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Abstract

Abstract

The tokamak is one of the most promising concepts to produce controlled thermonu-
clear fusion power. In tokamak configuration, deuterium-tritium fuel heated to high
temperatures turns into the plasma state that has to be confined for a sufficiently
long time to achieve the condition of the self-sustaining burning plasma. However,
small scale instabilities driven by plasma temperature and density gradients cause
turbulence, which is responsible for enhanced particle and energy losses in the sys-
tem. This turbulent transport is considered as one of the main phenomena that
degrade the plasma confinement.

Turbulence in tokamaks generates nonlinearly large-scale flows (called zonal flows)
that deplete the turbulence level and thus play a fundamental role in turbulence
regulation and saturation. As part of this dynamics, an oscillatory counterpart of
the zonal flows can arise because of the action of the magnetic field curvature. These
oscillations, which can also couple directly to the turbulence, are called the geodesic
acoustic modes (GAMs) and are the main subject of this thesis. GAMs can be
driven unstable also by an anisotropic energetic particle (EP) population leading
to the formation of global radial structures, called EGAMs. The EGAMs might
play the role of an intermediate agent between the energetic and thermal species by
redistributing the EP energy to the bulk plasma through collisionless wave-particle
interaction. In such a way, the EGAMs might contribute to plasma heating. Thus,
investigation of EGAM properties, especially in velocity space, is necessary for a
precise understanding of the transport phenomena in tokamak plasmas.

In this thesis, we numerically investigate different mechanisms of the GAM damp-
ing and excitation such as Landau damping, phase mixing and the mode formation
by energetic particles and turbulence. While several aspects of the GAM dynam-
ics can be understood in the frame of a fluid model, a quantitative understanding
requires a kinetic approach, which can describe the details of the GAM interaction
with the plasma particles in phase space and thus capture, for instance, the effect
of resonances. The global gyrokinetic particle-in-cell code ORB5 is used here as the
primary numerical tool for this study. As a part of this work, additional relevant code
diagnostics are developed, such as a Mode-Particle-Resonance (MPR) technique to
explore wave-particle interactions in velocity space. This MPR method is employed
to study EGAM dynamics in a magnetic configuration typical of the ASDEX Up-
grade (AUG) tokamak, by analysing the influence of different species on the time
evolution of the mode. It is shown that electrons, which are often not included
in the theoretical analyses, significantly contribute to the damping of (E)GAMs in
experimentally relevant AUG plasma systems. Moreover, nonlinear EGAM dynam-
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Abstract

ics without considering the mode interaction with turbulence is investigated here to
explore energy transfer by the mode from energetic particles to thermal species, in-
cluding kinetic electron effects. It is shown that the electron dynamics decreases the
EGAM saturation amplitude and consequently reduces the plasma heating by the
mode, even though the mode transfers its energy to thermal ions much more than
to electrons.

Finally, nonlinear GAM excitation by ion-temperature-gradient driven instabil-
ities is numerically simulated for magnetic configurations reflecting the properties
of AUG and of the Tokamak à Configuration Variable (TCV). Formation of con-
tinuum and global frequency spectra of the geodesic and GAM-like structures is
demonstrated in these computations.
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Zusammenfassung

Zusammenfassung

Der Tokamak ist eines der vielversprechendsten Konzepte zur Erzeugung kontrollier-
ter Kernfusion. In der Tokamak-Konfiguration wird der Deuterium-Tritium-Brennstoff
auf hohe Temperaturen erhitzt, sodass ein Plasmazustand erreicht wird. Das Plasma
muss ausreichend lange eingeschlossen werden, damit der Zustand des selbsttragen-
den brennenden Plasmas erreicht wird. Plasmatemperatur- und Dichtegradienten
führen jedoch zu Mikroinstabilitäten. Diese Mikroinstabilitäten verursachen Turbu-
lenzen, die für erhöhte Partikel- und Energieverluste im System verantwortlich sind.
Der turbulente Transport wird als eines der Hauptphänomene angesehen, die den
Plasmaeinschluss verschlechtern.

Turbulenzen in Tokamaks erzeugen nichtlinear großskalige Flüsse, die als zona-
le Strömungen oder Zonal Flows bezeichnet werden. Diese Flüsse verringern das
Turbulenzniveau und spielen eine grundlegende Rolle bei der Turbulenzregulierung.
Ein oszillierendes Gegenstück zu den Zonal Flows kann aufgrund der Magnetfeld-
krümmung entstehen, und kann auch direkt mit den Turbulenzen interagieren. Diese
Oszillationen werden als geodätische akustische Moden (GAM) bezeichnet und sind
das Hauptthema dieser Arbeit. GAMs können auch von einer anisotropen energe-
tischen Partikelpopulation (EP) angeregt werden. Die resultierende globale radia-
le Struktur heißt EGAM. Die EGAM kann die Rolle eines Mediators zwischen den
energetischen und thermischen Spezies spielen. Dieser Moden verteilt die EP-Energie
durch kollisionsfreie Welle-Partikel-Wechselwirkung auf das Bulk-Plasma. Auf diese
Weise können die EGAMs zur Plasmaheizung beitragen. Daher ist die Untersuchung
der EGAM-Eigenschaften, insbesondere im Geschwindigkeitsraum, erforderlich, um
die Transportphänomene im Tokamak zu verstehen.

In der vorliegenden Arbeit werden verschiedene Mechanismen der GAM-Dämpfung
und GAM-Anregung wie Landau-Dämpfung, Phasenmischung und Modenbildung
durch energetische Partikel und Turbulenzen numerisch untersucht. Einige Aspekte
der GAM-Dynamik können im Rahmen eines Fluidmodells verstanden werden. Ein
quantitatives Verständnis erfordert jedoch einen kinetischen Ansatz. Dieser Ansatz
kann die Details der GAM-Wechselwirkung mit den Plasmapartikeln im Phasenraum
beschreiben und so beispielsweise den Effekt von Resonanzen erfassen. Der globale
gyrokinetische Particle-In-Cell Code ORB5 wird hier als primäres numerisches Werk-
zeug für diese Untersuchung verwendet. Im Rahmen dieser Arbeit werden zusätzliche
relevante Codediagnosen entwickelt, beispielsweise eine Moden-Partikel-Resonanz
(MPR)-Technik. Sie wird verwendet, um Wellen-Teilchen-Wechselwirkungen im Ge-
schwindigkeitsraum zu untersuchen und um den Einfluss verschiedener Spezies auf die
Zeitentwicklung der Moden zu analysieren. Die MPR-Methode wird verwendet, um
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Zusammenfassung

die EGAM-Dynamik in einer für das ASDEX Upgrade (AUG)-Tokamak typischen
magnetischen Konfiguration zu untersuchen. Es wird gezeigt, dass Elektronen, die
in den theoretischen Analysen häufig nicht enthalten sind, wesentlich zur (E)GAM-
Dämpfung in experimentell relevanten AUG-Plasmasystemen beitragen. Die nichtli-
neare EGAM-Dynamik ohne Berücksichtigung der Wechselwirkung der Moden mit
Turbulenzen wird ebenfalls analysiert. Insbesondere wird die Energieübertragung
durch die Moden von energetischen Partikeln auf thermische Spezies einschließlich
kinetischer Elektroneneffekte untersucht. Es zeigt sich, dass die Mode seine Energie
viel mehr auf thermische Ionen als auf Elektronen überträgt. Trotzdem verringert
die Elektronendynamik die EGAM-Sättigungsamplitude erheblich und folglich die
Plasmaheizung durch die Mode.

Schließlich wird die nichtlineare GAM-Anregung durch Ionen-Temperaturgradien-
ten-Instabilitäten für magnetische Konfigurationen numerisch simuliert, die Eigen-
schaften von AUG und vom Tokamak à Configuration Variable (TCV) widerspiegeln.
Die Bildung von Kontinuums- und globalen Frequenzspektren der GAM-ähnlichen
Strukturen wird in diesen Berechnungen demonstriert.
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Acronyms

Acronyms

AE Adiabatic Electrons (or an ES simulation with adiabatic
electrons)

ASDEX Upgrade Axially Symmetric Divertor Experiment, a divertor tokamak
at the Max Planck Institute of Plasma Physics, Garching near
Munich

AUG ASDEX Upgrade

CHEASE name of an ideal MHD equilibrium code

DW Drift Wave

EGAM Energetic particle driven Geodesic Acoustic Mode

EM Electromagnetic

EP Energetic Particle

ES Electrostatic

GAM Geodesic Acoustic Mode

GENE name of an Eulerian GK code

GK GyroKinetic

ITG Ion Temperature Gradient instability

KE drift-Kinetic Electrons (or an EM simulation with drift-kinetic
electrons)

MPR Mode-Particle-Resonance (diagnostic)

NL Non-Linear

ORB5 name of a particle-in-cell gyrokinetic code mostly used in this
thesis

PIC Particle-In-Cell

TCV Tokamak à Configuration Variable, tokamak in Swiss Plasma
Center of the École Polytechnique Fédérale de Lausanne
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Acronyms

ZF or ZFZF zero-frequency (stationary) Zonal Flow

zonal flux-surface averaged

ZS Zonal Structure (ZF or/and GAM)
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List of symbols

List of symbols

e Absolute electron charge
Zspe Species charge (Ze = −1)
c Speed of light
msp Species mass
Tsp Species temperature

vT,sp ≡ vth,sp = uth,sp · 2−0.5 =
√
Tsp/msp Species thermal temperature

cs = (Te/mi)
0.5 Sound speed

a0 Minor radius of a tokamak
R0 Major radius of a tokamak
B0 Magnetic field value at the magnetic axis
q Safety factor
κ Plasma elongation
ε = a0/R0 Inverse aspect ratio
ωc,sp = ZspeB0/(mspc) Species cyclotron frequency
ωs = cs/R0 Sound frequency

ρsp =
√

2vth,sp/ωc,sp Species Larmor radius
ρs = cs/ωci Sound Larmor radius
ρ∗ = ρs/a Inverse normalised minor radius
Lx = 2/ρ∗ Normalised size of a plasma system
ψ Poloidal flux coordinate

s =
√
ψ/ψedge Standard ORB5 radial coordinate

τe = 1/τi = Te/Ti Electron-ion temperature ratio
〈ne〉 Volume-averaged electron density
βe = 4π〈ne〉Te/B2

0 Ratio of electron plasma and magnetic pressures
µsp = (mspv

2
⊥,sp)/(2B) Species magnetic moment
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Chapter 1

Introduction

1.1 Nuclear fusion

Nowadays, a significant effort is put into the development of a new type of nuclear
reactors to produce energy from thermonuclear fusion reactions. The basic idea that
lies behind this process can be explained in the following way. When a nucleus of
deuterium and one of tritium approach at a distance where nuclear forces take place,
they start attracting each other via the strong forces and can combine into a nucleus
of helium-4 (α-particle) with the emission of a high energy neutron:

D + T → α(3.5MeV ) + n(14.1MeV ). (1.1)

The energy release (in a form of kinetic energies of α and neutron particles) is ex-
plained by the attracting nature of the strong forces. Since nucleons are bound within
a nucleus, its mass is less than the system of the separate nucleons. This difference
is numerically expressed in a so-called binding energy:

B(A,Z) = (Zmp +Nmn)c2 −M(A,Z)c2, (1.2)

which is positive for a stable nucleus. Here, mp, mn, M(A,Z) are proton, neutron
and nucleus masses, Z, N are a number of protons (charge number) and neutrons,
A = N +Z is the mass number, c is the speed of light. If a nuclear reaction leads to
nuclei with higher binding energy, the reaction is exothermic, i.e. some energy Q is
released from nuclear bonds. By using data from Table 1.1, one can find the energy
produced during the DT reaction

QDT = MDc
2 +MT c

2 −Mαc
2 −mnc

2 = Bα −BD −BT = 17.589 MeV. (1.3)

1



1. Introduction

Nuclide A
ZX Mass (amu) Binding energy (MeV )

D 2.01410177811 2.225
T 3.01604928199 8.482
α (4

2He) 4.00260325413 28.296
3
2He 3.01602932007 7.718

Table 1.1: Nuclear masses and binding energies [1]. Atomic mass unit 1 amu =
931.494 MeV/c2 (see [2]), neutron mass mn = 1.0086649158 amu and proton mass
mp = 1.00782503224 amu (see [1]).

Because of the momentum conservation, it is the lighter neutron that takes most
of the released energy. Since the hydrogen isotope, tritium, T is unstable with a
half-life around 12.32 years, it is rare on Earth and should be produced in nuclear
reactors. In principle, there are other possible fusion reactions such as

D +D → T + p+ 4.033 MeV, (1.4)

D +D → 3He+ n+ 3.269 MeV (1.5)

that actually do not require the rare and expensive tritium. The problem is that the
nuclei have to overcome repulsive electrostatic (ES) forces to approach close enough
so that the strong force becomes the dominant one. Because of that, the DT or DD
mixture has to be heated to a very high temperature, where it turns into a plasma
state, and the DT reaction has the largest reaction rate at temperatures of the order
of T = 10 keV 1 2. On the other hand, the DD reaction rate remains much smaller.
In particular, at T = 10.3 keV the DT reaction rate is around 1.34 · 10−22 m3/s,
while it is 5.93 · 10−25 m3/s for the DD reaction [3, 4].

The α-particles produced in Reaction 1.1 should remain confined during a signifi-
cantly long time period within a thermonuclear reactor so that they can transfer their
energy to deuterium and tritium nuclei via collisions. The condition for a so-called
ignited plasma, when the produced α particles can maintain the required plasma
temperature, and no external heat sources are required to compensate power losses
such as radiation and heat transport in a thermonuclear reactor, is known as Lawson
criterion [5]

nTτe ≥ 1021 keV · s/m3. (1.6)

1The Boltzmann constant kB = 1.380 649 · 10−23 J/K is set to 1, and the temperatures are
treated in energy units (J or eV ).

2T [eV ] = T [K]kB [J/K]/e[J/eV ] = T [J ]/e[J/eV ] = T [K] · 8.617 333 · 10−5,
where e = 1.602 176 634 · 10−19 J/eV is the elementary charge.
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1.2 The tokamak

It states that the DT plasma has to be maintained with a high enough density
n and temperature T during a sufficiently long time interval τe. Here, τe is the
so-called energy confinement time, a characteristic time period during which the
temperature of the DT mixture inside of a fusion reactor reduces by a factor of
exp(−1) when all heat sources (including the heating due to the DT reactions) are
turned off. Nowadays, most of the research in the fusion plasma field is focused on
increasing the triple product on the left hand side of Eq. 1.6 avoiding at the same
time operational limits, for example, on the plasma pressure beyond which strong
instabilities are developed.

Neutrons released in the DT reactions impinge on reactor walls, where their
kinetic energy will be collected by a heat transfer fluid (for example, cooled helium).
The neutrons can also be used to maintain the level of tritium in a thermonuclear
reactor by adding lithium in designed modules mounted on the wall of the machines
and exploiting the reaction

6Li+ n→ 4He+ T. (1.7)

The fusion nuclear reactions described above cannot lead to an uncontrolled
regime causing a nuclear explosion as it might happen in fission nuclear reactors
because of the chain reactions. The DT reactions do not produce radioactive waste.
Neutrons produced in the fusion reactions activate materials only in the reactor walls.
Apart from that, fusion has much higher energy release per unit fuel mass than even
fission. More precisely, around 200 MeV per one 235U nucleus is produced in a fission
nuclear reactor, which is ∼ 82 TJ/kg. In a fusion DT reaction, 14.1 MeV per one
DT pair is generated, where we assume that 3.5 MeV of α-particle kinetic energy is
used to sustain the plasma, and it corresponds to ∼ 270 TJ/kg. As a result, reactors
based on the fusion nuclear principle might provide a significantly cleaner, safer, and
more efficient source of energy.

1.2 The tokamak

In a fusion reactor, the DT mixture is heated to a temperature around 10 keV . Under
such conditions, it turns into a hot plasma that must be kept inside of the reactor
without touching the walls. One of the possible options to achieve this is the magnetic
confinement that is based on the Larmor rotation of charged particles around a
magnetic field line restricting their perpendicular motion. A toroidal axisymmetric
configuration of the magnetic field is implemented in the tokamak concept (Fig. 1.1).
The machine size is characterized by a major radius R0 and minor radius a0 that

3



1. Introduction

Figure 1.1: Toroidal magnetic configuration (Fig. 1.1a), where a passing particle
trajectory for a case with a safety factor q = 3 (blue line), and a Σ plane (light blue
area, Eq. 1.10) are shown. Fig. 1.1b: a circular poloidal cross-section of a tokamak
with a major radius R0 of the magnetic axis and a minor radius a0. LFS is a Low
Field Side of a torus, where Bφ achieves its minimum inside of the plasma, while
HFS is a High Field Side. The toroidal angle φ and poloidal angle θ are periodic
coordinates, and the corresponding Fourier expansion of any plasma quantity in
these coordinates is associated with the toroidal number n and poloidal number m
respectively.

define the inverse aspect ratio ε = a0/R0 of the tokamak. The poloidal cross-section
of the background field can be circular or, for example, vertically elongated that is
numerically defined by the parameter called elongation κ ≥ 1. The magnetic field
is represented as a superposition of a dominant toroidal component Bφ produced
by external coils, and a poloidal part Bθ � Bφ, generated by an induced toroidal
plasma current. It is simple to show from Ampère’s law that the toroidal magnetic
field produced by the external coils scales with R−1 (Fig. 1.1b). The inner part of
the tokamak (R < R0) is thus called the High-Field Side (HFS), while the outer
part (R > R0) is called the Low-Field Side (LFS). The superposition of toroidal and
poloidal fields leads to helical field lines connecting LFS and HFS, and defining so-
called magnetic surfaces (Fig. 1.1a). The magnetic field configuration is characterised
by a radial profile of a safety factor q, which is related to the rotation angle of the
field lines at different radial points. Loosely speaking, if a field line moves more
slowly in the poloidal direction than in the toroidal one (in other words, rotates
several times toroidally while doing only one poloidal rotation) then q > 1. For a
large aspect ratio tokamak (ε−1 � 1) with a circular cross-section, the safety factor

4



1.2 The tokamak

can be approximated as [6]

q =
rBφ

RBθ

. (1.8)

In a realistic non-circular geometry, a precise q-profile is calculated numerically that
usually involves solving the so-called Grad-Shafranov equation. This equation defines
an ideal (without taking into account resistivity) equilibrium between the plasma
pressure p and the magnetic-field “cage” in an axisymmetric plasma system. In
such a system, the field lines lie on nested toroidal surfaces (magnetic surfaces).
The equilibrium condition is expressed by the magnetohydrodynamic (MHD) force
balance (compare to Eq. 1.16 below)

j×B

c
= ∇p, (1.9)

where j is the plasma current density. Since clearly B · ∇p = 0, the magnetic
surfaces become surfaces of constant pressure. For this reason, the pressure becomes
a function of only a radial coordinate, while the magnetic field has also a poloidal
dependence. It is convenient to introduce the poloidal magnetic flux function ψ

ψ =
1

2π

∫
Σ

B · dS (1.10)

as a radial coordinate in a tokamak geometry, since this function is constant on the
magnetic surfaces. Here, Σ is a circular area between the magnetic axis and a chosen
magnetic surface (Fig. 1.1a), which is perpendicular to the poloidal component of the
background magnetic field B. By setting predefined Bφ(ψ) and p(ψ) profiles in the
Grad-Shafranov equation mentioned above, one gets as a solution a poloidal profile
of the ψ function in a form of nested surfaces ψ = constant.

It is important to understand how charged particles move in the magnetic config-
uration of a tokamak. When a particle moves along a magnetic field line, it explores
the poloidal variation of the magnetic field (Fig. 1.2b). As a result, certain particles
can be trapped due to the so-called magnetic mirror effect. By considering for the
sake of simplicity a static electromagnetic (EM) field, one can find that the total
energy of a particle Etot and its magnetic moment µ are conserved along the particle
trajectory:

Etot =
1

2
mpv

2 + ZeΦ = const, (1.11)

µ =
mpv

2
⊥

2B
= const. (1.12)

5



1. Introduction

Figure 1.2: Cartoon of trapped particle trajectories in a torus (Fig. 1.1a) and their
poloidal projection (Fig. 1.1b).

Here, mp, Ze are a particle mass and charge (Z = −1 for electrons), Φ is an elec-
trostatic potential, which is assumed farther to be zero. From these equations, the
parallel component of the particle velocity can be found:

v2
‖ =

2

mp

(Etot −Bµ). (1.13)

This means that a particle can be reflected from the HFS if its parallel kinetic energy
is not high enough (Fig. 1.2), and be trapped in a magnetic well. The trapping
condition at the radial point r can be estimated in the following way

v‖
v⊥

∣∣∣∣
θ=0,r

≤
√

2ε(r), (1.14)

and it is the so-called passing-trapped boundary, where the particle velocity compo-
nents v‖, v⊥ and a local inverse aspect ratio ε(r) = r/R are taken at a radial point
r on the low-field side (θ = 0) of the torus. Here, the particles localised near this
boundary are called barely trapped (or barely passing).

1.3 Plasma confinement and the geodesic acoustic

mode (GAM)

One of the remaining key physics problems on the way to the realization of an efficient
fusion reactor based on the described toroidal magnetic confinement is the thorough
understanding and reliable prediction of the so-called anomalous transport of heat,

6



1.3 Plasma confinement and the geodesic acoustic mode (GAM)

momentum, and particles across the magnetic surfaces. It is by now commonly
attributed to turbulence which is driven by various plasma microinstabilities such
as drift waves (DWs) which extract free energy from the background temperature
and density gradients. They are known to self-organize to form mesoscopic (around
0.1a0) structures [7]. These structures take the form of a radial electric field which
depends spatially only on the radial coordinate. E×B poloidal flows associated with
this electric field are referred to as zonal flows (ZFs) [8, 9, 10, 11]. For a simple
physical picture of the E ×B drift see e.g. [6].

The action of the toroidal magnetic field curvature on the ZFs gives rise to oscil-
lations of the radial electric field. These ZF oscillations are called Geodesic Acoustic
Modes (GAMs). The importance of the zonal structures (ZSs), both ZFs and GAMs,
is that they can regulate the drift-wave turbulence [12] and possibly can play a vital
role in the transition from the low to the high confinement regime (L-H transi-
tion) [13]. The turbulence suppression by the ZFs was observed, for example, in
experiments described in [14]. The geodesic modes can also be directly driven by the
drift waves [15, 16, 17] through the three-waves coupling. In this sense, the GAMs
as well as the stationary zonal flows can be considered as a sink of the turbulent en-
ergy. On the other side, the geodesity (magnetic field curvature due to the toroidal
geometry) by itself, independently on the GAM presence, transfers energy from the
zonal flows back to the turbulence as it was demostrated in [18, 19]. A good overview
of the zonal structures, both stationary and oscillatory, is given in [10], and some
recent kinetic theories of the GAMs are described in [20].

The GAMs are the main subject of this thesis. The underlying physics is summa-
rized in this section, while the interaction of the zonal structures with the drift-wave
turbulence is discussed in Sec. 1.5. We first consider a simple derivation of the GAM
oscillation based on the equations of ideal MHD [21]. Later in this section, a physi-
cal interpretation of these results is discussed and illustrated through the results of
direct numerical simulations.

To estimate the GAM frequency, one can use the ideal MHD model that consid-
ers the plasma as a single neutral fluid [22] if the plasma satisfies a set of specific
assumptions (one can see [23] for more details). The ideal MHD couples hydrody-
namics

∂ρ

∂t
+ ∇ · (ρv) = 0, Continuity equation (1.15)

ρ

(
∂v

∂t
+ v ·∇v

)
= −∇p+

j×B

c
, Momentum equation (1.16)

∂p

∂t
+ (v ·∇)p+ Γp∇ · v = 0, Adiabatic energy equation (1.17)

7



1. Introduction

with Maxwell’s equations

∂B

∂t
= −c∇×E, Induction equation (Faraday′s law) (1.18)

E +
v ×B

c
= 0, Ideal Ohm′s law (1.19)

j =
c

4π
∇×B, Ampère′s law (1.20)

∇ ·B = 0. Divergence constraint (1.21)

to describe the macroscopic dynamics of highly conducting (with a zero resistivity)
plasma fluid. In the following we linearise these equations by splitting every quantity
in a background and a perturbation part. Hence, p = p0 + δp is the plasma pressure,
ρ = ρ0 + δρ is the plasma density, v is the plasma velocity perturbation (we assume
here there is not any background velocity), Γ is the ratio of the specific heats. The
field is represented by the electric perturbation E (again, no background electric
field), and the background magnetic field B = B0. The perturbations evolve in
time and space. On the other hand, we assume that the background density ρ0 and
pressure p0 are stationary and have flat profiles. The background magnetic field is
approximated as3

B = B0(1− r/R0 cos θ +O(ε2)) (1.22)

for the local cylindrical coordinate θ. The magnetic field curvature is defined as

K = b ·∇b =
∇⊥B
B

+
4π

c

j×B

B2
, (1.23)

where ∇⊥ is the space derivative perpendicular to the field unit vector b = B/B.
We are going to consider a low-pressure plasma system where one can neglect the
|j×B| � 1 term in the above equation (compare to Eq. 1.9). In such a system, the
field curvature becomes

K ≈ ∇⊥B
B

=
1

R0

(− cos θer + sin θeθ), (1.24)

where

KG =
sin θ

R0

(1.25)

3Here, the poloidal angle θ starts from the low-field-side.
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1.3 Plasma confinement and the geodesic acoustic mode (GAM)

is the geodesic curvature of the system.
The order of magnitude of the GAM frequency can be derived in ideal MHD (see

also [24]) starting with the linearised momentum and energy equations:

ρ0
∂v

∂t
= −∇δp, (1.26)

∂δp

∂t
= −Γp0∇ · v. (1.27)

Here and in the following, we are going to consider only the electric field perturbation
that is enough to describe essential GAM dynamics (see also Chapter 3). Therefore,
we don’t include here the terms like δj ×B0 and j0× δB. An initial zero-frequency
zonal flow described by an electric zonal potential φ is assumed to be present in
our plasma system. Here and farther in this work, under the term ”zonal” we un-
derstand a flux-surface averaged quantity (averaged or constant along both toroidal
and poloidal directions), which is characterized by a toroidal n = 0 and poloidal
m = 0 Fourier components, while other n and m components are equal to zero. Due
to the presence of the zonal flow, one observes a plasma flow perpendicular to the
background magnetic field B along the magnetic surface

v⊥ =
c

B2
B ×∇⊥φ, (1.28)

which is the so-called E×B drift. Here and in the following, we will consider only the
electrostatic contribution to the electric field, consistently with the low frequency of
these oscillations. Since the zonal signal φ does not depend on the poloidal coordinate
θ, the perpendicular derivative is reduced to that along the radial coordinate r:

∇⊥φ = er∂rφ. (1.29)

Now, we are going to consider only the transverse plasma motion v → v⊥, which is
related to the GAM formation due to the inhomogeneity of the background magnetic
field. We take the time derivative of the momentum equation (Eq. 1.26), and then
apply to it the operator ∇·(B/B2×...) with the assumption of a small inverse aspect
ratio ε� 1. Finally, by taking into account the time derivative of the pressure from
Eq. 1.27, we obtain the following equation for the zonal potential

− ρ0

B2
0

∂2

∂t2
∇2
⊥φ = Γp0

(
∇ · B

B2
×∇

)2

φ. (1.30)

The expression in the brackets on the right hand side can be evaluated in the following
way

∇ ·
(
B

B2
×∇

)
=

(
∇
(
B−2

)
×B +

∇×B
B2

)
·∇ =

2

B
b×K ·∇, (1.31)

9



1. Introduction

where we have used again the low-pressure approximation and Eq. 1.244. Since the
zonal potential φ depends only on the radial coordinate (and time), we take into
account only the radial component of the vector product

(b×K) · er = −sin θ

R0

= −KG (1.34)

and we finally obtain that

∇ ·
(
B

B2
×∇

)
= −2

KG

B0

∇⊥. (1.35)

By using this expression and by flux-averaging Eq. 1.30 to eliminate the dependence
on the poloidal angle θ, one gets(

∂2

∂t2
+ ω2

GAM

)
∂2
rφ = 0, (1.36)

where the oscillatory dynamics of the GAM appears due to the geodesic curvature

ωGAM = 2

√
K2
G

Γp0

ρ0

=
√

2
vs
R0

, (1.37)

K2
G =

1

2R2
0

, vs =

√
Γp0

ρ0

. (1.38)

Here, vs is the sound speed known from basic mechanics. The fluid model pro-
vides an approximation of the GAM frequency, while the GAM damping due to the
wave-particle interaction can be calculated only in the kinetic framework, which is
presented in Chapter 3.

Now, by considering the linearised continuity equation

∂δρ

∂t
= −ρ0∇ · v⊥, (1.39)

one can investigate how the plasma density changes in time during the GAM evo-
lution. By substituting the E × B drift (Eq. 1.28) into Eq. 1.39, using the vector

4Here, the following equations are applied as well

b×∇B = b×∇⊥B, (1.32)

∇× (fA) = ∇f ×A+ f∇×A, (1.33)

where f is some scalar value, while A is a vector.
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1.3 Plasma confinement and the geodesic acoustic mode (GAM)

(a)
(b)

Figure 1.3: Linear electrostatic simulations of GAMs in ORB5. Here, s is a radial
normalised coordinate, t is a time normalised to a deuterium cyclotron frequency
ωci = eB0/(mdc). Fig. 1.3a: radial structure of the zonal (n = 0,m = 0) radial
electric field Er. Fig. 1.3b, upper plot: time evolution at s = 0.45 of the zonal radial
electric field, and of the n = 0,m = 1 component of poloidal electric field, where Er,00

is equivalent to Er. Fig. 1.3b, bottom plot: time evolution at s = 0.45 of the zonal
radial electric field and of the n = 0,m = 1 component of the deuterium density,
where the signals are normalised to their maximums.

expression Eq. 1.35, and finally, taking time Fourier transformation, one obtains the
GAM density perturbation

δρ = −i 2ρ0c

ωGAMR0B0

∇rφ sin θ. (1.40)

Due to the poloidal dependence sin θ, which arises from the geodesic curvature
(Eq. 1.25), the zonal field is accompanied by poloidally asymmetric (m = 1) density
perturbations, so-called sidebands. In other words, GAMs are characterized by a
zonal electric field that couples through the geodesic curvature (also called toroidic-
ity or geodesity) with the plasma density resulting in the rise of up-down poloidally
asymmetric density sidebands. Apart from that, one can see from Eq. 1.40 that the
field perturbation is shifted in time with respect to the density perturbation by π/2,
which is mathematically expressed by the presence of the imaginary unit i.

Further physical insight can be gained through the analysis of a numerical simu-
lation of the GAM oscillation (simulations of this kind will play a fundamental role
in the present thesis). Here, let us consider a linear gyrokinetic electrostatic (ES)5

5In electrostatic simulations, the Ampère equation is not taken into account. That is why, the
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1. Introduction

Figure 1.4: Electrostatic linear simulations of the GAMs in ORB5. Poloidal cross-
sections of the zonal electric field Er,00 (upper row), and of the sideband (n = 0,m =
1) of the deuterium density perturbation δρ01 (lower row) are shown at different time
moments of the GAM period T . The radial domain is reduced up to s = 0.75 to
make the plots clearer. The grey line indicates the radial point s = 0.45, around
which the GAM is localised.

simulation of a GAM in a tokamak magnetic geometry with a circular poloidal cross-
section with a minor radius a0 = 1 m and major radius R0 = 10 m. Species density
and temperature profiles are taken flat as well as the safety factor profile. Values
of the plasma temperature and safety factor (Td = Te = 14.1 keV , q = 4.0) are
taken in such a way to guarantee a small damping rate of the geodesic mode. This
simplified modelling is performed with the global GK code ORB5 [25, 26, 27] that is
described in Chapter 2. In this simulation, the plasma consists of deuterium (with
a mass md and charge e) and adiabatic electrons.6 To excite GAMs in the studied
plasma system, we impose an initial zonal deuterium density perturbation with a
radial wavelength λ ∼ a0. Results of these simulations are presented in Fig. 1.3 and

evolution of the magnetic field is not considered, and only the electric potential perturbations can
be investigated.

6This means that there is not any phase shift between the electron density and the electric
potential, the electrons react immediately to the field perturbation (see Eq. 3.12).
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1.4 GAM damping and EGAM excitation

Fig. 1.4.
First of all, according to Fig. 1.3a, a GAM, which emerges due to the im-

posed initial density perturbations, is localised around a normalised radial coor-
dinate s ∼ 0.457. The bottom plot in Fig. 1.3b shows that the oscillations of the
zonal electric field Er = −∇rφ during the GAM evolution are accompanied by a
poloidally asymmetric (m = 1) density perturbation, which is shifted in time by π/2
with respect to the electric field. This is consistent with Eq. 1.40. From Fig. 1.4,
it can be seen that these perturbations are up-down asymmetric in the poloidal
cross-section, and the mentioned shift is observed as well. Because of the density
sidebands, a poloidally asymmetric component n = 0,m = 1 of the GAM electric
field arises (Fig. 1.3b, upper plot) to compensate the poloidal density gradient, but
its amplitude is more than two orders of magnitude smaller than that of the zonal
component.

Now, we can sketch a picture of the GAM time evolution. At the beginning of a
GAM period T , the zonal electric field produces the vE×B plasma drift (Eq. 1.28),
whose amplitude is higher at the low-field side of the poloidal cross-section than
that on the high field side due to the radial gradient of the background magnetic
field. Therefore, there is an accumulation of the plasma density with an up-down
asymmetry, which achieves its maximum at a quarter of the GAM oscillation, while
the zonal electric field turns to zero. Rise of the density sidebands leads to the
appearance of the poloidally asymmetric electric field perturbation that creates a
plasma current and, as a result, removes the density perturbation. At a half GAM
period, the zonal electric field again achieves its maximum value but in the opposite
direction, which results in a reversed E × B plasma drift. Due to that, the density
sidebands swap their maximums and minimums, and the process repeats starting a
new GAM period.

1.4 GAM damping and EGAM excitation

One of the leading linear damping mechanisms for stationary ZFs is collisional pro-
cesses [9]. At the same time, for the GAM, it is a collisionless wave-particle interac-
tion, namely the Landau damping [28, 29, 30], and collisional damping at the very
edge of the plasma, where equilibrium temperatures drastically decrease8 [31]. The
wave-particle interaction takes place when a particle velocity is close to the phase

7Here, s ∼
√
ψ (Eq. 1.10), and s = 0.0 refers to the plasma center, while s = 1.0 refers to the

plasma edge.
8The collision frequency decreases in a hot plasma with increasing temperature as T−3/2

(Eq. 4.15).
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1. Introduction

velocity of a wave. More precisely, if a particle speed is slower than the phase ve-
locity of the considered wave, then the particle takes energy from the wave and gets
accelerated. In the opposite case, it is the wave that gets energy from the particle.

To outline an algorithm for the damping rate derivation, we consider the sim-
plest one-dimensional (in both real and velocity spaces) plasma system described by
linearised Vlasov and Poisson equations:

∂δf

∂t
+ v

∂δf

∂x
− Zie

m

∂Φ

∂x

∂f0

∂v
= 0, (1.41)

−∂
2Φ

∂x2
= 4πZie

∫
δf dv. (1.42)

Here, only the ion (deuterium, Zi = 1) density is perturbed, and the perturbation
is described by the δf , while the equilibrium ion and electron charge densities are
equal to each other (Zie

∫
f0 dv − e

∫
f0,e dv = 0, where n0 =

∫
f0 dv). To get rid of

the dimensional parameters, the following normalisation can be employed

t̂ = tωp, x̂ =
x

λD
, v̂ =

v

vth
, f̂ = f

vth
n0

, Φ̂ = Φ
e

T
, (1.43)

where the ion plasma frequency ωp, the Debye length λD and the thermal velocity
vth are used for the normalisation:

λD =

√
T

4πn0e2
, vth =

√
T

m
, ωp =

vth
λD

. (1.44)

Farther in this section, we are going to omit the hat for simplicity. As a result, we
obtain the normalised Vlasov-Poisson system, and after Fourier transform in space
and Laplace transform in time

δf → δf exp(ikx− iωt), (1.45)

Φ→ Φ exp(ikx− iωt) (1.46)

with the wavenumber k and the complex frequency ω = ωr + iγ, the system turns
into

(ω − kv)δf + kΦ
∂f0

∂v
= 0, (1.47)

k2Φ =

∫
δf dv. (1.48)
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1.4 GAM damping and EGAM excitation

By combining these two equations, one can get the following dispersion relation

D(k, ω) = k2 +

∫ +∞

−∞

k∂vf0

ω − kv
dv = 0, (1.49)

It can be analytically continued by deforming the integration contour along v into the
complex plane to keep the resonance ω = kv inside the contour (such an analytical
continuation for the Plasma Dispersion Function is described in Appendix A):

D(k, ω) = Dr(k, ω) + iDi(k, ω) = 0, (1.50)

Di(k, ω) = −π∂vf0|v=ωr/k. (1.51)

Finally, by assuming a smallness of the wave damping (|γ| � ωr), and by decompos-
ing the dispersion relation in the Taylor series with respect to γ, one obtains

γ = − Di(k, ωr)
∂ωDr(k, ω)|ω=ωr

∼ ∂vf0|v=ωr/k. (1.52)

Here, one can see that the sign in front of the velocity derivative of the equilibrium
distribution function defines whether the wave is going to grow (+) or decay (−).

In case of the GAM, its phase speed is close to the parallel velocity of thermal
ions. Since the thermal ions have a Maxwellian distribution function in velocity
space, the number of particles with smaller parallel velocity than the GAM phase
speed is higher than the number of particles with higher velocities, and in this case
we are dealing with the Landau damping of the wave. Because of that, the thermal
ions take energy from the GAM, and the wave energy is damped.

Speaking about thermal electrons, we should note that their parallel velocity
generally is much higher than that of the ions. That is why it was believed during
a long time that the role of the electrons is negligible in the GAM damping. How-
ever, the passing and trapped electrons, which are localised near the passing-trapped
boundary (Eq. 1.14), have much smaller velocities and can resonate with the geodesic
modes. This interaction was shown for the first time in [32] and was investigated
later in [33, 34, 35, 36]. In this work, the GAM damping by electrons is calculated
in a magnetic configuration of ASDEX Upgrade (AUG) tokamak in Chapter 4.

If energetic particles are injected in the plasma system, we can observe an inverse
Landau damping that excites Energetic particle driven Geodesic Acoustic Modes
(EGAMs) [37, 38]. The energetic (or fast) particles can be described by a Maxwellian
distribution function shifted in parallel velocity. If the phase velocity of the GAM is
localised on a positive slope of the shifted Maxwellian, the number of fast particles
with higher velocity than the wave phase velocity is higher than that of lower velocity
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particles. As a result, the EGAM energy grows due to the interaction with the
energetic particles. On the other hand, the mode still transfers its energy to the
thermal species. In Chapters 6 and 7, linear and nonlinear EGAM dynamics and
the mode interaction with thermal and energetic species are studied in an AUG
discharge.

Due to the so-called phase mixing effect, considered in Chapter 4, the GAM
damping rate increases in the presence of a temperature or safety factor gradi-
ents [16, 39, 40, 41]. This effect arises when the wave damping rate depends on
its wavenumber. In the case of the GAM, the damping rate increases with the mode
radial wavenumber. Since the GAM frequency depends on the temperature and
safety factor, the GAM oscillates with different frequencies at different radial points.
Distorting the GAM radial structure and creating higher radial wavenumbers, the
phase mixing process can sharply increase the GAM damping rate [16, 41].

1.5 Drift instabilities and the excitation of zonal

structures

So far in this introduction, we did not discuss how the zonal structures can arise in
toroidal systems. This issue is addressed in this section. Tokamak plasma exhibits a
high variety of microinstabilities among which the so-called drift instabilities largely
control plasma transport across magnetic surfaces [42]. In a tokamak, one of the
dominant types of the drift instability is the Ion Temperature Gradient (ITG) insta-
bility (more precisely, a toroidal ITG [43]), which is driven by temperature gradient
of thermal ions, and is characterized by a poloidal wavelength kITGθ ρi ∼ 0.5, where
ρi is the ion thermal Larmor radius

ρi =
uth,i
ωci

, uth,i =

√
2Ti
mi

, ωci =
ZieB

mic
. (1.53)

Here, uth,i is the ion thermal velocity, ωci is the ion cyclotron frequency. The tem-
perature driven mode is characterised by a threshold behaviour. It becomes unstable
when the temperature gradient overcomes a critical value. When it happens, the non-
linear dynamics of the fluctuating unstable field produces turbulence, which causes
a plasma convection across magnetic surfaces.

Fig. 1.5 shows a cartoon of ITG destabilization on the low-field side plasma
domain [43]. In a toroidal plasma, a particle drift due to the magnetic field nonuni-
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formity arises, which can be approximated as (see Eq. 3.19)

vd =
v2
‖ + v2

⊥/2

ωciB2
B ×∇B. (1.54)

Taking into account the negative direction of the background magnetic field gradient
and direction of the B field itself as depicted in Fig. 1.5, one can see that the resulting
drift velocity is directed upwards, which means counter-clockwise on the low-field
side. Let us assume that an initial ion temperature perturbation with a small poloidal
extension appears in the plasma system. Since the plasma drift velocity Eq. 1.54
depends on the plasma temperature (v2

‖ + v2
⊥/2 ∼ v2

th,i), the ions move faster within
the domains with higher temperature than within the colder ones. It results in ion
density perturbations localised between the hot and cold spots. Due to the quasi-
neutrality, the ion density perturbation produces an electric field, directed poloidally
from higher ion density to the lower density areas. As a consequence, a radial E×B
drift appears to be directed outward within the higher temperature spots.

In the low field side area, the E × B drift shifts hotter plasma outward, heating
the plasma at the edge and amplifying there the initial temperature perturbation.
In such a way an ITG instability develops in this area. On the contrary, at the high
field side, the E × B moves colder plasma towards the core, suppressing in such a
way the initial temperature perturbation.

Stability of the temperature gradient driven modes are affected by the devel-
opment of the zonal structures, which act as a sink of the turbulent energy and
can increase the temperature gradient threshold of the toroidal ITG mode excita-
tion. Mutual development of the ITG and ZS can be demonstrated by using so-
called reduced models (0-D models), where the ITG-ZS interaction is considered as
a predator-prey system [44, 45, 46]. More precisely, the ITG mode, which devel-
ops due to the presence of the background temperature gradient, plays the role of
the prey, while the ZS acts as a predator by taking energy from the unstable ITG
mode. As a result, the presence of the ZS leads to the ITG stabilisation, lowering
the turbulence level and reducing radial plasma transport, improving in such a way
the plasma confinement.

Nonlinear excitation of zero-frequency zonal flows by ITG modes can be described
by using the principle of a modulational instability [45, 47, 46], which is a variant of
the parametric instability (Chapter 8 in [48]), but with a four-waves coupling instead
of the three-waves one. In case of the modulation instability, a pump wave with a
high frequency is modulated by a low-frequency wave. Because of the coupling of
the primary modes, two beat (or also called sideband) modes are excited, and by
the interaction with the pump fast varying wave, the sidebands amplify the initial
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Figure 1.5: Cartoon of a toroidal ITG excitation. Plot (a): a poloidal plasma cross-
section with an initial temperature perturbation. The red spots are domains with
a higher temperature, while the blue ones are with a lower temperature. Plot (b):
zoom of the low field side. Different amplitudes of the drift velocity vd in the hot
(red) and cold (blue) spots cause density ion perturbation ρ1, which in its turn leads
to the outward E×B drift vE×B of the hotter plasma. Plot (c): E×B drift amplifies
the initial temperature perturbation at the LFS, and suppresses it at the HFS.

modulation, which is the slow varying wave. If an ITG-ZF system is considered, an
ITG with a toroidal mode number n, a radial wavenumber kr,DW and a frequency
ωDW plays the role of a pump wave. A ZF, which has a zero toroidal mode n = 0, a
higher radial wavenumber kr,ZF > kr,DW and a much lower frequency ωZF � ωDW ,
modulates the ITG mode. As a result, two sidebands (n, kr,DW − kr,ZF , ωDW ±
ωZF ) are excited. According to [45], the ZF growth rate in this process is linearly
proportional to the amplitude of the pump ITG:

γZF ∼ ΦITG. (1.55)

The excited sidebands are just other ITG modes with the same toroidal mode num-
ber, a similar frequency, but with an increased radial wavenumber, since kr,ZF >
kr,DW . In other words, the ZF reduces the radial wavelength of the initial ITG. Since
the electric potential related to the ITG has a finite poloidal wavenumber, there is
a significant poloidal component of the electric field Epol. Due to the Epol × Btor
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drift and a long radial wavelength of the ITG, plasma vortices appear, where parti-
cles can move from the core of the toroidal plasma system close to the edge of the
tokamak. Excitation of the ZF shears these eddies and decreases in such a way the
radial correlation length of the radial transport.

Geodesic acoustic modes can be driven by ITG modes through the parametric
instability, which deals with a three-waves coupling. In this process, there is again
one pump mode (the ITG) and a modulation (the GAM). The main difference is
that due to the finite GAM frequency, the pump mode can couple with only one
sideband. However, according to this theory [16, 17], the GAM growth rate is also
linearly proportional to the amplitude of the initial ITG mode (Eq. 1.55).

1.6 Contribution and outline of the thesis

The zonal structures, and in particular the geodesic acoustic modes, play an essential
role in the plasma self-organisation and energy transfer between different modes, and
between plasma particles and the electromagnetic fields. The development of these
phenomena might significantly depend on the plasma regimes, including magnetic
field geometry and electron kinetic effects. It is challenging to describe such a complex
system by using only analytical theories. For this reason, one has to use numerical
methods based on gyrokinetic models, to study the wave evolution in the tokamak
plasma. One can include background magnetic field configuration, species density
and temperature profiles reconstructed directly from an investigated experimental
discharge. Moreover, one can include or eliminate different pieces of plasma physics,
such as magnetic field perturbations, kinetic electrons, or ion finite Larmor radius
effects. By providing up-to-date results from the numerical simulations, one can
contribute to the development of comprehensive theoretical models of the geodesic
modes. A good example is the development of the analytical theory of the GAM
damping by trapped electrons [35]. This phenomenon was mentioned and analysed
for the first time in [32], while the significance of the electron Landau damping in
experimentally relevant configurations was confirmed numerically in the code ORB5
in the framework of this thesis [34], and consequently, in other European GK codes
as well (see, for example, [36]).

For a better understanding of the material presented in this work, the analytical
derivation of the GAM dispersion relation is shown in Chapter 3. However, the
central part of this thesis is based on results obtained from gyrokinetic simulations
in the global particle-in-cell (PIC) code ORB5 described in Chapter 2.

The main goal of this thesis is the numerical investigation of the damping and
excitation mechanisms of the geodesic acoustic modes in simplified and realistic mag-
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netic configurations. The use of the simplified geometry allows performing a com-
parison with analytical theories, while the realistic configurations are simulated for
the comparison with experimental measurements. Several main lines of this work
can be defined: (E)GAM damping by electrons in ASDEX Upgrade (Chapter 4 and
Chapter 6), implementation of a power balance diagnostic in velocity space to lo-
calise the mode - particle resonances (Chapter 5), investigation of plasma heating
by the geodesic modes driven by energetic particles in AUG magnetic configuration
(Chapter 7), and finally, a numerical study of the nonlinear GAM excitation by ITG
instabilities in AUG and TCV magnetic configurations (Chapter 8).

The geodesic modes are observed predominantly in the edge region of the toka-
mak plasmas (this is because the GAM damping scales proportionally to exp(−q2)
and the safety factor q is the largest at the plasma edge, see Eq. 4.2) with a charac-
teristic frequency of the order of the sound frequency ∼ cs/R, where cs =

√
Te/mi

is the sound speed, Te is the electron temperature. However, the mode frequency
depends also on the safety factor profile, the mode radial wavenumber, the shape of
the magnetic configuration (elongation), the electron-ion temperature ratio to name
a few. The GAM frequency and damping rate are numerically investigated in Chap-
ter 4. The main part of this chapter is dedicated to the Landau damping of the
GAMs due to the mode interaction with the electrons. It is shown that the inclu-
sion of the electron dynamics can significantly increase the mode damping rate in a
realistic AUG magnetic configuration (Sec. 4.1). Contribution of the phase mixing
is presented in Sec. 4.2, while the collisional damping is discussed in Sec. 4.3. The
GAM linear frequency and damping rate spectra in AUG are numerically estimated
in Sec. 4.4.

To illustrate that the electron damping of the geodesic modes takes place mainly
due to the wave interaction with barely trapped electrons, we implement a Mode-
Particle-Resonance (MPR) diagnostic in the code ORB5 and analytically verify it by
the GAM dispersion relation, as it is described in Chapter 5. The diagnostic is used
to analyse EGAM excitation by energetic particles (EPs) and damping by thermal
species in AUG discharge in Chapter 6. It is demonstrated that the electrons localised
near the passing-trapped boundary have sufficiently low characteristic velocities to
resonate with the geodesic mode (Sec. 6.2).

The second part of this work is dedicated to the study of the nonlinear EGAM
dynamics in AUG without considering the mode interaction with turbulence (Chap-
ter 7). One of the most prominent phenomena related to the nonlinear EGAM
evolution in tokamak plasmas is the mode chirping, where the evolution of the mode
frequency in time is observed. In a chosen AUG discharge, the experimental EGAM
spectrogram exhibits a clear mode up-chirping. Numerical simulations of the EGAM
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chirping is a demanding task since the mode dynamics depends not only on the im-
posed thermal plasma configuration but on the EP parameters as well. Despite the
approximation taken here on the EP distribution function, a clear EGAM up-chirping
is obtained in the GK simulation, discussed in Sec. 7.2, where the relative change of
the mode frequency is comparable to the experimental results.

Plasma heating by EGAMs is analysed in the same AUG plasma system in
Sec. 7.1. During this process, the EGAM plays the role of an intermediate agent
between energetic and thermal particles by transferring kinetic energy from the EPs
to the bulk (thermal) plasma. It is demonstrated that by varying the EP parameters,
one can enhance the plasma heating by the EGAM, keeping the mode amplitude at
the same level. By performing simulations with drift-kinetic electrons, it is discussed
in Sec.7.1 that the EGAMs transfer the EP energy directly to the thermal ions. At
the same time, it is known that the EP-plasma collisional processes lead mainly to
the electron plasma heating if the EPs are not enough slowed down (Sec. 7.3). On
the other hand, it is shown that although electrons are not the primary recipients of
the EGAM energy, they can significantly reduce the mode amplitude and, in such a
way, decrease the plasma heating by the mode.

The final part of this work is dedicated to the nonlinear GAM excitation by the
ITG drift instabilities. The GAMs can have different kinds of the frequency spectrum:
continuum, or global one (Chapter 8). In linear and generally in nonlinear systems,
the mode has a continuum frequency spectrum. In other words, because of the radial
temperature and magnetic field profiles, the mode oscillates with different frequencies
at different radial positions. Such kind of GAM spectrum is predicted by linear
analytical theories [28, 29, 30] and is obtained here in Sec. 4.4. However, the global
GAM spectrum was observed experimentally, for example, in AUG discharges [49],
and in the DIII-D tokamak [50]. In this regime, the mode can have a constant
frequency within a significant radial interval disregarding the change of the plasma
temperature and magnetic field radial profiles. It was discussed in [51] that the
toroidal plasma rotation might give rise to the global GAM spectrum. In [52], it
was numerically shown that the transition from the continuum to the global regime
might be subject to a combination of different plasma parameters such as species
profiles, collisionality, magnetic field configuration, and kinetic electron effects. A
global spectrum of a GAM-like structure was also numerically investigated in the
TCV magnetic field configuration [53], where the transition takes place with the
increase of the plasma temperature gradient at the edge of the tokamak. However,
since the resulting global frequency extended in a long radial interval was significantly
smaller than the GAM frequency predicted by linear analytical theories, the nature
of the observed mode is still under investigation. Nonlinear gyrokinetic simulations
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1. Introduction

of the GAM spectra in AUG and TCV magnetic configurations are presented in
Chapter 8. It is shown that the non-zonal modes with high toroidal mode numbers
are crucial for the formation of the global zonal structures, and for the numerical
computation of the nonlinear GAM frequency spectrum in general. This proves that
the generation of global GAM structures is a nonlinear process.
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Chapter 2

Numerical gyrokinetic model

Gyrokinetic (GK) codes have recently become standard tools for the investigation
of waves and instabilities in the tokamak plasmas, with frequencies well below the
ion cyclotron frequency [54]. Although they have been traditionally considered nu-
merically heavy, in comparison to lighter hybrid models, in the last years GK codes
have become capable of providing global electromagnetic (EM) predictions of the
nonlinear plasma dynamics, thanks to smart schemes improving the numerical per-
formance [55, 56], and to the access to high-performance computers. One advantage
of using GK codes is that their model includes kinetic effects such as wave-particle
resonances, which are neglected in fluid descriptions.

The gyrokinetic simulations presented in this work are performed with the code
ORB5 [25, 26, 27], which is a nonlinear gyrokinetic multi-species global particle-in-
cell (PIC) code. It solves the gyrokinetic Vlasov-Maxwell system described below in
the electrostatic or electromagnetic limit, and has a capability of handling true MHD
equilibrium for the axisymmetric toroidal plasma. In this chapter, we are going to
consider different numerical and theoretical aspects of this code. The physical model
of ORB5 is derived from a variational principle [26, 57] to provide exact energy and
momentum conservation, and is discussed in Sec. 2.1. The particle-in-cell method,
which is presented in Sec. 2.2, consists of the coupling of a particle-based algorithm
for the Vlasov equation with a grid-based method for the computation of the self-
consistent electromagnetic fields. Finally, due to the variational formulation, one can
implement a power balance diagnostic to investigate the wave-particle interaction in
the code [26, 57] that is discussed in Sec. 2.3. This diagnostic is extended in this
work [58] to localise resonances of the wave-particle interaction in velocity space, and
its implementation is described in Chapter 5.
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2. Numerical gyrokinetic model

2.1 Hamiltonian formulation

The GK Vlasov-Maxwell model implemented in ORB5 is derived from a variational
principle. This approach directly provides a weak form of the GK Poisson and
Ampère equations, which is used in the code for the finite element representation of
the electromagnetic fields with the B-spline basis functions [27]. According to the
ORB5 model, all the geometrical effects due to the non-uniformity of the background
magnetic field are considered one order smaller than the relative fluctuations of the
fields as it is explained in [57]. The corresponding parameter of smallness for the
background magnetic field non-uniformity is

εB =
ρth,i
LB

, (2.1)

where Lb is the characteristic length of the background magnetic field gradient. An-
other small parameter

εδ = (k⊥ρth,i)
eΦ

Ti
, (2.2)

is related to the field perturbations, where Φ is the electric potential perturba-
tion (E = −∇Φ), k⊥ρth,i is the normalised perpendicular (to the magnetic field)
wavenumber, Ti is the thermal ion temperature. Due to the chosen approximation,
we have εB ∼ ε2δ , which is currently a common approach in most GK codes.

To derive the GK Vlasov-Maxwell system of equations, first of all, one has to
decouple the fast dynamics associated with the gyrorotation of particles from the
low-frequency dynamics of interest. This procedure, called phase space reduction or
gyrokinetic dynamical reduction, restores to all considered orders the conservation
of the adiabatic invariant µsp related to the fast gyromotion, broken by the effects
of the magnetic field non-uniformity and electromagnetic perturbations (see, for ex-
ample, [59]). As a result, the phase space coordinates are reduced from six to 4 + 1,
where the plasma system dynamics is restricted to the surface µ̇sp = 0.

The field-particle action obtained after the phase space reduction is accurate up
to O(ε2δ):

A =

∫
dtL = (2.3)∑

sp

∫
dt dV dWsp

(
Zspe

c
A∗ · Ṙ +

mspc

Zspe
µspθ̇ −H0,sp −H1,sp

)
fsp

−
∑
sp

∫
dt dV dWspf0,spH2,sp −

∫
dt dV

|∇⊥A‖|2

8π
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2.1 Hamiltonian formulation

Here, the velocity variables are the magnetic moment

µsp =
mspv

2
⊥,sp

2B
, (2.4)

the canonical parallel momentum pz,sp (see Eq. 2.10) and the gyroangle θsp of the
particle species. For the sake of clearness, farther in the text, we omit the subindex
sp, where it is possible. The equilibrium magnetic field is B = ∇ × A, m is the
species mass. The integration is performed over the real V and velocity W spaces.
The volume element of the velocity space is

dW ≡ (2π/m2)B∗‖ dpz dµ (2.5)

with

B∗‖ = B∗ · b, (2.6)

b = B/B, (2.7)

B∗ = ∇×A∗ = B +
pzc

Ze
∇× b, (2.8)

A∗ = A +
c

Ze
pzb. (2.9)

dV denotes the volume element in the real space. f(r, pz, µ, t) = f0(r, pz, µ) +
δf(r, pz, µ, t) is the species distribution function, where we assume it is only the
perturbed part that depends on the time. However, no direct assumptions on the
amplitude of the perturbation are applied. The action A is derived using the pz-
formulation, also called Hamiltonian formulation, where we take

pz = mv‖ +
Ze

c
J0A‖ (2.10)

as a canonical momentum coordinate, J0 is the gyroaverage operator (see Eq. 2.16).
Due to that, the magnetic potential perturbation A‖ is transferred from the sym-

plectic part of the particle action (part of the action in front of the Ṙ and θ̇) to the
Hamiltonian one (see, for example, Section 2.D in [57], or Section 2 in [59]). In such
a way, one avoids the explicit dependence of the particle momentum characteristic ṗz
on the partial time derivative of the magnetic potential perturbation ∂tA‖, and due
to that, the code can use an explicit time solver. The trade-off is the appearance of
the so-called cancellation problem, which takes place due to the incomplete cancella-
tion of non-physical terms in the Ampère equation. During long time, this problem
has constrained electromagnetic simulations to low beta cases βe <

√
me/mi with

βe =
4π〈ne〉Te

B2
0

, (2.11)
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2. Numerical gyrokinetic model

being the ratio between the electron plasma and magnetic pressures, and where 〈ne〉 is
the volume-averaged electron density, B0 is the magnetic field at the magnetic axis.
Currently, this problem can be mitigated either by the enhanced control variates
procedure [55] or by the so-called pullback method [60].

The system Hamiltonian contains up to O(ε2δ) terms

H = H0 +H1 +H2 (2.12)

H0 =
p2
z

2m
+ µB, (2.13)

H1 = Ze(J0Φ− pz
mc

J0A‖), (2.14)

H2 =
(Ze)2

2mc2
(J0A‖)

2 − mc2

2B2
|∇⊥Φ|2. (2.15)

The first two integrals in the total Lagrangian define the charged particle Lagrangian
as in [61]. The third one is the electromagnetic field Lagrangian, in which the electric
field component is neglected in comparison to the E×B energy from H2 (the quasi-
neutrality approximation, see [26] for details). Finally, the perpendicular magnetic
potential perturbation is considered one order smaller than the parallel component
and is omitted from the GK modelling. In other words, the magnetic compressibility
is not taken into account, which however might be important in high beta systems.

The gyroaveraging (Hermitian) operator J0, applied to an arbitrary function ψ
in configuration space, is defined by

(J0ψ)(R, µ) =
1

2π

∫ 2π

0

ψ(R + ρ(θ)) dθ, (2.16)

where R is the position of the guiding center, and ρ is the vector going from the
guiding center to the particle position. In the so-called drift-kinetic approximation,
the potential perturbation is taken at the space point R, where the guiding center of
a considered numerical particle is localised, and the field is not gyro-averaged around
the guiding center position as it is done in Eq. 2.16. In other words, the drift-kinetic
approximation applies J0,sp = 1. In the simulations presented in this thesis, ORB5
treats thermal and fast (energetic) ions either gyro-kinetically or drift-kinetically,
while the electrons are calculated drift-kinetically or adiabatically.

The gyrokinetic equations for the particle distribution function and the GK field
equations are derived from the GK Lagrangian using a variational principle. In gen-
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2.1 Hamiltonian formulation

eral, by taking a functional derivative of the system Lagrangian L =
∫

dV dWL(η, δη)

δL
δη
χ =

d

dν

∫
L(η + νχ,∇η + ν∇χ) dV dW

∣∣
ν=0

= (2.17)∫
δL

δη
χ dV dW +

∫
δL

δ∇η
· ∇χ dV dW = (2.18)∫ (

δL

δη
−∇ · δL

δ∇η

)
χ dV dW +

∫
∇ ·
(
δL

δ∇η
χ

)
dV dW, (2.19)

one gets a weak form (Eq. 2.18) of a physical equation, which is used for the finite
element representation of the EM field potentials. Apart from that, one can obtain a
strong form of the equation (Eq. 2.19). It has a dynamical term (first integral), which
gives the equations of motion, and a Noether term (second integral), which is used
to get conservation laws of the system. By taking the electric potential perturbation
Φ as the test function χ, one gets the polarization (Poisson) equation in the long
wave-length limit∑

i

∫
dWiZieJ0,ifi −

∫
dWeefe = −

∑
i

∇ ·
(
n0,imic

2

B2
∇⊥Φ

)
. (2.20)

By taking A‖ as the test function, one gets the Ampère equation∑
i

∫
dWi

4πZie

mic
pz,iJ0,ifi −

∫
dWe

4πe

mec
pz,efe = (2.21)

1

d2
e

A‖ −∇2
⊥A‖ +

∑
i

(
∇ · πn0,iTi

B2
∇⊥A‖ +

1

d2
i

A‖

)
,

where n0 is the density associated with the equilibrium Maxwellian f0. The skin
depth is defined by d−2 = 4πn0(Ze)2/(mc2), and it appears on the right-hand-side of
the Ampère’s law because of the choice of the velocity space variables (pz, µ) instead
of the usual (v‖, µ), and causes the cancellation problem mentioned before. The
indexes i and e indicate ions and electrons respectively.

First of all, one can notice on the right hand sides of the both field equations
that the polarization and magnetization terms are calculated through the equilibrium
plasma density n0. Such kind of linearisation follows from the approximation made
in the second integral of the field-particle action Eq. 2.3, where the second order
HamiltonianH2 is considered together with only the equilibrium distribution function
f0

1. Moreover, since we take the equilibrium distribution function in the Maxwellian

1In fluid theory this is called the Boussinesq approximation. It assumes that density variations
are small, and they are neglected to reduce the nonlinearity of the problem.
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2. Numerical gyrokinetic model

form, the field equations are decoupled. These assumptions might get invalid if
the magnitude of the distribution perturbation becomes comparable with that of
the equilibrium distribution function. Moreover, if we want to consider a realistic
energetic particle distribution function, which is asymmetric in velocity space, the
Poisson and Ampère equations can become coupled in this case as well.

By taking the particle reduced phase space coordinates Z = (R, pz, µ) as the test
functions, one gets particle equations of motion, also called particle characteristics :

Ṙ =
cb

ZeB∗‖
×∇(H0 +H1) +

∂(H0 +H1)

∂pz

B∗

B∗‖
, (2.22)

ṗz = −B∗

B∗‖
·∇(H0 +H1), (2.23)

µ̇ = 0. (2.24)

Again, due to the f0H2 approximation, one gets rid of the H2-dependence in the
particle characteristics. In the electrostatic case, the characteristics can be split in
the following terms:

Ṙ = v‖ + v∇B + vcurvB + v∇p + vE×B, (2.25)

ṗz = −m
pz

(v‖ + v∇p + vcurvB) ·∇(µB + Ze(J0Φ)), (2.26)

with

v‖ =
pz
m

b, (2.27)

v∇B =
cµB

ZeB∗‖
b× ∇B

B
, (2.28)

vcurvB =
(pz
m

)2 cm

ZeB∗‖
b× ∇B

B
, (2.29)

v∇p = −
(pz
m

)2 cm

ZeB∗‖
b×

(
b× ∇×B

B

)
, (2.30)

vE×B = −c∇(J0Φ)× b

B∗‖
, (2.31)

where b× (∇×B)/B = −4π∇p/B2 (obtained by using Eqs. 1.20, 1.9) in Eq. 2.30
indicates the dependence on the pressure gradient. Here, v‖ is the parallel velocity
term, which is responsible, for example, for the magnetic mirror effect mentioned in
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2.2 The Particle-In-Cell (PIC) code

Sec. 1.2 (Eq. 1.14). The v∇B and vcurvB can be combined into the magnetic drift
velocity (Eq. 1.54) associated with the corresponding frequency indicated in Eq. 3.19.
The diamagnetic drift v∇p gives rise to the drift waves due to the temperature and
density gradients [42]. Finally, the vE×B term is one of the main nonlinear terms of
the particle characteristics. Using these particle equations of motion, the code can
reconstruct the gyrokinetic Vlasov equation:

df

dt
=
∂f

∂t
+ Ṙ · ∇f + ṗz

∂f

∂pz
= 0. (2.32)

Despite all the approximations made here, this model is highly physically relevant
and it can be used to describe not only the ZS dynamics, but also a large class of
microinstabilities excited by the density and temperature gradients, like Ion Tem-
perature Gradient (ITG) driven modes, Trapped Electron Modes (TEM) or Kinetic
Ballooning Modes (KBM). It also contains the reduced MHD model as a subset (see,
among other, [62]).

2.2 The Particle-In-Cell (PIC) code

ORB5 is the particle-in-cell (PIC) code, where the Vlasov equation is solved using
the Monte Carlo algorithm, and the Maxwell equations are solved using the finite-
element method. According to the PIC method, the particle distribution function
is discretized with macroparticles, known as markers. The motion of the markers
is calculated using the particle characteristics (Eqs. 2.22, 2.23) of the gyrokinetic
model while the electromagnetic fields are evolved on the spatial grid using the two
decoupled field equations (Eqs. 2.20, 2.21). The charge and current densities on the
left hand sides of the field equations are calculated by projecting the marker weights
on the spatial grid. After that, the fields are calculated using the finite element
method. The code is based on the straight-field-line coordinate system (s, χ, φ)2.
Here, the radial coordinate is s =

√
ψ/ψedge (where ψ is the poloidal flux coordinate,

Eq. 1.10), χ =
1

q(s)

∫ Θ

0

B · ∇φ
B · ∇Θ1

dΘ1 is the straight-field-line coordinate (where Θ1

is the poloidal angle), and φ is the toroidal angle. Two different kinds of magnetic
equilibria are available to use: analytical equilibria with circular concentric magnetic
surfaces and ideal MHD realistic equilibria. For the latter case, the ORB5 code is
coupled with the CHEASE code [64], which solves the Grad-Shafranov equation with
a fixed plasma boundary.

2The magnetic field lines appear as straight lines in this system of coordinates (one can see
Chapter 6 in [63] for more details).
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2. Numerical gyrokinetic model

Now, we are going to consider the discretization of the plasma distribution func-
tion in the code that will be necessary later on to describe the numerical implemen-
tation of the Mode-Particle-Resonance diagnostic (Chapter 5). At the beginning of
every simulation, a finite collection of initial positions in phase space is sampled by a
set of numerical markers [26]. Every marker has a particular magnetic moment µ, a
position in real space R, a canonical momentum pz and it is moving in a background
magnetic field B = bB. Taking the phase-space position Z = (R, pz, µ) of a species
marker as a random variable, the code distributes the markers in the phase space ac-
cording to the initial particle distribution function f0. This means that every marker
is the realisation of the random variable Z. For simplicity, the marker is considered
as a particle that is moving along a particular orbit defined by the set of equations
of motion shown in Eqs. 2.22, 2.23, 2.24. In the gyrokinetic approximation, the code
deals with the dynamics of the guiding centres, whose orbits are perturbed by the
field potentials, averaged along the Larmor orbit, around the marker position. The
time evolution of the plasma distribution function f is described by the Vlasov equa-
tion presented in Eq. 2.32. Considering perturbations of the distribution function
and of the particle orbits up to the first order, one can linearize the Vlasov equation:

dδf

dt
=
∂δf

∂t
+ Ṙ0 ·∇δf + ṗ0,z

∂δf

∂pz
=

−
(
∂f0

∂t
+ Ṙ0 ·∇f0 + ṗ0,z

∂f0

∂pz

)
−
(

Ṙ1 ·∇f0 + ṗ1,z
∂f0

∂pz

)
. (2.33)

Assuming that f0 is the equilibrium distribution function, it should be conserved
along unperturbed particle trajectories (Ṙ0, ṗ0,z) according to the Liouville’s theo-
rem:

df0

dt

∣∣∣∣
0

=
∂f0

∂t
+ Ṙ0 ·∇f0 + ṗ0,z

∂f0

∂pz
= 0. (2.34)

In other words, the first bracket on the right hand side of Eq. 2.33 is equal to zero.
Finally, the evolution in time of the perturbation of the species distribution function
in linear simulations is described in the following way:

dδf

dt
=

dδf

dt

∣∣∣∣
0

= −df0

dt

∣∣∣∣
1

, (2.35)

where

∣∣∣∣
1

indicates that it is necessary to take derivatives along the perturbed parts

of the species orbits (Ṙ1, ṗ1,z). Thermal species have an equilibrium distribution
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2.2 The Particle-In-Cell (PIC) code

function in a form of the Maxwellian one:

f therm0 =
n(ψ)

(2π)3/2v3
th(ψ)

exp

[
− m

T (ψ)

(
1

2

(pz
m

)2

+
µB

m

)]
, (2.36)

vth(ψ) =

√
T (ψ)

m
, (2.37)

where n(ψ), T (ψ) are species density and temperature profiles along the radial co-
ordinate ψ. On the other hand, to describe energetic particles we are going to use a
symmetric two-bumps-on-tail distribution function as in [65, 38]. This distribution
assumes a flat temperature profile of the energetic species:

fEP0 =A(ψ) exp

[
− m

TH

(
1

2

(pz
m

)2

+
µB

m

)
− u2

H

2TH

]
cosh

(
pz
m

uH
TH

)
, (2.38)

A(ψ) =
n(ψ)

(2π)3/2T
3/2
H

, (2.39)

where uH , TH are constant input parameters, which specify a shift and width of the
energetic bumps respectively in velocity space. Typical thermal and energetic ion
distribution functions are shown in Fig. 7.23. A distribution function with two sym-
metric bumps-on-tail, instead of a single bump, is used to avoid input of additional
momentum into the plasma system, which can change the EGAM frequency, and as
a result, shift the position of the resonance between the EGAM and fast species.

The perturbation δf is discretized in the Z = (R, pz, µ) phase space by N mark-
ers. Apart from its location Z, every marker has a particular weight wp(t), which
should evolve consistently with the GK Vlasov equation Eq. 2.32. Here, we use
the index p, indicating that a variable is related to a particular marker. Detailed
derivation of the weight time evolution can be found in [25, 26, 27, 66]. A marker
weight can be associated to a phase space volume Ωp and correspondent averaged
distribution function perturbation 〈δf〉Ωp :

〈δf〉Ωp =
1

Ωp

∫
Ωp

δf dΩp =
1

Ωp

∫
Ωp

wpδ(R−Rp)δ(pz − pp,z) dΩp, (2.40)

wp(t) = 〈δf〉ΩpΩp, (2.41)

lim
Ωp→0
〈δf〉Ωp → δf(Rp, vp,‖, µp). (2.42)

3Note that these distribution functions are not strictly equilibrium distribution functions. This
means they do not satisfy Eq. 2.34 because of the radial dependence of the density and temperature
(and because of the v‖-dependence in the case of the bump-on-tail distribution function). However,
this radial (and velocity) variation is slow, and can be neglected as compared to the fast δf evolution
(see, for example, Sec. 3.2 in [38]).
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2. Numerical gyrokinetic model

Considering uniform spreading of the markers in real space and Maxwellian distri-
bution in the velocity space, it can be shown, according to [66], that the phase space
volume Ωp, associated to a marker p, is

Ωp =
B∗‖,p
B

v⊥,p(πκvvth(s))
2

∫ 1

0

J̄(s) ds, (2.43)

where J̄(s) is the flux-surface-averaged Jacobian, κv defines maximum value of the
species parallel and perpendicular velocities, normalised to a species thermal speed
vth(s) =

√
T (s)/m, at every radial point s.

The meaning of the variable Ωp can be explained proceeding directly from the
Monte Carlo integration [26]. The expectation value of an arbitrary function ζ(Z̃) is

E[ζ(Z̃)] =

∫
ζ(z)f(z)dz, (2.44)

where Z̃ is a random variable, distributed according to the function f . To minimize
the variance of the function ζ, one can chose another distribution function g(Z̃),
which does not vanish in the support of the distribution function f (the so-called
importance sampling):

E[W (Z)ζ(Z)] =

∫
ζ(z)

f(z)

g(z)
g(z)dz. (2.45)

In this case, speaking in terms of marker weights and using random variable Z,
distributed with density g, the expectation value of the function ζ(Z̃) is calculated
as

E[ζ(Z̃)] = E[W (Z)ζ(Z)] =
1

N

N∑
p=1

w(Zp)ζ(Zp), (2.46)

w(Zp) =
f(Zp)

g(Zp)
= f(Zp)Ω(Zp), (2.47)

that is consistent with Eq. 2.41. In other words, if we have a small amount of markers
in a finite phase space volume, their weights will be increased in comparison to a
domain where there are higher number of markers at the same phase space volume.
More details can be found in [26]. Finally, the marker weights are normalised in the
following way:

1

N

N∑
p=1

wp = 1, (2.48)

where the sum is performed over all markers in a working phase space domain VW
of a species.
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2.3 Power balance

2.3 Power balance

By considering the Noether term in Eq. 2.19, in the ES limit, the total GK energy
has the following form

E =
∑
sp

∫
dW dV (f(H0 +H1) + f0H2) , (2.49)

where the kinetic part of the energy is

Ek =
∑
sp

∫
dW dV (fH0), (2.50)

while the ’field’ energy is

Ef =
∑
sp

∫
dW dV (fH1 + f0H2) (2.51)

Evaluating the time derivative of the kinetic energy Ek, the energy transfer between
the plasma and the field can be found as

P =
dEk
dt

= −
∑
sp

Ze

∫
dV dWfṘ0 ·∇(J0Φ), (2.52)

where Ṙ0 is the species unperturbed equation of motion. To obtain this equation,
first of all, one writes explicitly the full time derivative of the kinetic energy:

dEk
dt

=
∑
sp

∫
dW dV f

(pz
m
ṗz + µṘ ·∇B

)
, (2.53)

where we have taken into account the Vlasov equation dtf = 0, and the expression
for the background Hamiltonian H0 of a particle moving in the background magnetic
field (Eq. 2.13). Using explicit expressions for the particle characteristics (Eqs. 2.25
and 2.26), and the following mathematical transformations

(∇(J0Φ)×B) ·∇B = (B ×∇B) ·∇(J0Φ), (2.54)

∇ · b = −b ·∇B

B
, (2.55)

one can combine two terms in Eq. 2.53 to get Eq. 2.52. Such a direct implementation
of the particle characteristics leads to the cancellation of the field perturbations

33



2. Numerical gyrokinetic model

in the particle orbits, and the resulting expression 2.52 is evaluated through the
unperturbed particle orbit Ṙ0. The detailed derivation of the GK energy and the
plasma-field energy transfer signal can be found in [26, 57]. It should be noted that
the splitting on the ’kinetic’ and the ’field’ parts is in some sense arbitrary. In this
work, we keep terms, which depend on the species characteristics, in the ’kinetic’ part,
and the rest of the total energy is taken as the ’field’ component. More precisely,
in the ES limit, using the GK Poisson equation, the total energy Eq. 2.49 can be
transformed into the following form [26]

E =
∑
sp

∫
dW dV

(
p2
z

2m
+ µB +

1

2
ZeJ0Φ

)
f (2.56)

Here, the first two terms correspond to Eq. 2.50, while the last term is related to
Eq. 2.51.

The derived energy exchange and field energy signals can be used to estimate a
field linear growth rate. Using Eq. 2.52 and the energy conservation, we obtain

P =
∑
sp

Psp = −dEf
dt

, (2.57)

Ef =
∑
sp

mc2

2B2

∫
dV |∇⊥Φ|2. (2.58)

Here, the expression for the electric field energy Ef is obtained from Eq. 2.51 and the
GK Poisson equation, by treating particles drift-kinetically (J0 is equal to 1). Con-
sidering a general case of a propagating eigenmode and starting from the evolution
of the electric field E = −∇Φ

E(r, t) = Re [E(r) exp(−iωt) exp(γt)] =

(cos(ωt)Re[E(r)] + sin(ωt)Im[E(r)]) exp(γt) (2.59)

where ω, γ are the frequency and damping/growth rate of the field, we get an ex-
pression for the field energy integrated in real space:

Ef (t) = (A2 + C cos2(ωt)) exp(2γt), (2.60)

with a constant C and non-zero constant A2. Its time derivative is

dEf
dt

= 2γEf − ωC sin(2ωt) exp(2γt). (2.61)
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2.3 Power balance

Using the above equations, we can find the damping/growth rate of the field energy
in the following way:

1

2Ef
dEf
dt

= γ − ω sin(2ωt)

2A2/C + 1 + cos(2ωt)
. (2.62)

Due to the field energy oscillations that take place in the case of the GAMs and
EGAMs, the above expression includes a term, which depends on the field frequency.
To exclude this term, one should perform the time averaging on several periods of
the field oscillations: ∫ nwTw

0

sin(2ωt)

2A2/C + 1 + cos(2ωt)
dt = 0, (2.63)

where T is the period of the field oscillations, and nw is the number of the peri-
ods. Due to that, the damping/growth rate of the field can be calculated using the
following expression:

γ = −1

2

1

nwTw

∫ nwTw

0

P
Ef

dt. (2.64)

A negative rate γ < 0 corresponds to a positive signal P , indicating the energy
transfer from the wave to the plasma particles. On the other hand, a positive rate
γ > 0 corresponds to a growth of the wave. It should be noted that the GAMs
or EGAMs can take the form of a standing wave, which is a limiting case of the
propagating wave, where 2A2/C → ε with a positive infinitesimally small value
ε > 0: ∫ nwTw

0

sin(2ωt)

(1 + ε) + cos(2ωt)
dt = 0. (2.65)

Finally, note that in the case of a non-zonal mode with a non-zero toroidal number,
the field energy would be a purely growing function that would simplify the problem
by exempting us from the time integration in Eq. 2.64. In other words, by considering,
for example, the ITG evolution, one does not have to perform the time averaging
to calculate the growth rate of the non-zonal mode. The results presented in this
section are used in Chapter 5, where the Mode-Particle-Resonance technique based
on the presented power balance diagnostic is described.
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Chapter 3

Gyrokinetic theory of GAMs

In this chapter, we would like to discuss in detail some aspects of the GAM dynamics
introduced previously in Chapter 1. More precisely, we are going to derive a basic
GAM dispersion relation in deuterium plasma (Zi = 1) with adiabatic electrons in
the so-called electrostatic limit (A‖ = 0, pz = mv‖), where only the electric potential
perturbation is taken into account. The derivation is based on [67, 16, 24], and the
results of this chapter will be used later in Sec. 5.3 for the analytical verification of
the Mode-Particle-Resonance diagnostic.

3.1 Gyrokinetic equation

We start from a standard linear gyrokinetic equation assuming flat background den-
sity and temperature profiles (the corresponding gradients are equal to zero). In
this section, we are going to omit the species subindex, since the derivation is the
same for electrons and ions. To derive the GK equation, we consider the particle
characteristics (Eqs. 2.25, 2.26)

Ṙ = Ṙ0 + Ṙ1, ṗz = ṗz,0 + ṗz,1, (3.1)

Ṙ0 = v‖ + v∇B + vcurvB, (3.2)

Ṙ1 = vE×B, (3.3)

ṗz,0 = − µ
v‖

(v‖ + vcurvB) ·∇B, (3.4)

ṗz,1 = −Ze
v‖

(v‖ + vcurvB) ·∇J0Φ, (3.5)
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3. Gyrokinetic theory of GAMs

where J0 is the gyroaveraging operator (see Eq. 2.16). The starting point is the
Vlasov equation

dδf

dt
= −df0

dt
(3.6)

with f = f0 + δf , where the equibrium Maxwellian distribution function normalised
to 1 (density n = 1) is taken as a function of the particle kinetic energy εkin (compare
with Eq. 2.36)

f0 =
1

(2π)3/2v3
th

exp
(
−εkin
T

)
, εkin =

p2
z

2m
+ µB. (3.7)

In this case, we obtain the following linearised Vlasov equation

∂δf

∂t
+ Ṙ0 ·∇δf + ε̇kin,0

∂δf

∂εkin
= −ε̇kin

∂f0

∂εkin
, (3.8)

where the full time derivative of the kinetic energy is

ε̇kin = v‖ṗz + µṘ ·∇B. (3.9)

The particle kinetic energy is conserved along the unperturbed particle trajectories.
In other words, ε̇kin,0 = 0 that can be easily checked by inserting Eqs. 3.2, 3.4 into
Eq. 3.9, and using the following expression

v∇B ·∇B = 0. (3.10)

As a result, the Vlasov equation is simplified to

∂δf

∂t
+ Ṙ0 ·∇δf = − ∂f0

∂εkin
v‖ṗz,1 −

∂f0

∂εkin
µṘ1 ·∇B, (3.11)
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3.1 Gyrokinetic equation

To eliminate the terms on the right hand side of the above equation, we split the
distribution perturbation function up into the adiabatic1 and non-adiabatic2 parts

δf = Ze
∂f0

∂εkin
J0Φ + h, (3.12)

and the Vlasov equation is transformed into

∂h

∂t
+ Ṙ0 ·∇h+ Ze

∂f0

∂εkin

∂J0Φ

∂t
=

− ∂f0

∂εkin

[
ZeṘ0 ·∇J0Φ + v‖ṗz,1 + µṘ1 ·∇B

]
. (3.13)

By using Eqs. 3.2, 3.3, 3.5 for the particle charactestics, Eq. 2.28 for v∇B (assuming
that B∗‖ ≈ B0), and Eq. 2.31 for vE×B, one can show straightforwardly that the
expression in the square brackets on the right hand side of the above equation is
equal to zero. The unperturbed characteristics can be written as

Ṙ0 = v‖b+
cm

ZeB0

(
v2
⊥
2

+ v2
‖

)
b× κ, (3.14)

where Eq. 1.24 is used. By performing Laplace transformation in time, as well as
Fourier transformation in radial and toroidal directions

h→ h exp(ikrr + ikφφ− iω̂t), (3.15)

Φ→ Φ exp(ikrr + ikφφ− iω̂t), (3.16)

where r is the coordinate normal to the magnetic surfaces, φ is the toroidal angle
(kφ = 0 for zonal modes), ω̂ is the complex GAM frequency, one derives the following

1The adiabatic part of the distribution function indicates the particles that immediately respond
to the field perturbation. The adiabatic response does not have any phase shift with respect to
the field perturbation and cannot lead to any instabilities (see, for example, Chapter II.A in [42]).
For example, the adiabaticity of electrons due to their low inertia is a widely used approximation
in GK analytical and numerical models. Such a kind of splitting is a common approach in the GK
derivation based on the asymptotic expansion of the Vlasov equation. One can see for more details
Eq. (20) for a general case and Eq. (25) for the axisymmetric geometry in [68]; Eqs. (21), (23)
in [69]; Eqs. (31), (43) and final expression (48) in [70]; Eq. (26) with the corresponding adiabatic
part Eq. (27) and non-adiabatic part Eq. (42) in [71] to name a few.

2The so-called Finite-Orbit-Width effect is not taken into account here since it is not crucial
for the GAM description at this introductory level. Mathematically, this effect would be expressed
as a exp(ikrδ cos θ) term in front of the non-adiabatic perturbation h in Eq. 3.12, with δ being a
particle orbit width.
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3. Gyrokinetic theory of GAMs

GK equation:

ωtr∂θ − i(ω̂ + ωd)h = −iZeω̂
T

f0J0(k⊥ρ)Φ, (3.17)

ωtr =
v‖
qR0

, (3.18)

ωd = ω̂d sin θ =
krcm

ZeB0R0

(
v2
⊥
2

+ v2
‖

)
sin θ. (3.19)

Here, we take the common assumption for tokamak plasmas that the most unstable
modes are whose with a long parallel (along magnetic field lines) wavelength and a
short perpendicular one (see, for example, [72]). This means that k‖ � kr and leads
to the presence only of the sin θ component in ωd (see Eq. 1.24), since we take into
account only the term (b × κ)rkr and neglect the poloidal component (b × κ)θ∂θ.
The magnetic drift frequency ωd can also have dependence on the magnetic field
elongation as ∼ 1/κ (see Eq. (6) in [30]), but we do not include it here. The transit
frequency ωtr is obtained from the poloidal derivative in the cylindrical coordinate
system, and by using Eq. 1.8 for the safety factor q:

v‖
bθ
r
∂θ = v‖

Bθ

rB0

∂θ =
v‖
qR0

∂θ. (3.20)

After the Fourier transformation, the gyroaveraging operator J0 can be expressed as
the Bessel function of the first kind J0(k⊥ρ). Here, k⊥ρ is the normalised wavenumber
perpendicular to the magnetic lines, and it is approximated by the radial wavenumber
krρ. The Larmor radius ρ is defined in Eq. 1.53.

The final step here is to split the non-adiabatic part of the distribution function
into the zonal (small kθ in general case) h and non-zonal (high kθ) δK components:

h = h+ δK. (3.21)

The same splitting can be done for the potential perturbation:

Φ = Φ + Φ̃. (3.22)

Taking into account that ωtr � ωd, one can obtain from the GK equation 3.17 after
the flux-surface averaging that

h =
Ze

T
f0J0(k⊥ρ)Φ. (3.23)
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3.2 GAM dispersion relation

Using the above expression, we obtain the desired GK equation:[ωtr,sp
ω̂

∂θ − i
(

1 +
ωd,sp
ω̂

)]
δKsp =

−iZspe
Tsp

f0,sp

(
J0(k⊥ρ)Φ̃− ωd,sp

ω̂
J0(k⊥ρ)Φ

)
, (3.24)

where the perturbation of the species distribution function takes the following form

δfsp = −Zspe
Tsp

f0,spJ0(k⊥ρ)Φ̃ + δKsp. (3.25)

Here, we have restored the species subindex sp, since in the next Section we are going
to consider electrons and ions (deuterium) separately.

The GK equation should be coupled with the quasi-neutrality (Poisson) equation
(Eq. 2.20). It states that for plasma structures larger than the electron Debye length3

(Eq. 1.44), the fractional charge separation allowed by the Poisson equation has to
be small. The gyroagering operator in Eq. 2.20 indicates the transition of the species
distribution function from the guiding-center coordinate system to the real one. By
using the expression 3.25 for species distribution perturbations, one gets from the
Poisson equation the following quasi-neutrality condition:

−e
2

Ti

(
1 +

1

τe

)
Φ̃ + e〈J0δKi〉 =

mic
2

B2
0

k2
rΦ, (3.26)

where we neglect the gyroaveraging of the ion background distribution function and
take into account that the background densities satisfy 〈f0,i〉 = 〈f0,e〉 = 1 due to the

normalisation taken in Eq. 3.7. Apart from that, we have expanded 〈J2
0f0,iΦ̃〉 as

〈J2
0f0,iΦ̃〉 = Φ̃− (krρi)

2

2
Φ̃. (3.27)

Here, J0 is the Bessel function of the krv⊥/ωci argument, 〈.〉 denotes the integration
in velocity space, and τe = Te/Ti.

3.2 GAM dispersion relation

We shall now introduce the ordering that will be used in the derivation of the GAM
dispersion relation. First of all, we assume that the radial wavenumber is a small

3The charge separation leads to enormous restoring electric forces. At the same time, the
restoring force decreases with a decreasing separation distance. The Debye length is a fundamental
characteristic distance at which the kinetic plasma energy still can sustain the charge separation.
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3. Gyrokinetic theory of GAMs

value (krρ � 1). In this case, the gyroageraging operator can be expanded as
J0(krρ) = 1−(krρ)2/4. To keep only terms of the smallest order, we take J0(krρ) = 1.
Since the GAMs are sound oscillations, we have Re[ω̂] ∼ uth,i/R. Here, τe is assumed
to be close to one. We are going to use the ratio ωd,i/ω̂ ∼ krρi as the smallness
parameter ε. The ordering of the drift frequency ωd,sp is the same for all species,
since the drift frequency does not depend on the species mass (in Eq. 3.19 squared

velocities (v2
⊥,sp/2 + v2

‖,sp) are proportional to m−1
sp ). The non-zonal component Φ̃ is

considered to be much smaller than the zonal one Φ as discussed in Sec. 1.3, and the
ratio Φ̃/Φ is of the order of ε (more precisely, eΦ/T ∼ O(1), while eΦ̃/T ∼ O(ε)).
From Eq. 3.23 follows that hsp/f0,sp ∼ O(1). Correspondingly, we assume that the
non-zonal component of the distribution function δKsp/f0,sp is of the order of ε.
The electrons have a high speed along the magnetic field due to their small mass,
leading to the domination of the electron transit frequency (Eq. 3.18) over all other
frequencies. On the other hand, it is known that the ion transit frequency ωtr,i is
of the order of the sound frequency. This means that it is of the order of the GAM
frequency. To sum up, the ordering of the system is the following one:

ωd,sp
ω̂
∼ O(ε),

ωtr,e
ω̂
∼ O(ε−1),

ωtr,i
ω̂
∼ O(1), (3.28)

eΦ

T
∼ O(1),

eΦ̃

T
∼ O(ε), (3.29)

δKsp

f0,sp

∼ O(ε). (3.30)

Now, we are going to consider the GK equation separately for different species. We
start from the case of electrons. For the lowest order of Eq. 3.24 we have

ωtr,e
ω̂

∂θδKe = 0. (3.31)

The above expression indicates that δKe = 0 since it has to be non-zonal (has the
dependence on the poloidal angle). This means that we are dealing with adiabatic
electrons, as it was mentioned at the beginning of this chapter, whose distribution
perturbation function does not have the non-adiabatic component.

Next, we are going to work with the ion GK equation. Considering only the O(ε)
terms, we get for deuterium(ωtr,i

ω̂
∂θ − i

)
δKi = −if0,ie

Ti

(
Φ̃− ωd,i

ω̂
Φ
)
, (3.32)

where only the dynamics of deeply-passing particles are taken into account (in other
words, ωtr,i = const in poloidal direction). Now, we are splitting the non-zonal
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3.2 GAM dispersion relation

distribution and field perturbations on the cos θ and sin θ components:

Φ̃ = Φ̃c cos θ + Φ̃s sin θ, (3.33)

δKi = δKi,c cos θ + δKi,s sin θ, (3.34)

where the functions in front of the sin θ and cos θ are assumed to be independent on
the poloidal angle. Considering separately the cos θ and sin θ terms, and taking into
account Eq. 3.19, one gets the following system of equations:(

iω̂ −ωtr,i
ωtr,i iω̂

)(
δKi,c

δKi,s

)
=
if0,ieω̂

Ti

(
Φ̃c

Φ̃s − ω̂d,iΦ/ω̂

)
. (3.35)

From this system, one can find the non-zonal distribution perturbation for the ions:

δKi,c =
if0,ie

Ti

ω̂

ω2
tr,i − ω̂2

(
iω̂Φ̃c + ωtr,iΦ̃s − ωtr,i

ω̂d,i
ω̂

Φ

)
, (3.36)

δKi,s =
if0,ie

Ti

ω̂

ω2
tr,i − ω̂2

(
−ωtr,iΦ̃c + iω̂Φ̃s − iω̂d,iΦ

)
. (3.37)

Here, it is necessary to find the electric potential. To do that, we need the quasi-
neutrality equation 3.26, where we take into account that

〈J0δKi〉 ≈ 〈δKi〉 −
(krρi)

2

4
〈δKi〉. (3.38)

Since we consider here only the terms of the lowest order with respect to krρi, we
get the following quasi-neutrality condition:(

1 +
1

τe

)
Φ̃ =

Ti
e
〈δKi〉, (3.39)

where δKe = 0 because of the electron adiabaticity. By rewriting Eq. 3.39 using
Eqs. 3.33, 3.34, one obtains:(

1 +
1

τe

)
(Φ̃c cos θ + Φ̃s sin θ) =

Ti
e

(〈δKi,c〉 cos θ + 〈δKi,s〉 sin θ) . (3.40)

First of all, one should notice that f0,i (Eq. 2.36) and ω̂d,i (Eq. 3.19) are even func-
tions of the parallel speed v‖,i, while the ωtr,i is an odd one. Therefore, the terms
proportional to ωtr,i in Eqs. 3.36, 3.37 disappear after the velocity integration 〈.〉.
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3. Gyrokinetic theory of GAMs

During the velocity integration, we are going to use the expression of the Plasma
Dispersion Function (PDF) [73]:

Z(z) =
1√
π

∫ +∞

−∞

exp(−y2)

y − z
dy = −

√
π exp(−z2)(Erfi(z) + i), (3.41)

where Im(z) < 0, Erfi(z) is the Imaginary Error Function, and the following integrals
can be evaluated using the PDF:

1√
π

∫ +∞

−∞

exp(−y2)

y2 − z2
dy =

Z(z)

z
, (3.42)

1√
π

∫ +∞

−∞

y2 exp(−y2)

y2 − z2
dy = 1 + zZ(z), (3.43)

1√
π

∫ +∞

−∞

y4 exp(−y2)

y2 − z2
dy =

1

2
+ z2 + z3Z(z). (3.44)

Derivation of Eq. 3.41 is considered in Appendix A. We start from the first term on
the right hand side in Eq. 3.40:

〈δKi,c〉 = −eΦ̃c

T

ω̂2

u3
thπ

3/2

〈
exp

(
−(v2

‖ + v2
⊥)/u2

th

)
ω2
tr − ω̂2

〉
, (3.45)

where we skip for simplicity the ion subindex on the right hand side of the equation.
Integration on velocity space is performed in cylindrical coordinates∫ +∞

−∞
d3v = 2π

∫ +∞

0

v⊥ dv⊥

∫ +∞

−∞
dv‖. (3.46)

Therefore, the integration on the perpendicular velocity gives〈
exp(−(v2

‖ + v2
⊥)/u2

th)

ω2
tr − ω̂2

〉
= πu2

th

∫ +∞

−∞

exp(−v2
‖/u

2
th)

ω2
tr − ω̂2

dv‖, (3.47)

and by applying the following change of variables

y =
v‖
uth

, z =
ω̂

ω0

, ω0 =
uth
qR0

, (3.48)

one can perform the integration on the parallel velocity by using Eq. 3.42:∫ +∞

−∞

exp(−v2
‖/u

2
th)

ω2
tr − ω̂2

dv‖ =
uth
ω2

0

∫ +∞

−∞

exp(−y2)

y2 − z2
dy =

√
π
uth
ω2

0

Z(z)

z
. (3.49)
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3.2 GAM dispersion relation

Combining Eqs. 3.47, 3.49, and by inserting the result into Eq. 3.45, one gets

〈δKi,c〉 = −eΦ̃c

T
zZ(z). (3.50)

Now, we are going to consider the second term on the right hand side of Eq. 3.40:

〈δKi,s〉 = −eω̂
2

T

〈
f0

ω2
tr − ω̂2

〉
Φ̃s +

eω̂

T

〈
f0ω̂d

ω2
tr − ω̂2

〉
Φ. (3.51)

The first term is evaluated in the same way as it has been done above:

−eω̂
2

T

〈
f0

ω2
tr − ω̂2

〉
Φ̃s = −eΦ̃s

T
zZ(z). (3.52)

The integration on the perpendicular velocity of the second term gives〈
f0ω̂d

ω2
tr − ω̂2

〉
=

krcm

eB0R0

1

uth
√
π

∫ +∞

−∞
dv‖

(
u2
th/2 + v2

‖

)
exp

(
−v2
‖/u

2
th

)
ω2
tr − ω̂2

. (3.53)

The first part of this integral can be found by using again Eq. 3.42. The second part
is evaluated to ∫ +∞

−∞
dv‖

v2
‖ exp

(
−v2
‖/u

2
th

)
ω2
tr − ω̂2

=
√
π
u3
th

ω2
0

(1 + zZ(z)) (3.54)

using Eq. 3.43. Using the above equations, we transform Eq. 3.51 into

〈δKi,s〉 =
e

Ti

(
−zZ(z)Φ̃s +

krcm

eB0R0

u2
th

ω0

N(z)Φ

)
, (3.55)

N(z) = z +

(
1

2
+ z2

)
Z(z). (3.56)

Now, by substituting Eqs. 3.50, 3.55 into Eq. 3.40, and considering separately the
terms in front of cos θ and sin θ, we can find expressions for the non-zonal components
of the electric potential:

Φ̃c = 0, (3.57)

Φ̃s =
krcm

eB0R0

u2
th

ω̂

N(z)

D(z)
Φ, (3.58)

D(z) =
1

z

(
1 +

1

τe

)
+ Z(z). (3.59)
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3. Gyrokinetic theory of GAMs

To get the GAM dispersion relation, one has to consider one order higher terms
(more precisely, the terms of the second order of smallness). In particular, we are
going to consider the flux-surface-averaged quasi-neutrality condition 3.26, and ion
gyrokinetic equation 3.24 multiplied by J0:

e〈J0δKi〉 =
mic

2

B2
0

k2
rΦ, (3.60)

ω̂〈J0δKi〉+ 〈ωd,iJ0δKi〉 = 0, (3.61)

where the integration on velocity space is performed. From this system we immedi-
ately obtain the following equation

ω̂
mic

2

eB2
0

k2
rΦ = −〈ωd,iJ0δKi〉. (3.62)

After that, we consider only the terms of the second order of smallness, and by apply-
ing Eqs. 3.19, 3.34, one gets the following flux-surface-averaged vorticity equation:

2m

B2
0

ω̂k2
rΦ = − e

c2
〈ω̂d,iδKi,s〉 . (3.63)

Finally, by using Eq. 3.44 to integrate the term 〈ω̂d,iδKi,s〉, one gets the GAM
dispersion relation

z + q2

(
F (z)− N2(z)

D(z)

)
= 0, (3.64)

F (z) = z(z2 +
3

2
) + (z4 + z2 +

1

2
)Z(z), (3.65)

where z is the sought for normalised complex GAM frequency (Eq. 3.48). By taking
the species temperatures and the safety factor at a particular radial point s, one
can numerically solve Eq. 3.64 (it is more convenient to find poles of the inverse
expression) to estimate the wave frequency and damping rate for a small radial
wavenumber krρi � 1 in the case of a circular magnetic configuration.

The dispersion relation 3.64 is similar to that obtained in Eq. (2) in [28] (or
Eq. (2.7) in [74]). The main difference is that the dispersion relation in [28, 74]
includes a term proportional to (krρiq)

2 exp(−Re[ω̂]2/4), ρi = uth,i/ωc,i, which con-
tributes to the wave damping rate (Eqs. 3.67, 3.70). This term appears due to
finite orbit width effects that has been neglected here. For later reference, we show
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3.2 GAM dispersion relation

here without derivation approximate explicit formulae for the GAM frequency and
damping rate found in [28]:

ω = Re[ω̂] = qω0,i

√
7 + 4τe

2

√
1 +R1, (3.66)

γ = Im[ω̂] = −q2ω0,i

√
πR23

2 +R1

, (3.67)

where

zr = Re[z], (3.68)

R1 =
2(23 + 16τe + 4τ 2

e )

q2(7 + 4τe)2
, (3.69)

R23 = exp(−z2
r )R2 +

1

64
(krρiq)

2 exp(−z2
r/4)R3, (3.70)

R2 = (1 + 2τe)z
2
r + z4

r , (3.71)

R3 =

(
6 + 7τe +

5

2
τ 2
e

)
z2
r + (1 + τe)z

4
r +

1

8
z6
r , (3.72)

and z, ω0,i are defined in Eq. 3.48. The above equations are valid for krρiq
2 �

1. One can see from these expressions that the GAM frequency has significant
dependence on the safety factor and the plasma temperatures, while the damping
rate also significantly increases with the radial wavenumber.
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Chapter 4

GAM damping

In this chapter, we consider different GAM damping mechanisms in the tokamak
plasma systems, briefly introduced in Sec. 1.4. In particular, in Sec. 4.1, we are
going to investigate the Landau damping of the geodesic acoustic modes by thermal
species in different plasma regimes, with the main emphasis on the role of electron
dynamics. A process, called phase mixing, where increased mode damping due to
non-flat temperature and safety factor profiles is observed, is presented in Sec. 4.2. In
Sec. 4.3, the collisional damping of the geodesic modes is briefly discussed. Finally,
in Sec. 4.4, the GAM linear frequency spectrum is estimated in an ASDEX Upgrade
discharge, and the collisional damping is compared with the Landau damping of the
mode. Most of the results presented in this chapter have been published in [34].

4.1 Landau damping

It was reported previously [32, 33] that models derived with adiabatic electrons
can result in significantly smaller GAM damping rate in comparison to simulations
performed with kinetic electrons. By adiabatic electron models, we mean here mod-
els treating the m 6= 0 component of the electrons as adiabatic, and setting the
zonal component of the electron density perturbation to zero. By performing linear
electromagnetic GK simulations with drift-kinetic electrons, which have a realistic
deuterium-electron mass ratio me/md = 2.5 · 10−4, the influence of the electron dy-
namics on the geodesic mode behaviour is shown. Interpolating formulae for the
GAM frequency and damping rate in different plasma regimes are derived based on
the gyrokinetic simulations with ORB5.

Electrostatic simulations with kinetic electrons are faster than electromagnetic
simulations, due to the smaller number of equations to be solved. Nevertheless, a high
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4. GAM damping

frequency oscillation, called the ωH-mode [75], is observed to be often numerically
unstable. From gyrokinetic Vlasov and Poisson equations in a slab geometry one
can obtain a plasma dispersion relation, and one of whose solutions is the ωH-mode.
It can be considered as an electrostatic shear Alfvén wave, which has the highest
growth rate at (k⊥ρs)(ωH∆t) =

√
2 with the onset of instability at ωH∆t ' 1, where

∆t is the time step in a considered simulation. To decrease the level of the high-
frequency oscillations, electromagnetic simulations in the small-βe limit (βe = 10−5)
are performed instead of the electrostatic ones. MHD equilibria of the circular and
elongated plasma is calculated with the external code CHEASE [64]. Simulations
are carried out with a flat density profile, which is shown to not impact the GAM
frequency and damping rate in linear simulations (Appendix in [34]). To focus on
the Landau damping in the absence of the phase mixing effect, a flat temperature
profile is considered. Since the safety factor profiles are taken from the CHEASE
code, there is a magnetic shear (s∂s ln(q) 6= 0) that also causes the phase mixing,
but its influence on the GAM frequency (and as a result, on the damping rate due to
the increase of the radial wavenumber, see Sec. 4.2) is much smaller in comparison
to the temperature gradient effect (Eq. 3.66).

The plasma parameters are taken close to the AUG parameters near the plasma
edge [49]: the major radius R0 = 1.65 m, the minor radius a = 0.5 m (inverse aspect
ratio is ε = 0.303), the magnetic field on the axis B0 = 2 T . In the CHEASE code,
the plasma elongation κ is defined at the plasma boundary and changes gradually to
the plasma center. Since we know the exact value of the elongation only at the edge,
we measure the GAM frequency and damping rate near the plasma boundary (at
the radial position s0 = 0.90) to make the scan on the elongation more precise. We
consider a deuterium plasma: md = 2mp, Zd = 1, where mp is the proton mass. The
temperature is taken to be Td = Te = 70 eV . This means that cs = 5.8 · 104 m/s,
ρs = cs/ωcd = 6.1 · 10−4 m, ρ∗ = ρs/a = 1.2 · 10−3, and the deuterium gyro-frequency
is ωci/(2π) = 15.2 MHz. To weaken the constraint on the radial resolution, we
simulate only a ring from s1 = 0.85 to s2 = 0.95 in a poloidal cross section with the
Dirichlet condition for the potential φ on boundaries (φ(s1) = φ(s2) = 0).

A standard simulation in this work has the following parameters. Number of
nodes in radial direction is taken to be ns = 256, in toroidal directions nφ = 4 and
along the straight-field-line coordinate χ the number of nodes is nχ = 64. Time step is
dt[ω−1

ci ] = 2. The GAM damping rate and frequency are calculated for different GAM
radial wavenumbers k = krρi ∈ [0.054, 0.377] (in this chapter, ρi = ρd =

√
2vTd/ωcd =

8.57 · 10−4 m is the deuterium Larmor radius), the safety factor q ∈ [3.5, 5.0] at
s0 = 0.90 and the plasma elongation κ ∈ [1.0, 1.6] at the edge. This is the regime
where GAMs are typically observed in tokamak plasmas (see, for example, [49]).
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Figure 4.1: Comparison of linear gyrokinetic simulations (blue dots), performed with
drift-kinetic electrons, with the analytical theories Gao 2010 [30] (solid blue line) and
Qiu et al. 2008 [29] (dashed red line), derived with adiabatic electrons. Here, k = krρi
is the normalised radial wavenumber, q is the safety factor, κ is the elongation.
Reprinted with permission from [34], with permission from AIP Publishing.

The ORB5 simulations are initialized by introducing a zonal density perturbation
designed to produce an initial electric potential field of the form ∼ sin(ks), where
s ∈ [s1, s2] (as in the so-called Rosenbluth-Hinton test [9]). All toroidal modes n 6= 0
and poloidal modes |m| > 10 are filtered out. To study the GAM dynamics, the
frequency and damping rate of the zonal radial electric field are calculated.

In Fig. 4.1, a comparison of the GAM frequencies and damping rates obtained
from the numerical simulations with two analytical theories of Qiu et al. 2009 [29] and
Gao 2010 [30] is shown. Both the analytical theories derived using adiabatic electrons
take into account higher order transit resonances1 (see Eq. 5.5) and can be applied in
the case with krρiq

2 � 1, which is opposite to the approach presented in Chapter 3.
However, the Gao theory also includes geometric effects of the background magnetic
field such as the field elongation κ. A good agreement between the numerical results

1The large orbit drift width limit.
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Figure 4.2: Comparison between numerical simulations (dots, triangles and squares)
of the GAM frequency and values obtained using the interpolating expression pro-
vided in Eq. 4.1 (solid lines). Dotted lines indicate 95% confidence bounds of the
fitting. Here, k = krρi is the normalised radial wavenumber, q is the safety factor,
κ is the elongation. Reprinted with permission from [34], with permission from AIP
Publishing.

and the analytical predictions of the GAM frequency are found. Nevertheless, the
analytical GAM damping rate is smaller in comparison to the numerical simulations
with drift-kinetic electrons, and the divergence increases for smaller values of the
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4.1 Landau damping

GAM radial wavenumber. Moreover, a divergence in the GAM frequency between
the numerical results and the analytical theories is observed in the domain of higher
wavenumbers (Fig. 4.1).
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Figure 4.3: Comparison between numerically simulated values (dots, triangles or
squares) of the GAM damping rate and values obtained by using the interpolating
expression provided in Eq. 4.2 (solid lines). Dotted lines indicate 95% confidence
bounds of the fitting. Here, k = krρi is the normalised radial wavenumber, q is
the safety factor, κ is the elongation. Reprinted with permission from [34], with
permission from AIP Publishing.

53
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As it was mentioned above, the Gao 2010 theory describes the GAM dependence
on the plasma elongation and it is in a good agreement with numerical results for the
frequency. Although the Gao 2010 theory provides significantly smaller damping rate
in comparison to the simulations, it seems to give a similar trend of the damping
coefficient with the plasma elongation, i.e., the damping rate is weakened by the
elongation. Since the theory is derived in the large orbit drift width limit, the
dominant damping mechanism is the resonance ω ∼ ωd , where the magnetic drift
ωd = kr ·vd (see Eq. 3.19 and the text after it) is defined by the drift velocity vd (see
Eq. 1.54). As explained in [30], the GAM frequency decreases with the increase of
the elongation more slowly than the drift frequency. This means only the particles
with higher drift velocities can satisfy the resonance ω ∼ ωd. Since the resonance in
this case involves fewer particles, the GAM damping rate decreases.

To provide a scaling of the GAM frequency and damping rate, corresponding in-
terpolating expressions are fitted to the results of the gyrokinetic simulations. These
expressions are valid within the parameter range considered in our simulations: GAM
radial wavenumber k = krρi ∈ [0.054, 0.377], safety factor q ∈ [3.5, 5.0], and plasma
elongation κ ∈ [1.0, 1.6].

To derive an interpolating expression for the frequency, several assumptions
are used. The experimentally obtained dependence [49] on the plasma elongation
1/(1 + κ) is slightly modified to 1/(1 + g6κ), where g6 is an adjustable coefficient.
The dependence on the safety factor is taken in the form exp(−g5q

2). In fact, the
q-dependence in a form of

√
1 + g5/q2 given in [33], gives the same results. To de-

scribe how the frequency changes with the radial wavenumber, a polynomial is taken.
Moreover, to take into account the frequency saturation for higher wavenumbers [76],
we introduce a function of the form 1/(1+g4k). The resulting frequency interpolating
formula is the following one (here, the frequency is normalised to

√
2vT i/R0):

fω

[√
2vT i
R0

]
=
g1 + g2k

2 + g3k
4

1 + g4k

exp (−g5q
2)

1 + g6κ
. (4.1)

Among different tested functions, this form gives the best approximation to nu-
merically simulated values of the GAM frequency, it has one of the smallest 95%
confidence bounds and is not overfitted. The corresponding coefficients g with their
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4.2 Phase mixing

95% confidence bounds (lower glc and upper guc bounds) are

g = [3.7733, 6.3505, −1.9741e1,

1.3557e− 1, 1.4620e− 3, 1.1684],

glc = [3.6745, 3.3168, −2.8800e1,

−6.0078e− 2, 1.1373e− 3, 1.1234],

guc = [3.8720, 9.3843, −1.0682e1,

3.3121e− 1, 1.7866e− 3, 1.2135].

Results for the Eq. 4.1 are depicted in Fig. 4.2.
For the damping rate we get the following expression:

fγ

[√
2vT i
R0

]
=

(h1 + h2k
2) exp [−h3q

2]

1 + h4κ2
+ (4.2)

+
(h5 + h6k

2) exp [−h7q
2]

1 + h8κ4
.

with the interpolating coefficients

h = [−1.2494e− 2, −8.9688e− 1, 4.5498e− 2,

−1.9884e− 1, −1.1248e− 2,−2.5481,

−5.3340e− 3, 7.7748e− 1],

hlc = [−2.3115e− 2, −1.6490, 2.5215e− 2,

−3.3573e− 1, −2.5523e− 2, −3.1909,

−1.9665e− 2, 5.1924e− 2],

huc = [−1.8723e− 3, −1.4471e− 1, 6.5781e− 2,

−6.1955e− 2, 3.0272e− 3, −1.9053,

8.9973e− 3, 1.5030].

Comparison between the results from the gyrokinetic simulations and the interpo-
lation expression for the GAM damping rate is shown in Fig. 4.3 for some specific
values of parameters taken as examples.

4.2 Phase mixing

To investigate the influence of the phase mixing on the GAM dynamics, we take the
same parameters as in Sec. 4.1, but introducing a temperature gradient (the same
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Figure 4.4: Left plot: Radial profiles of the temperature and its gradient for differ-
ent kT : kT = [1, 5, 15] (blue solid, red dashed and green dotted curves respectively).
Right plot: Dependence of the GAM half-decay time on the temperature gradient:
GK simulations in ORB5 (green squares), analytical theory using the linear estima-
tion Eq. 4.10 (blue dots), and analytical theory using numerical estimation of the
radial wavenumber in the GK simulations (red triangles). Here, it is the combined
effect of the drift-kinetic electrons and the phase mixing that gives the resulting
numerical and analytical estimation of the GAM half-decay time. Reprinted with
permission from [34], with permission from AIP Publishing.

for both electrons and ions to have τe = Te/Ti = 1, Ti(s0) = 70 eV ) at the radial
position s0 = 0.90. The radial point s0 = 0.90 is chosen here to be in agreement with
Sec. 4.1. The initial radial wavenumber of the radial electric field is k = 0.108. The
safety factor is q(s0) = 4.0. We consider a temperature profile of the following form,
similarly to [40]:

Te(s)

Te(s0)
= exp

[
−∆ · kT · tanh

(
s− s0

∆

)]
, (4.3)

where ∆ = 0.04, kT = − d[ln(T )]/ds|s=s0 . The temperature profiles and the cor-
responding temperature gradient profiles for different kT in a radial interval s =
[0.85, 0.95] are shown in Fig. 4.4. Dependence of the GAM half-decay time t1/2 on
the temperature gradient is investigated in the domain kT ∈ [1, 15]2. A scan of gy-
rokinetic simulations with the temperature gradient kT is performed, and the results
are depicted in Fig. 4.4, green squares. Due to the temperature gradient, the GAM
oscillates with different frequencies at different radial points. This leads to the distor-
tion of the initial GAM radial structure. Producing higher radial wavenumbers, this

2For example, in the AUG#20787 discharge considered in Sections 4.4 and 8.2, the normalised
temperature gradient is kT (s = 0.9) ≈ 8.5, but it significantly increases at the very edge of the
plasma system due to small temperature values.
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4.2 Phase mixing

distortion amplifies the GAM damping. This combined effect, already investigated
in [39, 40] for a more simplified configuration, is observed even more pronounced
in the gyrokinetic simulations performed with drift-kinetic electrons. For example,
using the Sugama-Watanabe model for the Landau damping [28], which is derived
with adiabatic electrons, and combining with phase mixing, using Eq. 4.10 for the
evolution of the wavenumber, we obtain t1/2[R0/(

√
2vT i)] = 118 for the kT = 1 and

t1/2[R0/(
√

2vT i)] = 23.4 for kT = 10. This adiabatic estimation predicts much longer
GAM half-decay time in comparison to the calculations based on the simulations
with the drift-kinetic electrons (compare with Fig. 4.4).

In order to verify the results of the gyrokinetic simulations, we use a theoretical
simplified model of the phase mixing proposed in [16, 39, 40], where a linear growth
in time of the radial wavenumber is considered.

In the phase mixing simulations, a space point s0 is considered with a certain
temperature T (s0) and temperature gradient kT (s0). The initial radial electric field
has the following radial structure:

E(s) = E0 cos(k0s) (4.4)

with the initial amplitude E0 and initial normalised radial wavenumber k0. The
electric field is assumed to evolve in time at a point s0 according to a simple rule

E(s0, t) = Ea(s0, t) cos(ω(s0)t), (4.5)

where Ea(s0, t) is the amplitude of the electric field, which changes in time due to
the damping, Ea(0) = E0. The general form of the GAM frequency is

ω(s, t) =

√
2cs
R0

ω∗(k(t), q, κ) =

√
2

R0

√
Te(s)

mi

ω∗(k(t), q, κ), (4.6)

where ω∗(k(t), q, κ) describes the frequency dependence on the radial wavenumber,
the safety factor and the elongation. One of the simplest analytical formulae for
the GAM frequency has been shown in Eq. 3.66, derived in the case with adiabatic
electrons. However, here we are going to use Eq. 4.1, obtained from the GK sim-
ulations with drift-kinetic electrons, although their effect on the GAM frequency is
much smaller than on the wave damping rate. The safety factor profile is taken to
be flat, and a deuterium plasma with a circular cross-section is considered: κ = 1.00,
r ≈ as.

The damping rate is defined as

γ(s0, t) =
1

E(s0, t)

dE(s0, t)

dt
. (4.7)
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4. GAM damping

Figure 4.5: Typical evolution in time of the GAM radial wavenumber in the pres-
ence of different temperature gradients. The curves are calculated analytically using
Eq. 4.10, where the radial gradient of the wave frequency found from Eqs. 4.9 and 4.1.
Here, the following parameters are used: Te = 70 eV, τe = 1, q = 4.0, κ = 1.0, B0 =
2.0 T, a = 0.5 m,R = 1.65 m, initial normalised radial wavenumber k0 = 0.108, and
temperature gradients kT = [1, 5, 10, 15].

At the beginning of every time interval [t1, t1 + ∆t], new values of the damping
rate γ(s0, t1) and frequency ω(s0, t1) are found with the scaling formulae given in Eq.
(4.2) and (4.1), using the current value of the wavenumber k(s0, t1). The new value
of the electric field can be found, assuming that the damping rate is constant within
the lapse of time [t1, t1 + ∆t]:

E(s0, t1 + ∆t) = E(s0, t1) · (1 + γ(s0, t1)∆t). (4.8)

After that, the new value of the wavenumber k(s0, t1 + ∆t) is calculated using
the radial derivative of the frequency. Considering the case with a flat safety factor
profile and radially constant magnetic field elongation, one gets from Eq. 4.6

∂ω(s, t1)

∂s

∣∣∣∣
s=s0

= −1

2
ω(s0, t1)kT , (4.9)

where the factor 1/2 comes from the radial derivative of the sound speed ∼
√
Te(s).

With that, the wavenumber is assumed to change linearly in time as [16]

k(s0, t1 + ∆t) = k(s0, t1)−
√

2ρ∗
∂ω(s, t1)

∂s

∣∣∣∣
s=s0

∆t. (4.10)
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4.3 Collisional damping

Eq. 4.10 indicates that the mode radial wavenumber grows in time because of the
radial dependence of the GAM frequency (Eq. 4.9) that takes place due to the tem-
perature gradient (Fig. 4.5). Another option is to estimate the time evolution of
the radial wavenumber directly from numerical calculations in ORB5 (red triangles
in Fig. 4.4) instead of applying the analytical equation 4.10. Substituting the new
value of the normalised wavenumber k(s0, t1 + ∆t) into Eq. (4.2), we can find the
damping rate γ(s0, t1 + ∆t) at the next time point. To sum up, by using Eqs. 4.1
and 4.2 to know respectively the frequency and damping rate dependence on the
mode radial wavenumber, and by applying these formulae in Eqs. 4.8 and 4.10, one
can analytically calculate the evolution in time of the electric field, from which the
mode half-decay time can be found.

The results obtained with this reduced theoretical model are shown in Fig. 4.4.
The dependence of the half-decay time on the temperature gradient matches rea-
sonably well the gyrokinetic simulations and the analytical theory. The difference is
due to the global dynamics of the ORB5 simulations, which is compared here with
a theory where the phase mixing follows a local estimation given in [16].

4.3 Collisional damping

Another possible mechanism of the GAM damping is the collisional processes. The
collisional GAM damping is rarely discussed since it should be less relevant in the
core region than the collisionless mode decay. On the other hand, the GAMs are
often observed in the edge region where the plasma temperature is reduced, and
since that, the plasma collisions are enhanced. Their contribution can be estimated
using the formulae derived by Gao in [31], where GK theory of the ion plasma with
adiabatic electrons is considered. It means that only the ion-ion collisions are taken
into account. To find the GAM collisional damping, the right hand side of the GK
equation similar to Eq. 3.24 is completed with a collision operator. After that, one
derives the GAM dispersion relation for the mode complex frequency, where the
imaginary part of the frequency includes the Landau and collisional parts. In par-
ticular, in [31], the so-called BGK (Bhatnagar-Gross-Krook) collision operator [77]
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4. GAM damping

with particle conservation3 is used

CK = iνi

(
n(t, r)

n0(r)
F0,i(r,v)− f(t, r,v)

)
, (4.12)

where νi is the ion collision rate. In general, the collisions modify both mode fre-
quency and damping rate, but we are interested here only in the latter one. Intro-
ducing the normalised ion collision rate ν̂i = νiqR0/vT i, the collisional damping rate
is calculated according to [31] as

γcol

vT i/(qR0)
= − 3ν̂i

14 + 8τi
, (4.13)

if ν̂i � 1, and as

γcol

vT i/(qR0)
= −3

8
ν̂i

(
7

4
+ τi +

ν̂2
i

q2

)−1

, (4.14)

if ν̂i ≥ q. Here, τi = Ti/Te. To find the ion collision rate, we use classical expressions
(see [78], page 33):

νi[s
−1] = 4.8 · 10−8Z4(mi/mp)

−1/2ni[cm
−3]Ti[eV ]−3/2 ln Λ, (4.15)

ln Λ = 23− ln

[√
2ni[cm−3]

Z3

Ti[eV ]3/2

]
, (4.16)

where the ion species are assumed to be near Maxwellian. According to Eq. 4.13,
the mode damping due to the collisions generally increases with the growth of the
ion collision rate ν̂i. However, the tendency is reversed when the rate becomes
comparable with the sound frequency vvTi/R0 (Eq. 4.14). One can see that the
collisional damping significantly depends on the ion temperature profile, and as it is
shown in Sec. 4.4, generally becomes noticeable only at the very edge of the plasma
system.

3The particle (density) conservation means that the zero moment of the GK (Vlasov) equation
has to be equal to zero

d
∫
f(t, r,v) dv

dt
=

∫
CK dv = 0 (4.11)

that results in the n(t, r)/n0(r) term in front of the equilibrium distribution function F0,i(r,v) in
Eq. 4.12.
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Figure 4.6: Left plot: comparison of the experimental GAM frequency [49] to Eq. 4.1.
Right plot: Landau (red line, according to Eq. 4.2) and collisional damping (grey line,
according to Eq. 4.13) rates. Here, ρ = ψ/ψedge is the radial coordinate. Reprinted
with permission from [34], with permission from AIP Publishing.

4.4 GAM linear frequency and damping spectra

in ASDEX Upgrade

The fitting formulae obtained in Eqs. 4.1, 4.2 as the interpolation of the performed
gyrokinetic simulations in Sec. 4.1 can be used to compare the GAM frequency
obtained from the numerical estimations and from measurements, performed on AS-
DEX Upgrade tokamak [49]. More precisely, we consider the discharge AUG#20787
with the plasma elongation at the edge κ = 1.09 assuming that it is constant in the
considered radial region ρ = ψ/ψedge = [0.8, 1.0]. The GAM radial wavenumber is
considered to be constant and is estimated to be kra = 40π from the experimental
radial profile of the GAM amplitude (see Fig. 5f in [49]). Experimental safety factor
and ion temperature profiles are taken to calculate the GAM frequency and damping
rate using the scaling formulae Eqs. 4.1, 4.2 and Eq. 4.13 at different radial points
ρ.

In Fig. 4.6, the GAM experimental frequency spectrum with the numerical es-
timation are depicted. A good general agreement is found in the central region of
interest, where the GAM intensity, measured in the experiments, is peaked. How-
ever, the interpolating equation 4.1 cannot explain neither the staircase nature of the
frequencies nor the GAM peak splitting that is observed experimentally, for example,
at the radius positions ρ = 0.922 or ρ = 0.932. We should note that the presence of a
GAM global spectrum has been suggested by simplified analytical models in [79, 80].
Nevertheless, taking account our numerical results, we can conjecture that the global
GAM spectrum must have a nonlinear origin (see Sec. 8.2). We also notice that it is
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4. GAM damping

consistent with GENE nonlinear simulations in [52].
Finally, we can compare the GAM Landau damping with collisional one. Accord-

ing to Fig. 4.6, the collisional damping is found to be negligible in the radial domain
where the GAMs are experimentally measured. It is only in a very narrow region
close to the plasma edge that the order of magnitude of the collisional damping is
comparable to that of the Landau damping.

4.5 Chapter summary

This chapter has presented a numerical investigation of the dominant damping mech-
anisms of geodesic acoustic modes. Landau damping on thermal ions is one of the
main damping processes since characteristic ion frequencies lie in the domain of GAM
frequency. However, using plasma parameters close to those of ASDEX Upgrade near
the plasma edge, it has been demonstrated that the inclusion of electron dynamics
can significantly increase the mode damping rate keeping the GAM frequency prac-
tically unchanged. This result is confirmed in Chapter 6 and Chapter 7, where the
same tendency is observed in linear and nonlinear EGAM dynamics.

The phase mixing process has also been analytically and numerically analysed
in this chapter. Generally, GAMs have a continuum frequency spectrum, where the
wave frequency depends on plasma temperature and safety factor profiles and there-
fore varies in the radial direction. Moreover, the GAM damping rate significantly
increases with the rise of the radial wavenumber (Eq. 4.2, Fig. 4.3). Due to that, a
finite temperature gradient and magnetic shear (s∂s ln(q)) lead to the evolution of
the GAM wavenumber in time, and as a result, to an increase of the mode damping
rate.

Finally, using ASDEX Upgrade temperature profiles, the collisional GAM damp-
ing has been estimated and has been found to be negligible in comparison to the
Landau damping, except a narrow region close to the plasma edge.
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Chapter 5

Mode-Particle-Resonance
diagnostic

In Chapter 4, it has been shown that including electrons as a kinetic species in gy-
rokinetic simulations, one can significantly increase the damping rate of the geodesic
acoustic modes as compared to the case of adiabatic electrons. To understand why
the GAM damping by electrons takes place and in general the role of electrons in
the damping process, one should investigate the mode - electron interaction in ve-
locity space. The power balance diagnostic (Sec. 2.3) is extended to localise the
wave-particle resonances in velocity space. The resulting diagnostic is called Mode-
Particle-Resonance (MPR) technique and is presented in Sec. 5.1. In Sec. 5.2, we
explain how to work with the developed diagnostic, and localise the GAM-thermal
ion resonances in velocity space. In Sec. 5.3, the diagnostic is analytically verified. It
is shown that the GAM damping rate calculated by the MPR is consistent with the
mode dispersion relation derived in Chapter 3. The MPR diagnostic is used later in
Chapter 6 and Chapter 7 to investigate the EGAM linear and nonlinear dynamics.
This chapter is based on material published in [58].

5.1 Implementation

In the MPR diagnostic we consider the electric field interaction with plasma parti-
cles. The magnetic potential perturbation A‖ is omitted. As it has been mentioned
in Sec. 2.3, a precise form of the GK energy transfer signal, valid in both linear
and nonlinear cases, can be derived from the GK Hamiltonian using the Noether
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5. Mode-Particle-Resonance diagnostic

theorem [57]:

P = −Ze
∫
V

dV

∫
W

dW (f0 + δf)Ṙ0 ·∇(J0Φ), (5.1)

where dW is defined in Eq. 2.5. The unperturbed particle trajectory Ṙ0 can be
obtained from Eq. 2.25 by eliminating all terms that include the field perturbation
Φ. This means that the term Eq. 2.31 does not contribute to the energy transfer
signal P . The term involving the equilibrium distribution function f0 in Eq. 5.1 gives
a negligible contribution to the integral in the case of the Maxwellian or two-bumps-
on-tail distribution functions discussed in Sec. 2.2, since they disappear during the
integration over the real space1. Because of that, we are going to consider only the
term related to δf . By integrating the signal over the whole real space V and in
a small velocity domain ∆W , related to a particular velocity bin, we can analyse
the energy exchange between fields and particles in that particular region of velocity
space. In a PIC approach we have then

P = −Ze
N

∑
p∈V,∆W

wp(vp,‖ + vp,∇B + vp,curvB + vp,∇p) ·∇(J0Φ)|p, (5.2)

where the sum
∑

p∈V,∆W is taken on all markers in the phase volume V∆W . The
energy transfer is normalised in the following way:

P =
P [W ]

Te(sref )[J ]ωci[s−1]
, (5.3)

where sref is the reference radial point. The gyro-averaged electric field −∇(J0Φ)|p
is taken at a position of a marker p. The sum is normalised to the total number
of species markers N in the whole phase-space domain. Since the GK model used
in ORB5 is based on the Hamiltonian formulation, the momentum pz, which has
an explicit dependence on A‖ according to Eq. 2.10, is used as one of the velocity
variables. This is a common choice in most of the modern GK PIC codes. In the
MPR diagnostic a variable u is used as a parallel velocity:

u =
pz
m
. (5.4)

In the ES case, the variables u and v‖ are identical u = v‖ (see Eq. 2.10), and in EM
simulations with low βe they are close u ≈ v‖. With the rise of βe, the difference

1One can see it from Eq. 5.16, where f0 would be used instead of the δf . In this case, the
integral 5.24 turns to zero since it would have sin θ instead of sin2 θ.
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5.2 Post-processing: application to a simplified GAM case

between these two variables increases because of the contribution of the parallel
magnetic potential A‖. A proper transition from the variable pz to the variable v‖
(instead of u) is necessary for the investigation of the dynamics of EM modes and
for proper analysis of EM simulations. This transition is not implemented yet (it
requires explicit calculation of the time derivative of A‖), but it should be done in
the near future to use the MPR technique to investigate resonances between plasma
and EM modes, such as Alfvén waves.

5.2 Post-processing: application to a simplified

GAM case

To describe the post-processing of the signals, given by the MPR diagnostic, we
apply it to a linear GAM simulation, where a circular magnetic configuration is
considered. A deuterium plasma with flat safety factor q = 1.5, flat density and
temperature radial profiles is investigated. The temperature is defined by the value
of ρ∗ = 1/205. The simulation is performed electrostatically with adiabatic electrons,
and the MPR diagnostic is applied only to the ions. Non-zonal modes, i.e. modes
with toroidal numbers n 6= 0, are filtered out. Background magnetic field at the
magnetic axis is B0 = 2.0 T , the minor and major radii are a0 = 0.5 m, R0 = 1.65
m respectively. To reduce the computational effort, a radial domain s = [0.5, 1.0]
is simulated. The space resolution is ns = 300, nχ = 64, nφ = 4, the time step is
dt[ω−1

ci ] = 10, and the number of the ion markers is Ni = 108. As in Chapter 4,
to excite a GAM the Rosenbluth-Hinton test [9] is performed by introducing an
axisymmetric density perturbation designed to produce the desired initial electric
potential.

First of all, the MPR diagnostic provides the energy transfer signal P(v‖, µ, t)
(Eq. 5.2) as a function of the velocity variables (v‖, µ) and time. By averaging
this signal on several GAM periods, resonances of the mode-particle interaction can
be localised in velocity space. Location of such resonances of the order m can be
analytically estimated as

v
(m)
‖,res =

qR0ωGAM
m

, (5.5)

where m is the poloidal mode number of the plasma density, ωGAM is the GAM
frequency that can be found directly from the zonal electric field Er. By integrating
in corresponding velocity domains, one can estimate contribution of these resonances
to the mode dynamics. In this particular case, it can be seen from Fig. 5.1, that the
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5. Mode-Particle-Resonance diagnostic

Figure 5.1: Left plot: evolution in time of the GAM radial electric field. Right
plot: velocity dependence of the energy transfer signal averaged on several GAM
periods. White dashed and dotted lines indicate the analytical estimation of the
parallel velocities where the GAM-plasma resonance should be observed according
to the analytical expression Eq. 5.5. The parallel velocity here is normalised to the
sound velocity cs =

√
Te/mi, and the magnetic moment is normalised to mic

2
s/(2B0).

Reprinted with permission from [58], with permission from Elsevier Publishing.

energy exchange occurs at the first and second order resonances. By integrating the
signal in the whole velocity domain, one gets the time evolution of the heating rate P .
The GAM damping rate can be estimated using Eq. 2.64. Following the algorithm,
which was described in [58], one can eliminate the stationary zonal flow component in
the energy transfer and field energy signals. The corresponding signals are shown in
Fig. 5.2. From this plot, one can see that the elimination of the stationary zonal flow
from the MPR signals reduces the asymmetry in the signals’ oscillations (compare,
for example, the red and greed lines in the left plot in Fig. 5.2).

Since here we are dealing with oscillating signals, we should use Eq. 2.64, which
involves the integration in time. Varying and choosing different time intervals, one
can estimate an errorbar of the GAM damping rate by building a distribution (or
histogram) of the damping rate values. Every chosen time interval has to contain
an integer number of GAM periods. The resulting histogram can be fitted with the
normal distribution function that gives a mean value of the damping rate γ, while
the errorbar is estimated as 1.96σ, where σ is the standard deviation found from the
distribution function. The number 1.96 is the 0.975 quantile of the standard normal
distribution [81]:

P (−1.96σ < γ − γ < 1.96σ) = 0.95, (5.6)

where P is the probability to find the value of the damping rate in the range [γ −
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5.2 Post-processing: application to a simplified GAM case

Figure 5.2: Left plot: evolution in time of the field energy signal with zero-frequency
zonal flows (ZFZF) and GAM components (red line) and with only GAM component
(green line) is plotted. For comparison, the zonal radial electric field at s = 0.74 is
shown as well (blue line). Right plot: the raw energy transfer signal (blue line), which
has both ZFZF and GAM components, and the one without the ZFZF component
(red line) are presented. The energy transfer signals are integrated over the whole
velocity and space domains. Reprinted with permission from [58], with permission
from Elsevier Publishing.

1.96σ, γ + 1.96σ]. Another more conservative method to estimate the errorbar is
to take the half-width of the area covered by the damping rate distribution. The
resulting value of the GAM damping rate found from the MPR diagnostic is

γ[ωci] = −1.1 · 10−4 ± 1.5 · 10−5, (5.7)

and the distribution of the GAM damping rate values is shown in Fig. 5.3 (the
histogram has around 100 samples.). Here, values of the errorbar found from the
normal distribution function and directly as a half-width of the area of the damping
rate distribution are the same.

The result from the MPR diagnostic can be compared with the direct calculation
of the GAM damping rate by fitting the zonal radial electric field Er to a test
function. We investigate the zonal signal Er at s = 0.74, where the geodesic mode
is localised (Fig. 5.1). As the first step, the GAM frequency is estimated by the
Fast Fourier Transform, while the damping rate is estimated by the linear least-
square root method from the peaks in the time evolution of Er. This preliminary
processing gives the first assumption of the GAM dynamics used as an initial guess
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5. Mode-Particle-Resonance diagnostic

Figure 5.3: Left plot: distribution of the GAM damping rate from the MPR diagnos-
tic. Right plot: a histogram of the GAM frequency found from the non-linear fitting
of Er(s = 0.74) to the test function Eq. 5.8. Reprinted with permission from [58],
with permission from Elsevier Publishing.

in the non-linear fitting procedure2, where a function

∼ cos(ωt) exp(γt) (5.8)

is applied as a test one, and is fitted to the time evolution of Er(s = 0.74). The
same method has been used in Sec. 4.1 to calculate GAM frequency and damping
rate in different plasma regimes. The errorbars of the wave frequency and damping
rate are estimated by varying time intervals as it is done in the MPR diagnostic. To
exclude outliers during the non-linear fitting, we compare the final results with the
preliminary estimation of the frequency and damping rate and exclude values, which
are significantly different from the preliminary guesses. The GAM frequency and
damping rate found from the non-linear fitting are

ω[ωci] = 3.89 · 10−3 ± 7.8 · 10−6, (5.9)

γ[ωci] = −1.1 · 10−4 ± 8.3 · 10−6. (5.10)

A histogram (distribution function) for the GAM frequency is shown in Fig. 5.3. As
it can be seen here, the calculation of the GAM frequency is quite precise with an
errorbar being around 0.3%, while the errorbar of the damping rate prediction is
around 8%. Comparing both methods (Eq. 5.7 and 5.10), one can see that the MPR
diagnostic is not as precise as the non-linear fitting, at least, in case of the calculation

2The Levenberg-Marquardt algorithm is used here (see Sec. 15.5.2 in [82]).
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of the GAM damping rate. On the other hand, its strength is the fact that it provides
additional information such as a position of the GAM-plasma resonances in velocity
space (Fig. 5.1).

5.3 Analytical verification

Here, we would like to show the consistency of the MPR diagnostic with the analytical
dispersion relation, derived previously in Chapter 3. In this section, we omit species
indices since all relevant plasma variables are related to the deuterium. A GAM, as
a standing wave, is described by the evolution of the zonal electric field:

E = (Er, 0, 0), (5.11)

Er = E1 cos(kr) exp(−iω̂t), (5.12)

with a radial wavenumber k and a complex frequency ω̂ = ω + iγ that verifies the
dispersion relation Eq. 3.64, E1 is the GAM amplitude. To derive the expression for
the energy transfer signal (Eq. 2.52), we consider, first of all, the linear ES version
of the particle equation of motion presented in Eq. 3.14. Using Eq. 1.24, one gets

Ṙ0 ·E = −vdEr sin θ, (5.13)

where vd being the magnetic drift (as in Eq. 1.54)

vd =
mc

eB0R0

(
v2
⊥
2

+ v2
‖

)
. (5.14)

Since the energy transfer signal is the real variable, we have:

P = e

∫
dV dWRe[δf ]Re[Ṙ0] ·Re[E], (5.15)

and taking into account Eq. 5.13, one gets:

P = −e
∫

dV dWvdRe[δf ]Re[Er] sin θ, (5.16)

where vd is the real variable. Now, we need to know also the form of the perturbed
distribution function δf that satisfies the GAM dispersion relation Eq. 3.64. We
are interested only in the non-adiabatic component3 δK of the distribution function

3The adiabatic component of the perturbation does not contribute to the power exchange due
to the reason explained in the footnote in Sec. 5.1.
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5. Mode-Particle-Resonance diagnostic

(Eq. 3.25) that takes part in the power exchange expression. In Eq. 5.16, one performs
the integration in space, including the integration along the poloidal direction. In
case of the GAM dynamics, Ṙ0 · E ∼ sin θ, as one can see in Eq. 5.13. Because of
that, the terms in δK proportional to cos θ do not contribute to the power exchange.
In other words, we do not consider δKc (see Eq. 3.34), but only the term δKs:

δf = δKs sin θ. (5.17)

By combining Eqs. 3.57, 3.58 and 3.37, one gets the final expression for the distri-
bution perturbation

δf =
e

T

iω̂f0

ω̂2 − ω2
tr

(
2cT

eB0R0

N(z)

D(z)
− vd

)
Er sin θ. (5.18)

Considering now the integration in velocity and using still complex variables, one
obtains that ∫

dWvdδf =
e

T
(I1 − I2)Er sin θ, (5.19)

I1 = iω̂
2cT

eB0R0

N(z)

D(z)

∫
f0vd

ω̂2 − ω2
tr

dW, (5.20)

I2 = iω̂

∫
f0v

2
d

ω̂2 − ω2
tr

dW. (5.21)

Evaluating the velocity integrals I1 and I2, one gets the expression

I1 − I2 = −iu
2
th

ω2
c

uthq

R0

(
N2(z)

D(z)
− F (z)

)
. (5.22)

It is easy to reformulate the previous expression in terms of the GAM dispersion
relation (Eq. 3.64):

I1 − I2 = −iu
2
th

ω2
c

ω̂. (5.23)

Using Eq. 5.16, one can derive the expression for the energy transfer signal:

P = −E2
1

mc2

B2
0

(γ + γ cos(2ωt) + ω sin(2ωt)) exp(2γt)∫
dV sin2 θ cos2(kr). (5.24)
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On the other hand, the wave energy is taken from Eq. 2.58:

Ef =
mc2

2B2
0

∫
dV |∇⊥Φ|2, (5.25)

where we are dealing only with real signals. Finally, taking into account the pertur-

bation of the zonal radial electric field |∇⊥Φ|2 ≈ E
2

r, we get

Ef ≈
mc2

4B2
0

E2
1(1 + cos(2ωt)) exp(2γt)

∫
dV cos2(kr). (5.26)

The GAM damping rate can be found using Eq. 2.64 that leads to the following
expression

γMPR = 2

(
γ +

ω

nwTgam

∫
sin(2ωt)

1 + cos(2ωt)
dt

) ∫
cos2(kr) sin2 θ dV∫

cos2(kr) dV
. (5.27)

The ratio of the space integrals is equal to 1/2. Taking into account Eq. 2.65, we
finally can prove the consistency between the GAM dispersion relation and the MPR
method:

γMPR = γ. (5.28)

The expression 5.28 means that using the field and plasma perturbations (Eq. 5.12
and Eq. 5.18), which satisfy the GAM dispersion relation Eq. 3.64, in the MPR
diagnostic (Eq. 2.64), one obtains the same damping rate originally found as the
imaginary part of the GAM dispersion relation.

5.4 Chapter summary

In this chapter, we have presented the implementation of the Mode-Particle-Resonance
diagnostic to investigate the interaction of the geodesic modes with plasma particles.
The diagnostic is based on resolving the energy transfer signals in velocity space.
This allows us to localise wave-particle resonances. This technique is used in Chap-
ter 6 to demonstrate the EGAM excitation by energetic ions and its damping by
barely trapped electrons.

Detailed MPR post-processing has been presented here by considering the GAM
dynamics with localisation of the GAM-ion resonances, and the GAM damping rate
calculation. Finally, by using the GAM dispersion relation, the consistency of the
power balance diagnostic, which underlies the MPR method, has been analytically
verified.
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Chapter 6

Linear dynamics of Energetic
particle driven GAMs

The Mode-Particle-Resonance (MPR) technique presented in Chapter 5 is now ap-
plied in global GK simulations of the experimental AUG discharge described in
Sec. 6.1 to study the interaction of Energetic-particle-driven GAM (EGAM) with
fast and thermal species (Sec. 6.2). This mode is characterised by the oscillations of
toroidally symmetric global radial ES field with a frequency comparable to that of the
GAMs. The energetic particles (EPs) excite the mode through the inverse Landau
damping, and the EPs are displaced from higher to lower energy range [83, 84]. In
addition to the ion Landau damping, the GAMs are subject to the electron Landau
damping [32, 33, 34, 35], as it was shown in Chapter 4. Here, we demonstrate that
the EGAMs are also subject to the electron Landau damping, which can be as crucial
as the ion Landau damping in experimentally relevant conditions. Apart from that,
inclusion of electron dynamics into GK simulations also modifies the energy trans-
fer between the EGAM and both the energetic and thermal ions. Finally, to verify
the obtained results, a comparison with the Eulerian gyrokinetic code GENE [85] is
made in an electrostatic case with adiabatic electrons in Sec. 6.3. This chapter is
based on material published in [58].

6.1 ASDEX Upgrade plasma configuration

The AUG discharge #31213 at time 0.84 s is selected within the Non-Linear Energetic-
particle Dynamics (NLED) Eurofusion enabling research project [86, 87]. It is chosen
to study the effect of the energetic particles on the dynamics of EGAMs. We are
dealing here with three species: gyrokinetic thermal deuterium, gyrokinetic ener-
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6. Linear dynamics of Energetic particle driven GAMs

getic (fast) deuterium, and thermal electrons, either adiabatic (AE) or drift-kinetic
(KE). The linear dynamics of EGAMs in this NLED-AUG case has been recently
investigated with the gyrokinetic codes GENE and ORB5 by considering adiabatic
electrons [88]. The previous study is extended here by investigating the effect of ki-
netic electrons and describing the contribution of the resonances of all species in phase
space. The simulation with the AE is performed electrostatically, while the simula-
tion with the KE is done including dynamics of the magnetic potential perturbation
as well1. In this latter case the pullback method [56, 60] is used in EM simulations
for the mitigation of the cancellation problem [89, 90] mentioned in Sec. 2.1. The
essence of this problem is that in the Ampère law (Eq. 2.21), the non-physical skin
depth terms A‖/d

2, which arise due to the Hamiltonian representation, have to be
cancelled with the adiabatic parts of the corresponding species currents from the left
hand side. However, since the current terms are calculated with markers, while the
skin depth terms are measured using finite elements, numerical inaccuracy leads to
inexact cancellation of these terms. What makes the problem even worse is that
absolute values of these non-physical terms is much higher than that of the physical
terms on the right hand side. That is why even a small inaccuracy in the cancellation
leads to a big error in the Ampère equation.

As it has been mentioned before, the pullback scheme can be used to mitigate
the cancellation problem. It is based on the so-called mixed-variable formulation,
where advantages of both Hamiltonian and symplectic formulations are taken into
account. Thanks to a splitting of the magnetic potential on symplectic and hamilto-
nian components at the end of every time step, one can eliminate the non-physical
terms in the Ampère law, while still using an explicit time solver to calculate the
particle parallel acceleration.

Profiles of the safety factor, species density and temperature, used in the con-
sidered simulations, are shown in Fig. 6.1. The magnetic field is reconstructed from
experimental data, including all geometrical effects (Fig. 6.1). The magnetic field at
the magnetic axis is B0 = 2.2 T . The major radius at the axis is R0 = 1.67 m, the
minor radius is a0 = 0.482 m. The real space of the system is discretized using the
following parameters: ns = 256, nχ = 256, nφ = 32. In the ES simulation, the time
grid has a step dt[ω−1

ci ] = 20. Number of markers for the thermal and fast ions are
Ni = Nf = 5·108. In the EM case, the time step and number of markers are changed:
dt[ω−1

ci ] = 5, Ni = Nf = 108, Ne = 4 · 108. Such a high number of markers is needed
to provide at least several thousands of numerical markers in every velocity bin,
where the mode-plasma resonances are observed. In the EM case, the radial domain

1As it was indicated in Sec. 5.1, the MPR diagnostic can be applied in EM simulations with a
small beta to study mainly ES modes such as the (E)GAMs.
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6.1 ASDEX Upgrade plasma configuration

Figure 6.1: Magnetic configuration (upper left plot), radial profile of the safety
factor (upper right plot), species temperature (lower left plot) and density (lower
right plot) radial profiles for the EGAM simulations in the ASDEX Upgrade shot
#31213 (see [86, 87]). The grey vertical dotted lines indicate the right boundary of
the simulated radial domain in the EM case with drift-kinetic electrons. Reprinted
with permission from [58], with permission from Elsevier Publishing.

is reduced to s = [0.0, 0.9] to avoid numerical instabilities due to the abrupt increase
of the safety factor at the edge. The density profile that is depicted in Fig. 6.1,
corresponds to the case with βe = 2.7 · 10−4. In both cases, the velocity distribution
of the fast particles is described by the expression Eq. 2.38 with uH = 8 and TH = 1.
This means that the distribution function of the fast species is centred around v‖ = 8
and v‖ = −8 (two bumps-on-tail) with maxima in v‖ at ±8 times the sound velocity,
as one can see from Fig. 6.4 (grey line). Due to this shift in the parallel velocity,
the fast particles lie near the EGAM-particle resonance velocity, which is estimated
in Eq. 5.5, and can exchange energy with the zonal electric field. As a result, the
term ”fast” (or ”energetic”) is used here to identify species that are responsible for
the EGAM excitation. More precisely, the energetic deuterium particles, which lie
on the positive-gradient part of the right bump and negative-gradient part of the
left bump, in total, transfer their energy to the electric field, driving in such a way
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6. Linear dynamics of Energetic particle driven GAMs

Figure 6.2: Comparison of the radial structure of Er in simulations with adiabatic
(left plot) and drift-kinetic (right plot) electrons.

the EGAMs (see Sec. 1.4). The width of these bumps is constant in space, which is
described by the flat temperature profile of the fast species. The ORB5 simulation
with such parameters of the energetic deuterium results in one of the highest EGAM
growth rate for the given plasma configuration.

6.2 Role of the wave-particle interaction in the

EGAM linear dynamics

At the beginning of every simulation presented in this section, we initialize the ion
zonal density perturbation with a radial wavenumber ∼ a0, and we inject the en-
ergetic particles with the parameters described in the previous section. We would
like to emphasize here that it is the EP parameters that define the dynamics of the
resulting EGAM, while the initial density perturbation has a minor effect. First of
all, one can notice from Fig. 6.2 that the radial structure of the EGAMs slightly
changes when the dynamics of the drift-kinetic electrons is switched on. The posi-
tion of the crest in the EGAM radial structure shifts inwards from around s ∼ 0.48
to s ∼ 0.40. Considering firstly the ES case with AE, we compare the EGAM
frequency and growth rate, calculated at radial positions s = 0.40 and s = 0.48,
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using the non-linear fitting of Er:

s = 0.40 : ω[
√

2vth,i/R0] = 9.391 · 10−1 ± 3.5 · 10−4, (6.1)

γ[
√

2vth,i/R0] = 1.63 · 10−1 ± 1.4 · 10−3, (6.2)

s = 0.48 : ω[
√

2vth,i/R0] = 9.314 · 10−1 ± 3.7 · 10−4, (6.3)

γ[
√

2vth,i/R0] = 1.65 · 10−1 ± 1.4 · 10−3. (6.4)

From here on, only the radial point s = 0.40 is considered in the following calcu-
lations. Consistency between the EGAM growth rate calculated directly from Er

and by the MPR diagnostic, using Eq. 2.64, significantly improves in time due to
the growth of the EGAM signal in comparison with the zero-frequency zonal flow.
Skipping initial transient time period, the MPR diagnostic can be applied to measure
the EGAM growth rate that appears to be consistent with Eq. 6.2:

MPR : γ[
√

2vth,i/R0] = 1.63 · 10−1 ± 2.8 · 10−3. (6.5)

The consistency between both methods is observed in the EM case with KE as well:

Er(s = 0.4) : ω[
√

2vth,i/R0] = 9.586 · 10−1 ± 4 · 10−4, (6.6)

Er(s = 0.4) : γ[
√

2vth,i/R0] = 8.5 · 10−2 ± 1.0 · 10−3, (6.7)

MPR : γ[
√

2vth,i/R0] = 8.4 · 10−2 ± 3.6 · 10−3. (6.8)

From Eq. 6.1 and Eq. 6.6 one can see that the change in the EGAM frequency
is small in comparison with the change in the growth rate, when dynamics of the
drift-kinetic electrons is included. In particular, the EGAM growth rate decreases
from Eq. 6.5 (AE) to Eq. 6.8 (KE). We now want to investigate the role of the
drift-kinetic electrons in the EGAM dynamics to understand which wave-particle
interactions lead to the decrease of the EGAM total growth rate, by estimating the
contribution of different species. For that purpose, we consider different terms in
Eq. 2.57 and Eq. 2.64. In the simulation with adiabatic electrons we obtain

thermal deuterium : γ[
√

2vth,i/R0] = −2.99 · 10−1 ± 3.9 · 10−3, (6.9)

fast deuterium : γ[
√

2vth,i/R0] = 4.62 · 10−1 ± 2.3 · 10−3. (6.10)

These equations show that the total EGAM growth rate is a balance between the
drive on the fast species and damping on the thermal one (one can see also [38] for
a similar analysis in the case of EGAMs in simplified configurations with adiabatic
electrons). Moreover, the absolute values of the species contributions are significantly
higher than the absolute value of the EGAM total growth rate.

77



6. Linear dynamics of Energetic particle driven GAMs

(a) (b)

(c) (d)

Figure 6.3: Energy transfer signal for electrons averaged on several EGAM periods
with indication of different velocity domains is shown in Fig. 6.3b. The red cone
indicates the analytical estimation of the passing-trapped boundary Eq. 6.14. The
white horizontal dashed lines indicate analytical estimation of m = 1 EGAM-plasma
resonance (Eq. 5.5). Fig. 6.3a: energy transfer signal integrated in the velocity
domain e1. The blue line corresponds to the initial raw signal, while the red line
shows the signal obtained after low-pass filtering. The energy transfer signals for the
thermal (Fig. 6.3c) and fast (Fig. 6.3d) deuterium with indication of different velocity
domains. The horizontal dotted lines indicate positions of the first v‖,res and second
v‖,res/2 order resonances found from Eq. 5.5. The parallel velocity here is normalised
to the sound velocity cs, and the magnetic moment is normalised to mic

2
s/(2B0).

Reprinted with permission from [58], with permission from Elsevier Publishing.

In case with drift-kinetic electrons, the species contributions are the following:

thermal deuterium : γ[
√

2vth,i/R0] = −3.94 · 10−1 ± 4.1 · 10−3, (6.11)

thermal electrons : γ[
√

2vth,i/R0] = −2.67 · 10−2 ± 4.6 · 10−4, (6.12)

fast deuterium : γ[
√

2vth,i/R0] = 5.03 · 10−1 ± 4.7 · 10−3. (6.13)
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6.2 Role of the wave-particle interaction in the EGAM linear dynamics

From the above equations one can see that both drive by the fast particles (Eq. 6.10
and 6.13) and damping on the thermal ions (Eq. 6.9 and 6.11) increase with the
inclusion of the electron dynamics. Since this increase is comparable with the electron
contribution (Eq. 6.12), one cannot claim from these results that the decrease of the
EGAM growth rate occurs only directly due to the additional damping on electrons.
On the other hand, we observe that the inclusion of KE increases the damping on
thermal ions more than the drive by fast ions, thus reducing the growth rate. As
a consequence, the electron Landau damping, although small, turns out to have a
non-negligible impact on the overall growth of the EGAM. Apart from that, the
inclusion of drift-kinetic electrons changes the position of the EGAM crest (Fig. 6.2)
and slightly changes the EGAM frequency. These changes might be responsible for
the observed increase of the thermal and energetic ion contributions to the EGAM
drive. Nevertheless, it is clearly shown here that in the experimentally relevant
plasma conditions the inclusion of the drift-kinetic electrons significantly decreases
the EGAM growth rate of about a factor 2.

We now want to investigate the role of different resonances in phase space. In
Fig. 6.3b one can see the energy transfer signal for the EGAM-electron interaction in
the velocity space averaged on several EGAM periods. The red cone there indicates
an analytical estimation of the boundary between the passing and trapped electrons:

vp−tr‖ =
√

2εµ, (6.14)

obtained from Eq. 1.14, and where vp−tr‖ is normalised to cs, while µ is normalised to

mic
2
s/(2B0). According Fig. 6.3b, the EGAMs are damped by the electrons which are

localised mainly near this boundary, similar to what happens with GAMs [32]. We
should mention here that the estimated localisation of the passing-trapped boundary
is shown in Fig. 6.3b only as a guide for the eye, and it is not used during the actual
GK simulations. We can separate three different velocity domains e1, e2, e3. The
area e1, which is between the passing-trapped boundary and the white parabola in
Fig. 6.3b, describes mostly the contribution of the barely trapped electrons to the
EGAM damping. The area e2, which is inside of the white parabola, corresponds to
the deeply trapped electrons. Finally, the area e3, which is the velocity domain out-
side the passing-trapped boundary, describes the passing electrons. By integrating,
for example, in the velocity domain e1, one gets the time evolution of the energy
transfer signal (Fig. 6.3a) that should be smoothed for its proper use in Eq. 2.64.
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6. Linear dynamics of Energetic particle driven GAMs

The electron contributions from different velocity domains are the following:

e1 : γ[
√

2vth,i/R0] = −1.37 · 10−2 ± 3.9 · 10−4, (6.15)

e2 : γ[
√

2vth,i/R0] = 2.5 · 10−3 ± 2.0 · 10−4, (6.16)

e3 : γ[
√

2vth,i/R0] = −1.47 · 10−2 ± 2.3 · 10−4, (6.17)

e1 + e2 + e3 ≈ −2.59 · 10−2. (6.18)

The sum of the electron contributions (Eq. 6.18) is close within the errorbars to the
value found in Eq. 6.122. First of all, we would like to note that one of the dominant
components to the electron damping occurs due to the barely trapped electrons (e1).
It is reasonable since the resonant velocity of the EGAM-electron interaction lies
in the domain of the barely trapped electrons. On the other hand, we can see a
significant contribution of passing electrons to the EGAM damping (Eq. 6.17). The
reason might be in the choice of the velocity space variables employed in ORB5, as
it has been explained in Sec. 5.1. More precisely, we have some contribution of the
parallel magnetic potential to the velocity coordinate, used in the MPR diagnostic.
To reduce this component, we can decrease the plasma β, as it is done in Appendix
in [58] that leads to smaller contributions of passing and deeply trapped electrons to
the field-electron interaction, keeping the same damping on barely trapped electrons.

We can also estimate contributions of different resonances to the EGAM damping
by thermal ions (Fig. 6.3c):

i11 : γ[
√

2vth,i/R0] = −1.01 · 10−1 ± 3.4 · 10−3, (6.19)

i12 : γ[
√

2vth,i/R0] = −1.02 · 10−1 ± 3.7 · 10−3, (6.20)

i21 : γ[
√

2vth,i/R0] = −6.7 · 10−2 ± 2.7 · 10−3, (6.21)

i31 : γ[
√

2vth,i/R0] = −9.6 · 10−2 ± 2.6 · 10−3, (6.22)

i41 : γ[
√

2vth,i/R0] = −1.00 · 10−1 ± 1.4 · 10−3, (6.23)

i12 + i21 + i31 + i41 ≈ −3.65 · 10−1, (6.24)

where the domain i12 includes i11, but extend further along µ. In Eq. 6.24 the
contributions of all considered resonances are summed up. The resulting value is
close enough3 to the total contribution of the thermal ions (Eq. 6.11). From one
point of view, it is an additional way to verify the implemented diagnostic. On
the other hand, by comparing Eq. 6.19 and Eq. 6.20, one can see that the parallel

2The small difference can be explained by the necessity to perform the smoothing of the wave
energy and energy transfer signals before applying Eq. 2.64.

3The small discrepancy can again be explained by the smoothing of the MPR signals.
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ion dynamics has a predominant contribution to the energy exchange between the
EGAMs and the thermal deuterium plasma.

Finally, we can consider different domains in the energetic deuterium velocity
space (Fig. 6.3d):

f1 : γ[
√

2vth,i/R0] = 2.85 · 10−1 ± 4.78 · 10−3, (6.25)

f2 : γ[
√

2vth,i/R0] = −7.11 · 10−2 ± 3.8 · 10−3, (6.26)

f3 : γ[
√

2vth,i/R0] = 3.61 · 10−1 ± 6.3 · 10−3, (6.27)

f4 : γ[
√

2vth,i/R0] = −6.7 · 10−2 ± 4.0 · 10−3, (6.28)

f1 + f2 + f3 + f4 = 5.08 · 10−1. (6.29)

One can see that there is an EGAM damping even on the energetic particles (Eq. 6.26
and Eq. 6.28). But it is significantly smaller than the dominant drive (Eq. 6.25 and
6.27). Sum on the resonances (Eq. 6.29) indicates that the EGAMs are driven by
the fast species, and this sum is close enough to the total drive found in Eq. 6.13.

6.3 Comparison with GENE

To verify some of the obtained results in the ES case we perform a comparison
with the gyrokinetic GENE code that has a similar diagnostic. The Gyrokinetic
Electromagnetic Numerical Experiment (GENE) [85] is an Eulerian code, which
solves the GK Vlasov-Maxwell system of coupled equations on a phase-space grid
(R, v‖, µ) at each time step. The gyrokinetic description employs an approach based
on the study of a distribution function fsp(R, v‖, µ) for each plasma species, which
contrarily as it is done in a particle-in-cell code as ORB5, is not discretized with
markers.

The same AUG shot is simulated in GENE with adiabatic electrons (one can see
also [91]), using the flux-tube (local) version of the code at s = 0.5. In Fig. 6.4,
the blue curve indicates the inverse (with an opposite sign) energy transfer signal
calculated in GENE4, while the red curve presents the energy transfer obtained in
ORB5. Both signals are integrated in real space and along perpendicular velocity.
One can see that both ORB5 and GENE give the same positions of the resonances of
the EGAM - fast deuterium plasma interaction. According to the chosen parameters
of the fast deuterium distribution function, peaks of the energetic bumps are located
at |v‖| = 8. As a benchmark, comparison of the EGAM frequency and total growth

4The inversion just indicates the fact that in GENE and ORB5 the background magnetic field
is directed in opposite directions with respect to the toroidal angle.
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6. Linear dynamics of Energetic particle driven GAMs

Figure 6.4: Resonance positions of the EGAM - fast deuterium interaction obtained
from GENE and ORB5. The velocity grid is normalised to the sound speed cs.
The grey dotted line indicates the bumps’ positions, which describe the equilibrium
distribution of the energetic deuterium. Reprinted with permission from [58], with
permission from Elsevier Publishing.

rate is made as well5. One can see that both codes give close values of the mode
frequency:

GENE : ω/2π = 42 (kHz), (6.30)

ORB5 : ω/2π = 43.60± 0.02 (kHz). (6.31)

On the other hand, there is 18% difference between the codes for the EGAM total

5The main goal of this benchmark was to compare the GAM-ion resonance positions, and the
corresponding wave frequency and damping rate. Having said that, we should note there are still
other physical phenomena to explore in this linear ES plasma system. One of them is the asymmetry
in the energy transfer signal (red line in Fig. 6.4) mainly observed in the local simulations with
GENE, which is, however, out of scope of our investigation.
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growth rate:

GENE : γ = 40 · 103 (s−1), (6.32)

ORB5 : γ = (47.6± 0.4) · 103 (s−1), (6.33)

and for the contributions of different plasma species to the mode dynamics:

thermal deuterium : GENE : γ = −74 · 103 (s−1), (6.34)

ORB5 : γ = (−87± 1) · 103 (s−1), (6.35)

fast deuterium : GENE : γ = 115 · 103 (s−1), (6.36)

ORB5 : γ = (134.8± 0.7) · 103 (s−1). (6.37)

The difference in the values can be explained mainly by the fact that the simulation
in GENE is performed using the local flux-tube version, while the simulation in
ORB5 is a global one.

6.4 Chapter summary

Geodesic acoustic modes, including the modes driven by energetic particles, are sub-
ject to the Landau damping, where the thermal ion dynamics has a dominant role.
However, in this chapter, it has been shown that the EGAMs are also damped by
barely trapped electrons, whose characteristic velocities are close to the EGAM-
particle resonance. Moreover, a kinetic treatment of the electrons also modifies the
energy transfer between the EGAM and both the fast and the thermal ions. The cor-
responding result has been obtained in GK simulations of a realistic ASDEX Upgrade
discharge. It emphasizes the critical role of the electron dynamics for the accurate
description of the (E)GAM behaviour in experimentally relevant plasma configura-
tions. In Chapter 7, it is shown in nonlinear GK simulations that the inclusion of
the drift-kinetic electrons has a direct influence on the bulk plasma heating by the
geodesic modes as well.
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Chapter 7

Nonlinear EGAM dynamics in
ASDEX Upgrade

In this chapter, we are going to study nonlinear EGAM dynamics in the AUG dis-
charge presented in Sec. 6.1. More precisely, here, we still consider only the zonal
(n = 0) modes in our simulations. However, speaking about the nonlinearity, the par-
ticle characteristics (Eqs. 2.22, 2.23) will depend also on the field perturbations that
allows exploring the mode saturation due to the flattening of the energetic particle
distribution function. In Sec. 7.1, bulk plasma heating by the mode is investigated
using the MPR diagnostic introduced in Chapter 5. Furthermore, in Sec. 7.2, we
show that the code ORB5 can reproduce the relative EGAM up-chirping in the real-
istic AUG magnetic configuration, which is an essential step for the code validation.

The EGAMs can have a significant influence on the EP dynamics and the plasma
confinement. First of all, being excited, this mode provides an additional mechanism
of the energy exchange between the energetic particles and the thermal plasma [93,
84, 94, 95] due to the wave-particle interaction. Because of its interaction with
the turbulence [96, 97], this mode might be used as an additional knob in the
turbulence regulation. Significant progress has been made in the last decade in
building a theoretical model that can explain the primary nonlinear physics of the
EGAM [98, 20, 99]. Nevertheless, when one wants to compare quantitatively with
experimental measurements, some of the approximations in the previous models can
be limiting. For example, due to the importance of the wave-particle resonances with
the thermal and energetic species, a kinetic treatment should be used as in [32, 52, 58].
Besides, the effect of the magnetic surface shape [88] can be considered by employing
an experimental magnetic equilibrium. Here, the importance of these effects in an
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7. Nonlinear EGAM dynamics in ASDEX Upgrade

experimental ASDEX-Upgrade case is investigated employing numerical simulations
with the code ORB5. ORB5 has been previously used for nonlinear studies of the
EGAMs in simplified configurations [100, 101], and it is used here to compare the
nonlinear EGAM dynamics with experimental measurements.

Only the EGAM dynamics leaving aside its interaction with the turbulence is
going to be considered here. It should be noted that in contrast to finite-n modes,
which also can transfer energy from the EPs to the thermal plasma due to the
wave-particle interaction, the EGAM dynamics are practically not associated with
additional particle loss (at least, if one does not consider the mode propagation and
topological orbital changes [102]).

We are going to investigate the EGAMs in the plasma configuration of the AS-
DEX Upgrade discharge #31213@0.84 s, which is described in Sec. 6.1, where a
rich EP nonlinear dynamics is present. In this discharge, various types of EP-driven
instabilities were identified, among which there are Alfvén instabilities (see, for ex-
ample, [103]) and EGAMs. In particular, a bright EGAM chirping was observed.
More precisely, at the experimental EGAM frequency spectrogram (Fig. 7.1) one
can see at least two different branches of the EGAM evolution in time. A ”short”
one is with a ∼ 2.5 ms period with the frequency rise from ∼ 45 kHz till ∼ 55 kHz.
A ”long” branch is characterised by an ascending frequency from ∼ 45 kHz till ∼ 58

Figure 7.1: Experimental EGAM spectrum [87, 86] in the NLED AUG discharge
#31213@0.84 s. Reprinted with permission from [92], with permission from AIP
Publishing.
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kHz and frequency saturation with a period of change around 13 ms.
Finally, by varying the EP parameters such as velocity or temperature, we are

going to investigate how the EGAM saturation level depends on the energy exchange
between the EPs and thermal plasma, and whether it is possible to enhance the
plasma heating keeping the same EGAM level. The materials presented in this
chapter is based on [92].

7.1 Plasma heating by EGAMs

To investigate the plasma heating by EGAMs, we start from the study of the mode
behaviour dependence on energetic particle (EP) parameters. The physical mech-
anism underlying the heating process is explained below, see discussion relative to

Figure 7.2: Equilibrium distribution functions of the thermal (F0,D) and energetic
(F0,EP ) ions in velocity space. Here, the EP temperature is normalised to the electron
temperature at a reference radial point T0,e = Te(s = 0) = 0.70 keV. The EP parallel
velocity is normalised to cs =

√
Te,max/md, where Te,max = 1.15 keV. Reprinted with

permission from [92], with permission from AIP Publishing.
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Fig. 7.4. Under “energetic particles” we understand here, as it is in Chapter 6, a
deuterium beam, which actually drives EGAMs in a plasma system. In the simu-
lations this species is characterised by a two-bumps-on-tail distribution function in
velocity space, while thermal species (deuterium or electrons) have a Maxwellian
distribution function (Fig. 7.2). It should be remarked that in the experimental
shot, the EGAM is driven mostly by an EP slowing-down distribution function with
a pitch-angle dependence [104]. However, here the EPs are modelled by means of
the two shifted Maxwellians to qualitatively investigate the EGAM behaviour in the
AUG plasma configuration. From Fig. 6.1 one can see that the EPs have relatively
low temperature. This just indicates the fact that the width of the EP bumps is
smaller in comparison to that of the thermal ion Maxwellian. A typical shift of the
EP bumps in the parallel velocity is v‖,EP [cs] = 8.0, while typical EP temperature

is TEP [Te(s = 0)] = 1.0 or TEP [keV ] = 0.70. Here, cs =
√
Te,max/md is the sound

speed with md being the deuterium mass, Te,max = 1.15 keV . Such kind of the nor-
malisation for v‖,EP and TEP is used throughout this chapter, and it is the same as
in Sec. 6.2.

In this section, for the investigation of the plasma heating by EGAMs, the EPs
are described in space by an axisymmetric Gaussian distribution function:

F0,EP (s) ∼ exp

(
−(s− sEP )2

2σ2
EP

)
, (7.1)

with localisation at a radial point sEP = 0.50. Such a simplification is done to
have more freedom in the variation of the EP parameters. The radial width of the
EP Gaussian used here is σEP = 0.10. The typical EP concentration is nEP/ne ≈
0.01, where nEP , ne are the EP and thermal electron densities averaged in volume,
respectively.

First of all, the EGAM linear growth rate is strongly modified by EP temperature
variations, as one can see in Fig. 7.3b, while the EGAM frequency remains practi-
cally the same and does not depend on TEP . As it was already shown in different
works [105, 38], the EPs can excite an EGAM corresponding to a damped geodesic
mode in the absence of the EPs. By reducing the EP parallel velocity by a factor
around of two, an EGAM with half the frequency of the original is excited (compare
blue points and green crosses in Fig. 7.3a). This EGAM is driven by a higher-order
GAM-EP resonance (m > 1 in Eq. 5.5). It should be noted here that since the mode
excited by a smaller EP velocity is less unstable, it was necessary to increase the EP
concentration from nEP/ne ≈ 0.01 to nEP/ne ≈ 0.09.

In Fig. 7.4a, one can see that by injecting an EP beam with v‖,EP = 8.0 (blue
dashed line), one obtains an EGAM driven by the low order resonance m = 1 (blue
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(a) (b)

Figure 7.3: Dependence of the EGAM frequency (Fig. 7.3a) and linear growth rate
(Fig. 7.3b) on the temperature and velocity shift of the EP beam. Reprinted with
permission from [92], with permission from AIP Publishing.

solid line). On the other hand, injection of an EP beam with v‖,EP = 3.5 (red dashed
line) leads to the EGAM drive on the m = 2 resonance (red solid line). The time
evolution of the zonal electric field in these two cases with low and high EP velocities
is shown in Fig. 7.5. The high velocity energetic beam (Fig. 7.5b) drives an EGAM
through a low order m = 1 resonance, and the resulting mode has a frequency close
to the original GAM frequency. The low velocity energetic beam (Fig. 7.5a), which
interacts with the geodesic mode through a high order m = 2 resonance, drives an
EGAM with a frequency close to half the GAM frequency. Indeed, according to
Fig. 7.4, the mode-species resonances are localised at

vm=1
‖,res,num ≈ 6.5, vm=2

‖,res,num ≈ 2.7. (7.2)

The GAM frequency can be computed from a simulation without EPs:

ωgam(s = 0.50) = 49 kHz, (7.3)

to compare with corresponding EGAM frequencies

ωEP8.0
egam (s = 0.50) = 40 kHz, ωEP3.5

egam (s = 0.50) = 21 kHz (7.4)

Using these frequencies and a safety factor value q(s = 0.50) = 2.3, (E)GAM-plasma
resonance positions can be analytically estimated from Eq. 5.5:

vEP8.0
‖,res,theor = qR0ω

EP8.0
egam ≈ 5.2, vEP3.5

‖,res,theor = qR0ω
EP3.5
egam ≈ 2.8, (7.5)

vgam,m=1
‖,res,theor ≈ 6.4, vgam,m=2

‖,res,theor ≈ 3.2. (7.6)
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(a)

(b)

Figure 7.4: Localisation of the EGAM interaction with the EPs (Fig. 7.4a) and
with thermal deuterium (Fig. 7.4b). Here, two simulations are considered: with
v‖,EP = 8.0, TEP = 1.0 (blue lines), and with v‖,EP = 3.5, TEP = 0.25 (red ones). The
solid lines indicate the mode-species energy transfer Psp (Eq. 5.2), integrated on the
perpendicular velocity and averaged on several EGAM periods in time. The dashed
lines depict the localisation of the species initial distribution functions. Reprinted
with permission from [92], with permission from AIP Publishing.

The difference between vEP8.0
‖,res,theor and vm=1

‖,res,num might be explained by the fact that

vm=1
‖,res,num is estimated from the signal averaged in a whole space domain while

vEP8.0
‖,res,theor is calculated by using local plasma parameters. Moreover, the first or-

der resonance vm=1
‖,res,num has a significant width along parallel velocity. Since the

m = 1 and m = 2 GAM resonance velocities are close to vm=1
‖,res,num and vm=2

‖,res,num
respectively, it is reasonable to consider the EGAM as a mode that is driven by the
first order resonance in case with v‖,EP = 8.0, and by the second order resonance in
case with v‖,EP = 3.5.

As it was mentioned in [102, 95], the interactions between the EPs and thermal
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(a) (b)

Figure 7.5: Time evolution of zonal electric field E in two cases with low (Fig. 7.5a)
and high (Fig. 7.5b) EP velocities. Reprinted with permission from [92], with per-
mission from AIP Publishing.

species significantly benefit from the existence of high order resonances, which is
confirmed here as well. The EGAM-thermal ion energy exchange occurs at the
higher order (m = 2) resonance in both cases, independently of the EP parallel
velocity (Fig. 7.4b). In other words, even when the EGAM is driven by an EP beam
with a high parallel speed, the EGAM is still damped by the thermal deuterium
through resonances of higher order (m = 2). This can be simply explained by the
fact that the position of these resonances are closer to the bulk of the thermal ion
distribution function. Since the thermal ion energy transfer signal (Fig. 7.4b) is
positive, and the EP energy transfer signal (Fig. 7.4a) is mostly negative, there is an
energy flow from the EPs to the thermal ions establishing bulk plasma heating, where
the EGAM plays a role of an intermediate agent. As a result, the thermal species can
obtain energy from the EGAM due to the Landau damping of the mode, which in its
turn is driven by the energetic particles through the inverse Landau damping. Note
that this is also true for Alfvén modes, with the substantial difference that the EP
radial redistribution by EGAMs is negligible with respect to that by Alfvén modes.
Therefore, EGAMs represent a privileged mode for this plasma heating mechanism.

Now, by varying EP parameters, we are going to investigate the energy exchange
between energetic/thermal species and the EGAM in the AUG plasma configura-
tion by performing nonlinear GK simulations firstly in the ES limit with adiabatic
electrons. In these simulations, we are dealing with gyrokinetic thermal deuterium,
gyrokinetic energetic deuterium (EP), and adiabatic electrons (AE). Plasma param-
eters and magnetic configuration are taken the same as in Sec. 6.1. Real space is
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Figure 7.6: Time evolution of the heating rate (solid blue line), and the amount of
energy transferred from the EGAM to the bulk deuterium plasma (red points). A
case with nEP/ne = 0.09, v‖,EP = 3.5, TEP = 0.25 is considered here. The heating
rate PD is normalised according to Eq. 5.3. Reprinted with permission from [92],
with permission from AIP Publishing.

discretized using the following grid parameters: ns = 128, nχ = 64, nφ = 32, - for
the radial, poloidal and toroidal directions respectively. Only n = 0 toroidal and
|m| = [0, .., 3] poloidal mode numbers are taken into account, since generally the
geodesic acoustic modes have mainly low m numbers. The ES cases are simulated
in a radial domain s = [0.0, 0.95] with a time step dt[ω−1

ci ] = 20. The number of
numerical markers for the thermal deuterium (Nd) and for the EPs (NEP ) in these
cases are Nd = NEP = 6 · 107.

To calculate the amount of energy transferred from the mode to the thermal ions,
the EGAM-species energy exchange signal Psp is integrated in time. As it is shown
in Fig. 7.6, at the beginning, a rise of the heating rate due to the growth of the mode
is observed. After a while, the mode saturates1, the heating rate level decreases,

1One of the main mechanisms of the mode saturation is the flattening of the EP distribution
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(a)
(b)

Figure 7.7: Energy transferred from the EGAM to the bulk ions for different EP
temperatures and parallel velocities (Fig. 7.7a). Evolution of the thermal ion tem-
perature in the same cases (Fig. 7.7b). Reprinted with permission from [92], with
permission from AIP Publishing.

and in the deep saturated domain the energy transfer from the mode to the thermal
ions is practically suppressed. This means that the total energy transferred to the
bulk plasma (red points in Fig. 7.6) remains practically unchanged after the mode
saturation. The amount of this energy depends on the EP parameters (Fig. 7.7a),
which is directly reflected in the bulk ion temperature evolution (Fig. 7.7b).

By varying the EP parameters in NL electrostatic simulations, one can observe a
general correlation between the EGAM saturation levels and the amount of energy
transferred from the mode to the bulk deuterium plasma (Fig. 7.8). However, for
example, the case with v‖,EP = 6.0, TEP = 0.4, nEP/ne = 0.01 (the rightmost red
star) has practically the same saturation level as the case with v‖,EP = 3.5, TEP =
0.15, nEP/ne = 0.09 (the rightmost blue point), but the corresponding EGAM-
bulk ion energy exchange for these cases is significantly different. This means that
having the same mode level, one can achieve higher plasma heating by varying EP
parameters. Here, in particular, the increase of the EP density nEP/ne and lowering
of the EP temperature TEP has led to a high energy transfer from the EPs to the
mode. On the other hand, according to the simulations, the decrease of the EP
velocity has made the mode transfer a higher part of its energy to the thermal
plasma enhancing in such a way the energy exchange between energetic and thermal
ions, and keeping the EGAM amplitude on the same level.

As we have already seen in Sec. 6.2, inclusion of the electron dynamics might

function (see Appendix B in [92] for more details).
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Figure 7.8: Dependence of the EGAM-thermal deuterium energy exchange on
the EGAM saturation level in nonlinear ES simulations with adiabatic electrons.
The saturation levels are calculated as a maximum value in time of r.m.s in
space of the zonal electric field E. The electric field is normalised to Te(s =
0.0)[eV ]ωci[s

−1]/cs[m/s]. Here, msp
res indicates an order of a resonance, where the

mode-species energy exchange occurs. The blue points correspond to the cases with
v‖,EP = 3.5, nEP/ne = 0.09, TEP = [0.25, 0.22, 0.20, 0.15], while the red stars cor-
respond to the cases with v‖,EP = 6.0, nEP/ne = 0.01, TEP = [1.0, 0.8, 0.6, 0.4].
Reprinted with permission from [92], with permission from AIP Publishing.

significantly reduce the EGAM growth rate. Consequently, it is reasonable to suppose
that inclusion of the electron dynamics influences the nonlinear EGAM behaviour as
well. To check this conjecture, NL electromagnetic simulations are performed here
with drift-kinetic electrons (KEs). The KEs have a realistic deuterium/electron mass
ratio mD/me = 3672. The EM cases are simulated with ns = 256, dt[ω−1

ci ] = 5 in a
radial domain s = [0.0, 0.90], taking Ne = 1.2 ·108 (number of electron markers) with
the same Nd and NEP . The radial domain is reduced to make the EM simulations
more stable by avoiding the abrupt increase of the safety factor at the edge, reducing
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(a) (b)

Figure 7.9: Comparison between an electrostatic NL simulation assuming adiabatic
electrons (AE) and an electromagnetic NL simulation with drift-kinetic electrons
(KE). In both cases nEP/ne = 0.01, v‖,EP = 8.0, TEP = 1.0 are taken. EGAM satu-
ration levels (Fig. 7.9a). Evolution of the thermal deuterium temperature (Fig. 7.9b).
Reprinted with permission from [92], with permission from AIP Publishing.

in such a way the restriction on the numerical time step. Since EGAMs are localised
mainly in the core, this reduction of the radial domain has a negligible influence on
the EGAM dynamics.

Consistently with the decrease of the EGAM linear growth rate, observed in
Sec. 6.2, the mode saturation levels are reduced in NL simulations with KEs (Fig. 7.9a).
This leads to a lowering of the plasma heating by the mode, which is clearly observed
in the time evolution of the thermal ion temperature (Fig. 7.9b). However, even in
the case with the drift-kinetic electrons, the EGAM transfers most of its energy to
the thermal ions, and not to the electrons, that can be seen in Fig. 7.10a. In other
words, the ion plasma heating remains the preferred heating channel. Having said
that, we should emphasize the fact that the electron contribution is still not negligible
in comparison to the total energy, obtained by the EGAM due to the wave-particle
interaction with all kinetic species in the considered plasma system. More precisely,
in Fig. 7.10b, one can see that the amount of energy that the mode stores in the ES
simulation (blue line) and the energy that the mode transfers to the electrons in KE
simulations (red line) in the EM simulation are of the same order. Negative blue line
indicates the fact that the EGAM interaction with the EPs and the thermal ions re-
sult in the increase of the mode energy. The red curve is positive because the energy
flows from the mode to the electrons. Although this flow is significantly smaller than
that to the thermal ions, it is still comparable to the total mode energy. A similar
behaviour has been identified in linear EGAM simulations in Sec. 6.2. Therefore, the
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(a)
(b)

Figure 7.10: Nonlinear ES and EM cases with nEP/ne = 0.01, v‖,EP = 8.0, TEP = 1.0
are considered. Energy transferred from the mode to the thermal species (Fig. 7.10a,
blue line - thermal ions, red line - electrons) in the nonlinear EM case with drift-
kinetic electrons. Total energy balance between the EGAM and all kinetic species
in the ES case (Fig. 7.10b, blue line), and the electron contribution in the EM
simulation (red line). Reprinted with permission from [92], with permission from
AIP Publishing.

electron dynamics can noticeably decrease the amount of energy stored in the mode,
reducing its saturation level and in such a way lowering the plasma heating by the
EGAM.

7.2 EGAM frequency chirping

To model the nonlinear evolution of the EGAM frequency, the EP parameters are
taken consistently with previous works [88, 58]) and Sec. 6.1, where the mode fre-
quency has been approximately reproduced in linear GK simulations in the same
AUG discharge. The following EP velocity v‖,EP = 8.0, temperature TEP = 1.0 and
concentration nEP/ne = 0.095 are applied. In Fig. 7.11a, one can see a zoom of
the ’long’ branch, described previously, of the experimental EGAM up-chirping. In
Fig. 7.11b, experimental and numerical spectrograms normalised to initial EGAM
frequencies are indicated. The blue curve shows the mode up-chirping obtained from
a nonlinear ES simulation with adiabatic electrons. The numerical spectrogram is
measured by nonlinear fitting of zonal electric field in different time windows at the
radial point of the mode localisation s = 0.70 (Fig. 7.11c). The red curve corre-
sponds to the experimental EGAM spectrogram, but with a squeezed time scale,
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since the characteristic time of the numerical frequency change is shorter than the
experimental one.

As one can see from Fig. 7.11b, the GK model is able to qualitatively repro-
duce the EGAM relative up-chirping in this AUG discharge. On the other hand,
to perform a quantitative comparison with the experiment, one should use an EP

(a)

(b)

Figure 7.11: A zoom of a ’long’ branch of the EGAM up-chirping from the experi-
mental AUG spectrogram [87] is shown in Fig. 7.11a. Numerical and experimental
EGAM spectrograms normalised to initial EGAM frequencies (∼ 39 kHz and ∼ 47
kHz respectively) are indicated in Fig. 7.11b. The numerical chirping is calculated by
nonlinear fitting of zonal electric field E at a radial point of the EGAM localisation.
Time evolution of the zonal electric field: the EGAM is localised around a radial
point s ≈ 0.7 (Fig. 7.11c). Reprinted with permission from [92], with permission
from AIP Publishing.
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distribution function closer to the experimental one such as a slow-down distribution
function with a pitch-angle dependence, since the EGAM is a strongly driven mode,
and it significantly depends on EP parameters. Moreover, the considered simulation
is performed electrostatically without taking into account the dynamics of the drift-
kinetic electrons. As it has been shown previously, electrons can significantly modify
the EGAM behaviour and, as a result, might have some effect on the mode chirping
as well.

7.3 Some remarks on EGAMs in ITER

It should be noted that the EGAM existence in ITER, especially, in the standard
scenarios, where the safety factor profile q ∼ 1, is highly doubtful. To briefly inves-
tigate this question, we start from the consideration of the main (m = 1) GAM-EP
resonance condition (Eq. 5.5):

vEP = ωGAMqR0, (7.7)

where q is the safety factor, R0[m] is the major radius of the magnetic axis, ωGAM is
the GAM frequency, and vEP is the EP speed. We can estimate the mode frequency
as

ωGAM ∼
vth,i
R0

, vth,i =

√
Tth,i
mth,i

, (7.8)

where vth,i is the speed of thermal ions (deuterium or tritium) with a temperature
Tth,i and mass mth,i. As a result, to have a resonance between the zonal mode and
the energetic particles, the following equation must be satisfied:

EEP ∼
mEP

2mth,i

Tth,iq
2, (7.9)

where mEP is an EP mass. According to [106], currently the neutral beam heating
system in ITER is designed to deliver EEP = 1 MeV of deuterium or 0.87 MeV of
protium, which leads to mEP/mth,i ≤ 1. Other relevant ITER plasma parameters
are Tth,i ∼ 10 keV , q2 ∼ 1 − 10. In the case with a deuterium beam injected into
bulk deuterium plasma with an elevated safety factor profile, we have that

EEP ∼ 1 MeV, (7.10)

Eres =
mEP

2mth,i

Tth,iq
2 ∼ 50 keV. (7.11)
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One can see that the energy of the injected EP beam is far away from the resonance
with the GAMs. To count on any EGAM drive by the EPs, the EP distribution
function should be significantly relaxed to achieve the resonance with the mode.
Because of the significant distance between the injected EP energy and the GAM
resonance, the resulting slow-down distribution function might have such a weak
slope in the velocity region of the mode resonance that the resulting EGAM drive
might be insufficient to overcome the mode damping. We should also note that the
EGAMs might be much weaker than other EP driven modes such as the Alfvén
modes.

One of the main EGAM advantages is that they provide a way to transfer energy
from the EPs directly to the thermal ions, while through the collisional processes the
EPs with a temperature higher than some critical one heat mainly electrons. Having
said that, we should mention again that in ITER the EPs have to be significantly
slowed down to drive the geodesic modes. Using [107], we can estimate the critical
EP energy where the energetic particles transfer equal parts of their energy to the
thermal electrons and ions through collisions:

Ecrit[keV ] = 14.8 · Te[keV ] · AEP
(

1

ne

nth,iZ
2
th,i

Ath,i

)2/3

, (7.12)

where Te, ne are thermal electron temperature and density, AEP , Ath,i are the atomic
weights of the injected EPs and of the thermal ions respectively, and Zth,i is the charge
number of the thermal ions. Above the critical energy, the EP-plasma collisions
transfer energy from EPs mainly to thermal electrons while the EPs with an energy
lower than the critical one exchange their energy through collisions mainly with
thermal ions. By considering a case with energetic and thermal deuterium, one can
estimate a value of the critical EP energy:

Ecrit[keV ] ∼ 185, (7.13)

where we have assumed that nth,i[cm
−3] = 0.99 · ne[cm−3] (this means energetic

particles constitute 1% of all ions in the plasma system), ne[cm
−3] = 1014, Te[keV ] =

Tth,i[keV ] = 10. We note that an increase of the EP concentration leads to a slight
decrease of the critical energy (due to the drop of the thermal ion density). From
Eq. 7.11 and Eq. 7.13, it is evident that EGAMs are driven by EPs with a significantly
lower energy than the critical one. The characteristic time scale of the collisional
energy transfer (or, in other words, time scale of the EP thermalization) can be
estimated using again [107]:

τcoll[s] = 2.09 · 108 AEPTe[eV ]3/2

Z2
EPne[cm

−3] ln Λ
ln

(
1 +

(
EEP
Ecrit

)3/2
)
, (7.14)
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Figure 7.12: Dependence of the collisional characteristic time scale on the safety
factor value for different EP concentrations.

where for the Coulomb logarithm we are going to use an expression for mixed ion-ion
collisions, taken from [78]:

ln Λ = 23− ln

(
Zth,iZEP (Ath,i + AEP )

Ath,iTEP + AEPTth,i

(
nth,iZ

2
th,i

Tth,i
+
nEPZ

2
EP

TEP

)1/2
)
. (7.15)

Here, all temperatures are taken again in eV , while densities are in cm−3, and we
assume that TEP = EEP . For the chosen parameters of the thermal and energetic
species, the value of the Coulomb logarithm is around 21. Taking the EP energy
EEP in Eq. 7.14 equal to the resonance energy Eres(q) (Eq. 7.11) as a function of q,
one can find the dependence of the EP thermalization time scale on the safety factor
(Fig. 7.12). In a scenario with an elevated safety factor q ∼ 2, the collisional time
scale is around 7 ms. From this rough analysis follows that even if EGAM was
excited in ITER, the process of the thermal ion heating by the geodesic mode would
compete with the collisional heating of the thermal ions directly by the EPs.
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7.4 Chapter summary

The EGAMs provide an additional mechanism of the energy exchange between the
energetic particles and the thermal plasma, enhancing direct heating of the bulk
ions. The significant progress done in the last decade in studying the EGAM non-
linear physics has been expanded here, by including drift-kinetic electrons and the
geometrical effects of a realistic AUG magnetic shape in the GK simulations. It has
been demonstrated that the GK code can handle zonal structures, and anisotropic
distribution functions properly in experimentally relevant cases, which is a crucial
ingredient before going into more complex plasma systems.

By varying the EP parameters, a general correlation between the mode level and
the EP-thermal plasma energy flow has been revealed. It has been emphasized that
the plasma heating by EGAMs benefits from the presence of high order mode-particle
resonances, which are often responsible for the EGAM-thermal species interaction.
Having the same mode levels, one can achieve a higher energy exchange between
energetic and thermal species through an EGAM by adjusting the EP parameters.
It has been indicated as well that although the EGAM transfers most of its energy to
the thermal ions, and not to the electrons, the electron dynamics might significantly
reduce the plasma heating by EGAMs by lowering the mode amplitude.
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Chapter 8

Nonlinear GAM excitation by
turbulence

The zonal structures including the GAMs can be driven directly by drift instabil-
ities such as Ion Temperature Gradient (ITG) modes, as it has been indicated in
Sec. 1.5. The excited oscillatory zonal modes can have continuum, staircase, or even
global frequency spectra. The continuum spectrum, which is predicted by linear
simulations, and generally appears in nonlinear calculations, is characterized by a
clear dependence of the GAM frequency on plasma temperature and safety factor
profiles. However, staircase and global GAM frequency spectra [108] were observed
experimentally [49, 50, 109, 110], and in nonlinear numerical simulations [52, 53]
as well. If a zonal mode has such kind of spectrum, it oscillates with a frequency
that remains constant within a significant radial interval disregarding the change of
the plasma temperature and magnetic field radial profiles. There is not still a final
theory that would describe the formation of the global GAM spectra. A possible
explanation given in MHD theory is the coupling of the second poloidal harmonics
m = 2 of zonal electric field [111, 80]. The toroidal plasma rotation might favour the
GAM transition from the continuum to the global regime as it is discussed in [51].
However, no global GAM eigenmodes were found in linear gyrokinetic simulations
of an AUG shot where a global GAM was experimentally observed [49]. For this
reason, we have conjectured that the global (staircase) GAM formation might have
a nonlinear origin [34]. This was found to be consistent with GENE nonlinear sim-
ulations, where different factors like electromagnetic effects and collisionality were
studied [52].

In this Chapter, we work with two realistic magnetic configurations. In Sec. 8.1,
the results presented in [53] are extended by analysing the zonal mode generation
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Figure 8.1: TCV magnetic configuration and safety factor profile. The indicated
radial domain in meters (R[m]) in the right plot corresponds to the normalised radial
interval s = [0.0, 1.0].

by different ITG spectra in the TCV magnetic configuration. Both continuum and
global spectra are observed in this modelling, and it is shown that higher toroidal
mode numbers are responsible for the excitation of the global GAM-like structure
in this discharge. In Sec. 8.2, nonlinear GK computation of the ASDEX Upgrade
discharge #20787 is performed with the code ORB5. The resulting GAM spectrum
is compared with the linear estimation of the mode frequency presented in Sec. 4.4
and with experimental data given in [49]. Consistently with the simulations of the
TCV case, it is found that high toroidal n-modes are crucial for the observation of the
GAM staircase spectrum. The comparison of the results obtained here for different
tokamaks, serves to pave the way to a universal theoretical model of global GAMs,
which is independent of the specific machine parameters.

8.1 Global frequency spectrum of a GAM-like zonal

signal in TCV magnetic configuration

It was shown in [53] that the increase of the plasma temperature gradient at the very
edge of a plasma system leads to the transition from a continuum GAM frequency
spectrum to a mix of continuum and global GAM-like structures. In this section, we
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Figure 8.2: Species temperature and density profiles in the TCV case.

investigate the same TCV magnetic configuration (Fig. 8.1) with the major radius
R0 = 0.88 m, the minor radius a0 = 0.25 m, and the magnetic field B0 = 1.44 T .
Our final goal here is to find out what part of the ITG spectrum is responsible for
the excitation of the global structures. The simulations are performed electrostat-
ically with adiabatic electrons (see footnotes in Sec. 1.3). The species density and
temperature profiles (Fig. 8.2) are taken from [53]. They are analytically created
for a qualitative investigation of the global zonal structures. The reference radial
point is s0 = 0.88, where the temperature is Te(s0) = 0.343 keV that corresponds
to the sound frequency ωs = 145.6 · 103 rad/s = 23.2 kHz. The sound frequency
ωs = cs(s0)/R0 is used here for the ITG/GAM frequency, ITG growth rate, and time
normalisation1.

First of all, we should estimate the number of ITG modes that should be included
in our nonlinear simulations. The ITG linear spectrum is taken from linear GK
computation. According to Fig. 8.3, the most unstable linear ITG mode is that
with a toroidal number n around 85. It corresponds to the poloidal wavenumber
kχρi ≈ 1.72 and the toroidal wavenumber kφρi ≈ 0.13 estimated from2

kφ ≈
n

q(s0)R0

, kχ ≈
nq(s0)

a0

. (8.1)

To study how different ITG instabilities excite the zonal structures, we launch

1ω[Hz] = ω[ωs] · ωs[rad/s]/2π, γ[1/s] = γ[ωs] · ωs[rad/s].
2The first equation in 8.1 is obtained by assuming that the so-called connection length measured

along a magnetic field line to complete one poloidal turn is Lcon = 2πqR0. Therefore, the parallel
wavelength of a mode with a toroidal number n, which is equivalent to the number of toroidal
oscillations, is λφ = Lcon/n. The second equation assumes that the most unstable poloidal mode
is m = qn, and the poloidal wavelength is estimated as λχ = 2πa0/m.
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Figure 8.3: TCV case: linear ITG frequency and growth rate spectra. The values
are normalised to the sound frequency ωs = cs(s0)/R0.

several NL simulations with different ITG spectra. The simulations have respectively

n = [0, 40], m = [−137, 137], nφ = 160, nχ = 320, Nd = 3 · 108, (8.2)

n = [0, 60], m = [−198, 198], nφ = 240, nχ = 480, Nd = 6 · 108, (8.3)

n = [0, 80], m = [−270, 270], nφ = 320, nχ = 640, Nd = 6 · 108, (8.4)

n = [0, 128], m = [−428, 428], nφ = 528, nχ = 1056, Nd = 8 · 108, (8.5)

where m is the poloidal number, nφ is the number of grid points in the toroidal
direction, nχ is the number of the poloidal grid points, Nd is the number of the
deuterium markers. More precisely, in the case with n = [0, 80] we keep all toroidal
mode numbers from n = 0 (zonal structures) up to n = 80. The poloidal modes m are
set in such a manner to guarantee that all modes m(s) = nq(s)±∆m are included,
where ∆m = 5 is taken, and the safety factor profile q(s) is shown in Fig. 8.1. This
kind of Fourier filtering is justified because of the field alligned nature of the ITG
instability. One can see that the maximum value of the safety factor is observed at
the edge (max(q) ∼ 3.3). That is why max(|m|) = max(n) ·max(q) + 5 ≈ 270. The
space resolution in the poloidal and toroidal directions should be adjusted according
to the number of the toroidal n and poloidal m modes3. In all the cases, we model
the s = [0.0, 1.0] radial domain with ns = 256. The choice of a field-aligned filtering
has an influence on the choice of the radial resolution via the radial variation of the

3The code ORB5 uses OpenMP and MPI libraries for prarallelization. The MPI parallelization
is based on the so-called domain/clone decomposition. Without presenting in detail the ORB5
parallelization and discretization, which is described, for example, in Sec. 3.1.5 in [112], we indicate
the following rules that have to be satisfied: nφ ≥ 4 · max(n) (and nφ ≥ 4 for max(n) = 0),
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Figure 8.4: Nonlinear simulations of the TCV magnetic configuration. Frequency
spectra of the zonal electric field in simulations with different ITG spectra: n = [0, 40]
(Fig. 8.4a), n = [0, 60] (Fig. 8.4b), n = [0, 80] (Fig. 8.4c), n = [0, 128] (Fig. 8.4d).
The white dotted lines indicate the linear estimation of the GAM frequency from
the analytical theory of Gao [30]. The Fourier transformation is performed in the
same time interval t[ω−1

s ] = [105.9, 423.7] in all the cases. Note the scale (amplitudes
of the Fourier components) in the plots by comparing, for example, Fig. 8.4a and
Fig. 8.4c.

nχ ≥ 2 ·max(m), mod (nχ, nφ) = 0, mod (nφ, ncpu) = 0, and

mod

(
nnodes,

nφ · nclones
ncpu

)
= 0. (8.6)

To speed up Fast Fourier Transform, it is better to set nφ as a power of 2. Here, nnodes is the
number of nodes (cores), where every node has ncpu processes (CPU). The system is replicated into
nclones clones, and every clone is split in nnodes · ncpu/nclones subdomains in the toroidal direction
such that every subdomain has to include, at least, one toroidal point. Note that if the conditions
described in Eq. 8.6 and the above text are satisfied, the code sets necessary nclones automatically.
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Figure 8.5: GAM frequency spectrum in the case with n = [0, 60] and n = [0, 80] in
the same amplitude scales of the Fourier components.

safety factor profile. The time step is dt[ω−1
ci ] = 20 (dt[ω−1

s ] = 0.04).4

The frequency spectra of the zonal electric field for these four cases are shown
in Fig. 8.4. The inclusion of the higher n-modes changes the GAM spectrum, it
leads to the rise of a clear global zonal structure. In particular, in Fig. 8.4a with
n = [0, 40] one can see a continuum GAM spectrum near the plasma edge, which
is well predicted by the linear analytical theory [30]. In the case with n = [0, 60],
one can already observe the formation of some global structure much closer to the
plasma core (s ∼ [0.7, 0.8], Fig. 8.4b) with a frequency around ω[ωs] ∼ 1.2. If we keep
increasing the toroidal mode numbers (Fig. 8.4c), we make the global structure to
be the dominant one and much more pronounced than the continuum GAM branch.
Finally, by taking into account the full ITG spectrum (n = [0, 128], Fig. 8.4d), we
increase the contribution of the global structure near the plasma edge. The GAM
spectra for the cases with n = [0, 60] and n = [0, 80] are shown in Fig. 8.5 keeping
the same plot scale. From these plots, one can clearly see that the global structure
appears as an additional frequency branch of the zonal signal. At the same time,
the continuum part of the mode remains practically unchanged when one includes
higher toroidal mode numbers. The resulting global mode is strongly elongated in
the radial direction (s ∼ [0.7, 0.97]), its frequency is close to the continuum GAM

In particular, the TCV simulations have been simulated with nnodes = 30, ncpu = 32, nclones = 3
for max(n) = 80, and nnodes = 33, ncpu = 48, nclones = 3 for max(n) = 128.

4To keep the temperature radial profile constant in time, the so-called Krook operator (see
Sections 3.3 and 3.4 in [27]), which is an artificial counterpart of the collisional operator presented
in Sec. 4.3, is imposed. Here, we keep the same value of the Krook relaxation coefficient γrel[ωs] =
0.066 (γrel[ωci] = 1.4 · 10−4) that was used in the original work [53].
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8.2 Staircase GAM frequency spectrum in the AUG discharge

Figure 8.6: AUG discharge #20787 (see [49]): magnetic field configuration (left plot),
the radial profile of the safety factor (right plot) used in the GK simulations. In the
right plot, the indicated radial domain in meters R[m] corresponds to the normalised
radial interval s = [0.0, 1.0] (however, the actual simulated plasma domain is s =
[0.4, 1.0]).

frequency at the very edge of the plasma system, and remains the same in the whole
radial interval.

8.2 Staircase GAM frequency spectrum in the AUG

discharge

In Sec. 4.4, we have considered the linear GAM frequency spectra in the AUG dis-
charge #20787 (see [49] for more details about the experimental plasma parameters
of this shot) by using the fitting equation 4.1. This formula was obtained from lin-
ear gyrokinetic simulations. Although according to Fig. 4.6, it gives a reasonable
estimation of the GAM frequency near the plasma edge, it does not predict the ob-
served staircase behaviour of the mode spectrum. In this section, we are going to
consider nonlinear GK simulations of the same AUG discharge, where the ITG drift
instabilities generate the zonal modes through the mode coupling as it was described
in Sec. 1.5.

The modelling of the deuterium plasma is performed electrostatically with adi-
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8. Nonlinear GAM excitation by turbulence

Figure 8.7: GK simulations of the AUG discharge #20787: species temperature and
density profiles.

Figure 8.8: Linear GK simulations of the AUG discharge #20787: ITG frequency
and growth rate spectra. The frequency and growth rate are normalised to the sound
frequency ωs.

abatic electrons. The magnetic field configuration is reconstructed from the experi-
mental data using the code CHEASE (Fig. 8.6), where the poloidal cross-section of
the background magnetic field is slightly elongated (κedge ≈ 1.1). The major radius
is R0 = 1.65 m, the minor radius is a0 = 0.5 m, and the magnetic field at the mag-
netic axis is B0 = 2.0 T . The temperature and density profiles are taken close to the
experimental ones (Fig. 8.7), where the species temperatures are slightly different
from each other (τe = Te/Ti < 1) just at the very edge of the plasma system.

As in the case discussed in the previous section, linear ITG frequency and growth
rate spectra are calculated in linear GK simulations, and are indicated in Fig. 8.8. A
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8.2 Staircase GAM frequency spectrum in the AUG discharge

Figure 8.9: NL simulations of the AUG discharge #20787: evolution in time of
the deuterium temperature profile for different ITG spectra. One can see that the
temperature profiles remain unchanged during the simulations due to the imposed
Krook operator.

mode with some toroidal number n can actually have several frequencies and growth
rates that correspond, for example, to different poloidal numbers m. In Fig. 8.8, we
indicate only the modes with the highest growth rates and corresponding frequencies.
According to the linear computation, the most unstable mode is around n = 170
(kφρi ≈ 0.04 and kχρi ≈ 1.37, see Eq. 8.1). We are going to consider several NL
simulations with different toroidal spectra:

n = [0, 40], m = [−165, 165], nφ = 192, nχ = 384, Nd = 2.4 · 108, (8.7)

n = [0, 60], m = [−245, 245], nφ = 288, nχ = 576, Nd = 3.6 · 108, (8.8)

n = [0, 80], m = [−325, 325], nφ = 336, nχ = 672, Nd = 4.8 · 108, (8.9)

n = [0, 100], m = [−405, 405], nφ = 432, nχ = 864, Nd = 6.0 · 108. (8.10)

The radial resolution is ns = 1200 in all the cases since we keep the same radial size of
the plasma system (s = [0.4, 1.0]), which is reduced to include only the radial domain
with the non-zero temperature gradient, where the ITG modes can develop (compare
to the temperature profile in Fig. 8.7). The time step is dt[ω−1

ci ] = 20 (dt[ω−1
s ] = 0.01).

To keep the temperature radial profile constant in time (Fig. 8.9), the Krook operator
is imposed with the relaxation coefficient γrel[ωs] = 0.178 (γrel[ωci] = 1.00 · 10−4),
which is around max (γITG) /14 according to Fig. 8.8. The reference radial point is
s0 = 0.95, where Te(s0) = 0.165 keV 5.

5ωs = 53.9 · 103 rad/s = 8.6 kHz.
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8. Nonlinear GAM excitation by turbulence

Figure 8.10: Nonlinear GK simulation of the AUG discharge #20787 with n = [0, 80].
Fig. 8.10a: evolution in time of the electrostatic potential for different toroidal n-
modes that is summed up on all corresponding poloidal mode numbers m. At every
time moment we consider the absolute maximum value of the potential in space.
Fig. 8.10b: evolution in time of the radial structure of the zonal electric field Er

excited by the ITG instabilities.

One can see the evolution in time of different n-modes in the nonlinear simulation
with n = [0, 80] in Fig. 8.10a. Although the higher n-modes can have higher initial
growth rates, their saturation levels are lower. In particular, it is the modes around
n ∼ 40 that have the highest saturation amplitudes, while the n = 80 mode being the
strongest at the beginning decreases in time that might indicate the energy transfer
from this mode to the zonal structures. This means that the ITG modes with even
higher toroidal numbers can have significant contribution to the GAM evolution.
Moreover, one can see from Fig. 8.10b that the GAM oscillations (yellow-red stripes
propagating inward for s < 0.94 and mostly outward for s > 0.94) are concentrated
near the plasma edge s ∼ [0.85, 1.0] (compare also to Fig. 8.12), while the stationary
zonal modes are localised closer to the core (s ∼ 0.65). One of the reasons is a higher
safety factor value and lower plasma temperature near the edge that lead to a lower
GAM damping rate (see Eqs. 3.67 and 4.2). Since the ITG modes with high toroidal
numbers are also localised near the plasma edge (Fig. 8.11), they might be important
for the GAM excitation, as it was observed in the previous section.

In Fig. 8.12 the frequency spectrum of the zonal electric field is displayed. First
of all, one can see that the nonlinear results follow the tendency predicted by the
linear GK simulations and the analytical theory. Besides, the resulting numerical
GAM frequency has the order of magnitude close to the experimental data. Con-
sistently with the TCV case, a broader ITG spectrum results in the generation of a
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8.2 Staircase GAM frequency spectrum in the AUG discharge

Figure 8.11: NL simulations of the AUG discharge #20787 with n = [0, 80]. Poloidal
structure of the n = 40 mode (Fig. 8.11a) and of the n = 80 mode (Fig. 8.11b). The
black dotted lines indicate the radial positions s = 0.65 and s = 0.90, respectively.

global (more precisely, staircase) GAM structure. One can see a radially elongated
formation (s ∼ [0.86, 0.94]) around the frequency ω[ωs] ≈ 2.85, which is however
shifted with respect to the experimental plateau observed at ω[ωs] ≈ 2.36. This
structure appears only if we take into account the ITG modes with n > 60. Be-
sides, by comparing Figs. 8.12c and 8.12d, one can notice that the n > 80 modes
amplify the GAM frequencies around ω[ωs] ∼ 2.3 at s ∼ 0.96, which is close to
the experimental spectrum. One of the possible explanations of the difference be-
tween the numerical and experimental frequencies, where the plateaus are observed,
is the absence of the plasma rotation in the nonlinear simulations. In the studied
discharge the plasma was heated by the neutral-beam injection that might lead to
the plasma rotation, which in its turn can shift the GAM frequency. As it was men-
tioned before, the plasma rotation might not only change the GAM frequency, but
also facilitate the development of the global GAM formations. Finally, we should
note that the current nonlinear simulations have been performed with adiabatic elec-
trons that exclude some instabilities, such as the Trapped Electron Mode (TEM),
from the consideration. These modes can also excite the zonal structures and might
significantly improve the numerical prediction of the GAM spectrum. However, the
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Figure 8.12: NL simulations of the AUG discharge #20787. The contour plots present
the frequency spectra of the zonal electric field found in the time interval t[ω−1

s ] =
[22.5, 137.3]. Different ITG spectra are considered here: n = [0, 40] (Fig. 8.12a),
n = [0, 60] (Fig. 8.12b), n = [0, 80] (Fig. 8.12c), n = [0, 100] (Fig. 8.12d). The white
crosses indicate the experimental GAM spectrum [49]. The dotted lines show the
estimation of the linear mode spectrum from the Gao analytical theory [30] (white
line) and from the fitting equation 4.1 (green line).

corresponding simulations will require a more substantial amount of computational
resources.

8.3 Discussion and chapter summary

The results presented in this Chapter should be considered as the first step in the
numerical study of the GAM nonlinear excitation by turbulence in realistic magnetic
configurations. It was shown that relatively simple nonlinear electrostatic models
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with adiabatic electrons can reproduce the order of the GAM frequency, and even
describe the formation of the global zonal structures. Besides, it was demonstrated
that the ITG modes with high toroidal mode numbers play a crucial role for the
GAM formation, and must be taken into account for the quantitative comparison
with experimental data.

In the performed computations, the zonal structures have been excited by the
non-zonal (turbulent) field that naturally arises due to the presence of the plasma
temperature gradient. Instead of the self-consistent field, one can apply an external
ES potential (“antenna”) with a predefined space structure (e.g. with a particular
toroidal mode number) and with a constant oscillation frequency. In such a way, it
is possible to simplify the plasma system and to focus on the ITG-ZS interaction,
where one of the modes (the ITG or the zonal mode) is fixed. As a result, one can
explore the ZS excitation by the drift instabilities forgetting about the ZS feedback
on the original ITG (see, for example, [113]). Conversely, if one fixes the zonal
mode, one can concentrate on the shearing of the turbulence eddies by the zonal
structures [114, 113], and study how the oscillatory nature of the GAMs changes the
ZS impact on the turbulence. These studies are left for future work.
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Chapter 9

Conclusions and outlook

In tokamak plasmas, drift instabilities such as the Ion-Temperature Gradient (ITG)
mode give rise to Zonal Structures (ZSs) that shear turbulent cells and, consequently,
reduce radial transport in the plasma systems. The nonlinear interactions between
the Geodesic Acoustic Modes (GAMs), which are the oscillatory part of the ZSs, and
the turbulence is determined to a high degree by the GAM damping rate. Lack of
experimental data of this characteristic makes the results from gyrokinetic simula-
tions particularly important for analytical and numerical investigation of the nonlin-
ear GAM-ITG systems. Linear gyrokinetic simulations performed with drift-kinetic
electrons and compared to analytical theories derived with adiabatic electrons have
shown significant enhancement of the Landau damping of the geodesic modes. The
phase mixing process that takes place in the case with finite temperature and safety
factor gradients increases the mode damping rate as well (again in agreement with
theory). The GK simulations with drift-kinetic electrons demonstrated a decrease
of the GAM half-decay times in comparison to previous estimations based on the
adiabatic electron approximation. The collisional damping of the mode has been
estimated to be negligible, except in a narrow zone near the plasma edge.

Energetic particles can drive the geodesic modes, and the resulting global mode,
called EGAM, have a significant influence on the EP dynamics and the plasma con-
finement. This mode provides an additional mechanism of the energy exchange
between the energetic and thermal species enhancing the direct heating of the bulk
ions. The significant progress made in the last decade in studying the EGAM physics
has been expanded here, by including drift-kinetic electrons and the geometrical ef-
fects of a realistic magnetic shape in numerical modelling. Nonlinear global GK
simulations of the EGAMs in an ASDEX Upgrade discharge have reproduced the
mode relative up-chirping close to the experimental one. It has been demonstrated
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that the GK code ORB5 can handle electrostatic zonal structures and anisotropic
distribution functions properly in experimentally relevant cases which is a crucial
ingredient before going onto more complex plasma systems. A general correlation
between the mode level and the EP-thermal plasma energy exchange has been re-
vealed. More precisely, it has been shown that having the same mode levels, one can
achieve a higher energy exchange between energetic and thermal species through an
EGAM by adjusting EP parameters.

To investigate the mode-particle interaction, a Mode-Particle-Resonance (MPR)
diagnostic has been implemented in the code ORB5. The technique gives access to
energy transfer signals between an ES mode and particles in phase space providing a
way to localise mode-particle resonances. As in the case with GAMs, the drift-kinetic
electrons exhibit a significant influence on the EGAM behaviour. Using the MPR
technique, it has been revealed that the geodesic modes are damped by electrons due
to the resonance with mainly barely trapped electrons, whose characteristic velocities
are close to the mode phase speed. It has been indicated that although the EGAM
transfers most of its energy to the thermal ions, and not to the electrons, the electron
dynamics might significantly reduce the plasma heating by EGAMs by lowering the
mode amplitude.

The current version of the MPR diagnostic can be applied only to the case of
mainly electrostatic modes, such as GAMs or EGAMs. The reason is in the choice
of the velocity space variables in ORB5. The MPR technique can be extended to
work with EM simulations with arbitrary βe, by performing a proper transition from
the canonical variable pz to the parallel velocity variable v‖. There are different
possible applications of the EM-MPR diagnostic. A more comprehensive range of
the modes whose dynamics is mainly controlled by wave-particle resonances, like
energetic-particle driven MHD instabilities, can be investigated. For a turbulent
plasma, the collisionless interactions between EM fields and plasma particles can
lead to secular field-particle energy exchange. It can result in collisionless damping
of the turbulent fluctuations. More precisely, a particular challenge in plasma physics
consists in the identification of the physical mechanisms by which the EM field and
plasma flow fluctuations are damped and how their energy is converted to plasma
heat or some other energization of particles. For example, in astrophysical plasma
dissipation of the turbulent energy through the Landau damping of the Alfvén waves
can take place [115]. There are also physical phenomena, which are specific to the
space plasma, such as particle acceleration by the magnetic energy released during
collisions of the magnetic islands in solar and heliospheric environments [116]. It
might be interesting to investigate the role of such processes in tokamak plasmas as
well.

118



Linear GAM simulations have predicted a continuum mode frequency spectrum,
where the mode frequency changes consistently to plasma temperature profiles and
magnetic field configuration. Nonlinear GK modelling of an AUG discharge, where
the zonal structures are directly excited by the ITG drift instabilities, has been per-
formed. It was shown that the inclusion of the ITG modes with higher toroidal mode
numbers, which are localised closer to the plasma edge, can significantly change the
GAM spectrum. The same tendency was observed in the nonlinear GK computa-
tion of the TCV magnetic configuration. It was demonstrated that the high-n ITG
modes are responsible for the formation of a global GAM-like structure elongated in
the radial direction. However, in the AUG case, we have obtained a GAM spectrum
upshifted with respect to the experimental data. This inconsistency might be ex-
plained by the plasma rotation that should take place in the experiment due to the
neutral beam heating, but was not included in the GK simulations.

The nonlinear simulations open a broad range of topics for theoretical and practi-
cal oriented studies related to the ITG-ZS interaction. One of the possible directions
to move in is the application of an electrostatic field with a fixed space structure to
plasma systems. In this way, one can investigate solely either the ZS excitation or the
turbulence shearing excluding from the modelling one of the branches of the ITG-ZS
interaction. From one point of view, it will give a new numerical method for the com-
parison with analytical theories. On the other hand, it will help to extract essential
new pieces of the tokamak plasma physics from the gyrokinetic simulations. The
final goal is a complete understanding of the complex interactions which determine
the saturation of turbulence in toroidal plasmas, and thus predict the performance
of a future fusion reactor.
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Appendix A

Evaluation of the Plasma
Dispersion Function

The Plasma Dispersion Function (PDF)

Z(z) =
1√
π

∫ +∞

−∞

exp(−t2)

t− z
dt (A.1)

is defined for the case of Im(z) > 0 (here, z is equivalent to a complex wave fre-
quency). Since we are dealing with the Landau damping, we have to analytically
extend this integral to the case of Im(z) < 0. The analytical continuation is carried
out in such a way that the path of the integration is deformed into a contour for
which the pole z is always sitting on the left hand side as indicated in Fig. A.1. Now,
we can consider a closed contour Γ = Cγ + CR, as it is shown in Fig. A.1, where Cγ
goes along a real axis and is curved near the pole z to keep it on the left hand side,
and CR is a half circle with a radius R → +∞. By denoting the integrand of the
PDF as G(t, z)

G(t, z) =
1√
π

exp(−t2)

t− z
, (A.2)

we have the following equation∫
Γ

G(t, z) dt =

∫
Cγ

G(t, z) dt+

∫
CR

G(t, z) dt. (A.3)

Since

lim
R→+∞

G(t, z) = 0, (A.4)
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Figure A.1: Domain of integration of the Plasma Dispersion Function. The contour
Cγ is curved in such a way to keep the pole z on the left hand said. After that, we
assume that the pole falls on the contour Cγ from the domain surrounded by a closed
contour Γ = Cγ + CR.

the second integral on the right hand side of Eq. A.3 is equal to 0. The integral
along the Cγ in the limit of a big radius R represents the analytical continuation
of the PDF. If we assume that the pole z is sitting on the curved contour, we can
evaluate the PDF using the principle value integral, more precisely, by applying the
Sokhotski - Plemelj theorem:∫

Γ

G(t, z) dt =

∫
Cγ

G(t, z) dt = P.V

∫
Cγ

G(t, z) dt− i
√
π exp(−z2). (A.5)

Now, for the sake of numerical calculations, we would like to relate the principle
value integral to the Imaginary Error Function Erfi(z). It is known that the Hilbert
transform of the Gaussian can be related to Erfi(z) (Ref. [117]) as

1√
π
P.V.

∫ +∞

−∞

exp(−t2)

t− z
dt = −

√
π exp(−z2)Erfi(z). (A.6)

Finally, the Plasma Dispersion Function Z(z), analytically extended to the lower
half of the imaginary plane, can be expressed using the following equation:

Z(z) = −
√
π exp(−z2)(i+ Erfi(z)). (A.7)
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[76] R. Singh, Ö. D. Gürcan, Geodesic acoustic modes with poloidal mode couplings
ad infinitum, Physics of Plasmas 24 (2017) 022507. doi:10.1063/1.4976116.

[77] P. L. Bhatnagar, E. P. Gross, M. Krook, A model for collision processes
in gases. i. small amplitude processes in charged and neutral one-component
systems, Phys. Rev. 94 (1954) 511–525. doi:10.1103/PhysRev.94.511.

130

http://dx.doi.org/10.5075/epfl-thesis-4326
http://dx.doi.org/10.1088/0741-3335/38/11/011
http://dx.doi.org/10.1063/1.1691954
http://dx.doi.org/10.1063/1.1691954
http://dx.doi.org/10.1063/1.863121
http://dx.doi.org/10.1063/1.863121
http://dx.doi.org/10.1088/0032-1028/23/7/005
http://dx.doi.org/10.1063/1.863762
http://dx.doi.org/10.1007/978-94-010-9655-3?nosfx=y
http://dx.doi.org/10.1017/S0022377806004958
http://dx.doi.org/10.1017/S0022377806004958
http://dx.doi.org/https://doi.org/10.1016/0021-9991(87)90080-5
http://dx.doi.org/https://doi.org/10.1016/0021-9991(87)90080-5
http://dx.doi.org/10.1063/1.4976116
http://dx.doi.org/10.1103/PhysRev.94.511


BIBLIOGRAPHY

[78] J. D. Huba, NRL PLASMA FORMULARY Supported by The Office of Naval
Research, Naval Research Laboratory, Washington, DC, 2013. URL: http:

//wwwppd.nrl.navy.mil/nrlformulary/.

[79] M. Sasaki, K. Itoh, A. Ejiri, Y. Takase, Radial eigenmodes of geodesic acoustic
modes, Contributions to Plasma Physics 48 (2008) 68–72. doi:10.1002/ctpp.
200810011.

[80] V. I. Ilgisonis, I. V. Khalzov, V. P. Lakhin, A. I. Smolyakov, E. A. Sorokina,
Global geodesic acoustic mode in a tokamak with positive magnetic shear and
a monotonic temperature profile, Plasma Physics and Controlled Fusion 56
(2014) 035001. doi:10.1088/0741-3335/56/3/035001.

[81] I. Gertsbakh, Measurement Theory for Engineers, p. 20, Springer-
Verlag Berlin Heidelberg 2003, 2003. URL: http://dx.doi.org/10.1007/

978-3-662-08583-7.

[82] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University
Press, 2007.

[83] T. Ido, M. Osakabe, A. Shimizu, T. Watari, M. Nishiura, K. Toi, K. Ogawa,
K. Itoh, I. Yamada, R. Yasuhara, Y. Yoshimura, S. Kato, LHD Experiment
Group, Identification of the energetic-particle driven GAM in the LHD, Nuclear
Fusion 55 (2015) 083024. doi:10.1088/0029-5515/55/8/083024.

[84] M. Osakabe, T. Ido, K. Ogawa, A. Shimizu, M. Yokoyama, R. Seki, C. Suzuki,
M. Isobe, K. Toi, D. A. Spong, K. Nagaoka, Y. Takeiri, H. Igami, T. Seki,
K. Nagasaki, LHD experiment group, Indication of bulk-ion heating by ener-
getic particle driven geodesic acoustic modes on lhd, in: 25th IAEA fusion en-
ergy conference, 2014. URL: https://inis.iaea.org/search/search.aspx?
orig_q=RN:47070985.

[85] F. Jenko, W. Dorland, M. Kotschenreuther, B. N. Rogers, Electron tem-
perature gradient driven turbulence, Phys. Plasmas 7 (2000) 1904–1910.
doi:10.1063/1.874014.

[86] P. Lauber, Aug test case description (2015). URL: http://www2.ipp.mpg.de/

~pwl/NLED_AUG/data.html.

131

http://wwwppd.nrl.navy.mil/nrlformulary/
http://wwwppd.nrl.navy.mil/nrlformulary/
http://dx.doi.org/10.1002/ctpp.200810011
http://dx.doi.org/10.1002/ctpp.200810011
http://dx.doi.org/10.1088/0741-3335/56/3/035001
http://dx.doi.org/10.1007/978-3-662-08583-7
http://dx.doi.org/10.1007/978-3-662-08583-7
http://dx.doi.org/10.1088/0029-5515/55/8/083024
https://inis.iaea.org/search/search.aspx?orig_q=RN:47070985
https://inis.iaea.org/search/search.aspx?orig_q=RN:47070985
http://dx.doi.org/10.1063/1.874014
http://www2.ipp.mpg.de/~pwl/NLED_AUG/data.html
http://www2.ipp.mpg.de/~pwl/NLED_AUG/data.html


BIBLIOGRAPHY
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Ö. D. Gürcan, P. Morel, I. Novikau, Saturation of energetic-particle-driven
geodesic acoustic modes due to wave–particle nonlinearity, Journal of Plasma
Physics 83 (2017) 725830602. doi:10.1017/S0022377817000976.

[101] A. Biancalani, N. Carlevaro, A. Bottino, G. Montani, Z. Qiu, Nonlinear veloc-
ity redistribution caused by energetic-particle-driven geodesic acoustic modes,
mapped with the beam-plasma system, Journal of Plasma Physics 84 (2018)
725840602. doi:10.1017/S002237781800123X.

[102] D. Zarzoso, D. del Castillo-Negrete, D. Escande, Y. Sarazin, X. Garbet,
V. Grandgirard, C. Passeron, G. Latu, S. Benkadda, Particle transport due
to energetic-particle-driven geodesic acoustic modes, Nuclear Fusion 58 (2018)
106030. doi:10.1088/1741-4326/aad785.

133

http://dx.doi.org/10.1088/1741-4326/ab26e5
http://dx.doi.org/10.1088/1741-4326/ab26e5
http://dx.doi.org/10.1088/1741-4326/aa7351
http://dx.doi.org/10.1038/s41598-017-17011-y
http://dx.doi.org/10.1038/s41598-017-17011-y
http://dx.doi.org/10.1063/1.4993053
http://dx.doi.org/10.1063/1.4993053
http://dx.doi.org/10.1063/1.5003142
http://dx.doi.org/10.1063/1.5003142
http://dx.doi.org/10.1017/S0022377817000976
http://dx.doi.org/10.1017/S002237781800123X
http://dx.doi.org/10.1088/1741-4326/aad785


BIBLIOGRAPHY

[103] F. Vannini, A. Biancalani, A. Bottino, T. Hayward-Schneider, P. Lauber,
A. Mishchenko, I. Novikau, E. Poli, the ASDEX Upgrade team, Gyrokinetic in-
vestigation of the damping channels of alfvén modes in asdex upgrade, Physics
of Plasmas 27 (2020) 042501. doi:10.1063/1.5134979.

[104] P. Lauber, B. Geiger, G. Papp, G. Por, L. Guimarais, P.ZS. Poloskei,
V. Igochine, M. Maraschek, G. Pokol, T. Hayward-Schneider, Z. Lu,
X. Wang, A. Bottino, F. Palermo, I. Novikau, A. Biancalani, G. Con-
way, the ASDEX UPGRADE team, the EUROFUSION enabling research
’NAT’ and ’NLED’ teams, Strongly non-linear energetic particle dynam-
ics in asdex upgrade scenarios with core impurity accumulation, in:
Proc. 27th IAEA Fusion Energy Conference - IAEA, Gandhinagar, India,
2018. URL: https://conferences.iaea.org/indico/event/151/papers/

6094/files/5080-IAEA_proceedings_Lauber_v3.pdf.

[105] J.-B. Girardo, D. Zarzoso, R. Dumont, X. Garbet, Y. Sarazin, S. Sharapov,
Relation between energetic and standard geodesic acoustic modes, Physics of
Plasmas 21 (2014) 092507. doi:10.1063/1.4895479.

[106] R. S. Hemsworth, D. Boilson, P. Blatchford, M. D. Palma, G. Chitarin, H. P. L.
de Esch, F. Geli, M. Dremel, J. Graceffa, D. Marcuzzi, G. Serianni, D. Shah,
M. Singh, M. Urbani, P. Zaccaria, Overview of the design of the ITER heating
neutral beam injectors, New Journal of Physics 19 (2017) 025005. doi:10.
1088/1367-2630/19/2/025005.

[107] T. H. Stix, Heating of toroidal plasmas by neutral injection, Plasma Physics
14 (1972) 367–384. doi:10.1088/0032-1028/14/4/002.

[108] K. Itoh, S.-I. Itoh, P. H. Diamond, A. Fujisawa, M. Yagi, T. Watari, Y. Na-
gashima, A. Fukuyama, Geodesic acoustic eigenmodes, Plasma and Fusion
Research 1 (2006) 037–037. doi:10.1585/pfr.1.037.

[109] C. A. de Meijere, S. Coda, Z. Huang, L. Vermare, T. Vernay, V. Vuille, S. Brun-
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