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Introduction
Motivation

Algebraic curves and their arithmetic properties have been the object of
much study in mathematics. They play a crucial role in solving diophantine
equations, one of the main subjects in number theory, and have various
applications in modern cryptography. To study complicated mathematical
objects, we generally try to find invariants and associated objects with nicer
properties that provide us with the tools to better understand the things we
want to study. As algebraic curves do not possess a linear structure, we try
to ’linearize’ them. This gives rise to the following concept. To any curve C
we can associate an abelian variety Jac(C), called the Jacobian of C. Jacobians
provide us with new ways to study curves. If we restrict ourselves to algebraic
curves we cannot really define something like ’the product’ of two algebraic
curves to create a new algebraic curve. Products do however exist in the
category of abelian varieties. Moreover, decomposition of abelian varieties
into simple abelian varieties is defined uniquely up to isogeny. It then makes
sense to ask the following question: Given curves X and Y , does there exist a
curve Z such that Jac(X)× Jac(Y ) is isogenous to Jac(Z)? If we can find such a
curve Z we will call it a gluing of X and Y .

This decomposition is also reflected in the L-functions of the Jacobians. If
A and B are two abelian varieties, A � B1 ×B2, then

L(A,s) = L(B1, s)L(B2, s).

As L-functions show up everywhere in number theory, it is important to
understand the many different relationships between L-functions and their
associated objects. To do this mathematicians have created an online database
containing L-functions, modular forms and other relevant objects called the
LMFDB (www.lmfdb.org). It is of interest to understand when we can decom-
pose L-functions and how we can construct objects for which the L-function is
the product of two other L-functions.

A first attempt to study the gluing process has been made by Frey and
Kani in [10] who studied a way to glue two genus 1 curves X,Y together by
finding a genus 2 curve Z and an isogeny φ : Jac(X) × Jac(Y )→ Jac(Z) such
that kerφ ⊂ Jac(X)[2]× Jac(Y )[2].

iii
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Introduction

Later on, Bröker, Howe, Lauter, and Stevenhagen described an explicit
algorithm in [5] to construct equations for the gluing of two genus 1 curves
and used this to construct curves of genus 2 with a given order and Jacobians
of genus 2 with a given order.

Given a degree 2 cover π : Z → X where Z is a curve of genus 3 and X
is a curve of genus 1, we get a Prym variety Pr(Z/X) of dimension 2 that is
isogenous to the Jacobian of a curve Y of genus 2. In [26] Ritzenthaler and
Romagny gave an explicit equation of the curve Y in terms of the equations
for the curves X and Z in the case that Z is a non-hyperelliptic curve.

Goals and results

The main goal of this Ph.D.-thesis is to reverse the construction by Ritzenthaler
and Romagny and to describe ways to calculate the (2,2)-gluing of a genus 2
curve Y2 and a genus 1 curve X1 along their 2-torsion. By this we mean that
we want to construct a curve Z3 such that Jac(Z3) is isomorphic to Jac(X1)×
Jac(Y2)/G where G is a subgroup of Jac(X1)[2] × Jac(Y2)[2]. We will develop
and study some elementary properties of the gluing construction and we will
describe two different methods to construct a (2,2)-gluing of a genus 1 curve
and a genus 2 curve.

The first algorithm is purely analytical and works in the following way: We
first calculate period matrices ΛX1

and ΛY2
using the work of Neurohr [21] for

the curves X1 and Y2. After that we determine a subgroup G of the two torsion
of B =C3/(ΛX1

+ΛY2
) in such a way that the Riemann surface B/G corresponds

to the Jacobian of a genus 3 curve with the desired properties. Finally, we
compute the Dixmier-Ohno invariants of the curve using the period matrix
after which we use the algorithm by Lercier, Ritzenthaler and Sijsling [16] to
find a quartic equation for the curve.

The second algorithm is algebraic and is based on the work of Bruin [6],
and Ritzenthaler and Romagny [26]. The general strategy is as follows. We
consider the Kummer surface Kum(Y2) = Jac(Y2)/ 〈−1〉. It can be embedded
into P3

k as a quartic surface with 16 singular points. If we now take a plane H
in P3

k , its intersection with Kum(Y2) will give us a curve of arithmetic genus
3. In particular, if H goes through two singular points of K , the intersection
H ∩Kum(Y2) is a singular curve of genus 1. Now choose H in such a way
that the desingularization of H ∩ Kum(Y2) is isomorphic to X1. Let Z3 =
X1 ×Kum(Y2) Jac(Y2). We get the following picture:

Z3 = X1 ×Kum(Y2) Jac(Y2) Jac(Y2)

X1 Kum(Y2)

.
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Further research

We will show that the curve Z3 is a (2,2)-gluing of X1 and Y2.

Further research

It would be interesting to see if the algebraic construction can be applied to
construct (2,2)-gluings of two genus 2 curves. Taking the intersection of a
plane H that passes through one singular point of Kum(Y2) will generically
give us another curve X2 = H ∩Kum(Y2) of genus 2. The pullbacks of X2 to
Jac(Y2) will most likely give us curves of genus 4 that are the (2,2) gluing of
Y2 and X2. But the family of planes that pass through one singular point is
of dimension 2, so this method cannot be used to construct the (2,2)-gluing
of two arbitrary genus 2 curves as the moduli space of the curves of genus
2 has dimension 3. The genus 4 curves constructed in this way do have one
special property however: they admit a map of degree 2 to a genus 2 curve.
A natural question to ask would therefore be: Does every non-hyperelliptic
genus 4 curve that admits a map to a genus 2 curve occur in this way? Another
possible explanation for the difference in dimension of the two families is
the fact that the moduli space of abelian varieties A4 of dimension 4 (which
is 10-dimensional) is bigger than the moduli space of curvesM4 of genus 4
(which is 9 dimensional).

Another open problem is to determine the exact relationship between
the choice of a maximal isotropic subgroup and the choices made in the
construction with the Kummer surface. Let X1 be a curve of genus 1 and
let Y2 be a curve of genus 2. Fix a plane H that passes through the singular
points P1 and Pi and let Z3 be the curve obtained by pulling back H∩Kum(Y2)
to Jac(Y2). Assume that Z3 is a (2,2)-gluing and denote the gluing datum
corresponding to Z3 as a tuple (V ,φ) as in Paragraph 1.3 where V is a 1-
dimensional subspace of Jac(Y2)[2]. The choice of V is most likely related to
the choice of the singular point Pi .

There might also be a way to relate φ to the choice of one of the six solution
pairs for j(X1). Let us assume our hypothesis is correct and that choosing
V as above is equivalent to choosing a family of planes that passes through
P1 and another 2-torsion point Pi . We consider the family H1,i(λ) of planes
that pass through the singular points P1 and Pi . The properties of the (16,6)
configuration on a Kummer surface tell us that there exist exactly four special
planes W1, . . .W4 with the property that they contain six singular points, but
do not contain Pi . We observe the following: The different solution pairs for
j(X1) depend on the values of the xi(λ) in the proof of Theorem 4.2.8. But
these values are precisely determined by the intersection of the curve H1,i(λ)
with the Wi . Moreover, using the (16,6)-configuration the Wi are in some
sense dual to the 2-torsion points of Jac(Y2) and the xi(λ) are closely related to
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the 2-torsion of Jac(X1). It might therefore be the case that the gluing datum
depends on the way the Wi intersect H1,2(λ).

Having a better understanding of the geometric gluing data might also give
a geometric explanation for when exactly this construction fails to produce a
genus 3 curve.

Finally, we can apply these gluing techniques to construct curves and
Jacobians with a specific order over a finite field similar to what happens in
[5] in the case of (2,2)-gluings of two genus 1 curves.
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Outline

Outline

Chapter 0 In this chapter we will discuss some basis properties of abelian
varieties and Jacobians.

Chapter 1 In this chapter we give the definition of an (n1,n2)-gluing and
discuss its relationship with maximal isotropic subgroups. We then show that
every (n1,n2)-gluing is essentially the same as an (e,e)-gluing of two isogenous
curves where e = gcd(n1,n2). Afterwards, we will study maximal isotropic
subgroups in the case of a (2,2)-gluing of a genus 1 curve X1 and a genus
2 curve Y2 and give an explicit description of these groups in terms of the
equations of the curves. Finally, we will discuss when it is possible to define a
gluing over the base field and give an explicit criterion for when a gluing over
the base field exists. This criterion can be expressed in terms of the Galois
groups of the cubic resolvents that are related to the equations defining the
curves X1 and Y2.

Chapter 2 In this chapter we first study (2,2)-gluings that result into hy-
perelliptic curves. We give a complete description of the general form of the
hyperelliptic curves that occur as a (2,2)-gluing over C. After this we will
fix a genus 2 curve Y2 and construct a non-isotrivial family of curves whose
Jacobian contains Jac(Y2) as a factor. We do this by reversing the construction
by Ritzenthaler-Romagny. We also show that this family can be parametrized
by a P1.

Chapter 3 In this chapter we will give an explicit description of the gluing
process over C. For this, we start with a recap of several properties of abelian
varieties over a general field and discuss how to describe these concepts overC.
We describe what the Weil-pairing looks like and give an explicit description
of isogenies whose kernel is a maximal isotropic subgroup. After that we will
give an algorithm for gluing principally polarized abelian varieties over C
and discuss in which cases the glued abelian variety actually corresponds to
the Jacobian of a curve. Finally, we talk about how we can reconstruct the
curve from its Jacobian and describe a method to find an equation for the
curve over the base field of the Jacobian (if such a curve exists).

Chapter 4 In this chapter we give an algebraic construction of a (2,2)-gluing.
We start by giving the definition of a Kummer surface and give a short de-
scription of some basic properties. We discuss natural automorphisms of the
Kummer surface and how we can obtain a singular genus 1 curve by intersect-
ing the Kummer surface with a plane that passes through exactly 2 singular
points. Afterwards we will describe how we can use the Kummer surface
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Kum(Y2) to construct a (2,2)-gluing Z3 of a genus 2 curve Y2 and a genus 1
curve X1. Our curve Z3 will be the pullback ofH∩Kum(Y2) along the quotient
map π : Jac(Y2)→ Kum(Y2) where H is a plane such that H ∩Kum(Y2) � X1

We continue by presenting the tools needed to make this construction
computationally feasible. We give an explicit description of the map π :
Jac(Y2)→ Kum(Y2) and we explicitly calculate the 1-dimensional family of
planes parametrized by λ passing through two singular points of the Kummer
surface. We compute the j-invariant of this family of singular elliptic curves in
terms of the parameter λ and we then show that this j-invariant is generically
a polynomial j(λ) of degree 12. Afterwards, we proceed by providing a
method to compute the pullback of X1 along π. As a direct computation is
unfeasible, we describe a way to find a degree 2 cover of X1 that ramifies
exactly above the same points as Z3 = π−1(X1) over X1 to find the curve Z3.

viii
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Chapter 0

Abelian varieties
Definition 0.0.1. An abelian variety over a field k is a connected complete
group variety over k.

Definition 0.0.2. A homomorphism φ : A1→ A2 between two abelian vari-
eties is called an isogeny if φ is surjective and kerφ is finite.

Proposition 0.0.3. Let A be an abelian variety over a field k. Then the group At

of all line bundles on A up to linear equivalence is also an abelian variety over k
and is called the dual abelian variety of A.

Proof. See [29, Theorem 6.18]

Proposition 0.0.4. Let A be an abelian variety over a field k and let L be an ample
line bundle on A. Then the map φL : A→ At given by φL(x) = t∗x(L)⊗L−1 is an
isogeny. Furthermore, this map does not depend on the choice of the class of L
modulo algebraic equivalence.

Proof. See [29, Corollary 2.10].

Notation 0.0.5. When two line bundles L1 and L2 are algebraically equivalent,
we will write L1 �alg L2.

Definition 0.0.6. Let A be an abelian variety over a field k. A polarization on
A is the choice of the class of an ample line bundle L on Ak modulo algebraic
equivalence. Equivalently, the choice of a map φL as above over k also defines
a polarization. If φL is an isomorphism then L is called a principal polarization.

Definition 0.0.7. A tuple (A,L) where A is an abelian variety and L is an
ample line bundle is called a polarized abelian variety. If L is a principal
polarization, then we call (A,L) a principally polarized abelian variety.

Definition 0.0.8. Let (A1,L1), (A2,L2) be two polarized abelian varieties. A
map φ : A1 → A2 is called a morphism of polarized abelian varieties if there
exists an integer n such that φ∗(L2) �alg Ln1.

1



0. Abelian varieties

Definition 0.0.9. Let A be an abelian variety over k and let n be a positive
integer. Let µn be the group of the n-th roots of unity in k. We can then assign
a bilinear form

〈., .〉n : A[n]×A[n]→ µn (1)

to A called the Weil pairing. See for example Definition 11.11 in [29].

Proposition 0.0.10. Let C be a smooth projective curve of genus g ≥ 1. Then
there exists an abelian variety Jac(C) called the Jacobian of C, and an injection
AJ : C → Jac(C), called the Abel-Jacobi map, such that extending AJ linearly to
divisors induces an isomorphism between Pic0(C) and Jac(C).

Proof. See [14, Theorem A.8.1.1].

Proposition 0.0.11. Consider the subvariety Wg−1 of codimension 1 of Jac(C)
that is given by the image of summing g − 1 copies of AJ(C). Let PC be the line
bundle associated to the divisor Wg−1. Then (Jac(C),PC) is a principally polarized
abelian variety.

Proof. See [14, Corollary A.8.2.3].

2



Chapter 1

Gluing
1.1 Gluing curves

Definition 1.1.1. Let (A1,L1), (A2,L2) be two principally polarized abelian
varieties over a field k. Consider the product A1×A2 along with the projection
maps pr1 : A1×A2→ A1, pr2 : A1×A2→ A2. Let n1,n2 be two positive integers.
A triple (φ,B,MB) is called an (n1,n2)-gluing of A1 and A2 over k if

(D1) (B,MB) is a principally polarized abelian variety over k; and

(D2) φ is a k-isogeny A1 ×A2→ B, such that

pr∗1(L1)n1 ⊗pr∗2(L2)n2 �alg φ
∗(MB). (1.1)

Definition 1.1.2. Let X,Y be two smooth curves over k. We say that a triple
(φ, Jac(Z),PZ) is an (n1,n2)-gluing of X and Y over k if it is an (n1,n2)-gluing
of (Jac(X),PX) and (Jac(Y ),PY ) over k.

Definition 1.1.3. An (n1,n2)-gluing of A1 and A2 (respectively of X and Y )
over the algebraic closure k is called a geometric (n1,n2)-gluing.

Remark 1.1.4. In Definition 1.1.1 the class of φ∗(MB) in the Néron-Severi
group of A1 ×A2 is a sum of multiples of pr∗1L1 and pr∗2L2. In general one
could consider using a more general element of the Néron-Severi group, but
as it always contains Zpr∗1(L1)×Zpr∗2(L2) and is generically equal to Z×Z,
we will only consider the (n1,n2) case.

In what follows, it will be important to study subgroups of A[n] that are
maximally isotropic with respect to the Weil pairing.

Proposition 1.1.5. Giving a triple (B,φ,MB) satisfying (D1) and (D2) is the
same as giving a maximal isotropic subgroup G of A1[n1]×A2[n2]. Given such a
maximal isotropic subgroup G, we have B � A/G and deg(φ) = nd1

1 n
d2
2 .

3



1. Gluing

Proof. Write L = pr∗1(L1)n1⊗pr∗2(L2)n2 . It suffices to show that K(L) = A1[n1]×
A2[n2], as we can then use [29, Corollary 8.14] and Corollary 8.19 to obtain
(D1),(D2) and B � A/G. Proposition 7.6 in loc. cit. then gives us that deg(φ) =
nd1

1 n
d2
2 . First remark that

φpr∗2(Ln2
2 )|A1×{0} = 0 and φpr∗1(Ln1

1 )|{0}×{A2} = 0. (1.2)

It follows that φpr1L
n1
1 ⊗pr2L

n2
2

= 0 if and only if

φpr∗1(Ln1
1 )|A1×{0} = 0 or φpr∗2(Ln1

2 )|{0}×{A2} = 0. (1.3)

But

φLn1
1

(a1,0) = t∗(a1,0) pr∗1(Ln1
1 )⊗pr∗1L

−n1
1

= pr∗1 t
∗
a1

(Ln1
1 )⊗pr∗1L

−n1
1 = pr∗1(t∗a1

(Ln1
1 )⊗L−n1

1 )
(1.4)

and pr∗1(t∗a1
(Ln1

1 )⊗L−n1
1 ) is trivial if and only if a1 ∈ K(Ln1

1 ). Proving something
similar for Ln2

2 we find that K(L) = K(Ln1
1 )×K(Ln2

2 ). By [29, Proposition 8.6]
we have

K(Ln1
1 )×K(Ln2

2 ) = n−1
1 (K(L1))×n−1

2 (K(L2)) = A1[n1]×A2[n2]. (1.5)

Remark 1.1.6. Note that the algebraic equivalence class ofMB is uniquely
determined by the maximal isotropic subgroup G, which is also implied by
[29, Corollary 7.25].

Definition 1.1.7. A maximal isotropic subgroup G of Jac(X)[n1]× Jac(Y )[n2]
is called indecomposable if it cannot be written as the product of two isotropic
subgroups of Jac(X)[n1] and Jac(Y )[n2]. Otherwise, we will call G decompos-
able.

Definition 1.1.8. Let (φ,A,MA) be an (n1,n2)-gluing of two curves X and Y .
If ker(φ) is decomposable, we say that φ is a decomposable gluing.

Proposition 1.1.9. Let (φ,A,MA) be a decomposable (n1,n2)-gluing of two curves
X and Y over k. Then A = A1 ×A2 where A1 is k-isogenous to Jac(X) and A2 is
k-isogenous to Jac(Y ).

Proof. By assumption, ker(φ) = KX ×KY where KX is a totally isotropic sub-
group of Jac(X)[n1] and KY is a totally isotropic subgroup of Jac(Y )[n2]. This
means we get a natural isogeny:

Jac(X)× Jac(Y )→ Jac(X)/K(X)× Jac(Y )/K(Y ). (1.6)

As this isogeny has K(X)×K(Y ) as its kernel, we see that A is isogenous to the
product Jac(X)/K(X)× Jac(Y )/K(Y ) where the first term is isogenous to Jac(X)
and the second term to Jac(Y ).

4



1.1. Gluing curves

Theorem 1.1.10. Let n1,n2 be two positive integers and let k be a field for which
chark - n1n2. Let A1 and A2 be abelian varieties over k. Let e = gcd(n1,n2). Then
any (n1,n2)-gluing (B,φ,M) of A1 and A2 factors as φ = φeψ. Here

(i) The isogeny ψ = ψ1 ×ψ2 is a product of isogenies ψi : Ai → Bi for i ∈ {1,2}
such that ψi(Mi) ∼ L

ni /e
i for some algebraic equivalence classMi inducing a

principal polarization on Bi ;

(ii) The triple (B,φe,M) is an (e,e)-gluing for the pair ((B1,M1), (B2,M2)).

To prove this theorem, we consider the pairing 〈·, ·〉1,2 on K(L) = A1[n1]×
A2[n2] given by the product of the Weil pairings 〈., .〉n1

and 〈., .〉n2
on A1[n1]

and A2[n2]. It has values in µn1
⊗ µn2

= µlcm(n1,n2). We need the following
lemma.

Lemma 1.1.11. Let G ⊂ A1[n1] × A2[n2] be maximal isotropic. Suppose that
vp(n1) , vp(n2) for some prime number p. Suppose that vp(n1) (respectively.
vp(n2)) is the larger of

{
vp(n1),vp(n2)

}
. Then G contains a group of the form

H1 × {0} (respectively. {0} ×H2), where Hi ⊂ Ai[p] is maximal isotropic.

Proof. We may suppose that vp(n1) > vp(n2). Consider the Weil pairing

〈., .〉n1
: A1[n1]×A1[n1]→ µn1

(1.7)

on the group A1[n1]. Similarly, denote the Weil pairing on A1[p] by

〈., .〉p : A1[p]×A1[p]→ µp. (1.8)

The pairing (1.7) induces a pairing on Q = A1[n1]/pA1[n1] with values in
µn1

/µp−1n1
, which we denote by

〈., .〉Q :Q ×Q→ µn1
/µp−1n1

. (1.9)

Finally, the Weil pairing 〈., .〉n1
induces a perfect mixed pairing

〈., .〉p,Q : A1[p]×Q→ µp ⊂ µn1
. (1.10)

Choosing a symplectic basis B of A1[n1] as a free module over Z/n1Z gives
induced bases for both A1[p] and Q, the former by multiplying the elements
in B with p−1n1 and the latter by projecting down to Q. Using these bases, all
pairings above can be described by the standard symplectic matrix. Now let
G be as in the Lemma.

Claim 1: The image pr1(G) of pr1(G) in Q is isotropic. In particular, it has
rank at most d1.
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1. Gluing

Proof: As was mentioned before the Lemma, the Weil pairing 〈., .〉1,2 on
A1[n1]×A2[n2] is given by

〈(x1,x2), (y1, y2)〉1,2 = 〈x1, y1〉n1
〈x2, y2〉n2

, (1.11)

where 〈., .〉n2
is the Weil pairing on A2[n2]. If pr1(G) in Q were not isotropic,

then on G ×G the factor 〈x1, y1〉 would attain values in µ1,2 of order equal to
pn1 . Due to our assumption at the beginning of the proof, the pairing 〈., .〉n2

cannot attain such values. This precludes 〈., .〉1,2 from being trivial on G ×G
and contradicts G being isotropic.

Claim 2: The submodule G∩ (A1[p]× {0}) is of rank at least d1.
Proof: Consider the orthogonal complement pr1(G)

⊥
of pr1(G) under the

mixed pairing 〈., .〉p,Q. Because the latter pairing is perfect, this is a submodule

of A1[p] of rank at least d1. By construction, pr1(G)
⊥

has trivial pairing with

the elements of pr1(G). As a result, pr1(G)
⊥
× {0} has trivial pairing with the

elements of pr1(G)×pr2(G) = G, so G∪(pr1(G)
⊥
×{0}) is an isotropic subgroup.

It follows that pr1(G)
⊥
× {0} is contained in G since G is maximal isotropic.

Claim 3: The submodule G ∩ (A1[p] × {0}) contains a maximal isotropic
submodule of A1[p] with respect to the Weil pairing 〈., .〉p.

Proof: This follows because after the choice of a symplectic basis above, the
pairings 〈., .〉p on A1[p] and 〈., .〉Q onQ, as well as the mixed pairing 〈., .〉p,Q, are
all given by the standard symplectic matrix. Indeed, this implies that since the
image of pr1(G) in Q is contained in a maximal isotropic submodule, its dual

pr1(G)
⊥

in A1[p] contains such a submodule. Additionally, pr1(G)⊥ × {0} ⊂ G
as we saw above.

With this series of claims, the statement of the Lemma follows by taking
some maximal isotropic submodule H1 of G∩ (A1[p]× {0}).

Proof of Theorem 1.1.10. The theorem follows from [29, Corollary 8.11]. In-
deed, if n1 = n2, then we are done. Otherwise we can apply Lemma 1.1.11, as
follows.

Let Hi be the submodule obtained by applying Lemma 1.1.11, and let
ψi : Ai → Ai/Hi be the corresponding quotient. Suppose moreover (as we may,
by symmetry) that i = 1. BecauseH1 is maximal isotropic in A1[p], there exists
a unique algebraic equivalence class P1 on A1/H1 such that ψ∗1(M1) ∼ Lp1, and
this classM1 defines a principal polarization on A1/H1. LetM2 = L2.

Consider the composition

A1 ×A2→ (A1/H1)×A2 = (A1 ×A2)/(H1 × {0})→ (A1 ×A2)/G. (1.12)

Let ψ1 (respectively. φ) be the quotient map by H1 (respectively. G). Then
we can write φ = φ1(ψ1 × 1), and if we denote the projections of (A1/H1)×A2
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1.2. Maximal isotropic subgroups

onto its components by ρ1 and ρ2, then (ψ1 × 1)∗(ρ∗1(M1)) = pr∗1(Lp1) and (ψ1 ×
1)∗(ρ∗1(M2)) = pr∗2(L2). This implies that

(ψ1 × 1)∗(ρ∗1(Mn1/p
1 )⊗ ρ∗2(Mn2

2 )) = pr∗1(Ln1
1 )⊗pr∗2(Ln2

2 ) = L. (1.13)

By the remark about uniqueness in Remark 1.1.6, the fact that L = ψ∗(M) =
(ψ1 × 1)∗(φ∗1(M)) then allows us to conclude

φ∗1(M) = ρ∗1(Mn1/p
1 )⊗ ρ∗2(Mn2

2 ). (1.14)

BothM1 andM2 define principal polarizations on the corresponding factors,
so that φ1 is a (p−1n1,n2)-gluing of the pair of principally polarized abelian
varieties ((A1/H1,M1), (A2,M2)).

This process can be continued inductively. Composing all morphisms
ψ1 × 1 and 1×ψ2 thus obtained, we get the Theorem.

1.2 Maximal isotropic subgroups

As maximal isotropic subgroups play a big role in gluing, it makes sense to
study them in more detail. In the most general setting one could study the
maximal isotropic subgroups of (Z/kZ)2n with respect to a non-degenerate
symplectic paring for some positive integers k and n. As it is easier to work
with vector spaces, we will only consider the case where k is a prime number
p. In this case (Z/pZ)2n � F 2n

p .

Definition 1.2.1. We define the standard symplectic pairing on F 2n
p to be the

one given by:

〈x,y〉
F

2n
p

= xT
[

0 In
−In 0

]
y, (1.15)

where In is the n-dimensional identity matrix.

Lemma 1.2.2. Let G be a maximal isotropic subgroup of F 2n
p with respect to the

standard symplectic pairing. Then |G| = pn.

Proof. See [28] 3.1 Corollary a).

Proposition 1.2.3. There are exactly

n−1∏
k=0

(
pn−k + 1

)
(1.16)

maximally isotropic subgroups in F 2n
p with respect to the standard pairing.
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1. Gluing

Proof. We first count the number of ways we can construct a maximal isotropic
vector space by choosing n linearly independent vectors. After that, we will
divide this number by the amount of possible ways to choose a basis for
a vector space of dimension n to find the number of maximally isotropic
subspaces.

Let v1 ∈ F 2n
p be a non-zero vector. There are p2n − 1 possible ways to

choose this vector, and 〈v1〉 gives us a 1-dimensional isotropic subspace of
F

2n
p . Assume we have already found a k-dimensional isotropic subspace Vk of
F

2n
p with k < n. Then we need to find a vector vk+1 ∈ V ⊥k −Vk to construct a
k + 1-dimensional isotropic subspace. For this, we have p2n−k − pk choices. So
there are

∏n−1
k=0

(
p2n−k − pk

)
possible ways of constructing a basis for a maximal

isotropic subspace of F 2n
p .

The number of possible distinct bases for a given n-dimensional subspace
of F 2n

p is equal to
∏n−1
k=0(pn − pk). It follows that the number of maximal

isotropic subspaces is∏n−1
k=0

(
p2n−k − pk

)
∏n−1
k=0(pn − pk)

=
n−1∏
k=0

(
pn−k + 1

)
. (1.17)

1.3 Structure of isotropic subgroups

Let X1 be a curve of genus 1 and let Yn be a curve of genus n. Determining a
(p,p)-gluing of X1 and Y2 is the same as choosing a subgroup of Jac(X1)[p]×
Jac(Yn)[p] that is maximally isotropic with respect to the Weil-pairing. We
will therefore restrict ourselves to the following situation: Consider the vector
space Fp2 ×F 2n

p equipped with the natural projection maps π1 and π2. The
product pairing 〈., .〉 on F 2

p ×F 2n
p is given by

〈x,y〉 = 〈π1(x),π1(y)〉
F

2
p

+ 〈π2(x),π2(y)〉
F

2n
p
. (1.18)

In the following section we will describe the structure of indecomposable
maximally isotropic subgroups of Fp2 ×F 2n

p . Similar observations were made
by Mumford in [22, p. 329].

Lemma 1.3.1. Let G be an indecomposable maximally isotropic subgroup of Fp2×
F

2n
p with respect to the product pairing. Then π1 is surjective.

Proof. Assume π1 is not surjective. Then its image will be of dimension ≤ 1.
If π1(G) is 0-dimensional, G � {0} ×G2 where G2 is an isotropic subgroup of
F

2n
p . This contradicts the assumption that G is indecomposable. Now assume
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1.3. Structure of isotropic subgroups

π1(G) is a 1-dimensional vector space V . Then π1(G) is a maximal isotropic
subspace because it is 1-dimensional. We see that

0 = 〈x,y〉 = 〈π1(x),π1(y)〉
F

2
p

+ 〈π2(x),π2(y)〉
F

2n
p

= 0 + 〈π2(x),π2(y)〉
F

2n
p
. (1.19)

This shows that π2(G) is an isotropic subgroup of F 2n
p . We have |G| = pn+1 ,

|π1(G)| = p, and |π2(G)| ≤ pn by Lemma 1.2.2. It follows that

G � π1(G)×π2(G), (1.20)

so G is decomposable, which causes a contradiction. Hence π1 is surjective.

Definition 1.3.2. Let G be a group that comes equipped with a pairing 〈·, ·〉 →
F
∗
p and let H be a subgroup of G. We write H⊥ for the orthogonal complement

of H in G with respect to the pairing.

Lemma 1.3.3. Let G be an indecomposable maximally isotropic subgroup of Fp2×
F

2n
p with respect to the product pairing. Let G′ be the kernel of the map π1 : G→
F

2
p . Consider the subgroup H = π2(G′) in F 2n

p . Then we have the following:

(i) The vector space H⊥/H is 2-dimensional.

(ii) There exists a symplectic pairing onH⊥/H , denoted 〈., .〉H⊥/H that is induced
by the pairing 〈., .〉

F
2n
p

on F 2n
p .

(iii) We can restrict π2 to G to get an isomorphism π2 : G→H⊥.

(iv) Now let π2|G/G′ : G/G′ → H⊥/H be the map induced by π2 on the quo-
tient. We similarly define π1|G/G′ : G/G′→ F

2
p for the natural isomorphism

induced by π1. Then the map φ : F 2
p →H⊥/H given by

φ = π2|G/G′ ◦π1|−1
G/G′ . (1.21)

is an isomorphism. This morphism has the property that

〈x1,x2〉F 2
p

= −〈φ(x1),φ(x2)〉H⊥/H . (1.22)

Proof. (i) We know that G is an (n + 1)-dimensional vector space, and that
π1 : G → F

2
p is a surjective map. This means that kerπ1 = G′ is an (n − 1)-

dimensional subspace. Remark that π2|G′ is injective by construction, so H is
isomorphic to G′ and dimH = n− 1. Now H⊥ is a subspace of F 2n

p which is
defined by n−1 linear equations. This shows thatH⊥ is an (n+1)-dimensional
subspace. We conclude that H⊥/H has dimension 2.

(ii) We define the following pairing on H⊥/H ×H⊥/H :

9



1. Gluing

〈[x1], [x2]〉H⊥/H = 〈x1,x2〉F 2n
p
. (1.23)

where we use [.] to denote the class in H⊥/H .
The pairing is well-defined as elements of H pair to 0 with elements of

H⊥ and we get 〈x1 + h1,x2 + h2〉F 2n
p

= 〈x1,x2〉F 2n
p

for all x1,x2 ∈H⊥, h1,h2 ∈H .

(iii) The restriction of the projection π2 to G induces a morphism G→ F
2n
p .

We furthermore have that π2(G) ⊂H⊥ as H = π2(G′) and G is isotropic, so we
get a map π2 : G→ H⊥. We claim that this map is an isomorphism. As the
map is linear and both spaces have the same dimension, it is enough to show
that π2 is injective.

Claim: If π2 is not injective, there exist (t1,0),(s1, s2) ∈ G such that

〈(t1,0), (s1, s2)〉 , 0 (1.24)

Proof: As π2 is not injective, we can find 0 , t1 ∈ F 2
p such that (t1,0) ∈

G. As π2(G) is not trivial, there exists an element (α1,α2) ∈ G with α2 , 0.
Similarly, as π1 is surjective, we find an element (β1,β2) ∈ G with β1 , 0 , t1.
Now at least one of (α1,α2), (β1,β2) and (α1 +β1,α2 +β2) will have the property
that the first coordinate is not equal to 0 or t1, and that the second coordinate
is non-zero. Call this element (s1, s2). We now find that

〈(t1,0), (s1, s2)〉 = 〈t1, s1〉F 2
p

+ 〈0, s2〉F 2n
p

= 〈t1, s1〉F 2
p
, 0. (1.25)

This proves the claim.
As the existence of such a pair of elements contradicts the assumption

that G is isotropic, we conclude that π2 is an isomorphism.
(iv) The isomorphism π2 descends to a natural isomorphism on the quo-

tient: π2|G/G′ : G/G′ → H⊥/H and π1|G/G′ was already an isomorphism by
definition. It follows that

φ = π2|G/G′ ◦π1|−1
G/G′ (1.26)

is an isomorphism. It remains to show that φ is pairing-reversing. By con-
struction φ(t1) = t2 modH and φ(s1) = s2 modH for some (t1, t2), (s1, s2) ∈ G.
We know that

0 = 〈(t1, t2), (s1, s2)〉 = 〈t1, s1〉F 2
p

+ 〈t2, s2〉F 2n
p

= 〈t1, s1〉F 2
p

+ 〈t2, s2〉H⊥/H , (1.27)

so
〈t1, s1〉F 2

p
= −〈φ(t1),φ(s1)〉H⊥/H . (1.28)

We conclude that φ is a pairing-reversing isomorphism.

Lemma 1.3.4. Conversely, any tuple (H,φ) of an (n− 1)-dimensional subspace H
of F 2n

p and a pairing-reversing isomorphism φ : F 2
p →H⊥/H defines an indecom-

posable maximally isotropic subgroup G of F 2
p ×F 2n

p .
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1.3. Structure of isotropic subgroups

Proof. Let G = {(x,φ(x) + h)|x ∈ F 2
p , h ∈ H}. Note that H⊥ is not an isotropic

subgroup as it consists of pn+1 elements, and a maximally isotropic subgroup
of F 2n

p has pn elements. As a result, the induced pairing on H⊥/H is non-
trivial, so there exist x1,x2 ∈ F 2

p such that 〈φ(x1),φ(x2)〉H⊥/H = 〈φ(x1),φ(x2)〉
F

2n
p

is non-zero. So the projection of G to F 2n
p is not an isotropic subgroup of F 2n

p ,
so G is indecomposable.

We also see that

〈(x1,φ(x1) + h1), (x2,φ(x2) + h2)〉 = 〈x1,x2〉F 2
p

+ 〈φ(x1) + h1,φ(x2) + h2〉F 2n
p

= 〈x1,x2〉F 2
p

+ 〈φ(x1),φ(x2)〉
F

2n
p

+

〈(h1,φ(x2))〉
F

2n
p

+ 〈φ(x1),h2〉F 2n
p

+ 〈h1,h2〉F 2n
p

= 〈x1,x2〉F 2
p

+ 〈φ(x1),φ(x2)〉H/H⊥ + 0 + 0 + 0

= 0.
(1.29)

So G is an isotropic subgroup. As it is of order pn+1, it is maximal.

Lemma 1.3.5. We have that the set of symplectic automorphisms Sp(F 2
2 ) � S3.

Proof. Giving a symplectic morphism is the same as giving an invertible skew-
symmetric 2× 2 matrix. In F 2

2 every invertible matrix is skew-symmetric, so
Sp(F 2

2 ) �GL2(F 2
2 ). Every bijection that sends 0 to 0 is linear, so there are 6 of

these maps. Using this we see that

GL2(F 2
2 ) =

〈[
1 1
0 1

]
,

[
0 1
1 0

]〉
� S3. (1.30)

Corollary 1.3.6. There are exactly 90 distinct indecomposable maximal isotropic
subgroups in F 2

2 ×F
4

2 .

Proof. A calculation shows that the above two constructions are inverse to
one another. This means that an indecomposable maximally isotropic sub-
group is completely determined by a choice of a tuple (H,φ) where H is a
1-dimensional subspace of F 4

2 , and φ is a pairing reversing isomorphism
F

2
2 → H⊥/H . As any non-zero element in F 4

2 gives us an order 2 subgroup,
there are 24 − 1 possible choices for H . After fixing H , there are 6 possible
pairing reversing isomorphisms φ : F 2

2 →H⊥/H . We conclude that there are
6 · 15 = 90 distinct maximally isotropic subgroups in F 2

2 ×F
4

2 .

Remark 1.3.7. Alternatively, one can use Proposition 1.2.3 to see that there are
135 maximally isotropic subgroups of F 6

2 , 15 maximally isotropic subgroups
of F 4

2 and 3 maximally isotropic subgroups of F 2
2 . It follows that there are

135− 3 · 15 = 90 indecomposable maximally isotropic subgroups of F 6
2 .
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1. Gluing

1.4 Description in terms of roots

Let X1 be given by the equation y2 = (x −α1)(x −α2)(x −α3)(x −α4), and let
Y2 be given by the equation y2 = (x − β1)(x − β2)(x − β3)(x − β4)(x − β5)(x − β6).
We are now going to give a more explicit description of the indecomposable
maximal isotropic subgroups of Jac(X1)× Jac(Y2) in terms of the αi and βi .

For that we first need the following lemmas to give a different description
of the structure of the 2-torsion group of hyperelliptic curves.

Lemma 1.4.1. Let A be a set with 2n+ 2 elements. For any two subsets S1,S2 of
A, let

S1 + S2 = (S1 ∪ S2)\(S1 ∩ S2). (1.31)

Let ScA be the complement of S in A. We define the equivalence relation ∼ by
S1 ∼ S2 if S2 = ScA1 . Then the set

GA = {S ⊂A|#S � 0 mod 2}/{∼} (1.32)

forms an (n+ 1)-dimensional F2-vector space under the operation +. Furthermore,
the bilinear pairing

〈S1,S2〉GA = #(S1 ∩ S2) mod 2 (1.33)

turns (GA,〈·, ·〉GA) into a symplectic vector space.

Proof. See Lemma 2.4 and Proposition 6.3 in [24].

Definition 1.4.2. For any set A, we will write (GA,〈·, ·〉GA) (or simply GA) for
the corresponding symplectic vector space defined in the above lemma.

Lemma 1.4.3. Let A and B be two sets with an even number of elements and
let f :A→B be a bijective map. Then the morphism G(f ) : GA→ GB given by
G(f )([S]) = [f (S)] ∈ GB is a well-defined bijective symplectic map.

Proof. As f is injective, and

f (S1)+f (S2) = (f (S1)∪f (S2))\(f (S1)∩f (S2)) = f (S1∪S2)\f (S1∩S2) = f (S1+S2)
(1.34)

we see that G(f ) is linear. Furthermore, the injectivity also implies that
G(f )([S]) = [f (S)] = [f (S)cB] = [f (ScA)] = G(f )([Sc]), so G(f ) is well-defined. If
G(f )([S]) = ∅, the injectivity gives that S = ∅, so G(f ) is bijective. Finally, the
injectivity of f implies that f does not change the number of elements in a
set, so 〈S1,S2〉GA = 〈G(f )(S1),G(f )(S2)〉GB .

Lemma 1.4.4. Let C be a hyperelliptic curve of genus g given by the equation

y2 = f (x) (1.35)
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1.4. Description in terms of roots

where f is a monic polynomial of degree 2g + 2. Let A = {α1, . . .α2g+2} be the set of
roots of f . Let O = (α2g+2,0). Let ψ :A→Div(C) be given by ψ(s) = (αs,0)−O.
Then the morphism φC : (GA,〈·, ·〉GA)→ (Jac(C)[2],〈·, ·〉2) given by

[S] 7→
∑
s∈S

[ψ(s)] (1.36)

is an isomorphism of symplectic vector spaces.

Proof. See Lemma 2.2, Corollary 2.11 and Proposition 6.3 in [24].

Remark 1.4.5. A similar statement can be made in the case that degf = 2g+1.
In this case we define A = {α1, . . . ,α2g+1,∞}.

Remark 1.4.6. The properties in Lemma 1.4.1 are defined in such a way that
they imitate the addition of 2-torsion points on a hyperelliptic curve C given
by an equation of the form y2 = f (x) in P

2
k . Write every point on Jac(C) in

the form P +Q − 2(α2n+1,0). Then taking the symmetric difference in the
addition emulates calculating modulo div((x −αi)/(x −α2n+2)) for all i where
αi is a root of f . The relationship S ∼ ScA corresponds to calculating modulo
div(y/(x −α2n+2)n+1).

Let A = {α1,α2,α3,α4} be the set of roots of the equation for X1, and let
B = {β1,β2, . . . ,β6} consist of the roots of the equation for Y2.

Proposition 1.4.7. Let T ⊂ B be a set of two elements. Then HT = 〈[T ]〉 is a
1-dimensional subspace of GB and

(H⊥T /HT ,〈·, ·〉H⊥T /HT ) � (GB\T ,〈·, ·〉GB). (1.37)

Proof. As [T ] is a non-zero element of the vector space GB, it is clear that HT
is a 1-dimensional subspace of GB. Because 〈[S1], [S2]〉GB = 0 if and only if
#(S1 ∩ S2) is even, we see that

H⊥T = {[S] ∈ GB|#(S ∩ T ) = 0 or #(S ∩ T ) = 2}
= {[S] ∈ GB|S ∩ T = ∅ or S ∩ T = T }.

(1.38)

Let [S] ∈H⊥T /HT . We will determine all subsets in the equivalence class of
S in H⊥T /HT . We easily see that S,ScB ,S +T and ScB +T are in the equivalence
class of S. Assume that S ∩ T = ∅. Then ScB ∩ T = T and

(S +T )cB = ((S ∪T )\(S ∩T ))cB = (S ∪T )cB ∪ (S ∩T ) = ScB\T = ScB +T . (1.39)

If S ∩ T = T we also get that (S + T )cB = ScB + T . As S was chosen arbitrarily
the same holds for (ScB + T )cB . As a result, the equivalence class of S consists
exactly of S,ScB ,S +T and ScB +T . Of these four equivalence classes there are
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1. Gluing

exactly two that are contained in B\T . When S∩T = ∅ these are S and ScB +T .
Otherwise they are ScB and S + T .

Consider the set:

GB\T = {S ⊂B\T |#S � 0 mod 2}/{S ∼ ScB\T }. (1.40)

Let [S] ∈H⊥T /HT and let S ′ ∈B\T be a subset such that [S] = [S ′]. Then by the
above considerations the map φ : H⊥T /HT → GB\T given by φ([S]) = [S ′] is a
well-defined isomorphism.

Corollary 1.4.8. Let X1 be given by the equation y2 = f1(x), and let Y2 be given
by the equation y2 = f2(x). Write A for the set of roots of f1 and write B for the set
of roots of f2. Giving a maximally isotropic subgroup of Jac(X1)[2]× Jac(Y2)[2] is
the same as choosing a subset T ⊂B with |T | = 2 and giving a linear isomorphism
φ : GA→ GB\T .

Proof. Lemma 1.4.4 tells us that Jac(X1) � GA and Jac(Y2) � GB as symplectic
vector spaces. Now Lemma 1.3.4 says that giving a maximally isotropic
subgroup of GA ×GB is the same as choosing a 1-dimensional subspace HT of
GB and a pairing-preserving isomorphism HT →H⊥T /HT . Proposition 1.4.7
then says choosingHT is equivalent to choosing a subset T ofB containing two
elements, and that H⊥T /HT � GB\T . Finally, any bijective linear map φ : GA→
GB\T is pairing-preserving as F 2

2 admits a unique symplectic structure.

Corollary 1.4.9. Let T = {β5,β6} and define a function f :A→B\T by f (αi) =
βi for i = 1, . . .4. Then the tuple (HT ,G(f )) corresponds to the maximal isotropic
subgroup

G = 〈(0, [(β5,0)− (β6,0)]),

([(α1,0)− (α4,0)], [(β1,0)− (β4,0)]),

([(α2,0)− (α4,0)], [(β2,0)− (β4,0)])〉.
(1.41)

Proof. By definition

HT = 〈[T ]〉 = 〈[(β5,0)− (β6,0)]〉 (1.42)

and
G(f )([(0,αi)− (0,αj )]) = [(0,βi)− (0,βj )] (1.43)

for i, j ∈ [1, . . .4]. Applying the construction in Lemma 1.3.4 gives us that the
corresponding maximal isotropic subgroup is defined as

G = {(x,G(f )(x) + h)|x ∈ Jac(X1), h ∈H}. (1.44)
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1.5. Rationality

We see that G is generated by the elements (0,h) with h , 0 and (x,G(f )(x))
with x ∈ Jac(X1). As [(α1,0)− (α4,0)] + [(α2,0)− (α4,0)] = [(α3,0)− (α4,0)], we
get that

G = 〈(0, [(β5,0)− (β6,0)]),

([(α1,0)− (α4,0)], [(β1,0)− (β4,0)]),

([(α2,0)− (α4,0)], [(β2,0)− (β4,0)])〉.
(1.45)

Example 1.4.10. Let the equation of Y2 be given by

y2 = x(x+ 2)(x2 − 2x − 2)(x2 − 6) (1.46)

and let X1 be given by

y2 = x(x − 1)(x2 − 2x − 5). (1.47)

Write βi for the roots of x2 − 2x − 2. Let T = {β1,β2} and define f : A→B\T
by f (0) = 0, f (1) = −2, f (1 −

√
6) =

√
6 and f (1 +

√
6) = −

√
6. Then the tuple

(T ,G(f )) corresponds to the maximal isotropic subgroup G of Jac(X1)[2] ×
Jac(Y2)[2] given by:

G = 〈(0, [(β1,0)− (β2,0)]),

([(1,0)− (0,0)], [(−2,0)− (0,0)]),

([(1−
√

6,0)− (0,0)], [(
√

6,0)− (0,0)])〉.
(1.48)

We can, moreover, show that this maximal isotropic subgroup is Galois-
invariant.

1.5 Rationality

Given two abelian varieties A1 of genus 1, A2 of genus 2 over k and an
indecomposable maximal isotropic subgroup G of (A1 ×A2)[2] one can ask
when (BG,MB), the (2,2)-gluing of A1 and A2 along G, will be isomorphic to a
curve (over k). The following result provides an answer:

Proposition 1.5.1. Let (B,MB) be an absolutely indecomposable (i.e. not isomor-
phic over k to a product of two principally polarized abelian varieties) principally
polarized abelian variety of genus 3 over k. Then there exists a curve Z3 over k
and a field extension k′/k with [k′ : k] ≤ 2, such that (B,MB) is k′-isomorphic to
Jac(Z3) by a quadratic twist with respect to -1. Additionally, if Z3 is hyperelliptic,
then k′ = k.
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1. Gluing

Proof. See [3, Proposition 3].

Definition 1.5.2. In the situation in Proposition 1.5.1 where (B,MB) is a (2,2)-
gluing of Jac(X1)× Jac(Y2) over k, we define Z3 to be an arithmetic (2,2)-gluing
of X1 and Y2.

Remark 1.5.3. As (BG,MB) is the quotient of an abelian variety over k by the
group G, BG is defined over k if G is Galois-invariant.

Lemma 1.5.4. Let f be a polynomial of even degree and let A be its set of
roots. The action of Gal(f ) ⊂ S4 on A induces a Gal(f )-action on GA. Let
V = 〈(12)(34), (13)(24)〉 ⊂ S4. Then Gal(f )/(Gal(f )∩V ) acts faithfully on GA.

Proof. Let σ ∈ Gal(f ). As σ is injective, Lemma 1.4.3 tells us that G(f ) ∈
Sym(GA), so Gal(f ) acts on GA. Now let [S1], [S2] ∈ GA. Then [S1] = [S2]
if and only if S1 = S2 or S1 = Sc2. This implies that if σ ∈ Gal(f ) has the
property that σ ([S]) = [S] for all [S] ∈ GA, then σ ∈ V = 〈(12)(34), (13)(24)〉. As
a consequence, Gal(f )/V acts faithfully on GA.

Proposition 1.5.5. Let X1,Y2, A and B be as above. Let T ⊂ B with |T | = 2
and φ : GA→ GB\T . Then, the maximally isotropic subgroup corresponding to
the tuple (HT ,φ) is invariant under the action of Gal(k/k) if and only if HT is
Galois-invariant, and φ ◦ σ = σ ◦φ for all σ ∈ Gal(k/k).

Proof. Assume that the group corresponding toG = (HT ,φ) is Galois-invariant.
As the elements of G are of the form (x,y) with x ∈ GA and y ∈H⊥T this implies
that σ (H⊥T ) =H⊥T for all σ ∈Gal(k/k). Let x ∈H⊥T . We have

〈
x,y

〉
GB

= 0 for all

y ∈H⊥T if and only if x ∈HT . As the action of Gal(k/k) preserves the restriction
of 〈·, ·〉GB to H⊥T by Lemma 1.5.4, we get that σ (HT ) =HT .

As HT is Galois-invariant, it follows that T is Galois-invariant. This means
that σ descends to an action on H⊥T /HT . We know that

σ ((x,φ(x))) = (σ (x),σ (φ(x))) = (σ (x),φ(σ (x)) + h) (1.49)

for some h ∈HT . It follows that σ (φ(x)) = φ(σ (x)) modHT , which is what we
wanted to show.

Now assume that T is Galois-invariant, and that φσ = σφ for all σ ∈
Gal(k/k). Let (x,φ(x) + h) ∈ G. Then

σ ((x,φ(x) + h)) = (σ (x),σ (φ(x)) + σ (h)) = (σ (h),φ(σ (x)) + h′) (1.50)

for some h′ ∈HT . So, σ ((x,φ(x) + h)) ∈ G, which concludes the proof.
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Corollary 1.5.6. Let X1 be a curve of genus 1 over k, and let Y2 be a curve of
genus 2 over k. If there exists a Galois invariant maximal isotropic subgroup G of
Jac(X1)× Jac(Y2), then Y2 has a model of the form

y2 = g(x) (1.51)

over k where g contains a quadratic factor.

Proof. The maximally isotropic subgroup G needs to be fixed by Gal(k/k).
Write down some model of Y2 of the form

y2 = g(x) (1.52)

where g is of degree 6. Assume that g =
∏6
i=1(x−βi) over k. ThenG corresponds

to some tuple (T ,φ) T = {βi ,βj} ⊂ B with i , j. Let σ ∈ Gal(k/k). As σ (T ) = T
we see that p(x) = (x − βi)(x − βj ) remains fixed under all elements in Gal(k/k),
so p(x) is a polynomial over k. This shows that g(x) has a quadratic factor over
k.

Definition 1.5.7. Let X be a hyperelliptic curve over a field k and let y2 = f be
an equation for X over k. Let d1 < d2 < . . . < dn be positive integers. We define
f to be of type (dn1

1 . . .dnmm ) if there exists a factorization f =
∏m
i=1

∏ni
j=1 fi,j into

irreducible factors with deg(fi,j ) = di .

Definition 1.5.8. Let g be a polynomial of degree 6. We will say that g is
gluable over k if g contains a quadratic factor over k.

Remark 1.5.9. A polynomial is gluable over k when its type over k is equal to
one of the following:

(16), (1421), (1222), (23), (133), (112131), (1241) or (2141). (1.53)

Lemma 1.5.10. Let G ⊂ S3 be a group and let ρi : G → S3 be faithful repre-
sentations for i = 1,2. If |ρ1(G)| = |ρ2(G)| then there exists σ ∈ S3 such that
ρ2 = σρ1σ

−1

Proof. For G is cyclic it suffices to remark that all cycles of the same type are
conjugate to one another. Let G = S3. We may assume that after conjugation
with some σ1 ∈ S3 that σ1ρ1((123))σ−1

1 = ρ2((123)) = (123). Now remark that
(123) is invariant under conjugation with (123), but the orbit of (12) under
conjugation with (123) consists of all 2-cycles. So we can find σ2 ∈ S3 such
that conjugation with some σ1 ∈ S3 that

σ2σ1ρ1(x)σ−1
1 σ−1

2 = ρ2(x) = x. (1.54)

Setting σ = σ2σ1 proves the statement in this case.
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Definition 1.5.11. Let f (x) = (x −α1)(x −α2)(x −α3)(x −α4) be a polynomial
of degree 4. Let β1 = α1α2 +α3α4, β2 = α1α3 +α2α4, β3 = α1α4 +α2α3. Then
the polynomial g(x) = (x − β1)(x − β2)(x − β3) is called the cubic resolvent of f .

Remark 1.5.12. Let L be the splitting field of a quartic polynomial f . Then
LV4∩Gal(f ) is the splitting field of the cubic resolvent of f .

Theorem 1.5.13. Let X1,Y2 be curves over k that are given by equations: y2 =
f1(x) and y2 = f2(x) respectively. Let A be the set of roots of f1 and let B be the set
of roots of f2. Assume that f2 is gluable over k, i.e. f2 = g1g2 where degg1 = 4 and
degg2 = 2. Let T be the set of roots of g2.

Then there exists a Galois-equivariant morphism φ : GA→ GB\T if and only
if the splitting field of the cubic resolvent of f1 is equal to the splitting field of the
cubic resolvent of g1.

Proof. Label the elements in the sets A and B\T with 1,2,3,4 and let Gal(f1)
and Gal(g1) act on them. Let L1 be the splitting field of f1 and let L2 be

the splitting field of g1. Assume that LV4∩Gal(f1)
1 = L

V4∩Gal(g2)
2 and define L

to be this field. Lemma 1.5.4 tells us we get two faithful representations
ρ1 : Gal(L/K) → Sym(GA) � S3 and ρ2 : Gal(L/K) → Sym(GB/T ) � S3. As
|ρ1(Gal(L/K))| = |ρ2(Gal(L/K))| Lemma 1.5.10 says that any two faithful repre-
sentations of S3 are conjugate and there exist bases BA ofGA and BB\T ofGB\T
(as symplectic vector spaces) such that ρ1(x) = ρ2(x) for all x with respect to
these bases. Let φ : GA→ GB\T be the morphism with the property that the
matrix representation of φ with respect to BA and BB is the identity matrix.
Then φ is Galois equivariant by construction.

Now assume there exists a Galois-equivariant morphism φ : GA→ GB\T .
Let σ ∈Gal(k/k). As φ is Galois-equivariant σ fixes the elements of GA if and
only if σ fixes the elements of GB\T . As V4 ∩Gal(f1) fixes the elements of GA
and V4 ∩Gal(g1) fixes the elements of GB\T we find that

L
V4∩Gal(f1)
1 = LV4∩Gal(g1)

2 (1.55)

as we needed to show.

Corollary 1.5.14. Let ρ1 : Gal(f1)→ Sym(GA and ρ2 : Gal(f2)→ Sym(GB\T ) be
representations of the Galois action on GA and GB\T respectively. If there exists a
Galois-equivariant morphism φ : GA→ GB\T then |ρ1(Gal(f1))| = |ρ2(Gal(f2))|.

Remark 1.5.15. Corollary 1.5.14 gives us a necessary (but not sufficient)
condition to check whether it is possible to glue a genus 1 curve and a genus
2 curve over the base field. Let X1,Y2, f1 and f2 = g1g2 be as above. Label the
roots of f1 by {1,2,3,4}, label the roots of g1 by {1,2,3,4} and label the roots
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Table 1.1: |ρ1(Gal(f1))| for all possible choices of Gal(f1)

Type of f1 Gal(f1) Structure |ρA(Gal(f1))|
(14) C1 〈id〉 1

(122) C2 〈(12)〉 2
(22) C2 〈(12)(34)〉 1
(22) V4 〈(12), (34)〉 2

(1131) C3 〈(123)〉 3
(1131) S3 〈(123), (12)〉 6
(41) C4 〈(1234)〉 2
(41) V4 〈(12)(34), (13)(24)〉 1
(41) D4 〈(1234), (13)〉 2
(41) A4 〈(123), (124)〉 3
(41) S4 〈(1234), (12)〉 6

of g2 by {5,6}. In Table 1.1 we have listed all the possibilities for Gal(f1) as a
subgroup of S4 combined with the value of ρ1(Gal(f1)). This was calculated by
listing all possible Galois groups G (as a subgroup of S4) for each factorization
type of f1 and then calculating the number of elements in G∩V4.

In Table 1.2 we have listed the possibilities for Gal(f2) as a subgroup of S6
and the value of |ρ2(Gal(f2))|. This was calculated by listing all possible Galois
groups G (as a subgroup of S4 × S2) for each gluable factorization type of f2,
i.e. one quartic factor for which we label the roots by 1, . . .4 and one quadratic
factor for which we denoted the roots by 5 and 6, and then calculating the
number of elements in G ∩ V4 × S2. Remark that a different choice for the
quadratic factor might lead to a different value for |ρ2(Gal(f2))| even though
Gal(f2) and the factorization type of f2 are the same. This occurs for example
when f2 is of type (1421).

Corollary 1.5.16. Let k be a finite field and let X1,Y2, f1 and f2 = g1g2 be as
above. Label the roots of f1 by {1,2,3,4}, label the roots of g1 by {1,2,3,4} and label
the roots of g2 by {5,6}. Consider Gal(f1, f2) as a subgroup of S4 × S6. Then Table
1.3 gives us all possibilities (for this choice of labeling of the roots) for Gal(f1, f2)
for which a Galois stable maximal isotropic subgroup of Jac(X1)[2]× Jac(Y2)[2] can
exist.

Proof. A necessary condition for a gluing to exist is |ρ1(Gal(f1)| = |ρ2(Gal(f2)|.
As we work over a finite field, every Galois group is cyclic. The table gives us
a list of all groups of the form 〈[σ1,σ2]〉 for which Gal(f1) = 〈σ1〉, Gal(f2) = 〈σ2〉
and |ρ1(Gal(f1)| = |ρ2(Gal(f2)| hold.
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Table 1.2: |ρ2(Gal(f2))| for all possible choices of Gal(f2)

Type of f2 Gal(f2) Structure |ρ2(Gal(f2))|
(16) C1 〈id〉 1

(1421) C2 〈(12)〉 2
(1421) C2 〈(56)〉 1
(1222) C2 〈(12)(34)〉 1
(1222) C2 〈(12)(56)〉 2
(1222) V4 〈(12), (34)〉 2
(1222) V4 〈(12), (56)〉 2
(23) C2 〈(12)(34)(56)〉 1
(23) V4 〈(12)(34), (56)〉 1
(23) V4 〈(12), (34)(56)〉 2
(23) C3

2 〈(12), (34), (56)〉 2
(133) C3 〈(123)〉 3
(133) S3 〈(123), (12)〉 3

(112131) C6 〈(123)(56)〉 3
(112131) S3 〈(123), (12)〉 6
(112131) D6 〈(123)(56), (12)〉 6
(1241) C4 〈(1234)〉 2
(1241) V4 〈(12)(34), (13)(24)〉 1
(1241) D4 〈(1234), (13)〉 2
(1241) A4 〈(123), (124)〉 3
(1241) S4 〈(1234), (12)〉 6
(2141) C4 〈(1234)(56)〉 2
(2141) C3

2 〈(12)(34), (13)(24), (56)〉 2
(2141) D4 〈(1234)(56), (13)〉 2
(2141) D4 〈(1234), (13)(56)〉 2
(2141) D4 〈(1234)(56), (13)(56)〉 2
(2141) C2 ×D4 〈(1234), (13), (56)〉 2
(2141) C2 ×A4 〈(123), (234), (56)〉 3
(2141) S4 〈(1234)(56), (12)(56)〉 6
(2141) S4 ×C2 〈(1234), (12), (56)〉 6
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Table 1.3: Galois stable groups in the finite field case

Type of f Type of g Group
(14) (16) 〈[id, id]〉
(14) (1421) 〈[id, (56)]〉
(14) (1222) 〈[id, (12)(34)]〉
(14) (23) 〈[id, (12)(34)(56)]〉

(1221) (1421) 〈[(12), (12)]〉
(1221) (1222) 〈[(12), (12)(56)]〉
(1221) (1241) 〈[(13), (1234)]〉
(1221) (2141) 〈[(13), (1234)(56)]〉
(22) (16) 〈[(12)(34), id]〉
(22) (1421) 〈[(12)(34), (56)]〉
(22) (1222) 〈[(12)(34), (12)(34)]〉
(22) (23) 〈[(12)(34), (12)(34)(56)]〉

(1131) (1331) 〈[(123), (123)]〉
(1131) (112131) 〈[(123), (123)(56)]〉
(41) (1421) 〈[(1234), (13)]〉
(41) (1222) 〈[(1234), (13)(56)]〉
(41) (1241) 〈[(1234), (1234)]〉
(41) (2141) 〈[(1234), (1234)(56)]〉
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Chapter 2

Preliminary considerations
2.1 Hyperelliptic curves

In this section we will characterize the hyperelliptic curves of genus 3 that
are (2,2)-gluings. From now on we will assume that char(k) , 2. We need the
following proposition from [18].

Proposition 2.1.1. Let C : y2 = f (x) and C′ : y2 = f ′(x) be two hyperelliptic
curves of genus g over a field k. Every isomorphism φ : C → C′ is given by an
expression of the form

(x,y) 7→
(
ax+ b
cx+ d

,
ey

(cx+ d)g+1

)
, (2.1)

for some M =
[
a b
c d

]
∈ GL2(k) and e ∈ k∗. The pair (M,e) is unique up to re-

placement by (λM,λg+1e) for λ ∈ k∗. The composition of isomorphisms (M,e) and
(M ′ , e′) is (M ′M,e′e).

In the following two propositions, we will assume that our base field is
C. A similar argument can be made for more general base fields using Tate
modules.

Proposition 2.1.2. Let p be a prime, let X,Y , and Z be curves, and assume Z
is of genus g. Let (φ,Z,PZ) be the (p,p)-gluing of (Jac(X),PX) and (Jac(Y ),PY ),
the principally polarized abelian varieties corresponding to the curves X and Y .
Write pr1 : Jac(X) × Jac(Y )→ Jac(X) and pr2 : Jac(X) × Jac(Y )→ Jac(X) for the
two projection maps. Let φt : Zt→ Xt ×Y t be the dual morphism with respect to
the polarization PZ on Z and the polarization PX×Y = pr∗1((PX))p ⊗pr∗2(PY )p on
X ×Y . Then φt ◦φ = [p]X×Y .

Proof. Let EX×Y be the alternating bilinear form corresponding to the alge-
braic equivalence class of PX×Y and let EZ be the alternating bilinear form
corresponding to the algebraic equivalence class of PZ . As φ is a (p,p)-gluing,
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kerφ is a subgroup of order pg of Jac(X)[p] × Jac(Y )[p] that is maximally
isotropic with respect to the pairing induced by EX×Y (See Lemma 1.2.2).
Now choose a basis e1, . . . , e2g for H1(Jac(X)× Jac(Y ),Z) such that the matrix
representation MEX×Y of EX×Y is

MEX×Y =
(

0 Ig
−Ig 0

)
. (2.2)

and kerφ = 〈1
pe1, . . . ,

1
peg , eg+1, . . . e2g〉. Such a basis exists because the kernel of

φ is isotropic with respect to the Weil pairing. If we now choose e1, . . . , e2g as
the basis for H1(Jac(Z),Z), the matrix representation Mφ of φ with respect to
the bases chosen above will be

Mφ =
(
p · Ig 0

0 Ig

)
. (2.3)

By the gluing construction, we have thatφ∗(PZ ) = PX×Y . Let PZ correspond
to the line bundle L(H,α). As we will see in Lemma 3.1.15, φ∗(PZ ) is given by
L(H(Mφ·,Mφ·),α ◦Mφ) . In terms of matrices, this translates to:

Mt
φMEZMφ = pMEX×Y . (2.4)

As MEZ corresponds to an alternating bilinear form coming from a principal
polarization, it follows that

MEZ =
[

0 Ig
−Ig 0

]
(2.5)

with respect to the basis chosen on H1(Jac(Z),Z). In [25, II.9] we find that the
isogeny induced by the the polarization,φPX×Y , is given by x 7→ L(0, e2πiEX×Y (x,u)).
So, fixing bases on the homology of the dual abelian varieties, we can choose
to represent the polarizations Jac(X)×Jac(Y )→ (Jac(X)×Jac(Y ))t and Jac(Z)→
Jac(Z)t as the matrices MEX×Y and MEZ respectively. We are now ready to
compute φt ◦φ. We have the following chain of maps:

Jac(X)× Jac(Y ) Jac(Z) Jac(Z)t

(Jac(X)× Jac(Y ))t Jac(X)× Jac(Y )

φ

. (2.6)

By Lemma 3.1.16 we know that taking duals corresponds to taking duals
of the matrices, so we get

Mt
EX×Y

(Mφ)tMEZMφ =
[

0 −Ig
Ig 0

][
pIg 0
0 Ig

][
0 Ig
−Ig 0

][
pIg 0
0 Ig

]
=

[
pIg 0
0 pIg

]
,

(2.7)
which is what we wanted to show.
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Proposition 2.1.3. Let (φ,Zg ,θZg ) be a (p,p)-gluing of a genus 1 curve X1 and a
genus g − 1 curve Yg−1. Then there exists a degree p morphism π1 : Zg → X1.

Proof. Let i : Zg → Jac(Zg ) be the Abel-Jacobi map and let pr1 : Jac(X1) ×
Jac(Yg−1)→ Jac(X1) be the projection to the first component. Now the map
π1 = pr1◦φt ◦ i gives us a morphism of curves π1 : Zg → X1. This map cannot
be constant as it would contradict the fact that φ is an isogeny, and as π1
maps to a connected abelian variety, it needs to be surjective. We will now
determine the degree of π1.

We first remark that π1,∗ = (pr1 ◦φ ◦ i∗). Indeed, let D =
∑
Pi −Qi be a

divisor on Zg . Now

π∗(D) =
∑

pr1 ◦φ ◦ i(Pi)−pr1 ◦φ ◦ i(Qi) =
∑

pr1 ◦φ ◦ i∗(D). (2.8)

Choose bases for H0(Jac(X1)× Jac(Yg−1)) and H0(Jac(X1)) such that the repre-
sentation of pr1 with respect to these bases is given by

Mpr∗1 =



1 0
0 1
0 0
...

...
0 0


. (2.9)

Let Mφt be the matrix representation for φt with respect to the chosen ba-
sis for H0(Jac(X1) × Jac(Yg−1)) and some choice of basis for H0(Jac(Zg )). By
construction the representation for i∗ is the identity map.

We now find that

Mπ1,∗◦π∗1 =Mπ1,∗ ·M
t
π1,∗

=
(
Mpr1

Mt
φ

)(
MφM

t
pr1

)
=Mpr1

p · Id2gM
t
pr1

= p · Id2.
(2.10)

where we use Proposition 2.1.2 in the third equality. This implies that

π1,∗ ◦π∗1 = [p]Jac(X1), (2.11)

so π1 is a morphism of degree p by [19, Proposition 7.3.8].

Proposition 2.1.4. Let Z3 be a curve of genus 3 and assume that Z3 is a (2,2)-
gluing of a genus 1 curve X1 and a genus 2 curve Y2. Assume there exists a degree
2 morphism π2 : Z3→ Y2. Then Z3 is a hyperelliptic curve.

Proof. By Proposition 2.1.3 there exists a degree 2 morphism π1 : Z3 → X1.
Both π1 and π2 give rise to involutions of the curve Z3. Let us denote the
corresponding involutions by i1 and i2 respectively. The involutions induce
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automorphisms i∗1, i
∗
2 of degree 2 on the Jacobian of Z3. As i1 fixes the divisor

classes pulled back from X1 and i2 fixes the divisors classes pulled back from
Y2, i∗1 and i∗2 will be represented by the matrices

Mi∗1
=


1 0 0
0 −1 0
0 0 −1

 , Mi∗2
=


−1 0 0
0 1 0
0 0 1

 (2.12)

in End0
k(Jac(Z3)) � End0

k(Jac(X1))×End0
k(Jac(X2)) after making a certain choice

of bases. Now define i0 = i1 ◦ i2. We find that

Mi∗0
=Mi∗2

Mi∗1
=


−1 0 0
0 −1 0
0 0 −1

 , (2.13)

so multiplication with -1 comes from an automorphism of Z3. Therefore Z3 is
a hyperelliptic curve by [17, Appendice, Théorème 3].

Proposition 2.1.5. Let Zg be a nonsingular hyperelliptic curve of genus g over
an algebraically closed field k, that comes equipped with an involution that is
not the hyperelliptic involution. Let g1 = b g2c and g2 = g − g1. Then there exist
α1, . . . ,αg+1 ∈ k such that we can embed Zg into A2

k with an equation of the form

F : y2 =
g+1∏
i=1

(x2 −αi) (2.14)

and Zg comes equipped with three involutions that are given by:

i0(x,y) 7→ (x,−y), (2.15)

i1(x,y) 7→ (−x,y) and (2.16)

i2 = i0 ◦ i1(x,y) 7→ (−x,−y). (2.17)

Proof. Let C′ be a curve, isomorphic to Zg , that is given by an equation
F′(x′ , y′) = 0 in Weierstrass form. Then the hyperelliptic involution i′0 : C′→
C′ is given by (x′ , y′) 7→ (x′ ,−y′). By assumption C′ comes equipped with an
involution i′1 : C′→ C′ which is not the hyperelliptic involution. According to
Proposition 2.1.1 we are able to write

i′1(x′ , y′) =
(
ax′ + b
cx′ + d

,
ey′

(cx′ + d)g+1

)
, (2.18)

for some M =
[
a b
c d

]
∈GL2(k) and e ∈ k∗, so i′1 corresponds to the tuple (M,e).

As i′1 is an involution, we find that (M2, e2) = (λ2Id,λ2g+2) for some λ ∈ k∗.
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2.1. Hyperelliptic curves

After rescaling (M,E) by an element of k∗ if necessary, we can assume that
(M2, e2) = (I,1). Now choose a matrix S that diagonalizes M. In this case
SMS−1 is of the form [

−1 0
0 ±1

]
(2.19)

as i′1 is not the identity map and not equal to i′0.
Let φS : C′ → C be the isomorphism given by the tuple (S,1). Then the

curve C is given by the equation F = F′ ◦φ−1
S . And i′1 lifts to an involution

φ−1
S ◦ i

′
1 ◦φS : C→ C. W.l.o.g. we can assume the three involutions on C are

given by

i0(x,y) 7→ (x,−y), (2.20)

i1(x,y) 7→ (−x,y) and (2.21)

i2 = i0 ◦ i1(x,y) 7→ (−x,−y) (2.22)

in the new coordinates.
As F remains invariant (up to a scalar) under these involutions, it is a

sum of monomials that lie in the same eigenspace of i1. By assumption
F ∈ 〈1, y2,x,x2, . . . ,x2g+2〉. The map i1 has two eigenspaces:

E1 = 〈y2,1,x2,x4, . . . ,x2g+2〉 and E−1 = 〈x,x3, . . . ,x2g+1〉. (2.23)

As the latter does not contain y, any equation in it will give us a finite number
of copies of a line. So, F needs to be of the form y2 =

∏g+1
i=1 (x2 −αi) for some

αi ∈ k.

Corollary 2.1.6. In the above situation we have two degree two covers:

π1 :Zg → Xg1
, π1(x,y) 7→ (x2, y) and (2.24)

π2 :Zg → Yg2
, π2(x,y) 7→ (x2,xy), (2.25)

where Xg1
and Yg2

are nonsingular curves over k of genus g1 and genus g2 respec-
tively. They are given by the equations:

Xg1
: v2 =

g+1∏
i=1

(u −αi), (2.26)

Yg2
: s2 = t

g+1∏
i=1

(t −αi). (2.27)

Proof. Let Xg1
= Zg /〈i1〉. The function field K(Xg1

) contains all polynomials
in K(Zg ) that remain invariant under i1, and the quotient map π1 : Zg → Xg1

27



2. Preliminary considerations

induces a natural inclusion of function fields π∗1 : K(Xg1
)→ K(Zg ). As u = x2

and v = y are both invariant under i1, we have that

L1 = k(u,v)/(v2 −
g+1∏
i=1

(u −αi)) ⊂ K(Xg1
). (2.28)

We claim that L1 = K(Xg1
). Remark that v2−

∏g+1
i=1 (u−αi) is irreducible because

it is Eisenstein in k(v)[u] for the prime (u −α1). This means that L1 is a field
and the map

u 7→ x2,v 7→ y (2.29)

is a well-defined inclusion of function fields L1 ↪→ K(Zg ) of degree 2. As
[K(Zg ) : K(Xg1

)] = 2, it follows that K(Xg1
) = L1. The curve Xg1

will then be
given by the equation

v2 =
g+1∏
i=1

(u −αi). (2.30)

As the equation contains g + 1 roots and is hyperelliptic, the curve will have
genus (g −1)/2 if g is odd and genus g/2 if g is even. So g1 = b g2c. Now because
Zg is non-singular, the αi have to be distinct and non-zero. This implies that
Xg1

is also non-singular. We finally remark that the inclusion L1 ↪→ K(Zg )
implies that the morphism π1 : Zg → Xg1

is given by π1(x,y) 7→ (x2, y).
Let Yg2

= Z3/〈i2〉. Similarly, K(Yg2
) contains the monomials xy and x2 as

they remain invariant under i2. Setting t = x2, s = xy, we find that

L2 = k(s, t)/(s2 − t
g+1∏
i=1

(t −αi)) ⊂ K(Y2). (2.31)

As before, L2 is a field because s2−t
∏g+1
i=1 (t−αi) is irreducible. The inclusion

L2 ↪→ K(Zg ) given by t 7→ x2, s 7→ xy is a field extension of degree 2, so
K(Yg2

) = L2. We find that Yg2
is given by the equation

s2 = t
g+1∏
i=1

(t −αi). (2.32)

This curve is also non-singular. Indeed, the αi are distinct and non-zero
as one of them being zero would imply that Zg is of the form y2 = x2 ∏g

i=1,
which is singular. As the equation contains g + 2 roots and is hyperelliptic,
the curve will have genus (g + 1)/2 if g is odd and genus g/2 if g is even.
So g2 = g − g1. Finally, we will give an explicit description of π2 in terms
of coordinates. Let 〈(x − a), (y − b)〉 be the maximal ideal of (a,b) ∈ Zg and
remark that x2 − a2,xy − ab ∈ 〈(x − a), (y − b)〉. This implies that (t − a2), (s − ab)
are contained in the maximal of π2(a,b) so the map π2 is given explicitly by
(x,y) 7→ (x2,xy). This completes the proof.
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2.1. Hyperelliptic curves

We are now going to show that Zg is a (2,2)-gluing of the two other curves
defined above.

Proposition 2.1.7. The curve Zg in Proposition 2.1.5 is a (2,2)-gluing of the
curves Xg1

and Yg2
defined in the same proposition.

Proof. Let〈
du
v
,
udu
v
, . . .

ug1−1du
v

〉
,

〈
dt
s
,
tdt
s
, . . .

tg2−1dt
s

〉
and

〈
dx
y
,
xdx
y
, . . .

xg−1dx
y

〉
(2.33)

be bases for the differential forms on Xg1
,Yg2

and Zg respectively. Now

π∗1

(
ukdu
v

)
=
x2kdx2

y
=

2x2kdx
y

, (2.34)

π∗2

(
tkdt
s

)
=
x2kdx2

y
=
x2kdx
xy

=
2x2k−1dx

y
. (2.35)

This implies that the mapφ = π∗1×π
∗
2 : Jac(Xg1

)×Jac(Yg2
)→ Jac(Zg ) is surjective,

and therefore an isogeny. We want to show that φ is a (2,2)-gluing. First
remark, that because both π1 and π2 are of degree 2, φt ◦φ = [2]Jac(Xg1 )×Jac(Yg2 ).
This means that kerφ ⊂ Jac(Xg1

)[2]× Jac(Yg2
)[2]. We also know that |kerφ| =

|kerφt | and ker(φt ◦φ) = 22g . It follows that degφ = 2g .
Let PZ be the polarization on Jac(Zg ),PXg1 the polarization on Jac(Xg1

) and
PYg2 the polarization on Jac(Yg2

). As the πi induce morphisms of polarized
abelian varieties it follows that φ is a morphism of polarized abelian varieties.
So, φ∗(PZg ) = pr∗1(PXg1 )n1 ⊗pr∗2(PYg2 )n2 for some positive n1,n2. The degree of

the right hand side is n2g1
1 n

2g2
2 . This can only be equal to 22g if n1 = n2 = 2. So

φ∗PZ} = p∗1(PXg1 )2 ⊗ p∗2(PYg2 )2 and φ induces a (2,2)-gluing.

Remark 2.1.8. The structure of the kernel in Proposition 2.1.7 can be de-
scribed in terms of the one in Corollary 1.4.9. We claim that the kernel of φ is
equal to

G = 〈([0], [(0,0)−∞]),

([(αi ,0)− (αg+1,0)], [(αi ,0)− (αg+1,0)])〉.
(2.36)

As G is of the form given in Corollary 1.4.9 it consists of exactly 2g1+g2

elements.
A calculation shows that

π∗1([(αi ,0)− (αg+1,0)]) = [(
√
αi ,0) + (−

√
αi ,0)− (

√
αg+1,0)− (−

√
αg+1,0)]

π∗2([(αi ,0)− (αg+1,0)]) = [(
√
αi ,0) + (−

√
αi ,0)− (

√
αg+1,0)− (−

√
αg+1,0)],

(2.37)
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so

π∗1 ×π
∗
2(([(αi ,0)− (αg+1,0)], [(αi ,0)− (αg+1,0)]))

= 2[(
√
αi ,0) + (−

√
αi ,0)− (

√
αg+1,0)− (−

√
αg+1,0)] = div(

(x2 −αi)
(x2 −αg+1)

) = [0].

(2.38)

Furthermore,

π∗2([(0,0)−∞]) = π∗2



g+1∑
i=1

(αi ,0)− (g + 1)∞




=


g+1∑
i=1

(
√
αi ,0) + (−

√
αi ,0)− (

√
αg+1,0)− (−

√
αg+1,0)


= div


g+1∏
i=1

(x2 −αi)


= [0],

(2.39)

so π∗1 × π
∗
2(([0], [(0,0) −∞])) = [0]. It follows that G ⊂ ker(φ). Comparing

cardinalities gives us equality.

Corollary 2.1.9. Let α1,α2,α3,α4 be distinct and non-zero. Let H3(t) be the
genus 3 curve given by the equation

F3(t)(x,y) = y2 − (x2 −α1 + t)(x2 −α2 + t)(x2 −α3 + t)(x2 −α4 + t). (2.40)

Then t 7→H3(t) is a non-constant family of hyperelliptic genus 3 curves for which
H3 is generically the (2,2)-gluing of X1 : y2 = (x −α1)(x −α2)(x −α3)(x −α4) and
some genus 2 curve.

Proof. Let H1(t) be the genus 1 curve given by the equation

y2 = (x −α1 + t)(x −α2 + t)(x −α3 + t)(x −α4 + t). (2.41)

In Proposition 2.1.5, we showed that we always have a degree 2 map π1 :
H3(t)→H1(t). Now note thatH1(0) is isomorphic toH1(t) by the isomorphism
(x,y) 7→ (x + t,y). So we can assume that we always have a degree 2 map
π̃1 :H3(t)→H1(0). According to Proposition 2.1.7 the curve H3(t) is a (2,2)-
gluing ofH1(0) and some genus 2 curve. It remains to be shown that t 7→H3(t)
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2.2. Families of non-hyperelliptic curves

is a non-constant family. Putting H3(t) into Rosenhain normal form gives us
the Rosenhain invariants:

λ1 =
2
√
α1 + t

√
α2 + t − 2

√
α1 + t

√
α2 + t

−
√
α1 + t2 +

√
α1 + t

√
α2 + t −

√
α1 + t

√
α2 + t +

√
α2 + t

√
α2 + t

,

λ2 =
2
√
α1 + t

√
α2 + t − 2

√
α1 + t

√
α3 + t

−
√
α1 + t2 +

√
α1 + t

√
α2 + t −

√
α1 + t

√
α3 + t +

√
α2 + t

√
α3 + t

,

λ3 =
−4
√
α1 + t

√
α2 + t

α1 + t − 2
√
α1 + t

√
α2 + t +α2 + t

,

λ4 =
−2
√
α1 + t

√
α2 + t − 2

√
α1 + t

√
α2 + t

α1 + t −
√
α1 + t

√
α2 + t −

√
α1 + t

√
α2 + t +

√
α2 + t

√
α2 + t

,

λ5 =
−2
√
α1 + t

√
α2 + t − 2

√
α1 + t

√
α3 + t

α1 + t −
√
α1 + t

√
α2 + t −

√
α1 + t

√
α3 + t +

√
α2 + t

√
α3 + t

.

(2.42)

As the Rosenhain invariants are non-constant in t, there needs to exist at
least one t for which H3(t) is a non-singular hyperelliptic curve that is not
isomorphic to H3(0). Therefore t 7→ H3(t) gives us a non-constant family of
genus 3 curves with the property that all of them are a (2,2)-gluing of X1 and
some genus 2 curve.

Remark 2.1.10. Let Y2 be a curve genus 2. As both the moduli space of curves
of the form y2 − (x2 −α1)(x2 −α2)(x2 −α3)(x2 −α4) and the moduli space of
genus 2 curves have dimension 3 any dominant map between them has to have
finite fibers. So there are only finitely many non-isomorphic hyperelliptic
genus 3 curves that contain Y2 as a (2,2)-gluing factor.

Corollary 2.1.11. Let (φ,Zg ,θZg ) be a (2,2)-gluing of a genus 1 curve X1 and a
principally polarized abelian variety of dimension g-1. If Zg is hyperelliptic, then
g has to be either 2 or 3.

Proof. Assume Zg is hyperelliptic. Then g ≥ 2. Proposition 2.1.3 tells us that
there exists a morphism π1 : Zg → X1 of degree 2. So Zg comes equipped
with an involution that is not the hyperelliptic involution. Now Proposition
2.1.5 gives us an explicit description of all possible involutions on Zg and
the corresponding quotient morphisms of degree 2. As π1 needs to be one of
these maps, either b g2c or g −b g2c needs to be equal to 1. This is only possible if
g ≤ 3.

2.2 Families of non-hyperelliptic curves

Let k be a field of characteristic , 2,3 and let Y2 be a curve over k of genus 2. In
this section, we will (under mild assumptions) construct a non-hyperelliptic
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2. Preliminary considerations

curve Z3 of genus 3 over k such that Z3 is a (2,2)−gluing of Y2 and an elliptic
curve. In fact we will find a non-isotrivial infinite family of such curves.

We are going to use the following result by Ritzenthaler and Romagny [26,
Theorem 1.1]:

Theorem 2.2.1. Let Z3 be a non-hyperelliptic curve of genus 3 over k given by the
equation:

Z3 : y4 − h(x,z)y2 + f (x,z)g(x,z) = 0 (2.43)

in P2 where

f = f2x
2 +f1xz+f2z

2, g = g2x
2 +g1xz+g2z

2, h = h2x
2 +h1xz+h0z

2 (2.44)

are homogeneous degree 2 polynomials. It defines a cover of the genus 1 curve

X1 : y2 − h(x,z)y + f (x,z)g(x,z) (2.45)

in the weighted projective space P(1,2,1). Let

A =


f2 f1 f0
h2 h1 h0
g2 g1 g0

 (2.46)

and assume that A is invertible. Let

A−1 =


a1 b1 c1
a2 b2 c2
a3 b3 c3

 . (2.47)

Then Jac(Z3) is isogenous to Jac(X1)× Jac(Y2) where Y2 is given by the equation

y2 = b · (b2 − ac) (2.48)

in P(1,3,1). Here

a = a1 + 2a2x+ a3x
2, b = b1 + 2b2x+ b3x

2, c = c1 + 2c2x+ c3x
2. (2.49)

Proof. See [26, Theorem 1.1].

We will now reverse this construction. Given three quadratic polynomials

a = a1 + 2a2x+ a3x
2, b = b1 + 2b2x+ b3x

2, c = c1 + 2c2x+ c3x
2, (2.50)

in k[x], we can consider the curve Y2 : y2 = b(b2 − ac) in P
(1,3,1) and find a

genus 3 curve Z3 that is a gluing of Y2 and an elliptic curve in the following
way. We set

B =


a1 b1 c1
a2 b2 c2
a3 b3 c3

 . (2.51)
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2.2. Families of non-hyperelliptic curves

and under the assumption that B is invertible, we can take

B−1 =


f2 f1 f0
h2 h1 h0
g2 g1 g0

 . (2.52)

Setting

f = f2x
2+f1xz+f0z

2, g = g2x
2+g1xz+g0z

2, h = h2x
2+h1xz+h0z

2, (2.53)

we define Z3 to be the non-hyperelliptic curve of genus 3 over k given by the
equation:

Z3 : y4 − h(x,z)y2 + f (x,z)g(x,z) = 0 (2.54)

in P2 and X1 to be the elliptic curve X1 in P(1,2,1) given by

X1 : y2 − h(x,z)y + f (x,z)g(x,z) = 0. (2.55)

Additionally, we get a degree 2 cover Z3→ X1 given by (x,y) 7→ (x,y2).
For the next proof we will need the following definitions

Definition 2.2.2. Let D and C be (possibly) singular curves whose only sin-
gular points are ordinary double points. A cover π :D→ C is called allowable
if π is unramified away from the singular locus.

Definition 2.2.3. Let π : D → C be an allowable cover of degree 2. We
define the Prym variety Pr(D/C) as the connected component of the identity
of ker(π∗).

These definitions are the same as the ones used in [8].

Theorem 2.2.4. The curve Z3 as constructed above is a (2,2)-gluing of Y2 and X1.

Proof. Consider the degree 2-cover π : Z3 → X1 given above. The map π
induces an inclusion π∗ : (Jac(X1),PX1

)→ (Jac(Z3),PZ3
) of polarized abelian

varieties, and by [4, Lemma 12.3.1] we find that we get

(π∗)∗PZ3
= P 2

X1
(2.56)

the pullback of π∗.
Now Jac(Y2) is isomorphic to the Prym of an allowable singular cover

π : Z̃3→ X̃1 whose normalization is equal to π : Z3→ X1 as is shown in the
proof of Theorem 1.1 in [26].

Theorem 3.7 in [2] tells us that the princial polarization on the generalized
Jacobian Jac(Z̃3) restricts to P 2

Y2
on Pr(Z̃3 /X̃1) where PY2

is the principal

polarization on Pr(Z̃3 /X̃1) � Jac(Y2). Lemma 1 in [8] says that we get a
commutative diagram of polarized abelian varieties:
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2. Preliminary considerations

Pr(Z̃3/X̃1) Pr(Z3/X1)

Z̃3 Z3

ν

i . (2.57)

where ν is induced by the morphism Z̃3→ Z3. This implies that

(i ◦ ν)∗(PZ3
) = P 2

Y2
. (2.58)

Consider the map π∗× (i ◦ν) : Jac(X1)× Jac(Y2)→ Jac(Z3). As we saw above
we get that (π∗ × (i ◦ν))∗(PZ3

) = P 2
X1
⊗P 2

Y2
, so Z3 is a (2,2)-gluing of Jac(X1) and

Jac(Y2).

Remark 2.2.5. Remark that in the construction of Y2 in Proposition 2.2.1,
we need to choose a factorization f (x,z)g(x,z) of the homogeneous degree 4
polynomial defining Z3. There are three possible ways to do this.

On the other hand, the map ν in the proof of Theorem 2.2.4 induces a 2112

polarization L on Pr(Z3/X1). After fixing such a polarization, there are three
possible ways of choosing a subvariety A of Pr(Z3/X1) such that the restriction
of L toA gives us a 22 polarization. Indeed, after a choice of a basis v1,v2,v3,v4
for H0(Pr(Z3/X1),Z) , we may assume that the matrix representation of L is

ML =


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

 . (2.59)

Choosing such a subvariety A is the same as choosing a submodule of of
H0(Pr(Z3/X1),Z), such that the restriction of ML to this submodule is

ML|V =


0 2 0 0
−2 0 0 0
0 0 0 2
0 0 −2 0

 . (2.60)

There are only three possible ways to do this. Namely 〈2v1,v2,v3,v4〉 ,G =
〈v1,2v2,v3,v4〉 or G = 〈v1 + v2,v1 − v2,v3,v4〉 . These three choices correspond
to the three possible ways in which we could choose the factorization of the
homogeneous degree 4 polynomial f (x,z)g(x,z).

Definition 2.2.6. Let

a = a1 + 2a2x+ a3x
2,b = b1 + 2b2 + b3x

2, c = c1 + 2c2 + c3x
2 ∈ k[x] (2.61)

be quadratic polynomials such that the matrix
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2.2. Families of non-hyperelliptic curves

B(a,b,c) =


a1 b1 c1
a2 b2 c2
a3 b3 c3

 (2.62)

is invertible. We will call such a triple (a,b,c) a regular quadratic triple, and
we will write Y2(a,b,c) for the genus 2 curve given by the equation F2(a,b,c) =
y2 − b(b2 − ac). We will similarly write Z3(a,b,c) for the genus 3 curve (2.54),
F3(a,b,c) for its equation and X1(a,b,c) for the genus 1 curve (2.55). For
convenience, we will also write (f ,h,g) = ι(a,b,c) for the polynomials we get
by inverting the matrix.

We want to construct a family of genus 3 curves with a fixed genus 2 factor.
To do this we can try to find a family of regular triples t 7→ (a(t),b(t), c(t)) for
which all Y2(a(t),b(t), c(t)) are isomorphic to one another, but for which the
family Z3(a(t),b(t), c(t)) is non-constant.

Lemma 2.2.7. Let (a,b,c) be a regular triple and λ ∈ k∗. Then

(i) F2(a,b,c) = F2(λa,b,λ−1c) and F3(a,b,c) = F3(λa,b,λ−1c).

(ii) F2(a,b,c) = F2(c,b,a) and F3(a,b,c) = F3(c,b,a).

(iii) Over k we have isomorphisms Y2(a,b,c) � Y2(λa,λb,λc) and Z3(a,b,c) �
Z3(λa,λb,λc).

Proof. (i): We have F2(a,b,c) = F2(λa,b,λ−1c) as ac = λaλ−1c. Write

B =


a1 b1 c1
a2 b2 c2
a3 b3 c3

 (2.63)

and (f ,h,g) = ι(a,b,c). We see that

B(λa,b,λ−1c) = B


λ 0 0
0 1 0
0 0 λ−1

 and (B(λa,b,λ−1c))−1 =


λ−1 0 0
0 1 0
0 0 λ

B−1.

(2.64)
From this we can conclude that ι(λa,b,λ−1) = (λ−1f ,h,λg) which shows that
F3(a,b,c) = F3(λa,b,λ−1c).

(ii): We get F2(a,b,c) = F2(c,b,a) as ac = ca. We see that

B(c,b,a) = B


0 0 1
0 1 0
1 0 0

 and (B(c,b,a))−1 =


0 0 1
0 1 0
1 0 0

B−1. (2.65)

This gives us that (g,h, f ) = ι(c,b,a), so F3(a,b,c) = F3(c,b,a).
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(iii): We have

F2(a,b,c) = y2 − b(b2 − ac), F2(λa,λb,λc) = y2 −λ3b(b2 − ac). (2.66)

Now the map φ : Y2(a,b,c)→ Y2(λa,λb,λc) given by (x,y) 7→ (x,
√
λ−3y) gives

an isomorphism over k. For the genus 3 curve, we find that

B(λa,λb,λc) = B


λ 0 0
0 λ 0
0 0 λ

 and B(λa,λb,λc)−1 =


λ−1 0 0
0 λ−1 0
0 0 λ−1

B−1.

(2.67)
This tells us that

F3(λa,λb,λc) = y4 −λ−1hy2 +λ−2f g (2.68)

where (f ,h,g) = ι(a,b,c). Then the map φ : Z3(a,b,c)→ Z3(λa,λb,λc) given by
(x,y,z) 7→ (x,

√
λy,z) gives an isomorphism over k.

In the following lemma we will describe a way to construct a regular
quadratic triple (a′ ,b′ , c′) out of (a,b,c) with Y2(a,b,c) � Y2(a′ ,b′ , c′), but such
that generically Z3(a,b,c) � Z3(a′ ,b′ , c′).

Lemma 2.2.8. Let ∆ ∈ k and let (a,b = x2 −∆, c) be a regular quadratic triple.
Write

b2 − ac = p0x
4 + p1x

3 + p2x
2 + p3x+ p4 = p. (2.69)

Now let t ∈ k∗ and assume we have a′ , c′ ∈ k[x] such that tb2 − a′c′ = p. Then
Y2(ta′ , tb, c′) is isomorphic to Y2(a,b,c).

Proof. The curve Y2(ta′ , tb, c′) is given by the equation

y2 = tb(t2b2 − ta′c′)
= t2b(tb2 − a′c′)
= t2bp.

(2.70)

Consider the map Y2(ta′ , tb, c′)→ Y2(a,b,c) given by (x,y) 7→ (x,yt). It follows
the map is well-defined because

y2t2 − t2bp = 0 (2.71)

implies that
y2 − bp = 0 (2.72)

for t , 0. The map is also bijective for t , 0, so it defines an isomorphism.
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Remark 2.2.9. Lemma 2.2.7 tells us that Y2(a′/t,b′ , c′) and Y2(a′ ,b′ , c′/t) are
also isomorphic to Y2(ta′ , tb′ , c) with Z3(a′/t,b′ , c′) and Z3(a′ ,b′ , c′/t) isomor-
phic to Z3(ta′ , tb′ , c).

Remark 2.2.10. Fixing t in Lemma 2.2.8 and searching for suitable a′ , c′ such
that tb2 − a′c′ = p is the same as finding a different quadratic factorization of
a′c′. As we will see in the following example, choosing two distinct quadratic
factorizations, say

a = (x −α1)(x −α2), c = (x −α3)(x −α4) (2.73)

and
a′ = (x −α1)(x −α4), c′ = (x −α1)(x −α3) (2.74)

will generally give us a curve Z3(ta′ , tb′ , c′) that is not isomorphic to Z3(ta, tb,c).

Example 2.2.11. Fix t = 1 and let a = (x − 1)(x − 2),b = x2 − 5, c = (x − 3)(x − 4).
We calculate that

B(a,b,c) =


1 1 1
−3/2 0 −7/2

2 −5 12

 , (2.75)

so

B(a,b,c)−1 =


−35/2 −17 −7/2

11 10 2
15/2 7 3/2

 (2.76)

and we find ι(a,b,c) = (f ,h,g) where

f = −35/2x2−17xz−7/2z2, g = 15/2x2+7xz+3/2z2, h = 11x2+10xz+2z2.
(2.77)

This gives us the curve X1(a,b,c) with equation

y2 + (−11x2 − 10xz − 2z2)y − 525/4x4 − 250x3z − 343/2x2z2 − 50xz3 − 21/4z4.
(2.78)

If we make the change of coordinates y′ = y − 1/2h, we find a different
equation for the curve, namely y′2 = 1/4h2 − f · g where the right hand side is
given by a binary quartic form. The binary quartic form is given by:

1/4h2 − f · g = 323/2x4 + 305x3z+ 415/2x2z2 + 60xz3 + 25/4z4, (2.79)

which has binary quartic invariants

I = 1075/4, J = −8800. (2.80)

Using these, we calculate that the j-invariant of X1(a,b,c) is 127211200/193.
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We now set a′ = (x −1)(x −3),b = x2 −5, c′ = (x −2)(x −4). In this case, we
find

B(a′ ,b′ , c′) =


1 1 1
−2 0 −3
3 −5 8

 , (2.81)

so

B(a′ ,b′ , c′)−1 =


−15/2 −13/2 −3/2

7/2 5/2 1/2
5 4 1

 (2.82)

and we find ι(a′ ,b′ , c′) = (f ′ ,h′ , g ′) where

f ′ = −15/2x2−13/2xz−3/2z2, g ′ = 5x2+4xz+z2, h′ = 7/2x2+5/2xz+1/2z2.
(2.83)

This gives us the curve X1(a′ ,b′ , c′) with equation

y2+(−7/2x2y+−5/2xyz−1/2z2y)−75/2x4−125/2x3z−41x2z2−25/2xz3−3/2z4.
(2.84)

If we make the change of coordinates y′ = y − 1/2h′, we find a different
equation for the curve, namely y′2 = 1/4h′2 − f ′ · g ′ where the right hand side
is given by a binary quartic form. The binary quartic form is given by:

1/4h′2−f ′ ·g ′ = 649/16x4+535/8x3z+695/16x2z2+105/8xz3+25/16z4, (2.85)

which has binary quartic invariants

I = 3625/256, J = 210475/2048. (2.86)

Using these, we calculate that the j-invariant of X1(a′ ,b′ , c′) is 76215625/3088.
As the j-invariants of X1(a,b,c) and X1(a′ ,b′ , c′) are distinct, we see that

permuting the roots of a and c gives us two non-isomorphic curves X3(a,b,c)
and X3(a′ ,b′ , c′) that share the same genus 2 factor as F2(a,b,c) = F2(a′ ,b′ , c′).

Finding tuples as in Lemma 2.2.8 is equivalent to solving the equation
tb2 − ac = p. Because of Lemma 2.2.7, we can assume c to be monic. Writing
out the polynomials, we get

p0x
4 + p1x

3 + p2x
2 + p3x+ p4

= p

= tb2 − ac
= (t − a0)x4 − (a0c1 + a1)x3 − (a0c2 + a1c1 + a2 + 2∆t)x2

− (a1c2 + a2c1)x − a2c2 + t∆2.

(2.87)
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Comparing coefficients gives us the following set of equations:

t − a0 = p0

−a0c1 − a1 = p1

−a0c2 − a1c1 − a2 − 2t∆ = p2

−a1c2 − a2c1 = p3

−a2c2 + t∆2 = p4.

(2.88)

Lemma 2.2.12. Let p be a monic polynomial of degree 4 over k such that the curve
given by y2 = (x2 −∆)p is nonsingular. Let A6

k be the affine space of dimension 6
with coordinates a0, a1, a2, c1, c2, t. The curve C ⊂A6

k given by the set of equations
in (2.88) is birational to the curve D given by

(p0∆
2 − p4)x3+p3x

2y − (2p0∆+ p2)xy2 + p1y
3 − p1∆

2x2 + (−2p0∆
2 + 2p4)xy

+ (2p1∆− p3)y2 + (p2∆
2 + 2p4∆)x+ (p1∆

2 − 2p3∆)y − p3∆
2

(2.89)

in A2
k .

Proof. Let U be the open subset of A6
k where c3

1 − 2c1c2 − 2c1∆ , 0, and let V
be the open subset of A2

k where x3 − 2xy − 2x∆ , 0. We define φ :U → V by

φ(a0, a1, a2, c1, c2, t)→ (c1, c2) (2.90)

and ψ : V →U by

(x,y) 7→ (f (x,y),p1−xf (x,y), f (x,y)(x2−y−2∆)−xp1+2p0∆+p2,x,y,p0−f (x,y)).
(2.91)

Here

f (x,y) = ((x2 − y)p1 − xp2 − 2xp0∆+ p3)/(x3 − 2xy − 2x∆). (2.92)

We claim that ψ ◦φ is the identity on U .
Let us first show that φ(C) ⊂ D. We first remark that t = a0 + p0, a1 =

−a0c1−p1 and a2 = −a1c1−a0c2−2t∆−p2. Combining these three gives us that

a2 = (a0c1 + p1)c1 − a0c2 − 2(a0 + p0)∆− p2. (2.93)

If we then substitute a1 and a2 into the equation: p3 = −a2c1 − a1c2 from 2.88,
we get a relationship between a0, c1 and c2. We find:

− a0c
3
1 + 2a0c1c2 + 2a0c1∆+ 2c1∆p0 − (c2

1 − c2)p1 + c1p2 − p3 = 0. (2.94)

Isolating a0 gives us:

a0 = ((c2
1 − c2)p1 − c1p2 − 2c1p0∆+ p3)/(c3

1 − 2c1c2 − 2c1∆) = f (c1, c2). (2.95)
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If we now add in the last equation

− a2c2 + t∆2 − p4 (2.96)

and substitute t = f (c1, c2) + p0 and

a2 = (f (c1, c2)c1 + p+ 1)c1 − f (c1, c2)c2 − 2(f (c1, c2) + p0)∆− p2], (2.97)

we will get

F(c1, c2)

(c3
1 − 2∆c1 − 2c1c2)

(2.98)

where

F(c1, c2) = (p0∆
2 − p4)c3

1 + p3c
2
1c2 − (2p0∆+ p2)c1c

2
2 + p1c

3
2 − p1∆

2c2
1

+ (−2p0∆
2 + 2p4)c1c2 + (2p1∆− p3)c2

2 + (p2∆
2 + 2p4∆)c1

+ (p1∆
2 − 2p3∆)c2 − p3∆

2,

(2.99)

so φ(V ) ⊂D. We have that φ ◦ψ(x,y) = (x,y) by construction, so it remains to
check that ψ ◦φ = id. We have

ψ ◦φ(a0, a1, a2, c1, c2, t)

= (f (c1, c2),p1 − c1f (c1, c2), f (c1, c2)(c2
1 − c2 − 2∆)− c1p1 + 2p0∆+ p2,

c1, c2,p0 − f (c1, c2))

= (a0,p1 − c1a0, a0(c2
1 − c2 − 2∆)− c1p1 + 2p0∆+ p2, c1, c2,p0 − a0)

= (a0, a1, a2, c1, c2, t).
(2.100)

Now we have shown that C is birational to D.

Lemma 2.2.13. The curve D as in Lemma 2.2.12 has a rational singular point in

(0,−∆) (2.101)

and a rational nonsingular point in(
∆2p1 +∆p3

∆2p0 − p4
,−∆

)
. (2.102)

Proof. Filling in y = −∆ in the equation of D, we find:

(p0∆
2 − p4)x3−(∆2p1 +∆p3)x2

+ (−2p0∆
3 − p2∆

2 + p2∆
2 + 2p4∆− 2∆3p0 − 2p4∆)x

− p1∆
3 −∆2p3 + 2∆3p1 − p3∆

2 −∆3p1 + 2∆2p3

= (p0∆
2 − p4)x3 − (∆2p1 +∆p3)x2 + 0 + 0.

(2.103)
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2.2. Families of non-hyperelliptic curves

So now we see that we get solutions for x = 0 and

x =
(
∆2p1 + dp3

∆2p0 − p4

)
. (2.104)

To check whether these points are singular or not, we calculate the derivatives.
We find that

dF
dx

= 3x2(p0∆
2 − p4) + 2p3xy − (2p0∆+ p2)y2 − 2xp1∆

2

− 2(p0∆
2 − p3x − p4)y + p2∆

2 + 2p4∆,

dF
dy

= 3p1y
2 + 2(2∆p1 − (2∆p0 + p2)x − p3)y∆2p1 + p3x

2

− 2∆p3 − 2(∆2p0 − p4)x.

(2.105)

Filling in (x,−∆) gives us

dF
dx

(x,−∆) = 3(∆2p0 − p4)x2 − 2(∆2p1 +∆p3)x,

dF
dy

(x,−∆) = p3x
2 + 2(∆2p0 +∆p2 + p4)x.

(2.106)

This shows that (0,−∆) is a singular point.
We furthermore see that F has a singular point in x if and only if

x =
∆2p1 +∆p3

3(∆2p0 − p4)
=

2(∆2p0 +∆p2 + p4)
p3

. (2.107)

Filling in
((
∆2p1+∆p3
∆2p0−p4

)
,−∆

)
gives us

dF
dx

((
∆2p1 +∆p3

∆2p0 − p4

)
,−∆

)
=
∆2(∆p1 + p3)2

(∆2p0 − p4)
. (2.108)

So
((
∆2p1+∆p3
∆2p0−p4

)
,−∆

)
is a singular point if ∆p1 + p3 = 0 and ∆2p0 +∆p2 + p4 =

0. But these two conditions imply that p(
√
∆) = 0. This contradicts the

assumption that y2 = (x2 −∆)p defines a nonsingular curve.

Lemma 2.2.14. Let D be the curve as in Lemma 2.2.12. Then D is a rational
curve. More specifically, let

g(z) =
(∆2p1 + (∆p1 + p3)z2 +∆p3 − (2∆2p0 + 2∆p2 + 2p4)z)

(p1z3 − (2∆p0 + p2)z2 + (∆2p0 − p4) + p3z)
. (2.109)

Then the morphism: φ : A1
k → D defined by z 7→ (g(z), zg(z) − ∆) gives us a

parametrization of D.
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Proof. The curve D is given by a cubic equation and has a singular point at
(0,−∆). As D is a singular cubic, it has to be of genus 0. It moreover has a
rational nonsingular point at P =

(
(p1∆

2 + p3∆)/(p0∆
2 − p4),−∆

)
, so the curve

is rational. We are going to find a rational parametrization. After substituting
y = zx −∆ in the equation for D we find:

x3(p1z
3 − (2dp0 + p2)z2 + (∆2p0 − p4) + p3z) + x2(∆2p1 + (∆p1 + p3)z2

+∆p3 − (2∆2p0 + 2∆p2 + 2p4)z) = 0.
(2.110)

After dividing by x2, we can isolate the x to get the equation:

x =
(∆2p1 + (∆p1 + p3)z2 +∆p3 − (2∆2p0 + 2∆p2 + 2p4)z)

(p1z3 − (2dp0 + p2)z2 + (∆2p0 − p4) + p3z)
= g(z). (2.111)

By construction, y = zg(z)−∆, which gives us the parametrization φ.

Theorem 2.2.15. Let (a,b = x2 −∆, c) be a regular quadratic triple and let p =
b2−ac such that Y2(a,b,c) is a nonsingular curve. The curveD as in Lemma 2.2.12
is a rational curve parametrizing a non-constant family of genus 3 curves Z3 for
which Z3 is a (2,2)-gluing of the genus 2 curve Y2(a,b,c) and some elliptic curve.

Proof. Let (a0, a1, a2, c1, c2, t) be any set of solutions on D. Let a′ = a0x
2 + a1x+

a2,b
′ = b and c′ = x2 +c1x+c2. Then tb2−a′c′ = b2−ac. Then Lemma 2.2.8 tells

us that Y2(a,b,c) is isomorphic to Y2(ta′ , tb, c′), so the curve X3(ta′ , tb, c′) is a
(2,2)-gluing of Y2(a,b,c) and X1(ta′ , tb, c′). By Proposition 2.2.4 Z3(ta′ , tb, c′) is
a (2,2)-gluing of Y2(a,b,c) and X1(ta′ , tb, c′). This shows that all points on D
give rise to genus 3 curves that are 2,2-gluings of Y2 and some elliptic curve.

To show that this family is non-constant, we remark that Remark 2.2.10
and Example 2.2.11 show us that (after possibly taking a field extension)
there generically exists at least one solution (a0, a1, a2, c1, c2,1) for which
X1(a,b,c) is not isomorphic to X1(a′ ,b, c′). Let φ be the rational parametriza-
tion of D defined in Lemma 2.2.14. Let (a0, a1, a2, c1, c2, t) ∈ D and write
τ(a0, a1, a2, c1, c2, t,b) = (t(a0x

2 + a1x + a2), tb,x2 + c1x + c2). The function J :
A

1
k → k given by taking the j-invariant of the curve X1(τ(φ(z)) is some poly-

nomial function in terms of the rational parameter z. As we have shown
above, there exists at least one point (a0, a1, a2, c1, c2,1) for which j(X1(a,b,c))
is not equal to j(X1(a′ ,b, c′)), so the J-function is a non-constant polynomial
on a connected curve. We conclude that the curve D gives us a non-constant
rational family of genus 3 curves, in which every curve is the (2,2)-gluing of
Y2(a,b,c) and some elliptic curve.
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Example 2.2.16. We are going to use the above described technique to con-
struct a non-hyperelliptic genus 3 curve with QM. Let Y2 be given by

y2 = x5 + x4 + 4x3 + 8x2 + 5x+ 1. (2.112)

This curve is on www.lmfdb.org under label 262144.d.524288.2 and the endo-
morphism ring of its Jacobian is a quaternion algebra of discriminant 6 over
Q. After the automorphism (x,y) 7→

(
2x
−x+1 ,

y
(−x+1)3

)
, we get the equation

y2 = −25x6 + 12x5 + 27x4 − 16x3 − 3x2 + 4x+ 1. (2.113)

and the right hand side factors as

− (x2 − 1)(25x4 − 12x3 − 2x2 + 4x+ 1), (2.114)

which puts it into a form we can use to describe the map φ in Lemma 2.2.13.
Indeed, we have p = −25x4 + 12x3 + 2x2 − 4x − 1, so p0 = −25,p1 = 12,p2 =
2,p3 = −4,p4 = 1 and we find that

g(z) =
8z2 + 48z+ 8

12z3 + 48z2 − 4z − 24
(2.115)

and φ(z) = (g(z), zg(z)). Setting z = −2, we get c1 = g(−2) and c2 = −2(g(−2)) to
calculate a triple of polynomials:

a = 3320/147x2 + 80/21x − 520/147, b = x2 − 1, c = x2 − 7/10x+ 2/5
(2.116)

and the variable t = −355/147 using the relations in (2.88). Now the curve
Z3(a/t,b,c) will be given by the equation

−355/19208x4 + y4 + 1065/9604x3 + (103x2 + 132x+ 5)/98y2

+ 6745/9604x2 + 1065/9604x − 355/19208,
(2.117)

which we can simplify to

−x4 +19208/355y4 +6x3 +196/355(103x2 +132x+5)y2 +38x2 +6x−1 (2.118)

by multiplying with 19208/355. We can further simplify this to:

x4 − 12x2y2 − 98x2y + 120x2 + 1065y4 − 3905y2 + 2130. (2.119)

This curve Z3 is a (2,2)-gluing of Y2 and some elliptic curve (Using Lemma
2.2.8 and Remark 2.2.9), and End(Z3)⊗Q � Q × B where B is a quaternion
algebra of discriminant 6.

Remark 2.2.17. In order to glue we use a factor of the form x2−∆ in the equa-
tion of our hyperelliptic curve. As we saw in Corollary 1.5.6 this condition is
necessary in order to be able to glue over the base field.

43

www.lmfdb.org
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Remark 2.2.18. We could also have chosen b = x instead of b = x2 − d to find
a slightly simpler family of curves.

Remark 2.2.19. It is also possible to construct a family of genus 3 curves that
are (2,2)-gluings of a genus 2 curve and a fixed genus 1 factor X1. Assume
X1 is given by the equation y2 − hy + f g for some quadratic polynomials f ,g
and h. Let t ∈ k then any curve X1,t = v2 + hv(t − 1) + (t2h2 − 2th2)/4 + f g is
isomorphic to X1 using the substitution y = v + th/2. Now the curve Z3,t =
v4 + hv2(t − 1) + (t2h2 − 2th2)/4 + f g gives us a corresponding genus 3 cover of
degree 2. To see that this family will generically be non-constant, remark that
the curve Z3,1 will have CM by the automorphism (x,v) 7→ (x, iv) even though
for t , 1, Z3,t will generally not have this property.

44



Chapter 3

Gluing over C
3.1 Abelian varieties over C

Theorem 3.1.1. Let A be an abelian variety over C of dimension g. Then A
is analytically isomorphic to a complex torus V /Λ where V is a g-dimensional
complex vector space and Λ is a discrete subgroup of V of rank 2g.

Proof. See [4, Lemma 1.1].

Definition 3.1.2. Let A be a complex torus where A = V /Λ where V is a
g-dimensional complex vector space andΛ is a discrete subgroup of V of rank
2g. Fix a basis E = {e1, . . . eg } for V , and a basis B = {λ1, . . . ,λ2g } of Λ. We write
λi =

∑g
j=1λi,jej . We will use the notation (λi)E for the vector (λi,1, . . . ,λi,g ).

Consider the g × 2g matrix

Π =


| · · · |

(λ1)E (λ2g )E
| · · · |,

 (3.1)

which has the λi as its column vectors with respect to E. The matrix Π is
called the period matrix of the complex torus A with respect to E and B.

Remark 3.1.3. In the algorithm we use later on, we will calculate period
matrices explicitly using the work of Neurohr and Molin [21].

Proposition 3.1.4. Let A = V /Λ and B = V ′/Λ′ be two complex tori over C of
dimension g and g ′ respectively. Let φ : A→ B be a homomorphism. Then there
exists a unique C-linear map Tφ such that the following diagram commutes

V V ′

A B

Tφ

φ

. (3.2)

Moreover, Tφ(Λ) ⊂Λ′ and the restriction Tφ|Λ :Λ→Λ′ gives us a Z-linear map
Rφ :Λ→Λ′.
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Proof. See [4, Proposition 2.1].

Definition 3.1.5. The map Tφ is called the analytic representation of φ, and
Rφ is called the rational representation of φ.

Proposition 3.1.6. Let A = V /Λ and A′ = V ′/Λ′ be two complex tori over C of
dimension g and g ′ respectively. Let φ : A→ A′ be a homomorphism. Fix bases E
and E ′ for V and V ′ and bases B and B′ for Λ and Λ′. Let Π be the period matrix
for A with respect to B and E and let Π′ be the period matrix for A′ with respect to
B′ and E ′. Identify Rφ and Tφ with their matrix representations with respect to
the chosen bases.

Then
TφΠ =Π′Rφ. (3.3)

Conversely, if we have T ∈Matg ′×g(C) and R ∈Mat2g ′ ,2g(Z) such that

TΠ =Π′R. (3.4)

Then there exists some φ ∈Hom(A,A′) such that Tφ = T and Rφ = R.

Proof. See [Proposition 2.3][4].

Remark 3.1.7. The condition

TφΠ =Π′Rφ (3.5)

is equivalent to stating that φ(Λ) ⊂Λ′.

Not every complex torus gives rise to an abelian variety. If A is a projective
group scheme over C. Then A comes equipped with an algebraic embedding
i : A ↪→ P

n
C

. The existence of such an embedding i for a complex torus
V /Λ is equivalent to the existence of an ample line bundle L on V /Λ. So to
understand which complex tori correspond to abelian varieties we need to
consider line bundles on V /Λ.

Lemma 3.1.8. Let V be a complex vector space. There is a bijection between the
Hermitian forms H on V and the real alternating forms E on V with E(ix, iy) =
E(x,y) given by

E(x,y) ==H(x,y) (3.6)

H(x,y) = E(ix,y) + iE(x,y) (3.7)

Proof. See [25, p.19].
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Definition 3.1.9. Let V /Λ be a complex torus and let H be a Hermitian form
on V such that E ==H with E(Λ×Λ) ⊂Z. Let α :Λ→ S1 = {z ∈ C∗| |z| = 1}
be a map satisfying

(λ1 +λ2) = eiπE(λ1,λ2) ·α(λ1)α(λ2) with λ1,λ2 ∈Λ. (3.8)

Then we define L(H,α) to be the line bundle given by the quotient of V ×C by
the action of Λ on V ×C given by

fλ(c,z) = (c ·α(λ) · eπH(z,λ)+ 1
2πH(λ,λ), z+λ). (3.9)

The function fλ(c,z) is called a factor of automorphy for L(H,α).

Theorem 3.1.10 (Appell-Humbert). Any line bundle L on a complex torus V /Λ
is isomorphic to an L(H,α) for a unique tuple (H,α) as above. Furthermore, the
class of L(H,α) modulo algebraic equivalence only depends on the choice of H .

Proof. See [25, p.20].

Lemma 3.1.11. Let A = V /Λ be a complex torus of dimension g. Let E be a
basis for V , and let B be a basis for Λ. Let Π be its period matrix with respect
to the chosen bases. Let H be a Hermitian form on V such that E ==H with
E(Λ×Λ) ⊂Z. Write ME ∈Mat2g×2g(Z) for the matrix representation of E with
respect to B. Then H is positive-definite if and only if

(i) ΠM−1
E Πt = 0,

(ii) iΠM−1
E Πt > 0.

Theorem 3.1.12 (Lefschetz). Let A = V /Λ be a complex torus of dimension g.
Let H be a Hermitian form on V such that =(H) is integral on Λ ×Λ. Let α
be a function as in Definition 3.1.9. Then L(H,α) is ample if and only if H is
positive-definite.

Proof. See [25, p.35].

Lemma 3.1.13 (Frobenius). Let Λ be a lattice of rank 2g. Let E : Λ ×Λ →
Z be a non-degenerate bilinear alternating form. There exist positive integers
d1, . . .dg with di |di+1 and a basis e1, . . . eg , f1, . . . fg of Λ such that if we set D =
diag(d1, . . . ,dg ) then the matrix of E with respect to this basis has the form[

0 D
−D 0

]
. (3.10)

Proof. See [14, Lemma A.5.3.1]
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3. Gluing over C

Definition 3.1.14. Such a basis is called a Frobenius basis for E, and the
integers di are called the invariants of E.

Let A = V /Λ be an abelian variety. We can explicitly construct the dual
abelian variety in the following way: Let V t = Hom

C−antilinear(V ,C) and let

Λt = {w ∈ V t |=w(λ) ∈Z, for all λ ∈Λ}. (3.11)

We can identify V t/Λt with At using the isomorphism

w 7→ L
(
0,λ 7→ e2πi=w(u)

)
(3.12)

as in [25, p.86].

Lemma 3.1.15. Let A = V /Λ and A′ = V ′/Λ′ be abelian varieties and let φ : A→
A′ be an isogeny. Fix bases B and B′ for the lattices Λ and Λ′ respectively. Let
L(H ′ ,α′) be a polarization on A′. Let E′ be the alternating form corresponding to
H ′. Write ME′ for the matrix representation of E′ with respect to B′. Let Rφ be the
rational representation of φ with respect to Λ and Λ′. Then

(i) φ∗(L(H ′ ,α′)) = L(H ′(Tφ,Tφ),α′ ◦Rφ),

(ii) The matrix representation of the alternating bilinear form φ∗(E) correspond-
ing to φ∗(L(H ′ ,α′)) is given by ME = RtφME′Rφ with respect to the basis
B.

Proof. Appendix B of [4] tells us that if f ′λ(c,z) is a factor of automorphy for
L′(H ′ ,α′) then

fλ(c,z) = (c ·α′(Rφλ) · eπH
′(Tφz,Rφλ)+ 1

2πH
′(Rφλ,Rφλ),Tφz+Rφλ) (3.13)

is a factor of automorphy for φ∗(L′(H ′ ,α′)). As Tφλ = Rφλ for all λ ∈ Λ, it
follows that that φ∗L(H ′ ,α′) = L(H ′(Tφ,Tφ),α′ ◦Rφ). And we see that φ∗(H ′) =
H ′(Tφ,Tφ). Using once again that Tφλ = Rφλ for all λ ∈ Λ, we find that the
alternating bilinear form E induced by H is represented by ME = RtφME′Rφ.

Corollary 3.1.16. Let φ : A = V /Λ → A′ = V ′/Λ′ be a morphism of abelian
varieties. Assume that Rφ is the rational representation of φ with respect to a
choice of bases on Λ and Λ′. Let φt : (A′)t → At be the dual morphism defined
by pulling back line bundles. Then φt is given by w 7→ Rtφw with respect to the
induced bases on the dual abelian varieties.

Proof. Let L(0,α) be a line bundle. Now

φ∗
(
L
(
0, e2πi=w(u)

))
= L

(
0, e2πi=w(Rφu)

)
= L

(
0, e2πi=Rtφw(u)

)
. (3.14)

So φt is given by w 7→ Rtφw.
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3.1. Abelian varieties over C

Remark 3.1.17. One can show that, given H , a compatible α as in Definition
3.1.9 always exists. See [25, p.19-20]. As we saw in Theorem 3.1.10 the
polarization only depends on H or the corresponding alternating bilinear
form E. If we want to study polarized abelian varieties, we can therefore
restrict ourselves to studying tuples (A = V /Λ,E) where E is an alternating
bilinear form E :Λ×Λ→Z with E(ix, iy) = E(x,y).

To finish, we will give an explicit description of the Weil pairing.

Proposition 3.1.18. Let φ : A = V /Λ→ A′ = V /Λ′ be an isogeny and let φt :
(A′)t→ At be its dual isogeny. There is an isomorphism of group schemes

β : ker(φt)→ ker(φ)D (3.15)

explicitly given by (0, e2πiψ)→ (λ 7→ e2πiψ◦φ(λ)|ker(φt)).

Proof. A proof of the existence of this isomorphism can be found in [29,
Theorem 7.5]. Let us give an explicit description of this map.

Let L ∈ ker(φt). Then L = L(0, e2πi·w) where w : V ′ → C is an anti-linear
map that takes integer values on Λ′. Now φ∗(L) = L(0, e2πi·w◦φ) by Lemma
3.1.15. Furthermore, L ∈ ker(φt) if and only if (0, e2πi·w◦φ) is the trivial bundle,
i.e. if and only if w◦φ is the identity map on Λ. This means that the character
given by λ 7→ e2πiψ◦φ(λ) on Λ′/Λ = ker(φt) is well-defined. According to the
proof of [29, Proposition 7.4], this character is β(L).

Definition 3.1.19. Let nA : A → A be multiplication by n on the abelian
variety A over C. Let β : ker(f t)→ ker(f )D be the isomorphism described in
3.1.18.

(i) Define
en : ker(f )×ker(f t)→Gm,k (3.16)

to be the perfect bilinear pairing given by en(x,y) = β(y)(x).

(ii) Let φ : A→ At be a polarization. Then the Weil pairing

e
φ
n : A[n]×A[n]→ µn (3.17)

as defined in [29] in Definition 11.11 is the bilinear pairing given by
e
φ
n (x,y) = en(x,φ(y)).

Proposition 3.1.20. Let A = V /Λ. Let φ be a polarization A → At and let E
be the alternating bilinear form corresponding to φ. Then we get an explicit
description for the Weil pairing:

e
φ
n

(1
n
λ1,

1
n
λ2

)
= e2πi 1

nE(λ1,λ2) (3.18)

where λi ∈Λ.
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3. Gluing over C

Proof. Using Proposition 3.1.18 we can describe the Weil pairing in terms of
the polarization. We have

e
φ
n (x,y) = en

(
x,

(
0, e2πiE(y,−)

))
= β

((
0, e2πiE(y,−)

))
(x) = e2πinE(y,x). (3.19)

As y ∈ ker(nX) we see that y = 1
nλ with λ ∈Λ. So,

e
φ
n

(1
n
λ1,

1
n
λ2

)
= e2πinE( 1

nλ1,
1
nλ2) = e2πi 1

nE(λ1,λ2) (3.20)

which concludes the proof.

3.2 (2,2)-gluing over C

Definition 3.2.1. We define the standard symplectic matrix Sn ∈Mat2n×2n(C)
as

Sn =
[

0 In
−In 0

]
(3.21)

where In is the n-dimensional identity matrix. As before, we define the
standard symplectic pairing on C2n as the one induced by this matrix.

Definition 3.2.2. Let (A = V /Λ,E) be a principally polarized abelian variety
of genus g. Let Π be a period matrix of A with respect to a basis B of Λ and a
basis E of V . Then Π is called normalized if ME = Sg where ME is the matrix
representation of E with respect to B.

Definition 3.2.3. Let A1 = V1/Λ1, A2 = V2/Λ2 be abelian varieties and fix
bases B1 and B2 for Λ1 and Λ2. We also fix bases E1 and E2 for V1 and V2. Let
Π1 be the period matrix with respect to B1 and E1 and let Π2 be the period
matrix with respect to B2 and E2. Now let V1,2 = V1 ×V2, Λ1,2 =Λ1 ×Λ2 and
A1,2 = A1 ×A2. Let

B1,2 = {(bi ,0)|bi ∈ B1} ∪ {(0,b′i)|b
′
i ∈ B2}. (3.22)

be a basis for V1,2 and similarly define a basis

E1,2 = {(ei ,0)|ei ∈ E1} ∪ {(0, e′i)|e
′
i ∈ E2}. (3.23)

for Λ1,2. Then the matrix Π1,2 given by

Π1,2 =
[
Π1 0
0 Π2

]
(3.24)

is the period matrix for A1,2 with respect to the bases B1,2 and E1,2. We will
call it the product period matrix of A1,2 for Π1 and Π2.
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3.2. (2,2)-gluing over C

Definition 3.2.4. Let (A1,E1) and (A2,E2) be principally polarized abelian
varieties, and choose bases such as above. LetMEi be the matrix representation
of Ei with respect to Ei . We define the product polarization E1,2 on A1,2 to be
the one given by the matrix

ME1,2
=

[
ME1

0
0 ME2

]
(3.25)

with respect to E1,2.

Lemma 3.2.5. Let (A1,E1) and (A2,E2) be principally polarized abelian varieties
over C of genus 1 and genus 2 respectively. Then there exist bases Bi for Λi and
Ei for Vi such that the matrix representation of the product polarization E1,2 with
respect to B1,2 is given by

ME1,2
=

[
S1 0
0 S2

]
. (3.26)

Proof. Let Ai = Vi/Λi and choose a Frobenius basis Bi of Λi for Ei for i = 1,2.
Let Ei be the standard basis for Ci for i = 1,2. Let Πi be the period matrix
of Ai with respect to Bi and Ei for i = 1,2. As Bi is a Frobenius basis for a
principal polarization, the matrix representationMEi of Ei will be the standard
symplectic matrix Si for i = 1,2. Let Π1,2 be the product period matrix of A1,2
with respect to the bases E1,2 and B1,2. It follows that

ME1,2
=

[
S1 0
0 S2

]
. (3.27)

Lemma 3.2.6. Let G be a subgroup of A1,2[2] that is maximally isotropic with
respect to the Weil-pairing. Let λ1, . . . ,λ6 be a basis of Λ1,2. Then

A1,2/G � V1,2/ΛG (3.28)

where
ΛG =

〈
µ1,µ2,µ3,λ1, . . . ,λ6

〉
(3.29)

with µ1,µ2,µ3 ∈ (1/2Λ1,2)\Λ1,2 linearly independent over R.

Proof. We first remark that the image of the inclusion

(1/2Λ1,2)/Λ1,2 ↪→ V1,2/Λ1,2 = A1,2 (3.30)

lands in A1,2[2]. Because we have that

|A1,2[2]| = |(1/2Λ1,2)/Λ1,2|, (3.31)
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3. Gluing over C

the map induces an isomorphism

σ : (1/2Λ1,2)/Λ1,2→ A1,2[2]. (3.32)

A maximally isotropic subgroup of A1,2[2] is isomorphic to (Z/2Z)3, so
we can choose g1, g2, g3 ∈ G such that G = 〈g1, g2, g3〉. Now choose µi ∈
1/2Π1,2 such that µi ≡ σ−1(gi) modΠ1,2 for each i ∈ {1,2,3} and define
ΛG =

〈
µ1,µ2,µ3,λ1, . . . ,λ6

〉
. Remark that ΛG is independent of the choice

of the µi as any two representatives of σ−1(gi) in 1/2Λ1,2 differ by an element
of Λ1,2. By construction the kernel of

A1,2 = V1,2/Λ1,2→ V1,2/ΛG (3.33)

is G, so A1,2/G � V1,2/ΛG.

Choose a basisM = µ1, . . . ,µ6 for ΛG. Then

ΠG =


| · · · |

(µ1)E1,2
(µ6)E1,2

| · · · |

 (3.34)

gives us a period matrix of A1,2/G with respect to M and E1,2. Let µi =∑6
j=1µi,jλj and write (µi)B1,2

= (µi,1, . . . ,µi,6). Note that µi,j ∈ 1/2Z.

Lemma 3.2.7. Let

R =


| · · · |

(µ1)B1,2
(µ6)B1,2

| · · · |

 . (3.35)

Then R−1 = Rφ is the rational representation of the quotient morphism

φG : V1,2/Λ1,2→ V1,2/ΛG (3.36)

with respect to the bases B andM. In particular, R−1(µi) ⊂ΛG and kerφG = 〈µi〉.

Proof. As µi is a column vector of R, we find that R−1((µi)B1,2
) = (µi)M. This

implies that R−1(Λ) ⊂ ΛG. Proposition 3.1.6 and Remark 3.1.7 tell us there
exists a morphism φ : V1,2/Λ→ V1,2/ΛG for which Rφ = R−1. Furthermore,
v ∈ kerφG if and only if φ(v) has integer coefficients. This can only happen if
v is contained in the Z-span of the µi , so kerφG = 〈µi〉.

Corollary 3.2.8. Let (A1,E1), (A2,E2) be abelian varieties as above, and let G be
an indecomposable maximally isotropic subgroup of A1[2] ×A2[2] with respect
to the Weil pairing. Let BG = V1,2/ΛG and φ be as above and define EG to be the
pairing corresponding to the matrix representation

MEG = (Rtφ)−12E1,2R
−1
φ (3.37)

with respect toM. Then (BG,EG) is the (2,2)-gluing of (A1,E1) and (A2,E2) along
G.
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3.3. An algorithm for analytic gluing

Proof. By Lemma 3.2.7 the kernel of φ is exactly G. So Proposition 1.1.5 tells
us that there exists a principal polarization EG on BG such that (BG,EG) is a
(2,2)-gluing of (A1,E1) and A2,E2). Using Lemma 3.1.15 we find that

RtφMEGRφ = 2E1,2. (3.38)

This proves the statement.

Remark 3.2.9. Let X1 and Y2 be curves over C of genus 1 and genus 2 respec-
tively. Assume that a maximally isotropic group G of Jac(X1)[2]× Jac(Y2)[2] is
given in the form

G = 〈(0, [(β5,0)− (β6,0)]),

([(α1,0)− (α4,0)], [(β1,0)− (β4,0)]),

([(α2,0)− (α4,0)], [(β2,0)− (β4,0)])〉.
(3.39)

as in Corollary 1.4.9. Let Jac(X1) � V1/Λ1 and Jac(Y2) � V2/Λ2. Choose
P1 = (α4,0), P2 = (β4,0). Let

AJg(Q) =

∫ Q

Pg

ωg,1, . . .

∫ Q

Pg

ωg,g

 modΛg . (3.40)

Now AJ1 : X1→ Jac(X1) and AJ2 : Y2→ Jac(Y2) are explicit descriptions of the
Abel-Jacobi map.

We can use the Abel-Jacobi maps to explicitly calculate coordinates for the
points generating G. Let Ai = AJ1([(αi ,0)− (α4,0)]) with i = 1,2,3,4 in Jac(X1)
and let Bi = AJ2((βi ,0)− (β4,0)) with i = 1,2,3,4 and T = AJ2((β5,0)− (β6,0)).
Then the points (Ai +Λ1,Bi +Λ2) and (0,T +Λ2) lie in Jac(X1)× Jac(Y2)[2] and
generate G. The Abel-Jacobi maps can also be calculated explicitly using [21].

3.3 An algorithm for analytic gluing

We will use different algorithms depending on whether BG is the Jacobian of
a hyperelliptic curve or the Jacobian of a non-hyperelliptic curve. We will
distinguish between the two cases by using theta constants.

The algorithm has been implemented in Magma and is available on [13].

Definition 3.3.1. Let (A = V /Λ,E) be a principally polarized abelian variety
and let Π be a period matrix for A. Write

Π =
[
Ω1 Ω2

]
(3.41)

with Ω1,Ω2 ∈Matg×g(C). Then τ = Ω−1
1 Ω2 is called a small period matrix of

(A,E).
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3. Gluing over C

Definition 3.3.2. Let ω ∈ V and let τ be a small period matrix. We define the
theta series

θ(ω,τ) =
∑
n∈Zg

exp(πintτn+ 2πintω). (3.42)

Definition 3.3.3. Let ξ ∈ 1/2Π1,2 ⊂ V . We define

θ[ξ](τ) = exp(πiξT1 τξ1 + 2πiξT1 ξ2)θ(ξ2 + τξ1, τ). (3.43)

The value θ[ξ](τ) is called a theta constant. The value only depends on the
equivalence class of ξ in V /Λ. (So ever ξ that gets mapped to the same
2-torsion point in A = V /Λ gives rise to the same theta constant).

Definition 3.3.4. Let ξ ∈ (1/2)Π. Write ξ = (ξ1,ξ2) where ξ1 consists of the
first g coordinates of ξ and ξ2 consists of the last g coordinates of ξ. We say
that θ[ξ](τ) is an even theta constant if

exp(4πiξT1 ξ2) = 1 (3.44)

and θ[ξ](τ) is called an odd theta constant if

exp(4πiξT1 ξ2) = −1. (3.45)

Definition 3.3.5. Let τ be a small period matrix abelian variety of genus 3. We
define the modular form χ18 to be the product of all even theta constants. And
we define the modular form Σ140 to be the thirty-fifth elementary symmetric
function of the (θ[ξ](τ))8.

Theorem 3.3.6. Let τ be a small period matrix. The abelian variety A correspond-
ing to τ is a non-hyperelliptic Jacobian if and only if χ18(τ) , 0, it is a hyperelliptic
Jacobian if χ18(τ) = 0 and Σ140(τ) , 0 and it is decomposable if χ18(τ) = 0 and
Σ140(τ) = 0.

Proof. See Lemma 10 and Lemma 11 in [15].

Remark 3.3.7. The condition that χ18(τ) = 0 is equivalent to the vanishing of
one even theta constant.
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Algorithm 1 Calculate (2,2)-gluings of X1 and Y2 analytically over C.
Input: Two curves X1 and Y2 and a maximally isotropic subgroup G of
Jac(X1)[2]× Jac(Y2)[2].

1: Choose a homology basis γ1,1,γ1,2 for X1, and let γ2,1, . . .γ2,4 be a homo-
logy basis for Y2.

2: Choose a differential form ω1,1 on X1, and let ω2,1,ω2,2 be linearly inde-
pendent differential forms on Y2.

3: Calculate

λg,j =

∫
γg,j

ωg,1, . . . ,

∫
γg,j

ωg,g

 (3.46)

for g = 1,2 , j = 1, . . . ,2g and let Λg = 〈λg,j〉. Let Vg = C
g , let Eg be the

standard basis for Cg and let Bg = λg,1, . . .λg,2g be a basis for Λg . We have
Jac(X1) � V1/Λ1, Jac(Y2) � V2/Λ2.

4: Let

Πg =


| · · · |

λg,1 λg,2g
| · · · |

 . (3.47)

Now Π1 is a period matrix for X1 with respect to E1 and B1 and Π2 is a
period matrix for Y2 with respect to E1 and B1.

5: Write E1 for the alternating form induced by the natural principal polar-
ization on Jac(X1) and write E2 for the alternating form induced by the
natural principal polarization on Jac(Y2). With respect to the basis Bg we
have MEg = Sg for g = 1,2.

6: Let Π1,2 be the product period matrix for Jac(X1)× Jac(Y2) as in Definition
3.2.3 and let V1,2 = V1 ×V2 and Λ1,2 =Λ1 ×Λ2. for Λ1,2.

7: Using the implementation of the Abel-Jacobi map from [21] and Remark
3.2.9 we calculate µ1,µ2,µ3 as in Lemma 3.2.6 such that

〈µ1,µ2,µ3, (λ1,1,0), (λ1,2,0), (0,λ2,1), . . . , (0,λ2,4)〉 =ΛG. (3.48)

8: Calculate basis ν1,ν2 . . . ,ν6 for ΛG.
9: Use Lemma 3.2.7 with the basis we calculated in Step 7 to find a rational

representation Rφ of the quotient map Jac(X1)× Jac(Y2)→ BG.
10: Calculate MEG using Corollary 3.2.8.
11: Let S be a symplectic matrix such that (St)−1MEGS

−1 = S3. As a conse-
quence,

(S−1)t(Rtφ)−12E1,2R
−1
φ S

−1 = S3. (3.49)

12: return The normalized period matrix of V1,2/ΛG given by

ΠG = (Π1,2)R−1
φ S

−1. (3.50)
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3. Gluing over C

Algorithm 2 Calculate the genus 3 curve corresponding to a principally po-
larized abelian variety of genus 3 if it exists.
Input: The normalized period matrix of an indecomposable principally
polarized abelian variety of genus 3 in normalized form.

1: Calculate the theta constants for ΠG.
2: if χ18 , 0 then
3: The curve Z3 is non-hyperelliptic and we calculate the Dixmier-Ohno

invariants of ΠG over C.
4: Try to recognize the Dixmier-Ohno invariants as elements of Q.
5: Reconstruct a quartic plane model of Z3 that has the same Dixmier-

Ohno invariants as ΠG.
6: return The quartic equation of a genus 3 curve Z3 in P

2
C

such that
Jac(Z3) is isomorphic over C to an abelian variety with period matrix
ΠG.

7: else
8: if Σ140 , 0 then
9: the glued curve Z3 is hyperelliptic and we compute the Rosenhain

invariants of Z3 over C.
10: return The equation of a curve Z3 in P2

C
such that Jac(Z3) is isomor-

phic over C to an abelian variety with period matrix ΠG.).
11: else
12: return "The abelian variety is decomposable".
13: end if
14: end if

Remark 3.3.8. For Steps 3-5 we use the methods developed by Kilicer, Labrande,
Lercier, Ritzenthaler, Sijsling, and Streng in [16].

Remark 3.3.9. For Step 10 we use the algorithm developed by Balakrishnan,
Ionica, Lauter, and Vincent in [1].

Remark 3.3.10. We can combine Algorithm 1 and 2 to find an explicit equa-
tion of a curve Z3 that is the (2,2)-gluing of X1 and Y2. But as multiple steps in
the algorithms are approximative, it is necessary to verify that the calculated
curve is indeed what we want it to be. For this we can use an implementation
of the construction of Ritzenthaler and Romagny described in Theorem 2.2.1.

3.4 (2,2)-Gluing over Q

Let X1 and Y2 be two curves over Q of genus 1 and genus 2 respectively and
let G be a Galois-invariant maximal isotropic subgroup. Then the (2,2)-gluing
of X1 and Y2 along G will be a principally polarized abelian variety B over Q.
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3.4. (2,2)-Gluing over Q

Assume that it is indecomposable. In this case Proposition 1.5.1 tells us there
exists a curve Z3 such that B is isomorphic to Jac(Z3) over a quadratic field
extension of Q. We would like to construct this curve.

Algorithm 1 gives us a way to find a period matrix of the (2,2)-gluing
of X1 and Y2 along G and Algorithm 2 allows us to find a curve Z ′3 that is
isomorphic to Z3 over C. Even though this curve is not necessarily defined
over Q, we can use it to find an equation for Z3 over Q.

Definition 3.4.1. Let C be a curve of genus 3 and let F(x : y : z) = 0 be an
equation defining C in P3

k . For the purposes of this section we will call

ω1 =
xdx
dF/dy

,ω2 =
ydx

dF/dy
,ω3 =

zdx
dF/dy

(3.51)

the basis of differentials induced by F.

Proposition 3.4.2. Let

T =


a1 a2 a3
b1 b2 b3
c1 c2 c3

 (3.52)

be an invertible matrix over k. Let φT : P2
k → P

2
k be the induced isomorphism

given by

φT (x : y : z) = (a1x+ a2y + a3z : b1x+ b2y + b3z : c1x+ c2y + c3z). (3.53)

Let C andD be quartic curves of genus 3 inP2
k where C is given by the equation

FC(x : y : z) = 0 and D is given by the equation

FD = FC ◦φ(x : y : z) = 0. (3.54)

Let
ωC,1,ωC,2,ωC,3 (3.55)

be the basis of differentials induced by FC for C and let ΠC be the period matrix of
C calculated with respect to this basis. Let

ωD,1,ωD,2,ωD,3 (3.56)

be the basis of differentials induced by FD for D and let ΠD be the period matrix of
D calculated with respect to this basis. Then there exists a non-zero constant µ ∈ k
such that

ΠD = (µT )−1ΠC . (3.57)
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Proof. The differentials ωD,i form a basis for the global sections of the canoni-
cal sheaf H0(ΩD ) and the corresponding canonical embedding D→ P

2
k given

by P 7→ (x(P ) : y(P ) : z(P )) is the embedding of D into P2
k as the zero set of FD .

The morphism φT maps D to C as

0 = FD(P ) = FC ◦φT (P ). (3.58)

As T is an invertible matrix we find that φT is an isomorphism. The differen-
tials φ∗(ωC,i) build a basis for H0(ΩD ). So φ∗ is an invertible linear map, and
we find that

φ∗(ωC,1) = α1ωD,1 +α2ωD,2 +α3ωD,3, (3.59)

φ∗(ωC,2) = β1ωD,1 + β2ωD,2 + β3ωD,3, (3.60)

φ∗(ωC,3) = γ1ωD,1 +γ2ωD,2 +γ3ωD,3 (3.61)

for certain αi ,βi ,γi . Note that

φ∗
(
ωC,2
ωC,3

)
= φ∗(y/z) =

b1x+ b2y + b3z

c1x+ c2y + c3z
. (3.62)

This means that

φ∗(ωC,2) =
b1x+ b2y + b3z

c1x+ c2y + c3z
φ∗(ωC,3). (3.63)

As φ∗(ωC,2) does not have any poles, it follows that γi = µci for i = 1,2,3
and for some constant µ ∈ k. We also get that βi = µbi for i = 1,2,3. Using
furthermore, that

φ∗(ωC,1) =
a1x+ a2y + a3z

c1x+ c2y + c3z
φ∗(ωC,3), (3.64)

we also have αi = µai for i = 1,2,3 and the same constant µ. This implies
that if we take the ωC,i as a basis on ΩC and the ωD,i as a basis on ΩD , the
linear map φ∗ : H0(ΩC) → H0(ΩD) is represented by the matrix µT t with
respect to these bases. So the dual map H0(ΩD )∨→H0(ΩC)∨ is represented
by the matrix (µT t)t with respect to the natural dual bases. This gives us that
(µT )ΠD =ΠC . So the curve D has period matrix ΠD = (µT )−1ΠC with respect
to the basis of differentials ωD,i .

Corollary 3.4.3. Let B be a principally polarized abelian variety over k with period
matrix ΠB and let Z ′3 be a curve over k given by an equation

F(x : y : z) = 0 (3.65)

in P2
k

such that Jac(Z ′3) is isomorphic to B over k. Let ΠZ ′3
be the period matrix of

Jac(Z ′3) with respect to the basis of differential forms induced by F. Let T be the
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analytic representation of the isomorphism B→ Jac(Z ′3), i.e. TΠB = ΠZ ′3
. Then

there exists λ ∈ k such that

λ ·F ◦φT (x : y : z) = 0 (3.66)

is an equation of a curve Z3 that is isomorphic to Z ′3 with coefficients in k.

Proof. Proposition 3.4.2 tells us there exists a constant µ such that TΠZ ′3
=

µΠB. Now the curve given by the equation

F ◦φT (x : y : z) = 0 (3.67)

has period matrix µΠB. Let σ ∈ Gal(k/k). As B is defined over k it has a basis
of global differential forms over k and the period matrix of σ (F ◦φT (x : y : z))
has the same period lattice as the one induced by ΠB up to multiplication
with a constant. This means that the basis of differential forms induced by F
on Jac(Z ′3) and the basis of differential forms induced by σ (F) only differ up to
multiplication with a constant. As a consequence, the polynomials F ◦ψ and
σ (F ◦ψ) (that are given by the embeddings belonging to the above choices of
bases for differential forms) have the same solution set in P2

k . This solution
set is therefore defined over k. So there exists a constant λ ∈ k such that

λ ·F ◦φT (x : y : z) = 0 (3.68)

is an equation over k.

Remark 3.4.4. It suffices to divide by an element of k such that one of the
coefficients of the equation is defined over k. One can, for example, normalize
the equation such that the coefficient in front of x4 is 1.

3.5 Examples

A first example

Let X1 be the curve given by the equation

y2 = 4(x3 − x2 − 2x − 1) + x2. (3.69)

This curve is isomorphic to X0(49). Let Y2 be the genus 2 curve given by

y2 = x6 + 3x5 + 10x3 − 15x2 + 15x − 6. (3.70)

Then the genus 3 curve given by the equation

32x4 +11x2y2−454x2yz−59x2z2 +92y4−248y3z+34y2z2 +200yz3−76z4 = 0
(3.71)
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is a geometric (2,2)-gluing of the above two curves. This curve attains its
endomorphisms over a field of degree 16, whereas the original genus 2 curve
attains them over a field extension of degree 24.

Arithmetically gluing the same two curves gives us the genus 3 curve Z3
given by the equation

x4 + 48x2yz − 288y4 + 288y2z2 − 8z4 = 0. (3.72)

In this case Z3 is an arithmetic gluing of X1 and Y2 with twist
√

3.

(3,3,3)-gluing

A slight adaption of the algorithm allows us to glue along 3-torsion. Let

Ci : y2 = x3 + ri (3.73)

be three curves of genus 1 where the ri are distinct roots of r3
i + ri − 1 = 0. As

before, we calculate period matrices Πi for each of the three curves and we
consider the product period matrix of these three to get a period matrix of
Jac(C1)× Jac(C2)× Jac(C3). After that we randomly picked maximally isotropic
subgroups G of Jac(C1)× Jac(C2)× Jac(C3) and calculated the geometric (3,3,3)-
gluing along G until we found a curve that is defined over Q. A genus 3 curve
over Q whose Jacobian is isomorphic to a geometric (3,3,3)-gluing of the Ci is
given by the equation:

− 24x3z+ 9x2y2 − 30xyz2 + 10y3z − 75z4 (3.74)

in P2
k .

70-torsion point

Let X1 be the genus 1 curve given by

y2 = 4x3 + 5x2 − 98x+ 157. (3.75)

This curve is isomorphic to the curve with label 118.c1 in the LMFDB and it
has a torsion point of order 5. Let Y2 be the genus 2 curve given by

y2 = 4x5 + 17x4 + 22x3 + 15x2 + 6x+ 1. (3.76)

This curve is isomorphic to the curve with label 295.a.295.1 in the LMFDB
and it has a torsion point of order 14.

We see that

4x5 + 17x4 + 22x3 + 15x2 + 6x+ 1 = (x2 + 3x+ 1)(4x3 + 5x2 + 3x+ 1). (3.77)
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As the equation for Y2 contains a quadratic factor, it is gluable. Furthermore,
one can show that 4x3 + 5x2 + 3x+ 1 and 4x3 + 5x2 − 98x+ 157 have the same
splitting field, so the necessary conditions for the existence of an arithmetic
(2,2)-gluing over Q are satisfied.

Gluing these two curves along a suitable choice of a maximally isotropic
subgroup G using the above algorithms gives us a genus 3 curve Z3 with the
following equation in P2

Q
:

−32x4−43x2y2 +104x2yz+332x2z2 +2y4−12y3z−28y2z2−112yz3−48z4 = 0.
(3.78)

The curve Z3 has the property that Jac(Z3) is isomorphic to Jac(X1) ×
Jac(Y2)/G over a quadratic field extension of Q, so it is an arithmetic (2,2)-
gluing of X1 and Y2. A calculation shows that this is the case over Q(

√
5).

By construction, Jac(X1)× Jac(Y2) contains a torsion point of order 14 and
a torsion point of order 5. As G is contained in the 2-torsion, we therefore
know that Jac(X1)× Jac(Y2)/G contains a torsion point of order 35. But a priori
some of the 2-torsion could have disappeared after taking the quotient by
G. Examining the action of the Galois group on the quotient Jac(X1)[2] ×
Jac(Y2)[2]/G however shows that there exists at least one non-trivial point in
Jac(X1)[2] × Jac(Y2)[2]/G that is Galois-invariant. This means that Jac(X1) ×
Jac(Y2)/G also contains a 2-torsion point, and it therefore contains a 70-torsion
point.
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Chapter 4

Algebraic gluing
4.1 Kummer surfaces

Definition 4.1.1. Let S be a surface over a field k and let P be a singular point
of S. We say that P is a node of S if

ÔS,P ⊗ k �
k[[x,y,z]]

(x2 + y2 + z2)
. (4.1)

Definition 4.1.2. A Kummer surface K is a reduced irreducible quartic surface
in P3

k with 16 nodes and no other singular points.

Proposition 4.1.3. Let k be a field and let A be an indecomposable principally
polarized abelian variety of dimension 2. Then the surface A/〈−1〉 is a Kummer
surface.

Proof. See Proposition 4.23 in [11].

Definition 4.1.4. Let k be a field and let Y2 be a curve of genus 2. We define
Kum(Y2) = Jac(Y2)/〈−1〉 to be the Kummer surface associated to Y2.

Proposition 4.1.5. Let K be a Kummer surface over k. There exist A,B,C,D,
a,b,c,d ∈ k with

ad , ±bc, ac , ±bd, ab , ±cd, a2 + b2 + c2 + d2 , 0,

a2 + d2 , b2 + c2, a2 + c2 , b2 + d2, a2 + b2 , c2 + d2.

such that we can realize Kk as a quartic equation in P3
k

of the form

K(x,y,z, t) = x4+y4+z4+t4+2Dxyzt+A(x2t2+y2z2)+B(y2t2+x2z2)+C(z2t2+x2y2)
(4.2)

and such that its 16 singular points are given by:

(a,b,c,d), (d,−c,b,−a), (d,c,−b,−a), (c,d,−a,−b),
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(−c,d,a,−b), (−b,a,d,−c), (b,−a,d,−c), (d,c,b,a),

(c,d,a,b), (b,a,d,c), (a,−b,−c,d), (−a,b,−c,d),

(−a,−b,c,d), (d,−c,−b,a), (−c,d,−a,b), (−b,−a,d,c).

Proof. See Corollary 2.18 and Theorem 2.20 in [11].

Definition 4.1.6. A (16,6)- configuration is a set of 16 planes and 16 points
in P3

k such that every plane contains exactly 6 points and every point lies on
exactly 6 planes. We will also call these planes special planes.

Definition 4.1.7. A (16,6)-configuration is called non-degenerate if every two
special planes contain exactly two points in the configuration (or equivalently
that every pair of points is contained in exactly two special planes)

Proposition 4.1.8. Let K be a Kummer surface over k. Then there exist 16 planes
such that the set of these planes together with the 16 singular points on K form a
non-degenerate (16,6)-configuration.

Proof. See [11, Proposition 2.16].

Lemma 4.1.9. Assume we have an equation for the Kummer surface K as in Propo-
sition 4.1.5. Then there exists a group K(2) consisting of linear automorphisms of
K that is isomorphic to (Z/2Z)4. It is generated by the maps α,β,α′ ,β′ where

• α(x,y,z, t) = (t, z,y,x),

• β(x,y,z, t) = (z, t,x,y),

• α′(x,y,z, t) = (x,−y,−z, t),

• β′(x,y,z, t) = (−x,y,−z, t).

Proof. This follows from the properties of (16,6)-configurations described in
Paragraph 1 of [11].

Corollary 4.1.10. Let K be a Kummer surface and let Pi , Pj , Pk be three distinct
nodes on K . Let H be a plane going through Pj and Pk . There always exists a linear
automorphism σ ∈ K(2) such that the plane σ (H) goes through Pi .

Proof. This follows from Lemma 4.1.9 and Proposition 4.1.5.
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4.2 Algebraic gluing

Proposition 4.2.1. Let K be a Kummer surface and let Pi , Pj be a pair of singular
points on K . Take the 1-dimensional family Hi,j(λ) of planes passing through Pi
and Pj .

(i) The family of curves
Hi,j(λ)∩K (4.3)

consists generically of genus 1 curves that have exactly two nodes.

(ii) There are exactly six planes inHi,j(λ) that pass through more than two nodes
of K . Six of them pass through exactly 3 singular points of K and two of
them intersect in exactly six singular points of K .

Proof. For (i): The family Hi,j(λ) ∩Kum(Y2) consists of curves C that pass
through exactly two nodes of K . A generic member C of this family is irre-
ducible outside of the two singular points because of the Theorem of Bertini.
Proposition 2.20 in [11] tells us that the arithmetic genus of C is 1.

We will now show that the singular points of C are generically nodes.
As remarked in [11, Lemma 2.5] the point Pi is a node of C if and only if H
intersects the tangent cone of Pi in two distinct lines. To show that Pi is a
node of a generic C, it suffices to show that there exists a plane that passes
through Pi and Pj and intersects the tangent cone of Pi in two lines. Assume
that every plane that intersects both Pi and Pj intersects the tangent cone of Pi
in a single line L. This implies that Pj lies on the tangent cone of Pi . This is
impossible however as the intersection product of L with Pi on K is ≥ 3 and
the intersection product of L with Pj is ≥ 2 and the intersection product of
L with K is 4. As a consequence, a plane that intersects both Pi and Pj will
generically intersect the tangent cones of both Pi and Pj in two distinct lines.
So, Pi and Pj are nodes of C.

For (ii): Assume Hi,j(λ) passes through a third singular point Pk of K .
Lemma 4.42 in [11] says that |Hi,j(λ)∩ Sing(K)| is either 3 or 6. As the (16,6)-
configuration is non-degenerate, there exist exactly two distinct special planes
H and H ′ that contain both Pi and Pj . As |(H1 ∪H2)∩ Sing(K)| = 10 there are
exactly six points Pk for which the plane through Pi , Pj and Pk is not a special
plane.

Theorem 4.2.2. Let k be a field, and let Y2 be a curve of genus 2. Let Kum(Y2) =
Jac(Y2)/〈−1〉 ⊂ P3

k be the Kummer surface associated to Y2. Let H be a plane in
P

3
k that passes through exactly two singular points P ,Q, such that X̃1 = H ∩K

is isomorphic to a genus 1 curve with two nodes. Write i1 : X̃1 → Kum(Y2)
for the inclusion map, and let τ1 : X1 → X̃1 be the desingularization. Now let
Z3 = X1 ×Kum(Y2) Jac(Y2) be the pullback. We get the following diagram:
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Z3 = X1 ×Kum(Y2) Jac(Y2) Z̃3 = X̃1 ×Kum(Y2) Jac(Y2) Jac(Y2)

X1 X̃1 Kum(Y2)

π

τ3

π̃

i3

π

τ1 i1

.

(4.4)
Then Z3 is an irreducible curve of genus 3.

Proof. First note that because i1 is a closed immersion, the morphism i3 :
Z̃3 → Jac(Y2) is also a closed immersion. Now the morphism π̃ : Z̃3 → X̃1
is finite because the morphism Jac(X2)→ Kum(Y2) is finite of degree 2. It
follows that Z̃3 is of dimension 1, and that the morphism Z̃3→ X̃1 is also of
degree 2. The map π̃ : Z̃3 → X̃1 is ramified above i−1

1 (P ) and i−1
1 (Q) as the

branch locus of π consists of the singular points of Kum(Y2). As π : Z3→ X1
is the desingularization of π̃, it is a degree 2 cover of a genus 1 curve. The
points i−1

1 (P ) and i−1
1 (Q) are nodes because P and Q were nodes and i is

an embedding, so π is ramified above the points P1, P2 ∈ p−1
1 ({i−1(P )}) and

Q1,Q2 ∈ τ−1
1 ({i−1(P )}). Using the Riemann-Hurwitz formula, it follows that

Z3 is an irreducible curve of genus 3.

Remark 4.2.3. If we assume that Jac(Y2) is isomorphic to Pr(Z̃3)/X̃1) then the
argument in Theorem 2.2.4 shows that Z3 is a (2,2)-gluing of X1 and Y2.

Lemma 4.2.4. Let K be a Kummer surface over k and let σ ∈ K(2). Let H ⊂ P3 be
a plane going through two singular points Pi and Pj . Then σ maps H to another
plane σ (H) going through two singular points. If σ (H) =H , then either σ swaps
Pi and Pj or σ = Id.

Proof. As σ is an automorphism of K it maps singular points of K to singular
points of K . Now let H be a plane such that σ (H) = H . If H only contains
two singular points, it is clear that σ either swaps Pi and Pj or σ = Id. If H
contains exactly three singular points then σ = id as σ ∈ K(2) has no fix points
in Sing(K) and σ has order 2.

If H contains six singular points, it is a special plane and there are only
two special planes that contain both P1 and P2. So either σ is the identity map
or σ is the map that swaps the two planes.

We may assume without loss of generality that Pi = (d,−c,b,−a) and Pj =
(d,c,−b,−a). Then the two special planes H ′ ,H ′′ containing both Pi and Pj are
given by

H ′(x : y : z : t) = ax+ by + cz+ dt,

H ′′(x : y : z : t) = ax − by − cz+ dt.
(4.5)
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The automorphism that mapsH ′ toH ′′ is given by (x : y : z : t) 7→ (x : −y : −z : t)
which is exactly the map that swaps Pi and Pj .

Lemma 4.2.5. Let K be a Kummer surface over k and assume we have an equation
for K as in Proposition 4.1.5 over k. Let Pi , Pj be singular points of K and let
a,b,c,d be as in the proposition. Assume that the set {Pi , Pj} is Galois-invariant.
Then a,b,c and d are defined over (at most) a quadratic extension of k.

Proof. Let σ ∈ Gal(k/k). Then σ induces an automorphism of K , so it can
only send singular points to singular points. Without loss of generality we
may assume that Pi = (d,−c,b,−a) and Pj = (d,c,−b,−a). As the set {Pi , Pj} is
Galois-invariant, it follows that either σ (a) = a, σ (d) = d,σ (b) = b,σ (c) = c or
σ (a) = a, σ (d) = d,σ (b) = −b,σ (c) = −c. So a,b,c and d are defined over at most
a quadratic extension of k.

Consider the family Hi,j(λ) of planes passing through two singular points
Pi , Pj of a Kummer surface K . Given a curve of genus 1 X1, we want to be able
to find a λ0 such that Hi,j(λ0) is isomorphic to X1. In order to do this, we will
describe a way to find an expression for the j-invariant of Hi,j(λ) in terms of
λ.

Lemma 4.2.6. Let k be a field, and let K ⊂ P3 be a Kummer surface with singular
points P1, . . . , P16. Let H1,2(λ) be the family of planes going through P1 and P2. Fix
λ0 ∈ k. Let U �A2

k be an affine open of H1,2(λ0) containing both P1 and P2. Let
C̃λ0

=U ∩Kum(Y2). Let (xi , yi) be the coordinates of Pi in U . Define the function
g̃ : C̃λ0

\{P1} → k in the following way:

g̃((x,y)) =
(
y1 − y
x1 − x

)
. (4.6)

Then g̃ extends to a function
g : Cλ0

→ P
1
k

of degree 2 where Cλ0
is the normalization of C̃λ0

.

Proof. As U is a plane and K is a quartic surface we find that C̃λ0
is a quartic

plane curve. Now let Q1 = (x,y) ∈ C̃λ0
\{P1}. Then the line L through Q1 and

P1 is the unique line with slope (y1 − y)/(x1 − x) through P1. Note that the
intersection number of C̃λ0

and L is 4. Now L intersects C̃λ0
in P1 and Q1. As

P1 is a node of C̃λ0
its contribution to the intersection number is 2, we find

that the line L will generically intersect Cλ0
∩U in a fourth point Q2. This

means that generically |g̃−1(c)| = 2 for c ∈ k. As g̃ is a rational map of degree
2 between two affine curves, it extends to a function g : Cλ0

→ P
1
k of degree

2.
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Corollary 4.2.7. Let E be an elliptic curve and let g : E→ P
1
k be a map of degree

2. Let x1,x2,x3,x4 be the x-coordinates of the ramification points of g. Let c be the
cross-ratio of x1,x2,x3 and x4. Then the j-invariant of E is

(c2 − c+ 1)3

c2(c − 1)2 . (4.7)

Proof. See [27] Chapter III Proposition 1.7.

Theorem 4.2.8. Let k be a field and let K ⊂ P3 be a Kummer surface over k.
Assume we have an equation for K as in Proposition 4.1.5 over k. Let P1 and P2 be
two singular points on K such that the set {P1, P2} is defined over k. Let H1,2(λ) be
the family of planes going through P1 and P2. Then the j-invariant of the family
H1,2(λ), is a rational function j(H(λ)) ∈ k(λ) of degree at most 12.

Proof. Assume that K is given by the homogeneous polynomial

κ(x,y,z, t) = x4+y4+z4+t4+2Dxyzt+A(x2t2+y2z2)+B(y2t2+x2z2)+C(z2t2+x2y2)
(4.8)

in P3
k with singular points P1 = (d,−c,b,−a) and P2 = (d,c,−b − a). In this case

the family of planes going through P1 and P2 is given by

H1,2(λ) = ax+ by + cz+ dt +λ(ax − by − cz+ dt). (4.9)

From Proposition 4.1.5 it follows that only one of a,b,c,d can be 0. Without
loss of generality we assume that b,d , 0 and we letU be the affine open subset
of H1,2(λ) that we get by setting z = 1 to get a plane that contains both P1 and
P2. Let C̃λ0

=U ∩K . It follows that we can describe C̃λ0
as a curve in A2

k given
by the equation F(x,y) = 0 where

F(x,y) = κ
(
x,y,1,

(1 +λ)ax+ (1−λ)(by + c)
d(−1−λ)

)
(4.10)

and define an isomorphism φ : C̃λ0
→ K ∩U by

φ(x,y) =
(
x,y,1,

(1 +λ)ax+ (1−λ)(by + c)
d(−1−λ)

)
. (4.11)

Using this isomorphism we get φ−1(d,−c,b,−a) = (d/b,−c/b). Let

g : (U ∩K)\{(d/b,−c/b)} → k (4.12)

be the function defined by mapping a point P to the slope of the line passing
through (d/b,−c/b) and P as in Lemma 4.2.6. We will find the ramification
points of g.
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A line in U with slope µ passing through (d/b,−c/b) satisfies the equation

y = µx − c/b −µd/b. (4.13)

Consider the polynomial

F(x,µx − c/b −µd/b) (4.14)

in k(λ,µ)[x].
Let D(µ) ∈ k(λ) be the discriminant of F/((x − d/b)2) with respect to x.

Solving D(µ) = 0 gives us the values of µ for which the intersection number
of L with C̃λ0

is greater than 2. We divided by (x − d/b)2 to exclude the case
where L intersects P1.

A calculation shows that the zeroes of D(µ) are:

0, (4.15)

x1(λ) = ((abλ+ ab+ cdλ+ cd)/(b2λ− b2 − d2λ− d2)), (4.16)

x2(λ) = ((abλ+ ab − cdλ− cd)/(b2λ− b2 + d2λ+ d2)), (4.17)

x3(λ) = ((−acλ− ac − bdλ− bd)/(adλ+ ad − bcλ+ bc)), (4.18)

x4(λ) = ((−acλ− ac+ bdλ+ bd)/(adλ+ ad − bcλ+ bc)). (4.19)

The 0 coincides with the horizontal line that passes through P2. All the
other values gives us the branch points of the map g. All of these elements
are rational functions of degree 1 in λ. To compute the j-invariant of the
normalization of C̃λ0

we compute the cross-ratio of x1(λ),x2(λ),x3(λ),x4(λ). It
is equal to

c(λ) =
(x3 − x1)(x4 − x2)
(x3 − x2)(x4 − x1)

= (4.20)

(−a4λ2 + b4λ2 − 2b2c2λ2 + c4λ2 + 2a2d2λ2 − d4λ2 − 2a4λ− 2b4λ+ 4b2c2λ
− 2c4λ+ 4a2d2λ− 2d4λ− a4 + b4 − 2b2c2 + c4 + 2a2d2 − d4)

(−a4λ2 + b4λ2 + 2b2c2λ2 + c4λ2 − 2a2d2λ2 − d4λ2 − 2a4λ− 2b4λ− 4b2c2λ
− 2c4λ− 4a2d2λ− 2d4λ− a4 + b4 + 2b2c2 + c4 − 2a2d2 − d4)

(4.21)
which is a rational function of degree at most 2. Remark that it is also invariant
under the action of Gal(k/k) as a,b,c and d only occur as squares in c(λ). It
follows that the j-invariant

j(λ) =
(c(λ)2 − c(λ) + 1)3

c(λ)2(c(λ)− 1)2 . (4.22)

is a rational function in k(λ) of degree at most 12.
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Lemma 4.2.9. If K is given as in Proposition 4.1.5 then j(H(λ)) = j(H(1/λ)).

Proof. Let P1 = (d,−c,b,−a), P2 = (d,c,−b,−a) and define

H :ax+ by + cz+ dt = 0, (4.23)

H ′ :ax − by − cz+ dt = 0. (4.24)

Let σ be the automorphism that swaps P1 and P2. In this case, σ = α′. We see
that σ maps the plane H +λH ′ to H ′ +λH . The latter equation is equivalent to

H + 1/λH ′ . (4.25)

As σ is an automorphism, this implies that the curvesH1,2(λ)∩K andH1,2(1/λ)∩
Kum(Y2) have the same j-invariant. Now fix c ∈ k and let α be a root of
j(H(λ))− c = 0. Then by the above, 1/α will also be a root of j(H(λ))− c. So
j(H(λ)) = j(H(1/λ)).

Definition 4.2.10. Let K be a Kummer surface and let Hi,j(λ) be the family
of planes that intersect Pi and Pj . Let λ,µ ∈ k such that the automorphism
that swaps Pi and Pj maps the curve Hi,j(λ) isomorphically to Hi,j(µ). Let
c = j(λ) = j(µ). Then we call (λ,µ) a solution pair for c.

4.3 Explicit Jacobians

Proposition 4.3.1. Let k be a field, and let Y2 be a curve of genus 2. Let P ∈
Jac(Y2)[2]. Then P gives rise to an element σP ∈ Kum(Y2)(2) in the following way:

Jac(Y2) Jac(Y2)

Kum(Y2) Kum(Y2)

x 7→x+P

π π

σP

. (4.26)

Furthermore, Kum(Y2)(2) � 〈σP |P ∈ Jac(Y2)〉.

Proof. This follows from Proposition 4.15 in [11].

In order to give an explicit algorithm to construct the gluing of a genus 2
curve Y2 and a genus 1 curve X1 over k, we will need an explicit description of
the quotient map Jac(Y2)→ Kum(Y2) where Kum(Y2) is the Kummer surface
of Y2.

In order to do this we will first write down an equation for an affine open
subset of the Jacobian using the ideas by Cantor in [7].
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Proposition 4.3.2. Let Y2 be a smooth curve of genus 2 over a field k given
by the equation y2 = f (x) in P

2
k . Let i : Y2 → Y2 be the involution given by

(x,y) 7→ (x,−y). There exists a bijection between the set

S = {(P ,Q) = ((x1, y2), (x2, y2)) ∈ Sym2(Y2)|x1 , x2} (4.27)

and the set

P = {(a(x),b(x))|a(x) = x2 + a1x+ a2b(x) = b1x+ b2,

where a(x) is a separable polynomial and
(
b(x)2 − f (x)

)
≡ 0 mod a(x)}.

(4.28)

Proof. Let P = (x1, y1),Q = (x2, y2) ∈ Y2 with (P ,Q) ∈ S . Let

bP ,Q(x) =
y2 − y1

x2 − x1
x −

y2 − y1

x2 − x1
x1 + y1 (4.29)

be an equation for the y coefficient of the line through P and Q depending on
x and define

aP ,Q(x) = (x − x1)(x − x2) (4.30)

to be the quadratic polynomial that has x1 and x2 as its roots. As x1 , x2 the
polynomial bP ,Q is well-defined. Now (bP ,Q(x)2 − f (x)) = 0 if and only if x
is in the intersection of Y2 and the line defined by y = b(x). It follows that
(bP ,Q(x)2 − f (x)) ≡ 0 mod aP ,Q(x). This gives us a map in one direction.

Now assume that we have an element (a,b) ∈ P . Let x1,x2 be the roots of a.
Then

(x − x1)(x − x2) |
(
b(x)2 − f (x)

)
, (4.31)

and x1 and x2 are the x-coordinates of the intersection points of Y2 with the
curve defined by the line y = b(x). As the line given by y = b(x) is not a vertical
line, we find that x1 , x2. It follows that the tuple

(P ,Q)a,b = ((x1,b(x1)), (x2,b(x2))) (4.32)

is an element of S . Define φ : S → P by

φ((P ,Q)) = (aP ,Q,bP ,Q) (4.33)

and ψ : P → S by
ψ(a,b) = (P ,Q)a,b. (4.34)

A calculation shows that

ψ ◦φ((x1, y1), (x2, y2)) = ψ
(
(x − x1)(x − x2),

y2 − y1

x2 − x1
x −

y2 − y1

x2 − x1
x1 + y1

)
= ((x1, y1), (x2, y2)),

(4.35)

so the above maps are inverse to one another and we have found a bijection
between the sets S and P .
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Corollary 4.3.3. Let Y2 be a curve of genus 2 over a field k given by the equation
y2 = f (x) in P2

k . Let g1 and g2 be polynomials in k[a1, a2,b1,b2] such that

g1(a1, a2,b1,b2)x+ g0(a1, a2,b1,b2) ≡
(
b(x)2 − f (x)

)
mod a(x). (4.36)

Then the system of equations

g1(a1, a2,b1,b2) = 0, (4.37)

g2(a1, a2,b1,b2) = 0 (4.38)

describes an affine open subset U of Jac(Y2) in A4
k .

Proof. The variety Sym2(Y2) is isomorphic to Jac(Y2) after blowing down
the line E consisting of points of the form (P , i(P )). See e.g. [23]. As
S = Sym2(Y2)\E this implies that S is isomorphic to an affine open subset U
of Jac(Y2). By Proposition 4.3.2 the variety S is isomorphic to the variety P
and the latter consists exactly of the points (a1, a2,b1,b2) satisfying g1 = 0 and
g2 = 0. This concludes the proof.

We will now combine this with Müller’s description of the Kummer surface
in [20] to give an affine equation for the Kummer surface Jac(Y2) in P3

k and an
explicit description of the map Jac(Y2)→ Kum(Y2).

Proposition 4.3.4. Let Y2 be a curve of genus 2 over a field k given by the equation

y2 = f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + f5x

5 + f6x
6 (4.39)

in A
2
k . Suppose P = (x1, y1) and Q = (x2, y2) are two points on Y2 and let

P +Q ∈U ⊂ Jac(Y2) where U is as in Corollary 4.3.3. Let

κ1 = 1,

κ2 = x1 + x2,

κ3 = x1x2,

κ4 =
F0(x1,x2)− 2y1y2

(x1 − x2)2 ,

(4.40)

where

F0(x,y) = 2f0+f1(x+y)+2f2(xy)+f3(x+y)xy+2f4(xy)2+f5(x+y)(xy)2+2f6(xy)3.
(4.41)

Then we can define a map π : U → Kum(Y2)given by (P ,Q) 7→ (κ1 : κ2 : κ3 : κ4)
such that π is equal to the quotient morphism Jac(Y2)→ Kum(Y2) restricted to U .

The functions κ1,κ2,κ3,κ4 satisfy the quartic equation

K(κ1,κ2,κ3,κ4) = K2(κ1,κ2,κ3)κ2
4 +K1(κ1,κ2,κ3)κ4 +K0(κ1,κ2,κ3) = 0 (4.42)
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and this equation gives us a projective embedding of Kum(Y2) in P3
k .

Here

K2(κ1,κ2,κ3) = κ2
2 − 4κ1κ3 (4.43)

K1(κ1,κ2,κ3) = −4κ3
1f0 − 2κ2

1κ2f1 − 4κ2
1κ3f2 − 2κ1κ2κ3f3

− 4κ1κ
2
3f4 − 2κ2κ

2
3f5 − 4κ3

3f6
(4.44)

K0(κ1,κ2,κ3) = −4κ4
1f0f2 +κ4

1f
2

1 − 4κ3
1κ2f0f3 − 2κ3

1κ3f1f3

− 4κ2
1κ

2
2f0f4 + 4κ2

1κ2κ3f0f5 − 4κ2
1κ2κ3f1f4 − 4κ2

1κ
2
3f0f6

+ 2κ2
1κ

2
3f1f5 − 4κ2

1κ
2
3f2f4 +κ2

1κ
2
3f

2
3 − 4κ1κ

3
2f0f5

+ 8κ1κ
2
2κ3f0f6 − 4κ1κ

2
2κ3f1f5 + 4κ1κ2κ

2
3f1f6

− 4κ1κ2κ
2
3f2f5 − 2κ1κ

3
3f3f5 − 4κ4

2f0f6 − 4κ3
2κ3f1f6

− 4κ2
2κ

2
3f2f6 − 4κ2κ

3
3f3f6 − 4κ4

3f4f6 +κ4
3f2

(4.45)

Proof. See [20, Paragraph 2].

Remark 4.3.5. If we want to put a Kummer surface given by the equation in
Proposition 4.3.4 into the standard form as described in Theorem 4.1.5 we
might need to take a field extension.

Corollary 4.3.6. LetU be an affine open subset of the Jacobian inA4 = k[a1, a2,b1,b2]
given by the system of equations g1 = 0, g2 = 0 as in Corollary 4.3.3. Then the map
U → Kum(Y2) from Proposition 4.3.4 can be explicitly described by

(a1, a2,b1,b2) 7→
1 : −a1 : a2 :

F̃0(−a1, a2)− 2(b2
1a2 − b1b2a1 + b2

2)

a2
1 − 4a2

 (4.46)

where

F̃0(x,y) = 2f0 + f1x+ 2f2y + f3xy + 2f4y
2 + f5xy

2 + 2f6y
3. (4.47)

Proof. The isomorphism in 4.3.3 maps (P ,Q) = ((x1, y1), (x2, y2)) to

(a(x),b(x)) = (x2 − (x1 + x2) + x1x2,
y2 − y1

x2 − x1
x −

y2 − y1

x2 − x1
x1 + y1). (4.48)

This implies that a1 = −x1 − x2 and a2 = x1x2. As a result, (x1 − x2)2 = a2
1 − 4a2.

Furthermore,

y1y2 = (b1x1 + b2)(b1x2 + b2) = (b2
1a2 − b1b2a1 + b2

2). (4.49)

Substituting these identities into F0 from 4.3.4 gives us the map.

Lemma 4.3.7. The point (0 : 0 : 0 : 1) is always a singular point on the projective
embedding of Kum(Y2) in P3

k given by equation (4.3.4).
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Proof. A calculation shows that

∂K
∂κ1

(0,0,0,1) =
∂K2

∂κ1
(0,0,0) · 12 +

∂K1

∂κ1
(0,0,0) · 1 +

∂K0

∂κ1
(0,0,0) = 0 + 0 + 0 = 0,

∂K
∂κ2

(0,0,0,1) =
∂K2

∂κ2
(0,0,0) · 12 +

∂K1

∂κ2
(0,0,0) · 1 +

∂K0

∂κ2
(0,0,0) = 0 + 0 + 0 = 0,

∂K
∂κ3

(0,0,0,1) =
∂K2

∂κ3
(0,0,0) · 12 +

∂K1

∂κ3
(0,0,0) · 1 +

∂K0

∂κ3
(0,0,0) = 0 + 0 + 0 = 0,

∂K
∂κ4

(0,0,0,1) = 2K2(0,0,0) · 1 +K1(0,0,0) = 0 + 0 = 0.

(4.50)

Lemma 4.3.8. Let Y2 be a genus 2 curve over k given by the equation y2 = f in
P

2
k and let π : Jac(Y2)→ Kum(Y2) be the quotient map. Assume that f is gluable,

i.e. f = (x2 +ux+ v)g.
Then Sing(Kum(Y2)) contains the point

π(P ) =
(
1,u,v,

F̃0(u,v)
u2 − 4v

)
(4.51)

where

F̃0(u,v) = 2f0 + f1u + 2f2v + f3uv + 2f4v
2 + f5uv

2 + 2f6v
3. (4.52)

Proof. Assume that (x2 −ux+ v) = (x − β5)(x − β6) with β5,β6 ∈ k. This means
that P = (β5,0) + (β6,0) is a 2-torsion point in Jac(Y2). As π(P ) is the image of a
2-torsion point it will be a rational singular point in Kum(Y2).

Lemma 4.3.9. The morphism π : Jac(Y2) → Kum(Y2) induces an inclusion of
function fields φ : K(Kum(Y2)→ K(Jac(Y2)). Then

(i) There exist αi ,βj ∈ k(a1, a2) such that

b1b2 = α1(a1, a2) +α2(a1, a2)b2
1, (4.53)

b2
2 = β1(a1, a2) + β2(a1, a2)b2

1. (4.54)

(ii) Let

h =
(κ2

2 − 4κ3)κ4 − F̃0(κ2,κ3) + 2κ2α1(−κ2,κ3) + 2β1(−κ2,κ3)
−2κ3 − 2κ2α2(−κ2,κ3)− 2β2(−κ2,κ3)

(4.55)
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Proof. We will start by proving (i). Note that the polynomials g1 and g2 from
Corollary 4.3.3 used to define Jac(Y2) are elements of k(a1, a2)[b2

1,b
2
2,b1b2]. We

can therefore write

g1 = λ0 +λ1,1b
2
1 +λ1,2b1b2 +λ2,2b

2
2, (4.56)

g2 = µ0 +µ1,1b
2
1 +µ1,2b1b2 +µ2,2b

2
2 (4.57)

with λi ,µi ∈ k(a1, a2). Consider this as a set of linear equations with variables
1,b2

1,b1b2 and b2
2. Now we can use these equations to find expressions for

b1b2 and b2
2 in terms of a1, a2 and b2

1 to find α1,α2,β1,β2 with the required
properties.

We now prove (ii):
We know that φ(κ2) = −a1,φ(κ3) = a2 and

φ(κ4) =
F̃0(−a1, a2)− 2(b2

1a2 − b1b2a1 + b2
2)

a2
1 − 4a2

. (4.58)

After substituting b1b2 and b2
2 for the terms calculated in (i) we get

φ(κ4) =
F̃0(−a1, a2)

a2
1 − 4a2

−
2(b2

1a2 − (α1(a1, a2) +α2(a1, a2)b2
1)a1 + β1(a1, a2) + β2(a1, a2)b2

1)

a2
1 − 4a2

=
F̃0(φ(κ2),φ(κ3))
φ(κ2)2 − 4φ(κ3)

− 2
(b2

1φ(κ3) +α1(−φ(κ2),φ(κ3))φ(κ2)

φ(κ2)2 − 4φ(κ3)

− 2
α2(−φ(κ2),φ(κ3))b2

1)φ(κ2) + β1(−φ(κ2),φ(κ3)) + β2(−φ(κ2),φ(κ3))b2
1)

φ(κ2)2 − 4φ(κ3)
.

(4.59)

It follows that

b2
1 =

(φ(κ2)2 − 4φ(κ3)) ·φ4(κ4)−F0(φ(κ2),φ(κ3)) + 2(α1(−φ(κ2),φ(κ3)) + 2β1(−φ(κ2),φ(κ3)))
−2φ(κ3)− 2α2(−φ(κ2),φ(κ3)))φ(κ2)− 2β2(−φ(κ2),φ(κ3))

. (4.60)

So we can define

h =
(κ2

2 − 4κ3)κ4 − F̃0(κ2,κ3) + 2κ2α1(−κ2,κ3) + 2β1(−κ2,κ3)
−2κ3 − 2κ2α2(−κ2,κ3)− 2β2(−κ2,κ3)

. (4.61)

Corollary 4.3.10. Let π,φ and h be as in Lemma 4.3.9. Then we can extend φ
to a morphism φ : K(Kum(Y2))[

√
h]→ K(Jac(Y2)) such that φ is an isomorphism.

Furthermore, let C be a curve on Kum(Y2) and let K(C) be the function field of C.
Then K(C)[

√
h] is the function field of π−1(C) in Jac(Y2).

Proof. Define φ(x) = φ(x) for x ∈ K(Kum(Y2) and φ(
√
h) = b1. It suffices to

show that a1, a2,b1 and b2 are in the image of φ. We already have φ(κ2) =
−a1,φ(κ3) = a2 and φ(

√
h) = b1. As

φ(κ4) =
F0(−a1, a2)− 2(b2

1a2 − b1b2a1 + b2
2)

a2
1 − 4a2

=
F0(−a1, a2)− 2(b2

1a2 − b1b2a1 + β1(a1, a2) + β2(a1, a2)b2
1)

a2
1 − 4a2

,

(4.62)
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it follows that b1b2 and therefore b2 are also in the image of φ, which is what
we wanted to show. The statement that K(C)[

√
h] is the function field of

π−1(C) follows automatically from the fact that Kum(Y2)[
√
h] is the function

field of Jac(Y2).

Theorem 4.3.11. If X1,Y2 and Z3 are curves as in Proposition 2.2.1 and π : Z3→
X1 is the degree 2 cover in the same proposition then there exist injective rational
maps j3 : Z3→ Jac(Y2) and j1 : X1→ Kum(Y2) such that j1(X1) is the intersection
of Kum(Y2) with a plane that passes through two singular points. We get the
following commutative diagram:

Z3 Jac(Y2)

X1 Kum(Y2).

π

j3

π

j1

(4.63)

Proof. In the code in https://github.com/JRSijsling/gen3deg2prym Sijsling
constructs an explicit rational map Z3 d Jac(Y2). After a change of coordinates
we may assume that Z3 has an affine open V of the form

v4 + v2g(u) +uh(u) (4.64)

where g(u) = g2u
2 + g1u + g0 and h(u) = h2u

2 + h1u + h0 . We calculate an
equation for Y2 using Theorem 2.2.1 and use this equation to construct the
affine open U ⊂ k[a1, a2,b1,b2] of the Jacobian Jac(Y2) given by the equations
in Corollary 4.3.3.

Let

α(u,v) = (g2h0 − g0h2)v2 + (g2
2h0 − g2g0h2)u2 + (g2g1h0 − g2g0h1 − h2h0)u,

β(u,v) = g2
2h0 − g2g0h2v

3 + (g3
2h0 − g2

2g0h2)u2

+((g2
2g1h0 − g2g1g0h2 − g2h2h0 + g0h

2
2)u + g2

2g0h0 − g2g
2
0h2)v

N (u,v) = (g2
2h1 − g2g1h2 + h2

2)u + g2
2h0 − g2g0h2.

(4.65)

Then the map j3 : V →U is explicitly given by

(u,v) 7→ (α(u,v)/N (u,v),0,β(u,v)/(N (u,v)),β(u,v)/(uN (u,v))). (4.66)

In the code it is shown that the image of j3 is contained in U and that the map
given by α generically has degree 4. To show that j3 is generically injective it
suffices to show that it is injective in one single case. Indeed, if we can prove
that j3 is injective in a single point for a single curve for which the degree of
α is maximal, it will be injective on an open subset, so it will be generically
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true. More precisely, it suffices to show that there exist g,h and distinct points
P1, . . . P4 such that α(Pi) = α(Pj ) for all i and j, but β(Pi) , β(Pj ) when i , j. We
consider the case where g(u) = u2−4u−6 and h(u) = u2−4u−5 overQ. Define

P1 = (3/2 : −5/2 : 1), P2 = (6/5 : −8/5 : 1),

P3 = (−6/5 : −8/5 : 1), P4 = (−3/2 : −5/2 : 1).
(4.67)

Then a calculation shows that

j3(P1) = (4,0,−15,6), j3(P1) = (4,0,−12,15/2),

j3(P1) = (4,0,12,−15/2), j3(P1) = (4,0,15,−6)
(4.68)

which shows that there exist four distinct points with α(u,v)/N (u,v) = 4. We
conclude that j3 is generically injective.

Let π : U → Kum(Y2) be the map given in Corollary 4.3.6. As j3(Z3) is
contained in the plane given by a2 = 0, it follows that π(j3(Z3)) is a curve
contained in the plane H defined by κ3 = 0. This means we have a rational
map Z3 d π(j3(Z3)) of degree 2. We claim that the curve π(j3(Z3)) is of genus
1. Indeed, if π(j(Z3)) is not of genus 1 then it will either be of genus 2 or of
genus 0. But then Z3 is a hyperelliptic curve. Indeed, if j(Z3) has genus 2
then Proposition 2.1.4 tells us that Z3 is a hyperelliptic curve. In the second
case we have a degree 2 cover from Z3 to a genus 0 curve, so the statement
follows by definition. As Z3 is non-hyperelliptic by assumption this leads
to a contradiction. So we conclude that π(j(Z3)) is of genus 1. As any plane
section of a quartic surface in P3 has arithmetic genus 3 this means that the
plane H has to intersect Kum(Y2) in two singular points. Finally, it remains to
be shown that the above diagram commutes. Let i : Z3→ Z3 be the involution
(u,v) 7→ (u,−v) that corresponds to the degree 2 cover Z3→ X1. Then

j3(i(u,v)) = j3((u,−v))

= (α(u,−v)/N (u,−v),0,β(u,−v)/(N (u,−v)),β(u,−v)/(−vN (u,−v)))

= (α(u,v)/N (u,v),0,−β(u,v)/(N (u,v)),−β(u,v)/(uN (u,v))).
(4.69)

Now the map (a1, a2,b1,b2) 7→ (a1, a2,−b1,−b2) sends the divisor P + Q
corresponding to the equations x2 + a1x + a2 and y = b1x + b2 to the divisor
P ′ +Q′ corresponding to the equations x2 + a1x + a2 and y = −b1x − b2. We see
that j3 ◦ (i) is multiplication by −1 on Jac(Y2) and we conclude that we have
found a commutative diagram as in (4.63).

Remark 4.3.12. Concretely this means that every (2,2)-gluing Z3 of X1 and
Y2 that can be written as a degree 2 cover as in Theorem 2.2.1 occurs as the
desingularization of the pullback of a plane section of Jac(Y2).
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Remark 4.3.13. A more elegant prove for the generic injectivity of the map
j3 : Z3→ Jac(Y2) due to D. Lombardo is the following: Assume that j3 is not
injective. If j(Z3) is of genus 2, then Z3 would be hyperelliptic , which gives us
a contradiction, so j3(Z3) is either of genus 1 or of genus 0 because if j3(Z3) is
of genus 2, then Z3 would be hyperelliptic. It is impossible for j3(Z3) to be of
genus 0 as the map j3 is not constant. On the other hand, if j3(Z3) is a curve of
genus 1 then Jac(Y2) would be isogenous to the product of two elliptic curves,
which cannot be true generically.

4.4 Degree 2 covers

Proposition 4.4.1. Let C be a genus 1 curve over an algebraically closed field
k with char(k) , 2, and let P1, P2, P3, P4 be distinct points in C. Then there are
exactly four distinct covers of degree 2 that are ramified above the Pi and unramified
everywhere else.

Proof. We define the divisor Q by

Q �
P1 + P2 + P3 + P4

4
(4.70)

in Pic(C). Then P1 + P2 + P3 + P4 −4Q is a principal divisor. Let f be a function
such that

div(f ) = P1 + P2 + P3 + P4 − 4Q. (4.71)

Let X be the curve with function field K(C)[
√
f ]. Then the natural inclusion

K(C)→ K(X) is a field extension of degree 2 that is ramified exactly above the
Pi . It follows that this field extension induces a cover

D→ C (4.72)

of degree 2 that is ramified exactly above the Pi .
Now assume that π′ : X ′→ C is another cover of degree 2 that is ramified

over the Pi and unramified outside of the Pi . Then K(X ′) = K(C)[
√
f ′] for some

function f ′ with
div(f ′) = P1 + P2 + P3 + P4 − 2D (4.73)

where D is a divisor of degree 2. We get that div(f /f ′) = 2D − 4Q. Write
D � 2Q+D0 for a divisor D0 of degree 0.

In Pic(C) we have

P1 + P2 + P3 + P4 − 2D � P1 + P2 + P3 + P4 − 4Q+ 2D0. (4.74)

As P1 +P2 +P3 +P4 −4Q is principal this implies that 2D0 is a principal divisor,
so D0 ∈ Pic(C)[2]. Now let K(C)[

√
f ′] and K(C)[

√
f ′′] be the function fields of

78



4.4. Degree 2 covers

two degree 2 covers of C that are ramified in Pi and unramified outside the Pi .
Assume that

div(f ′) = P1 + P2 + P3 + P4 − 4Q+ 2D ′0,

div(f ′′) = P1 + P2 + P3 + P4 − 4Q+ 2D ′′0
(4.75)

with D ′0,D
′′
0 ∈ Pic(C)[2]. Now K(C)[

√
f ′] and K(C)[

√
f ′′] define the same cover

if and only if f /f ′ is a square in K(C). We will show that f /f ′ is a square
if and only if D ′0 −D

′′
0 is principal. If f /f ′ = g2. Then div(g) = D ′0 −D

′′
0 . On

the other hand if there exists a function g such that div(g) = D ′0 −D
′′
0 then

f /f ′ = g2. It follows that the two covers are distinct if and only if D ′0 −D
′′
0 � 0.

As D ′0 −D
′′
0 ∈ Pic(C)[2] � (Z/2Z)2 there are at most four distinct covers that

are ramified above the Pi . Let DT be the divisor

P1 + P2 + P3 + P4 − 4Q+ 2T (4.76)

with T ∈ Pic(C)[2]. There exists a function fT such that div(fT ) = DT as DT
is principal. Now we can construct the cover corresponding to the inclusion
K(C)→ K(C)[

√
fT ] for every T ∈ Pic(C)[2], so there also exist four distinct

covers.

Corollary 4.4.2. Let C be a curve of genus 1 over k given in homogeneous coordi-
nates by the equation

C : y2 − h(x,z)y + f (x,z) = 0 (4.77)

in P1,2,1
k where h is a homogeneous polynomial of degree 2 and f is a homogeneous

polynomial of degree 4 with four distinct roots. Let P1, P2, P3, P4 be the points on C
that intersect with the line y = 0. Write p(x,z) = f (x,z)− 1/4h(x,z)2 and assume
that

p(x,z) = (x −α1z)(x −α2z)(x −α3z)(x −α4z). (4.78)

Define

Tj = (αj :
h(αj ,1)

2
: 1). (4.79)

We let

vj =
y

(x −α1z)(x −αjz)
, Lj = K(E)(

√
vj ) (4.80)

for j = 1,2,3,4. Let Xj be the curve with function field Lj . Then the Xj are distinct
and they come equipped with a degree 2 cover πj : Xj → C that is ramified over the
Pi and unramified outside of the Pi .
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Proof. We will calculate div(vj). The zeroes of the function y
(x−α1z)(x−αjz)

are

given by the points P on C for which y(P ) = 0. By assumption these points are
P1, P2, P3 and P4. The poles of y

(x−α1z)(x−αjz)
are given by the points P for which

(x −α1z)(x −αjz) = 0. Assume that P = (x : y : 1). As P is a zero of x −αkz for
k = 1, j this implies that x = αk. Filling in P in the equation for C gives us
(y− h(αk ,1)

2 )2 = 0. This implies that vj has a double pole in T1 and a double pole
in Tj . We claim that the function vj has no other poles. Indeed, a calculation
shows that if we assume that P = (x : y : 0) is a zero of (x −αkz) then both x
and y have to be 0, which is impossible. It follows that

div(vj ) = div
(

y

(x −α1z)2

)
= P1 + P2 + P3 + P4 − 2T1 − 2Tj . (4.81)

Now note that we have

div
(
x −αkz
x −αjz

)
= 2Tk − 2Tj . (4.82)

for k, j ∈ 1,2,3,4. As Tk−Tj � 0 when k , j this implies that Tk−Tj is a 2-torsion
point for all k, j. So div(vj )−div(vk) = 2Tk − 2Tj = 2T where T ∈ Pic(C)[2]. As
we have seen in the proof of Proposition 4.4.1 this means that the fields Lj and
Lk are distinct for j , k, so the field extensions K(E)→ Lj correspond to four
distinct covers of degree 2 that are ramified above the Pi and are unramified
outside of the Pi .

Corollary 4.4.3. Let πi : C(Li)→ E be the degree 2 cover over k as in Corollary
4.4.2. There exist functions u,v in the Riemann-Roch space L(4T1 + 4Ti) such that

(i) The curve C has an equation of the form

v2 + vh(u) + f (u) = 0 (4.83)

where h is a polynomial of degree 2 and f is a polynomial of degree 4.

(ii) The curve Xi has an equation over k of the form

t4 + t2h(s) + f (s) = 0 (4.84)

where h is a polynomial of degree 2 and f is a polynomial of degree 4.

(iii) The cover πi : Xi → C is explicitly given by πi(s, t) = (s, t2).

Proof. By the theorem of Riemann-Roch we have l(D) = deg(D) for all divisors
D with deg(D) ≥ 1. This implies that l(T1 + T2) = 2 and we can find a basis
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1,u ∈ L(T1 + T2). We also have that l(2T1 + 2Ti) = 4 and we claim that the
functions

1,u,u2 and v =
y

(x −α1z)(x −αiz)
(4.85)

form a basis of L(2T1 +2Ti). It is clear that 1,u and u2 are linearly independent.
Now if v = a2u

2 +a1u+a0, we could substitute u′ = au+b for a suitable choice
of a and b to ensure that v = u′2. This cannot occur however as v has four
distinct zeroes. So, 1,u,u2 and v are linearly independent.

Similarly we have l(4T1 + 4Ti) = 8, so there exists a linear dependence
between the functions

1,u,u2,u3,u4,v,uv,u2v and v2. (4.86)

As the divisor l(4T1 + 4T2) is very ample the linear dependence between these
functions in the Riemann-Roch space gives us an equation of the form

v2 + v(b0u + b1) = a4u
4 + a3u

3 + a2u
2 + a1u + a0 (4.87)

for the curve C where a0, . . . a4,b0,b1 ∈ k in A2
k
. Consider the curve Xi in A2

k
given by

t4 + t2(b0s+ b1) = a4s
4 + a3s

3 + a2s
2 + a1s+ a0. (4.88)

Then the map πi : Xi → C given by (s, t) 7→ (s, t2) corresponds to the natural
inclusion of function fields K(C)→ K(C)(

√
vi) = K(C)[z]/(z2 − vi) � K(Xi). As

div(v) = P1 + P2 + P3 + P4 − 2T1 − 2Ti (4.89)

this is exactly the cover from Corollary 4.4.2.

Remark 4.4.4. In [9, Theorem 1.1] it was already stated that there exist exactly
four distinct covers with a given ramification locus in the case where the base
field is C. They furthermore give a similar equation for these types of covers.

4.5 An algorithm for algebraic gluing

Let X1 be a genus 1 curve over k, and let Y2 be a genus 2 curve over k. In
this section, we will combine the above results to describe an algorithm to
construct all possible (2,2)-gluings of X1 and Y2 over k. The algorithm has
been implemented in Magma and is available on [12].

Theorem 4.5.1. Let X1 be a curve of genus 1 over k and let Y2 be a curve of genus
2 over k. Then:

(i) Every (2,2)-gluing of X1 and Y2 that is a non-hyperelliptic curve over k can
be found using Algorithm 3.
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4. Algebraic gluing

(ii) Generically there is a bijection between the indecomposable maximal isotropic
subgroups of Jac(X1)[2]× Jac(Y2)[2] and tuples (Pi , (λ,µ)) where

Pi ∈ Sing(Kum(Y2))\{1 : 0 : 0 : 0)} (4.90)

and (λ,µ) is a solution pair for j(X1).

Proof. Any non-hyperelliptic genus 3 curve Z3 admits a quartic equation in
P

2
k . If it is the (2,2)-gluing of a genus 1 curve X1 and a genus 2 curve Y2,

we get a double cover π1 : Z3 → X1 as in Theorem 4.2.2. After a change of
coordinates we may assume that Z3 and X1 are given as in (2.43) and (2.45).
By Remark 2.2.5 we may also assume that Y2 is given as in (2.48). For any such
double cover π : Z3→ X1 we can use Theorem 4.3.11 to find an embedding
i : Z3→ Jac(Y2) such that p(i(Z3) is the intersection of a plane with Kum(Y2)
passing through two singular points and such that the desingularization of the
singular cover i(Z3)→ p(i(Z3)) is π : Z3→ X1. We conclude that all possible
(2,2)-gluings can be constructed using Algorithm 3.

Corollary 4.1.10 says that any embedding of one the above double covers
can be mapped isomorphically to one that goes through P1. This gives us 15
distinct choices for tuples of the form (P1, Pi) with i , 1. For each of these
tuples we consider the family HPi (λ) and look for λ with the property that
HPi (λ) = j(X1). According to Theorem 4.2.8 this polynomial will generically be
of degree 12. Using Lemma 4.2.9 we see that this generically give us 6 solution
pairs. This implies that the Algorithm will generically give us 90 curves that
correspond to the 90 indecomposable maximal isotropic subgroups.

Remark 4.5.2. In Step 7 of Algorithm 3 we need to calculate the value of
j(HPi (λ)). We can try to calculate j(HPi (λ)) in Magma by considering HPi (λ)
as a curve E over k(λ), turning E into an elliptic curve by choosing a rational
point and calculating the j-invariant of E. But in the implementation we
calculate j(λ) in the same way as described in Theorem 4.2.8 as this turns out
to be considerably faster.

Calculating the curve Z3 in Magma by taking the pullback of X̃1(λ0) takes
rather long in practice. We therefore use the following (faster) algorithm that
uses the methods discussed in Paragraph 4.4.
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4.5. An algorithm for algebraic gluing

Algorithm 3 Calculate (2,2)-gluings of X1 and Y2

Input: X1 and Y2

1: Initialize an empty list L.
2: Calculate an affine model for Jac(Y2) as in Corollary 4.3.3.
3: Calculate j(X1).
4: Calculate a model for Kum(Y2) and the projection map Jac(Y2)→ Kum(Y2)

as in Proposition 4.3.4.
5: Calculate a function hwith the property that K(Kum(Y2))[

√
h] � K(Jac(Y2))

as in Lemma 4.3.9.
6: for Pi ∈ Sing(Kum(Y2))\{(1 : 0 : 0 : 0)} do
7: Calculate the 1-dimensional family H1,i(λ) of planes that pass through

(1 : 0 : 0 : 0) and Pi .
8: Calculate the set Λ(X1) of all λ such that j(HPi (λ)) = j(X1).
9: for λ0 ∈Λ(X1) do

10: Determine the singular genus 1 curve X̃1(λ0) =H1,i(λ0)∩Kum(Y2)
11: Calculate the curve Z3 with function field K(X̃1(λ0))[

√
h] using Algo-

rithm 4.
11: Add the gluing Z3 to L.
12: end for
13: return L.
14: end for

Remark 4.5.3. In Step 7 we use the condition that Di − D = 2T for some
principal divisor T is equivalent to stating that the function fields of the corre-
sponding covers are identical. This was also used in the proof of Proposition
4.4.1.

Remark 4.5.4. Algorithm 3 and Algorithm 4 do not work purely over the
base field. In general one needs to take field extensions to construct the glued
curve Z3.
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Algorithm 4 Calculate an equation for the curve Z3 with function field
K(X̃1(λ0))[

√
h]

Input: Equation for the curve X̃1(λ0) and h as in Algorithm 3.

1: Use Lemma 4.2.6 to compute the branch points α1, . . .α4 of the map g :
X̃1(λ0)→ P

1
k that maps a point P to the slope of the line that connects P

with the singular point (1 : 0 : 0 : 0).
2: Define the curve C by the equation y2 = (x−α1)(x−α2)(x−α3)(x−α4) and

compute a birational map τ : C→ X̃1(λ0).
3: Let Q,R be the singular points on X̃1(λ0) and calculate τ−1(Q) = {Q1,Q2}

and τ−1(R) = {R1,R2}.
4: Calculate the divisor D of the image of h in K(C).
5: Find divisors D1,D2,D3,D4 that correspond to the four distinct degree 2

covers with ramification points Q1,Q2,R1,R2 as in Corollary 4.4.2.
6: for i ∈ {1, . . . ,4} do
7: if there exists a principal divisor T such that Di −D = 2T then
8: Calculate the degree 2 cover X3 → X1 corresponding to Di as in

Corollary 4.4.3.
9: return A quartic equation of X3 with a degree 2 cover to X1.

10: end if
11: end for

4.6 Examples

An example over Q

Let X1 be the curve given by

y2 = x4 + 2x3 − x2 − 2x (4.91)

and let Y2 be the curve given by

y2 = x6 − 2x5 − 10x4 + 20x3 + 9x2 − 18x (4.92)

over Q. Using the algorithm we find that an affine open of Jac(Y2) is given by
the following system of equations in Q[a1, a2, a3, a4].

−a4
1a2 − 2a3

1a2 + 3a2
1a

2
2 + 10a2

1a2 + 4a1a
2
2 + 20a1a2 − a3

2 − 10a2
2

+ a2b
2
1 − 9a2 − b2

2 = 0,

−a5
1 − 2a4

1 + 4a3
1a2 + 10a3

1 + 6a2
1a2 + 20a2

1 − 3a1a
2
2 − 20a1a2

+ a1b
2
1 − 9a1 − 2a2

2 − 20a2 − 2b1b2 − 18 = 0.

(4.93)
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The projective equation for Kum(Y2) in P2
Q

is given by

324x4
1 + 720x3

1x3 − 720x2
1x2x3 − 144x1x

2
2x3 + 72x3

2x3 + 832x2
1x

2
3

− 36x2
2x

2
3 + 80x1x

3
3 − 80x2x

3
3 + 44x4

3 + 36x2
1x2x4 − 36x2

1x3x4

− 40x1x2x3x4 + 40x1x
2
3x4 + 4x2x

2
3x4 − 4x3

3x4 + x2
2x

2
4

− 4x1x3x
2
4 = 0

(4.94)

and the morphism π : Jac(Y2)→ Kum(Y2) is explicitly given by

π(a1, a2,b1,b2) =1 : −a1 : a2 :
2a1a

2
2 − 20a1a2 + 2a1b1b2 + 18a1 + 2a3

2 − 20a2
2 − 2a2b

2
1 + 18a2 − 2b2

2

a2
1 − 4a2

 . (4.95)

The 16 singular points of Kum(Y2) are

(1 : 0 : 0 : 0), (−1/6 : 1/3 : 1/2 : 1), (−1/6 : −1/2 : 0 : 1),

(−1/9 : −2/9 : 0 : 1), (−1/10 : 0 : 1/10 : 1), (−1/18 : −1/18 : 0 : 1),

(−1/22 : −1/22 : 1/11 : 1), (−1/30 : −1/6 : −1/5 : 1),

(−1/30 : −1/15 : 1/10 : 1), (−1/42 : 1/42 : 1/7 : 1),

(−1/42 : 2/21 : −1/14 : 1), (−1/90 : 0 : 1/10 : 1),

(1/18 : −1/18 : 0 : 1), (1/14 : 3/14 : 1/7 : 1),

(1/6 : −1/2 : 0 : 1), and (1/6 : 2/3 : 1/2 : 1).

(4.96)

We consider the family of planes H1,2(λ) passing through P = (0 : 0 : 0 : 1) and
Q = (−1/6 : 1/3 : 1/2 : 1). After calculating an equation for the family HP ,Q(λ)
and substituting this into Kum(Y2) we get the following affine equation for
HP ,Q(λ)∩Kum(Y2) :

λ4x4 + (−8/3λ4 + 8/9λ3 − 20/9λ2 − 4/9λ+ 2/9)x3y + 1/9λ2x3

+ (8/3λ4 − 16/9λ3 + 322/81λ2 + 16/9λ+ 1/27)x2y2

+ (−7/27λ− 16/81)λx2y + 1/324x2

+ (−32/27λ4 + 32/27λ3 − 568/243λ2 − 452/243λ− 40/81)xy3

+ (16/81λ2 + 80/243λ+ 16/243)xy2 − 1/81λxy

+ (16/81λ4 − 64/243λ3 + 328/729λ2 + 424/729λ+ 196/729)y4

+ (−4/81λ2 − 32/243λ− 16/243)y3 + (2/243λ+ 1/243)y2 = 0

(4.97)

Considering this as an elliptic curve over Q(λ) we calculate the j-invariant of
this curve:

j(λ) =
N (λ)
D(λ)

(4.98)
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where

N (λ) =
65597103937

63504
λ12 − 16021112665

5292
λ11 +

40655765575
10584

λ10

− 43725731107
15876

λ9 +
26001691661

21168
λ8 − 947478545

2646
λ7

+
1139864011

15876
λ6 − 9439439

882
λ5 +

2922317
2352

λ4 − 62653
588

λ3

+
2901
392

λ2 − 9
28
λ+

9
784

(4.99)

and

D(λ) = λ12 − 125
21

λ11 +
12937
1764

λ10 +
4058
441

λ9 − 6583
441

λ8

+
620
441

λ7 +
5515
882

λ6 − 1714
441

λ5 +
436
441

λ4 − 17
147

λ3 +
1

196
λ2

(4.100)

The j-invariant of X1 is 35152/9. The numerator of j(λ)− 35152/9 factors as

(λ− 9/23)(λ− 1/11)(λ2 − 38/67λ− 9/67)(λ2 − 98/193λ− 3/193)·
(λ2 − 42/85λ+ 1/85)(λ2 − 22/47λ+ 3/47)(λ2 − 2/5λ+ 1/5).

(4.101)

A calculation shows that the roots of the linear factors form a solution pair for
j(X1) (and so does every pair of roots of any of the quadratic factors).

We will construct the degree 2 cover above X̃1(9/23) = HP ,Q(9/23) ∩
Kum(Y2). The singular elliptic curve E is given by the equation

x4 − 758638
59049

x3y +
529
729

x3 +
9802687
177147

x2y2 − 294653
59049

x2y

+
279841

2125764
x2 − 34825060

531441
xy3 +

15294448
1594323

xy2 − 12167
59049

xy

+
113058100

4782969
y4 − 8495740

1594323
y3 +

498847
1594323

y2 = 0

(4.102)

in A2
Q

.
A calculation gives us that image of the function h mentioned in Step 4 in

Algorithm 3 in the function field of X̃1(9/23) is given by

−108505270
718449183

x3y − 83441
8869743

x3 +
6042040789
2155347549

x2y2 +
146387545
718449183

x2y

− 13367
1062882

x2 − 4203449668
6466042647

xy3 − 9737297495
19398127941

xy2 +
26734

1358127
xy

− 45573331130
58194383823

y4 +
5805288791

19398127941
y3 − 1096094

36669429
y2.

(4.103)

To compute K(X̃1(9/23))/(t2 − h) we proceed as in Algorithm 4. The branch
points of the degree 2 map g : X̃1(9/23)→Q are

(−115/132,−23/220), (−529/1458,0),

(−95/714,5/119), and (−287/10974,164/1829).
(4.104)
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We can use this to calculate a curve X̃1,leg with an equation in Legendre form
that is isomorphic to X̃1(9/23)). The curve X̃1,leg is given by the equation:

y2 = x3 − 5/4x2 + 1/4x.

The isomorphism between X̃1(9/23)) and X̃1,leg is defined over a quadratic
extension Q(α) of Q. Here α is a root of

t2 − 156026658225043557710221401
34308279913908709968852208000

. (4.105)

Using this, the image of the function h in the function field of K(X̃1,leg)⊗Q(α)
can be calculated explicitly and is given by a rational function of degree 14
with rather large coefficients. We will call it hleg.

Let P1, P2 be the two points you get when you desingularize P and letQ1,Q2
be the two points that come from desingularizing Q. It turns out the divisor
P1+P2+Q1+Q2 is defined over the fieldQ(β,γ) where β is a root of t2+3/32 and
γ is a root of t2 − 327/250t + 4761/10000. We now fix choose 2-torsion points
T1, . . .T4 and calculate functions fi with divfi = P1 + P2 +Q1 +Q2 − 2Ti − 2T1.
Checking if div(fi/hleg) is a square for all i will give us the right function fi .
Using Riemann-Roch as in Corollary 4.4.3 gives us the equation

u4 − 244312307247680
12491063134299

αu3 + (
286830015625
36438849216

βγ − 250115773625
48585132288

β)u2v2

+
5876
8855

u2 + (
−50500786167745625000

1338579798660883737
αβγ

+
11009171384568546250

446193266220294579
αβ)uv2 − 83804221642880

37473189402897
αu

− 1044509681265625
171408346712064

v4 + (
52518171875
63767986128

βγ − 45795845875
85023981504

β)v2

+
1460

111573
= 0.

(4.106)
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for the curve Z3 over Q(α,β,γ) that is a (2,2)-gluing of X1 and Y2. Calculating
its Dixmier-Ohno invariants I3, I6, I9, J9, I12, J12, I15, J15, I18, J18, I21, J21 and I27
normalized in their respective projective spaces gives us:

[1,−4710901289284
3628465988415

,−33570641981339020691035
1070755233328882719

,

− 1702533591176637763761
118972803703209191

,−2659030048949094998105841500
175543539054459238856163

,

− 301328468267734544897238663629
1579891851490133149705467

,
1116844499003104295234870156025513200

777039789210243677152789540077
,

2927022757173291765113456671013195312
6475331576752030642939912833975

,

136873935812273301411545833793084510947828000
1146516769701190073933200896856832961

,

2080964057262067375871893865780415718307264
42463584063007039775303736920623443

,

394885149747781613214452514090626676399369878396756
1691677468076718045757920390905979036124773

,

28908073480279395537641303226077108870836610319217768
2819462446794530076263200651509965060207955

,

4771483514821686208217895701735808004026618537717273264384000000
1684003883754286242236016408505774046816390522554871

].

(4.107)

A simplified equation of this curve over Q is

12x4 − 111x2y2 + 478x2yz − 577x2z2 − 533y4 + 948y3z

− 2574y2z2 + 2196yz3 − 2277z4 = 0.
(4.108)

An example over F19

Let X1 be the curve given by

y2 = x4 + 9x3 + 4x2 + 15x (4.109)

and let Y2 be the curve given by

y2 = x6 + 17x4 + 2x3 + 8x2 + 5x (4.110)

over F37. Using the algorithm we find that an affine open of Jac(Y2) is given
by the following system of equations in F37[a1, a2, a3, a4]:

− a4
1a2 + 3a2

1a
2
2 + 2a2

1a2 + 2a1a2 +−a3
2 − 2a2

2 + a2b
2
1 + 11a2 − b2

2 = 0,

− a5
1 + 4a3

1a2 + 2a3
1 + 2a2

1 − 3a1a
2
2 − 4a1a2 + a1b

2
1 + 11a1 − 2a2 − 2b1b2 + 5 = 0.

(4.111)

The projective equation for Kum(Y2) in P2
F19

is given by

6x4
1 − x

3
1x3 + 2x2

1x2x3 − x3
2x3 + 11x2

1x
2
3 + x1x2x

2
3 + 6x2

2x
2
3 + 11x2x

3
3

+ 8x4
3 + 9x2

1x2x4 + 6x2
1x3x4 − 4x1x2x3x4 + 8x1x

2
3x4 − 4x3

3x4

+ x2
2x

2
4 − 4x1x3x

2
4 = 0

(4.112)
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4.6. Examples

and the morphism π : Jac(Y2)→ Kum(Y2) is explicitly given by

π(a1, a2,b1,b2) =[
1 : −a1 : a2 : (17a1a2 + 2a1b1b2 + 14a1 + 2a3

2 − 4a2
2 − 2a2b

2
1 − 3a2 − 2b2

2)/(a2
1 − 4a2)

]
.

(4.113)

The 16 singular points of Kum(Y2) are

(0 : 0 : 0 : 1), (3 : 8 : 6 : 1), (4 : 7 : 8 : 1), (6 : 9 : −4 : 1),

(6 : −2 : 5 : 1), (7 : −2 : 0 : 1), (10 : 6 : 0 : 1), (11 : 16 : 0 : 1),

(13 : 4 : 2 : 1), (13 : 10 : −4 : 1), (13 : −3 : 6 : 1), (14 : 1 : 4 : 1),

(14 : 7 : 6 : 1), (14 : 11 : 0 : 1), (−4 : 1 : 14 : 1), (−4 : 4 : 0 : 1)

(4.114)

We consider the family of planes H1,2(λ) passing through P = (0 : 0 : 0 : 1)
and Q = (3 : 8 : 6 : 1). After calculating an equation for the family HP ,Q(λ)
and substituting this into Kum(Y2) we get the following affine equation for
HP ,Q(λ)∩Kum(Y2) :

x4 + (λ4 + 5λ3 + 13λ2 + 3x3y + 11λ2)x3

+ (−2λ4 −λ3 + 8λ2 + 10λ+ 1)x2y2 + (16λ2 + 4λ)x2y − 3x2

+ (6λ4 + 14λ3 + 17λ2 +−4λ+ 2)xy3

+ (16λ+ 4)xy2 + 12λxy + (−2λ4 − 2λ3 + 9λ2 − 4λ+ 5)y4

+ (6λ2 −λ+ 5)y3 + (3λ+ 6)y2 = 0

(4.115)

Considering this as an elliptic curve over F19(λ) we calculate the j-invariant
of this curve:

j(λ) =

15λ12 + 12λ11 + 7λ10 −λ9 + 4λ8 + 7λ7 + 3λ6

+ 5λ5 + 2λ4 + 9λ3 + 14λ2 + 13λ+ 9
λ12 − 4λ11 + 6λ10 + 8λ9 + 11λ8 + 12λ7 + 10λ6

+ 6λ5 + 13λ4 − 3λ3 − 3λ2

(4.116)

The j-invariant of X1 is 35152/9. The numerator of j(λ)− 35152/9 factors as

(x+ 2)2(x+ 3)(x+ 6)(x+ 7)(x+ 12)(x+ 15)(x2 + 11x+ 8)(x2 + 15x+ 13). (4.117)

Let F192 = F19(α) where α is a root of x2−x+2. Then α59 is a root of x2+15x+13.
We will construct the degree 2 cover above X̃1(α59) =HP ,Q(α59)∩Kum(Y2). As
we are working over a finite field, the computations are much easier and it is
computationally feasible to explicitly calculate the pullback X̃1(α59)Kum(Y2) ×
Jac(Y2) in a reasonable amount of time. (Algorithm 4 is still much faster
however.) The pullback is given by the equations:

α59a3
1 +α46a2

1a2 + a2
1 +α279a1a2 +α266a2

2 + 15a2 = 0,

− a4
1a2 + 3a2

1a
2
2 + 2a2

1a2 + 2a1a2 +−a3
2 − 2a2

2 + a2b
2
1 + 11a2 − b2

2 = 0,

− a5
1 + 4a3

1a2 + 2a3
1 + 2a2

1 − 3a1a
2
2 − 4a1a2 + a1b

2
1

+ 11a1 − 2a2 − 2b1b2 + 5 = 0.

(4.118)
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4. Algebraic gluing

This scheme consists of two irreducible components. One component is a
curve of genus 0, and the other component is a curve of genus 3. The genus 3
component is a curve Z3 over F192 in P2

F192
defined by

x4+α228x3y+α270x2y2+α133xy3+α47y4+6x2z2+α22xyz2+α118y2z2+17z4 = 0
(4.119)

and it is the (2,2)-gluing ofX1 and Y2. Calculating its Dixmier-Ohno invariants
I3, I6, I9, J9, I12, J12, I15, J15, I18, J18, I21, J21 and I27 normalized in their respective
projective spaces gives us:

[1,17,9,16,0,3,2,13,13,13,2,12,8]. (4.120)

A simplified equation of this curve over F19 is

x4 + 5x2y2 − x2yz − x2z2 + 8y4 + 8y3z+ 9y2z2 − 5yz3 + 2z4. (4.121)
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Zusammenfassung in deutscher
Sprache
Überblick

Diese Arbeit befasst sich mit der Bestimmung einer (2,2)-Verklebung einer
Kurve X1 vom Geschlecht 1 mit einer Kurve Y2 vom Geschlecht 2. Damit
ist gemeint, dass wir eine Kurve Z3 vom Geschlecht 3 mit der Eigenschaft,
dass Jac(Z3) isomorph zu Jac(X1) × Jac(Y2)/G für eine Untergruppe G von
Jac(X1)[2]×Jac(Y2)[2] ist, suchen. Dieses Verfahren stellt die Umkehrung einer
Konstruktion von Ritzenthaler und Romagny aus [26] dar. Wir werden zwei
unterschiedliche Algorithmen zur Bestimmung der Verklebung vorstellen.

Inhalt

Wir fangen mit der Beschreibung einiger Basiseigenschaften abelscher Vari-
etäten an. Danach definieren wir (n1,n2)-Verklebungen und betrachten den
Zusammenhang zwischen Verklebungen und maximalen isotropen Unter-
gruppen. Anschließend beschränken wir uns auf den Fall n1 = n2 = 2 und
geben eine explizite Beschreibung von Gruppen dieser Art. Dazu betrachten
wir auch unter welchen Bedingungen Verklebungen über dem Grundkörper
definiert sind.

Wir beschäftigen uns kurz mit dem Fall, dass unsere Kurve vom Geschlecht
3 hyperelliptisch ist und fangen danach mit der Beschreibung des Verkle-
bungsprozesses über C an. Wir erklären, wie die Objekte und Abbildungen,
die man für die Verklebung über C braucht explizit aussehen und beschreiben
danach einen Algorithmus, mit welchem man eine Verklebung mittels ana-
lytischer Methoden explizit berechnen kann. Außerdem erklären wir auch,
wie wir eine (2,2)-Verklebung Z3 über dem Grundkörper konstruieren können,
falls eine solche Kurve existiert.

Im weiteren Teil der Arbeit beschreiben wir eine algebraische Konstruk-
tion für das (2,2)-Verkleben. Dazu definieren wir eine Kummer-Fläche und
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besprechen, wie man eine Geschlecht 1 Kurve als den Schnitt einer Kummer-
Fläche mit einer Fläche bekommen kann. Im Anschluss zeigen wir, wie man
eine (2,2)-Verklebung Z3 von einer Kurve vom Geschlecht 1 X1 und einer
Kurve vom Geschlecht 2 Y2 aus der Kummer-Fläche K = Jac(Y2)/(−1) und
einer Fläche H erhalten kann. Dabei ist H so gewählt, dass die Desingu-
larisierung von H ∩ K isomorph zu X1 ist. Es stellt sich heraus, dass die
Desingularisierung des Pullback von H ∩K entlang der Quotientenabbildung
π : Jac(Y2)→ K eine (2,2)-Verklebung ist. Wir beschreiben einen Algorith-
mus und alle Hilfsmittel, die man braucht um diese Konstruktion explizit
ausführen zu können.
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