
Security in High-Bandwidth
Networks

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Ingenieurwissenscha�en, Informatik und Psychologie

der Universität Ulm

Vorgelegt von
Thomas Lukaseder
aus Lauingen (Donau)

Institut für Verteilte Systeme
Universität Ulm, Deutschland

S E C U R I T Y I N H I G H - B A N D W I D T H

N E T W O R K S

T H O M A S B A S T I A N L U K A S E D E R

S E C U R I T Y I N H I G H - B A N D W I D T H

N E T W O R K S

D I S S E R AT I O N

zur Erlangung des Doktorgrades Dr. rer. nat. der

Fakultät für Ingenieurwissenschaften, Informatik und Psychologie der

Universität Ulm

vorgelegt von

T H O M A S B A S T I A N L U K A S E D E R

aus Lauingen (Donau)

2 0 2 0

Amtierender Dekan:
Prof. Dr.-Ing. Maurits Ortmanns

Gutachter:

Prof. Dr. rer. nat. Frank Kargl, Universität Ulm
Prof. dr. ir. Aiko Pras, Universiteit Twente
Prof. Dr.-Ing. Dr. h.c. Stefan Wesner, Universität Ulm

Tag der Promotion
05.06.2020

A B S T R A C T

Ever-increasing bandwidth in networks presents a challenge to se-
curity mechanisms as the amount of traffic (following Gilder’s law)
increases faster than the computational power (following Moore’s
law). This continuous increase in the amount of data not only im-
pedes the effort to analyze the data in firewalls or Intrusion Detec-
tion Systems, but it can also be exploited by attackers to achieve ever
stronger attacks. Moreover, testing network security mechanisms in
high-bandwidth networks presents a challenge in itself as common
testing tools are neither designed to produce nor to analyze such a
vast amount of traffic.

In this thesis, firstly, we look into testing of network applications,
devices, and algorithms in high-bandwidth networks as a challenge
in and of itself. We analyze traffic, build a network testing framework,
and provide test data sets as groundwork for the other parts of this
thesis.

Following these insights, we work on improving security mecha-
nisms to tackle the challenges of high-bandwidth networks. Hereby,
we focus on two commonly used security mechanisms found in to-
day’s networks: Intrusion Detection Systems (IDS) and Mitigation
Systems for Distributed Denial-of-Service (DDoS) attacks and investi-
gate the impact of rising network traffic on their performance.

We look into ways to raise IDS throughput through hardware-sup-
ported parallelization of regular expression matching. Matching reg-
ular expressions is a key component of the payload analysis in IDS
and presents a major bottleneck for their throughput.

Moreover, we present a framework able to detect DDoS attacks,
identify attacking clients, and defend successfully against attacks.
The system entails improvements in these areas with a particular fo-
cus on identifying slow DDoS attackers and defense against reflective
attacks.

The software developed, the data sets produced, and the insights
gained in this work can help researchers, network administrators, and
developers improve network security mechanisms and defend their
networks more reliably against attacks.

vii

Z U S A M M E N FA S S U N G

Die ständig wachsende Bandbreite in Netzen stellt eine Herausforde-
rung für die Sicherheitsmechanismen dar, da die Menge des Daten-
verkehrs nach Gilder’s Gesetz schneller steigt als die Rechenleistung
nach Moore’s Gesetz. Diese kontinuierliche Zunahme der Datenmen-
ge erhöht nicht nur den Aufwand zur Analyse der Daten in Firewalls
oder Intrusion Detection Systemen, sondern kann auch von Angrei-
fern genutzt werden, um immer stärkere Angriffe zu erzielen. Dar-
über hinaus stellt das Testen von Sicherheitsmechanismen in Netzen
mit hoher Bandbreite eine Herausforderung an sich dar, da Testwerk-
zeuge weder dazu ausgelegt sind, eine so große Menge an Datenver-
kehr zu produzieren noch zu analysieren.

In dieser Arbeit untersuchen wir zunächst das Testen von Anwen-
dungen, Geräten und Algorithmen in Netze mit hoher Bandbreite
als eine Herausforderung an sich. Wir analysieren den Datenverkehr,
bauen ein Netzwerk Testframework und stellen Testdatensätze zur
Verfügung die uns im weiteren Verlauf der Arbeit nützen.

Folgend den erlangten Erkenntnissen arbeiten wir an der Verbes-
serung der Sicherheitsmechanismen, um die Herausforderungen von
Netzen mit hoher Bandbreite zu bewältigen. Dabei konzentrieren wir
uns auf zwei häufig verwendete Sicherheitsmechanismen, die in heu-
tigen Netzwerken zu finden sind: Intrusion Detection Systeme (IDS)
und Abwehrsysteme von Distributed Denial of Service (DDoS) An-
griffen und untersuchen die Auswirkungen des steigenden Netzwerk-
verkehrs auf ihre Leistung.

Wir untersuchen Möglichkeiten, den IDS-Durchsatz durch die Par-
allelisierung von Regular Expression Matching durch Hardwareun-
terstüzung zu erhöhen. Das Matching von regulären Ausdrücken ist
eine Schlüsselkomponente der Payload-Analyse im IDS und stellt
einen großen Engpass für deren Durchsatz dar.

Darüber hinaus stellen wir ein Framework vor, das in der Lage
ist, DDoS-Angriffe zu erkennen, Angreifer zu identifizieren und sich
erfolgreich gegen Angriffe zu verteidigen. Das System bringt Verbes-
serungen in diesen Bereichen mit sich, mit besonderem Fokus auf
die Identifizierung von slow DDoS-Angreifern und die Abwehr von
Reflective Angriffen.

Die entwickelte Software, die produzierten Datensätze und die da-
bei gewonnenen Erkenntnisse können Forschern, Aministratoren und
Entwicklern helfen, ihre Sicherheitsmechanismen in Netzen zu ver-
bessern und ihre Netze zuverlässiger gegen Angriffe zu schützen.

ix

P U B L I C AT I O N S

Some earlier versions of the material presented in this thesis have
previously appeared in the following publications:

[1] T. Lukaseder, L. Bradatsch, B. Erb, R. W. van der Heijden, and
F. Kargl. “A Comparison of TCP Congestion Control Algo-
rithms in 10G Networks.” In: IEEE 41st Conference on Local Com-
puter Networks (LCN). Oct. 2016. doi: 10.1109/LCN.2016.121
(cit. on pp. 7, 37, 43, 55, 57, 59, 60, 62, 63).

[2] T. Lukaseder, L. Bradatsch, B. Erb, and F. Kargl. “Setting Up
a TCP Benchmarking Environment—Lessons Learned.” In:
IEEE 41st Conference on Local Computer Networks (LCN). Oct.
2016. doi: 10.1109/LCN.2016.32 (cit. on pp. 7, 37, 39, 40, 43).

[3] T. Lukaseder, J. Fiedler, and F. Kargl. “Performance Evalua-
tion in High-Speed Networks by the Example of Intrusion De-
tection Systems.” In: 11. DFN-Forum Kommunikationstechnolo-
gien. 2018 (cit. on p. 8).

[4] T. Lukaseder, A. Hunt, C. Stehle, D. Wagner, R. van der Hei-
jden, and F. Kargl. “An Extensible Host-Agnostic Framework
for SDN-Assisted DDoS-Mitigation.” In: IEEE 42nd Conference
on Local Computer Networks (LCN). Oct. 2017. doi: 10.1109/LCN.
2017.103 (cit. on pp. 8, 158, 178, 181).

[5] T. Lukaseder, L. Maile, B. Erb, and F. Kargl. “SDN-Assisted
Network-Based Mitigation of Slow DDoS Attacks.” In: EAI In-
ternational Conference on Security and Privacy in Communication
Networks (SecureComm). Aug. 2018. doi: 10.1007/978-3-030-
01704-0_6 (cit. on pp. 9, 79, 166, 198, 199).

[6] T. Lukaseder, L. Maile, and F. Kargl. “SDN-Assisted Network-
Based Mitigation of Slow HTTP Attacks.” In: 1. KuVS Fachge-
spräch Network Softwarization – From Research to Application.
2017. doi: 10.15496/publikation-19543 (cit. on pp. 9, 166).

[7] T. Lukaseder, K. Stölzle, S. Kleber, B. Erb, and F. Kargl. “An
SDN-based Approach For Defending Against Reflective DDoS
Attacks.” In: IEEE 43rd Conference on Local Computer Networks
(LCN). Oct. 2018. doi: 10.1109/LCN.2018.8638036 (cit. on
pp. 9, 170).

[8] T. Lukaseder, S. Ghosh, and F. Kargl. “Mitigation of Flooding
and Slow DDoS Attacks in a Software-Defined Network.” In:
IEEE 43rd Conference on Local Computer Networks (LCN), Demo
Track. Oct. 2018 (cit. on p. 8).

xi

https://doi.org/10.1109/LCN.2016.121
https://doi.org/10.1109/LCN.2016.32
https://doi.org/10.1109/LCN.2017.103
https://doi.org/10.1109/LCN.2017.103
https://doi.org/10.1007/978-3-030-01704-0_6
https://doi.org/10.1007/978-3-030-01704-0_6
https://doi.org/10.15496/publikation-19543
https://doi.org/10.1109/LCN.2018.8638036

xii

[9] L. Bradatsch, T. Lukaseder, and F. Kargl. “A Testing Frame-
work for High-Speed Network and Security Devices.” In: IEEE
42nd Conference on Local Computer Networks (LCN). Oct. 2017.
doi: 10.1109/LCN.2017.91 (cit. on pp. 7, 65).

[10] F. Engelmann, T. Lukaseder, B. Erb, R. van der Heijden, and F.
Kargl. “Dynamic packet-filtering in high-speed networks us-
ing NetFPGAs.” In: IEEE Third International Conference on Fu-
ture Generation Communication Technologies (FGCT 2014). Aug.
2014. doi: 10.1109/FGCT.2014.6933224 (cit. on pp. 8, 110).

https://doi.org/10.1109/LCN.2017.91
https://doi.org/10.1109/FGCT.2014.6933224

C O N T E N T S

I introduction 1

1 introduction 3

1.1 Motivation . 3

1.2 Research Questions . 4

1.3 Overview and Contributions 6

1.4 Opportunities — The Research Projects, And Their Re-
sources . 9

II network testing 13

2 introduction to network testing 15

2.1 Data Sets . 16

2.2 Traffic Model Analysis 29

2.3 Evaluation Programs . 30

2.4 Testing Methodologies 33

2.5 Topologies . 39

2.6 Summary . 40

3 problem statement 41

3.1 Research Questions . 42

4 evaluation of tcp congestion control algorithms 43

4.1 TCP Congestion Control Algorithms 44

4.2 Planning a TCP Benchmarking Environment 46

4.3 Resulting Test Setup . 52

4.4 Results . 56

4.5 Discussion . 61

5 the general purpose network testing framework 65

5.1 Producing Benign Traffic 66

5.2 Producing Malicious Traffic 71

5.3 Implementation . 73

5.4 Evaluation . 75

5.5 Produced Data Sets . 78

5.6 Summary . 81

III acceleration of intrusion detection systems 85

6 introduction to intrusion detection systems 87

6.1 Signature-based NIDS 87

6.2 Anomaly-based NIDS 89

6.3 Overview of Available IDS Systems 92

6.4 Circumventing Intrusion Detection Systems 94

6.5 State of the Art in IDS Acceleration 94

7 problem statement 99

7.1 Research Questions . 101

xiii

xiv contents

8 hardware-based ids acceleration system 103

8.1 Regular Expressions and Finite Automata 103

8.2 Concepts . 109

8.3 Acceleration with GPUs 119

8.4 Summary . 125

IV mitigation of ddos attacks 129

9 introduction to distributed denial-of-service

attacks 131

9.1 Botnets . 132

9.2 Attack Classification . 133

9.3 Prevalence of Attacks . 138

9.4 State of the Art in DDoS Mitigation 139

9.5 Summary . 149

10 problem statement 151

10.1 Research Questions . 152

11 ddos mitigation framework 155

11.1 Environment . 156

11.2 Detection Mechanisms 157

11.3 Identification Mechanisms 165

11.4 Defense Mechanisms . 168

11.5 Prototype Setup . 174

11.6 Evaluation . 176

11.7 Summary . 199

V conclusions 203

12 conclusions & outlook 205

12.1 Outlook . 208

12.2 Summary . 210

VI appendix 215

bibliography 231

L I S T O F F I G U R E S

Figure 1 Roadmap of this thesis. 6

Figure 2 Dumbbell topology. 39

Figure 3 Parking lot topology 40

Figure 4 Ring topology 40

Figure 5 Extended Dumbbell Topology including the
Ring configuration in the BelWü research net-
work used as delay inducer. 55

Figure 6 Responsiveness at different induced drop rates. 57

Figure 7 Efficiency at different RTTs and drop rates. . . 59

Figure 8 Fairness of the variants against themselves and
downwards compatibility against Reno. 60

Figure 9 Link utilization of different TCP congestion
control algorithms, variant against itself and
against Reno. 62

Figure 10 Convergence time and spread of the converged
flows. 63

Figure 11 GPNTF architecture with three clients and
three servers testing one physical device. . . . 74

Figure 12 Main object sizes (at different session lengths)
plotted as CDF compared to the model distri-
bution. One test run. 76

Figure 13 Pearson’s correlation coefficient for several
web browsing parameters dependent on ses-
sion size (20 test runs). 77

Figure 14 File sizes measured versus data input. 77

Figure 15 Pearson’s correlation coefficient for file sharing
flow sizes dependent on session length. 78

Figure 16 Example goto function used in Aho and Cora-
sick [45]. 88

Figure 17 Difference between original Thompson’s algo-
rithm and using character classes for the same
sub-expression. 108

Figure 18 Example of an NFA with two transitions with
overlapping character classes. 108

Figure 19 Data flow of packets through the modules of
the NetFPGA. 110

Figure 20 Concept of the parallelization model for the
FPGA pre-filter approach. 112

Figure 21 PF_PACKET processing pipeline on Linux
(Braun et al. [72]). 116

xv

xvi List of Figures

Figure 22 PF_RING processing pipeline on Linux (Braun
et al. [72]). 116

Figure 23 Harvard architecture of one regular expression
Co-Processor core. 117

Figure 24 Extended processing pipeline of Snort 3 with
GPU matcher module in orange. 121

Figure 25 Comparison between Snort 3 and Suricata . . . 122

Figure 26 Drop rates and number of alerts dependent on
throughput and system. 124

Figure 27 Regular expression and pattern matching of-
floaded to the GPU. 125

Figure 28 Throughput of the record holder of the biggest
DDoS attack of all time [297]. 131

Figure 29 Process of a flooding DDoS attack. 133

Figure 30 Process of a reflective DDoS attack. 135

Figure 31 Setup of the full DDoS Mitigation System . . . 156

Figure 32 Scheme of the detection approach. 163

Figure 33 Bound B calculation over time. 166

Figure 34 Process of the defense against reflective DDoS
attacks on the switch closest to the target. . . . 172

Figure 35 Process of the defense against reflective DDoS
attacks on the switch anywhere else in the net-
work. 173

Figure 36 The local setup of the DDoS mitigation frame-
work. 174

Figure 37 Example test runs of the different attacks. . . . 179

Figure 38 Detection time, mitigation time, and server
downtime for the flooding attacks. 181

Figure 39 Recorded flows per hour in the BelWü data set
for the full network and the university subnets. 182

Figure 40 Changes of the destination IP entropy over
time in all data sets in the presence of attacks. 186

Figure 41 Changes of the source port entropy over time
in all data sets in the presence of attacks. . . . 188

Figure 42 Comparison of different epoch lengths as a
base for the entropy calculations. 189

Figure 43 Effect of different sampling rates on the classi-
fication performance. 190

Figure 44 Source port entropy in two networks of similar
traffic compositions but different sizes. 190

Figure 45 ROC curves for LPR and PDU for the three
slow attack types in the two SUEE data sets. . 196

Figure 46 Balanced accuracy for LPR, PDU, and LPR-
PDU without TCP handshake and with TCP
handshake . 198

List of Figures xvii

Figure 47 Evaluation results for balanced accuracy and
identification times for LPR without TCP hand-
shake on SUEE8 dependent on strikes. 199

Figure 48 DDoS detection demo running based on live
analysis of bwNetFlow data. 201

Figure 49 ROC curves for the destination IP entropy (an-
alyzing every 128th packet) 225

Figure 50 ROC curves for the destination IP entropy (an-
alyzing every 2 048th packet) 226

Figure 51 ROC curves for the destination IP entropy (an-
alyzing every 32 768th packet) 227

Figure 52 ROC curves for the source port entropy (ana-
lyzing every 128th packet) 228

Figure 53 ROC curves for the source port entropy (ana-
lyzing every 2 048th packet) 229

L I S T O F TA B L E S

Table 1 Used TCP parameters. 54

Table 2 Test overview; every listed parameter permu-
tation was tested. 56

Table 3 Composition of the SUEE data sets benign traffic. 79

Table 4 Port distribution of the SUEE data sets benign
traffic. 80

Table 5 Failure function for the example pattern match-
ing machine used in Aho and Corasick [45]. . 88

Table 6 Output function for the example pattern match-
ing machine used in Aho and Corasick [45]. . 89

Table 7 Overview over anomaly-based NIDS systems
from Garcia et al. [128] 93

Table 8 RegEx assembly code command format. 118

Table 9 Example regular expression assembly code for
((acd)*(b|a))|(c*d). 119

Table 10 Flow entries of the defense mechanism against
DRDoS attacks without optional OpenFlow
features. 177

Table 11 Flow entries of the defense mechanism against
DRDoS attacks with optional OpenFlow features.177

Table 12 The data sets used in the DDoS evaluation. . . 184

Table 13 Overview of the ideal thresholds for each
scheme and attack for data set SUEE1. 194

Table 14 Evaluation results of the slow DDoS identifica-
tion. 195

Table 15 Evaluation results for LPR-PDU when for each
partial scheme the maximum threshold is chosen.197

Table 16 GPNTF default values for web traffic and their
sources. 217

Table 17 GPNTF default values for file sharing and their
sources. 218

Table 18 GPNTF default values for buffered video stream-
ing and their sources. 219

Table 19 GPNTF default values for storage and market-
place and their sources. (Own measurements
if no source is cited). 220

Table 20 Full list of all fields contained in the bwNet-
Flow data (part 1). 223

Table 21 Full list of all fields contained in the bwNet-
Flow data (part 2). 224

xviii

List of Tables xix

I
I N T R O D U C T I O N

1
I N T R O D U C T I O N

1.1 motivation

Institutional networks such as university networks, business net-
works, or networks of other public institutions are commonly con-
nected to the Internet through one or several routers through a
firewall-secured connection (i. e., perimeter security). Firewalls proac-
tively filter packets and block clients based on predefined rules. These
rules can be based on policy decisions or based on security consid-
erations. Within the networks, switches are routing packets to the
network edges where clients are connected either via Ethernet con-
nections or through a WiFi access point.

Even in well-secured networks with good perimeter security, it can-
not be assumed that there are no attackers or compromised devices
within the network [129, 175]. In the case of university networks such
as the Ulm University network infrastructure, end-user devices are
often the user’s property and cannot be secured by the network op-
erators. An increasing amount of devices in the network are mobile
and are commonly used in other networks, which are often unse-
cured or at least poorly secured. Moreover, one cannot rely on lay-
men end-users to sufficiently protect their devices. In addition, there
are guest networks and attacks from the Internet that might pene-
trate the firewall. In order to be able to achieve acceptable network
security despite insufficient perimeter security, Intrusion Detection
Systems (IDS) are often deployed in the networks. They can identify
threats, for example, in the form of malware, worms, or brute-force
access attempts. IDS analyze the traffic and reactively report threats
to the network administrators. In the case of an Intrusion Preven-
tion System (IPS), the system itself also tries to defend against the at-
tacks automatically when attacks where identified. One special case
of IPS are systems mitigating Distributed Denial-of-Service (DDoS)
attacks. DDoS attacks are among the most widespread and common
network-based attacks. While other network-based attacks can often
be observed analyzing single packets or single flows, observing DDoS
attacks requires information about the mixture of traffic within the
network. This is often achieved by analyzing flow information for
the whole network infrastructure instead of analyzing single client
connections.

These mechanisms — firewalls, IDS, and IPS — should assure a se-
cure network environment. However, they face many challenges. In
many networks but especially research networks, where minimal re-

3

4 introduction

strictions already could mean severe limitation for researchers, secu-
rity often has to take a back seat to full availability of the services. In
the meantime, the threat landscape in these networks changes. Net-
works become more complex, dynamic, and faster. Ever-increasing
bandwidth in networks presents a challenge to security mechanisms
as the amount of traffic increases faster than the computational power.
While Moore’s law states that computational power increases 5-fold
over 4 years [224], Gilder’s law states that bandwidth increases in the
same period 32-fold [131]. This continuous increase in the amount of
data and growing gap between processing capabilities and through-
put not only impedes the effort to analyze the data in firewalls or
Intrusion Detection Systems, but it can also be exploited by attack-
ers to achieve ever stronger attacks as the continues rise of DDoS
throughput shows [297].

1.2 research questions

Facing these challenges in network security, we want to focus on one
overarching research question in this work:

How can we improve security mechanisms while being faced
with increasing amounts of data and attack complexity?

Due to their current and increasing complexity, reactive security
mechanisms such as IDS are predominantly affected by the changing
threat landscape. Therefore, we focus on these mechanisms. Denial-
of-Service attacks are a class of network attacks that majorly rely on
throughput. Following the current trend, their importance will prob-
ably continue to grow, even beyond today’s high level. We will, there-
fore, focus in particular on the defense against these attacks. Early
on in our research, we realized that the necessary tests for such mech-
anisms at high bandwidths are insufficient for our work. Before all
else, we had to assure that our security mechanisms could be evalu-
ated, resulting in our own testing model and infrastructure.

All in all, the impact of rising bandwidth in networks affects secu-
rity applications in the area of testing these applications, analyzing
traffic in real-time, and defending against increasingly powerful at-
tacks. It is, therefore, the goal of this thesis to present improvements
to network security in high-bandwidth networks with the following
three central research questions:

1. How can realistic traffic be modeled and produced to test net-
work mechanisms?

Intrusion Detection Systems and Firewalls are enormously impor-
tant for securing networks. Test infrastructure is needed to success-
fully verify whether these systems provide the security we expect
from them. Testing network security mechanisms in high-bandwidth

1.2 research questions 5

networks presents a challenge in itself as common testing tools are
neither designed to produce nor to analyze such a vast amount of
traffic. These tests need to evaluate performance in terms of accuracy
and throughput to ensure that the systems reliably identify attacks
while keeping false positives at a minimum. Testing security applica-
tions requires both attack traffic and benign traffic to see how network
security mechanisms are handling different mixtures of traffic. The
security mechanisms need to be able to discern benign from attack
traffic and must be able to reach their required performance regard-
less of background traffic composition. The traffic must be as close
as possible to reality to assure that these results can be transferred
to production networks. This part predominantly focuses on an anal-
ysis of testing mechanisms and data sets that are typically used for
these evaluations. The evaluation aspect in high-bandwidth networks is
also supported by an in-depth use case evaluation of TCP congestion
control algorithms. These works then lead to a framework for testing
network devices and algorithms that, in turn, is used to answer the
other research questions.

2. Can hardware-based acceleration help Intrusion Detection Sys-
tems to obtain the throughput needed in future networks?

IDS throughput relies heavily on their performance concerning the
live analysis of traffic. Core aspects of this analysis are string match-
ing and regular expression matching. Increasing the performance of
these mechanisms would improve the throughput of IDS and, there-
fore, their applicability in future networks. One method of accelera-
tion is the use of parallel processing in specialized hardware modules.
Some research was done in this area. However, a definitive answer if
hardware-based acceleration of IDS is feasible is missing. To answer
this question, we highlight various methods to accelerate IDS with
hardware modules based on FPGAs and GPUs. This is followed by
an exemplary implementation of the GPU-based mechanism.

3. How can the mitigation of Distributed Denial-of-Service At-
tacks be improved?

We give special attention to one use case of IDS — the mitigation
of DDoS attacks. Most DDoS attacks require high throughput and
are, therefore, especially interesting for attackers to utilize in high-
bandwidth networks. Unlike other network-based attacks where full
traffic analysis is necessary, oftentimes for DDoS attacks, only statisti-
cal analysis is needed making it easier to detect the attacks. However,
the network itself suffers under the load produced by many DDoS
attacks challenging the mitigation system. As part of this work, a
new framework is built. This framework enables us to evaluate mech-
anisms to 1 detect attack, 2 identify attackers, and 3 defend the
network against the attacks.

6 introduction
Testing Network Mechanims

Accelerating Intrusion Detection

Defending against DDoS Attacks
2

4

9

8

6

11

Part II
Part III

Part IV

10

3

7

5

Figure 1: Roadmap of this thesis. The Arabic numerals represent the chapters while the Roman
numerals represent the parts. All parts begin with an introductory survey (Chapters 2,
6, 9) followed by a research statement (Chapters 3, 7, 10) leading into the main contribu-
tions (Chapters 4, 5, 8, 11).

1.3 overview and contributions

In the following, the core results and research topics of this work are
summarized. Figure 1 contains the basic structure of this thesis. In
Part II the focus lies on the conceptual design and implementation of
a network testing framework as a basis for testing the resulting imple-
mentations of the other two parts. In a second step, two commonly
used security mechanisms found in today’s networks are discussed in
Part III and Part IV: Intrusion Detection Systems (IDS) and Mitigation
Systems of Distributed Denial-of-Service (DDoS) attacks. Research in
these areas focuses on the impact of rising network traffic on their per-
formance and improved mechanisms both for better high-bandwidth
network performance and higher accuracy.

Part II: Network Testing (Chapters 2 to 5)

The core of this contribution is the General Network Testing Framework
(GPNTF), which aims to improve the methodology of network testing,
i. e., testing of network devices, protocols, and software for network
operations. To reach the point of implementing this framework, two
steps needed to be undertaken. For one, general network tests at
high throughput needed to be achieved. In a second step, we make

1.3 overview and contributions 7

the jump from general tests of network devices and protocols to spe-
cialized security tests.

survey on network testing An extensive analysis was con-
ducted on network testing, in particular on data sets used for testing
of network devices and mechanisms. The analysis was focused pre-
dominantly on Intrusion Detection System evaluation and the evalu-
ation of DDoS mitigation systems. This contribution is documented
in Chapter 2.

tcp congestion control algorithms in high-bandwidth

networks As a first step in the area of network testing, we chose
Results from this
chapter have been
published at IEEE
LCN 2016 [1, 2].

a non-security related, however common and relevant issue in net-
works: The evaluation of TCP congestion control algorithms. Many
evaluations have been conducted in lower bandwidth networks up
to 1 Gbit/s, and when introducing a new protocol, the protocol de-
signers often evaluated their algorithms against the then state of the
art. With these evaluations as a blueprint, this use case served as a
starting point of our endeavors in the area of high-bandwidth net-
work testing. The area is well researched, which gives us a good
starting point while independent evaluation of common mechanisms
at high throughputs was missing. Common pitfalls and challenges
where identified and configurations necessary to achieve 10 Gbit/s
with commodity hardware were documented. 10 Gbit/s was chosen
as for single flow applications, 10 Gbit/s is common in data centers
and starts to become common even in some desktop systems while
higher throughput is still in the experimental stage [146]. This contri-
bution is documented in Chapter 4.

analysis and production of network traffic Reaching
sufficient throughput is a necessary albeit insufficient step to build a

Results from this
chapter have been
published at IEEE
LCN 2017 [9].

complete testing environment for security applications. In addition, a
realistic composition of traffic is necessary to achieve convincing anal-
yses. The number of connections per client, the quantity of clients in
the network, connection lengths, or the variance of traffic patterns
are necessary to take into account for many network testing appli-
cations. Benign traffic is important for testing the usual networking
equipment without security context and testing security applications
to measure false-positive rates. In addition to benign traffic, for se-
curity applications test, malicious traffic is needed to induce into the
network. For testing Intrusion Detection Systems, different kinds of
intrusions need to be possible to produce. From SSH brute force
attacks, botnet traffic, worms, to full Distributed Denial-of-Service at-
tacks — a wide range of features needs to be available. As a result of
this work, we present the General Purpose Network Testing Frame-
work (GPNTF). Chapter 5 contains a detailed description of this work.

8 introduction

Part III: Acceleration of Intrusion Detection Systems (Chapters 6 to 8)

Matching regular expressions is a key component of the payload anal-
ysis in IDS and presents a major bottleneck for their throughput. In
this part, raising the throughput of IDS through hardware-supported
parallelization of regular expression matching is the focus.

survey on intrusion detection systems A survey on Intru-
sion Detection Systems and how these are commonly accelerated was
conducted. Chapter 6 documents the results of this analysis.

analysis of hardware acceleration approaches The
first step was to identify and evaluate concepts for the acceleration of

Results from this
chapter have been
published at IEEE

FGCT 2014 [10]
and at the 11th

DFN-Forum
2018 [3].

IDS. We identified three different concepts based on FPGAs, ASICs,
and GPUs. Our analysis showed that GPUs have the most poten-
tial for the acceleration of IDS, leading to the decision to focus on
this acceleration method going forward. Following this decision, the
GPU-acceleration concept was refined, implemented, and evaluated.
Chapter 8 describes our results in this area.

Part IV: Mitigation of DDoS Attacks (Chapters 9 to 11)

In the area of DDoS attack mitigation, we considered many differ-
ent attacks and many defense mechanisms against them. At that, we
focused on the use case of mitigation of the attacks solely within the
network infrastructure. That means we do not consider any help from
the attack target. This represents a typical use case in our research
network as servers are often administered by research institutes or
schools directly. Hardware and software can be quite diverse. Ad-
ministrators might not be available during attacks or might not be
trained to help. Simultaneously, administrators from the research
network do not have access to the target systems. Therefore, inde-
pendent of attack, we need to be able to mitigate attacks within the
network infrastructure.

survey on ddos attacks and mitigation Chapter 9 con-
tains an extensive survey on both Denial-of-Service attacks commonly
found in today’s Internet and current approaches on how to tackle
them.

presenting a ddos mitigation framework We build aThe framework has
been published at

IEEE LCN 2017 [4]
and IEEE LCN

2018 [8].

framework based on Software-Defined Networking (SDN) technol-
ogy to facilitate our mitigation presented in Chapter 11. SDN was
chosen as the technology offering the flexibility necessary to build
a functioning prototype quickly. However, none of the mechanisms
necessarily need SDN to function in principle. Mitigation of DDoS

1.4 opportunities — the research projects , and their resources 9

attacks typically consists of three main steps: detection of attacks,
identification of attackers, and defense against the attack. In all three
areas, the framework contains research contributions.

There are many ways to detect attacks. Especially in recent years, a

detection
multitude of detection mechanisms have been proposed, for instance,
based on entropy calculations of flow metrics. We conducted an ex-
tensive analysis of how these mechanisms perform in research net-
works. Common methods to detect DDoS attacks in view of high
sampling rates, dependent on network sizes and types, are under-
taken based on data from the research network Baden-Württemberg
(BelWü) and other public data sets.

In the identification realm, the framework is able to identify attack-

identification

Results were
published at EAI
SecureComm
2018 [5] and KuVS
Fachgespräch
2017 [6].

ers running vastly different attacks including HTTP and TLS flooding
but also slow HTTP attacks. The flooding attack clients are identified
by allocating a score to the clients in the network based on the esti-
mated load they cause on the target. Improvements were made in
the area of identification of attackers running different slow HTTP
attacks presenting a new identification scheme based on the combi-
nation of the packet rate and the packet distance uniformity. With
slowloris-ng, a new slow attack tool was implemented and published
to challenge slow HTTP attack identification schemes.

Furthermore, the framework contains effective means to defend

defense

Results were
published at IEEE
LCN 2018 [7].

against DDoS attacks. For one, we present a system to block indi-
vidually identified clients when faced with application-layer attacks.
Furthermore, a special mechanism presents improvements to how
traffic can be filtered in networks when faced with UDP-based re-
flective attacks. The mechanism is easy and fast to deploy, scalable,
and transparent to the attack victim.

1.4 opportunities — the research projects , and their

resources

This work originated in the context of the bwNET100G+ research
project funded by the Ministry of Science, Research and the Arts Baden-
Württemberg (MWK). This project is unusual in its design as it com-
bines network operations of three universities in Baden-Württemberg
(Tübingen University, Ulm University and the Karlsruhe Institute of
Technologies), the state-owned Internet service provider of the re-
search network in the state Baden-Württemberg extended LAN (BelWü),
and three research institutes at the three aforementioned universities.
The stated goal of the research project is “research and innovative ser-
vices for a flexible 100G-network in Baden-Württemberg”1. Input from the
operations side shall ensure that the research done in this project is
practically relevant in modern networks, while access to the infras-
tructure and experience of the operations offers exceptional opportu-

1 https://bwnet100g.de

https://bwnet100g.de

10 introduction

nities to the researchers to investigate practice-oriented research ques-
tions. Three topics build the main focus of the project. For one, meth-
ods for flexible and intelligent network services mainly researched
at Tübingen University with the focus on the application of Software-
Defined Networking in research networks. Secondly, data transport
in high-bandwidth networks as a prime responsibility of the Karlsruhe
Institute of Technology. Ulm University focused on the security aspects
of high-bandwidth networks. The results of this endeavor at Ulm
University can be found in these pages.

Another research project based on the same fundamental principle
is the bwNetFlow research project funded by the same ministry. Ulm
University and BelWü are also part of the main contributors to this
project. Its primary focus lies in implementing a flow monitoring in-
frastructure for billing purposes for peering partners of the research
network. However, such an infrastructure opens up additional op-
portunities for researchers in the networks and network security area:
Attack detection mechanisms can be tested in a live network infras-
tructure. Close relations with this research project and access to their
data opened up possibilities of extensive data analysis in the research
network of Baden-Württemberg documented in this thesis.

1.4 opportunities — the research projects , and their resources 11

II
N E T W O R K T E S T I N G

2
I N T R O D U C T I O N T O N E T W O R K T E S T I N G

Testing network devices and network protocols (i. e., performance
and accuracy tests) require the simulation or emulation of the real
network infrastructure as close as possible. New network devices
and protocols need to be tested to ensure that they fulfill their design
goals. Testing in a production network is usually not feasible as the
functionality of the network could be impeded by faulty, untested
equipment or errors in the protocol design. Furthermore, repeata-
bility of tests and results is usually necessary to test improvements
or compare different devices. Therefore, realistic, controlled testing
environments are a necessity. Building a testing environment that re-
sembles the real network’s properties is an important non-trivial task,
especially with the focus on high-bandwidth networks.

However, assurance of high throughput is not the only requirement
for comprehensible testing infrastructure. A testing framework for
networks has to emulate several parts of the network infrastructure.
For one, the traffic has to show typical features of traffic in the spe-
cific network type under consideration. This contains traffic patterns
(e. g., size and length of flows, the prevalence of certain protocols),
user behavior, utilization of the network resources (e. g., is the net-
work overloaded? Is there congestion in the network?). Therefore,
designing tests always encompass at least two necessary steps:

1. Choosing programs, test scenarios, topologies that can be used
to perform the tests.

2. Choosing data that contains all necessary features of the net-
work of operation, where the list of specific features is depen-
dent on the test scenario and test objective.

Programs to facilitate tests are abundant and manifold (as we will
show in this chapter). However, so are the operational areas and re-
quirements of network devices and protocols. Some tests require pro-
grams focused on high traffic throughput; others focus more on preci-
sion. Some require specific network features common only in special-
ized environments (e. g., in automotive networks or cyber-physical
systems), others need traffic patterns that are as similar to commonly
found patterns as possible.

One common way to assure that traffic closely resembles the net-
work traffic of the operational network is to use recordings of similar
production networks. That way, features such as usual user behavior
are featured in the data sets without the need to analyze it formally.
These data sets are a cornerstone for testing network devices and

15

16 introduction to network testing

protocols. They assure repeatability and comparability between tests
as the same data set can be used for many tests. However, there
are some limitations. One of them is obtaining the data sets in the
first place. This can be a hassle as data protection laws limit options
significantly, especially concerning the publication of the data sets.
Unpublished data sets are of limited use as they cannot ensure the
reproducibility of evaluations across working groups and the full ex-
tent of the research community. However, many research institutions,
over time, published and continue to publish valuable data sets that
enable testers to perform comparable tests, which we will analyze in
the following.

There are several cases where data sets cannot be used to build
meaningful tests. For example in case no recorded data set is obtain-
able, or tests require features that are under development or available
but not live in any production network yet (such as new protocols),
or special variations of the network need to be tested. Some network
tests require the device under test (DUT) to modify the network be-
havior and therefore changing the features of the data live during
testing, for instance, when an Intrusion Prevention System (IPS) ac-
tively blocks traffic in the network. If a reciprocation between DUT
and the traffic exists, static data sets reach the limits of their useful-
ness. In these cases, traffic has to be emulated as close to reality as
possible. A realistic emulation first requires precise models of the real
traffic that then have to be closely emulated.

In this chapter, the current state of network testing will be laid out.
In context of this thesis, network tests are discussed in two distinct
security related use cases for parts III and IV:

1. Performance tests of IDS and DDoS mitigation systems.

2. Accuracy tests of DDoS mitigation systems.

We identified two necessary steps to achieve network tests that are
able to fulfill our requirements:

1. We need to be able to achieve high throughput.

2. We need realistic traffic, be it recordings or simulated traffic.

For this, data sets, programs, and common testing methodologies
will be analyzed in the following.

2.1 data sets

Finding the right data set can be tricky as there is a large variety butChristian Forst [20]
has contributed to

this section with his
master thesis.

no central resource that could help find them. However, some online
resources provide information on data sets that can be used for dif-
ferent purposes. In the following, we distinguish between primary

2.1 data sets 17

sources hosting data sets themselves and secondary sources provid-
ing information on data sets and lists of links to these data sets and
their primary source.

Primary sources are often hosted by the ones creating or record-
ing the traces. The University of New Brunswick, Canada, offers a
multitude of different data sets1, some of them for testing network
devices such as IDS. In the United States, many data sets are avail-
able through the IMPACT Cyber Trust portal2 operated by the Depart-
ment of Homeland Security (DHS). Access is granted only from DHS-
approved locations (United States, Australia, Canada, Israel, Japan,
Netherlands, Singapore, and the United Kingdom). However, access
to some data sets can be obtained from other locations on request.
Contagiodump3 is a blog posting malware samples regularly. The DE-
FCON CTF Archive4 provides packet captures from their CTF events
with numerous attacks. Similarly, the Mid-Atlantic CCDC5 and the
anti Malware engineering Workshop (MWS)6 — other annual compe-
titions — also provide network traces of their events. The Internet
Traffic Archive7 hosts a variety of older network traces, mostly from
the 1990s. Malware Traffic Analysis is a blog and “source for pcap
files and malware samples”8 and offers a long list of contemporary at-
tack traffic. The site is very active and provides frequent updates
of new traffic traces. The Simple Web9 — curated at the University
of Twente — provides tutorials, podcasts, information, and network
traces relevant to Internet management. The traces are available on-
line under free licenses.

Apart from the sites curated by the ones creating or recording the
traffic, there are also sharing sites that allow uploads of data sets.
DDoSDB10 offers a large variety of meta-information on real, cap-
tured DDoS and DoS attacks that can be used to simulate realistic
attacks. Kaggle11 is a data set sharing site not specialized in net-
work traces but all kinds of data (e. g., Schengen Visa Statistics of
2017/2018). Network traffic data is a small part of the vast collec-
tion, but there are some data sets worthy of attention. OpenML12 is a
sharing site focused on machine learning related data sets, including
network data analysis.

1 https://www.unb.ca/cic/datasets/index.html

2 https://www.impactcybertrust.org

3 http://contagiodump.blogspot.com/

4 https://www.defcon.org/html/links/dc-ctf.html

5 https://maccdc.org/

6 https://www.iwsec.org/mws/2018/en.html

7 ftp://ita.ee.lbl.gov/html/traces.html

8 https://malware-traffic-analysis.net

9 https://www.simpleweb.org/wiki/index.php/Main_Page

10 https://ddosdb.org

11 https://www.kaggle.com

12 https://www.openml.org

https://www.unb.ca/cic/datasets/index.html
https://www.impactcybertrust.org
http://contagiodump.blogspot.com/
https://www.defcon.org/html/links/dc-ctf.html
https://maccdc.org/
https://www.iwsec.org/mws/2018/en.html
ftp://ita.ee.lbl.gov/html/traces.html
https://malware-traffic-analysis.net
https://www.simpleweb.org/wiki/index.php/Main_Page
https://ddosdb.org
https://www.kaggle.com
https://www.openml.org

18 introduction to network testing

Using a secondary source can help to put the data sets into context
and also can provide a more neutral look at the data sets. Further-
more, regularly looking at these lists helps to keep up to date with
new data sets being published. One of the secondary resources is
SecRepo. SecRepo is a public database of “Samples of Security Related
Data”13 curated by Mike Sconzo. It offers a list of publicly accessible
data sets for network tests focused on the security domain. Both sim-
ulated and recorded traffic can be found here, mostly in the pcap file
format. AZ-Secure14 provides a collection of links to numerous data
sets. Security researcher Jason Trost operates covert.io15 providing a
list of data set links. NETRECSEC16 curates a list of publicly available
data sets relevant for network security. RIPE17 hosts some data sets,
for example, containing DNS lookups from 40 vantage points18 and
also mirrors the WITS data sets.

In addition to the resources mentioned here, many single-purpose
sites were put up for other data sets discussed in the following. There
is a multitude of network testing data sets with different goals, ex-
tents, and depths. They differ in their availability and accessibility.
They were recorded in simulated networks or real networks — or they
encompass a mixture of both. In the case of data sets with attack traf-
fic mixed in, the types and extent of the attacks can be very different.
For security device testing, it is furthermore crucial that the attack
traffic in mixed data sets is identifiable as such (i. e., attacks are la-
beled). It is important to choose data sets fitting the target network
of a device or algorithm. Otherwise, the significance of test results
could be called into question.

In the following, many of the most common data sets are ana-
lyzed. With the focus of this thesis on Intrusion Detection Systems
and Denial-of-Service mitigation, the list of data sets is also limited to
data sets suitable for these use cases. Additional to the resources dis-
cussed in the following, some resources are providing small packet
samples and captures that can help for smaller-scale analyses19.

2.1.1 Artificial Data Sets

Many data sets were created artificially, with deliberately chosen at-
tacks meant to enable complete, broad evaluations of IDS.

13 https://secrepo.com

14 https://www.azsecure-data.org

15 http://covert.io

16 https://www.netresec.com/index.ashx?page=PcapFiles

17 https://labs.ripe.net/datarepository

18 https://v6day.ripe.net/

19 e. g., https://www.openpacket.org or https://wiki.wireshark.org/

SampleCaptures

https://secrepo.com
https://www.azsecure-data.org
http://covert.io
https://www.netresec.com/index.ashx?page=PcapFiles
https://labs.ripe.net/datarepository
https://v6day.ripe.net/
https://www.openpacket.org
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures

2.1 data sets 19

• The Coburg Intrusion Detection Data Sets (CIDDS)20 are one
example of this kind of data sets. CIDDS-001 only contains
simulated, benign data [261] but comes with extensive docu-
mentation [259] and was also statistically analyzed by a third
party [309] for distance-based machine learning approaches.
The CIDDS-002 data set was created based on the system build
and documented for CIDDS-001 [260]. The data set contains
both simulated benign traffic in business networks and port
scan attacks. Both data sets were documented in technical
reports [258, 259].

• The data sets published by the Defense Advanced Research
Projects Agency (DARPA)21 are among the best known and
most widely used data sets that can be found. For the use
case of Intrusion Detection System evaluation, they published
a specialized data set as early as 1998 [141, 198]. The first data
set of 1998 is split into a training data set and a test data set
with a duration of seven and two weeks, respectively. Both sets
contain typical network attacks such as network scans and DoS
attacks. The DARPA data set from 1999 contains a total of 56 dif-
ferent attacks in 201 variations extending the ones included in
the previous version. Among others, trojan horses were added
as well as spam e-mails, and DoS attacks on e-mail servers. Both
the training data set and the test data set are comprised of two
weeks of recordings each. In 2000, DARPA published additional
data sets more focused on specific use cases [141]. LLDOS 1.0
and 2.0 deal with DoS attacks on Solaris systems. The data sets
not only contain the DoS attack itself, but they also include the
reconnaissance and intrusion and takeover of a Solaris system
before the attack starts. The Solaris system was subsequently
used as an attacker. LLDOS 2.0 differs from LLDOS 1.0 by the
complexity of the attacks and the stealthiness of the attacker.
According to the data set publishers, the adversary in the at-
tacks shall represent a novice attacker. The Windows NT data
set published in the same year contains different attacks target-
ing Windows NT. Data and labeling information for all DARPA
data sets are available on their homepage. While the data set is
extremely extensive and, without a doubt, one of the most use-
ful data sets to date, as the data sets were recorded at the turn
of the century, it can be questioned how relevant their traffic
patterns are still today. Both benign and attack traffic changed
quite substantially in the last 20 years (e. g., the introduction of
new protocols such as QUIC, changes in user behavior such as
the rise of streaming platforms, social media, and mobile sys-

20 https://www.hs-coburg.de/index.php?id=927

21 https://www.ll.mit.edu/r-d/datasets

https://www.hs-coburg.de/index.php?id=927
https://www.ll.mit.edu/r-d/datasets

20 introduction to network testing

tems, and new attacks such as reflective DoS attacks that were
unheard of 20 years ago).

• The Canadian Institute for Cybersecurity at the University of
New Brunswick (UNB) published the simulated ISCXIDS2012

data set22 [281] meant for IDS evaluation. The traffic was gener-
ated following a two-step approach. In the first step, traffic was
recorded within their own network. Profiles were created on
the user behavior for every user in the network, and traffic was
generated based on these profiles in a second step. The profiles
contain a user behavior model based on how users use HTTP,
SMTP, SSH, IMAP, POP3, and FTP. With this approach, the au-
thors aimed to produce both realistic and unanonymized traffic.
In addition to this benign traffic generation, attack traffic was
generated. For the Distributed Denial-of-Service attacks con-
ducted for these data set recordings, the authors built their own
IRC-based botnet software performing a simple HTTP flooding
attack over a period of 60 minutes.

• The UNSW-NB data set from the University of New South
Wales at the Australian Defence Force Academy (UNSW Can-
berra)23 was publicly released 2015 to replace the “unbalanced
and outdated data sets” [227] commonly used. In order to gener-
ate attacks and background traffic, a traffic generator was con-
nected to a virtual network consisting of three virtual servers.
This resulted in 175 000 records for training and 82 000 records
for testing. Attacks within the records are classified as Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode, and Worms. The data set is recorded in the pcap file
format. Argus and Zeek records are included with the data sets
as well as a CSV documentation of the attacks together with
every attack linked to corresponding CVE reports.

• The TUIDS data sets contain different, labeled attacks along
with benign traffic in a simulated environment. The data sets
contain network scans, an intrusion data set, and DDoS at-
tacks [61, 133]. The attacks conducted are SYN and XMAS
scans through Nmap, the DDoS attacks use Fraggle and Smurf,
and the tool targa2 is used to simulate 12 different intrusion
attacks. Unfortunately, the data sets are not available for down-
load at the reported link24 anymore.

22 https://www.unb.ca/cic/datasets/ids.html

23 https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/

cybersecurity/ADFA-NB15-Datasets/

24 http://www.tezu.ernet.in/~dkb/resources.html as reported in [262]; falsely re-
ported as http://www.tezu.ernet.in/ dkb in the original publication.

https://www.unb.ca/cic/datasets/ids.html
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
http://www.tezu.ernet.in/~dkb/resources.html
http://www.tezu.ernet.in/ dkb

2.1 data sets 21

2.1.2 Pure Attack Traffic

There are also data sets that only contain attack traffic. Data sets
with real attack traffic recordings in the wild are scarce, and most
research groups fall back to three different methods to obtain attack
traffic. They simulate the attacks themselves, record traces at hacking
competitions, or use honeypots in hopes that attacks on them are
conducted.

simulated attacks have the advantage of being entirely under
the control of the conductor; type and extent of the attack can be cho-
sen. However, this also means that biases of the researchers creating
the data sets remain unchecked.

• The DDoS 2016 data set [167] contains attacks conducted in the
obsolete NS-2 simulation environment. It contains a UDP flood,
a smurf attack, an HTTP flood, and a SQL Injection DDoS attack.
The documentation of the data set is sparse, and the data set is
not publicly available.

• Botnet [63] is a data set combining the ISOT, ISCX 2012, and
CTU-13 data sets. The resulting data set contains botnet traf-
fic of 16 different botnets. The traffic data is separated into a
learning and testing data set.

• We did gain access to one of the data sets in the IMPACT Cyber
Trust database in the following called USC/LANDER25. USC/-
LANDER contains a reflective DDoS attack using DNS servers
as reflectors. The full setup was under the control of the Univer-
sity of Southern California Information Sciences Institute. The
attack is roughly half an hour long and targeted one machine
with six reflectors from one attacker. The data set contains the
traffic between reflectors and attack target; the requests sent by
the attacker are not included in the traces.

• In 2013 and 2014, the ADFA sets26 were created at the Univer-
sity of New South Wales with a separate focus on host-based
IDS (HIDS) for Linux and Windows. The Linux system had
Apache servers with PHP installed and some applications run-
ning (e. g., TikiWiki) [103–105]. An auditor applied attacks
within the environment, such as password brute-force attacks
on FTP and SSH, as well as privilege escalation attacks. All in
all, it includes 833 cases for IDS training and 4373 for testing.

25 Scrambled Internet Trace Measurement dataset, IMPACT ID: USC-
LANDER/DoS_DNS_amplification-20130617/rev5529. Traces taken 2013-
06-17 to 2013-06-17. Provided by the USC/LANDER project (https:
//www.isi.edu/ant/lander).

26 https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/

cybersecurity/ADFA-IDS-Datasets/

https://www.isi.edu/ant/lander
https://www.isi.edu/ant/lander
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-IDS-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-IDS-Datasets/

22 introduction to network testing

Each case of the Linux set is comprised of a list of system calls,
which were run on the target during the attacks. In addition,
ADFA created a windows-set attacking Windows XP SP 2 [103].
This version contains 365 training cases and 7601 test cases.
Both sets are publicly available and contain attacks only.

• The TRAbID database contains traces of a variety of attacks con-
ducted in a simulated environment [312]. The DDoS attacks
are SYN flooding, UDP flooding, ICMP flooding executed with
Hping3, a slow HTTP attack executed with Slowloris, an SMTP
flood executed with Postal, and an HTTP flood executed with
the Low Orbit Ion Cannon (LOIC). Network scans were con-
ducted with Nmap. For each attack, a training and a validation
set are available27.

• The Network and Data Security Group (NDSec) of the Hoch-
schule Fulda published NDSec-1 in 2017 [59]. The data set
contains little benign traffic and focuses more on attack traffic.
Among others, it contains Citadel botnet traffic, brute-force at-
tacks on HTTP, FTP, and SSH, and flooding attacks using HTTP,
SYN, and UDP. The data set contains PCAP and log files.

hacking competitions can be a great source to obtain attack
traffic. Admittedly, the sheer extent of the attack traffic is not realistic
for production network environments. Still, the extent and variety of
attacks are much greater than when using one of the other methods.

• The KDD Cup is an annual competition in which algorithms
have to compete on a specific topic organized by the ACM Spe-
cial Interest Group on Knowledge Discovery and Data Mining
(KDD). In 1999, the goal of the Cup was to develop IDS algo-
rithms that were tested against the KDD99

28 data set. The set
is available in the csv file format on the host’s website and con-
tains 4.9 million training traces and 300 000 test traces [295]. At-
tacks included in the data set are — among others29 — LAND
DoS, teardrop DoS, and a Smurf attack. The type of the record
(e. g., “normal” or “smurf”) is part of each record within the file.
Despite its age, KDD99 is still used in recent publications [90,
142, 188]. When using the data set, the uneven distribution of
attacks has to be considered, as a misrecognized attack with
high occurrence can influence the test results negativly [204].
Furthermore, past evaluations of IDS with KDD have shown
that comparisons of IDS might be hard to be performed due to
the resulting low variety of recognition rates of tested IDS [204,

27 https://secplab.ppgia.pucpr.br/?q=trabid

28 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

29 Full list of attacks: https://kdd.ics.uci.edu/databases/kddcup99/training_

attack_types

https://secplab.ppgia.pucpr.br/?q=trabid
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/training_attack_types
https://kdd.ics.uci.edu/databases/kddcup99/training_attack_types

2.1 data sets 23

343]. An improved version of the set, the NSL-KDD, is a subset
of KDD99 in which redundant records were removed to avoid
the mentioned distribution issue [295]. The subset consists of
126 000 training records, and 23 000 test records. In addition,
NSL-KDD was created as ARFF-file (Attribute-Relation File For-
mat; the file format can be used for machine learning applica-
tions). However, the remaining characteristics (age, protocols,
and variety of included attacks) are similar to KDD99.

• During similar competitions in 2000 and 2002 at the DEFCON 8

and 10, two data sets were created and published by the Shmoo
Group30 containing only attack traffic during the competitions.
DEFCON-8 contains port scanning and buffer overflow attacks,
DEFCON-10 contains privilege escalation attacks, port scans,
and FTP by telnet protocol attacks [280].

• Sangster et al. analyzed whether hacking competitions can be a
good source for attack traffic recordings [270] and, at the same
time, publish their own CDX data set recorded at their hacking
competition31. Snort IDS logs, domain name service logs, and
web server logs complement the labeled traffic recordings of the
2009 four day event.

While the records of these data sets are extensive and many labeled
attacks are recorded in the networks, the fact that the networks were
set up for an event and do not contain any usual traffic patterns of
normal users limits their application area.

honeypots are a great way to record random attacks on the In-
ternet targeted at nobody specific (i. e., non-targeted attacks). Scans,
botnet traffic, and brute-force attacks can be observed and recorded.
However, this approach is limited to non-targeted attacks, targeted
attacks against honeypots are rare, and as honeypots are often easily
identifiable by a human, attacker behavior of targeted attacks on a
honeypot might not be reflective of real attacker behavior.

• Kyoto University set up honeypots and recorded the Kyoto data
set between November 2006 and December 2009

32. As the data
was recorded at honeypots, manual labeling and anonymization
were not necessary. However, the records do not contain benign
traffic patterns of regular users. The honeypots are — among
others — a Solaris 8 machine, an unpatched Windows XP, and
a Nepenthes honeypot. Darknet sensors, a mail server, a web
crawler, and another Windows XP machine for evaluations com-
pleted the setup.

30 http://www.shmoo.com/

31 https://westpoint.edu/centers-and-research/cyber-research-center/

data-sets

32 https://www.takakura.com/Kyoto_data/

http://www.shmoo.com/
https://westpoint.edu/centers-and-research/cyber-research-center/data-sets
https://westpoint.edu/centers-and-research/cyber-research-center/data-sets
https://www.takakura.com/Kyoto_data/

24 introduction to network testing

• Sperotto et al. [286] from the University of Twente published
a data set for flow-based IDS testing in 2009. They collected
their traffic on one honeypot machine, collecting 14.2 million
flows in six days, of which 98% are labeled. The honeypot ran
OpenSSH, Apache web server, and FTP. In addition to the flow
recordings, the logs of these services were also saved and pub-
lished. The data set mainly contains brute-force login attempts,
both on the target and from the target to other services. No
Denial-of-Service attack traffic can be found in this data set. The
data set is available on e-mail request to the authors.

• Santanna et al. [271] analyzed DDoS-as-a-Service providers
(a.k.a. Booters) based on real attacks they bought from the
providers attacking a honeypot they set up. The recordings of
nine booter attacks (7 DNS-based and 2 CharGen-based reflec-
tive attacks) are available online at Simple Web33.

2.1.3 Real Traffic Recordings

Some institutions provide recordings of traffic within their networks.
Due to privacy regulations, all of these data sets are anonymized and
do not provide real IP addresses. These data sets can be a great source
to see how networks and their users behave and how this changes
over time. As the data is mostly obtained in usual operations, there
can be no guarantee that the data sets are attack free.

• The Center for Applied Data Analysis (CAIDA)34 yearly pub-
lishes recordings of their monitoring locations at several large
Internet Service Providers in the United States [87]. Between
2008 and 2014, the data sets contained traffic traces of their
equinox-chicago and equinox-sanjose monitors of high-band-
width Internet backbone links. From 2015 to 2016, the data
sets contain only their equinox-chicago monitor. From 2018,
the traces contain traffic from the equinox-nyc monitor. The
capture was suspended at the former monitoring points when
these were upgraded to 100 Gbit/s, and the CAIDA hardware
could no longer capture the traffic reliably. The first data set
of 2008 contained one day of anonymized (CryptoPan, prefix-
preserving), bidirectional traffic. First, the data sets contained
traffic from each month of the year. Due to storage constraints,
newer data sets only contain quarterly recordings. Security inci-
dents in the data set are possible but not documented. The data
sets do not provide special features for Intrusion Detection Sys-

33 https://www.simpleweb.org/w/index.php/Traces#Booters_-_An_analysis_of_

DDoS-as-a-Service_Attacks

34 https://caida.org

https://www.simpleweb.org/w/index.php/Traces#Booters_-_An_analysis_of_DDoS-as-a-Service_Attacks
https://www.simpleweb.org/w/index.php/Traces#Booters_-_An_analysis_of_DDoS-as-a-Service_Attacks
https://caida.org

2.1 data sets 25

tem evaluations but can be seen as very typical Internet traffic
due to their size and recording locations.

• The WIDE Project (Widely Integrated Distributed Environ-
ment)35 is a Japanese organization founded by three Japanese
universities and used to run the .jp top-level domain (taken
over by the Japan Registry Services Co., Ltd.; JPRS). It currently
lists over 100 mainly Japanese sponsors. The Measurement
and Analysis on the WIDE Internet Working Group (MAWI)
provides daily anonymized traffic data of the WIDE project36

of one sample point in operation since July 2006. Every day,
the upstream data from WIDE to the upstream ISP is recorded
between 14:00 and 14:15 local time. Additionally, on special
occasions (such as the “a Day in the Life of the Internet” project)
longer recordings of up to 72 hours were recorded and pub-
lished. At the time of writing, the newest, longer trace was
recorded on the 9th and 10th of April 2019 (48 hours).

• The Lawrence Berkeley National Laboratory (LBNL) and Inter-
national Computer Science Institute (ICSI) published data sets
from October 2004 to January 2005

37. The anonymized traces
are available in the pcap file format and do not contain payload
data. The data contains the traffic of several thousand internal
hosts. No known attacks are contained in the files.

• Waikato Internet Traffic Storage (WITS) from the WAND Net-
work Research Group38 provides long traffic traces from the late
1990s and noughties. The data was collected in the network of
the University of Auckland and at unnamed New Zealand ISPs.
The length of the recordings is immense. As an example, the
Waikato I trace is nearly 620 days long.

• The Comprehensive, Multi-Source Cyber-Security Events data set
by Kent [170] contains 58 consecutive days of network flows
metadata and event data39 from Windows-based authentication,
process start and end events on several Windows machines, and
compromise events in separate files.

• The University of Brescia published the UNIBS 2009 data set
as part of their research into ground truth data collection [135].
The Cryptography-based Prefix-preserving Anonymization (Crypto-
PAn) anonymized traces were recorded through SSH tunnels
at three network nodes on the network, which allowed the re-
searchers to correlate network traces with the encrypted ses-

35 http://www.wide.ad.jp/

36 https://mawi.wide.ad.jp/mawi/

37 https://www.icir.org/enterprise-tracing/download.html

38 https://wand.net.nz/wits/catalogue.php

39 https://csr.lanl.gov/data/cyber1/

http://www.wide.ad.jp/
https://mawi.wide.ad.jp/mawi/
https://www.icir.org/enterprise-tracing/download.html
https://wand.net.nz/wits/catalogue.php
https://csr.lanl.gov/data/cyber1/

26 introduction to network testing

sions on the machines. The data set includes the outcome of a
deep packet inspection analysis and the application responsible
for a flow as returned by gt, the Ground Truth Software Suite40.
The traces are available upon request41.

• The Unified Host and Network Data Set by the Los Alamos Na-
tional Laboratory (LANL) [304] is a publicly available NetFlow-
based data set42 of the LANL network combined with event
logs originating from network nodes running in the network.
The recording was done over a time frame of 90 days (89 days
of flow data due to missing data on the first day).

• The CICIDS2017 data set is based on real traffic recordings but
was enriched with simulated attack traffic. After they published
the CICISCX data set, the Canadian Institute for Cybersecurity
at the University of New Brunswick conducted a survey on
data sets commonly used in IDS testing [280] in 2017. They
concluded, that none of the data sets satisfy their requirements
(including their own ISCX data set), and published their second
IDS evaluation focused data set called CICIDS2017

43. The data
set features five days of traffic in pcap file format. The first
day (Monday) only contains benign traffic recorded at their of-
fices. The other days additionally include different kinds of
attack traffic: Brute-Force FTP, brute-force SSH, web attacks
(brute-force, XSS, SQL injection), several infiltration attacks, Bot-
net traffic, different DoS attacks (slowloris, Slowhttptest, DoS
Hulk, and DoS Goldeneye), and a small DDoS attack with three
attackers (apparently conducted using the Low Orbit Ion Can-
non (LOIC), although documented as LOIT). Unfortunately, the
recording of the traffic was conducted behind a NAT, which
means that the three different attackers in the DDoS attack can-
not easily be distinguished as all attack traffic seemingly comes
from one machine. This and the small extent of the attack limit
the usability of the data set for DDoS research but still offers a
useful data set for IDS evaluations.

• The CTU-13 data set is aimed at botnet detection research [127].
Virtual machines were deliberately infected by botnets, traffic
to and from these bots was recorded along with benign back-
ground traffic and labeled accordingly. Bots sending SPAM e-
mails were part of the data set alongside bots conducting DDoS
attacks (UDP and ICMP based) and several others. The bot-
net software was Neris, Rbot, Virut, Menti, Sogou, Murlo, and
NSIS.ay.

40 http://netweb.ing.unibs.it/~ntw/tools/gt/

41 http://netweb.ing.unibs.it/~ntw/tools/traces/

42 https://csr.lanl.gov/data/2017.html

43 https://www.unb.ca/cic/datasets/ids-2017.html

http://netweb.ing.unibs.it/~ntw/tools/gt/
http://netweb.ing.unibs.it/~ntw/tools/traces/
https://csr.lanl.gov/data/2017.html
https://www.unb.ca/cic/datasets/ids-2017.html

2.1 data sets 27

• The Indian River State College (IRSC) data set is a data set from
2015 where real traffic recordings were run through the Snort
IDS to label the attacks. The data set reportedly consists of a
flow data set (IPFIX and NetFlow) and a packet data set [343].

• UGR’16 is a NetFlow data set in an ISP network [201]. The
data set features real background traffic and generated, labeled
attacks. Low-rate Denial-of-Service SYN flooding attacks were
conducted with hping3, network scans (SYN scans) with Nmap.
Neris botnet traffic was added from the CTU-13 data set. The
attack runs are documented in detail. The data set is available
online44.

• The Information Security and Object Technology (ISOT) lab at
the University of Victoria provides several data sets for numer-
ous use cases45. In the network realm, two botnet data sets are
of interest, the ISOT botnet data set and the ISOT HTTP botnet
data set. The ISOT botnet data set is a combination of several
publicly available data sets (LBNL and from the French chapter
of the Honeypot project). The data is meant for the detection
of P2P botnets [266]. The ISOT HTTP botnet data set contains
malicious DNS traffic generated by different botnets and benign
DNS traffic in a separate file [48].

2.1.4 Special Purpose Data Sets

For special cases — such as specialized infrastructures, for example,
industrial control systems or car to car communication — the afore-
mentioned more generalized data sets cannot be used as, for exam-
ple, they do not represent the operations network of the device under
test. Specialized data sets are necessary for those use cases. Some
examples of these are listed below.

• The data sets created by Hofstede et al. to test their SSH attack
detection tool SSHCure [147] consists exclusively of SSH net-
work traffic. They contain host-based log files that can be used
to assess the flow-based network recordings to check if a login
attempt was successful. The data sets are available on Simple
Web46.

• The UMass data repository47 run by the University of Mas-
sachusetts Amherst Laboratory for Advanced Software Systems
provides data sets from the Laboratory and from third parties
for a large variety of applications such as a data set of Cellular

44 https://nesg.ugr.es/nesg-ugr16/

45 https://www.uvic.ca/engineering/ece/isot/datasets/

46 https://www.simpleweb.org/wiki/index.php

47 https://traces.cs.umass.edu/

https://nesg.ugr.es/nesg-ugr16/
https://www.uvic.ca/engineering/ece/isot/datasets/
https://www.simpleweb.org/wiki/index.php
https://traces.cs.umass.edu/

28 introduction to network testing

Phone GPS, Signal Strength, and TCP Data. The data sets that
can be found in this repository are meant for specific use cases,
neither general network traffic of ISP networks nor Denial-of-
Service attack traffic can be found here.

• The AWID project [178] from 2015
48 consists of two data sets of

different sizes from different networks and different locations.
Both were recorded in wireless networks with typical home net-
work devices such as smart-TVs and laptops as client machines.
The two data sets can be downloaded with two different kinds
of labels for the attacks. In one case, every attack has its own
label, in the second case, three different attack classes (flooding,
impersonation, and injection) are grouped together. The sets are
available in CSV file format. While the comprehensive version
contains 37 million and 4.5 million records, the reduced version
is comprised of 1.7 million and 500 000 records. Access to the
data set is given by request only.

• The power system data set (PSD)49 of 2015 from the Oak Ridge
National Laboratories is focusing on industrial control systems
(ICS) split in three parts: a power system data set, a gas pipeline
data set, and a gas pipeline and water storage tank data set [238–
240]. In addition to standard tasks of such systems, some simple
attacks and exceptional events (e. g., power decrease because of
natural phenomenons) are included. Due to the focus on ICS,
PSD only contains a limited, specialized set of attacks such as
the infusion of falsified sensor data and malicious modifications
of system parameters. However, some of the included attacks
are only possible if conventional attacks occurred in advance.
The set is available in the CSV file format that also includes
sensor data of various sensors within the ICS. Statistics were
collected with the help of Snort.

• The Cloud Intrusion Detection Dataset (CIDD)50 from the Uni-
versity of Pisa extended the DARPA data set with a masquerad-
ing attack in cloud environments. CIDD was built based on
host data (logs) and network data (records), making it usable
for both HIDS and NIDS analysis. Unfortunately, nearly no in-
formation about this data set is available except for the main
publication [172] and the project’s website. Only a few record-
samples are available, which include very few attacks, labeled
for the specific records, and which let us assume that the records
consist of recordings conducted over several weeks. In addition,
the authors mentioned that more attacks such as malware and
few others are included within the main data set.

48 https://icsdweb.aegean.gr/awid/download.html

49 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

50 https://www.di.unipi.it/~hkholidy/projects/cidd/

https://icsdweb.aegean.gr/awid/download.html
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://www.di.unipi.it/~hkholidy/projects/cidd/

2.2 traffic model analysis 29

For further reading on available data sets and a different classifi-
cation and insights into the data sets, we would like to refer to the
survey by Ring et al. [262].

2.1.5 Conclusion

Data sets are a vital instrument for network testing. However, as can
be seen, there are limitations. Recordings of real traffic usually do
not provide information on attacks present in the network (i. e., the
data is not labeled), and anonymization can limit their application
areas. Many recordings are comparatively old, which limits their use-
fulness in current applications. For many applications, researchers
use simulated traffic as a way to circumvent these limitations.

2.2 traffic model analysis

With the limitations of recorded data sets in production networks, Leonard
Bradatsch [17] has
contributed to this
section with his
master thesis.

for some analyses, other possibilities have to be found. For example,
protocols that are not yet found in production networks cannot be
found in recorded data sets of production networks. Live simulation
of traffic in a software-based or hardware-based test environment is
one way to ensure flexibility for analyses that cannot be realized with
live production networks or with recorded data sets. However, it
is no easy task to assure that the simulated traffic is comparable to
real recordings. One approach is to find the most important and
defining metrics of recorded network traffic and then, in a second,
step simulate that exact behavior as closely as possible. As our goal
is to emulate Internet traffic, prior to this, we need to identify distinct
traffic models as the Internet is a mixture of many different types of
traffic.

Cáceres et al. [89] assessed the characteristics of wide-area TCP
traffic and described a way to model the wide-area traffic. The model
is meant to be used to study congestion control, routing algorithms,
and resource management schemes both for existing and future net-
works. The authors recorded Internet traffic at iconectiv (Bellcore) as
well as at the University of Southern California and the University
of California, Berkeley and analyzed its core characteristics. They re-
ported the cumulative probabilities of conversation durations and the
conversation packet counts, packet sizes, interarrival times, as well as
the probability number of concurrent conversations, or the conversa-
tions per hour.

A survey on traffic models by Chandrasekaran [96] gives an in-
depth view of network traffic characteristics split up into the most
common traffic classes. The survey contains a description of mathe-
matical models useful for the documentation of network traffic pat-
terns. The author discusses the Poisson distribution, Pareto distribu-

30 introduction to network testing

tion, and Weibull distribution and how they can be used to model
network traffic classes.

The Handbook of Computer Networks by Thomas M. Chen [81] con-
tains a large variety of statistical models commonly used to model
network traffic types. Rudimentary models for application web traf-
fic, peer-to-peer traffic, and video streaming are part of this work.

Furthermore, specific traffic types are often analyzed separately.
Staehle et al. [290] analyzed web traffic, FTP, and wap traffic and
build models for web and e-mail traffic. Vicari and Koehler [311]
analyzed user behavior faced with different access bandwidths and
latencies in the network.

There are also dedicated analyses for web traffic [78, 98, 252, 315],
file sharing [42, 58, 82, 85, 124, 136, 185, 292, 330], storage and mar-
ketplace traffic [173], and buffered video entertainment [62, 183, 256]
These analyses contain enough information to produce realistic data
sets for the different traffic classes.

2.3 evaluation programs

Many programs can help in the evaluation process. Here, we focus on
the programs relevant to our use cases. For a more comprehensive
survey in the area of traffic generators, we would like to refer to
Molnár et al. [223].

To use the aforementioned data sets, programs are used to replay
the data sets into the network. For replaying pre-recorded network
traces, Tcpreplay51 or GoReplay52 can be used. In addition to replay-
ing recorded traffic, Tcpreplay also offers editing features for Pcap
files. While Tcpreplay focuses on the lower layer of replaying traf-
fic, GoReplay focuses on the capturing and replaying of HTTP traffic
only.

Both benign and attack traffic is necessary to test security appli-
cations. The replay programs can be used for both. However, in
some cases, when replaying data sets is not sufficient, traffic gen-
erators are used. They typically only produce benign traffic. Os-
tinato53, packETH54, and iperf355 can build and subsequently send
user-customized or randomly generated packets. They support most
established protocols on the lower Internet layers, for instance, IPv4

and IPv6, TCP, and UDP. The payload is usually randomly gener-
ated data. The FLExible Network Tester (Flent)56 builds on some
of these tools specifically to automate test runs and their analy-
ses. D-ITG [66] is a traffic generator that consists of a client and

51 https://tcpreplay.appneta.com/

52 https://goreplay.org

53 https://ostinato.org/

54 http://packeth.sourceforge.net/packeth/Home.html

55 https://iperf.fr/

56 https://flent.org/

https://tcpreplay.appneta.com/
https://goreplay.org
https://ostinato.org/
http://packeth.sourceforge.net/packeth/Home.html
https://iperf.fr/
https://flent.org/

2.3 evaluation programs 31

a receiving-only server side. This open-source tool can simulate
the client-to-server traffic patterns of various applications such as
Telnet, DNS, or Quake3. The flow characteristics are based upon
common stochastic processes for packet inter-departure time and
packet sizes. In addition, both parameters can be adjusted by the
user. D-ITG does not include functionalities such as bi-directionality
of the flows, adjustable file object sizes, or concatenated distribution
models. Other existing tools focus on specific traffic types, mostly
web traffic. The toolset Mahimahi [234] is capable of — among other
things — recording and replaying HTTP traffic. The replaying func-
tion reproduces the recorded packets between virtual hosts running
on one computer. The Web Traffic Generator57 generates web brows-
ing traffic by visiting real web pages.

Most of these tools do not provide bi-directional traffic. In most
cases, traffic is sent at the highest rate possible, which is usually not
realistic behavior of real network clients. MoonGen is a “high-speed
traffic generator” [116]. Settings can be changed through the configura-
tion of Lua scripts; the traffic is then generated with DPDK. MoonGen
makes use of PF_RING Zero Copy to achieve higher throughput. In
contrast to many traffic generators where traffic is usually just sent
at the highest rate possible, MoonGen features rate control based on
the Poisson distribution. To achieve this control over the sending rate,
gaps between the packets need to be induced. One way is to delay
packets in software. The authors of MoonGen were not satisfied with
the results of such software-controlled measures and instead induced
faulty packets (i. e., wrong CRC checksums) as gaps. The drawback
of this method is that the device under test (DUT) needs to discard
these faulty packets correctly and that the discarding of packets shall
in no way affect the test results, which is hard to guarantee. Further-
more, measuring the traffic rate between MoonGen and DUT can be
affected by this.

There are some generators that induce artificial attack traffic into
the network traces. Flame58 induces malicious traffic into benign
traces before sending [70]. As Flame is limited to induce attacks into
network flows, Cordero et al. [102, 308] decided to implement ID2T59

that is able to inject exploits into the network packets. GENESIDS
uses Snort-like rulesets to create strings that trigger these very rules
and introduce them into the traffic60 [117].

Often, these traffic generators are embedded in network simula-
tors, especially when no real network hardware is available. Net-
Sim61 and ns-362 are simulators for network environments including

57 https://github.com/marty90/WebTrafficGenerator/blob/master/Readme.md

58 http://www.flame.ee.ethz.ch/download.html

59 https://github.com/tklab-tud/ID2T

60 https://github.com/felixe/idsEventGenerator

61 http://netsim.org

62 http://nsnam.org

https://github.com/marty90/WebTrafficGenerator/blob/master/Readme.md
http://www.flame.ee.ethz.ch/download.html
https://github.com/tklab-tud/ID2T
https://github.com/felixe/idsEventGenerator
http://netsim.org
http://nsnam.org

32 introduction to network testing

traffic flows. Mininet63 is a network simulator that can be used to
simulate some aspects of the physical layer such as bandwidth, con-
gestion, packet drops, and latency. OMNeT++64 is a discrete event
simulator that is used to build large scale event-driven environments.
Simulation of Urban MObility (SUMO) can be often seen in automotive
research to simulate traffic environments of whole cities but can also
be used for network simulations. The focus of these systems is to look
into large scale effects of networking decisions. Lack of full physical
layer simulation and realistic traffic modeling within the simulators
means that they need additional programs taking care of these parts
of the simulation when necessary.

Even when the hardware is not simulated, frameworks that can
control certain aspects of the networking environment and automate
testing can help achieve better results faster. These systems are more
research-focused developments. Dumitrescu et al. developed the
distributed performance-testing framework DiPerF [114]. The frame-
work consists of a controller instance that controls several nodes in
the network. They can send unidirectional traffic from one node to
another and can be used to stress test services or devices located be-
tween the nodes. GridBench [321] by Tsouloupas and Dikaiakos is a
tool focused on the benchmarking of grids and grid resources. The
system contains mechanisms for collecting, archiving, and publishing
results. Neither of these tools is able to produce bi-directional traffic
or is able to simulate physical network features.

Some programs and hardware implementations can be used to em-
ulate the typical behavior of WAN environments. NetEm [299] is a
program that can emulate features of wide-area networks in a receiv-
ing host. It supports packet drops, duplication, loss, and re-ordering
of packets. Similarly, the WanRaptor Network Emulator65 is a hard-
ware box that can emulate bandwidth, latency, loss, and jitter of wide-
area networks. The Spirent TestCenter66 is a set of commercial tools
to facilitate network tests. The system contains both hardware and
software implementations to simulate network behavior.

These programs can be used to produce benign traffic. Penetration
testing tools are necessary to produce malicious traffic. Kali Linux
is a Linux distribution specifically optimized for penetration testing.
It comes with a large variety of programs installed that can be used
to run any type of network-based attack. The programs explained
in the following are all also available in Kali Linux. Metasploit is
an open-source framework for penetration testing67 that offers auto-
matic attacks such as trojan horses and brute-force attacks. It can be
used for many network-based attacks. However, it does not provide

63 http://mininet.org

64 https://omnetpp.org

65 https://ecdata.com/wanraptor-network-emulator.html

66 https://www.spirent.com/products/testcenter/platforms/software

67 https://metasploit.com

http://mininet.org
https://omnetpp.org
https://ecdata.com/wanraptor-network-emulator.html
https://www.spirent.com/products/testcenter/platforms/software
https://metasploit.com

2.4 testing methodologies 33

options for Denial-of-Service attacks. For flooding DDoS attacks of
any kind, hping3 is usually used68. With this program, when enough
virtual interfaces are added to the Linux kernel (and the network per-
mits it), a DDoS attack can be launched from only one client, given
that the client’s hardware is strong enough. For low and slow Denial-
of-Service attacks, other tools need to be used. For the slow READ
attack, Slowloris69 offers the most common implementation. The slow
POST attack is implemented, for example, in R-U-Dead-Yet (RUDY)70.
SlowHTTPTest offers an implementation of both attacks. The IDS
stimulator Mucus [229] was developed to automate testing of Intru-
sion Detection Systems. The tool comprises a parser and a traffic
generator. It uses the Snort community database of attack signatures
to build payload data that in turn triggers these rules. The authors
conducted tests of Snort and the Net Prowler IDS with Mucus and
real attacks they conducted themselves and concluded that in nearly
all cases, the simulated Mucus traffic and the attack runs produced
the same results at the IDS.

All in all, evaluation programs are plentiful. However, they are
mostly specialized for specific use cases or traffic classes. While a
system that can produce a realistic mix of traffic classes for network
testing is missing, the approaches discussed here can serve as a basis
for such a system.

2.4 testing methodologies

Besides data set and evaluation programs, some additional aspects
need to be considered to allow us to perform network tests. While un-
til this point, we looked into general requirements for network testing,
in the following, we focus more on specific issues in the network test-
ing areas relevant for this thesis. Looking into the high-throughput
aspect of network testing, we focus on the area of TCP congestion
control evaluations as a typical example of protocol testing. We look
into IDS testing for the security aspect of network testing, as this will
be important for the following parts of this thesis.

2.4.1 IDS Testing

Puketzka et al. [253] describe in detail how the procedure of testing Christian Forst [20]
has contributed to
this section with his
master thesis.

an IDS should look like. Although they look at testing host-based IDS,
their approach is also applicable to network-based IDS (NIDS). They
distinguish three different test scenarios: intrusion identification test,
resource usage test, and stress tests.

68 https://tools.kali.org/information-gathering/hping3

69 https://github.com/gkbrk/slowloris

70 https://sourceforge.net/projects/r-u-dead-yet/

https://tools.kali.org/information-gathering/hping3
https://github.com/gkbrk/slowloris
https://sourceforge.net/projects/r-u-dead-yet/

34 introduction to network testing

In the intrusion identification test, the IDS is faced with benign and
attack traffic and has to find and identify the attack within the traf-
fic correctly. For NIDS, it is imperative first to define the successful
detection of an attack. One possibility could be to define an attack
as detected if any part of the attack is detected. For example, for an
SSH brute-force attack, the attack would be successfully detected if
at least one of the login attempts is correctly identified as an attack.
Another option would be to measure any packet or flow belonging
to an attack separately. Furthermore, this definition then has to be
applied to benign traffic to find a suitable metric for true negatives
and false positives. It is imperative to define this clearly for the data
set used for the analysis before running the first test.

The resource usage tests analyze which resources are used and how
extensively they are used. Resources that should always be analyzed
are memory and CPU usage. Additionally — depending on applica-
tion — bandwidth utilization is important to measure. If applicable,
bus utilization and GPU utilization should also be reported. Mea-
suring these resources then, in turn, helps to find bottlenecks and
explain performance issues.

The stress tests analyze how IDS perform under high load scenarios
and try to determine the maximum load under which the IDS still
performs correctly. These tests can consider spikes, prolonged high
rates, or large variations of loads.

Choosing the right data set or data sets for the evaluation can also
lead to very different results. Many features need to be considered
when choosing a data set, which will be explained in the following.

• One of the main features of a network that needs to be consid-
ered is the amount of participating devices or the number of nodes.
Depending on the scenario, this number can vary greatly. One
example of a small network is the Small Office / Home Office
(SOHO) network, with just a few devices. Networks of medium
size are, for example, the networks of companies or universities.
Big networks are, for example, ISP backbone networks. Rough
estimations of network sizes we will use in the following could
look like this: A low amount of network participants with less
than 100 devices, a medium network size with 100 to less than
1 000 participants, a high amount with 1 000 devices or more but
less than 50 000 devices and a category with a very high number
of more than 50 000 devices.

• Another feature is the typical traffic load or average bandwidth
utilization that is to be expected. A device under test (DUT), for
instance, an IDS, has to be able to scan the number of packets of
the field installation network without packet drops. Therefore,
a data set used to test the device needs to facilitate a compara-
ble amount of traffic. Taking into account observed networks

2.4 testing methodologies 35

and data sets, we suggest a division of four data rate groups of
below 100 Mbps, 100 Mbps to under 10 Gbps, 10 Gbps to under
100 Gbps and 100 Gbps and beyond as low data rate, medium
data rate, high data rate, and very high data rate respectively.

• Data rates in networks usually do not remain smooth over time.
In many networks, it is to be expected that load peaks happen
either regularly or at random. Load peaks bear the possibility
to cause packet drops and buffer overflows when the DUT is
not designed to manage those. Therefore, we classify networks
in three categories with no expected load peaks, irregular load
peaks, and regular load peaks. In the case of regular load peaks,
in addition, the frequency should be noted.

• Another aspect is the variability of the network topology. The
network variability can manifest itself both in changes of the
routing within the network and in changes of the position of
devices in the network accompanied by fluctuating reachability
of devices. Networks can be classified into three groups. In
networks with high variability, changes in the topology can be
observed at least daily but might also contain more frequent
changes. An example of such a network could be a network
with WiFi Access Point. In networks with medium variability,
topology changes are to be expected but do not frequently hap-
pen. These include typical stationary home and office networks
or data centers with cloud instances that are started or stopped
on demand. Networks with low variability typically do not ex-
perience topology changes or are rare enough to neglect them
when evaluating a productive network. An example of such a
network could be some data centers.

• These four features cover a big part but not all distinctive fea-
tures of different network scenarios. Some networks do feature
additional, special qualities (e. g., scenario specific protocols, for
instance, in the automotive or IoT context) that are to be consid-
ered individually.

How these features change depending on network type are de-
scribed in the following.

• A Data Center can differ greatly in size and can reach up to
10 000 communication partners in the network [60]. The topol-
ogy may be very diverse. For instance, the network can feature a
star topology or a three-tier data center network topology. How-
ever, network topology typically does not change often. The
protocols and applications in the network usually comprise au-
thentication protocols and services such as LDAP, HTTP, and
HTTPS-based web applications. They might feature for the op-
erator specifically developed programs and services. Therefore,

36 introduction to network testing

in addition to standard web protocols, proprietary protocols,
and protocols specific to data centers (e. g., map reduce pro-
tocols) can be found. These factors are very specific for each
data center. Load peak occurrence depends on the link under
surveillance. Edge links and aggregation links only show a low
variance of 10% on average, while core links show even lower
peaks [60].

• Conventional—e. g., company networks—show a large amount of
IP-based protocols. E-Mail (SMTP, POP3, IMAP), HTTP, VoIP,
Telnet, SSH, and similar protocols can be observed in these net-
works. There are high daily fluctuations with low traffic at
night, high bandwidth utilization during work hours during
the week, and low bandwidth utilization during weekends and
holidays.

• Internet backbone network traffic typically consists mainly of IP
packets with additional backbone routing protocols such as the
Border Gateway Protocol (BGP) that, while highly relevant for
network operations, make up only a small amount of traffic.
An evaluation of 7.6 TB of Internet backbone traffic showed
that only 0.03% of all frames use those routing protocols [160].
IDS in backbone networks need very high throughput. Cen-
tral nodes, such as the Frankfurt-based DE-CIX, can have peak
throughputs of 6.8 Tbps [235]. Peaks can usually be observed
between 8 pm and 9 pm and correlate strongly with the sleep-
wake rhythm of the population [324]. The number of devices
in the network can reach more than 100 000 simultaneous users.
The mixture of protocols, applications, and other variables in
the network is very diverse. Packets of the same protocol but
from different senders can differ greatly because of differences
in the implementations or the usage of non-standard protocol
headers. Therefore, homogeneity in the network is very low.
The structure of a backbone network seldomly changes, which
justifies the network’s classification as a low dynamic network.

• Industrial control systems are predominantly in use to control
physical components in the field. There are special require-
ments for this network type. Examples include, real-time reac-
tivity, low bandwidth requirements, specialized network equip-
ment, focus on reliability, and special protocols. Some standard
protocols such as FTP can be found seldomly. Instead, proto-
cols such as PROFIBUS, FIP, or CAN can be encountered fre-
quently [125]. The concrete composition of protocols is highly
dependent on the actual network components in use. How-
ever, the network composition tends to stay quite static over
time [208]. Analyses of industrial control networks show traf-
fic rates between 8 and 11 Mbps with 600 to 800 concurrent

2.4 testing methodologies 37

connections [208]. The bandwidth utilization stays comparably
constant and predictable because it is mainly characterized by
sensor updates of field equipment, instructions by processing
units, and status update requests by monitoring systems that
tend to be scheduled, frequent processes. However, fluctuations
can occur when alarms are triggered.

• Wireless networks display a high dynamic and fluctuating reach-
ability of network devices. Endpoints can change their position
in the network frequently while the connection to other sys-
tems should still be maintained. Except for the endpoints, the
network topology stays broadly constant. Wireless LAN net-
works tend to show a similar composition of network packets
as private or company networks but also show additional, IEEE
802.11 typical extensions.

2.4.2 Protocol Testing

In the area of protocol testing, the first step is to analyze the goals Leonard
Bradatsch [15] has
contributed to this
section with his
bachelor thesis.

of the protocol. This includes the handling of unwanted but com-
mon circumstances (e. g., packet drops). Critical in that regard are
recovery times and reliability. Resources should be used efficiently,
i. e., should be fully utilized when necessary. In some cases — for ex-
ample in case of TCP congestion control — another central goal is fair- Parts of this section

have been published
at IEEE LCN
2016 [1, 2]

ness between network participants, i. e., fair distribution of network
resources. For distributed systems, this fair distribution often takes
time — the convergence time of the protocol. As a common example
of protocol testing, we choose TCP congestion control. In many TCP
performance evaluations [138, 323], the criteria most frequently used
to evaluate TCP congestion control algorithms are the ones described
by Li et al. [195] explained in the following.

Responsiveness describes the ability of the algorithms to recover
quickly from random packet loss. For this, the average throughput
at different drop probabilities for a packet in the network must be
measured. This is also influenced by different propagation delays as
this has a major impact on the recovery speed.

Efficiency is the utilization of the network resources, i. e., the share
of the available resources that are utilized. A protocol is efficient if
the available bandwidth at the bottleneck is utilized as fully as possi-
ble. In some applications — in addition to this metric — not only the
average utilization is important but also the maximum and minimum
utilization. For instance, when incoming data is processed immedi-
ately, applications will be slowed down if the bandwidth fluctuates
heavily. Therefore, it is also beneficial to assess the quantiles to mea-
sure if high throughput at its peaks can be accomplished (Q 0.75) if
the average throughput is acceptable (Q 0.5) and if the throughput
has an acceptable minimum (Q 0.25). In addition to the responsive-

38 introduction to network testing

ness, which shows the average throughput, this metric shows how
stable the algorithms are.

Fairness is usually measured with Jain’s fairness index [156]:

J(x1, x2, . . . , xn) =
(
∑n
i=1 xi)

2

n ·
∑n
i=1 x

2
i

(1)

with xi being the mean of the throughput of flow i with n flows
overall. A perfect algorithm would result in J = 1; the worst case
would be J = 1

n .
Backwards compatibility is a measurement of fairness within net-

works where older systems are still in use. The level of fairness in
heterogeneous TCP networks estimates the backward compatibility
in legacy networks. It can be measured by using older protocol im-
plementations for one part of the network flows and the new edition
for the other part and reapplying the aforementioned fairness metric.
ε-Convergence time tc was defined by Li et al. [195] as the time re-

quired for the short-term average throughput to achieve ε · ūi, where
ūi is the long-term average throughput of stream i. Here, the short-
term average throughput is defined as:

ui(t+ δ) = (1− λ) · ui(t) + λ
∆u

δ
(2)

Where ∆u is the number of bytes transferred, and λ is a param-
eter that specifies how quickly the short-term average throughput
changes. Results from [195] suggest that convergence time should be
measured by analyzing this newer stream as opposed to the stream
already active in the network.

s =

∑T
t=tc

|ūi − ui(t)|

T
(3)

There are many TCP performance evaluation papers that cover en-
vironments with link speeds up to 1 Gbit/s [138, 323], but there are
very few that look at 10 Gbit/s transmission rates. As we focus on
high-bandwidth network testing, in the following, we focus on rele-
vant studies from this body of work.

Li et al. [195] measured the performance of Scalable TCP, HS-TCP,
H-TCP, BIC, and FAST-TCP on the basis of fairness, backward com-
patibility, efficiency, and responsiveness, including convergence time.
All tests were performed in a test setup based on the dumbbell topol-
ogy with two competing flows starting at different points. The au-
thors varied the parameters of propagation delay (up to 320 ms), the
bottleneck bandwidth (up to 250 Mbps), and different numbers of
parallel web traffic flows. The TCP variants under test provide poor
fairness but better link utilization than standard TCP. Beyond that,

2.5 topologies 39

.

Figure 2: Dumbbell topology [2].

the algorithms Scalable TCP, HS-TCP, and BIC suffer from high con-
vergence times.

Arokkiam et al. [329] evaluated the performance of the TCP vari-
ants Reno, BIC, and H-TCP over XG-PON. The authors assess the
results on the basis of efficiency, fairness, responsiveness, and conver-
gence. One single or two competing high-throughput flows were in-
duced, alternately with or without competing UDP background traf-
fic, into a 10 Gbps XG-PON network. All algorithms show good link
utilization in a single flow environment with very small RTTs, but
the link utilization decreases with increasing round-trip times. This
paper provides an extensive analysis of the mentioned TCP variants.
However, key variants such as CUBIC and HS-TCP are missing.

Hock et al. [145] analyzed BBR, the new congestion control mech-
anism presented by Google. Their experiments vary the round-trip
times of flows, the number of flows, and the buffer sizes at the bottle-
neck. The evaluation considers effective throughput, queuing delay,
packet loss due to congestion, and fairness.

2.5 topologies

The standard test setup for many performance tests is the dumb-
bell topology (Figure 2). The topology consists of the same number
of sender and receiver nodes. All sender nodes are connected to a
switch, which forwards the incoming flows over one link to another
switch, where they are again separated and forwarded to the receiver
nodes. The link between the two switches constitutes a bottleneck,
which leads to congestion and, therefore, for example, to the observ-
ability of congestion control algorithms. Furthermore, a device under
test can be located here. The aforementioned criteria for protocol
testing need different numbers of flows in the network. To evaluate
responsiveness and efficiency, only one sender and receiver are active.
When assessing the other metrics, two or more sender and receiver
nodes are necessary. Besides the dumbbell topology, there are several
other possible topologies, such as the parking lot (Figure 3) or the
ring topology (Figure 4). While dumbbell is sufficient for most eval-
uations, other topologies can help to examine very specific network
configurations. The parking lot topology can be used to simulate
multiple bottleneck links, for example, a server close to the backbone
and clients with different distances to the server. The ring topology is

40 introduction to network testing

Figure 3: Parking lot topology [2].

Figure 4: Ring topology [2].

used to observe protocols with asymmetric routing. We would like to
refer to Wei et al. [321] for further reading. Wei et al. give a detailed
overview of the typical topologies extending on the listed topologies
here and when each of those should be used.

The specific test configuration depends on the use case. Traffic
patterns can differ greatly depending on the observed network. For
example, one short request to a web server can lead to subsequent re-
quests to other back-end (e. g., database) servers. These traffic bursts
have to be simulated differently than constant flows that can be ob-
served in ISPs’ backbone networks. Therefore, some criteria such as
best fitting network topology, the number of flows concurrently in
the network, which protocols should be observed, and if the sender
and receiver nodes should use the same implementations should be
considered carefully. Additional background noise that emulates the
typical environment of the specific use case can also be an option.
The aforementioned data sets and programs can be used to induce
background traffic. The protocol mix of the use case network has to
be taken into account, i. e., the ratio of UDP to TCP or other protocols
in the network, how different devices interact, or if the traffic is equal
in both directions or tends to be more unidirectional.

2.6 summary

Network testing requires considerations in several different areas.
Programs that can replay or produce data exist but are often very
application-specific. Testing topologies are often limited in scope
but can accurately represent certain aspects necessary in the concrete
testing scenario. Data that accurately represents the target network
needs to be considered carefully as not all data sets can be used for
all use cases. Using recorded data sets allows us to perform realis-
tic tests. In turn, simulated traffic allows for higher adaptability to
future trends and extreme outliers.

3
P R O B L E M S TAT E M E N T

Devices, services, protocols, and other network mechanisms require
evaluation before they can be used in production. An excellent test
infrastructure for a new network system is the production network in
which it has to function. However, tests in such infrastructure have
their downsides. For one, it is hard to gain access to these systems as
usually privacy regulations, and policies understandably forbid the
usage of unproven and untested devices in the production network.
Moreover, the infrastructure cannot be controlled, which leads to a
lack of repeatability and reliability of network tests. The state of the
art to work around this issue is to record, anonymize, and reuse net-
work traces and — at least as a best practice — publish these data sets
along with the results of the analysis. As they are recordings of real
network traffic, they can assure that they accurately reflect features of
the network traffic that even the tester might not have thought of. The
inherent limitation in this approach is that these network traces only
depict the properties of networks during their recording time. Traf-
fic patterns could possibly only be present within the network under
observation, maybe even only at the time of recording. Newer pro-
tocols or changes in user behavior lead to fast obsolescence of these
network traces. For instance, HTTP/2 or the QUIC protocol cannot
be found in older data sets. As it is hard to gain access to newer
traces or to ensure comparability with older tests, systems are often
tested against old data sets that do not represent current network fea-
tures, for instance, the DARPA Intrusion Detection Evaluation data
set from 1999 is still in use today. Another critical point of tests is to
not only test in a realistic environment but also to test edge cases and
push the network system to its limits. This cannot easily be done in a
production network or with traffic recordings. Therefore, specialized
systems for network tests that can produce a realistic and controllable
environment are important to prove the viability of new network sys-
tems. These systems should not only be able to reuse existing traffic
traces but should also be able to produce new data.

We lay our focus here on two aspects of network analysis. The first
aspect is the high throughput necessary to test high-bandwidth net-
work applications. To analyze this aspect, we take a look at network
protocols, and, more precisely at TCP congestion control algorithms
as a common use case. While there are many evaluations analyzing
TCP congestion control algorithms at lower bandwidth that serve us
as a reference point, we tackle the lack of evaluations of these al-
gorithms in high-bandwidth networks in the literature in Chapter 4.

41

42 problem statement

The second aspect of network analysis is the testing of security appli-
cations such as Intrusion Detection Systems and also more precisely,
the testing of DDoS mitigation system as a preparation of the follow-
ing parts III and IV. For this purpose, we built the General Purpose
Network Testing Framework introduced in Chapter 5 that combines
high throughput and testing of security applications.

3.1 research questions

In the following chapters, we want to answer the following research
questions:

1. Network testing in high-bandwidth networks: Evaluation of
TCP congestion control mechanisms in 10G networks as a use
case.

2. How can benign traffic be modeled and produced to test net-
work mechanisms?

3. How can malicious traffic be modeled and produced to test se-
curity network mechanisms?

In order to obtain the necessary results to answer these questions,
the following steps are necessary:

• Setting up a testing environment including WAN portions for
the protocol tests.

• Building a framework — the General Purpose Network Testing
Framework — that can produce both realistic live traffic and
data sets.

4
U S E C A S E : E VA L U AT I O N O F T C P C O N G E S T I O N
C O N T R O L A L G O R I T H M S I N 1 0 G N E T W O R K S

As we need to test the performance of security mechanisms in high- This Chapter is
based on the
combination of two
previous
publications at IEEE
LCN 2016 [1, 2].

bandwidth networks, first, we need to make sure that we can achieve
the throughput required. One of the main building blocks of net-
works are the network protocols that define the network behavior on
different levels. Influenced by our work in the research project bw-
NET100G+1 focused on the requirements of the Research Network
Baden-Württemberg BelWü 2, we found the behavior of TCP conges-
tion control in high-bandwidth networks as a topic of interest and Leonard Bradatsch

contributed to this
Chapter with his
bachelor thesis [15].

a fitting use case for a network testing setup. To give us a point of
reference to begin this work in the area of network testing, we choose
this common area as a starting point.

The concept of layering separates concerns on different levels. A
very prominent example of this approach is networking and, in par-
ticular, the Internet network protocol stack. This approach leads to
the complete separation of tasks. However, different layers do influ-
ence each other in very obvious and sometimes less obvious ways.
Higher layers build on the services of lower layers and depend on
their capabilities. The transport layer in the Internet protocol stack
is responsible for providing end-to-end communication services be-
tween remote applications. Congestion control is one of the common
services of transport layer protocols. By limiting their sending rate,
network participants can distributively and collaboratively optimize
the network bandwidth utilization. Although located on the trans-
port layer, congestion control relies on a set of properties of the under-
lying network links, primarily latencies, drop rates, error rates, and
bandwidth utilization. The continuous increase of available band-
width since the inception of the Internet has a significant effect on
the performance of congestion control algorithms. When the increas-
ing link bandwidth raises the bandwidth-delay product (BDP), the
effects of occasional packet loss impact the utilization disproportion-
ately and requires counter-measures by extending TCP [154].

Specific TCP congestion control algorithms were developed to
address the challenges introduced by high-bandwidth networks.
Through adapting behavior and optimizing window parameters,
these TCP congestion control algorithms aim for better and faster
utilization while still remaining fair to unmodified TCP connections.
With the advent of widely available 10 Gbit/s Ethernet networks, the

1 https://bwnet100g.de

2 https://belwue.de

43

https://bwnet100g.de
https://belwue.de

44 evaluation of tcp congestion control algorithms

current state of the art of TCP comparisons primarily focusing on
1 Gbit/s [138, 323] becomes outdated. We limit our evaluation to
10 Gbit/s, as higher bandwidths of up to 100 Gbit/s for single flow
applications are still in the experimental stage [146].

The choice of tunable testing parameters such as latency and drop
rate behavior of the network, the patterns and workloads of network
traffic, and the congestion control algorithms to be tested constitute
the overall framework for test runs. Based on the algorithm proper-
ties to be evaluated, various metrics must then be measured during
the tests. Furthermore, a structured analysis of results is necessary
to assess the protocols after the test runs and to gain insights from
the test data. As already observed by Wei et al. [321], an evaluation
of TCP congestion control algorithms requires rigorous planning and
strict testing procedures, which makes it a good example for assess-
ing a testing framework.

For the evaluation of the performance of TCP congestion control
algorithms in a 10 Gbit/s Ethernet network, we discovered a num-
ber of additional testing challenges stemming from the higher band-
width. As not all parts of the network stack scale equally well to
new bandwidths, 10 Gbit/s environments generally force the testers
to put more emphasis on hardware components of the setup. For
instance, prior tuning of network hardware and NICs [190] becomes
mandatory in order to achieve full bandwidths.

4.1 tcp congestion control algorithms

TCP congestion control basically throttles the sending rate of a net-
work endpoint to use as many resources as possible while still being
fair to other network participants. Fairness is achieved by avoiding
congestion in the network in a collective way. When the client ob-
serves congestion or is under the impression that congestion is immi-
nent, they decrease their sending rate. There are two main indicators
of congestion that a client can measure: packet loss and delay. TCP
Vegas is one example of a congestion control algorithm that reacts
based on increasing packet delays [68]. The other indicator is the
observation of packet loss, for example, in TCP Reno. Usually, the
increase in delay happens earlier than packet losses. Therefore, algo-
rithms that are primarily based on packet loss are more aggressive as
they react slower to congestion. This leads to the incompatibility of
the two mechanisms as packet loss based algorithms dominate delay-
based algorithms. Therefore, congestion control algorithms usually
used as the default by most operating systems are packet loss based.

In general, TCP congestion control algorithms follow the princi-
ple of additive increase and multiplicative decrease (AIMD), meaning
they increase their sending rate slowly (additive increase) until they
observe congestion. Then, they decrease their sending rate abruptly

4.1 tcp congestion control algorithms 45

(multiplicative decrease). AIMD inherently offers fairness, which
makes it ideal for congestion control. The following provides a brief
overview of widely known packet loss-based TCP congestion control
algorithms, specifically TCP Reno, Scalable TCP, HSTCP, H-TCP, BIC,
and CUBIC. TCP Reno was the default TCP algorithm of Windows
XP (replaced by Compound TCP since Windows Vista, which is a
hybrid between packet loss-based and round trip time-based mecha-
nism) while BIC was the default in Linux from version 2.6.8 up to ver-
sion 2.6.19 when CUBIC became the default. Here, we only provide
the additive increase and multiplicative decrease (AIMD) parameters,
which are of particular interest for our analysis. The AIMD behav-
ior of packet loss-based algorithms can be described with an additive
parameter (ACK received) and a multiplicative parameter (triple du-
plicate ACK, packet lost):

ACK : cwnd← cwnd+α LOSS : cwnd← cwnd ·β (4)

with the congestion window cwnd.

tcp reno TCP Reno [123, 209] is also referred to as standard TCP
and is one of the oldest congestion control algorithms. This vari-
ant initially uses slow start. At the start of the flow, the slow start
phase, the congestion window increases by one with each ACK until
a threshold ssthresh is reached. As the ACKs multiply by two in ev-
ery step, the congestion window grows exponentially. After reaching
ssthresh, additive increase starts with α = 1. After a loss, cwnd is
halved (β = 1

2) and additive increase with α = 1 continues from this
point on. The following TCP congestion control mechanisms fall back
to behave like TCP Reno for small congestion windows.

scalable tcp Scalable TCP [169] is designed to achieve high
throughput more quickly than Reno by making the recovery time
independent of window size, which is beneficial for high bandwidth,
high latency links. The AIMD parameters for Scalable TCP are α =

0.01 and β = 0.875.

highspeed tcp HighSpeed TCP (HSTCP) [122] is designed to
increase the robustness of the transmission rate against packet loss,
which is especially important for networks with a large bandwidth-
delay product (BDP). HSTCP uses the current TCP cwnd values as
an indication of the BDP on a path. For this algorithm, the following
AIMD parameters apply: α = fα(cwnd)/cwnd and β = gβ(cwnd),
where gβ (decreasing) and fα (increasing) are logarithmic functions.

h-tcp H-TCP [191] is designed to provide a better use of band-
width for long, high-bandwidth links with high BDP, while main-
taining backward compatibility with regular TCP flows. Unlike pre-

46 evaluation of tcp congestion control algorithms

vious approaches, the authors use the time (∆) since the last con-
gestion event to set the AIMD parameters, which can be summa-
rized as follows: α =

2(1−β)fα(∆)
cwnd and β = RTTmin

RTTmax
, unless the mea-

sured throughput changes significantly (controlled with a parameter
∆B = 0.2). fα(∆) is 1 for backward compatibility (below a threshold
∆L); fα(∆) = 1+ 10(∆−∆L) + 0.25(∆−∆L)

2 is suggested to achieve
high utilization quickly.

bic tcp Binary increase congestion control (BIC) TCP [328] was
developed to address the observed suboptimal round trip time (RTT)
fairness of earlier congestion control algorithms. RTT fairness refers
to fairness between flows with different RTTs. The authors point out
that the problem is inherent to the increased utilization due to the
way earlier algorithms are designed and develop BIC to solve this
challenge. Their algorithm uses two phases to update the bandwidth;
linear increase to approach a fair window size, and binary search to
improve RTT fairness. Linear increase is similar to additive increase,
while binary search essentially uses two window sizes (Wmax and
Wmin) that updates these windows and the actual window size to
approximate the optimal window size. Once Wmax and Wmin are
converging, BIC falls back to linear increase.

tcp cubic CUBIC TCP [137] is an improvement of BIC, which
aims to compensate for the aggressive behavior of BIC to more rea-
sonable levels, and simplifies the algorithm. The impact of this ag-
gressive behavior was especially notable in networks with low RTT.
Similar to BIC, CUBIC uses the Wmax window; however, it sets the
window size using a cubic function that plateaus at Wmax:

W(t) = C · (t−K)3 +Wmax (5)

where C is a scaling factor, t the time since the last window reduction
and K = 3

√
Wmax ·β/C. This results in a window increase that is

similar to BIC’s binary search.

4.2 planning a tcp benchmarking environment

Several decisions have to be made when building a test setup for
TCP, such as choice of the network topology or which software tools
to use. In addition, appropriate criteria have to be chosen to evaluate
the properties of TCP. These points are crucial to attain a sensible test
setup and test procedure.

4.2.1 Criteria

We already described the criteria usually used for TCP congestion
control analysis in Chapter 2. However, we did alter them slightly.

4.2 planning a tcp benchmarking environment 47

• Responsiveness: We measure the average throughput at differ-
ent drop probabilities for a packet in the network. We also mea-
sured this with different propagation delays, as this has a major
impact on the recovery speed.

• Efficiency: In some applications — in addition to this metric —
not only the average utilization is important but also the max-
imum and minimum utilization. For instance, when incom-
ing data is processed immediately, applications will be slowed
down if the bandwidth fluctuates heavily. Therefore, we chose
also to assess the quantiles to measure if high throughput at its
peaks can be accomplished (Q 0.75) if the median throughput is
acceptable (Q 0.5) and if the throughput has an acceptable min-
imum (Q 0.25). In addition to the responsiveness, which shows
the average throughput, this metric shows the algorithm’s sta-
bility.

• Fairness: We analyze two flows running in parallel, each with
the same configuration, for example, TCP variant and parame-
ters.

• Backwards compatibility: We adapted our fairness test by using
Reno for congestion control in one of the two flows to evaluate
how the congestion control algorithms behave in networks with
legacy systems. Reno was chosen as it is the most common
legacy variant still in use.

• Convergence time: In practice, we observe that the newer TCP
stream always takes longer to converge to its long-term average
throughput; results from Li et al. [195] suggest that convergence
time should be measured by analyzing this new stream. Extend-
ing the metric provided in prior work, we compute the average
distance from the long-term average throughput after the con-
vergence time is reached, in order to quantify the stability of
this convergence, which we refer to as spread s (where T is the
number of measurements):

s =

∑T
t=tc

|ūi − ui(t)|

T
(6)

4.2.2 Test Procedure

HDDs are too slow to enable replay programs to send at high traffic
rates such as 10 Gbit/s or higher and — depending on the specific
hardware — this is also true for many SSDs. Even when the SSD is ca-
pable of this high throughput, read and write operations by the oper-
ating system or other processes can interfere with the read operations

48 evaluation of tcp congestion control algorithms

and consequently affect the test results. Therefore, it is advisable to
save the traffic recordings on a RAM disk.

Many improved versions of TCP congestion control algorithms
were developed, following the now obsolete TCP Tahoe. As the us-
age of TCP Reno phases out, it still plays its role in many legacy
networks and should still be considered as a baseline for comparison
to the newer TCP variants. Another point to consider is the lack
of availability of some algorithms for different operating systems.
Compound TCP, for example, is only available on Windows. When
comparing this variant with others, the tester is forced to use differ-
ent operating systems for the comparison. Therefore, it can not be
ensured that the difference in performance might not stem from a dif-
ferent OS or driver behavior. Another point to consider is that some
algorithms are developed with downwards compatibility to Reno in
mind while others do not work well with legacy TCP. Delay-based
congestion control algorithms such as TCP Vegas might perform well
in enclosed network environments but cannot be used when loss-
based TCP variants are present [222]. A list of variants that explicitly
aim for downwards compatibility includes Scalable TCP, HSTCP, BIC,
CUBIC, and H-TCP.

Regarding network performance, the presence of flow control in
switches represents another point to consider. For performance tests
in networks, the question arises if flow control in switches should
be turned on or off. Flow control means that switches send pause
packets to senders if congestion is imminent. For the evaluation of
an existing network environment, this setting should not be changed.
However, it should be evaluated how differences in the client settings
affect the performance of the network. For the dedicated evaluation
of TCP congestion control algorithms, flow control should be turned
off as it interferes with the congestion control and distorts the results.

To produce TCP flows with the desired bandwidth of 10 Gbit/s,
iperf33 — a client-server-application to measure performance in net-
works — can be used. Version 3 additionally supports the detection
of retransmissions during a connection. Additionally, iperf provides
the possibility to adjust several TCP features such as the usage of the
Nagle Algorithm (TCP no-delay) or the TCP maximum segment size.

4.2.3 Kernel Settings

Several options within the TCP specification can be tweaked to ac-
complish higher throughput. It depends on the operating system
how the settings can be changed and to what extent this is possi-
ble. We concentrate on the features of the Linux kernel as it is both
adaptable and wide-spread. The settings are changed using the sysctl

3 https://iperf.fr

https://iperf.fr

4.2 planning a tcp benchmarking environment 49

command. The following settings have to be taken into consideration
both on the client and the server side.

One very important setting concerns TCP Window Scaling. TCP
offers the header field window size that determines the amount of data
the receiver can collect without sending confirmation that the packet
has been received. As a default, the window size field is 16 bit, which
in turn results in a maximal window size of 65 535 bytes. According
to Mathis et al. [210], the maximum possible transfer rate is the TCP
window size divided by the round trip time. Therefore, to reach
10 Gbit/s with a window size of 65 535 bytes, a maximum RTT of
0.066 ms would be needed, which, even for local networks, is not a
realistic value. RFC 7323 [65] offers a TCP Window Scaling Option to
extend the window size. Both sender and receiver have to accept this
option when establishing connections. An entry in the option field of
the TCP header facilitates the multiplication of the window size field
by up to 214. The window size can, therefore, reach up to 1 GiB. The
limit in our evaluations is set in such a way that the maximum value
cannot surpass the sequence number (saved in four bytes).

TCP Timestamp, as described in RFC 7323 [65], extends the precision
of the timestamp options already present in lower layers to facilitate
higher precision round trip time measurements. The TCP header
is extended by 8 bytes when this option is turned on. In most cases,
this option is not needed and should, therefore, be turned off as more
capacity can be allocated to the payload.

In high-bandwidth networks, a high number of out-of-order seg-
ments can be observed. Due to the nature of the cumulative ac-
knowledgments of TCP (i. e., Go-Back-N behavior), this leads to a
high number of retransmissions. TCP selective acknowledgment (TCP
SACK) [209] provides the possibility to acknowledge out-of-order seg-
ments explicitly and prevents a large number of retransmissions and
should, therefore, be turned on.

The Nagle Algorithm [230] facilitates groupings of small data
amounts to bigger segments and therefore leads to fewer packets
in total, which in turn allows for higher bandwidth as the overhead
of the TCP headers declines. In some cases, this can be obstructive
when immediate feedback from the receiver side is required, for in-
stance, in case of SSH connections. Nevertheless, Nagle is especially
useful when many small packets can be observed and should be
turned on if the use case permits.

Jumbo frames that allow for Ethernet payloads larger than 1500 bytes
are advisable to facilitate high bandwidths. However, hardware sup-
port has to be examined as not all networking devices support jumbo
frames. Therefore, if the test results should generally be applicable
for networks where jumbo frame support cannot be guaranteed, a
tester is advised not to activate jumbo frames.

50 evaluation of tcp congestion control algorithms

4.2.4 NIC Configurations

Additional to the kernel settings, there are also important configura-
tion parameters to consider for the NIC. Large Receive Offload (LRO)
merges packets upon entry into a stack to handle large amounts of
data more efficiently as fewer packets need to be processed, which
also reduces the number of interrupts. As this introduces some draw-
backs, notably being limited to IPv4, TCP, and unvirtualized envi-
ronments, Generic Receive Offload (GRO) was developed, which fixes
some of the issues. LRO and GRO lead to less computation overhead
on the receiver end. However, in some driver implementations, if one
of the merged packets was not received correctly, all packets need to
be resent, which can lead to inferior link utilization due to the signifi-
cant number of retransmissions. Furthermore, these mechanisms can
affect the TCP congestion control behavior and consequently distort
the results. Therefore, it is advisable to turn those features off.

4.2.5 Network Adjustments

There are — among others — two widely used adjustable network
conditions to evaluate TCP performance: (1) packet loss and (2)
packet delay. In a 10 Gbit/s testing environment, one can implement
the aforementioned network conditions in different ways. There are
several things to consider: Available hardware, evaluated uses cases,
related metrics, and the tester’s experience with different implemen-
tations accompanying the chosen approach. In the following, various
approaches are described.

Packet Loss

There are various mechanisms to induce packet loss. The simplest
but least predictable way is to expand the test topology by adding
additional senders. These senders initialize additional network flows
to create actual congestion on a bottleneck switch or router. It is
extremely challenging to create accurate and repeatable packet loss
using this approach.

Another way is to use a network environment emulator software.
However, for a 10 Gbit/s test setup, the available software range is
reduced to a few workable software tools. One of the best known net-
work environment emulator is NetEM4. The user can adjust the drop
chance and the burst length. The software needs to run on a computer
with a 10G NIC with at least two interfaces to be able to forward the
incoming packets. Both aforementioned methods facilitate constant
or bursty packet loss.

4 https://wiki.linuxfoundation.org/networking/netem

https://wiki.linuxfoundation.org/networking/netem

4.2 planning a tcp benchmarking environment 51

Another possibility to induce packet loss is to use a hardware de-
vice in the network that usually forwards packets but can also drop
packets at a specific rate. For example, the NetFPGA-Sume or its pre-
decessor, the NetFPGA-10G5, can be used as such a bump-in-the-wire
forwarding device. The NetFPGAs are fully programmable network
devices. A Virtex FPGA Processor on the PCIe NetFPGA card allows
for traffic manipulation at line speed. With feasible effort, the official
reference NIC implementation can be adjusted, and it is possible to
implement packet loss with different drop patterns.

Packet Delay

Packet delay has a substantial impact on TCP sending performance as
it — depending on the TCP congestion control algorithm — significantly
influences the growth of the TCP congestion window. In addition to
the physical propagation delay, transmission delay, packet process-
ing, queuing time, or suboptimal routing can slow down a packet on
its route.

As with packet loss, there are software tools available to emulate
packet delay as it would occur in real networks. For example, NetEM
is able to delay incoming packets for multiple milliseconds. It is
highly recommended to check the available hardware, whether it is
capable of buffering packets at a bandwidth of 10 Gbit/s and for
how long this is possible. The available RAM — including data rate
and read/write latencies — has a significant impact on the maximum
possible buffer time.

In addition to software solutions, there are some hardware ap-
proaches. A 10G NetFPGA card can be used to simulate long-distance
packet delay. The NetFPGA comes with RLDRAM, which provides
low read and write latencies, and can buffer processed packets in a
10 Gbit/s environment. As part of the official NetFPGA repository
on Github6, there are some contributing projects, which can be used
as a basis to implement a packet delaying device.

Hardware network emulators offer a more expensive but for the
user less complicated approach. Such emulators are able to perform
at line speeds of up to 40 Gbit/s. Additional features often include
altering bandwidth, additional packet loss, or induced data corrup-
tion. The EDS-10/40G Ethernet Delay Emulator7 can delay incoming
packets for up to 8 seconds.

The solution closest to real network behavior — but also the most
expensive one — is to use an actual long-distance network or a fiber
cable drum with sufficient length. However, access to such a net-
work or network equipment is typically not readily available, and
long pipes often come along with quality impairments. Electrical

5 https://netfpga.org

6 https://github.com/NetFPGA/

7 https://ecdata.com/eds-10g.html

https://netfpga.org
https://github.com/NetFPGA/
https://ecdata.com/eds-10g.html

52 evaluation of tcp congestion control algorithms

noise on the link can cause bit corruptions. Furthermore, transceivers
and muxponders in the network can also cause bit flipping. These oc-
currences lead to CRC errors. TCP reacts with retransmission of the
corrupted packets. Besides the induced packet loss and packet delay,
these additional retransmissions have to be taken into account when
analyzing the test results. The longer the round trip time, the stronger
the impact of the additional packet drops on the TCP performance by
causing extended recovery phases.

The performance evaluation of TCP variants in 10 Gbit/s high-
bandwidth networks provides new challenges, as testers are required
to take the network hardware into account even more closely. The
choice of relevant testing criteria and appropriate metrics to be mea-
sured still governs the overall testing procedure. Responsiveness, effi-
ciency, fairness, downwards compatibility, and convergence time are
the primary characteristics for comparing different TCP variants. In
order to vary the network environment, the test setup should allow
the modification of different drop rates, data corruption, and end-to-
end round trip times. We concluded that it is beneficial to induce
such network characteristics using hardware-based solutions because
software-based approaches so far have not matched our expectations
regarding reliability and dependability in a 10G environment. In our
setup, we relied on a NetFPGA to induce packet loss and corruption
at line speed. Delays were induced using the propagation delay of a
configurable network testbed with long-distance links.

In general, prior optimizations of the network stack are urgently
required to be able to use full bandwidths in the tests. This includes,
but is not limited to, network settings of the OS kernel, NIC configu-
rations, and settings of network equipment used in the test topology,
for example, advanced features of Ethernet switches.

If not considered carefully, one single subpar setting of the network
setup can have huge effects on the actual performance of the TCP vari-
ants in a 10 Gbit/s network. With a change of bandwidth in an order
of magnitude also comes a multiplying effect of any uncontrolled pa-
rameter confounding the results.

4.3 resulting test setup

Based on these deliberations, on available hardware capabilities, and
the scenario for which the results should be applicable, we build our
test setup as described in the following.

4.3.1 Scenario

We focus on high-bandwidth networks. Prominent examples of such
networks are both data centers and WAN environments, such as
intra-datacenter traffic. Alizadeh et al. [49] analyzed large amounts

4.3 resulting test setup 53

of data center traffic and identified two major traffic types: for one
relatively short flows with low latency requirements and large flows
requiring high throughput. The first type is primarily a result of
web application requests, database queries, and similar interactions
within distributed application architectures. The latter type is based
on long-running interactions, such as software updates, continu-
ous database replications, data-intensive application workloads, or
backup processes.

In the context of this work, we concentrate on the second traffic
type, as it is more interesting to consider for high-bandwidth net-
works. Long-running, latency-insensitive flows run concurrently and
compete for utilization on a shared high-bandwidth network. This
leads to characteristics of different congestion control algorithms be-
coming apparent.

Furthermore, we include network traffic both inside and between
data centers. The intra-data center traffic is characterized by shorter
physical links and corresponding lower end-to-end latencies between
nodes. The inter-data center traffic represents communication between
geographically separated data centers, yielding much higher laten-
cies. This use case includes the usage of multiple data centers for
higher availability, increased locality, and improved resilience. The
traffic patterns between sites produced by continuous data synchro-
nization, database replication, and periodic backups remain very sim-
ilar to traffic within a single data center site. Note that we expect data
centers to have dedicated remote connections, as we do not take into
account background Internet traffic for our tests.

Although we motivate our experiments with large flows between
and within data centers, we believe that results can be generalized to
many other use cases with similar traffic and network infrastructure
properties.

Our test setup is based on the standard dumbbell topology with
two senders and two receivers. Each of them is equipped with HP
NC523SFP Dual 10 Gbit/s NICs and Ubuntu 14.04.1 (Linux 3.16). We
used 10G Ethernet with IPv4 on the lower layers, as these are the most
common protocols in our use cases. For the efficiency and responsive-
ness measurements, only one sender and one receiver were active.
Two HP 5920 JG296A switches (Firmware HPE Comware Software,
Version 7.1.045, Release 2422P01) were used to combine and separate
the flows. Flow control in the switches was turned off. The program
iperf3 was used to produce TCP traffic with up to 10 Gbit/s for each
sender. Several adjustments in the software settings were necessary
to enable the senders to satisfy the bandwidth requirements. For ex-
ample, Large Receive Offload (LRO) and Generic Receive Offload (GRO)
had to be turned off. LRO and GRO merge packets in the NIC upon
receiving them. As the loss of one packet means that the whole group
has to be resent, this can lead to very low goodput. The TCP Window

54 evaluation of tcp congestion control algorithms

Table 1: Used TCP parameters.

TCP variant Parameters

Scalable α = 0.02,β = 0.875,
Low_Window = 50

HSTCP Low_Window = 38,
High_Window = 83000,
High_P = 10−7, High_Decrease = 0.1

BIC Smax = 16, B = 4,β = 819
2014 , Low_Window = 14

CUBIC β = 717/1024,
legacy if cwnd < Wtcp(t)

H-TCP ∆L = 1s,∆B = 0.2

Scaling Option had to be turned on to allow bigger window sizes ex-
ceeding the default maximum of 65 535 bytes to a maximum of 1 GiB.
The TCP Timestamp, which extends the TCP header by 8 bytes, was
deactivated as it is not used in our scenarios, and the bandwidth can,
therefore, be used for payload instead. TCP selective acknowledgment
(TCP SACK) was activated to accommodate the high number of pack-
ets in 10 Gbit/s networks and to avoid retransmissions.

The Nagle Algorithm to facilitate groupings of small data amounts
to bigger segments was also turned on to allow for higher throughput.
Table 1 shows our settings for the TCP variants, and when they fall
back to legacy mode, i. e., start to behave like Reno. These values are
the default values of Linux 3.16 and are predominantly based on the
parameters set by the original developers of the congestion control
algorithms.

The test network had to fulfill two essential requirements to test our
criteria: variable propagation delay and an adjustable drop rate. For
this, the standard dumbbell topology was extended as described in
the following, and as can be seen in Figure 5. The extended topology
features a packet drop inducer and a delay inducer.

To induce delays, we used a dedicated, state-owned research net-
work of the bwNET100G+ Project, which is equipped with config-
urable 10x10 Gbit/s connections between research institutions in Ulm,
Tübingen, and Karlsruhe to achieve variable propagation delay. The
connections between the universities were used to form 4 ring struc-
tures between the locations. The rings begin and end in Ulm at
the patch panel directly connected to the switches used for the tests.
There are 38 transceivers but no switches within one 534 km long
ring yielding a propagation delay of 6 ms. Connecting all four rings,
therefore, enables us to induce up to 24 ms of real physical delay
in our tests. The network is isolated, which means there is no traf-

4.3 resulting test setup 55

.

packet drop
inducer

delay
inducer

Karlsruhe

Stuttgart

Ulm
Tübingen

Figure 5: Extended Dumbbell Topology including the Ring configuration in
the BelWü research network used as delay inducer. Partially based
on [1], © 2016 IEEE.

fic other than the test traffic on the network during the tests. This
network setup experiences rare bit flips, which in turn cause retrans-
missions of TCP packets. Those retransmissions can be observed 15

times on average, with a standard deviation of 2.8 within a 15 min test
at 10 Gbit/s. Therefore, the likelihood of a loss to occur is 2.2× 10−8
for every packet. For comparison: to comply with 802.3ae [152], the
error rate of optical fiber connections cannot exceed 1× 10−12. In
the following sections, we clearly document when this error has an
impact on the quality of the results.

A NetFPGA 10G Card as a standalone bump-in-the-wire device
was used to realize the adjustable drop rate (packet drop inducer).
The reference NIC implementation of the NetFPGA project was used
and adjusted to our needs8. In its standard configuration, the card
is a simple forwarding device at line speed. Our extension makes
it possible to set an evenly distributed likelihood for a packet to be
dropped.

The NICs are able to send 9.5 Gbit/s without using jumbo frames
and are only able to send full 10 Gbit/s with jumbo frames activated.
Unfortunately, jumbo frames are not supported by the NetFPGA.
Therefore, all tests were conducted with a maximum throughput of
9.5 Gbit/s per NIC.

All in all, as every permutation of variant, RTT, and drop rate or
second variant was tested, and every test was conducted five times, a
total of 1,280 tests were undertaken, as can be seen in Table 2.

8 Access can be requested at https://github.com/NetFPGA/.

https://github.com/NetFPGA/

56 evaluation of tcp congestion control algorithms

Table 2: Test overview; every listed parameter permutation was tested.

Criterium Metrics Parameters #

Responsiveness Average
throughput

Variant:
Reno,
Scalable,
HSTCP,
BIC,
CUBIC,
H-TCP

RTT:
0.2 ms,
6.2 ms,
12.2 ms,
24.2 ms

Drop rate:
0 or
10−i,i ∈ {7, 6, 5, 4, 3, 2}

840

Efficiency Throughput
distribution

Fairness Jain’s Fairness
Index,
Link utilization

x x 120

Downwards
compatibility

110

Convergence
time

Convergence
time, Spread

Variant for 2nd flow:
same as first variant or
Reno

220

Σ 1,280

4.4 results

Figure 6 shows the responsiveness of the different TCP congestion
control algorithms dependent on round trip time and induced packet
drops. The packet drop rates that are used as the basis for the eval-
uation of the efficiency are highlighted with a gray background. Fig-
ure 7 shows the efficiency of these selected drop rates at which the
algorithms showed the most diverse behavior concerning responsive-
ness.

Testing the responsiveness and efficiency at an RTT of 0.2 ms and
without packet drops, every TCP congestion control algorithm fully
utilizes the link. Even with drop rates of up to 1× 10−6, the average
path utilization does not fall under 9.48 Gbit/s. At a drop rate of
1× 10−5, however, Reno and CUBIC show significant performance
losses. CUBIC shows the same behavior as Reno because it operates
in legacy mode and thus behaves just like Reno in this scenario. The
other variants perform significantly better with a cwnd that is at least
10 times bigger. At a drop rate of 1× 10−4 packets, it can clearly be
seen that BIC works best in lossy networks with low latency and
reaches 8.3 Gbit/s.

Without additional delay in the network, all variants are equally
efficient and show low scattering without packet drops. Differences
occur only at 1× 10−5 and above when CUBIC and Reno start to
perform worse than the other variants. Q(0.5) is 8.6 Gbit/s, Q(0.25)
8.4 Gbit/s and Q(0.75) is 8.8 and 8.9 Gbit/s respectively. They both
show the same behavior as CUBIC operates in legacy mode. At a
drop rate of 1× 10−4, CUBIC and Reno show significant scattering
of 1.5 Gbit/s between 4 and 5.5 Gbit/s; 25% of all values lie above
4.8 Gbit/s.

4.4 results 57

Reno
Scalable
HSTCP
BIC
CUBIC
H-TCP

1
×
10
−
7

1
×
10
−
6

1
×
10
−
5

1
×
10
−
3

1
×
10
−
4

1
×
10
−
20

av
er

ag
e

th
ro

ug
hp

ut
(G

bi
t/

s)

drop likelihood

0.2 ms RTT

6.2 ms RTT

24.2 ms RTT

12.2 ms RTT

0

8

6

4

2

10

0

8

6

4

2

10

0

8

6

4

2

10

0

8

6

4

2

10

Figure 6: Responsiveness at different induced drop rates. © 2016 IEEE [1].

58 evaluation of tcp congestion control algorithms

Concerning efficiency, the differences between congestion control
algorithms become apparent at a drop rate of 1× 10−3. Reno, CU-
BIC, and HSTCP show the same behavior with bandwidth scattering
between 1.9 and 2.7 Gbit/s. BIC performs best and reaches up to
8.5 Gbit/s with 50% of all measurements between 8.2 and 8.27 Gbit/s.

With an RTT of 6.2 ms, different behavior than with 0.2 ms can
be observed with drop rates above 1× 10−7.Reno reaches only
3.6 Gbit/s while the high-speed variants reach the uppermost limit,
except for of H-TCP with 9.35 Gbit/s. At a drop rate of 1× 10−6,
Reno reaches 1.4 Gbit/s. CUBIC (6.26 Gbit/s) and HSTCP (6.52 Gbit/s)
also show significant performance drops, despite not performing in
legacy mode. H-TCP with a similar cwnd still shows better perfor-
mance than the aforementioned variants as the algorithm raises the
bandwidth faster after a reduction. Note that BIC outperforms all
other algorithms. Even at a drop rate of 1× 10−2, BIC still reaches
an average throughput of 2.3 Gbit/s while every other variant lies
below 1 Gbit/s. BIC’s excellent performance can also be observed
when looking at its efficiency at 6.2 ms RTT at a 1× 10−5 drop rate.

At 12.2 ms RTT Reno loses bandwidth even with low drop rates
quite drastically. The other variants show very diverse reactions. At
1× 10−5, only BIC can keep the bandwidth high with 4.9 Gbit/s on
average. The runner-up, Scalable, only reaches 1.6 Gbit/s.

Reno only reaches its rather low throughput because of high
throughput at the beginning of the test, because with very low drop
probability, it takes several seconds for the first drop to occur. After
the first drop, Reno only reaches between 949 Mbit/s and 1.8 Gbit/s
at 1× 10−7 drop rate. At a drop rate of 1× 10−6, some variants but
especially H-TCP and HSTCP show high scatter. H-TCP reaches an
average of at least 6.2 Gbit/s in 75% of all measurements. HSTCP
reaches an average of 3 Gbit/s. However, 50% of all measurements
lie between 1.7 and 2.9 Gbit/s. The highest bandwidth is 9.42 Gbit/s,
the lowest 611 Mbit/s.

At an RTT of 24.2 ms, the aforementioned CRC errors in the net-
works distort the results. Even with no induced drop rate, the net-
work infrastructure errors lead to low throughput for some of the
variants. Relative to the other variants, CUBIC’s performance im-
proves significantly with higher RTT, which shows that CUBIC is de-
signed with high RTTs in mind. At 12.2 ms, CUBIC reached 71% of
the throughput of H-TCP at a drop rate of 1× 10−6; at 24.2 ms, it
already reaches 78%.

The effects that can be observed at 12.2 ms are even more signifi-
cant at 24.2 ms. The network CRC errors also take their toll. Reno
loses bandwidth solely because of the scarce CRC errors and the sub-
sequent retransmissions and fluctuates heavily between 742 Mbit/s
and 9.48 Gbit/s. HSTCP is also highly influenced by the errors. 50%

4.4 results 59

av
er

ag
e

th
ro

ug
hp

ut
(G

bi
t/

s)
0.2 ms RTT

6.2 ms RTT

12.2 ms RTT

HST
CP

Sca
lab

le
Ren

o
BIC

CUBIC

H-T
CP

24.2 ms RTT

8

6

4

2

8

6

4

2

0

8

6

4

2

0

8

6

4

2

Figure 7: Efficiency at different RTTs and drop rates. © 2016 IEEE [1].

60 evaluation of tcp congestion control algorithms

0.5 0.6 0.7 0.8 0.9 1.0

H-TCP
CUBIC
BIC
HSTCP
Scalable
Reno

H-TCP
CUBIC
BIC
HSTCP
Scalable
Reno

H-TCP
CUBIC
BIC
HSTCP
Scalable
Reno

H-TCP
CUBIC
BIC
HSTCP
Scalable
Reno

24.2 ms RTT

12.2 ms RTT

6.2 ms RTT

0.2 ms RTT

Figure 8: Fairness of the variants against themselves (x) and downwards
compatibility against Reno (◦). © 2016 IEEE [1].

of the measurements show an average of 4.5 to 7.3 Gbit/s. Outliers
can be observed between 3.3 Gbit/s and 9.48 Gbit/s.

It comes with no surprise that in a local network with no additional
latency (0.2 ms) — shown in Figure 8 — all TCP congestion control al-
gorithms show complete fairness. The biggest difference between the
two flows is 150 Mbit/s, and the two flows utilize the ring fully (Fig-
ure 9, left). Even legacy Reno performs as well as the other variants.
The bandwidth utilization is lowest for CUBIC with 9.29 Gbit/s and
best for BIC with 9.42 Gbit/s for both flows combined. At 12.2 ms,
fairness lies between 0.96 (CUBIC) and 0.989 (BIC). The very good
fairness values come from the flows increasing their bandwidth in
parallel as their algorithms behave identically under those circum-
stances and as there is no overload for most of the test duration. A
short overload period in the beginning when both flows try to send
at 10 Gbit/s and long recovery times afterward lead to very low link
utilization between 3.6 Gbit/s and 5.6 Gbit/s with all variants. Reno
performs worst in this regard, but the other variants HSTCP, H-TCP,
and CUBIC, show little improvement. BIC and Scalable perform best.
With even longer recovery times, the link utilization becomes worse
with an RTT of 24.2 ms. Here, H-TCP performs a lot better than be-
fore compared to the other variants. Except for HSTCP, all variants

4.5 discussion 61

show more than two times the link utilization of Reno. The logarith-
mic functions of HSTCP seem to work badly with high latency.

The resulting fairness is worse for every permutation when the
different variants are not competing with themselves but with Reno
to evaluate downwards compatibility, which can be seen in Figure 9

on the right. With higher RTT, the flow with the high-bandwidth
variant always takes more bandwidth than the Reno flow as the al-
gorithms have a shorter recovery time after packet drops. H-TCP,
CUBIC, and HSTCP are the fairest, which negatively reflects in their
results concerning link utilization as a fair bandwidth propagation
means more bandwidth for Reno and less bandwidth for the high-
bandwidth flows with a, therefore, smaller cwnd. Hence, in case of
overload, the high-bandwidth flow needs more time to recover, and
the link utilization goes down. As BIC and Scalable are less fair, the
overall link utilization is higher, which becomes especially apparent
with 24.2 ms RTT.

In previous work [195], evaluating the convergence time, λ was not
clearly specified: we set λ = 0.1, which appeared to be a good trade-
off; a smaller λ leads to a smoother convergence but increases the
overall convergence time. It is out of scope for this work to provide
an extensive analysis of the effect of this metric parameter (just as we
do not change the ε = 0.8 given by Li et al. [195]). Instead, we mea-
sured the effect of round trip time and congestion control algorithm
on ε-convergence time. In addition, we computed a measure for the
stability of this convergence, as discussed in Section 2.4.2. The results
are shown in Figure 10, where the bar chart represents convergence
time, and the scatter plot reflects the spread. For clarity, we left out
the measurements with an RTT of 0.2ms: these measurements con-
verged virtually instantly with very little spread. A significant result
is that any high-bandwidth TCP variant leads to a very unstable con-
vergence when streams with Reno are involved. This is due to the
fact that the distribution of bandwidth is very uneven (see Figure 8),
which amplifies the effects of retransmissions and leads to higher
spread. As expected, Reno itself shows unstable behavior as the RTT
increases. This is related to the fact that Reno’s responsiveness is
dependent on RTT, which was one of the reasons the new congestion
control algorithms were developed in the first place. Finally, we point
out that convergence time goes down as the RTT increases, which is
partially due to reduced utilization. This reduced utilization is caused
by the CRC failures of the link, as discussed in the setup.

4.5 discussion

It becomes evident that, when there is no packet loss in the network,
the actual TCP variant has no substantial influence on the perfor-
mance. However, as soon as there is packet loss — especially with

62 evaluation of tcp congestion control algorithms

lin
k

ut
ili

za
zi

on
(G

bi
t/

s)

0

8

6

4

2

10

RTT (ms)
0 20 2515105

Reno
Scalable
HSTCP
BIC
CUBIC
H-TCP

0

8

6

4

2

10

RTT (ms)
0 20 2515105

Figure 9: Link utilization of different TCP congestion control algorithms, variant against itself
(left) and against Reno (right). © 2016 IEEE [1].

noticeable RTT — the congestion control algorithm affects the qual-
ity of service — for example, link utilization and responsiveness —
immensely.

Taking into account our use cases mentioned before, BIC shows the
best properties for intra-data center and inter-data center communi-
cation alike. Especially for higher drop rates, BIC outperforms every
other variant. In every test, BIC shows the best behavior or — in case
of link utilization and fairness against itself — is one of the best vari-
ants.

However, when looking into backward compatibility, BIC shows its
weakness. Like HSTCP and Scalable, at an RTT of 6.2 ms, BIC dom-
inates the network link. Here, CUBIC is by far the best alternative,
which also performs well in the other tests. At an RTT of 12.2 ms and
above, fairness becomes less critical as low link utilization leads to
a network without overload and, therefore, sufficient bandwidth for
every user.

The decision as to which variant is best for a network cannot be
based on a general answer. It depends on the amount of influence
one has over the network. For example, if the network is within a
data center where every system is under control of the local adminis-
trators, our analysis shows that BIC should be used on every system.
However, the variants we investigated are all developed with down-
wards compatibility to Reno in mind, and other variants that were
not part of our analysis might perform better in this scenario. On
the other hand, CUBIC is the best choice if the composition of the
network components is not known, and older systems might still be
present, as it offers a reasonable trade-off between link utilization and
efficiency on the one hand and also fairness towards other systems
on the other hand.

While all modern variants generally outperformed TCP Reno in a
10G setting, the comparison among the other variants yielded more
varying results. BIC leads most of our results in the test setup due
to its aggressive behavior. At the same time, BIC performed poorly
at backward compatibility, and its applicability in higher-latency and

4.5 discussion 63

Ren
o

Sca
lab

le

HST
CP

BIC

CUBIC

H-T
CP

versus itself
Sca

lab
le

HST
CP

BIC

CUBIC

H-T
CP

versus Reno

0

250

200

150

100

50

0.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

250

co
nv

er
ge

nc
e

ti
m

e
in

s

200

150

100

50

0.0

1.6

av
er

ag
e

sp
re

ad
in

G
bi

t/
s

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

250

200

150

100

50

0.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

12.2 ms RTT

24.2 ms RTT

6.2 ms RTT

Figure 10: Convergence time and spread of the converged flows. © 2016

IEEE [1].

64 evaluation of tcp congestion control algorithms

heterogeneous networks should be considered carefully. For such
networks, CUBIC may represent a more appropriate alternative. In
summary, we recommend switching to a modern TCP variant for 10G
networks and selecting a variant based on the predominant latency
and drop rate characteristics that the networked applications will ex-
perience in that network.

In general, prior optimizations of the network stack are urgently
required to be able to use full bandwidths in the tests. This includes,
but is not limited to, network settings of the OS kernel, NIC configu-
rations, and settings of network equipment used in the test topology,
for instance, advanced features of Ethernet switches.

If not considered carefully, one single subpar setting of the network
setup can have huge effects on the actual performance of the TCP
variants in a 10G network. With a change of bandwidth in an order
of magnitude also comes a multiplying effect of any uncontrolled
parameter confounding the results. ions

4.5.1 Conclusion

The evaluation of TCP congestion control algorithms showed a large
gap in research concerning network evaluations in high-bandwidth
networks. Many things that need to be considered for these evalu-
ations were not documented before, such as the settings necessary
to achieve the fairest results in the evaluation. The insights we have
gained here helps us to develop the requirements for the necessary
evaluations of the other parts of this work. While TCP congestion con-
trol tests are comparatively simple (e. g., using a standard the dumb-
bell topology compared to more complex setups, sending as fast as
possible with only one or two flows), more complicated test scenarios
necessitate even more deliberations. However, this is necessary when
performing more complex evaluations, such as the evaluation of In-
trusion Detection System performance. Here, realistic traffic patterns
are necessary in addition to malicious traffic generation. For this, a
standardized network testing framework that can perform arbitrary
tests, including modeling realistic traffic scenarios and behavior mod-
els, is required.

5
T H E G E N E R A L P U R P O S E N E T W O R K T E S T I N G
F R A M E W O R K

Testing network devices requires realistic network traffic. The de- An earlier version of
parts of this chapter
has been published
at IEEE LCN
2017 [9].

vices — especially security devices such as IDS — should be faced
with traffic they usually are faced in operations as well as non-
typical traffic behavior such as large peaks. Additionally, for future-
proofness, network devices need to be tested against probable future
network trends such as new protocols, changing user behavior, or Leonard Bradatsch

has contributed to
the design and
implemented
GPNTF as part of
his master
project [16] and
master thesis [17].

new attack scenarios. Devices need to be analyzed in a variety of con-
texts; using only one or few data sets can be problematic if specific
features of the deployment network are not contained in the data
sets.

Many of the data sets that can be used for network testing are
either old, not guaranteed to be attack-free, specialized for specific
network environments, or hard or impossible to gain access to. For
anonymization purposes, payload data is missing in most cases. In
the anonymization process, additional relevant information might
also vanish, such as subnet affiliation or exact timestamps. An ad-
ditional constraint is that there cannot exist a data set showing future
networking trends. For this use case, simulations have to make do.

Simulated data sets are usually limited to the possibilities of pro-
grams such as iperf3, that produce traffic flows as fast as possible
with no regard to realism. This is acceptable for basic stress testing
or performance tests, for example, in our TCP congestion control al-
gorithm evaluation. However, for many more extensive tests, it is
doubtful that this can show how a device or protocol would fare in a
real network. A system is needed that can produce traffic mixes that
can produce realistic protocol traffic patterns. Our goal is to achieve
a traffic mix as close to Internet traffic as possible with reasonable de-
faults based on prior analyzes of Internet traffic while offering high
customizability. This allows for analyses on how changing behavior
in the Internet — for example, based on future trends such as an in-
creasing amount of video streaming, new attacks, or new protocols —
influences performance of the systems under test.

Therefore, we introduce the General Purpose Network Testing Frame-
work (GPNTF) meant to fill a gap in network testing environments
and current possibilities. GPNTF is able to produce traffic based on
traffic models of real network traffic. It can simulate both benign and
malicious traffic in a configurable mixture of traffic classes of both
kinds. A tester can analyze how their network devices and services
handle, for example, rising demand for buffered video entertainment

65

66 the general purpose network testing framework

or a rise of Denial-of-Service attacks. The Framework is easily extend-
able to support future networking technologies.

In the following, we describe how we modeled benign and mali-
cious traffic, how GPNTF is implemented, evaluated the systems, and
produced several data sets both with and without GPNTF to provide
data for our analyses documented in the following chapters.

5.1 producing benign traffic

To implement benign traffic with the biggest coverage of all traffic
classes, we are focusing on storage (e. g., Google Cloud, iCloud, and
Dropbox) and marketplace traffic (e. g., Windows Updates, Google
Marketplace, iTunes), file sharing (e. g., BitTorrent), buffered video
entertainment (e. g., NetFlix, Youtube, Amazon Prime Video), and
web browsing. According to the Sandvine1 reports [267–269] these
traffic classes make up over 80% of worldwide Internet traffic.

5.1.1 Web Browsing

The web is the part of the Internet most users are somewhat familiar
with, and for many, it is synonymous with the Internet. It takes up
between 10% and 20% of all traffic on the Internet depending on
region [267–269]. This is especially noteworthy as web traffic requires
a lot less bandwidth per user than the other traffic classes as a big part
of the web is text-based. Although HTTP/2 gains significant traction
in the last couple of months, HTTP/1.1 is still widely adopted.

Pries et al. [252] and Choi and Limb [98] analyzed and documented
how web traffic looks like. The typical procedure for web requests be-
gins with the establishment of a TCP connection between client and
server. Within this TCP connection, the clients send an HTTP request,
requesting a web page. The main object — typically an HTML doc-
ument — is sent back by the server. Within this main object, several
other resources are linked, the embedded inline objects (e. g., Java-
Script libraries, images, cascading style sheets (CSS)). These inline
objects do not have to be on the same server as the main object. Of-
ten JavaScript libraries or fonts are embedded from services such as
Google Fonts2 or advertisements are embedded from Google Ads3.
According to Butkiewicz et al., on average, when requesting a web
page, data is downloaded from ten different servers [78] (identified
by distinct (sub) domains measure on “roughly 1700 websites from four
geographically distributed locations over a 7 week period”). However, there

1 Sandvine Incorporated produces network equipment and is operating worldwide.
They publish reports on worldwide network composition regularly divided by world
regions. https://sandvine.com

2 https://fonts.google.com

3 https://ads.google.com

https://sandvine.com
https://fonts.google.com
https://ads.google.com

5.1 producing benign traffic 67

is no information on how the objects are distributed over the differ-
ent servers. It is also possible that the website operator distributes
their resources over several of their own machines. Follow and like
buttons hosted on third-party servers are often implemented as addi-
tional main objects. The average website consists of 2.19 main objects.
However, the mode (i. e., the most common value) is still clearly one
main object, as 60% of all web sites have only one main object [252]
(in the Alexa top one million websites by number of visitors). Usu-
ally, browsers open several TCP connections to one server. While the
HTTP/1.1 standard recommends up to two TCP connections to the
same server, most browsers open many more4. As HTTP/2.0 features
multiplexing within one TCP connection, this is no longer necessary,
and only one TCP connection needs to be opened. Additionally, the
parsing time denotes the time between the arrival of the main object
and the arrival of the first inline object. HTTP supports compression
(in both versions currently used). It is in use by roughly 80% of all
websites mostly done with gzip according to one study based on the
Alexa top 10 million by number of visitors [315]. However, there is no
information available to what extend these websites use compression.
Between requests, users tend to read the website before requesting a
new one. This idle phase has to be taken into account when mod-
eling user behavior. Moreover, browsers tend to cache inline objects.
For example, CSS files of commonly visited websites are usually only
loaded once and then kept.

In our model, we need to take the following parameters into ac-
count:

• request size

• main object size

• amount of main objects

• parsing time

• number of inline objects

• inline object size

• number of TCP connections

• user reading time

The parameters and their values are taken from the aforementioned
resources [78, 98, 252, 315], and the full list can be seen in Table 16

in the Appendix listing the literature values and how they are imple-
mented in GPNTF. As there is no sufficient information available, the
following parameters could not be considered for the model:

4 Firefox opens up to six by default, which can be checked and changed in
about:config. Parameter name: network.http.max-persistent-connections-per-server

68 the general purpose network testing framework

• number of servers (set to one)

• multiplexing on HTTP/2.0

• HTTP compression

• client-side website caching

5.1.2 File Sharing

While file sharing’s share of the Internet traffic is declining in many
regions of the world (especially in North America following the emer-
gence of streaming platforms), 30% of Asia’s Internet traffic still con-
sists of this traffic model [267].

File sharing is a peer-to-peer approach to distribute data or infor-
mation between networking nodes. There is no central server in
this model — in contrast to the other traffic classes. Data is shared
between participants often without central management instance or
minimal central management, and all peers might download or up-
load data to other peers. As users in peer-to-peer networks are usu-
ally private users, a user downloading data from a peer-to-peer file
sharing service usually downloads from several peers simultaneously
to spread the load over many participants to not overload the lim-
ited upload bandwidth of a single participant. For this, the data is
partitioned in chunks, and these chunks can then be obtained from
different peers. For this, an interest message is sent to the other par-
ticipants for specific chunks of a file. The hit rate indicates how often
this is successful (i. e., it denotes the chance that a specific chunk is
available at a specific peer). Simultaneously, each participant listens
for requests of the data they offer to distribute.

The central parameters for this traffic model were analyzed by
Basher et al. [58]. They mention flow size, flow inter-arrival time and
flow duration, geographic distributions of the peers, and the num-
ber of concurrent flows as “characterization metrics” for file sharing
services. In addition, Basher et al. also reported on the amount of
concurrent upload and download connections and the amount of con-
nections to peers with distinct IPs. Most other analyses focus solely
on BitTorrent, as it is by far the most common peer-to-peer file shar-
ing system [276]. Le and But [185], and Calchand et al. [82] analyzed
packet size and Le and But also the ratio of packet sizes. Additional
to these sources, file sizes are of interest. Afridi et al. [42] analyzed
the file sizes of video files in BitTorrent network. These values are
also used by us as a source for file sizes in peer-to-peer networks. All
in all, the following parameters are considered in our model:

• file size

• flow size

5.1 producing benign traffic 69

• packet size

• amount of concurrent flows

• amount of connections to peers with distinct IPs

• number of upload connections

The following parameters mentioned in literature were omitted in
our model implementation as they are network dependent or no reli-
able information could be found:

• chunk size distribution

• flow inter-arrival time

• flow duration

• geographical peer distribution

• bandwidth limitations

• hit rate

• idle time duration i. e., the duration of the time between a client
participating

• share of freeriders i. e., users that only download but do not up-
load

• tit-for-tat policies i. e., are freeriders sanctioned in any way

The full list of parameters can be seen in Table 17 in the Appendix.

5.1.3 Buffered Video Entertainment

Similar to web traffic, video streaming sites often use the HTTP pro-
tocol to transfer their data to the client. However, the traffic pat-
tern differs greatly [62]. Video streaming basically refers to the pro-
cess of downloading a video to a client while simultaneously play-
ing the video. As throughput varies by client connection quality and
might also change over time, the video stream is buffered at the client
to compensate for short download interruptions or short slumps in
throughput. Additionally, as many different quality levels are possi-
ble both for video (e. g., full HD, 4K, 480p, etc.) and audio (e. g., 128

kbps, 160 kbps, or 192 kbps), the quality can be dynamically changed
depending on the capabilities of the client and the throughput of
the network. This method is called adaptive video streaming and is
deployed by most popular video streaming platforms. The service
holds videos in short segments of different quality levels and a cer-
tain segment length. At the beginning of the stream, the client re-
ceives a manifest file describing the meta-information about the video

70 the general purpose network testing framework

in question. Clients can request a new segment choosing the quality
level from the manifest file that its current connection allows (with a
certain margin to assure reliability). A widespread video streaming
standard is MPEG-DASH. It uses the XML-based MPD standard for
the manifest file.

Laterman et al. [183] and Reed and Aikat [256] analyzed popular
video-on-demand and live streaming platforms (Netflix and Twitch)
and reported the used protocols, connection durations, volume and
number of connections per stream, data rates, segment request rate,
segment downloading approach, and length of connections. Bier-
nacki [62] used NetEm, the Apache web server, and VLC5 to ana-
lyze average throughputs and bandwidth oscillations when the video
stream is faced with packet loss in the network.

The observed parameters implemented in GPNTF are:

• video length

• HTTP version

• segment length and size

• manifest

• segment downloading approach

• segment requesting rate

• adaptive streaming algorithm

The full list of which parameters were chosen can be seen in Ta-
ble 18 in the Appendix. Video quality is dependent on the available
bandwidth. VLC supports the MPEG-DASH standard fully and is
therefore used to produce the video streaming traffic by embedding
it in GPNTF. One downside of using VLC is that it does not support
digital rights management, which consequently is not part of the GP-
NTF implementation.

5.1.4 Storage & Marketplace

Storage and marketplace traffic are two traffic classes that are very
similar to each other. Storage describes cloud storage providers such
as Dropbox6 and the data syncing between the provider and the client.
Another non-proprietary service of this class would be FTP. Market-
place describes content providers such as Apple iTunes or the Google
Play Store, where for instance, games, apps, videos, or music are
available to users. The biggest difference between the services is that

5 https://videolan.org

6 https://dropbox.com

https://videolan.org
https://dropbox.com

5.2 producing malicious traffic 71

marketplace usually does not feature any uploads except for requests
sent to the service providers.

Kim et al. [173] analyzed traffic patterns of this traffic model. The
services differ by average file size, usage of application-layer protocol,
number of connections, and packet sizes. The packet sizes are usu-
ally fixed during a session. Traffic is unidirectional during the data
transfer. Here, reliable data can be found for the FTP protocol [173]
and the parameters in GPNTF are set based on this analysis:

• packet size

• file size

• data and control connections

• idle phase duration

Unfortunately, no data can be found for marketplaces. Therefore,
GPNTF uses the same parameters as for storage. All parameters are
variable; any GPNTF user can set different values as soon as reliable
data can be found. The implementation in GPNTF is done based on
iperf3. The full list of parameter values can be found in Table 19 in
the Appendix.

5.2 producing malicious traffic

Due to our focus on IDS and DDoS mitigation, malicious traffic in Philipp Spiegelt [33]
has contributed to
this section with his
bachelor thesis.

GPNTF is constrained to network-based attacks. The most important
attacks for us are reconnaissance, intrusions, and Denial-of-Service at-
tacks. As many open-source tools for these attacks already exist, we
choose to integrate them into GPNTF instead of building new pro-
grams. These tools are widely used by attackers already and, there-
fore, already represent realistic attack traffic.

5.2.1 Reconnaissance

Reconnaissance is not an attack per se; however, it is usually a pre-
condition or at least a sign for a looming attack. Therefore, network
administrators are well-advised to keep an eye open for reconnais-
sance activity in their network. The most common form of reconnais-
sance are port scans. We use the classification of port scans by Lee et
al. [187] described in the following.

The simplest form of scan is the PING scan based on ICMP. Simply
sending ICMP echo-request packets to the target usually triggers a
response from the target (ICMP echo-reply). As this method is also
used to deduce if a target is up and reachable by network administra-
tors and other power users, singular instances of ICMP echo-request

72 the general purpose network testing framework

packets are no sign of an attack. However, a high number of these
packets can be an indicator.

TCP scans are a group of network scans based on the TCP protocol.
The SYN scan tests if a port is open. If a SYN packet is answered by
a SYN/ACK, an open port is detected that accepts connections. An
RST packet is interpreted as a closed port. During a connect scan, the
connection is fully established, which makes it easier to detect. The
FIN scan uses undocumented TCP behavior inherent in most systems.
When a FIN packet is sent to an open port, no reaction from the server
is expected while on a closed port, an RST packet is sent back. Null
or Xmas scans are variants of the FIN scan, where none or all the TCP
flags are set (“Lighting up the packet like a Christmas tree”). Firewalls
that filter for SYN or ACK flags can be bypassed.

During a UDP scan, the scanner sends UDP packets to a target
port. On closed ports, the target should respond with an ICMP port
unreachable packet; other ICMP packets indicate some kind of filter
in front of the port. No response can mean that packet is blocked,
lost, or in most cases, that the port is open.

Remote operating system (OS) detection usually works with finger-
printing the behavior of the target. Basically, five different methods
can be used [310]. For one, banner grabbing can identify an OS by
analyzing service banners typical for the OS run by the target. TCP
segmentation and ICMP response analysis exploits that some behavior
for these protocols is not standardized, and operating systems be-
have differently. The same is true for the Initial Sequence Number (ISN)
analysis of TCP. Furthermore, there are some specific Denial-of-Service
attacks that only work on specific operating systems and can be used
to see if the target is susceptible to those.

Nmap7 can be used to implement all of the port scanning tech-
niques introduced here and is therefore integrated with GPNTF.

5.2.2 Intrusions

Intrusions can be achieved with different techniques.
One of them is exploitation, where unintended behavior of a system

is exploited to gain access to this system. A zero-day exploit is an ex-
ploit unknown to the developers (the developers have known about
this attack for zero days). As zero-day exploits are by definition not
publicly known, a traffic generator cannot generate traffic simulating
zero-day exploits. However, many former zero-day exploits can be
simulated. One example of this is the EternalBlue exploit that exploits
three bugs in the Windows implementation of the Server Message
Block protocol (SMB) for file sharing. It became widely known out-
side of the security community through the “WannaCry” ransomware
attack. As this attack is one of the most common network attacks cur-

7 https://nmap.org

https://nmap.org

5.3 implementation 73

rently, we chose to implement it in GPNTF. For this, we use Metas-
ploit, the Metasploit API, and the Metaspliotable VMs8 (Ubuntu 14.04

and Windows Server 2008).
The brute-force login attack tries to gain access to a system by trial

and error approach. A database with common passwords is usually
used, combined with a database of known or guessed user names.
The attack can be executed with Metasploit (“The world’s most used
penetration testing framework”, according to its creators9), for example
for SSH or FTP and can, therefore, be used within the GPNTF.

Another method is the Man-in-the-Middle Attack. The adversary
eavesdrops on the communication between two targets. They relay
messages between the targets, impersonating the other communica-
tion partner, respectively.

Phishing attacks are mostly done by e-mail where the attacker tries
to get the target to provide access to a system or reveal information.

The Man-in-the-Middle and Phishing attacks are not currently im-
plemented in GPNTF as they are not necessary for our purposes yet.
However, the extension is planned for the future.

5.2.3 Denial-of-Service

In terms of Denial-of-Service attacks, an extensive analysis can be
found in Chapter 9 describing the attacks in more detail. There is
a large variety of attacks. We focus on the most common, current
attacks. In terms of flooding attacks and reflective attacks, GPNTF uses
hping3. Slow DDoS attacks are also implemented with the tool Slow-
HTTPTest, as it already supports both the slow GET and slow POST
attack.

5.3 implementation

The GPNTF design, as shown in Figure 11, is able to run in three
modes — as a network client (1), a network server (2), and as a con-
troller for administration purposes (3). Only the client and the server
mode are part of the current implementation. All modes can be con-
figured by configuration file that can later also be used as documen-
tation of the chosen evaluation scenario.

Running in client mode, GPNTF is able to simulate diverse real
network clients with different fields of application. The client mode
is built upon three main modules: the client task handler module,
the L4 modules, and the L7 modules. The client task handler mod-
ule reads all necessary client parameters from a configuration file for
generating the requested flows and coordinates the construction of
L4 and L7 objects for layer 4 and layer 7 protocol headers. In case

8 https://github.com/rapid7/metasploitable3

9 https://metasploit.com/

https://github.com/rapid7/metasploitable3
https://metasploit.com/

74 the general purpose network testing framework

commands

results

1) GPNTF in client mode

3) GPNTF in

2) GPNTF in server mode

device under test

controller mode

Figure 11: GPNTF architecture with three clients and three servers testing
one physical device.

of an external solution (such as VLC, Metasploit, and iperf3), the
client task handler executes these programs accordingly. Moreover,
the client listens at the adjusted ports to be able to handle incoming
server responses. Incoming packets are checked against the states of
an internal state machine. Based on the result, the packet builder can
build the correct answer. The client state machine is implemented in
a client state machine module to which it is possible to connect new
state machines handling new protocols.

Running in server mode, GPNTF simulates the behavior of a real
network server. The server mode contains the same modular de-
sign as the client. The server task handler module opens the user
requested server sockets and processes incoming client requests. Just
as in client mode, GPNTF must check the incoming packets against
the states of a server state machine module and must determine the
correct response based on the specific client request.

Our proposed architecture provides an option to control all con-
nected clients or server instances remotely. For this purpose, the
controller sends a configuration file to each declared client or server
instance. In return, the targeted instance responds with the captured
pcap file and the stored statistical information. As the central con-
troller instance was not necessary for our tests, we decided to post-
pone its implementation and focus on the client and server modes’
implementation.

There is no upper limit for the number of network nodes or the net-
work devices within the network. GPNTF, in principle, runs on any

5.4 evaluation 75

node with a modern Linux operating system (tested on Ubuntu), suf-
ficiently strong hardware to accomplish sending rates necessary for
the testing network, and a NIC. The required performance of hard-
ware and NIC depends on the specific test cases.

GPNTF is published under the GPLv3 license and available at Git-
hub10.

5.4 evaluation

There are two aspects we want to investigate in this evaluation. First, Philipp Spiegelt [33]
has contributed to
this section with his
bachelor thesis.

correctness of the implementation and second giving an idea of how
long a test has to be to give representative results. As many of the
benign traffic generation parameters depend on distributions, a min-
imum set of runs or a sufficiently long session is necessary to build a
representative set of the traffic where the distributions come close to
the model. To measure if the implementation fits the model, we use
Pearson’s Correlation Coefficient.

5.4.1 Pearson’s Correlation Coefficient

Pearson’s Correlation Coefficient is a measurement of linear correla-
tion between two variables. The coefficient can take values between
-1 and 1, where 0 means no correlation between the two variables, 1

means total linear correlation, and -1 means total negative linear cor-
relation (Cauchy–Schwarz inequality). For samples of the variables X
and Y, the coefficient rxy is defined as follows.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)
2
√∑n

i=1(yi − ȳ)
2

(7)

With sample size n, xi and yi individual sample points and x (and
y) as the mean of all xi ∈ X (and yi ∈ Y). For our approach, as we
compare a sample with a formula, we take the value of the formula
at the same position as the sample for the comparison.

5.4.2 Results

The length of a test can be set with the session length parameter.
For web browsing, it defines how many websites are downloaded.
Figure 12 shows how session length influences how close the data
output comes to the input model. In this case, the main object size
for web traffic is plotted against their probability of occurrence for
different session lengths and the Weibull model distribution used as
input (as cumulative distribution function, CDF). We can clearly see

10 https://github.com/vs-uulm/General-Purpose-Network-Testing-Framework

https://github.com/vs-uulm/General-Purpose-Network-Testing-Framework

76 the general purpose network testing framework

Weibull Model Distribution

1.0

0.0

P
(X
6
S
m
)

0.8

0.6

0.4

0.2
Session length 10

Session length 1000

Session length 100

main object size (Sm) in Bytes
0 10000 20000 30000 40000 50000 60000 70000 80000

Figure 12: Main object sizes (at different session lengths) plotted as CDF
compared to the model distribution. One test run. Based on [33].

how higher session lengths lead to results much closer to the model
distribution.

This can also be seen when we take a look at Pearson’s correlation
coefficient for the different web browsing parameters, as can be seen
in Figure 13. Session lengths of 1 000, and 10 000 show very high
correlation coefficients for inline object size, main object size, and
number of inline objects. This shows for one that the system works
correctly and that session length of 1 000 and above guarantee that
the model is correctly transferred to the test traffic.

For storage and marketplace traffic, the number of parameters is
far more limited. Figure 14 shows the file size distribution compared
between input and output measured in the network. For file sizes of
1.5 GiB and below, the measured results are very close to the input.
For a file size of 10 GiB, we measure a deviation of 4.6% between
measurement and parameter.

For file sharing, we analyzed the flow sizes. Figure 15 shows that
while the average correlation coefficient is already high at a session
length of 10, it stays the same independent of session length. While
most measurements show good results close to the model, some mea-
surements deviate immensely. Therefore, this traffic mode as is can
be used to conduct further analyses. However, one should always
measure if the output actually matches the model for every measure-
ment.

Both the buffered video streaming traffic as well as the attack traffic
models were produced with the use of third party programs. These

5.4 evaluation 77

10

inline object sizes

number of inline objects

main object sizes

session length
100 1000 10000

Pe
ar

so
n’

s
co

rr
el

at
io

n
co

ef
fic

ie
nt 1.0

0.9

1.0

0.9

1.0

0.9

Figure 13: Pearson’s correlation coefficient for several web browsing param-
eters dependent on session size (20 test runs). Based on [33].

1.5
0

10

fil
e

si
ze

in
G

iB

“Amount” field in .ini file in GiB
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10

8

6

4

2

expected
empirical results

Figure 14: File sizes measured versus data input. Based on [33].

78 the general purpose network testing framework

10

session length
100 1000

Pe
ar

so
n’

s
co

rr
el

at
io

n
co

ef
fic

ie
nt

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Figure 15: Pearson’s correlation coefficient for file sharing flow sizes depen-
dent on session length. Based on [33].

programs were already tested by their original vendors. No exten-
sive evaluation beyond basic functionality tests (that confirmed that
the implementations are working) was conducted and was therefore
omitted in this chapter.

5.5 produced data sets

For our evaluations in the upcoming parts III and IV, six data sets
were produced. One for each of the four benign traffic classes, one
data set to test slow DDoS attacker identification mechanisms, and —
for IDS testing — one malicious traffic data set based on the commu-
nity ruleset of the Snort IDS.

5.5.1 Benign Data Sets Produced by GPNTF

The web browsing data set has a file size of 6.9 GiB. It contains 1.64

million packets. 100 clients were simulated, sending requests to 100

web servers downloading the websites.
The buffered video streaming data set takes up 43 GiB in 1.74 mil-

lion packets. The video file used here is the Blender Foundation pro-
duction “Tears of Steel”. The adaptive video streaming made use of
the 101 bit/s bitrate (at the start for each video transmission) and the
highest possible bitrate of 10 Mbit/s (otherwise).

The second-largest data set is storage and marketplace, taking up
31 GiB. In 100 flows, 50.7 million packets were sent.

5.5 produced data sets 79

Table 3: Composition of the SUEE data sets benign traffic.

data set start date
(duration)

hosts (external/in-
ternal)

internal hosts
wifi (eduroam/wel-
come)

SUEE1 2017-11-02,
24 h

1 634 (1192/442) 243 (97/146)

SUEE8 2017-11-05,
8 d

8 286 (6755/1531) 705 (328/377)

The file sharing data set takes up 12 GiB in 8 215 flows, and 892 410

packets.
All data sets other than the buffered video streaming set contain

randomly generated payload data. All other parameters were left at
the default values that can be found in the Tables 16 to 19 in the Ap-
pendix, the data sets are available for download. Download locations,
and more information is available at Github11.

5.5.2 SUEE Data Set for Slow DDoS Attacker Identification Testing

Additional to the data sets that emerged from the GPNTF, we also Parts of this section
have been published
at EAI SecureComm
2018 [5].

built a data set specialized for the evaluation of slow DDoS attacks.
We collaborated with the student union for electrical engineering at
Ulm University12 to record requests made to their web server, one
data set containing 24 hours (2nd to 3rd November 2017 with 1,634

clients, SUEE1) and another data set containing eight days (5th to
13th November 2017 with 8,286 clients, SUEE8) of traffic data. The
web server of the student union provides information about the union
on its main site, public real-time transport information for bus stops
in the city which is used primarily on mobile devices via mobile net-
works, as well as several external and internal services such as a print-
ing service for the lecture notes of the electrical engineering courses
and exams.

Both pcap files contain only header data since the data sets were
anonymized and do not contain application-layer payload due to pri-
vacy concerns. There have been no attacks reported during the times
of recording of the benign data sets. The data sets serve the following
purposes: SUEE1 is used as training data set. SUEE8 then can be
used to determine whether the trained mitigation system is capable
of mitigating attacks adequately.

To facilitate this, we have mixed the SUEE data sets with attack
recordings from the three attack tools slowloris, slowHTTPTest, and

11 https://github.com/vs-uulm/2019-Network-Data-Sets

12 https://fs-et.de

https://github.com/vs-uulm/2019-Network-Data-Sets
https://fs-et.de

80 the general purpose network testing framework

Table 4: Port distribution of the SUEE data sets benign traffic.

data set number of
packets

TCP source port
80/443

TCP destination
port 80/443

SUEE1 2 089 436 747 912/173 978 967 623/199 923

SUEE8 19 301 217 7 175 627/1 229 516 9 312 537/1 583 543

slowloris-ng by merging the capture files. We have published the data
sets with a more detailed description on github13. The MAC and IP
addresses are anonymized, i. e., addresses are overwritten. Benign
clients’ IP addresses in the anonymized data sets are moved to the
192.168.0.0/16 block while attacking clients are in the 128.10.0.0/16

block. The IP addresses count up chronologically after their first oc-
currence within the data set. The original IP addresses were in part
from the Ulm University network and mostly from diverse networks
in Ulm and surrounding areas. Table 3 contains the composition of
the benign traffic in the SUEE data sets. The same IP address in
SUEE1 and SUEE8 are not affiliated. However, every packet sent (or
received) by an IP within one data set was originally sent (or received)
from the same IP address.

The attacking tools were adapted to allow IP spoofing to simulate
distributed attacks and were left in standard configuration apart from
that. The parameters for slowHTTPTest were 30 seconds intervals,
8 192 bytes for the Content-Length header, 10 bytes POST-body length
per packet, and one socket per client. Slowloris is also configured to
use only one socket per client. The default configuration was left in
place in all other settings, resulting in a packet interval of 15 seconds.

Slowloris-ng includes several changes to the original slowloris. The
additional features implement randomized behavior, which is config-
ured to send in intervals of 15 seconds with a randomization interval
of 5 seconds and to send the header lines as bursts of single messages
per character.

5.5.3 Producing Traffic From IDS Rulesets

Similar to Mucus [229] and GENESIDS [117], we also produced aMathias
Wagner [39] has

contributed to this
section with his

master project.

data set called the trigger set by using the Snort community ruleset14.
Snort rules contain rules for fast string matching and regular expres-
sion matching for slower but more in-depth analysis after the strings
match. We produced payload data based on the regular expressions
and string matching rules within this set. For the string matching, the
strings that need to be matched are simply copied into the payload.

13 https://github.com/vs-uulm/2017-SUEE-data-set

14 https://www.snort.org/downloads/community/snort3-community-rules.tar.gz

https://github.com/vs-uulm/2017-SUEE-data-set
https://www.snort.org/downloads/community/snort3-community-rules.tar.gz

5.6 summary 81

For the regular expressions, deterministic finite automata (DFAs) are
built (following the DFA construction that will be described in Chap-
ter 8). Then, strings matching these DFAs are randomly produced by
following random paths in the automata until a finite state is reached.
These resulting strings are guaranteed to trigger the regular expres-
sion. Some other information such as protocol (TCP, UDP, ICMP, or
IP) is also read from the rules; depending on this protocol, a port
number might also be necessary, which too can be configured in the
rules or is randomly chosen. If an IP address is configured, it is used.
Otherwise, a random, valid address is chosen.

With this data, the payload is generated that should trigger the
rules. The payload consists of the concatenation of the string match-
ing keywords and the regular expression triggering string. Resulting
empty packets (that would still trigger rules because of their meta-
data) were subsequently removed. If the resulting payload does not
exceed 500 bytes, random padding bytes are added.

Packets are then, in turn, constructed with this payload and
aforementioned information, sent through a dummy interface, and
recorded at another dummy interface. In total, 3 482 rules are trig-
gered by this data set. The trigger set has a size of 190 MiB, 303 800

flows in 349 690 packets as nearly all flows only require one packet
to trigger a rule. The data set is available for download. Download
location and more information is available at Github15.

5.6 summary

The General Purpose Network Testing Framework is a system that
can be used both for live testing and to produce data sets that re-
alistically represent the features of real network traffic. The system
can be distributed on several machines and can be run in client and
server mode. In this setup, the system can be used for live testing of
devices and algorithms in the network. Different classes of network
traffic — both benign and malicious classes — can be produced. Mod-
els for benign web traffic, file sharing, adaptive video streaming, and
storage and marketplace traffic were produced based on literature
and our own measurements. Example data sets for these four traffic
classes were produced and published. The General Purpose Network
Testing Framework is open-source software and publicly available.

In addition, traffic on a web server running at Ulm University was
recorded and anonymized with the help of the Student Union Elec-
trical Engineering at Ulm University. Attack traffic from the slow
DDoS attack tools slowloris, slowHTTPTest, and an adapted version
of slowloris (slowloris-ng) were added to this data set to produce a la-
beled, specialized data set for slow DDoS testing. Based on the Snort
community ruleset, a specialized IDS testing data set was produced

15 https://github.com/vs-uulm/2019-Network-Data-Sets

https://github.com/vs-uulm/2019-Network-Data-Sets

82 the general purpose network testing framework

meant for performance tests of intrusion detection systems. These
data sets were published as well.

This system and these data sets made the evaluations of the sys-
tems in the following parts of this work possible using the trigger
data set and the benign traffic data sets as background traffic for
our evaluation of our IDS acceleration implementation in Part III and
the SUEE data sets as foundation for our tests of the slow DDoS
identification mechanisms. Furthermore, our experiences made in
high-bandwidth network testing made it possible for us to satisfy the
requirements for our tests of both the high-bandwidth IDS tests and
tests of the DDoS mitigation framework, such as throughput, automa-
tion capabilities, and reliability of the test environment.

5.6 summary 83

III
A C C E L E R AT I O N O F I N T R U S I O N D E T E C T I O N

S Y S T E M S

6
I N T R O D U C T I O N T O I N T R U S I O N D E T E C T I O N
S Y S T E M S

Essentially, there are two basic Intrusion Detection System models.
For one, there are host-based Intrusion Detection Systems on per-
sonal computers or servers. They analyze data on the machine they
are installed on, for example, log files to find unauthorized access to
the system or they actively find and fight malware on the system. In
the second case, they are usually called anti-virus or malware detec-
tion systems. Additionally, there are network-based Intrusion Detec-
tion Systems (NIDS) analyzing the network based on flow metadata
on the one hand and the full network data on the other. Going for-
ward, as this work is network-centric, this thesis will focus only on
the network-based mechanisms. Network-based IDS are often used
in central locations in backbone networks where the data rate is the
highest.

NIDS use two fundamentally different attack detection mecha-
nisms: Signature-based mechanisms and anomaly-based mecha-
nisms, which will be explained in the following.

6.1 signature-based nids

Signature-based NIDS compare the network traffic with signatures of
previously known attacks. These systems are very reliable in detect-
ing known attacks and attack vectors, especially of automated attacks.
However, they are not capable of finding new attack methods such as
zero-day exploits.

Hereby, signatures in the system can be represented in a couple of
different ways [54].

state-modeling The signature is modeled through states and
state transitions. Here, only one specific order of state transitions can
be covered, and if a state has not been recognized, the entire attack
is not recognized. Alternatively, Petri nets can also be used to map a
more complicated tree structure.

expert systems Systems that detect intrusions based on rules
that describe the intrusion of attackers into the network are called ex-
pert systems. Often techniques such as forward chaining are used for
the description. Expert systems are particularly suitable if new data
are to be regularly included in the system. These systems are very

87

88 introduction to intrusion detection systems

h

i

s

0 1 2 8

76

4 53

9
e r s

s

eh

¬[h,s]

Figure 16: Example goto function used in Aho and Corasick [45].

i 1 2 3 4 5 6 7 8 9

f(i) 0 0 0 1 2 0 3 0 3

Table 5: Failure function for the example pattern matching machine used in
Aho and Corasick [45].

flexible and powerful, but also slower than simpler models. Simple
rule-based systems are a simplified version of these expert systems.

string matching Searching specific symbol sequences in the
packages is called String Matching. String Matching is easy to im-
plement but very inflexible. The difficulty here is to find strings even
if they are distributed over multiple packets, especially if the packets
are not routed through the IDS in the correct order. In addition, even
small deviations in the character strings cause an attack not to be
detected. Modern IDS contain mechanisms to calculate distances of
signatures to the strings saved in the ruleset of the IDS. String match-
ing in IDS is very often based on the Aho-Corasick Algorithm [45].
Furthermore, NIDS make use of regular expressions to offer more
flexibility to the detection mechanism.

6.1.1 Aho-Corasick Algorithm

The Aho-Corasick Algorithm is a string-matching algorithm first pub-
lished in 1975 by Alfred Aho and Margaret Corasick [45]. Nowadays,
it builds the foundation of most string matching systems. The algo-
rithm is designed to find a finite number of keywords in a string of
text as efficiently as possible, i. e., in a single pass through the text.
For this, a pattern-matching machine must be constructed first, an
example of which can be found in Figure 16. This example was also
used in the original publication. It shows a machine matching the
set of keywords {he, she, his, hers}. The graph is called goto function.
State 0 is the start state, any symbol other than h or s leads back to
state 0; for h or s, the algorithm follows the respective edge. If there
is no state transition edge for the incoming symbol (such as for the

6.2 anomaly-based nids 89

i 2 5 7 9

output(i) {he} {she, he} {his} {hers}

Table 6: Output function for the example pattern matching machine used in
Aho and Corasick [45].

input string ha in state 1), the algorithm follows the failure function
in Table 5 mapping a state into another state. The orange states (2,
5, 7, and 9) are states that return a match of one or more keyword
according to the output function (Table 6).

The construction of the matching machine begins with the construc-
tion of a goto graph. Every graph begins with the start state 0; then,
all keywords are added one by one to the graph in arbitrary order.
New edges are only added if necessary. The keyword is added to
the output function of the state at which its path terminates. When
all keywords are added to the graph, the loop is added to state 0 for
all input symbols other than those on the outgoing edges. The fail-
ure function is the last part missing to finish the matching machine.
Given the depth of a state as the number of edges between the state
and the starting state 0, we begin to build the failure function at the
states with the lowest depth and then go up until we reach the states
with the deepest depth. For depth = 1, the failure function is always
state 0. Now, to find the failure function of any state s with depth
d > 1, we take the nonfail values of all states of depth d− 1 (incom-
ing edges of these states). If one of the incoming edges has the same
value as the incoming edge of s, this state can be set as target of the
failure function for s.

This algorithm allows for very fast string matching. Modern IDS
such as Snort make use of this algorithm by building one or a small
group of state machines for the combination of all string matching
rules. Unfortunately, the algorithm only works for strings and not for
regular expressions. For those, IDS still need one state machine for
each expression.

6.2 anomaly-based nids

Anomaly-based systems monitor network traffic and attempt to re-
port suspicious behavior that can indicate an attack. The great diffi-
culty for these systems is to reduce the false-positive rate to a practical
level. Since in general only a tiny part of the network traffic belongs
to attacks, even a false-positive rate of say 1% — which appears to be
low at first glance — can make an IDS mostly unusable. As a thought
experiment, assuming 0.001% of the network traffic would be attacks
and attacks would be reliably detected, if only 1% of the network traf-
fic is detected as false positive, only every thousandth attack alert is
a real attack.

90 introduction to intrusion detection systems

Anomaly-based Intrusion Detection Systems can be divided into
different subgroups. The following subdivision follows the classifi-
cation of Garcia et al. [128]. Dividing the systems according to their
techniques, three classes, namely statistic-based models, knowledge-
based models, and machine learning, can be identified.

statistic-based models In a learning phase, the statistical
models provide for the creation of a network profile based on
recorded network traffic. The metrics for this profile are, for ex-
ample, the transmission rate, the number of packets of a protocol,
the connection rate, or the number of different IP addresses. If the
IDS is now in operation, i. e., in the recognition phase, a profile of
the current network traffic is created and compared with the previ-
ously created profile. Deviations above a certain threshold value are
signaled as an alarm.

The first statistical methods used univariate models with inde-
pendent Gaussian random variables [108]. Later, multivariate sys-
tems with dependencies between the random variables were intro-
duced [335]. Further approaches are the use of empirical distribution
functions, Markov models to map TCP connections or the modeling
of the connection with gray value matrices [83]. Another method
derived from information theory is measuring the entropy of reg-
ular network traffic and comparing it with current network traffic.
The idea is that attacks have a different redundancy than ordinary
network traffic [182].

A big advantage of statistical methods is that no prior knowledge
about network traffic is required. Instead, the knowledge can be ob-
tained directly by observing network traffic. However, not every at-
tack scenario can be detected with statistical data as they do not influ-
ence the network statistics significantly (e. g., small, targeted attacks).

knowledge-based models Expert systems are also available
for anomaly-based NIDS (A-NIDS). These represent one of the most
frequently used types of detection for A-NIDS. They classify the au-
dit data in three steps. First, different characteristics and classes of
data in the training data are identified; then, rules, parameters, or
procedures are derived. The audit data is then assigned to the corre-
sponding rules, parameters, and procedures.

Specification-based anomaly detection is a model in which human
experts create the model based on the specified system behavior. With
a complete specification — and if legitimate behavior beyond the spec-
ified can be excluded — this method is very effective. Only attacks
that follow the specification cannot be detected by such a system.
However, it is problematic that many network systems — especially
those considered in this thesis — do not allow a simple limitation to
clear specifications. Especially when considering Internet traffic, not

6.2 anomaly-based nids 91

adhering to specification is quite common. Another problem with
these systems is their low flexibility. In order to extend the system,
the specification, implementation, and IDS must be adapted. The
more the specification is extended, the higher the risk that attacks
within the specification become possible. For example, specification-
based anomaly detection systems in downward-compatible systems
can hardly detect downgrade attacks.

Specifications for these systems can be defined in a few different
ways. For one, in a finite automaton, in a description language [257,
319, 325], or with a rule-based classification.

models based on machine learning Machine learning cre-
ates knowledge based on accumulated experience of a technical sys-
tem. In a learning phase, such a system gets to know the environment
itself and thus adapt to the special conditions of this environment.
Changes in the system then require a new learning phase, but pos-
sibly no changes to the IDS itself. Practical problems arise from the
fact that training data must be created that is guaranteed not to con-
tain attacks and represents the real network traffic as well as possible.
However, one advantage of these technologies is that learning dur-
ing operation is basically possible, but there is also the danger that
an attacker can slowly change the network traffic training the IDS ac-
customed to the changed state and thus remain undetected. Unlike
statistics-based models that often require a learning phase, the model
itself is not necessarily known in advance. While statistics-based mod-
els learn parameters for their system, machine learning approaches
build and refine the model itself during the learning phase.

There are many different approaches to machine learning. The
best known and most common methods in the context of NIDS are
explained in the following.

• Bayesian networks represent probabilistic relationships between
variables by an acyclic graph. The nodes represent random vari-
ables and the edges conditional dependencies [327].

• Markov models can be divided into Markov chains and Hidden
Markov models. Markov chains are state machines in which
probabilities are assigned to the transitions. These can be used
to model the topology and capabilities of the system. The Hid-
den Markov Model sees the system as a Markov chain, but its
properties are not observable. There are numerous IDS models
based on Markov models [204, 336, 337].

• Artificial neural networks — used for example, in an IDS by Mi-
ikkulainen et al. [265] — simulate the approach of biological
neural networks in the human brain. Neural networks are very
flexible and can adapt to changes in the environment compara-

92 introduction to intrusion detection systems

tively easily. Neural networks, however, often make it hard to
reconstruct the thought process behind decisions being made.

• Fuzzy logic is a generalization of Boolean logic by blurring truth
statements. In IDS, fuzzy logic can be used to model network
traffic, since its properties can be easily mapped [73]. A be-
havior is considered normal if it moves within a certain range.
Fuzzy logic is often used here in connection with data mining
techniques [113]

• Genetic algorithms are a special form of evolutionary algorithms
that use various evolutionary biology-inspired techniques such
as inheritance, mutation, selection, and recombination. In IDS,
genetic algorithms can be used to create classifications [194],
to find various parameters and properties of detection pro-
cesses [73], or to filter network traffic [149].

• Clustering techniques assign the observed data to groups. These
groups are often represented by a representative point in this
group. Data points are then assigned a distance to these groups,
such as the Euclidean distance or the Mahalanobis distance. If the
distance exceeds a certain threshold, an anomaly is detected.
Mananadhar and Aung developed an IDS system on this ba-
sis, which is limited to TCP headers and other easily accessible
data [207].

6.3 overview of available ids systems

Table 7 gives an overview of different IDS systems that — according to
the manufacturer — also work anomaly-based adapted. The table was
adapted from Garcia et al. [128]. Three open-source solutions are es-
pecially noteworthy, as they are widely used in research. Snort [263]
is a signature-based IDS, but with extensions. it also offers rudimen-
tary anomaly-based detection capabilities, such as the SPADE (Sta-
tistical Packet Anomaly Detection Engine) plug-in, which has been
discontinued. Snort is available in two different versions. Snort 2 is
the current stable version, while there is also a preview version of the
upcoming Snort 3. Snort 3 is a completely rewritten version. Unlike
Snort 2, Snort 3 features multithreading. In 2013, Cisco took over
the development of Snort. The Zeek Network Security Monitor [247]
(formally known as Bro Network Security Monitor) is a framework
for Intrusion Detection Systems that comes with its own scripting
language. While Zeek can be used as an NIDS, it also can analyze
network events. Both Snort and Zeek are based on the libpcap library.
The third open-source platform is Suricata, developed by the Open
Information Security Foundation [300]. Suricata is closely related to
Snort. For instance, rulesets written for Snort can also be read by
Suricata; some third-party tools are also compatible.

6.3 overview of available ids systems 93

Name Manufacturer H R Anomaly-related techniques

AirDefense Guard AirDefense & Inc. • • Context-aware detection,
correlation and multi-
dimensional detection engines

Barbedwire IDS Soft-
blade

BarbedWire Technolo-
gies

• • Protocol analysis, pattern
matching

BreachGate WebDe-
fend

Breach security • Behaviour-based analysis, sta-
tistical analysis, correlation

Zeek (Bro) Lawrence Berkeley
National Laboratory

• • Application level semantics,
event analysis, pattern match-
ing, protocol analysis

Checkpoint IPS-1 NFR Security • • Confidence indexing

Cisco Intrusion Pre-
vention System

Cisco Systems • • Behaviour analysis, statistical
analysis

DeepNines BBX Intru-
sion Prevention (IPS)

DeepNines Technolo-
gies

• Multi-Method Inspection
(MMI), behaviour analy-
sis, protocol analysis, data
correlation

EMERALD SRI • • Rule-based inference,
Bayesian inference

FireProof Radware Ltd. • Protocol anomalies

Firestorm NIDS Gianni Tedesco • Protocol anomalies

Mazu Profiler Mazu Networks & Inc. Behaviour analysis (heuristics)

ModSecurity Ivan Ristic • Event correlation

Network at Guard
(NG)

C-DAC (formerly Na-
tional Centre for Soft-
ware Technology)

• • Protocol anomaly detection,
statistical analysis

Next Generation Intru-
sion Detection Expert
System (NIDES)

SRI • Statistical analysis

Nitro Security IPS Nitro Security • Behaviour analysis

nPatrol nSecure Statistical analysis (profiles)

Portus (PAD) Livermore Software
Laboratories, Inc.

• • Protocol anomaly detection

Prelude IDS Yoann Vandoorselaere
et al.

Open platform/multiple
anomaly-based modules
available (3rd party)

SecureNet IDS/IPS Intrusion Inc. • • Protocol decoding, protocol
anomalies

Siren Penta Security • • Abnormal user behaviour

Snort IDS Marty Roesch • Open platform/multiple
anomaly-based modules
available (3rd party)

Snort_inline Rob McMillen • • Open platform/multiple
anomaly-based modules
available (3rd party)

Sourcefire ETM Sourcefire Inc. • • Network behaviour analysis

SPADE Silicon Defense Statistical analysis

StealthWatch Lancope • • Network behaviour analysis,
“concern index”

Strata Guard IDS/IPS StillSecure • • Behaviour analysis, protocol
anomalies

Symantec Intrusion
Protection

Symantec • • Behaviour-based

TippingPoint In-
trusion Prevention
System

3COM/TippingPoint
Technologies

• Statistical analysis, profiles

Toplayer Attack Miti-
gator IPS

Top Layer Networks • • Statistical analysis, profiles

Table 7: Overview over anomaly-based NIDS systems from Garcia et
al. [128]. H = Hybrid, R = Response

94 introduction to intrusion detection systems

It is noticeable that the anomaly-based systems are all based on a
signature-based detection model. Most systems, therefore, rely on
a hybrid solution in order to be able to use the advantages of both
models. Some of the systems provide active responses to threats, for
example, by integrating a firewall, resetting TCP connections, or in-
serting a honeypot. Most manufacturers do not make any statements
on how extensive anomaly-based detection is used in their systems
or what techniques are used [128].

6.4 circumventing intrusion detection systems

To bypass IDS systems, various techniques are used, which were com-
piled by Chaboya et al. [88]. For example, it can be exploited that the
IDS may handle network traffic differently than the target system
since the IDS often uses a different operating system than the target
and is often located in a different part of the network. The IDS can
also be overloaded, which may cause the attack packets not to be
analyzed by the IDS, or the IDS might be drowned in a flood of at-
tack messages. IDS stimulators are used to trigger as many alarms as
possible to achieve exactly that. Furthermore, attacks can be masked.
For example, the target system may interpret 0x2f as /, but the IDS
may not. This can then allow a directory traversal attack past the
NIDS. Zero-day attacks are impossible to detect for signature-based
systems. Anomaly-based systems, in principle, can detect even zero-
day attacks; however, as they were never tested against these attacks,
there can be no guarantee.

To avoid detection by signature-based systems using pattern-
matching, polymorphisms can be used, i. e., the malicious code is
changed regularly, for example, by encrypting it each time with a
different encryption algorithm [110].

Another method to circumvent detection is to distribute the content
of packets so that an IDS must first receive and assemble the entire
packet stream to analyze the content [97].

The analysis of IDS alerts is usually done manually by administra-
tors. One way to ensure that an attack detected by the IDS is still
successful is to make the administrator believe that the attack was
unsuccessful. This can be achieved, for example, by not attempting
to connect to the system immediately after detecting a backdoor in a
system. Thus the scanning of the network is recognizable; the success
in finding a gap is not.

6.5 state of the art in ids acceleration

As NIDS need to analyze and keep up with all traffic passing through
entirely, the problem of throughput rising faster in networks than
processing power has affected IDS since their inception. Many ap-

6.5 state of the art in ids acceleration 95

proaches towards reducing the impact have been analyzed. The ap-
proaches can be roughly summarized in two categories [84]. On the
one hand the selective omission of data (data reduction) in order to
control the data rate either randomly (sampling) or more intelligently
by utilizing known features of the network and on the other hand the
distribution of the network stream to several instances of the IDS and
thus parallelization of the processing.

6.5.1 Data Reduction

Data reduction can be achieved by sample analysis instead of a com-
plete analysis of all network traffic. Brauckhoff et al. examined the
effects of the missing data and came to the conclusion that no nega-
tive effect is detectable with volume-based analysis methods, but flow
count metrics are affected [69]. Mai et al. reviewed several sampling
procedures and found impairments of anomaly-based IDS, both in
terms of false-positive and false-negative rates [205], especially in the
detection of portscans [206]. Contrary to the classical sample anal-
ysis, the current data filtering algorithms do not proceed randomly
but consider specific properties of the network traffic. Sample analy-
sis taking IP flows into account significantly reduces the error caused
by data filtering. In these algorithms, samples are taken from short
connections rather than from long ones [237]. Another method to im-
prove sample analysis is to ensure that the maximum number of sam-
ples the system can handle is taken. Such a method was presented by
Braun et al. [71].

The heavy-tail property of TCP connections can also be used for
data filtering. Heavy-tail here means that only the first packets of
a connection are essential for security analysis. If, for example, it is
made clear after an SSH connection has been established that the user
has authorization for this connection, further packets in this connec-
tion can be left out of the analysis without hesitation and, for exam-
ple, a possibly extensive backup copy does not have to be completely
analyzed by the IDS. However, attackers knowing how the IDS ana-
lyzes the traffic could move attack traffic to the end of the payload
to circumvent the IDS. A pre-filter that allows this pre-sorting has
been implemented on an FPGA platform [320] and connected to the
Bro — now Zeek — IDS [134].

6.5.2 Parallelization

Parallelization is the second approach that has found widespread use.
Vasiliadis et al. [307], for example, rely on GPU’s unique capabili-
ties for parallel data processing with their development based on the
open-source program Snort. They doubled the throughput compared
to the unmodified version of Snort. They moved the regular expres-

96 introduction to intrusion detection systems

sion parsing from the CPU to the GPU and therefore moved one of
the most computationally stressing parts of the data analysis off the
CPU. The high rate of acceleration of the system is elevated by the
fact that this older version of Snort only utilizes one CPU core. No
attempt has been undertaken to build a similar system with the new,
upcoming version of Snort under version number 3. Snort 3 is a com-
plete multicore re-implementation of Snort.

The open-source IDS Suricata [300] also features GPU-acceleration
in some older versions. However, the development has been discon-
tinued, and the feature was removed in 2018 as the feature was “un-
maintained, untested and very likely broken” [291].

Load distribution to several computers is also a widespread ap-
proach. The Zeek Network Security Monitor [301], for example, is
designed to be distributed on multiple machines in the network. In
addition to a central instance coordinating the IDS, several worker
instances analyze network traffic. Difficulties to be considered with
such a system were described by Vallentin et al. [305] and solved for
Zeek [245]. First, the traffic must be evenly distributed among all
analysis nodes to minimize the necessary communication between
instances. In addition, the nodes must coordinate their analysis at
the lowest level, and the results must be validated. It is also possi-
ble to run multiple Zeek instances on one computer. This way, the
computer’s entire computing power can still be fully utilized, even
though each worker uses only one CPU core. The network card
then distributes the different connection streams to the different in-
stances [245]. How a data stream can be distributed to different
instances was described by Schneider et al. [275]. In 2003, Cisco
patented a method for distributing network traffic from a load bal-
ancer to many instances and finally analyzing it in parallel signature-
based IDS instances [279].

FPGAs are very well suited for parallel data processing; therefore,
approaches are also being pursued to implement parts of the IDS in
them. Jiang et al. have implemented rules of the Snort IDS on a
Xilinx-5 [158]. The packet classification (and the analysis of Internet
traffic [171]) can be done on an FPGA [284]. Pontarelli et al. follow the
approach of splitting parts of the rules into several FPGAs and have
specialized hardware implementations available that can implement
this part of the rules particularly fast [250].

In order to parallelize statistic-based NIDS systems, it is necessary
to be able to distribute the statistical methods. Such a model was
developed by Amann et al. [51].

Parallel processing can only be used if different actions are not in-
terdependent, i. e., they do not need to be processed sequentially. The
string matching algorithms used by the IDS systems for recognition
are strictly sequential and work through each byte one by one in the
naive implementation since they work with finite automata. One way

6.5 state of the art in ids acceleration 97

to speed up parsing is to parse several bytes simultaneously. With-
out knowing the previous state of the machine, however, it is difficult
to do this. Luchaup et al. [200], therefore, propose to estimate a state
and later correct the results if necessary if the estimate turns out to be
wrong. The estimates are supported by statistical analyses to achieve
the highest possible number of hits [200].

A review of literature in this research area revealed several pre-
vious attempts in combining IDSs with FPGA-based hardware pre-
filters. The majority of academic prototypes are built with a NetFPGA
1 card, an FPGA-based board with network interface card function-
ality. One such prototype is the Shunt project [320] later combined
with the Zeek IDS [134], this architecture offloads decisions based on
IP addresses and connection tuples onto a NetFPGA pre-filter. Zeek
manages a shared memory between itself and the Shunt to send in-
structions. Zeek is a comprehensive network security monitor with
an extensive set of features [246, 306]. It provides a framework that
includes a scripting language; this allows deployers to tailor Zeek
to their specific needs. A different approach was proposed by Song
et al. [285]. Their idea was to add a string-matching hardware pre-
filter to the signature-based Snort 2 IDS. They implemented string
matching in an FPGA via Bloom filters, which still allows for false
positives. Nonetheless, Song et al. show that the amount of packets
that still have to be analyzed by the Snort IDS is massively reduced.
Snort [263] is popular both in practical applications and in research
featuring rulesets that are often used by researchers to test their own
and other implementations (e. g., [64, 100, 151, 332]). Floyd et al. [121]
translated a regular expression into integrated circuits. Translation of
generic regular expressions was done soon after [282] to accelerate the
command-line tool grep. Clark et al. [100] provide a methodology to
implement regular expressions using an NFA in FPGAs, specifically
for IDSs. This provides a rudimentary framework and guidelines for
future implementations. Hutchings et al. [151] created a conversion
of regular expressions to an HDL. This resulted in a 600x increased
performance compared to software. Bispo et al. [64] set out to create
an efficient implementation of regular expressions on FPGAs. They
provide techniques to reduce spatial cost and to increase performance,
improving efficiency by 10x. Lin et al. [197] investigated the efficient
implementation of regular expressions on FPGAs. They propose the
extraction of common sub-regular expressions and share these in or-
der to achieve a reduced area cost. They did not evaluate their system
concerning throughput. Baker et al. [57] created a custom microcon-
troller on an FPGA, that is able to interpret DFAs. Furthermore, other
research has also targeted efficient implementations of DFAs in FP-
GAs [74, 225]. Yang et al. [333] provide a conversion from regular
expressions to an HDL and also propose several optimizations, such
as the multi-character input matching optimization, similar to [332].

98 introduction to intrusion detection systems

Jaic et al. [155] combined Snort with an FPGA to offload regular ex-
pressions for Solarflare AOE devices. Researchers have also increased
the throughput of firewalls by combining them with FPGAs, for in-
stance, Hager et al. [139, 140], and Fießler et al. [120].

While many attempts at accelerating IDS with FPGAs were under-
taken, most of these systems fail to report how many rules are pos-
sible to be implemented and the space requirements on the FPGA
or built their systems solely in simulators. A full system implemen-
tation capable of handling regular expressions on FPGAs integrated
fully with an IDS cannot be found in the literature.

7
P R O B L E M S TAT E M E N T

Intrusion Detection Systems (IDS) are important for security in net-
works to find and circumvent attacks. Recent attacks (e. g., botnet
software such as Mirai [180]) show how legacy systems in networks
can be a liability. Intrusion detection can help to mitigate the extent of
these attacks as they can function as an early warning system. How-
ever, network bandwidth increases fast; it increases a lot faster than
computing capabilities of hardware platforms [131, 224]. At the same
time, detection mechanisms become more and more complex. From
simple string matching to more complex regular expression matching
to metadata analysis and sophisticated machine learning algorithms
for anomaly detection, intrusion detection can become quite resource-
demanding. The core of most modern IDS is the string matching and
regular expression matching engine using 75% of the total CPU pro-
cessing time [52, 79, 307]. It is a very resource-intensive part of the
system and therefore offers a big opportunity for improvement. CPUs
are designed to offer medium performance for any generic calcula-
tion. However, specialized processors can be tailored to the use case
of their operational area and optimized accordingly. A design of a use
case-specific processor can, therefore, in theory, improve the match-
ing capabilities of IDS. In the following, we want to discuss three
basic concepts for such processors. For one, we look into an FPGA-
based system where the regular expressions themselves are translated
and molded into hardware. The second design is an FPGA-based co-
processor with its own regular expression based assembly language
that can be translated into an ASIC. Furthermore, we will look into
graphics processors (GPUs). GPU cores are much smaller and less
versatile than CPU cores, but for specific applications that share key
features of graphics processing, moving the calculation from the CPU
to the GPU often enables far-reaching improvements.

Parallelization has proven to be a viable solution for many resource-
hungry algorithms in computer science. Today’s multi-core architec-
tures for CPUs make parallel computing possible even on commod-
ity hardware. However, multi-purpose processors lack the optimiza-
tion of specialized hardware in the form of ASICs or FPGAs or the
massive parallelization options of graphics processors. We want to
analyze whether Intrusion detection systems could benefit from spe-
cialized hardware modules. There are two fundamentally different
architectures for such systems:

• The pre-filter approach consists of a system that sits in front
of the IDS that pre-sorts the data. This means that the pre-

99

100 problem statement

filter assesses whether the packets are benign or require a more
detailed analysis. Such a filter does not have to detect attack
traffic perfectly but has to be sure about benign traffic.

• A co-processor is a highly specialized processing unit to which
parts of the processing workload can be delegated. Unlike a pre-
filter, a co-processor must be able to analyze the data perfectly
and distinguish between legitimate and harmful traffic.

We identified three different hardware options that can be used for
the two models.

• For one, a Field Programmable Gate Array (FPGA). An FPGA
is an integrated circuit that can be programmed in the field,
i. e., while in service. The reprogrammability of an FPGA gives
the unique possibility to bypass the restrictions of fixed transis-
tor circuits. Instead of instructions that have to be interpreted
and then sequentially processed, the instructions can be trans-
lated directly into circuits. This is particularly useful for the pre-
filter approach; the implementation of the regular expressions
matcher can be done directly in the wiring of the transistors.

• Another approach is the Application Specific Integrated Circuit
(ASIC). Unlike a CPU, an ASIC is not able to execute arbitrary
instructions but is restricted to very few, more complicated in-
structions — if it supports instructions and is programmable at
all. This limitation of the task area makes it possible to opti-
mize the hardware much further. Typical areas of application
for ASICs include fast Fourier transformations in digital signal
processing or the voice digitization in older mobile phones. It
has to be investigated how such a co-processor as ASIC could
be implemented.

• The third approach is the Graphics Processing Unit (GPU). A
GPU is intended to manipulate and alter memory for image
creation to output these images on a display device. The GPU
should display these images in real-time with as little delay as
possible at high frequencies. A GPU features many small pro-
cessing cores while a CPU features very few, bigger cores. In
contrast to a CPU, a GPU is highly optimized for manipulating
large matrices and vectors in parallel. In recent years, the GPUs’
potential as a Co-Processor for other uses than those directly
related to image manipulation has been recognized. GPUs have
often been used to mine cryptocurrencies and for machine learn-
ing. Vasiliadis et al. [307] already saw the potential to use GPUs
as a Co-Processor for IDS back in 2008 and the Suricata IDS
offered support for GPUs until recently.

7.1 research questions 101

7.1 research questions

Based on the models and hardware options in the aforementioned
deliberations, we identified the following research questions:

1. Based on maintainability, cost, and acceleration potential, which
of the hardware options is the most promising?

2. Based on the decision following the first question, how can this
option be implemented?

3. Can this option accelerate the IDS sufficiently?

In order to obtain the necessary results to answer these questions,
several steps are necessary:

• An analysis of how prototypes of the three different hardware-
based acceleration mechanisms can look like.

• A prototype of the mechanism that shows the most potential.

8
H A R D WA R E - B A S E D I D S A C C E L E R AT I O N S Y S T E M

Network-based Intrusion Detection Systems rely heavily on the per-
formance of its string matching and regular expression matching
engines. String matching is done with the highly performant Aho-
Corasick algorithm. Regular expressions are converted to finite au-
tomata through a series of algorithms. These finite automata, in turn,
are applied on the packet stream to analyze the traffic.

CPUs are generalized processing units capable of every potential
processing operation possible. However, for specific purposes, other
processing designs can be a lot more promising. Therefore, we an-
alyze how specialized hardware can be used to accelerate Intrusion
Detection Systems.

We analyze several aspects of this approach. For one, we need to
assess how regular expression matching works in software to see how
this can be adapted to hardware. Then, the location of the hardware
module needs to be assessed. Two basic designs are possible: A pre-
filter analyzing the traffic before forwarding it to the software-based
IDS and a Co-Processor, which is called by the CPU for help when
necessary. For the second design, it is also necessary to optimize
the packet forwarding process to eliminate possible bottlenecks. The
traffic does not have to be analyzed by the CPU; therefore, options to
bypass the CPU need to be explored.

Hardware-based acceleration options require the purchase of this
very hardware. It needs to be assessed whether the acceleration
achieved sufficiently offsets the costs of this purpose-built or bought
hardware compared to the cost of a basic cluster-based approach us-
ing the default software implementations.

While none of the common open-source IDS (Snort, Suricata, and
Zeek) currently support any of the hardware-based acceleration meth-
ods, at least Suricata did support GPU-acceleration in an older ver-
sion. Therefore, Suricata’s implementation also needs to be assessed.

As a basis for our implementations and evaluations, we choose the
Snort IDS due to its prevalence, modern implementation (complete
rewrite for version 3), and well-supported and regularly updated
community ruleset.

8.1 regular expressions and finite automata

Regular expressions are a description language for search patterns. A
regular expression processor or regex processor interprets the regu-
lar expression and applies the regular expression on text to find the

103

104 hardware-based ids acceleration system

pattern described in the expression resulting in a match or no matchDominik Lang [26]
has contributed to

this section with his
master thesis.

and a position or several positions of the match. Regular expressions
consist of meta characters and regular characters. Regular characters
are characters to be matched. A regular expression only consisting
of regular characters is a simple string matching mechanism. The
metacharacters are instructions for the regex processor on how to in-
terpret the regular characters. It can give the processor the instruction
to not only match one occurrence of the regular character but many
(by giving it a specific amount or a range which can go from zero to
infinity) or invert the characters listed (match if this character is not
present). The wildcard matches for any character and can be used,
for instance, when a pattern should match specific keywords at the
beginning and the end of a string while the characters in between do
not matter.

In the Chomsky hierarchy, regular expressions are a description
language for the type-3 grammar or regular grammar. This means they
have the same expressiveness as finite automata. This fact is widely
used for regex processors for the internal representation of the regu-
lar expression and the implementation of the state machine matching
the expression on the text. Finite automata are usually represented
either as non-deterministic finite automata (NFA) or deterministic fi-
nite automata (DFA). They contain states and state transitions that are
dependent on the input. The fundamental difference between NFA
and DFA is that an NFA can contain several state transitions from
one state to different other possible states on the same input. DFAs
are a subgroup of NFAs where the amount of such non-deterministic
transitions is zero. Implementing an NFA requires the implementa-
tion of backtracking where, when one path through the state machine
leads to a dead end, the machine goes back to the state of the last
non-deterministic transition and tries a different way. Only when
all possibilities were tried or the pattern matches, the machine stops.
While DFAs are merely a subgroup of NFAs, there still is a DFA for
every NFA; i. e., every NFA can be transformed into a DFA. NFAs re-
quire less memory than their DFA counterparts; converting an NFA
to a DFA can, in the worst case, lead to an exponential increase of
states (n states in an NFA could lead to 2n states in a DFA). However,
no backtracking is needed, which leads to far better performance on
sequential machines such as CPUs.

Despite the potential exponentially higher space requirements for
DFAs, modern Intrusion Detection Systems such as Snort still man-
age their rulesets as DFAs as the amount of memory used is still
manageable for modern computers and the advantages of not need-
ing to implement backtracking and the speed advantage far outweigh
the space requirements.

As the naïve, general conversion of regular expressions to a finite
automata leads to non-deterministic finite automata, a general trans-

8.1 regular expressions and finite automata 105

formation from NFA to DFA is a necessary second step for the inter-
nal representation of regular expressions in memory in most IDS.

8.1.1 Thompson’s Construction Algorithm — Regular Expression to NFA
Conversion

The transformation of regular expressions to NFAs is a topic that
has already been worked on quite a while ago. McNaughton and
Yamada [215] and Thompson [302] developed the algorithms in the
1960s that are still used today. The algorithm is, therefore, often called
the McNaughton-Yamada-Thompson algorithm or Thompson’s con-
struction algorithm. In principle, the algorithms follow a recursive
divide-and-conquer concept. Thompson creates sub-expressions and
converts them to sub-graphs, combining them to build the full ex-
pression according to a set of rules described in the following with
the graphical representation based on Aho et al. [46, Chapter 3.7.4],
with the end state in orange.

The empty-expression ε shall be represented with:

ε fq

where ε represents an empty transition.
Implementing a symbol (i. e., regular character) a is done with the

expression:

a fq

The union expression “|” (“or”) is represented with

fq

ε

ε

ε

ε

where the gray ellipses represent sub-graphs that need to be in-
cluded here when necessary. The connections go to the initial state of
the sub-graphs and emerge at their final state.

For the concatenation, where two sub-expressions follow each
other in the regular expression without any symbol in between, the
graph looks as follows

f

106 hardware-based ids acceleration system

where the final state of the first (left) sub-graph merges with the
initial state of the second (right) sub-graph and becomes one.

The Kleene star expression “*” is represented by

f

ε

ε

εε

where the ellipse is the sub-graph which the Kleene star affects.
Finally, brackets “(�)” that are used to explicitly group sub-expres-

sions in regular expressions also explicitly group sub-graphs in the
NFA.

With this set of rules, it is possible to prove that any regular expres-
sion can be implemented in an NFA.

8.1.2 NFA to DFA Conversion

Algorithm 1 Removing all empty transitions from NFA.

for all nodes Ni ∈ NFA from the last to the first do
for all outgoing transitions do

if transition is empty then
follow transition to next node Nj;
add all outgoing transitions from Nj to Ni;
if Nj is a final state then
Ni becomes a final state;

end if
Remove the empty transition;

end if
end for

end for
remove unreachable states;

Two steps have to be undertaken to convert the NFA to a DFA.
For one, the NFA resulting from the previous step include a large
number of empty transitions, which is one cause of non-deterministic
behavior. Algorithm 1 needs to be performed to remove these empty
transitions.

Now, there are still non-deterministic state transitions, for example,
due to the Kleene star. To fully convert the NFA to a DFA, the Rabin
and Scott powerset construction algorithm can be used [254] that, in
principle, works as can be seen in Algorithm 2. The resulting DFA
can now be used by the IDS.

8.1 regular expressions and finite automata 107

Algorithm 2 Powerset Construction Algorithm.

Create a new empty state machine DFA with a set of states;
Add initial state of NFA to DFA;
for all state s in NFA beginning with initial state do

add state s to DFA
for all output character c in s do

create new state t by combining the set of states C that c
leads to.
if t /∈ DFA then

add all transitions from all states in C to t
if any state in C is a final state then
t is a final state;

end if
add t to DFA

end if
end for
add transition (c→ t) to s

end for

8.1.3 Character Classes and Their Negations

In theory, these algorithms suffice to produce DFAs from any regu-
lar expression. However, in many circumstances, these algorithms
are impractical. Regular expressions often feature character classes
where not only one character but several can lead to a state transition
in the DFA. With the aforementioned algorithms, these would be split
up, and several transitions would be added to the graph. Especially
for small character classes, this works fine and also fixes the potential
issue when two or more character classes transition to different states
while sharing common characters.

However, the larger the character class, the larger the NFA, and
in turn, the larger the DFA. This can lead to an explosion of state
transitions, especially with negated character classes, where a transi-
tion happens when no character in the list matches. These were not
foreseen in Thompson’s construction algorithm, which means that in
order to use the algorithm, the regular expressions featuring nega-
tive character classes have to be converted into regular expressions
compatible with Thompson’s algorithm first. With negative character
classes, this is possible by inverting the class. Instead of listing the
characters that cannot match, we can always list the characters that
do match instead, provided that the list of all possible characters is
known. It is evident that this is not practical. If in the most extreme
case, we just do not want to match one specific character, even if the
system only allows the original 7-bit ASCII characters, the set would
still go up from one character to 127 and in turn to 127 transitions,
not even considering 8-bit extended ASCII or 32-bit Unicode UTF-8.

108 hardware-based ids acceleration system

fq

a

b

c

fq [abc]

Figure 17: Difference between original Thompson’s algorithm (left) and us-
ing character classes (right) for the same sub-expression.

fq

[abc]

[cde]

Figure 18: Example of an NFA with two transitions with overlapping char-
acter classes.

In some cases, the set of possible characters might even be unknown,
as an attack might use invalid characters to throw of Intrusion Detec-
tion Systems. Therefore, the algorithms had to be adapted under the
precondition that the full set of regular characters is unknown. For
one, instead of breaking up character sets as the original Thompson’s
construction algorithm does, the algorithm keeps them as one state
transition.

Figure 17 illustrates the difference. While on the left, the original
Thompson’s algorithm is used, the right uses character classes to con-
dense three different transitions into one.

The removal of empty transitions remains unaffected by this; how-
ever, the powerset construction algorithm needs to be adapted to cope
with several overlapping character class transitions. We are first tak-
ing a look into the most straightforward case of two overlapping tran-
sitions. There are three different possible cases:

1. Neither class is negated.

2. Both classes are negated.

3. Exactly one class is negated.

The transitions have to be split up in a way the powerset construc-
tion algorithm can work again. If neither class is negated, this can be
very straight forward. Given the example in Figure 18 of two classes
A = {a,b, c} and B = {c,d, e}. To build the minimal set of transitions
for the powerset construction algorithm to work, we need to observe
the three different options for characters:

1. Character is in both classes.

2. Character is only in class A.

3. Character is only in class B.

8.2 concepts 109

Therefore, we build the following new classes:

A∩B = {a,b, c}∩ {c,d, e} = {c}

A \B = {a,b, c} \ {c,d, e} = {a,b}

B \A = {c,d, e} \ {a,b, c} = {b, e}

(8)

With these new classes, the powerset construction algorithm works
again.

Now, if both classes are negated, the deMorgan rule and A \ B =

B \ A (Theorem 2; Proof in Appendix) can help us build the new
transitions as follows:

A∩B = A∪B = {a,b, c}∪ {c,d, e} = {a,b, c,d, e}

A \B = B \A = {b, e}

B \A = A \B = {a,b}

(9)

If only one transition is negated, (without loss of generality, we
choose to invert B) the following transitions can be built following
directly from the properties of complements:

A∩B = A∪B = A \B = A \B = {a,b, c} \ {c,d, e} = {a,b}

A \B = (A∪B) = A∩B = {c}

B \A = (B∪A) = {a,b, c,d, e}

(10)

Furthermore, there is the special case of the any character in regular
expressions “.”. This character has to be treated as the negation of the
empty set ∅, and the aforementioned algorithms work as intended.

Generalized Case of More Than Two Transitions

To allow this algorithm to work with more than two transitions, we
consider the case where we already built disjunct transitions for all
other transitions, and another transition X needs to be considered. All
transitions are already disjunct to each other except for X. Therefore,
we only need to build disjunct transitions for each transition with X
following the aforementioned rules.

Therefore, as we know we can build disjunct transitions for two
transitions and we can build disjunct transitions for every newly
added transition to a set of disjunct transitions, by complete induc-
tion, we can build disjunct transitions for any number of transitions.

8.2 concepts

Keeping this state machine generation in mind, three different types
of hardware acceleration were investigated. The first one was to di-
rectly synthesize the regular expressions in an FPGA based on the

110 hardware-based ids acceleration system

input
arbiter

ne
tw

or
k

da
ta

in
pu

t

buffer

filter port
buffer

output
∧

queues

ne
tw

or
k

da
ta

ou
tp

ut
s

filter module

Figure 19: Data flow of packets through the modules of the NetFPGA; feed-
back line of the filter to stall the input in orange [10].

aforementioned state machines generated by the aforementioned al-
gorithms. This model follows a pre-filter design, where the system
filters out traffic that does not need further analysis and instead for-
wards any packet where a match occurred to an IDS. The second
model follows a Co-Processor design, where the IDS is supported by
a highly specialized processing core only capable of matching regular
expressions in parallel. The Co-Processor design is then adapted to be
used either with ASICs or GPUs. The GPU implementation requires
the same transformation of regular expressions into state machines
as the FPGA-based implementation.

8.2.1 FPGA-based parsing of Regular Expressions

The first model to realize a pre-filter for IDS is to mold the regular ex-
pression state machines directly into the hardware. As the data set of
regular expressions changes over time — the snort database updates
roughly daily — such a system can not be realized as ASICs. How-
ever, an FPGA module, which can be reprogrammed daily, can be
used. As a first step, we build a system to match fields statically.

Matching Lower Layer Fields in FPGAs

The goal of the matching system is to provide a pre-filter for IntrusionParts of this section
have been published

at IEEE FGCT
2014 [10].

Detection Systems. This system could, for example, filter flows in
such a way that only flows to a specific subnet are analyzed or to
certain ports. It could also function as a load balancer spreading the
flows based on their subnet or ports over several IDS instances. As
such, the throughput needs to be reliably high with minimal latency.

We used the NetFPGA platform1 as the hardware base for our im-
plementation. The basic concept of our filter module for the 10G
NetFPGA platform is based on the work of Scott [277]. It consists of
two parts. One is used for buffering and forwarding packets to the
right output ports and the actual parser and filter. The path through
the entire FPGA, including our filter module, is depicted in Figure 19.

1 https://netfpga.org

https://netfpga.org

8.2 concepts 111

Packets are copied and take two parallel paths. The default output
path at the top just forwards the packet to the original destination.
The filter path at the bottom analyzes the packets and decides if a
copy should be sent to the IDS. If yes, the packet now addressed to
the IDS is also added to the output queue.

Our goals are aimed at a packet filter that provides maximal net-
work throughput and minimal latency. This filter dynamically ana-
lyzes network headers and can forward the filtered packets to a more
advanced filter, which can then perform arbitrary intrusion detection
procedures or other processing tasks.

The parsing of the protocol stack is done in parallel while writing
the input to the data buffer. This only interferes with the data flow if
a header boundary lies within a word, as in that case, the flow is kept
for an additional cycle. The process is implemented by a finite-state
machine, in which each node corresponds to one layer in the protocol
stack. First, the physical layer or MAC layer in the form of IEEE 802.3
has to be analyzed, if not to filter on that level, then at least to find
the offset where the header of the next protocol starts. Filters based
on MAC addresses are applied here. Next follows the IP layer, where
filters based on the IP addresses are located, and in a third step, the
transport layer protocols for port-based filtering are analyzed.

This implementation does not contain any payload data analysis.
For that, the regular expression based filter extension is necessary.

The matching of static fields is fast enough to achieve line speed
without any parallelization necessary.

Molding Regular Expressions in FPGAs

Extending on this static approach, we built modules to filter based on Dominik Lang [26]
has contributed to
this section with his
master thesis.

regular expressions. This concept follows an asymmetric approach in
the sense that the transformation and updating of regular expressions
is slow, but the matching and execution is fast. For this use case,
the slow transformation is unproblematic, as it is only performed Benjamin

Schimmele [31] has
contributed to this
section with his
diploma thesis.

when the rules themselves change without any real-time constraints.
Similarly, this concept prioritizes speed when it comes to the time-
memory trade-off by sacrificing resources and space on an FPGA in
order to achieve higher throughput depicted in Figure 20.

The main idea is to translate the regular expressions into a hard-
ware description language (HDL) (such as Verilog or VHDL), which
is then directly synthesized onto the FPGA. We use the aforemen-
tioned transformation to build DFAs, based on which HDL code is
generated. The DFA can then be directly converted to the HDL.In or-
der to be able to match multiple regular expressions in parallel, state
machines are generated, synthesized, and implemented for each regu-
lar expression. All state machines are then applied to every incoming
packet in parallel. At the same time, the packet is also directly for-

112 hardware-based ids acceleration system

data input

distribution of traffic
multiple state

queues

replication

of traffic
machines for each
regular expression
starting at

parallel matching

different positions

Figure 20: Concept of the parallelization model for the FPGA pre-filter ap-
proach. Based on [26].

warded to its original destination in order to not negatively influence
regular networking behavior.

Only if one of the state machines reach a final state (i. e., the respec-
tive regular expression matches), the pre-filter will forward a packet
to the IDS for further inspection.

In contrast to the static approach where we are matching fixed val-
ues at specific offsets in packets, much more of the traffic must be
analyzed (including the payload) with much more complex analysis.
A parallelization (distribution of the traffic) is, therefore, necessary to
keep up with the packets coming in.

There are two challenges with this concept: matching at arbitrary
positions and block size mismatch between the forwarding process
and the matching process.

matching at arbitrary positions A challenge with this ap-
proach so far is to match patterns at arbitrary positions in a packet.
The issue is that a regular state machine needs to compare bytes se-
quentially from start to finish and has a fixed starting position. Thus,
in order to find patterns starting at arbitrary positions in a packet, a
state machine needs to be started for every byte position in the packet.
For this, the traffic needs to be replicated to be matched in multiple
state machines in parallel. Consequently, in the worst case without
any further optimizations, the number of state machines needed per
regular expression is at least equal to the maximum byte length of a
packet.

8.2 concepts 113

block size mismatch A further challenge is potentially differ-
ing block sizes between the forwarding process and the matching pro-
cess. In order to achieve line speed, the network interface card (NIC)
implementation on an FPGA forwards the packets in block sizes of
multiple bytes, for instance, 32 bytes per clock cycle. However, a reg-
ular state machine can only compare one byte at a time, resulting in
a block size difference and consequently, a speed difference between
the internal forwarding process and the state machines. The problem
is that the state machines need to start matching at every position to
recognize patterns at every possible position in a packet.

One approach to reducing the impact of this speed difference is
to use pipelining. This means we start matching the next incoming
packet while the matching process for the previous packet is still on-
going, but the forwarding process has already finished. However, all
state machines then need to be replicated per queue.

Another approach is to modify the state machines to be able to
match multiple bytes at once during a single clock cycle, i. e., trans-
form the state machines into multi-character input matching state ma-
chines. Yang et al. [333] and Yamagaki et al. [332] provide different
types of approaches to implement multi-character input matching.

In the ideal case, the state machine and the forwarding process are
able to process the same amount of bytes per clock cycle. In that case,
no further queues are needed to handle new packets. Otherwise,
if the block size of the forwarding process is larger, then multiple
queues are required; nevertheless, increasing the bytes that can be
matched per cycle decreases the number of queues and the number
of total state machines per queue needed. However, the more bytes
a state machine is able to match per cycle, the more complicated its
implementation becomes, resulting in a reduced clock frequency on
the FPGA board. Thus, a good compromise needs to be found in
order to gain the best performance.

Further optimization to reduce the number of queues needed is
possible by adding an upper boundary on the maximum number of
bytes a state machine matches before it returns with a default value
of success. For example, a regular expression featuring “.*” would
only terminate at the end of a packet. By introducing a boundary
of n bytes, the state machine terminates after a maximum of n cy-
cles, potentially greatly reducing the number of queues. In addition,
state machines can be reused for later offsets in a packet reducing the
number of state machines required per queue.

It is possible to simplify the state machines by cutting off every-
thing after a final state, as the IDS will analyze the traffic again re-
gardless (i. e., pre-filter model).

performance assessment Given the concept and the optimiza-
tions, it is possible to calculate the number of state machines and

114 hardware-based ids acceleration system

queues required in order to estimate the space requirements on an
FPGA.

The number of queues depends on the maximum number of cy-
cles remaining to finish the matching process after a packet has been
successfully forwarded. The remaining cycles for a state machine are
either equal to its theoretical maximum number of cycles or until it
reaches the end of a packet, whichever happens first. Thus, the num-
ber of queues q can be calculated with

q = maxc∈{1,...,nb}(min(nrc(c), rc(c))) (11)

where c denotes the relative starting cycle of a state machine for
a packet, nb the maximum number of blocks per packet (which de-
pends on the forwarding block size and the maximum packet size),
nrc the maximum number of remaining cycles for a state machine
(i. e., until the specified upper boundary or the theoretical maximum
number of cycles), and rc the number of remaining cycles for a state
machine until it reaches the end of a packet.

Further, it is possible to calculate the number of state machines
needed based on the number of queues. The total number of state
machines depends mostly on the matching block size, the maximum
number of matching cycles, and the number of queues (which de-
pends on the former two). Hence, the number of state machines per
queue (qsm) and the total number of state machines (tsm) can be
calculated with:

qsm =

⌈
fbs

mbs

⌉
·min(nc,nb)

tsm = qsm · q
(12)

where fbs denotes the forwarding block size, mbs the matching
block size, nc the maximum number of cycles for a state machine
(either the theoretical maximum or the upper boundary), and again
nb the maximum number of blocks per packet.

While tsm gives us the number of state machines per regular ex-
pression, we need to multiply this with the number of regular expres-
sions we need to analyze to find the total number of state machines
necessary for a full-scale system.

Realistic values for the parameters are

• forwarding block size fbs: 32 Bytes (based on the NIC reference
implementation for the NetFPGA-Sume)

• matching block size: 1 byte

• maximum packet size equal to MTU: 1500 Bytes

8.2 concepts 115

• maximum number of cycles per state machine until returning
success: 20 (number of queues needed for each regular expres-
sion is therefore 21)

• the community ruleset for Snort contains roughly 900 regular
expressions.

• maximum clock frequency of 200 MHz.

We synthesized some regular expression engines on the NetFPGA-
Sume to assess the space requirements. Unfortunately, given these
parameters, to reach a line speed of 10 Gbit/s requires so much space
on the FPGA that a maximum number of 10 regular expressions could
be matched, which is significantly too small for the Snort community
ruleset containing 900 regular expressions. This assessment does not
include the space required for the NIC implementation itself.

In summary, the main advantage of FPGA regular expression
matching is speed and flexibility; however, the main disadvantage is
maintainability and the updating of the regular expressions. Using
this approach, it is possible to optimize the regular expressions on
a logic gate and spatial level to get the best performance and to use
the FPGA resources in an ideal way. However, every time the regular
expression set changes, the entire system needs to be rebuilt and de-
ployed, which can take hours. Furthermore, the space requirements
on the FPGA simply renders this approach unfeasible. The complex-
ity of the state machines and consequentially low throughput per
machine leads to a large number of state machines for each regular
expression. With the high number of regular expressions needed, a
cluster of many FPGAs would be necessary. The pre-filter design has
its advantages as the CPU can be released from many processing de-
mands by filtering out traffic before it even gets there. However, there
are also many disadvantages. Having several locations where traffic
is filtered leads to unclear responsibilities that require extensive doc-
umentation. Moreover, collecting metadata is severely hindered by
this approach. Administration requires knowledge of several systems.
Due to these issues, we abandoned this approach.

8.2.2 Co-Processor Design

Besides the pre-filter mechanism, there is also another possible de-
sign — the Co-Processor. In the Co-Processor design, the CPU still
keeps control over the data and how it is processed. The main pro-
gram running on the CPU can call the purpose-built Co-Processor for
assistance only for operations where it promises better performance,
while the CPU keeps full control over the whole process. The disad-
vantage is that a cautious implementation is necessary to prevent the
CPU and the bus system from becoming a bottleneck.

116 hardware-based ids acceleration system

softiq

le
ve

l
So

ck
et

wake_up_interruptible()

data_ready()

packet_rcv()
netif_rx() / netif_receive_skb()

Pa
ck

et
ar

ri
va

l

Et
he

rn
et

dr
iv

er

Pr
oc

es
s

lib
pc

ap

R
ec

ei
vi

ng

pr
oc

es
si

ng
PF

_P
ac

ke
t

re
ce

pt
io

n

Lo
w

-l
ev

el
pa

ck
et

re
ce

pt
io

n

D
ef

er
re

d
pa

ck
et

[net_rx_action()]

Figure 21: PF_PACKET processing pipeline on Linux (Braun et al. [72]).

pfring_rcv()ring_handler()

Pa
ck

et
ar

ri
va

l

Et
he

rn
et

dr
iv

er

Pr
oc

es
s

lib
pc

ap

R
ec

ei
vi

ng

pr
oc

es
si

ng
PF

_R
in

g
Figure 22: PF_RING processing pipeline on Linux (Braun et al. [72]).

When using a Co-Processor, efficient forwarding of the data to the
Co-Processor is imperative [72]. For the Linux kernel, there are sev-
eral different possible implementations of packet processing. The de-
fault packet processing pipeline can be seen in Figure 21 based on the
packet interface on device-level PF_PACKET. Packets are captured by
the hardware — the network interface card (NIC). Then, the network
driver forwards the data to the operating system, which hands it off
to libpcap, which then sends the data to the capturing application. As
can be seen, the pipeline includes several layers of abstraction with
different libraries and buffers in between. This design includes in-
terrupt handling and operating system scheduling of kernel threads.
This is okay for normal operations but constitutes a considerable bot-
tleneck when working with high-throughput applications. Therefore,
PF_RING [109] was invented to improve the packet processing ef-
ficiency. Figure 22 shows how this is done. PF_RING streamlines
the process considerably by completely circumventing the standard
Linux networking stack. It improves performance over PF_PACKET,
especially when many, small packets are involved [86, 109]. Both im-
plementations start with the Ethernet driver of the network interface
card and end with the libpcap packet capturing library. Therefore, for
application developers, both versions can, in principle, be used inter-
changeably. The TNAPI driver extension for Linux offers additional
improvements in terms of memory management between drivers and
kernel. While in previous implementations, memory often had to be
allocated time and time again for new packets arriving, TNAPI effi-
ciently reuses already allocated memory. TNAPI is designed to be
used in conjunction with PF_RING.

8.2 concepts 117

Comp-

Processor
Core

onents

Control

Match

Character

Data Memory

Program
Memory

ne
tw

or
k

da
ta

in
st

ru
ct

io
ns tions

PC

char

start/stop

settings ready, match
set

set match set

read

read match set

st
re

am

Module

chars

characters

Memory

MemoryFIFO
Stream
Input

input

instruc-

4

1 2

3

Figure 23: Harvard architecture of one regular expression Co-Processor core.
Based on [32].

The packet processing requires the data stream to be copied into
RAM by the CPU, then be reread and processed. This is a rather
simple task, but it occupies the CPU, which slows down traffic pro-
cessing. If additional hardware modules such as Co-Processors are
used, and the packet processing is not done in the CPU, copying the
traffic to RAM might even be unnecessary as these modules often
have their own memory. Zero-Copy is a model where this superfluous
copying is reduced to a minimum by not tasking the CPU to copy the
data but using other mechanisms such as shared memory between,
for example, the CPU and GPU or direct communication between
the NIC and the Co-Processor. Ntop PF_RING ZC (Zero-Copy)2 is a
proprietary implementation of the Zero-Copy mechanism extending
PF_RING.

8.2.3 ASIC RegEx Co-Processor

The regular expression pre-filter based on FPGAs suffers from the Kateryna
Shymbarova [32]
has contributed to
this section with her
master project.

rather low maximum clock frequency of FPGAs (e. g., the Virtex 7

used in the NetFPGA-Sume card has a clock frequency of 200 MHz
using our implementation). We therefore also looked into building an
application-specific integrated circuit (ASIC) based processors to fa-
cilitate the matching mechanisms following the Co-Processor design.
The basic design of our concept can be seen in Figure 23. The regular
expressions are transformed into a special assembly language under-
stood by the processor. The number of operations for this design is
limited compared to general-purpose processors, which leaves a lot
more room on the wafer for several hundred cores that can run in par-
allel. The design of such a processor does not change with changes to
the signature database and its ever-changing regular expressions and
can, therefore, be realized as an ASIC processor, allowing for lower

2 https://www.ntop.org/products/packet-capture/pf_ring/pf_

ring-zc-zero-copy/

https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/

118 hardware-based ids acceleration system

Table 8: RegEx assembly code command format.

address op type flag 1 flag 2 operand 1 operand 2

32 bit 3 bit 2 bit 1 bit 1 bit 16 bit 16 bit

production cost in case of mass production and much higher clock
frequencies offsetting the lower throughput per clock cycle.

The processor takes the data stream to be matched and the regular
expressions in the form of instructions as inputs. The control mod-
ule 2 starts with the sequential execution of the instructions from
the program memory 1 . The control module activates the processor
core component 3 , which is responsible for the instruction and set-
tings — if applicable — are sent out to the component. The processor
core component sends the start signal to the input stream FIFO 4

and, in return, receives the input values. The instruction is executed,
and the component reports back to the control module if a match was
found and that it is ready to receive a new instruction. If the charac-
ters do not match, the Co-Processor core discontinues the matching
process and reports back that no match was found and that it is ready
to receive a new regular expression and new data. Input stream FIFO
and program memory are reset. If there was a match, the control
module loads the next instruction.

The data memory is split into two parts. For one, the charac-
ter memory. If an instruction has more than two values to match
(e. g., (abcd)*), all values will be stored in the character memory, and
the processor core component handling the instruction loads the data
from that memory block. The match memory contains which character
matched.

The control module controls the process of regular expression match-
ing. If the address bit is set, the addresses may lead to addresses in
the program memory only carrying data or to new instructions in
the tree structure of the regular expression. In the second case, the
address of the instruction currently processed is written to memory
on the stack with the instruction to be processed.

A deep tree structure of regular expressions can increase execu-
tion time. The parallel execution of several branches is possible with
redundant processor core components. However, for the use case
discussed in this paper, regular expressions tend to be simple, and
parallel branches of a regular expression tend to be rare. Therefore,
a parallel architecture on this level would not be beneficial given the
additional space requirements.

A basic model for the instruction set can be seen in Table 8. The first
bits are reserved for the instruction address as an entry point for pos-
sible jump operations. As a second block, the operation indicates the
regular expression instruction and tells the processor which submod-
ule has to process the instruction. The operation can be a quantifier
such as “∗” or a logic symbol such as the alternative symbol “|”. The

8.3 acceleration with gpus 119

Table 9: Example regular expression assembly code for ((acd)*(b|a))|(c*d).

address op type flag 1 flag 2 operand 1 operand 2

A0 | A 1 0 A1 A6

A1 * A 0 0 A2 A3

A2 · C 0 0 a c

A3 · C 0 0 d 0

A4 | C 0 0 b a

A5 C 0 1 A8

A6 * C 0 0 c 0

A7 · C 0 0 d 0

A8 <end>

two final blocks can either contain symbols or addresses, indicated by
the address bit in the third field. If this bit is set, the final two blocks
contain addresses; otherwise, they contain values. If the instruction
is short enough that it can be saved in one word, the last two blocks
contain the rest of the data. For instance, the regular expression a|b
can be expressed in one instruction where the two last blocks con-
tain a and b. If the instruction is too long, the data gets split into
several instructions, and the last two blocks contain addresses to the
data fields containing the matching strings. This model also allows
for nested instructions that can represent the tree structure of regular
expressions. Table 9 shows an example assembly code for the regular
expression ((acd) ∗ (b|a))|(c ∗ d).

Due to the enormous effort to get this mechanism ready for use and
the unavailability of resources to implement an ASIC, we decided not
to pursue it further. However, we have continued to pursue the basic
principle of the Co-Processor, which receives input from the CPU and
supports analysis on this basis. Due to far easier implementation and
lower cost, we investigated if a GPU could be used instead of an
ASIC.

8.3 acceleration with gpus

The basic Co-Processor design cannot only be used with ASICs but Mathias Wagner has
contributed to this
section with his
bachelor thesis [38]
and his master
project [39].

also with GPUs. GPUs are designed to support the CPU on tasks the
CPU is not as capable of performing. The requirements for modern
graphics processing are by far exceeding the capabilities of a CPU.
Therefore, specialized hardware is needed to tackle the challenges of
real-time graphics processing. GPUs are designed to rapidly process
and manipulate memory for image creation meant for output on a
display device. They are, therefore, capable of highly parallel com-
putation of data stored in matrices. Compared to CPUs, they offer a

120 hardware-based ids acceleration system

lot more processing cores, all the while having a lot less processing
power per core. For a long time now, GPUs and their special skills
are also being used for applications other than their original intended
use under the umbrella term General-Purpose Computing on Graph-
ics Processors (GPGPU). They can be used to mine cryptocurrencies
much more efficiently than CPUs and, in that regard, are only lacking
behind purpose-built ASICs. They are also often used to train neu-
ral networks and to process data in big data applications. GPGPU is
even used in high-performance computing clusters [176].

The Compute Unified Device Architecture (CUDA) is an API ex-
plicitly published for GPGPU applications on NVidia graphics cards.
OpenCL is an open-source alternative supporting a variety of GPUs
from different vendors. We decided to use CUDA for our prototype
due to the high prevalence of CUDA in GPGPU applications. The
GPUs used for this are two Nvidia GeForce GTX 1080 Ti.

8.3.1 Regular Expression Matching on GPUs

In principle, both NFAs and DFAs are possible to be processed in
GPU cores. However, GPU cores are small; GPUs are optimized for
massively parallel computation and not for very complex computa-
tions per core. Backtracking, which is necessary for NFAs, would
slow down processing, and therefore DFAs are the better choice. The
DFA is represented in memory as a two-dimensional array A. The
array contains a row for each of the 256 possible characters and a col-
umn for each DFA node. If there is a transition from state i to state j
with character c, A[i][c] is set to j or −j if this is a transition to a final
state. When no transition exists, the array entry is set to the lowest
possible integer value INT_MIN.

Algorithm 3 Matching packets to DFAs.
state = 0;
l = packet length;
while state > 0 ∧ l > 0 do

character = next byte in packet;
state = A[state][character];
l = l - 1;

end while
if s > 0 ∨ s = INT_MIN then

return match
else

return no match
end if

The arrays are stored in GPU memory and can then be used to
match packets with Algorithm 3. The algorithm has a worst-case

8.3 acceleration with gpus 121

ne
tw

or
k

da
ta

in
pu

t
decoder

traffic...

action

blocking
e.g. logging,

pattern
search

multi

engines

Aho-Corasick
based on

rule tree

PCRE PCRE

pre-
processing

stream
e.g.

reassembly

matching
queue matcher

Figure 24: Extended processing pipeline of Snort 3 with GPU matcher mod-
ule in orange [38].

execution time of O(n) with n being the packet length. One GPU
thread is necessary per packet per regular expression. This shows
very well how well this process is portable to GPUs. While the al-
gorithm that needs to be executed is straightforward, many of these
algorithms need to be executed ideally in parallel to achieve real-time
performance.

8.3.2 Integration with the Snort IDS

Figure 24 contains the processing pipeline of the Snort IDS and our
adaption in orange. Packets arriving at Snort are first decoded. In the
pre-processing stage, packets are reassembled into streams to facili-
tate the analysis of the payload. Snort groups several rules together
(e. g., all the rules that are applied to HTTP traffic) and builds Multi-
Pattern Search Engines (MPSE) from the search patterns within these
rules. These search patterns are based on string matching that is
implemented through the Aho-Corasick algorithm. Snort uses these
MPSEs in order to filter out any traffic that is guaranteed to not match
in the rule tree phase to reduce processing effort significantly. In the
rule tree phase, the rules are applied to packets that are not filtered
out in the MPSE stage. The most computationally expensive rules
that can be applied here are the regular expression matching opera-
tions (described in the Perl Compatible Regular Expression (PCRE)
syntax, highlighted in orange). The rule tree ends in a decision of
match or no match for each rule. Snort can then take action, for ex-
ample, by logging the event or by blocking any further traffic with
the same pattern.

The Snort architecture needs to be adapted to outsource the reg-
ular expression matching to the GPU. Matches on the GPU are not
executed immediately; instead, they are added to a queue. When the
queue is full or a time out is reached, they are sent to the GPU where
the matcher runs. For an efficient implementation, the rule tree must

122 hardware-based ids acceleration system

0m
ax

im
um

ba
nd

w
it

h
(G

bi
t/

s)

standard
GPU accelerated

Snort Suricata

single-threaded,
pure attack

traffic

multi-threaded,
pure attack

traffic

multi-threaded,
mixed
traffic

single-threaded,
pure attack

traffic

multi-threaded,
pure attack

traffic

multi-threaded,
mixed
traffic

2

1

Figure 25: Comparison between Snort 3 and Suricata, single-threaded and
multi-threaded with and without GPU acceleration. Based
on [38].

not have to wait for the result of the matcher to limit any waiting
time and not to let the CPU idle. Therefore, the tree proceeds as if the
matcher returned a match. Snort then has to decide whether there
indeed was a match during the action phase.

8.3.3 Evaluation

We tested our GPU-acceleration implementation for Snort 3 against
Snort 3 without GPU-acceleration and Suricata, both with and with-
out GPUs.

The evaluation setup consists of two PCs. One PC running the
adapted Snort IDS and one PC replaying the test traffic. The IDS PC
features two Intel Xeon CPU E5-2620 v4 in a dual-socket setup having
a total of 16 cores, two Nvidia GeForce GTX 1080 Ti, and 32 GB of
DDR4 RAM.

Figure 25 shows the comparison of Snort 3 and Suricata. For Suri-
cata, we used the last version that supported GPU acceleration. For
Snort 3, we used our own GPU acceleration implementation based
on the latest stable version. The attack traffic in this test was tailored
to trigger exactly one rule. The mixed traffic consisted of 50% be-
nign traffic produced with iperf3 and 50% attack traffic. We ran both
systems with and without GPU acceleration in multi-threaded and
single-threaded mode. The graph shows the maximum throughput
at which no packet drops could be observed. The graph has no error
bars as this measurement was deterministic. Packet drops began at
the same throughput in every test run. We can see that Suricata, in
this version, both with and without GPU-acceleration, is no match to
Snort 3. Suricata shows significant drops in performance with GPU-
acceleration when faced with pure attack traffic. Here, the overhead

8.3 acceleration with gpus 123

produced by offloading the calculations to the GPU seems to take
up most of the available processing time. Of course, this is no fair
comparison as the Suricata version is outdated, while Snort 3 is the
newest version that is not even officially released. However, due to
these circumstances, going forward, we decided to focus solely on
Snort 3.

While insightful concerning Suricata’s GPU-acceleration, these test
runs were very simple evaluations as we only looked into one rule
and only generated background traffic from iperf3. We switched out
the background traffic and used the data sets from GPNTF instead as
they contain a more realistic scenario and better represent a produc-
tion network in our extended, more elaborate test runs. In addition,
for malicious traffic, the trigger data set was used. This data set is
designed to trigger every rule of the Snort community ruleset, show-
ing the effect of vastly different attacks in the network. The traffic is
sent by seven instances of tcpreplay. Four of them combined produce
50% of the traffic. The other three share the other 50%. In the be-
ginning, all instances of tcpreplay sent the same benign traffic. After
ten seconds, the three instances sharing the second half of the traf-
fic switch to the trigger data set, sending with the same throughput,
and switching back to background traffic after the trigger set is done.
This is done to assure that the load in the network remains constant
and that load peaks in the IDS can be attributed solely to the content
of the traffic. Every test was conducted six times. Snort was config-
ured with and without GPU support, with and without Zero-Copy
activated, and using the four different available background traffic
recordings.

Figure 26 shows the results of the tests that were undertaken. The
number of alerts when no packet drops happen, and the system is not
overloaded should be roughly 560 000 (as can be seen, for example,
at 500 MBit/s throughput for file sharing traffic with Snort without
GPU acceleration or Zero-Copy). GPU-assisted Snort highly exceeds
these numbers because of false positives. These are due to missing im-
plementations of look-ahead assertions, look-behind assertions, and
back-references in the prototype as any evaluation that would need
those defaulted to true. However, this had no apparent impact on
performance. It can be seen in all tests that GPU-assisted Snort pro-
duces higher drop rates earlier than vanilla Snort and misses far more
true alerts. Furthermore, activating Zero-Copy, in most cases, did not
improve results.

As secondary results, we can observe that using different back-
ground traffic has a high impact on the system’s performance. While
drop rates increase with the activation of Zero-Copy with three out of
four different background traffic scenarios, we observed the opposite
effect with web traffic. Here, Zero-Copy improved the results. These
results underline the importance of using realistic traffic mixes and

124 hardware-based ids acceleration system

Snort 3 with GPU support
with zero-copywithout zero-copy

Snort 3 without GPU support
with zero-copywithout zero-copy

0.01

0.03

0.05

0.07

0.09

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

dr
op

ra
te

#
al

er
ts

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

700k

600k

500k

400k

300k
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

700k

600k

500k

400k

300k

web trafficfile sharing

throughput in Gbit/sthroughput in Gbit/s

throughput in Gbit/sthroughput in Gbit/s

0.005

0.015

0.025

0.035

0.045

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

dr
op

ra
te

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

700k

600k

500k

400k

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

#
al

er
ts

700k

600k

500k

400k

storage & marketplace video-on-demand

throughput in Gbit/sthroughput in Gbit/s

throughput in Gbit/sthroughput in Gbit/s

0.02

0.01

Figure 26: Drop rates and number of alerts dependent on throughput and system. Based on [39].

8.4 summary 125

0

600k

500k

400k

300k

200k

100k
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0.3

throughput in Gbit/sthroughput in Gbit/s

dr
op

ra
te

#
al

er
ts

Reference system without offloadingAll matching on GPU

0.2

0.1

Figure 27: Drop rates and number of alerts dependent on throughput. Background traffic was file
sharing traffic; regular expression and pattern matching were offloaded to the GPU.
Based on [39].

the dependence of network analysis performance on usage patterns
in the network. Storage & marketplace traffic leads to a very low
number of dropped packets at any rate. However, this is due to the
traffic recording containing many small packets, which leads to the
sending server to not reaching the target throughput.

Adding Multi-Pattern Search Engines to GPU Acceleration

Just like regular expression matching, the Multi-Pattern Search En-
gines can be offloaded to the GPU, too. However, as Figure 27 shows,
this decreases the performance of Snort severely. Pattern matching
based on the Aho-Corasick algorithm in Snort is optimized to the
point where adding any overhead (such as the communication with
the GPU) can only decrease its performance.

8.4 summary

In this part, we analyzed Intrusion Detection Systems. We listed
their capabilities and their shortcomings. We documented their basic
functionality based on value matching on protocol headers, pattern
matching for pre-analysis, and regular expression matching. String
matching based on the Aho-Corasick algorithm (the Multi-Pattern
Search Engines in Snort) is very efficient and runs the smoothest di-
rectly on the CPU, further optimization seems unnecessary. Regular
expression matching, based on a list of different algorithms begin-
ning with the Thompson’s Construction Algorithm and the Powerset
Construction Algorithm to convert regular expressions to DFAs, was
implemented and optimized to be able to convert it to hardware im-
plementations.

We looked into three different methods of hardware-based IDS ac-
celeration. The pre-filter design featuring the direct conversion of
regular expressions to DFAs and then converting these DFAs into

126 hardware-based ids acceleration system

hardware based on the FPGA architecture works in principle and
can achieve line speed. However, the limiting factor of the FPGA
size reduces the applicability of this solution as the number of rules
that need to be supported transcends the number of rules that can
be supported immensely. In addition to this, the lack of flexibility
and high maintenance requirements limit the operational capability
further. Compared to this pre-filter design, the Co-Processor design
seems more promising. While the pre-filter requires two separate
but cooperating systems (the pre-filter and the main IDS), the Co-
Processor reacts to the orders of one master system, which makes
it in principle a far more maintainable system that is on top easier
to implement. Two different Co-Processor designs were part of our
deliberations. As this system does not need to be reprogrammed
every time rules change, instead of an FPGA implementation, the Co-
Processor can be realized in an ASIC, which allows for much higher
clock frequencies. The ASIC-based Co-Processor is a highly complex
system where the regular expressions are represented as instruction
sets ajar the instruction sets of assembly languages. Based on the
NFAs and parallel execution, the regular expression execution can be
implemented highly efficiently. However, due to a lack of resources to
fully implement such a system, we decided to opt for a more practical
approach to acceleration based on GPUs.

The GPU-acceleration of IDS was done already for Snort 2 and Suri-
cata. Although these implementations proofed both the viability of
this approach, neither system is currently maintained, and neither
the new, upcoming version of Snort — Snort 3 — nor the current ver-
sion of Suricata features GPU-acceleration. In a first test run, we
compared Snort 3 and Suricata, both with and without GPU acceler-
ation. The evaluation analyzed the capabilities of the systems while
faced with benign traffic, and a mixture of benign and attack traffic
of different kinds. The tests showed that GPU-acceleration could not
improve performance in either IDS. As our adaptions not only did
not improve the results but worsened them, given our observations,
we have to conclude that the usage of GPUs for IDS acceleration can-
not be recommended. These observations are in line with the IDS
developers offering no GPU support contrary to previous research
stating clear benefits. The differences in our results compared to ear-
lier GPU-acceleration efforts such as Gnort based on Snort 2 [307] can
be explained by the optimizations Snort experiences over the years.
Snort 3 utilizes multiple cores, while Snort 2 ran as a single-core ap-
plication. Therefore, we conclude that using multiple CPU cores far
outweighs the impact of GPU acceleration for IDS.

8.4 summary 127

IV
M I T I G AT I O N O F D D O S AT TA C K S

9
I N T R O D U C T I O N T O D I S T R I B U T E D
D E N I A L - O F - S E RV I C E AT TA C K S

Denial-of-Service attacks are a diverse class of attacks with the com-
mon goal of targeting the availability of a service. This goal can be
achieved by disrupting access to the service or by shutting down the
service. One of the basic methods commonly used for these attacks is
to bombard the victim with requests, which is especially effective in
high-bandwidth networks. The amount of requests then renders the
service unavailable to legitimate users. One key aspect to consider
for attackers is the efficiency of the attack. For one, the attack has
to ensure that the service is unreachable through high resource con-
sumption at the target for maximum impact while the attacker tries
to use their resources sparingly. To obtain higher efficiency, attackers
usually make use of not only one, but several machines, i. e., the in-
coming traffic at the target comes from many different sources. These
attacks — commonly referred to as Distributed Denial-of-Service (DDoS)
attacks — are one of the main application areas of botnets. The traffic
of tens of thousands of bots can be used to overload a resource on the
target. Depending on the specific attack, various resources can be at-
tacked. While Slow Attacks are commonly utilized to use up the num-
ber of connections a server can open simultaneously, Reflective Attacks
target the bandwidth of the bottleneck network link. The choice of
DDoS attack type depends highly on the specific goal. Some attacks
are harder to detect than others but might be less efficient. Others
are effective even with a low amount of resources on the attacker side
but are easier to mitigate.

2007 2008 20182013 2015 2016 2017201420102009 2011 2012

1.7 Tbps

24 Gbps

0

Figure 28: Throughput of the record holder of the biggest DDoS attack of all
time [297].

131

132 introduction to distributed denial-of-service attacks

DDoS attacks increased in terms of frequency and throughput
over the last decades; they get “bigger, smarter and more diverse” [278].
Larger botnets due to the rising size of the Internet, the development
of new attack mechanisms, and more available bandwidth are only
a few of many contributing factors to this rise of DDoS attacks. Fig-
ure 28 shows the record holder in terms of DDoS attack bandwidth
for every year from 2007 to 2018 [297]. It can be seen that bandwidth
increases rapidly, and stronger attacks can be observed almost yearly.
Moreover, with the increasing importance of computer systems for
both civilian and military infrastructure, nation-states seem to show
more and more interest in conducting DDoS attacks themselves [232,
233], although in most cases, their involvement cannot be proven
with certainty. DDoS attacks became so popular that third-party
providers of attacks emerged. These services called stressers or booters
attack any target in exchange for money. The vendors usually control
a large botnet used for the attacks.

DDoS attacks in general target three different resources of the vic-
tim [293]:

• Attacks targeting the bandwidth try to flood the network with
as much traffic as possible. They try to overload the bottleneck
link to the target.

• Attacks targeting memory try to exhaust the target’s memory
capacity by forcing the target to save a massive amount of state
information or other data. Attacks targeting a connection limit
on the target belong to this category.

• Attacks targeting the processing power of the victim are usually
application-layer attacks forcing the application, for example, to
execute complex calculations (e. g., cryptographic calculations
or pathfinding algorithms).

The variety of different attacks with substantially distinct features
ensures that general mitigation mechanisms against DDoS attacks are
incapable of catching all DDoS attack mechanisms alike. Instead, it is
necessary to design different mechanisms tailored to classes of DDoS
attacks with similar features.

9.1 botnets

Botnets are formed by a number of Internet-connected devices, usu-
ally under common control of command and control software. Access
to these machines is most often obtained illegally through security
holes [41]. Owners of the machines often do not recognize that the
machine has botnet software installed; the devices’ normal operations
might remain unaffected by the intruders. Especially with the spread

9.2 attack classification 133

T

target
B

B

B
bots

command & control

C&C

server

Figure 29: Process of a flooding DDoS attack.

of the Internet of Things (IoT) — i. e., Internet connected physical de-
vices historically not connected to the Internet — and increased con-
nectivity to the Internet of thus far isolated networks including criti-
cal infrastructure increased the attack surface significantly. Simultane-
ously, over the air updates for IoT devices and the application of stan-
dard security practices remain insufficiently applied both by vendors
and owners of IoT devices alike. The infamous Mirai Botnet report-
edly contained 400 000 simultaneously connected IoT devices [179].
The malware tried to infect IoT devices by trying standard login cre-
dentials at publicly available ports. The perpetrators were caught,
and the botnet was shut down. However, as the source code of Mirai
is public, variants of the software are still used to build new botnets.
For instance, in an attempt to build a new botnet, 900 000 Deutsche
Telekom customers were taken offline as their routers were attacked
by a faulty variant of Mirai. Instead of taking over the devices, the
software rendered the systems unresponsive [180].

9.2 attack classification

Literature typically distinguishes between volumetric attacks and
application-layer attacks [293]. Volumetric attacks are further di-
vided into whether the attack makes use of a third-party service
or technology to amplify their attacks (amplification attacks) or not
(flooding attacks). The term flooding attack can also be found in
application-layer attacks (e. g., HTTP flooding) besides slow rate or
slow-running attacks. In the following, a few examples of such
attacks are described.

9.2.1 Volumetric Flooding Attacks

The basic principle of a flooding attack, as depicted in Figure 29, is
rather simple. A multitude of devices is directed to send as many
packets as possible to an intended target to overload a resource at
the target. To maximize attack effectiveness, attackers try to achieve

134 introduction to distributed denial-of-service attacks

as much resource consumption as possible with as little resource in-
vestment as possible. Meaning, the ratio of resources invested in re-
sources occupied at the target should be as small as possible. While
the following attacks attack different resources and target different
kinds of systems, they all follow this principle.

icmp flooding The Internet Control Message Protocol (ICMP)
is a network protocol to distribute metadata in the network. These
packets can contain information such as, for example, reachability in-
formation of a host or error messages. The control messages can have
different types identified in the Type field of the packet header. Type
8, for example, is an Echo Request that can be sent to any network node.
According to specification, a node receiving such a packet should an-
swer with a packet of type 0 Echo Reply. This method is usually used
to implement ping and can be used to test availability and latency to a
target address. In the case of an ICMP flooding attack, attackers send
a multitude of Echo Request packets to the victim to generate traffic
through the combined bandwidth consumption of the request and
response packets. The effectiveness of the attack highly depends on
the capabilities of the attacking botnet. As the number of packets can
only be doubled, the botnet has to produce at least 50% of the target
load itself. An easy way to mitigate the attack is to deactivate ICMP
Echo Replies on all target nodes and therefore cutting the net traffic
of the attack in half. The attack is one of the oldest Denial-of-Service
attacks and is very easy to implement. Its effectiveness in relation
to its resource demand, however, compared to other attack types, is
rather underwhelming.

syn flooding The lower layer SYN flooding attack initially re-
lied on exhausting the limit on half-open TCP connections. The im-
plementation is rather simple: the attacker has to transmit many SYN
packets and ignore the corresponding SYN-ACK (i. e., not answer-
ing with an ACK packet themselves). The server has to save the
state of the connection to be able to open the connection when the
expected ACK packet arrives. As servers typically are not meant
to keep many of these connections open simultaneously as the three-
way handshake usually takes less than a second, in their standard con-
figuration servers often do not have the capacity to hold open many
connections at the same time which makes it possible for attackers
to exhaust this limit. One semi-standardized protection measure —
SYN cookies — requires modification of the host system. Instead of
saving the state of the connections on the server, the state is encoded
in the sequence number of the SYN-ACK packet. A legitimate client
answers with an ACK packet with an incremented sequence number,
making it easy for the server to calculate the original sequence num-
ber and retrieving the information from the packet. Even with SYN

9.2 attack classification 135

C&C T

B

B

B

R

R

R reflectorsbots

command & control
server

target

Figure 30: Process of a reflective DDoS attack.

cookies enabled, the attack can still be used to try to overload the
bottleneck network link, which makes SYN-flooding attacks still one
of the most common DDoS attacks today [168].

9.2.2 Amplification Attacks

Amplification attacks exploit third party services on the network to
amplify their botnet traffic. These services are neither under control
of the perpetrator, nor are they targeted by the attacks. However, their
service can still be impacted by the attack as collateral damage.

smurf attack The Smurf Attack is an advancement of the ICMP
flooding attack. Instead of sending the ICMP packets to the victim
itself, the packets are sent to a broadcast address. The source IP
address is set to the IP address of the intended target of the attack (IP
address spoofing). Network nodes now answer the broadcasted Echo
Request with an Echo Reply targeted at the victim’s IP address.

The Fraggle attack is a variation of the Smurf attack where instead
of ICMP packets, UDP packets to ports 7 Echo or 19 CHARGEN are
used. In modern network equipment, packets directed to broadcast
addresses are no longer forwarded, and hosts should no longer an-
swer broadcast pings. Therefore, this attack is no longer effective in
current networks. The basic principle of exploiting third party ser-
vices on the network to flood a system with their response packets
lives on in reflective DDoS attacks.

reflective attacks The record holder for the largest DDoS at-
tack to date is a Memcached attack. This attack is a Distributed Re-
flective Denial-of-Service (DRDoS) attack, that does not attack the
target directly but instead sends request packets to an exploitable
third party service (i. e., the reflector) with a spoofed sender IP ad-
dress (Figure 30). The third party server’s responses are then sent to
the actual attack target and cause the overload. Protocols with signif-
icantly larger response messages compared to request messages are
particularly well suited for these attacks due to amplification effects.

136 introduction to distributed denial-of-service attacks

The nature of these attacks requires services that do not need an es-
tablished connection between client and server. In a recent analysis
in 2017, Jonker et al. [162] found that 99.27% of all DRDoS attacks
are using the protocols NTP, DNS, CharGen, SSDP, and RIPv1 — all
of them are based on UDP. Messages received in a DRDoS attack
are hard to differentiate from benign traffic, as they conform to the
protocol specification. The reflectors are correctly handling requests
they deem to be legitimate. However, the non-existence of a request
for the responses is a characteristic of reflective attacks that cannot
be masked. Due to the stateless design of UDP, additional mecha-
nisms on the application-layer are often used to attribute a response
to a corresponding request. In turn, tracking such request/response
mappings within a network is hardly feasible for several reasons, in-
cluding scalability issues and the necessity to read application-layer
messages.

9.2.3 Application-Layer Attacks

Application-layer attacks exploit the properties of services. While
the aforementioned attacks focus on the network itself and the ser-
vices necessary for network operations, these attacks target the ser-
vice directly. For this purpose, the service and its features needs to
be known and the attacks in some cases need to be specifically tai-
lored to the target.

http flooding HTTP flooding is a classic example of a basic
application-layer attack. In an HTTP flooding attack, HTTP requests
are sent to a web server. The web server processes the request, pre-
pares a response, and sends it back to the attacker. Sending a request
takes comparably little resources, especially if the same request can
be sent several times, enabling attackers to invest relatively limited
resources themselves. Hereby, the attacker targets the computational
power of the victim. The attack can be optimized by requesting a
web site at the victim web server that has particularly large resource
requirements. For example, pathfinding or navigation algorithms,
database access, or services for mathematical function analysis can
be lucrative targets.

ssl renegotiation attack Particularly in early versions of SSL
and TLS, a server consumes significantly more resources to respond
to a connection request compared to the resources required to send
that request1. While the usual TLS encrypted communication uses

1 The THC released a proof of concept showing this and related DoS is-
sues in TLS: http://web.archive.org/web/20160311191721/https://www.thc.org/
thc-ssl-dos/, exploit can be found here: https://github.com/vanhauser-thc/

THC-Archive

http://web.archive.org/web/20160311191721/https://www.thc.org/thc-ssl-dos/
http://web.archive.org/web/20160311191721/https://www.thc.org/thc-ssl-dos/
https://github.com/vanhauser-thc/THC-Archive
https://github.com/vanhauser-thc/THC-Archive

9.2 attack classification 137

symmetric encryption, which imposes minimal overhead both for
server and client, the negotiation of the symmetric key uses asym-
metric cryptography. The first group making this attack public The
Hacker’s Choice (THC) wrote: "Establishing a secure SSL connection re-
quires 15× more processing power on the server than on the client." [298].
The client repeatedly requests the renegotiation of the connection,
forcing the server to recalculate the keys. One quick fix was to dis-
able SSL-renegotiation; however, this achieves little as the attackers
can just open new connections instead. One solution for servers is to
limit the number of connections one client can open with the server
within a certain time frame.

slow-running ddos attacks The slow-running attacks are
very different from the aforementioned attacks. Instead of overload-
ing a resource by sending many and fast requests, these attacks
instead try to slow down the requests as much as possible. Although
slow-running DDoS attacks in principle work against other protocols
such as IMAP, SMTP, or FTP, the HTTP protocol is the most promi-
nent victim of this attacking scheme. There are three different kinds
of slow-running attacks on HTTP:

• The Slow Header HTTP Attack is also known as Slowloris [283]
and is the predominant slow HTTP attack. It was successfully
used in 2009 against Iranian government servers [339]. In the
Slow Header HTTP attack, a malicious client starts with a regu-
lar HTTP request line. After that, the client waits a certain time
before it sends an additional custom request header (e. g., “X-
abcd: 1234”). The client then waits another period and repeats
the previous step with another random custom header. Accord-
ing to the specification of HTTP [119], clients are allowed to
add such custom headers. This mechanism does not only slow
down the initial request. In fact, it does not terminate the re-
quest at all. Unless the server applies countermeasures such
as a maximum request duration time, an ongoing slow request
can bind server resources for an arbitrary period with minimal
resource investment on the attacker side.

• The Slow Body HTTP Attack is also known as the Slow POST
Attack, as it relies on the HTTP POST method. This method al-
lows the client to submit a request entity such as form data or
a file to be uploaded. While regular behavior is used for the
request header, the attacker either slows down the transmission
of the request entity or provides a Content-Length, which is de-
liberately larger than the actual entity. In turn, this requires
the server to wait for additional data. Alternatively, an attacker
can use the chunked transfer encoding mode to send arbitrarily
slow chunks of a request entity.

138 introduction to distributed denial-of-service attacks

• The third variant is the Slow Read HTTP Attack. In this attack,
the attacker requests a large resource using a regular HTTP re-
quest [242]. Once the server starts to send the HTTP response
entity, the attacker consumes the incoming stream at a pro-
longed, low rate, which forces the HTTP server to slow down
the transmission due to the small receive buffer [296]. This
attack requires much more resources from the attacker as the
packets from the server need to be acknowledged and is, there-
fore, less common than the other two slow-running attacks.

An attacker can run an arbitrary amount of these DoS attacks in
parallel both on one computer and on a cluster and can easily exhaust
the connection limit of the web server. Due to the low amount of
resources and low bandwidth requirements for this attack, detection
of the attack within the network can be challenging.

9.3 prevalence of attacks

Reports on Denial-of-Service attacks show very volatile statistics.
Trends change from quarter to quarter. The McAfee Quarterly Threat
Reports of 2018 [211–214] list DDoS attacks as the third place of
network attacks in March and June, second place in September, and
fourth place in their December report. In 2018, The Memcached re-
flective attack gained traction and broke all records due to its high
amplification factor of up to 52 000 [181]. The attack slost track
within months when critical design flaws and default configuration
errors in the Memcached program were fixed. Other protocols of-
fer a bandwidth amplification factor between 3.8 (BitTorrent) and
556.9 (NTP) [264]. The Imperva Threat Report for the fourth quarter of
2017 reported that Internet Service Providers were the most common
targets (by numbers of attacks), with gambling sites on the second
place [153]. These two targets account for 82% of all attacks. 67.6%
of all network-layer attacks lasted less than 30 minutes while the
majority of application-layer attacks last between 30 minutes and 6

hours. However, most targets were attacked more than once (67.4%
for network-layer attacks, 63.3% for application-layer attacks) with an
average of 8.7 attacks and 8 attacks per target, respectively. The most
common network-layer attacks are in that order: TCP flooding, UDP
flooding, NTP amplification attack, SYN flooding, DNS flooding,
DNS amplification attack. The majority of attacks used more than
one attack vector. Jonker et al. analyzed four different independent
Internet measurement infrastructures over a two-year span [162].
They concluded that at least one-third of active /24 networks had
been attacked by a DoS attack in this time frame. Around 70% of all
attacks target web services (HTTP and HTTPS). Many attacks target
one IP address (37%), around 72% of attacks target at most 10 IP

9.4 state of the art in ddos mitigation 139

addresses. 79.4% of the attacks use TCP, 15.9% UDP, and 4.5% ICMP
in their data set.

9.4 state of the art in ddos mitigation

Just like the attacks, mitigation mechanisms differ greatly. However,
the main steps necessary to be undertaken to mitigate a DDoS attack
are mostly the same and can be classified into three different phases.

• Detection The first phase is the detection of an attack. This en-
tails not only the realization that an attack is going on but also
the identification of the attack mechanism and the identification
of the targeted service.

• Identification In the identification phase, the network traffic
needs to be classified into benign and attack traffic to identify
the attacking clients. This step is oftentimes crucial to guaranty
that benign clients are not affected by the mitigation mecha-
nism.

• Defense In the defense phase, the mitigation system tries to pre-
vent attackers’ access to the target service, or at least weaken
the impact the clients have on the target. Depending on the vi-
ability and precision of the second phase, this step can have a
significant impact on the service’s usability and availability.

In the following, we will use these terms for these three steps.

9.4.1 Classification of DDoS Mitigation Mechanisms

There are many ways to classify mitigation mechanisms against Dis-
tributed Denial-of-Service attacks. A common way is to distinguish
between the deployment locations of the mechanisms, i. e., where in
the network detection, identification, and defense occurs. Zargar et
al. [338] differentiate between three different locations in their net-
work:

• Source-based DDoS defense mechanisms are deployed close to
the perpetrator. These mechanisms try to find botnets, com-
mand and control servers or traffic, or machines in the network
that are actively taking part in an ongoing Denial-of-Service at-
tack.

• Network-based DDoS defense mechanisms are deployed any-
where in a network. Neither perpetrators nor victims of DDoS
attacks are part of the infrastructure under surveillance. Mech-
anisms in this category are usually monitoring traffic going

140 introduction to distributed denial-of-service attacks

through its network of operation and try to block attack or bot-
net traffic on its routers. Mitigating DDoS attacks in this sce-
nario is often handled by network operators and offered as a
service in the form of DDoS Protection Services that become in-
creasingly popular [163]. A differentiation amid network-based
mitigation mechanisms can be made whether the mechanism
is transparent for the target host and acts autonomously or
whether the target has to request the mitigation from the mit-
igation service providers actively and has to cooperate for the
mitigation to be effective.

• Destination-based DDoS defense mechanisms are located on
the victim machines of an attack or in the same local network,
specifically defending these machines. For instance, popular
mechanisms can change the target machines’ settings to make
them less vulnerable to the attacks.

• Hybrid or distributed mechanisms are a mixture of two or all
three of the above and often require the cooperation of several
authorities.

Both for analysis and mitigation, traffic often has to be diverted
towards a traffic analysis infrastructure or needs to be removed from
the network. Several different technologies can be used for that pur-
pose. Mattijs Jonker [161] mentions two of these technologies in his
dissertation. For one, if the protected host is reached through DNS,
DNS-based network traffic diversion can be used to redirect the traf-
fic to the analysis infrastructure by adapting the DNS records ac-
cordingly. This approach requires the use of a reverse proxy. The
second method is the BGP-based network traffic diversion, which is
especially useful to protect whole subnets and does not require a re-
verse proxy. BGP Blackholing can be used to remove traffic from
the network destined for a specific target network. This approach is
highly effective and can be quickly deployed. However, the down-
side of this approach is that all traffic is affected, including all be-
nign traffic to the target network. Many of the newer mitigation
mechanisms also make use of software-defined network (SDN) technol-
ogy [293]. Software-defined networking refers to the separation of
the control plane controlling the network infrastructure and the data
plane that forwards the packets in the production network. In gen-
eral, the idea encompasses a logically central control infrastructure
that collects and reacts to data based on a global view of the network.
The OpenFlow protocol is one and the most prevalent implemen-
tation of the SDN paradigm and is often used synonymously with
SDN. However, new protocols such as P4 try to fix some of the issues
OpenFlow faces and show that OpenFlow is not the only possible
implementation of SDN.

9.4 state of the art in ddos mitigation 141

9.4.2 Source-based DDoS Defense Mechanisms

One of the most common examples of a mechanism mitigating DDoS
attacks is ingress and egress filters based on RFC 2827 [118]. Ingress
is the traffic entering a network, egress the traffic leaving a network.
Many attacks rely on spoofed source IP addresses to be efficient.
Therefore, egress filters that analyze the plausibility of source IP ad-
dresses can help limit the effectiveness of DDoS attacks. A source
IP address that does not belong to the subnet should be filtered out.
Similarly, ingress filters should filter out any source IP addresses that
belong to the subnet. Such filters can be easily implemented in any
stateless switch or router.

Analyzing the data rate of single machines can also help discover
possible machines that are used as bots in an attack [130]. In a small
office or home network, the typical upload rate is low compared to
the download rate. Therefore, a machine with a high upload rate is
highly suspicious. However, it can be tricky to prevent high amounts
of false positives in networks with single machines producing high
amounts of outgoing traffic such as servers or torrent seeders.

More complicated sanity checks can achieve better results. An IDS
can find, for example, frequent occurrences of failed connection at-
tempts typical for worms scanning the network. The system could
also use rate-limitation or find suspicious behavior based on the max-
imum entropy distribution [216].

Systems such as D-WARD [217, 218] constantly monitor the traffic
between the subnet and the Internet and compare the traffic finger-
print with stored models of the network. Flows that do not match the
usual traffic behavior are rate-limited or entirely blocked depending
on their aggressiveness.

9.4.3 Network-based DDoS Defense Mechanisms

The network-based defense mechanisms mainly focus on data analy-
sis in the network to detect attacks and to filter the traffic to the victim.
With the notable exceptions of some mechanisms such as Mizrak et
al. [221] that focus on finding compromised routers in the network,
the usual assumption is that neither the perpetrator nor the target of
the attack are directly located in this network and in general there is
no cooperation of the mitigation system operators with the target.

One approach is to find spoofed IP packets by analyzing the route
the packets take through the network [243, 244]. If the route is im-
probable, an alarm can be raised. Another method is to block clients
based on a simple traffic feature analysis [248]. Basically, all hosts
are blocked during attacks, that did not communicate with the target
recently before the attack.

142 introduction to distributed denial-of-service attacks

However, the vast majority of mechanisms try to detect attacks
based on commonly analyzed network features. These features in-
clude:

• Flow rate [75, 107]

• Bitrate [107]

• Packet Rate [43, 107] (sometimes distinguished between for-
ward and backward packets [91])

• Flow duration [43, 75]

• Entropies based on source IPs, destination IPs, source ports, and
destination ports [107, 226, 272, 341] or packet rate [294]

• Ratio of source to destination bytes [43]

• Packet size distribution and mean [91]

• Per packet processing [174, 199]

A broad distinction can be made about how this data is then an-
alyzed. On the one hand, statistical analyses are used to detect at-
tacks [47, 75, 92, 342]. The other major group of mechanisms try
to find attacks based on machine learning analysis of the network
data [43, 50, 67, 91, 106, 107, 126, 143, 150, 189, 192, 199, 272].

Statistical Approach

Reinforcing Anti-DDoS Actions in Realtime (RADAR) [342] is a system
that detects and defends against SYN flooding, UDP flooding, DNS
reflective amplification attacks, and link flooding. It detects attacks by
analyzing the traffic and finding correlations between attackers. The
defense is done by rate-limiting suspicious clients. The evaluation
was done with the CAIDA data set in a Mininet virtual setup.

Tao and Yu [294] base their detection method on flow statistics. A
low packet rate entropy per flow is regarded as a necessary criterion
of an ongoing attack. Additionally, to validate a suspected attack, the
information distance of the packet rate between pairs of flows needs
to be below a defined threshold. Although the authors validated their
detection method by qualitatively comparing it to statistical proper-
ties of legitimate traffic and DRDoS attacks, no quantitative evalua-
tion of the detection accuracy exists. Therefore, it is difficult to assess
how well data collection and detection will scale to high-bandwidth
networks.

Aizuddin et al. [47] propose a system based on sFlow data to mit-
igate DNS reflective amplification attacks. Their analysis detects at-
tackers by analyzing each DNS request if the same client has already
sent a request recently and reacts with rate-limiting of the reflectors.

9.4 state of the art in ddos mitigation 143

Zhang et al. [341] evaluate ways of finding suitable thresholds for
flow rate entropy detection mechanisms. The evaluation is done in
the simulation environment ns-2.

Mousavi and St-Hilaire [226] also look into entropy-based detec-
tion of DDoS attacks. However, they focus on attacks on the SDN
controller in their network.

FlowTrApp [75] uses flow rates and flow durations to determine
whether a client is benign or an attacker.

FlexProject [92] — based on Software-Defined Networking and Net-
work Function Virtualization — focuses solely on SYN flooding at-
tacks. They present a mechanism to prevent IP spoofing. The evalu-
ation is done in a Mininet Setup with Open vSwitch; detection and
defense mechanisms are based on iptables and tshark. Benign traf-
fic is emulated with iperf, attack traffic with an unnamed flooding
program.

The approach of Wei et al. [322] uses traffic statistics. It correlates
the packet rates for all flow pairs passing the same router. Legitimate
traffic is assumed not to exhibit any such correlation, while flows
belonging to an attack linearly correlate in their packet rate. However,
the calculation of pairwise correlation coefficients for each pair of
flow makes the detection very costly. According to Wei et al., the
quality of the DRDoS detection has a false negative rate of 0.18 %,
and a false-positive rate of 0.10 %. Gao et al. [126] conducted their
own evaluation of Wei et al. [322], which showed a detection rate of
96 % but a false-positive rate as high as 30 %.

It is noticeable that the analysis of these systems is exclusively done
on simulated network environments (mininet if not otherwise stated).
The mechanisms have to hold a lot of state information; an evalua-
tion if these mechanisms scale well to bigger systems is missing. A
discussion of the scalability of the systems is imperative, especially
for attacks with very high data rates, such as reflective attacks.

Giotis et al. [132] use entropy-based anomaly detection on flow
statistics from OpenFlow and sFlow data. They conclude that the
analysis of full flow data is too extensive and does not scale well. In
fact, it could lead the mitigation system to become a potential tar-
get of such an attack. Instead, they calculate the source IP entropy,
destination IP entropy, source port entropy, and destination port en-
tropy based on sampled data and use these values to detect several
different attacks, including DDoS attacks.

Packet Marking and filtering mechanisms try to mitigate DDoS at-
tacks based on historical data. One way is to keep records of which
IP addresses showed usual behavior (e. g., complete TCP handshakes)
and build a white list of trustworthy clients [186]. This list then in-
evitably leads to clients who use the service for the first time being
perceived as attackers. However, returning users are recognized as

144 introduction to distributed denial-of-service attacks

such and can use the service. It is highly dependent on the service
and its user group, whether such a restriction is acceptable.

Counting the hops a packet takes until reaching a service can be
used as an indicator of whether the supposed IP address can be
valid [318]. This, in turn, can be used to detect IP spoofing. However,
NATs can falsify this data, and the attacker could spoof IP addresses
of similar distance to the target service to counter this detection mech-
anism.

Some mechanisms require the participation of a large part of the
Internet. Path identifier (Pi) [331] attempts to track the paths the
packets take through the network by routers marking these packets.
The authors state that around half of all Internet routers would have
to implement this mechanism for it to unfold its full potential.

Machine Learning Approach

The machine learning approaches commonly found try to use the
aforementioned data sources (mostly flow information) and use these
metrics to teach a detection system with the use of machine learning.
They usually use two different training data sets — one containing be-
nign traffic and one containing DDoS traffic — for the learning phase.
Different types of machine learning algorithms are used, from sup-
port vector machines to deep learning.

The approach of Braga et al. [67] is based on the analysis of flow
features. A six-tuple of statistical features per flow is collected at SDN
switches in the target network. Attack features are then distinguished
from non-attack traffic that was collected during a training phase.
Due to the continuous collection of flow-specific data, in particular
from header field inspection, scaling the approach to high-bandwidth
networks would require a powerful SDN deployment. The employed
machine learning approach Self Organizing Maps has a high perfor-
mance footprint. The author’s evaluation showed a detection ratio of
about 99 %, and a false-alarm ratio of around 0.5 %.

Gao et al. [126] use traffic features with machine learning to detect
attacks. Five defined features are selected from the traffic destined
to a target host to train typical network situations. A Support Vec-
tor Machine detects deviations thereof, which are classified as attacks.
The attack detection was evaluated for reflective DDoS attacks and
detected over 90 % of attacks with a false-positive rate between 0 %
and 8 %. Since the machine learning approach needs to be trained,
the detection quality is highly dependent on the training data. This
mechanism is resource-intensive compared to other approaches as
collecting features from the traffic has a higher performance footprint
than using statistical properties of flows.

Li et al. [192] use a deep learning algorithm to detect UDP flooding,
SYN flooding, ARP flooding, SMURF attacks, and the pingofdeath.
They use the Spirent TestCenter Packet Generator [287] for their anal-

9.4 state of the art in ddos mitigation 145

ysis. They report verification rates as high as 98 % to 99 % based on
the ISCX data set.

Ahmed et al. [43] propose a mechanism located on the control
plane of a software-defined network. They focus their endeavors on
tackling DNS amplification and DNS flooding attacks on IoT devices.
The approach is very specialized using the number of packets and
the connection duration as metrics, and the — very atypical — ratio
of source to destination bytes. They base their mitigation method on
the Dirichlet Process Mixture Model.

FADM [150] uses entropy measurements for feature selection and
Support Vector Machines for classification. They only consider network-
level flooding attacks (UDP, SYN, ICMP). The mechanism is charac-
terized by low response time and quick recovery.

Cui et al. [106] use neural networks to detect UDP flooding, SYN
flooding, and ICMP flooding attacks based on outlier detection of the
packet rate (incorrectly called packet velocity by the authors).

Alshamrani et al. [50] also focus on the detection and mitigation of
DDoS attacks specific to software-defined networks.

Liu et al. [199] analyze traffic based on per-packet processing to
counter ICMP flooding attacks.

He et al. [143] compare different classification methods (namely
decision tree classifier, random forest classifier, extra trees classifier,
support vector machine, and ada boost classifier).

Those and other machine learning based DDoS mitgation mecha-
nisms [91, 107, 189, 272] mostly evaluate their systems based on sim-
ulated data, both for attacks and for benign traffic. Sometimes, they
do use publicly accessible data sets for benign data. In these cases,
data sets provided by the Center for Applied Internet Data Analysis
(CAIDA) are often mentioned.

9.4.4 Destination-based DDoS Defense Mechanisms

Mitigation mechanisms running on the attack target can easily be de-
ployed by any server operator. Therefore, those with the highest in-
centive to defend against the attack can perform the mitigation them-
selves. Countermeasures conducted directly by the server under at-
tack have been receiving a large part of the attention in the literature
(e. g., [144, 228, 303]). As server applications terminate connections
on the application layer, host-based mechanisms can take advantage
of protocol-specific properties and metrics to estimate malicious be-
havior. For instance, a web server can specify limits for the minimum
data rate required for a client when sending an HTTP request. It can
also use more aggressive timeout values for the initial HTTP request
lines, subsequent header lines, or chunks of HTTP messages.

However, using the machine under attack to mitigate the attack is a
double-edged sword. On the one hand, application-based attacks can

146 introduction to distributed denial-of-service attacks

be far easier to detect and analyze as the amount of traffic, encryption,
or data protection laws might prevent systems within the network to
detect or analyze the attack properly. However, there is a risk that
using the very machine that is under attack to detect and classify the
attack could mean that no mitigation takes place as the machine is
not able to act anymore due to the very same attack. Depending on
the attack, full mitigation on the target might not even be possible
(e. g., some volumetric attacks) because the target of the attack might
be the bottleneck link leading to the target and not the target server
itself. Under this circumstance, a big part of the attack traffic might
not reach the target at all.

Nevertheless, many host-based mechanisms against transport layer
DDoS attacks were proposed, for instance, mechanisms based on
Management Information Base (MIB) data. MIB data contains rout-
ing statistics and other relevant information that can be used to detect
attacks on the victim machine and can be used to identify the specific
attack [80, 157, 193].

Packet dropping based on the level of congestion is done in Pack-
etScore [174], and its extension ALPi [55]. Both use packet statistics to
compare each packet to benign and attack traffic and rate each packet.
Packets that are similar to attack traffic get discarded. The approach
requires active network monitoring and, therefore, the data collection
impacts the latency of all traffic. The cost for the scoring of pack-
ets during detection can be reduced by parallelizing the analysis in a
distributed monitoring system to handle the traffic in reasonable time.
However, the resource requirements are considerably higher for Pack-
etScore than for other mechanisms, in particular for high-bandwidth
networks. The approach was designed to defend against general net-
work attacks and should be applicable to any volumetric attack with
a modified set of packet attributes.

IP address spoofing is often used during the execution of DDoS
attacks. With falsified source IP addresses, blocking the attackers is
harder to achieve as the IP address that is used to identify the at-
tacker can be falsified and changed. Although, according to the In-
ternet Engineering Task Force [56, 118], network operators should cir-
cumvent IP spoofing through Ingress filtering within their networks,
many ISPs do not implement these measures. Therefore, IP traceback
mechanisms try to identify the attackers based on the route of the
packets taken in the network [76, 94, 115, 159, 274, 326].

Some mechanisms detect reflective attacks by analyzing the re-
sponse packets and then decide on the action to take [164, 340].
These methods require the analysis of any response packet until the
attack is detected. Due to the high volume of this attack, the defense
has to be done within the network infrastructure. However, the target
server can provide valuable input.

9.4 state of the art in ddos mitigation 147

Many proposals for application-layer attack mitigation try to use
the higher amount of data available on the servers for analysis and
finding and blocking attacks.

DDoS Shield [255] performs deep packet inspection in a web load
balancer preceding the attacked service. This mechanism can work
reasonably well for attacks that do not base their effectiveness on their
bandwidth consumption but the CPU consumption on the victim ser-
vice.

DaMask [317] performs mitigation focused on public/private cloud
settings. Their DaMask-D module is an anomaly-based attack detec-
tion system based on flow information while the DaMask-M module
reacts to the attacks. The authors focus more on the principal model
of a defense system and provide a framework rather than concrete
mechanisms.

Some mechanisms try to perform the defense independently of
the attacks and without analyzing the attacks. For example, Sat-
tar et al. [273] use SDN to dynamically allocate additional resources
to systems under attack, which requires backup resources to be avail-
able while Kampanakis et al. [165] use SDN to implement a moving
target defense algorithm, which changes system and network proper-
ties (such as IP addresses) to make it difficult for the attacker to sus-
tain the attack. Chen and Chen [93] detect reconnaissance attempts
by analyzing SDN flow table entries and mitigates these by providing
false information to aggravate the attacker.

9.4.5 Hybrid or Distributed Mechanisms

Hybrid mechanisms use a collaborative scheme between the attack
victim server or subnet and parts of the broader network infrastruc-
ture or network operators. Close integration and cooperation of both
groups are often required. The mechanisms aim to profit from the ad-
vantages of both. These approaches require modifications to potential
victims to implement the reporting, which also presents a potential
vulnerability.

One example of such a mechanism is presented by Lim et al. [196],
using reports from possible attack victims to block attacks from
botnet-based DDoS attacks with standard OpenFlow features. Other
mechanisms use information gathered in smaller subnets to change
the configuration of routers in upstream networks, implementing
aggregate-based congestion control [202, 334] and throttling attack
sources as close to the target as possible [95].

L-RAD [177] proposes an active message authentication by deep
integration of the target host into the detection mechanism to mitigate
reflective attacks. The core idea behind this proposal is that responses
to legitimate requests to a UDP service should take the same route
back from the server. On the way, these packets are marked. A victim

148 introduction to distributed denial-of-service attacks

system can now easily detect attack packets by the markings as the
routes do not match.

Defensive Cooperative Overlay Mesh (DefCOM) is an “example design
for a distributed framework for DDoS defense” [220]. The system imple-
ments distributed rate-limiting, handles alert propagation to partic-
ipating operators, traffic classification, and distribution of resources.
Others have also proposed a framework for DDoS mitigation. For
instance, Coordinated Suppression of Simultaneous Attacks (COSSACK)
aims for better connectivity and more information dissemination be-
tween network operators [241]. To incorporate multiple defenses in a
flexible and scalable way, Mahimkar et al. [203] propose the architec-
ture dFence to deploy arbitrary detection and mitigation approaches.

Speak-up is a mechanism that tries to defend attack victims by
launching a counter-attack against the botnet [316]. The idea is to
increase bandwidth usage of attackers while under attack by sending
more data back than usual. The mechanism is based on the assump-
tion that the attacking clients already use their sending capabilities
to capacity.

Differentiating DDoS-flooding bots from human users is also a fo-
cus in research. A typical example is the use of CAPTCHAs for clients
to prove that they are human [44]. This mechanism is limited to be
used with a UI and can often be found on the web. Some mechanisms
also include a reaction to failed CAPTCHA tests such as blocking sus-
picious clients [166]. Other mechanisms use, for example, human be-
havior models that can be used to evaluate the behavior of potential
bots [236].

One way to counter application-layer attacks is to rate-limit clients
both in terms of the number of connections and in throughput [289].
This approach is reliable when IP spoofing can be ruled out.

Hong et al. [148] have suggested a network-based defense method
against Slow HTTP DDoS attacks by using SDNs. Their method in-
troduces an SDN-based defense application that is triggered by a web
server but then handles potentially malicious HTTP traffic instead of
the web server. The approach relies on assistance by the web server
under attack, as the web server actively initiates the attack check rou-
tine and forwards message fragments to the defense application and
requires access to the application-level payload.

9.4.6 Denial-of-Service Mitigation as a Service

The defense against DDoS attacks is the declared goal of many com-
mercial providers of DDoS Protection as a Service applications. An
overview of these vendors can be found, for example, at eSecurity
Planet2. The most prominent players are Akamai, Verisign, Radware,
Cloudflare, Arbor Networks, Nexusguard, Dosarrest, f5, Neustar, and

2 https://www.esecurityplanet.com/products/top-ddos-vendors.html#chart

https://www.esecurityplanet.com/products/top-ddos-vendors.html#chart

9.5 summary 149

Imperva Incapsula. They nearly exclusively provide their services
for cloud-based applications of enterprise or government applications
and are usually not available for self-hosted websites. Their biggest
strength is their sheer amount of resources that makes it hard for any
attacker to overload. Network capacity in the area of several terabits
per second can handle even the biggest attacks to date. Imperva In-
capsula hinders attackers by not revealing the IP address of its clients’
servers. All requests are routed through their proxies. Cloudflare re-
portedly mitigates one DDoS attack every three minutes. However,
they do not publish how their mitigation mechanisms work.

Some non-Commercial Internet services providers also offer DDoS
protection, namely the German Research Network (Deutsches For-
schungsnetz, DFN) calling their service DFN-NeMo [111, 112] and
Warden by the Czech research network operator CESNET.

There are quite a few tools that can be deployed on the server
to mitigate attacks. Probably one of the best known is Fail2ban3,
which is an Intrusion Prevention System also capable of mitigat-
ing application-layer flooding DDoS attacks simply by banning
clients that open an unusual high amount of connections. The
load-balancing proxy HAProxy [184] offers ways to mitigate attacks
e. g., by rate-limiting requests. Similar systems are, for example,
DDoS Deflate, the Apache mod_evasive module, FastNetMon, DDOS-
MON, and can also be found as built-in mechanisms in Nginx.

9.5 summary

Denial-of-Service attacks are as diverse as effective. Mitigation mech-
anisms have to be adapted to the specific type of attack. While mit-
igation mechanisms against some of these attacks are very effective,
rendering the attack useless in contemporary networks, other attacks
such as slow attacks and reflective DDoS attacks continue to be a men-
ace to service providers. While work in this area is extensive, there
are several challenges still to be tackled in the area of DDoS mitiga-
tion mechanisms. Mitigation often requires the cooperation of the
attack target, especially for application-layer attacks. However, espe-
cially for DDoS as a Service providers, access to the target might not
be possible or prohibited, which means that there is a need for purely
network-based mechanisms. Furthermore, defense mechanisms often
entail the removal of large parts of the network traffic (e. g., through
blackhole routing), including benign traffic. While this is effective
against the attacks, it also disrupts normal network operations.

3 https://www.fail2ban.org

https://www.fail2ban.org

10
P R O B L E M S TAT E M E N T

Denial-of-Service attacks are still one of the primary threats in net-
work security. Higher data rates, more extensive, more complex net-
works, and an ever-increasing number of connected devices lead to an
increasing significance of attacks. Both size and complexity of attacks
increases. While early attacks were made by hobbyists, nowadays
nation-states and criminal organizations such as DDoS as a Service
providers incentivize the development of new, bigger, and more suc-
cessful attacks. Mitigation of these attacks is a prolonged endeavor
nowhere near its conclusion.

Larger and more sophisticated attacks also lead more and more to
small service providers no longer being able to deal with them on
their own. More and more services are being offered by network op-
erators and purchased by service operators aiming to defend against
DDoS attacks in the network. Network-based mitigation mechanism
offered by the Internet Service Providers will increasingly be part of
standard business contracts. This means that mitigation mechanisms
deployed initially on the target system need to be deployable solely
in the network.

The use case that we are considering for our mitigation design is
the research network of Baden-Württemberg (BelWü), its decentral-
ized design, and its infrastructure. Several universities, universities
of applied sciences, schools, and other public institutions are con-
nected by this service with the Internet. Although BelWü offers host-
ing of web services, many affiliated institutions — such as research
institutes — operate and maintain their own services. The services
each institution operates are very diverse, both in terms of underly-
ing operating systems, software products, and operational objectives.

In this setting and with the premise to support BelWü in their
endeavor to protect their clients, we try to improve network-based
DDoS mitigation. In the literature review, we identified three core
mechanisms of successful mitigation. For one, the attack has to be de-
tected. In a second step, the attackers need to be identified, and in a
third step, a defense against the attack has to be deployed. Analyzing
the state of the art revealed some major points where research can be
improved to provide better mitigation services:

• Looking into the mechanisms discussed in Chapter 9 revealed
that although many detection mechanisms exist and they seem
to reliably detect attacks, a contemporary analysis under which
circumstances these mechanisms work reliably is missing. The
resources available in the research projects bwNET100G+ and

151

152 problem statement

bwNetFlow in combination with other available resources (such
as the data sets provided by CAIDA and WIDE) present the
ideal opportunity to contribute to this area of research by an-
alyzing some detection mechanisms in the context of research
networks. Moreover, most mechanisms in this area work based
on passive data measurements, mainly on flow data [43, 47, 50,
67, 75, 91, 92, 106, 107, 126, 143, 150, 189, 192, 272, 342]. Ac-
tive measurement of potential attack victims is an area that has
received little research attention.

• Considering the identification of attackers, while flooding attack
clients are relatively easy to identify due to their conspicuous
behavior, slow attack clients are harder to find. For slow DDoS
attacks, the state of the art focuses on cutting long connections
or performing deep packet inspection on the target [144, 228,
303] or at least need the cooperation of the attack target [148].
Cutting long connections can lead to false positives as connec-
tions from clients with bad Internet service are cut. Deep packet
inspection cannot easily be adapted to network-based mitiga-
tion as encrypted connections render it unusable.

• The common defense mechanisms against Denial-of-Service at-
tacks can often lead to a lot of benign traffic being blocked
(e. g., in case of BGP blackhole routing [161]). Especially when
we look at the defense of reflective attacks, the defense of-
ten means that whole ports are blocked or even UDP as a
whole [112]. As a result, the attack victim is unable to use the
service that was used for the attack.

10.1 research questions

Based on these considerations, the following research questions arise:

1. Under which circumstances do common detection mechanisms
detect DDoS attacks reliably?

2. Can the common detection mechanisms help to find DDoS at-
tacks in the BelWü network and other research networks with
similar characteristics?

3. How can the network-based identification of DDoS attacks be
improved? Our focus here lies mainly on slow attacks, as here,
the need for improvement has been identified.

4. How can the network-based defense against DDoS attacks be
improved? We focus here mainly on reflective attacks.

In order to obtain the necessary results to answer these questions,
several steps are necessary:

10.1 research questions 153

• Recording and analyzing data in the BelWü network infrastruc-
ture. This data can be obtained from the bwNetFlow project.

• A framework that can be used to test the mechanisms meant to
improve DDoS mitigation.

11
D D O S M I T I G AT I O N F R A M E W O R K

Successful mitigation of Denial-of-Service attacks requires an exten-
sive system to detect the attack, identify attackers, and defend against
the attack by removing the threat from the network traffic. In the fol-
lowing, we introduce our mitigation system.

The mitigation system consists of three separate groups of mecha-
nisms:

detection Two different detection mechanisms are the focus of
this chapter: for one, the detection mechanism by response time mea-
surement of the potential target. This method guarantees that all
DDoS attacks that are successfully impairing the target service are
found — given that the resource that is checked by the detection sys-
tem is the one under attack. However, this method is not capable of
finding out which attack is running and cannot distinguish between
an attack, a flash mob, or other reasons for server downtime. Mecha-
nisms reacting to detection based on this measurement need to keep
this in mind when reacting to the attack. The second mechanism is
based on flow data analysis and is a common method for finding at-
tacks. Based on flow data and derived metrics such as the entropies
of source and destination IPs, or source and destination ports, or the
number of flows in the network can be used as indicators of large
scale attacks in the network. This method can only be used to detect
volumetric attacks as — depending on network size — a large volume
of attack flows is required to change the metric.

identification of attackers Two mechanisms to identify at-
tackers are part of the system. For one, a scoring mechanism that classi-
fies attackers based on their presumed impact on the target. The fun-
damental idea behind this mechanism is that attackers tend to inflict
more resource consumption on the target than regular clients. This
assumption makes sense for resource depletion attacks such as flood-
ing attacks, as the very idea of these attacks is to overload at least one
resource on the target. Maximizing the impact for an attacker means
that attacking clients exceed the usual resource consumption signifi-
cantly. This mechanism relies heavily on counting packets and, there-
fore, on the assumption that DDoS attacks have high packet frequen-
cies. This assumption is not valid for slow DDoS attacks. As slow
attacks break with the usual patterns of DDoS attacks — especially in
terms of induced traffic amounts — a specialized identification mech-

155

156 ddos mitigation framework

T
NetFlow

data export

peerings to other ISPs / IXPs

core routers

SD
N

co
nt

ro
lle

r
ob

se
rv

er
C

A
PT

C
H

A
se

rv
er

SDN switch

attack target

control plane connection
data plane connection
part of the defense
other parts of the network

Figure 31: Setup of the full DDoS Mitigation System

anism is necessary. Therefore, the second mechanism is a specialized
mechanism focused on slow Denial-of-Service attacks.

defense The defense is done in two different ways depending on
the attack. For one, the general defense mechanism is based around the
assumption that the attackers could be correctly and reliably identi-
fied in the identification phase. This assumption is not feasible to
achieve with very high load attacks such as reflective DDoS attacks.
For those, analyzing all clients and identifying attackers would be a
task far exceeding the computational power of the normal network
operations. Therefore, a specialized mechanism for reflective attacks that
can work without identifying attackers follows subsequently.

First, the environment in which the framework is setup is described.
Then, the detection of attacks, the identification of attackers, and the
defense mechanisms each for different attacks are introduced. The
chapter concludes with an evaluation of all these mechanisms.

11.1 environment

The system we are looking into is a network-based mitigation sys-
tem set up within the network infrastructure. Potential targets in
the network infrastructure are known by the defenders. However,
they are neither in contact with nor controlled by the DDoS miti-
gation administrators or the mitigation service. Figure 31 shows a
simplified, schematic view of the environment in which the mitiga-
tion system is set up. In red, the mitigation system itself is shown,
while the gray parts represent the parts of the network infrastructure

11.2 detection mechanisms 157

that are directly connected to the mitigation system. On the left side,
the data aggregation based on information from the network’s core
routers is shown. The Baden-Württemberg Extended Lan (BelWü) —
among other parts — contains several core routers connected to other
ISPs (e. g., the Swiss research network SWITCH) and Internet Ex-
change Points (IXPs, e. g., DE-CIX in Frankfurt) as peering partners.
The bwNetFlow project is a research project financed by the state of
Baden-Württemberg and focuses on the realization of an interface
between the core routers to collect flow information, establish an au-
tomated processing platform, and detect anomalies1. The project ex-
ports the NetFlow data of the core routers, aggregates the data, en-
riches the data with additional information, and provides the data to
subscribers. This data can then be used by the DDoS mitigation sys-
tem. On the right, the mitigation system close to the servers we want
to defend — the attack targets T — is shown. SDN capable switches in
front of the targets provide the necessary flexibility to realize effective
mitigation. An SDN controller controls the switch and can forward
attack traffic to the observer for analysis or drop traffic identified as
attack traffic. A CAPTCHA server can be used to whitelist legitimate
clients during an attack.

11.2 detection mechanisms

The goal of the detection of DDoS attacks is to facilitate a fast and
thorough reaction. Early detection systems need to react fast, all the
while being as accurate as possible. Missed attacks mean that no
mitigation will be started or will only be started belated — after ad-
ministrators find out about the attack through other channels. How-
ever, a system detecting too many attacks could also be detrimental.
DDoS attacks are quite common; still, they are not common enough
that a high false-positive rate is acceptable. A reaction to an attack
detection could either mean that alarms are raised, or an automatic
system could start to defend actively against the attack. While in
the first case, a high false-positive rate would be annoying at best or
desensitizing at worst, an automatic response system reacting to a
non-existent DDoS attack could have enormous consequences on par
with a real attack.

In addition to detecting attacks, additional information can already
be collected by the detection mechanism. For example, it can iden-
tify what kind of attack we are facing. As DDoS attacks are quite
diverse, it is vital to recognize which attack is — or which attacks
are — currently running to facilitate the right response.

The two different detection mechanisms that are the focus of this
chapter are the detection mechanism by response time measurement
of the potential target and the detection mechanism based on network

1 https://www.alwr-bw.de/kooperationen/bwnetflow/

https://www.alwr-bw.de/kooperationen/bwnetflow/

158 ddos mitigation framework

behavior based on entropy measurements. In the following, we will
describe how these metrics are set up and how they work.

11.2.1 Detection Mechanism based on Target Availability

To determine whether an attack is in progress, we determine whetherAlexander
Hunt [24] has

contributed to this
section with his
bachelor thesis.

the protected service is still available. Many services in the current
Internet are HTTP-based, which provides additional features to de-
tect attacks beyond standard flow-based detection. The HTTP pro-
tocol includes status codes that we can use to determine whether a
particular service is still available; we use such HTTP requests andAlexander Hunt,

Denis Wagner, and
Christian Stehle [25]

have contributed to
this section with

their master project.

measure the response time. From this data, we determine the load
status of the webserver. Although this is also theoretically possible
with non-HTTP services, HTTP allows us to distinguish between dif-
ferent types of delay. This requires carefully chosen probing URLs; in
some cases, the server may only respond to requests for static pages,
but fail to generate a dynamic page. Similarly, it may send some TCPParts of this section

have been published
at IEEE LCN

2017 [4]

segments just in time but is unable to complete the full request in
adequate time. Thus, three different types of delays are taken into
account based on the recommendations of Mirkovic et al. [219]:

• whole delay, twhole is the time between the last HTTP request
segment that is sent and the last HTTP response of this request
that is received up to the point of measurement.

• It is further divided to measure the partial delay, tpartial. The
first partial delay is the time between the last request segment
sent, and the first response segment received. All further partial
delays are between two response segments.

• We also take the TCP round trip time, tTCP [251] into account. It
is necessary because the server may fail to receive or to acknowl-
edge received request segments just in time. Therefore, we mea-
sure the delay between sending a packet and receiving the cor-
responding ACK, including the three-way handshake. Retrans-
missions do not reset the associated timeout.

These values are continuously measured. If one of the delays ex-
ceeds the corresponding timeout, or the server answers with HTTP
503 [119], we consider the transaction as failed. Note that the delays
are also applicable to other common protocols, including DNS, Telnet,
FTP, and ICMP. The load li of the server after transaction number i is
calculated with:

li = (1−α) · li−1 +α · ti (13)

where l0 = 0, α ∈ [0; 1] is the weight ratio and ti indicates if trans-
action i is successful (ti = 0) or failed (ti = 1). If the load status
exceeds a threshold τl, we assume the server is under attack.

11.2 detection mechanisms 159

The weight α represents a trade-off between reaction time and ac-
curacy. One transmission may fail for other reasons than an attack
(e. g., congestion in the network), so an immediate reaction (α = 1)
could lead to a significantly high number of false positives. There-
fore, the load li should only increase when multiple failed transac-
tions occur in a short time. We have parameterized the timeout and
the threshold value so that the speed of the detection can be adjusted
appropriately to the network. The observer module — handling any
reaction to the attack — is regularly informed about the load status.

11.2.2 Detection Mechanism based on Network Behavior

Analyzing the flow data of networks is a common way to detect DDoS
attacks. As already mentioned in Chapter 9, several different flow
features can be used to detect attacks. In the research network of
Baden-Württemberg, we have access to flow data based on the Net-
Flow standard. NetFlow data is commonly obtainable in networks
and, therefore, a reasonable base for detection mechanisms.

Available Data

The NetFlow data exported by all peering routers of the BelWü net-
work are collected at a sampling rate s of s = 1

32 , limited by the
capabilities of the routers. The data is then collected and enriched
with additional meta-information not inherent to the NetFlow proto-
col. A full list of available data fields can be seen in Tables 20 and 21

in the Appendix. The fields important for the detection of DDoS at-
tacks are the destination IPs (DstAddr), the source IPs (SrcAddr), the
destination ports (DstPort), the source ports (SrcPort), and the pro-
tocol (Proto). An identification number (Cid) identifies the subnets
where the flow in the network can be associated with (e. g., 10109 is
assigned by BelWü to flows to or from the Ulm University network).
Only one such identification number is necessary as only outgoing
and incoming flows from and to the BelWü network are included
in this data source. This limitation means that it is not possible to
find attacks that both target a device within the BelWü network and
originate from the network.

Entropy Calculation

The Shannon entropy or Information Entropy H is the average rate
of information produced by a stochastic data source and can be inter-
preted as a measurement of information density. Equation 14 shows

160 ddos mitigation framework

how the entropy is calculated with the probability mass function P
with each data value xc ∈ X with n values x1 to xn.

H(X) = −

n∑
c=1

P(xc)logbP(xc) (14)

This information entropy is often measured in bits, especially if the
base of the logarithm b is set to 2. The entropy value can then also be
interpreted in the way that it gives us a measurement of the number
of bits necessary to encode the data set. For example, the entropy of a
coin toss would be 1 bit, as 1 bit is enough to encode the two possible
outcomes of the toss: heads and tails. If X is not equally distributed,
rarer events are containing more information than frequent events.
Therefore, a data set containing many rare events has higher entropy.

The data we can extract from our networks can be seen as a se-
quence of value pairs, one value being the timestamp, the other value
the value of the data point. For example, the list of source IP ad-
dresses contains value pairs with both the timestamps of the flows
and the source IP address. We define such a sequence of value pairs
S with the n timestamps ti and the values si:

S = ((t0, s0), (t1, s1), . . . , (tn, sn)) (15)

To calculate the entropy of this network metric during a certain
time span between the timestamps T1 and T2 with T2 > T1, we take
the sequence Ŝ ⊆ S with

Ŝ(T1, T2) = ((tk, sk) : T1 6 tk < T2) (16)

From this sequence Ŝ, we take the set of unique values Σ =

{si}i∈1,...,k in Ŝ and define the multiplicity set M with:

M(T1, T2) = {mi : mi = multiplicity of si ∈ Σ in Ŝ}

ignoring the differences in the timestamps when calculating the
multiplicity. From that, we can calculate the entropy H(S, T1, T2) with:

H(S, T1, T2) = −

n∑
i=0

mi

|Ŝ|
· log2

mi

|Ŝ|
(17)

with n being the number of elements in M. The entropy changes
when an attack is in the network. Given for one metric that an attack
uses the same value sa for all its connections, the multiplicity ma of
sa equals the number of all connections the attack opens. In case of a

11.2 detection mechanisms 161

DDoS attack, the number of connections |A| can be very high, which
can lead to significant changes in the entropy. The entropy under
attack changes to:

H(S,A, T1, T2) = −

(
n∑
i=0

(
mi

|Ŝ|+ |A|
log2

mi

|Ŝ|+ |A|

))

−

(
ma

|Ŝ|+ |A|
log2

ma

|Ŝ|+ |A|

) (18)

Where the second part of the term represents the impact of the at-
tack. For simplicity’s sake, we measure the number of connections in
relation to the number of connections in the benign traffic of the net-
work with |Ŝ| benign connections and |A| = a · |Ŝ| attacker connections.
This simplifies the calculation to:

H(S,A, T1, T2) = −

(
n∑
i=0

(
mi

|Ŝ| · (a+ 1)
log2

mi

|Ŝ| · (a+ 1)

))

−

(
ma

|Ŝ| · (a+ 1)
log2

ma

|Ŝ| · (a+ 1)

)
= −

(
n∑
i=0

(
mi

|Ŝ| · (a+ 1)
log2

mi

|Ŝ| · (a+ 1)

))

−

(
a · |Ŝ|

|Ŝ| · (a+ 1)
log2

a · |Ŝ|
|Ŝ| · (a+ 1)

)

= −

(
n∑
i=0

(
mi

|Ŝ| · (a+ 1)
log2

mi

|Ŝ| · (a+ 1)

))

−

(
a

(a+ 1)
log2

a

(a+ 1)

)

(19)

For this calculation, we assumed that the attack only uses the one
value sa for all connections. However, in real attacks, it also happens
that not only one value but a short list of a few values is used (e. g.not
only one target IP address but several, but usually not more than
ten [163]). Under the assumption that all target values have equal
multiplicity and the number of target values c, we can calculate the
entropy with:

H(S,A, c, T1, T2) == −

(
n∑
i=0

(
mi

|Ŝ| · (a+ 1)
log2

mi

|Ŝ| · (a+ 1)

))

−c ·
(

a

c · (a+ 1)
log2

a

c · (a+ 1)

) (20)

As already mentioned, DDoS attacks target one or only a few tar-
gets at the same time. Therefore, the destination IP entropy goes

162 ddos mitigation framework

down during an attack. It has to be noted that similar observations
can be made when a service experiences a sudden rise in popularity
(i. e., flash crowd effect), which makes false positives possible, and
additional metrics should be taken into account. Network scans can
show the opposite behavior concerning the destination IP entropy.
While a DDoS attack sends many packets from many sources to only
a few destinations, network scans send only one or a few packets to
many destinations. Therefore, during a network scan, the destination
entropy goes up. There are ways around this that are usually used
when performing a network scan. A slow scan is harder to detect. If a
very large network is scanned — for example, the entire IPv4 address
space — randomizing the order of IP addresses makes it a lot harder
to detect the scan as defense mechanisms are only deployed in much
smaller subnets, and the entropy in these smaller subnets should not
change enough to detect the scan. Therefore, although it is possible
to detect some network scans, one should not assume that there are
no scans if none could be found by calculating the entropy.

While legitimate clients and flooding attackers send requests to the
server, resulting in inbound traffic consisting of requests for the most
part, for the particular case of DRDoS attacks, all attack packets are
response packets sent by the reflectors. Therefore, during a reflec-
tive attack, inbound traffic consists predominantly of responses from
the perspective of the victim host. UDP services usually have a prede-
fined port number where they are reachable. Subsequently, responses
from this service contain this service port number as their source port.
As the attacker cannot control the behavior of the reflectors, this is an
inherent feature of reflective attacks that cannot be changed. The
entropy of the source port is therefore affected by reflective attacks.
Flash crowd effects do not affect the source port entropy, which makes
this metric even more valuable.

The entropy of the different metrics in benign traffic is highly de-
pendent on several factors in the network, such as the number of
clients, the number of services, the time of day, the amount of traf-
fic, whether there is a holiday, weekend, or a typical workday. This
makes it impossible to define clear entropy values for typical non-
attack traffic and traffic during an attack. Rather, such values must be
set depending on the usual traffic patterns. One way of doing this is
to continually calculate the entropies in the network and report a pos-
sible threat in case of sudden changes, indicating the beginning of an
attack. This opens a possible way of staying undetected by changing
the traffic patterns slowly over time. However, threat reports show,
that this is highly uncommon in DDoS attacks and sudden starts are
the norm [153, 211–214]. Therefore, tracking changes of the entropy
should work to detect most DDoS attacks. To analyze changes over
time, the timeline has to be split into windows of equal length l. The
entropy within a specific time frame is then defined as Hi(X) for time

11.2 detection mechanisms 163

entropy value over l seconds

entropy value w/o attack

entropy value w/ attack
H(tn−1) − T

en
tr

op
y
H

time

start of attack

tn

eg/2e g/2
tk

T

Figure 32: Scheme of the detection approach.

frame i. During an attack, as the traffic is targeted at one specific
service, the entropy of the destination IPs decreases. Therefore, it can
be observed, that Hj(X) −Hi(X) 6 T with i < j; i before the attack
and j during the attack with a network-specific threshold T < 0.

Figure 32 shows an overview of the parameters relevant for the
measurements. Entropy measurements are conducted continuously
calculated at a point in time t for time slots of length l from t − l

to t (black and red circles). At any time tk, it can be detected if an
attack has started at tn. For this, we calculate the average entropy
before tn as a reference value for a typical entropy observable in this
network. For this measurement, two parameters need to be consid-
ered: The gap g between entropy measurements and the number of
entropy values e taken into consideration. For small l, the transition
period between no attack and during the attack might take a few time
steps. We take a gap between the measurements g into account to as-
sure that the values that are compared are during the no-attack-time
and the attack-times, respectively. This means, we consider measure-
ments that were obtained up to g

2 time steps prior to tn and compare
them to values starting at g2 after tn. First, we take the average of
e values at times t 6 tn − g

2 into consideration. Taking the average
over several values can be beneficial to filter out sudden spikes in
the entropy measurements. We opted for the mean of e values in-
stead of median values due to the fact that the median calculation is
more computationally expensive. Next, a threshold T is calculated
that is below this average entropy value (by subtracting T from the
calculated mean entropy). In a third step, the average entropy after
t > tn + g

2 is calculated for e values. If the second entropy falls
below T , we consider an attack detected at tn. We use flow-based
entropy over packet-based entropy as large flows within the benign
traffic otherwise might distort the results and might lead to more
false positives.

164 ddos mitigation framework

If chosen values for the periods l and e are too short, random fluc-
tuations within the network could lead to false positives. Long time
frames, on the other hand, lead to a long detection time since a deci-
sion if an attack has occurred can only be made after the entropies of
the second time frame are calculated. To detect an attack at tn, the
detection time is tdet = (g2 + e) · l+ tcalc with the calculation time
tcalc. Additionally, as attacks do not start suddenly but also need
some time to reach their nominal strength, g has to be chosen accord-
ingly. If g is too large, usual slow changes in the entropies within
the network could lead to false positives and an increase in detection
time. If g is too small, the entropies that are getting compared could
both be within the attack time, and a comparison would not lead to
a detection.

This approach scales well because the entropy calculations can be
spread out over several network nodes. This works as follows: A
load balancer splits the traffic flows to different network nodes. These
count the frequency of the source ports and destination IPs and report
them to a central instance. The central instance merges the results
and calculates the overall entropy. For the source port entropy, a
maximum of 65 536 values (maximum number of ports) needs to be
considered — independent of the network’s actual size.

There are other metrics based on the NetFlow data that can be
taken into account. During a UDP-based attack, the ratio of UDP
traffic versus TCP traffic Ri in a time frame i increases. A sudden
rise of that ratio Tr with Rj − Ri > Tr can be used as a comple-
mentary indicator of a UDP-based attack. Based on the commonly
known default ports, it is possible to estimate the message type of a
request/response-based application-layer protocol (requests use the
port number of the service as destination port, responses use the port
number of the service as source port). During a reflective attack, the
mode of the source port distribution can be used to identify the UDP
service exploited in the attack. This information can then be used
by a defense system to defend against the attack. Once an attack is
detected, the mitigation is activated, and the most used source port
(i. e., the port used for the attack) is forwarded to the mitigation sys-
tem.

To sum it up, the metrics we are looking into based on the NetFlow
data are:

• Overall increase of flows to detect network scans and DDoS
attacks.

• Destination IP entropy to detect and distinguish between net-
work scans and DDoS attacks.

• Source port entropy to detect reflective DDoS attacks.

11.3 identification mechanisms 165

• Measuring the dominant UDP source port (i. e., mode of the
source port distribution) to identify the attack service of a re-
flective DDoS attack.

11.3 identification mechanisms

Given that an attack was detected, the defense against the attacks can
be initiated. However, many defense mechanisms require knowledge
of attacking clients to be effective. For example, rerouting attackers or
blocking attackers can only be undertaken if the attackers are known.
For this, attacking nodes need to be identified, for example, by their
IP address. In the following, two such mechanisms will be presented.
For one, a general mechanism against flooding attacks, and a special-
ized mechanism against slow DDoS attacks.

11.3.1 General Identification Mechanism

In case of an attack, observation of the network is enabled for the
specific server that is under attack. The SDN controller directs the
switch to mirror all packets to the observer where the destination cor-
responds to this service. The observer can then analyze each client’s
behavior, which includes information such as the number of open
TCP connections. As the observer only analysis metadata of the pack-
ets and does not process the requests, especially application-layer
DDoS attacks affect the observer far less than the attack target. Nev-
ertheless, enough resources should be allocated to the observer to
handle DDoS attacks sufficiently. The load factor of the server, pro-
vided by the detection step, is continually updated. For scalability
reasons, the observation is only enabled once an attack is detected
and only for connections to the server under attack.

During the observation step, every client is assigned a score indi-
cating the degree of suspicion, based on the actions they perform.
For each action, the score paction also corresponds to the amount of
effort generated for the server by the client — and can be configured
individually for every server as needed. Actions that cause more
load should be assigned a higher score. The clients are ranked by
their score; if an attack is detected based on the load from the de-
tection step, the observer selects the highest-ranked clients as po-
tentially suspicious clients. The score decays after a timeout tscore,
with a decay factor pdecay that represents the sensitivity of the system
(i. e., pnew = pold · pdecay). In order to only assess latest network ac-
tivities, the system observes for tscore seconds before taking further
action. Otherwise, legitimate clients would carry more weight com-
pared to attackers in the beginning of a slow starting attack.

The potentially suspicious clients are compared to a bound B, vi-
sualized in Figure 33, which is initially calculated as B = pmax · β,

166 ddos mitigation framework

bo
un

d
B

time

start of attack attack mitigated
B := pmax ·β

tbound

B := pB ·β

Figure 33: Bound B calculation over time.

where pmax is the score of the most suspicious clients and β ∈ [0; 1]
is a configurable ratio to control the amount of suspicious clients.
These clients are then forwarded to the controller and processed. If
the server is still overloaded after a configurable timeout tbound, we
assume that the attack is still successful and more clients need to be
blocked. Therefore, the bound is lowered by computing B = pB · β,
where pB is the highest score of clients below the previous value of
B. This process continues until no attack is detected anymore. If the
bound B reaches 0, all clients are listed as potential attackers. If no
more attack is detected, the observation stops, and the bound is reset.

11.3.2 Special Identification Mechanism for Slow DDoS Attacks

Identification of slow attackers is hindered by several factors: TheParts of this section
have been published

at EAI SecureComm
2018 [5]

attacking clients behave according to specification, the data rate of
the attack is low, and — in case of a highly distributed attack — each
client only opens a few connections. This leads to Intrusion Detec-

Lisa Maile [27] has
contributed to this

section with her
master project.

tion Systems not being able to distinguish attacks and regular traffic
successfully [313]. Currently, many servers, such as Apache can be
configured to mitigate the effect of slow attacks by reducing the max-
imum time a server waits to receive a full request. However, theseParts of this section

have been published
at 1st KuVS
Fachgespräch

Network
Softwareization

2017 [6]

changes also block legitimate requests from clients with slow Inter-
net connections, and an attack still has a noticeable impact on the
server’s performance [228]. Moreover, this mitigation technique re-
quires the administrator to become active; therefore, it is not a viable
option for our use case.

Attacks conducted by the most common tools, however, also show
common characteristics in terms of network traffic patterns. Based on
this traffic, we identified six attacker identification schemes that we
considered for our evaluation:

long connections (lc) A very basic method measures the du-
ration d of connections and deems very long connections suspicious.
This method, however, needs to wait for the connection to last longer

11.3 identification mechanisms 167

than a certain threshold in the area of minutes and, thus, the identi-
fication of attackers can take longer than with other methods. This
could also lead to many false positives when the time out is set too
short. This is the closest to the already established mitigation method
of changing the aforementioned server settings.

low packet rate (lpr) One of the core characteristics of slow
attackers is a low packet rate p as the attackers try to send as lit-
tle packets as possible while still keeping the connection open. This
scheme alone might also lead to slow regular clients to be blocked.
The packet rate is defined as the number of packets divided by the
elapsed time since the first packet of the connection.

packet distance uniformity (pdu) Even time intervals be-
tween packets are a feature that can be observed with scripted at-
tacks. The assumption is that non-scripted real clients would send
with varying packet rates due to user behavior, network utilization,
and available processing resources. Especially clients with bad con-
nections that could be mistaken for attackers by the LPR metric might
experience differing packet distances due to non-deterministic packet
loss. To reduce load, we only consider the packet distance for three
consecutive packets in a row. The packet distance between two subse-
quent packets is defined as the difference between their receiving time
stamps. The PDU is defined as the absolute value of the difference be-
tween the packet distances of three consecutive packets abbreviated
as ∆.

combination of lpr and pdu (lpr-pdu) LPR can reliably de-
tect slow clients while PDU can reliably detect constantly sending
clients while both mechanisms cannot assess the other trait. There-
fore, a combination of both schemes could lead to better results. Both
traits are present in attackers but should not be common in benign
clients. The combination of the two metrics evaluates whether a client
shows both characteristics typically attributed to an attacker. As a
combination scheme, this scheme requires two thresholds p and ∆.

low mean packet rate (mpr) The mean packet rate p̄ of an at-
tack connection should be high compared to benign clients and could,
therefore, also be used as an indicator for an attack if a large number
of connections is opened from the same IP.

low packet rate variance (prv) The mean packet rate of
an attack connection should be more consistent compared to benign
clients because of the periodically generated traffic for keeping the
connection alive. Therefore, we also analyze whether the packet rate
variance σ2 can be used as an indicator for attackers. This is similar

168 ddos mitigation framework

but not the same as PDU as it takes the complete connection time into
account.

The chosen schemes require minimal calculation effort, work solely
on the network layer with therefore comparatively minor privacy im-
plications, and have very low storage requirements (at max, two val-
ues per client need to be stored). In addition to the aforementioned
schemes, we also identify two schemes we choose not to evaluate fur-
ther as they do not fulfill our requirements of a light-weight network-
based scheme:

incomplete application-layer messages This scheme op-
erates on the same conceptual level as the approach of Hong et
al. [148] for detecting Slow HTTP attacks. Benign clients typically do
not send incomplete headers on the application layer as the whole
header usually fits into one packet. However, incomplete headers are
an inherent feature of slow attacks. Therefore, this method helps to
identify attackers reliably. However, it relies heavily on the applica-
tion layer protocol, a specific detector per protocol and attack type
is necessary. For slow HTTP header attacks, for instance, the identi-
fication of incomplete packets needs to check GET requests for only
one end-of-line character at the end or compare the Content-length
definition with the actual body length of messages. This identifica-
tion method is quite resource-intensive as deep packet inspection is
necessary and requires access to the application layer of the connec-
tions. In contrast to the other schemes, encrypted communication
(e. g., TLS) cannot be analyzed.

scoring-based mechanism A scoring-based system based on
our prior work used to mitigate flooding attacks would rate every
connection depending on the load caused at the target. For example,
a scoring system would rate Slow POST attacks by giving a high score
to packets belonging to a POST request. The number of connections
per single client can be considered to prevent non-distributed DoS
attacks. Thereby, any additional connection will increase the score,
which is assigned to a client. If other methods fail to identify attack-
ers correctly, this mechanism can at least provide the support for a
small subgroup of slow HTTP attacks (non-distributed attacks). Pre-
liminary tests have shown that this scheme is very unreliable for slow
attacks and is therefore excluded from the evaluation.

11.4 defense mechanisms

The defense is done in two different ways depending on the attack.
The general defense mechanism after a successful identification phase
and a specialized mechanism for reflective attacks that can work without
identifying attackers follows subsequently.

11.4 defense mechanisms 169

11.4.1 General Defense Mechanism

After the controller is informed about suspicious clients at the end
of each observation step, it directs the switches to redirect all pack-
ets with one of the suspicious clients’ source IP addresses and the
target as the destination to a dedicated server. This server provides
individual CAPTCHA tests to distinguish between human users and
bots, similar to what Lim et al. [196] suggested. If a suspicious client
solves a CAPTCHA, it gets full service access for a duration tWL. On
the other hand, if the test is failed multiple times, or too many pack-
ets without a solution attempt are sent, they are listed as (confirmed)
attackers for a configurable timeout tBL. CAPTCHAs are not always
possible to use. In the case of protocols that do not require user inter-
action and in case of encrypted communication, they cannot be used,
and the suspected attackers need to be blocked indefinitely instead.

After identifying which clients are confirmed to be suspicious,
there are multiple ways to implement the mitigation of their attack.
Traffic-shaping decreases the server load by limiting the data rate, or
the number of packets sent to the service. Incorrectly blocked legiti-
mate clients are, therefore, still able to use the service with reduced
bandwidth. However, for some attacks, this is not sufficient, as at-
tacks are not necessarily dependent on high bandwidth. For example,
some application-level attacks, such as an HTTP GET flood on a dy-
namically generated page, can overload a server with comparatively
little bandwidth. To effectively mitigate such attacks, either the rate
limit needs to be very low, or the traffic must be blocked entirely. If
Software-Defined Networking capable switches are used, OpenFlow
1.3 [249] and up provides both blocking and rate limitation of specific
flows based on data or packet rate. Therefore, we use the switches
to perform all mitigation measures. However, note that rate-limiting
features are not a mandatory part of OpenFlow 1.3, so some vendors
may not implement it, which leaves blocking as the only remaining
option.

Our system has multiple mitigation measurement levels. When an
attack is detected, the first level with the highest data or packet rate
limit is applied to detected attackers. If the server is still overloaded
after a configurable timeout tlevel, the next level with a lower limit
is applied. On the last level, the switch blocks all packets from the
attackers.

The CAPTCHA server could constitute a bottleneck and become a
target of a DDoS attack itself, but it has the advantage that it is en-
tirely controlled by the service provider. This allows the provider to
enable protection techniques in a centralized way, instead of deploy-
ing these measures for each protected service.

One limitation of mitigation techniques within the network is that
they typically rely on IPs to identify attackers. Since these addresses

170 ddos mitigation framework

are not authenticated, an attacker may spoof these for certain types of
attacks (e. g., the SYN flood), where the response to an initial message
is not relevant to the attacker. IP spoofing is often prevented within
ISP networks in today’s (mostly IPv4) Internet, limiting the potential
of such an attack. However, it is still important to remark that our
mitigation strategy only works as presented, if the number of rules to
be processed by the switches remains limited. IP spoofing, especially
when combined with a SYN flood attack, potentially breaks this limit.
In order to deal with this, we have theorized a more aggressive mit-
igation mode for our framework, where all traffic is moved through
the CAPTCHA service, which then performs whitelisting.

Although such attacks may seem theoretical, the wide-spread in-
troduction of IPv6 and the corresponding privacy extensions [231]
have the potential to create precisely this issue even if IP spoofing
is prevented in the network. Standard IPv6 addresses are generated
by a prefix combined with the MAC address of a device; because
this would allow global tracking of devices, privacy extensions allow
clients to select a random value instead of the MAC address. This al-
lows an attacker to potentially generate many different addresses that
are all in the same IP range, allowing an attack similar to IP spoof-
ing, except that the attacker can also receive the targets’ responses.
A potential solution to deal with this type of attack is to blacklist
IPv6 address ranges instead of individual clients, and sporadically
whitelist individual clients within that range on the successful resolu-
tion of a CAPTCHA. This works, because legitimate clients will use
precisely one IPv6 address for the duration of their session, while
attackers will use many.

This defense mechanism does not scale well with high traffic rates,
which can be observed, for example, with reflective attacks. There-
fore, a specialized defense mechanism for reflective attacks is neces-
sary.

11.4.2 Special Defense Mechanism for Reflective DDoS Attacks

Reflective attacks consume the highest amount of bandwidth. Ana-Parts of this section
have been published

at IEEE LCN
2018 [7]

lyzing every connection as we do in our identification mechanisms
or blocking individual clients based on their score in a suspicious-
ness ranking is not feasible with the vast amount of data that needs
to be analyzed. Furthermore, the traffic received by the target doesKevin Stölzle [35]

has contributed to
this section with his

master thesis.

not come from attackers but reflectors. As the reflectors are services
available to everyone on the Internet and typical protocols used for
the attacks are probably also in use by the target (e. g., DNS or NTP),
blocking them would also potentially prevent the target from using
this service.

Therefore, the focus here has to lie on the flows. While the same
IP address can, in one case, be an exploited reflector and in another

11.4 defense mechanisms 171

providing a service to the target, the flows are clearly either benign
or malicious. Identifying malicious flows, however, is hard to obtain.
Reflective attacks usually use UDP; therefore, there is no connection
state. However, what we do know about the attack packets is that
while they are addressed to the target, the target never sent out a
request for these responses. Therefore, we need a way to distinguish
between response packets sent to the target as requested by the target
or by the attacker. As the amount of traffic far exceeds the amount
of traffic in usual network operations, analyzing the payload is out
of the question, and we have to rely solely on the connection data.
One way of keeping track of benign responses and attacker responses
would be to track outgoing requests of the target, save the state, and
let the corresponding responses through. However, to be as effective
as possible, the defense needs to be distributed as far as possible.

As the attack targets the bottleneck link to the target, the attack
traffic should be dropped everywhere in the network. Distributing
the knowledge of benign requests across the network would be hard
to obtain. An easier way would be if the request packets carry the
information that they are benign in them. This information needs to
be impossible to obtain by the attacker or at least easy to change by
the defender if the attacker finds out. Additionally, it needs to be
contained in the data that is usually used for packet routing — the
5-tuple of the TCP/IP protocols: the protocol (UDP/TCP), the source
IP address and source port, and the destination IP address and des-
tination port. The protocol is set (UDP), the destination IP and des-
tination port are set (IP of the UDP service provider) and cannot be
changed to assure that the packet reaches the target, the source port
could be adjusted, but collisions are possible and in control of the at-
tackers (different attackers using the same port) leaving the source IP
address. The basic idea is that we can tag the outgoing requests from
the target to the service by exchanging the target IP address IPtarget

with an alias IP address IPalias. We can limit this only to flows for
the service used in the attack to minimize interference in the network
traffic. We can block all traffic using the same service as the attack
going to IPtarget as any benign request would use IPalias instead. We
can identify traffic using the same service as the attack by identifying
the protocol as UDP and the corresponding port of the service that is
used in the attack port Pattack).

The effectiveness of this approach depends on the distinctiveness
of responses and requests. One possibility to differentiate responses
from requests would be to analyze the payload, possibly containing
a response flag or similar static substrings. Using payload analysis
does not scale well and requires protocol-specific knowledge. How-
ever, most services that are used for reflective attacks have a default
port (e. g., 53 for DNS) that can be used instead [162] as the request
to a service uses the service port number as destination port address

172 ddos mitigation framework

Pdstprot. IPsrc Psrc IPdst

In
te

rn
et

Ta
rg

et

IPalias Pattack UDP
¬Pattack

¬UDP
¬UDP

UDP Pattack

¬Pattack IPalias

IPtargetIPtarget

1
2

3

4
5 6 7

Figure 34: Process of the defense against reflective DDoS attacks on the
switch closest to the target. In red: the fields under observation /
changed in each step.

while responses use the service port number as source port address.
In the rare event that both port numbers are set to the service port
number, we cannot identify the direction, and the connection has to
be cut. Our detection mechanism is able to extract and identify the
application protocol port from the UDP header and to forward it to
the mitigation system. This approach is protocol-agnostic and sup-
ports any UDP-based request/response protocol that follows a clien-
t/server design.

Algorithm

Figure 34 shows how this works in the switch closest to the attack
target. We assume all traffic from and to the target goes through
this switch; otherwise, the same deployment has to be made on other
switches assuring that the full traffic from and to the target gets the
same treatment. We only take a look at the traffic from and to the
target; other traffic going to other clients is not affected by this mech-
anism.

On the top, the traffic is shown going from the target to the Internet,
while the bottom half shows the way back. 1 Outgoing traffic to the
Internet is first analyzed based on the protocol in use (UDP, TCP, etc.).
If the protocol is not UDP, the packet is sent to the Internet without
further analysis. 2 If the protocol is UDP, we take a look at the
destination port Pdst next. 3 If Pdst equals Pattack, in the next step we
set the source IP address IPsrc to IPalias.

On the way back, we again take a look at the protocol. 4 Non-
UDP packets are sent to the target without further analysis (given
that the reflective attack is the only attack running; otherwise, this
traffic needs to be analyzed by the aforementioned general defense
mechanism). 5 For UDP packets, we look at the source port Psrc. If
Psrc equals Pattack, we take a look at IPdst. 6 If IPdst equals IPtarget,
we can now safely assume that the packet is an attack packet and

11.4 defense mechanisms 173

Pdstprot. IPsrc Psrc IPdst

In
te

rn
et

Ta
rg

et

¬UDP

UDP Pattack

¬Pattack IPalias

IPtarget

8
9 10

Figure 35: Process of the defense against reflective DDoS attacks on the
switch anywhere else in the network. In red: the fields under
observation / changed in each step.

can discard it2. 7 If IPdst equals IPalias, we can assume that this
response is legitimate, set IPdst to IPtarget again and send the packet
to the target.

Figure 35 shows the system how it needs to deployed network-wide
or even upstream to other network providers. Here, the packets from
the target to the Internet are already tagged, outgoing traffic does not
need to be interfered with. 8 On the way back from the Internet, we
again look at the protocol and Psrc. 9 If the protocol is UDP and Psrc

equals Pattack, we look at IPdst. 10 If IPdst equals IPtarget, the packet
is dropped. Packets addressed to IPalias are forwarded towards the
target. Therefore, the DRDoS actual defense is a simple forwarding
unit that discards all UDP packets addressed to the target IP address.

In principle, this mechanism works similarly to a Network Address
Translation (NAT) [53, 288]. However, as we only switch out two IP
addresses, we do not need to save any state anywhere in the network.
This solution scales very well for very high attack packet rates as the
attack traffic does not have to be observed, and no state needs to be
saved.

It is imperative that IPalias is not easily guessable, so it is not easy
for an attacker to switch their attack to the alias IP address. As the
alias IP address is only visible to UDP-based services utilized by the
target service (and these services, in general, cannot know, that this
request comes from that service) the alias IP address can only be
found out by the attacker if the attacker can observe the network
traffic between the target and the service3. Should IPalias be found
out by the attacker, only the configuration at the closest switch to the
target needs to be changed to use another IP address.

2 With the exception of responses to requests made by the target before the defense
system was active. These packets will be falsely discarded.

3 Mind that the attack target uses IPalias only for requests, a potential DNS entry for
the target remains unaffected.

174 ddos mitigation framework

observer
CAPTCHA server

SDN controller

attackers

regular clients

observes

reports status

controls

reports status

10 Gbit/s

attack target

Figure 36: The local setup of the DDoS mitigation framework.

11.5 prototype setup

For testing purposes, a local test setup was implemented, as shown in
Figure 36. The system consists of the local setup of the mitigation sys-
tem without the NetFlow data export, which is evaluated separately.
Additionally, the system entails a web server functioning as an attack
target in test runs, one machine simulating attacks, and one machine
simulating regular clients. We choose a Software-Defined Network-
ing (SDN) enabled network as our prototype implementation environ-
ment as the flexibility of SDN enables fast prototyping independent
of hardware vendors. Our system’s primary requirement is the ease
of deployment in a given network with low overhead and without
changing the network topology. TTwo components are needed to im-
plement this system: a monitoring system that can handle the traffic
load, and an SDN controller that works with our hardware, allows
for rapid prototyping and works well with our network monitor.

Our hardware features an HPE FlexFabric 5920 switch, which sup-
ports OpenFlow 1.3. The web server (attack target) and the monitor-
ing system (Ryu and Zeek) run on separate systems, each with the
following specifications: CPU with 4x3.10 Ghz4 and 17 GiB of mem-
ory. The attacks are run from three replay server with a CPU with
6x2.40 GHz5 and 125 GiB of memory each. With this hardware, a total
attack throughput of 6.5 Gbit/s could be achieved.

4 Intel® Xeon® Processor E3-1220 v3

5 Intel® Xeon® Processor E5-2630 v3

11.5 prototype setup 175

11.5.1 Observer

The observer is implemented based on the Zeek Network Monitor6.
Zeek was chosen as it already provides an event-based system that
was easy to extend. However, the Zeek Network Monitor does not
provide active components. Our concept includes active probing of
the possible DDoS attack targets. Therefore, we needed to extend
its functionality. With our extensions — an additional python script
that communicates with the observer — the system is now capable of
evaluating whether a server is under attack. After determining the
extent and likelihood of an attack, the inbound traffic to the attack
victim is evaluated, and the suspiciousness score for each client is
calculated. This list is then forwarded to the SDN controller.

11.5.2 Controller

For the implementation of the SDN controller, Ryu is used7, a
Software-Defined Networking framework. Ryu presents itself as
a good choice as Zeek already offers an interface connection to Ryu
(Broccoli; Bro Client Communications Library), and our concept does
not place any other specific requirements on the controller. The
controller takes the list of suspicious clients from the observer and
decides which clients should be forwarded to the CAPTCHA server,
based on their suspiciousness score and the severity of the attack.
This decision is then forwarded to all switches under its control. If
the CAPTCHA test was successful, the client is unblocked and can
access the service again. For our evaluation, both the simulated at-
tackers and the simulated benign clients are bots, which means a real
CAPTCHA server cannot distinguish between them. Instead, for test-
ing purposes, the CAPTCHA implementation knows which clients
are benign and which are malicious, and uses this to simulate a
CAPTCHA entry delay. Attackers will be treated as if they could not
solve the CAPTCHA. Benign clients will be cleared after 10 seconds,
as research by Brusztein et al. showed that this is approximately the
average time a real user would take to solve the CAPTCHA [77]. This
average time fluctuates and is dependent on the CAPTCHA imple-
mentation but does not have a large impact on the overall mitigation
effectiveness.

11.5.3 Reflective Attacks Defense Mechanism

The defense mechanism against reflective attacks differs greatly from
the other defense mechanism. The traffic is analyzed solely within the

6 https://www.zeek.org/

7 https://osrg.github.io/ryu/

https://www.zeek.org/
https://osrg.github.io/ryu/

176 ddos mitigation framework

SDN infrastructure and, depending on implementation, even solely
on the switches.

Dependent on the capabilities of the SDN switches, two different
ways of implementing the defense mechanism against reflective at-
tacks are possible in SDN. One solution utilizes the SDN switch to
forward packets based on their header fields to the Ryu controller to
actively modify packets before they are forwarded. The SDN rules
for this implementation can be found in Table 10. This implementa-
tion relies on mandatory OpenFlow 1.3 features and, therefore, works
with any switch that implements OpenFlow 1.3 correctly. The sec-
ond implementation makes use of optional OpenFlow 1.3 features,
namely switching out the IP address before forwarding and chang-
ing ARP fields within the switch without contacting the controller.
The utilized rules are shown in Table 11. As this variant works with-
out the involvement of the SDN controller in modifying packets, it
is faster and more scalable. However, not all switches implementing
OpenFlow 1.3 have the capability to run this implementation.

The red row in both tables represents the distributed part of the
defense mechanism. This rule needs to be forwarded in the network
and ideally beyond the borders of the network to assure successful
mitigation of the attack.

11.6 evaluation

To summarize, we built a framework for DDoS mitigation. We im-
plemented detection schemes for DDoS attacks, designed and imple-
mented attacker identification schemes for DDoS attackers, and de-
signed and implemented DDoS mitigation schemes and integrated
them into the framework.

In the following, the overall performance regarding throughput and
reaction times of the framework, including the DDoS detection based
on target availability, the identification mechanisms, and general de-
fense scheme, are evaluated based on our local test framework.

Additionally, the accuracy of the detection mechanism based on
background traffic is evaluated. Based on our analysis in Part II, we
chose the data sets CAIDA2019, WIDE Day in the Life of the Inter-
net (DITL) 2019, and our own bwNetFlow data recordings, each with
added simulated attack traffic to conduct our analysis. The data sets
are both up-to-date and extensive.

Furthermore, the accuracy of the identification mechanism of slow
attacks is evaluated based on our own data set SUEE1/SUEE8, in-
cluding simulated attack runs (documentation of this data set can be
found in Chapter 5).

11.6 evaluation 177

Table 10: Defense mechanism against DRDoS attacks without optional
OpenFlow features. IPt: IP address of the target host. IPa: alias
IP address. pa: default port of the attack.

Match Fields

ActionEtherType
IPv4 UDP

SRC DST SRC DST

0x0800 (IPv4) IPt ∗ ∗ pa ⇒ CONTROLLER

0x0800 IPt ∗ pa ∗ ⇒ TARGET

0x0800 ∗ IPt ∗ pa ⇒ TARGET

0x0800 ∗ IPt pa ∗ DROP

0x0800 ∗ IPa pa ∗ ⇒ CONTROLLER

0x0806 (ARP) ∗ ∗ ∗ ∗ ⇒ CONTROLLER

Table 11: Defense mechanism against DRDoS attacks with optional Open-
Flow features. IPt: IP address of the target. b(IPv): Broadcast
address of the target host’s subnetwork. IPa: alias IP address.
MACv: target MAC address. pa: attack port.

Match Fields

ActionEtherType
ARP IPv4 UDP

OP TPA SRC DSTSRC DST

0x0800

(IPv4)
∗ ∗ IPt ∗ ∗ pa

set-field IPV4_SRC = IPa
⇒ TARGET

0x0800 ∗ ∗ IPt ∗ pa ∗ ⇒ TARGET

0x0800 ∗ ∗ ∗ IPt ∗ pa ⇒ TARGET

0x08000 ∗ ∗ ∗ IPt pa ∗ DROP

0x0800 ∗ ∗ ∗ IPa pa ∗ set-field IPV4_DST = IPt
⇒ TARGET

0x0806

(ARP)
1 IPa ∗ ∗ ∗ ∗

set-field ETH_SRC = MACv
set-field ETH_DST = ff:ff:ff:ff:ff:ff

set-field ARP_OP = 2

set-field ARP_SPA = IPa
set-field ARP_SHA = MACv
set-field ARP_TPA = b(IPv)

set-field ARP_THA = ff:ff:ff:ff:ff:ff

⇒ TARGET

178 ddos mitigation framework

11.6.1 Performance Evaluation

Several experiments were completed to analyze the performance inParts of this section
have been published

at IEEE LCN
2017 [4]

our aforementioned test setup and to show the viability of the concept
in high-bandwidth networks. The setup contains:

• Detection based on target availabilityChristian Stehle [34]
has contributed to

this section with his
master thesis.

• General identification scheme

• Both defense mechanisms (general defense and special defense
mechanism for reflective attacks)

The following mechanisms are evaluated separately:

• Detection mechanism based on network behavior

• Slow attacks identification scheme

We varied the percentage of attackers for each attack scenario.
Overall, 400 clients access the server in every test run, of which 30 %,
60 %, or 90 % are attackers; the remaining clients are legitimate. We
repeated each test 25 times to rule out any random effects in the
network. In each test, the legitimate clients continuously try to access
the server, while the attacking clients are only active when the attack
starts.

We identified four points in time that correspond to important
events in the system. The first is the start of the attack, tA, as a
baseline for the other events. Then, tD is the point in time where the
mitigation system detects the attack, which also marks the point in
time when the analysis of the traffic starts. No recordings or analy-
ses are done before tD, except for the detection mechanism that finds
ongoing attacks. Mitigation completion is defined by the moment
the forwarding rule for the last attacker is installed; this time is tM.
The moment when the server has recovered and is available to all
clients is defined as tR. For flooding attacks, if the server is available
again before the last attacker is rerouted to the CAPTCHA server, tM
would be infinite, because the mitigation system stops mitigating the
attack (and would thus never block the last attacker). We instead
define tM = tR in this case, because the mitigation essentially ends
whenever the server has recovered.

Three time frames are of special importance for an evaluation. For
one, the detection time of an attack defined as ∆tD = tD − tA. Fur-
thermore, the mitigation time defined as ∆tM = tM − tD gives infor-
mation about the quality of the mitigation algorithm and the server
downtime defined as ∆tS = tR − tD is especially important for the
application of this system. Note that ∆tS is dependent not only on
the mitigation system but also on the server implementation itself, as

11.6 evaluation 179

lo
ad

in
%

0 20 40 60 80

100

50

0

R
T

T
(i

n
se

co
nd

s)

0 10 20 30 40 50

0

1

2

3

4

Time (seconds)

0 20 40 60 80

100

50

0
0 20 40 60 80

lo
ad

in
%

RTT (seconds)

Network (percent)
CPU (percent)

tA tRtD tM

Packets per second

slowloris, 60% attackers

Time (seconds)

300

150

0
0 20 40 60 70

1
0

0
0

pa
ck

et
s

/
se

co
nd

503010

reflective attack, 1 reflector (DNS)

HTTP flood, 90% attackers TLS flood, 60% attackers SYN flood, 30% attackers

0

1

2

3

4
∆tD ∆tS

∆tM

Figure 37: Example test runs of the different attacks. Partially based on [34].

the the recovery process’ speed primarily depends on the server con-
figuration of the victim. For example, the host operator could restart
the server to shorten the recovery time or change their configuration
to optimize recovery. However, this would mean that the host opera-
tor would take part in the mitigation effort, which is not part of the
scenario we examine.

Figure 37 shows representative example test runs of attacks miti-
gated by the system, highlighting the difference between the attacks.
For example, a SYN-flooding attack shown in the top right only takes
effect after the TCP connection table of the web server is filled. After
that moment, however, the server is completely unreachable. CPU
load goes down as no connection request comes through. In contrast
to the other two flooding attacks and the slow attack, a significant
amount of traffic in the network can be observed, taking up more
than 40 % of the available bandwidth, which corresponds to 4 Gbit/s.
The RTT suddenly goes up to infinity, meaning an attack can be de-
tected almost immediately. The scoring system works very well here,
as single SYN packets with no corresponding ACK packet can easily
be detected. As this is very unusual behavior for legitimate clients,
the attackers can easily be distinguished from legitimate users. Block-
ing them immediately restores the availability of the server. As a
small number of attackers is not enough to be an issue for the web
server, the web server is already reachable before all attackers are

180 ddos mitigation framework

rerouted, and the mitigation system stops mitigating the attack. This
restrained behavior also leads to less legitimate clients being rerouted
in the 25 test runs. In this example run, 90 % of clients were attackers.

In the top left, Figure 37 shows the system’s behavior during an
HTTP flooding attack. The server is overloaded because it has to
process a vast number of requests, which initially leads to a high
CPU load, while network resources are not significantly affected.
The attack only needs a few Mbit/s to be effective; therefore, traf-
fic is not shown in the figure. After some time, disk I/O becomes
the bottleneck, and the CPU load goes down. As soon as the RTT
reaches the threshold set for the attack detection (1 s), the obser-
vation of the traffic and, therefore, the mitigation starts after four
seconds. The highest-rated clients according to the suspiciousness
score are blocked. At tM = 37 s, the last offender is forwarded to the
CAPTCHA server. The web server still needs time to recover from
the attack — until tR, 63 seconds after the beginning of the attack.
CPU load goes up as soon as the server can handle new requests.
Meanwhile, regular clients are also forced to fill out the CAPTCHAs,
as the mitigation system observes that the server is still not reachable.
However, the legitimate clients would not be able to access the data
on the server before recovery regardless, since it is not available yet.
Therefore, being forced to fill out a CAPTCHA can be seen as a mild
annoyance but not as a serious issue.

In the top middle, Figure 37 shows a typical attack run and mitiga-
tion of the TLS flooding attack. The RTT highly fluctuates in this run,
which in turn leads to a comparably late detection. However, as soon
as the attack is mitigated, the server is reachable nearly immediately.
Network resource consumption is similarly low to HTTP flooding.

The slowloris attack in the lower-left corner shows near-immediate
recognition (as soon as the server is unavailable). The mitigation ef-
fort takes some time as it only becomes effective when most clients
are blocked and can be optimized with the specialized identification
scheme evaluated separately.

The attack run of the reflective attack in the lower-right corner is
very different from the other attack runs. As the attack targets the
network and not the server directly, the metric we observe here is
merely the packets per second sent through the switch. With the
attack overloading the switch itself, the detection takes quite some
time, nearly 60 s as the switch is incapable of handling the traffic and
fails to send its observations earlier. However, as soon as the attack is
detected, the specialized mitigation works instantly.

These are only a few example runs out of the hundreds of test runs
that demonstrate the attack and mitigation behavior. Figure 38 illus-
trates the results of the overall analysis of the flooding attacks. On
the left, it shows the detection time of the various attacks. The highly
fluctuating RTT of the TLS flooding attack affects the detection time

11.6 evaluation 181

mitigation

30% 60% 90%

detection

30% 60% 90%

server downtime

SY
N

H
TT

P
TL

S

30% 60% 90%
share of traffic by attackers

160

160

160

80

80

80

160

160

160

80

80

80

5

5

40

20
t

(i
n

s)

Figure 38: Detection time, mitigation time, and server downtime for the flooding attacks [4].

for this attack. Detecting a TLS flooding attack takes twice as much
time as detecting the other two types of attacks as the server is spo-
radically available throughout the attack run. Another trend that can
be observed is that detection is faster for stronger attacks. The mit-
igation time ∆tM is dependent on attack type and strength. SYN
flooding and HTTP flooding attacks are mitigated within roughly
half a minute while — depending on strength — the mitigation of TLS
flooding can take 90 seconds or more. The server downtime for each
attack type and attack strength is shown on the right of the figure.
The difference between mitigation time and server downtime is only
noticeable with HTTP flooding attacks where the recovery phase can
take up to one minute.

As previously mentioned, it can be observed that some regular
clients are forwarded to the CAPTCHA server. During our tests,
of the 25 measurements for each scenario, this happened between
0 and 3 times, with the exception of the HTTP test with 90 % attack-
ers. Here, in 13 cases, clients were falsely redirected with lead to a
median of 18 % of all legitimate clients being redirected, which can
be attributed to the rather long recovery time. With SYN flooding,
falsely redirected clients could only be found during one test with
90 % attackers, where 5 % of the legitimate clients were redirected.

For the slow attacks, the falsely redirected clients are between 20 %
and up to 75 % showing that the general identification scheme does
not work well for the slow attack scenario, justifying a specialized
identification scheme.

Conclusion

Overall, the performance evaluation shows overall satisfying results
for the application-layer flooding attacks (HTTP flooding and TLS
flooding). The SYN flooding mitigation also works great under test

182 ddos mitigation framework

Oct 21 Oct 28date

#
of

flo
w

s
pe

r
ho

ur

7.5 · 106

5 · 106

2.5 · 106

UlmTübingenKIT

BelWü
1.5 · 108

1 · 108

5 · 107

BelWü

1 · 108

5 · 107

5 · 106

Figure 39: Recorded flows per hour in the BelWü data set for the full net-
work (top) and the university subnets. The three university sub-
nets are only a small part of the full data set.

conditions. However, the switch was still able to handle all SYN flood-
ing traffic. In case of a stronger attack that overloads the bottleneck,
other mitigation schemes need to be deployed. We recommend falling
back to BGP blackhole routing in such a case. For reflective attacks,
the mitigation worked perfectly, while the detection took far too long
due to the overloaded switch confirming our assumption that a spe-
cialized detection method is needed. Detection and mitigation of slow
attacks worked as expected, while bad identification results lead to
long mitigation times and high false-positive rates, confirming our
assumption that a specialized detection method is necessary.

11.6.2 Detection Evaluation

This section contains the evaluation of the detection mechanism based
on network behavior, i. e., based on entropy measurements.

Thanks to the bwNetFlow project, we have access to live recordings
of NetFlow traffic in the Baden-Württemberg Extended Lan research
network. To analyze the applicability of our results to other networks,
we analyzed the DDoS detection mechanism based on network be-
havior with recordings of other networks. Based on our analysis in
Chapter 2, we chose the following benign data sets for this analysis:

• CAIDA 2019 This data set offers an extensive amount of data,
recorded very recently within a small time frame of one hour.
The CAIDA data set is divided into two parts entitled direction
A and direction B, where the bulk of the flows is contained in
direction B.

11.6 evaluation 183

• Parts of the WIDE Day in the Life of the Internet recording
of 2019. This data set contains a much longer recording of 48

hours. We chose two time periods of the data set for our anal-
ysis, namely two hours in the very early morning hours, to see
how traffic behaves at night and two hours during peak uti-
lization around noon. The size of the network (regarding the
number of flows) is similar to the university networks in Baden-
Württemberg.

• bwNetFlow recordings between October 17th and October 31st.
A total of 343 hours were recorded. The recording program logs
when it is overloaded and cannot record every flow it receives.
This was the case during 16 hours of the recording, which were
omitted in subsequent evaluations, leaving 327 hours.

These data sets were chosen as they are the most extensive data
sets currently available that are — at the time of writing — also the
latest and most contemporary data sets corroborating the claim of
representativity. CAIDA and WIDE contain traffic recordings in the
pcap file format. A transformation to NetFlow data was necessary
first.

The bwNetFlow data set contains an ID for each flow, telling us at
which institutions that flow originates or ends (depending on direc-
tion). With this ID, it is possible to analyze smaller subnets within
the research network. For our evaluation, in addition to the full data
set, we chose to analyze the networks of three universities in Baden-
Württemberg, namely the Karlsruhe Institute of Technology, the Uni-
versity of Tübingen, and Ulm University as examples of networks
with similar behavior but varying size. Figure 39 shows the number
of flows per hour that are part of the data set. It contains a total of 27.6
billion flows (of those 25 billion TCP and 2 billion UDP; 2.6 % IPv6)
from an average of 4 million hosts per hour. While Karlsruhe has a
similar pattern to Ulm albeit a higher average flow rate, Tübingen al-
ternates between the relatively low traffic volume at night similar to
Ulm and the high traffic volume during the day similar to Karlsruhe.

Table 12 contains the average number of flows per hour for all data
sets. When taking into account the lower sampling rate of the BW
networks (recording only every 32nd flow while the other data sets
contain all packets sent), the size of the BelWü network is similar to
the CAIDA network (2.6 billion versus 1.6 billion flows). In compari-
son, the WIDE network is similar to the university networks (83 mil-
lion to 192 million flows per hour versus 130 to 146 million flows per
hour). While the BW and CAIDA networks are production networks
with regular traffic patterns, the WIDE network mainly contains ex-
perimental traffic.

The documentations of all these data sets mention no attacks, and
no typical attack patterns of DDoS attacks can be found. For the BW

184 ddos mitigation framework

Table 12: The data sets used in this evaluation. Flows are actually recorded
flows, to determine actual network size for the BelWü networks,
the sampling rate of 1

32 has to be accounted for.

data set name time span (local time) average flows per hour

BelWü
2019-10-17 15:00

- 2019-11-01 00:00

84 423 579

BW-KIT
2019-10-17 15:00

- 2019-11-01 00:00

5 964 948

BW-Tübingen
2019-10-17 15:00

- 2019-11-01 00:00

3 586 561

BW-Ulm
2019-10-17 15:00

- 2019-11-01 00:00

2 631 059

CAIDA 2019 dir A
2019-01-17 13:00

- 2019-01-17 14:00

438 858 279

CAIDA 2019 dir B
2019-01-17 13:00

- 2019-01-17 14:00

1 135 740 233

WIDE Noon
2019-04-10 11:00

- 2019-04-10 13:00

145 573 794

WIDE Night
2019-04-08 01:00

- 2019-04-08 03:00

129 591 090

data sets, it was confirmed by operations of BelWü that there were
no known DDoS attacks during the time of recording. Of course, as
the data sets are actual recordings of production networks, there can
be no guarantee that the data sets are attack free. However, we accept
the lack of any sign of an attack within the data sets as a sufficient
indicator. Unknown attacks within the data sets could mean that
the classification of attacks versus no attacks would falsely classify a
true positive as a false positive or a false negative as a true negative.
With the extent of our analysis over several data sets and weeks, one
missed attack would only have a small impact on the overall results.

To assure realistic attack patterns can be observers, we added
known attack traffic to our analysis based on the known features of
attacks. To analyze common features of attack data sets, we chose to
analyze8:

• Booters containing 11 real attacks (7 DNS-based and 2 CharGen-
based reflective attacks)9.

8 a more extensive description of these data sets can be found in Chapter 2

9 https://www.simpleweb.org/w/index.php/Traces#Booters_-_An_analysis_of_

DDoS-as-a-Service_Attacks

https://www.simpleweb.org/w/index.php/Traces#Booters_-_An_analysis_of_DDoS-as-a-Service_Attacks
https://www.simpleweb.org/w/index.php/Traces#Booters_-_An_analysis_of_DDoS-as-a-Service_Attacks

11.6 evaluation 185

• USC/LANDER containing a simulated reflective DDoS attack
using DNS servers as reflectors10.

Based on these data sets and the associated documentation [271],
we know that the start-up time of attacks is in the area of just a few
seconds. Based on the Imperva Threat Report, we know, that attacks can
be as short as 30 minutes while still being successful (i. e., the attack
target is unreachable for hours). This means that swift detection is
necessary. Therefore, we limited our evaluation to time frames of
30 s, 60 s, and 15 min, which results in attack detection times close
to the same value (plus calculation time in the area of seconds) as
anything beyond 15 min would impede a timely reaction.

Figure 40 shows the overview of all data sets under investigation
and how the destination IP entropy changes over time. The CAIDA
graphs show an evaluation of a period of one hour, WIDE two hours,
and the BW data sets roughly two weeks. The red points are the
measured values. All other points are hypothetical results during an
attack. They were calculated by adding a certain number of flows to
the calculation, all with the same destination IP (a pattern that can
be observed during an attack). The number of additional flows is the
strength of the attack, and here, it is defined dependent on the number
of flows in the background traffic of the network. Therefore, an at-
tack strength of 0.05 means that an additional 5 % of the flows were
added to the calculation, all with the same destination IP address
not present in the background traffic. The graphs show values calcu-
lated for periods of 30 s (CAIDA and WIDE), and 15 min (BelWü data
sets). The actual values of the entropies cannot be compared between
the graphs as different periods were used for the calculation. In the
BelWü data sets, the missing hours can clearly be seen as missing
data points in these graphs.

An observation that can be made solely based on these graphs is
that bigger networks tend to be more stable (see the difference be-
tween CAIDA direction A and B; even more so between CAIDA and
WIDE), which seems to lead to a more distinct pattern during an
attack versus no attack. However, a 5 % attack strength in a bigger
network also means that the attack is much stronger.

Looking at the BelWü graphs, compared to Figure 39, the destina-
tion IP entropy seems to be far more stable than the number of flows
in the network. This could indicate that the entropy is a far better
metric to detect anomalies than the number of flows.

Figure 41 shows a similar collection of graphs. However, here, we
observe the source port entropy in the networks. As we calculate this
to determine whether the attack is a reflective attack based on UDP,

10 Scrambled Internet Trace Measurement dataset, IMPACT ID: USC-
LANDER/DoS_DNS_amplification-20130617/rev5529. Traces taken 2013-
06-17 to 2013-06-17. Provided by the USC/LANDER project (https:
//www.isi.edu/ant/lander).

https://www.isi.edu/ant/lander
https://www.isi.edu/ant/lander

186 ddos mitigation framework

12

CAIDA, direction A CAIDA, direction B

WIDE, noon

14

12

8

13:00 14:00 13:00 14:00

13:0011:00

12

8

10

WIDE, night

1:00 3:00

10

12

15

12.5

10

7.5

BelWü

BW-Ulm

BW-Tübingen

strength of the attack 0.00 0.05 0.10 0.25 0.50 1.00 2.00

Oct 21 Oct 28

BW-Karlsruhe

10

5

15

9

12

6

8

10

8

10

15

9

12

Figure 40: Changes of the destination IP entropy over time in all data sets in the presence of
attacks.

11.6 evaluation 187

the source port entropy is calculated based only on the UDP flows in
the respective networks.

Due to the far lower number of flows analyzed, we can observe
more variation in the network; the source port entropy of UDP flows
seems to be far less stable than the destination IP entropy of all flows.

In the following, receiver operating characteristics (ROC) curves
are used to show the diagnostic abilities of the entropy calculations
as a binary classifier (i. e., attack versus no attack). On the x-axis,
these graphs show the true-positive rate, i. e., the number of attacks
found over the number of attacks in the network. The y-axis shows
the true-negative rate, which is the number of negatives (i. e., no at-
tack) found over the number of negatives in the network. Setting up
the graph like this means that a value in the top-right corner repre-
sents a perfect classification while the lower-left corner would mean
the inverse, the lower-right corner would mean that all values are
classified as positives, and the lop-left corner that all values are clas-
sified as negatives. As a base for this calculation, we take the values
shown in Figures 40 and 41. For each time step, we calculate whether
the hypothetical attack with strength a would be detected based on
our scheme described in Section 11.2. For this calculation, we alter
the threshold in small steps between two extreme values, resulting in
the curve that can be seen in the graphs.

Figure 42 shows the resulting curves for the BelWü data set, analyz-
ing every 2048th flow. The three graphs use different epoch lengths,
i. e., lengths of the time steps used to calculate the entropies. As can
be seen in the graphs for 30 s, 60 s, and 15 min, the difference is small.
However, 60 s has slightly better results than the other two with 30 s
as a close second. We decided to continue all other evaluations based
on the 30 s epoch length because, in our view, detecting attacks ear-
lier outweighs the very small advantage of the longer epoch time of
60 s.

The figures used in the following to corroborate our findings are
only a small part of an extensive evaluation. An extensive set of
graphs showing how well attacks can be found in the data sets under
investigation can be seen in the Appendix in Figures 49 to 53. The
figures in the Appendix contain ROC curves of all data sets used in
our analysis for both destination IP entropy and source port entropy
at different sampling rates.

Network monitoring usually does not analyze every packet and
flow — especially in networks with high throughput. In these net-
works, flows are sampled, and only a small part of the flows are used
for analysis. For example, the BelWü network we are analyzing here.
Only every 32nd flow is analyzed in this network. This is due to the
fact that the Cisco routers BelWü uses are not capable of extracting
more flows. Many other observation systems only allow much lower
sampling rates, analyzing only every 1 000th, or 10 000th flow. There-

188 ddos mitigation framework

CAIDA, direction A CAIDA, direction B

WIDE, noon

13

11

9

13:00 14:00 13:00 14:00

13:0011:00

10

5

5

6

7

WIDE, night

1:00 3:00

5

10

12

10

8

6

BelWü

BW-Ulm

BW-Tübingen

strength of the attack 0.00 0.05 0.10 0.25 0.50 1.00 2.00

Oct 21 Oct 28

BW-Karlsruhe
10

5

10

5

10

5

Figure 41: Changes of the source port entropy over time in all data sets in the presence of attacks.

11.6 evaluation 189

strength of the attack 0.05 1.000.250.10 0.50

TPR

destination IP entropy

0

1

0 1

T
N

R

30 s epochs

0

1

0 1TPR

TN
R

60 s epochs

0

1

0 1TPR

T
N

R

15 min epochs

Figure 42: Comparison of different epoch lengths as a base for the entropy calculations. Calcula-
tions done based on the 327 hours BelWü recording.

fore, it is important to evaluate the impact of a low sampling rate on
the quality of the detection mechanisms.

Figure 43 contains ROC curves for both destination IP entropy and
source port entropy of the CAIDA direction B data set at different
sampling rates. The smaller data set of the source port entropy cal-
culations (only using UDP flows) is affected a lot earlier at a higher
sampling rate than the destination IP entropy calculation. The desti-
nation IP entropy calculation shows similar behavior when analyzing
every 65 536th flow as the source port entropy when analyzing every
2 048th flow.

A similar observation can be made when comparing similar net-
works of different sizes. The BelWü network and the university net-
works in BelWü show similar traffic compositions. However, as can
be seen in Figure 44, the attack classification works a lot better in the
bigger network. In this graph, every 128th flow was analyzed.

The evaluation shows that the destination IP entropy can be used to
detect DDoS attacks reliably. In addition, the source port entropy can
be used to determine whether the DDoS attack under investigation is
a reflective DDoS attack which allows targeted defense mechanisms
to function reliably. Depending on the size of the network and the
size of attacks that the operator wants to detect in the network, spe-
cific thresholds need to be set for the two classifications. Sampling
can be used to minimize calculation overhead. However, if the net-
work naturally shows high variations in the entropies, lowering the
sampling rate could lead to more reliable results. While we only ob-
served a few networks, our analysis indicates that the quality of the
classification solely relies on the size of the network (measured by the
number of flows) and the sampling rate. Networks with similar sizes
showed similar behavior. However, all networks under observation
are somewhat similar in traffic composition (e. g., share of UDP), and
all data sets are recorded in networks primarily used by researchers

190 ddos mitigation framework

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

0

1

0 1TPR

T
N

R

sampling every 64th flow sampling every 65,536th flow

de
st

in
at

io
n

IP
en

tr
op

y

0

1

0 1TPR

TN
R

so
ur

ce
po

rt
en

tr
op

y

0

1

0 1TPR

T
N

R

sampling every 2nd flow sampling every 2,048th flow

Figure 43: Effect of different sampling rates on the classification perfor-
mance. Shown here on the example of the CAIDA direction B
data set.

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

0

1

0 1TPR

TN
R

BelWü
source port entropy

BW-Karlsruhe

Figure 44: Source port entropy in two networks of similar traffic composi-
tions but different sizes. Both graphs show the analysis of 327

hours. Every 128th flow was analzed.

11.6 evaluation 191

and students both privately and at work. More research would be
needed to see if this holds true for other network types.

11.6.3 Identification Evaluation

In the following, we present the evaluation results of the special-
ized identification of slow attack clients. For this, we evaluate the
schemes presented earlier: long Connections (LC), low packet rate
(LPR), packet distance uniformity (PDU), the combination of LPR and
PDU (LPR-PDU), low mean packet rate (MPR), and low packet rate
variance (PRV). We describe the setup and workloads based on real-
life traffic scenarios. We then present the results and discuss their
implications.

Data Set

For this evaluation, a special network data set was necessary. While
our previous evaluations observed general networks and their traffic,
we now look into specific traffic to and from a web server. There-
fore, we used the SUEE data sets introduced in Chapter 5. They were
recorded at two different times at a web server located at Ulm Univer-
sity. SUEE1 contains one day of traffic and can be used as a training
data set. SUEE8 contains eight days of traffic and can then, in turn, be
used as a testing data set. The server administrator did not observe
any attacks on their server in the two time frames, and the server was
available for the full time of the recordings. No other suspicious ac-
tivity was observed neither live nor by manually analyzing the traffic
traces.

Attacker Model

The attackers in these scenarios have access to a large number of dis-
tributed network resources (e. g., a botnet). Attackers making use of
DDoS attacks are differing greatly in resources and technical knowl-
edge. We differentiate between two types of attackers. On the one
hand, the simple attacker. The simple attacker uses tools that are
readily available, and several of those exist for slow attacks. We also
make use of these very tools and the options they provide to emulate
the behavior of this attack type. The second attacker model features a
more sophisticated attacker that knows how the attacks work, under-
stands how these attacks are usually mitigated, and built their own
or made adjustments to the attacking tool to circumvent detection.

Implementation

We use the Zeek-based framework previously discussed that was also
used for the evaluation of the flooding attack mitigation. Zeek al-

192 ddos mitigation framework

ready offers some of the metrics necessary for the analysis, such as
the packet rate as built-in functions. Other metrics, such as the packet
rate without the TCP handshake, have to be calculated without a
built-in function of Zeek. This can lead to more processing effort
for these schemes as the built-in functions have been potentially opti-
mized over the years, while the newly added features might be less
efficient.

Attackers for the first attack scenario are simulated with the tools
slowloris 0.1.411 for slow header attacks and slowHTTPTest 1.612 for
slow body attacks.The attacking tools were adapted to allow IP spoof-
ing to simulate distributed attacks and are left in standard config-
uration apart from that. The parameters for slowHTTPTest are 30

seconds intervals, 8 192 bytes for the Content-length header, 10 bytes
POST-body length per packet, and one socket per client. Slowloris
is also configured to use only one socket per client. The default con-
figuration is left in place in all other settings, resulting in a packet
interval of 15 seconds.

For the second attack scenario, we modified the original slowloris
tool and created a variant with less predictable behavior, called slow-
loris-ng13. Slowloris-ng includes several changes compared to the
original slowloris. The additional features implement randomized
behavior, which is configured to send in intervals of 15 seconds with
a randomization interval of 5 seconds and sending the header lines
as bursts of single messages per character. This tool shows how ap-
plicable the presented schemes are for improved attackers compared
to easily accessible attacking scripts.

For each of these tools, 49 to 50 clients14 are started simultaneously
with different IP addresses to attack the web server. These attacks are
run in parallel with the benign recordings. Due to the vast differences
between the attacks, we choose to determine the best thresholds for
each of the three attacks separately and evaluate these thresholds
against all attacks.

Each of our schemes can be configured with specific parameters —
for example, for the long connection scheme, a threshold defines after
how many seconds a connection is considered suspicious. For other
schemes — such as low packet rate — the optimal rate needs to be de-
termined. The optimal values are extracted by testing the behavior
of the framework with SUEE1, the quality of the classification then
is evaluated on SUEE8. The number of suspicious packets per client
(number of strikes) necessary to deem a client an attacker is another
parameter under investigation. Its purpose is to reduce false positives
when a benign client sends only one packet or a very small number

11 https://github.com/gkbrk/slowloris

12 https://github.com/shekyan/slowhttptest

13 https://github.com/vs-uulm/slowloris-ng

14 The different number of clients stems from a bug in the SUEE data sets where some
clients using different attacks had the same IP addresses and had to be ignored.

https://github.com/gkbrk/slowloris
https://github.com/shekyan/slowhttptest
https://github.com/vs-uulm/slowloris-ng

11.6 evaluation 193

of packets that incidentally fall below the threshold. However, this
should have an impact on the identification time. During our prelimi-
nary tests, we have noticed that these schemes (except for LC) behave
differently depending on whether the TCP handshake is taken into
account. Therefore, we evaluate these with and without measuring
the handshake packets.

The evaluation thresholds are determined by testing the mitigation
system with the SUEE1 data set with induced attacks of each type.
The number of strikes for detection is set to one. The thresholds are
found using the bisection method, starting with two extreme values
that would result in the detection of all clients — benign and attack-
ers — and detection of no clients respectively. The balanced accuracy
is used as a quality metric. Balanced accuracy (BACC) is defined as
BACC = (TP

TP+FN + TN
TN+FP) · 0.5 with the true positive values TP,

false positive FP, true negative TN, and false negative FN. We have
decided to use balanced accuracy over accuracy, as it takes the unbal-
ance of the data sets into account (only 49 to 50 attackers versus up
to 8 286 benign clients). Otherwise, a completely worthless classifier
that classifies everything as benign would result in an accuracy of
up to 0.994, while the balanced accuracy would be 0.5, similar to a
coin toss, resulting in a much more accurate indicator. Optimized bal-
anced accuracy has the advantage of resulting in one clear value, that
can be taken as a reasonable estimation of the quality of a scheme.

Results

The thresholds determined by this test can be seen in Table 13.
The table shows that some schemes are very similar for all attacks
(e. g., MPR, PRV; LC for slowloris and slowHTTPTest) while other
schemes show big differences for different attacks (e. g., LPR-PDU).
MPR and PRV show extreme differences depending on if the TCP
handshake is part of the evaluation or not. The high thresholds when
ignoring the handshake might imply that these schemes might not
be applicable without the TCP handshake. For LPR-PDU, we also
evaluate the maximum values for each partial scheme (highlighted in
the table in bold) in addition to the best thresholds for each attack.

For every classification scheme, there are two things to consider.
On the one hand, how precise the identification is of each scheme
for each attack, measuring if the attack can be mitigated successfully
without too many blocked benign clients. Again, we use the balanced
accuracy to assess the quality of the scheme but report all false/true
positive and false/true negative values as well. Furthermore, another
very important aspect is the identification time, i. e., the mean time
each attacker remains unidentified. Slow attacks work by opening
as many connections as possible and keeping them open as long as
possible to ensure maximum impact. If all attackers can be identified
correctly, but the identification time is too high, the attack might still

194 ddos mitigation framework

Table 13: Overview of the ideal thresholds for each scheme and attack for
data set SUEE1.

sc
hem

es

TCP
han

dsh
ak

e

slo
wlo

ris

slo
wHTTPTes

t

slo
wlo

ris
-n

g

LC d = 2.1e−5s d = 2.1e−5s d = 0.0999727s

LPR
yes p = 0.091756Hz p = 0.01739Hz p = 0.783869Hz

no p = 0.079935Hz p = 0.03806Hz p = 0.77687Hz

PDU
yes ∆ = 5.9e−5s ∆ = 2.5e−5s ∆ = 2.5e−5s

no ∆ = 1.4e−5s ∆ = 0.000631s ∆ = 1e−6s

LPR-

PDU

yes
p = 0.091756Hz

∆= 5.9e−5s

p = 0.01739Hz

∆ = 2.5e−5s

p = 0.783869Hz

∆ = 4.1e−5s

no
p = 0.079935Hz

∆ = 1.4e−5s

p = 0.03806Hz

∆= 0.000631s

p = 0.77687Hz

∆ = 1e−6s

MPR
yes p̄ = 0.83315Hz p̄ = 0.83315Hz p̄ = 0.83315Hz

no p̄ = 4049Hz p̄ = 21845Hz p̄ = 995Hz

PRV
yes σ2 = 0.028007Hz2 σ2 = 0.028007Hz2 σ2 = 0.028007Hz2

no σ2 = 1332kHz2 σ2 = 1332kHz2 σ2 = 1332kHz2

be successful. It might even be worth trading accuracy for lower
identification times if necessary.

Table 14 shows the results for the schemes. The long connection
scheme (LC) can be used to detect slowHTTPTest fast with a highly
varying false positive rate between 3.4 %, and 58 %. It cannot be used
to detect the other attacks. For slowloris-ng, it performs on the same
level as a coin toss. The low mean packet rate scheme (MPR) and low
packet rate variance scheme (PRV) show similar results. They can de-
tect slowHTTPTest but are close to useless for the other attacks. For
these three schemes, the TCP handshake has to be taken into account.
The table also contains our results for the schemes low packet rate
(LPR) and packet distance uniformity (PDU). The results show that
these metrics can be used to detect attacks (except for rare cases, all
attackers were found); however, the false-positive rate varies signifi-
cantly.

Low packet rate is a good classifier for the basic attacks slowloris
and slowHTTPTest with a balanced accuracy of 0.96 to 0.98 for the
SUEE8 data set. However, identification times of up to 210 seconds
per client have to be considered. Packet distance uniformity is much
faster but also less reliable than LPR for the basic attacks; it performs
better than LPR when faced with the improved slowloris-ng attack.

11.6 evaluation 195

Table 14: Evaluation results dependent on scheme, whether or not TCP
handshake is evaluated, attack (SL: slowloris, SH: slowHTTPTest,
NG: slowloris-ng), using ideal thresholds; identification times are
based on the true positives in seconds.

sc
hem

es

TCP
han

dsh
ak

e

att
ac

k
tru

e posit
ive

fa
lse

posit
ive

fa
lse

neg
ati

ve

tru
e neg

ati
ve

bala
nce

d
ac

cu
ra

cy

id
en

tifi
ca

tio
n

tim
e in

s

LC
SL 32 4959 17 3544 0.535 t̄ = 0.84 σ = 1.35

SH 49 4959 0 3544 0.708 t̄ = 12.86 σ = 8.81

NG 50 8502 0 1 0.5 t̄ = 0.12 σ = 0.59

MPR

N
SL 49 7690 0 813 0.548 t̄ = 2.61 σ = 5.10

SH 49 7690 0 813 0.548 t̄ = 24.34 σ = 37.56

NG 50 7690 0 813 0.548 t̄ = 4.39 σ = 6.68

Y
SL 19 611 30 7892 0.658 t̄ = 71.81 σ = 42.96

SH 49 611 0 7892 0.964 t̄ = 108.73 σ = 52.65

NG 14 611 36 7892 0.604 t̄ = 106.34 σ = 85.91

PRV

N
SL 49 7691 0 812 0.548 t̄ = 1.07 σ = 1.36

SH 49 7691 0 812 0.548 t̄ = 20.58 σ = 38.77

NG 50 7691 0 812 0.548 t̄ = 1.60 σ = 1.50

Y
SL 24 1431 25 7072 0.661 t̄ = 1.46 σ = 1.19

SH 49 1431 0 7072 0.916 t̄ = 82.18 σ = 44.05

NG 13 1431 37 7072 0.546 t̄ = 2.00 σ = 0.00

LPR

N
SL 49 641 0 7862 0.962 t̄ = 211.26 σ = 28.65

SH 49 403 0 8100 0.976 t̄ = 210.21 σ = 28.65

NG 50 3853 0 4650 0.773 t̄ = 52.87 σ = 51.39

Y
SL 49 1019 0 7484 0.94 t̄ = 174.83 σ = 34.78

SH 49 139 0 8364 0.992 t̄ = 240.06 σ = 0.07

NG 50 4242 0 4261 0.751 t̄ = 38.77 σ = 55.31

PDU

N
SL 49 1884 0 6619 0.889 t̄ = 46.09 σ = 37.79

SH 49 3502 0 5001 0.794 t̄ = 105.63 σ = 42.73

NG 50 538 0 7965 0.968 t̄ = 12.22 σ = 14.01

Y
SL 49 4021 0 4482 0.764 t̄ = 5.94 σ = 33.78

SH 49 3407 0 5096 0.8 t̄ = 5.88 σ = 6.69

NG 49 3407 1 5096 0.79 t̄ = 1.56 σ = 1.49

LPR-

PDU

N
SL 49 217 0 8286 0.987 t̄ = 211.26 σ = 28.65

SH 49 197 0 8306 0.988 t̄ = 210.21 σ = 0.01

NG 50 315 0 8188 0.981 t̄ = 55.85 σ = 50.06

Y
SL 49 471 0 8032 0.972 t̄ = 176.36 σ = 35.93

SH 49 88 0 8415 0.995 t̄ = 240.06 σ = 0.07

NG 50 1509 0 6994 0.911 t̄ = 39.21 σ = 55.03

196 ddos mitigation framework

slowHTTPtest

slowloris-ng
slowloris

0

1

0 1TPR

T
N

R
SU

EE
1

0

1

0 1TPR

TN
R

LPR

SU
EE

8

0

1

0 1TPR
TN

R

0

1

0 1TPR

T
N

R

PDU

Figure 45: ROC curves for LPR and PDU for the three slow attack types in
the two SUEE data sets.

The results show that only LPR and PDU are promising identifi-
cation schemes and are analyzed further. Figure 45 shows receiver
operating characteristics (ROC) curves for the two data sets SUEE1

and SUEE8 for LPR and PDU for all three attack types. The graphs
show that LPR is a very good metric to find slowloris and slowloris-
ng. However, it has problems discerning slowHTTPtest traffic and
benign traffic. Here, PDU does a much better job while it cannot de-
tect slowloris-ng, showing that the changes made to slowloris work
very well to avoid detection. The points in theses graphs are very dis-
tant from each other. This is because minor changes of the threshold
often affect the classification of a large part of the flows or none at all
(many points in the graphs overlap) as many flows share the same
features. That means that thresholds have to be chosen very carefully
to avoid wrong classifications. All in all, these tests show that neither
LPR nor PDU is able to identify the attackers fully reliably on their
own.

The AND-combination of the aforementioned schemes (LPR-PDU)
shows much better results than the two schemes, each alone. With a
balanced accuracy of up to 0.987 without and 0.995 with TCP hand-
shake, this method proves to be the most reliable scheme. However,
as a combined method, it also inherits the high identification time of
LPR with the best threshold pairs for each attack.

11.6 evaluation 197

Table 15: Evaluation results for LPR-PDU when for each partial scheme the
maximum threshold is chosen (bold values in Table 13).

TCP
han

dsh
ak

e

att
ac

k
tru

e posit
ive

fa
lse

posit
ive

fa
lse

neg
ati

ve

tru
e neg

ati
ve

bala
nce

d
ac

cu
ra

cy

id
en

tifi
ca

tio
n

tim
e in

s

N
SL 49 1261 0 7242 0.926 t̄ = 20.35 σ = 11.28

SH 49 1261 0 7242 0.926 t̄ = 107.47 σ = 38.59

NG 50 1261 0 7242 0.926 t̄ = 52.87 σ = 51.39

Y
SL 49 1603 0 6900 0.906 t̄ = 14.83 σ = 33.02

SH 49 1603 0 6900 0.906 t̄ = 13.05 σ = 7.75

NG 50 1603 0 6900 0.906 t̄ = 39.21 σ = 55.03

Up to here, we evaluated whether the schemes can work with the
right thresholds for each attack. However, when defending a real
network, we do not know which attack the attacker will choose. For
the most promising schemes (LPR, PDU, and LPR-PDU), we therefore
also evaluated how these schemes hold up when the threshold is not
the ideal one for these attacks.

Figure 46 shows balanced accuracy results for LPR, PDU, and LPR-
PDU, where for each threshold (or threshold pair), the diagrams show
how good the classifiers are identifying the attackers in all three at-
tacks. For LPR in the top two graphs, it can be seen that the best
threshold for slowloris also works well against slowHTTPTest (with
the same identification rate). The best threshold for slowHTTPTest,
however, is unusable both for slowloris and slowloris-ng. As slow-
loris-ng has a higher packet rate than the other two attacks, their
ideal threshold is much higher. This means more false positives and,
therefore, lower balanced accuracy for all schemes. However, all at-
tackers were detected reliably with this threshold.

For the packet distance uniformity scheme, when not taking the
TCP handshake into account, the best threshold for slowloris also
shows the same results for slowloris-ng. However, for slowHTTPTest,
this value is unusable. In turn, the best threshold for slowloris-ng is
unusable for the other two schemes. A packet distance of 0.000631s as
the highest value results in more false positives than the other values
but results in a true positive rate of 100 % for all attacks. When we in-
clude the TCP handshake, slowHTTPTest, and slowloris-ng work best
with the same threshold, which is not usable for slowloris while the
slowloris threshold results in a high false-positive rate for all attacks.

The combined scheme is evaluated with four different threshold
pairs: The best pair for each attack and the maximum threshold val-
ues for each of these pairs (that can also be seen in Table 15). The

198 ddos mitigation framework

attack slowHTTPtest slowloris-ngslowloris

TCP handshake excluded TCP handshake included
1.0

0.0

LP
R

ba
la

nc
ed

ac
cu

ra
cy

best threshold for
SL SH NG

best threshold for
SL SH NG

1.0

0.0

PD
U

ba
la

nc
ed

ac
cu

ra
cy

best threshold for
SL SH NG

best threshold for
SL SH NG

1.0

0.0

LP
R

-P
D

U
ba

la
nc

ed
ac

cu
ra

cy

best threshold for
SL SH NG

max maxbest threshold for
SL SH NG

Figure 46: Balanced accuracy for LPR, PDU, and LPR-PDU (top to bottom)
without TCP handshake and with TCP handshake (left to right).
Each with the best thresholds for slowloris, slowHTTPTest, and
slowloris-ng (left to right) and for LPR-PDU additionally the re-
sults when for each partial scheme threshold the maximum value
of the three is used [5].

11.7 summary 199

41 2 3 41 2 3 41 2 3
0

5050

100

150

200

250SL & SH

NG

1.0

0.0
number of strikes

1 2 3 4

ba
la

nc
ed

ac
cu

ra
cy

id
en

ti
fic

at
io

n
ti

m
e

in
s

SL SH NG

Figure 47: Evaluation results for balanced accuracy (left) and identification
times (right) for LPR without TCP handshake on SUEE8 depen-
dent on strikes (p=0.77687Hz). More strikes result in a higher
balanced accuracy but also much higher identification times [5].

best thresholds for the three attacks show that this scheme works
very well in detecting each attack (with a balanced accuracy of up
to 0.995). However, each of these threshold pairs results in very bad
detection rates for the other attacks. When the maxima of the thresh-
olds of each partial scheme are combined, a good balanced accuracy
of up to 0.926 without TCP handshake or 0.906 with TCP handshake
for all attacks equally can be achieved. The identification times of 13

to 39 seconds are also much better than the ideal thresholds for each
attack.

For all these evaluations, one suspicious packet is enough to deem
a client an attacker. Meaning, for the SUEE8 data set, a client has to
send only one suspicious packet in more than one week. The accuracy
can be improved when several strikes, i. e., suspicious packets are
necessary for an attacker classification. We conducted all tests with
one, two, three, and four strikes. As an example, Figure 47 shows
our results for low packet rate without TCP handshake and a fixed
threshold of 0.77687Hz for all measurements. The left figure shows
that balanced accuracy can be improved when the number of strikes
necessary for detection is increased. However, as can be seen in the
right figure, this extends the identification time extensively: from a
mean of 16 seconds to 61 seconds for slowloris, from 12 seconds to 86

seconds for slowHTTPTest, and from 53 to 67 seconds for slowloris-
ng. This means a 281 %, 616 % and 26 % increase in identification time.
Therefore, the comparably low increase in accuracy does result in
impractical identification times for real-time applications. However,
there is a clear potential to use strikes for non-time-critical analysis
of the data, such as in the case of forensics.

11.7 summary

In this chapter, we designed, built, and evaluated a mitigation frame-
work against DDoS attacks that works without the victim’s help. We

200 ddos mitigation framework

have shown that our framework can detect attacks, identify the at-
tackers, and mitigate the effects of the attack within minutes or even
seconds, without or with minimal optimization for the specific net-
work infrastructure or application. The DDoS mitigation framework
presented here is a comprehensive framework solving several issues
in the area of DDoS mitigation. It combines the detection of attacks,
identification of attacking clients, and the mitigation of attacks in
one system. Unlike other systems, it mitigates not only network-
based attacks but also application-layer attacks — although the sys-
tem is located and operates within the network infrastructure and its
constraints. The system encompasses two different detection mech-
anisms based on target availability and based on network behavior,
and an identification system that can identify attackers for several
application-based attacks such as HTTP flood, TLS flood, and several
slow attacks. We showed that it is able to successfully mitigate SYN
flooding attacks if the network infrastructure itself is strong enough
not to be affected by the attack. Moreover, a defense system counter-
ing the attacks is part of the framework. For one, identified attack-
ers can be removed from the network or forwarded to a CAPTCHA
server. For reflective attacks, it is not feasible to identify the attacking
clients due to the heavy load of such attacks. The network infrastruc-
ture itself is the target of the attack and cannot be utilized to analyze
traffic apart from the bare minimum. Therefore, we introduced a
system that can mitigate reflective attacks without identifying the at-
tackers. We designed, implemented, and evaluated a new mitigation
mechanism that can reliably detect and mitigate arbitrary DRDoS at-
tacks as long as the underlying protocol uses UDP and a fixed server
port. The system can be installed instantly within the network infras-
tructure — transparent to the attack target. Incoming and outgoing
connections to and from the target remain unaffected by the defense
mechanism — even if the target uses the very same service that is
abused for the attack. The system scales well, and the defense can
be spread wide towards the edge of the network infrastructure under
control.

While our mechanisms can work with any modern network infras-
tructure, we used SDN, a comparably new technology, to build our
prototype. Although SDN as a technology has been around for sev-
eral years, the available hardware is still maturing, making tests with
a real hardware infrastructure challenging; however, we show that
even with such limitations, SDN can be used to mitigate attacks effec-
tively, and the flexibility of SDN can be advantageous going forward.

Slow HTTP attacks differ quite a bit from flooding attacks, and their
identification and mitigation can lead to a high management effort of
the network infrastructure. We developed several concepts based on
light-weight flow-based analysis of network traffic that can identify
attackers and help to exclude them from the network. Our analyses

11.7 summary 201

Figure 48: DDoS detection demo running based on live analysis of bwNet-
Flow data. Additionally to live analyzing the network and find-
ing DDoS attacks, the demo also allows the user to simulate an
attack themself.

showed that a network-based defense approach against slow attacks
is feasible and should be considered as part of a defense strategy for
network providers. The accuracy of the schemes is not high enough
to leave the system active all the time, but it is very effective as part of
a reactive defense system once ongoing attacks have been identified.
The attack tools we used are only able to conduct attacks based on
the HTTP protocol. However, as we did not use any scheme that is
dependent on application-layer data, our mechanisms should also be
able to protect other TCP-based application-layer protocols that are
vulnerable to slow attacks.

In this work, we also introduced slowloris-ng, a more sophisticated
attack tool compared to slowloris that is harder to detect by network
operators due to its more randomized behavior.

11.7.1 Outlook and Deployment

As part of the collaboration with the bwNetFlow project, a proto-
type was built to analyze data in the BelWü network and detect and
classify attacks in the network infrastructure. A demo showing the
prototype can be seen in Figure 48. This system is planned to be inte-
grated into the Grafana dashboard run by the BelWü and offered as
a service to all BelWü clients in the near future.

V
C O N C L U S I O N S

12
C O N C L U S I O N S & O U T L O O K

Network security as a field encompasses a wide variety of challenges.
There is a multitude of attacks with different goals and different ways
of archiving them. There is the aspect of even faster and even bigger
networks every year. There are challenges imposed by the ossification
of the Internet infrastructure. There are new technologies published
regularly that constantly change the face of the Internet and networks
in general. In this work, we focused only on a small part of this
field: testing security mechanisms, acceleration of IDS, and DDoS
mitigation, all in the context of high-bandwidth networks.

The evaluations of network devices and resources are done very
differently from research group to research group. Data sets used
for evaluations are not proven to reflect general networks and can
age rapidly. Data sets for edge cases and the newest technologies are
often hard to impossible to obtain.

Intrusion Detection Systems are becoming more and more com-
plex due to more sophisticated attacks, while the amount of network
data to analyze rises faster than the computational power. In the
past, research groups often looked into hardware-based acceleration
of IDS to offload some of the workload to other devices. However,
a contemporary analysis to what extend FPGA-based or GPU-based
acceleration can help IDS was missing in the literature.

The scale of Denial-of-Service attacks is continuously rising. New
types of attacks are emerging regularly. Reliable detection and clas-
sification of attacks, identification of the attacking clients, and subse-
quent defense against the attacks can be tricky. Often, operators of
the attack target, network operators of the local network, and Internet
service providers have to collaborate to mitigate the attacks.

In this thesis, we looked into these issues of modern networks and
found answers to some of the most pressing questions.

As groundwork to conduct our evaluations, the resources available

Part II
Chapter 2

for network testing were evaluated. This includes but is not limited
to an extensive survey on publicly available data sets.. The data sets
were analyzed, described, and classified. The data sets came from
simulated networks, event networks, production networks, or a com-
bination of these. They contain either attack traffic, benign traffic,
or both. The data sets are partially labeled and represent specific
or more generic networks. Moreover, analysis tools and frameworks
were described, along with evaluation methodologies. Analyzing
the state of the art in network testing led to the following research
questions:

205

206 conclusions & outlook

Research Question: Network testing in high-bandwidth networks: Eval-
uation of TCP congestion control mechanisms in 10G networks as a use case.

Research Question: How can benign traffic be modeled and produced
to test network mechanisms?

Research Question: How can malicious traffic be modeled and produced
to test security network mechanisms?

As an initial use case for network evaluation in order to gain ex-Chapter 4

perience with benchmarking high-bandwidth networks, we filled a
gap in research in congestion control algorithm performance in these
networks — specifically 10 Gbit/s networks. The analysis of fairness,
convergence time, link utilization, and efficiency of the most common
loss-based algorithms Reno, Scalable, High-Speed TCP, BIC, CUBIC,
and H-TCP showed that adaptations to the network infrastructure
have to be made to achieve maximum single flow performance. Fur-
thermore, we were able to give a clear recommendation for CUBIC
in general networks and BIC in networks where legacy devices with
older TCP variants can be ruled out.

Following our analysis of data sets and network testing methodol-Chapter 5

ogy, and based on our experiences in network testing, we built the
General Purpose Network Testing Framework (GPNTF). The frame-
work can produce realistic network traffic (both benign and mali-
cious) based on statistical analyses and measurements and can be
adapted to future network infrastructure changes.

With GPNTF and several other tools, it was possible to produce
data sets that can be used for evaluation where related work left some
gaps. We were able to produce specific traffic for web browsing, stor-
age and marketplace, file sharing, and video on demand to allow for
specified analysis based on the traffic mix in the network of deploy-
ment. Additionally, a trigger data set for Intrusion Detection Systems
was created, which can be used for performance tests. The SUEE data
sets recorded with the collaboration of the Student Union Electrical
Engineering at Ulm University rounds up our data sets list. SUEE1

and SUEE8 are specialized data sets for the evaluation of slow DDoS
attacks. Recorded on a web server, they contain realistic web traffic,
which was then enriched with labeled attack traffic from three differ-
ent slow HTTP attack tools.

This work on network testing approaches and the resulting pro-
grams and data sets built the foundation for the evaluations of our
following contributions.

conclusions & outlook 207

We analyzed and classified the common approaches to accelerate

Part III
Chapter 6

Intrusion Detection Systems. We can distinguish between mecha-
nisms that try to limit the amount of data they need to analyze
(i. e., sampling) and parallelization approaches. Parallelization can
be done by using a multitude of conventional systems in parallel
(i. e., clustering) or specialized hardware that perfects parallel com-
puting. Hardware that can be used for this purpose can be, for
example, FPGAs, ASICs, and GPUs. Literature showed that these
mechanisms could be used quite successfully for IDS acceleration.
However, an analysis showing whether these systems can still ac-
celerate modern multi-core implementations of IDS was missing.
Analyzing the state of the art in hardware-acceleration of IDS led to
the following research questions:

Research Question: Based on maintainability, cost, and acceleration
potential which of the hardware options is the most promising?

Research Question: Based on the decision following the first question,
how can this option be implemented?

Research Question: Can this option accelerate the IDS sufficiently?

We analyzed whether an FPGA-based pre-filter can be used for Chapter 8

the acceleration of IDS. The pre-filter performs the — on CPU very
resource-intensive task — of regular expression matching in a highly
parallelized fashion. However, we soon realized that the space re-
quired on the FPGA to built such a system was not available on
current hardware, and consequently, we shifted our focus towards
GPU-based acceleration.

GPUs can be used to build highly parallelized systems as their pro-
cessing cores are optimized for that kind of computations. Prior re-
search showed that at least in single-core implementations of IDS, this
could lead to a significant advantage over non-accelerated IDS [307].
However, our analysis of both our own implementation based on
Snort and of the Suricata implementation showed, that current imple-
mentations taking advantage of modern multi-core systems are far
more capable than their single-core predecessors and the overhead
added particularly by PCIe bus usage and collaboration between CPU
and GPU exceeds the performance gain of the GPU. The evaluation
was done using the aforementioned General Purpose Testing Frame-
work and its data sets.

We analyzed the state of the art of Distributed Denial-of-Service

Part IV
Chapter 9

attacks. We described and classified the most common DDoS attacks.
Typical attacks include flooding attacks both on application-layer and
lower layers, amplification attacks such as reflective attacks, and slow

208 conclusions & outlook

attacks. They all have in common that they aim to exhaust one or
more resources. However, their strategies are very diverse. This can
also be seen when analyzing mitigation mechanisms. Many mecha-
nisms need to be tailored to specific attacks. Analyzing mitigation
mechanisms, we found that many only work with the attack target’s
collaboration, while others impact not only the attackers but also
benign traffic in the network. Analyzing the state of the art in DDoS
mitigation led to the following research questions:

Research Question: Under which circumstances do common detection
mechanisms detect DDoS attacks reliably?

Research Question: Can the common detection mechanisms help to
find DDoS attacks in the BelWü network and other research networks with
similar characteristics?

Research Question: How can the network-based identification of DDoS
attacks be improved? Our focus here lies mainly on slow attacks as here the
need for improvement has been identified.

Research Question: How can the network-based defense against DDoS
attacks be improved? We focus here mainly on reflective attacks.

We developed detection mechanisms to detect application-layerChapter 11

and network-layer Distributed Denial-of-Service Attacks solely in the
network without the cooperation of the attack target. We developed
network-based schemes able to identify clients during slow DDoS
attacks tested with the aforementioned SUEE data sets. We devel-
oped a defense system against reflective DDoS attacks that can be
deployed instantly and network-wide.

We build a framework for DDoS mitigation using Software-Defined
Networking technology. The framework is able to utilize the mecha-
nisms we developed and was used to implement and test our mecha-
nisms. We extensively analyzed the mechanisms based on this frame-
work, with commonly used data sets (CAIDA, WIDE) and live data
from the BelWü network.

A system for DDoS detection and classification for the institutions
using the BelWü services was implemented as a demonstrator work-
ing on the live data obtained in the BelWü network.

12.1 outlook

We targeted network testing, acceleration of IDS, and DDoS mitiga-
tion in this thesis. In these three areas, we see several points where
future work could build upon this work.

12.1 outlook 209

Extension of the General Purpose Network Testing Framework

GPNTF is able to produce web traffic, video-on-demand traffic, stor-
age and marketplace traffic, and file sharing traffic. This makes up
around 80 % of Internet traffic [267–269]. However, 20 % of Internet
traffic cannot be simulated yet. This includes gaming, communica-
tions (e. g., Skype, WhatsApp, WeChat), administration (e. g., DNS,
NTP, ICMP), and tunneling protocols such as SSH or proxies. Espe-
cially administration protocols that do not make up much traffic but
are crucial to network operations should be added to the framework.

Intrusion Detection System Acceleration Through ASICs

As part of our research, we analyzed the possibility of accelerating In-
trusion Detection Systems by offloading the regular expression match-
ing onto an ASIC. However, due to the immense effort necessary to
implement a processor core with a comprehensive feature list that can
be used in production, we decided not to pursue this further. There-
fore it was not possible for us to conclusively clarify whether this
approach could be more promising than the other two approaches.

DDoS Mitigation Framework Distribution

The framework implemented for our detection, identification, and
defense mechanisms reliably worked as a base for our evaluations.
However, the identification and defense aspects are only imple-
mented on one machine per task, meaning one machine running
the SDN controller, one machine running the network analyzer, et
cetera. We undertook the first steps to distribute our system further.
The concept we have in mind consists of several autonomous systems
spread in the network. Each system contains one SDN controller,
analyzer, and observer responsible for defending a known list of po-
tential targets and controlling the bottleneck link to these targets. The
SDN controllers of each system are aware of each other and exchange
attack information with each other. One central server acts solely as
a certificate authority when a new SDN controller is added to the net-
work. Apart from that, the SDN controllers communicate through a
publish-subscribe pattern. A first prototype of this was implemented
as a proof-of-concept. We suspect that such a distributed system
could react faster and more reliably to attacks. A final investigation
of whether this is true or not is still pending.

New Network Technologies and Their Impact

In the last couple of years, many new protocols and mechanisms
in networks have found their way into production networks. QUIC

210 conclusions & outlook

slowly becomes the standard transport layer protocol and might fully
replace TCP at some point. Simultaneously, Bottleneck Bandwidth
and Round-trip propagation time (BBR) as a TCP and QUIC conges-
tion control algorithm further change network behavior. These proto-
cols could affect our DDoS mitigation or even allow new attacks to be
implemented that cannot be detected as of now. Analysis of these and
other protocols for potential exploitation in the context of Denial-of-
Service attacks and developing mitigation mechanisms could prove
beneficial.

DDoS Mitigation Deployment in BelWü

The first DDoS detection prototype based on the bwNetFlow data was
already implemented as a proof-of-concept demonstrator. The next
step will be to integrate it into the Grafana Dashboard bwNetFlow
develops and maintains. The dashboard can be used by all clients of
the BelWü network; the data analysis limited in scope to the subnet
of this specific customer. Detection and classification of DDoS attacks
could help network administrators to react to security incidents of
this kind faster and more accurately.

DDoS Mitigation in Self-Driving Networks

Self-driving networks is a marketing term coined by Juniper1 that
encompasses the idea of autonomous network configuration. These
networks shall be predictive of changes and shall adapt automati-
cally based on observations made in the network. In the context of
security, a DDoS mitigation framework that reacts automatically to a
Denial-of-Service attack and changes the network configuration can
be seen as a self-driving network component. Integrating our system
in such an environment should be possible and should be researched.
The opportunities of a self-driving network could further advance the
mitigation of DDoS attacks. While the current system only reacts to
attacks by reconfiguration of routers and switches to block traffic or
change IP addresses of flows from the target, in a self-driving net-
work, a complete autonomous reconfiguration of the network would
be possible.

12.2 summary

With this thesis, we tackled several areas of high-bandwidth network
security research. We improved network testing, gave new insights
into the applicability of hardware-acceleration of IDS, and improved
Distributed Denial-of-Service attack mitigation. We published a new

1 https://www.juniper.net/us/en/insights/the-self-driving-network/

https://www.juniper.net/us/en/insights/the-self-driving-network/

12.2 summary 211

testing framework (GPNTF), published several data sets assisting fu-
ture research, and supported BelWü providing a new DDoS detection
system.

A C K N O W L E D G E M E N T S

Many have influenced me, helped me, supported me, put up with me
when I was in a bad mood, and always pushed me forward. Without
them, this thesis would not have been possible.

I would like to thank Prof. Dr. rer. nat. Frank Kargl, for his guid-
ance and supervision over the years, for giving me a lot of academic
freedom, and for proofreading this thesis. I thank prof. dr. ir. Aiko
Pras for offering to act as the second, external examiner of this thesis
and Prof. Dr.-Ing. Dr. h.c. Stefan Wesner for offering to act as the third
examiner.

Further, I would like to thank my colleagues in the bwNET100G+
and bwNetFlow projects for the great work over the years and the
state of Baden-Württemberg for giving us the opportunity to work in
these projects.

During my time at the Institute of Distributed Systems, I was lucky
to be able to supervise many bright and dedicated students. It was a
blast working with you, thank you.

I would also like to thank my current and former colleagues for
many productive discussions, their help, and their inspiring work
ethic; but also for the coffee breaks, Cafeteria tours, and the fun we
had at PhD defenses, institute retreats, and Christmas parties. I am
lucky that I can call many of you my friends. Special thanks go to
Benjamin Erb and Leonard Bradatsch for proofreading parts of this
thesis.

Danke to my parents Barbara and Mario for being there for me, sup-
porting me over the years and decades through school and university,
pushing me, guiding me, and giving me the feeling that I can always
depend on them.

Thank you to all my friends, and a special thank you, bedankt, danke,
xièxiè, and terima kasih goes to the Tafelrunde. Thank you for living and
traveling with me — for exploring the wonders of this world with me.
In particular, danke and xièxiè Leo and Surong for taking me with you
to China and terima kasih Clara for showing me Indonesia. Thank you
for many nights with pancakes, hot pot, music, movies, wine, beer,
and games — both the analog and the digital kind. Thank you Katja
for many afternoons with coffee and Laugencroissants and danke Silke
for many lunches all around Ulm. You helped me stay sane during
the time of writing. Thank you, IomG, for the games.

Last but certainly not least, terima kasih to the lovely Clara Trias
Winda Rahajeng for always being there for me. Thank you for the in-
credible food, company, cute cat GIFs, and distraction when I needed
it most.

213

VI
A P P E N D I X

A P P E N D I X T O PA RT I I

Table 16: GPNTF default values for web traffic and their sources.

Measured /
Literature Values Model Default

request size
mean: 318.59 B

σ = 197.46 B [98]
318 B

of main objects
Mean: 2.19 Median: 1

Max: 212 σ = 2.63 [252]
1

main object size
Mean: 31.5 kB

Median: 19.4 kB

Max: 8 MB σ = 49.2 kB [252]

Weibull

shape = 0.814944

scale = 28242.8

parsing time - 0

of inline objects
Mean: 31.93 Median: 22

Max: 1920 σ = 37.65 [252]

Exponential

λ = 3.132 · 10−6

inline object size
Mean: 23.9 kB

Median: 10.2 kB

Max: 8 MB σ = 128 kB [252]

Lognormal

µ = 9.17979

σ = 1.24646

of TCP connections 6 (Firefox 59.1, measured) 1

pipelining /

multiplexing
- No/No

of servers Min: 1, Max: 70 [78] 1

HTTP compression - No

caching - No

reading time
Mean: 39.7 s

Max: 10.000s

σ = 325 s [98]

Lognormal

µ = -0.495204

σ = 2.7731

217

218 appendix

Table 17: GPNTF default values for file sharing and their sources.

Measured /
Literature Values Model Default

session length - 10

file size - -

chunk size - -

flow size
mean: 362.4 kB

median: 1.17 kB

σ = 12470 B [58]

concatenation of

bounded Weibull and

Pareto distribution

packet size

~62% big packets

(> 1350 Bytes)

~38% small packets

(6 67 Bytes)[185]

~62% big packets

(1500 Bytes)

~38% small packets

(62 Bytes)

of concurrent

download connections

max. 270

recommended[314]
defined by user

of concurrent

flows per IP
~1[58] 1

bandwidth limit - -

idle time - 0 s

hit rate - -

tit-for-tat - -

of allowed

concurrent upload

connections

max. 90

recommended[314]
90

freerider - -

appendix 219

Table 18: GPNTF default values for buffered video streaming and their
sources.

Measured /
Literature Values Model Default

streaming technique - MPEG-DASH

video length
20 min,

30 min,

40 min[183]

~10 min to ~90 min

available,

user defined

video quality
1% UHD,

76% HD,

23% SD[99]

240p to 1080p available,

user defined

HTTP version - HTTP/1.1

manifest - MPD

segment length 1 s to 4 s[256]
1 s to 15 s

available,

user defined

adaptive streaming

algorithm
- VLC default

requesting rate
roughly corresponding

to segment length[256]
VLC default

segment download

approach
- VLC default

220 appendix

Table 19: GPNTF default values for storage and marketplace and their
sources. (Own measurements if no source is cited).

Measured /
Literature Values Model Default

file size

popular file sizes between

100 KB and 20 GB

(tracked 2018-08-10

to 2018-08-16

on demonoid.pw)

878 MB

packet size

data packets:

MTU size

control packets:

< 101 Bytes[173]

data packets:

MTU size

of connections
one connection

per download
one connection

layer 7 protocol FTP RFC172, HTTP/1.1 -

idle time - 0 s

A P P E N D I X T O PA RT I I I

Theorem 1. A \B \C = A \C \B

Proof of Theorem 1. Properties needed for proof:

1. A∪B = B∪A (Commutativity)

2. A \B = A∪B (Relationship between absolute and relative com-
plement)

A \B \C
2

= (A∪B) \C
2

= ((A∪B)∪C)
1

= ((A∪C)∪B)
2

= ((A∪C) \B)
2

= A \C \B

(21)

Theorem 2. A \B = B \A

Proof of Theorem 2. Properties needed for proof:

3. A \B \C = A \C \B (Theorem 1)

4. A = U \A with the universal set U

5. (A∪B) \C = (A \C)∩ (B \C) (Distributivity)

A \B
4

= (U \A) \B

= ((B∪B) \A) \B
5

= ((B \A)∪ (B \A)) \B
5

= ((B \A) \B)∪ ((B \A) \B)
3

= ((B \B) \A)∪ ((B \B) \A)

= B \A

(22)

221

A P P E N D I X T O PA RT I V

Table 20: Full list of all fields contained in the bwNetFlow data (part 1). Par-
tially based on the official GoFlow documentation [101]; some val-
ues supplemented by bwNetFlow.

Label Description

Type Type of flow message

TimeReceived Timestamp of when the message was received

SequenceNum Sequence number of the flow packet

SamplingRate Sampling rate of the flow

FlowDirection Direction of the flow

SamplerAddress Address of the device that generated the packet

TimeFlowStart Time the flow started

TimeFlowEnd Time the flow ended

Bytes Number of bytes in flow

Packets Number of packets in flow

SrcAddr Source address (IP)

DstAddr Destination address (IP)

Etype Ethernet type (0x86dd for IPv6. . .)

Proto Protocol numbers (e. g., 17=UDP, 6=TCP, 1=ICMP. . .)

SrcPort Source port (when UDP/TCP/SCTP)

DstPort Destination port (when UDP/TCP/SCTP)

SrcIf Source interface

DstIf Destination interface

SrcMac Source mac address

DstMac Destination mac address

SrcVlan Source VLAN ID

DstVlan Destination VLAN ID

VlanId 802.11q VLAN ID

IngressVrfID VRF ID

EgressVrfID VRF ID

IPTos IP Type of Service

ForwardingStatus Forwarding status

223

224 bibliography

Table 21: Full list of all fields contained in the bwNetFlow data (part 2). Par-
tially based on the official GoFlow documentation [101]; some val-
ues supplemented by bwNetFlow.

Label Description

IPTTL IP Time to Live

TCPFlags TCP flags

IcmpType ICMP Type

IcmpCode ICMP Code

IPv6FlowLabel IPv6 Flow Label

IPv6ExtensionHeaders IPv6 Extension Headers

FragmentId IP Fragment ID

FragmentOffset IP Fragment Offset

BiFlowDirection BiFlow Identification

SrcAS Source AS number

DstAS Destination AS number

NextHop Nexthop address

NextHopAS Nexthop AS number

SrcNet Source address mask

DstNet Destination address mask

Cid Internal customer number in the BelWü network

CidString Internal customer in the BelWü network

Normalized Binary value (0 or 1)

SrcIfName Source interface name

SrcIfDesc Source interface description

SrcIfSpeed Speed at interface in Mbit

DstIfName Destination interface name

DstIfDesc Source interface description

DstIfSpeed Speed at interface in Mbit

ProtoName Protocol (UDP, TCP, ICMP. . .)

RemoteCountry ISO 3166-1 alpha-2 country code

bibliography 225

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

BW-Tübingen

0

1

0 1TPR

TN
R

BW-Ulm

0

1

0 1TPR

TN
R

BelWü

0

1

0 1TPR

TN
R

CAIDA, direction A

0

1

0 1TPR

T
N

R

CAIDA, direction B

0

1

0 1TPR

TN
R

WIDE, night

0

1

0 1TPR

TN
R

WIDE, noon

N/A

0

1

0 1TPR

TN
R

BW-Karlsruhe

Figure 49: ROC curves for the destination IP entropy (analyzing every 128th
packet)

226 bibliography

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

BW-Tübingen

0

1

0 1TPR

T
N

R

BW-Ulm

0

1

0 1TPR

TN
R

BelWü

0

1

0 1TPR

TN
R

BW-Karlsruhe

0

1

0 1TPR

T
N

R

CAIDA, direction A

0

1

0 1TPR

TN
R

CAIDA, direction B

0

1

0 1TPR

TN
R

WIDE, night

0

1

0 1TPR

TN
R

WIDE, noon

Figure 50: ROC curves for the destination IP entropy (analyzing every
2 048th packet)

bibliography 227

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

BW-Tübingen

0

1

0 1TPR

TN
R

BW-Ulm

0

1

0 1TPR

TN
R

BelWü

0

1

0 1TPR

TN
R

BW-Karlsruhe

0

1

0 1TPR

TN
R

CAIDA, direction A

0

1

0 1TPR

T
N

R

CAIDA, direction B

0

1

0 1TPR

TN
R

WIDE, night

0

1

0 1TPR

TN
R

WIDE, noon

Figure 51: ROC curves for the destination IP entropy (analyzing every
32 768th packet)

228 bibliography

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

BW-Tübingen

0

1

0 1TPR

T
N

R

BW-Ulm

0

1

0 1TPR

TN
R

BelWü

0

1

0 1TPR

TN
R

BW-Karlsruhe

0

1

0 1TPR

T
N

R

CAIDA, direction A

0

1

0 1TPR

TN
R

CAIDA, direction B

0

1

0 1TPR

TN
R

WIDE, night

0

1

0 1TPR

TN
R

WIDE, noon

Figure 52: ROC curves for the source port entropy (analyzing every 128th
packet)

bibliography 229

strength of the attack 0.05 1.000.250.10 0.50

0

1

0 1TPR

TN
R

BW-Tübingen

0

1

0 1TPR

TN
R

BW-Ulm

0

1

0 1TPR

TN
R

BelWü

0

1

0 1TPR

TN
R

BW-Karlsruhe

0

1

0 1TPR

TN
R

CAIDA, direction A

0

1

0 1TPR

T
N

R

CAIDA, direction B

0

1

0 1TPR

TN
R

WIDE, night

0

1

0 1TPR

TN
R

WIDE, noon

N/A N/A

Figure 53: ROC curves for the source port entropy (analyzing every 2 048th
packet)

B I B L I O G R A P H Y

author’s publications relevant to this dissertation

[1] T. Lukaseder, L. Bradatsch, B. Erb, R. W. van der Heijden, and
F. Kargl. “A Comparison of TCP Congestion Control Algo-
rithms in 10G Networks.” In: IEEE 41st Conference on Local Com-
puter Networks (LCN). Oct. 2016. doi: 10.1109/LCN.2016.121
(cit. on pp. 7, 37, 43, 55, 57, 59, 60, 62, 63).

[2] T. Lukaseder, L. Bradatsch, B. Erb, and F. Kargl. “Setting Up
a TCP Benchmarking Environment—Lessons Learned.” In:
IEEE 41st Conference on Local Computer Networks (LCN). Oct.
2016. doi: 10.1109/LCN.2016.32 (cit. on pp. 7, 37, 39, 40, 43).

[3] T. Lukaseder, J. Fiedler, and F. Kargl. “Performance Evalua-
tion in High-Speed Networks by the Example of Intrusion De-
tection Systems.” In: 11. DFN-Forum Kommunikationstechnolo-
gien. 2018 (cit. on p. 8).

[4] T. Lukaseder, A. Hunt, C. Stehle, D. Wagner, R. van der Hei-
jden, and F. Kargl. “An Extensible Host-Agnostic Framework
for SDN-Assisted DDoS-Mitigation.” In: IEEE 42nd Conference
on Local Computer Networks (LCN). Oct. 2017. doi: 10.1109/LCN.
2017.103 (cit. on pp. 8, 158, 178, 181).

[5] T. Lukaseder, L. Maile, B. Erb, and F. Kargl. “SDN-Assisted
Network-Based Mitigation of Slow DDoS Attacks.” In: EAI In-
ternational Conference on Security and Privacy in Communication
Networks (SecureComm). Aug. 2018. doi: 10.1007/978-3-030-
01704-0_6 (cit. on pp. 9, 79, 166, 198, 199).

[6] T. Lukaseder, L. Maile, and F. Kargl. “SDN-Assisted Network-
Based Mitigation of Slow HTTP Attacks.” In: 1. KuVS Fachge-
spräch Network Softwarization – From Research to Application.
2017. doi: 10.15496/publikation-19543 (cit. on pp. 9, 166).

[7] T. Lukaseder, K. Stölzle, S. Kleber, B. Erb, and F. Kargl. “An
SDN-based Approach For Defending Against Reflective DDoS
Attacks.” In: IEEE 43rd Conference on Local Computer Networks
(LCN). Oct. 2018. doi: 10.1109/LCN.2018.8638036 (cit. on
pp. 9, 170).

[8] T. Lukaseder, S. Ghosh, and F. Kargl. “Mitigation of Flooding
and Slow DDoS Attacks in a Software-Defined Network.” In:
IEEE 43rd Conference on Local Computer Networks (LCN), Demo
Track. Oct. 2018 (cit. on p. 8).

231

https://doi.org/10.1109/LCN.2016.121
https://doi.org/10.1109/LCN.2016.32
https://doi.org/10.1109/LCN.2017.103
https://doi.org/10.1109/LCN.2017.103
https://doi.org/10.1007/978-3-030-01704-0_6
https://doi.org/10.1007/978-3-030-01704-0_6
https://doi.org/10.15496/publikation-19543
https://doi.org/10.1109/LCN.2018.8638036

[9] L. Bradatsch, T. Lukaseder, and F. Kargl. “A Testing Frame-
work for High-Speed Network and Security Devices.” In: IEEE
42nd Conference on Local Computer Networks (LCN). Oct. 2017.
doi: 10.1109/LCN.2017.91 (cit. on pp. 7, 65).

[10] F. Engelmann, T. Lukaseder, B. Erb, R. van der Heijden, and F.
Kargl. “Dynamic packet-filtering in high-speed networks us-
ing NetFPGAs.” In: IEEE Third International Conference on Fu-
ture Generation Communication Technologies (FGCT 2014). Aug.
2014. doi: 10.1109/FGCT.2014.6933224 (cit. on pp. 8, 110).

other publications by the author

[11] R. van der Heijden, T. Lukaseder, and F. Kargl. “VeReMi: A
Dataset for Comparable Evaluation of Misbehavior Detection
in VANETs.” In: EAI International Conference on Security and
Privacy in Communication Networks (SecureComm). 2018.

[12] T. Lukaseder, M. Halter, and F. Kargl. “Context-based Access
Control and Trust Scores in Zero Trust Campus Networks.” In:
GI Sicherheit. (accepted). 2020. doi: 10.18420/sicherheit2020_
04.

[13] R. van der Heijden, T. Lukaseder, and F. Kargl. “Analyzing
attacks on cooperative adaptive cruise control (CACC).” In:
2017 IEEE Vehicular Networking Conference (VNC). Nov. 2017,
pp. 45–52. doi: 10.1109/VNC.2017.8275598.

[14] C. Corbett, T. Basic, T. Lukaseder, and F. Kargl. “A Testing
Framework Architecture for Automotive Intrusion Detection
Systems.” In: Automotive - Safety & Security 2017 - Sicher-
heit und Zuverlässigkeit für automobile Informationstechnik. Ed.
by P. Dencker, H. Klenk, H. B. Keller, and E. Plödererder.
Gesellschaft für Informatik, Bonn, 2017, pp. 89–102.

co-supervised student theses , projects , and internships

(unpublished)

[15] L. Bradatsch. Verhalten von TCP in Hochgeschwindigkeitsnetzen.
Bachelor Thesis, VS-B08-2015. Sept. 2015 (cit. on pp. 37, 43).

[16] L. Bradatsch. General Purpose Network Testing Framework (GP-
NTF). Master Project. Aug. 2016 (cit. on p. 65).

[17] L. Bradatsch. Determination of Traffic Models for Network Testing.
Master Thesis, VS-M10-2018. Aug. 2018 (cit. on pp. 29, 65).

[18] L. Elzobaidy. SDN Assisted Distributed DDoS Attack Mitigation.
Bachelor Thesis, VS-B15-2017. Aug. 2017.

[19] J. Fiedler. Performance Evaluation of Intrusion Detection Systems.
Master Project. Apr. 2017.

https://doi.org/10.1109/LCN.2017.91
https://doi.org/10.1109/FGCT.2014.6933224
https://doi.org/10.18420/sicherheit2020_04
https://doi.org/10.18420/sicherheit2020_04
https://doi.org/10.1109/VNC.2017.8275598

[20] C. Forst. Erstellung eines dynamischen Testdatensets zur Sicherheit-
sanalyse. Master Thesis, VS-M11-2016. July 2016 (cit. on pp. 16,
33).

[21] S. Ghosh. Adaptation of an SDN-based DDoS mitigation system
from a hardware deployment to a virtualized environment based on
Mininet. Internship. Aug. 2018.

[22] S. Ghosh. Implementation of a two factor authentication mechanism
in form of a mobile app for android and a web site. Internship. Feb.
2019.

[23] M. Halter. Anwendung des Zero Trust Modells auf das Forschungs-
netz Baden-Württembergs. Master Thesis, VS-M12-2019. May
2019.

[24] A. Hunt. Erkennung und Abwehr von Denial of Service Attacken
mit Hilfe von Software Defined Networking. Bachelor Thesis, VS-
B06-2016. Mar. 2016 (cit. on p. 158).

[25] A. Hunt, D. Wagner, and C. Stehle. SDN-Assisted DoS-Mitigation.
Master Project. June 2016 (cit. on p. 158).

[26] D. Lang. Accelerating Network Intrusion Detection Using a Net-
FPGA Pre-Filter. Master Thesis, VS-M14-2015. Sept. 2015 (cit.
on pp. 104, 111, 112).

[27] L. Maile. Extending the SDN-Assisted DDoS-Mitigation Frame-
work. Master Project. Oct. 2017 (cit. on p. 166).

[28] M. Mohr. DDoS Detection Based on Traffic Analysis. Bachelor
Thesis, VS-B12-2018. Nov. 2018.

[29] T. Nieß. DoS-Attacks on Coexistence-Mechanisms for TCP-Variants.
Bachelor Thesis, VS-B11-2017. May 2017.

[30] T. Nieß. DoS-Attack and Mitigation on TCP Congestion Control
Algorithm Coexistence. Master Project. Sept. 2018.

[31] B. Schimmele. Implementation of a Pre-Filter for Network Intru-
sion Detection Systems. Diploma Thesis, VS-D12-2016. Sept.
2016 (cit. on p. 111).

[32] K. Shymbarova. Entwicklung einer RegEx Engine für den FPGA-
Einsatz. Master Project. Oct. 2016 (cit. on p. 117).

[33] P. Spiegelt. Extension and Evaluation of the General Purpose Net-
work Testing Framework. Bachelor Thesis, VS-B11-2019. June
2019 (cit. on pp. 71, 75–78).

[34] C. Stehle. Merging and Evaluating Frameworks for SDN-Assisted
DDoS-Mitigation. Master Thesis, VS-M13-2018. Dec. 2018 (cit.
on pp. 178, 179).

[35] K. Stölzle. Defending Against DRDoS Attacks in a High-Speed
Network Using an SDN-based Approach. Master Thesis, VS-M14-
2017. Oct. 2017 (cit. on p. 170).

[36] M. Strobel. Untersuchung der Sicherheit von Eduroam (IEEE802.1X).
Bachelor Thesis, VS-B15-2015. Dec. 2015.

[37] S. Tomm. Analyse der Sicherheitsaspekte von VoIP. Bachelor The-
sis, VS-B16-2015. Dec. 2015.

[38] M. Wagner. GPU-assisted IDS Acceleration. Bachelor Thesis, VS-
B11-2018. Nov. 2018 (cit. on pp. 119, 121, 122).

[39] M. Wagner. Extending the GPU-Assisted IDS Evaluation. Master
Project. Sept. 2019 (cit. on pp. 80, 119, 124, 125).

[40] J. Ziegler. Entwicklung eines Modells zur Generierung von Testnet-
zwerken. Bachelor Thesis, VS-B20-2018. Nov. 2018.

references

[41] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. “A Multi-
faceted Approach to Understanding the Botnet Phenomenon.”
In: Proceedings of the 6th ACM SIGCOMM Conference on Inter-
net Measurement. IMC ’06. Rio de Janeriro, Brazil: ACM, 2006,
pp. 41–52. isbn: 1-59593-561-4. doi: 10.1145/1177080.1177086.
url: http://doi.acm.org/10.1145/1177080.1177086 (cit. on
p. 132).

[42] S. Afridi, A. Gilal, S. Shah, and M. Sandhu. “Peer and File
Sizes Distributions for Energy Efficient Bit Torrent Networks.”
In: IJCSNS International Journal of Computer Science and Network
Security 17.11 (2017) (cit. on pp. 30, 68).

[43] M. E. Ahmed, H. Kim, and M. Park. “Mitigating DNS query-
based DDoS attacks with machine learning on software-
defined networking.” In: MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM). Oct. 2017, pp. 11–16.
doi: 10.1109/MILCOM.2017.8170802 (cit. on pp. 142, 145, 152).

[44] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. “CAPTCHA:
Using Hard AI Problems for Security.” In: Advances in Cryptol-
ogy — EUROCRYPT 2003. Ed. by E. Biham. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 294–311. isbn: 978-3-540-
39200-2 (cit. on p. 148).

[45] A. V. Aho and M. J. Corasick. “Efficient String Matching: An
Aid to Bibliographic Search.” In: Commun. ACM 18.6 (June
1975), pp. 333–340. issn: 0001-0782. doi: 10 . 1145 / 360825 .

360855. url: http://doi.acm.org/10.1145/360825.360855
(cit. on pp. 88, 89).

[46] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools (2Nd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006 (cit. on
p. 105).

https://doi.org/10.1145/1177080.1177086
http://doi.acm.org/10.1145/1177080.1177086
https://doi.org/10.1109/MILCOM.2017.8170802
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
http://doi.acm.org/10.1145/360825.360855

[47] A. A. Aizuddin, M. Atan, M. Norulazmi, M. M. Noor, S.
Akimi, and Z. Abidin. “DNS Amplification Attack Detec-
tion and Mitigation via sFlow with Security-centric SDN.”
In: Proceedings of the 11th International Conference on Ubiqui-
tous Information Management and Communication. IMCOM ’17.
Beppu, Japan: ACM, 2017, 3:1–3:7. isbn: 978-1-4503-4888-1.
doi: 10.1145/3022227.3022230. url: http://doi.acm.org/10.
1145/3022227.3022230 (cit. on pp. 142, 152).

[48] A. Alenazi, I. Traore, K. Ganame, and I. Woungang. “Holistic
Model for HTTP Botnet Detection Based on DNS Traffic Analy-
sis.” In: Intelligent, Secure, and Dependable Systems in Distributed
and Cloud Environments. ISDDC 2017. 2017 (cit. on p. 27).

[49] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan. “Data Center TCP
(DCTCP).” In: Proceedings of the ACM SIGCOMM 2010 Confer-
ence. SIGCOMM ’10. New Delhi, India: ACM, 2010, pp. 63–74.
doi: 10.1145/1851182.1851192 (cit. on p. 52).

[50] A. Alshamrani, A. Chowdhary, S. Pisharody, D. Lu, and D.
Huang. “A Defense System for Defeating DDoS Attacks in
SDN Based Networks.” In: Proceedings of the 15th ACM Inter-
national Symposium on Mobility Management and Wireless Access.
MobiWac ’17. Miami, Florida, USA: ACM, 2017, pp. 83–92.
isbn: 978-1-4503-5163-8. doi: 10.1145/3132062.3132074. url:
http://doi.acm.org/10.1145/3132062.3132074 (cit. on
pp. 142, 145, 152).

[51] J. Amann, S. Hall, and R. Sommer. “Count Me In: Viable
Distributed Summary Statistics for Securing High-Speed Net-
works.” In: Research in Attacks, Intrusions and Defenses. Ed. by A.
Stavrou, H. Bos, and G. Portokalidis. Lecture Notes in Com-
puter Science 8688. Springer International Publishing, 2014,
pp. 320–340. isbn: 978-3-319-11378-4, 978-3-319-11379-1. url:
http://link.springer.com/chapter/10.1007/978-3-319-

11379-1%5C_16 (cit. on p. 96).

[52] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos. “Gener-
ating Realistic Workloads for Network Intrusion Detection Sys-
tems.” In: Proceedings of the 4th International Workshop on Soft-
ware and Performance. WOSP ’04. Redwood Shores, California:
ACM, 2004, pp. 207–215. isbn: 1-58113-673-0. doi: 10.1145/
974044.974078. url: http://doi.acm.org/10.1145/974044.
974078 (cit. on p. 99).

[53] F. Audet and C. Jennings. Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP. RFC 4787. http://
www.rfc- editor.org/rfc/rfc4787.txt. Jan. 2007 (cit. on
p. 173).

https://doi.org/10.1145/3022227.3022230
http://doi.acm.org/10.1145/3022227.3022230
http://doi.acm.org/10.1145/3022227.3022230
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/3132062.3132074
http://doi.acm.org/10.1145/3132062.3132074
http://link.springer.com/chapter/10.1007/978-3-319-11379-1%5C_16
http://link.springer.com/chapter/10.1007/978-3-319-11379-1%5C_16
https://doi.org/10.1145/974044.974078
https://doi.org/10.1145/974044.974078
http://doi.acm.org/10.1145/974044.974078
http://doi.acm.org/10.1145/974044.974078
http://www.rfc-editor.org/rfc/rfc4787.txt
http://www.rfc-editor.org/rfc/rfc4787.txt

[54] S. Axelsson. “Intrusion Detection Systems : A Survey and Tax-
onomy.” In: Computer Engineering. 2000, pp. 1–27. doi: 10.1.
1.1.6603. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.83.3043&rep=rep1&type=pdf (cit. on
p. 87).

[55] P. E. Ayres, H. Sun, H. J. Chao, and W. C. Lau. “ALPi: A DDoS
Defense System for High-Speed Networks.” In: IEEE Journal
on Selected Areas in Communications 24.10 (Oct. 2006), pp. 1864–
1876. issn: 0733-8716. doi: 10.1109/JSAC.2006.877136 (cit. on
p. 146).

[56] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks.
RFC 3704. http://www.rfc-editor.org/rfc/rfc3704.txt.
Mar. 2004 (cit. on p. 146).

[57] Z. K. Baker, H. j. Jung, and V. K. Prasanna. “Regular Expres-
sion Software Deceleration for Intrusion Detection Systems.”
In: International Conference on Field Programmable Logic and Ap-
plications. 2006. doi: 10.1109/FPL.2006.311246 (cit. on p. 97).

[58] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Ar-
litt. “A Comparative Analysis of Web and Peer-to-peer Traf-
fic.” In: Proceedings of the 17th International Conference on World
Wide Web. WWW ’08. Beijing, China: ACM, 2008, pp. 287–296.
isbn: 978-1-60558-085-2. doi: 10.1145/1367497.1367537. url:
http://doi.acm.org/10.1145/1367497.1367537 (cit. on
pp. 30, 68, 218).

[59] F. Beer, T. Hofer, D. Karimi, and U. Bühler. “A new At-
tack Composition for Network Security.” In: 10. DFN-Forum
Kommunikationstechnologien. Ed. by P. Müller, B. Neumair, H.
Raiser, and G. Dreo Rodosek. Bonn: Gesellschaft für Infor-
matik e.V., 2017, pp. 11–20. isbn: 978-3-88579-665-7 (cit. on
p. 22).

[60] T. Benson, A. Akella, and D. A. Maltz. “Network Traffic Char-
acteristics of Data Centers in the Wild.” In: Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement. IMC
’10. Melbourne, Australia: ACM, 2010, pp. 267–280. isbn: 978-
1-4503-0483-2. doi: 10.1145/1879141.1879175. url: http://
doi.acm.org/10.1145/1879141.1879175 (cit. on pp. 35, 36).

[61] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. “To-
wards Generating Real-life Datasets for Network Intrusion De-
tection.” In: International Journal of Network Security 17 (2015),
pp. 683–701 (cit. on p. 20).

[62] A. Biernacki. “Analysis of aggregated HTTP-based video traf-
fic.” In: Journal of Communications and Networks 18.5 (Oct. 2016),
pp. 826–836. issn: 1229-2370. doi: 10.1109/JCN.2016.000111
(cit. on pp. 30, 69, 70).

https://doi.org/10.1.1.1.6603
https://doi.org/10.1.1.1.6603
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3043&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3043&rep=rep1&type=pdf
https://doi.org/10.1109/JSAC.2006.877136
http://www.rfc-editor.org/rfc/rfc3704.txt
https://doi.org/10.1109/FPL.2006.311246
https://doi.org/10.1145/1367497.1367537
http://doi.acm.org/10.1145/1367497.1367537
https://doi.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
https://doi.org/10.1109/JCN.2016.000111

[63] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova, and A. A. Ghor-
bani. “Towards effective feature selection in machine learning-
based botnet detection approaches.” In: 2014 IEEE Conference
on Communications and Network Security. Oct. 2014, pp. 247–255.
doi: 10.1109/CNS.2014.6997492 (cit. on p. 21).

[64] J. Bispo, I. Sourdis, J. M. P. Cardoso, and S. Vassiliadis. “Regu-
lar expression matching for reconfigurable packet inspection.”
In: 2006 IEEE International Conference on Field Programmable
Technology. 2006. doi: 10 . 1109 / FPT . 2006 . 270302 (cit. on
p. 97).

[65] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger. TCP
Extensions for High Performance. RFC 7323. http://www.rfc-
editor.org/rfc/rfc7323.txt. 2014 (cit. on p. 49).

[66] A. Botta, A. Dainotti, and A. Pescapè. “A tool for the gener-
ation of realistic network workload for emerging networking
scenarios.” In: Computer Networks 56.15 (2012), pp. 3531–3547.
doi: 10.1016/j.comnet.2012.02.019 (cit. on p. 30).

[67] R. Braga, E. Mota, and A. Passito. “Lightweight DDoS flood-
ing attack detection using NOX/OpenFlow.” In: IEEE 35th Lo-
cal Computer Network Conference (LCN). Oct. 2010, pp. 408–415.
doi: 10.1109/LCN.2010.5735752 (cit. on pp. 142, 144, 152).

[68] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. “TCP Ve-
gas: New techniques for congestion detection and avoidance.”
In: Proceedings of the Conference on Communications Architec-
tures, Protocols and Applications (ACM SIGCOMM). 1994. doi:
10.1145/190314.190317 (cit. on p. 44).

[69] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A.
Lakhina. “Impact of Packet Sampling on Anomaly Detection
Metrics.” In: Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement. IMC ’06. New York, NY, USA: ACM,
2006, pp. 159–164. isbn: 1-59593-561-4. doi: 10.1145/1177080.
1177101. url: http : / / doi . acm . org / 10 . 1145 / 1177080 .

1177101 (cit. on p. 95).

[70] D. Brauckhoff, A. Wagner, and M. May. “FLAME: A Flow-level
Anomaly Modeling Engine.” In: Proceedings of the Conference on
Cyber Security Experimentation and Test. CSET’08. San Jose, CA:
USENIX Association, 2008, 1:1–1:6. url: http://dl.acm.org/
citation.cfm?id=1496662.1496663 (cit. on p. 31).

[71] L. Braun, C. Diekmann, N. Kammenhuber, and G. Carle.
“Adaptive load-aware sampling for network monitoring on
multicore commodity hardware.” In: IFIP Networking Confer-
ence, 2013. 2013, pp. 1–9 (cit. on p. 95).

https://doi.org/10.1109/CNS.2014.6997492
https://doi.org/10.1109/FPT.2006.270302
http://www.rfc-editor.org/rfc/rfc7323.txt
http://www.rfc-editor.org/rfc/rfc7323.txt
https://doi.org/10.1016/j.comnet.2012.02.019
https://doi.org/10.1109/LCN.2010.5735752
https://doi.org/10.1145/190314.190317
https://doi.org/10.1145/1177080.1177101
https://doi.org/10.1145/1177080.1177101
http://doi.acm.org/10.1145/1177080.1177101
http://doi.acm.org/10.1145/1177080.1177101
http://dl.acm.org/citation.cfm?id=1496662.1496663
http://dl.acm.org/citation.cfm?id=1496662.1496663

[72] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle.
“Comparing and Improving Current Packet Capturing Solu-
tions Based on Commodity Hardware.” In: Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement. IMC
’10. Melbourne, Australia: ACM, 2010, pp. 206–217. isbn: 978-
1-4503-0483-2. doi: 10.1145/1879141.1879168. url: http://
doi.acm.org/10.1145/1879141.1879168 (cit. on p. 116).

[73] S. M. Bridges and R. B. Vaughn. “Fuzzy Data Mining And
Genetic Algorithms Applied To Intrusion Detection.” In: Pro-
ceedings of the National Information Systems Security Conference
(NISSC). 2000, pp. 16–19 (cit. on p. 92).

[74] B. C. Brodie, D. E. Taylor, and R. K. Cytron. “A Scalable Ar-
chitecture For High–Throughput Regular-Expression Pattern
Matching.” In: 33rd International Symposium on Computer Archi-
tecture (ISCA). 2006. doi: 10.1109/ISCA.2006.7 (cit. on p. 97).

[75] C. Buragohain and N. Medhi. “FlowTrApp: An SDN based ar-
chitecture for DDoS attack detection and mitigation in data
centers.” In: 2016 3rd International Conference on Signal Process-
ing and Integrated Networks (SPIN). Feb. 2016, pp. 519–524. doi:
10.1109/SPIN.2016.7566750 (cit. on pp. 142, 143, 152).

[76] H. Burch. “Tracing Anonymous Packets to Their Approximate
Source.” In: Proceedings of the 14th USENIX Conference on Sys-
tem Administration. LISA ’00. New Orleans, Louisiana: USENIX
Association, 2000, pp. 319–328. url: http : / / dl . acm . org /

citation.cfm?id=1045502.1045544 (cit. on p. 146).

[77] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Juraf-
sky. “How good are humans at solving CAPTCHAs? a large
scale evaluation.” In: IEEE Symposium on Security and Privacy.
IEEE. 2010, pp. 399–413. doi: 10.1109/SP.2010.31 (cit. on
p. 175).

[78] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. “Understand-
ing Website Complexity: Measurements, Metrics, and Impli-
cations.” In: Proceedings of the 2011 ACM SIGCOMM Confer-
ence on Internet Measurement Conference. IMC ’11. Berlin, Ger-
many: ACM, 2011, pp. 313–328. isbn: 978-1-4503-1013-0. doi:
10.1145/2068816.2068846. url: http://doi.acm.org/10.
1145/2068816.2068846 (cit. on pp. 30, 66, 67, 217).

[79] J. B. D. Cabrera, J. Gosar, W. Lee, and R. K. Mehra. “On the
statistical distribution of processing times in network intru-
sion detection.” In: 2004 43rd IEEE Conference on Decision and
Control (CDC) (IEEE Cat. No.04CH37601). Vol. 1. Dec. 2004, 75–
80 Vol.1. doi: 10.1109/CDC.2004.1428609 (cit. on p. 99).

https://doi.org/10.1145/1879141.1879168
http://doi.acm.org/10.1145/1879141.1879168
http://doi.acm.org/10.1145/1879141.1879168
https://doi.org/10.1109/ISCA.2006.7
https://doi.org/10.1109/SPIN.2016.7566750
http://dl.acm.org/citation.cfm?id=1045502.1045544
http://dl.acm.org/citation.cfm?id=1045502.1045544
https://doi.org/10.1109/SP.2010.31
https://doi.org/10.1145/2068816.2068846
http://doi.acm.org/10.1145/2068816.2068846
http://doi.acm.org/10.1145/2068816.2068846
https://doi.org/10.1109/CDC.2004.1428609

[80] J. B. D. Cabrera, L. Lewis, R. K. Prasanth, B. Ravichandran,
and R. K. Mehra. “Proactive detection of distributed denial of
service attacks using MIB traffic variables-a feasibility study.”
In: 2001 IEEE/IFIP International Symposium on Integrated Net-
work Management Proceedings. Integrated Network Management
VII. Integrated Management Strategies for the New Millennium
(Cat. No.01EX470). May 2001, pp. 609–622. doi: 10.1109/INM.
2001.918069 (cit. on p. 146).

[81] R. Cáceres, P. B. Danzig, S. Jamin, and D. J. Mitzel. “Charac-
teristics of Wide-area TCP/IP Conversations.” In: SIGCOMM
’91 (1991), pp. 101–112. doi: 10 . 1145 / 115992 . 116003. url:
http://doi.acm.org/10.1145/115992.116003 (cit. on p. 30).

[82] A. O. Calchand, V. T. Dinh, P. Branch, and J. But. BitTorrent
Traffic Classification. Tech. rep. 090227A. Melbourne, Australia:
Centre for Advanced Internet Architectures, Swinburne Uni-
versity of Technology, 27 February 2009. url: http://caia.
swin.edu.au/reports/090227A/CAIA-TR-090227A.pdf (cit. on
pp. 30, 68).

[83] C. Callegari, S. Giordano, and M. Pagano. “New statistical ap-
proaches for anomaly detection.” In: Security Comm. Networks
2.6 (2009), pp. 611–634. issn: 1939-0122. doi: 10.1002/sec.104.
url: http://onlinelibrary.wiley.com/doi/10.1002/sec.
104/abstract (cit. on p. 90).

[84] S. Campbell and J. Lee. “Intrusion Detection at 100G.” In: State
of the Practice Reports. SC ’11. New York, NY, USA: ACM, 2011.
doi: 10.1145/2063348.2063367. url: http://doi.acm.org/10.
1145/2063348.2063367 (cit. on p. 95).

[85] R. Casadesus-Masanell and A. Hervas-Drane. “Competing a-
gainst online sharing.” In: Management Decision 48.8 (2010),
pp. 1247–1260. doi: 10 . 1108 / 00251741011076771. eprint:
https://doi.org/10.1108/00251741011076771. url: https:
//doi.org/10.1108/00251741011076771 (cit. on p. 30).

[86] G. A. Cascallana and E. M. Lizarrondo. “Collecting packet
traces at high speed.” In: In Proceedings of Workshop on Moni-
toring, Attack Detection and Mitigation. 2006 (cit. on p. 116).

[87] Center for Applied Internet Data Analysis. The CAIDA UCSD
Anonymized Internet Traces 2015. English. University of Califor-
nias San Diego Supercomputer Center. Dec. 2015. url: http:
//www.caida.org/data/passive/passive_2015_dataset.xml

(cit. on p. 24).

[88] D. Chaboya, R. Raines, R. Baldwin, and B. Mullins. “Network
Intrusion Detection: Automated and Manual Methods Prone
to Attack and Evasion.” In: IEEE Security & Privacy. Vol. 4. 6.
2006, pp. 36–43. doi: 10.1109/MSP.2006.159 (cit. on p. 94).

https://doi.org/10.1109/INM.2001.918069
https://doi.org/10.1109/INM.2001.918069
https://doi.org/10.1145/115992.116003
http://doi.acm.org/10.1145/115992.116003
http://caia.swin.edu.au/reports/090227A/CAIA-TR-090227A.pdf
http://caia.swin.edu.au/reports/090227A/CAIA-TR-090227A.pdf
https://doi.org/10.1002/sec.104
http://onlinelibrary.wiley.com/doi/10.1002/sec.104/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sec.104/abstract
https://doi.org/10.1145/2063348.2063367
http://doi.acm.org/10.1145/2063348.2063367
http://doi.acm.org/10.1145/2063348.2063367
https://doi.org/10.1108/00251741011076771
https://doi.org/10.1108/00251741011076771
https://doi.org/10.1108/00251741011076771
https://doi.org/10.1108/00251741011076771
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml
https://doi.org/10.1109/MSP.2006.159

[89] B. Chandrasekaran. Survey of Network Traffic Models. http://
www.cse.wustl.edu/~jain/cse567-06/traffic_models3.htm.
Online; accessed 2018-01-15 (cit. on p. 29).

[90] A. Chandrasekhar and K. Raghuveer. “Confederation of FCM
clustering, ANN and SVM techniques to implement hybrid
NIDS using corrected KDD cup 99 dataset.” In: Communica-
tions and Signal Processing (ICCSP), 2014 International Conference
on. Apr. 2014, pp. 672–676. doi: 10.1109/ICCSP.2014.6949927
(cit. on p. 22).

[91] C. Chen, Y. Chen, W. Lu, S. Tsai, and M. Yang. “Detecting
amplification attacks with Software Defined Networking.” In:
2017 IEEE Conference on Dependable and Secure Computing. Aug.
2017, pp. 195–201. doi: 10.1109/DESEC.2017.8073807 (cit. on
pp. 142, 145, 152).

[92] M.-H. Chen, J.-Y. Ciou, I.-H. Chung, and C.-F. Chou. “FlexPro-
tect: A SDN-based DDoS Attack Protection Architecture for
Multi-tenant Data Centers.” In: Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region.
HPC Asia 2018. Chiyoda, Tokyo, Japan: ACM, 2018, pp. 202–
209. isbn: 978-1-4503-5372-4. doi: 10.1145/3149457.3149476.
url: http://doi.acm.org/10.1145/3149457.3149476 (cit. on
pp. 142, 143, 152).

[93] P. J. Chen and Y. W. Chen. “Implementation of SDN based net-
work intrusion detection and prevention system.” In: Interna-
tional Carnahan Conference on Security Technology (ICCST). Sept.
2015, pp. 141–146. doi: 10.1109/CCST.2015.7389672 (cit. on
p. 147).

[94] R. Chen, J. Park, and R. Marchany. “RIM: Router Interface
Marking for IP Traceback.” In: IEEE Globecom 2006. Nov. 2006,
pp. 1–5. doi: 10.1109/GLOCOM.2006.312 (cit. on p. 146).

[95] R. Chen and J.-M. Park. “Attack diagnosis: throttling dis-
tributed denial-of-service attacks close to the attack sources.”
In: Proceedings. 14th International Conference on Computer Com-
munications and Networks, 2005. ICCCN 2005. Oct. 2005, pp. 275–
280. doi: 10.1109/ICCCN.2005.1523866 (cit. on p. 147).

[96] T. M. Chen. “Network Traffic Modeling.” In: Handbook of
Computer Networks. Wiley-Blackwell, 2012, pp. 326–339. isbn:
9781118256107. doi: 10 . 1002 / 9781118256107 . ch21. eprint:
https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 /

9781118256107.ch21. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/9781118256107.ch21 (cit. on p. 29).

[97] T.-H. Cheng, Y.-D. Lin, Y.-C. Lai, and P.-C. Lin. “Evasion Tech-
niques: Sneaking through Your Intrusion Detection/Preven-
tion Systems.” In: Communications Surveys Tutorials, IEEE 14.4

http://www.cse.wustl.edu/~jain/cse567-06/traffic_models3.htm
http://www.cse.wustl.edu/~jain/cse567-06/traffic_models3.htm
https://doi.org/10.1109/ICCSP.2014.6949927
https://doi.org/10.1109/DESEC.2017.8073807
https://doi.org/10.1145/3149457.3149476
http://doi.acm.org/10.1145/3149457.3149476
https://doi.org/10.1109/CCST.2015.7389672
https://doi.org/10.1109/GLOCOM.2006.312
https://doi.org/10.1109/ICCCN.2005.1523866
https://doi.org/10.1002/9781118256107.ch21
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118256107.ch21
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118256107.ch21
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118256107.ch21
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118256107.ch21

(2012), pp. 1011–1020. issn: 1553-877X. doi: 10.1109/SURV.
2011.092311.00082 (cit. on p. 94).

[98] H.-K. Choi and J. O. Limb. “A behavioral model of Web traf-
fic.” In: Proceedings. Seventh International Conference on Network
Protocols. Oct. 1999, pp. 327–334. doi: 10.1109/ICNP.1999.
801961 (cit. on pp. 30, 66, 67, 217).

[99] Cisco. The Zettabyte Era: Trends and Analysis. https : / / www .

cisco . com / c / en / us / solutions / collateral / service -

provider/visual-networking-index-vni/vni-hyperconnectivity-

wp.html. Online; accessed 2018-02-07 (cit. on p. 219).

[100] C. R. Clark and D. E. Schimmel. “Scalable pattern matching
for high speed networks.” In: 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM). 2004.
doi: 10.1109/FCCM.2004.50 (cit. on p. 97).

[101] Cloudflare. GoFlow Documentation. https : / / github . com /

cloudflare/goflow/tree/version3. Online; accessed: 2019-
11-18 (cit. on pp. 223, 224).

[102] C. G. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D.
Hausheer, and M. Mühlhäuser. “ID2T: A DIY dataset creation
toolkit for Intrusion Detection Systems.” In: 2015 IEEE Confer-
ence on Communications and Network Security (CNS). Sept. 2015,
pp. 739–740. doi: 10.1109/CNS.2015.7346912 (cit. on p. 31).

[103] G. Creech. “Developing a high-accuracy cross platform Host-
Based Intrusion Detection System capable of reliably detecting
zero-day attacks.” PhD thesis. UNSW Canberra, 2014 (cit. on
pp. 21, 22).

[104] G. Creech and J. Hu. “Generation of a new IDS test dataset:
Time to retire the KDD collection.” In: Wireless Communica-
tions and Networking Conference (WCNC), 2013 IEEE. Apr. 2013,
pp. 4487–4492. doi: 10 . 1109 / WCNC . 2013 . 6555301 (cit. on
p. 21).

[105] G. Creech and J. Hu. “A Semantic Approach to Host-Based In-
trusion Detection Systems Using Contiguousand Discontigu-
ous System Call Patterns.” In: Computers, IEEE Transactions on
63.4 (Apr. 2014), pp. 807–819. issn: 0018-9340. doi: 10.1109/
TC.2013.13 (cit. on p. 21).

[106] Y. Cui, L. Yan, S. Li, H. Xing, W. Pan, J. Zhu, and X. Zheng.
“SD-Anti-DDoS: Fast and efficient DDoS defense in software-
defined networks.” In: Journal of Network and Computer Applica-
tions 68 (2016), pp. 65–79. issn: 1084-8045. doi: https://doi.
org/10.1016/j.jnca.2016.04.005 (cit. on pp. 142, 145, 152).

https://doi.org/10.1109/SURV.2011.092311.00082
https://doi.org/10.1109/SURV.2011.092311.00082
https://doi.org/10.1109/ICNP.1999.801961
https://doi.org/10.1109/ICNP.1999.801961
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://doi.org/10.1109/FCCM.2004.50
https://github.com/cloudflare/goflow/tree/version3
https://github.com/cloudflare/goflow/tree/version3
https://doi.org/10.1109/CNS.2015.7346912
https://doi.org/10.1109/WCNC.2013.6555301
https://doi.org/10.1109/TC.2013.13
https://doi.org/10.1109/TC.2013.13
https://doi.org/https://doi.org/10.1016/j.jnca.2016.04.005
https://doi.org/https://doi.org/10.1016/j.jnca.2016.04.005

[107] M. V. O. De Assis, A. H. Hamamoto, T. Abrão, and M. L.
Proença. “A Game Theoretical Based System Using Holt-
Winters and Genetic Algorithm With Fuzzy Logic for DoS/D-
DoS Mitigation on SDN Networks.” In: IEEE Access 5 (2017),
pp. 9485–9496. issn: 2169-3536. doi: 10.1109/ACCESS.2017.
2702341 (cit. on pp. 142, 145, 152).

[108] D. Denning and P. Neumann. Requirements and model for IDES –
a real-time intrusion detection system. Tech. rep. Technical Report.
Computer Science Laboratory, SRI International, 1985 (cit. on
p. 90).

[109] L. Deri, N. S. P. A, V. D. B. Km, and L. L. Figuretta. “Improving
Passive Packet Capture: Beyond Device Polling.” In: In Proceed-
ings of SANE. 2004 (cit. on p. 116).

[110] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Superbus von
Underduk. Polymorphic Shellcode Engine Using Spectrum Analy-
sis. url: http://phrack.org/issues/61/9.html (visited on
01/08/2020) (cit. on p. 94).

[111] Deutsches Forschungsnetz. “DDoS-Schutz 2.0 – Der Regelbe-
trieb beginnt.” In: DFN Mitteilungen. Nov. 2016, pp. 40–45 (cit.
on p. 149).

[112] Deutsches Forschungsnetz. “NeMo: Die Technik hinter der
DoS-Abwehrplattform im X-WiN.” In: DFN Mitteilungen. Nov.
2016, pp. 46–49 (cit. on pp. 149, 152).

[113] J. E. Dickerson and J. A. Dickerson. “Fuzzy network profil-
ing for intrusion detection.” In: 19th International Conference of
the North American Fuzzy Information Processing Society NAFIPS.
2000, pp. 301–306. doi: 10.1109/NAFIPS.2000.877441 (cit. on
p. 92).

[114] C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster. “DiPerF:
an automated distributed performance testing framework.” In:
Fifth IEEE/ACM International Workshop on Grid Computing. Nov.
2004, pp. 289–296. doi: 10.1109/GRID.2004.21 (cit. on p. 32).

[115] B. Al-Duwairi and M. Govindarasu. “Novel hybrid schemes
employing packet marking and logging for IP traceback.” In:
IEEE Transactions on Parallel and Distributed Systems 17.5 (May
2006), pp. 403–418. issn: 1045-9219. doi: 10.1109/TPDS.2006.
63 (cit. on p. 146).

[116] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle. “MoonGen: A Scriptable High-Speed Packet Gener-
ator.” In: Proceedings of the 2015 Internet Measurement Confer-
ence. IMC ’15. Tokyo, Japan: ACM, 2015, pp. 275–287. isbn:
978-1-4503-3848-6. doi: 10.1145/2815675.2815692. url: http:
//doi.acm.org/10.1145/2815675.2815692 (cit. on p. 31).

https://doi.org/10.1109/ACCESS.2017.2702341
https://doi.org/10.1109/ACCESS.2017.2702341
http://phrack.org/issues/61/9.html
https://doi.org/10.1109/NAFIPS.2000.877441
https://doi.org/10.1109/GRID.2004.21
https://doi.org/10.1109/TPDS.2006.63
https://doi.org/10.1109/TPDS.2006.63
https://doi.org/10.1145/2815675.2815692
http://doi.acm.org/10.1145/2815675.2815692
http://doi.acm.org/10.1145/2815675.2815692

[117] F. Erlacher and F. Dressler. “How to Test an IDS?: GENESIDS:
An Automated System for Generating Attack Traffic.” In: Pro-
ceedings of the 2018 Workshop on Traffic Measurements for Cyber-
security. WTMC ’18. Budapest, Hungary: ACM, 2018, pp. 46–
51. isbn: 978-1-4503-5910-8. doi: 10.1145/3229598.3229601.
url: http://doi.acm.org/10.1145/3229598.3229601 (cit. on
pp. 31, 80).

[118] R. Ferguson and D. Senie. Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address Spoofing.
RFC 2827 (Best Current Practice). http://www.rfc-editor.
org/rfc/rfc2827.txt Updated by RFC 3704. Internet Engi-
neering Task Force, May 2000 (cit. on pp. 141, 146).

[119] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard). http : / / www . rfc -

editor . org / rfc / rfc2616 . txt. Internet Engineering Task
Force, June 1999 (cit. on pp. 137, 158).

[120] A. Fießler, S. Hager, B. Scheuermann, and A. von Gernler.
“HardFIRE - ein Firewall-Konzept auf FPGA-Basis.” In: 14.
Deutscher IT-Sicherheitskongress. 2015 (cit. on p. 98).

[121] R. W. Floyd and J. D. Ullman. “The compilation of regular
expressions into integrated circuits.” In: IEEE FOCS. 1980. doi:
10.1109/SFCS.1980.44 (cit. on p. 97).

[122] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC
3649. http://www.rfc-editor.org/rfc/rfc3649.txt. 2003

(cit. on p. 45).

[123] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. RFC 3782. http://www.
rfc-editor.org/rfc/rfc3782.txt. 2004 (cit. on p. 45).

[124] A. Gaikwad and R. Jaiswal. “Experimental Analysis of Bittor-
rent Traffic based on Heavy-Tailed Probability Distributions.”
In: International Journal of Computer Applications 155.2 (2016).
doi: 10.5120/ijca2016912268 (cit. on p. 30).

[125] B. Galloway and G. Hancke. “Introduction to Industrial Con-
trol Networks.” In: Communications Surveys Tutorials, IEEE 15.2
(Feb. 2013), pp. 860–880. issn: 1553-877X. doi: 10.1109/SURV.
2012.071812.00124 (cit. on p. 36).

[126] Y. Gao, Y. Feng, J. Kawamoto, and K. Sakurai. “A Machine
Learning Based Approach for Detecting DRDoS Attacks and
Its Performance Evaluation.” In: AsiaJCIS. IEEE. 2016, pp. 80–
86. doi: 10.1109/AsiaJCIS.2016.24 (cit. on pp. 142–144, 152).

https://doi.org/10.1145/3229598.3229601
http://doi.acm.org/10.1145/3229598.3229601
http://www.rfc-editor.org/rfc/rfc2827.txt
http://www.rfc-editor.org/rfc/rfc2827.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.1109/SFCS.1980.44
http://www.rfc-editor.org/rfc/rfc3649.txt
http://www.rfc-editor.org/rfc/rfc3782.txt
http://www.rfc-editor.org/rfc/rfc3782.txt
https://doi.org/10.5120/ijca2016912268
https://doi.org/10.1109/SURV.2012.071812.00124
https://doi.org/10.1109/SURV.2012.071812.00124
https://doi.org/10.1109/AsiaJCIS.2016.24

[127] S. Garcia, M. Grill, J. Stiborek, and A. Zunino. “An Empirical
Comparison of Botnet Detection Methods.” In: Comput. Secur.
45 (Sept. 2014), pp. 100–123. issn: 0167-4048. doi: 10.1016/j.
cose.2014.05.011. url: http://dx.doi.org/10.1016/j.cose.
2014.05.011 (cit. on p. 26).

[128] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E.
Vázquez. “Anomaly-based network intrusion detection: Tech-
niques, systems and challenges.” In: Computers & Security 28.1
(2009), pp. 18–28. issn: 0167-4048. doi: 10.1016/j.cose.2008.
08 . 003. url: http : / / www . sciencedirect . com / science /

article/pii/S0167404808000692 (cit. on pp. 90, 92–94).

[129] C. Gero. Moving Beyond Perimeter Security—A Comprehensive
and Achievable Guide to Less Risk. https://content.akamai.
com/us-en-PG10736-zero-trust-moving-beyond-perimeter-

security.html. Online; accessed 2019-06-06 (cit. on p. 3).

[130] T. M. Gil and M. Poletto. “MULTOPS: A Data-structure for
Bandwidth Attack Detection.” In: Proceedings of the 10th Con-
ference on USENIX Security Symposium - Volume 10. SSYM’01.
Washington, D.C.: USENIX Association, 2001, pp. 3–3. url:
http://dl.acm.org/citation.cfm?id=1267612.1267615

(cit. on p. 141).

[131] G. Gilder. “TELECOSM: How Infinite Bandwidth Will Revo-
lutionize Our World.” In: The Free Press (2000) (cit. on pp. 4,
99).

[132] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras,
and V. Maglaris. “Combining OpenFlow and sFlow for an ef-
fective and scalable anomaly detection and mitigation mecha-
nism on SDN environments.” In: Computer Networks: The Inter-
national Journal of Computer and Telecommunications Networking
62 (2014), pp. 122–136. doi: 10.1016/j.bjp.2013.10.014 (cit.
on p. 143).

[133] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita.
“Packet and Flow Based Network Intrusion Dataset.” In: Con-
temporary Computing. Ed. by M. Parashar, D. Kaushik, O. F.
Rana, R. Samtaney, Y. Yang, and A. Zomaya. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 322–334. isbn: 978-
3-642-32129-0 (cit. on p. 20).

[134] J. M. Gonzalez, V. Paxson, and N. Weaver. “Shunting: A Hard-
ware/Software Architecture for Flexible, High-performance
Network Intrusion Prevention.” In: Proceedings of the 14th ACM
Conference on Computer and Communications Security. CCS ’07.
New York, NY, USA: ACM, 2007, pp. 139–149. isbn: 978-
1-59593-703-2. doi: 10 . 1145 / 1315245 . 1315264. url: http :

//doi.acm.org/10.1145/1315245.1315264 (cit. on pp. 95, 97).

https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
http://www.sciencedirect.com/science/article/pii/S0167404808000692
http://www.sciencedirect.com/science/article/pii/S0167404808000692
https://content.akamai.com/us-en-PG10736-zero-trust-moving-beyond-perimeter-security.html
https://content.akamai.com/us-en-PG10736-zero-trust-moving-beyond-perimeter-security.html
https://content.akamai.com/us-en-PG10736-zero-trust-moving-beyond-perimeter-security.html
http://dl.acm.org/citation.cfm?id=1267612.1267615
https://doi.org/10.1016/j.bjp.2013.10.014
https://doi.org/10.1145/1315245.1315264
http://doi.acm.org/10.1145/1315245.1315264
http://doi.acm.org/10.1145/1315245.1315264

[135] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and
K. Claffy. “GT: picking up the truth from the ground for In-
ternet traffic.” In: ACM SIGCOMM Computer Communication
Review (CCR) (Oct. 2009). doi: 10.1145/1629607.1629610 (cit.
on p. 25).

[136] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. “Measurement, Modeling, and Analy-
sis of a Peer-to-peer File-sharing Workload.” In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles.
SOSP ’03. Bolton Landing, NY, USA: ACM, 2003, pp. 314–329.
isbn: 1-58113-757-5. doi: 10.1145/945445.945475. url: http:
//doi.acm.org/10.1145/945445.945475 (cit. on p. 30).

[137] S. Ha, I. Rhee, and L. Xu. “CUBIC: a new TCP-friendly high-
speed TCP variant.” In: ACM SIGOPS Operating Systems Re-
view - Research and developments in the Linux kernel Volume 42

Issue 5 (2008), 64–74. doi: 10.1145/1400097.1400105 (cit. on
p. 46).

[138] S. Ha, I. Rhee, and L. Xu. “Comparison of High Speed Con-
gestion Control Protocols.” In: International Journal of Network
Security & Its Applications (IJNSA) Volume 4 Issue 5 (2012) (cit.
on pp. 37, 38, 44).

[139] S. Hager, F. Winkler, B. Scheuermann, and K. Reinhardt.
“Building Optimized Packet Filters with COFFi.” In: IEEE
22nd Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). May 2014. doi: 10.1109/
FCCM.2014.38 (cit. on p. 98).

[140] S. Hager, F. Winkler, B. Scheuermann, and K. Reinhardt.
“MPFC: Massively Parallel Firewall Circuits.” In: 39th IEEE
Conference on Local Computer Networks (LCN). Sept. 2014. doi:
10.1109/LCN.2014.6925785 (cit. on p. 98).

[141] J. Haines, L. Rossey, R. Lippmann, and R. Cunningham. “Ex-
tending the DARPA off-line intrusion detection evaluations.”
In: DARPA Information Survivability Conference amp; Exposition
II, 2001. DISCEX ’01. Proceedings. Vol. 1. 2001, 35–45 vol.1. doi:
10.1109/DISCEX.2001.932190 (cit. on p. 19).

[142] A. Harbola, J. Harbola, and K. Vaisla. “Improved Intrusion
Detection in DDoS Applying Feature Selection Using Rank
amp;amp; Score of Attributes in KDD-99 Data Set.” In: Com-
putational Intelligence and Communication Networks (CICN), 2014
International Conference on. Nov. 2014, pp. 840–845. doi: 10 .

1109/CICN.2014.179 (cit. on p. 22).

[143] D. He, S. Chan, X. Ni, and M. Guizani. “Software-Defined-
Networking-Enabled Traffic Anomaly Detection and Miti-
gation.” In: IEEE Internet of Things Journal 4.6 (Dec. 2017),

https://doi.org/10.1145/1629607.1629610
https://doi.org/10.1145/945445.945475
http://doi.acm.org/10.1145/945445.945475
http://doi.acm.org/10.1145/945445.945475
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1109/FCCM.2014.38
https://doi.org/10.1109/FCCM.2014.38
https://doi.org/10.1109/LCN.2014.6925785
https://doi.org/10.1109/DISCEX.2001.932190
https://doi.org/10.1109/CICN.2014.179
https://doi.org/10.1109/CICN.2014.179

pp. 1890–1898. issn: 2327-4662. doi: 10 . 1109 / JIOT . 2017 .

2694702 (cit. on pp. 142, 145, 152).

[144] T. Hirakawa, K. Ogura, B. B. Bista, and T. Takata. “A Defense
Method against Distributed Slow HTTP DoS Attack.” In: 19th
International Conference on Network-Based Information Systems
(NBiS). IEEE. 2016, pp. 152–158. doi: 10.1109/NBiS.2016.58
(cit. on pp. 145, 152).

[145] M. Hock, R. Bless, and M. Zitterbart. “Experimental evaluation
of BBR congestion control.” In: 2017 IEEE 25th International
Conference on Network Protocols (ICNP). Oct. 2017, pp. 1–10. doi:
10.1109/ICNP.2017.8117540 (cit. on p. 39).

[146] M. Hock, M. Veit, F. Neumeister, R. Bless, and M. Zitterbart.
“TCP at 100Gbit/s - Tuning, Limitations, Congestion Control.”
In: 44th IEEE Conference on Local Computer Networks (LCN).
2019. isbn: 978-1-7281-1028-8 (cit. on pp. 7, 44).

[147] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras. “SSH Com-
promise Detection Using NetFlow/IPFIX.” In: SIGCOMM
Comput. Commun. Rev. 44.5 (Oct. 2014), pp. 20–26. issn: 0146-
4833. doi: 10.1145/2677046.2677050. url: http://doi.acm.
org/10.1145/2677046.2677050 (cit. on p. 27).

[148] K. Hong, Y. Kim, H. Choi, and J. Park. “SDN-Assisted Slow
HTTP DDoS Attack Defense Method.” In: IEEE Communica-
tions Letters PP.99 (2017), pp. 1–1. issn: 1089-7798. doi: 10 .

1109/LCOMM.2017.2766636 (cit. on pp. 148, 152, 168).

[149] M. S. Hoque, M. A. Mukit, and M. A. N. Bikas. “An Imple-
mentation of Intrusion Detection System Using Genetic Algo-
rithm.” In: International Journal of Network Security & Its Appli-
cations 4.2 (2012), pp. 109–120. issn: 09752307. doi: 10.5121/
ijnsa.2012.4208. arXiv: 1204.1336. url: http://arxiv.org/
abs/1204.1336 (cit. on p. 92).

[150] D. Hu, P. Hong, and Y. Chen. “FADM: DDoS Flooding At-
tack Detection and Mitigation System in Software-Defined
Networking.” In: GLOBECOM 2017 - 2017 IEEE Global Commu-
nications Conference. Dec. 2017, pp. 1–7. doi: 10.1109/GLOCOM.
2017.8254023 (cit. on pp. 142, 145, 152).

[151] B. L. Hutchings, R. Franklin, and D. Carver. “Assisting net-
work intrusion detection with reconfigurable hardware.” In:
10th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2002. doi: 10.1109/FPGA.2002.
1106666 (cit. on p. 97).

[152] IEEE. “Standard for Information technology - Local and metro-
politan area networks - Part 3: CSMA/CD Access Method and
Physical Layer Specifications - Media Access Control (MAC)
Parameters, Physical Layer, and Management Parameters for

https://doi.org/10.1109/JIOT.2017.2694702
https://doi.org/10.1109/JIOT.2017.2694702
https://doi.org/10.1109/NBiS.2016.58
https://doi.org/10.1109/ICNP.2017.8117540
https://doi.org/10.1145/2677046.2677050
http://doi.acm.org/10.1145/2677046.2677050
http://doi.acm.org/10.1145/2677046.2677050
https://doi.org/10.1109/LCOMM.2017.2766636
https://doi.org/10.1109/LCOMM.2017.2766636
https://doi.org/10.5121/ijnsa.2012.4208
https://doi.org/10.5121/ijnsa.2012.4208
https://arxiv.org/abs/1204.1336
http://arxiv.org/abs/1204.1336
http://arxiv.org/abs/1204.1336
https://doi.org/10.1109/GLOCOM.2017.8254023
https://doi.org/10.1109/GLOCOM.2017.8254023
https://doi.org/10.1109/FPGA.2002.1106666
https://doi.org/10.1109/FPGA.2002.1106666

10 Gb/s Operation.” In: IEEE Std. 802.3ae-2002 (2002) (cit. on
p. 55).

[153] Imperva. Global DDoS Threat Landscape Q4 2017. https://www.
imperva . com / resources / resource - library / reports / q4 -

2017 - global - ddos - threat - landscape/. Online; accessed
2019-05-02 (cit. on pp. 138, 162).

[154] V. Jacobson and R. Braden. TCP Extensions for Long-Delay Paths.
RFC 1072. http://www.rfc-editor.org/rfc/rfc1072.txt.
Mar. 2013. doi: 10.17487/rfc1072 (cit. on p. 43).

[155] K. Jaic, M. C. Smith, and N. Sarma. “A practical network
intrusion detection system for inline FPGAs on 10GbE net-
work adapters.” In: 2014 IEEE 25th International Conference on
Application-Specific Systems, Architectures and Processors. June
2014, pp. 180–181. doi: 10.1109/ASAP.2014.6868655 (cit. on
p. 98).

[156] R. Jain, D. Chiu, and W. Haw. A Quantitative Measure of Fair-
ness and Discrimination for Resource Allocation in Shared Com-
puter System. Tech. rep. Hudson, USA: Digital Equipment Cor-
poration, 1984 (cit. on p. 38).

[157] R. Jalili, F. Imani-Mehr, M. Amini, and H. R. Shahriari. “Detec-
tion of Distributed Denial of Service Attacks Using Statistical
Pre-processor and Unsupervised Neural Networks.” In: Infor-
mation Security Practice and Experience. Ed. by R. H. Deng, F.
Bao, H. Pang, and J. Zhou. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 192–203. isbn: 978-3-540-31979-5 (cit. on
p. 146).

[158] W. Jiang and V. K. Prasanna. “Field-split Parallel Architecture
for High Performance Multi-match Packet Classification Using
FPGAs.” In: Proceedings of the Twenty-first Annual Symposium
on Parallelism in Algorithms and Architectures. SPAA ’09. New
York, NY, USA: ACM, 2009, pp. 188–196. isbn: 978-1-60558-
606-9. doi: 10.1145/1583991.1584044. url: http://doi.acm.
org/10.1145/1583991.1584044 (cit. on p. 96).

[159] A. John and T. Sivakumar. “DDoS: Survey of Traceback Meth-
ods.” In: International Journal of Recent Trends in Engineering
(May 2009) (cit. on p. 146).

[160] W. John. “Characterization and Classification of Internet Back-
bone Traffic.” PhD thesis. 2010. isbn: 978-91-7385-363-7 (cit. on
p. 36).

[161] M. Jonker. “DDoS Mitigation: A Measurement-Based Ap-
proach.” PhD thesis. Netherlands: University of Twente, Oct.
2019. isbn: 978-90-365-4868-7. doi: 10.3990/1.9789036548687
(cit. on pp. 140, 152).

https://www.imperva.com/resources/resource-library/reports/q4-2017-global-ddos-threat-landscape/
https://www.imperva.com/resources/resource-library/reports/q4-2017-global-ddos-threat-landscape/
https://www.imperva.com/resources/resource-library/reports/q4-2017-global-ddos-threat-landscape/
http://www.rfc-editor.org/rfc/rfc1072.txt
https://doi.org/10.17487/rfc1072
https://doi.org/10.1109/ASAP.2014.6868655
https://doi.org/10.1145/1583991.1584044
http://doi.acm.org/10.1145/1583991.1584044
http://doi.acm.org/10.1145/1583991.1584044
https://doi.org/10.3990/1.9789036548687

[162] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and
A. Dainotti. “Millions of Targets Under Attack: a Macroscopic
Characterization of the DoS Ecosystem.” In: ACM Internet Mea-
surement Conference (IMC). Nov. 2017. doi: 10.1145/3131365.
3131383 (cit. on pp. 136, 138, 171).

[163] M. Jonker, A. Sperotto, R. van Rijswijk-Deij, R. Sadre, and A.
Pras. “Measuring the Adoption of DDoS Protection Services.”
In: ACM Internet Measurement Conference (IMC). Santa Mon-
ica, California, USA: ACM, 2016, pp. 279–285. doi: 10.1145/
2987443.2987487 (cit. on pp. 140, 161).

[164] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis.
“Detecting DNS Amplification Attacks.” In: Critical Information
Infrastructures Security. Ed. by J. Lopez and B. M. Hämmerli.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 185–
196. isbn: 978-3-540-89173-4 (cit. on p. 146).

[165] P. Kampanakis, H. Perros, and T. Beyene. “SDN-based solu-
tions for Moving Target Defense network protection.” In: Pro-
ceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014. June 2014, pp. 1–6. doi:
10.1109/WoWMoM.2014.6918979 (cit. on p. 147).

[166] S. Kandula, D. Katabi, M. Jacob, and A. Berger. “Botz-4-
sale: Surviving Organized DDoS Attacks That Mimic Flash
Crowds.” In: Proceedings of the 2Nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2. NSDI’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 287–300.
url: http://dl.acm.org/citation.cfm?id=1251203.1251224
(cit. on p. 148).

[167] M. Al-kasassbeh, G. Al-Naymat, A. Hassanat, and M. Almsei-
din. “Detecting Distributed Denial of Service Attacks Using
Data Mining Techniques.” In: International Journal of Advanced
Computer Science and Applications (IJACSA) (2016) (cit. on p. 21).

[168] Kaspersky Lab. DDoS attacks in Q1 2019. https://securelist.
com/ddos-report-q1-2019/90792/. Online; accessed 2019-06-
05 (cit. on p. 135).

[169] T. Kelly. “Scalable TCP: Improving Performance in Highspeed
Wide Area Networks.” In: ACM SIGOPS Operating Systems Re-
view Volume 33 Issue 2 (2003), 83–91. doi: 10.1145/956981.
956989 (cit. on p. 45).

[170] A. D. Kent. Comprehensive, Multi-Source Cyber-Security Events.
Los Alamos National Laboratory. 2015. doi: 10.17021/1179829
(cit. on p. 25).

https://doi.org/10.1145/3131365.3131383
https://doi.org/10.1145/3131365.3131383
https://doi.org/10.1145/2987443.2987487
https://doi.org/10.1145/2987443.2987487
https://doi.org/10.1109/WoWMoM.2014.6918979
http://dl.acm.org/citation.cfm?id=1251203.1251224
https://securelist.com/ddos-report-q1-2019/90792/
https://securelist.com/ddos-report-q1-2019/90792/
https://doi.org/10.1145/956981.956989
https://doi.org/10.1145/956981.956989
https://doi.org/10.17021/1179829

[171] F. Khan, M. Gokhale, and C.-N. Chuah. “FPGA Based Net-
work Traffic Analysis Using Traffic Dispersion Patterns.” In:
2010 International Conference on Field Programmable Logic and
Applications (FPL). 2010 International Conference on Field Pro-
grammable Logic and Applications (FPL). 2010, pp. 519–524.
doi: 10.1109/FPL.2010.103 (cit. on p. 96).

[172] H. Kholidy and F. Baiardi. “CIDD: A Cloud Intrusion Detec-
tion Dataset for Cloud Computing and Masquerade Attacks.”
In: Information Technology: New Generations (ITNG), 2012 Ninth
International Conference on. Apr. 2012, pp. 397–402. doi: 10 .

1109/ITNG.2012.97 (cit. on p. 28).

[173] M. Kim, Y. Won, H. Lee, J. Hong, and R. Boutaba. Flow-based
Characteristic Analysis of Internet Application Traffic. Tech. rep.
2004 (cit. on pp. 30, 71, 220).

[174] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao. “PacketScore:
a statistics-based packet filtering scheme against distributed
denial-of-service attacks.” In: IEEE Transactions on Dependable
and Secure Computing 3.2 (Apr. 2006), pp. 141–155. issn: 2160-
9209. doi: 10.1109/TDSC.2006.25 (cit. on pp. 142, 146).

[175] J. Kindervag. “No more chewy centers: Introducing the zero
trust model of information security.” In: Forrester Research
(2010) (cit. on p. 3).

[176] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W.
Arnold, J. E. Stone, J. C. Phillips, and W. Hwu. “GPU clus-
ters for high-performance computing.” In: 2009 IEEE Inter-
national Conference on Cluster Computing and Workshops. Aug.
2009, pp. 1–8. doi: 10.1109/CLUSTR.2009.5289128 (cit. on
p. 120).

[177] E. Kline, M. Beaumont-Gay, J. Mirkovic, and P. Reiher. “RAD:
Reflector Attack Defense Using Message Authentication Codes.”
In: 2009 Annual Computer Security Applications Conference. Dec.
2009, pp. 269–278 (cit. on p. 147).

[178] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. “In-
trusion Detection in 802.11 Networks: Empirical Evaluation of
Threats and a Public Dataset.” In: Communications Surveys Tu-
torials, IEEE PP.99 (2015), pp. 1–1. issn: 1553-877X. doi: 10.
1109/COMST.2015.2402161 (cit. on p. 28).

[179] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. “DDoS
in the IoT: Mirai and Other Botnets.” In: Computer 50.7 (2017),
pp. 80–84. issn: 0018-9162. doi: 10.1109/MC.2017.201 (cit. on
p. 133).

https://doi.org/10.1109/FPL.2010.103
https://doi.org/10.1109/ITNG.2012.97
https://doi.org/10.1109/ITNG.2012.97
https://doi.org/10.1109/TDSC.2006.25
https://doi.org/10.1109/CLUSTR.2009.5289128
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/MC.2017.201

[180] B. Krebs. New Mirai Worm Knocks 900K Germans Offline. https:
//krebsonsecurity.com/2016/11/new-mirai-worm-knocks-

900k-germans-offline/. Online; accessed 2019-05-02 (cit. on
pp. 99, 133).

[181] M. Kumar. “1.7 Tbps DDoS Attack – Memcached UDP Reflec-
tions Set New Record.” In: (Online; accessed on 2018-04-02).
url: https://thehackernews.com/2018/03/ddos- attack-
memcached.html (cit. on p. 138).

[182] A. Lakhina, M. Crovella, and C. Diot. “Mining Anomalies Us-
ing Traffic Feature Distributions.” In: Proceedings of the 2005
Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications. SIGCOMM ’05. New York,
NY, USA: ACM, 2005, pp. 217–228. isbn: 1-59593-009-4. doi:
10.1145/1080091.1080118. url: http://doi.acm.org/10.
1145/1080091.1080118 (cit. on p. 90).

[183] M. Laterman, M. Arlitt, and C. Williamson. “A campus-level
view of Netflix and Twitch: Characterization and performance
implications.” In: 2017 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS).
July 2017, pp. 1–8. doi: 10.23919/SPECTS.2017.8046774 (cit.
on pp. 30, 70, 219).

[184] C. Lavole. Application-Layer DDoS Attack Protection with HAProxy.
https://www.haproxy.com/blog/application-layer-ddos-

attack- protection- with- haproxy/. Online; accessed 2019-
05-13 (cit. on p. 149).

[185] T. M. Le and J. But. Bittorrent traffic classification. Tech. rep.
091022A. Melbourne, Australia: Centre for Advanced Internet
Architectures, Swinburne University of Technology, 22 Octo-
ber 2009. url: http://caia.swin.edu.au/reports/091022A/
CAIA-TR-091022A.pdf (cit. on pp. 30, 68, 218).

[186] C. Leckie and K. Ramamohanarao. “Protection from dis-
tributed denial of service attacks using history-based IP fil-
tering.” In: IEEE International Conference on Communications,
2003. ICC ’03. Vol. 1. May 2003, 482–486 vol.1. doi: 10.1109/
ICC.2003.1204223 (cit. on p. 143).

[187] C. B. Lee, C. Roedel, and E. Silenok. Detection and Characteriza-
tion of Port Scan Attacks. Tech. rep. 2003 (cit. on p. 71).

[188] J.-H. Lee, J.-H. Lee, S.-G. Sohn, J.-H. Ryu, and T.-M. Chung.
“Effective Value of Decision Tree with KDD 99 Intrusion De-
tection Datasets for Intrusion Detection System.” In: Advanced
Communication Technology, 2008. ICACT 2008. 10th International
Conference on. Vol. 2. Feb. 2008, pp. 1170–1175. doi: 10.1109/
ICACT.2008.4493974 (cit. on p. 22).

https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://thehackernews.com/2018/03/ddos-attack-memcached.html
https://thehackernews.com/2018/03/ddos-attack-memcached.html
https://doi.org/10.1145/1080091.1080118
http://doi.acm.org/10.1145/1080091.1080118
http://doi.acm.org/10.1145/1080091.1080118
https://doi.org/10.23919/SPECTS.2017.8046774
https://www.haproxy.com/blog/application-layer-ddos-attack-protection-with-haproxy/
https://www.haproxy.com/blog/application-layer-ddos-attack-protection-with-haproxy/
http://caia.swin.edu.au/reports/091022A/CAIA-TR-091022A.pdf
http://caia.swin.edu.au/reports/091022A/CAIA-TR-091022A.pdf
https://doi.org/10.1109/ICC.2003.1204223
https://doi.org/10.1109/ICC.2003.1204223
https://doi.org/10.1109/ICACT.2008.4493974
https://doi.org/10.1109/ICACT.2008.4493974

[189] S. Lee, J. Kim, S. Shin, P. Porras, and V. Yegneswaran. “Athena:
A Framework for Scalable Anomaly Detection in Software-
Defined Networks.” In: 2017 47th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN).
June 2017, pp. 249–260. doi: 10.1109/DSN.2017.42 (cit. on
pp. 142, 145, 152).

[190] B. H. Leitao. “Tuning 10Gb network cards on Linux.” In: Pro-
ceedings of the Ottawa Linux Symposium (OLS). 2009 (cit. on
p. 44).

[191] D. Leith and R. Shorten. “H-TCP: TCP for high-speed and
long-distance networks.” In: Proceedings of the PFLDnet Ar-
gonne. 2004 (cit. on p. 45).

[192] C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, and L. Gong.
“Detection and defense of DDoS attack–based on deep learn-
ing in OpenFlow-based SDN.” In: International Journal of Com-
munication Systems 31.5 (2018). e3497 IJCS-17-0848.R1, e3497.
doi: 10 . 1002 / dac . 3497. eprint: https : / / onlinelibrary .

wiley . com / doi / pdf / 10 . 1002 / dac . 3497. url: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497 (cit.
on pp. 142, 144, 152).

[193] M. Li, J. Liu, and D. Long. “Probability Principle of a Reliable
Approach to Detect Signs of DDOS Flood Attacks.” In: Parallel
and Distributed Computing: Applications and Technologies. Ed. by
K.-M. Liew, H. Shen, S. See, W. Cai, P. Fan, and S. Horiguchi.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 596–
599. isbn: 978-3-540-30501-9 (cit. on p. 146).

[194] W. Li. “Using Genetic Algorithm for network intrusion detec-
tion.” In: In Proceedings of the United States Department of Energy
Cyber Security Group Training Conference. 2004, pp. 24–27 (cit. on
p. 92).

[195] Y. T. Li, D. Leith, and R. N. Shorten. “Experimental Evaluation
of TCP Protocols for High-Speed Networks.” In: IEEE/ACM
Transactions on Networking 15.5 (Oct. 2007), pp. 1109–1122. issn:
1063-6692. doi: 10.1109/TNET.2007.896240 (cit. on pp. 37, 38,
47, 61).

[196] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang. “A SDN-oriented
DDoS blocking scheme for botnet-based attacks.” In: Sixth In-
ternational Conference on Ubiquitous and Future Networks. July
2014, pp. 63–68. doi: 10.1109/ICUFN.2014.6876752 (cit. on
pp. 147, 169).

[197] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang. “Opti-
mization of Regular Expression Pattern Matching Circuits on
FPGA.” In: Proceedings of the Design Automation & Test in Europe
Conference. 2006 (cit. on p. 97).

https://doi.org/10.1109/DSN.2017.42
https://doi.org/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497
https://doi.org/10.1109/TNET.2007.896240
https://doi.org/10.1109/ICUFN.2014.6876752

[198] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. Mc-
Clung, D. Weber, S. Webster, D. Wyschogrod, R. Cunningham,
and M. Zissman. “Evaluating intrusion detection systems:
the 1998 DARPA off-line intrusion detection evaluation.”
In: DARPA Information Survivability Conference and Exposition,
2000. DISCEX ’00. Proceedings. Vol. 2. 2000, 12–26 vol.2. doi:
10.1109/DISCEX.2000.821506 (cit. on p. 19).

[199] J. Liu, Y. Lai, and S. Zhang. “FL-GUARD: A Detection and
Defense System for DDoS Attack in SDN.” In: Proceedings of
the 2017 International Conference on Cryptography, Security and
Privacy. ICCSP ’17. Wuhan, China: ACM, 2017, pp. 107–111.
isbn: 978-1-4503-4867-6. doi: 10.1145/3058060.3058074. url:
http://doi.acm.org/10.1145/3058060.3058074 (cit. on
pp. 142, 145).

[200] D. Luchaup, R. Smith, C. Estan, and S. Jha. “Multi-byte Reg-
ular Expression Matching with Speculation.” In: Recent Ad-
vances in Intrusion Detection. Ed. by E. Kirda, S. Jha, and D.
Balzarotti. Lecture Notes in Computer Science 5758. Springer
Berlin Heidelberg, 2009, pp. 284–303. isbn: 978-3-642-04341-3,
978-3-642-04342-0. url: http://link.springer.com/chapter/
10.1007/978-3-642-04342-0%5C_15 (cit. on p. 97).

[201] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-
Teodoro, and R. Therón. “UGR‘16: A new dataset for the
evaluation of cyclostationarity-based network IDSs.” In: Com-
puters & Security 73 (2018), pp. 411–424. issn: 0167-4048. doi:
https : / / doi . org / 10 . 1016 / j . cose . 2017 . 11 . 004. url:
http : / / www . sciencedirect . com / science / article / pii /

S0167404817302353 (cit. on p. 27).

[202] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. “Controlling High Bandwidth Aggregates in
the Network.” In: SIGCOMM Comput. Commun. Rev. 32.3 (July
2002), pp. 62–73. issn: 0146-4833. doi: 10.1145/571697.571724.
url: http://doi.acm.org/10.1145/571697.571724 (cit. on
p. 147).

[203] A. Mahimkar, J. Dange, V. Shmatikov, H. M. Vin, and Y. Zhang.
“dFence: Transparent Network-based Denial of Service Mitiga-
tion.” In: 4th USENIX Symposium on Networked Systems Design
& Implementation (NSDI). Vol. 7. 2007 (cit. on p. 148).

[204] M. V. Mahoney and P. K. Chan. “An Analysis of the 1999

DARPA/Lincoln Laboratory Evaluation Data for Network A-
nomaly Detection.” In: Recent Advances in Intrusion Detection.
Ed. by G. Vigna, C. Kruegel, and E. Jonsson. Lecture Notes
in Computer Science 2820. Springer Berlin Heidelberg, 2003,
pp. 220–237. url: http://link.springer.com/chapter/10.
1007/978-3-540-45248-5_13 (cit. on pp. 22, 91).

https://doi.org/10.1109/DISCEX.2000.821506
https://doi.org/10.1145/3058060.3058074
http://doi.acm.org/10.1145/3058060.3058074
http://link.springer.com/chapter/10.1007/978-3-642-04342-0%5C_15
http://link.springer.com/chapter/10.1007/978-3-642-04342-0%5C_15
https://doi.org/https://doi.org/10.1016/j.cose.2017.11.004
http://www.sciencedirect.com/science/article/pii/S0167404817302353
http://www.sciencedirect.com/science/article/pii/S0167404817302353
https://doi.org/10.1145/571697.571724
http://doi.acm.org/10.1145/571697.571724
http://link.springer.com/chapter/10.1007/978-3-540-45248-5_13
http://link.springer.com/chapter/10.1007/978-3-540-45248-5_13

[205] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. “Is Sam-
pled Data Sufficient for Anomaly Detection?” In: Proceedings
of the 6th ACM SIGCOMM Conference on Internet Measurement.
IMC ’06. New York, NY, USA: ACM, 2006, pp. 165–176. isbn:
1-59593-561-4. doi: 10.1145/1177080.1177102. url: http://
doi.acm.org/10.1145/1177080.1177102 (cit. on p. 95).

[206] J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye. “Impact
of Packet Sampling on Portscan Detection.” In: IEEE Journal
on Selected Areas in Communications 24.12 (Dec. 2006), pp. 2285–
2298. issn: 0733-8716. doi: 10.1109/JSAC.2006.884027 (cit. on
p. 95).

[207] P. Manandhar and Z. Aung. “Towards Practical Anomaly-
Based Intrusion Detection by Outlier Mining on TCP Packets.”
In: Database and Expert Systems Applications. Ed. by H. Decker,
L. Lhotská, S. Link, M. Spies, and R. R. Wagner. Lecture Notes
in Computer Science 8645. Springer International Publishing,
2014, pp. 164–173. isbn: 978-3-319-10084-5, 978-3-319-10085-2.
url: http://link.springer.com/chapter/10.1007/978-3-
319-10085-2%5C_14 (cit. on p. 92).

[208] M. Mantere, M. Sailio, and S. Noponen. “Network Traffic Fea-
tures for Anomaly Detection in Specific Industrial Control Sys-
tem Network.” In: Future Internet 5.4 (2013), p. 460. issn: 1999-
5903. doi: 10.3390/fi5040460. url: http://www.mdpi.com/
1999-5903/5/4/460 (cit. on pp. 36, 37).

[209] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Se-
lective Acknowledgment Options. RFC 2018. http://www.rfc-
editor.org/rfc/rfc2018.txt. 1996 (cit. on pp. 45, 49).

[210] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm.” In:
SIGCOMM Comput. Commun. Rev. 27.3 (July 1997), pp. 67–82.
issn: 0146-4833. doi: 10.1145/263932.264023 (cit. on p. 49).

[211] McAfee Labs. Quaterly Threat Report December 2018. https://
www.mcafee.com/enterprise/en- us/assets/reports/rp-

quarterly-threats-dec-2018.pdf. Online; accessed 2019-05-
02 (cit. on pp. 138, 162).

[212] McAfee Labs. Quaterly Threat Report June 2018. https : / /

www.mcafee.com/enterprise/en- us/assets/reports/rp-

quarterly-threats-jun-2018.pdf. Online; accessed 2019-05-
02 (cit. on pp. 138, 162).

[213] McAfee Labs. Quaterly Threat Report March 2018. https : / /

www.mcafee.com/enterprise/en- us/assets/reports/rp-

quarterly-threats-mar-2018.pdf. Online; accessed 2019-05-
02 (cit. on pp. 138, 162).

https://doi.org/10.1145/1177080.1177102
http://doi.acm.org/10.1145/1177080.1177102
http://doi.acm.org/10.1145/1177080.1177102
https://doi.org/10.1109/JSAC.2006.884027
http://link.springer.com/chapter/10.1007/978-3-319-10085-2%5C_14
http://link.springer.com/chapter/10.1007/978-3-319-10085-2%5C_14
https://doi.org/10.3390/fi5040460
http://www.mdpi.com/1999-5903/5/4/460
http://www.mdpi.com/1999-5903/5/4/460
http://www.rfc-editor.org/rfc/rfc2018.txt
http://www.rfc-editor.org/rfc/rfc2018.txt
https://doi.org/10.1145/263932.264023
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-mar-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-mar-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-mar-2018.pdf

[214] McAfee Labs. Quaterly Threat Report September 2018. https://
www.mcafee.com/enterprise/en- us/assets/reports/rp-

quarterly-threats-sep-2018.pdf. Online; accessed 2019-05-
02 (cit. on pp. 138, 162).

[215] R. McNaughton and H. Yamada. “Regular Expressions and
State Graphs for Automata.” In: IRE Transactions on Electronic
Computers EC-9.1 (Mar. 1960), pp. 39–47. issn: 0367-9950. doi:
10.1109/TEC.1960.5221603 (cit. on p. 105).

[216] S. A. Mehdi, J. Khalid, and S. A. Khayam. “Revisiting Traffic
Anomaly Detection Using Software Defined Networking.” In:
14th International Symposium on Recent Advances in Intrusion De-
tection (RAID). Ed. by R. Sommer, D. Balzarotti, and G. Maier.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 161–
180 (cit. on p. 141).

[217] J. Mirkovic, G. Prier, and P. Reiher. “Attacking DDoS at the
source.” In: 10th IEEE International Conference on Network Pro-
tocols, 2002. Proceedings. Nov. 2002, pp. 312–321. doi: 10.1109/
ICNP.2002.1181418 (cit. on p. 141).

[218] J. Mirkovic, G. Prier, and P. Reiher. “Source-end DDoS de-
fense.” In: Second IEEE International Symposium on Network
Computing and Applications, 2003. NCA 2003. Apr. 2003, pp. 171–
178. doi: 10.1109/NCA.2003.1201153 (cit. on p. 141).

[219] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R.
Thomas, W.-M. Yao, and S. Schwab. “Towards User-centric
Metrics for Denial-of-service Measurement.” In: Proceedings
of the 2007 Workshop on Experimental Computer Science. ExpCS
’07. San Diego, California: ACM, 2007. isbn: 978-1-59593-751-3.
doi: 10.1145/1281700.1281708 (cit. on p. 158).

[220] J. Mirkovic, M. Robinson, and P. Reiher. “Alliance Formation
for DDoS Defense.” In: Proceedings of the 2003 Workshop on New
Security Paradigms. NSPW ’03. Ascona, Switzerland: ACM,
2003, pp. 11–18. isbn: 1-58113-880-6. doi: 10 . 1145 / 986655 .

986658. url: http://doi.acm.org/10.1145/986655.986658
(cit. on p. 148).

[221] A. T. Mizrak, S. Savage, and K. Marzullo. “Detecting compro-
mised routers via packet forwarding behavior.” In: IEEE Net-
work 22.2 (Mar. 2008), pp. 34–39. issn: 0890-8044. doi: 10.1109/
MNET.2008.4476069 (cit. on p. 141).

[222] J. Mo, R. J. La, V. Anantharam, and J. Walrand. “Analysis and
Comparison of TCP Reno and Vegas.” In: INFOCOM ’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE. Vol. 3. Mar. 1999, 1556–
1563 vol.3. doi: 10.1109/INFCOM.1999.752178 (cit. on p. 48).

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-sep-2018.pdf
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/ICNP.2002.1181418
https://doi.org/10.1109/ICNP.2002.1181418
https://doi.org/10.1109/NCA.2003.1201153
https://doi.org/10.1145/1281700.1281708
https://doi.org/10.1145/986655.986658
https://doi.org/10.1145/986655.986658
http://doi.acm.org/10.1145/986655.986658
https://doi.org/10.1109/MNET.2008.4476069
https://doi.org/10.1109/MNET.2008.4476069
https://doi.org/10.1109/INFCOM.1999.752178

[223] S. Molnár, P. Megyesi, and G. Szabó. “How to validate traffic
generators?” In: 2013 IEEE International Conference on Commu-
nications Workshops (ICC). June 2013, pp. 1340–1344. doi: 10.
1109/ICCW.2013.6649445 (cit. on p. 30).

[224] G. E. Moore. “Cramming more components onto integrated
circuits.” In: Electronics 38 (Apr. 1965) (cit. on pp. 4, 99).

[225] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos. “Imple-
mentation of a content-scanning module for an Internet fire-
wall.” In: IEEE FCCM. 2003 (cit. on p. 97).

[226] S. M. Mousavi and M. St-Hilaire. “Early detection of DDoS
attacks against SDN controllers.” In: 2015 International Confer-
ence on Computing, Networking and Communications (ICNC). Feb.
2015, pp. 77–81. doi: 10.1109/ICCNC.2015.7069319 (cit. on
pp. 142, 143).

[227] N. Moustafa and J. Slay. “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15 net-
work data set).” In: Military Communications and Information
Systems Conference (MilCIS), 2015. Nov. 2015, pp. 1–6. doi: 10.
1109/MilCIS.2015.7348942 (cit. on p. 20).

[228] D. Moustis and P. Kotzanikolaou. “Evaluating Security Con-
trols Against HTTP-based DDoS Attacks.” In: Fourth Interna-
tional Conference on Information Intelligence Systems and Applica-
tions (IISA). 2013 (cit. on pp. 145, 152, 166).

[229] D. Mutz, G. Vigna, and R. Kemmerer. “An experience develop-
ing an IDS stimulator for the black-box testing of network in-
trusion detection systems.” In: 19th Annual Computer Security
Applications Conference, 2003. Proceedings. Dec. 2003, pp. 374–
383. doi: 10.1109/CSAC.2003.1254342 (cit. on pp. 33, 80).

[230] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896.
http://www.rfc-editor.org/rfc/rfc896.txt. 1984 (cit. on
p. 49).

[231] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for
Stateless Address Autoconfiguration in IPv6. RFC 4941. http://
www.rfc-editor.org/rfc/rfc4941.txt. Internet Engineering
Task Force, Sept. 2007 (cit. on p. 170).

[232] J. Nazario. “Distributed Denial of Service Attacks Against In-
dependent Media and Human Rights Sites.” In: Cryptology and
Information Security Series Volume 3: The Virtual Battlefield: Per-
spectives on Cyber Warfare (2009). Ed. by C. Czosseck and K.
Geers, pp. 163–181. doi: 10.3233/978-1-60750-060-5-163
(cit. on p. 132).

https://doi.org/10.1109/ICCW.2013.6649445
https://doi.org/10.1109/ICCW.2013.6649445
https://doi.org/10.1109/ICCNC.2015.7069319
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/CSAC.2003.1254342
http://www.rfc-editor.org/rfc/rfc896.txt
http://www.rfc-editor.org/rfc/rfc4941.txt
http://www.rfc-editor.org/rfc/rfc4941.txt
https://doi.org/10.3233/978-1-60750-060-5-163

[233] J. Nazario. “Politically Motivated Denial of Service Attacks.”
In: Cryptology and Information Security Series Volume 3: The Vir-
tual Battlefield: Perspectives on Cyber Warfare (2009). Ed. by C.
Czosseck and K. Geers (cit. on p. 132).

[234] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J.
Mickens, and H. Balakrishnan. “Mahimahi: Accurate Record-
and-Replay for HTTP.” In: 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15). Santa Clara, CA: USENIX Associa-
tion, 2015, pp. 417–429. isbn: 978-1-931971-225 (cit. on p. 31).

[235] New all-time peak at DE-CIX Frankfurt: 6.8 Tbps. English. DE-
CIX Management GmbH. Feb. 2016. url: https://www.de-
cix.net/en/news- events/news/new- all- time- peak- at-

de-cix-frankfurt-6-8-tbps (visited on 01/08/2020) (cit. on
p. 36).

[236] G. Oikonomou and J. Mirkovic. “Modeling Human Behavior
for Defense Against Flash-Crowd Attacks.” In: 2009 IEEE Inter-
national Conference on Communications. June 2009, pp. 1–6. doi:
10.1109/ICC.2009.5199191 (cit. on p. 148).

[237] Q. Pan, H. Yong-feng, and Z. Pei-feng. “Reduction of traffic
sampling impact on anomaly detection.” In: 2012 7th Interna-
tional Conference on Computer Science Education (ICCSE). 2012

7th International Conference on Computer Science Education
(ICCSE). 2012, pp. 438–443. doi: 10.1109/ICCSE.2012.6295109
(cit. on p. 95).

[238] S. Pan, T. Morris, and U. Adhikari. “Classification of Distur-
bances and Cyber-Attacks in Power Systems Using Hetero-
geneous Time-Synchronized Data.” In: Industrial Informatics,
IEEE Transactions on 11.3 (June 2015), pp. 650–662. issn: 1551-
3203. doi: 10.1109/TII.2015.2420951 (cit. on p. 28).

[239] S. Pan, T. Morris, and U. Adhikari. “Developing a Hybrid
Intrusion Detection System Using Data Mining for Power
Systems.” In: IEEE Transactions on Smart Grid (Nov. 2015),
pp. 3104–3113. issn: 1949-3053. doi: 10 . 1109 / TSG . 2015 .

2409775 (cit. on p. 28).

[240] S. Pan, T. Morris, and U. Adhikari. “A Specification-based In-
trusion Detection Framework for Cyber-physical Environment
in Electric Power System.” In: International Journal of Network
Security 17.2 (Mar. 2015), pp. 174–188 (cit. on p. 28).

[241] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R.
Govindan. “COSSACK: Coordinated Suppression of Simulta-
neous Attacks.” In: Proceedings DARPA Information Survivabil-
ity Conference and Exposition. Vol. 2. Apr. 2003, 94–96 vol.2. doi:
10.1109/DISCEX.2003.1194932 (cit. on p. 148).

https://www.de-cix.net/en/news-events/news/new-all-time-peak-at-de-cix-frankfurt-6-8-tbps
https://www.de-cix.net/en/news-events/news/new-all-time-peak-at-de-cix-frankfurt-6-8-tbps
https://www.de-cix.net/en/news-events/news/new-all-time-peak-at-de-cix-frankfurt-6-8-tbps
https://doi.org/10.1109/ICC.2009.5199191
https://doi.org/10.1109/ICCSE.2012.6295109
https://doi.org/10.1109/TII.2015.2420951
https://doi.org/10.1109/TSG.2015.2409775
https://doi.org/10.1109/TSG.2015.2409775
https://doi.org/10.1109/DISCEX.2003.1194932

[242] J. Park, K. Iwai, H. Tanaka, and T. Kurokawa. “Analysis of
Slow Read DoS attack.” In: 2014 International Symposium on
Information Theory and its Applications. Oct. 2014, pp. 60–64 (cit.
on p. 138).

[243] K. Park and H. Lee. “On the effectiveness of probabilis-
tic packet marking for IP traceback under denial of ser-
vice attack.” In: Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Society (Cat.
No.01CH37213). Vol. 1. Apr. 2001, 338–347 vol.1. doi: 10.1109/
INFCOM.2001.916716 (cit. on p. 141).

[244] K. Park and H. Lee. “On the Effectiveness of Route-based
Packet Filtering for Distributed DoS Attack Prevention in
Power-law Internets.” In: SIGCOMM Comput. Commun. Rev.
31.4 (Aug. 2001), pp. 15–26. issn: 0146-4833. doi: 10.1145/
964723.383061. url: http://doi.acm.org/10.1145/964723.
383061 (cit. on p. 141).

[245] V. Paxson, R. Sommer, and N. Weaver. “An architecture for ex-
ploiting multi-core processors to parallelize network intrusion
prevention.” In: IEEE Sarnoff Symposium. IEEE Sarnoff Sympo-
sium. 2007, pp. 1–7. doi: 10.1109/SARNOF.2007.4567341 (cit.
on p. 96).

[246] V. Paxson. “Bro: A System for Detecting Network Intruders in
Real-time.” In: USENIX Security. San Antonio, Texas: USENIX
Association, 1998 (cit. on p. 97).

[247] V. Paxson. “Bro: A System for Detecting Network Intruders in
Real-Time.” In: Computer Networks. 1999, pp. 2435–2463 (cit. on
p. 92).

[248] T. Peng, C. Leckie, and K. Ramamohanarao. “Protection from
distributed denial of service attacks using history-based IP fil-
tering.” In: Communications, 2003. ICC ’03. IEEE International
Conference on. Vol. 1. May 2003, 482–486 vol.1 (cit. on p. 141).

[249] B. Pfaff, B. Lantz, B. Heller, C. Barker, C. Beckmann, D. Cohn,
D. T. D. Erickson, D. McDysan, D. Ward, E. Crabbe, F. Schnei-
der, G. Gibb, G. Appenzeller, J. Tourrilhes, J. Tonsing, J. Pet-
tit, K. Yap, L. Poutievski, L. Vicisano, M. Casado, et al. Open-
Flow Switch Specification. ONF TS-007. Version 1.3.1 (Wire Pro-
tocol 0x04). Open Networking Foundation. Sept. 2012 (cit. on
p. 169).

[250] S. Pontarelli, G. Bianchi, and S. Teofili. “Traffic-Aware Design
of a High-Speed FPGA Network Intrusion Detection System.”
In: IEEE Transactions On Computers. Vol. 62. 2013, pp. 2322–
2334. doi: 10.1109/TC.2012.105 (cit. on p. 96).

https://doi.org/10.1109/INFCOM.2001.916716
https://doi.org/10.1109/INFCOM.2001.916716
https://doi.org/10.1145/964723.383061
https://doi.org/10.1145/964723.383061
http://doi.acm.org/10.1145/964723.383061
http://doi.acm.org/10.1145/964723.383061
https://doi.org/10.1109/SARNOF.2007.4567341
https://doi.org/10.1109/TC.2012.105

[251] J. Postel. Transmission Control Protocol. RFC 793. Updated by
RFCs 1122, 3168, 6093, 6528. Internet Engineering Task Force,
Sept. 1981 (cit. on p. 158).

[252] R. Pries, Z. Magyari, and P. Tran-Gia. “An HTTP web traffic
model based on the top one million visited web pages.” In:
Proceedings of the 8th Euro-NF Conference on Next Generation In-
ternet NGI 2012. June 2012, pp. 133–139. doi: 10.1109/NGI.
2012.6252145 (cit. on pp. 30, 66, 67, 217).

[253] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A.
Olsson. “A methodology for testing intrusion detection sys-
tems.” In: IEEE Transactions on Software Engineering 22.10 (Oct.
1996), pp. 719–729. issn: 0098-5589. doi: 10.1109/32.544350
(cit. on p. 33).

[254] M. O. Rabin and D. Scott. “Finite Automata and Their Deci-
sion Problems.” In: IBM Journal of Research and Development 3.2
(Apr. 1959), pp. 114–125. issn: 0018-8646. doi: 10.1147/rd.32.
0114 (cit. on p. 106).

[255] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly.
“DDoS-Shield: DDoS-Resilient Scheduling to Counter Applica-
tion Layer Attacks.” In: IEEE/ACM Transactions on Networking
17.1 (Feb. 2009), pp. 26–39. issn: 1063-6692. doi: 10.1109/TNET.
2008.926503 (cit. on p. 147).

[256] A. Reed and J. Aikat. “Modeling, identifying, and simulating
Dynamic Adaptive Streaming over HTTP.” In: 2013 21st IEEE
International Conference on Network Protocols (ICNP). Oct. 2013,
pp. 1–2. doi: 10.1109/ICNP.2013.6733626 (cit. on pp. 30, 70,
219).

[257] K. Rieck and P. Laskov. “Detecting unknown network attacks
using language models.” In: Detection of Intrusions and Malware
& Vulnerability Assessment (2006), pp. 74–90. url: http://link.
springer.com/chapter/10.1007/11790754_5 (cit. on p. 91).

[258] M. Ring and S. Wunderlich. Technical Report CIDDS-002 data
set. Tech. rep. 2017 (cit. on p. 19).

[259] M. Ring, S. Wunderlich, and D. Grüdl. Technical Report CIDDS-
001 data set. Tech. rep. 2017 (cit. on p. 19).

[260] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho.
“Flow-based benchmark data sets for intrusion detection.” In:
Journal of Information Warfare. 2016 (cit. on p. 19).

[261] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho.
“Flow-based benchmark data sets for intrusion detection.” In:
Proceedings of the 16th European Conference on Cyber Warfare and
Security. 2017 (cit. on p. 19).

https://doi.org/10.1109/NGI.2012.6252145
https://doi.org/10.1109/NGI.2012.6252145
https://doi.org/10.1109/32.544350
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/TNET.2008.926503
https://doi.org/10.1109/TNET.2008.926503
https://doi.org/10.1109/ICNP.2013.6733626
http://link.springer.com/chapter/10.1007/11790754_5
http://link.springer.com/chapter/10.1007/11790754_5

[262] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A.
Hotho. “A Survey of Network-based Intrusion Detection Data
Sets.” In: Computer & Security (2019). eprint: 1903.02460 (cit.
on pp. 20, 29).

[263] M. Roesch. “Snort - Lightweight Intrusion Detection for Net-
works.” In: Proceedings of the 13th USENIX Conference on System
Administration. LISA ’99. Seattle, Washington: USENIX Associ-
ation, 1999. url: http://dl.acm.org/citation.cfm?id=
1039834.1039864 (cit. on pp. 92, 97).

[264] C. Rossow. “Amplification Hell: Revisiting Network Proto-
cols for DDoS Abuse.” In: Proceedings of the 2014 Network
and Distributed System Security (NDSS) Symposium. Feb. 2014.
url: http : / / www . christian - rossow . de / publications /

amplification-ndss2014.pdf (cit. on p. 138).

[265] J. Ryan, M.-J. Lin, and R. Miikkulainen. “Intrusion Detection
With Neural Networks.” In: Advances in Neural Information
Processing Systems. Ed. by M. I. Jordan, M. J. Kearns, and S. A.
Solla. Cambridge, MA: MIT Press, 1998, pp. 943–949. url:
http://nn.cs.utexas.edu/?ryan:nips97 (cit. on p. 91).

[266] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Fe-
lix, and P. Hakimian. “Detecting P2P botnets through network
behavior analysis and machine learning.” In: 2011 Ninth An-
nual International Conference on Privacy, Security and Trust. July
2011, pp. 174–180. doi: 10.1109/PST.2011.5971980 (cit. on
p. 27).

[267] Sandvine. 2015 Global Internet Phenomena: Asia-Pacific and Eu-
rope. https://www.sandvine.com/hubfs/downloads/archive/
2015 - global - internet - phenomena - report - apac - and -

europe.pdf. Online; accessed 2018-02-07 (cit. on pp. 66, 68,
209).

[268] Sandvine. 2016 Global Internet Phenomena: Africa, Asia-Pacific
and Middle East. https://www.sandvine.com/hubfs/downloads/
archive/2016-global-internet-phenomena-apac-mea.pdf.
Online; accessed 2018-02-07 (cit. on pp. 66, 209).

[269] Sandvine. 2016 Global Internet Phenomena: Latin America and
North America. https://www.sandvine.com/hubfs/downloads/
archive/2016-global-internet-phenomena-report-latin-

america-and-north-america.pdf. Online; accessed 2018-02-
07 (cit. on pp. 66, 209).

[270] B. Sangster, T. J. O’Connor, T. Cook, R. Fanelli, E. Dean, W. J.
Adams, C. Morrell, and G. Conti. “Toward Instrumenting Net-
work Warfare Competitions to Generate Labeled Datasets.” In:
Proceedings of the 2nd Conference on Cyber Security Experimenta-
tion and Test. CSET’09. Montreal, Canada: USENIX Association,

1903.02460
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://www.christian-rossow.de/publications/amplification-ndss2014.pdf
http://www.christian-rossow.de/publications/amplification-ndss2014.pdf
http://nn.cs.utexas.edu/?ryan:nips97
https://doi.org/10.1109/PST.2011.5971980
https://www.sandvine.com/hubfs/downloads/archive/2015-global-internet-phenomena-report-apac-and-europe.pdf
https://www.sandvine.com/hubfs/downloads/archive/2015-global-internet-phenomena-report-apac-and-europe.pdf
https://www.sandvine.com/hubfs/downloads/archive/2015-global-internet-phenomena-report-apac-and-europe.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-apac-mea.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-apac-mea.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf

2009, pp. 9–9. url: http://dl.acm.org/citation.cfm?id=
1855481.1855490 (cit. on p. 23).

[271] J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M.
Wierbosch, L. Zambenedetti Granville, and A. Pras. “Booters
- An analysis of DDoS-as-a-service attacks.” In: IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM).
May 2015, pp. 243–251. doi: 10.1109/INM.2015.7140298 (cit.
on pp. 24, 185).

[272] A. Santos da Silva, J. A. Wickboldt, L. Z. Granville, and A.
Schaeffer-Filho. “ATLANTIC: A framework for anomaly traf-
fic detection, classification, and mitigation in SDN.” In: NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium. Apr. 2016, pp. 27–35. doi: 10.1109/NOMS.2016.
7502793 (cit. on pp. 142, 145, 152).

[273] D. Sattar, A. Matrawy, and O. Adeojo. “Adaptive Bubble
Burst (ABB): Mitigating DDoS attacks in Software-Defined
Networks.” In: 2016 17th International Telecommunications Net-
work Strategy and Planning Symposium (Networks). Sept. 2016,
pp. 50–55. doi: 10.1109/NETWKS.2016.7751152 (cit. on p. 147).

[274] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. “Practical
Network Support for IP Traceback.” In: SIGCOMM Comput.
Commun. Rev. 30.4 (Aug. 2000), pp. 295–306. issn: 0146-4833.
doi: 10.1145/347057.347560. url: http://doi.acm.org/10.
1145/347057.347560 (cit. on p. 146).

[275] F. Schneider, J. Wallerich, and A. Feldmann. “Packet Capture
in 10-Gigabit Ethernet Environments Using Contemporary
Commodity Hardware.” In: Passive and Active Network Mea-
surement. Ed. by S. Uhlig, K. Papagiannaki, and O. Bonaven-
ture. Vol. 4427. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, pp. 207–217. isbn: 978-3-540-71616-
7. doi: 10 . 1007 / 978 - 3 - 540 - 71617 - 4 _ 21. url: http :

//dx.doi.org/10.1007/978- 3- 540- 71617- 4_21 (cit. on
p. 96).

[276] H. Schulze and K. Mochalski. ipoque internet study 2008/2009.
ipoque. 2009. url: http://portal.ipoque.com/downloads/
index/study (cit. on p. 68).

[277] M. Scott. A Wire-speed Packet Classification and Capture Module
for NetFPGA. Tech. rep. 2010 (cit. on p. 110).

[278] T. Seals. DDoS Attacks Get Bigger, Smarter and More Diverse.
https : / / threatpost . com / ddos - attacks - get - bigger -

smarter-and-more-diverse/134028/. Online; accessed 2019-
04-24 (cit. on p. 132).

http://dl.acm.org/citation.cfm?id=1855481.1855490
http://dl.acm.org/citation.cfm?id=1855481.1855490
https://doi.org/10.1109/INM.2015.7140298
https://doi.org/10.1109/NOMS.2016.7502793
https://doi.org/10.1109/NOMS.2016.7502793
https://doi.org/10.1109/NETWKS.2016.7751152
https://doi.org/10.1145/347057.347560
http://doi.acm.org/10.1145/347057.347560
http://doi.acm.org/10.1145/347057.347560
https://doi.org/10.1007/978-3-540-71617-4_21
http://dx.doi.org/10.1007/978-3-540-71617-4_21
http://dx.doi.org/10.1007/978-3-540-71617-4_21
http://portal.ipoque.com/downloads/index/study
http://portal.ipoque.com/downloads/index/study
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/

[279] S. Shanklin and G. Lathem. Parallel intrusion detection sensors
with load balancing for high speed networks. US Patent 6,578,147.
2003. url: http://www.google.com/patents/US6578147 (cit.
on p. 96).

[280] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani.
“Towards a Reliable Intrusion Detection Benchmark Dataset.”
In: River Journal (2017), pp. 177–200 (cit. on pp. 23, 26).

[281] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani.
“Toward developing a systematic approach to generate bench-
mark datasets for intrusion detection.” In: Computers & Se-
curity 31.3 (2012), pp. 357–374. issn: 0167-4048. doi: https :

//doi.org/10.1016/j.cose.2011.12.012. url: http://www.
sciencedirect.com/science/article/pii/S0167404811001672

(cit. on p. 20).

[282] R. Sidhu and V. K. Prasanna. “Fast Regular Expression Match-
ing Using FPGAs.” In: The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01). 2001 (cit.
on p. 97).

[283] Slowloris HTTP DoS. http://ha.ckers.org/slowloris/. On-
line; accessed: 2020-01-08 via web.archive.org. June 2009 (cit.
on p. 137).

[284] H. Song and J. W. Lockwood. “Efficient Packet Classification
for Network Intrusion Detection Using FPGA.” In: Proceed-
ings of the 2005 ACM/SIGDA 13th International Symposium on
Field-programmable Gate Arrays. FPGA ’05. New York, NY, USA:
ACM, 2005, pp. 238–245. isbn: 1-59593-029-9. doi: 10.1145/
1046192 . 1046223. url: http : / / doi . acm . org / 10 . 1145 /

1046192.1046223 (cit. on p. 96).

[285] H. Song, T. Sproull, M. Attig, and J. Lockwood. “Snort off-
loader: a reconfigurable hardware NIDS filter.” In: Interna-
tional Conference on Field Programmable Logic and Applications.
2005 (cit. on p. 97).

[286] A. Sperotto, R. Sadre, F. van Vliet, and A. Pras. “A Labeled
Data Set for Flow-Based Intrusion Detection.” In: IP Operations
and Management. Ed. by G. Nunzi, C. Scoglio, and X. Li. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 39–50. isbn:
978-3-642-04968-2 (cit. on p. 24).

[287] Spirent. Spirent TestCenter Software. 2019. url: https://www.
spirent . com / products / testcenter / platforms / software

(visited on 05/13/2019) (cit. on p. 144).

[288] P. Srisuresh and K. Egevang. Traditional IP Network Address
Translator (Traditional NAT). RFC 3022. RFC. http://www.rfc-
editor.org/rfc/rfc3022.txt. 2001 (cit. on p. 173).

http://www.google.com/patents/US6578147
https://doi.org/https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/https://doi.org/10.1016/j.cose.2011.12.012
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://ha.ckers.org/slowloris/
https://doi.org/10.1145/1046192.1046223
https://doi.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
https://www.spirent.com/products/testcenter/platforms/software
https://www.spirent.com/products/testcenter/platforms/software
http://www.rfc-editor.org/rfc/rfc3022.txt
http://www.rfc-editor.org/rfc/rfc3022.txt

[289] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu. “Mitigating App-
lication-level Denial of Service Attacks on Web Servers: A
Client-transparent Approach.” In: ACM Transactions on the
Web (TWEB) 2.3 (July 2008), 15:1–15:49. issn: 1559-1131. doi:
10.1145/1377488.1377489. url: http://doi.acm.org/10.
1145/1377488.1377489 (cit. on p. 148).

[290] D. Steahle, K. Leibnitz, and P. Tran-Gia. “Source Traffic Model-
ing of Wireless Applications.” In: AEU - International Journal of
Electronics and Communications Volume 55 Issue 1 (2001), 27–36

(cit. on p. 30).

[291] Suricata. Deprecation Policy. url: https://suricata-ids.org/
about/deprecation-policy/ (visited on 05/31/2019) (cit. on
p. 96).

[292] R. Susitaival and S. Aalto. “Modelling the Population Dynam-
ics and the File Availability in a Bittorrent-like P2P System
with Decreasing Peer Arrival Rate.” In: Proceedings of the First
International Conference, and Proceedings of the Third International
Conference on New Trends in Network Architectures and Services
Conference on Self-Organising Systems. IWSOS’06/EuroNGI’06.
Passau, Germany: Springer-Verlag, 2006, pp. 34–48. isbn: 3-
540-37658-5, 978-3-540-37658-3. doi: 10.1007/11822035_5. url:
http://dx.doi.org/10.1007/11822035_5 (cit. on p. 30).

[293] R. Swami, M. Dave, and V. Ranga. “Software-defined Network-
ing-based DDoS Defense Mechanisms.” In: ACM Computing
Surveys (CSUR) 52.2 (Apr. 2019), 28:1–28:36. issn: 0360-0300.
doi: 10.1145/3301614. url: http://doi.acm.org/10.1145/
3301614 (cit. on pp. 132, 133, 140).

[294] Y. Tao and S. Yu. “DDoS Attack Detection at Local Area Net-
works Using Information Theoretical Metrics.” In: 12th IEEE
International Conference on Trust, Security and Privacy in Comput-
ing and Communications (TrustCom). July 2013, pp. 233–240. doi:
10.1109/TrustCom.2013.32 (cit. on p. 142).

[295] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani. “A detailed
analysis of the KDD CUP 99 data set.” In: Computational Intel-
ligence for Security and Defense Applications, 2009. CISDA 2009.
IEEE Symposium on. July 2009, pp. 1–6. doi: 10.1109/CISDA.
2009.5356528 (cit. on pp. 22, 23).

[296] S. Tayama and H. Tanaka. “Analysis of Slow Read DoS At-
tack and Communication Environment.” In: Mobile and Wire-
less Technologies 2017: ICMWT 2017. Ed. by K. J. Kim and N.
Joukov. Springer Singapore, 2018, pp. 350–359. isbn: 978-981-
10-5281-1 (cit. on p. 138).

https://doi.org/10.1145/1377488.1377489
http://doi.acm.org/10.1145/1377488.1377489
http://doi.acm.org/10.1145/1377488.1377489
https://suricata-ids.org/about/deprecation-policy/
https://suricata-ids.org/about/deprecation-policy/
https://doi.org/10.1007/11822035_5
http://dx.doi.org/10.1007/11822035_5
https://doi.org/10.1145/3301614
http://doi.acm.org/10.1145/3301614
http://doi.acm.org/10.1145/3301614
https://doi.org/10.1109/TrustCom.2013.32
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528

[297] M. K. for The Hacker News. https://thehackernews.com/
2018 / 03 / ddos - attack - memcached . html. Online; accessed
2019-03-24 (cit. on pp. 4, 131, 132).

[298] The Hacker’s Choice via the WaybackMachine. http://web.
archive.org/web/20160311191721/https://www.thc.org/

thc - ssl - dos/. Wayback accessed 2019-05-02, archive from
2016-03-11 (cit. on p. 137).

[299] The Linux Foundation. NetEm. http://www.linuxfoundation.
org/collaborate/workgroups/networking/netem. (Visited on
05/04/2016) (cit. on p. 32).

[300] The Suricata Open Source IDS/IPS/NSM Engine. url: http://
suricata-ids.org (visited on 03/27/2015) (cit. on pp. 92, 96).

[301] The Zeek Network Security Monitor. url: http://www.zeek.org
(visited on 05/31/2019) (cit. on p. 96).

[302] K. Thompson. “Programming Techniques: Regular Expression
Search Algorithm.” In: Communications of the ACM 11.6 (June
1968), pp. 419–422. issn: 0001-0782. doi: 10 . 1145 / 363347 .

363387. url: http://doi.acm.org/10.1145/363347.363387
(cit. on p. 105).

[303] N. Tripathi, N. Hubballi, and Y. Singh. “How Secure are Web
Servers? An Empirical Study of Slow HTTP DoS Attacks and
Detection.” In: 2016 11th International Conference on Availability,
Reliability and Security (ARES). Aug. 2016, pp. 454–463. doi: 10.
1109/ARES.2016.20 (cit. on pp. 145, 152).

[304] M. J. M. Turcotte, A. D. Kent, and C. Hash. Unified Host and
Network Data Set. Tech. rep. 2017 (cit. on p. 26).

[305] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B.
Tierney. “The NIDS Cluster: Scalable, Stateful Network Intru-
sion Detection on Commodity Hardware.” In: Proceedings of
the 10th International Symposium on Recent Advances in Intrusion
Detection (RAID). 2007, pp. 107–126. isbn: 9783540743194. doi:
10.1007/978-3-540-74320-0_6 (cit. on p. 96).

[306] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B.
Tierney. “The NIDS Cluster: Scalable, Stateful Network Intru-
sion Detection on Commodity Hardware.” In: RAID. Gold
Goast, Australia, 2007. isbn: 978-3-540-74319-4 (cit. on p. 97).

[307] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos,
and S. Ioannidis. “Gnort: High Performance Network Intru-
sion Detection Using Graphics Processors.” In: 11th Inter-
national Symposium on Recent Advances in Intrusion Detection
(RAID). Ed. by R. Lippmann, E. Kirda, and A. Trachtenberg.
Lecture Notes in Computer Science 5230. Springer Berlin
Heidelberg, 2008, pp. 116–134. isbn: 978-3-540-87402-7, 978-3-
540-87403-4. url: http://link.springer.com/chapter/10.

https://thehackernews.com/2018/03/ddos-attack-memcached.html
https://thehackernews.com/2018/03/ddos-attack-memcached.html
http://web.archive.org/web/20160311191721/https://www.thc.org/thc-ssl-dos/
http://web.archive.org/web/20160311191721/https://www.thc.org/thc-ssl-dos/
http://web.archive.org/web/20160311191721/https://www.thc.org/thc-ssl-dos/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://suricata-ids.org
http://suricata-ids.org
http://www.zeek.org
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
http://doi.acm.org/10.1145/363347.363387
https://doi.org/10.1109/ARES.2016.20
https://doi.org/10.1109/ARES.2016.20
https://doi.org/10.1007/978-3-540-74320-0_6
http://link.springer.com/chapter/10.1007/978-3-540-87403-4%5C_7
http://link.springer.com/chapter/10.1007/978-3-540-87403-4%5C_7
http://link.springer.com/chapter/10.1007/978-3-540-87403-4%5C_7

1007/978-3-540-87403-4%5C_7 (cit. on pp. 95, 99, 100, 126,
207).

[308] E. Vasilomanolakis, C. G. Cordero, N. Milanov, and M. Mühl-
häuser. “Towards the creation of synthetic, yet realistic, in-
trusion detection datasets.” In: NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium. Apr. 2016,
pp. 1209–1214. doi: 10 . 1109 / NOMS . 2016 . 7502989 (cit. on
p. 31).

[309] A. Verma and V. Ranga. “Statistical analysis of CIDDS-001

dataset for Network Intrusion Detection Systems using Distance-
based Machine Learning.” In: Procedia Computer Science 125

(2018). The 6th International Conference on Smart Comput-
ing and Communications, pp. 709–716. issn: 1877-0509. doi:
https://doi.org/10.1016/j.procs.2017.12.091. url:
http : / / www . sciencedirect . com / science / article / pii /

S1877050917328594 (cit. on p. 19).

[310] F. Veysset, O. Courtay, and O. Heen. New tool and technique
for remote operating system fingerprinting. Tech. rep. 2002 (cit. on
p. 72).

[311] N. Vicari and S. Koehler. Measuring Internet User Traffic Behav-
ior Dependent on Access Speed. Technial Report No. 238. Insti-
tute of Computer Science, University of Würzburg, 1999 (cit.
on p. 30).

[312] E. K. Viegas, A. O. Santin, and L. S. Oliveira. “Toward a reli-
able anomaly-based intrusion detection in real-world environ-
ments.” In: Computer Networks 127 (2017), pp. 200–216. issn:
1389-1286. doi: https://doi.org/10.1016/j.comnet.2017.08.
013. url: http://www.sciencedirect.com/science/article/
pii/S1389128617303225 (cit. on p. 22).

[313] J.-B. Voron, C. Démoulins, and F. Kordon. “Adaptable Intru-
sion Detection Systems Dedicated to Concurrent Programs: A
Petri Net-Based Approach.” In: 10th International Conference on
Application of Concurrency to System Design. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 57–66 (cit. on p. 166).

[314] Vuze Bittorrent Client Wiki. Good Settings. url: https://wiki.
vuze.com/w/Good_settings (cit. on p. 218).

[315] W3 Web Technology Surveys. Usage statistics of Gzip Com-
pression for websites. https : / / w3techs . com / technologies /

details / ce - gzipcompression / all / all. Online; accessed
2019-08-25 (cit. on pp. 30, 67).

[316] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, D.
Karger, and S. Shenker. “DDoS Defense by Offense.” In:
Proceedings of the 2006 conference on Applications, technologies,

http://link.springer.com/chapter/10.1007/978-3-540-87403-4%5C_7
http://link.springer.com/chapter/10.1007/978-3-540-87403-4%5C_7
http://link.springer.com/chapter/10.1007/978-3-540-87403-4%5C_7
https://doi.org/10.1109/NOMS.2016.7502989
https://doi.org/https://doi.org/10.1016/j.procs.2017.12.091
http://www.sciencedirect.com/science/article/pii/S1877050917328594
http://www.sciencedirect.com/science/article/pii/S1877050917328594
https://doi.org/https://doi.org/10.1016/j.comnet.2017.08.013
https://doi.org/https://doi.org/10.1016/j.comnet.2017.08.013
http://www.sciencedirect.com/science/article/pii/S1389128617303225
http://www.sciencedirect.com/science/article/pii/S1389128617303225
https://wiki.vuze.com/w/Good_settings
https://wiki.vuze.com/w/Good_settings
https://w3techs.com/technologies/details/ce-gzipcompression/all/all
https://w3techs.com/technologies/details/ce-gzipcompression/all/all

architectures, and protocols for computer communications (SIG-
COMM) 36.4 (Aug. 2006), pp. 303–314. issn: 0146-4833. doi:
10.1145/1151659.1159948. url: http://doi.acm.org/10.
1145/1151659.1159948 (cit. on p. 148).

[317] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou. “DDoS attack pro-
tection in the era of cloud computing and Software-Defined
Networking.” In: Computer Networks 81 (2015), pp. 308–319.
issn: 1389-1286. doi: http://doi.org/10.1016/j.comnet.
2015.02.026 (cit. on p. 147).

[318] H. Wang, C. Jin, and K. G. Shin. “Defense Against Spoofed IP
Traffic Using Hop-Count Filtering.” In: IEEE/ACM Transactions
on Networking 15.1 (Feb. 2007), pp. 40–53. issn: 1063-6692. doi:
10.1109/TNET.2006.890133 (cit. on p. 144).

[319] K. Wang, J. Parekh, and S. Stolfo. “Anagram: A content
anomaly detector resistant to mimicry attack.” In: Proceed-
ings of the 9th International Symposium on Recent Advances in
Intrusion Detection (RAID). 2006. url: http://link.springer.
com/chapter/10.1007/11856214_12 (cit. on p. 91).

[320] N. Weaver, V. Paxson, and J. M. Gonzalez. “The Shunt: An
FPGA-based Accelerator for Network Intrusion Prevention.”
In: ACM/SIGDA FPGA. Monterey, California, USA, 2007. isbn:
978-1-59593-600-4 (cit. on pp. 95, 97).

[321] D. Wei, P. Cao, and S. Low. Time for a TCP Benchmark Suite?
Tech. rep. Caltech, 2005 (cit. on pp. 32, 40, 44).

[322] W. Wei, F. Chen, Y. Xia, and G. Jin. “A rank correlation based
detection against distributed reflection DoS attacks.” In: IEEE
Communications Letters (2013) (cit. on p. 143).

[323] M. Weigle, P. Sharma, and J. Freemen. “Performance of Com-
peting High-Speed TCP Flows.” In: NETWORKING 2006. Ed.
by F. Boavida, T. Plagemann, B. Stiller, C. Westphal, and E.
Monteiro. Berlin, Germany: Springer, 2006, 476–487 (cit. on
pp. 37, 38, 44).

[324] G. C. Wilshusen and D. C. Trimble. GAO-12-926T Challenges
in Securing the Electricity Grid. Tech. rep. United States Govern-
ment Accountability Office. July 2012 (cit. on p. 36).

[325] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. “A Close
Look on n-Grams in Intrusion Detection: Anomaly Detection
vs. Classification.” In: AISec ’13 Proceedings of the 2013 ACM
workshop on Artificial intelligence and security. ACM New York,
NY, USA ©2013, 2013, pp. 67–76. isbn: 9781450324885 (cit. on
p. 91).

https://doi.org/10.1145/1151659.1159948
http://doi.acm.org/10.1145/1151659.1159948
http://doi.acm.org/10.1145/1151659.1159948
https://doi.org/http://doi.org/10.1016/j.comnet.2015.02.026
https://doi.org/http://doi.org/10.1016/j.comnet.2015.02.026
https://doi.org/10.1109/TNET.2006.890133
http://link.springer.com/chapter/10.1007/11856214_12
http://link.springer.com/chapter/10.1007/11856214_12

[326] Y. Wu, H. Tseng, W. Yang, and R. Jan. “DDoS Detection and
Traceback with Decision Tree and Grey Relational Analysis.”
In: 2009 Third International Conference on Multimedia and Ubiq-
uitous Engineering. June 2009, pp. 306–314. doi: 10.1109/MUE.
2009.60 (cit. on p. 146).

[327] J. Xu and C. R. Shelton. “Intrusion Detection using Continuous
Time Bayesian Networks.” In: Journal of Artificial Intelligence
Research (2014). doi: 10.1613/jair.3050 (cit. on p. 91).

[328] L. Xu, K. Harfoush, and I. Rhee. “Binary Increase Congestion
Control (BIC) for Fast Long-Distance Networks.” In: Proceed-
ings of the INFOCOM 2004. Twenty-third Annual Joint Conference
of the IEEE Computer and Communications Societies. 2004 (cit. on
p. 46).

[329] L. Xu, K. Harfoush, and I. Rhee. “Experimental Evaluation
of TCP Performance over 10Gb/s Passive Optical Networks
(XG-PON).” In: Proceedings of the Globecom 2014 - Symposium
on Selected Areas in Communications: GC14 SAC Access Networks
and Systems. 2014 (cit. on p. 39).

[330] Xu, K. Performance Modeling of BitTorrent Peer-to-Peer File Shar-
ing Networks. Tech. rep. 2013 (cit. on p. 30).

[331] A. Yaar, A. Perrig, and D. Song. “Pi: a path identification mech-
anism to defend against DDoS attacks.” In: 2003 Symposium on
Security and Privacy, 2003. May 2003, pp. 93–107. doi: 10.1109/
SECPRI.2003.1199330 (cit. on p. 144).

[332] N. Yamagaki, R. Sidhu, and S. Kamiya. “High-speed regular
expression matching engine using multi-character NFA.” In:
International Conference on Field Programmable Logic and Applica-
tions. 2008. doi: 10.1109/FPL.2008.4629920 (cit. on pp. 97,
113).

[333] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna. “Compact Ar-
chitecture for High-throughput Regular Expression Matching
on FPGA.” In: ACM/IEEE ANCS. 2008. isbn: 978-1-60558-346-4
(cit. on pp. 97, 113).

[334] D. K. Y. Yau and J. C. S. Lui. “Defending against distributed
denial-of-service attacks with max-min fair server-centric
router throttles.” In: IEEE 2002 Tenth IEEE International Work-
shop on Quality of Service (Cat. No.02EX564). May 2002, pp. 35–
44. doi: 10.1109/IWQoS.2002.1006572 (cit. on p. 147).

[335] N. Ye, S. Emran, Q. Chen, and S. Vilbert. “Multivariate sta-
tistical analysis of audit trails for host-based intrusion detec-
tion.” In: IEEE Transactions on Computers 51.7 (2002), pp. 810–
820. issn: 0018-9340. doi: 10.1109/TC.2002.1017701 (cit. on
p. 90).

https://doi.org/10.1109/MUE.2009.60
https://doi.org/10.1109/MUE.2009.60
https://doi.org/10.1613/jair.3050
https://doi.org/10.1109/SECPRI.2003.1199330
https://doi.org/10.1109/SECPRI.2003.1199330
https://doi.org/10.1109/FPL.2008.4629920
https://doi.org/10.1109/IWQoS.2002.1006572
https://doi.org/10.1109/TC.2002.1017701

[336] N. Ye. “A Markov Chain Model of Temporal Behavior for
Anomaly Detection.” In: In Proceedings of the 2000 IEEE Work-
shop on Information Assurance and Security. 2000, pp. 171–174

(cit. on p. 91).

[337] D.-y. Yeung and Y. Ding. “Host-based intrusion detection us-
ing dynamic and static behavioral models.” In: Pattern Recog-
nition 36 (2003), pp. 229–243 (cit. on p. 91).

[338] S. T. Zargar, J. Joshi, and D. Tipper. “A Survey of Defense
Mechanisms Against Distributed Denial of Service (DDoS)
Flooding Attacks.” In: IEEE Communications Surveys Tuto-
rials 15.4 (Apr. 2013), pp. 2046–2069. issn: 1553-877X. doi:
10.1109/SURV.2013.031413.00127 (cit. on p. 139).

[339] B. Zdrnja. Slowloris and Iranian DDoS attacks. https://isc.
sans.edu/diary/6622. Online; accessed: 2020-01-08. June 2009

(cit. on p. 137).

[340] G. Zhang, S. Ehlert, T. Magedanz, and D. Sisalem. “Denial
of Service Attack and Prevention on SIP VoIP Infrastruc-
tures Using DNS Flooding.” In: Proceedings of the 1st Inter-
national Conference on Principles, Systems and Applications of
IP Telecommunications. IPTComm ’07. New York City, New
York: ACM, 2007, pp. 57–66. isbn: 978-1-60558-006-7. doi:
10.1145/1326304.1326314. url: http://doi.acm.org/10.
1145/1326304.1326314 (cit. on p. 146).

[341] J. Zhang, Z. Qin, L. Ou, P. Jiang, J. Liu, and A. X. Liu. “An
advanced entropy-based DDOS detection scheme.” In: 2010
International Conference on Information, Networking and Automa-
tion (ICINA). Vol. 2. Oct. 2010, pp. 67–71. doi: 10.1109/ICINA.
2010.5636786 (cit. on pp. 142, 143).

[342] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu. “Re-
altime DDoS Defense Using COTS SDN Switches via Adap-
tive Correlation Analysis.” In: IEEE Transactions on Informa-
tion Forensics and Security 13.7 (July 2018), pp. 1838–1853. issn:
1556-6013. doi: 10.1109/TIFS.2018.2805600 (cit. on pp. 142,
152).

[343] R. Zuech, T. Khoshgoftaar, N. Seliya, M. Najafabadi, and C.
Kemp. A New Intrusion Detection Benchmarking System. 2015.
url: https : / / www . aaai . org / ocs / index . php / FLAIRS /

FLAIRS15/paper/view/10368 (cit. on pp. 22, 27).

https://doi.org/10.1109/SURV.2013.031413.00127
https://isc.sans.edu/diary/6622
https://isc.sans.edu/diary/6622
https://doi.org/10.1145/1326304.1326314
http://doi.acm.org/10.1145/1326304.1326314
http://doi.acm.org/10.1145/1326304.1326314
https://doi.org/10.1109/ICINA.2010.5636786
https://doi.org/10.1109/ICINA.2010.5636786
https://doi.org/10.1109/TIFS.2018.2805600
https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/view/10368
https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS15/paper/view/10368

	Abstract
	Zusammenfassung

	Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Overview and Contributions
	1.4 Opportunities—The Research Projects, And Their Resources

	Network Testing
	2 Introduction to Network Testing
	2.1 Data Sets
	2.2 Traffic Model Analysis
	2.3 Evaluation Programs
	2.4 Testing Methodologies
	2.5 Topologies
	2.6 Summary

	3 Problem Statement
	3.1 Research Questions

	4 Evaluation of TCP Congestion Control Algorithms
	4.1 TCP Congestion Control Algorithms
	4.2 Planning a TCP Benchmarking Environment
	4.3 Resulting Test Setup
	4.4 Results
	4.5 Discussion

	5 The General Purpose Network Testing Framework
	5.1 Producing Benign Traffic
	5.2 Producing Malicious Traffic
	5.3 Implementation
	5.4 Evaluation
	5.5 Produced Data Sets
	5.6 Summary

	Acceleration of Intrusion Detection Systems
	6 Introduction to Intrusion Detection Systems
	6.1 Signature-based NIDS
	6.2 Anomaly-based NIDS
	6.3 Overview of Available IDS Systems
	6.4 Circumventing Intrusion Detection Systems
	6.5 State of the Art in IDS Acceleration

	7 Problem Statement
	7.1 Research Questions

	8 Hardware-based IDS Acceleration System
	8.1 Regular Expressions and Finite Automata
	8.2 Concepts
	8.3 Acceleration with GPUs
	8.4 Summary

	Mitigation of DDoS Attacks
	9 Introduction to Distributed Denial-of-Service Attacks
	9.1 Botnets
	9.2 Attack Classification
	9.3 Prevalence of Attacks
	9.4 State of the Art in DDoS Mitigation
	9.5 Summary

	10 Problem Statement
	10.1 Research Questions

	11 DDoS Mitigation Framework
	11.1 Environment
	11.2 Detection Mechanisms
	11.3 Identification Mechanisms
	11.4 Defense Mechanisms
	11.5 Prototype Setup
	11.6 Evaluation
	11.7 Summary

	Conclusions
	12 Conclusions & Outlook
	12.1 Outlook
	12.2 Summary
	Acknowledgements

	Appendix
	Bibliography

