).

• In Panel (a), we observe that imposing the linear sharing rule leads to losses for all the

individuals, which can be considered as the (negative) deviation of the certainty equiv-

alent returns from the state-dependent case (or individuals’ optimal certainty equivalent

returns). High losses arise for the least and the most risk-averse individuals. The benefits

of some investors are hardly influenced by the linear sharing rule. The main reason for

this result is probably that the optimal collective investment strategy is closest to the

individual optimal investment strategies with γi around 3.5. For those who are least or

most risk-averse, the optimal collective investment strategy differs significantly from their

individual optimal investment strategies.

• In Panel (b), we make the following observations:9

9Note that in the determination of the optimal collective investment strategies, only the total guarantee
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– Fair linear sharing rule: Similarly as in Panel (a), compared to the (fair) state-

dependent sharing rule, the application of a fair linear sharing rule causes losses to

all the investors. Different from Panel (a), individuals having medium and small

risk aversions suffer most. The reason that highly risk-averse investors’ losses are

reduced compared to Panel (a) is the additional effect caused by their required high

minimum guarantees.

– Unfair linear sharing rule: As the fund manager will first meet all the individual

guarantees and then split the surpluses, individuals who require low guarantees im-

plicitly finance the guarantees of individuals who demand high guarantees. For the

unfair linear sharing rule, this argument seems to dominate. As a consequence, indi-

viduals demanding low guarantees suffer drastic losses, whereas investors demanding

high guarantees are better off compared to their individual optimal solution. The

certainty equivalents can even become negative for individuals with low risk aversion

and low guarantees.

Due to the drastic losses occurring under unfair linear sharing rules (compared to moderate

losses under a fair sharing rule), fairness shall certainly be taken into consideration if a linear

sharing rule is applied in practice.

In Figure 3 we compare the certainty equivalents of the investors in the collective under con-

stant volatility. We use the parameters from Table 1. The parameters of the Black-Scholes

market are specified as µ = 0.0876 and σ = 0.13 . Note that we obtain µ−r
σ

= η1
√
V under

these parameters. We consider the Black-Scholes analogue of the sharing rule defined in (36)

(that is, we replace ξ
(η)
T by ξT ) and the linear sharing rules (37) and (38). We observe from

Figure 3 that the certainty equivalent returns under constant volatility exhibit similar patterns

as in the stochastic volatility case (cf. Figure 2). However, the certainty equivalent returns

under constant volatility seem to be overall lower than in the stochastic volatility case. The

“unfairness” caused by the (unfair) linear sharing rule (37) seems to weaken slightly.

In conclusion, by the use of the unfair linear sharing rule, individuals requiring high guarantees

benefit largely from the collective, while those who require low guarantees suffer substantially

from the collective. The fair linear sharing rule, on the other hand, causes only moderate

losses to all the individuals in the collective. Thus, from a fund manager’s perspective, to serve

each individual in the collective fairly, the use of a financially fair sharing rule shall be preferred.

Given the widespread use of linear sharing rules, it is interesting to find out whether the

sub-optimality of linear sharing rules will be amplified in the more realistic stochastic volatility

level plays a role, while the individuals’ certainty equivalent returns do additionally depend on the individual
guarantees.
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(a) Base case (b) Base case with increasing guarantee

Figure 3: Certainty equivalent returns (41) of the investors in the collective for constant volatil-

ity case (where ξ
(η)
T is replaced by ξT ). In Panel (a), the base case is used while in Panel (b)

we show the case (42).

setting. For this purpose, we consider the quantity

Ri := y∗i − y`i (43)

for all individuals i = 1, . . . , n , where y`i is the certainty equivalent return under a linear

sharing rule. They are provided in Figure 4. In both Panels, we observe that the curves

(a) Base case (b) Base case with increasing guarantee

Figure 4: Relative losses Ri as defined in (43) of the investors in the collective. In Panel (a),
the base case is used while in Panel (b) we show the case (42).

resulting from the Heston model lie above those from the Black-Scholes model. In other words,

the imposition of a suboptimal linear sharing rule leads to larger losses (and, in Panel (b),

smaller gains) for all the individuals in the collective under the Heston model compared to the

Black-Scholes model. Let us, for example, consider the base case: In the current parameter
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choice, an individual with parameter γi ≈ 6 obtains a certainty equivalent return that is 3%

lower than the optimal one in the Heston model and 1% lower than the one in the Black-

Scholes model. Among the individuals in the collective, the difference between the two models

is the largest for those with a very low risk aversion. This behavior can be explained by the

thicker tails of the Heston model which delivers more extreme market scenarios than the Black-

Scholes model. Thus, in a more realistic financial market setting with stochastic volatility, the

sub-optimality of the linear sharing rule is intensified.

7 Conclusion

In this article, we solve a collective investment problem of a fund manager who invests for

a collective of individuals who measure their utility from the terminal wealth exceeding a

deterministic minimum guarantee, both in a Black-Scholes model and a Heston model. We

have shown that all the investors in the collective receive their individually optimal terminal

wealth levels under financial fairness when the fund manager uses a specific state-dependent

sharing rule. Using a financially fair linear sharing rule leads to moderate losses for all investors

in the collective. However, imposing a linear sharing rule which is not financially fair makes

some individuals better and some worse off, compared to the financially fair linear sharing rule.

As ignoring the financial fairness condition can lead to drastic losses for some individuals, a

financially fair linear sharing rule performs better from a fund manager’s perspective if she

wants to take account of all individuals in the collective in a fair way. Our results show that

losses imposed by linear sharing rules are larger under stochastic volatility than under constant

volatility.

It would be interesting to analyze how individual utility is affected if the fund manager is

restricted to some commonly applied investment strategies like, for example, CPPI strategies.

We leave this analysis for future research.
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A Proof of Lemma 4.1

To compute the conditional expectation in (20), let us additionally introduce the following

notation:

Z+
t := ρW

(1)
t +

√
1− ρ2W (2)

t ,

Z−t :=
√

1− ρ2W (1)
t − ρW (2)

t ,

ζ±t := exp

(
−η± ·

∫ t

0

√
VsdZ

±
s −

η2±
2

∫ t

0

Vsds

)
.

Note that Z+
t and Z−t are independent Brownian motions because their covariation is equal

to zero. Under this notation, we have

∫ t

s

√
VνdZ

+
ν =

1

δ

(
Vt − Vs − κV (t− s) + κ

∫ t

s

Vνdν

)
, (44)

and we can write ξ
(η)
t = e−rtζ+t ζ

−
t . This leads us to

E

[(
ξ
(η)
T

ξ
(η)
t

)qi ∣∣∣∣ Ft
]

= e−rqi(T−t)E
[(

ζ+T ζ
−
T

ζ+t ζ
−
t

)qi ∣∣∣∣ Ft
]
.

Conditioning on the path {Z+
s }s∈[t,T ] , which is the Brownian motion driving the volatility, the

process ζ−t follows a log-normal distribution. Hence, using (44), this term can be expressed as

e−rqi(T−t)E
[(

ζ+T
ζ+t

)qi
E
[(

ζ−T
ζ−t

)qi ∣∣∣∣ {Z+
s }s∈[t,T ]

] ∣∣∣∣ Ft
]

= e−rqi(T−t)E
[(

ζ+T
ζ+t

)qi
e−qi(1−qi)

η2−
2

∫ T
t Vsds

∣∣∣∣ Ft
]

= e−rqi(T−t)E
[
e(Vt+κV (T−t))aie−aiVT−bi

∫ T
t Vsds

∣∣∣∣ Ft
]

= e−rqi(T−t)e(Vt+κV (T−t))aiE
[
e−aiVT−bi

∫ T
t Vsds

∣∣∣∣ Ft
]
. (45)

The expectation in (45) is the Laplace transform of (VT ,
∫ T
t
Vsds) at (ai, bi) . An explicit

formula for this Laplace transform and the necessary conditions for this representation are

given in Proposition 5.1 in Kraft (2005) and Proposition 6.3.4.1 in Jeanblanc et al. (2009). It

is shown in Chen et al. (2018) that assumption (19) is sufficient for the Laplace transform to

be well-defined at (ai, bi) for all i = 1, . . . , n . Therefore, we can simplify (45) to (20). �
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