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Abstract

Motivated by the demands and desires to improve the living quality of elderly people, in

this thesis, we investigate visual human behavior analysis, and aim at proposing effective

and reliable healthcare solutions for elderly people in various scenarios. Specifically, we

focus on human behavior understanding from videos, captured by cameras in indoor

environments, individual persons and actions at multiple granularity levels. When

human behaviors can be understood automatically and reliably by computers, the living

environment will become smart, provide effective assistance, and make the interaction

between elderly people and smart environments as convenient as the interaction between

youngsters and conventional environments.

Human behavior understanding from videos covers a broad range of tasks. To unify

all the tasks, we propose the action parsing task: Given an untrimmed video with

various types of actions, action parsing is to assign each individual frame an action

label/cluster ID. Consequently, several classical tasks, e.g. action detection, video

retrieval, action recognition and temporal action segmentation are unified within one

framework. In this thesis, we first propose an unsupervised method, assigning each

frame in the input video an cluster ID, and then a deep learning-based supervised method,

assigning each frame an action label in an end-to-end manner. The unsupervised method

is hierarchical dynamic clustering, which incorporates several novel modules and is

inspired by the conventional bag-of-visual-words method for action recognition. For the

deep learning-based supervised action parsing method, we employ a spatiotemporal

convolutional encoder-decoder network, and propose novel bilinear pooling methods

to realize fine-grained action parsing. We have applied the proposed methods to

unsupervised action segmentation, abnormality (fainting) detection from omni-directional

videos, explanation of how a deep neural network understands falls from videos, fine-

grained human action parsing in daily living scenarios (recordings from both the third-

part view and the egocentric view), and behavior understanding for surgical robots. All

experimental results show that our proposed methods are effective and yield state-of-

the-art performances.
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1Introduction

Improving the life quality of elderly people is one of the most important tasks in the world.

As the development of medical conditions and living qualities, most countries all over the

world have rising life expectations and population aging. As predicted in several reports,

e.g. [1], the senior population will reach 2.1 billion by the year of 2050. As a person

aging, the functionalities of perception and motor systems degrade in general. Therefore,

compared to young persons, elderly people tend to suffer from musculoskeletal deficits,

inefficient interactions with the environment, perceptual difficulties, cognitive disorders,

and so forth more frequently, which can cause poor living qualities and even unexpected

death. For example, a normal living environment for young people can be dangerous for

elderly people. When walking on a slippery floor, a young person can effectively balance

the body and avoid falling. On the other hand, an elderly person with cognitive disorders

would lose the body balance and suffer from fatal falls. Another example is, that an

elderly person with abnormal cognitive abilities (e.g. Alzheimer’s disease) can forget

the goal of his/her ongoing actions. The elderly person could forget taking medicine

while preparing for sleep, or forget switching off ovens after cooking, which can heavily

increase risks in daily lives.

Since the biological aging process is not stoppable and reversible by nature, our ulti-

mate goal is to propose and utilize state-of-the-art technologies to improve the living

qualities of elderly people, especially for the ones living alone. We aim at improving the

technologies of ambient intelligence, so that the interaction between elderly people and

the intelligent environment is as convenient as the interaction between young people

and the conventional environment. We expect an intelligent environment to possess two

capabilities: (1) perceiving the behaviors of elderly people and (2) performing actions to

provide assistance. In this PhD thesis, we focus on the first capability. The second one is

more related to robotics, mechatronics and other fields, which are out of our scope here.

An intelligent perceiving system, which is able to effectively understand behaviors of

elderly people, is highly expected in practice, so that healthcare persons can be informed

on time when an accident occurs, forgetting the action goal can be avoid by automatic
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1 Introduction

reminding, and so on. Due to the rapid development of computer vision, especially on

visual human behavior analysis, we think that enabling the environment to perceive and

understand human behaviors in a non-obstructive, intelligent, and reliable manner is

realizable, despite challenging.

1.1 Problem Statements and Objectives

Motivated by the demands of elderly people healthcare and our perspective on ambient

intelligence, we aim at proposing state-of-the-art methods of visual human behavior

analysis and applying them into various healthcare scenarios, such as fall recognition,

fainting detection and analysis of fine-grained daily living actions. Since human behavior

covers a large number of different types, we first propose a taxonomy, and then focus

on the behavior type which is most related to elderly people healthcare. The proposed

human behavior taxonomy is listed in Table 1.1 and some examples are shown in Figure

1.1.

Environment indoor in the wild
Number of persons single person multiple persons

Complexity simple action composite activity
Granularity coarse-grained fine-grained

Table 1.1: Human behavior taxonomy.

In this thesis, we focus on the scenarios of a single person in an indoor environment, in

which the person can perform both simple and complex actions at different granularity

levels. Such scenarios are most related to daily activities of elderly people living alone. In

addition, we expect that the environment can perceive and understand human behaviors

with minimal interventions to the daily living, and hence we primarily consider to use

cameras, so as to capture human actions in a non-obstructive manner.

Although we have constrained the scenarios to investigate based on our focus for a

number of reasons, human behavior understanding is still challenging for a number of

reasons: First, in contrast to many datasets for action recognition, in which the video

is trimmed to only contain a single type of action, the video in practice is normally

2



1.1 Problem Statements and Objectives

indoor outdoor

multiple persons

coarse-scale

Figure 1.1: Some imagery examples of different types of human behaviors. From left
to right and from top to bottom: (1) A snapshot from the PROX recording
[2]. (2) Outdoor climbing (photographed by this dissertation author, i.e. Yan
Zhang). (3) Preparing foods (a snapshot from the MPII cooking dataset [3]).
(4) People in Tübingen, Germany (photographed by this dissertation author,
Yan Zhang). (5) Simple actions (snapshots from the KTH action dataset
[4]). (6) Composite activity of preparing salads. The snapshot is from the 50
Salads dataset [5], and this video is processed by the work of Zhang et al.
[6]. (7) Pedestrian tracking as rigid objects [7]. This picture is from the cited
manuscript c© 2013 IEEE. (8) Human body joints detection and tracking by
[8]. This picture is captured by the dissertation author, i.e. Yan Zhang.
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1 Introduction

untrimmed, can last for long time, and incorporates various action types. In this case,

temporally locating and recognizing different actions simultaneously is an challenging

task. Second, the human behavior can be at multiple granularity levels, but there exists

no universal method of action analysis at all levels. For example, the algorithms of

tracking the person as a whole and tracking the hand joints are considerably different.

Third, it is difficult to extract reliable action features from videos due to clutters in the

scene. For example, the furniture in the room can cause severe occlusions of the

human body, making action inference a highly ill-posed problem. To address all these

issues, we formulate our problem as human action parsing in untrimmed videos:

Given an untrimmed video (or image sequence) with multiple consecutive actions, we

aim at proposing a solution to assign each frame an action label. In this case, action

recognition, temporal action segmentation, detection and other tasks are unified under

one framework. Our human action parsing setting is illustrated in Fig. 1.2.

Human action parsing can be addressed by a two-stage method. In the first stage, we

propose algorithms to trim the video into several disjoint segments automatically, each

of which is expected to have only one action type. In the second stage, we can use

off-the-shelf action recognition algorithms, e.g., [9, 10, 11], to assign each segment an

action label. Since the second stage is a typical action recognition problem and has

been heavily investigated in the literature, in this thesis, we focus to investigate the

first stage, i.e., segmenting actions temporally from sequential data. Specifically, we

propose high-efficient and unsupervised temporal segmentation methods, and verify their

effectiveness for action segmentation and abnormal behavior detection via extensive

experiments (see Chapter 3). Since such high-efficient and unsupervised natures enable

fast processing time sequence data without labels, our proposed methods can also

be used in other applications, like segmenting large-scale motion capture data and

generating action proposals from unlabeled time sequences.

This two-stage method is suitable for cases, in which the input untrimmed time sequence

is without annotations and off-the-shelf action recognition methods can be used. When

frame-wise action annotations are available in untrimmed videos, human action parsing

can be addressed by an one-stage method, i.e., performing temporal action segmentation

and frame-wise labeling simultaneously in an end-to-end manner, based on deep neural
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1.2 Structure of The Thesis

understanding

segmentation

two-stage parsing
end-to-end  

one-stage parsing

Figure 1.2: Illustration of the human action parsing problem: Given an image sequence,
an action parsing method is expected to produce frame-wise action labels.
For two-stage parsing, unsupervised temporal action segmentation and
action understanding in individual segments are separately proposed. For
one-stage approach, the segmentation procedure and the understanding
procedure are inherently combined via a deep neural network, and the action
parsing result is directly produced in an end-to-end fashion, given the image
sequence as input.

networks. In this thesis, we train a deep convolutional neural network using videos

with frame-wise action annotations, and then employ the trained network to assign

each individual frame in the test video an action label. To realize fine-grained action

parsing, e.g. not only recognizing cutting but also differentiating cutting tomatoes from

cutting cucumbers, we propose bilinear pooling operations as network intermediate

layers, and use them to extract high-order information (e.g. covariance) from data. We

conduct extensive experiments, and show that our proposed methods can effectively

parse fine-grained actions and outperform other relevant methods on various datasets.

1.2 Structure of The Thesis

According to our problem formulation, this thesis is structured as follows: In Chapter

2, we introduce a number of related studies towards a comprehensive review of visual

human action understanding, and applications on elderly people healthcare.
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1 Introduction

In Chapter 3, we present our method for unsupervised human action parsing, which is

inspired by the effectiveness of bag-of-visual-words methods [12] for action recognition.

First, we propose a dynamic clustering algorithm to group visual features in an online

manner. Then, regarding the dynamic clustering algorithm as a building block, we

propose a framework, i.e. hierarchical dynamic clustering, in which local temporal pooling

is applied to aggregate low-level visual features to high-level action patterns. We apply

our methods for temporal action segmentation and fainting detection in omnidirectional

videos.

In Chapter 4, we present our deep learning-based end-to-end action parsing method.

We first demonstrate the spatiotemporal convolutional encoder-decoder network, and

then apply it in the application of fall detection from videos. In particular, we empirically

investigate the influence of multiple modalities and training schemes on fall recognition,

towards understanding the inference process of the convolutional networks. Afterwards,

in order to perform fine-grained action parsing, we propose two local temporal pooling

methods for capture high-order information from data. The proposed bilinear pooling

methods are regarded as generic intermidiate layers, and are employed in different kinds

of neural works. The experimental results on various datasets indicate the effectiveness

of our methods.

In Chapter 5, we conclude our work in this thesis, and provide outlooks for future work.

6



2Related Work

The human behavior is a term with wide meanings and can be categorized in different

ways. According to the review literature on human behavior analysis and assisted

living technologies, e.g. [13, 14, 15, 16], in the indoor environment, the behavior of a

person can be categorized into a hierarchy, according to the granularity and the temporal

duration. In this thesis, we follow the work of [14], and define four behavioral levels,

namely action primitive, action, activity and behavior: At the lowest action primitive level,

the time duration is very short and the body configuration only varies slightly, e.g. lifting

the left foot during walking or putting the right arm down after waving hands. Going

a level up, a time sequence of action primitives composes an action, such as running

and sitting down. Above the action level, an activity is defined as a series of actions

occurring with a specific temporal order. At the top, a behavior is defined as a set of

activities, and can last for hours or even days. Healthcare solutions including sensors,

algorithms and computer systems are mostly developed for each individual behavioral

level, due to their diverse properties and ambiguous differentiating boundaries.

In Chapter 1, we have stated that we focus on human actions at various granularity levels.

Here we further specify our focus, i.e., we focus on visual human behavior analysis,

and concentrate to analyzing action primitives, actions and activities, which only last for

seconds, minutes but usually less than one hour. In this case, the human movement is

feasible to be recorded by cameras, and the amount of recorded data is not excessive.

For long-term behavior analysis in living environments, which lasts hours, days or even

months, wearable sensors, radio frequency modules, infrared sensors and other types of

modalities are usually used [15, 17, 18, 19] rather than cameras. For example, deriving

the sleeping cycle of a person takes weeks. Unusual changes of daily routines of elderly

people are monitored via a sensor network mounted on the door, and the indoor daily

mobility pattern is extracted based on recordings for days [20]. Therefore, long-term

behavior analysis is out of the scope of this thesis.

7



2 Related Work

In the following paragraphs, we present a review of behavior analysis methods, as well

as practical solutions to various elderly people healthcare scenarios. Overall, we focus

to investigate methods for the action parsing task introduced in Chapter 1.

2.1 Unsupervised Human Action Parsing

2.1.1 Tasks and Methods

Given a recording of human motion in the format of the RGB video, motion capture data,

or a generic feature vector sequence, the task of human action parsing is to partition

this continuous motion into several disjoint segments over time, and each segment

incorporates an action primitive, which is represented by a cluster ID.

Human action parsing is related to continuous action understanding [21, 22, 23, 24] and

action detection in untrimmed videos [25, 26, 27, 28, 29, 30], which are prevalent in

recent years. In many cases, data annotation is not sufficient or not available, and an

effective unsupervised method is highly expected. In the following, we introduce some

classical and recent methods for unsupervised human action parsing.

Zhou et al. [31] proposes aligned cluster analysis (ACA) that uses a novel kernel for time

series alignment. After specifying the number of clusters, as well as the minimum and

maximum lengths of the action segments, both the ACA and HACA (hierarchical ACA)

solve a dynamic program over the entire time sequence. Despite effectiveness, ACA

and HACA are not applicable for fast and online video segmentation due to its inefficient

optimization process. The work of [32] proposes an efficient motion segmentation

approach, in which a novel feature bundling method is used to generate compact and

robust motion representations. In particular, a generalized search radius is introduced in

[32], so that the number of clusters is not needed as input. Li et al. [33] addresses motion

segmentation via subspace clustering, in which a temporal Laplacian regularization

method is applied to encode the temporal structure in the subspace, and then spectral

clustering is applied to group actions using the projected feature vectors.

8



2.1 Unsupervised Human Action Parsing

Another related line of research is the mixture model for clustering, which can be trained

online. The work of [34] proposes a greedy method for training the Gaussian mixture

model, but requires to specify the model complexity, e.g., the number of Gaussian

components k, in advance. To overcome this, the Bayesian nonparametric models learn

the value of k from the input data jointly with the observation models. For example, the

Dirichlet process mixture model (DPMM) [35, 36] uses a Dirichlet process to allocate

samples and calculate k, where the joint probabilities of allocations are independent

of the temporal order of the input samples. The work of [37] proposes an algorithm to

train DPMM by iteratively processing data batches and allowing the number of clusters

varying when the model parameters are updated online.

In this thesis, we propose a dynamic clustering algorithm to group elements in the time

sequence in an online manner, as well as a hierarchical dynamic clustering pipeline

with temporal pooling to aggregate low-level spatiotemporal features. They have been

published in [38] and [39], respectively. As investigated by systematical experiments, we

show that our proposed methods outperform other state-of-the-art unsupervised human

action parsing algorithms. Details of human action parsing via hierarchical dynamic

clustering are demonstrated in Chapter 3.

2.1.2 Healthcare Applications

Here we introduce two healthcare applications, which are highly related to unsupervised

human action parsing, namely gait analysis and abnormality detection.

Gait analysis. In the domain of healthcare and clinical diagnosis, gait is widely used

as an important indication of the cognitive and motor functionalities of elderly people

[40, 41, 42]. For example, the studies in [43] and [44] perform assessing and diagnosing

tuning problems in patients with Parkinson, employing a hidden Markov model to explicitly

model the gait cycle and partition the walking process to four phases. The work [45]

performs gait analysis using accelerometer for frailty detection of elderly people. The

work [46] performs person identification via analyzing the gait pattern from silhouette.

9



2 Related Work

Unsupervised abnormality detection. Abnormal behaviors can be regarded as sta-

tistical outliers, given the distribution of the normal behaviors. In this case, the abnormal

behavior is very similar to the novel behavior after long-term observation. One can

read [14] and [47] for reviewing computer vision-based methods on abnormal behavior

analysis. The work [47] presents a generic framework for abnormal behavior detection,

in which the model (e.g. Gaussian mixture model, hidden Markov model and cluster-

ing structure) learns visual patterns of normal behaviors, and detects abnormalities

in testing videos by evaluating the matching score and detecting the ones below a

certain threshold. The work of [48] parses the video into three components, learns the

dominant components and abnormal behavioral patterns gradually. The work of [49]

proposes a hierarchical clustering approach to detect abnormal body configurations

and abnormal actions (defined as abnormal transitions between body configurations in

their work) consecutively. The work of [50] employs a force model to detect abnormal

social behaviors of people crowd in the public area. The work of [38] and [51] employs

hierarchical dynamic clustering method to aggregate low-level visual cues and learn

action clusters to detect fainting in omnidirectional videos.

2.2 Supervised Human Action Parsing

In the following we introduce several related work about supervised action parsing in

untrimmed videos, as well as relevant applications of elderly people healthcare. One can

recall that the untrimmed video is defined as a video containing multiple human actions.

2.2.1 Tasks and Methods

An untrimmed video contains a sequence of consecutive actions. The task of supervised

human action parsing is to assign each individual frame in the untrimmed video an

action label, via a deep neural network. Therefore, action detection, action recognition,

segmentation, action search and other tasks are unified within the same framework.

10



2.2 Supervised Human Action Parsing

The work of [52] proposes to learn object and material states, for which action segmenta-

tion is performed by detecting the state transitions. The work of [29] applies a statistical

language model to capture action temporal dynamics. The work of [53] proposes an

Ego-ConvNet to perform temporal action segmentation, which incorporates two streams

for extracting spatial features and spatiotemporal features individually from pre-defined

video segments. The results are improved when combining Fisher vectors [10] from

spatial and optical flow descriptors [54]. The work of [55] proposes a multi-modal bidirec-

tional LSTM model to generate a label sequence of a video to incorporate forward and

backward temporal dynamics. Lea et al. [56] proposes a conditional random field with

skip connections in the temporal domain, and starting-and-ending frame priors learned

via a structured support vector machine. The work of [57] proposes a multi-modal deep

neural network with the similar structure of the VGG network [58]. After training and

extracting frame-wise features, a temporal convolutional network and a semi-Markov con-

ditional random field are applied to produce the final segmentation result. Based on the

spatial features from [57], the work of [59] proposes two kinds of temporal convolutional

networks with the encoder-decoder architecture to yield state-of-the-art performances

on several fine-grained action datasets. The first network comprises layers of convolu-

tion and max pooling; the second net uses dilated temporal convolution and skipped

connections to capture long-range temporal structures. Based on this work, many

neural networks with sophisticated architectures are proposed in recent years, such as

multi-stage dilated temporal convolution [60] and deformable temporal convolution [61].

Since the neural networks introduced above cannot capture second-order (or higher)

information from features, we investigate to combine bilinear pooling and deep neural

networks for fine-grained action parsing in this thesis. Bilinear pooling (or second-order

pooling) is widely used in fine-grained visual classification [62, 63, 64, 65, 66, 67, 68,

69, 70, 71, 72, 73, 74, 75, 76, 77, 78], visual questioning answering [79, 80, 81], feature

fusion and disentangling [65, 66, 82, 83, 84, 85], action recognition [86, 87, 88, 85, 84]

and other tasks. In deep neural networks, bilinear pooling is mostly used only once

before the classification layer, e.g. in [65, 66, 68, 69, 70, 83, 84, 75, 76, 78], or embedded

within the classifier, e.g. in [73, 71].
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There are several research directions regarding bilinear pooling: (1) Dimension reduction

while minimizing information loss. [69, 77, 86] use tensor sketch [89] to reduce the

dimension of vectorized bilinear forms. The studies of [66, 75] use parametric dimension

reduction approaches, which can be learned via back-propagation. The work in [80] [74]

finds a low-rank approximation of the bilinear forms, so as to convert vector outer-product

in the conventional bilinear pooling into Hadamard multiplication for cheap computation.

[73, 67] utilizes singular value decomposition (SVD) to select the principle components,

which can increase the performance at a higher computational cost. (2) Multiple bilin-

ear pooling layers in deep neural networks. [85] factorizes bilinear composition into

consecutive matrix multiplications along different dimensions. [74] uses the low-rank

approximation as in [80], and aggregates features hierarchically. (3) Methods to capture

richer feature statistics, so that distributions beyond Gaussian can be represented. [90]

propose a higher-order pooling scheme to extract feature co-occurrences of visual words

based on linearization of a higher-order polynomial kernel. [91] applies tensor sketch

to generate a compact explicit feature map up to p-th order. In spite of increasing the

representativeness, more computational loads are introduced.

We propose bilinear pooling methods from two perspectives: From the statistics per-

spective, our work [92] uses the temporal encoder-decoder architecture proposed by

[59]. To capture second-order statistics, the max pooling in [59] is replaced by novel

bilinear pooling operations. From the algebra perspective, our work [93] uses low-rank

tensor decomposition and random features to approximate second-order (even infinite-

order) information for feature dimension and computational load reduction. Details and

comparison to other state-of-the-art methods are referred to Chapter 4.

2.2.2 Healthcare Applications

For supervised human action parsing, we focus on the applications of fall detection and

fine-grained action parsing in daily activity videos. Detecting falls reliably and efficiently

is essential for elderly people healthcare, protecting elderly people from fatal injuries and

providing assistance without delay. Additionally, fine-grained actions are very common in

daily living scenarios such as cooking, cleaning and making breakfast tee, and hence an
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2.2 Supervised Human Action Parsing

effective algorithm for fine-grained action parsing is important for smart user interface for

the people assistance purpose.

Fall detection in videos. Systematic reviews of fall recognition and detection systems

can be found in [94] and [95], which cover solutions based on diverse types of sensors.

For vision-based methods, a typical processing pipeline consists of background sub-

traction, feature extraction and classification, as presented in [96, 97] and others. Each

step in this pipeline is normally hand-crafted, separately considered, and implemented

based on certain heuristic rules. A frequently considered rule is that the background

information is redundant for fall detection. Thus, background subtraction is performed by

algorithms like training Gaussian mixture models, subspace clustering, or other sophisti-

cated approaches [98]. Another heuristic rule is that the body shape is a pronounced

feature of falling. Consequently, the silhouette of the human body [96] [99], or the shape

of the foreground bounding box [97, 100], is extracted and analyzed. Nevertheless,

heuristics are not always precise and comprehensive. The studies of [101] and [102]

present effective fall detection solutions when considering the ground plane, indicating

that the background information can be very useful.

Comparing with traditional vision-based approaches, deep learning methods enable end-

to-end inference with minimal pre-processing on the input data, and the deep networks

can learn representative features from the data automatically. Several studies report that

deep learning methods lead to better performances in terms of action recognition [103]

[104], action detection [105, 106, 107], action segmentation [59, 108], and other tasks

of human behavior analysis. Their success encourages many studies of fall recognition

based on deep neural networks. For example, the work of [109] employs a convolutional

network with a similar architecture to the VGG16 net [58], and uses optical flow as

the input modality. The work of [110] uses a PCANet to recognize falls from image

sequences with the assistance of foreground detection.

When using deep convolutional networks to recognize fall in a reliable manner, it is

essential to understand how deep neural networks work. For such model explanation

purpose, several types of attribution maps have been proposed in the past [111, 112].
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For a specific input and a target class, the attribution map has the same spatial resolution

with the input, and reveals the influence of each input pixel to the probability of the target

class. The work of [113] proposes a saliency map, which is computed as the derivative

of the output with respect to the input. [114] proposes the integrated gradients, in which

the values show the difference between the net output of a reference input (normally

zero) and the net output of a sample. [115] proposes the DeepLIFT attribution measure,

which can be regarded as an approximated version of integrated gradients according to

[112].

Fine-grained action parsing in daily scenarios. Parsing fine-grained actions over

time is important in many applications, which require understanding of subtle and

precise operations in long-term periods, e.g. daily activities [116], surgical robots [117],

human motion analysis [38] and animal behavior analysis in the lab [118]. Therefore,

understanding fine-grained actions in videos has great potentials for our purpose of

elderly people healthcare.

The work of [116] creates a set of daily fine-grained action videos recorded via an

egocentric camera, and proposes an action recognition method considering both motion

features and egocentric features. The work of [119] proposes a two-stream (appearance

stream and motion stream) approach to perform object detection, and hand action under-

standing jointly. The work of [5] creates a multi-modal dataset of preparing salads, and

performs fine-grained action recognition via RGBD data and accelerometer information.

Instead of designing complex network architectures for fine-grained action parsing, we

focus on high-order information extraction, and propose bilinear pooling operations,

which can be employed as generic intermediate layers in arbitrary deep neural networks.

One can see the superior performances of the proposed bilinear pooling methods than

other state-of-the-art methods in Sec. 4.4.
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3Unsupervised Human Action Parsing via

Hierarchical Dynamic Clustering

In this chapter, we address the problem of human action parsing in an unsupervised

manner: Provided a time sequence of human motion features, we aim to partition the

entire sequence into several meaningful segments, and group these segments into

different clusters. Since no semantic labels are applied, each frame is assigned by a

cluster ID.

An effective unsupervised human action parsing algorithm can be widely used in many

applications, e.g. processing motion capture data, video summarization, detecting abnor-

mal behaviors and so forth. In our study we propose a hierarchical dynamic clustering

(HDC) pipeline (published in our work [51]), which is inspired by the Bag-of-Visual-Words

(BoW) pipeline [120, 121, 122, 12] for supervised action recognition. A classical BoW

pipeline usually comprises 5 modules, i.e., spatiotemporal feature extraction (e.g. his-

togram of optical flow [123] around spatiotemporal interest points [124], improve dense

trajectory features [125], etc.), codebook learning, feature encoding, feature pooling and

classification, in which only the last classification module is supervised and the first four

are unsupervised.

In this chapter, we present how to modify the pipeline from BoW to HDC, making it

suitable for unsupervised human action parsing. In particular, we have the following two

novel modules:

• Dynamic clustering. First, we propose a dynamic clustering algorithm for code-

book learning and temporal segment clustering. Compared to the traditional

k-means or spectral clustering approach, our dynamic clustering method does

not require to specify number of clusters in advance, has lower time complexity,

and can process sequential data in a temporal causal manner. Thus, it is more

suitable for time sequence processing, especially in cases without prior knowledge

of the number of clusters, or in cases requiring online and fast processing, such as

real-time fall detection in smart home.
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3 Unsupervised Human Action Parsing via Hierarchical Dynamic Clustering

• Local temporal pooling. Second, we propose local temporal pooling schemes

to replace the global pooling in the standard BoW pipeline. Temporal pooling is

essential, since the input spatiotemporal features, which are normally extracted

from individual time instants or very-short periods, are too local to represent actions.

The results directly from dynamic clustering can be severely over-segmented. The

local temporal pooling is to aggregate encoded spatiotemporal features within local

time windows. To determine these time windows and extracting action patterns

from individual time windows, we propose a kernelized cut-based pooling scheme

and a motion energy-based pooling scheme. Compared to the classical time

sliding window-based pooling, which normally uses a pre-defined window size,

our kernelized cut-based scheme and motion energy-based scheme are able to

produce data-adaptive time windows, so that the detected temporal boundaries

are more accurate and the extracted action patterns are more representative.

Tab. 3.1 presents the comparison between the BoW and HDC pipelines, and Fig. 3.1

illustrates our HDC pipeline. Same with BoW, our HDC framework is generic and can

take various types of spatiotemporal features as input. These features can be either

frame-wise, or representing actions in a short video snippet. To demonstrate our HDC

framework in a generic manner, we don’t mention any specific input features here. One

can see experiments with various input features in Sec. 3.6.1, in which the employed

input features are frame-wise body joint rotations, output from a deep neural network,

Fisher vectors from hand-crafted trajectory features, and so forth.

feature extraction codebook learning feature encoding feature pooling labeling
BoW same k-means/GMM same global classification
HDC DC local temporal DC

Table 3.1: Comparison between bag-of-visual-words (BoW) and hierarchical dynamic
clustering (HDC). Here DC stands for dynamic clustering.

In the rest of this chapter, we first present some preliminaries about BoW, and show an

example of how a BoW method works. Then, we successively introduce the modules in

our HDC pipeline, i.e. dynamic clustering, feature encoding, local temporal pooling and

temporal segment clustering. Afterwards, we show the experiments on temporal action

segmentation in videos and fainting detection in omnidirectional videos. One can see
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Dynamic 
Clustering

Feature 
Encoding

Temporal 
Pooling

Dynamic 
Clustering

Hierarchical Dynamic Clustering

two-stream 
VGG16

parsing result

input features

Figure 3.1: Illustration of our hierarchical dynamic clustering (HDC) method for human
action parsing. The input features are generic, and can be IDT+FV [125],
outputs of convolutional networks [103] or motion capture data. After raw
feature extraction, the following 4 components in HDC are applied, and
produce a 1-D piece-wise constant sequence indicating the human parsing
result. In this figure, colors denote different types of actions.

that our HDC method outperforms other state-of-the-art unsupervised methods in terms

of quality and speed. In the end, as a conclusion we discuss the pros and cons of our

HDC method for unsupervised human action parsing, and give some tricks of how to

use it in practice.

3.1 Preliminaries

Here we present some preliminary concepts of the bag-of-visual-words (BoW) pipeline,

and a few examples of how the BoW method works.
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3 Unsupervised Human Action Parsing via Hierarchical Dynamic Clustering

Before deep learning, the BoW framework is widely used in image classification [126]

and action recognition [12]. The aim is to derive a single compact representation of an

image or a video, via aggregating a set of local features (e.g. SIFTs [127]) in a bottom-up

manner. This bottom-up feature aggregation scheme can be regarded as a simulation of

how humans perceive and understand things in the world. For example, when seeing an

image, the V1 cell in the human vision system extracts image edges. After encoding and

aggregating all the edges, the visual cortex produces semantic meanings of this image.

When hearing a talk, a person hears the tone of each word sequentially. These tones

are then aggregated in the brain, so that the person can understand the meaning in the

talk. Without such bottom-up feature aggregation, a person cannot understand things

only based on low-level features. A person cannot understand what is in the image, only

by seeing an image edge. A person cannot understand what another person is talking,

only by hearing the tone of a language letter.

A standard BoW framework comprises 5 steps, i.e., (1) local feature extraction, (2)

codebook learning, (3) feature encoding, (4) feature global pooling and (5) classifica-

tion. Such bottom-up feature aggregation scheme shares some similarities with deep

neural networks, such as the VGG network [58] and the C3D network [128]. However,

rather than learning end-to-end in deep neural networks, the first 4 steps in BoW are

unsupervised and only the last classification step is supervised.

Let’s take a toy example of how to use BoW to extract compact representations of 3

walking paths on a 2D ground plane. We assume that the first walking path W1 has N1

frames, the second walking path W2 has N2 frames, and the third walking path W3 has

N3 frames, respectively.

(1) Feature extraction. From each frame of each walking path, we extract the 2D

location as the local feature. Therefore, the first walking path is represented by a set of

N1 locations, the second walking path is represented by a set of N2 locations, and the

third walking path is represented by N3 locations, respectively.
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(2) Codebook learning. Here we use Kmeans to cluster all N1 + N2 + N3 locations

in the three sets to K clusters, i.e. {c1, c2, ..., ck}. The K clusters are regarded as the

codebook.

(3) Feature encoding. For simplicity, here we use the hard assignment scheme [12]

as an example. For a 2D location x in a walking path, we compare the distance between

x and these cluster centers in the codebook, and then assign the ID of the closest cluster

to x, i.e., i = arg mink ‖x − ck‖22. Next, we encode the location x to a K-dimensional

one-hot vector, in which the k-th element is 1 and other elements are 0. We denote this

K-dimensional one-hot vector as φ(x).

(4) Feature global pooling. After feature encoding, a walking path can be represented

by a set of encoded features, i.e., {φ(x1), φ(x2), ...}. To derive the compact represen-

tation for each individual walking path, we perform global pooling to aggregate these

encoded local features. For simplicity, we take average pooling as an example. In

this case, the compact representation of the first walking path is
∑
x∈W1 φ(x)/N1, the

compact representation of the second walking path is
∑
x∈W2 φ(x)/N2, and the compact

representation of the third walking path is
∑
x∈W3 φ(x)/N3. According to the investigation

in [12], an additional normalization step, e.g. l1 and l2 normalization, after the global

pooling is beneficial.

(5) Classification. After the four steps above, we can get a compact representation for

each individual walking path. If each walking path has a ground truth label, for example,

the first walking path is “walking” and the second walking path is “running”, then one can

train a classifier (e.g. support vector machine [129]) for classification. During the testing

phase, we following the same four step to derive the compact representations of test

walking paths, and then use the trained classifier to make predictions. One should note

that encoding features of test samples should be based on the codebook learned from

training samples.
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3 Unsupervised Human Action Parsing via Hierarchical Dynamic Clustering

The above five steps are performed consecutively. Advanced methods to improve

individual steps can boost the overall performance. For example, Fisher vector encoding

[10] yields better image recognition results than the standard BoW method, by employing

Gaussian mixture models to learn the codebook and incorporating second-order statistics

during feature encoding.

Our HDC method has three major differences from the standard BoW method: (1) We

use a novel dynamic clustering method to learn the codebook. (2) Rather than performing

global pooling to encode an entire time sequence into a single compact representation,

we perform local temporal pooling to partition an entire time sequence into several

segments, and extract a compact representation from each individual segment. (3)

Rather than training a classifier supervisedly, we perform dynamic clustering on the

sequence of compact representations, so as to assign each temporal segment a cluster

ID. Therefore, our HDC method is fully unsupervised.

3.2 Dynamic Clustering

In this section, we present our dynamic clustering algorithm, which is specifically de-

signed to cluster frames in time sequences. We have published our dynamic clustering

method in [38]. To focus on algorithm demonstration, we do not specify details of input

features. One can see Sec. 3.6.1 for experiments with various feature types, such

as frame-wise human body joint locations and Fisher vectors extracted from dense

trajectories.

Given a time sequence of generic feature vectors, our dynamic clustering algorithm

assigns each individual entry in the sequence into a cluster, and hence can partition

the entire sequence into disjoint segments. Formally, we assume that we are given

a sequence of vectors x1, . . . ,xt, . . . as input, in which every xi ∈ Rd is the feature

vector at time i. To make our approach applicable in realistic scenarios, we do not make

additional assumptions on the input feature vectors, in the sense that each new arriving

input xi could be either a feature vector corresponding to a single frame or a video

snippet (e.g. 50-frame video clip).
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The design of our algorithm is based on the fact that the feature vectors representing the

same human actions are similar to each other. Therefore, in a time sequence, a new

arriving action feature is grouped with “similar features” observed before, and partitioned

from “dissimilar” features observed before. To achieve this goal, our dynamic clustering

algorithm have two steps, i.e., an initialization step and an updating step. We give

conceptual descriptions here, and then demonstrate their details in Sec. 3.2.1.

The initialization step aims to quantify the sense of “similar”. Our algorithm first computes

the basic statistics of the feature vectors in the time sequences. Specifically, we build

a fully connected graph G from the first few feature vectors (e.g. the features arriving

in the first 1 second), and run spectral clustering on G. In contrast to conventional

spectral clustering algorithms that only cluster the vertices of G, our algorithm computes

the cluster centers {ci}ki=1 to measure how far clusters are separated from each other,

as well as the diagonal matrices {Σi}ki=1 to measure how concentrated all the feature

vectors within each cluster are around the center. We define the cluster set C as the

combination of {ci}ki=1 and {Σi}ki=1.

After obtaining the basic feature statistics, our algorithm enters the updating phase, and

runs in an online fashion. Specifically, for every arriving feature vector xt, the algorithm

computes the distance between xt and its closest center of all the observed clusters

c1, . . . , ck, i.e., dist(xt, C) = min1≤i≤k ‖xt − ci‖2. Based on dist(xt, C), and matrices

{Σi}, the algorithm decides whether to put xt into its closest cluster, or generates a new

cluster to host xt. One can note that the runtime of this step is only proportional to the

number of currently observed clusters and the dimension of the feature vectors, which is

independent of the length of the video stream. Hence, the update time for every arriving

feature vector can be accomplished in O(1) for most applications.

3.2.1 Algorithm

In the following, we demonstrate details of the initialization step and the online updating

step, respectively:
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Initialization step. The input of the initialization step are the initial ` feature vectors

x1, . . . ,x` from a video stream. The algorithm first constructs a fully connected similarity

graph G = (V,E) of ` vertices, denoted by v1, . . . , v`, where each vi corresponds to

a vector xi and the weight of the edge between vi and vj is defined as w(vi, vj) =

exp
(
−‖xi − xj‖2/σ

)
with a parameter σ, which quantifies the similarity between vi and

vj . This graph G is represented by the normalized Laplacian matrix, which is defined by

L = I−D−1/2AD−1/2, where I ∈ R`×` is the identity matrix, D ∈ R`×` is the diagonal

matrix defined by Di,i =
∑
j w(vi, vj), and A ∈ R`×` is the adjacency matrix of G. We

then compute the eigenvalues λ1 ≤ . . . ≤ λ` of L, and use the eigengap heuristic

introduced in [130]. Specifically, in our implementation, we use the smallest value k with

the largest absolute difference between λk+1 and λk to determine the number of clusters.

This method is widely used for determining the number of clusters in practice, see [131]

for theoretical explanation and [130] for detailed discussion.

After computing the value of k, the algorithm runs k-means for the initial ` feature vectors

x1, . . . ,x`. In addition to the k clusters produced by k-means, the following quantities

are computed: (1) Centres {ci}ki=1 for these k clusters; (2) covariance matrices {Σi}ki=1,

where Σi , diag
((
σ

(i)
1

)2
, . . . ,

(
σ

(i)
d

)2
)

and σ(i)
j is defined as the `2-distance of the jth

coordinate between all the feature vectors in the ith cluster and their center; (3) radii

{ri}ki=1 for the k clusters and defined by ri , Tr Σi. Moreover, we define a minimum

area of the cluster δr with δr , c · d, which is similar to the search radius introduced in

[32]. Here d denotes the dimension of the input feature vector to dynamic clustering, and

the constant c is a hyper-parameter, which can be viewed as the uncertainty estimate of

each dimension and is empirically determined depending on the use.

Online evolution step. The second step of our algorithm is the online clustering based

on the statistical information of the currently observed clusters. Specifically, for every

arriving xt, the algorithm computes the Euclidean distance between xt and its closest

center, i.e., dist(xt, C) = min1≤i≤k ‖xt − ci‖2. Depending on this distance, the algorithm

either creates a new cluster consisting of a single point xt, or adds xt to its closest

cluster and updates the corresponding ci and Σi. The formal description is presented in

Algorithm 1. Here, ◦ denotes the Hadamard product operation. Notice that, for the task
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of online segmentation, a transitional point is detected if the current observed xt and

xt−1 belong to different clusters.

Algorithm 1 Online evolution step
1: dist(xt, C) = min1≤i≤k ‖xt − ci‖2.

i? = arg min1≤i≤k ‖xt − ci‖2.
2: if dist(xt, C) ≥ max {ri? , δr} then . adding a new cluster

k ← k + 1; Sk ← {xt};
ck ← xt; Mk ← xt ◦ xt;
Σk ← (0, 0, ..., 0)T .

3: else . updating the closest cluster
ci? ← ci? + (xt − ci?) · |Si? |−1;
Mi? ← (Mi? · |Si? |+ xt ◦ xt) / (|Si? |+ 1);
Σi∗ ←Mi? − ci? ◦ ci? ;
ri? ← Tr Σi? ; Si? ← Si? + {xt}.

Determining the threshold hyper-parameter. Although the dynamic clustering algo-

rithm does not require to specify number of clusters in advance, the value of δr can

manipulate the number of clusters. When δr is too large, then all elements in the input

feature sequence are grouped into one cluster. When δr is too small (e.g. close to 0),

then each element in the input feature sequence becomes a cluster center. One can note

that such threshold value has no direct correspondence to the number of clusters like in

k-means. Therefore, in some applications with prior knowledge of cluster numbers, one

probably needs validation data to search a value of δr according to the prior knowledge

of number of clusters. Without prior knowledge of number of clusters, empirically one

can first run spectral clustering on the validation data to determine the number clusters

using the eigengap heuristic [130]. Then the value of δr can be regarded as half of the

minimum distance between two clusters. Additionally, the threshold δr can explicitly

represent the minimum distance of two different clusters in the feature space, and hence

our dynamic clustering algorithm is well suitable for applications with the prior knowledge

like “at least how far two points are belong to different clusters”. For example, transition

from the “sitting” pose to the “standing” pose of a human body can cause a gap between

the body joint rotations. In this case, the value of δr can be determined as the half of the
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distance between the two joint rotation features, e.g. the concatenation of individual joint

3D rotations relative to the pelvis.

3.2.2 Runtime Analysis

In the initialization step, we first need to build the similarity graph G based on ` feature

vectors, each of which has dimension d. This takes O(`2 · d) time. After that, computing

all the eigenvalues of the graph Laplacian L takes O(`3) time, and O(` ·k) time is needed

for writing down the spectral embedding of all the vertices. Since the number of clusters

k = O(1) for most applications, this initialization step takes O
(
`2 · d+ `3

)
time.

In the online evolution step, computing the distance between every arriving xt and its

closest center takes time O(k · d), where k is the number of clusters at time t. After that,

O(d) time suffices to update all the quantities maintained by the algorithm. Hence, the

update time for each arriving feature vector is O(k · d).

3.2.3 Qualitative Results

To qualitatively show that dynamic clustering outperforms k-means and spectral cluster-

ing for high-level action pattern grouping, we perform a qualitative experiment. Specifi-

cally, we estimate the improved dense trajectories, and derive Fisher vectors [125] of the

drinkwaterS1R1 video in the RADL dataset [133], which consists of three actions (i.e.,

fetching water, pouring water, and drinking water). The Gaussian mixture model has 32

components, and is trained from the videos drinkwaterS1R2 and drinkwaterS1R3. The

Fisher vectors have 12,288 dimensions, and are extracted using a sliding window of

50-frame length and 1-frame stride. We apply PCA to reduce the dimension of vectors

to 50 before running the clustering algorithms.

The results are shown in Figure 3.2. The sequences of the high-dimensional feature

vectors are visualized by t-SNE [132], which can visualize high-dimensional data in a

low-dimensional space. One notes that the low-dimensional result of t-SNE preserves

the topology (or distance relations) in the original high-dimensional space. However, the

original shape is not preserved. A high-dimensional straight line may become to a curve
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time

fetching water pouring water drinking water

k-means human annotationspectral clustering

dynamic clustering

Figure 3.2: Qualitative comparison of different clustering methods. The first row shows 5
frames of a video with 3 consecutive actions. The extracted dense trajectories
[125] are also rendered. The second row shows how the dynamic clustering
gradually assigns cluster IDs to video frames (denoted by colors), and creates
new clusters (denoted by crosses), visualized by t-SNE [132]. The third row
shows the results of k-means, spectral clustering and human annotation for
comparison. Thus, one can compare the three curves in the third row with
the last curve in the second row, which indicates the final result of dynamic
clustering. We use blue, red and yellow to denote fetching water, pouring
water and drinking water when conducting human annotation, and denote
the cluster ID 0, 1 and 2 when running clustering algorithms.

in the 2D space. Also, t-SNE is based on nonlinear optimization, and the initial values

are set randomly at each run. Therefore, t-SNE can generate visualization results with

different shapes, given the same high-dimensional input data. All results are valid for the

visualization purpose.
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From these results, one can see that the dynamic clustering algorithm is able to generate

and update cluster structures in an online fashion, leading to comparable results with

the human annotation. On the other hand, the k-means and the spectral clustering

algorithms falsely parse pouring water and drinking water actions into non-consecutive

segments, so the performance is inferior to the proposed dynamic clustering algorithm.

3.2.4 Further Discussion

Comparison with online k-means. Online k-means clustering has received consid-

erable attention in theoretical computer science and machine learning, and it shares

some similarities with our dynamic clustering method. To our knowledge, the most recent

version of online k-means is proposed by Liberty et al. in [134]. Compared to this version,

our proposed dynamic clustering algorithm has two essential differences:

First, it has been observed in [134] that the online k-means algorithm with bounded

approximation guarantee has to generate strictly more than k clusters. On the other hand,

our dynamic clustering method does not have such constraint. In fact, the threshold

hyper-parameter δr can be regarded as an estimated measure of the feature space, and

play the role penalizing of the cluster numbers. According to [135, Algorithm 1, Eq. 1],

our method can be regarded as an algorithm to solve

min
{Sc}k

c=1

k∑
c=1

∑
x∈Sc

‖x− µc‖22 + δr · k (3.1)

subject to µc = 1
|Sc|
·
∑
x∈Sc

x, (3.2)

in which µc is the center of the cluster Sc, k denotes the total number of clusters, δr is the

threshold in our dynamic clustering algorithm, and the operation | · | denotes extracting

the number of samples in a cluster. One can see that a large value of δr can penalize the

number of clusters, and decreasing the value of δr can increase the number of clusters.

The online k-means algorithm has a hyper-parameter k, namely the number of clusters,

while our dynamic clustering algorithm has a hyper-parameter δ, which can indicate the
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proximity of different actions. In some cases, for example, an online non-stopping video

streaming that captures a single person behavior in a living room, it is not straightforward

to determine how many different actions will occur in future, but it might be easier to

specify the proximity of different actions. In this case, our dynamic clustering method is

more suitable to use.

Second, the online k-means in [134] can lead to a local minimum with a large cost value.

Assume all the data points are in R, k = 2, and the first two arriving points are x1 = 0

and x2 = 1, respectively. At this point any algorithm will put x1 and x2 into two clusters

with total cost 0, since otherwise putting them into a single cluster will increase the

cost value from 0 to 1/2. However, after an algorithm assigns x1 and x2 to different

clusters, the third arriving point could be x3 = c for an arbitrary large value c. Since

the online k-means algorithm only generates a new cluster by probability, it can put

x3 into one of the two existing clusters, which makes the total cost as least O(c) in

contrast to the optimal cost value 1/2. It is straightforward to generalize this example to

the case of k ≥ 3 clusters in high-dimensional space. On the other hand, our dynamic

clustering algorithm produces deterministic solutions, after the input time sequence

and the hyper-parameters of the algorithm are fixed. Therefore, the dynamic clustering

method will create a new cluster for x3 in this case.

Why is dynamic clustering suitable for time series processing? To explain, we

first look at the task of clustering feature vectors x1, . . . ,xn ∈ Rd into 2 clusters in an

action sequence, e.g. “A→B→A”, using the conventional k-means or spectral clustering

methods. In the assignment step, each point is assigned to a cluster according to the

closest distance, and the temporal order and temporal regularity is totally ignored. This

fact can for example cause over-segmenting the continuous action “B”, if it contains some

body poses similar to poses in the action “A”. On the other hand, our dynamic clustering

processes arriving features in an online and causal fashion, updating the cluster structure

only based on the current arriving feature. According to the temporal regularity of natural

human motions, a time sequence of action features tends to be temporally smooth, and

our dynamic clustering algorithm will receive many points around a cluster center, before

receiving points from another cluster. Therefore, when encountering the ambiguous
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3 Unsupervised Human Action Parsing via Hierarchical Dynamic Clustering

poses in “B”, our dynamic clustering algorithm tends to assign these poses to “B”, since

the cluster of “A” is still growing and far away. Fig. 3.2 shows such advantages of

dynamic clustering, compared to conventional k-means and spectral clustering.

3.3 Feature Encoding

Here we present how to encode the raw features with the learned codebook. Following

the standard bag-of-the-words pipeline, we use the soft-assignment method due to its

simplicity, high efficiency and effectiveness [12]. Specifically, given a feature vector

x ∈ Rd and a set of cluster centers {ck}Kk=1 with ck ∈ Rd, the vector encoding is done by

computing the distance between the feature vector and the clusters. In this case, the

encoded feature vector φ(x) is K-dimensional, and each entry is given by

φ(x)k = exp(−λ|x− ck|2)∑
k exp(−λ|x− ck|2) (3.3)

for k = 1, 2, ...,K. Hence, all entries of the encoded feature vector φ(x) are positive. One

can note that a larger λ can make φ more sparse. In the extreme case, φ becomes to a

one-hot vector. A smaller λ can make φ more smooth. In the extreme case, φ becomes

to a constant vector, which does not contain information. In our study, we empirically

set λ = 0.1 according to [136], so as to balance the sparseness and representativeness

of the encoded feature vector φ. There exist a number of studies on feature encoding

methods, which can be referred to [12]. More advanced feature encoding methods are

out of the scope of our investigation.

3.4 Local Temporal Pooling

As presented in Sec. 3.1, the conventional BoW pipeline for action recognition, i.e.,

assigning an action label to the entire video, requires a global pooling operation to

aggregate encoded local spatiotemporal features to a global action pattern, which is a

compact representation of the action in the entire video. Aiming to perform unsupervised
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temporal segmentation in untrimmed videos, i.e., assigning cluster IDs to individual

temporal segments, we perform local temporal pooling, in order to aggregate encoded

spatiotemporal local features in individual time windows to compact high-level action

representations.

Such feature aggregation step is essential. In many cases, the input spatiotemporal

feature is too local to represent an action. For example, if each feature vector in the input

time sequence represents the body pose in each individual frame, this kind of feature

vector covers too short time to represent a long-term action, e.g. running, which spans

tens of frames and consists of multiple body poses. Therefore, directly applying dynamic

clustering to partition the input sequence can lead to over-segmentation. The resultant

cluster IDs assigned to individual frames cannot represent actions.

Our local temporal pooling can be divided into two consecutive problems, i.e., temporal

boundary localization to determine time windows, and feature aggregation in individ-

ual temporal windows. One can see that determining time windows and aggregating

features are “chicken-and-egg” problems: First, it is obvious that high-quality time win-

dows are essential to extract representative action patterns. For example, provided

an inaccurate time window, e.g. a time window containing half cycle of walking and

then falling, the aggregated action pattern from this time window has mixed actions,

and hence is not able to effectively represent either walking or falling. Second, a high-

performance feature aggregation method can produce high-quality action patterns, which

are easy to segregate, and are favorable for localizing temporal boundaries to determine

time windows. In our study, we aggregate encoded local features via averaging. More

advanced aggregation schemes are out of the current scope.

According to these natures, in the following we first present the sliding window-based

pooling as the baseline, and then present our proposed kernelized cut-based pooling

and motion energy-based pooling. To focus on algorithm demonstration, we do not

specify the feature types here. One can see experiments in Sec. 3.6.1 with various types

of input features, such as Fisher vectors from estimated dense trajectories, output from

deep neural networks and frame-wise body skeleton locations.
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3.4.1 Sliding Window-Based Pooling

Sliding window-based method is widely used in action detection in videos, e.g. [137].

Here, we use a sliding time window on the encoded feature vector sequence, which is

derived via our codebook learning and our feature encoding approaches stated before.

However, due to large variations in the temporal scales of different human motions, a

unique pre-defined time window size can easily either break a coherent motion into

several segments or falsely merge different motions into one, and hence often produces

poor high-level action patterns as illustrated in Figure 3.3.

3.4.2 Kernelized Cut-Based Pooling

As mentioned before, determining time windows and extracting representative action

patterns from individual time windows are “chicken-and-egg” problems, and suboptimal

time windows from the sliding window scheme can degrade the representativeness

of resultant action patterns. For example, if the time window covers both “sitting” and

“walking”, then the action pattern derived from this time window is not representative

for either action, no matter how advanced the feature aggregation method is. To over-

come this issue, we propose a kernelized cut-based pooling method, which iteratively

performing temporal boundary localization and feature aggregation to make patterns of

different actions more distinguishable. The effectiveness of such iterative scheme is also

reported by [138]. In our study, we conduct two iterations, since more iterations do not

offer significant improvements, but make the computation much slower due to the graph

cut. Specifically, such two iterations are as follows:

• In the first iteration, we run the sliding window-based pooling, for which the time

window size is T (its value is specified later) and the sliding stride is 1 frame.

Namely, we run the sliding window scheme to obtain time windows, and from each

time window we aggregate encode local features via averaging. As a result, we

can obtain a sequence of action patterns.

• In the second iteration, we build a fully connected graph according to the action

patterns obtained in the first iteration, and then use a graph cut method to determine
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new disjoint segments. Next, we aggregate the encoded input raw features by

averaging within each individual temporal segment. One notes that the second

feature aggregation is based on the original encoded input features, rather than

the action patterns from the first iteration. The reason is that averaging the action

patterns, which are obtained by averaging before, will make the results over-smooth,

and degrade their capabilities of action representation.

Here we present how to create the fully connected graph and conduct graph cut. Refer-

ring to [139, 33, 140], an essential question is how to design a kernel function to specify

the edge weights. Inspired by [139], we propose a kernel function to measure feature

similarity with consideration of local temporal structures. Given a set of features {xi},

the kernel function k(·, ·) is given by

k(xi,xj) = ks(xi,xj) · kt(xi,xj) = exp(−α‖xi − xj‖22) · 〈x̄i, x̄j〉
‖x̄i‖2 · ‖x̄j‖2

(3.4)

where x̄i = 1
|Ni| ·

∑
k∈Ni

xk, Ni denotes a temporal range centered at xi and α is a

positive constant. In our trials, we find that |N | ≈ 1.5T (1.5 times of the dense sliding

window size) empirically yield good results on different datasets. In the kernel function,

the first component ks measures the similarity of two frames straightforwardly; the second

component kt incorporates temporal information and hence can differentiate two identical

features with different temporally local statistics. In addition, in our case the set {xi} is

obtained by the soft-assignment encoding [12] and hence is located within the domain of

positive real numbers, leading to the fact that k(·, ·) is positive-definite and its co-domain

is non-negative. In our empirical trials, our proposed kernel performs better than the one

in [139].

Given the kernel function, one can perform two types of cut: sequential cut as in [139],

and batch cut as in [33, 140]. In the sequential cut, the number of cuts are highly

influenced by the temporal neighbourhood size |N |: The shorter the neighbourhood size

is, the more cuts are produced. One can note that a high recall value can be achieved

in the result of human action parsing, if the number of cuts is large. In the batch cut,

one is required to specify the number of action clusters in advance. Similar to specifying

the neighbourhood size in the sequential cut, a larger number of clusters will result in a
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sliding window

kernelized cut
Figure 3.3: Comparison between sliding window-based pooling and kernelized cut-based

pooling with the kernel function Eq. (3.4). From left to right in each pooling
method: (1) A sequence of body skeletons represented by the concatenation
of 3D joint locations, in which the vertical bar indicates the detected segment
boundary. (2) The similarity matrix computed by Eq. (3.4), ranging from 0
(blue) to 1 (yellow), in which the cut position is shown.

larger number of cuts. Nevertheless, a smaller number of clusters can also lead to large

number of cuts in certain cases.

As a qualitative result, Fig. 3.3 illustrates the benefit of a kernelized cut over the sliding

window-based pooling with a pre-fixed window size. According to the skeleton sequence,

which is represented by the concatenation of 3D joint locations, one can see that

the kernelized cut method detects a segment boundary at a more meaningful place.

According to the similarity matrix shown in Fig. 3.3, one can see that the kernelized cut

finds a cut that locally maximizes intra-segment similarity and minimizes inter-segment

similarity. Empirically, setting the time window size T to the frame rate is without loss of

generality, and yields good results in our trials.
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3.4.3 Motion Energy-Based Pooling

Although the kernelized cut can derive segment boundaries that maximize intra-segment

similarity and minimize inter-segment similarity, it has two drawbacks: (1) The kernelized

cut is performed based on the similarity matrix, which is computationally expensive

to obtain. (2) The two iterations, i.e. first running sliding window-based pooling and

then running graph cut, do not eliminate the “chicken-and-egg” problem, since temporal

boundary localization and feature aggregation are computed from the same information

source.

To overcome these drawbacks, we propose the motion energy-based pooling, which

is inspired by the observation that most human motions can be categorized into two

meta-classes, i.e., moving actions and still poses, depending on the motion energy.

Compared to the kernelized cut-based pooling, this motion energy-based method is

more efficient, since it detects segment boundaries only based on the motion energy,

which is fast computed from cluster IDs. Also, the motion energy can be considered as

another information source, so that the “chicken-and-egg” problem tends to be avoided.

Like in [141], for a continuous human motion, we represent motion energy as a 1D

function over time. Based on this 1D motion energy function, we determine temporal

segments, and categorize these segments into the two meta-classes. Same with our

sliding window-based pooling and the kernelized cut-based pooling methods, the input

to this motion energy-based pooling is also a time sequence of encoded local features,

as well as their individual cluster IDs derived from our dynamic clustering algorithm.

The 1D motion energy function is calculated based on the cluster IDs that the encoded

input features belong to. We employ a moving window with size Tm and 1-frame stride to

sequentially compute the number of transitions between clusters divided by the window

size. Next, we detect peaks on the motion energy curve, retrieve windows around these

peaks as the time periods of moving actions, and regard the remaining regions as still

poses. We would like to emphasize that peaks in this 1D motion function are much

easier and reliable to detect. Videos of daily livings usually contain long-term still poses,

which cause the motion energy function staying at zero for a long time. These wide basin

structures appear frequently, regarding them as valleys and determining their locations
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are ambiguous and not reliable. Afterwards, in each individual segment, we fuse the

encoded raw features (encoded body skeleton locations for example) by averaging, in

order to represent the action in the segment. Empirically, setting Tm to the frame rate is

without loss of generality and yields good results in our trials.

Here we give an example of how to compute the 1D motion energy function from the

cluster ID sequence. We assume that the cluster sequence ID is 1, 1, 2, 2, 3, 2, 2, 4, 4, 4,

and the moving window size Tm is 3. With reflection padding on the two ends of the

cluster ID sequence, i.e. appending another “1” to the left and another “4” to the right, the

jumps in the cluster ID sequence is 0, 1, 1, 1, 2, 1, 1, 1, 0, 0. Thus, the 1D motion energy

is 0, 1
3 ,

1
3 ,

1
3 ,

2
3 ,

1
3 ,

1
3 ,

1
3 , 0, 0. Figure 3.4 illustrates the motion energy-based pooling. The

raw input is a time sequence of body skeletons, each of which is represented by the

concatenation of 3D joint locations. After dynamic clustering and feature encoding, the

input to the motion energy-based pooling is the sequence of encoded body features, as

well as their cluster IDs.

tstill poses moving actions

Figure 3.4: Illustration of the motion energy-based pooling. The color of dots denotes
the cluster ID, the curve denotes the motion energy measure and the arrows
denote the detected peaks. One can see that the moving actions and still
poses are differentiated.

3.5 Temporal Segment Clustering

In the HDC pipeline (see Fig. 3.1), the last step is to cluster the obtained action patterns

of temporal segments, which corresponds to classification in the conventional BoW
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pipeline. After local temporal pooling, we employ another dynamic clustering module,

which takes the high-level action patterns as input, to assign each individual temporal

segment a cluster ID. One can note that we have 2 dynamic clustering modules in the

HDC pipeline. The first one is used for codebook learning, and the second one is used

here for temporal segment clustering.

The temporal segment clustering procedure can either be performed in a sequential

manner, i.e. running dynamic clustering sequentially as taking the sequence of high-level

action patterns as input, or be performed in a concurrent manner according to some meta

information. For example, concurrent dynamic clustering can use the meta information

from the motion energy-based pooling. One can recall that the motion energy-based

pooling not only extracts high-level action patterns from temporal segments, but also

categorizes these temporal segments into two meta classes. In this case, we run two

separate dynamic clustering steps concurrently, in order to assign independent cluster

IDs for segments of moving actions and segments of still poses, respectively. In the

end, the cluster IDs of different meta actions are unified. For example, there are three

segments of moving actions with cluster IDs “a1”, “a2”, and “a3”, and there are two

segments of still poses with cluster IDs “b1” and “b2”. To unify the cluster IDs, we

change “b1” and “b2” to “a4” and “a5”.

3.6 Experiments

Considering the applications for elderly people healthcare, in our study, we conduct two

experiments on temporal action segmentation and novel action detection in omnidirec-

tional videos, respectively. An effective solution to temporal action segmentation is highly

useful for parsing and understanding composite daily activities. An effective solution

to novel action detection in omnidirectional videos can be used for detecting abnormal

behaviors, such as fainting and falling, from surveillance cameras in smart homes or

hospitals.
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3.6.1 Temporal Action Segmentation

Datasets. We use the CMUMAD [142] and the TUMKitchen [143] datasets to evaluate

the performance of our methods for temporal action segmentation. CMUMAD contains

40 recordings (video and motion capture data) from 20 subjects, and each recording

comprises 35 different actions and a null action (standing still) in between. TUMKitchen

contains 20 recordings from multiple types of modalities such as videos, motion captures

and on-off sensors on the door. The action labels are annotated for the torso and the

arms separately.

Evaluation metric. On the CMUMAD dataset we evaluate the performance on action

segment detection in terms of precision/recall/f1-score. Following the work [142], we

also exclude the standing action (null class) when evaluating the method performance.

Since all actions only occur once in each recording, from the beginning of the recording

a true positive detection is defined as a segment having at least 50% overlaps with the

ground truth segment and the associated cluster index has not been detected before.

On the TUMKitchen dataset we evaluate how effective our algorithm can locate the

segment boundaries. We don’t use this dataset for action segment detection, because

the annotation of arm motions is based on hand-object interaction, leading to many

cases that the same arm pose can have different semantic action labels. The detection

metric is also in terms of precision/recall/f1-score, and a true positive detection is the

boundary detected within ±7 frames (approx. ±0.25 second) of a ground truth boundary.

In addition, we report the score about the left and the right arms jointly, due to their

symmetric musculoskeletal natures.

Input features. Our algorithm is generic, and is able to process diverse types of

features from different modalities. In our experiment, we use the following features: (1)

The output of the fc8 layer of the pre-trained two stream deep neural model VGG-16 [103,

144], which is denoted as VGG16. (2) The concatenation of all the 3D coordinates of the

joints in each individual frame, which is denoted as JointLocation. (3) The relative 2D

angles between each two adjacent 3D body parts, which is denoted as RelativeAngle.
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(4) The quaternion representation of the 3D rotations (e.g., yaw, pitch and row) of the

joints, which is denoted as Quaternions. The evaluation metric and the input features

are identical to the one used in [38] to enable a fair and direct comparison with the

state-of-the-art. One can note that for TUMKitchen we don’t use VGG16, since such

feature is extracted from video frames without separating human body parts, but the

annotation is separate for torso and arms.

Comparison between clustering methods w.r.t. temporal segment clustering. We

use the torso motions in TUMKitchen to compare k-means, spectral clustering and dy-

namic clustering, since the torso motion only has two types, i.e. StandingStill and

Walking. For fair comparison, for all three methods we use dynamic clustering for

codebook learning and sliding-window based pooling in the HDC pipeline (Fig. 3.1) As

shown in the top plot of Figure 3.5, the proposed dynamic clustering method for temporal

segment clustering outperforms the other two methods over all the three body pose

features.

Comparison between temporal pooling schemes. To validate the effectiveness of

the proposed local temporal pooling methods, we further compare with the conventional

sliding window approach (SW) with an empirically optimal window size. As shown in the

second plot of Fig. 3.5, the f1 scores from the sliding window scheme are consistently

smaller than the f1 scores from the kernelized cut pooling scheme and the motion energy

pooling scheme with various input features. This fact indicates that our proposed local

temporal pooling methods are effective, and robustly outperform the baseline method.

Comparing with the state-of-the-art. We compare our methods with the following

existing methods: TSC [33], ACA [31], EMS [32] and DC [38]. The results on the

CMUMAD dataset are shown in Table 3.2. HDCME , HDCKC−S and HDCKC−B denote

our proposed hierarchical dynamic clustering with the motion-energy based pooling,

the kernelized sequential cut-based pooling and the kernelized batch cut-based pool-

ing method, respectively. Note that, DC [38] compared in Table 3.2 utilizes the prior
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Figure 3.5: The f1-scores of different methods using features are shown here for com-
parison. One notes that the f1 score ranges from 0 to 1, and its value is the
higher the better. The top plot: Comparison of clustering methods to cluster
temporal segments of torso motions in TUMKitchen, where SC and DC are
spectral clustering and dynamic clustering respectively. The bottom plot:
Comparison of the temporal pooling schemes on CMUMAD.

knowledge to dedicatedly design the temporal pooling step for CMUMAD, whereas our

proposed temporal pooling methods are generic and do not use any dataset specific

information. Nevertheless, HDCME outperforms other work for most of the input features

considerably. A probable reason is that HDCME can separate static body poses and

moving actions, which fits the human motion action characteristics in CMUMAD. One

can recall that the continuous human motion in CMUMAD has consecutive actions with

the pose of standing still in-between.
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Method VGG16 [144] JointLocation RelativeAngle Quaternions

TSC [33] 0.01/0.20/0.02 0.10/0.30/0.15 0.05/0.29/0.09 0.05/0.29/0.09
ACA [31] 0.56/0.66/0.61 0.55/0.68/0.61 0.51/0.65/0.57 0.55/0.66/0.60
EMS [32] 0.67/0.73/0.70 0.34/0.78/0.47 0.47/0.89/0.62 0.60/0.51/0.55
DC [38] 0.44/0.60/0.51 0.82/0.86/0.84 0.63/0.64/0.63 0.63/0.52/0.57
HDCKC−S 0.23/0.41/0.29 0.50/0.82/0.62 0.52/0.82/0.64 0.31/0.58/0.40
HDCKC−B 0.14/0.40/0.21 0.39/0.86/0.54 0.37/0.85/0.52 0.18/0.61/0.28
HDCME 0.72/0.82/0.77 0.86/0.88/0.87 0.87/0.91/0.89 0.76/0.57/0.65

Table 3.2: Comparison with the state-of-the-art on the CMUMAD dataset. The results
are shown in the format of precision/recall/f1-score. Best are in boldface.

The results on the TUMKitchen dataset are shown in Table 3.3. For the TUMKitchen

dataset, the input body pose features are derived from the 3D motion capture data rather

than from video frames, and the 1D motion energy function is computed according to

the method demonstrated in Sec. 3.4.3. Therefore, the 1D motion energy sequence

has the same temporal length with the input time sequence. In terms of the f1-score,

the proposed HDCKC−B method shows superior performance to other methods. Inter-

estingly, the performance of the HDCME method is not as outstanding as it is on the

CMUMAD dataset. Our observation is that in the TUMKitchen dataset, the recorded

persons perform fine-grained and long-time actions, and hence the variation for the 1D

motion energy function frequently stays at a low value range. In this case, the motion

energy curve does not provide strong signals on how to segment the continuous motion.

Nevertheless, the performance of HDCME is still comparable to other state-of-the-art

methods, especially for the JointLocation of torso.

3.6.2 Fainting Detection in Omnidirectional Videos

Computer vision systems have great potentials to be employed in smart home, hospital

and other environments for healthcare purpose [145, 146]. Compared with wearable

sensors like smart wristband, a camera network can perceive human bodies in an

unobstructing manner and one can extract rich information of human behaviors from

imagery data. To avoid installing a complicated camera network, in many applications

an omnidirectional camera is sufficient, since its angle of view is 360-degree wide to

perceive the entire indoor environment and from the captured videos one can effectively
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Method body part JointLocation RelativeAngle Quaternions

TSC [33] Torso 0.12/0.04/0.06 0.28/0.10/0.15 0.31/0.19/0.24
Arms 0.42/0.28/0.34 0.29/0.38/0.33 0.28/0.56/0.37

ACA [31] Torso 0.19/0.01/0.02 0.30/0.02/0.04 0.40/0.03/0.06
Arms 0.36/0.08/0.13 0.36/0.10/0.16 0.34/0.09/0.14

EMS [32] Torso 0.13/0.06/0.08 0.28/0.15/0.20 0.37/0.12/0.18
Arms 0.26/0.12/0.16 0.38/0.27/0.32 0.34/0.09/0.14

DC [38] Torso 0.46/0.15/0.21 0.34/0.12/0.18 0.40/0.26/0.32
Arms 0.49/0.30/0.37 0.27/0.64/0.38 0.33/0.68/0.44

HDCKC−S Torso 0.24/0.67/0.35 0.23/0.44/0.30 0.27/0.49/0.35
Arms 0.26/0.52/0.35 0.25/0.50/0.33 0.38/0.35/0.36

HDCKC−B Torso 0.32/0.54/0.40 0.23/0.52/0.32 0.29/0.64/0.40
Arms 0.44/0.45/0.44 0.26/0.72/0.38 0.44/0.46/0.45

HDCME Torso 0.42/0.54/0.47 0.24/0.45/0.31 0.23/0.39/0.29
Arms 0.37/0.41/0.39 0.30/0.32/0.31 0.31/0.35/0.37

Table 3.3: Comparison with the state-of-the-art on the TUMKitchen dataset. The results
are shown in the format of precision/recall/f-score. Best are in boldface.

analyze human behaviors despite the lens distortion [147]. Therefore, with only one

omnidirectional camera, human hehavior analysis can be effectively performed.

The task of abnormal human behavior detection has been studied in several decades,

which is highly essential for elderly people healthcare applications. According to a recent

review [148], abnormal behaviors can be defined from the perspective of statistics. We

can regard some behaviors abnormal, if they are relatively rare and occur less frequently

than other behaviors. For example, within a bedroom, normal behaviors of an old man

can include walking, sits on a sofa, sleeping on the bed, drinking water, and so on, since

these behaviors occur frequently in daily living scenarios. On the other hand, lying on

the ground is abnormal, since it occurs rarely in daily lives, and also can indicate a

dangerous situation of that old man. From the pattern recognition perspective, once we

have a large number of action patterns, abnormal behavior detection can be regarded

as an anomaly detection problem [149]. Namely, we need to find action patterns that

occur less frequently within a large population of action patterns. One can note that it

is necessary to quantify “less frequently”, e.g. defining a threshold on the occurrence,

so as to classify a behavior to be either normal or abnormal, such as in [49]. In many

studies, the concepts of abnormal behavior detection and novel behavior detection are

interchangeable. In our study, we define a novel behavior as a behavior that occurs only
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once until the current observation time. Therefore, under our definition, a novel behavior

is a specific kind of abnormal behaviors, and defining a novel behavior is temporally

causal.

As discussed in the previous sections, the proposed HDC method can partition a

continuous human movement into several disjoint temporal segments, and assign each

temporal segment a cluster ID. When a cluster ID occurs only once until the current

observation time, we regard that temporal segment contains a novel behavior. In this

experiment, we focus on fainting detection. Normally, a person, who suffers from fainting

after a series of actions, falls to the ground and retains the static “lying” pose for a long

time. Based on such prior knowledge, we evaluate the performance of fainting detection

by checking whether the obtained temporal segment in the end of the video has a novel

cluster ID or not, as well as how well the temporal range of this segment matches the

ground truth. In the following we present how to use our HDC method to detect fainting

in omnidirectional videos.

Dataset. For fainting detection we use the first scenario of BOMNI [147], which consists

of 5 people performing 6 actions resulting in total 10 videos. Each video only contains the

behaviors of one person. The second scenario of BOMNI records interacting behaviors

between three people, and hence is out of our current scope. The annotation of each

video consists of the bounding box of the subject in each frame and 6 actions performed

by the subject, which are sitting, walking, drinking, washing-hands, opening-closing-door

and fainting. Figure 3.6 shows ten example frames.

Input features. First we use the pre-trained mask R-CNN model [150] to extract the

mask of the subject in each individual frame, according to the annotated bounding box.

We discard video frames when the annotated bounding box does not exist or the mask

R-CNN fails to produce a mask.

Then we resize the detected masks to patches of 40x40 of pixels, and perform distance

transform following [49]. The feature vector is derived via vectorizing the transformed

mask. Fig. 3.7 illustrates extracting the mask feature.
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Figure 3.6: Ten exemplar frames of the first video in the BOMNI dataset. In each frame,
the annotated bounding box, the action label and the mask detected by
Mask-RCNN [150] are presented.

Figure 3.7: Mask features of the person, proposed by [49]. From left to right: (1) The
person mask and (2) the distance transform result.

Evaluation metric. We use the accuracy to evaluate the detection quality at the frame

level, which is computed as the true positives divided by the number of frames belonging

to the fainting action in the ground truth. The true positives are defined as the frames,

which both belong to “novel” actions and the associated label (cluster index) is the

majority in the parsing result within the period of fainting. In our setting, a “novel” action

is a segment with a label that first appears along the time dimension. For example, if we

have a sequence of 6 frames with action labels (or cluster indexes) {a, a, b, a, a, c}, the

frames are annotated as {1, 0, 1, 0, 0, 1} for labeling novel behaviors. Therefore, such

evaluation metric is sensitive to temporal orders of action occurrences.
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Results. The results of our methods as well as other state-of-the-art parsing ap-

proaches are shown in Table 3.4. One can see that HDCME is comparable with ACA

and superior to others. However, HDCME runs significantly faster than ACA. Since the

motion-based pooling mainly relies on processing the cluster indices, its computational

load is considerably smaller than other pooling methods which require to compute the

data similarity matrix. Also, comparing with dynamic programming used in ACA, sub-

space clustering used in TSC and k-means used in DC, the dynamic clustering modules

in HDC lead to faster computation.

Algorithm TSC [33] ACA [151] DC [38] HDCKC−S HDCKC−B HDCME

Accuracy 0.28 0.99 0.33 0.81 0.81 0.92
Runtime (second) 1.63 2.69 0.16 0.18 0.31 0.07

Table 3.4: The results on the BOMNI dataset. The best ones are in boldface.

3.7 Discussion on Hierarchical Dynamic Clustering

In this chapter, we propose the hierarchical dynamic clustering (HDC) method to parse

human actions in an unsupervised manner. Our HDC method is inspired by the bag-of-

visual-words pipeline, but incorporates new modules which are more suitable to process

multi-dimensional time series data. Specifically, we design the dynamic clustering

algorithm for codebook learning and temporal segment clustering, and propose local

temporal pooling schemes to detect segment boundaries and extract segment patterns.

Our experiments show that the proposed HDC method can parse continuous human

actions effectively, and outperforms other state-of-the-art unsupervised methods, as

indicated by higher metric scores and computational speed.

In the entire HDC pipeline, there exist a number of hyper-parameters to determine.

Specifically, in the dynamic clustering algorithm, one needs to specify the threshold

value δr (or c). In the feature encoding step, one needs to specify the value of λ in

the soft-assignment scheme. In the kernelized cut-based pooling scheme, one needs

to set the time window size to compute the similarity matrix. In the motion energy-

based pooling scheme, one needs to specify the time window size to calculate times of
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cluster transitions. Empirically, one can specify the values of these hyper-parameters

according to the characteristics of each module in HDC, which considerably reduce the

difficulties of using HDC in practice. For example, in dynamic clustering the threshold

hyper-parameter δr can be determined as half of the minmum distance between two

clusters in the validation dataset. Also, in our trials, fixing the time window size equal to

the video frame rate in local temporal pooling can produce good performance in general.

In the HDC pipeline, we propose the kernelized cut-based method and the motion energy-

based pooling method for local temporal pooling. The former method finds optimal cuts

on the similarity matrix, and hence is generic for various human motions. However, due

to the similarity matrix computation, the kernelized cut-based pooling is less efficient

than the motion energy-based pooling method, which detects segment boundaries only

based on cluster indexes. In addition, the motion energy-based pooling is highly effective

to separate static poses and moving actions, and hence outperforms other methods

in terms of action segmentation in CMUMAD, fainting detection in BOMNI and torso

movement segmentation in TUMKitchen, which comprise recordings with “standing

still” and “moving actions”. Since this case is very common in daily living scenarios, we

expect that the proposed motion-energy pooling method has large potentials in practice.

In summary, we have proposed hierarchical dynamic clustering for unsupervised human

action parsing in untrimmed videos, and employed this HDC method in the tasks of

temporal action segmentation and fainting detection. The experimental results verify

the effectiveness and efficiency of HDC, and reveal its potentials for applications of

vision-based elderly people healthcare. Nevertheless, some issues still remain. For

example, our HDC method is fully bottom-up, and lacks top-down information to correct

errors at the bottom level. Therefore, if a bottom module does not perform well, e.g. the

codebook is not well learned, its inferior performance will influence the top level and

can never be corrected. Also, the raw input features are handcrafted, which might not fit

well with the nature of input data. These drawbacks encourage us to propose solutions

based on deep learning methods, which enables back-propagation to provide top-down

information to improve bottom-level modules, and derive data-adaptive features from

the input. Therefore, in the next chapter, we will investigate how to use deep learning

method to realize human action parsing in untrimmed videos.
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Deep Neural Networks

In Chapter 3, we have presented our hierarchical dynamic clustering (HDC) method

for unsupervised human action parsing. Despite its effectiveness for segmentation and

abnormal behavior detection, the result does not have semantic meanings. For example,

the proposed HDC method detects abnormal behaviors only based on the occurrence

frequency, and hence cannot understand what exactly the detected abnormal behaviors

are. This drawback can cause severe problems in practice. For example, “running in the

bedroom” and “fainting on the ground” can be both detected as abnormal behaviors by

HDC due to their rare occurrences, and are simply regarded as Cluster A and Cluster

B, respectively. However, treating them equally is definitely not reasonable in practice,

because “fainting on the ground” is much more dangerous. To overcome such drawback,

we aim at proposing an automatic algorithm, which can not only segment action tempo-

rally, but also understand actions (i.e., assigning semantic labels) in individual temporal

segments. As a result, “running in the bedroom” and “fainting on the ground” can be

treated differently. The system can remind the person to keep caution on slippery areas

in case of “running in the bedroom”, and rises emergency alarms to inform healthcare

people in case of “fainting on the ground”. Therefore, in this chapter, we address human

action parsing in a supervised manner: Given an untrimmed video of human actions,

we aim at assigning each individual frame an action label. With such supervised action

parsing method, we can perform video trimming, action recognition, action detection and

other tasks under an unified framework.

As discussed in Chapter 1, supervised human action parsing can be performed in a

two-stage approach. In the two-stage approach, our proposed HDC method can be

first applied to produce action patterns in individual temporal segments, and then an

off-the-shelf action recognition method can be used to assign each temporal segment an

action label. Although such two-stage approach can somehow overcome the drawbacks

of unsupervised human action parsing stated above, it is still sub-optimal: (1) The
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semantic information (e.g. the annotated action labels) only influences the second stage.

The segmentation process in the first stage ignores semantic meanings, and has high

risk of producing segments which are not consistent with the current semantic scenario.

(2) The features are hand-crafted, which may lack representativeness for the current

semantic scenario. To overcome drawbacks of the two-stage approach, in this chapter

we investigate an end-to-end one-stage approach for action parsing based on deep

neural networks, so that the annotated semantic labels can supervise learning in all

stages via back-propagation, and influence low-level feature extraction in a top-down

manner. Once a deep neural network is trained, tuning hyper-parameters by hand during

the inference phase is usually trivial.

This chapter is organized as follows: First, we introduce a spatiotemporal convolutional

encoder-decoder network, with the input of an image sequence (i.e. a video) and the

output of frame-wise action labels. Rather than training the spatial network and the

temporal encoder-decoder separately as in [56, 59], we train the entire network end-to-

end and use it to recognize falls in videos. Second, to extract high-order information

from features for parsing fine-grained actions, which are very common in daily living

scenarios and important for our healthcare purpose, we propose local temporal bilinear

pooling methods from two perspectives. When employing our bilinear pooling method as

layers in a large-scale deep neural architecture, we achieve state-of-the-art performance

on various fine-grained action parsing benchmarks.

4.1 Spatiotemporal Convolutional Encoder-Decoder Network

It is reported in the literature, e.g. in [59] and [60], that spatiotemporal convolutional

encoder-decoder networks are highly effective for semantic temporal action segmenta-

tion, and outperform other network architectures such as deformable convolutions [152]

and RNNs [153]. Therefore, we investigate such network architecture in our study.

A typical spatiotemporal convolutional network comprises two parts, i.e. a spatial

convolutional network and a temporal convolutional encoder-decoder network, which are

illustrated in Figure 4.1. Given an image sequence as input, the spatial network converts
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each individual frame (or a short video snippet) into a feature vector, so that the image

sequence becomes to a feature vector time sequence. Then, a temporal convolutional

encoder-decoder network is applied to compute temporal correlations of these feature

vectors, and produces a time sequence of action labels.

Several studies like [57], [59] and [60] train the spatial network and the temporal network

separately. An important advantage of such separate training is that one can pre-train

a complex spatial network to transfer the knowledge from large-scale datasets, such

as ImageNet [154] or Kinetics [11], to the small target datasets for generaliability [155].

Although such pre-training approach is effective in most cases, such knowledge transfer

process may fail, especially when a large domain gap between the target datasets and

the publicly available large-scale datasets. For example, when we aim at recognizing

falls from videos captured in certain indoor environments, a complex spatial network

pre-trained on Kinetics may produce unrepresentative features, since Kinetics contains

few samples captured in similar environments with our target environment. Therefore,

in our study, we not only consider complex spatial networks which are pre-trained on

these large-scale datasets, but also design relatively small spatial network architectures,

according to the natures of the target datasets, so as to obtain representative spatial

features for the target scenarios.

4.1.1 Spatial Convolutional Network

In principle, the spatial network can be any kind of deep neural network for image

classification like VGG networks [58], residual networks [156], Alexnet [157], Inception

networks [158, 159, 160], or for video classification like I3D [11] and ST-Resnet [161].

With a network pre-trained on large-scale datasets (e.g. Imagenet [154] or Kinetics [11]),

one can convert a video frame or a very short video snippet (e.g. 10 frames) into a

1D feature vector, as output of a fully connected layer or vectorizing the output from an

intermediate convolutional layer.

Training these large-scale deep neural networks usually requires large-scale datasets;

otherwise, over-fitting is likely to occur. When the number of training samples for a

specific task is not sufficient, a conventional approach is to fine-tune a neural network
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Figure 4.1: Illustration of a spatiotemporal encoder-decoder network. Given an image
sequence, a spatial network is applied to each individual frame to extract
frame-wise feature vectors. Then, the temporal encoder-decoder network
computes local temporal correlations, and produces a time sequence of
action labels. Each action label is assigned to each individual frame of the
input video.

which is pre-trained on a large-scale dataset such as ImageNet. For example, in [58], the

original VGG network for image classification is fine-tuned to regress 2D bounding boxes

for object detection in images. When performing back-propagation, only the weights

in layers for 2D bounding box regression are updated. Therefore, the knowledge is

transferred from image recognition to object detection.

Nevertheless, the functionality of fine-tuning is still not clear. It is reported in a recent

study [162], that training a deep neural network from random initialization (from scratch)

can achieve a comparable performance with fine-tuning from ImageNet, with respect to

object detection and instance segmentation on the COCO dataset. In [57], the spatial

network has a similar architecture of the VGG16 network but with fewer layers, and is

trained from scratch.

Therefore, when the scale of the deep neural network is much larger than the dataset,

we use pre-trained networks to avoid overfitting. Otherwise, we train the network from
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scratch, in order to learn consistent knowledge to our target scenarios. Figure 4.2 shows

an instance of a spatial network architecture, which is designed by us to detect falls in

videos [163].

4.1.2 Temporal Convolutional Network

Given a time sequence of 1D feature vectors, the temporal network computes temporal

correlations of feature vectors, and produce a time sequence of action labels, each of

which is assigned to each individual video frame. Conventionally, such sequence-to-

sequence problem is solved by recurrent neural networks (RNNs), e.g. bi-directional

LSTM [164]. However, in recent studies, it is reported that temporal convolutional

networks with an encoder-decoder architecture can consistently produce superior results

for human action analysis [59, 165, 60]. Therefore, we focus on investigating such kind

of temporal convolutional networks to capture temporal structures in the data.

One can see an example of temporal encoder-decoder network in Figure 4.1. A typical

temporal encoder-decoder architecture has three components, i.e. a temporal encoder,

a temporal decoder, and a fully connected layer. The temporal encoder has successive

“1D convolution→ 1D pooling” structures. The 1D convolution is performed along the

temporal dimension, and can be formulated by

ydt = σ
(〈
wd,⊕τ∈N (t)xτ

〉
+ b

)
, (4.1)

in which xτ denotes the input feature vector to the 1D convolution at time τ , ⊕ denotes

feature concatenation, N (t) denotes the receptive field centered at time t, wd denotes

the d-th 1D convolution filter, 〈·〉 denotes the inner product operation, b denotes the

bias, σ(·) denotes a nonlinear activation function, such as ReLU [157] and leaky ReLU

[166], and ydt denotes the d-th element of the output feature vector yt at time t. The

dimensionality of the output feature vector is determined by the number of filters in this

1D convolutional layer. One notes that this 1D temporal convolution is non-causal. As

reported in [59], the non-causal convolution outperforms a causal version w.r.t. temporal

action segmentation.
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In addition, the 1D pooling layer can be demonstrated by

yt = Lτ∈N (t)xτ , (4.2)

in which N (t) is the receptive field of the pooling operation centered at time t, and L is

an algebraic operation such as element-wise maximum and average, corresponding to

max pooling and average pooling, respectively. Without explicit mentioning, in our work,

we use max pooling with the receptive field equal to 3 and the stride equal to 2, which

halves the temporal resolution.

The architecture of the decoder is symmetric with the encoder, which has successive

layers of “1D upsampling→ 1D convolution”. The upsampling operation can be regarded

as an inverse operation with the temporal 1D pooling. Without explicit mentioning, in

our work, the upsampling operation is performed by nearest-neighbour interpolation to

double the temporal resolution.

After the last convolutional layer in the temporal decoder, a time-distributed fully con-

nected layer with softmax output is applied to convert each feature vector to an action

probability. Such fully connected layer is applied on each individual frame across time

with shared parameters. Specifically, the fully connected layer can be formulated as

yt = softmax(Wxt + b), (4.3)

in which xt is the t-th frame of the output from the temporal decoder, W and b are the

parameters of the time-distributed fully connected layer, and yt is the resultant action

probabilistic distribution, the dimensionality of which is equal to the number of action

classes in the training data. The final label is the action with the maximal probability.

An instance of the temporal encoder-decoder network is shown in Figure 4.2. One can

see that the temporal encoder has two “1D convolution→ 1D pooling” modules. The first

convolution layer has 96 filters, and hence its output feature vector is 96-dimensional.

The second convolution layer has 128 filters. The decoder has a symmetric architecture

with the encoder. The output from the temporal decoder has the same feature dimension

and the same temporal resolution with the input to the temporal encoder.
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Figure 4.2: An architecture instance of the spatiotemporal convolutional encoder-decoder
net. From left to right: An instance of the spatial network, an instance of the
temporal encoder and an instance of the temporal decoder. In the temporal
encoder and the temporal decoder, k denotes the size of the 1D convolution
receptive field, i.e. the size of N in Eq. (4.1). We use different values of k in
following sections, e.g. Sec. 4.2.2.

4.2 Experiment: Detecting Unintended Falls from Videos

Due to cognitive impairment or deficiencies of motor functionalities, unintended falls

occur frequently in the group of elderly people, and can lead to severe or even fatal

injuries [167, 168]. Therefore, to build up fall detection systems for elderly people

healthcare, it is essential to recognize falls in an automatic and effective manner.

Fall recognition has been intensively studied in the past. If the human body dynamics has

been precisely measured, identifying an unintended fall is straightforward. For example,

one can recognize falls via measuring the vertical velocity of the human body towards the
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ground. If the velocity is above a threshold, then a fall occurs. Consequently, researchers

tend to propose novel solutions to capture the body configurations and motions. For

example, the work of [169] uses a wearable tri-axial accelerometer to measure the body

motion, and recognizes falls via a one-class support vector machine. The work of [170]

develops a wearable system (mainly based on the accelerometer and GPS) to detect

and localize falls in the wild. Wearable sensors enable measuring physical attributions

of the human body in a precise and real-time manner. However, the sensors have to

be physically attached to people, causing obstructive interventions to their daily living

activities.

Computer vision technologies enable non-obstructive measurement of human body

motions, and conduct behavior recognition only based on imagery data. The effec-

tiveness is highly improved when deep convolutional networks trained on large-scale

image datasets are employed. To recognize a fall, two families of methods can be

considered: The first family attempts to capture precise body configurations over time,

such as [171] and [172] for 2D pose estimation and [173] for 3D pose estimation. These

pose estimation methods can replace the functionality of wearable sensors, but perform

human body measurement in a non-contacting fashion. The second family, which is

usually based on deep convolutional networks, aims at inferring the semantic content of

the input data, via creating a mapping from the input data to the action labels end-to-end.

For example, [103] yields an action label for an input sequence, [174] yields both action

labels and temporal durations, and [59] produces frame-wise labels for temporal action

segmentation. In this thesis, we focus on the second family of methods, since the

end-to-end inference behavior does not need any intermediate step, e.g., training a

classifier based on the captured body poses. In addition, the data annotation procedure

only requires to assign action labels to frames/videos, which is much easier to implement

in practice than annotating the key joints on the human bodies in each frame required by

the first family of methods.

Although several relevant methods like [109] have been proposed, the underlying reasons

of the effectiveness are still not clear. Therefore, beyond proposing a method for

fall recognition, we aim at attaining insights of how the deep convolutional network

recognizes falls. Our investigation is based on a family of convolutional encoder-decoder
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networks, various types of input modalities such as RGB images, optical flows and 2D

body poses, and recordings from different environments. One can see details of our

investigation in Sec. 4.2.2.

According to our investigations, we discover: (1) Human body motion represented by the

optical flow is highly informative for the network to recognize falls. (2) The network tends

to learn human body-centered context, namely the appearance surrounding the human

body, if the training samples have RGB frames. However, the network cannot get rid of

the influence of the background context irrelevant to falling, and lacks generalizability

across different environments. (3) The human-centered context and human body motion

are complementary. (4) Inaccurate body pose information can degrade the performances.

4.2.1 The Convolutional Encoder-Decoder Network (CED)

We formulate fall detection as a binary classification problem, and expect to obtain

frame-wise semantic labels, so that recognition and temporal localization can be solved

simultaneously. Therefore, we use the convolutional encoder-decoder network, as

demonstrated in Sec. 4.1.2. Compared to other studies, e.g. [59], we train the spatial

network and the temporal network jointly, so that the learned features in intermediate

layers are representative in our tasks of fall understanding.

The CED architecture has several advantages besides generating frame-wise labels:

(1) The CED network can capture long-range temporal dependencies, and outperforms

recurrent nets, e.g. bidirectional LSTMs [175, 55], w.r.t. temporal action segmentation

[59] and motion prediction [165]. (2) The CED network can generate piece-wise constant

label sequences directly, without post-processing steps like median filtering. (3) Compar-

ing with recurrent neural nets, in our trials we find that CED is much easier to train and

converges much faster. (4) Once CED is trained, the model can process sequences of

arbitrary lengths.

In the following, we present details of our employed CED architecture for fall under-

standing in videos, which can be regarded as a special instance of the spatiotemporal
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encoder-decoder network demonstrated in Sec. 4.1. The network architecture is illus-

trated in Figure 4.2.

The spatial convolutional module. This convolutional module aims at extracting the

feature vector of each individual frame in the video. It consists of three convolutional

blocks, and each block contains a 2D convolutional layer with an activation function, and

a 2D max-pooling layer, following the architecture of the VGG networks [58, 59]. After

each block, the spatial resolution is downsampled by the factor of 2. At the end of the

module, the output 3D tensor is flattened to a 1D vector. The number of convolution filters

are suggested by [57]. In our work, we use the leaky-ReLU [176] activation function, due

to the superior performance to the standard ReLU function [166]. Moreover, the spatial

convolution module is applied on each individual frame of the input tensor sequence,

and has shared parameters across all frames.

The temporal convolutional module. Such temporal convolutional module takes the

output from the spatial convolutional module as input, which is a time sequence of 1D

feature vectors. This 1D feature vector sequence has the shape of [time, dimension], or

a 3D tensor with the shape [batch, time, dimension], when considering mini-batch input.

The temporal encoder and the decoder has symmetric structures. The encoder com-

prises two blocks, each of which has a 1D temporal convolutional layer with the leaky

ReLU activation function, and a 1D max pooling layer. According to our demonstration

of temporal convolutional network in Sec. 4.1.2, the 1D temporal convolution computes

temporal relations of frames in a receptive fieldN with the size k (specified in Sec. 4.2.2),

and produces a time sequence of feature vectors with the feature dimension equal to

the number of filters. The 1D max pooling fuses every three consecutive features with a

two-frame stride along the time dimension, and hence halves the temporal resolution.

The fully connected module. The fully connected module consists of a fully con-

nected layer, a dropout layer and a softmax layer, and is applied on individual frames in

the output of temporal decoder with shared parameters. Due to our binary classification
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setting, the output dimension of the fully connected layer can be 1 or 2. Here we use

the two-dimensional output, since we expect that the insights derived from our work can

be extended to multi-class classification problems straightforwardly. The dropout layer

(with a keep ratio of 0.5) is used to avoid overfitting, and the softmax layer converts the

scores to probabilities.

Network training. In our work, all the modules are trained jointly from scratch, in

contrast to [59] that only trains the temporal encoder-decoder using the outputs from

a pre-trained spatial network. For each frame, we compute the cross-entropy between

the one-hot encoded ground truth label and the softmax output. Then the loss of the

sequence is the sum of the cross-entropy values of all frames. After specifying the

loss, the model parameters are learned via the Adam algorithm [177]. One reason of

using Adam is its superior performance than the stochastic gradient descent method in

many tasks, and that empirically Adam trains network faster. Implementation details are

explained in Sec. 4.2.2.

Network explanation. To interpret how the deep neural network recognizes falls from

videos, we employ attribution maps to visualize the importance of pixels in the input

frames, given a specific network output. We use the following attribution maps: (1)

DeepLIFT [115], which is computed by backpropagating the contributions of all neurons

in the network to every input feature. (2) Integrated gradients [112], which is computed

by fusing the gradients along small straightline path from the baseline (a black image in

our case) to our input image. (3) saliency map [113], which is the magnitude of gradients

w.r.t. to input pixels. The study of [112] summarizes the computations of these attribution

maps, and develops the DeepExplain Python package.

4.2.2 Empirical Studies

To investigate how the deep convolutional network CED recognize falls, we propose 4

tasks, and for each task the quantitative results are shown by cross-validated frame-wise

accuracies and the qualitative results are shown by attribution maps.
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Figure 4.3: Illustration of falls in videos of the Le2i dataset. From left to right: (1) Example
frames of falls in home and coffee room. (2) The statistics of time durations
of falls across all videos, in which the x-axis denotes the fall duration, the
y-axis and the bins show the normalized occurrence frequencies and the
curve shows the fitted distribution. One can see that the maximal duration of
falls is smaller than 45 seconds.

Datasets. We use the Le2i Fall detection dataset presented in [178], which is built

using a single camera in realistic surveillance setting containing static background,

illumination variations, occlusions by furniture, different appearances of the subjects,

different types of falls (e.g. falling forward, falling while sitting, etc.), and other factors

that simulate falls in daily lives. The video has spatial resolution of 320×240 of pixels

and is captured with 25 fps. Each video is annotated in a frame-wise fashion.

The original dataset contains 4 environments, i.e. home, lecture room, coffee room

and office. We only use the recordings from home and coffee room in our study, since

recordings from other environments do not have annotations. For each of the two

environments, there exist two groups of recordings.

In order to balance the number of fall and not-fall frames, we extract a video snippet

consisting of frames before, during and after the fall from each video containing falling.

Video trimming is based on the statistics of time durations of falls, which is shown in

Figure 4.3. Specifically, the extracted snippet has 60 frames (2.4 seconds), starting from

T − 49 to T + 10, where T is the timestamp of the last frame of fall in the video. Since

the maximal duration of falls in Le2i is 45 second, the extracted 60-frame snippets cover

the entire fall durations.
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4.2 Experiment: Detecting Unintended Falls from Videos

Our processed Le2i dataset [178]
high-level split home coffee room
low-level split group 1.1 group 1.2 group 2.1 group 2.2

Table 4.1: Organization of our processed Le2i dataset.

Depending on the recording environment, we perform a high-level splitting to divide the

dataset into 2 folds, each of which contains recordings from either home or coffee room.

Since there are two groups for each environment in Le2i, we perform a low-level splitting

to divide the dataset into 4 folds, i.e. group 1.1, group 1.2 in the home environment,

and group 2.1 and group 2.2 in the coffee room environment. Therefore, the high-level

splitting can be used for cross-environment validation, and the low-level splitting can be

used for cross-validation under small environment variations. As a result, we obtain a

new dataset incorporating 99 video snippets with 2 high-level splits and 4 low-level splits,

which are listed in Table 4.1.

Input modalities to the network. Besides the RGB frames, we also compute time

differences, TV-L1 optical flows [179], and heat maps of human body joints1 [180] [172],

which are regressed from RGB images. For fast computation, we downsample the

spatial resolution of video frames to 56× 56 pixels.

Similar to [59], the network input contains a stack of frames from the original data

sequence. Denoting the RGB image sequence as {It}, the optical flow sequence as

{wt} (values within [−20, 20]) and the sequence of heat maps as {st} (values within

[0, 1]), the modalities used in our experiments are shown in Table 4.2.

The RGB+TimeDifference modality is suggested by [59], in which the RGB frames en-

code the appearances of the visual scene and the time differences have the functionality

of attention. Image standardization (a.k.a. z-normalization) is performed frame-wisely, in

order to eliminate the influence of illumination changes. Since the background is static,

TimeDifference and Optical Flow focus on the human body, while TimeDifference

does not measure directional human body motions. In addition, the pose information

1The MPII body model has 14 keypoints and hence the method generates 14 pose heat maps for each
image. In our experiment, we average these 14 heat maps to one map.
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Table 4.2: The input modalities used in our experiments, in which the Pose+Optical
Flow modality uses the normalized optical flow w̃t, i.e. w̃t = wt/20 (see text).

Modalities Format of each frame
RGB+TimeDifference {It−1, It, It+1, It − It−1, It+1 − It}
TimeDifference {It − It−1, It+1 − It}
Optical Flow {wt−1, wt, wt+1}
Pose {st−1, st, st+1}
Pose+Optical Flow {st−1, w̃t−1, st, w̃t, st+1, w̃t+1}

is represented by the pose heat map produced by the pre-trained network proposed in

[180, 172], in which the heat map of a body joint is the probability of the joint locations

within the image domain. It is reported that the pose heat map is beneficial for person

re-identification and tracking [181]. When combining optical flow and pose, we expect

that the pose heat map works as an attention mechanism, encouraging the network to

learn motion features around the body key points.

One can note that the Pose+Optical Flow modality uses the normalized optical flow w̃t,

which is computed by wt/20 and hence ranges within [−1, 1]. In this case, the ranges of

the pose heat map and the optical flow are similar. We find that such flow normalization

process is beneficial in our trials. A probable reason is that the normalization leads to

similar ranges of convolution parameters for the flow and the pose map in Pose+Optical

Flow.

Implementation. The implementation is based on TensorFlow. The batch size is fixed

to 8, meaning 8 tensor sequences are fed to the network for one iteration. The Adam

algorithm is used to train the model [177], in which the initial learning rate is 0.001 and

other parameters are set to the TensorFlow default values, which are β1 = 0.9 and

β2 = 0.999. The learning rate is decayed every 10 epochs by 0.001 × 0.9b
epoch

10 c, and

training terminates after 100 epochs. In our trials, more iterations lead to comparable or

worse results.

In addition, attribution maps for network explanation are computed based on the Deep-

Explain library [112], which is implemented in Tensorflow.
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4.2 Experiment: Detecting Unintended Falls from Videos

Evaluation. Rather than performing model selection as in [59], we use a family of

network instances to verify whether some conditions can consistently influence the

performances. We vary two influential factors in the network architecture, i.e., the

non-causal temporal convolution receptive field size k, and the temporal length of the

input sequence l determining the upper limit range of the temporal structure that the

network can learn. In our experiments, we use the network instances with (k, l) ∈

{(3, 8), (3, 16), (3, 32), (5, 16), (5, 32), (7, 16), (7, 32)}.

For the high-level splitting, 2-fold cross-validation is performed, in which each network

instance is trained on the first fold and validated on the second, and vice versa. Then,

for each network instance, the two validated accuracies are averaged to derive the

cross-validated accuracy. For the low-level splitting, 4-fold cross-validation is performed

in an identical manner. Since each network instance associates with an accuracy value,

the quantitative performance of the CED model is presented in terms of a box plot.

The qualitative results are shown by attribution maps, i.e. DeepLIFT [115], integrated

gradients [112] and saliency maps [113]. For visualization purposes, each attribution

map is superimposed to the input image edges, which are obtained by Canny detector

[182].

Task 1: Investigating the cross-environment generalization. In this task, we aim

at investigating the generalization of recognition performance across environments,

namely, how the CED performs, if training samples and testing samples are collected

from different environments. Therefore, we conduct a 2-fold cross-validation procedure

based on the high-level splitting, and use RGB+TimeDifference, TimeDifference and

Optical Flow as the input modalities. The results are shown in Figure 4.4.

Box plots summarize the resulting data. One can see that RGB+TimeDifference per-

forms inferior to TimeDifference and Optical Flow, and Optical Flow outperforms

TimeDifference. In addition, the attribution maps from four testing recordings consis-

tently show that many pixels on the background can strongly affect the network inference

process.
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cross-environment evaluation

modality

Video Frames DeepLIFT
Integrated  
Gradients

Saliency 
Maps

Figure 4.4: Experimental results of Task 1. From left to right: (1) Quantitative results
of the 2-fold cross-validation, where the results from each network instance
are shown as black dots in parallel to the box plots. In each box plot, the
bar inside the box denotes the median, and the box shows the interquartile
range (IQR) and the samples between whiskers with 1.5×IQR are inliers.
(2) The attribution maps of frames from four test cases in the dataset are
shown, where the red color and the blue color denote positive and negative
contributions on the probability of falling, respectively. Image edges from the
Canny detector are presented as well for visualization purposes.

The network with RGB+TimeDifference performs just slightly better than random guess,

under the binary classification setting. The attribution maps show that irrelevant static

background information has strong influence on fall recognition, and hence we consider

that the network does not discard irrelevant background information automatically during

training, and leads to degraded generalization across environments. On the other

hand, TimeDifference and Optical Flow can discard static background information

from the input video, and encourage the network to learn human body-centered features,
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especially the motion features. Their superior performance can indicate that body motion

contains more representative information of falls.

Task 2: Investigating the influence of training samples. Here we aim at inves-

tigating the benefits of training samples collected from the testing environment. In

addition to the 2-fold cross-validation as presented in Task 1, we perform 4-fold cross-

validation based on the low-level dataset splitting (see Table 4.1), and hence training

samples have recordings from the testing environment. The employed input modality

is RGB+TimeDifference, and the results are shown in Figure 4.5. The reason of only

using RGB+TimeDifference is that other modalities used in Task 1, namely, TimeDiffer-

ence and Optical Flow, are environment-independent and cannot reveal the influence

of changing environments.

These box plots show that the using training videos captured from the testing envi-

ronments can largely improve the performances. Indicated by all attribution maps on

the right, we can find that the influential pixels become more human body-centered.

Noticeably, one can see that the influential pixels tend to locate around the human body

contours, rather than directly on the human body. This fact indicates that the network

with RGB+TimeDifference as input tends to learn interactions between the human body

and the environment to understand falls.

Task 3: Investigating the human body-centered pattern. Based on the results in

Task 1 and Task 2, we conclude that the convolutional network tends to learn body-

centered patterns for fall understanding. Here we perform further investigations based

on the low-level data splitting, as well as the RGB+TimeDifference and Optical Flow

modalities, which represent body-centered context and body motion, respectively. After-

wards, we fuse the two modalities motivated by the two-stream fusion model proposed in

[103]. Specifically, we average the softmax outputs from two streams of CED nets with

the same (k, l) values. Figure 4.6 shows the results.

One can see that Optical Flow and RGB+TimeDifference produce comparable per-

formances according to the box plots, yet the network with the Optical Flow modality
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environment variations

Video Frames DeepLIFT
Integrated  
Gradients

Saliency 
Maps

Figure 4.5: Experiment results of Task 2. From left to right: (1) Quantitative results under
large environment variations (the high-level splits) and small environment
variations (the low-level splits), with the modality RGB+TimeDifference. (2)
attribution maps from two testing samples are shown. The first two rows
compare the large and small evaluation settings on the same frame in coffee
room, respectively. The last two rows show another comparison on the same
frame in home.
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modality

Video Frames DeepLIFT
Integrated  
Gradients

Saliency 
Maps

Figure 4.6: Experiment results of Task 3. From left to right: (1) Quantitative results
of different modalities under small environment variations (the low-level
splits). (2) Examples of attribution maps of the two modalities are presented.
In particular, the optical flow is visualized using the color coding scheme
attached at the bottom-right corner.
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behaves more stable than the other case. The fusion results outperform individual

modalities. Additionally, from the attribution maps of optical flows we can see that the

influential pixels are within the contour of the human body, in contrast to the attribution

maps of RGB+TimeDifference. Noticeably, one can note that the saliency map is not

reliable for Optical Flow, since the saliency values are computed as the derivatives of

the output w.r.t. the input. Then, zero-value input can cause numerical problems.

A probable reason of the stable performance with Optical Flow is that human body

motion can represent falls more robustly than the body-centered context, which can be

easily influenced by the static background information. The superior performance of

modality fusion can indicate that body-centered context and body motion are comple-

mentary. The complementary property can also be viewed from the attribution maps,

since the influential pixels are at different locations.

Task 4: Investigating the influence of body pose information. Since it is reported

in the literature that body pose information from motion capture devices can reliably

detect falls [169] [170], here we investigate the influence of 2D pose features, which are

estimated from video frames. The pose feature is represented by heat maps, and is

extracted using the pre-trained model proposed by [180] [172], which is a deep neural

network to regress 2D body joint heat maps from RGB images. The evaluation is

based on the low-level splitting, as well as the modalities of Pose, Optical Flow and

Pose+Optical Flow. The results are shown in Figure 4.7.

One can see that the pose information leads to inferior performances, and also deterio-

rates the performances of Optical Flow when combing flow and pose information. On

the right of Figure 4.7, one can find that the influential pixels on the pose heat maps

mainly locate at the positions of the non-zero pose scores. Moreover, from the third row

on the right of Figure 4.7, one can see that the pose estimation is not always reliable.

Thus, we conclude that incorrect pose estimation can degrade fall understanding from

videos, although the pose estimation method is state-of-the-art in several public bench-

marks. We suggest not to use pose features estimated by deep neural networks from

RGB images for fall detection.
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modality

Video Frames DeepLIFT
Integrated  
Gradients

Saliency 
Maps

evaluation under small  
environment variations

Figure 4.7: Experiment results of Task 4. From left to right: (1) Quantitative results
presented by box plots. (2) The attribution maps of pose and optical flow
modalities. The selected frames are the same with previous figures. The
pose heat map, in which the value increases from blue to yellow, is overlaid
with the RGB image only for visualization. The RGB image is not input to the
net.
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4.2.3 Summary

Based on different types of input modalities and dataset splits, our empirical studies

show several influential factors of the model performances. In particular, we find that: (1)

The network tends to learn body-centered patterns, but cannot eliminate the influence

of static background information, leading to poor cross-environment generalization. (2)

Training samples captured from the testing environment can considerably improve the

performance, and encourage the network to encode body-centered context, for which

the most influential pixels are located around the body contour. (3) The human body

motion contains representative features of falls robust to environment changes, and

influences on fall recognition in a complementary manner with the body-centered context.

(4) Incorrect pose information can degrade the performances heavily. At the current

stage, body pose estimation is a challenging task by itself, and the performances are not

guaranteed.

Therefore, for detecting falls from videos in practice, we suggest: (1) Including videos

captured in the test environments to train the network. (2) Getting rid of information

from the static background, and using body-centered features to detect falls. (3) Using

multi-modal inputs, in particular, using the fuse of RGB frames, frame time differences,

and optical flow. (4) Being careful to use pose information derived by deep neural

networks to detect falls. For safety, it is better not to use them.

4.3 Local Temporal Bilinear Pooling

In recent years, deep convolutional nets are widely employed for supervised temporal

action parsing. For example, the method proposed in [57] and [59] first extracts frame-

wise feature vectors via a spatial convolutional network, and then assigns action labels to

individual frames via a temporal convolutional encoder-decoder (TCED) architecture. In

these deep neural networks, local temporal pooling, e.g. max pooling or average pooling,

is an essential step to aggregate low-level features within temporal neighborhoods to

form action patterns, which are able to effectively represent an action spanning several

frames.
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While being straightforward, a notable caveat is that the first-order pooling operation, e.g.

max pooling and average pooling, embedded between convolutional layers ignores high-

order temporal structures. A first-order pooling method, e.g. average pooling, computes

the mean of the features in a temporal neighborhood to represent that neighborhood, and

hence cannot be used to differentiate two actions with identical first-order statistics but

different second-order ones. One the other hand, a bilinear pooling method computes

the second-order information, e.g. the covariance of the features, to represent that

temporal neighborhood, so that the drawbacks of the first-order pooling are overcome.

Taking grasping object by hand as an example, when the feature vector of each frame is

the concatenation of 3D positions of the finger tips, the first-order pooling, e.g. average

pooling, on several consecutive frames yields the hand position, and hence tells where

to grasp the object. In parallel, the second-order information can indicate the finger

scatter, and hence tells how to grasp the object. Thus, different orders of information

are rather independent and complementary to precisely describe an action. Without

the second-order information, it is hardly able to distinguish whether to grasp a coin or

a book at the same position. Motivated by such fact, as well as several recent studies

showing that bilinear pooling consistently outperforms first-order pooling on fine-grained

tasks (e.g. [62, 69, 75]), we aim at introducing bilinear pooling into the TCED network as

a layer, so as to extract second-order (even higher-order) information to produce better

fine-grained action parsing results.

However, introducing bilinear pooling into the TCED network is highly non-trivial, which

requires to overcome drawbacks of the conventional bilinear pooling (see Sec. 4.3.2): (1)

The conventional bilinear pooling is designed for visual classification, e.g. [65]. Thus, the

bilinear pooling aggregates all the features globally to yield a single action pattern, which

is not suitable for temporal semantic segmentation. (2) The conventional bilinear pooling

lifts the dimension of feature from d to d2, causing parameter proliferation in the neural

network, curse-of-dimensionality and expensive computational cost. To overcome the

first drawback, we perform local temporal pooling to aggregate features in local temporal

neighbors, like the max pooling operation in TCED. To overcome the second drawback,

we design bilinear forms according to reproducing kernel Hilbert space (RKHS) theories

67



4 Supervised Human Action Parsing via Deep Neural Networks

[129], so as to reduce the dimensionality of second-order features while preserving the

representativeness.

Following the motivations above, we investigate local temporal bilinear pooling from

two perspectives: (1) The first perspective is on statistics, especially on how to com-

pute the covariance matrix or the Sums-of-Squares-and-Cross-Products (SSCP) matrix.

A first-order pooling method, e.g. average pooling or max pooling, computes the

mean/element-wise max of the features in a temporal neighborhood to represent that

neighborhood, while a bilinear pooling method computes the second-order information,

e.g. the covariance of the features, to represent that temporal neighborhood. Such

statistics-based second-order information is straightforward, but its dimensionality is

quadratic to the first-order feature, causing curse-of-dimensionality and expensive com-

putation cost. Based on RKHS theories, we reduce the feature dimension by half without

information loss. (2) The second perspective is on multilinear algebra, especially on

three-way tensor product (see Eq. (4.24)). Given a three-way tensor and two input vec-

tors, the output vector of the tensor product can incorporates second-order information if

the three-way tensor has certain structures. Compared to the second-order statistics,

such tensor product operation produces feature vectors of approximated second-order

information and lower dimensionality, which is therefore computationally easier and more

suitable to be used in a large network architecture (e.g. [60]).

In the following, we first introduce preliminaries of temporal action parsing networks and

conventional bilinear pooling in the literature, and then present our own methods.

4.3.1 Preliminaries: Temporal Action Parsing Networks

Temporal convolutional encoder-decoder (TCED). Here we introduce the TCED

network proposed by [59], which is a special network architecture presented in Sec.

4.1.2. The TCED network takes a temporal sequence of feature vectors, and assigns an

action label to each input feature vector. It comprises a temporal encoder, a temporal

decoder, and a fully connected module to generate frame-wise action labels. The

encoder consists of 2 consecutive “non-causal 1D temporal convolution→ max pooling”

modules. After each encoder module, the temporal resolution is halved. The decoder
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has a symmetric structure with the encoder, which consists of 2 consecutive “upsampling

→ non-causal 1D temporal convolution” modules, in which the upsampling performs

nearest-neighbor interpolation. After each decoder module, the temporal resolution is

doubled. The fully connected module incorporates a time-distributed fully connected

layer to perform linear transformation at each time instant. Then each output is passed

to a softmax function to fit the ground truth one-hot encoded action label.

Multi-stage temporal encoder-decoder network (MS-TCN). The MS-TCN network

is an extension of TCED, and is proposed by [60]. Taking a time sequence of frame-wise

feature vectors as input, such network performs non-causal dilated temporal convolution

in multiple stages, without pooling/upsampling layers to change the temporal resolution.

In our study, we use the default network architecture in [60]. It has 4 stages, and

each stage has the structure of “linear projection→ 10 dilated residual layers→ linear

projection”. The first linear projection is to project the input features to a latent space,

and the second linear projection is to project features in the latent space to the output

space, the dimension of which equals to the number of action classes. The dilated

residual layer has a dilated 1D temporal convolution layer, a linear projection layer, and a

residual connection, which can be formulated as

z = ReLU(W1 ∗ x+ b1) (4.4)

y = x+W2z + b2, (4.5)

in which W1 denotes the weights in the dilated temporal convolution, W2 denotes the

weights in the linear projection, b1 and b2 denote the bias, x and y denote the input and the

output of the dilated residual layer. In addition, the 10 dilated residual layers have fixed

convolution kernel size equal to 3, but have increasing dilation factors 1, 2, 4, ..., 512. One

notes that the dilated 1D convolution with (dilation=d, kernel size=3) has the receptive

field 2d+ 1, and the convolution computation only involves three feature vectors, i.e. the

two feature vectors in the two ends of the receptive field, and the feature vector in the

middle. Therefore, the dilated 1D temporal convolution has a much larger receptive field,
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but an equivalent computational cost with the standard 1D temporal convolution. Dilated

1D convolution with the dilation factor 1 is equivalent to the standard 1D convolution, and

dilated 1D convolution with the dilated factor 512 has the receptive field 1025, meaning

this temporal convolution covers 1025 frames.

One can see [60, Figure 1] for illustration of MS-TCN. According to their experimental

results, MS-TCN outperforms other state-of-the-art deep neural networks on several

benchmarks.

4.3.2 Preliminaries: Bilinear Pooling

Since neither TCED nor MS-TCN is able to capture second-order information, here we

describe some preliminary knowledge about bilinear pooling, which can work as an

intermediate layer in a deep neural network, and extracts second-order information for

fine-grained action parsing.

Bilinear pooling from the statistics perspective. Given a set of generic feature

vectors with x ∈ X , such as a set of local spatial image descriptors and a set of frame

features, the conventional bilinear pooling [62, 64, 65, 66] can be given by

B(X ) = vec

(
1
|X |

∑
x∈X

x⊗ x
)
, (4.6)

where ⊗ denotes the vector outer product, | · | denotes the cardinality of the feature set,

and vec(·) denotes tensor vectorization. In this case, the bilinear composition computes

the SSCP matrix of the feature set with the consideration of feature channel correlations.

One can note that when x ∈ Rd, the bilinear pooling lifts the dimension and leads to

B(X ) ∈ Rd2
. In many cases for simplicity, only the diagonal entries of B(X ) are used

for second-order information extraction, which is equivalent to x ◦ x with ◦ being the

Hadamard product.
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Bilinear pooling from the multilinear algebra perspective. Specifically, given two

generic feature vectors x ∈ RDX and y ∈ RDY , the bilinear model based on high-order

tensor multiplication [183] is given by:

z = T ×1 x×2 y, (4.7)

where T ∈ RDX×DY ×DZ is a three-way tensor, and the operations ×1 and ×2 are

the mode-1 and mode-2 multiplication, respectively2. The tensor T determines how

information in the output z ∈ RDZ is constructed from interactions between the elements

in x and y. Though being a powerful scheme for information fusion, such model tends

to suffer from curse of dimensionality and intractable computation [184]. Specifically,

dim(T ) grows exponentially with the number of available channels. For the bilinear

models in Eq. (4.7), the number of free parameters grows cubically O(DXDYDZ) with

respect to feature dimensions, which is prohibitive even for moderate number of features,

hence limiting the representation power of the model.

Their connections. Such two perspectives are equivalent if specific structure of T in

Eq. (4.7) is applied. For example, when DX = DY = DZ = D and T is a three-way

identity tensor, we simply have z = x ◦ y with ◦ being the Hadamard product (element-

wise product). When the mode-3 matricization of T is an identity matrix of size DXDY ,

we have z = vec(x⊗y), i.e., the vectorization of the outer product between the two input

features.

4.3.3 Preliminaries: Normalization

The bilinear forms, such as Eq. (4.6) and Eq. (4.7), can be applied in a generic deep

neural network as an intermediate layer, e.g. between two 1D convolution layers to

extract second-order information. Due to the tensor product (or vector outer product),

small values become smaller and large values become larger as the data flows from the

2Given a three-way tensor T ∈ RDX×DY ×DZ , the mode-1 multiplication with a vector x, i.e. T ×1 x,
yields a 2D matrix with the elements {

∑
i
tijkxi}jk. The mode-2 multiplication works in an equivalent

manner. Therefore, in Eq. (4.7), it has zk =
∑

i,j
tijkxiyj .
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network bottom to up, which can lead to diverging spectra in the bilinear forms and very

sparse features before the final classification layer. Here we present three normalization

methods that can address such problems.

l2 normalization. We can apply l2 normalization on the output of bilinear pooling. Since

the l2 norm of a vectorized matrix is equivalent to its Frobenius norm and also equivalent

to the Frobenius norm of the singular value matrix after SVD, the l2 normalization on the

vectorized bilinear form can constrain the matrix spectra between 0 and 1, and hence

effectively eliminates the diverging spectra problem.

Normalized ReLU. [59] proposes a normalized ReLU activation function, which allows

fast convergence and yields superior results to other activation functions. Given an input

vector x, normalized ReLU can be given by

σ(x) = NReLU(x) = ReLU(x)
max(ReLU(x)) + ε

, (4.8)

where NReLU stands for normalized ReLU, ε is a small positive constant and the max(·)

operation selects the maximal entry in the vector x. Since the Frobenius norm is

bounded from above by the max norm multiplying with a scalar [185], NReLU is also

able to constrain the matrix singular values and hence eliminates the diverging spectra

issue. Nevertheless, it can lead to sparse features.

Regularized power normalization. Power normalization is an effective trick to over-

come sparse features and improve the performance [62, 67], which can be formulated

as sign(x) ·
√
|x|. However, when using power normalization in intermediate layers of a

neural net, it can cause gradient explosion during back-propagation, since the gradient

goes to infinity when encountering 0 values. Therefore, we propose a regularized version,

and use it as an activation function after each temporal convolution layer, so that features

in the network are always densified. The formula is given by
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σ(x) = RPN(x) = sign(x) ·
(√
|x|+ θ2 −

√
θ2
)
, (4.9)

in which RPN stands for regularized power normalization and θ is can be a learnable

parameter. As θ → 0, the RPN function converges to the standard power normalization.

4.3.4 Local Temporal Bilinear Pooling: A Statistical Perspective

Our statistics-based bilinear pooling method 3 is modified from the global pooling Eq.

(4.6). In contrast to the global pooling, which destroys local structures, we use a local

temporal neighbourhood in order to preserve the local temporal structure. Specifically,

given a temporal sequence of feature vectors X = {x1, ...,xT } with xt ∈ Rd for t ∈

1, 2, ..., T , the local temporal bilinear composition is given by

B(xt) = vec

 1
|N (t)| ·

∑
τ∈N (t)

xτ ⊗ xτ

 , (4.10)

where N (t) denotes the local temporal neighborhood set centered at the time instant

t. One can note that such operation is non-causal. In addition, we improve the bilinear

pooling in Eq. (4.10) by the following two aspects.

• Decoupling First and Second-order Information. Inspired by a physical fact

that the position and the velocity of an object in motion indicate different dynamical

variables, we consider to separate first and second-order components from the bi-

linear form (Eq. (4.10)) to describe the action via separate attributions. In this case,

we propose a decoupled bilinear form, which is denoted as Bd(·). Provided a time

sequence of d-dimensional feature vectors {x1, ...,xT }, the first-order component

µ, the second-order component Σ and Bd(·) are given by

3Our statistics-based bilinear pooling study, as well as the corresponding experiments in Sec. 4.4.3, are
published in [6] c© 2019 IEEE (textual content c© 2011 IEEE).
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µt = 1
|N (t)| ·

∑
τ∈N (t)

xτ , (4.11)

Σt = 1
|N (t)| ·

∑
τ∈N (t)

(xτ − µt)⊗ (xτ − µt) and (4.12)

Bd(xt) =
(
µTt , vec

(
Σt
))T

, (4.13)

in which one can note Bd(xt) ∈ Rd(d+1). Since the first-order component is

equivalent to the mean and the second-order component is equivalent to the

covariance, such decomposed bilinear form can precisely describe a Gaussian

distribution. Additionally, we denote the bilinear form in Eq. (4.10) as Bc(·), which

means “coupled”.

• Adapting local statistics to data. When the local statistics is more complex than

Gaussian distribution, only using mean and covariance to describe the statistics is

not sufficient. Rather than applying higher-order statistics like in [90, 91], we stay

in second-order statistics to retain computational cost low. Since the averaging

operation in Eq. (4.10) and Eq. (4.11) can be regarded as convolution by a box

filter, we generalize it to convolution by a learnable filter. Thus, the local statistics is

adaptive to the data and the network objective. Specifically, for the coupled bilinear

form the learnable version is given by

Bc(xt) = vec

 ∑
τ∈N (t)

ωτxτ ⊗ xτ

 , (4.14)

where the filter weights {ωτ} are shared by all temporal neighbourhood sets, i.e.

N (t) with t = 1, 2, ..., T . The filter weight ωτ represents the contribution of the input

feature vector at the frame τ to the bilinear pooling output, and works in a similar

manner to temporal convolution. Noticeably, the weight value can be negative.
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Likewise, for the decoupled bilinear form, the learnable version is given by

µt =
∑

τ∈N (t)
pτxτ , (4.15)

Σt =
∑

τ∈N (t)
qτ (xτ − µt)⊗ (xτ − µt) and (4.16)

Bd(xt) =
(
µTt , vec

(
Σt
))T

, (4.17)

where the learnable filter weights {pτ} and {qτ} are shared by all temporal neigh-

borhood sets.

Intuitively, the major difference between Bc(·) and Bd(·) is whether the extracted second-

order information is centered or not. Depending on the input data to the bilinear pooling,

such difference can be essential or not. If the input samples to Bc(·) and Bd(·) are

already centered, Bc(·) and Bd(·) are expected to have comparable performance. Even,

Bc(·) is better, since the µt in Bd(·) is close to zero and hence somehow redundant.

If the input samples to Bc(·) and Bd(·) are not well centered, for example, the input

samples to the bilinear pooling are the outputs from a convolutional layer with ReLU and

hence all input samples are positive, then the difference is essential. The most principal

eigenvalue/eigenvector of Bc(·) is dominated by the average locations of input samples,

leading to degraded second-order information representation, i.e. how the input samples

are scattered. On the other hand, the component Σt in Bd(·) can fully reflect how the

input samples are scattered. The input sample locations are reflected by µt additionally.

Therefore, in our study, we use both Bc(·) and Bd(·) in our experiments for fine-grained

action parsing (see Sec. 4.4).

Low-dimensional Representation. Given an arbitrary feature vector sequence, the

bilinear forms Bc and Bd can capture local temporal statistics which are adaptive to the

data. However, the feature dimension is considerably increased. Specifically, given

xt ∈ Rd, we have Bc(xt) ∈ Rd2
and Bd(xt) ∈ Rd(d+1). To address such issue, we propose

lower-dimensional alternative representations to the explicit bilinear forms defined in Eq.

(4.14) and Eq. (4.17). Consequently, our method is exact, which means it introduces
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neither information loss as in approximation methods nor computational cost as in PCA

or SVD.

To find such lower-dimensional representations, we first show that Bc(·) and Bd(·) are

feature mappings associated with reproducing kernel Hilbert spaces (RKHSs) [186], for

which the kernels are second-order homogeneous and inhomogeneous polynomials,

respectively. Such property can be extended to arbitrary p-th order polynomials. One

can refer to more details in [187, Chapter 3].

Proposition 1. Given {x1, ...,xT }, we have

〈Bc(xi),Bc(xj)〉Rd2 =
∑

τ∈N (i)

∑
τ ′∈N (j)

ωτωτ ′ 〈xτ ,xτ ′〉2Rd , (4.18)

and

〈Bd(xi),Bd(xj)〉Rd(d+1) = 〈µi,µj〉Rd

+
∑

τ∈N (i)

∑
τ ′∈N (j)

qτqτ ′ 〈xτ − µi,xτ ′ − µj〉2Rd2 ,
(4.19)

in which the notations are referred to the definitions in Eq. (4.14) and Eq. (4.17).

Proof. For the coupled bilinear composition, we have

〈Bc(xi),Bc(xj)〉Rd2

=
〈 ∑
τ∈N (i)

vec

(
ωτxτ ⊗ xτ

)
,
∑

τ ′∈N (j)
vec

(
ωτ ′xτ ′ ⊗ xτ ′

)〉

=
∑

τ∈N (i)

∑
τ ′∈N (j)

ωτωτ ′

〈
vec

(
xτ ⊗ xτ

)
, vec

(
xτ ′ ⊗ xτ ′

)〉

=
∑

τ∈N (i)

∑
τ ′∈N (j)

ωτωτ ′ 〈xτ ,xτ ′〉2Rd .

(4.20)

76



4.3 Local Temporal Bilinear Pooling

For the decoupled bilinear composition, we have

〈Bd(xi),Bd(xj)〉Rd(d+1) = 〈µi,µj〉Rd

+ 〈vec(Σi), vec(Σj)〉Rd2 . (4.21)

Thus, one can easily derive the formula in the proposition.

One can see from Proposition 1 that the inner product of Bc(·) can be expressed in

terms of the 2nd-degree homogeneous polynomial kernel k(x,x′) = 〈x,x′〉2. In general,

the dimension of Bc(·) increases exponentially with the degree of the polynomial kernel,

making it less practical when used explicitly in a deep neural net. Motivated by the fact

that for a specific kernel k(·, ·), the associated feature mapping φ : X → H is not unique,

we derive a feature mapping that corresponds to the same kernel as Bc(·), but has lower

dimension. For example, provided the vector x = (x1, x2)T , and the polynomial kernel

k(x1,x2) = 〈x1,x2〉2 = 〈φ(x1), φ(x2)〉, we can derive φ(x) = (x2
1, x1x2, x2x1, x

2
2)T , or

φ(x) = (x2
1,
√

2x1x2, x
2
2)T , in which the latter one has lower dimensionality. Therefore,

the proposed method reduces the number of parameters to be learned without sacrificing

the representativeness. In particular, we show that:

Proposition 2. Let Bc(x) ∈ Rd2
be the bilinear composition and φc(x) ∈ R

d(d+1)
2 a

feature mapping defined by

φc(x) = (x2
1, ..., x

2
d︸ ︷︷ ︸

d terms

,
√

2x1x2,
√

2x1x3, ...,
√

2xd−1xd︸ ︷︷ ︸
C(d,2) terms

)T . (4.22)

Then, it follows that for any x,x′ ∈ Rd, it has

〈Bc(x),Bc(x′)〉Rd2 = 〈φc(x), φc(x′)〉
R

d(d+1)
2

. (4.23)

Equivalently, the second-order component defined in Eq. (4.17) has a lower-dimensional

alternative, so that Bd(x) ∈ Rd(d+1) can be replaced by φd(x) ∈ R
d(d+3)

2 .

Due to the commutative property of tensor product, the above proposition can be proved

by reformulating the polynomials in Eq. (4.20).
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Proposition 2 shows that Bc(·) and φc(·) are equivalent, in the sense that the correspond-

ing kernel is the same (see Eq. (4.23)). The advantage of using φc(·) instead of Bc(·)

is that it has much lower dimension. For example, if each feature vector in the input

sequence is 128-dimensional, Bc is 16384-dimensional and Bd is 16512-dimensional.

On the other hand, the alternative feature representations φc is 8256-dimensional and φd

is 8384-dimensional, approximately halving the dimensionality without losing information

and without introducing extra computation.

4.3.5 Local Temporal Bilinear Pooling: A Multilinear Algebraic

Perspective

Although our statistics-based bilinear pooling method can extract 2nd-order information

with half dimensionality of the full bilinear form, the computational cost is still high, i.e.,

O(d2) w.r.t. the input feature dimension d, and hence is difficult to be used in a larger

architecture than the TCED network [59]. In addition, with our statistics-based bilinear

model, one cannot extract higher-order (third-order and higher) information, which is

more discriminative and yield better performance [91, 90].

Although modeling high-order feature interaction has many successful applications,

most existing methods have a critical drawback: The computational cost increases

exponentially with respect to the information order and the input feature dimension. Let

us take bilinear pooling for second-order information extraction as an example. Given

two feature vectors x ∈ RDX and y ∈ RDY , a generic bilinear model [183, Eq. (2)] is

given by:

z = T ×1 x×2 y, (4.24)

where T ∈ RDX×DY ×DZ is a three-way tensor, and the operations ×1 and ×2 are the

mode-1 and mode-2 multiplication, respectively. Despite being a powerful scheme, such

a model tends to suffer from the curse of dimensionality and intractable computation

[184]. Specifically, the number of free parameters in T grows cubically as the feature

dimensionality, i.e. O(DXDYDZ), hence limiting its use in large-scale scenarios.
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4.3 Local Temporal Bilinear Pooling

To reduce the complexity, a common solution is to impose specific assumptions on

the structure of T in Eq. (4.24). In the work of [80, 183, 71], low-rank assumption

on T is employed. In the work of [69], count sketch is used to extract approximated

second-order information, which can be represented by a shorter feature vector than the

full second-order information. Although such conventional bilinear pooling methods can

extract second-order information effectively, extracting higher-order information requires

extra operations [91] and may further increase the computational cost.

Here, we aim at deriving a simple bilinear model, with which changing the order of

information does not involve extra computation. Therefore, our investigations have two

aspects: (1) From the multilinear perspective, we assume that each frontal slice of T

— but not T itself — is a low-rank matrix. Then we derive a new bilinear form that

first reduces the feature dimension and then performs vector outer product. Different

from [80] and [183], that first lift the feature dimension and then perform Hadamard

product, our method has runtime complexity O(D
√
d+d) and space complexity O(D

√
d)

compared to O(Dd + d) and O(Dd) in their works4. Thus, our bilinear operation is

lightweight and can be employed in deep neural networks as intermediate layers in an

efficient manner. (2) Rather than learning the model parameters from data, the entries

of each frontal slice are determined by random projection matrices drawn from a specific

distribution. Our key insight is that, while the low-rank structure allows a reduction in the

number of parameters, the loss in representational power is compensated by the random

projection matrices. In particular, we show that when these random matrices are sampled

with different underlying distributions, the model approximates feature maps of different

reproducing kernel Hilbert spaces (RKHSs). For example, when they are sampled

from the Rademacher distribution, the model approximates the multiplication of linear

kernels (cf. Theorem 1). When they are sampled from the Gaussian distribution with

orthogonality constraints, the model approximates multiplication of Gaussian kernels (cf.

Theorem 2). Hence, we can explicitly manipulate the model capacity without sacrificing

the computational efficiency.

4D and d are input and output feature dimensions of the bilinear model, respectively; usually, D � d.
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4.3.5.1 Tensor Frontal Low-rank Approximation

Here we follow the tensor notations in [188]. Eq. (4.24) can be re-written in terms of

matrix-vector multiplication as

z = T(3) vec(x⊗ y), (4.25)

where T(3) is the mode-3 matricization of T , vec(·) denotes column-wise vectorization

of a matrix, and ⊗ denotes vector outer product. In other words, the bilinear operation in

Eq. (4.24) is equivalent to first computing the correlation matrix between the two features

and then performing linear projection.

It follows from Eq. (4.25) that each entry of the output feature vector z is a weighted sum

of all the entries in the correlation matrix x⊗ y, i.e.,

zk = 〈vec(T [:, :, k]), vec(x⊗ y)〉 =
DX∑
i=1

DY∑
j=1
T [i, j, k]vf(i,j), (4.26)

where v := vec(x ⊗ y). If the frontal matrix T [:, :, k] is a rank-one matrix, i.e., T [:, :

, k] = e ⊗ f for some e ∈ RDX and f ∈ RDY , then we can rewrite Eq. (4.26) as

zk = 〈vec(e ⊗ f), vec(x ⊗ y)〉 = 〈e,x〉〈f ,y〉. Thus, we define the projection matrices

E = [e1, e2, ..., eM ]T and F = [f1,f2, ...,fN ]T for two sets of vectors {ei}Mi=1 ⊂ X and

{fj}Nj=1 ⊂ Y with M ≤ DX and N ≤ DY . Then, the fusion map φ : RDX ×RDY → RMN

can be defined as

z := φ(x,y) = vec ((Ex)⊗ (Fy)) . (4.27)

If we assume further that T [:, :, k] is a rank-R matrix, i.e., T [:, :, k] =
∑R
r=1 e

r
i ⊗ f rj , we

obtain

z := φ(x,y) = vec

(
R∑
r=1

(Erx)⊗ (F ry)
)
, (4.28)

where Er = [er1, er2, ..., erM ]T and F r = [f r1 ,f r2 , ...,f rN ]T for r = 1, 2, ..., R. With such

low-rank assumption, we avoid computing the high-dimensional correlation matrix x⊗ y,

which considerably reduces the model parameters from DXDYDZ to R(MDX +NDY )

with a small value of R.
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Similar low-rank assumption is also used in [183, 80], in which the two input feature

vectors are first projected to a common vector space and then fused via Hadamard

product. Assuming the input feature vectors are of the same dimension D and the output

feature vector is of dimension d, then such operation requires O(Dd + d) operations

to compute and requires O(Dd) memory to store. In contrast, our method requires

O(D
√
d + d) for computation and O(D

√
d) for storage. Since in practice it normally

requires more dimensions to represent a higher-order feature, i.e. d� D, our method

has consistently better runtime (see Table 4.9) and hence is more suitable to be employed

in a sophisticated deep neural network as a pooling layer.

4.3.5.2 Random Projection

To compensate for the loss in model capacity caused by the low-rank assumption, we

observe that the entries and associated distributions of E and F defined in Eq. (4.27)

and Eq. (4.28) can indeed influence the model capacity, without adding or removing

learnable parameters, network layers, etc.

Inspired by this observation, we propose to manipulate the model capacity by randomly

sampling the entries of E and F from specific distributions and then perform random

projection. Unlike an end-to-end learning via back-propagation, our approach provides

an alternative way of building expressive representation that is explainable and is simple

to use in practice.

Rademacher random projection. Motivated by [189] and [69], we specify model

parameters, i.e. the projection matrices Er and F r in the bilinear model (4.27) or (4.28),

with random samples from the Rademacher distribution. Below we show that the bilinear

model given in Eq. (4.27) unbiasedly approximates, with high probability, a feature map

to a reproducing kernel Hilbert space (RKHS), in which the associated kernel is the

multiplication of two linear kernels in X and Y, respectively.

Theorem 1. LetEr ∈ RM×DX and F r ∈ RN×DY for any r ∈ {1, 2, ..., R} be Rademacher

random matrices whose entries are determined by an independent Rademacher ran-

dom variable σ ∈ {−1, 1}. For any x1,x2 ∈ X and y1,y2 ∈ Y, let z1 = φ(x1,y1) and
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z2 = φ(x2,y2) be the output features given by Eq. (4.27). Define a kernel function by

k(z1, z2) = 〈z1, z2〉, then we have

E[k(z1, z2)] = RMN〈x1,x2〉〈y1,y2〉.

Next, we characterize the error of such kernel approximations.

Corollary 1. Let z1 and z2 be defined as in Theorem 1. Let k(z1, z2) = 1
R〈z1, z2〉. Then,

the following inequality holds:

P (|k(z1, z2)− E[k(z1, z2)]| > ε) ≤ 2 exp
(
−ε

2MN

2p8R̃8

)
, (4.29)

for some constants ε > 0, and p ≥ 1, R̃ ≥ 1, which are independent of the feature

dimensions.

Proofs of both results can be found in Appendix 1 and 2. More details on the constants

p and R̃ can be found in [189]. To remove the effect of the scaling factors, we rewrite Eq.

(4.28) as

z = φ(x,y) = 1
R
√
MN

· vec
(

R∑
r=1

(Erx)⊗ (F ry)
)
. (4.30)

Therefore, Eq. (4.30) with binary tensor entries is capable of capturing second-order

interactions between two features. We refer this bilinear form as “RPBinary” in the

experiment section.

Gaussian random projection. To increase the model capacity, a common approach

is to apply the nonlinear activation function ϕ(·), which gives

z := φ(x,y) = vec

(
R∑
r=1

ϕ(Erx)⊗ ϕ(F ry)
)
. (4.31)

Inspired by [190], we consider

Er = 1
σr
IM×DX

RrP r, F r = 1
ρr
IN×DY

SrQr with r = 1, 2, ..., R, (4.32)
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where Rr and Sr are diagonal matrices with diagonal entries sampled i.i.d. from the

chi-squared distributions χ2(DX) and χ2(DY ) with DX and DY degrees-of-freedom,

respectively, P r and Qr are uniformly distributed random orthogonal matrices5, and

IM×DX
and IN×DY

are identity matrices with the first M and N rows, respectively. Here,

{σr}Rr=1 and {ρr}Rr=1 are tunable bandwidth parameters.

When the nonlinear function in Eq. (4.31) is given by ϕ(Ex) :=
√

1/M [sin(Ex), cos(Ex)]

and ϕ(Fy) :=
√

1/N [sin(Fy), cos(Fy)], the resulting representation approximates fea-

ture maps to the RKHSs corresponding to a composition of Gaussian kernels (see

Appendix 3 for the proof).

Theorem 2. Let Er ∈ RM×DX and F r ∈ RN×DY for any r ∈ {1, 2, ..., R} be random

matrices whose entries are determined as in Eq. (4.32). For any x1,x2 ∈ X and y1,y2 ∈

Y, let z1 = φ(x1,y1) and z2 = φ(x2,y2) be the output features in Eq. (4.31). Define a

kernel function k(z1, z2) = 〈z1, z2〉, then we have

E[k(z1, z2)] =
R∑
r=1

exp
(
−‖x1 − x2‖22

2σ2
r

)
exp

(
−‖y1 − y2‖22

2ρ2
r

)
+ b, (4.33)

where b :=
∑R
r=1

∑R
r′=r+1 E[〈ϕ(Erx1), ϕ(Er′x2)〉]E[〈ϕ(F ry1), ϕ(F r′y2)〉].

A characterization of the variance of k(z1, z2) in Theorem 2 is given in Appendix 4,

which suggests that higher output feature dimension can reduce the variance of k(z1, z2).

Consequently, just by using the periodic function ϕ(·) and the Gaussian random pro-

jection, we can obtain infinite-order information without extra computational cost. We

refer this form as “RPGaussianFull” in the experiment section. In principal, one can

extract different types of high-order information by using different nonlinear functions in

Eq. (4.31). Further investigations on such problems are currently beyond our scope.

In practice, when used as an intermediate layer in deep neural networks, sin and cos

functions are known to be difficult and unreliable to train using back-propagation [192].

Perhaps a critical initialization step is necessary. Therefore, we perform Taylor expansion

of sin and cos, and only use the first term. Namely, we approximate sin(Ex) ≈ Ex

and cos(Ex) ≈ 1. Then, we can discard the nonlinear function ϕ(·) in Eq. (4.31), and
5Specifically, P r and Qr are uniformly distributed on the Stiefel manifold [190, 191].
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also can apply scaling factors as in Eq. (4.30). We refer this approximated version

as “RPGaussian” in our experiments. Consequently, we use these components from

the Taylor expansion to approximate the original bilinear form with periodic activation

functions, which further approximates the feature vector in the RKHS with a compositional

Gaussian kernel. In addition, we adopt a simpler version Er =
√
DX
σr IM×DXP

r and

F r =
√
DY
ρr IN×DY Q

r. According to [190], such a simplified version exhibits similar

empirical behavior to the original version, especially when the feature dimensionality is

high. Moreover, rather than regarding the Gaussian radii as hyper-parameters, we learn

them via back-propagation when employing the model (4.30) as an intermediate layer in

a deep neural network.

Last but not least, it is instructive to note that, in addition to what we have proposed, the

distributions of E and F can be arbitrary. We can even model these distributions using

deep generative models, which is the subject of our future work.

4.4 Experiment: Fine-Grained Action Parsing

Parsing fine-grained actions over time is important in many applications, which require

understanding of subtle and precise operations in long-term periods, e.g. daily activities

[116], surgical robots [117], human motion analysis [38] and animal behavior analysis

in the lab [118]. Therefore, understanding fine-grained actions in videos has great

potentials for our purpose of elderly people healthcare.

In this section, we quantitatively show the effectiveness of our bilinear pooling methods

on fine-grained action parsing, based on the deep neural networks introduced in Sec.

4.3.1. As discussed above, our statistics-based bilinear pooling method can preserve

full 2nd-order information, but has higher computational cost, while our algebra-based

bilinear pooling method extracts approximated 2nd-order information (or higher-order)

and is more lightweight. Therefore, in our experiments, we combine our statistics-

based pooling method with the TCED network [59], replacing the max pooling by the

bilinear pooling in each encoder. In addition, in a separate investigation, we combine

our algebra-based bilinear pooling method with both TCED and MS-TCN [60]. Since
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Figure 4.8: Illustration of datasets. From top to bottom: Each row presents three video
frames from 50 Salads, GETA and JIGSAW, respectively.

different methods generate different input statistics for the feature sequences, we use

different training settings to achieve the best performance in each investigation, and

discuss the experimental results separately.

4.4.1 Datasets

In our experiments, the input time sequence of feature vectors to the temporal network

is extracted from RGB videos using a pre-trained VGG-like network [57] for the TCED

network, and using a pre-trained I3D network [11] for the MS-TCN network. To perform

fair comparison with other methods, we downsample the input feature sequence to

achieve the same temporal resolution as in [59] for TCED and in [60] for MS-TCN,

respectively. Figure 4.8 shows several examplar video frames from the three datasets

introduced in the following.

50 Salads [5]. This multi-modal dataset collects 50 recordings from 25 people prepar-

ing 2 mixed salads, and each recording lasts 5-10 minutes. In our experiment, we only
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use the RGB video, which has spatial resolution of 640x480 pixels and frame rate of

30 fps. The annotation is performed at two levels: (1) the eval-level incorporating 9

actions such as “cut”, “peel” and “add dressing”, and (2) the mid-level incorporating

17 fine-grained actions, some of which are derived from the high-level actions. For

example, the mid-level actions “cut tomato” and “cut cucumber” are derived from the

high-level action “cut”. Therefore, we can obtain two subsets from 50 Salads, namely

50 Salads-eval and 50 Salads-mid. The recordings are equally split into 5 folds for

cross-validation. Without direct mentioning, 50 Salads means 50 Salads-mid.

Georgia Tech Egocentric Activity Datasets (GTEA) [193, 116]. This dataset con-

tains 7 daily living activities performed by 4 subjects. The videos are captured from the

egocentric view at 15 fps with the resolution of 1280x720 pixels and there are 31,222

frames in the dataset. We follow the settings in [57] [59]: For each video, frame-wise

labels from 11 action classes are annotated. The evaluation is based on the leave-one-

subject-out scheme, namely performing cross-validation on 4-fold splits.

JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [194, 117]. This

multi-modal dataset is collected from the da Vinci surgical system, which is operated

by 8 surgeons with different skill levels performing 5 repetitions of 3 surgical tasks, i.e.

“suturing” (39 trials), “knot-tying” (36 trials) and “needle-passing” (26 trials). Videos are

captured from the endoscopic camera in a simulated setting of real surgeries. In our

study we only use the videos of “suturing” since it has more trials than other tasks. The

“suturing” task comprises 10 actions like “tie a knot”, “insert needle into skin” and so forth.

Each video is approx. 2 minutes and contains 15 to 37 actions, which have considerably

different occurrence orders from different surgeons. Similar to GTEA, in our experiments

we perform evaluations in the leave-one-surgeon-out scheme.

4.4.2 Evaluation Metrics

Frame-wise accuracy. The frame-wise accuracy is defined as the correctly classified

frames divided by the number of all frames. Intuitively, such measure evaluates the
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accuracy from the frame-wise classification perspective. However, it ignores the temporal

regularity and the action occurrence order in the label sequence.

Edit score [57]. Given the predicted sequence P = {p1, p2, ..., pM} and the ground

truth sequence Q = {q1, q2, ..., qN}, the edit score is defined as (1− dedit(P,Q))× 100,

in which dedit(·, ·) is the Levenshtein distance6, which measures the difference between

two strings. According to the definition, the edit score evaluates the temporal order of

action occurrence, ignores the action temporal durations and only considers segment

insertions, deletions and substitutions. Thus, such metric can provide effective evaluation

of tasks, in which the action order is essential, e.g. cooking, manufacturing, surgery

and so forth. However, the edit score can be negatively influenced by tiny predicted

segments, and hence highly influenced by over-segmentation results.

F1 score [59]. The F1 score is defined as the harmonic mean of the precision and

the recall rates of fine-grained action detection, in which the true positive detection is

defined as a segment whose action label is same to the ground truth as well as the

intersection-over-union (IoU) of the overlap with the ground truth is greater than k. In

our experiment, we compute the F1 scores with IoU threshold k equal to 0.1, 0.25

and 0.5, which are denoted as F1@0.1, F1@0.25 and F1@0.5, respectively. Without

directly mentioning, the F1 score means F1@0.1. According to the definition, the F1

score is an evaluation metric from the perspective of action detection, and is invariant to

small temporal shifts between detection and the ground truth. However, the F1 score

is negatively influenced by over-segmentation as well, since lots of tiny segments can

result in a low precision rate.

4.4.3 Experiments on Our Statistics-Based Bilinear Pooling

We use the same architecture setting of the TCED in [59]: The network has a temporal

encoder with the structure of “1D convolution → max pooling → 1D convolution →
6Here is an example from Wikipedia: The Levenshtein distance from “kitten” to “sitting” is 3, since three

edits are involved: (1) kitten→ sitten (substitution of “s” for “k”), (2) sitten→ sittin (substitution of “i” for
“e”) and (3) sittin→ sitting (insertion of “g” at the end).
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Figure 4.9: We use the features from the first encoder of TCED to show frame similarities of
“rgb-01-1.avi” in 50 Salads-mid [5]. The similarity of two frame features xi and xj

is defined as |〈xi,xj〉|. The similarity of two (one-hot) action labels, regarded as
ground truth, is computed in the same way. It is noted that in each matrix the x- and
the y-axis both indicate the time range. The bilinear pooling outputs are power-and-
l2 normalized. Entries in similarity matrices range between 0 (blue) and 1 (yellow).
Red rectangles contain some fine-grained actions. One can see that bilinear pooling
is better at recognizing fine-grained actions, but can also lead to undesired over-
segmentation. Combining with the convolution layers, such over-segmentation issue
vanishes. This figure was used in [6] c© 2019 IEEE.

max pooling”, and the associated two 1D convolution layers have 64 and 96 filters,

respectively. The decoders have mirrored structures with the encoders. We replace the

max pooling in the encoders by our bilinear pooling method. To train the network, for all

methods we use the Adam optimizer [177] with learning rate of 0.01 or 0.001 depending

on which one performs better. In addition, we set the batch size equal to 4 and stop the

training after 100 epochs.

4.4.3.1 Analysis of The Bilinear Forms

We use the 50 Salads-mid dataset to perform model analysis, because it has more

fine-grained action types and longer video recordings than the other mentioned datasets.
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The benefits of second-order information. Figure 4.9 illustrates the comparisons

between pooling methods, where the compact bilinear pooling [69] output has the same

dimension as the max pooling: (1) The first row in Figure 4.9 shows that bilinear pooling

can capture fine-grained actions better than max pooling, whose output features tend to

merge fine-grained actions into coarse-grained ones. Our proposed decoupled bilinear

pooling with full second-order information performs better at recognizing fine-grained

actions and suppressing off-diagonal elements. However, it can break a coarse-grained

action into several segments, and can lead to undesired over-segmentation. The compact

bilinear pooling outperforms max pooling on the diagonal elements, which demonstrates

that the advantage of bilinear pooling is due to the second-order information rather than

higher dimensionality. However, the large off-diagonal values indicate the drawback of

approximating second-order information in compact bilinear pooling. (2) The second

row in Figure 4.9 illustrates that bilinear pooling improves the convolution layer via

backpropagation. With max pooling, many off-diagonal elements are similar to the

diagonal elements, which differ from the ground truth pattern considerably. However,

with bilinear pooling, the matrix patterns are more similar to the ground truth. One can

also see that the output from the convolution layers does not have over-segmentation,

which appears in the output of bilinear pooling.

Furthermore, we conduct a quantitative comparison on the first split of 50 Salads-mid.

In the format of accuracy/edit-score/F1-score, max pooling yields 71.03/71.8/73.09, com-

pact bilinear pooling yields 75.41/73.75/78.96, the coupled bilinear pooling Bc(·) yields

76.56/75.32/79.84 and the decoupled bilinear pooling Bd(·) yields 75.11/71.06/75.79.

One can see that bilinear pooling consistently outperforms max pooling. The comparison

between max pooling and compact bilinear pooling also indicates the importance of the

second-order information.

Comparison of different bilinear forms. Here we analyze the influence of the learn-

able weights in the proposed bilinear forms Bc and Bd. We denote the corresponding

non-learnable bilinear forms in Eq. (4.10) and Eq. (4.11) as Boc and Bod, respectively. As

shown in the top row of Figure 4.10, both for the coupled and decoupled bilinear forms,

the one with learnable weights consistently outperforms the non-learnable counterpart,
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in terms of the evaluation metrics and the robustness to the neighborhood size |N |. This

outcome is more obvious when the neighbor size is larger. This result indicates that

the learnable weights, i.e. {ωτ}, {pτ} and {qτ} in equations (4.14) and (4.17), enable

the derived bilinear forms to capture more complex local temporal statistics, comparing

to the standard average aggregation. Thus, in the following experiments, we only use

the learnable bilinear forms. Furthermore, the decoupled bilinear form outperforms

the coupled version on all the three metrics. Specifically, the decoupled bilinear form

achieves 66.3/64.63/70.74 in the format of accuracy/edit score/F1 score, while the best

performance of the coupled bilinear form is 64.73/62.15/68.89 and the baseline model

(TCNmax [59]) achieves 64.7/59.8/68.0.

In the bottom row of Figure 4.10, we show the performance of the first-order component

and the second-order component of the decoupled bilinear form. One can observe that

the results derived using individual components are inferior to the results using combined

bilinear forms. This fits our conjecture that first and second-order components tend to

describe independent and complementary patterns in data.

Normalization and activation. Here we investigate the influence of normalization

methods, which are introduced in Sec. 4.3.3, and compare different activation functions.

In each individual experiment the neighbourhood size of both bilinear forms are identical.

First, different normalization methods are compared in Table 4.3. One can see that l2

normalization and l1 normalization perform almost equally, while the normalized ReLU

activation function consistently outperforms others. This result indicates that the max-

normalization in intermediate layers is more suitable than others to constrain the bilinear

form spectrum. Second, we show the influence of the activation functions in Table 4.4.

The bilinear forms are l2 normalized, except for the case of NReLU. In our experiment,

training with other activation functions without l2 normalization hardly converges, indicat-

ing the importance of constraining the spectrum of the bilinear form. Table 4.4 indicates

that the NReLU function consistently yields superior results, suggesting that our task

benefits from sparse features.
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Figure 4.10: The performances w.r.t. the neighbourhood size |N |, and the learnability
of the weights. From left to right in the first row: The performance of the
coupled bilinear form Bc; the performance of the decoupled bilinear form
Bd. From left to right in the second row: The performance of the first-order
component in Bd; the performance of the second-order component in Bd.
The bilinear pooling Bd is referred to Eq. (4.17). This figure was used in [6]
c© 2019 IEEE.

4.4.3.2 Low-Dimensional Representations

One of our key contributions is to derive lower-dimensional alternatives to the explicit

bilinear compositions. Comparing other dimension reduction methods, our method does
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Bc Bd

NReLU 65.82/61.89/68.5 66.28/62.46/68.93
NReLU+l2 64.92/60.01/67.33 66.09/60.02/67.38
NReLU+l1 64.22/60.04/65.86 66.48/63.04/68.71
ReLU+l2 64.87/59.88/66.31 64.7/61.45/68.04
ReLU+l1 63.05/58.29/65.62 59.76/58.68/64.39

Table 4.3: Comparison of different normalization methods, in which the performances
are presented in terms of accuracy/edit score/F1 score and the best ones for
each model are highlighted in boldface. This table was used in [6] c© 2019
IEEE

pooling ReLU [195] leaky ReLU [176] swish [196] NReLU (Eq. (4.8)) [59] RPN (Eq. (4.9)) linear

max 61.1/53.1/59.8 55.0/48.5/55.6 56.5/47.1/52.4 63.6/60.4/64.9 62.7/54.9/63.1 12.6/11.5/8.6
Bc 65.5/61.1/68.4 66.4/61.7/69.1 66.8/59.2/67.5 64.0/61.3/67.8 64.1/56.5/64.8 63.5/48.3/55.9
Bd 64.7/61.5/68.0 65.6/53.6/61.5 62.5/49.3/56.6 66.8/62.4/69.1 63.2/50.4/58.4 65.5/48.3/57.0

Table 4.4: The performances with different pooling methods and activation functions are
presented in the format of accuracy/edit score/F1 score, in which for each
model the best results are highlighted in boldface. This table was used in [6]
c© 2019 IEEE

not suffer from any information loss nor do we have extra computation. We compare

different low-dimensional representations in the lower parts of Table 4.5, 4.6, 4.7 and 4.8.

The tensor sketch technique [69] reduces each feature outer product from d2 to d(d+1)
2 for

fair comparison. In addition, the LearnableProjection [66] is implemented by a temporal

convolution layer with the kernel size of 1, and the reduced dimensions are equal to

φc and φd respectively for fair comparison. Note that, in our trials, other dimension

reduction methods (especially the ones employing SVD) used in our local temporal

pooling cause very high computational cost, lead to intractable computation, and hence

are not compared. For each listed method we tested different neighborhood sizes of

5, 11 and 25, and present the best performance. Our results show that the proposed

low-dimensional representations consistently outperform other dimension reduction

methods. In particular, on the 50 Salads-mid dataset, φd considerably outperforms the

LearnableProjection counterpart, in which the accuracy is improved by 5.6%, the edit

score is improved by 6.2% and the F1 score is improved by 6.1%. Here the runtime

comparison between the proposed bilinear forms and their respective low-dimensional
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Method Result

Spatial CNN [57] 54.9/24.8/32.3
Spatiotemporal CNN [57] 59.4/45.9/55.9
IDT+LM [29] 48.7/45.8/44.4
Dilated TCN [59] 59.3/43.1/52.2
Bidirectional LSTM [59] 55.7/55.6/62.6
TCEDmax [59] 64.7/59.8/68.0

TCEDBc 65.8/61.9/68.5
TCEDBd

66.3/62.5/68.9

TCEDTensorSketch [69] 63.4/62.6/68.5
TCEDBc,LearnableProjection 61.8/58.2/64.4
TCEDBd,LearnableProjection 60.1/56.6/62.9

TCEDφc 64.7/61.3/66.8
TCEDφd

65.7/62.8/69.0

Table 4.5: The comparison in 50 Salads-mid, where the results are shown in the format
of accuracy/edit score/F1 score. The upper part shows the comparison with
other action parsing methods and the lower part shows the comparison of
different dimension reduction methods. The best results are highlighted in
boldface. This table was used in [6] c© 2019 IEEE

representations are not performed, since the runtime is highly dependent on how the

bilinear forms and the low-dimensional representations are implemented.

4.4.3.3 Comparison with The State-Of-The-Art

Table 4.5, 4.6, 4.7 and 4.8 show the performances of different methods on the datasets

50 Salads-mid, 50 Salads-eval, GTEA and JIGSAWS, respectively, in which TCEDX

denotes the temporal convolutional encoder-decoder with the pooling method X. For

each method with local temporal pooling, we perform grid search on the neighborhood

sets of 5, 11 and 25, and present the best one. From the tables, we can see that our

proposed method can generalize well across different datasets, and produces superior or

similar performances in comparison with other methods. In 50 Salads-mid, the dataset

with more fine-grained action types and longer videos than other datasets, the decoupled

bilinear form, as well as its lower-dimensional representation outperform other methods
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Method Result

Spatial CNN [57] 68.0/25.5/35.0
Spatiotemporal CNN [57] 71.3/52.8/61.7
Dilated TCN [59] 71.1/46.9/55.8
Bidirectional LSTM [59] 70.9/67.7/72.2
TCEDmax [59] 73.4/72.2/76.5

TCEDBc 74.2/71.2/75.5
TCEDBd

75.9/71.3/76.2

TCEDTensorSketch [69] 71.9/70.9/75.1
TCEDBc,LearnableProjection 72.0/68.8/73.4
TCEDBd,LearnableProjection 71.3/68.9/72.6

TCEDφc 74.0/71.0/76.5
TCEDφd

75.6/70.4/76.0

Table 4.6: The comparison in 50 Salads-eval. This table was used in [6] c© 2019 IEEE

Method Result

EgoNet+TDD [53] 64.4/-/-
Spatial CNN [57] 54.8/28.7/38.3
Spatiotemporal CNN [57] 57.6/49.1/56.7
Spatiotemporal CNN+Seg [57] 52.6/53.0/57.7
Dilated TCN [59] 58.0/40.7/51.3
Bidirectional LSTM [59] 56.2/41.3/50.2
TCEDmax [59] 63.5/71.9/75.2

TCEDBc 63.6/71.7/76.4
TCEDBd

63.4/70.9/76.8

TCEDTensorSketch [69] 59.8/71.2/75.2
TCEDBc,LearnableProjection 58.4/68.2/71.9
TCEDBd,LearnableProjection 58.8/70.5/74.9

TCEDφc 64.5/71.8/75.0
TCEDφd

64.4/73.9/76.3

Table 4.7: The comparison in GTEA, in which the symbol “-” denotes that the score is
not available. This table was used in [6] c© 2019 IEEE

94



4.4 Experiment: Fine-Grained Action Parsing

Method Result

Spatial CNN [57] 74.1/37.7/51.6
Spatiotemporal CNN [57] 77.9/67.1/77.7
Spatiotemporal CNN+Seg [57] 74.4/73.7/82.2
Dilated TCN [59] 78.0/56.8/69.7
Bidirectional LSTM [59] 74.4/73.7/82.2
TCEDmax [59] 81.2/85.6/90.3

TCEDBc 82.6/85.6/90.4
TCEDBd

82.2/87.7/91.4

TCEDTensorSketch [69] 80.8/85.4/90.1
TCEDBc,LearnableProjection 79.7/82.8/88.1
TCEDBd,LearnableProjection 81.6/83.0/89.0

TCEDφc 81.8/85.1/90.0
TCEDφd

81.7/85.1/90.5

Table 4.8: The comparison in JIGSAWS. This table was used in [6] c© 2019 IEEE

for all the evaluation metrics. In 50 Salads-eval, the performance of our methods are

comparable with others while with lower edit scores, probably because actions in this

dataset are not sufficiently fine-grained, but our bilinear pooling produces more segments

than others. Furthermore, more training epochs can increase the accuracy, yet decrease

the edit score and the F1 score for our bilinear pooling models, in contrast to the max

pooling baseline model. For example, after 300 epochs, TCEDBd
yields 74.7/59.2/66.7,

and TCEDmax yields 63.6/71.9/75.2 for the GTEA dataset. A probable reason is that

bilinear pooling is not good at regularizing temporal smoothness in the sequence, and

has the risk of over-segmentation. Although increasing training epochs can improve

recognizing actions in individual frames, the over-segmentation issue becomes more

severe. Therefore, when parsing a long-term activity with both coarse-grained and

fine-grained actions, one can consider to fuse the outputs from first-order pooling and

second-order pooling, in order to produce accurate action understanding and avoid

over-segmentation. The benefits of fusing first-order and second-order information are

shown by our experiments in Sec. 4.4.4, which is based on MS-TCN and produces new

state-of-the-art results.

95



4 Supervised Human Action Parsing via Deep Neural Networks

4.4.4 Experiments on Our Algebra-Based Bilinear Pooling

We have presented experiments of combining TCED and our statistics-based bilinear

pooling for fine-grained action parsing, assigning each individual frame an action label.

Here, we present experiments on our proposed algebra-based bilinear pooling. In

these experiments, the two input features x and y in Eq. (4.30) and Eq. (4.31) are

identical, and we set the same number of rows (i.e. M = N ) to matrices Er and

F r for all r = 1, . . . , R. Consequently, there only remain two hyper-parameters in the

bilinear model, i.e. the rank R and the number of rows N of matrices. The objectives

of our experiments are two-fold: (i) To verify the effectiveness of our method, we adopt

the temporal convolutional encoder-decoder network (TCED) [59] due to its simple

structure, and replace the max pooling in TCED by bilinear pooling as before (also as

in our publication [6]). (ii) To demonstrate how our method can be used in practice, we

propose a bilinear residual module to merge the first and second-order information, and

combine it with the multi-stage temporal convolutional network (MS-TCN) [60] to yield

state-of-the-art performance.

4.4.4.1 Action Segmentation with TCED Architecture

We use the default architecture of TCED [59], which comprises an encoder and a

decoder with symmetric modules, as presented in Sec. 4.3.1. The convolutional layer in

each individual encoder has 64 and 96 filters, respectively. We train the model using

the Adam optimizer [177] with a fixed learning rate of 10−4. Batch size is set to 8 in the

mini-batch training scheme, and the training process terminates after 300 epochs. One

notes that our training setting is different from the experiments on the statistics-based

bilinear pooling, so the experiment results may be different. For example, the compact

bilinear pooling method with the above training setting yields better performance than

the results shown in Tab. 4.6 and Tab. 4.7. This indicates that the final performance

could be heavily influenced by the training setting.
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Table 4.9: Comparison with different bilinear pooling methods in terms of accuracy/edit
score/F1 score and runtime (milliseconds). For each metric and each setting,
the best result is in boldface. “LearnableProjection” indicates E and F in
Eq. (4.30) are learned via back-propagation. “RPBinary” indicates the model
Eq. (4.30) with Rademacher random projection. “RPGaussianFull” and “RP-
Gaussian” indicate the model Eq. (4.31) with and without ϕ(·), respectively, in
which Gaussian random projection is employed. In the column of complexity,
D and d denote the input and output feature dimension of our bilinear model,
respectively. One notes that d� D in general.

50Salads GTEA

Method Complexity Runtime Performance Runtime Performance

Ours (RPBinary) O(D
√
d+ d) 68.3 66.0/65.9/70.9 80.1 65.2/73.2/77.0

Ours (RPGaussian) O(D
√
d+ d) 68.9 67.6/65.2/72.9 69.9 66.9/76.5/79.8

Ours (RPGaussianFull) O(D
√
d+ d) 73.7 64.1/63.4/69.6 70.0 64.5/73.0/78.7

Ours (LearnableProjection) O(D
√
d+ d) 78.6 66.4/65.0/70.5 81.6 64.8/74.0/77.5

Compact [69] O(D + d log d) 95.9 67.2/65.8/71.7 120.2 65.9/75.3/78.1
Hadamard [80] O(Dd+ d) 83.8 67.7/64.4/71.5 83.6 66.0/76.6/79.0
FBP [197] O((2k + 1)Dd+ d) 130.5 64.0/61.0/67.5 127.6 63.4/71.6/74.1

Model analysis: Comparison between bilinear forms. In this experiment, we set

the rank R = 1 and N = D/2 for our methods, where D is the input feature dimension

to our bilinear model. The results are shown in the first part of Table 4.9. For the

performance evaluation, we repeat the experiment 3 times with different initial values

of network parameters, and report the result with the highest sum of the three metrics.

To evaluate the efficiency, we report the runtime 7 per batch (batch size=8) during the

training phase, which is the averaged result after training with the first split for 300 epochs

for each dataset. Such runtime evaluation is based on a desktop with Ubuntu 18.04,

Intel Xeon(R) CPU 2.90GHz x 4, 32GB RAM, and GPU Nvidia Quadro P4000.

Overall, the results suggest that “RPGaussian” and “RPBinary” have comparable perfor-

mances, and outperform “LearnableProjection” and “RPGaussianFull”. While “Learn-

ableProjection” is more flexible, it might require a more sophisticated training to achieve

the same performance as our random projection methods. One notes that parameters

in our proposed bilinear pooling are not updated during network training. However, the

bilinear form can influence how other parameters are updated by back-propagation.

7Runtime measurement is implemented via a callback function in Keras, which returns the time cost of
training with one mini-batch input.
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Figure 4.11: Performance of our RPBinary and RPGaussian model (see Eq. (4.30)),
versus dimension / rank, on datasets 50Salads and GTEA. In each plot, x-
axis is the multiplier on the number of matrix rows N , y-axis is the respective
performance measure, and colors denote different ranks.

For example, “RPGaussianFull” has sine and cosine as activation functions, and these

periodic functions can cause the entire network hard to train. We suspect that the inferior

performance of “RPGaussianFull” is due to the difficulty of training.

In addition, we compare our methods with three widely used bilinear pooling methods,

i.e., Compact [69], Hadamard [80] and FBP [197]. We use the same output feature

dimension for fair comparison. The results are shown in the second part of Table 4.9.

They suggest that these three methods perform inferior or comparably in terms of the

three metrics of action parsing, and are clearly less efficient, than our methods.

Model analysis: Investigation on the hyper-parameters of our bilinear forms. Here

we investigate the influence of the rank and the output feature dimension of RPBinary

and RPGaussian. One can recall that RPBinary and RPGaussian share the same

bilinear model Eq. (4.30), but with matrix entries sampled from different distributions.

Specifically, RPBinary has matrix entries sampled from Rademacher distribution, and
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RPGaussian has matrix entries sampled from Gaussian distribution with orthogonality

constraints. Figure 4.11 shows the dependence of the model performance on ranks

R ∈ {1, 2, 4, 8, 16}, and matrix rows N ∈ {1, 2, 4, 8}× [
√
D] where [n] denotes the nearest

integer to n. In this case, the output feature dimension is then {1, 4, 16, 64} ×D. In all

plots, the performance increases consistently with the matrix row N (hence the output

feature dimension). This result is in line with our theoretical analysis on the kernel

approximation error bound (see Corollary 1 and Appendix 4): Larger values of M and

N can yield lower variance upper bounds, hence better kernel approximation. One can

also observe that the performance saturates when further increasing the output feature

dimension. This is due to the limited capacity of the corresponding RKHS. Moreover,

one can observe that increasing the rank may not consistently yield better performance.

An optimal rank depends on the dataset and the applied bilinear model. In practice, one

may choose a value to balance the complexity and the representativeness. Or, one can

use validation dataset to choose an optimal rank.

4.4.4.2 Action Segmentation with MS-TCN

In this section, we demonstrate how to effectively incorporate our method into the

state-of-the-art action parsing network, MS-TCN [60], to superior performance.

Implementation Details. Based on our previous experimental results, we set rank

R = 4 and N = D/2 for our bilinear model. Furthermore, we propose a bilinear residual

module to merge the first and the second-order information, as illustrated in Figure 4.12.

First, we use bilinear pooling to extract the second-order information, and then use a

regularized power normalization [6] to densify the features, and use channel-wise max-

normalization to re-scale the feature values [59]. Afterwards, we use a convolution layer

to reduce the feature dimension to the number of action classes. Since the second-order

information tends to partition an action into smaller segments (see Fig. 4.9 or [6, Figure

1]), we use a large convolution receptive field 25 according to [59]. To prevent overfitting,

we use a dropout layer in the bilinear residual module, and then we compute the average

99



4 Supervised Human Action Parsing via Deep Neural Networks

Re
LU

1x
1 

C
on

v +

D
ila

te
d 

C
on

v

x10

1x
1 

C
on

v

1x
1 

C
on

v

dilated residual module

mean

1D
 C

on
v 

(2
5 

ke
rn

el
 s

iz
e)

Bi
lin

ea
r P

oo
lin

g

dr
op

ou
t

bilinear residual module

re
gu

la
riz

ed
 p

ow
er

 
no

rm
al

iz
at

io
n

ch
an

ne
l-w

is
e 

m
ax

 
no

rm
al

iz
at

io
n

1x1 Conv

Figure 4.12: A combination of MS-TCN [60] and our bilinear pooling method, in which
the blue layers are proposed by us, and the orange layers are proposed by
MS-TCN.

between the first-order information and the second-order information. One can see

Figure 4.12, in which the layers demonstrated above are denoted by blue.

Our bilinear residual module is applied at the end of each single stage of MS-TCN.

To conduce fair comparison with the baseline MS-TCN model, we keep other model

configurations and the loss function (including the hyper-parameters) unchanged. Similar

to [60], we use the Adam [177] optimizer with a learning rate of 0.0005. The mini-batch

size is set to 1 during training. Since the dataset 50Salads has more training samples

than GTEA, we set the number of training epochs to 50 for GTEA and 70 for 50Salads,

respectively. Since more training epochs have a higher risk of overfitting, we set the

dropout ratio to 0.5 for GTEA, and 0.7 for 50Salads.

Result. We compare our method with several state-of-the-art methods on the action

segmentation task. As shown in Table 4.10, our models (especially RPBinary and

RPGaussian) consistently outperform the state-of-the-art methods (TCN, TDRN, MS-

TCN), validating the effectiveness of the proposed bilinear model. Note that, even with

RPGaussianFull, which is hard to train by back-propagation, our bilinear form achieves

competitive performance on the GTEA dataset. For a fair and complete comparison,

we further integrate three widely used light-weight bilinear models into the MS-TCN

model, namely, Compact [69], Hadamard [80] and FBP [197]. Again, the proposed

bilinear models show superior performance on most of the evaluation metrics. Together

with the results presented in Table 4.9, they clearly demonstrate the representational

power and the computational efficiency of the proposed bilinear models. Figure 4.13
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ground truth

MS-TCN

RPBinary

RPGaussian

ground truth

MS-TCN

RPBinary

RPGaussian

Figure 4.13: Qualitative comparison with different methods on two videos in the 50Sal-
ads datasets. The action labels are coded by the color map viridis.

shows two qualitative segmentation results with different methods. One can find that our

bilinear pooling methods outperform the ms-tcn method [60] w.r.t. find-grained action

recognition.
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Table 4.10: Comparison with other models on temporal action segmentation task. The
best results are in boldface, the second-best results are underlined.

50 Salads GTEA
Acc. Edit F1@0.1 F1@0.25 F1@0.5 Acc. Edit F1@0.1 F1@0.25 F1@0.5

Ours (RPBinary) 79.9 70.7 78.0 75.2 65.4 77.0 81.4 86.5 84.5 71.7
Ours (RPGaussian) 80.6 71.0 78.4 75.8 66.7 77.2 82.2 86.7 84.3 72.7
Ours (RPGaussianFull) 77.4 67.5 74.9 70.9 60.7 76.8 82.5 87.3 84.3 71.8

TCN [59] 64.7 59.8 68.0 63.9 52.6 64.0 - 72.2 69.3 56.0
TDRN [61] 68.1 66.0 72.9 68.5 57.2 70.1 74.1 79.2 74.4 62.7
MS-TCN [60] 80.7 67.9 76.3 74.0 64.5 76.3 79.0 85.8 83.4 69.8

MS-TCN + Compact [69] 81.1 70.7 77.6 75.1 67.1 75.8 80.9 86.0 83.7 70.2
MS-TCN + Hadamard [80] 78.3 68.3 75.3 72.4 62.5 77.0 81.5 86.0 83.5 70.7
MS-TCN + FBP [197] 78.5 70.0 76.5 73.6 64.6 75.4 79.3 84.0 81.8 69.9

4.5 Discussions on Deep Learning-Based Human Action

Parsing

In this chapter, we present how to use a deep neural network to perform human action

parsing in an end-to-end manner, and fall understanding in videos. In addition, we use

bilinear pooling to extract second-order information (or higher-order) for fine-grained

action parsing. Compared to designing a sophisticated neural network, e.g. [61, 60], our

bilinear pooling methods are well interpreted by RKHS theories, and is employed as a

generic neural network layer. When combining with a deep neural network like MS-TCN

[60], the performance for fine-grained action parsing is further improved.

We investigate bilinear pooling from two perspectives: The first perspective is on statis-

tics, especially on covariance computation. Conventionally, average pooling or max

pooling is normally used in a deep neural net, which only extracts first-order information

in terms of mean or max. We consider that incorporating second-order statistics is able

to differentiate two actions with identical first-order features but different second-order

features. To make the temporal local statistics data-adaptive, we replace the conventional

averaging operation for computing covariance by weighted sum with learnable weights.

The second perspective is on multilinear algebra. Specifically, we expect to extract

second-order information via three-way tensor product (see. Eq. (4.24)). In contrast to

computing the covariance to obtain 2nd-order information, whether the output of such

tensor product represents second-order information or not depends on the tensor entries.
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We prove that when the tensor entries are sampled from Rademacher distribution, the

tensor product can approximate the feature map to a RKHS with a polynomial kernel

and hence can produce approximated second-order information. Also we prove that

then the tensor entries are sampled from Gaussian distribution, the tensor product can

approximate the feature map to a RKHS with a Gaussian kernel and hence can produce

approximated infinite-order information.

A common issue of second-order information is the high dimensionality. To overcome

such issue, we investigate how to reduce the dimensionality while preserving the repre-

sentativeness based on RKHS theories: For our statistics-based bilinear pooling, we

use half of entries in the covariance matrix (or SSCP matrix), and a scalar factor
√

2 to

preserve the full 2nd-order information. For our algebra-based bilinear pooling, we use

random features to approximate reproducing kernels, and hence approximate 2nd-order

or even infinite-order information.

Like other applications such as fine-grained image segmentation [62], fine-grained image

classification [65] and action recognition based on Fisher vectors [122], second-order

information via bilinear pooling is also beneficial for our fine-grained action parsing task,

which is shown in Figure 4.9 and in our experimental results. In practice, one can

consider the following aspects to maximize the benefits of using bilinear pooling: (1) A

second-order feature vector is in general of higher dimension than a first-order feature

vector, otherwise the second-order information cannot be effectively represented. For

scenarios without high efficiency requirements, higher dimensionality is preferred. (2)

When using bilinear pooling as an intermediate layer, it is important to apply normalization

after bilinear pooling, in order to constrain the bilinear form spectra, which can stabilize

the training process and ensure effective performance. (3) A high-dimensional second-

order feature can heavily lead to overfitting. Therefore, extra regularization tricks, e.g.

dropout, should be applied. As verified by our experiments, the dropout ratio can be

very high. (4) To obtain a better performance, first-order information and second-order

information are better to be combined.

One notes that our bilinear models work as intermediate layers in a deep neural network,

and hence they can be used in arbitrary network architectures to extract high-order
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information. Therefore, the bilinear models proposed in Sec. 4.3 can also be used in the

methods in Sec. 4.1 and Sec. 4.2 to realize fine-grained action understanding in videos.
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In this thesis, we study human action parsing in the untrimmed video, which contains

a continuous and long-term human activity incorporating different consecutive actions.

The task of human action parsing is to perform frame-wise action understanding, i.e.,

assigning each individual frame in the input video an action label/cluster ID. Since our

studies in this thesis aim at providing effective solutions to applications of elderly people

healthcare, all our experiments in this thesis focus on the scenario of single person,

indoor environment, and activities with various time durations and granularity levels,

which occur in common daily lives of humans.

We conduct researches on both unsupervised methods and supervised methods for

human action parsing in this thesis. Specifically, the contribution of this thesis is summa-

rized as follows:

• Hierarchical dynamic clustering. Inspired by the conventional bag-of-visual-

words method, we propose the fully unsupervised hierarchical dynamic clustering

(HDC) framework, in order to determine temporal segment boundaries and assign

each temporal segment a cluster ID, which is equivalent to assigning each frame in

the input sequence a cluster ID. Our HDC framework has two dynamic clustering

modules for codebook learning and temporal segment clustering, respectively,

and a local temporal pooling module to produce segment boundaries and action

patterns from individual segments. For application, we show how to use the

proposed HDC for temporal action segmentation in videos (or motion capture

recordings), and unsupervised fainting detection in omni-directional videos. As

verified by experiments, the proposed HDC method outperforms other relevant

unsupervised action parsing methods in terms of accuracy and efficiency. Details

are demonstrated in Chapter 3.

• A novel dynamic clustering algorithm. We propose a novel dynamic clustering

algorithm to group individual elements in a time sequence of generic feature

vectors. Compared to conventional clustering methods, such as k-means and
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spectral clustering, the proposed dynamic clustering method produces better

grouping results and runs faster. Details of advantages, method analysis, and

comparisons with other methods are demonstrated in Sec. 3.2.

• Local temporal pooling. The local temporal pooling scheme is to determine

temporal boundaries of segments, and extract action patterns from individual tem-

poral segments. To overcome the “chicken-and-egg” problem between determining

accurate temporal boundaries and extracting representative patterns from temporal

segments, we propose a kernelized cut-based pooling scheme, which iteratively

performs temporal boundary localization and feature aggregation, and a motion-

energy based pooling scheme, which performs temporal boundary localization

and feature aggregation from different information sources. The advantages of

our proposed methods over the conventional sliding window-based pooling are

demonstrated in Sec. 3.4.

• End-to-end supervised human action parsing. We investigate spatiotempo-

ral convolution neural networks to conduct supervised human action parsing in

untrimmed videos, aiming to assign each individual frame an action label. In par-

ticular, we investigate bilinear pooling from two perspectives, and use it to extract

high-order information for fine-grained action parsing. Details are demonstrated in

Chapter 4.

• Explanation of fall understanding in videos. We perform extensive empirical

studies on how a spatiotemporal convolution encoder-decoder network under-

stands falls from videos. Although many studies have proposed effective solutions

for fall detection, to our knowledge, we are the first to investigate the underlying

reasons. Details of our empirical studies are demonstrated in Sec. 4.2.

• Local temporal bilinear pooling. Despite effectiveness of temporal encoder-

decoder network for action understanding, high-order information (≥ second-

order) is ignored, which is essential for fine-grained understanding tasks. We

propose two novel bilinear pooling methods, i.e. statistics-based bilinear pooling,

which preserves full second-order information with a lossless dimension reduction

method, and algebra-based bilinear pooling, which approximates second-order and
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even infinite-order information with a low computational cost. Our bilinear pooling

methods are generic, can be regarded as intermediate network layers, and hence

can be employed in arbitrary network architectures. The experimental results

show that our proposed methods outperform other state-of-the-art methods on

various fine-grained action parsing datasets. Details of theories and experiments

are demonstrated in Sec. 4.3 and Sec. 4.4.

Based on our studies on human action parsing in this thesis, we have some outlooks on

related study topics in future, which could be “low-hanging fruits”:

• Online action understanding and prediction. One can recall that the convolu-

tion used in our temporal encoder-decoder network in Chapter 4 is non-causal.

Despite its effectiveness on action understanding, non-causal temporal convolution

is not suitable for action prediction/understanding in an online fashion. Therefore,

an interesting topic is to predict fine-grained actions in future frames, based on the

combination of our bilinear pooling methods and a causal temporal convolution

network, such as Wavenet [198], or a recurrent neural network, such as LSTM

[199] [153].

• Human action generation. In this thesis, we focus on action parsing, converting

video frames into a sequence of action labels. It is interesting to consider its inverse

problem: Given a sequence of action labels, how to generate natural human actions,

which are visualized in terms of videos or body skeletons. One can note that the

employed temporal convolution encoder-decoder network is symmetric, and hence

we conjecture that we could flip the encoder-decoder architecture, and combine it

with generative models for action generation.

• Multi-modal input. In this thesis, we mainly focus on video frame analysis, and

also use motion capture data as input for experiments in Sec. 3.6.1. To improve

action understanding, one can use different kinds of hardware to capture multi-

modal input data. For example, the event-based camera [200] is able to provide

much higher temporal resolution (up to microseconds) than the conventional RGB

camera, and applying such high temporal resolution events has great potentials

for high-accurate action parsing. The temporal boundaries are located up to the
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microsecond precision level, and the perceiving system for example can response

falls of elderly people in a much faster manner.

Definitely, future studies are not limited by the listed topics above. We expect that our

studies in this thesis can lead to effective solutions for elderly people healthcare in

practice, as well as other applications. Also, we expect that our studies in this thesis can

inspire other researchers for their own studies.
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[100] Töreyin, B.U., Dedeoğlu, Y., Çetin, A.E.: Hmm based falling person detection

using both audio and video. In: International Workshop on Human-Computer

Interaction, Springer (2005) 211–220

[101] Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the microsoft

kinect. IEEE journal of biomedical and health informatics 19 (2015) 290–301

[102] Solbach, M.D., Tsotsos, J.K.: Vision-based fallen person detection for the elderly.

arXiv preprint arXiv:1707.07608 (2017)

[103] Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action

recognition in videos. In: Advances in neural information processing systems

(NIPS). (2014) 568–576

[104] Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the

kinetics dataset. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). (2017)

[105] Yeung, S., Russakovsky, O., Mori, G., Fei-Fei, L.: End-to-end learning of action

detection from frame glimpses in videos. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. (2016) 2678–2687

[106] Gkioxari, G., Malik, J.: Finding action tubes. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE (2015) 759–768

[107] Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: Cdc: convolutional-

de-convolutional networks for precise temporal action localization in untrimmed

videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

(2017) 1417–1426

[108] Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional

networks for action segmentation and detection. arXiv preprint arXiv:1611.05267

(2016)

[109] Núñez-Marcos, A., Azkune, G., Arganda-Carreras, I.: Vision-based fall detec-

tion with convolutional neural networks. Wireless Communications and Mobile

Computing 2017 (2017)

119



Bibliography

[110] Wang, S., Chen, L., Zhou, Z., Sun, X., Dong, J.: Human fall detection in surveil-

lance video based on pcanet. Multimedia tools and applications 75 (2016) 11603–

11613

[111] Babiker, H.K.B., Goebel, R.: An introduction to deep visual explanation. arXiv

preprint arXiv:1711.09482 (2017)

[112] Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: A unified view of gradient-based

attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104

(2017)

[113] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-

works: Visualising image classification models and saliency maps. arXiv preprint

arXiv:1312.6034 (2013)

[114] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. arXiv

preprint arXiv:1703.01365 (2017)

[115] Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through

propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

[116] Li, Y., Ye, Z., Rehg, J.M.: Delving into egocentric actions. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. (2015) 287–295

[117] Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Haro, B.B., Zappella, L., Khudanpur,

S., Vidal, R., Hager, G.D.: A dataset and benchmarks for segmentation and

recognition of gestures in robotic surgery. IEEE Transactions on Biomedical

Engineering 64 (2017) 2025–2041

[118] Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., Bethge,

M.: Deeplabcut: markerless pose estimation of user-defined body parts with deep

learning. Nature Neuroscience (2018) 1281 – 1289

[119] Ma, M., Fan, H., Kitani, K.M.: Going deeper into first-person activity recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

(2016) 1894–1903

120



Bibliography

[120] Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories.

In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,

IEEE (2011) 3169–3176

[121] Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human

actions from movies. In: 2008 IEEE Conference on Computer Vision and Pattern

Recognition. (2008) 1–8

[122] Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion

boundary descriptors for action recognition. International journal of computer

vision 103 (2013) 60–79

[123] Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms

of flow and appearance. In: European conference on computer vision, Springer

(2006) 428–441

[124] Laptev, I.: On space-time interest points. International journal of computer vision

64 (2005) 107–123

[125] Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE

International Conference on Computer Vision (ICCV). (2013) 3551–3558

[126] Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into

a compact image representation. In: CVPR 2010-23rd IEEE Conference on

Computer Vision & Pattern Recognition, IEEE Computer Society (2010) 3304–

3311

[127] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International

journal of computer vision 60 (2004) 91–110

[128] Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal

features with 3d convolutional networks. In: Proceedings of the IEEE international

conference on computer vision. (2015) 4489–4497

[129] Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines,

regularization, optimization, and beyond. MIT press (2002)

121



Bibliography

[130] von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17

(2007) 395–416

[131] Peng, R., Sun, H., Zanetti, L.: Partitioning well-clustered graphs: Spectral cluster-

ing works! SIAM Journal on Computing 46 (2017) 710–743

[132] Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine

learning research 9 (2008) 2579–2605

[133] Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories

of tracked keypoints. In: 2009 IEEE 12th International Conference on Computer

Vision, IEEE (2009) 104–111

[134] Liberty, E., Sriharsha, R., Sviridenko, M.: An algorithm for online k-means

clustering. In: Proceedings of the Eighteenth Workshop on Algorithm Engineering

and Experiments (ALENEX). (2016) 81–89

[135] Kulis, B., Jordan, M.I.: Revisiting k-means: New algorithms via bayesian nonpara-

metrics. arXiv preprint arXiv:1111.0352 (2011)

[136] Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: 2011

International Conference on Computer Vision, IEEE (2011) 2486–2493

[137] Duchenne, O., Laptev, I., Sivic, J., Bach, F., Ponce, J.: Automatic annotation of

human actions in video. In: 12th International Conference on Computer Vision,

IEEE (2009) 1491–1498

[138] Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries

from user videos. In: European conference on computer vision, Springer (2014)

505–520

[139] Gong, D., Medioni, G., Zhu, S., Zhao, X.: Kernelized temporal cut for online

temporal segmentation and recognition. In: European conference on computer

vision (ECCV). (2012) 229–243

[140] Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions

on pattern analysis and machine intelligence 22 (2000) 888–905

122



Bibliography

[141] Layher, G., Brosch, T., Neumann, H.: Real-time biologically inspired action recogni-

tion from key poses using a neuromorphic architecture. Frontiers in Neurorobotics

11 (2017) 13

[142] Huang, D., Yao, S., Wang, Y., De La Torre, F.: Sequential max-margin event

detectors. In: European conference on computer vision (ECCV). (2014) 410–424

[143] Tenorth, M., Bandouch, J., Beetz, M.: The TUM Kitchen Data Set of Everyday

Manipulation Activities for Motion Tracking and Action Recognition. In: IEEE

International Workshop on Tracking Humans for the Evaluation of their Motion in

Image Sequences (THEMIS), in conjunction with ICCV2009. (2009)

[144] Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network

fusion for video action recognition. In: 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). (2016) 1933–1941

[145] Fleck, S., Straßer, W.: Smart camera based monitoring system and its application

to assisted living. Proceedings of the IEEE 96 (2008) 1698–1714

[146] Nakashima, H., Aghajan, H., Augusto, J.C.: Handbook of ambient intelligence and

smart environments. Springer Science & Business Media (2009)
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Appendix

1 Proof of Theorem 1

Proof. It follows from Eq. (4.28) and the property of an inner product of rank-one opera-

tors that

k(z1, z2) := 〈z1, z2〉 =
〈

R∑
r=1

vec(Erx1 ⊗ F ry1),
R∑
r=1

vec(Erx2 ⊗ F ry2)
〉

RMN

=
R∑
r=1

R∑
r′=1

〈
vec(Erx1 ⊗ F ry1), vec(Er′x2 ⊗ F r′y2)

〉
RMN

=
R∑
r=1

R∑
r′=1

〈
Erx1,E

r′x2
〉〈
F ry1,F

r′y2
〉

=
R∑
r=1

R∑
r′=1

(
M∑
i=1
〈eri ,x1〉〈er

′
i ,x2〉

) N∑
j=1
〈f rj ,y1〉〈f r

′
j ,y2〉

 . (1)

Then, it follows that

E[k(z1, z2)] =
R∑
r=1

R∑
r′=1

(
M∑
i=1

E[〈eri ,x1〉〈er
′
i ,x2〉]

) N∑
j=1

E[〈f rj ,y1〉〈f r
′
j ,y2〉]


=

R∑
r=1

(
M∑
i=1

E[〈eri ,x1〉〈eri ,x2〉]
) N∑

j=1
E[〈f rj ,y1〉〈f rj ,y2〉]


+

R∑
r=1

R∑
r′=r+1

(
M∑
i=1

E[〈eri ,x1〉〈er
′
i ,x2〉]

) N∑
j=1

E[〈f rj ,y1〉〈f r
′
j ,y2〉]


= RMN〈x1,x2〉〈y1,y2〉.

The last equation follows from [189, Lemma 2] and the fact that eri and f rj are zero-mean

random variables for all i = 1, . . . ,M , j = 1, . . . , N and r = 1, . . . , R.

1



Appendix

2 Proof of Corollary 1

Proof. Let Wij := 〈ei,x1〉〈ei,x2〉〈fj ,y1〉〈fj ,y2〉 for i = 1, . . . ,M and j = 1, . . . , N . For

each Wij , it follows from [189, Lemma 4] that

−p2f(pR̃2)2 ≤Wij ≤ p2f(pR̃2)2,

where we assume without loss of generality that p ≥ 1 and R̃ ≥ 1. In our case, f(x) = x.

Then, we have −p4R̃4 ≤ Wij ≤ p4R̃4. Let SMN := 1
R

∑M
i=1

∑N
j=1Wij . Hence, we have

E[SMN ] = MN〈x1,x2〉〈y1,y2〉. Then, it follows from Hoeffding’s inequality that, for all

ε > 0,

P(|SMN − E[SMN ]| ≥ ε) ≤ 2 exp
(
−ε

2MN

2p8R̃8

)
. (2)

This concludes the proof.

3 Proof of Theorem 2

Proof. Let R = 1. Then, k(z1, z2) := 〈z1, z2〉 = 〈ϕ(Ex1), ϕ(Ex2)〉〈ϕ(Fx1), ϕ(Fx2)〉

where

ϕ(Ex) := 1√
M

[sin(e>1 x), . . . , sin(e>Mx), cos(e>1 x), . . . , cos(e>Mx)],

ϕ(Fy) := 1√
N

[sin(f>1 y), . . . , sin(f>My), cos(f>1 y), . . . , cos(f>My)].

With E = 1
σIM×DX

RP and F = 1
ρIN×DY

SQ, we have

E[k(z1, z2)] = E[〈ϕ(Ex1), ϕ(Ex2)〉]E[〈ϕ(Fy1), ϕ(Fy2)〉]

= exp
(
−‖x1 − x2‖22

2σ2

)
exp

(
−‖y1 − y2‖22

2ρ2

)
,

where the last equality follows from [190, Theorem 1]. For R > 1, we have

k(z1, z2) := 〈z1, z2〉 =
R∑
r=1

R∑
r′=1
〈ϕ(Erx1), ϕ(Er′x2)〉〈ϕ(F rx1), ϕ(F r′x2)〉.

2



4 Approximation error bound for Gaussian random projection

Hence, with Er = 1
σr IM×DX

RrP r and F r = 1
ρr IN×DY

SrQr,

E[k(z1, z2)] =
R∑
r=1

R∑
r′=1

E[〈ϕ(Erx1), ϕ(Er′x2)〉]E[〈ϕ(F ry1), ϕ(F r′y2)〉]

=
R∑
r=1

E[〈ϕ(Erx1), ϕ(Erx2)〉]E[〈ϕ(F ry1), ϕ(F ry2)〉]

+
R∑
r=1

R∑
r′=r+1

E[〈ϕ(Erx1), ϕ(Er′x2)〉]E[〈ϕ(F ry1), ϕ(F r′y2)〉]

=
R∑
r=1

exp
(
−‖x1 − x2‖22

2σ2
r

)
exp

(
−‖y1 − y2‖22

2ρ2
r

)

+
R∑
r=1

R∑
r′=r+1

E[〈ϕ(Erx1), ϕ(Er′x2)〉]E[〈ϕ(F ry1), ϕ(F r′y2)〉]

=
R∑
r=1

exp
(
−‖x1 − x2‖22

2σ2
r

)
exp

(
−‖y1 − y2‖22

2ρ2
r

)
+ b

where b :=
∑R
r=1

∑R
r′=r+1 E[〈ϕ(Erx1), ϕ(Er′x2)〉]E[〈ϕ(F ry1), ϕ(F r′y2)〉].

4 Approximation error bound for Gaussian random

projection

We characterize the variance of k(z1, z2) used in Theorem 2. To simplify the presentation,

we focus on the case that R = 1.

Corollary 2. Let z1, z2, and k(z1, z2) be defined as in Theorem 2, as well as R = 1,

a = ‖x1 − x2‖22/σ and b = ‖y1 − y2‖22/ρ. Then, there exist functions f and g such that

Var(k(z1, z2)) ≤ A ·B +A · C +B ·D, (3)

3
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where

A = 1
2M

[((
1− e−a2)2

− M − 1
DX

e−a
2
a4
)

+ f(a)
D2
X

]
, C =

[
exp

(
−b

2

2

)]2

B = 1
2N

[((
1− e−b2)2

− N − 1
DY

e−b
2
b4
)

+ g(b)
D2
Y

]
, D =

[
exp

(
−a

2

2

)]2

.

Proof. Let R=1. Then, we have

k(z1, z2) = 〈ϕ(Ex1), ϕ(Ex2)〉︸ ︷︷ ︸
U

〈ϕ(Fx1), ϕ(Fx2)〉︸ ︷︷ ︸
V

.

Since U and V are independent, we have

Var(k(z1, z2)) = Var(U)Var(V ) + Var(U)(E[V ])2 + Var(V )(E[U ])2, (4)

where

(E[U ])2 = (E [〈ϕ(Ex1), ϕ(Ex2)〉])2

Var(U) = Var (〈ϕ(Ex1), ϕ(Ex2)〉)

(E[V ])2 = (E [〈ϕ(Fy1), ϕ(Fy2)〉])2

Var(V ) = Var (〈ϕ(Fy1), ϕ(Fy2)〉)

It follows from [190, Theorem 1] that

(E[U ])2 =
(

exp
(
−‖x1 − x2‖22

2σ2

))2

, (E[V ])2 =
(

exp
(
−‖y1 − y2‖22

2ρ2

))2

.

Let a = ‖x1 − x2‖22/σ and b = ‖y1 − y2‖22/ρ. Then, by [190, Theorem 1], there exists a

function f and g such that

Var(U) ≤ 1
2M

[((
1− e−a2)2

− M − 1
DX

e−a
2
a4
)

+ f(a)
D2
X

]

Var(V ) ≤ 1
2N

[((
1− e−b2)2

− N − 1
DY

e−b
2
b4
)

+ g(b)
D2
Y

]
.

Substituting everything back into (4) yields the result.
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dissertation author, i.e. Yan Zhang. . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Illustration of the human action parsing problem: Given an image se-

quence, an action parsing method is expected to produce frame-wise
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4.5 Experiment results of Task 2. From left to right: (1) Quantitative results un-
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