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Abstract 
 
 

Computing accurate protein-ligand interaction energies is essential for virtual drug 
design. For this purpose, in this work, the opportunities of applying fast, enhanced SQM 
methods are explored.  The PDBbind set is used as the experimental reference for protein 
and ligand structures and binding affinities.  
 
As a part of this work, an algorithm is developed to prepare the structures for the 
computations. For the calculations, Gilson’s minima mining approach is followed, which 
reduces the problem of obtaining binding energies into computing optimized energies 
and vibrational frequencies for a large number of binding modes. 
 
Protein-ligand interaction energies are computed by various computational methods: i.e. 
semi empirical quantum mechanical (SQM) methods, Molecular mechanical (MM) 
methods, Density functional theory (DFT) methods and Wave function theory (WFT) 
methods. The accuracy of the results are compared with each other and experimental 
binding energies. 
  
In total, three benchmarking studies are conducted. In all of them, PM6-DH+ performs as 
almost as accurate as DFT and WFT methods for realistic model systems, while being fast 
enough to be used for real protein-ligand systems within the minima mining approach.     

 
   

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 



iv 

 

 
 

  
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 

 

 

 
 
 

 

 
 
 

  

 
 
 
 

 

 
 
 
 
 
 

 

 

 
 

 
  

 
  

 
 
 
 

 

 
  

 

 
  

 



vi 

 

 
 

 
  

 
  

 

 
  

 
  

 
 

  

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



vii 

 

List of Publications 
 
 

Parts of this work were published in:   

Computational Screening of Biomaterials 

1. Yilmazer, N.D. and Korth, M., “Enhanced semiempirical quantum-mechanical methods 
for biomolecular interactions”: Invited mini-review for Comp. Struct. Biotech. J. 
(Elsevier), 2015, 13, 169. 

 
2. Yilmazer, N.D., Heitel, P., Schwabe, T. and Korth, M., “Benchmark of electronic structure 

methods for protein–ligand interactions based on high-level reference data”, J. Theor. 
Comput. Chem., 2015, 14, 1540001. 
 

3. Yilmazer, N.D. and Korth M., “Comparison of molecular mechanics, semi-empirical 
quantum mechanical, and density functional theory methods for scoring protein-
ligand interactions.” J Phys Chem B, 2013, 117, 8075. ( Computational Chemistry 
Highlight, November 2013 ) 

 

Computational Screening of Energy Materials 

4. Husch, T., Yilmazer, N. D., Balducci A. and Korth, M., "Large-scale virtual high-
throughput screening for the identification of new battery electrolyte solvents: 
computing infrastructure and collective properties", Phys Chem Chem Phys., 2015, 17, 
3394. Computational chemistry highlight March 2015, top-scoring Altmetrics article 
in PCCP March 2015. 
 

5. Yilmazer N. D. and Korth, M., “Computational approaches for the prediction of solid-
electrolyte interface formation”, Bunsen Magazin, 2013, 6, 294. ( Invited Article ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



viii 

 

Table of Contents 
 

Abstract……………………………………………………………………………………………………………..            iii 

Acknowledgements……………………………………………………………………………………………        v 

List of Publications…………………………………………………………………………………………….           vii 

Table of Contents………………...……..….……………………………………………………....………….               viii 

Tables………………………………………………………………..……….....………..……….……...............            ix 

Figures……….……………….…………….……..…..……………………………………………………………            xiii 

Graphs……………………………………………………………………………………………………………….         xv 

Lists and Schemes ……….……………….…………….……..…..……………………………………........        xvi 

Acronyms…………………………………………………………………………………………………………...        xvii 

Chapters  

1. Introduction………………………………………………………………………………………………….        1 

2. Literature Survey………………………………………………………………………………………….      2 

2.1. Overview of Computational Chemistry…………………………………………………………. 2 

2.1.1.  Computational chemistry methods……………………………………………………..        2 

2.1.2.  Semi Empirical methods……………………………………………………………………. 32 

2.1.3.  Enhanced SQM methods & Our Reference: PM6-DH+ method……………….       34 

2.2. Overview of Computer Aided Drug Design…………………………………………………….     52 

2.3. Overview computational screening of battery electrolyte materials………………..         67 

3. Our Projects………………………………………………………………………………………………….     74 

3.1. Computational Screening of Bio Materials……………………………………………………..               75 

3.1.1.  Research Stage I………………………………………………………………………………...            76 

3.1.2.  Research Stage II……………………………………………………………………………….          114 

3.1.3.  Research Stage III………………………………………………………………………………        128 

3.2. Computational screening of battery electrolyte materials………………………………        167 

4. Discussions and Conclusions…………………………………………………………………………        169 

Bibliography………………………………………………………………………………………………………         170 

Erklärung…………………………………………………………………………………………………………...     186 

Curriculum Vitae………………………………………………………………………………………………..       187 



ix 

 

Tables 
 

Chapter 2.1.1 

Table 2.1.1-1  Scaling of CI methods………………………………………………………………………………24 

Table 2.1.1-2  Comparison of MM, DFT, WFT and semi-empirical methods ……..……………….30  

 

Chapter 2.1.3 

Table 2.1.3-1  List of Enhanced Semi Empirical Methods…………………………………………...40, 41 

Table 2.1.3-2 List of benchmarking studies on small molecular model systems with 
enhanced semiempirical methods…………………………………………………………….43 

Table 2.1.3-3 List of benchmarking studies on large molecular model systems with 
enhanced semiempirical methods…………………………………………………………….44 

Table 2.1.3-4 List of benchmarking studies on water interaction model systems with 
enhanced semiempirical methods…………………………………………………………….45 

Table 2.1.3-5 List of other type of benchmarking studies with enhanced semiempirical 
methods………………………………………………………………………………………………….46 

Table 2.1.3-6 List of virtual drug design related studies with enhanced semiempirical 
methods…………………………………………………………………………………………….49, 50 

 

Chapter 2.3 

Table 2.3-1  Theoretical work on battery materials……………………………………………………..70 

Table 2.3-2  Selected Literature for Atomistic modelling of SEI formation…………………….73 

 

Chapter 3.1.1 (Research Stage I) 

Table I.2-1  Atomic sizes of model complexes (ligand + pocket), ligands and pockets…….83 

Table I.2-2  List of computational methods used for Research Stage I…………………………..86 

Table I.2-3 Number of Binding Energy Data Points calculated via SQM and MM 
(MMFF94) methods, with indicated cutoff distances…………………………………88 

Table I.2-4 Number of Binding Energy Data Points calculated via DFT methods, with 
indicated (3.0, 5.0 Å) Cutoff Distances………………………………………………………88 

Table I.3-1  Pearson and Kendall values for the data presented in Figure I.3-1….94 

Table I.3-2  Pearson and Kendall values for the data presented in Figure I.3-2…………...100 

Table I.3-3  MD, MD*, MAD, MAD* values for SQM method comparisons…………………….100 

Table I.3-4  Pearson and Kendall values for the data presented in Figure I.3-3……………103 

Table I.3-5 MD, MD*, MAD, MAD* values for DFT functionals and basis set 
comparisons………………………………………………………………………………………….103 



x 

 

Table I.3-6  Pearson and Kendall values for the data presented in Figure I.3-4……………105 

Table I.3-7  MD, MD*, MAD, MAD* values for solvation models correlations……………….105 

Table I.3-8  Pearson and Kendall values for the data presented in Figure I.3-5…………...106 

Table I.3-9  MD, MD*, MAD, MAD* values for solvation models correlations……………….107 

Table I.3-10  Pearson and Kendall values for the data presented in Figure I.3-6………….109 

Table I.3-11 Pearson and Kendall values for the data presented in Figure I.3-7 and some 
additional method comparison tests………………………………………………………110 

Table I.3-12  MD, MD*, MAD, MAD* values for solvation models correlations……………….111 

 

Chapter 3.1.2 (Research Stage II) 

Table II.2-1  The names and descriptions of the complexes in PLI10 set……………………….115 

Table II.2-2  List of computational methods used for Research Stage II……………………….116 

Table II.3-1 Comparison of Wave Function Theory methods against the reference values 
(reference CBS) together with minimum and maximum    values (MIN, MAX) 
given for the data results as well as error statistics (MD, MAD). CPC is counter 
poise corrected values, CBS is complete basis set limit 
extrapolations………………………………………………………………………………..119, 120 

Table II.3-2 Comparison of DFT methods with Pearson R and Kendall τ values correlated 
against WFT reference method values, as well as with error statistics MD, 
MAD, RMSD and MIMA…………………………………………………………………………..123 

Table II.3-3 Comparison of SQM, DFT and WFT methods based on the computation time 
they took for completions. Numerical values show the average computation 
time needed for calculating only one interaction energy in our PLI10 data set. 
Values are given in core seconds, i.e. adjusted for the number of CPU cores 
used……………………………………………………………………………………………………...126 

 

Chapter 3.1.3 (Research Stage III) 

Table III.3-1  List of computational methods used for Research Stage III……………………...134 

Table III.4-1 Error statistics for the comparison of optimized interaction energies at QM, 
SQM and MM methods with respect to the high-level (extrapolated 
CCSD(T)/CBS) reference data, presenting MD (mean deviation), MAD (mean 
absolute deviation), RMSD (root mean square deviation) and MIMA 
(maximum error span) values………………………………………………………………..136 

Table III.4-2 Pearson R values for the correlation in between the solvation interaction 
energy contributions ΔEsolv and the polar terms of ΔE at QM, SQM and MM 
levels………………………………………………………………………………………………….…137 

Table III.4-3 Error statistics for SQM and MM methods, compared with QM data for the 
optimized solvation energy contributions, ΔEsolv, with mean deviation MD, 
mean absolute deviation MAD, root mean square deviation RMSD and 
Maximum error span MIMA values, in addition to the Pearson R values for 
the correlations……………………………………………………………………………………..138 



xi 

 

Table III.4-4 Pearson correlation coefficients R, for the comparison of non-optimized 
interaction energies ΔEo, and optimized interaction energies ΔE, interaction 
enthalpies ΔH, entropic contributions –TΔS and free interaction energies ΔG 
for QM, SQM and MM methods………………………………………………………………..140 

Table III.4-5 Pearson correlation coefficients, R, for the comparison of ΔH vs –TΔS and ΔE 
vs –TΔS values with QM, SQM and MM methods, for three specified sets of S22 
and S66…………………………………………………………………………………………………143 

Table III.4-6 Comparison of non-optimized interaction energies ΔEo and optimized 
interaction energies ΔE, interaction enthalpies ΔH, entropic contributions –
TΔS and free interaction energies ΔG for SQM and MM level with the same 
magnitudes at QM level………………………………………………………………………….144 

Table III.4-7 Mean deviation , MD, mean absolute deviation, MAD, root mean square 
deviation, RMSD, maximum error span, MIMA values for QM, SQM and MM 
methods , all including solvation effects, which is compared with high-level 
(extrapolated CCSD(T)/CBS) reference data from references for the original 
geometries which is excluding solvation effects (MDx, MADx, RMSDx, 
MIMAx)……………………………………………………………………………………………….…146 

Table III.4-8 Correlation coefficients, Pearson R, for the comparison of non-optimized 
interaction energies ΔEo, optimized interaction energies ΔE, interaction 
enthalpies ΔH, entropic contributions –TΔS and free interaction energies ΔG 
for the QM, SQM and MM methods, with inclusion of solvation effects. (Parts 
from Table III.4-4, which are the values in case without solvation effects, are 
appended for S22 and S66 comparison purposes and denoted by x)………….147 

Table III.4-9 Comparison of the SQM and MM methods with QM data, non-optimized 
interaction energies ΔEo, optimized interaction energies ΔE, interaction 
enthalpies ΔH, entropic contributions –TΔS and free interaction energies 
ΔG………………………………………………………………………………………………………....149 

Table III.5.1-1 Extrapolation of solvation interaction energy contributions from polar 
interaction energy terms. Polar energy term based extrapolation is denoted 
by P.  If the optimization is done, not with the original level of theory, but with 
respect to the QM data, then it is indicated by P*. a(S22), a(S66) and a(ave) 
are the definitions of parameters optimizations with for sets S22, S66 and 
averaged S22-S66 respectively……………………………………………………………….153 

Table III.5.1-2 Extrapolation of enthalpic and entropic free interaction energy contributions 
from polar and non-polar interaction energy terms. Polar and dispersion 
energy term based extrapolation is denoted by PD, overall energy based 
extrapolation is denoted by E.  If the optimization is done, not with the 
original level of theory, but with respect to the QM data, then it is indicated 
by PD* and E* respectively. a(S22), a(S66) and a(ave) are the definitions of 
parameter optimization for sets S22, S66 and averaged S22-S66 
respectively…………………………………………………………………………………………...154 

Table III.5.1-3 Comparison of the free interaction energies, ΔG, based on extrapolated 
enthalpic entropic and solvation contributions, with the free interaction 
energies, ΔG based on computed enthalpic entropic and solvation 
contributions………………………………………………………………………………………...156 

 

 



xii 

 

Table III.5.1-4  Common scoring functions listed according to the interaction terms included.  
√: indicates that feature is included. 
X: indicates that feature is not included. 
Optional: feature is optional. 
N1: Non-polar contribution (dispersion and exchange repulsion 
contributions) 
N2: Non-polar equivalent contribution (hydrophobic/lipophilic, special π 
stacking terms, surface point interactions etc.) 
P: polar 
C: solvation 
S: entropy 
H: hydrogen bonding 
M: metal interaction………………………………………………………………………………160 

Table III.5.2.1-1 Pearson R values for the VSGB 2.0 and the energy contributions, ΔE: overall, 
ΔEQQ: polar interaction term, ΔEGB: polar solvation term, ΔEvdw: explicit 
dispersion (and repulsion) interaction term and ΔEhydrophobic : hydrophobic 
contributions. All data is based on PDBbind 2009 data reference selected for 
580 protein and ligand complexes……………………………………………………….…162  

Table III.5.2.1-2  Pearson R values for the correlation between VSGB 2.0 energy contributions 
[a], with experimental binding affinities pK and with D2 dispersion energy 
contributions, ΔED2 for 580 protein/ligand complexes from PDBbind 2009 
database. ΔE: overall, ΔEQQ: polar interaction term, ΔEGB: polar solvation 
term, ΔEvdw: explicit dispersion (and repulsion) interaction term, based on 
PDBbind 2009 data reference (70) selected for 580 protein and ligand 
complexes……………………………………………………………………………………………..163 

Table III.5.2.2-1 For the 1297 protein-ligand complexes of the refined set of the 2007 PDBbind 
database, the Pearson R values for the correlation in between the dispersion 
interaction energy ΔED2 and experimental binding affinities pK for several 
commonly used scoring functions…………………………………………………………..165 

 

Chapter 3.2 

Table 3.2-1 List of computational methods used for screening of battery electrolyte 
solvents……………………………………………………………………………………………….167 

 

 

 

 

 

 

 



xiii 

 

Figures 

 
Chapter 2.1.1 

Figure 2.1.1-1 Potential Energy Surface and Corresponding Reaction Coordinate 
Diagram……………………………………………………………………………………………………5 

Figure 2.1.1-2 Comparison of models and their improvement in accuracy based on the 
correlation treatments and the completeness of the basis set…………………….10 

Figure 2.1.1-3 Comparison of WFT (wave function theory), DFT (density functional theory), 
SQM (semi-empirical) and MM (molecular mechanics) methods……………….31 

Figure 2.1.3-1 Graphical representation for the geometric features of hydrogen bonding. 
Illustrates the H-bond distance r and the angles: Θ, Φ, and Ψ for two different 
cases. Figure a) shows an sp2 oxygen-type acceptor atom, whereas Figure b) 
shows sp2 nitrogen or general sp3-type acceptor atoms that require a 
different choice of atoms for the definition of the torsion angle coordinate. 
The out-of-plane “movement” in case a (Ψ′) is actually realized by a combined 
change of the two internal coordinates Φ and Ψ………………………………………..37  

 

Chapter 2.2 

Figure 2.2-1 Basic Illustration of Docking.  Depending on the protein structure, the 
binding site and the ligand structure, the most suitable ligand candidate 
(with a predicted pose) is chosen from the database………………………………….56  

Figure 2.2-2 Basic Illustration of Scoring.  Based on the binding affinities, the most 
suitable candidate is chosen from the database of already docked 
ligands……………………………………………………………………………………………………58 

 

Chapter 2.3 

Figure 2.3-1   Li-ion Battery Working Principle……………………………………………………………..69 

 
Chapter 3.1.1 (Research Stage I) 

Figure I.2-1 Basic Illustration for the Cutting Algorithm. Shown is a schematic 
representation of a protein “P” and a ligand “L” bound to it. The cutting 
algorithm selects all the relevant residues and pocket model (yellow part) is 
obtained……………………………………………………………………………………………….…79 

Figure I.2-2 Descriptive Illustration for the Cutting Algorithm. Green indication points are 
the points where the cutoff distance intersects with the branched structures. 
This is used to define the branches to be tracked along, selected and kept 
afterwards (shown in yellow). This yellow part corresponds to the pocket 
model. Blue line indicates the terminal points of the cut structures. These are 
chosen as the central stops to be able to keep the structures in a uniform 
manner. These are namely the end points of the pockets…………………………....80  



xiv 

 

Figure I.2-3 Model Illustration for the Cutting Algorithm. Green points are drawn to 
illustrate the atoms which are located at an example cutoff distance. Red 
points indicate how a residue can be tracked starting from one of the 
intersecting (one of the green) atoms. By this way, when all greens are found 
out and following that when all red residue ones are identified, then pocket 
is formed…………………………………………………………………………………………………81 

Figure I.2-4  Scaling and Shifting Stage-I………………………………………………………………….….89 

Figure I.2-5  Scaling and Shifting Stage-II……………………………………………………………………90 

Figure I.2-6  Scaling and Shifting Stage-III………………………………………………………………..…91 

Figure I.3-1 Correlation between PM6-DH+ data for benchmark sets generated with 3.0, 
5.0, 7.0, 10.0 Å cutoff distances: a) 3.0 vs. 10.0 Å, b) 5.0 vs 10.0 Å, c) 7.0 vs 10.0 
Å cutoff distances d) 7.0 vs 20.0 Å e) 10.0 vs 20.0 Å. All computations with 
COSMO solvation model………………………………………………………………………...…93 

Figure I.3-2 Correlations of different SQM approaches a) AM1 b) PM6 c) PM6-D d) PM6-
D2 e) PM6-DH2X, each method compared against PM6-DH+. All 
computations are performed at 5.0 Å cutoff distances and involve COSMO 
solvation models……………………………………………………………………………………...99 

Figure I.3-3 Correlation between different DFT functionals and basis sets: a) PBE-
D2/TZVP b) TPSS-D2/TZVP c) BP86-D2/TZVPP, each of them plotted against 
the reference method BP86-D2/TZVP. Computations a) and b) are performed 
at 5.0 Å, c) is performed at 3.0 Å cutoff distances. All cases involve COSMO 
solvation models……………………………………………………………………………………102 

Figure I.3-4 Correlation between the solvation contributions of COSMO and COSMO-RS 
for BP86/TZVP calculations…………………………………………………………………..104 

Figure I.3-5 Correlation between different dispersion schemes for DFT, BP86/TZVP 
methods: a) D3 against D2, b) D33 against D3 is plotted. All calculations are 
done with COSMO solvation models and at 3.0 Å cutoff distances……………..106 

Figure I.3-6 Detailed comparison between SQM (PM6-DH+) and DFT (BP86-D2/TZVP) 
methods: a) Overall Interaction Energy b) dispersion contribution c) 
solvation contribution d) electronic contribution. All computations are with 
COSMO solvation models and at 5.0 Å cutoffs…………………………………………..108 

Figure I.3-7 Detailed comparison between SQM (PM6-DH+), MM (MMFF94) and DFT 
(BP86-D2/TZVP) methods: a) MM (MMFF94) against DFT (BP86-D2/TZVP), 
b) SQM (PM6-DH+) against DFT (BP86-D2/TZVP). All calculations are done 
with 3.0 Å cutoff………………………………………………………………………………….…110 

 

 Chapter 3.1.3 (Research Stage III) 

Figure III.2-1 The representation of the delicate balance of biomolecular interactions. Part 
1: energetic protein-ligand interactions, Part 2: energetic solute-solvent 
interactions, Part 3: entropic protein-ligand interactions, Part 4: entropic 
solute-solvent interactions, Part 5: energy-solvation compensation (ESC), 
Part 6: energy-entropy compensation (EEC), Part 7: energy-entropy 
compensation: EEC with solvent: (solvent EEC), Part 8: entropy-solvation 
compensation (SSC)……………………………………………………………………….129, 151 



xv 

 

Figure III.4-1 Both for S22 and S66, graphical representation of the optimized interaction 
energies (ΔE) for the QM, SQM and MM methods based on Table III.4-1….137  

Figure III.4-2 Both for S22 and S66, solvation interaction energies (ΔEsolv), at QM, SQM and 
MM level………………………………………………………………………………………………..139 

Figure III.4-3 Both for S22 and S66, actual free interaction energies ΔG (without solvation 
energies), at QM, SQM, SQM shifted and MM level………………………………….145  

Figure III.4-4 Both for S22 and S66, actual free interaction energies ΔG (with solvation 
energies at QM, SQM, SQM-shifted and MM level………………………………150, 157  

Figure III.5.1-1 Both for S22 and S66 sets, free interaction energies ΔG (which includes 
solvation effects) at QM, SQM and MM level with SQM and MM enthalpic, 
entropic and solvation energy contributions extrapolated from interaction 
energies (equivalent to Figure III.4-4 only now with extrapolated SQM and 
MM data from Table III.5.1-3)……………………………………………………….……….157  

 

 

 

Graphs 

 
Chapter 3.1.1 (Research Stage I) 

Graph I.3-1 Computational time (in minutes) to calculate the full sets at given cutoff 
distances…………………………………………………………………………………………..…….95 

Graph I.3-2 Average atom size (number of atoms) in the full sets at given cutoff 
distances………………………………………………………………………………………………...96 

Graph I.3-3 Computational time needed for the average atom size (number of 
atoms)………………………………………………………………………………………………….…97 

 

 

 

 

 

 

 

 



xvi 

 

Lists 

 
Chapter 2.1.3  

List 2.1.3-1  Hydrogen Bonding Correction Parameters for Semi Empirical Methods…….39 

List 2.1.3-2   Hydrogen Bonding Correction Parameters for Force Field Methods…………39 

 

Chapter 3.1.1 (Research Stage I) 

List I.2-1   Pearson R and Kendall τ value interpretations………………………………………….85 

 

 

 

 

Schemes 

 
Chapter 2.1.1 

Scheme 2.1.1-1 Overview of Computational Chemistry Methods………………………………………18  

 

Chapter 2.2 

Scheme 2.2-1   Simplified Drug Design Workflow based on a reference picture………….………53 

Scheme 2.2-2 Illustration of the Structure and Ligand Based Drug Design Processes based 
on reference ……………………………………………………………………………………………55  

 

Chapter 3.1.3 (Research Stage III) 

Scheme III.2-1  Schematic representation of balances in Figure III.2-1……………………………130  

Scheme III.4-1  Approach for SQM and QM methods…………………………………………………….…142 

Scheme III.4-2  Approach for MM methods……………………………………………………………………..143 

 

 

 

 

 



xvii 

 

Acronyms 

 

DFT  Density Functional Theory   

FF  Force Field 

HF  Hartree Fock 

MM  Molecular Mechanics 

RRHO  Rigid Rotor Harmonic Oscillator 

SQM  Semi Empirical Quantum Mechanical 

WFT  Wave Function Theory 

 



1 

 

Chapter 1 

 

INTRODUCTION 

 

This thesis consists of two parts based on two distinctive research topics.   

The first part is regarded as the main part of the work, with a title of Computational 
Screening of Bio Materials (Section 3.1). It has three subsections, titled with Research 
Stage I, II and III which are integrated to each other. The overall goal is to have a 
performance comparison between the various computational methods with a focus on 
SQM-DH for scoring protein-ligand interactions, and then by analysing the outcomes, to 
have an investigation of the biomolecular interaction balances among the scoring function 
terms. 

The second (minor) part has the title Computational screening of battery electrolyte 
materials (Section 3.2). The study is about screening molecular electrolyte components 
and then ranking them with respect to their collective properties. Collective properties 
which are evaluated at lower-level methods are compared with the higher level estimator 
results. A short summary on this research will be given at the end of thesis.  
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Chapter 2 

 

LITERATURE SURVEY 

 

2.1   Overview of Computational Chemistry  

A large part of the theoretical chemistry can be regarded as the mathematical description 
of chemistry. Computational chemistry mainly involves the implementation and 
automation of mathematical methods and models for applications to problems in 
chemistry [1]. 

Research with computational chemistry uses advanced tools, theories and models. This 
involves tasks like: developing algorithms, solving equations, sorting, encoding or 
visualizing a large number of data to be used in the models. The need for more CPU cycles, 
bigger memory and disk space increases dramatically, as the size of the examined systems 
increase. Therefore, even though computational chemistry is considered as a cost and 
energy efficient approach for chemical problems compared to the experimental studies, 
it is not without an expense. As a consequence, one of the main research goals in 
computational chemistry is to improve the accuracy of the results while minimizing the 
computational cost [2].  

Computational chemistry continues to serve as an essential tool for wide range of 
applications in various disciplines amongst natural sciences and engineering. 

 

2.1.1   Theoretical Background & Computational chemistry methods    

Schrödinger Equation [3] 

Newton’s second law describes the dynamics of a system in classical mechanics. However, 
electrons are too small particles and they have both wave and particle characteristics. 
Hence, they cannot be described by classical mechanics (like Newton’s law), which is the 
reason why molecular systems are treated by quantum mechanics.  

In order to have a better definition for electrons’ special behaviours, terms that are 
attributed to their wave characteristics have to be considered and introduced.  

With the following terms, 

H : being the Hamilton operator, 
Ψ : denoting the wave function, 
ħ : Planck’s constant divided by 2π 
t : time 
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The time dependent general Schrödinger equation can be given as in the following: 

𝐻𝜓 = 𝑖ħ 
𝜕𝜓

𝜕𝑡
                  (Eqn. 2.1.1-1) 

Based on the time and position dependencies, this equation, can be written as follows: 

𝐻(𝑟, 𝑡)𝜓(𝑟, 𝑡) = 𝑖 ħ
𝜕𝜓(𝑟,𝑡)

𝜕𝑡
               (Eqn. 2.1.1-2) 

For an N-particle system, Hamilton operator, H, contains both kinetic and potential energy 
terms: 

H=T+V                             (Eqn. 2.1.1-3) 

             𝐻(𝑟, 𝑡) = 𝑇(𝑟, 𝑡) + 𝑉(𝑟, 𝑡)                                          (Eqn. 2.1.1-4) 

For bound systems, the potential energy is considered to be independent of time: 

𝑉(𝑟, 𝑡) → 𝑉(𝑟)                                         (Eqn. 2.1.1-5) 

This, in return, affects the Hamiltonian as well, so that it also becomes time-independent: 

𝐻(𝑟, 𝑡) → 𝐻(𝑟) = 𝑇(𝑟) + 𝑉(𝑟)                                 (Eqn. 2.1.1-6) 

These all eventually lead to the point, where, the space variables of the wave function can 
be separated.  Solving the first order differential equations with respect to time, we obtain 
the time dependence factor in the form of a simple factor, e-iEt/ħ, multiplied by the spatial 
wave function ψ.  

𝜓(𝑟, 𝑡) = 𝜓(𝑟)𝑒−𝑖𝐸𝑡/ħ                          (Eqn. 2.1.1-7) 

For time independent problems, this phase factor is omitted, and the other terms are 
considered as a starting point. Therefore, with the following assignment, 

𝜓(𝑟, 𝑡) → 𝜓(𝑟)               (Eqn. 2.1.1-8) 

the time-independent general Schrödinger equation is obtained: 

𝑯(𝒓)𝝍(𝒓) = 𝑬(𝒓)𝝍(𝒓)               (Eqn. 2.1.1-9) 

After this point, with the description of the kinetic and potential energy terms, the nuclear 
and electronic variables can be separated further. 

For an N-particle system, Hamilton operator can be expanded. 

H=T+V                             (Eqn. 2.1.1-3) 

Kinetic energy, T, can be defined as follows:  

𝑇 = ∑ 𝑇𝑖
𝑁
𝑖=1 =  − ∑

ħ2

2𝑚𝑖
∇𝑖

2𝑁
𝑖=1           (Eqn. 2.1.1-10) 

m :particle mass 

Where the inner terms here can be given in the following: 
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∇𝑖
2=  (

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2)                 (Eqn. 2.1.1-11) 

The potential energy, V, in other words the Coulomb potential (which consists of Nuclear–
Electron Attraction, Electron–Electron Repulsion and Nuclear–Nuclear Repulsion) can be 
given as: 

𝑉 = ∑ ∑ 𝑉𝑖𝑗
𝑁
𝑖>𝑗

𝑁
𝑖=1                  (Eqn. 2.1.1-12) 

Born-Oppenheimer Approximations 

Energy terms can be analysed more in detail with respect to electrons and nuclei, 

Nuclei are heavier than electrons, therefore their velocities are much smaller These allows 
for making the assumption that electronic motion and the nuclear motion in molecules 
can be regarded as independent from each other. This is called “the Born-Oppenheimer 
Approximation (BOA)”.  Based on this approximation, a molecular wave function is 
analysed in two approaches: 

1. The nuclear motion is regarded as much slower than electron motion so that the 
nuclear geometry is considered to be fixed. Therefore, the electronic wave function 
only depends on the nuclear positions (in other words, parametrically on the 
nuclear coordinates), but not on their velocities or momentum. The drawback of 
this separation approach is that the coupling between nuclear and electronic 
velocities is neglected. This leads to standard (electronic) QM methods. 

2. The perspective of the first approach above is changed the other way around here 
with the second approach. This time, the energy from the electronic wave function 
is regarded as the potential energy part, whereas the nuclear wave function is 
regarded as the part in motion (e.g., rotation, vibration) i.e.  that it sees a smeared 
out potential from the speedy electrons. The electronic wave function provides a 
Potential Energy Surface (PES), which, with a good approximation shows where 
the nuclei move. This ultimately leads to classical MM methods. 

If nuclei (n) coordinates are denoted as R, and electron (e) coordinates are denoted as r, 
then together with the two main ideas behind the Born-Oppenheimer approximation, the 
Schrödinger equation can be written as follows: 

𝐻𝑡𝑜𝑡𝜓𝑡𝑜𝑡(𝑅, 𝑟) =  𝐸𝑡𝑜𝑡𝜓𝑡𝑜𝑡(𝑅, 𝑟)                (Eqn. 2.1.1-13) 

 

𝐻𝑡𝑜𝑡 =  𝐻𝑒 +  𝑇𝑛                         (Eqn. 2.1.1-14) 

𝐻𝑒 =  𝑇𝑒 +  𝑉𝑛𝑒 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛                (Eqn. 2.1.1-15) 

𝜓𝑡𝑜𝑡(𝑅, 𝑟) =  𝜓𝑛(𝑅)𝜓𝑒(𝑅, 𝑟)                (Eqn. 2.1.1-16) 

 

𝐻𝑒𝜓𝑒(𝑅, 𝑟) =  𝐸𝑒(𝑅)𝜓𝑒(𝑅, 𝑟)                (Eqn. 2.1.1-17) 

(𝑇𝑛 + 𝐸𝑒(𝑅))𝜓𝑛(𝑅) = 𝐸𝑡𝑜𝑡𝜓𝑛(𝑅)               (Eqn. 2.1.1-18) 
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The Born-Oppenheimer approximation is usually regarded as a very useful 
approximation with an efficiency getting better as the nuclei gets heavier for a system.  

When the “electronic” Schrödinger equation is solved for a large number of nuclear 
geometries, then the Potential Energy Surface (PES) can be obtained, and the “nuclear” 
part of the Schrödinger equation can be solved as well.    

The electron–electron repulsion term (which is included the Coulomb potential, V, as 
stated above), prevents the direct solution to the electronic structure.  
 
Then the solution is usually obtained with a convergence method for the electronic 
structure. This is achieved with an iterative scheme, which is known as the self-consistent 
field approximation [3].   
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Potential Energy Surfaces 

The potential energy surface (PES) is the mathematical or graphical relationship between the 
energy of a molecule (or a group of molecules) and its nuclear coordinates.  

The Born–Oppenheimer approximation simplifies the application of the Schrödinger equation 
so that it also explains the concept of molecular shape (geometry) which makes the concept of 
a PES possible [4]. 

PES, is a function for the relevant nuclear degrees of freedom. Assuming that a system has N 
number of nuclei, then N number of atoms can move in three dimensions. This can be defined 
by 3N coordinates x, y, z for each atom giving 3N degrees of freedom. However, 6 of those, 
which describe three translations – in x, y, z directions, and three rotations –along x, y and z 
axes of the molecule are removed. This results in 3N-6 number of independent coordinates at 
the end.  

For N=2, two nuclei are assumed to be on a line with having only two rotational degrees of 
freedom. Therefore, only for N=2 (a linear system), potential energy is a function of 3N −5 
coordinates (linear system) and this leads to a potential energy curve.  

For other N ≥3 values (nonlinear system), energy is a function of 3N −6 coordinates, and this 
leads to a potential energy hypersurface. [2, 5].  

A PES graph can be given as follows:  

 

Figure 2.1.1-1: Potential Energy Surface and Corresponding Reaction Coordinate Diagram [6] 
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Self-Consistent Field Theory [8] 

This approximation replaces the previously mentioned individual electron–electron 
repulsion terms by repulsive interactions between individual electrons and the mean 
electronic field of other electrons that is expressed with the spatially dependent electron 
density. The disadvantage is that, the electron density depends on the each electron 
interacting with it, while the electron interaction with the field depends on the density.   

Hence, an iterative approach is required up until the first assigned input density 
converges to the density which is used to calculate the electron-field interaction. This is 
called Self Consistent Field (SCF) approach. SCF avoids difficult multicentre integrals 
which are describing the electron-electron interactions, and it diminishes a 3n variable 
problem into n single electron function problem with three variables for each.  

Solving for n molecular orbitals within a self-consistent field is known as the Hartree–
Fock solution which will be explained more in detail soon. In order to obtain approximate 
solutions, Pauli Principle and Variational Principle are also followed so that the wave 
functions can be constructed via Slater Determinants. 

Pauli Principle [3] 

There are four electronic quantum numbers defined [7]: the principal quantum number (n), the 
orbital angular momentum quantum number (l), the magnetic quantum number (ml), and the 
electron spin quantum number (ms). According to the Pauli principle, two electrons cannot 
have all the four electronic quantum numbers equal.  

Electrons are fermions with a half integer spin of ½ for which Fermi-Dirac statistics and Pauli 
Exclusion Principle applies.  

Two possible spin states and the spin functions which obey the orthonormality conditions are 
given as follows:    

⟨𝛼|𝛼⟩ =  ⟨𝛽|𝛽⟩ = 1                 (Eqn. 2.1.1-18) 

⟨𝛼|𝛽⟩ =  ⟨𝛽|𝛼⟩ = 0                 (Eqn. 2.1.1-19) 

The corresponding spin functions are denoted α and β, and in in Dirac Notation. 

Orthonormality 

In linear algebra, supposing there are two vectors v1 and v2, if these vectors are  
 

 Unit vectors (vectors of length, 1), and, 
 Orthogonal (perpendicular) to eachother, 

 
Then they these vectors are pronounced as “orthonormal”.  
 

 
The wave functions of electronic systems are required to be completely antisymmetric. In case 
the coordinates and spins of any two particle are exchanged, then the wave function changes 
its sign. 
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Molecular orbitals (Molecular one electron functions) [3] 
 
Molecular orbitals are a product of spatial orbital and spin orbitals (or spin functions denoted 
as α or β, which can be taken as orthonormal).  
The shape of a given molecular orbital includes attraction to all nuclei, and average repulsion 
to all other electrons as well.  
The molecular orbital picture gives a clue about the probability of finding an electron. An 
electron is described by its respective orbital, and hence the total wave function is defined as 
a product of these orbitals. This condition cannot be hold true for the real molecular systems, 
the wave function cannot be separated into distinct parts for each electron.  

 

Variational Principle [3] 

The variational principle states that approximate wave function energy is always less than or 
equal to the exact energy, and this is only valid if the wave function is exact.  

If the exact Schrödinger solution is: 

𝐻𝜓𝑖 = 𝐸𝑖𝜓𝑖                 (Eqn. 2.1.1-19) 

i=0,1,2,….∞ 

This means there are infinitely many solutions, and E0 can be labelled as the lowest. If solutions 
are orthonormal, then,  

                                                         ⟨ψi│ψj⟩=δij                                                              (Eqn. 2.1.1-20) 

𝜓 = ∑ 𝑎𝑖𝜓𝑖
∞
𝑖=0                  (Eqn. 2.1.1-21) 

 

The energy of an approximate wave function can be obtained with dividing the expectation 
value of the Hamilton operator by the norm of the wave function. Then the equation becomes : 

𝐸 𝑤𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
⟨𝜓|𝐻|𝜓⟩

⟨𝜓|𝜓⟩
                (Eqn. 2.1.1-22) 

 

For a normalized wave function, ⟨ 𝜓│ 𝜓⟩ equals to 1, therefore energy of the approximate 
wave function becomes:  

𝐸 𝑤𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ⟨𝜓|𝐻|𝜓⟩         (Eqn. 2.1.1-23) 

 

 

Slater determinant (SD) [9] 

Slater determinants are used to describe the wave functions for a multi-fermionic system that 
satisfies (i.e. Pauli principle by changing sign upon exchange of two electrons or other 
fermions) anti-symmetry requirements. 

 



9 

 

Separation of Variables [3] 
 
For N number of particles, the Hamilton operator H, can be written in independent terms: 

𝐻 = ∑ ℎ𝑖𝑖                                                          (Eqn. 2.1.1-24) 

As also mentioned above with a similar summation notation (Eqn. 2.1.1-21), wave 
functions can also be expanded via one-electron functions. These are called molecular 
orbitals: 

 𝜓 =  ∏ 𝜙𝑖𝑖                      (Eqn. 2.1.1-25) 

and    

 𝐸 =  ∑ 𝜀𝑖𝑖                               (Eqn. 2.1.1-26) 

 
Then, one variable Schrödinger Equation is: 

ℎ𝑖𝜙𝑖 =  ℎ𝑖𝜀𝑖                  (Eqn. 2.1.1-27) 

 
Similarly, the solution to the two-particle problem can then be obtained from the solutions of 
one variable Schrödinger equations.  

H= h1+h2                              (Eqn. 2.1.1-28) 

ψ= ϕ1 ϕ 2                              (Eqn. 2.1.1-29) 

and 
 

E=ε1+ ε2                              (Eqn. 2.1.1-30) 

 

 

Wave function being antisymmetric can be written as follows:  

ψ = −ψ                   (Eqn. 2.1.1-31) 

For N-electrons and N spin orbitals, Slater Determinant can be given as follows [3, 8]: 

𝜙(1,2, … . 𝑁) =  
1

√𝑁!
 |

𝜙1(1) 𝜙2(2)  … . 𝜙𝑛(𝑁)

𝜙1(1) 𝜙2(2)  … . 𝜙𝑛(𝑁)
…  … …

𝜙(1) 𝜙2(2)  … . 𝜙𝑛(𝑁)

|  (Eqn. 2.1.1-32) 

Together with the orthonormality condition (like the Eqn. 2.1.1-20 above), 

⟨𝜙
𝑖
|𝜙𝑗⟩ = 𝛿𝑖𝑗                       (Eqn. 2.1.1-33) 

 
In a Slater determinant, columns denote single-electron wave functions (molecular 
orbitals), whereas rows denote electron coordinates.  
 
 
 



10 

 

Hartree-Fock Approximation  

An exact solution of the Schrödinger equation requires the full treatment of electron 
correlation, therefore more advanced electronic structure methods are used. These 
methods focus on the electrons. The systems are described by the fundamental forces 
acting upon the electrons, which requires a multi-determinant wave function.  

Multi-determinant wave function methods can generate results that systematically 
approach the exact solution of the Schrödinger equation. However, for a many-electron 
system, the dynamics of the system is very complicated and the exact solution of the 
Schrödinger equation cannot be attained. Hence, apart from the expansion of the wave 
function in slater determinants, an expression of the molecular orbitals in basis functions 
is required. 

Basis Set Expansion-Approximation [3] 

The definition of the molecular orbitals in terms of a series of basis functions is known as Basis 
Set Approximation. 
 

𝜙𝑖(𝑟) =  ∑ 𝐶𝛼𝑖𝜒𝛼(𝑟)𝑀 𝑏𝑎𝑠𝑖𝑠
𝛼=1                  (Eqn. 2.1.1-34) 

            Mbasis       : set of basis functions located on the nuclei, 
            ϕ             : each molecular orbital  
            χ              : basis functions,  
            C              : coefficient which relates the atomic orbital α to molecular orbital i. 
 
For molecular based systems, the mentioned basis functions are mostly chosen as atomic 
orbitals.  
 

 

 
Figure 2.1.1-2: Comparison of models and their improvement in accuracy based on the 

correlation treatments and the completeness of the basis set (based on ref. [8]). 
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As, with the SCF approach mentioned above, N-electron Schrödinger equation can be 
viewed as an “n single-electron” case, and the solution of this “n single-electron” is known 
as the Hartree–Fock (HF) solution.  

The disadvantage here is, HF solution does not treat the interactions between the 
electrons, namely, the electron correlations, which in return, leads to some errors.  

There are, however, general approaches which have been developed to treat electron 
correlations. These can be listed as follows and will be reviewed shortly in the following 
sections: 
 

 Many Body Perturbation Theory, 
 Configurational Interaction (CI), 
 Coupled Cluster (CC) theory. 

 

Electron Correlation [8] 

In a system, electrons try to avoid eachother and their motion is correlated accordingly. In a 
fixed orbital state, description of the electrons are missing at this point.  

From this perspective, electron distances predicted by HF methods have to be further away 
from each other in reality, and Electron correlation is defined as the difference in between 
exact electronic energy and a HF solution. 

 
 

Energy of a Slater Determinant & Derivation of Hartree-Fock Equation [3]  

Single determinant trial wave function, together with the variational principle can be used 
to obtain Hartree-Fock equations.  

Denoting  " ∏ 𝜙𝑖𝑖 "  as “Π”, together with the following notations, 

 
1 : identity operator 
A : antisymmetrizing operator 
Pij : generates all possible permutations of two electron coordinates 
Pijk : generates all possible permutations of three electron coordinates 

 H : Hamilton operator, 

The diagonal of the determinant can be written as follows: 

𝜓 = 𝐴[𝜙1(1)𝜙2(2) … . 𝜙𝑁(𝑁)] = 𝐴𝚷               (Eqn. 2.1.1-35) 

𝐴 =
1

√𝑁!
∑ (−1)𝑝 𝑃𝑁−1

𝑝=0                         (Eqn. 2.1.1-36) 

𝐴 =
1

√𝑁!
∑ [𝟏 −  ∑ 𝑃𝑖𝑗 +𝑖𝑗  ∑ 𝑃𝑖𝑗𝑘 −𝑖𝑗𝑘 … ]𝑁−1

𝑝=0           (Eqn. 2.1.1-37) 

AH=HA              (Eqn. 2.1.1-38) 

AA=√N! A             (Eqn. 2.1.1-39) 
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Starting with the equation Eqn. 2.1.1-15, 

𝐻𝑒 =  𝑇𝑒 +  𝑉𝑛𝑒 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛           (Eqn. 2.1.1-15) 

Based on the number of electron indices,  

hi : motion of electron i in the field of all nuclei, 
gij : two electron operator for electron-electron repulsion 
 

The following can be presented: 

𝑇𝑒 = − ∑
1

2

𝑁
𝑖 ∇𝑖

2                (Eqn. 2.1.1-40) 

𝑉𝑛𝑒 = − ∑ ∑
𝑍𝑎

|𝑅𝑎−𝑟𝑖|𝑎
𝑁
𝑖             (Eqn. 2.1.1-41) 

𝑉𝑒𝑒 = ∑ ∑
1

|𝑟𝑖−𝑟𝑗|𝑗>𝑖
𝑁
𝑖                     (Eqn. 2.1.1-42) 

𝑉𝑛𝑒 = ∑ ∑
𝑍𝑎𝑍𝑏

|𝑅𝑎−𝑅𝑏|𝑏>𝑎𝑎            (Eqn. 2.1.1-43) 

Particles are at rest at zero point energy (ZPE) have the following conditions, 

Te=0  &   Vne=Vee=Vnn=0 

Then, the following equations are obtained: 

ℎ𝑖 = −
1

2
∇𝑖

2 − ∑
𝑍𝑎

|𝑅𝑎−𝑟𝑖|𝑎            (Eqn. 2.1.1-44) 

𝑔𝑖𝑗 =  
1

|𝑟𝑖−𝑟𝑗|
             (Eqn. 2.1.1-45) 

𝐻𝑒 = ∑ ℎ𝑖
𝑁
𝑖=1 + ∑ ∑ 𝑔𝑖𝑗 + 𝑉𝑛𝑛

𝑁
𝑗>𝑖

𝑁
𝑖=1           (Eqn. 2.1.1-46) 

Starting from the Eqn. 2.1.1-23, 

𝐸 = ⟨𝜓|𝐻|𝜓⟩             (Eqn. 2.1.1-23) 

together with the descriptions introduced above,  

𝐸 = ⟨𝐴𝚷|𝐻|𝐴𝚷⟩            (Eqn. 2.1.1-47) 

𝐸 = √𝑁! ⟨𝚷|𝐻|𝐴𝚷⟩            (Eqn. 2.1.1-48) 

𝐸 = ∑ (−1)𝑝
𝑝 ⟨𝚷|𝐻|𝐴𝚷⟩              (Eqn. 2.1.1-49) 

for the nuclear repulsion, the operator can be turned into a constant: 

⟨𝜓|𝑉𝑛𝑛|𝜓⟩ = 𝑉𝑛𝑛⟨𝜓|𝜓⟩ = 𝑉𝑛𝑛           (Eqn. 2.1.1-50) 
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For one electron operator, when all molecular orbitals are normalized, 

⟨𝚷|ℎ1|𝚷⟩ = ⟨𝜙1
(1)𝜙2

(2) … . 𝜙𝑁(𝑁)|ℎ1|𝜙1
(1)𝜙2

(2) … . 𝜙𝑁(𝑁)⟩         (Eqn. 2.1.1-51) 

= ⟨𝜙1
(1)|ℎ1|𝜙1

(1)⟩ ⟨𝜙2
(2)|𝜙2

(2)⟩ … . ⟨𝜙𝑁
(𝑁)|𝜙𝑁

(𝑁)⟩         (Eqn. 2.1.1-52) 

= ⟨𝜙1
(1)|ℎ1|𝜙1

(1)⟩ = ℎ1             (Eqn. 2.1.1-53) 

all the matrix elements involving a permutation operator, P, give zero. 

⟨𝚷|ℎ1|𝑃12𝚷⟩ = ⟨𝜙1
(1)𝜙2

(2) … . 𝜙𝑁(𝑁)|ℎ1|𝜙2
(1)𝜙1

(2) … . 𝜙𝑁(𝑁)⟩         (Eqn. 2.1.1-54) 

= ⟨𝜙1
(1)|ℎ1|𝜙2

(1)⟩ ⟨𝜙2
(2)|𝜙1

(2)⟩ … . ⟨𝜙𝑁
(𝑁)|𝜙𝑁

(𝑁)⟩         (Eqn. 2.1.1-55) 

This also equates to zero based on the integral over 2 being an overlap of two different 
orthogonal molecular orbitals. 

In case of a two electron integral, only the identity operator, 1, and the permutation, Pij, 
operators lead to a non-zero result. On the other hand, the three electron permutation 
operator, Pijk, is still going to give a zero from at least one of the overlap integrals between 
two different molecular orbitals.  

This leads to: 

⟨𝚷|𝑔12|𝚷⟩ = ⟨𝜙1
(1)𝜙2

(2) … . 𝜙𝑁(𝑁)|𝑔12|𝜙1
(1)𝜙2

(2) … . 𝜙𝑁(𝑁)⟩         (Eqn. 2.1.1-56) 

= ⟨𝜙1
(1)𝜙2

(2)|𝑔12|𝜙1
(1)𝜙2

(2)⟩ … . ⟨𝜙𝑁
(𝑁)|𝜙𝑁

(𝑁)⟩         (Eqn. 2.1.1-57) 

= ⟨𝜙1
(1)𝜙2

(2)|𝑔12|𝜙1
(1)𝜙2

(2)⟩ =  𝐽12           (Eqn. 2.1.1-58) 

The Coulomb integral, J, explains the classical repulsion between two charge 
distributions, and, 

⟨𝚷|𝑔12|𝑃12𝚷⟩ = ⟨𝜙1
(1)𝜙2

(2) … . 𝜙𝑁(𝑁)|𝑔12|𝜙2
(1)𝜙1

(2) … . 𝜙𝑁(𝑁)⟩       (Eqn. 2.1.1-59) 

= ⟨𝜙1
(1)𝜙2

(2)|𝑔12|𝜙2
(1)𝜙1

(2)⟩ … . ⟨𝜙𝑁
(𝑁)|𝜙𝑁

(𝑁)⟩                    (Eqn. 2.1.1-60) 

= ⟨𝜙1
(1)𝜙2

(2)|𝑔12|𝜙2
(1)𝜙1

(2)⟩ =  𝐾12                        (Eqn. 2.1.1-61) 

the exchange integral, K. 

Based on J12 and K12,  the overall energy becomes: 

𝐸 = ∑ ℎ𝑖
𝑁
𝑖=1 + ∑ ∑ (𝐽𝑖𝑗 − 𝐾𝑖𝑗)𝑁

𝑗>𝑖
𝑁
𝑖=1 +  𝑉𝑛𝑛          (Eqn. 2.1.1-62) 

𝐸 = ∑ ℎ𝑖
𝑁
𝑖=1 +

1

2
∑ ∑ (𝐽𝑖𝑗 − 𝐾𝑖𝑗)𝑁

𝑗=1
𝑁
𝑖=1 +  𝑉𝑛𝑛         (Eqn. 2.1.1-63) 

Factor ½ is for the double sum over all electrons. 

𝐸 = ∑ ⟨𝜙
𝑖
|ℎ𝑖|𝜙

𝑖
⟩𝑁

𝑖 +
1

2
∑ (⟨𝜙

𝑖
|𝐽𝑖|𝜙

𝑖
⟩ − ⟨𝜙

𝑖
|𝐾𝑖|𝜙

𝑖
⟩)𝑁

𝑖𝑗 + 𝑉𝑛𝑛              (Eqn. 2.1.1-64) 

𝐽𝑖|𝜙𝑗(2)⟩ = ⟨𝜙𝑖(1)|𝑔12|𝜙𝑖(1)⟩|𝜙𝑗(2)⟩          (Eqn. 2.1.1-65) 

𝐾𝑖|𝜙𝑗(2)⟩ = ⟨𝜙𝑖(1)|𝑔12|𝜙𝑗(1)⟩|𝜙𝑖(2)⟩          (Eqn. 2.1.1-66) 
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Keeping the molecular orbitals orthonormal, a set of molecular orbitals which gives the 
minimum energy will be obtained. This is classified as a constrained optimization 
problem that will be handled via Lagrange multipliers.  

 

Lagrange Multipliers [3, 10-13] 

Lagrange method is one of the techniques that is used for the constrained optimization 
problems.  

This involves the following assumption:  

 There is a function, f(x1,x2,x3.., xn), which needs  

o to be optimized or  

o its (local or global) maximum or minimum points to be found,  

 This function f(x1,x2,x3.., xn) is subject to another function, g, as a constraint: 
g(x1,x2,x3…,xn) =0, 

 The continuous first partial derivatives of the functions f(x1,x2,x3.., xn) and 
g(x1,x2,x3.., xn) are on the  open set including the curve g(x1,x2,x3.., xn)=0 and that 
∇g≠0 at any point on the curve.  

 

𝐿 = 𝐸 − ∑ 𝜆𝑖𝑗(⟨𝜙𝑖|𝜙𝑗⟩ − 𝛿𝑖𝑗)𝑁
𝑖𝑗           (Eqn. 2.1.1-67) 

𝛿𝐿 = 𝛿𝐸 − ∑ 𝜆𝑖𝑗(⟨𝛿𝜙𝑖|𝜙𝑗⟩  + ⟨𝜙𝑖|𝛿𝜙𝑗⟩ )𝑁
𝑖𝑗 = 0         (Eqn. 2.1.1-68) 

 

𝛿𝐸 = ∑ (⟨𝛿𝜙𝑖|ℎ𝑖|𝜙𝑖⟩ +  ⟨𝜙𝑖|ℎ𝑖|𝛿𝜙𝑖⟩)𝑁
𝑖 +  

1

2
∑ (⟨𝛿𝜙𝑖|𝐽𝑖 − 𝐾𝑗|𝜙𝑖⟩ + ⟨𝜙𝑖|𝐽𝑗 − 𝐾𝑗|𝛿𝜙𝑖⟩ +𝑁

𝑖𝑗

⟨𝛿𝜙𝑗|𝐽𝑖 − 𝐾𝑖|𝜙𝑗⟩ + ⟨𝜙𝑗|𝐽𝑖 − 𝐾𝑖|𝛿𝜙𝑗⟩)               (Eqn. 2.1.1-69) 

𝛿𝐸 = ∑ (⟨𝛿𝜙𝑖|ℎ𝑖|𝜙𝑖⟩ +  ⟨𝜙𝑖|ℎ𝑖|𝛿𝜙𝑖⟩)𝑁
𝑖 +  ∑ (⟨𝛿𝜙𝑖|𝐽𝑗 − 𝐾𝑗|𝜙𝑖⟩ + ⟨𝜙𝑖|𝐽𝑗 − 𝐾𝑗|𝛿𝜙𝑖⟩)𝑁

𝑖𝑗  

                   (Eqn. 2.1.1-70) 

Here, Fock operator is defined, F: 

𝑭𝒊 = 𝒉𝒊 + ∑ (𝑱𝒋 − 𝑲𝒋)𝑵
𝒋            (Eqn. 2.1.1-71) 

Then equation becomes, 

𝛿𝐸 = ∑ (⟨𝛿𝜙𝑖|𝐹𝑖|𝜙𝑖⟩ +  ⟨𝜙𝑖|𝐹𝑖|𝛿𝜙𝑖⟩)𝑁
𝑖          (Eqn. 2.1.1-72) 

Then, the Lagrange function can be written as, 

𝛿𝐿 = ∑ (⟨𝛿𝜙𝑖|𝐹𝑖|𝜙𝑖⟩ +  ⟨𝜙𝑖|𝐹𝑖|𝛿𝜙𝑖⟩)𝑁
𝑖 −  ∑ 𝜆𝑖𝑗(⟨𝛿𝜙𝑖|𝜙𝑗⟩  + ⟨𝜙𝑖|𝛿𝜙𝑗⟩ )𝑁

𝑖𝑗           (Eqn. 2.1.1-73) 
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For a stationary state with orthonormal orbitals, δL=0, is desired.  

Then, with the following equivalence: 

⟨𝜙|𝛿𝜙⟩ = ⟨𝛿𝜙|𝜙⟩∗            (Eqn. 2.1.1-74) 

⟨𝜙|𝐹|𝛿𝜙⟩ = ⟨𝛿𝜙|𝐹|𝜙⟩∗           (Eqn. 2.1.1-75) 

This becomes, 

𝛿𝐿 = ∑ ⟨𝛿𝜙𝑖|𝐹𝑖|𝜙𝑖⟩
𝑁
𝑖 −  ∑ 𝜆𝑖𝑗  ⟨𝛿𝜙𝑖|𝜙𝑗⟩𝑁

𝑖𝑗 +  ∑ ⟨𝛿𝜙𝑖|𝐹𝑖|𝜙𝑖⟩∗𝑁
𝑖 −  ∑ 𝜆𝑖𝑗 ⟨𝛿𝜙𝑖|𝜙𝑗⟩

∗𝑁
𝑖𝑗 = 0 

                    (Eqn. 2.1.1-76) 

∑ (𝜆𝑖𝑗 − 𝜆𝑗𝑖
∗ )𝜆

𝑖𝑗 ⟨𝛿𝜙𝑖|𝜙𝑗⟩ = 0           (Eqn. 2.1.1-77) 

 

Lagrange multipliers being the elements of a Hermitian Matrix, thus, the following can be 
written: 

𝜆𝑖𝑗 = 𝜆𝑗𝑖
∗              (Eqn. 2.1.1-78) 

Hermitian Matrix [14, 15] 

If a matrix is self-adjoint, which means, if 

 A=(aij) is a defined matrix, then it is called Hermitian matrix in case it holds the following 
condition: 

 A=AH ; where AH denotes the conjugate transpose. 

 

Then finally, Hartree-Fock equation is obtained: 

𝑭𝒊𝝓𝒊 = ∑ 𝝀𝒊𝒋𝝓𝒋
𝑵
𝒊                (Eqn. 2.1.1-79) 

Equation can be simplified further via taking the Lagrange multipliers diagonal, thus, 
λij→0 and λii→ε 

Special set of molecular orbitals, called canonical orbitals, are obtained, hence Hartree-
Fock equation can also be shown as:    

𝐹𝑖𝜙𝑖
′ = 𝜀𝑖𝜙𝑖

′               (Eqn. 2.1.1-80) 

 

So from this point on, if we also apply the basis set approximation by expanding the 
molecular orbitals,  

𝜙𝑖 = ∑ 𝑐𝛼𝑖𝜒𝛼
𝑀
𝛼               (Eqn. 2.1.1-81) 

then the Hartree-Fock equation becomes 

𝐹𝑖 ∑ 𝑐𝛼𝑖𝜒𝛼
𝑀
𝛼 = 𝜀𝑖 ∑ 𝑐𝛼𝑖𝜒𝛼

𝑀
𝛼              (Eqn. 2.1.1-82) 
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For a closed shell system, multiplying this equation with a specific basis function and then 
integrating leads to the Roothan-Hall equation: 

With: 

F: Fock matrix elements, 

𝐹𝛼𝛽 = ⟨𝜒𝛼|𝐹|𝜒𝛽⟩                     (Eqn. 2.1.1-83) 

S: matrix containing overlap elements between basis functions: 

𝑆𝛼𝛽 = ⟨𝜒𝛼|𝜒𝛽⟩                   (Eqn. 2.1.1-84) 

The result is the Fock equation in the atomic orbital basis: 

𝑭𝑪 = 𝑺𝑪𝜺                    (Eqn. 2.1.1-85) 

To expand further,  

⟨𝜒𝛼|𝐹|𝜒𝛽⟩ = ⟨𝜒𝛼|ℎ|𝜒𝛽⟩ + ∑ ⟨𝜒𝛼|𝐽𝑗 − 𝐾𝑗|𝜒𝛽⟩𝑜𝑐𝑐.𝑀𝑂
𝑗                                            (Eqn. 2.1.1-86) 

= ⟨𝜒𝛼|ℎ|𝜒𝛽⟩ + ∑ (⟨𝜒𝛼𝜙𝑗|𝑔|𝜒𝛽𝜙𝑗⟩ − ⟨𝜒𝛼𝜙𝑗|𝑔|𝜙𝑗𝜒𝛽⟩)𝑜𝑐𝑐.𝑀𝑂
𝑗                        (Eqn. 2.1.1-87) 

= ⟨𝜒𝛼|ℎ|𝜒𝛽⟩ + ∑ ∑ ∑ 𝑐𝛾𝑗𝑐𝛿𝑗(⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛿𝜒𝛽⟩)𝐴𝑂
𝛿

𝐴𝑂
𝛾

𝑜𝑐𝑐.𝑀𝑂
𝑗     (Eqn. 2.1.1-88) 

= ⟨𝜒𝛼|ℎ|𝜒𝛽⟩ + ∑ ∑ 𝐷𝛾𝛿(⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛿𝜒𝛽⟩)𝐴𝑂
𝛿

𝐴𝑂
𝛾                        (Eqn. 2.1.1-89) 

𝐷𝛾𝛿 =  ∑ 𝑐𝛾𝑗𝑐𝛿𝑗
𝑜𝑐𝑐.𝑀𝑂
𝑗                                        (Eqn. 2.1.1-90) 

𝐹𝛼𝛽 = ℎ𝛼𝛽 +  ∑ 𝐺𝛼𝛽𝛾𝛿𝛾𝛿 𝐷𝛾𝛿                          (Eqn. 2.1.1-91) 

𝐹 = ℎ + 𝐺. 𝐷                                  (Eqn. 2.1.1-92) 

G.D= contraction of the D matrix with four dimensional G tensor 

 

Total energy is: 

𝐸 = ∑ ⟨𝜙
𝑖
|ℎ𝑖|𝜙

𝑖
⟩𝑁

𝑖 +
1

2
∑ (⟨𝜙𝑖𝜙𝑗|𝑔|𝜙𝑖𝜙𝑗⟩ − ⟨𝜙𝑖𝜙𝑗|𝑔|𝜙𝑗𝜙𝑖⟩)𝑁

𝑖𝑗 + 𝑉𝑛𝑛         (Eqn. 2.1.1-93) 

 

𝐸 = ∑ ∑ 𝑐𝛼𝑖𝑐𝛽𝑖⟨𝜒𝛼|ℎ𝑖|𝜒𝛽⟩𝑀
𝛼𝛽

𝑁
𝑖 +

1

2
∑ ∑ 𝑐𝛼𝑖𝑐𝛾𝑗𝑐𝛽𝑖𝑐𝛿𝑗(⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛽𝜒𝛿⟩ −𝑀

𝛼𝛽𝛾𝛿
𝑁
𝑖𝑗

⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛿𝜒𝛽⟩) + 𝑉𝑛𝑛                       (Eqn. 2.1.1-94) 

 

𝐸 = ∑ 𝐷𝛼𝛽ℎ𝛼𝛽
𝑀
𝛼𝛽 +

1

2
∑ 𝐷𝛼𝛽𝐷𝛾𝛿(⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛿𝜒𝛽⟩)𝑀

𝛼𝛽𝛾𝛿 + 𝑉𝑛𝑛          

        (Eqn. 2.1.1-95) 

𝐸 = ∑ 𝐷𝛼𝛽ℎ𝛼𝛽
𝑀
𝛼𝛽 +

1

2
∑ (𝐷𝛼𝛽𝐷𝛾𝛿 − 𝐷𝛼𝛿𝐷𝛿𝛽)𝑀

𝛼𝛽𝛾𝛿 ⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛽𝜒𝛿⟩ + 𝑉𝑛𝑛         (Eqn. 2.1.1-96) 
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⟨𝜒𝛼|ℎ|𝜒𝛽⟩ = ∫ 𝜒𝛼(1) (−
1

2
∇ 

2
) 𝜒𝛽(1)𝑑𝑟1 + ∑ ∫ 𝜒𝛼(1)

𝑍𝑎

|𝑅𝑎−𝑟1|
𝜒𝛽(1)𝑑𝑟1𝑎          (Eqn. 2.1.1-97) 

⟨𝜒𝛼𝜒𝛾|𝑔|𝜒𝛽𝜒𝛿⟩ =  ∫ 𝜒𝛼(1)𝜒𝛾(2)
1

|𝑟1−𝑟2|
𝜒𝛽(1) 𝜒𝛿(2) 𝑑𝑟1𝑑𝑟2                  (Eqn. 2.1.1-98) 

 

This equation can also be written as:  

∫ 𝜒𝛼(1)𝜒𝛾(2)
1

|𝑟1−𝑟2|
𝜒𝛽(1)𝜒𝛿(2)𝑑𝑟1𝑑𝑟2 = (𝜒𝛼𝜒𝛾|𝜒𝛽𝜒𝛿)                   (Eqn. 2.1.1-99) 

Ordering of the function shown in electron indices is called physicist’s notation.  

 

In a similar fashion, this time gathering the electrons at different parts, it is called 
chemist’s (Mulliken) notation. 

∫ 𝜒𝛼(1)𝜒𝛽(1)
1

|𝑟1−𝑟2|
𝜒𝛾(2)𝜒𝛿(2)𝑑𝑟1𝑑𝑟2 = ⟨𝜒𝛼𝜒𝛽|𝑔|𝜒𝛾𝜒𝛿⟩                (Eqn. 2.1.1-100) 
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Concluding Remarks 

From the methodology point of view, the following Scheme 2.1.1-1 can be followed. 

 

Scheme 2.1.1-1: Overview of Computational Chemistry Methods  

 

Schrödinger Equation

Born-Oppenheimer (BO) Approximation

Electronic

Hartree-Fock 
equations

Convergence to 
better solution of 

Schrödinger 
equation

Advanced ab initio 
methods (WFT)

Electron Correlation 
Treatment

i- Many Body Perturbation 
Theory 

ii- Configurational 
Interaction (CI)

iii- Coupled Cluster (CC) 
Theory

(current) Density 
Functional Theory (DFT)

semi-empirical 
methods

QM/MM

Nuclear

Force-Field

(FF)

Molecular 
Mechanics

(MM)

. 

. 

. 

 

Systematic      Heuristic 
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BO approximation eventually leads either to Quantum Mechanical (QM) or Force-Field 
(FF) methods. Quantum mechanical methods are also varied within eachother after the 
Hartree-Fock (HF) equations.  

HF model is considered as an important stage which puts the electronic structure 
methods into two main categories:  

 the models which are aimed to converge to the exact solution of the Schrödinger 
equation (ab initio methods), and,  

 the semi empirical models.  
 

Ab initio methods also have two related sub categories:  

 advanced ab initio methods (in other words, Wave Function Theory (WFT) 
methods), and,  

 Density Functional Theory (DFT) methods.  
 

Wave function theory (WFT) makes use of HF solutions by including electron correlations. 
As it is mentioned previously, electron correlation treatments are present and they can 
be listed as follows: Many Body Perturbation Theory, Configurational Interaction (CI) and 
Coupled Cluster (CC) Theory. 

Density Functional Theory (DFT) on the other hand, is also derived from first principles, 
but it can be considered as an improvement on HF theory, since DFT is based on the 
electron density of the N-particle system instead of wave functions.  

Practically today’s Kohn-Sham DFT methods work with orbitals like HF does. DFT is an 
independent-particle model, and it is computationally comparable to HF, but it provides 
much better results.  

It is shown by Hohenberg and Kohn [3, 8, 16] that, for DFT, the energy of a system is a unique 
functional of its electron density. On the other hand, the accuracy of the DFT methods are 
based on the quality of the exchange-correlation functionals. One important disadvantage 
of DFT is that, there is no systematic approach for them in order to improve their results 
towards the exact solution of the Schrödinger equation.  

Semi-empirical methods are derived from the HF model by neglecting all the integrals 
which involve more than two nuclei during the construction of the Fock matrix. The 
success of this method relies on the ability of turning the remaining integrals into the 
parameters, so that these parameters try to fit the molecular energies and geometries to 
the experimental data. Therefore, SQM is computationally much more efficient than the 
ab initio HF methods, while it being limited to systems, for which the parameters exist. 

In general, with a good computing system, QM methods are known to be practical with 
their computational costs for the systems which have maximum few hundred number of 
atoms.  

There are also hybrid QM/MM and methods which combine a Quantum mechanical 
approach with another lower level theory approach (i.e. like MM: Molecular Mechanics), 
and these type of methods are also often used for large systems nowadays.  



20 

 

Force-Field Methods [8]  
 
A nuclear based description of a system is more advantageous especially when the 
electron transfer is not critical for a system, but instead the simulation of a structural 
property or a dynamic response of a system is more of a concern. In addition, with this 
approach, larger systems can be simulated for longer time scales as well. 
   
Force-fields methods are convenient for these purposes. They can track both: 

 the forces in between the individual atoms,  

 intra and intermolecular forces in between molecules. 
 

 

The potential energy of the Force-Fields contains both intra and intermolecular forces: 

Intra molecular Forces: 

The contributions of the intra–molecular interactions to the potential energy are the 
result of the changes in the bond length, bond angle and torsion angle from their 
‘standard’ positions. 

Following terms take place in the equations: 

 calculated bond length: ri  & a universal bond length for specific type of bond r0 

 calculated bond angle θi  & universal bond angle θ0  

 calculated torsion angle φi & universal torsion angle φ0  
 

There are also empirical coefficients for the fit between experimental bond lengths, as KB, 
the bond angles, as Kθ and for torsion angles, as Ci. 

The bond length potential is often a parabolic equation based on Hooke’s law. 

Bond Length: 

𝑉𝑟 = ∑
1

2
𝐾𝐵(𝑟𝑖 − 𝑟𝑜)2𝑁𝑚−1

𝑖=1                 (Eqn. 2.1.1-101) 

Bond angle: 

𝑉𝜃 = ∑
1

2
𝐾𝜃(𝜃𝑖 − 𝜃𝑜)2𝑁𝑚−2

𝑖=1                 (Eqn. 2.1.1-102) 

Torsion angle: 

𝑉𝜙 = ∑ ∑ 𝐶𝑖(𝑐𝑜𝑠𝜙𝑖)𝑗𝑝
𝑗=0

𝑁𝑚−3
𝑖=1                 (Eqn. 2.1.1-103) 
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Intermolecular Forces: 

These include electrostatic dispersive and repulsive forces. The van der Waals 
interactions are been modelled via Lennard–Jones [8, 17-22], Morse and Buckingham type 
potentials [8, 23].  

Coulombic: 

𝑉𝐶 = ∑ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1                  (Eqn. 2.1.1-104) 

Non-polar: 

𝑉LJ =
𝐴𝑜

𝑟12
−

𝐵𝑜

𝑟6
 ; Lennard-Jones                (Eqn. 2.1.1-105) 

𝑉exp = 𝐴𝑒−𝐵𝑟  ; Exponential                (Eqn. 2.1.1-106) 

𝑉B = 𝐴𝑒−𝐵𝑟 −
𝐶6

𝑟6
; Buckingham                (Eqn. 2.1.1-107) 

qi    :Charges on the atom i 
ε   : the dielectric constant of the medium  
A0, BO, A1 and C : Fitting coefficients 
 

Then, the total potential energy VT of the system (addition of intra and intermolecular 
forces) can be given as follows: 

VT = Vr + Vθ + Vφ + VC + VLJ                 (Eqn. 2.1.1-108) 

Force-field methods provide 

 the potential energy which is used to carry out energy minimization to identify the 
most stable structures,  

 Monte Carlo simulations to determine the properties of equilibrated systems, and, 

  Molecular Dynamics simulations to follow the dynamics of the system. 
 

It needs to be emphasized that the accuracy of the most atomistic simulations is highly 
dependent on the accuracy and applicability of the force field that has been developed, 
and there are very good results achieved with this approach in computational chemistry. 

 

Advanced Ab Initio Methods [3, 8]  
 
As stated above, HF solutions are approximate solutions to the exact Schrödinger 
equation. Instead of a direct electron-electron interaction solution, HF replaces the terms 
with a mean field approach (which is without a correlation). Therefore, there is a 
difference in between the exact solution and the approximate solution of the Schrödinger 
equation. This difference is named as the correlation energy. There are multi-reference 
methods and standard correlation methods. Standard correlation methods are explained 
in the following: 
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Advanced Ab Initio Methods – Electron Correlation Treatments [3, 8] 

I. Many Body Perturbation Theory  
 
This approach treats the configurational interactions as small perturbations to the 
HF Hamiltonian. This is expressed as: 
 

𝐻 = 𝐻𝑜 + 𝜆𝐻′                  (Eqn. 2.1.1-109) 
 

Ho : reference HF Hamiltonian  
λ : variable describing the relative degree of perturbation  
H’ : small perturbation 

 
The perturbation is a consequence of the constructs of true Hamiltonian and this 
is equivalent to the nuclear attraction and electron repulsion terms. In a Taylor 
Series expansion, energy and wave function can be expressed as follows: 
 

𝐸 = 𝜆0𝐸0 + 𝜆1𝐸1 + 𝜆2𝐸2 + 𝜆3𝐸3 + ⋯       (Eqn. 2.1.1-110) 
 

𝜓 = 𝜆0𝜓0 + 𝜆1𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3 + ⋯       (Eqn. 2.1.1-111) 
 

ψ0 : unperturbed solution of the wave function-from the H0 
Hamiltonian 

E0 : unperturbed solution of the energy-from the H0 Hamiltonian 
E1, E2, E3 : higher order corrections to the energy 
ψ1, ψ2, ψ3 : higher order corrections to the wave function 

 
Examples include:  

 Møller–Plesset (MP) perturbation theory: The reference of the unperturbed 
Hamiltonian operator is obtained by the sum over Fock operators.  

 MP2: a low perturbation order. MP2 mostly recovers 80–90% of the 
correlation energy.  

 
 

II. Configurational Interaction (CI)  
 
CI methods treat the trial wave function, ψ, as a linear combination of the Hartree 
Fock wave function, ψo, and the virtually excited wave functions, ψ1, ψ2, ψ3, etc.  
Hence, based on the variational principle, which enables the optimization of the 
coefficients, the general solution is expressed as: 
 

ψ = Co ψo+C1 ψ1+C2 ψ2+C3 ψ3+…                (Eqn. 2.1.1-112) 
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Trial wave function, ψ, might include the exchange of one or more electrons from 
the occupied into unoccupied orbitals: 
  

 Single (S) 
 Double (D) 
 Triple (T) excitations, respectively.   

 
Then the full equation becomes: 
 

𝜓𝐶𝐼 = 𝐶𝑜𝜓𝑆𝐶𝐹 + ∑ 𝐶𝑆𝜓𝑆𝑆 + ∑ 𝐶𝐷𝜓𝐷𝐷 + ∑ 𝐶𝑇𝜓𝑇𝑇 + ⋯       (Eqn. 2.1.1-113) 
 

CS, CD and CT: coefficients for singly, doubly, triply excited states. 
 
With these additions, the wave function, ψ, now has the parts both from the HF 
determinant, ψo , and other possible determinants.   
 
Coefficients for each state (like: CS, CD, etc …) can be variationally optimized by 
minimizing the energy.  In principle, solutions should reach to an accurate solution 
as the number of excitations do increase. In such a case, within the limit of the basis 
set expansion, full-CI provides exact solutions beyond Hartree-Fock.  However, 
full-CI calculations are only possible for very small systems because of the 
computational costs, and truncated CI is not size consistent. 
 
 

III. Coupled Cluster (CC) theory  

 

A size consistent way of adding determinants can be achieved by coupled cluster 
theory. 
 
Since single excitations (S) do not extend the HF solution for the energy, the 
truncation level is usually at the double (D) excitations. The addition of the singles 
to the doubles improve the solution, and this is named as CCSD (Coupled Cluster 
Singles and Doubles).  
 
The expansion until the fourth degree (quadruple) excitations are performed only 
for very small systems (3 to 5 atoms) because of the demanding computational 
costs. 
  
In comparison to the full CI, the correlation treatment levels based on their 
accuracy can be given as follows:  
 

HF < MP2 < CCSD < CCSD(T) < CCSDT << Full CI 
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Concluding Remarks 
 

Accurate predictions of the properties are mostly pronounced to be provided by higher 
level CC calculations. With a high CPU cost, it is reported that, the accuracy is reached 
within: 

 1% for structure determination  

 1 kcal/mol for reaction energies and enthalpies,  

 to 2 kcal/mol for free energies, and, 

 less than 2 pKa for acid strengths.  
 

Scaling of the computational time [24] 
 
If, 
       N         : is the number of orbitals or number of electrons 
       x          : is an exponent which usually equals to or larger than 3. 
 
Then, for most quantum mechanical methods, the computational time tCPU is proportional to a 
certain power of the system size; Nx, and thiscan be denoted as : O(Nx) 
  

 
When the different WFT methods are compared, their scaling can be given as follows: 
  

Name Scaling 

HF O(N4) 

MPn O(Nn+3) 

CCSD  O(N6) 

CCSD(T) O(N7) 

CCSDT O(N8) 

CCSDTQ O(N10) 

Table 2.1.1-1: Scaling of CI methods [3] 

 
 
Then the order can be listed as: 

 
HF << MP2 < CISD < MP4 (SDQ) ~ CCSD < MP4 < CCSD (T) 
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Density Functional Theory [3, 8] 
 
Density functional theory is often counted as an “ab initio” type of method since it is 
derived from the first-principles and that it does not require any adjustable parameters 
at all.  
 

 Hohenberg and Kohn proved that the ground-state electronic energy for a system 
is a unique functional of its electron density [16]. In other words, it is shown that, 
there is one-to-one correspondence between the electronic density of a system and 
the energy. The exact correspondence is unfortunately not known. 
 

 Kohn-Sham theory provides the kinetic energy with an assumption of non-
interacting electrons. The difference between the exact kinetic energy and the 
Kohn-Sham theory kinetic energy is small. This remaining kinetic energy 
difference is expressed as the the exchange-correlation term (Exc [ρ]).  

 
As a result, general DFT equation can be given as follows: 
 

𝐸𝐷𝐹𝑇[𝜌] = 𝑇𝑆[𝜌] + 𝐸𝑛𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌]         (Eqn. 2.1.1-114) 
 
 
DFT method has usually scaling as O(N3) to O(N4), but lower scaling algorithms are 
available.  DFT accuracy is not as high as the higher level ab initio wave function methods, 
but it is much better than HF. 
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Hohenberg-Kohn (H-K) Theorem Proof by Contradiction [3] 
 
For N nuclei and electrons, electronic Hamiltonian is: 
 

𝐻𝑒 = − ∑
1

2
∇𝑖

2

𝑁𝑒𝑙𝑒𝑐

𝑖=1

− ∑ ∑
𝑍𝐴

|𝑅𝐴 − 𝑟𝑖|

𝑁𝑛𝑢𝑐𝑙𝑒𝑖

𝐴=1

+

𝑁𝑒𝑙𝑒𝑐

𝑖=1

∑ ∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑁𝑒𝑙𝑒𝑐

𝑗>1

+

𝑁𝑒𝑙𝑒𝑐

𝑖=1

∑ ∑
𝑍𝐴𝑍𝐵

|𝑅𝐴 − 𝑅𝐵|

𝑁𝑛𝑢𝑐𝑙𝑒𝑖

𝐵=𝐴

𝑁𝑛𝑢𝑐𝑙𝑒𝑖

𝐴=1

 

                                                                               
                                                                                                                  (Eqn. 2.1.1-115) 
 
H-K theorem can be proved by contradiction based on the following (wrong) 
assumption: 
 
Assuming, if there are two external potentials( for example from nucleis) , Vext and Vext’, 
resulting in the same electron density (ρ), then these two external potentials lead to 
two different Hamiltonians, H and H’, where two lowest wave functions can be 
demonstrated as ψ and ψ’ too. Due to the variational principle, and also first taking ψ’ 
as an approximate wave function for H, and then ψ as for H’, the following is obtained:  
 
                             ⟨𝜓′|𝐻|𝜓′⟩ > 𝐸0                                                          (Eqn. 2.1.1-116) 
 

                             ⟨𝜓′|𝐻|𝜓′⟩ + ⟨𝜓′|𝐻 − 𝐻|𝜓′⟩ > 𝐸0                      (Eqn. 2.1.1-117) 
 
                              𝐸0

′ + ⟨𝜓′|𝑉𝑒𝑥𝑡 − 𝑉𝑒𝑥𝑡
′ |𝜓′⟩  > 𝐸0                                   (Eqn. 2.1.1-118) 

 
                              𝐸0

′ + ∫ 𝜌(𝑟) (𝑉𝑒𝑥𝑡 − 𝑉𝑒𝑥𝑡
′ )𝑑𝑟 > 𝐸0                      (Eqn. 2.1.1-119) 

 
                              𝐸0 − ∫ 𝜌(𝑟) (𝑉𝑒𝑥𝑡 − 𝑉𝑒𝑥𝑡

′ )𝑑𝑟 > 𝐸0
′                       (Eqn. 2.1.1-120) 

 
Adding the inequalities, one gets: 
                              𝐸0

′ + 𝐸0 >  𝐸0
′ + 𝐸0                                            (Eqn. 2.1.1-121) 

which contradicts the assumption. 
 
This is explained as having a one to one correspondence in between electron density 
and nuclear potential, and also with the Hamiltonian and the energy, so energy is a 
unique functional of electron density E[ρ]. 
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Methods for Larger Systems [8, 25]  
 
In general, for the molecules with sizes around 1000 atoms, molecular orbital calculations 
are easily managed with SQM types. However, for larger molecules the only option is to 
use the MM methods. At this point some alternatives were developed, which can be listed 
as follows: 
 

I. Hybrid QM/MM approaches (to combine QM and MM methods) 
II. Linear scaling algorithms.  

 
 

I. QM/MM Methods 
 
With this hybrid approach, reaction environment is divided into two different 
sections that are treated with different level of theories.  
 
For the atoms that are in the actual reaction zone (this zone can be named as 
“core”), the electronic processes are assumed to be localized in small regions 
and they are treated with QM methods (i.e. DFT, ab initio or semiempirical 
methods based on the accuracy needed), meanwhile, the rest of the atoms that 
are far away can be treated with lower level methods (mostly with the classical 
force-field, MM method).  
Creating a link between these two different approaches is difficult.  
 
However, for a general description, when the following is assigned,  
 

 MM; being the denotation which refers to either Molecular Mechanics 
or another lower level method,  

 QM; Quantum Mechanical method, 
 Core; stands for the atoms that are in the actual reaction zone 
 System; stands for the full system,  

 
Then the energy for a system can be described as follows: 
 
𝐸𝑄𝑀(𝑆𝑦𝑠𝑡𝑒𝑚) = 𝐸𝑄𝑀(𝑐𝑜𝑟𝑒) + 𝐸𝑀𝑀(𝑠𝑦𝑠𝑡𝑒𝑚) − 𝐸𝑀𝑀(𝑐𝑜𝑟𝑒)         (Eqn. 2.1.1-122) 

 
This combination is titled as “QM/MM” methods, which creates a fast and a 
powerful method allowing the simulation of the large systems.  
This method can also be used to increase the accuracy of a particular 
calculation by using high level calculations to describe the central QM core 
region.  

 
II. Linear Scaling 

 
With these type of approaches, the goal is, to obtain a linear scaling of the 
computational effort with system size by exploiting the local character of most 
relevant interactions. 
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Semi-Empirical Methods [3, 25] 
 
The cost of Hartree-Fock methods is mainly based on the number of two-electron 
integrals in the Fock-matrix. Semi-empirical methods reduce the number of these 
integrals and therefore reduce the computational costs. The large majority of semi-
empirical methods consider only s and p functions. 
 
Zero Differential Overlap (ZDO) approximation, is the main assumption of most semi-
empirical methods. This approximation ignores all products of basis functions that 
depend on the same electron coordinates when located on different atoms.  
 
Assuming there are two atoms, A and B, and denoting the atomic orbitals, as μA on centre 
A, and as νB on centre B, then, ZDO approximation is set equal to zero, μA νB =0. This is the 
product of functions on different atoms which are set equal to zero, instead of having an 
integral result. [3] 
 
In order to compensate the approximation that this condition brings, the remaining 
integrals are regarded as parameters, and these parameters are assigned based on 
computational or experimental data.  Due to this, semi-empirical method types mostly 
vary based on these parameters.  
 
While these integral approximations and parameterizations limit the accuracy of the 
semi-empirical methods, at the same time, they make the methods efficient enough to 
model large molecules in a successful manner.  
 
Starting with the previous Eqn. 2.1.1-90 above, 
 

𝐷𝛾𝛿 =  ∑ 𝑐𝛾𝑗𝑐𝛿𝑗
𝑜𝑐𝑐.𝑀𝑂
𝑗                                        (Eqn. 2.1.1-90) 

𝐹𝛼𝛽 = ℎ𝛼𝛽 +  ∑ 𝐺𝛼𝛽𝛾𝛿𝛾𝛿 𝐷𝛾𝛿                        (Eqn. 2.1.1-123) 

denoting the two electron integrals as, 
 

 ⟨𝜇𝜈|𝜆𝜎⟩                    (Eqn. 2.1.1-124) 
 
Then, the Fock matrix for semiempirical can be generally written as follows: 
 

𝐹𝜇𝜈 = ℎ𝜇𝜈 +  ∑ 𝐷𝜆𝛼[⟨𝜇𝜈|𝜆𝜎⟩ − ⟨𝜇𝜆|𝜈𝜎⟩]𝐴𝑂
𝜆𝛼           (Eqn. 2.1.1-125) 

 
ℎ𝜇𝜈 = ⟨𝜇|ℎ|𝜈⟩                        (Eqn. 2.1.1-126) 

 
From this point on, there are approximations for one and two electron parts (i.e. NDDO, 
INDO, CNDO types), and some additional information on semi-empirical methods will be 
given in the following sections.  
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Overview  

To sum up, when MM, DFT and SQM are compared [25]:  
 

 There is about six orders magnitudes [25, 26] of difference in between Molecular 
Mechanics (MM) and Density Functional Theory (DFT) methods (DFT; being a 
part of fully quantum mechanical (QM) methods). 

 
 SQM methods are the simplest electronic structure theory methods. They are less 

robust and usually less accurate than DFT methods, but they are at least 
approximately 1000 times faster in computations.  
 

 When compared with MM methods, SQM methods are about 1000 times slower 
than MM methods, but unlike the classical force fields, they can treat electronic 
effects (i.e. such as polarization effects, chemical reactions and electronic 
excitations).  
 

Therefore, it can be stated that, SQM methods have a place in between DFT and MM 
methods with their realistic electronic structure calculations, together with an acceptably 
good accuracy and capability to treat large systems. This leads to some consequences: 
 

 For example, even though lately DFT methods are also using linear scaling 
approaches which made them applicable for large biomolecular systems, in case of 
a DFT research (i.e. which involves fast pre-optimization of geometries, or high –
throughput screening based in silico optimization studies), SQM methods can be 
used as the initial step for these type of calculations. Then, the rest of the research 
calculations with can be continued with DFT methods.  
 

 SQM methods also use linear scaling type of algorithms (i.e. like MOZYME in 
MOPAC), however, the biggest advantage of the SQM methods is their speed 
compared to the DFT and their accuracy compared to MM methods [27]. 

 
 
The following Table 2.1.1-2 and Figure 2.1.1-3 can be an illustration for this comparison:



 

 

3
0

 

Method Type General Features Advantages Disadvantages 

Molecular 
Mechanics 

 Uses classical physics 
 Relies on force-field with embedded 

empirical parameters 

 Computationally least intensive – fast 
and useful with limited computer 
resources 

 Can be used for molecules as large as 
enzymes 

 Particular force field applicable only for a 
limited class of molecules 

  Does not calculate electronic properties 

 Requires experimental data (or data from ab 
initio methods) for parameters 

  Inaccurate treatment of polarizatıon 

  Usually no bond-breaking possible, which 
means no reactivity 

Semi-Empirical 

 Uses approximation extensively  

 Uses experimentally or theoretically 
derived empirical parameters 

 Uses quantum physics 

 

 Less demanding computationally 
than ab initio methods 

 Capable of calculating transition states 
and excited states 

 Includes polarization effects 

 Can model chemical reactivity 

  Require experimental data (or data from ab 
initio) for parameters 

  Less rigorous than ab initio) methods 

  Fail for unusual compounds 

 DFT 

 uses quantum physics 

 mathematically rigorous 

 few parameters 

 Useful for a broad range of systems 

 Does not depend on experimental or 
theoretical data 

 Capable of calculating transition states 
and excited states 

 includes polarization effects 

 Can model chemical reactivity 

  Computationally more expensive 

WFT 
 Very accurate 

 Useful for a broad range of systems 

 Does not depend on experimental or 
theoretical data 

 Capable of calculating transition states 
and excited states 

 includes polarization effects 

 Can model chemical reactivity 

 More expensive 

Table 2.1.1-2: Comparison of MM, DFT, WFT and semi-empirical methods (based on & inspired from, ref. [28])
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Figure 2.1.1-3: Comparison of WFT (wave function theory), DFT (density functional theory), SQM 
(semi-empirical) and MM (molecular mechanics) methods (based on & inspired from ref. [29]) 
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2. 1. 2 Types of Semi Empirical Quantum Mechanical (SQM) Methods [3,25] 

As it is previously mentioned, from the methodology point of view, semi-empirical 
methods simplify the Hartree-Fock Self Consistent Field-Molecular Orbital (HF-SCF) 
equations with their integral approximations [25].  

There are three approximations made for one and two electron parts. These are, 
 NDDO : Neglect of Diatomic Overlap Approximation 
 INDO : Intermediate Neglect of Differential Overlap Approximation 
 CNDO : Complete Neglect of Differential Overlap Approximation 

 
Since the ZDO (Zero Differential Overlap) approximation already decreases the accuracy, 
the direct application of these NDDO, INDO and CNDO approximations are not resulting 
well either. In order to improve these approximations, some parameters and methods are 
introduced [3]. 
 
In Jensen’s book [3], for improving these NDDO, INDO and CNDO approximations, there are 
three approaches which are nicely described for this purpose. Due to these: 
 

I. Remaining integrals can be calculated from the functional form atomic data. 
II. Remaining integrals can be made into parameters, which are assigned values 

based on a few (usually atomic) experimental data. 
III. Remaining integrals can be made into parameters, which are assigned values 

based on fitting to many (usually molecular) experimental data.  
 
As a result of these approaches, associatively, some methods were developed:  
CNDO/1, CNDO/2, CNDO/S, CNDO/FK, CNDO/BW, INDO/1, INDO/2, INDO/S, SINDO1, 
and MSINDO. 
 
Especially after M. J. S. Dewar combining the approaches II and III, a new class of 
“modified” models have been obtained and these are commonly used afterwards. 
Parameters for these methods are obtained by fitting, and the molecular data used for 
these parametrizations can be listed as: geometries, heats of formation, dipole moments 
and ionization potentials [25, 30-33].   
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The names of these modified models can be briefly listed below: 
 

 MINDO: Modified Intermediate Neglect of Differential Overlap  
(MINDO/1, MINDO/2, MINDO/3) 
 

 Modified NDDO models: 
o MNDO : Modified Neglect of Diatomic Overlap 

(MNDO, MNDOC) 
o AM1 : Austin Model 1 

 a straight re-parametrization of the AM1 method with a much larger 
set of reference data afforded the general-purpose RM1 variant with 
improved results  

o MNDO-PM3 (PM3 in short): Modified Neglect of Diatomic Overlap, 
Parametric Method Number 3 

 With a modified empirical core repulsion function using Pairwise 
Distance Directed Gaussians (PDDG), lead to PDDG/MNDO and 
PDDG/PM3. 

o MNDO/d: MNDO which also includes d orbitals  
 Contributed to the development of PM6 and PM7 

o SAM1 and SAM1D: Semi-ab initio Method 1, again based on NDDO. 
o OMx: orthogonalization models  

(OM1, OM2, and OM3): include orthogonalization corrections in the one-
electron terms of the NDDO Fock matrix to correctly account for the effects 
of Pauli exchange repulsion [25, 34-37].  
 

 
 
Concluding Remarks 
 
MNDO models getting upgraded with d orbitals, and becoming MNDO/d lead to the 
development of PM6 and PM7 methods. The advantage of these PM6 and PM7 methods 
also arises from their capability to cover the whole periodic table elements, and therefore 
enabling them to compute molecular and solid-state properties [25, 38, 39]. 
 
In addition to these above listed traditional semi-empirical methods, which are in other 
words simplified ab initio MO treatments, there are also other methods available and 
popular among biochemical and materials science studies. These are: Semiempirical tight-
binding (TB) versions of DFT methods (DFTB approach), and, the self-consistent charge 
(SCC) DFTB methods [25, 40-43]. 
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2. 1. 3 Enhanced SQM Methods  

For biomolecular interactions, SQM methods have an advantage over Force Field (FF) 
methods by taking the charge transfer and polarization effects into account, while these 
effects are not accurately described with FF methods [44, 45].  
 
Nonetheless, previously, SQM methods had their own problems especially with hydrogen 
bond and dispersion interactions. These interactions are improved with the help of 
various method development studies leading to the “enhanced SQM” methods (SQM-DH, 
D: stands for dispersion, H: stands for hydrogen bonds) [46-49]. The relevant studies are 
briefly listed in Table 2.1.3-1.   
 
 

SQM-DH methods  

Dispersion Correction  

 
Dispersion interactions are improved for SQM-DH methods with the inclusion of the FF 
terms to the empirical hydrogen bonding correction, so that it gets closer to the level of 
DFT-D methods [50]. Similar to the DFT-D methods, SQM-DH methods also have either 
system independent D2-type [51] or system dependent D3-type [52] of coefficients [27, 53]. 
The following equations can be presented [55]:  
 

𝐸𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = −𝑆6 ∑ ∑
𝐶6

𝑖𝑗

𝑅𝑖𝑗
6

𝑁
𝑗 . 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔

𝑁
𝑖                       (Eqn. 2.1.3-1) 

 
Rij : the interatomic distance between atoms i and j. 
Cij6 : the dispersion coefficient for the pair of atoms i and j (calculated from the 

atomic C6 coefficients) 
s6 : scaling factor 
fdamping :damping function 
 

𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔(𝑅𝑖𝑗) =
1

1+𝑒
−𝛼(

𝑅𝑖𝑗
𝑅0−1

)

                           (Eqn. 2.1.3-2) 

 
 

R0 : the sum of the atomic van der Waals radii  
α  : a parameter determining the steepness of the damping function. 

 
Once the correction part is defined, it is added to the main energy. 
 

ESQM-D  =  ESQM + ED                          (Eqn. 2.1.3-3) 
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Hydrogen Bond Correction 
 
Different than the dispersion correction approaches, Hydrogen bond interaction was 
subjected to several suggestions because of its complicated nature. Hobza and co-workers 
[55] approached to the problem in a similar way to the dispersion problem case. They 
introduced a correction that can be added to an unmodified semiempirical calculation.  
 
Zeroth-, first-, second- and third-generation H terms were introduced in detail [27, 56], and 
if the overall effect is described as: 
 

𝐸ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛−𝑏𝑜𝑛𝑑 = 𝑔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ⋅ ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛                               (Eqn. 2.1.3-4) 
 

Ehydrogen-bond : a function that serves for the sterical arrangement of the two 
fragments relative to eachother and positioning of an H atom in 
between them. 

gdistance  : a function based on distance 
horientation : a function based on orientation, 

 
Then, the description of these 0th 1st 2nd and 3rd generation terms are expressed as follows: 
 

𝑔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
0th,1st and  2nd generation

= 𝑓(𝑟𝐻𝐴)                               (Eqn. 2.1.3-5) 

 

𝑔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
3rd generation

= 𝑓(𝑟𝐷𝐴)                                 (Eqn. 2.1.3-6) 

 

ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
0th generation

= 1                                  (Eqn. 2.1.3-7) 

 

ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
1st generation

= 𝑓(Θ)                                     (Eqn. 2.1.3-8) 

 

 ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
2nd generation

= 𝑓(Θ, ϕ, ψ)                                (Eqn. 2.1.3-9) 

 

ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
3rd generation

= 𝑓(Θ, ϕ, ϕ2, ψ, ψ2, 𝑟𝐻𝑋)                            (Eqn. 2.1.3-10) 

 
 

rHA : hydrogen acceptor distance 
rDA : donor acceptor distance 
rHX : hydrogen-electronegative atom distance 
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0th-generation approach: 
 Non-directional terms are added. 

 
1st-generation approach: 

 Directional terms that depend only on the acceptor–hydrogen distance, and,  
 The main (donor–hydrogen–acceptor) angle are introduced. 

 
2nd-generation approach: 

 A secondary (base–donor/acceptor–hydrogen) angle, and , 
 Torsional (base–donor/acceptor–hydrogen) angle are introduced.  

 
3rd-generation approach: 

 Hydrogen-bonds are taken as the interaction between two electronegative atoms 
(X and Y), which is smoothly switched on by the favourable placement of one (or 
more) hydrogen atom(s) in between them.   

 
 
 
REMARKS [27, 56] 
 
1st generation terms were and still are used by some FF methods, but for large systems 
this type is not regarded as advantageous. 
 
The main advantage of 2nd generation terms is the exclusion of unphysical interaction 
contributions which arise for 1st generation terms [53, 57] and was leading to substantial 
problems with geometry optimizations.  
 

In case of the 3rd generation types, the most important part is regarded as the change from 
the use of hydrogen-acceptor distance into a core-core interaction namely by using the 
donor-acceptor distance instead. This approach is therefore more robust, for example 
when it is about a proton transfer.  
 
DH2 hydrogen-bond correction is basically considered as charge-independent between 
two atoms that are regarded as Donor and Acceptor. It weighs this term with a function 
which shows the sterical arrangement of these two relative to eachother and relative to 
the placement of an H atom in between them. 
 
In order to describe the geometric information to model the behaviour (directionality) of 
hydrogen-bonds, the following indications are used in this model: 
 

 A possible hydrogen donor (D) 

 Hydrogen  (H) 

 A possible hydrogen acceptor (A) 
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As also shown in Figure 2.1.3-1, main coordinates are described as [27, 53, 56]: 
 

 Distance between the Hydrogen and the Acceptor,  
H···A 

 Main hydrogen bond angle: involving Donor, Hydrogen, Acceptor and their angle 
in between (Θ), 

D–H···A, and Θ  

 Secondary angle: involves Hydrogen, Acceptor, Acceptor based Atom I, and their 
angle in between (ϕ), 

H···A–R2, angle ϕ; R2 is a donor “base atom” 

 Torsion angle: involving Hydrogen, Acceptor, Acceptor based Atoms I, and the 
angle (ψ) 

H···A–R1–R2, angle ψ 
 
 
 

a) 

 
b) 

 
Figure 2.1.3-1:  Graphical representation for the geometric features of hydrogen bonding. 

Illustrates the H-bond distance r and the angles: Θ, Φ, and Ψ for two different cases. Figure a) 
shows sp2 oxygen-type acceptor atom, whereas Figure b) shows sp2 nitrogen or general sp3-type 

acceptor atoms that require a different choice of atoms for the definition of the torsion angle 
coordinate. The out-of-plane “movement” in case a (Ψ′) is actually realized by a combined change 

of the two internal coordinates: Φ and Ψ. (Based on a figure from ref. [53]) 
 

 



 

38 

 

In DH+ the following approach is applied. 
 
Similar to the descriptions above,  
 

A and B : two donor/acceptor atoms,  
CA and CB  : two element-wise correction parameters respectively.  
ϕ, ϕ2, ψ, ψ2 : Angles can also be used for both of these atoms in a symmetric way. 
rAB  : the interatomic distance between atoms A and B.  
 

 
The obtained term is also corrected with a damping function, fdamp. These can be 
demonstrated as below [56]:  
 

𝐸𝐻−𝑏𝑜𝑛𝑑 =
𝐶𝐴𝐵

𝑟𝐴𝐵
2 ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑓𝑑𝑎𝑚𝑝                             (Eqn. 2.1.3-11) 

 
ℎ𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  cos(Θ𝐴)2 cos(𝜙𝐴)2 cos(𝜓𝐴)2 cos(𝜙𝐵)2 cos(𝜓𝐵)2 𝑓𝑏𝑜𝑛𝑑               (Eqn. 2.1.3-12) 
 

𝑓𝑏𝑜𝑛𝑑 = 1 −
1

1+𝑒
[−60(

𝑟𝑋𝐻
1.2

−1)]
                               (Eqn. 2.1.3-13) 

 

𝑓𝑑𝑎𝑚𝑝 = {
1

1+𝑒
[−100(

𝑟𝐴𝐵
2.4

−1)]
} ⋅ {1 −

1

1+𝑒
[−10(

𝑟𝐴𝐵
7.0

−1)]
}                             (Eqn. 2.1.3-14) 

 

𝐶𝐴𝐵 =
𝐶𝐴+𝐶𝐵

2
                                 (Eqn. 2.1.3-15) 

 
 
Damping function can be selected so that no fitting will be necessary for it. Also a long-
range cutoff can be regarded as a fit parameter.  
 
The following explanation is directly taken from the main reference [50],  
For fdamp, it is:  
 

 “Smoothly switched on between a donor-acceptor distance of 2.3 and 2.5 Å (safe 
choice for the assumption of no H bonds below 2.5 Å), and, 

 Smoothly switched off between 3.5 and 10.5 Å (safe choice for the assumption of 
full H-bond strength up to 3.5 Å and no strength anymore at three times this 
distance).” 

 
And meanwhile for fbond,  
 

 “It brings the correction to zero if the hydrogen wanders away too far from both 
electronegative atoms (with rXH being the smaller one of the two distances rAH and 
rBH) 

  Smoothly switched off between 1.15 and 1.25 Å (safe choice for the assumption of 
a maximum distance of 1.15 for a covalent hydrogen bond).” 
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CA and CB values can be found in the following lists (List 2.1.3-1 and List 2.1.3-2) for semi 
empirical and for force-field methods respectively [50].  
 

Element 
Method 

OM3 PM6 AM1 DFTB 
N -0.05 -0.16 -0.29 -0.21 
O -0.07 -0.12 -0.29 -0.08 

List 2.1.3-1 Hydrogen Bonding Correction Parameters for Semi Empirical Methods 
 
 

Element 
Method 

MM2 MM3 AMBER OPLS OPLSAA MMFF94 

N -0.64 -0.63 -0.21 -0.24 -0.25 -0.21 
O -0.08 -0.17 -0.03 -0.00 -0.00 -0.05 

List 2.1.3-2 Hydrogen Bonding Correction Parameters for Force Field Methods 
 

 
Our Reference Method: PM6-DH+ [27, 50, 56] 
 
PM6-DH+ is a third generation SQM-DH model developed by Korth. It is currently the only 
method where the distinction between the acceptor and donor atoms are skipped to avoid 
many conceptual problems. As a result, there is only one parameter per electronegative 
element left to fit in order to reach a high accuracy level.  
 
Its geometric factor takes into account all available—that is, angular and torsional—
information. Its core/core-term like definition, as well as its element wise 
parameterization (with the corresponding low number of parameters to fit), makes it to 
be generally applicable and well transferable.  
 
PM6-DH+ is implemented in MOPAC2009 [58]. 
 
Within our research, the validity checks for PM6-DH+ method are made with 
experimental data set references, and its performance is compared with other possible 
candidate computational methods.  
 

The names of the commonly used enhanced SQM (D/H) methods are given in the 
following Table 2.1.3-1 together with their specifications. 
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Name of the 
Method 

Developed By Year Additional Specification 

AM1-D Collignon and co-workers [59] 2006  First, mostly unrecognized version of a SQM-D method 

PM3-D & 
independently 

AM1-D 
McNamara and Hillier [54] 2007 

 Independent reimplementation of the SQM-D approach 

OMx(-D) Tuttle and Thiel [60]  2008  Extension of the established OMx methods with D corrections 

PM6-DH 
Rezac and co-workers [55]  

 
2009 

 PM6-DH is the first dispersion and hydrogen-bond corrected SQM method. It never was 
publicly available due to severe technical problems. 

PM6-DH2 
Korth, Hobza and co-workers  

(under supervision of Hobza)[53]  
2009 

 PM6-DH2 is the first robust SQM-DH method readily available in MOPAC [58] from 
MOPAC2009 on and now used by many groups around the world for problems in life 
and materials science [27, 61] 

Approach Wang and Bryce [63]  2009 
 Approach to add MM dedicated hydrogen-bond terms as a QM/MM interface term (in 

addition to the usual dispersions and repulsion terms) was pursued. 

AM1-FS1 Foster and Sohlberg [64]  2010 
 Also makes use of both hydrogen-bond and dispersion terms. 
 Performance is roughly similar to PM6-DH2 

 

PM6-DH+ 
Korth [50]  

 
2010 

 PM6-DH+ allows for proton transfer reactions and uses only 2 fit parameters while not 
losing accuracy in comparison to PM6-DH2. 

 PM6-DH+ is readily available in MOPAC [58]  from MOPAC2009 on, and is now used by 
many groups all over the world for problems in life and materials science [27, 62] 

PM6-DH2X Rezac and Hobza [65]   2011 

 PM6-DH2X includes halogen-bond (X) correction terms, halogen-bond (X) terms, which 
work analogously to hydrogen-terms, but with an opposite sign, as standard SQM 
methods underestimate repulsion in halogen bonds and thus deliver distances too short 
and interaction energies too high [65, 66].  

 Similar corrections were later on also applied to MM methods [67, 68]. 
Higher-level 

theory  
approaches 

Laikov [69]  2011 
 A systematic derivation of SQM parameters from higher level coupled cluster data is 

made. 

PM6-D3H4 Rezac and Hobza [70] 2012 

 PM6-D3H4 includes both improved dispersion corrections terms of D3-type and a new 
hydrogen-bond correction scheme (nevertheless neglecting important terms), and it is 
claimed to have an increased robustness for geometry optimizations and molecular 
dynamics simulations. 

Post-SCF 
correction 

 
Foster and Sohlberg [71]  2012 

 Self-consistent, atomic charge dependent hydrogen bond correction terms. They are 
usually added as post-SCF correction and thus lead to non-variational methods if partial 
charges are used – which is a problem most of all for PM6-DH2 [64]. 
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Table 2.1.3-1: List of Enhanced Semi Empirical Methods 

PM3-D and AM1-D 
models 

Anikin et al. [72]  2012 
 Independent re-implementation of the older models 

corresponding 
GPU-enabled 

algorithms 

Carvalho, Maia, 
And co-workers [73] 

2012 
 This algorithm allowed for a very impressive illustration of the capability of PM6-DH+ 

to identify native protein structures out of large sets of decoy conformations. 
 

PM7 
Stewart [39]  

 
2013 

 PM7 includes dispersion and hydrogen-bond correction terms of mixed PM6-DH2/PM6-
DH+ type directly into the SQM fitting process. 

 Performance for non-covalent interactions is roughly similar to PM6-DH2/DH+ 

 Available in MOPAC [58]  

Polarized 
molecular orbital 

(PMO) 
Truhlar and co-workers [74-76]  

2011 
- 

2014 

 PMO with damped dispersion and orbitals on H atoms for—also hydrogen–bond type–
polarization effects, currently parameterized for H, C, N, O, and S. 

 Benchmark data in comparison to SQM-DH methods is not available. 

Development of 
minimal QM 

models, 
especially  

HF-3c 

Sure and Grimme[77]  2013 

 Comparably slower but supposedly more robust than SQM-DH methods and thus they 
are capable of filling the gap between SQM and DFT methods in terms of cost and 
accuracy. 

 Performance for non-covalent interaction roughly similar to PM6-DH2/DH+. 

PM6-D3H+ 
Korth,Jensen  

and co-workers [78] 
2014 

 PM6-D3H+, is an updated PM6-DH+ model with an improved dispersion corrections of 
D3-type and a more robust (third-generation) H+ term, for an improved performance in 
geometry optimizations and molecular dynamics. 

 Source code freely available on GITHUB [79]. 

MSINDO-D3H+ 
Grimme, Bredow  

and co-workers [80]  
2014 

 MSINDO-D3H+ uses more recent D3-type terms and the above mentioned improved 
implementation of the H+ term by Korth/Jensen for enhancing Bredow’s MSINDO 
approach. 

AM1/d-CB1 
Govender, Naidoo  

and co-workers [81, 82] 
 

2014 
 Includes some d-orbitals and new core-core repulsion terms.  
 Benchmark data in comparison to SQM-DH is not yet available. 
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Concluding Remarks  
 
Based on the latest developments and updates in literature, the following parts from the 
Table 2.1.3-1 can be highlighted as a summary of this section: 
 

 OMx methods are probably the best choice for non-covalent interactions, but as a 
disadvantage, they are limited to first row elements for now. This limited 
applicability unfortunately prevents this method from being available for many 
systems. This results in the preference of several other commonly used methods. 
 

 In that regard, SQM-DH methods are currently the most common approaches for 
many applications, especially where the non-covalent interactions and 
computational costs are the essential concerns.   

 
 
The next section will list the applications of several enhanced semi empirical methods for 
various fields.  
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Applications of the Enhanced Semi Empirical Methods 

 

I. Benchmarking – small biomolecular model systems 

 
Latest significant studies are listed below in Table 2.1.3-2.  
 

Date Studied By Content 
2011 Prenosil  

and co-workers [83]  
Study of hydrogen-bond cooperativity effects with PM6-
DH2 in comparison to MM, DFT and WFT methods.  
 
Outcome: Unlike MM methods, PM6-DH2 performs 
reasonably accurate in comparison to high-level Coupled 
Cluster data. 
 

2012 Rezac  
and co-workers [66] 

Investigation of the performance of their newer PM6-DH2X 
and PM6-D3H4X models for a large number of halogenated 
systems. 
 

2013 Hostas  
and co-workers [84] 

Usage of OMx-D and PM7 to benchmark the performance of 
all these methods for non-covalent interactions including 
conformational changes. 
 

2013 Sedlak  
and co-workers [85]  

Study on large dispersion-dominated biomolecular systems. 
 
Outcome: An excellent price/performance ratio for 
enhanced SQM methods is found. 
 

2014 Li  
and co-workers [86] 

A benchmark study with Hobza’s BEGDB benchmark 
database using several SQM, SQM-DH, DFT, and symmetry-
adapted perturbation theory (SAPT) methods. 
 
Outcome: SQM-based methods are dramatically faster than 
DFT and SAPT methods (and thus readily available for large 
systems), but also that they are somewhat less accurate.  
None of the tested SQM-DH methods was found to be clearly 
superior with respect to the achieved accuracy; the authors 
do not discuss the conceptual advantages and disadvantages 
of the individual methods. 
 

2014 Barberot  
and co-workers [87] 

Benchmark study using their AlgoGen genetic algorithm 
approach for the extensive sampling of the conformational 
space of typical benchmark set systems in order to 
investigate the performance of the PM6-DH+ model. 
 
Outcome: Excellent price/performance ratio, but, several 
spurious minima are found.  

Table 2.1.3-2: List of benchmarking studies on small molecular model systems with enhanced 
semiempirical methods. 
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II. Benchmarking – large biomolecular model systems 
 
Large biomolecular systems require more computational power or faster computational 
methods. From this perspective, the amount of benchmark studies on large systems are 
comparably far less than the benchmark studies on small systems, and some of these are 
tabulated below.  
 
Our first two publications with large biomolecular model systems, which will be further 
explained in Sections 3.1.1 and 3.1.2 (as Research Stage I [89] and II [91]), also belong to this 
category of benchmarking.  
 

Date Studied By Content 
2012 Mikulskis  

and co-workers [88]  
Investigation of the performance of MM and SQM 
methods including (their own versions of) 
dispersion and hydrogen-bond corrections for 
protein–ligand interactions. 
 
Outcome: The importance of empirical 
corrections for SQM methods is highlighted and 
AM1-DH version is suggested as a competitive 
alternative to MM/GBSA calculations. 
 

2013 Yilmazer and Korth [89] PM6-DH+ method’s performance is studied in 
comparison to DFT methods for several hundred 
systematically generated protein–ligand model 
systems from the PDBbind2007 [90] benchmark 
set. 
 
Outcome: An excellent performance of the SQM-
DH method in comparison to DFT-D data is found. 
 

2015 Yilmazer, Korth and  
co-workers [91] 

PM6-DH+ and DFT methods are compared to 
high-level WFT reference data for the smallest 
complexes (from the large biomolecules list of 
their previous study). 
 
Outcome: SQM is performing as well as DFT, 
which in turn performs as well as WFT method. 
 

Table 2.1.3-3: List of benchmarking studies on large molecular model systems with enhanced 
semiempirical methods. 
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III. Benchmarking – interactions in water 
 
Interactions in water or basically solvation effects, and also the proton transfer 
phenomena are important concerns. Proton transfer is possible only with SQM methods 
but not with MM methods. The relevant SQM-DH studies can be listed as follows: 
 

Date Studied By Content 
2013 Bulo  

and co-workers 
[92] 

Focusing on the investigation of QM/MM setup 
parameters, a benchmark of solute–water interactions 
using PM6-DH+ and DFTB in a QM/MM setup is 
published. 
 

2014 Marion  
and co-workers 

[93] 

The performance of OMx-D, PM6-DH2, PM6-DH+, PM6-
D3H4 and PM7 methods are benchmarked amongst 
eachother for the interaction of water with 
hydrophobic groups. 
 
Outcome: A new model is developed, PM3-PIF3 to 
describe systems in aqueous solutions. 
 

2013 Wu  
and co-workers 

[94] 

Special models were 
constructed for OMn, and 
proton-transfer in water.  
 

 
Outcome: These models 
outperform ‘pure’ SQM 
methods, but data for a 
comparison with SQM-DH 
methods is still missing.  
 

2014 Wang  
and co-workers 

[95]  

Special models were 
constructed by AM1-W 
and AM1PGG-W, for 
proton-transfer in water.  
 

Table 2.1.3-4: List of benchmarking studies on water interaction model systems with enhanced 
semiempirical methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

46 

 

IV. Benchmarking – various  
 
There are also other type of benchmarking studies which are worth mentioning.  
 

Date Studied By Content 

2010- 2012 Merz  
and co-workers 

[96-99] 

Propagation of systematic and random errors in the 
computation of protein–ligand interaction energies 
and protein-folding including MM, SQM-DH and DFT 
data. 
 
Outcome: DFT was found to be the best choice, but 
interestingly some MM potentials outperformed 
some (non-enhanced) SQM methods, illustrating the 
need for empirical corrections. 
 

2011-2014 Truhlar  
and co-workers 

[74-76]  

Benchmark study of PM7 amongst other methods, 
and the development of their polarized molecular 
orbital (PMO) method. 
 
Outcome:  PMO2 outperforms PM7 on their set of 
atmospherically relevant compounds. 
 

2010-2013 Raju, Leverentz 
and co-workers 

[100-101]  

Benchmark study involving AM1-D and PM3-D. 
 
Outcome: A sub-optimal performance of SQM-D 
methods for hydrogen bonded systems is found. 
 

Table 2.1.3-5: List of other type of benchmarking studies with enhanced semiempirical methods. 
 

 
V. (Pre-)optimization, dynamical studies, structure refinement, 

conformational searches 
 
There are also other application areas where SQM-DH are used due to their advantageous 
calculation cost and speed. Type of the studies can generally be listed as follows: 
 

 Fast optimization [102-103] and pre-optimization of biomolecular systems with SQM-
DH, prior to higher  level computations [104-105] , 

 Studying SQM-DH as an intermediate level in hybrid systems  (as an example, 
within DFT-D, SQM-DH and MM) [106 ], 

 In dynamical QM/MM calculations, SQM-DH as the QM method [107], 
 SQM-DH based X-ray structure refinement [108]  

o α-helical structures [109] 
 Non-local optimization of molecular structures with SQM-DH, for screening:  

o the conformational space of the FGG tripeptide [110]  
o DNA quadruplex/molecule complexes [111] . 

 Helping the analysis of the experimental data [112-115]  
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VI. Host/guest systems 
 
In addition to pre-optimization, especially for biomolecular interactions, SQM-DH 
methods are valuable tools. When compared to high level method results (like gold 
standard: CCSD (T)/CBS references), their accuracy is good enough together with their 
advantageous computational costs. Then, the arising question is whether SQM-DH 
methods can replace DFT-D methods for this problem.  
 
Several studies on this host/guest category include research on: 

 Complexes [115-120] , 
 Molecular tweezers [121] , 
 Non-covalent complexation [122-126], 
 Supramolecular chemistry [127-128] . 

 
Studies of Hari S. Muddana and Michael K. Gilson so far can be pronounced as the main 
contributions to this class of applications. Some of their studies were about: 

 29 CB7 host-guest systems with PM6-DH+/COSMO based on their ‘minima mining’ 
(M2) approach for predicting binding affinities and found good agreement with 
experiment [129],   

 Blind prediction of 14 CB7 binding affinities within the SAMPL4 challenge [130]. 
 

 
VII. Materials science 
 
SQM-DH methods are also used for investigating: 
 

 Nano systems with including graphite, graphene, fullerenes, nano tubes, DNA 
bases and combinations [131-144], 

 Molecular self-assemblies [145-148] 
 Molecular switches [149]  
 Screening of thousands of compounds for methane storage [150-152] and hydrogen 

storage [153], 
 Adsorption energies on graphene by PM6-DH2 method [154], (as an outcome, the 

accuracy was comparable with DFT-D method and also was in a good agreement 
with experimental studies),   

 Calculation of small molecule adsorption energies on graphene in comparison to 
FF, other SQM and DFT approaches, (as an outcome, PM6-DH+ is found to be the 
most efficient method. Chemical accuracy for PM6-DH+ was comparable to 
temperature-programmed desorption experiments. First tests for the rational 
design of improved graphene surfactants were presented [155].), 

 Other studies where SQM-DH performance had similar results with the DFT-D 
performance [114, 109, 156,157, 158, 138, 139, 148, 159- 164], 

o Sometimes high accuracy was obtained with SQM-DH (PM6-DH2) methods 
as in the interaction of DNA bases with Li@C60 [165]. 

o Sometimes low accuracy was obtained, but usually with older, only 
dispersion corrected AM1-D or PM3-D methods [166-168].  
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VIII. Other Applications 
 
Due to latest developments, there are also studies where SQM-DH methods are 
uncommonly used and promising results were obtained. These are the studies, where, 
 

 Chiral discrimination [169] and piezoelectric effects of applied electric fields on 
hydrogen-bond interactions [170] are investigated,  

 PM6-DH+ is used for computing protonation sites and proton affinities of amino 
acids with the goal of solving mass spectrometry problems [171], 

 PM6-DH+ derived descriptors are used to estimate the glass transition 
temperature for 209 molecular liquids [172]. 

 A heuristic approach is developed to estimate kinetic effects in complex chemical 
reaction networks [173], by using PM7 (including DH terms) for structure 
optimization and reaction thermodynamics. 
 

 
IX. Virtual Drug Design 
 
The advantages of SQM-DH methods have made them interesting for the field of rational 
drug design, and there are several applications for the virtual drug design field.  
 
This field is also closely related to our research [89, 91], therefore in Section 2.2 the relevant 
concepts and terminology will be explained.  
 
Applications and studies in this category are tabulated in Table 2.1.3-6. 
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Date Studied By Content 

2009 McNamara, Hillier 
and  

co-workers [174] 

QM/MM-based scoring is studied with SQM-D. 

2010 Hobza  
and  

co-workers [175] 

Scoring of 22 HIV-1 ligands with PM6-DH2/SMD (and MM-based entropy terms)  
 
Outcome: A substantial improvement over the conventional DOCK procedure. 
The authors emphasize that their scheme is free of system-specific parameters and thus readily 
available also for other protein/ligand systems. 
 

2011 Hobza  
and  

co-workers [176] 

Scoring 15 structurally diverse CDK2 inhibitors with PM6-DH2/COSMO  
 
Outcome: Very good agreement with experiment is found. 
 

2011, 2013 Hobza  
and  

co-workers [177,158] 

Investigation of SmCB1 inhibitors. 
 
Outcome: Results are in close agreement with DFT-D data.  
 

2011 Nagy  
and co-workers [178] 

Computation of DNA/zinc–finger–protein interactions. 
 

2011 Kamel and Kolinski 
[179]  

QM-based scoring is studied with SQM-DH. 
 

2012 Avila Salas  
and co-workers [180] 

Computation of the interaction energies of 4 drug molecules with 8 polyamidoamine dendrimer 
fragments from overall 320 million configurations of about 30 to 170 heavy atoms with PM6-
DH+. 
 
Outcome: An excellent correlation with experiment is found (R2=0.9), especially in comparison 
to MM data- experimental correlation (R2= 0.75). 
 

2012 Benson  
and co-workers [181] 

Prediction of the enthalpic part of the SAMPL3 challenge [182] trypsin/fragment binding 
affinities with PM6-DH2 to in combination with different solvation models [181]. 
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Outcome: The importance of (multiple) docking poses and the influence of the solvation model 
are emphasized, so that, at least in their approach, SQM-DH methods offer no benefits over 
purely empirical scoring functions. 
 

2012 Quevedo   
and co-workers [183] 

The interactions of organic molecules in the solid state and in solution are investigated. 
 

2012 Kamel and Kolinski 
[184]  

QM-based scoring is studied with SQM-DH. 
 

2012 Stigliani  
and co-workers [185] 

Docking based on Autodock Vina structures which are re-ranked with PM6-DH2/COSMO, is 
studied. 
 
Outcome: This version is found to improve the docking results. 
 

2013 Pan  
and co-workers [186] 

QM/MM-based scoring is studied with SQM-DH. 
 

2013 Ahmed  
and co-workers [187] 

Silico design of biologically active compounds is investigated. 
 

2014 Ucisik  
and co-workers [188] 

Prediction of protein–ligand binding affinities is studied by using Monte Carlo estimates of the 
configuration integrals based on SQM-DH microstate energies using different implicit solvation 
models   
 
Outcome: A good correlation with experiment is found for PM6-DH2-based estimates.  

2014 Temelso  
and co-workers [189] 

Screening of peptides with anti-breast-cancer properties at different theoretical levels. 
 

2014 Pavlicek  
and co-workers [190] 

QM/MM-based scoring is studied. 
 
Outcome: With SQM-DH, a good agreement with DFT is found.  
 

2014 Kruse  
and co-workers [191] 

Complete nucleic acids building blocks are investigated. 
 

2015 Hobza  
and  

co-workers [192] 

Malonate-based inhibitors of mammalian serine racemase are studied, a new repulsion 
correction to their PM6-D3H4X/COSMO approach is added. 
 

Table 2.1.3-6: List of virtual drug design related studies with enhanced semiempirical methods. 
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From the studies listed above, it can be concluded that, SQM-DH methods are indeed good 
candidates for many different scientific fields, like: 

 (bio-) organic/inorganic hybrid materials,  
 bio-nano structures,  
 de novo design & optimization of functional bio-macromolecules.  

 
In the following, there will be two separate sections based on our two different (one 
major, one minor) projects.  
 
Our main research is related to “Computer aided drug design”, therefore in Section 2.2 
some fundamental concepts will be given.  
 
The minor research is related to “Computational screening of battery electrolyte 
materials”, which will be briefly introduced in Section 2.3.  
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2.2 Overview of Computer Aided Drug Design 

 
Some lexical definitions of the commonly used terms are introduced here.  
 
Drug: 
A chemical compound and most commonly an organic small molecule that activates or 
inhibits the function of a biomolecule (i.e. protein) which is used for a diagnosis, cure, 
treatment, mitigation or prevention of a disease. [193, 194]. 
 
 
Protein: 
A complex organic compound group, which mainly contains carbon, hydrogen, oxygen, 
nitrogen and sulphur and occasionally some other elements. It essentially consists of 

combinations of amino acids [193]. 
 
 
Ligand:  
An organic molecule (which can be an antibody, hormone or a drug) that binds to a 
receptor (protein) [195]. 
 
 
Ligand /Protein binding site:  
A location on a protein structure where the chemical interaction (the binding) with a 
ligand takes place. [196] 
 
 
Drug Design:  
The inventive process of designing or finding new medications out of small molecules (i.e. 
ligands) which are complementary in shape and charge to a biomolecular target (i.e. 
protein) so that they will interact with and bind to the target [197, 198]. 
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The overall workflow for a drug design can be given in the following Scheme 2.2-1  
 

 

Scheme 2.2-1: Simplified Drug Design Workflow based on ref. [ 199] . 
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Briefly, [200] drug design aims to: 
 

I. Predict the binding mode of a known active ligand  
II. Identify new ligands  

III. Predict the binding affinities of related compounds from known active series  
 
 
Virtual screening, is an automated computational technique to evaluate very large 
libraries of compounds [201] in order to diminish the needed experimental effort and to 
increase the hit rate in the selection of new drug candidates. This approach is a common 
procedure for now for many pharmaceutical companies [202, 203]. 
 
Virtual screening can be classified in two main categories [199]:  

 Ligand-based virtual screening (LBVS),  
 Structure-based virtual screening (SBVS).  

 
Ligand based virtual screening (LBVS) involves a large number of molecules being 
evaluated based on the similarity of “already known ligands”.  
 
Structure-based virtual screening (SBVS), on the other hand, involves a number of 
molecules being evaluated for their “specific binding to the active sites of target proteins”. 
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Scheme 2.2-2: Illustration of the Structure and Ligand Based Drug Design Processes based on ref. [199] 
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Advances in the structural biology, together with the X-ray crystallography and the 
nuclear magnetic resonance (NMR) helped protein and ligand structures to be known 
better.  

Due to these advances, Structure-Based Virtual Screening (SBVS) has become quite 
common and preferable among the drug design processes. Following this, especially, 
Docking-Based virtual screening (DBVS) is reported as the most widely applied 
approach in practice [204].  

 

DOCKING  

In a simple definition, docking means identifying the most important binding poses (or 
modes) of the drug candidate molecules (namely, ligands) on the receptors (mostly the 
target proteins) [200].  
 
With the known protein structures and a database of known ligand structures (potential 
candidates), the goal by docking is to have a range of protein-ligand complex 
conformations so that based on their stabilities and binding energies they can be sorted.  
 
A basic illustration for docking can be given in Figure 2.2-1 as follows: 
 

 

Figure 2.2-1: Basic Illustration of Docking.  Depending on the protein structure, the binding site 
and the ligand structure, the most suitable ligand candidate (with a predicted pose) is chosen from 

the database.  

This is usually done by a docking software with the help of accurate structural modelling 
and a correct prediction of [204, 205]: 

 Ligand’s conformation, and,  
 Ligand’s orientation (or posing) within a targeted protein’s binding site.  

 
Docking softwares have two main parts: A search algorithm (which generates a large 
number of poses of a molecule in the binding site), and a scoring function (which 
calculates a score or binding affinity for a particular pose).  
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At this point, there is an important concern as Peishoff and his co-workers emphasize [200]: 
the docking results are mostly judged by the enrichment of the hits while the correct 
ranking is not being the central focus of the docking procedure anymore.  

This is also the reason why, when it is only about “docking”, the underlying scoring 
functions are accepted to have a good success [206, 207]. On the other hand, when it is indeed 
about scoring, then these same functions are not regarded to have as much as good 
performance [199, 208]. 

  

SCORING/ RESCORING 

Scoring is also known or pronounced as “rescoring” sometimes, because during the 
“docking” stage, scoring algorithms are already being used.  

Scoring as a stage, briefly refers to the correct ranking of the docked structures in terms 
of their overall free energy of binding [200]. In other words, the strength of binding, or 
namely, the evaluation of the ligand-receptor interactions are highly concerned at this 
stage. The goal is, to be able to distinguish some of the experimentally observed modes 
from the others, so that, only the most promising candidates can be subjected to the tests 
in the in following experiments.  

 

To continue from Figure 2.2-1 above, the next basic illustration is given for the scoring 
(rescoring) stage in Figure 2.2-2. Here, the already docked ligands are now subjected to 
the scoring (rescoring), so that the best candidate specimen amongst them can be chosen.   
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Figure 2.2-2: Basic Illustration of Scoring.  Based on the binding affinities, the most suitable 
candidate is chosen from the database of already docked ligands. 

 
 
To carry out these type of calculations, at first, free energy simulation techniques have 
been developed for the quantitative modelling of protein-ligand interactions and for 
predicting the binding affinity. However, initial attempts were not suitable due to their 
computational costs. Then, in order to improve the results, the scoring functions (which 
take place both in the docking and scoring stages) were critically under consideration 
once again [205].  
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As it is mentioned previously, despite the fact that these scoring functions have an 
acceptably good success for docking [206, 207], they were not satisfactory enough for the 
scoring (rescoring) part.  
 
Accurate ranking of binding affinities is still a very difficult task for the commonly used 
scoring functions [209, 210]. Common scoring functions have a low theoretical level of 
oversimplifying assumptions for the treatment of the protein-ligand interactions. 
 
For example, ligand binding in nature occurs in a condensed phase with many degrees of 
freedom [200], which indicates that, these calculations are closely related with a 
combination of enthalpic and entropic effects. Though, most of the scoring functions are 
focused on the energetic effects rather than entropic effects [205], and thus, this also 
complicates the situation.  
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Binding Energy 

In our calculations, the experimental binding energies are taken from equilibrium 
constants: 

∆𝐺 = −𝑅𝑇 𝑙𝑛𝐾                                  (Eqn. 2.2-1) 

Our calculations are based on the free energy of interaction formula, [211] 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆                            (Eqn. 2.2-2) 

ΔG:  change in Gibbs free energy 
ΔH:  change in enthalpy 
T:  temperature 
ΔS:  change in entropy 
 

and on Gilson’s [212-216] Minima-Mining approach, where the following formulas are 
considered:   

𝐻 = ∑ 𝑝𝑖𝐻𝑖𝑖                                (Eqn. 2.2-3) 

𝑆 =  ∑ 𝑝𝑖𝑆𝑖 − 𝑘𝐵 ∑ 𝑝𝑖 ln 𝑝𝑖𝑖𝑖                             (Eqn. 2.2-4) 

kB: Boltzmann’s constant  
 
Minima-Mining approach, thus the equation (Eqn. 2.2-4) above suggests that [212]:  
 
The total configurational entropy is the summation of two terms:  

 first term, as the weighted average of the entropies of the individual wells, Si, and 

 the second term, which is similar to the entropy of mixing and which is also the 
entropy associated with the distribution of the system across the energy wells, i.  

   
Then the following can be represented: 

∆𝐺 = ∑ 𝑝𝑖∆𝐻𝑖 − 𝑇(∑ 𝑝𝑖∆𝑆𝑖 − 𝑅 ∑ 𝑝𝑖 ln 𝑝𝑖𝑖𝑖 )                      (Eqn. 2.2-5) 

∆𝐺 = ∑ 𝑝𝑖∆𝐻𝑖 − 𝑇 ∑ 𝑝𝑖∆𝑆𝑖 + 𝑅𝑇 ∑ 𝑝𝑖 ln 𝑝𝑖𝑖𝑖                       (Eqn. 2.2-6) 

∆𝐺 = ∑ 𝑝𝑖∆𝐺𝑖𝑖 +  𝑅𝑇 ∑ 𝑝𝑖 ln 𝑝𝑖𝑖                                      (Eqn. 2.2-7) 

R : gas constant 
i : energy well 
pi : probability of finding the system in energy well, i 

  

𝑝𝑖 =  
𝑒−𝛥𝐺𝑖/𝑅𝑇

∑ 𝑒−𝛥𝐺𝑖/𝑅𝑇
𝑖

                                     (Eqn. 2.2-8) 

 

Where, this will be computed in the following with the RRHO approximation. 

∆𝐺 =  ∆𝐸𝑆𝑄𝑀 + ∆𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 + ∆𝐻0−298
𝑅𝑅𝐻𝑂 − 𝑇∆𝑆298

𝑅𝑅𝐻𝑂               (Eqn. 2.2-9) 
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Further Explanations  

Gilson’s Minima Mining Approach [212 -216]  

As there is a need to improve the methods for ranking the protein-ligand binding energies, there have 
been approaches/methods developed for this purpose. These can be categorized based on their 
complexity as follows [213]:  

Simple approaches Complex approaches 

 Docking methods/ scoring functions 

These methods try to find the single most stable 
conformation of a protein-ligand complex. This 
is usually based on a sum of free energy 
contributions. 

Advantage: They are fast calculations. 

Disadvantage: They oversimplify the 
important free energy contributions (i.e. 
enthalpy, entropy) 

 Free Energy Pathway Methods 

Examples can be listed as Monte Carlo or 
Molecular Dynamics method, which are the 
free energy perturbation and 
thermodynamics methods. 

These methods usually use explicit solvent 
models to calculate absolute or relative 
work of binding energies of ligands. 

Advantage: They provide more accurate 
results. 

Disadvantage: They are computationally 
too demanding to be practical for 
automation. 

  

  In between these two types of approaches/methods, a third type exists, which is called “end-point” 
free energy methods, and Minima-Mining is from this category. End point free energy methods: 

 Provide better detail than the simple approaches because they account for the bound and 
unbound states of the protein-ligand complexes. 

 They are computationally advantageous when compared to the complex approaches.  

o They use a smaller set of conformations (local energy minima) of the free and bound 
proteins and ligands. 

o  Each local energy minimum linked free energy is calculated based on the molecule’s 
(protein’s or ligand’s) energy well’s depth and width. 

o The contributions of the energy wells are combined and used to approximate the 
overall free energy. 

 With this approach, conformational search or basically the identification of the stable 
conformations can be done without a need of crossing energy barriers with a thermal motion. 
The number of explicit degrees of freedom can be further limited by using an implicit solvent 
model and the number of conformations can be limited by treating parts of the system as 
restrained or rigid especially in case of large receptors. 

Accordingly, these methods are used together with QM energy models. 

Thermodynamics of each energy well are obtained with Rigid Rotor Harmonic Oscillator (RRHO) model, 
hence, the configurational entropy of the local energy well, Sj, is expressed in three terms as: 
translational, rotational and vibrational contributions.   
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The following is presented based on Atkin’s descriptions [217] for more information on finding the system in an energy well using 
the probability function. 

Quantum mechanics focuses on individual molecules whereas, statistical thermodynamics focuses on the average behaviour of the large 
numbers of molecules, and relates the microscopic properties of a matter to its bulk properties.  

Being a part of statistical thermodynamics, Boltzmann distribution is used for the prediction of a system’s populations of states when 
there is a thermal equilibrium. This concept benefits from the partition functions and their relevancy to thermodynamics.  

If a closed system is taken as a basis, with N number of molecules and with a constant energy E, then there is still a question of how the 
energy is distributed amongst the dynamic molecules within this system.  

One possibility is to come up with the population of states so that the distributions of the average number of molecules can be described.   

The following are assigned: 

ni: average number of molecules (i.e. n0, n1, n2,… ) 

in, 

εi: state of energy (i.e. ε0, ε1, ε2, … ) 

It is mentioned that, with every collision the precise identities of the molecules in each state may change, but the population of the states 
almost remain constant.  

To calculate the populations of states at any temperature, for any type of molecule, in any mode of motion, the only constraint is reported 
to be the independency of the molecules, so that, when their individual energies add up, it will give the total energy of the system.  Also, 
with this approach, populations of the states will only depend on temperature.  

 

Configurations and weights 

At any instant, it is assumed that, n0 molecules will have the energy state of ε0, and n1 will have ε1, and likewise.  The reference state is 
assumed to be the lowest state, namely the zero of energy (ε0 =0). In order to measure all energies, this reference state is the starting 
point, and all others are calculated relative to this.  
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The instantaneous configuration of the system is defined as: {n0, n1, n2…}. A general configuration {n0, n1, n2…} can be achieved in “W” 
different ways, where, W is for the “weight of the configuration”. With a general formula, it is given as follows: 

                                                                         𝑊 =
𝑁!

𝑛0!𝑛1!𝑛2!…
                                    (Eqn. 2.2-10) 

With a logarithmic expression, this can be rewritten as, 

                                                                         ln 𝑊 = 𝑙𝑛
𝑁!

𝑛0!𝑛1!𝑛2!…
                                                   (Eqn. 2.2-11) 

Which eventually becomes, 

                                                                        ln 𝑊 = ln 𝑁! −  ∑ ln 𝑛𝑖 ! 𝑖                                                    (Eqn. 2.2-12) 

with Stirling’s approximation to simplify, 

                                                                        ln 𝑥!  ≈ 𝑥 ln 𝑥 − 𝑥                                                                 (Eqn. 2.2-13) 

Overall it results in the approximate expression for the weight: 

                           ln 𝑊 = (𝑁 ln 𝑁 − 𝑁) − ∑ (𝑛𝑖 ln 𝑛𝑖 − 𝑛𝑖)𝑖 = 𝑁 ln 𝑁 − ∑ 𝑛𝑖𝑖 ln 𝑛𝑖                        (Eqn. 2.2-14) 

Boltzmann Distribution 

From the equations above, it can be estimated that the configuration, which weight W gets its maximum, will mostly likely be the 
dominating configuration and it will be the part where the system will be mostly found in. The maximum value of W can be found via 
taking its derivative and equating it to zero (namely where dW=0 is satisfied) or via finding the maximum value of “ln W” (in case the 
logarithmic functions are to be used). 

However two restrictions are mentioned: 

i. Only some of the configurations are allowed to be included, and these are the ones, where the total energy of the system is 
constant. Therefore, a configuration has to satisfy the condition of constant total energy:  

                                                         ∑ 𝑛𝑖𝜀𝑖𝑖 = 𝐸                                     (Eqn. 2.2-15) 
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ii. Since N (the total number of molecules) is already defined, populations have to be arranged accordingly in the sense that if there 
will be some increase, then there has to be a decrease for a compensation. Thus, accordingly, W has to be limited based on the 
constant total number of the molecules too. The condition to keep is given as follows: 

                                                         ∑ 𝑛𝑖𝑖 = 𝑁                                    (Eqn. 2.2-16) 

Together with these restrictions, the populations in the greatest weight depend on the energy of the state according to the Boltzmann 
distribution. This is given as: 

                                                          
𝑛𝑖

𝑁
=  

𝑒−𝛽𝜀𝑖

∑ 𝑒−𝛽𝜀𝑖𝑖
                                                               (Eqn. 2.2-17) 

with the following conditions: 

                                                                          𝜀0 ≤ 𝜀1 ≤ 𝜀2                                                   (Eqn. 2.2-18) 

                                                                          𝛽 =
1

𝑘𝑇
                                                   (Eqn. 2.2-19) 

 k: Boltzmann’s constant 
 T: temperature 
 

Then, the Boltzmann distribution is given as: 

                                                                          𝑝𝑖 =
𝑒−𝛽𝜀𝑖

𝑞
                                    (Eqn. 2.2-20) 

                pi: fraction of the molecules in the state i, 

                                                                          𝑝𝑖 =
𝑛𝑖

𝑁
                                                   (Eqn. 2.2-21) 

                q: molecular partition function  

                                                                          𝑞 = ∑ 𝑒−𝛽𝜀𝑖
𝑖                                                   (Eqn. 2.2-22) 
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Rigid Rotor, Harmonic Oscillator (RRHO) Approximation [212]  

Rigid rotor, harmonic oscillator approximation treats the molecules as essentially “rigid”, so 
that their internal motions are assumed to include only vibrations of small amplitude. This 
approach enables uncoupled kinetic and potential energy approximations of translational, 
rotational and vibrational motions. The partition function can be factorized as follows:  

                                                                 𝑄 = 𝑄𝑡𝑄𝑟𝑄𝑣𝑖𝑏                                          (Eqn. 2.2-23) 

 Q       : full partition function 
 Qt      : overall translational motion of the molecule 
 Qr      : overall rotational motion of the molecule 
 Qt       : overall vibrational motion of the molecule 
 

The overall translation of the molecule has the kinetic energy contribution of overall 
translation, and it is given in the following expression: 

                                           𝑄𝑡 = 𝑉 (
2𝜋𝑚

𝛽ℎ2 )
3/2

                                          (Eqn. 2.2-24) 

m       : molecular mass 
V        : a factor 
β        : (kBT)-1 
h        : Planck’s constant  

 kB      : Boltzmann’s constant 

Since molecules are assumed rigid, then this assumption results in approximating the 
moments of inertia as constants, therefore, the rotational contribution can be written as 
follows: 

                                                  𝑄𝑟 = 8𝜋2 (
2𝜋

𝛽ℎ2)
3/2

(𝐼1𝐼2𝐼3)1/2             (Eqn. 2.2-25) 

I1, I2, and I3: the molecule’s three principal moments of inertia. 

Then, vibrational contribution can be introduced as,  

                                          𝑄𝑣𝑖𝑏 = 𝑒−𝛽𝐸𝑜 ∏
𝑒−𝛽ℎ𝜔𝑖/4𝜋

1−𝑒−𝛽ℎ𝜔𝑖/2𝜋𝑖              (Eqn. 2.2-26) 

 ωi       : frequencies of the vibrations 

 Eo       : ground state energy 
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Overview 
 
As it is mentioned above, scoring functions in principle have two duties [199]. 
 

 To differentiate between various poses of a single ligand in the receptor (protein)-
binding site. (Docking-pose determination task) 
 

 After docking is finished, to estimate binding affinities of different receptor–ligand 
complexes within the database and to rank order the compounds. (Scoring task) 

 
 

There are no QM scoring functions established as a standard in the pharmaceutical 
industry. Our goal is to develop scoring functions, where basic interactions are more 
accurately treated. For this, we rely on the PM6-DH+ method. Starting from the Section 
3.1.1, our results are presented.  
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2.3 Overview computational screening of battery electrolyte materials [218] 

 

With the worldwide increasing energy demand, working on the renewable energy sources 
became crucial. Both being able to harvest energy from an energy source, and moreover, 
being able to store this harvested energy, are so challenging. 
  
When it is about storage methods, there are different categories, like: biological, 
mechanical, electrical, chemical, thermal or electrochemical storage methods.  These 
methods are also the main concerns of today’s industry too.  
 
Automobile industry can be listed amongst one of the biggest industries which can highly 
benefit from the developments in this field.  In that sense, for the automotive industry, the 
electrochemical storage methods (i.e. batteries, fuel cells) are more of a concern.  
  
Electrochemical storage, mainly involves the research topics closely related to [219-221]:  
 

 Basic principles of the catalysis at electrochemical interfaces (i.e. structure of 
electrochemical solid-liquid interfaces, proton-electron transfer reactions at 
interfaces…), 
 

 Transferring methods from surface science to electrochemistry (for example in 
order to understand structure-reactivity relationships for nanostructured 
electrodes, and likewise).   
 

Advanced batteries, currently consist of interconnected electro-chemical cells with 
lithium-ion based cell chemistries. Lithium-ion ones have higher density compared to 
other alternatives. They are combining graphite as the anode, with a lithiated transition 
metal oxide as the cathode [222].   
 
On the first charge, solution species are reduced from a passivating film on the anode. The 
solid-electrolyte interface (SEI) prevents further irreversible processes, thus, the choice 
of the electrolyte plays an important role.  
 
Properties of especially high interest for electrolyte solutions include 

 electrochemical stability windows,  
 melting, boiling and flash points,  
 dielectric constants, and,  
 viscosity [223]. 

 
There are also transportation concerns that affect the design of the batteries [224], like:  

 safety,  
 cost,  
 gravimetric energy density, and, 
 thermal stability of the organic electrolyte solvent component. 
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Cells are produced from high voltage transition metal cathodes or nanocomposite anodes 
and these type of batteries need electrolytes.   There are also “superbatteries”, which are 
based on Lithium-Sulphur or Lithium-Air design. Amongst the others, these type have a 
higher performance potential, however they are also limited by [225]: 
 

 Interfacing of electrodes and electrolytes 

 Danger of shortcuts through the dendrite formation on Lithium-metal anodes.  
 
 

Usually being based on the cyclic and linear carbonate like mixture formulations, the 
commonly used electrolytes are [223]: 
 

 Ethylene carbonate (EC) 

 Dimethyl carbonate (DMC), 
 
These are usually linked together with: Lithium hexafluorophosphate (LiPF6) as a salt.  
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Battery working principle 
(Li-ion Battery for demonstration) 

Discharging Charging 

Lithium ions between the layers in the negative electrode material 
(anode) pass through the separator and into positive electrode 
material (cathode), resulting in a discharging current flow [226].  

Lithium ions positive electrode material (cathode) pass through the 
separator and into the layers in the negative electrode material 

(anode), resulting in a charging current flow [226]. 
 

  

Figure 2.3-1 Li-ion Battery Working Principle 
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Due to their importance for the energy density, cathode materials were the focus of the 
scientific interest in the past, but then, electrolytes have become important for the studies 
for further developments [227-229].   
 
There are several contributing studies to this field, and again, computational methods are 
aiding to the research and development of the technologies.  
 
Table 2.3-1 shows some of the theoretical studies on battery materials.  
 
 

Selected virtual screening work on battery materials 

Year Studied By Content 
 

2008 Tarascon [230] 
Ionic liquids and ‘green’ electrode materials from 
biomass 

2010  
Halls and Tasaki 

[231] 
Exploratory study on screening for electrolytes 

2011 
Ceder  

and co-workers  
[232, 233] 

A study to screen for new electrode materials which 
focuses on solid state physics derived electronic 
structure methods (i.e., periodic density functional 
theory calculations). It is suitable for the development 
of conventional electrode materials, but not efficient 
with molecular organic materials.  

2011 
Park   

and co-workers 
 [234] 

Exploratory study on screening for electrolytes 

Table 2.3-1: Theoretical work on battery materials 
 

 
Collective’ properties (like melting points etc.) can only be treated at comparably low 
theoretical levels for electrolyte components; for instance with statistical models based 
on quantum chemistry calculations or completely empirical qualitative structure 
property relationship (QSPR) approaches. 

 
Application of semiempirical models is a rather straightforward procedure, a very 
challenging problem arises from the fact that chemical reactivity plays an essential role 
for the performance of electrolyte solutions. 
 
The accurate modelling of electrochemical systems is difficult due to the complexity of the 
liquid phase and the existence of varying electrode potentials [235], so that, even by 
experimental means, atomistic information on the composition of SEI layers is rarely 
available.  
 
However, the reactive formation of interface structures and the atomic scale processes of 
SEI formation in current Lithium-ion batteries can be investigated with computational 
methods. Several studies exist, and they are tabulated in Table 2.3-2. 
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Selected Studies of Atomistic modelling of SEI formation 

Year Studied By Content 

2009 Xing and co-workers [236] 

Investigation of the oxidative stability and decomposition of carbonate electrolyte solvents 
with quantum chemistry methods (at B3LYP/6-311++G(d,p) level) takes place.  
 
Outcome: aldehydes and oligomers of alkyl carbonates as main products are found in good 
agreement with experimental results. 
 

2010 Leung and coworkers [237] 

Methodologically most advanced theoretical work (as a number of ab initio molecular dynamics 
(AIMD) studies) on SEI formation so far, is performed. It involves the investigation of the initial 
stages of SEI formation. 
 
Outcome: The important role of carbon edge terminations for EC decomposition was revealed. 

2011 Leung and coworkers [238] 
A Hybrid DFT MD study on excess electrons in liquid ethylene carbonate is performed. 
 
Outcome: the excess electrons were found to be localized on single EC molecules in all cases. 

2011 Leung and coworkers [239] 

Both experimentally and with AIMD simulations, the use of atomic layer deposition to hinder 
solvent decomposition is investigated. 
 
Outcome:  Computational predictions were confirmed by experimental results. On bare 
Lithium metal electrodes, EC decomposes within picoseconds, while with oxide coating 
electron transfer to EC is slowed down. 

2011 Xing and co-workers [240] 
The role of anions for the decomposition processes, that is, a reduction of the oxidation stability 
and a change of the importance of different decomposition paths, is investigated. 
 

2011 Kim and co-workers [241] 

The structure and formation of SEI layers are theoretically investigated with classical molecular 
dynamics (MD) simulations. 
 
Outcome: Distributions of different SEI components were obtained as a function of the distance 
from the surface for EC, DMC and mixed electrolytes with anodes of different Lithium surface 
densities.  
 



 

 

7
2

 

1. LEDC is indeed the main SEI component for electrolytes with EC at low Lithium surface 
densities (comparably to graphite anodes), but quickly decomposes to inorganic salts 
for higher Lithium surface densities.  

2. A multilayer structure with more inorganic salts is found out to be closer to the anode 
and more organic based salts are found close to the bulk electrolyte. 
 

2012 Xu and co-workers [242] 
A detailed review on experimental and theoretical details concerning SEI chemistries and 
formation mechanism is presented.  
 

2012 
Von Wald Cresce and coworkers 

[243] 

A direct link between the Li+ solvation sheath structure and SEI formation for mixtures of EC 
and propylene carbonate (PC) electrolytes is found. 
 
Outcome: A reversed preference of PC over EC by Li+ is found with quantum chemistry 
methods and molecular dynamics simulations.  
SEI formation strongly depends not only on the electrolyte composition but also on the anode 
material. 
 

2012 Owejan and co-workers [244] 

In situ neutron reflectometry measurements of the SEI layer in a working lithium half-cell is 
made. 
 
Outcome: Thicknesses of less than 10nm and a uniform mixing of SEI components for their cell 
setup are found.  
 
It is also known that not only anodes are covered with SEI layers, but also cathodes. 
 

2012 Takamatsu and co-workers [245] 

The solid-liquid interface on the cathode side with in situ Total-Reflection X-ray Absorption 
Spectroscopy, is investigated. 
 
Outcome: An initial irreversible reduction of cathode transition metal ions at the 
electrode/electrolyte interface is found. 
 

2012 Xing and co-workers [246] 
Systematic differences between EC and sulfolane-based electrolytes are studied with molecular 
dynamics (MD). 
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2012 Bedrov and co-workers [247] 

Another MD study is performed. 
Outcome: a rather long life time for singly-reduced EC species is found, allowing these 
compounds to react with other singly-reduced species.  
 
At low concentrations of reduced species, LEDC is indeed (one) major product, while at higher 
concentrations diradical compounds form and in turn react with other radicals to form 
oligomer species. 

2012 Leung [248] 

Organic solvent decomposition on cathode materials are investigated. 
 
Outcome: Proton transfer is predicted to follow after EC oxidation with both products 
weakening the cathode ionic bonding network 

2012 Ganesh and co-workers [249] 

An advanced study of SEI formation for several electrolytes and graphite electrodes is 
published. 
 
Outcome:  Orientational ordering of the electrolyte molecules near the interface precedes 
reduction and that the reduced species depend strongly on surface functionalization and the 
presence of salts. 

2013 Nie and co-workers [250] 

The surface reactions of electrolytes with graphite anodes are investigated by using 
transmission electron microscopy with energy dispersive X-ray spectroscopy (and 
complementary methods).  
 
Outcome: For electrolytes containing EC, SEI layers of about 50nm thickness consisting mainly 
of dilithium ethylene dicarbonate (LEDC) and LiF, with a strong dependence of the thickness 
and composition on the initial composition of the electrolyte solution, is found. 

2013 
Borodin and coworkers [251] 

 

In comparison to G4MP2 reference data, quantum chemistry methods (the M05-2X, LC- ωPBE 
density functionals with implicit solvation) are used, where it is possible to investigate the 
oxidative stability and decomposition reactions of carbonate, but also sulfone, sulfonate and 
alkyl phosphate based electrolyte solvents and a number of different lithium salts. 
  
Outcome: Spontaneous hydrogen-transfer to salt anions decreases the solvent stability and 
that the presence of anions but also other solvent molecules can significantly reduce barriers 
for oxidation-induced decomposition reactions and therefore product composition. 

2013 Leung [252] Publication of a review of AIMD studies on SEI formation. 

Table 2.3-2: Selected Literature for Atomistic modelling of SEI formation
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Chapter 3 

 

 

Our Projects 

 

Our main goal was to develop large scale screening strategies for molecular compounds 
and we needed methods to describe all relevant properties of these compounds. In that 
regard, this thesis includes two different projects. 

 One of them is our main research topic and corresponds to the “Computational 
Screening of Biomaterials” section of the thesis title. This part is linked with the 
literature Section “2.2: Overview of Computer Aided Drug Design“, and details of 
the project will be further explained in Section 3.1.  

 

 The second, minor part of my work is about the introductory research for 
“Computational Screening of Energy Materials” which is related with the literature 
section “2.3: Overview computational screening of battery electrolyte materials”. 
It will be introduced briefly in Section 3.2 up until the point at which I was not 
involved anymore. Then the rest of this work was carried out by our workgroup 
colleagues.   
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3.1 Computational Screening of Bio Materials  

The first project is given in three main “Research Stage” steps, which can be abstracted as 
follows:  

 

 In Research Stage I (Section 3.1.1), we compare the performance of various 
quantum chemical approaches for tackling this previously mentioned “scoring” 
problem, since the correct ranking protein−ligand interactions with respect to 
overall free energy of binding is a grand challenge for virtual drug design.  
Generating systematic benchmark sets of PDBbind based large protein/ligand 
model complexes by using our cutting algorithm, we show that the performance 
first of all depends on the general level of theory.  
Then, comparing classical molecular mechanics (MM), semiempirical quantum 
mechanical (SQM), and density functional theory (DFT) based methods, we find 
that enhanced SQM approaches perform very similar to DFT methods and 
substantially different from MM potentials. 
 

 

 In Research Stage II (Section 3.1.2), we benchmark several wave function theory 
(WFT), density functional theory (DFT) and semiempirical quantum mechanical 
(SQM) approaches against high-level theoretical references for realistic test cases.  
Based on our findings, we can recommend SCS-MP2 and B2-PLYP-D3 as reference 
methods for WFT, moreover, TPSS-D3+Dabc/def-TZVPP as the best DFT approach, 
and finally, PM6-DH+ as a fast and accurate alternative SQM method to full ab initio 
treatments, especially for systematically generated model systems of real 
protein/ligand complexes from the PDBbind database. 
 

 

 Research Stage III (Section 3.1.3) is about the further investigation of the problem 
of scoring protein/ligand interactions, by analysing the delicate balance of 
biomolecular interactions with quantum mechanical (QM), semi-empirical QM 
(SQM) and molecular mechanics (MM) methods.  
The biggest differences between QM and SQM or MM methods are found for the 
treatment of enthalpic/entropic effects.  
It is also observed that, trying to improve the description of only one sub-balance, 
for example with a QM-level description of energetic protein/ligand interaction, is 
not likely to improve the accuracy of scoring functions. 
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3.1.1   Research Stage I   [89] 

I.1   Introduction 

Accurate and fast modelling of protein-ligand systems is essential for various scientific 
fields. Biomolecular interactions are highly important for in silico drug design [253].  

For a virtual drug design, the preferred approach is the pre-selection of most promising 
candidates, so that the following main computational procedures can be applied more 
efficiently. We hereby refer to these main procedures as docking and as scoring. Often the 
docking processes are assumed to have an acceptable accuracy to identify the most 
important binding poses [206, 207]. On the other hand, the scoring stage is still regarded as 
a challenge due to the low accuracy of the binding affinity values [209, 210]. In scoring 
studies, the ligands and proteins are usually being treated at a low theoretical level. 
Therefore, a treatment with higher level methods creates a potential for an improvement. 
There are some systematic works on high-level methods [88, 254, 255], and some among them 
involve small host-guest systems [120, 129]. Still, the number of relevant studies in this field 
is insufficient. Improvement possibilities for the scoring functions are seen in a better 
treatment of polarization, solvation and entropic effects [206, 207], where entropic effects 
are the major complications since they are linked with the dynamical complexity of the 
problem. 

For the improvement of polarization and solvation effects, SQM methods are very 
promising candidates to focus on. In addition to the Stewart’s linear scaling approaches 
[38], there are many other studies on SQM method developments as well [88, 256, 257]. 

Korth contributed to the development of empirical corrections for non-covalent 
interactions [56]. For protein-ligand systems, these non-covalent interactions are 
significant, but often they are not treated well enough at semi-empirical levels. Korth 
workgroup additionally studied SQM methods augmented with empirical DH corrections, 
and have found out that the accuracy of SQM-DH methods can reach to that of DFT-D 
methods for a large number of cases, while SQM methods are about three orders of 
magnitude faster [50, 53]. 

In this work, we wanted to assess the performances of different computational methods 
(MM, SQM and DFT) for the scoring of protein/ligand interactions. This aim was 
motivated by  

 method performance studies [42, 258]  

 studies supporting the possibility of the scoring methods development via 
experimental data sets [259], and,  

 the availability of the Protein-Ligand Complex Structure Data sets (in our case 
PDBbind2007 as our initial choice [260, 261] ), 

 

Once it is about a theoretical study, it is important to acknowledge that the molecular 
models are vital for the quality of the simulations. We are aware that even the smallest 
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protein in the Protein-Ligand Data sets is much larger than the largest ligand. Given that 
we have the ‘docked’ poses, in other words, the ‘fixed’ protein and ligand couple structures 
in the PDBbind sets, the interaction zone between the ligand and the protein is also fixed 
and it is confined to a certain region.  

The following sections will explain our model preparations and hence how our 
calculations are performed. In order to check our approach and its validity, the prepared 
models will be subjected to several comparison tests as well. 

It is highly important here to note that a fixed protein-ligand complex is not a perfect 
model, since in reality they are flexible and in motion. We will later on (Section 3.1.3), take 
this flexibility into account by averaging overall relevant binding modes.  
 

I.2   Choice and Generation of Model System Benchmark Sets 

The PDBbind Database Sets 

As a first step, PDBbind database is used which is based on (Protein Data Bank) PDB 
database set. 

This set contain a collection of experimentally measured binding affinities and detailed 
structures for biomolecular complexes [90], therefore they provide a good opportunity to 
compare computational results with experimental values.  A compilation of the 
specifications of these PDBbind sets can be found in the main references [209, 260-263]. Based 
on the information contained therein, there are various PDBbind set categories, named 
as: “general set”, “refined set” and “core set”.  
 
To obtain these sets, experimentally determined PDB structures are screened at the PDB 
database and after some validity checks, structures are admitted to the sets as described 
below [209, 260-263]: 

Once the primary reference of each complex was examined to collect experimentally 
determined binding affinity data (Kd, Ki, or IC50) of the given complex, the set is called as 
general set having a large number of entries. Afterwards, this general set is going through 
a filtering step regarding binding data, crystal structures, as well as the nature of the 
complexes, and thus the refined set is obtained. Finally, a high-quality version of these 
sets with a smaller number of complexes, the core set is meant to serve as a high-quality 
benchmark for evaluating scoring methods. Core set is obtained by clustering the refined 
set by protein sequence similarities with a cutoff of 90% and only selecting sets with at 
least five members. From each cluster, the one with the highest binding constant, the one 
with the lowest binding constant, and the one with a medium binding constant are 
selected as the representatives of this cluster. 

A reasonably large set was needed for our study. Based on the requirements, the refined 
set of the PDBbind2007 database set was chosen. The set has around 1300 protein-ligand 
complexes [260, 261].  
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Later on newer PDBbind versions are released, however, in the beginning of our study, 
PDBbind 2007 was the only set with separate protein and ligand structures available at 
that time, and therefore it became our choice.  

It also has to be noted that different sets can sometimes have different experimental 
conditions or properties, therefore, we also tested the other (more recent) PDBbind sets 
when they became available too, but their quality was rather similar. Due to this 
similarity, in order to stay consistent, this study will mainly focus on our initial set 
selection: PDBbind 2007 set. 

 

Generation of Benchmark Model Systems 

The size of the large complexes (complex: protein + ligand) within the PDBbind set ranges 
from 800 to 90000 atoms (in average, roughly 7000 atoms). To speed up the 
computations, the initial task of this study was to prepare reasonably good model systems 
of smaller sizes, which resemble the original structures sufficiently. 

This had to be done only for the proteins, because computational cost depends on the 
number of atoms in a molecule and ligands are several orders of magnitude smaller than 
proteins (the relevant numerical data about sizes is given in Table I.2-1 below). Therefore, 
a protein cutting (down-sizing) algorithm is written. With this cutting algorithm, main 
goal was to create smaller models while changing the original protein structures as little 
as possible, so that a large enough sub-set of protein atoms from the original structure 
could be kept to reflect the original structure’s characteristics. After obtaining the model 
cuts, also to find out an optimum model size, a comparison test amongst these model cuts 
was needed in order to select the optimum “cut-off” distance.  

The proposed cutting algorithm first looks at the defined/assigned cut-off distance, then 
detects the individual atom-centres inside this cut-off distance, and then finds out to 
which residue these atoms belong. No matter how little a given residue intersects, the 
function will always include the full residue into the smaller model structure that is to be 
kept– that we name as “pocket” (see Figure I.2-1). This condition of “keeping the whole 
residue in the pocket”, holds true and applied for, even when only a single atom of a 
residue is inside the cutoff line. 

The process of keeping the residues can be explained similar to an illustration of taking 
out some certain branches from a tree (Figure I.2-2). In case even only a little part of the 
branch is in the interested zone, then the complete branch segment is selected. 

  

 

 

 

 



 

79 

 

Simplified Illustration for the Cut Procedure 

 

 

Figure I.2-1: Basic Illustration for the Cutting Algorithm. Shown is a schematic representation of a 
protein “P” and a ligand “L” bound to it. The cutting algorithm selects all the relevant residues and 

pocket model (yellow part) is obtained. 
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Cutting Algorithm Description 

 

Figure I.2-2: Descriptive Illustration for the Cutting Algorithm. Green indication points are the 
points where the cutoff distance intersects with the branched structures. This is used to define the 

branches to be tracked along, selected and kept afterwards (shown in yellow). This yellow part 
corresponds to the pocket model. Blue line indicates the terminal points of the cut structures. These 

are chosen as the central stops to be able to keep the structures in a uniform manner. These are 
namely the end points of the pockets.  
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As an additional demonstration, the following Figure I.2-3 makes use of structures 
directly from PDB files. 

 

Our Model Illustration 

 

 

Figure I.2-3: Model Illustration for the Cutting Algorithm. Green points are drawn to illustrate the 
atoms which are located at an example cutoff distance. Red points indicate how a residue can be 

tracked starting from one of the intersecting (one of the green) atoms. By this way, when all greens 
are found out and following that when all red residue ones are identified, then pocket is formed. 
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With the help of our algorithm, protein cuts were made around the docked ligands with 
the following distances: 3.0, 5.0, 7.0, 10.0 and 20.0 A .  While investigating the structures, 
there were some problems encountered in the original PDBbind files, mostly about 
hemiacetals, phosphors, contact points, bonding and charges. 

Therefore, together with these concerns, structures for the binding-affinity calculations 
were prepared in the following way: 

1. Smaller model protein structures (the “pockets”) were created by the cutting 
algorithm. 

2. A number of structures, whose errors were inside the pocket that could not be 
fixed easily, were excluded from our calculations to keep our main data set close 
to the original structures.  

3. The resultant pockets were capped with hydrogen atoms at the cut edges.  

4. Due to keeping the whole residue even for one single atom intersecting the cutoff 
line,  the overall sizes of the pockets were always systematically larger (by about 
3-5 A ) than the specified cut-off distances. For example, a cutoff distance of 3 A  
would yield a final pocket size of around 6-8 A . 

5. In case of HIS amino-acid residues, protonation was necessary [264] where they are 
assumed to be neutral. 

6. Water molecules within the pockets were discarded [265].   

7. Overall charges were assigned according to automatic Lewis-structure analysis 
and double-checked with the assignment by MOPAC [58]. 

 

Table I.2-1 below shows the minimum and maximum sizes of the model complexes after 
the cutting procedure. The sizes of pockets ranged from minimum 70 to maximum 700 
atoms for 3.0 A , whereas it reached up to about minimum 900 to 7000 atoms for 20.0 A . 
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Cutoff Distances  

( Ångström, A ) 

Size of the 
pockets 

( Number of 
Atoms ) 

min – max 

Size of the 
model 

complexes 

( Number of 
Atoms ) 

min – max 

Size of the 
ligands 

( Number of 
Atoms ) 

min – max 

Size of the 
original (full) 

protein 

( Number of 
Atoms ) 

min – max 

3.0 70 – 686 84 – 821 

6 – 148  

884 – 92514 

(ave=7286) 

 

Diameter ranging 
from 

35 Å to 1774 Å 

5.0 148 – 940 171 – 1081 

7.0 271 – 1722 309 – 1857 

10.0 456 – 2624 489 – 2759 

20.0 906- 6989 1030-7046 

Table I.2-1: Atomic sizes of model complexes (ligand + pocket), ligands and pockets 

 

After obtaining the pocket models, the goal is to calculate the statistical correlation of the 
binding energies with respect to different cutoff distances to find an optimal pocket model 
compromising the computational cost and accuracy.  

The binding (interaction) energy can be calculated as follows: 

Einteraction = Ecomplex – (Epocket + Eligand)                          (Eqn. 3.1.1-1) 

For the Research Stage I, the binding energies are computed by MM (FF), SQM and DFT 
methods. The limitation of finite computation time results in some of the computational 
methods only being available for a small number of atoms.  

As can be seen in Table I.2-1, the 10.0 A  and 20.0 A  pocket model benchmark set consist 
of large number of atoms per protein, that’s why for both of these, SQM is the only easily 
available method due its computational costs. Similarly, when all methods are concerned 
and need to be compared with eachother, then, only small benchmark sets, mainly the 3.0 
A  and for some cases the 5.0 A  cutoff pocket models are available for all type of methods. 

Our research involve: 

 Performance comparisons of the pocket models with various cutoff pocket models, 

 Performance comparisons in between different computational methods, based on 
a certain cutoff pocket model.   

 

The following statistical tools are used for these comparisons: 
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Pearson Product-Moment Correlation Coefficient: 

The Pearson product-moment correlation coefficient, R is commonly used in statistics to 
measure the degree of dependence between two linearly related variables. The Pearson 
R values can change in between +1 and −1 inclusive, where 1 indicates a total positive 
correlation, 0 indicates no correlation, and −1 indicates total negative correlation. In our 
case, these linearly related variables will be pocket models with different cutoff distances 
[266].  

If there are two datasets, where one of them as an X set with the following variables: 
{x1,...xn},  and another dataset Y, having the following variables, {y1,...yn}, and that both of 
them are containing n total values, 

Then, Pearson R is given as: 

𝑅 = 𝑅𝑥𝑦 =  
𝑛 ∑ 𝑥𝑖𝑦𝑖− ∑ 𝑥𝑖 ∑ 𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2− (∑ 𝑥𝑖)2 √𝑛 ∑ 𝑦𝑖

2− (∑ 𝑦𝑖)2
                        (Eqn. 3.1.1-2) 

 

Kendall Rank Correlation Coefficient 

As a second tool to consider, the Kendall tau rank correlation coefficient, τ is a non-
parametric test that measures the strength of dependence between two variables. Here 
again the range is in between +1 and −1 inclusive, +1 indicates that there is a perfect 
agreement between the two sets of ranks, whereas –1 indicates that there is a complete 
disagreement between the two sets of ranks (as the rank of one variable increases the 
other one decreases [267]. 

Once again continuing with the same notation, having datasets of: {x1,...xn}  and another 
as: {y1,...yn} with containing n total values, then, the following are expressed:  
 

 (xi, yi) and (xj, yj) are called “concordant”, in case: 
 

𝑥𝑖−𝑥𝑗

𝑦𝑖−𝑦𝑗
> 0                                    (Eqn. 3.1.1-3) 

 
So, this corresponds to: both xi > xj and yi > yj or if both xi < xj and yi < yj. 

 
Likewise,  
 

 (xi, yi) and (xj, yj) are called “discordant”, if xi > xj and yi < yj or if xi < xj and yi > yj. 
 

𝑥𝑖−𝑥𝑗

𝑦𝑖−𝑦𝑗
< 0                                     (Eqn. 3.1.1-4) 

 
Which comes with the condition as well that when, xi = xj or yi = yj, the pair is 
neither concordant nor discordant. 
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The Kendall τ coefficient is then defined as [268, 269]: 
 

𝜏 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)−(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠
       (Eqn. 3.1.1-5) 

 
 
τ =1:  when all the pairs are concordant, and it means variables are in exactly the 

same order. 
τ =-1:  when all the pairs are discordant, which means the variables are in exactly 

the opposite order.  
τ =0:  equal numbers of concordant and discordant pairs, and this is labelled as 

“there’s no relationship between the variables.” 

 

Since we are interested in ranking, it is advantageous to examine both Pearson’s R and 
Kendall’s τ parameter. The interpretation of the R and τ value depends on the field of 
studies. In our case, correlations are used as follows: 

 

R or τ values Meanings 

+0.90 to +1.00 Very strong positive 
relationship 

+0.70 to +0.90 Strong positive relationship 

+0.50 to +0.70 Moderate positive 
relationship 

+0.00 to +0.50 No, negligible or weak 
positive relationship 

-0.00 to -0.50 No, negligible or weak 
negative relationship 

-0.50 to -0.70 Moderate negative 
relationship 

-0.70 to -0.90 Strong negative relationship 

-0.90 to -1.00 Very strong negative 
relationship 

List I.2-1 Pearson R and Kendall τ value interpretations 
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Computational methods that are used for this section are tabulated below in Table I.2-2: 

Computational Methods 

Method Type Name Computational Details 

MM-FF 

MMFF94[270] OpenBabel [271] 

Amber ff99sb [272] and 
GAFF [273] 

Amber11 [274] 

DFT 

BP86 [275,276] 

PBE [277] 

TPSS [278] 

with empirical dispersion 
corrections of 

D2 [279] 

D3 [52] and 

D3 plus three-body-
dispersion (named D33 in 
the following) Turbomole 

[280, 281] 

Calculations are done with 

Turbomole 6.4 [280, 281]  

using TZVP and TZVPP 
Gaussian AO basis sets [282]  

the RI approximation for two-
electron integrals [283, 284], 

and with  COSMO as well as 
COSMO-RS via COSMOtherm 

[285] 

 

Semi empirical 

AM1[33] 

AM1-D\cite [53,54] 

PM6 [38] 

PM6-D [53] 

PM6-DH2 [53] 

PM6-DH2X [65] 

 versus 

PM6-DH+ [50] 

MOPAC2012 [58] with  

MOZYME linear scaling 
algorithm [286] and  

COSMO solvation models [285].  

Table I.2-2: List of computational methods used for Research Stage I 
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The reasoning behind some of these selections can be briefly mentioned: 

 MMFF94 (implemented in Open Babel) is chosen as an example Force Field (FF) 
method also because of its parameterizations being available. Also, Amber 
ff99sb/GAFF approach (with Amber 11) was also added for further comparisons 
amongst FF methods, and Amber tools were able to do automatized input 
preparations for 352 entries.  

 AM1, AM1-D, PM6, PM6-D, PM6-DH2, PM6-DH2X, and PM6-DH+ methods were 
included as semi-empirical methods. The most interesting method apart from 
these are OMx methods among other types of SQM methods. Unfortunately OMx 
methods are not parametrized for S and P elements, and since we have these 
elements in proteins structures OMx was not an available option to be included in 
our tests.  

 Chosen DFT methods were with BP86, PBE, and TPSS functionals. We wanted to 
test and compare the effect of GGA and meta-GGA as well. Therefore, BP86 and 
TPSS were used for this comparison, but we found that their performances were 
similar. The reason why BP86 was included, was to test COSMO-RS which is fitted 
for BP86. The dispersion corrections were additionally involved because DFT does 
not include these interactions on its own. 

 Mopac2012 was the software selected for the semi-empirical calculations because 
SQM-DH type of methods are available in this software. 

 MOZYME was developed to enable very large organic compounds to be easily 
calculated. This “MOZYME keyword replaces the standard SCF procedure with a 
localized molecular orbital (LMO) method”, therefore with this linear-scaling 
algorithm, a shorter computation time is aimed.  

 COSMO and COSMO-RS were tested because in order to compare their 
performances in terms of ranking.  

 Turbomole 6.4 was the convenient choice because it is often reported to be faster 
in these type of benchmarking systems [287]. 

 We haven’t studied VASP ONETEP since using periodic codes for biomolecular 
systems is still in development [288].  
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At SQM and MM (MMFF94) level, calculations on all generated model systems were 
possible. We have arrived at the following number of binding energy results at the 
respective cutoff distances:     

Cutoff Distances  

( in Ångström, A ) 

Number of Binding Energies 

(SQM and MM : MMFF94) 

3.0 736 

5.0 733 

7.0 725 

10.0 714 

20.0 623 

Table I.2-3: Number of Binding Energy Data Points calculated via SQM and MM (MMFF94) 
methods, with indicated cutoff distances. 

 

 

At DFT level, not all generated model systems could be successfully treated due to the 
software, RAM limitations and SCF convergence problems.  

Since we are comparably limited with the computational powers for DFT calculations, the 
following points were able to be obtained: 

 

Cutoff Distances  

( in Ångström, A ) 

Number of Binding Energy Data Points 

(DFT) 

 

3.0 

695 BP86/TZVP  

487 BP86/TZVPP 

5.0 

539 BP86/TZVP 

539 PBE/TZVP  

513 TPSS/TZVP  

Table I.2-4: Number of Binding Energy Data Points calculated via DFT methods, with indicated 
(3.0, 5.0 Å) Cutoff Distances. 
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These data points demonstrate the number of pockets and ligands that we can calculate 
binding energies from. After this data points are obtained for different cutoff distances, 
the correlation in between their binding energy results are given in the following sections. 

While presenting the correlation results, in case there were some systematic errors that 
are encountered, then there was a procedure that we have applied to the data plots.  

When there is a systematic error, it means there is an introduction of an error/inaccuracy 
within the system so that it shifts or scales all the data values in a consistent way. As a 
result, it is possible to have a systematic change/correction on these data values, and this 
can be done as in the following:  

First, assuming that we obtain a plot of binding energies out of many complexes like in 
example Figure I.2-4, where each circle represents a complex’s binding energy and axes 
represent different computational methods to compare with eachother.  

 

 

Figure I.2-4: Scaling and Shifting Stage-I 

 

 

To be able to know the overall ranking tendency, we first would like to see the linear 
regression, namely, the trendline for this data collection as shown in Figure I.2-5: 
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Figure I.2-5: Scaling and Shifting Stage-II 

 

Trendline is a visual tool to have a graphical representation of the outputs, and in this study 
they are obtained via xmgrace program in Linux [289].  

For a trendline (linear regression), the equation is:  

                                                                Y = a + bX,                                                   (Eqn. 3.1.1-6) 

X: is the explanatory variable, 
Y: is the dependent variable, 
b: the slope of the line, 
a: is the intercept (the value of y when x = 0) 
 

 

Then, the systematic error correction is done by: 

 Scaling: Dividing the trendline equation by the numerical value of the trendline 
slope (the numerical value of b, as in Eqn. 3.1.1-6), and then, 

 Shifting: Subtracting the numerical value of the intercept (the numerical value of 
a, as in Eqn. 3.1.1-6) from this.  

What we obtain afterwards, can be illustrated in the following Figure I.2-6 below. Here, 
the new, corrected version of the data points and the new trendline are represented. This 
is basically the red coloured version of the previous data set and it is labelled as the 
“Scaled and Shifted” version. 
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Figure I.2-6: Scaling and Shifting Stage-III 

 

Therefore, from this stage on, when we mention about “scaling and shifting”, this is the 
procedure what we are basically referring to and likewise applying to the plots to have 
better comparisons.  

There are also some error criteria definitions to be introduced here, and they will be used 
quite frequently for the comparisons. Two among them require special attention: the 
“mean deviation; MD” and “mean absolute deviation; MAD”. In general, MD is obtained to 
see the systematic errors, while MAD is obtained to have an idea on the average errors. 
The equations in their simplest form can be given as follows:  

Mean Deviation is: 

𝑀𝐷 =
∑(𝑥 − 𝜇)

𝑁
                             (Eqn. 3.1.1-7) 

Mean Absolute Deviation is:  

 𝑀𝐴𝐷 =
∑|(𝑥 − 𝜇)|

𝑁
                                     (Eqn. 3.1.1-8) 

Where, μ is the mean value, x is each value, and N is the total number of values. 

Related to the Scaling and Shifting procedure that is just described, there are also two 
additional MD and MAD values in order to present new scaled and shifted versions of 
them. They are labelled as MD* and MAD* (denoted with a star), and mostly presented in 
addition to the MD and MAD values: 

MD* : “mean deviation value- after scaling and shifting” 

MAD* : “mean absolute deviation value- after scaling and shifting”.  
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I.3   Results and Discussion 

The binding energy results of the benchmark sets obtained by means of the MM (FF), SQM 
and DFT methods (depending on the computational availabilities with cutoff distances: 
3.0, 5.0, 7.0, 10.0 and 20.0 A ), are presented in this section. The Statistical parameters-
correlation values- are also reported for the evaluation of these findings. The error values 
which will be given here will be including: MD and MAD values and MD* and MAD* values 
respectively where they are needed. Further details will be given below.  

 

Comparison of Pocket Model Sizes Based on Cutoff Distances 

The aim is to be able to have a reasonable cutoff distance for the pocket model, so that this 
model can be chosen as a basis.  

Focusing only on one method for now, on a method which can computationally handle all 
the pocket sizes, semiempirical PM6-DH+ was our first chosen method as a reference.  

Figure I.3-1 compares PM6-DH+ binding energies for the benchmark sets with increasing 
distances of 3.0, 5.0, 7.0, 10.0 and 20.0 A  cutoffs.  

20.0 A  can be regarded as sufficiently large for our testing purposes because of the typical 
ranges of the intermolecular interactions involved. It should nevertheless be kept in mind 
that for the real protein structures the diameters ranges from minimum 35 A  to maximum 
1774 A  (average 102 A ). 
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a) 

 

b) 

 

c) 

 

d) 

  

e)  

 

Figure I.3-1: Correlation between PM6-DH+ data for benchmark sets generated with 3.0, 5.0, 7.0, 
10.0 Å cutoff distances: a) 3.0 vs. 10.0 Å, b) 5.0 vs 10.0 Å, c) 7.0 vs 10.0 Å cutoff distances d) 7.0 vs 

20.0 Å e) 10.0 vs 20.0 Å. All computations with COSMO solvation model. 
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As it can be seen from the plots, we observe a quick convergence as the cutoff distance 
increases, and this means, as cutoff distance is increased, pockets behave similarly after a 
certain point. This can be reported respectively follows:  

 As for the cutoff 3.0 A , there is a correlation of Pearson, R=0.83 with the 10.0 A  
pocket,  

 For 5.0 A  it is R=0.96 with the 10.0 A  pocket,  

 For 7.0 A  it is R=1.00 with the 10.0 A  pocket, 

 In between 7.0 A  and 20.0 A , it is R=0.98, 

 Finally in between 10.0 A  and 20.0 A , this value is R=0.98. 
 

Within the plots, Pearson R is shown, however, Kendall (τ) values also show a similar 
increasing trend with the same models. The statistical parameters for this section can be 
tabulated as follows: 

Entry 

( all with COSMO solvation models) 
Figure I.3-1 

Pearson (R) 

correlation 

Kendall (τ) 

correlation 

PM6-DH+ 3.0 vs 10.0 A  a 0.83 0.76 

PM6-DH+ 5.0 vs 10.0 A  b 0.96 0.90 

PM6-DH+ 7.0 vs 10.0 A  c 1.00 0.96 

PM6-DH+ 7.0 vs 20.0 A   d 0.98 0.93 

PM6-DH+ 10.0 vs 20.0 A  e  0.98 0.95 

Table I.3-1: Pearson and Kendall values for the data presented in Figure I.3-1. 

It is clear from the general trends that, as we increase the cutoff size, which means 
increasing the model sizes of our pockets, it converges to an effective size limit, and this 
size limit which can be regarded as the efficient pocket size limit which is enough to 
represent the overall protein in an acceptable way.  

We can state that 3.0 A  pocket is a bit different than the 10.0 A  pocket based on the 
correlation values (R=0.83 or τ=0.76). As we increase the cutoff to 5.0 A , and compare 
with 10.0 A  again, a better correlation is observed (R=0.96 or τ=0.70), which means the 
5.0 A  pocket is a better representative for the 10.0 A  pocket model. Then, as the cutoff size 
is increased further and when 7.0 A  pocket is examined, it is seen that this model is almost 
in one to one model resemblance with the 10.0 A  pocket with a correlation of  R=1.00 or 
τ=0.96. This means that 7.0 A  leads to a reasonably good model of our protein.  

Still to investigate further, 7.0 vs 20.0 A  has a correlation of R=0.98 (including only one 
outlier data) and R=0.99 (without any outlier data), whereas, 10.0 vs 20.0 A  has a 
correlation of R=0.98 (including only one outlier data) and R=1.00 (without any outlier 
data).  This means going beyond 7.0 A  will not change the results critically, and in general, 
the smaller the model, the faster the calculations. Therefore, 7.0 A  can be considered as 
the optimum cutoff distance.  

Computational cost comparison for these calculations are also given in Graph I.3-1. Then, 
this is followed with the atomic size comparison in Graph I.3-2. Finally, the computational 
time and atomic size comparison is given in Graph I.3-3.  
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Graph I.3-1: Computational time (in minutes) to calculate the full sets at given cutoff distances.  
154 minutes (2.6 hours) for 3.0 Å,  
317minutes (5.3 hours) for 5.0 Å,  

863 minutes (14.4 hours) for 7.0 Å,  
1958 minutes (32.6 hours or 1.4 days) for 10.0 Å,  

12801 minutes (213 hours or 8.9 days) for 20.0 Å cutoff sets. 
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Graph I.3-2: Average atom size (number of atoms) in the full sets at given cutoff distances.  
322 number of atoms in average within 3.0 Å set,  
475 number of atoms in average within 5.0 Å set,  
807 number of atoms in average within 7.0 Å set,  

1358 number of atoms in average within 10.0 Å set,  
3618 number of atoms in average within 20.0 Å set. 
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Graph I.3-3: Computational time needed for the average atom size (number of atoms). 
 322 number of atoms in average within 154 minutes (2.6 hours), 
475 number of atoms in average within 317minutes (5.3 hours),  

807 number of atoms in average within 863 minutes (14.4 hours),  
1358 number of atoms in average within1958 minutes (32.6 hours or 1.4 days),  

3618 number of atoms in average within 12801 minutes (213 hours or 8.9 days). 

 

 

 

The scaling is found out to be as N1.8, which is close to quadratic scaling N2, thus it is rather 
good for a QM method which usually scale as N3-4.  
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Due to our cutting algorithm, 7.0 A  cutoff has an actual corresponding effective distance 
of about 10-12 A . This result is motivating since it is also found out to be in a good 
agreement with studies on small model systems [257].  

In that sense, we would have liked to continue with this optimum cutoff 7.0 A  for all the 
comparisons with different methods, but unfortunately, unlike the SQM methods giving 
us this opportunity to handle large systems, the computational costs are limited for many 
other methods, like for example DFT methods.  

As DFT is also available for them, 3.0 A  and 5.0 A  cutoff pocket models are the chosen for 
a detailed SQM and DFT comparisons.  

Moreover, for the overall method comparison purposes, which will be including WFT, DFT, 
SQM and MM methods, 3.0 A  cutoff level models will be the only ones to focus on due to 
the computational availabilities.  

For a real scoring application, a larger cutoff – as much as computations do allow – is 
desirable, but that seems only possible with SQM methods for now. 

The next section aims to test and compare various SQM methods in order to have a valid 
SQM reference method to begin with.  

 

Comparison of SQM methods 

The goal with this comparison here is to see the best suited SQM methods for our study 
and test the reliability of our own method (Korth’s PM6-DH+ method [50]) for this research 
as well. 

As it is mentioned in the previous sections, PM6-DH+ method is amongst the most reliable 
enhanced semi empirical methods which was also preferred in many different application 
studies [27]. Its performance is tested and compared with several other SQM methods as 
well, which are: AM1, PM6, PM6-D, PM6-DH2, and PM6-DH2X methods.  

Results are given in Figure I.3-2 and in Table I.3-2. Data points are plotted in comparison 
to PM6-DH+ values with the correlation values indicated. All computations are done with 
COSMO solvation models.  
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure I.3-2: Correlations of different SQM approaches a) AM1 b) PM6 c) PM6-D d) PM6-D2 e) 
PM6-DH2X, each method compared against PM6-DH+. All computations are performed at 5.0 Å 

cutoff distances and involve COSMO solvation models. 
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List of SQM Methods  

compared with  

PM6-DH+ method  

at 5.0 Å cutoff 

( all with COSMO solvation models) 

Figure I.3-2 

 

Pearson (R) 

correlation 

 

 

Kendall (τ) 

correlation 

AM1 (5.0 A )  a 0.80 0.56 

PM6 (5.0 A )  b 0.89 0.67 

PM6-D (5.0 A )  c 0.99 0.90 

PM6-DH2 (5.0 A )  d 1.00 0.94 

PM6-DH2X (5.0 A )  e 1.00 0.94 

Table I.3-2: Pearson and Kendall values for the data presented in Figure I.3-2. 

The results overall confirm our choice of PM6-DH+ as the reference method.  

AM1 shows a bigger deviation in the light of small benchmark studies, it seems likely less 
accurate [27]. Therefore, after this first comparison, AM1 methods were excluded from 
further consideration.  

It is also observed that there is a significant importance of dispersion corrections, as there 
is a difference in between PM6 and PM6-D methods.  

However, looking at the correlation values of PM6-D, PM6-DH2 and PM6-DH2X, only a 
negligible contribution/change is observed in between these which is resulting from the 
empirical corrections for hydrogen- and halogen-bonding. This finding is also in good 
agreement with Ryde and his coworkers study [88]. 

More specifically, PM6-DH2 and PM6-D2HX are both showing the same performance as 
PM6-DH+ with a correlation of R=1.00.  Hence, a correlation of R=1.00 can be expressed 
as having similar results as PM6-DH+.  

Additionally, related to this test, Table I.3-3 shows the error values MD, MAD, MD*, MAD* 
in comparison to the PM6-DH+ method.  

List of SQM Methods  

compared with  

PM6-DH+ method  

at 5.0 Å cutoff 

( all with COSMO solvation models) 

Figure I.3-2 

 

MD 

 

 

MAD 

 

 

MD* 

 

 

MAD* 

 

(kcal/mol) 

AM1 (5.0 A )  a -54 54 -5 20 

PM6 (5.0 A )  b -41 41 -2 14 

PM6-D (5.0 A )  c -7 7 0 4 

PM6-DH2 (5.0 A )  d 2  2  0 2 

PM6-DH2X (5.0 A )  e 2 2 0 2 

Table I.3-3: MD, MD*, MAD, MAD* values for SQM method comparisons 
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Based on Table I.3-3, MD and MAD values for the “non-enhanced” SQM methods (basically 
the methods without a Hydrogen (H) or a Dispersion (D) correction: the AM1 and PM6 
methods) against an “enhanced” SQM method (our enhanced PM6-DH+ method in this 
case) are found to be very large. These are: 

 MD: -54 and MAD: 54 kcal/mol for the case of, AM1 vs PM6-DH+  

 MD: -41 and MAD: 41 kcal/mol for the case of, PM6 vs PM6-DH+  

This shows that there is a huge difference in between these non-enhanced and enhanced 
methods. Even when these are corrected for the systematic shifts, these values are still 
high.  

AM1, when it is scaled and shifted according to the following equation,  

 y = 54.643 + 0.90931 * x , then we obtain, 

 MD*: -5 and MAD*: 20 kcal/mol for the case of, AM1 vs PM6-DH+. 

For the PM6, with  

 y = 41.382 + 0.96407 * x , then the values become: 

 MD*: -2 and MAD*: 14 kcal/mol for the case of, PM6 vs PM6-DH+. 

 

For the comparison of “enhanced SQM methods”, which include the following methods: 
PM6-D, PM6-DH2 and PM6-DH2X, against our reference: “enhanced SQM”, PM6-DH+ 
method, now that we observe that the MD and MAD values are much smaller: 

 MD: -7 and MAD: 7 kcal/mol, for PM6-D vs PM6-DH+  

 MD: 2 and MAD: 2 kcal/mol both for PM6-DH2 and PM6-DH2X vs PM6-DH+  
 

They are corrected again with scaling and shifting procedure. Then,  

For PM6-D, with: 

 y = 6.9079 + 0.99185 * x , the values became: 

 MD*: 0 and MAD*: 4 kcal/mol for PM6-D vs PM6-DH+.  

For PM6-DH2 and PM6-DH2X, with,  

 y = -2.0686 + 1.0287 * x , the values became: 

 MD*: 0 and MAD*: 2 kcal/mol for both PM6-DH2 and PM6-DH2X vs PM6-DH+. 

 

Comparison of DFT methods 

Next, DFT methods are compared with different functionals and basis sets. To begin with, 
the reference method here is taken as BP86-D2/TZVP method. The results are given in 
Figure I.3-3. Here, all the computations are done with COSMO solvation. Afterwards, based 
on a certain DFT method (BP86-D2/TZVP once again), in order to see the solvation effects, 
COSMO and COSMO-RS were compared in Figure I.3-4. Finally, in Figure I.3-5 different 
dispersion correction schemes are compared. 
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 Comparison of Basis sets and Functionals 

The following Figure I.3-3 and Table I.3-4 are obtained: 

a) 

 

b) 

 

c) 

 

Figure I.3-3: Correlation between different DFT functionals and basis sets: a) PBE-D2/TZVP b) 
TPSS-D2/TZVP c) BP86-D2/TZVPP, each of them plotted against the reference method BP86-

D2/TZVP. Computations a) and b) are performed at 5.0 Å, c) is performed at 3.0 Å cutoff distances. 
All cases involve COSMO solvation models. 
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List of DFT Methods  

compared with  

BP86-D2/TZVP method  

at 5.0 Å and 3.0 Å cutoff 

 ( all with COSMO solvation models) 

Figure I.3-3 

Pearson (R) 

correlation 

 

Kendall (τ) 

correlation 

PBE-D2/TZVP (5.0 A )  

vs  

BP86-D2/TZVP (5.0 A ) 

a 1.00 0.94 

TPSS-D2/TZVP (5.0 A )  

vs  

 BP86-D2/TZVP (5.0 A ) 

b 1.00 0.94 

BP86-D2/TZVPP (3.0 A )  

vs 

 BP86-D2/TZVP (3.0 A ) 

c 1.00 0.99 

Table I.3-4: Pearson and Kendall values for the data presented in Figure I.3-3 

 

From Figure I.3-3 and Table I.3-4, it can be concluded that, the DFT functionals (using 
PBE-D2 or TPSS-D2 instead of using BP86-D2) give very similar results. Also for the basis 
set comparisons, increasing the level beyond TZVP (and having TZVPP instead) only 
makes a little change. The interaction energies are rather uniform with a correlation of 
Pearson R=1.00 for the cases we have investigated. Additionally, MD, MD*, MAD and MAD* 
values are also given in Table I.3-5 as follows: 

 

List of DFT Methods  

compared with  

BP86-D2/TZVP method  

at 5.0 Å and 3.0 Å cutoff 

 ( all with COSMO solvation models) 

Figure I.3-3 

 

MD 

 

 

MAD 

 

 

MD* 

 

 

MAD* 

 

(kcal/mol) 

PBE-D2/TZVP (5.0 A )  

vs  

BP86-D2/TZVP (5.0 A ) 

a -2.6 3.0 0.0 2.3 

TPSS-D2/TZVP (5.0 A )  

vs   

BP86-D2/TZVP (5.0 A ) 

b -1.2 2.4 0.0 2.3 

BP86-D2/TZVPP (3.0 A )  

vs  

BP86-D2/TZVP (3.0 A ) 

c 0.5 0.8 0.0 0.4 

Table I.3-5: MD, MD*, MAD, MAD* values for DFT functionals and basis set comparisons 
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As can be seen from the Table I.3-5, all of them have resulted in similar values. The details 
can be listed as follows: 

Before shifting and scaling the values were: 

 PBE-D2/TZVP (5.0 A ) vs BP86-D2/TZVP (5.0 Å) ; MD: -2.6 and MAD: 3.0 kcal/mol 

 TPSS-D2/TZVP (5.0 Å) vs BP86-D2/TZVP (5.0 Å) ; MD: -1.2 and MAD: 2.4 kcal/mol,  
 

Whereas, after shifting and scaling with  

 y = 2.4491 + 0.98718 * x , and  y = 1.2083 + 1.0019 * x  respectively, these became: 

 PBE-D2/TZVP (5.0 A ) vs BP86-D2/TZVP (5.0 Å) ; MD*: 0.0 and MAD* 2.3 kcal/mol 

 TPSS-D2/TZVP (5.0 Å) vs BP86-D2/TZVP (5.0 Å) ; MD*: 0.0 and MAD*: 2.3 kcal/mol 
 

For the comparison of TZVPP with TZVP, before shifting and scaling, it was: 

 BP86-D2/TZVPP (3.0 Å) vs BP86-D2/TZVP (3.0 Å); MD: 0.5 and MAD: 0.8 kcal/mol  

And, after the adjustment with   y = -0.71515 + 0.97313 * x , this became: 

 BP86-D2/TZVPP (3.0 Å) vs BP86-D2/TZVP (3.0 Å); MD*: 0.0 and MAD*: 0.4 kcal/mol.  

 

Comparison of COSMO and COSMO-RS 

The differences between COSMO and COSMO-RS models are investigated, and the result 
is presented in Figure I.3-4, Table I.3-6 and Table I.3-7. 

  

 

 Figure I.3-4: Correlation between the solvation contributions of COSMO and COSMO-RS for 
BP86/TZVP calculations. 
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Entry 

 

Figure Pearson (R) 

correlation 

Kendall (τ) 

correlation 

BP86-D2/TZVP/COSMO-RS (3.0 A )  

vs  

BP86-D2/TZVP/COSMO (3.0 A ) 

I.3-4 1.00 0.95 

Table I.3-6: Pearson and Kendall values for the data presented in Figure I.3-4. 

  

Entry 

 

Figure MD MAD MD* MAD* 

(kcal/mol) 

BP86-D2/TZVP/COSMO-RS (3.0 A )  

vs  

BP86-D2/TZVP/COSMO (3.0 A ) 

I.3-4 2.9 6.8 -0.4 4.4 

Table I.3-7: MD, MD*, MAD, MAD* values for solvation models correlations 

 

Before scaling and shifting, the values were MD: 2.9 and MAD: 6.8kcal/mol, and after 
scaling and shifting with the following equation, 

  y = -8.3776 + 1.0511 * x , they became:  

 MD*: -0.4 and MAD*: 4.4 kcal/mol.  
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Comparison of Dispersion Corrections 

Investigation of the different dispersion corrections are presented in Figure I.3-5 and 
Tables I.3-8 and I.3-9 below.  

It is again shown that, only for the case when rankings are compared, differences in 
dispersion corrections does not play a decisive role either.   

 

a) 

 

b) 

 

Figure I.3-5: Correlation between different dispersion schemes for DFT, BP86/TZVP methods: a) 
D3 against D2, b) D33 against D3 is plotted. All calculations are done with COSMO solvation models 

and at 3.0 Å cutoff distances. 

 

 

Entry 

( all with COSMO solvation models) 
Figure I.3-5 

Pearson (R) 

correlation 

Kendall (τ) 

correlation 

BP86-D3/TZVP (3.0 A )  

vs  

BP86-D2/TZVP (3.0 A ) 

a 1.00 0.94 

BP86-D33/TZVP (3.0 A )  

vs  

BP86-D3/TZVP (3.0 A ) 

b 1.00 0.99 

Table I.3-8: Pearson and Kendall values for the data presented in Figure I.3-5. 
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Entry 

( all with COSMO solvation 

models) 
Figure I.3-5 

 

MD 

 

 

MAD 

 

 

MD* 

 

 

MAD* 

 

(kcal/mol) 

BP86-D3/TZVP (3.0 A )  

vs  

BP86-D2/TZVP (3.0 A ) 

a 3.2 3.4 0.0 1.9 

BP86-D33/TZVP (3.0 A )  

vs  

BP86-D3/TZVP (3.0 A ) 

b -1.2 1.2 0.0 0.4 

Table I.3-9: MD, MD*, MAD, MAD* values for solvation models correlations 

 

 Before scaling and shifting, the values were: 

 MD: 3.2 and MAD: 3.4 kcal/mol for BP86-D3/TZVP (3.0 Å) vs BP86-D2/TZVP (3.0 Å), and , 

 MD: -1.2 and MAD: 1.2 kcal/mol for BP86-D33/TZVP (3.0 Å) vs BP86-D3/TZVP (3.0 Å). 
 

After scaling and shifting with:  y = -1.1542 + 1.0332 * x  for the first case, values became: 

 MD*: 0.0 and MAD*: 1.9 kcal/mol for BP86-D3/TZVP (3.0 Å) vs BP86-D2/TZVP (3.0 Å),  

and with  y = -0.10118 + 0.97991 * x , for the second case, the values became: 

 MD*: 0.0 and MAD*: 0.4 kcal/mol for BP86-D33/TZVP (3.0 Å) vs BP86-D3/TZVP (3.0 Å). 

 

 

To sum up, based on the overall performance results so far, the following methods will be 
used as references for further comparisons.  

 For the SQM methods: The PM6-DH+ method, 

 For the DFT methods: BP86-D2/TZVP method. 

 

Hereby, it is important to emphasize once more that, ‘ranking’ is our main consideration 
overall. That’s why our findings and statements are not counter claims for the importance 
of differences among the basis sets, functionals, dispersion correction schemes or the 
usage of COSMO versions for many systems and applications, especially where the 
numerical data values are important rather than the overall tendency (ranking). Instead, 
on the contrary, when the absolute data values are required, the differences in these 
parameters are highly crucial and distinctive to take into considerations. 
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Comparison between different computational methods 

After the SQM methods and DFT methods are tested and compared within their own 
classes, a reference method for SQM and DFT are assigned as a result.  This time, these 
reference SQM and DFT methods are compared with each other and preferably with the 
5.0 A  pocket models, since DFT methods are computationally available at this range.  

Comparison between SQM and DFT methods at 5.0 Å cutoff 

The correlation between the SQM (PM6-DH+) and DFT (BP86-D2/TZVP) methods at the 
5.0 A  cutoff range is investigated and given in Figure I.3-6 and in Table I.3-10 below.  

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure I.3-6:  Detailed comparison between SQM (PM6-DH+) and DFT (BP86-D2/TZVP) methods: 
a) Overall Interaction Energy b) dispersion contribution c) solvation contribution d) electronic 

contribution. All computations are with COSMO solvation models and at 5.0 Å cutoffs. 
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Entry 

 

Figure I.3-6 

Pearson (R) 

correlation 

(5.0 Å) 

Kendall (τ) 

correlation 

(5.0 Å) 

Overall interaction energy  

(with all contributions ) 
a 0.93 0.77 

Only dispersion contribution b 0.98 0.89 

Only solvation contribution  c 0.99 0.95 

Only Electronic contribution d 0.99 0.84 

Table I.3-10: Pearson and Kendall values for the data presented in Figure I.3-6. 

 

It is observed that, correlation increases from 0.93 to 0.98 (parts a & b) when there is the 
dispersion contribution. Correlation again increases from 0.93 to 0.99 (parts a & c) when 
there is only the solvation contribution. A similar increasing tendency is observed for the 
polarization effects as well (electronic contributions), where the correlation increases 
from 0.93 to 0.99 for the (parts a & d).  

These all indicate that SQM methods still need some improvement and that the balance of 
the intermolecular interactions are not obtained well enough with SQM methods. 
Dispersion contribution on its own is a bit problematic too, because SQM methods already 
model noncovalent effects but without taking care of a proper long range behaviour. In 
conclusion, SQM methods can be improved in several ways [69, 36, 74-76].  

 

Comparison in between MM methods and best suited SQM and DFT methods 

This part includes an overall comparison in between MM, SQM and DFT methods this time.  
We better remark on the selection of the MMFF94 method here, since it is indicated that 
interaction energies from most MM methods are highly correlated [290],we are initially 
assuming that the qualitative results would not be so different for the other MM methods 
as well. Amber ff99sb/GAFF is in any case evaluated to test this assumption.  

 

Figure I.3-7 and Table I.3-11 below, compares the correlations in between SQM: PM6-
DH+, DFT: BP86-D2/TZVP and MM: MMFF94 methods. As the next step, two MM methods 
(MMFF94 and ff99sb/GAFF) are compared with eachother as well in Table I.3-11.  All 
computations are done at 3.0 A  cutoff level. 
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a) 

 

b) 

 

Figure I.3-7: Detailed comparison between SQM (PM6-DH+), MM (MMFF94) and DFT (BP86-
D2/TZVP) methods: a) MM (MMFF94) against DFT (BP86-D2/TZVP), b) SQM (PM6-DH+) against 

DFT (BP86-D2/TZVP). All calculations are done with 3.0 Å cutoff. 

 

It is clear from the plots that, SQM results are closer to the DFT results when compared 
with the MM results. Therefore, SQM seems to be an improvement over MM methods in 
case of rankings.  

 

 

Entry Pearson (R) 

correlation 

Kendall (τ) 

correlation 

I ff99sb/GAFF (3.0 A ) vs MMFF94 (3.0 A ) 0.95 0.75 

II ff99sb/GAFF (3.0 A ) vs BP86-D2/TZVP (3.0 A ) 0.96 0.73 

III 
ff99sb/GAFF/GBSA (3.0 A ) vs  

BP86-D2/TZVP/COSMO(3.0 A ) 
0.60 0.51 

IV 

 MMFF94 (3.0 A ) vs  

BP86-D2/TZVP (3.0 A ) 

Figure I.3-7a 

0.93 0.76 

V 

PM6-DH+ (3.0 A ) vs  

BP86-D2/TZVP (3.0 A ) 

Figure I.3-7b 

0.99 0.93 

VI 
PM6-DH+/COSMO (3.0 A ) vs  

BP86-D2/TZVP/COSMO(3.0 A ) 
0.92 0.74 

Table I.3-11: Pearson and Kendall values for the data presented in Figure I.3-7 and some 
additional method comparison tests. 
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Due to the findings, the MMFF94 and ff99sb/GAFF similarity assumption is validated in 
comparison with the DFT method (second entry: ff99sb/GAFF vs BP86-D2/TZVP has a 
correlation of R= 0.96 and τ= 0.73; whereas, fourth entry: MMFF94 vs BP86-D2/TZVP has 
a correlation of R= 0.93 and τ= 0.76).  

The comparison in between the second and third entries, as well as, the comparison in 
between the fifth with sixth entries show the performance results of the same entries only 
by being with or without COSMO solvation models. It can be observed that the solvation 
effects are not improving the ranking correlation in between SQM and DFT methods.  

Among the ones which are having solvation effects, it is also observed that, the third entry 
ff99sb/GAFF/GBSA (3.0 A ) vs BP86-D2/TZVP/COSMO (3.0 A ), has a correlation of R= 0.60 
and τ= 0.51, while, the sixth entry PM6-DH+ (3.0 A ) COSMO vs BP86-D2/TZVP (3.0 A ) 
COSMO has a correlation of R= 0.92 and τ= 0.74. These result are favouring the SQM 
methods in this category.  

Using more sophisticated charge and solvation models might improve these results for the 
case of MM methods, however due to the already observed slight changes in between MM 
methods with the previous tests, we somehow do not expect a difference in qualification 
in that sense. Therefore, from the findings here, it can be reported that, SQM methods are 
an improvement for the MM methods. 

 

MD, MD*, MAD and MAD*values are also tabulated in the following Table I.3-12 to 
compare our SQM, DFT and MM references.  

Entry 

 

MD MAD MD* MAD* 

(kcal/mol) 

PM6-DH+ (3.0 A ) vs BP86-D2/TZVP (3.0 A ) -12 14 -0.1 7.1 

MMFF94 (3.0 A ) vs BP86-D2/TZVP (3.0 A ) -55 57 0.4 30.9 

Table I.3-12: MD, MD*, MAD, MAD* values for solvation models correlations 

 

The differences in between the numerical values once more suggest the reference SQM 
method over the reference MM method.  

Due to the numerical values, the mean absolute deviations from the DFT method are 
roughly at the size of 1% (14/1098*100) and 5% (57/1098*100) for the SQM and MM 
methods respectively in percentages and these are on the electronic scale with an energy 
range of about 1098kcal/mol (this 1000kcal/mol around range can be seen on the axes of 
the relevant plots as well).  

Once the solvation is considered, then it is a resulting energy range of about 250kcal/mol, 
then these values become 6% (14/250*100) for the SQM and 23% (57/250*100) for the 
MM methods.   
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It is already known that, any type of a possible calculation method right now is 
unfortunately still far away from the desired accuracy level (there is still a big gap 
between the experimental values and the computed values). However, even this is still 
being the case, at least, reaching to the best and computationally the most cost effective 
alternative method, is still regarded as an improvement.  

From our first work (Research Stage I, Section 3.1.1), by evaluating the performances of 
different computational methods, it is clear that the SQM methods are doing perfectly well 
for the ranking purposes and with an accuracy similar to DFT.  

It should however be emphasized that, there is still a need and a room for better scoring 
functions, and hence better model approaches for SQM methods.  

Among the reasons of why SQM is far away from the experimental values, we can list the 
following: First of all, we are using simple model systems, and these model systems rely 
only on a single binding mode (docked, fixed, ligand-protein pairs). Second, during our 
calculations, we do not ignore the ones with some possible problems from our complex 
sets (i.e. like the problematic cases with protonation, cavity water and relaxation effects 
so on). Therefore, improving these conditions might improve the results too. In addition, 
according to our estimations, especially neglecting the entropic effects is an important 
drawback in our approaches. On this occasion, we will have further tests and analysis on 
entropy, enthalpy effects in our Research Stage III, Section 3.1.3. 
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I.4   Conclusion  

 To summarize our findings: 

 Quantum mechanical calculations can be restricted to smaller model system 
without losing their predictive capability as we have also shown in our tests with 
different sized model systems.  

 The constructed model systems are well within the reach of SQM methods, but still 
challenging for DFT approaches with their sizes.  

 Different SQM methods have different features (as it is mentioned in our literature 
Section 2.1.3 before). With our findings, it can be concluded that our reference SQM 
method, PM6-DH+ is reliable enough to be recommended.  

 Even for the various and large scaled protein-ligand sets, in case when the ranking 
is the only concern, there is almost no significant difference between using or not 
using the dispersion corrections and implicit solvent models. This is only being 
said for the ranking, but for any other calculations, it is still recommend to use DFT-
D3/TZVP/COSMO (-RS) methods. 

 For the comparison in between the different computational models that are having 
different theoretical levels, like DFT vs SQM, we have found out that, as an 
enhanced SQM approach, PM6-DH+ performs very similar to DFT-D and this shows 
a substantial improvement upon classical potentials.  

 When we have tests on the smaller energy scales, by looking at the differences, it 
can be stated that SQM has a deviation of 5% from DFT whereas MM (FF) has a 
deviation of 15% from DFT. 

 We have gone through different stages for model preparations in our study and 
based on this experience, we can state that, an automatic way of a model system 
preparation needs further adjustments and especially the neglected entropic 
(and/or enthalpic) effects should be included or revised.  

 

After these remarks, our results bring us to the second stage of our research ( Section 
3.1.2), where, this time our focus will be on the comparison of several wave function 
theory (WFT), density functional theory (DFT) and semiempirical quantum mechanical 
(SQM) approaches against high-level theoretical references, and again by making use of 
the realistic protein-ligand (pocket) model structures.  
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3.1.2   Research Stage II    [91] 

II.1   Introduction 

As it is previously mentioned in our literature Section 2.2, for in silico drug design, scoring 
functions mostly perform well but they still need to be improved for a higher accuracy. 
When it is about “scoring”, there are some QM-level studies on computational methods [89, 

88, 254, 255, 129, 120, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300]. To extend our research, this time our 
focus will be on benchmarking several wave function theory (WFT), density functional 
theory (DFT) and semiempirical quantum mechanical (SQM) approaches against high-
level theoretical references for realistic test cases. 

 

II.2   Computational Details & Generation of PLI10 model systems 

Our previous study (Section 3.1.1) was covering PDBbind 2007 data set and the pocket 
models prepared at the cutoff distances of: 3.0, to 5.0, 7.0, 10.0 and 20.0 A . For the 
preparation of the pocket models our own cutting algorithm was used and the resultant 
structures were always again 3-5 A  larger than the specified cutoff-distance labels based 
on the algorithm. The same PDBbind 2007 set is used again for this study and therefore 
previously mentioned concerns are also valid. For example, 

 After obtaining pockets, the terminal structures are capped with hydrogen atoms. 

 Histidine residues were assumed to be neutral (with protonation at the sterically 
less crowded place if necessary), because automatic pKa prediction was 
technically not possible for all systems. 

 Overall charges were assigned according to automatic Lewis-structure analysis. 
This assignment is based on the number of additional or missing bonds found via 
comparison to sums of van-der-Waals radii, and then these were double-checked 
with the automatic assignment implemented in MOPAC. Also, MOPAC values are 
taken in case of disagreement. 

 Irregular ligand files, for example files with atoms having an unreasonable number 
of bonds, or files having atoms missing from amino acids, or files where some 
atoms were too close to each other (this was judged by van-der-Waals radii) were 
discarded. 

 

Amongst the obtained pocket models, the sizes of ranged from minimum 70 to maximum 
700 atoms for 3.0 A , whereas it reached up to about minimum 900 to 7000 atoms for 20.0 
A . Albeit this time, in order to be able to do WFT computations, we have picked out only 
the 10 smallest complexes from the pocket models at the cutoff 3.0 A  set. This set is named 
as “PLI10 set”.  
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This PLI10 set involves the following complexes: 

Abbreviation Name of the Complex 

1AVN Human carbonic anhydrase II complexed with histamine [301] 

1D7J FK506 binding protein (FKBP) complexed with 4-hydroxy-2-
butanone [302] 

1E4H Human transthyretin complexed with two bromophenols [303] 

1JYS Nucleosidase from E. Coli complexed with MTA/AdoHcy [304] 

1QPB Pyruvate decarboxylase from yeast complexed with pyruvamide [305] 

(this structure supersedes the now removed PDB entry 1ypd) 

1WEI The catalytic domain of muty from E. Coli K20A complexed with 
adenine [306] 

2BJM  SPE7 complexed with anthrone [307] 

2F8I Human transthyretin (TTR) complexed with benzoxazole [308] 

2HDQ AmpC beta-lactamase from E. Coli K12 complexed with 2-
carboxythiophene [309] 

2HDR AmpC beta-lactamase from E. Coli K12 complexed with 4-Amino-3-
hydroxybenzoic acid [309] 

Table II.2-1: The names and descriptions of the complexes in PLI10 set 

 

Among these, 2BJM has a positive binding energy, which is most probably an indication of 
a wrong geometry setup in PDBbind2007, however this structure is still a valid point on 
the Potential Energy Hyper Surface, therefore we keep it still for the benchmarking.   

 

The names of the methods and programs that are used for this research stage II are listed 
in Table II.2-2 as follows: 

 

 



 

 

1
1
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Computational Methods 

Method Type Name Computational Details 

DFT 

B3-LYP [310, 311], B-LYP [275, 312] 

BP86 [275, 276], B97-D [279], PBE [277], and TPSS [278], 

with empirical dispersion corrections of: 

D2 [279], D3 [52] and D3 plus three-body-dispersion (named Dabc the 
following) types [280, 281]. 

The calculations are done with Turbomole 6.4 [280,281], 

 using  

SVP, TZVP and TZVPP [282] Gaussian AO basis sets,  

RI approximation for two-electron integrals [283,284, 313] 

and  

COSMO as well as COSMO-RS (via COSMOtherm) solvation models [285]. 

M06 and M06-2X [314] Calculations are done via NWChem [315] 

WFT 

Perturbation methods of second order, (SCS)-MP2 [316],  

B2-PLYP [317] and explicitly correlated MP2-F12 [318]. 

Calculations are done also with TURBOMOLE [281] by using 

def2-TZVPP and aug-cc-pVDZ [319, 320, 321] basis sets, 

 along with  the RI approximation applied to the Coulomb and exchange integrals 
in the Hartree--Fock part [322] 

with corresponding auxiliary basis sets [323]  

as well as to the MP2 part with corresponding basis sets [313] 

WFT 
pCCSD-1a [324, 325] 

 within the local pair natural orbital approximation [326, 327]  

def2-TZVPP basis set was used and calculations are done in ORCA, version 2.9 [328]. 

RI approximation was used in the Hartree--Fock and correlation part and the same 
auxiliary basis sets as before. 

Semi empirical PM6-DH+[50] 
MOPAC2012 [58] was used, with MOZYME linear scaling algorithm [286] and 

COSMO solvation models [285].  

Table II.2-2: List of computational methods used for Research Stage II 
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Interaction energies are computed again with the previously mentioned equation, 

Einteraction = Ecomplex – (Epocket + Eligand)                          (Eqn. 3.1.1-1) 

 

II.3   Results and Discussion 

Non-covalent bonds, which are important for biomolecular interactions, require a high-
level theory method for their computations if there isn’t any empirical input available [258, 

329]. The CCSD (T) (i.e, coupled-cluster theory with single and double excitations and 
perturbative triples) is known as the “gold standard” method of Quantum Chemistry [330].  
However, this method is not applicable for the large sized systems, therefore it is common 
to refer to the extrapolation schemes to produce highly-accurate reference values 
(Complete Basis Set or CBS) [331, 332]. 

CBS values being the reference data, Table II.3-1 involves the results of the PLI10 set data 
values for various WFT methods. These WFT calculations were done by Tobias Schwabe; 
co-author of our article [91]. 

Once these WFT data is obtained, then the deviations with respect to this reference 
method are also calculated for a variety of DFT and SQM methods and these are all 
presented as MAD and MD error statistics in Table II.3-2. 

 

WFT calculations 

For the CCSD (T) gold standard method, as for the extrapolations to be considered, LPNO-
pCCSD (local pair natural orbital parameterized coupled-cluster theory with single and 
double excitations) is a good comparable candidate [333].  

Extrapolation was done as follows: 

 First, a correction term: 

(𝐸𝐿𝑃𝑁𝑂−𝑝𝐶𝐶𝑆𝐷
𝑑𝑒𝑓2−𝑇𝑍𝑉𝑃𝑃

− 𝐸𝑀𝑃2
𝑑𝑒𝑓2−𝑇𝑍𝑉𝑃𝑃

)                                     (Eqn. 3.1.2-1) 

from, local pair natural orbital parameterized coupled-cluster theory with single 
and double excitations (LPNO-pCCSD), was added to  

 the counter-poise corrected (CPC) explicitly correlated second-order Moller–
Plesset perturbation theory (MP2-F12) data:  

𝐸𝑀𝑃2−𝐹12(𝐶𝑃𝐶)
𝑎𝑢𝑔−𝑐𝑐−𝑝𝑉𝐷𝑍

                                      (Eqn. 3.1.2-2) 

close to the basis set limit.  

 

This F12 approach with aug-cc-pVDZ basis sets are comparable to aug-cc-pVQZ. 
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Then, the reference energies are obtained as follows: 

  

𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝐸𝑀𝑃2−𝐹12(𝐶𝑃𝐶)
𝑎𝑢𝑔−𝑐𝑐−𝑝𝑉𝐷𝑍

+ (𝐸𝐿𝑃𝑁𝑂−𝑝𝐶𝐶𝑆𝐷
𝑑𝑒𝑓2−𝑇𝑍𝑉𝑃𝑃

− 𝐸𝑀𝑃2
𝑑𝑒𝑓2−𝑇𝑍𝑉𝑃𝑃

)         (Eqn. 3.1.2-3) 

 

Results are presented in the Table II.3-1 below. This also includes the plain LPNO-
pCCSD/def2-TZVPP values, and, MP2 data that is with/out  CPC or F12 basis sets, as well 
as having them both or not at all.  
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  I II III IV V VI 

PLI10 set 
Reference CBS 

values 

ΔLPNO-pCCSD/ 

def2-TZVPP 

ΔMP2-F12(CPC) 

aug-cc-pVDZ 

ΔMP2(CPC) 

aug-cc-pVDZ 

ΔMP2-F12 

aug-cc-pVDZ 

ΔMP2 

aug-cc-pVDZ 

ΔMP2 

def2-TZVPP 

1AVN -15.9 -1.6 -2.4 -1.2 -4.3 -8.4 -4.1 

1D7J -14.5 -1.2 -3.0 -0.5 -10.4 -12.3 -4.2 

14EH -11.9 -0.3 -2.4 0.5 -6.5 -12.6 -2.7 

1JYS -15.6 -1.7 -5.0 -1.1 -16.3 -17.6 -6.7 

1QPB -9.3 -2.3 -2.5 -0.8 -4.8 -9.9 -4.8 

1WEI -30.1 -3.4 -4.7 -1.9 -15.3 -16.0 -8.1 

2BJM 10.2 -4.5 -6.8 -4.4 -16.9 -24.7 -11.3 

2F8I -84.3 -1.6 -4.4 1.5 -11.9 -16.8 -6.0 

2HDQ -205.8 -5.5 -4.3 -1.1 -8.3 -16.4 -9.8 

2HDR -0.9 -0.6 -4.4 1.1 -14.0 -12.5 -5.0 

 MD -2.3 -4.0 -0.8 -10.9 -14.7 -6.3 

 MAD 2.3 4.0 1.4 10.9 14.7 6.3 

 MIN -5.5 -6.8 -4.4 -16.9 -24.7 -11.3 

 MAX -0.3 -2.4 1.5 -4.3 -8.4 -2.7 

Table II.3-1: Comparison of Wave Function Theory methods against the reference values (reference CBS) together with minimum and maximum    
values (MIN, MAX) given for the data results as well as error statistics (MD, MAD). CPC is counter poise corrected values, CBS is complete basis set 

limit extrapolations.
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  VII VIII IX X 

PLI10 set 
Reference CBS 

values 

ΔSCS-MP2 

def2-TZVPP 

ΔSCS-MP2 

CBS 

ΔB2-PLYP-D3 

def2-TZVPP 

ΔB2-PLYP-D3 

CBS 

1AVN -15.9 -1.2 0.4 -3.1 -1.5 

1D7J -14.5 0.1 1.3 -2.2 -1.0 

14EH -11.9 1.1 1.4 -2.3 -1.9 

1JYS -15.6 -0.5 1.2 -2.6 -0.9 

1QPB -9.3 -1.2 1.1 -3.9 -1.6 

1WEI -30.1 -2.5 0.9 -4.7 -1.3 

2BJM 10.2 -3.8 0.7 -5.3 -0.8 

2F8I -84.3 0.5 2.1 -2.6 -1.0 

2HDQ -205.8 -3.8 1.7 -5.7 -0.2 

2HDR -0.9 -0.1 0.8 -2.5 -1.9 

 MD -1.1 1.2 -3.5 -1.2 

 MAD 1.5 1.2 3.5 1.2 

 MIN -3.8 0.4 -5.7 -1.9 

 MAX 1.1 2.1 -2.2 -0.2 

Table II.3-1 cont'd.:  Comparison of Wave Function Theory methods against the reference values (reference CBS) together with minimum and 
maximum values (MIN, MAX) given for the data results as well as error statistics (MD, MAD). CPC is counter poise corrected values, CBS is complete 

basis set limit extrapolations.
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From Table II.3-1, the following can be observed:  

 The first entry (I), ΔLPNO-pCCSD/def2-TZVPP is without F12 and results in a MAD 
value of 2.3kcal/mol, (i.e. about 2kcal/mol).  
 

 The second entry (II), ΔMP2-F12(CPC) /aug-cc-pVDZ, which is this time with CPC, 
is missing higher order correction from pCCSD, and it ends up with a MAD value of 
4 kcal/mol.  
 

 The third entry (III), ΔMP2(CPC)/aug-cc-pVDZ, uses CPC, but it also misses a 
higher order correlation when compared with pCCSD. However, it shows a small 
MAD value of 1.4 kcal/mol. The reason for this might be due to CPC being large for 
the small aug-cc-pVDZ basis sets (without F12), and since CPC is known to 
overshoot [3], it is here compensating for the missing higher order correction. 
Therefore the small value of this MAD value is obtained for the wrong reasons.  

 

 The fourth entry (IV), ΔMP2-F12/aug-cc-pVDZ, is missing a higher order 
correlation again when compared with pCCSD, and unlike the third entry, it only 
uses the F12 approach but not CPC. This results in a MAD value of 10.9 kcal/mol.  
Accordingly, this creates a big effect when it is compared with the second entry (II) 
as well, because when the second and fourth entries are compared, they both have 
the same setting, but the second entry also has CPC as an addition to the F12. This 
seem to be resulted in having a smaller MAD value of 4kcal/mol with CPC addition 
when it is compared to not having it (11 kcal/mol- fourth entry). There are smaller 
overshooting problems as well. This is usually based on the completeness of the 
basis set. (More complete the basis set, smaller the basis set error, therefore 
corrections are smaller and overshooting is smaller too.)  

 

 Looking at the fifth entry (V), ΔMP2/aug-cc-pVDZ is lacking a higher order 
correlation again when compared with pCCSD but which now has neither F12 nor 
CPC in addition, and it results in a large MAD value which is 14.7kcal/mol. In other 
words, this version has the worst performance overall.  

 

 The sixth entry (VI), ΔMP2/def2-TZVPP, similar to the fifth entry, is again without 
any higher order correlation and it is without F12 or CPC, but, instead has a larger 
basis set than the previous one. This leads to have a MAD value of 6.3 kcal/mol. 
Accordingly, lower MAD values are obtained here, and the very low value comes 
from missing basis sets and/or higher order correlations error compensation 
somehow.  

 

 The seventh entry (VII), ΔSCS-MP2/def2-TZVPP, has the same basis set of def2-
TZVPP with the sixth entry, but it also has a SCS (spin-component-scaling) MP2 
basis this time. SCS is introduced with an initial aim to remove the double counting 
of correlation effects that leads to an overestimation of dispersion effects by MP2. 
(To make a remark here, this effect is being removed via higher order correlations 
in our references.) This results in a MAD value of 1.5kcal/mol.  
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 As for the next, eighth entry (VIII), ΔSCS-MP2/CBS, keeping the method same as 
the previous one but this time having a “complete basis set” (CBS), MAD value of 
1.2kcal/mol is obtained. CBS is obtained in the same way for our reference method.  

 

 As one of the suggested methods for the treatment of large systems [334], the ninth 
entry (IX) is ΔB2-PLYP-D3/def2-TZVPP; and where B2-PLYP-D3 is being a double 
hybrid density functional theory (DH-DFT) approach, has correlation effects from 
a MP2-like treatment on top of DFT orbitals in addition to the D3 dispersion 
correction contributions. This resulted in a MAD value of 3.5kcal/mol.  

 

 Tenth entry (X) is the next trial of the previous entry, ΔB2-PLYP-D3/CBS, and this 
time B2-PLYP-D3 is being tested with CBS instead of def2-TZVPP. This leads to a 
MAD value of 1.2kcal/mol.  
 

 
In addition to these findings from WFT comparisons, we also wanted to compare the 
performances of DFT and SQM methods. The following Table II.3-2 presents their 
numerical deviation results from the reference WFT method.  

Mean deviation (MD), mean absolute deviation (MAD), root mean square deviation 
(RMSD) and error span (MIMA), (i.e. difference between minimum and maximum errors) 
are presented here as well as including Pearson (R) and Kendall (τ) values.  
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  Method Basis Set MD MAD RMSD MIMA R τ 
D

F
T

 

I 

BP86 

D
2

/
d

e
f2

-S
V

P
 

-10.14 10.14 10.55 11.55 1.00 0.91 

B3-LYP -12.27 12.27 12.73 12.64 1.00 0.96 

B-LYP -12.51 12.51 12.81 10.68 1.00 0.96 

PBE -11.21 11.21 11.55 9.73 1.00 0.96 

B97-D -9.36 9.36 9.64 8.22 1.00 0.96 

TPSS -11.15 11.15 11.51 10.79 1.00 0.91 

II 

BP86 
D

2
/

d
e

f2
-T

Z
V

P
 

-3.70 3.70 4.15 6.95 1.00 0.96 

B3-LYP -4.79 4.79 5.00 3.29 1.00 0.96 

B-LYP -3.78 3.78 4.07 5.10 1.00 1.00 

PBE -3.96 3.96 4.22 4.69 1.00 1.00 

B97-D -2.33 2.33 2.72 4.81 1.00 1.00 

TPSS -4.23 4.23 4.56 6.34 1.00 0.96 

III 

BP86 

D
2

/
d

e
f2

-T
Z

V
P

P
 

-3.28 3.28 3.69 6.46 1.00 0.96 

B3-LYP -4.30 4.30 4.47 3.42 1.00 0.96 

B-LYP -3.27 3.27 3.59 4.63 1.00 1.00 

PBE -3.58 3.58 3.82 4.61 1.00 1.00 

B97-D -2.01 2.01 2.41 4.23 1.00 1.00 

TPSS -3.94 3.94 4.26 5.95 1.00 1.00 

IV 

BP86 

D
3

/
d

e
f2

-T
Z

V
P

P
 

-4.04 4.04 4.41 6.00 1.00 0.96 

B3-LYP -3.58 3.58 3.81 3.30 1.00 1.00 

B-LYP -3.04 3.04 3.37 4.14 1.00 1.00 

PBE -2.64 2.64 2.90 3.46 1.00 1.00 

B97-D -2.61 2.61 2.96 5.06 1.00 1.00 

TPSS -1.99 1.99 2.43 4.17 1.00 1.00 

V 

BP86 

   
   

 D
3

+
D

a
b

c/
d

e
f2

-T
Z

V
P

P
 

-3.64 3.64 4.09 6.16 1.00 0.96 

B3-LYP -3.18 3.18 3.45 3.94 1.00 1.00 

B-LYP -2.64 2.64 3.08 5.98 1.00 1.00 

PBE -2.24 2.24 2.63 5.21 1.00 1.00 

B97-D -2.21 2.24 2.70 5.11 1.00 1.00 

TPSS -1.59 1.71 2.21 5.67 1.00 1.00 

VI 
M06-2X 

   
 d

e
f2

-
T

Z
V

P
 

-0.13 1.70 1.96 6.18 1.00 0.89 

M06 -0.04 1.65 2.04 6.81 1.00 0.83 

Table II.3-2: Comparison of DFT methods with Pearson R and Kendall τ values correlated against 
WFT reference method values, as well as with error statistics MD, MAD, RMSD and MIMA. 
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 Method MD MAD RMSD MIMA R τ 

SQM 

PM6-DH+ -4.24 4.98 6.41 18.80 1.00 0.87 

PM6-DH+ (+ΔD3) -2.29 3.38 4.93 17.33 1.00 0.91 

PM6-DH+  

(+ΔD3 +ΔDabc) 

-1.90 3.31 4.88 17.66 1.00 0.91 

Table II.3-2  cont'd.: Comparison of DFT methods with Pearson R and Kendall τ values correlated 
against WFT reference method values, as well as with error statistics MD, MAD, RMSD and MIMA. 

 The first section, I, with the basis set of D2/def2-SVP, has quite large MD, MAD, 
RMSD and MIMA values compared to the other parts due to small basis sets. 
Changing from section II, D2/def2-TZVP, to section III, D2/def2-TZVPP methods 
do improve the conditions but only makes a little impact on the error values. This 
also makes us assume the following: In case we want to change from TZVPP into 
QZVP one, maybe again a small effect will be observed, but it is also likely that the 
conclusions will not really go through a big change again.   

 Looking at the dispersion correction arrangements, it can be observed through the 
sections IV, V and VI that, when we change D2/def2-TZVPP into D3/def2-TZVPP 
first, and then into D3+Dabc/def2-TZVPP, there is a gradual drop in the values 
once more, as an overall tendency in most cases. Then it can be concluded that, 
among all the variations that are listed above, TPSS/D3+Dabc/def2-TZVPP is the 
best one overall with the lowest MAD value in its group with 1.7kcal/mol.  

However for some of the cases here, it cannot be labelled as an improvement. For 
example unlike others, with the method BP86 and B97-D, when dispersion 
changes into D3 or into D3+Dabc, then there is an increase in MAD values (2.6 and 
2.2kcal/mol respectively) instead when compared to its previous state with D2 
dispersion (2.0kcal/mol).  

 Section VI, having the M06-2X and M06 method with def2-TZVP the functionals, 
already describes the dispersion interactions without needing any correction 
terms for them. They have resultant MAD values around 1.7 kcal/mol which also 
looks promising. Only that with these methods, 2HDR has a convergence problem 
(which is most likely due to numerical instabilities [335]), therefore, since it cannot 
be treated with these methods properly, the relevant data for 2HDR was excluded 
from the statistical concerns.  

 In the SQM part of the table, PM6-DH+ methods and its variations are given. There 
are two additional variations: with “+ΔD3” and with “+ΔD3+ΔDabc”. PM6-DH+ 
(+ΔD3) means that dispersion is changed from D2 to D3 for PM6-DH+ method, and 
it shows an improvement with MAD values changing from 4.98kcal/mol into 
3.38kcal/mol. Likewise, PM6-DH+ (+ΔD3+ΔDabc) is the part showing the  effect of 
changing from D2 to Dabc (first D2 changing into D3, and then D3 changing into 
Dabc). However for this latter case, only a small change is observed with the MAD 
values (from 3.38kcal/mol to 3.31kcal/mol).   
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At this point, if we recall our first research stage (3.1.1) again, we were having 
comparisons in between our reference DFT (BP86) and SQM (PM6-DH+) methods in a 
detailed manner. Here with this research stage 3.1.2, we have another opportunity for a 
similar comparison in between SQM and DFT methods once again.  

BP86-D3+Dabc/def2-TZVPP has a MAD value of 3.64kcal/mol whereas PM6-DH+ 
(+ΔD3+ΔDabc) has a MAD value of 3.31kcal/mol. Hence, this again shows that PM6-DH+ 
has a similar (even a slightly better) accuracy, while being roughly three times 
computationally faster than the DFT methods.  

We frequently mention that SQM methods are faster, but in order to show how fast they 
are, the performance of our reference SQM method is presented in terms of its 
computational time as well. Table II.3-3 shows a comparison of the average computing 
time needed for calculating one “interaction energy” in the PLI10 set for different 
methods. Data will be given in per CPU core, therefore, to find the measured CPU time, 
this data needs to be divided by number of cores if the calculation was done in a parallel 
way.  
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 Method Basis Set Core secondsa 

SQM PM6-DH+ - 3.2 

 

 

 

 

 

DFT 

HF def2-SVP 4550.2 

GGA: RI-PBE-D def2-SVP 756.0 

m-GGA: RI-TPSS-D def2-SVP 913.1 

Hybrid: B3LYP-D def2-SVP 4165.9 (1.2 hours) 

HF def2-TZVP 12718.6 

GGA: RI-PBE-D def2-TZVP 1179.4 

m-GGA: RI-TPSS-D def2-TZVP 2299.5 

Hybrid: B3LYP-D def2-TZVP 19861.4 (5.5 hours) 

HF def2-TZVPP 71611.5 

GGA: RI-PBE-D def2-TZVPP 4562.5 

m-GGA: RI-TPSS-D def2-TZVPP 6935.3 

Hybrid: B3LYP-D def2-TZVPP 73862.8 (20.5 hours) 

WFT Reference method CBS 3681085.4 (42.6 days) 

Table II.3-3: Comparison of SQM, DFT and WFT methods based on the computation time they took 
for completions. Numerical values show the average computation time needed for calculating only 
one interaction energy in our PLI10 data set. Values are given in core seconds, i.e. adjusted for the 

number of CPU cores used. 
a: Serial SQM and DFT calculations on Intel Core i7-3770, 3.40 GHz, 8 cores, 8MB cache and 16GB 
RAM;  parallel WFT calculations on Intel Xeon, 2.67 GHz, 8 cores, 12MB cache and 65GB RAM. 
 

 

Looking at the reported values, SQM, PM6-DH+ requires seconds to accomplish the task, 
while DFT methods can take time up to a day, and the WFT reference needs approximately 
40days for the same task.   
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Overall, the following results can be highlighted from this part of our research:  

 Based on Table II.3-1, SCS-MP2/CBS (Entry VIII) and B2-PLYP-D3/CBS (Entry X) 
both give the lowest MAD values as 1.2 kcal/mol overall. Therefore, in case of 
necessity, these can be regarded as a recommendation for more costly 
computations.   

 Again referring to the Table II.3-1, it is observed that MP2/def2-TZVPP (Entry VI) 
has a MAD value around 6kcal/mol, therefore, this cannot be recommended at all 
at least for the scoring purposes, because there are already other methods 
available which are more accurate and faster than this one (even some other DFT 
methods and even SQM methods).  

 Based on Table II.3-2, when it is with dispersion corrections and triple-ζ (TZ) basis 
set types in general, DFT methods give MAD values of around or below 4 kcal/mol. 
Therefore, the best DFT approach from this list seems to be TPSS-D3+Dabc/def2-
TZVPP with a MAD value of 1.71kcal/mol (section V). Moreover, the others which 
look promising are: M06 and M06-2X with MAD values of around 1.65 kcal/mol 
and 1.70kcal/mol respectively. Also, amongst the D2 related group, the B97-
D2/def2-TZVPP can be considered with a low MAD value of 2.01kcal/mol.  

 Referring to the Table II.3-2 once again, it is observed that SQM-DH usually give 
MAD values of around 3-5 kcal/mol, but, once more to mention, unlike the other 
methods, SQM-DH methods are about three orders of magnitude faster. This 
becomes a real advantage and makes SQM-DH methods profitable and preferable 
among others for most of the cases (i.e. especially for instance for the modelling of 
large systems). 

 

II.4   Conclusion  

With PLI10 set which is derived from the PDBbind data set, Wave Function Theory (WFT), 
Density Functional Theory (DFT) and semiempirical quantum mechanical (SQM) methods 
were benchmarked against eachother and against experimental references. The WFT 
methods studied here are the state-of-art theoretical reference data for the benchmarking 
of lower-level methods.  

SCS-MP2 and B2-PLYP-D3 were found to be the most efficient WFT methods, whereas 
TPSS-D3+Dabc/def2-TZVPP could be assigned as the best DFT approach.  

Overall, our SQM reference method, PM6-DH+, was found to be a fast and a surprisingly 
accurate alternative to full ab initio treatments in comparison to the theoretical reference 
values.  

After these findings, with our next Research Stage III (Section 3.1.3), the transferability of 
these performance results into experimental results are investigated. 
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3.1.3   Research Stage III   

III.1   Introduction 

As it is mentioned in the previous sections, still some improvement is needed for scoring 
functions. This is mainly referred to be a scoring problem rather than a docking problem. 
The performance of the software programs are regarded well enough for docking [206, 253, 

200, 202, 207], but on the other hand, even if they include physically accurate terms or involve 
quantum-mechanical nature of the interactions [256, 88, 254, 255], scoring functions do not 
provide the required scoring performance.   

There is potential for improvements, for instance, about polarization and solvation 
treatments and entropy related terms [206, 207]. Any improvement in one of them can also 
help advancing the other term as well. For example, obtaining a better polarization and 
solvation effect, can also be an important contribution for the correct estimation of 
entropy values too [120, 129, 89]. Since any development at one side might affect the 
development of other terms as well, then, it can be concluded that, any interaction in 
between them better be investigated as well. In addition, while doing so, the 
compensations in between the main interactions have to be taken into account as well 
(like in between entropy and enthalpy to speak of). Hence, a careful approach is needed 
to identify the reasons of the complexity of these biomolecular interactions [336].  

For instance, adding chemical functionality is regarded as a good strategy to increase 
“enthalpic” binding affinity contributions, however, these type of contributions are 
cancelled out by their “entropic” counterparts, and as a result, optimization of the drug 
candidates becomes very difficult to handle [337]. 

Concerning these, there are some studies focusing on the compensation relations using 
the publicly available protein-ligand complex sets [260, 261, 259, 257] but, unfortunately, the 
relation in between these interactions or compensations are not investigated well enough.  

Within this Section 3.1.3, Research Stage III, we will try to sort out the terms and the 
interactions in between them. Therefore, this part of our research will be less of an 
assessment of the various computational methods we have tested so far, and it will be 
more about analysing the existing connections, rather than presenting a new method or a 
finding. This topic is quite complicated and even though we cannot either solve the 
problems or see the full picture here properly, we hope that our attempts might lead to a 
useful contribution.   

Main focus will be on the SQM methods once again, but QM and MM methods will be also 
included to our tests. Once we will arrive at some general analysis, we also would like to 
test our implications on the design of scoring functions. 
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III.2   Delicate balance of biomolecular interactions 

Figure III.2-1 below illustrates our approach for these interactions and their 
balances/compensations. 

 

 

Figure III.2-1: The representation of the delicate balance of biomolecular interactions.  
Part 1: energetic protein-ligand interactions,  
Part 2: energetic solute-solvent interactions,  
Part 3: entropic protein-ligand interactions,  
Part 4: entropic solute-solvent interactions,  

Part 5: energy-solvation compensation (ESC),  
Part 6: energy-entropy compensation (EEC),  

Part 7: energy-entropy compensation: EEC with solvent: (solvent EEC),  
Part 8: entropy-solvation compensation (SSC). 

 
 
 
 
 
 
 
 
 
 



 

 

1
3

0
 

As an additional illustration,  

 

For parts 1, 3 and 6 (EEC): 

Only the interactions in between proteins and ligands, energy and 
entropy matters. 

 

 

 

For parts 2, 4 and 7 (solvent EEC): 

The interactions of solutes with solvent, energy and entropy 
matters. 

 

 

     

 

Scheme III.2-1: Schematic representation of balances in Figure III.2-1.  
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Part 8 (SSC) 
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 Part 1 demonstrates the energetic interactions only between the protein and ligands.  

 Part 2 is about the energetic interactions between the protein-ligand interactions in solutes (complex, protein and ligand) and the 
solvent. 

 Part 3 is about the entropic contributions to protein ligand binding. 

 Part 4 demonstrates the entropic contributions from solvation.  

 Part 5, denoted as ESC (EnergySolvationCompensation), is for the compensation of energetic protein-ligand polar interactions with 
solvation effects.   

Polar interactions between the protein and ligand molecules are mentioned to be partly cancelled [338] due to the possibility of similar 
polar interactions of the dissociated protein and ligand with water molecules.  

 Part 6, denoted as EEC (EnergyEntropyCompensation), is another compensation in between the enthalpic protein-ligand and entropic 
protein-ligand interactions without solvation concern, together with and EEC-ESC coupling and with EEC-SSC coupling.  

 Similar approach goes for Part 7, which is denoted as solvent EEC (solvent-EnergyEntropyCompensation). This time, the 
compensation is considered for the energetic and entropic part of the solvation. 

For Parts 6 and 7, it can be stated that, a stronger energetic binding results in an increased restriction of molecular flexibility.  

 Finally Part 8, denoted as SSC (EntropySolvationCompensation), is about the compensation of the entropic protein-ligand 
interactions and entropic solvation effects. 

As an example, the number of water molecules freed from the solutes’ surface can compensate the interaction between the protein 
and the ligand when there is a strong restriction of a conformational entropy.  
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Enthalpy-entropy compensation is suggested as a property of non-covalent interactions 
[339-346], and that a more dominant enthalpic interaction results in a strongly opposing 
entropic contribution since the conformational freedom is limited by the strong enthalpic 
effect. There are some literature sources where the enthalpy-entropy compensation 
(EEC) is being questioned [347], and there are some studies which report non-
compensation [348, 349], but so far there is no conclusive theory about EEC [336].   

There are some contributing works over host-guest systems or protein-ligand 
interactions, while the enthalpy-entropy compensation (EEC) effect was being 
investigated [214, 350, 351, 129, 352]. Korth showed that [338] energetic interactions are not 
uniformly cancelled by entropic effects, but also that, energetic interactions are 
dependent on their electronic nature. 

Figure III.2-1 tries to separate the intermolecular balance into pieces for an analysis. It 
includes main parts as well as coupling terms in between them. Part 5 and 8 are the 
compensation relations, and they already couple the main basic interactions (part 1, 2, 3 
and 4), but they might not be independent of eachother.  

Before proceeding further, it should be mentioned that the entropic solvent effects could 
not be calculated due to the technical reasons. In order to study entropic-solvent effects, 
Molecular Dynamics Simulation are needed. COSMO-RS [285] model has a clever way of 
guessing these dynamics. However, at the time of our research COSMO-RS was also not 
available. Hence, due to the unavailabilities, Parts 4 and its relevant connections, Part 7, 
Part 8, EEC-SSC coupling, solvent EEC-ESC coupling and solvent EEC-SSC coupling were 
not able to be calculated. Therefore, our study will represent a better picture mainly for 
Part 1, 2, 3, 5 and 6.    

Part 1 and part 2 of Figure III.2-1 include the intermolecular interactions, which is a 
commonly studied field within the “theory of intermolecular interactions” [212, 353, 258]. This 
theory divides the energetic (non-covalent) interactions as [354]:  

 First order exchange repulsion and electrostatic interactions, and, 

 Second order polarization/charge transfer (induction) and dispersion 
interactions.  

And the intermolecular binding is expressed to be a result of a balance of these two 
mentioned interactions, together with: 

 large exchange-repulsion interactions,  

 large attractive electrostatic interactions,  

 smaller attractive contributions from induction and dispersion,  

and that, these add up to a small overall binding effect. 

Some interactions, like hydrogen-bonding, π-stacking or the hydrophobic effect, which 
are called non-basic type of interactions are regarded valuable in the sense of 
understanding concepts on a higher level. These interactions can be associated with the 
main balances.  
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III.3   Computational Details and Selected Data Sets 

The number of data sets that we are working on are increased. The following basis sets 
are used:  

 

 “S22” and “S66” : small biomolecular model basis benchmark sets [331, 332],  

S22 and S66 were selected due to their balanced representation of polar and 
nonpolar contributions for the biomolecular interactions, as well as providing 
high-level QM geometries and interaction energies. These sets contain up to 
around 30 atoms [355].  

 

 “PLI10” set from our previous Research Stage II (Section 3.1.2) is used. It consists 
of the smallest 10 complexes from the 3.0 A  pocket models that is derived from 
PDBbind 2007 [356]. This set contains up to about 100 atoms.  

 

 Complexes from the refined PDBbind 2007 set and from PDBbind 2009 set [260, 261] 

are included. These sets are taken from the references mentioned. Overall, 1297 
complexes from the refined set of PDBbind 2007 and 580 complexes from the 
PDBbind 2009 set are used.  

 

For the computations, MM, SQM and QM (DFT) methods are considered. The details are 
indicated in the Table III.3-1as follows: 
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Computational Methods 

Method 
Type 

Name Computational Details 

MM (FF) 

 

MMFF94 [270] 

 

Calculations are done with Tinker 6.2 [357], 

and  

solvation effects are treated with GBSA 

+ 

RRHO approximation [212]   

QM (DFT) 
PBE-D2/TZVPP 

 [277, 279, 282] 

Geometry optimization and frequency 
calculations are done with 

TURBOMOLE 6.4 [280, 281] 

Using: 

 D2 dispersion corrections [279] 

the RI approximation for two-electron integrals 
[283,284]  

and 

TZVPP AO basis sets [282] 

Solvation effects are treated with COSMO [285] 

+ 

RRHO approximation [212] 

SQM 
PM6-DH+ [50] 

 

 

Calculations are done with MOPAC2012 [58] , 

having 

D, dispersion and 

H+, hydrogen-bond corrections [50, 53] 

by making use of 

COSMO solvation models [285]  

+ 

RRHO approximation [212] 

Table III.3-1: List of computational methods used for Research Stage III 
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Some additional explanations can be given as follows: 

 MMFF94 is chosen since it can be easily applied to all benchmark sets. The 
performance of MMFF94 is found very similar to AMBER [357]. 

 PM6-DH+ is again preferred as our reference SQM method. 

 As the QM (DFT) approach, PBE-D2/TZVPP is the choice because of its very good 
accuracy reported for the benchmark sets [331].  

 Thermodynamical data is calculated at 298.15 K based on the rigid-rotor 
harmonic-oscillator (RRHO) approximation [212] 

As it is previously mentioned in Section 2.2, this approximation, 

o Treats molecules as “rigid”, 

 This approximation works well for small molecules, but real systems 
are dynamic. According to Gilson [212], with this approximation, the 
treated host-guest systems have results which are close to the 
experimental values.  

o The conformational entropy is missing in this approximation.   

 For (QM) DFT and SQM methods solvation effects are treated with COSMO [285]. 
(COSMO-RS could have been more advantageous, but at the time of our research, 
program was not available.) 

 

III.4   Results  

 Only energetic effects are presented in Table III.4-1 and Figure III.4-1. 

 Solvation effects (without any concern of the enthalpy or entropy) are presented 
in Table III.4-2, Table III.4-3 and Figure III.4-2. 

 Then the results, which involve both enthalpic and entropic corrections, but on the 
other hand exclude the solvation effects, are given in the Table III.4-4, Table III.4-
5, Table III.4-6 and in Figure III.4-3.  

 Ssolvation, enthalpic and entropic effects are considered altogether and these are 
investigated in Table III.4-7, Table III.4-8, Table III.4-9 and Figure III.4-4.  

 About these tables and figures: 

o As it is mentioned above, due to their system sizes, S22 and S66 sets are 
available for all methods: QM, SQM and MM. However PLI10, which was 
actually a derivation from the PDBbind 2007 that is used in our previous 
Research Stage 3.1.2, includes large protein and ligand models. Thus, PLI10 
was mainly only possible for SQM method, and sometimes also for 
demanding QM calculations.  
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o Kendall tau (τ) values are not used during this Research Stage III (Section 
3.1.3). Pearson R value is explanatory enough to see the main tendencies in 
between the relations of interaction terms. 

 

Energetic Effects  

S22 and S66 sets are compared with three methods, DFT, SQM and MM, for the 
optimization interaction energies.  Table III.4-1 gives the errors statistics, including mean 
deviation (MD), mean absolute deviation (MAD), root mean square deviation (RMSD) and 
the maximum error span (MIMA) values, with respect to the high-level (extrapolated 
CCSD(T)/CBS) reference data [331, 332].  

These are the results without any enthalpic, entropic or solvation effects. Results seem to 
be in a very good correlation with the high level reference data, as values being lower than 
1kcal/mol especially for SQM and QM, and also up to 2kcal/mol for MM. Low MAD values, 
show that a method is fine and satisfying enough for an interaction energy calculation. 
Since error values are similar to eachother, then, due to the computational speed, SQM, 
PM6-DH+ method seems to be the most favourable one among these. 

 

Data set Method  MD MAD RMSD MIMA 

S22d 

QMa -0.89 0.90 1.65 5.16 

SQM -0.23 0.40 0.60 2.17 

MMb 1.69 1.70 3.14 10.57 

S66e 

QMa -0.43 0.43 1.09 5.78 

SQM 0.30 0.37 0.53 2.84 

MMc 2.02 2.02 2.48 7.53 

Table III.4-1: Error statistics for the comparison of optimized interaction energies at QM, SQM and 
MM methods with respect to the high-level (extrapolated CCSD(T)/CBS) reference data [331,332] 
presenting MD (mean deviation), MAD (mean absolute deviation), RMSD (root mean square 

deviation) and MIMA (maximum error span) values. 
[a]: data from reference [ 338] 

[b]: Excluding entry 7 and 14 because of missing parameters. 
 [c]: Entries 55 and 56 are excluded because of missing FF parameters  

 

Figure III.4-1 is directly linked with Table III.4-1. Here, the interaction energies are 
represented rather than the MAD error values (which are the differences in between 
actual values). In order to see the MAD values in Table III.4-1, the differences in between 
the data points belonging to the same entry in Figure III.4-1, have to be analysed.  
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Figure III.4-1: Both for S22 and S66, graphical representation of the optimized interaction 
energies (ΔE) for the QM, SQM and MM methods based on Table III.4-1.   

MM methods are excluding entry 7 and 14 because of missing parameters. 
MM methods are excluding entry 55 and 56 because of missing FF parameters  

 QM data from reference [338] 

 

Solvation Effects  

The correlation between the solvation interaction energy (ΔEsolv) and the polar terms of 
interaction energy, ΔE, is presented in terms of Pearson, R values in Table III.4-2. All of 
the sets: S22, S66 and PLI10, are studied. Due to the system size, PLI10 set was only 
available for SQM and for some demanding QM methods.  

 

Data Set Pearson (R) 

correlation for QM 

Pearson (R) 

correlation for SQM 

Pearson (R) 

correlation for MM 

S22 -0.93 -0.93 -0.96a 

S66 -0.83 -0.89 -0.54b 

PLI10 -0.99 -0.99 - 

Table III.4-2:  Pearson R values for the correlation in between the solvation interaction energy 
contributions ΔEsolv and the polar terms of ΔE at QM, SQM and MM levels. 

[a]: Excluding entry 7 and 14 because of missing parameters. 
  [b]: Entries 55 and 56 are excluded because of missing FF parameters  
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 It is observed that, there is a high but a negative correlation in between the 
solvation interaction energy contributions ΔEsolv, and the polar part of ΔE for all 
methods (which is ranging in between -0.83 and -0.99). This finding is in a good 
agreement with the common knowledge, which states that the favourable polar 
interactions between proteins and ligands are largely being cancelled by similarly 
favourable polar interactions of the opposite sign between these two species and 
water molecules.  

 All methods have similar results in general, only that MM method with the data set, 
S66, is being a little bit exceptional. These similar values also indicate that the 
Energy Solvation Compensation, ESC, is being reproduced similarly for these 
methods too (part 5 in Figure III.2-1 & Scheme III.2-1).  

However, this similarity does not mean that solvation effects are “same” for these 
methods. Table III.4-3 is constructed to have a close-up analysis with error 
statistics to investigate this matter further.  

 

 

In Table III.4-3, solvation interaction energies for the SQM and MM results compared with 
the QM level. Mean deviation (MD), mean absolute deviation (MAD), root mean square 
deviation (RMSD) and the maximum error span (MIMA) values are given as well as 
Pearson R values.  

 

  SQM MM SQM MM 

  MD MAD RMSD MIMA MD MAD RMSD MIMA R R 

S22a 
ΔE -2.20 2.73 4.13 11.40 -0.61 1.42 4.05 29.4 0.98 0.97 

ΔEsolv 1.06 1.07 1.91 7.29 1.06 3.01 3.81 14.73 0.94 0.68 

S66b 
ΔE -1.77 2.63 3.74 14.37 -0.61 1.42 4.05 29.48 0.91 0.77 

ΔEsolv 0.51 0.75 1.10 4.44 -0.05 1.88 2.46 14.96 0.95 0.75 

PLI10 
ΔE -13.62 13.79 16.18 30.90 - - - - 0.99 - 

ΔEsolv 1.20 2.71 3.22 10.22 - - - - 1.00 - 

Table III.4-3:  Error statistics for SQM and MM methods, compared with QM data for the optimized 
solvation energy contributions, ΔEsolv, with mean deviation MD, mean absolute deviation MAD, root 
mean square deviation RMSD and Maximum error span MIMA values, in addition to the Pearson R 

values for the correlations. 
[a]: MM methods are excluding entry 7 and 14 because of missing parameters. 

[b]: MM methods are excluding entry 55 and 56 because of missing FF parameters  
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 It is observed that only for MM level, when the solvation effects are included, the 
correlation with QM is reduced (especially for the S22 set). Looking at the Pearson, 
R values, the decline can be seen when the ΔEsolv is added.  

 For S22 and S66 sets, SQM has a MAD value around 2.5 kcal/mol for the overall 
energy (ΔE), and around 1 kcal/mol for the solvation contribution (ΔEsolv). For MM, 
meanwhile, MAD is about 1.5 kcal/mol for the overall energy (ΔE), and 2 to 3 
kcal/mol for the solvation contribution (ΔEsolv).  

 As for PLI10, since it was only available to calculate with SQM and QM methods, 
only the SQM results can be presented here as their correlation with QM. PLI10 set 
has MAD values of about 14 kcal/mol for the overall interaction energy (ΔE), and 
3 kcal/mol for the solvation contribution (ΔEsolv). These values for PLI10 are much 
larger than the ones for S22 and S66 sets, where S22 and S66 sets are comparably 
smaller-sized sets.  

 On the other hand, when it is about the correlation with QM methods, then PLI10 
set has a higher correlation compared to the S22 and S66 sets. 

  

Figure III.4-2 below is linked with Table III.4-3, and it also shows the solvation with QM, 
SQM and MM levels. Looking at the differences in between peaks (interaction energies), it 
is clear that for ΔEsolv contribution, MM behaves a bit different than others with its 
distinctive peaks.  

 

Figure III.4-2: Both for S22 and S66, solvation interaction energies (ΔEsolv), at QM, SQM and MM 
level. 

MM methods are excluding entry 7 and 14 because of missing parameters. 
MM methods are excluding entry 55 and 56 because of missing FF parameters  
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Enthalpic and Entropic Effects (without Solvation) 

As it is given in the previous Section 2.2, keeping the Gibbs free energy (Free Interaction 
Energy) equation in mind: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆                           (Eqn. 2.2-2) 

 
ΔG:  Change in free energy 
ΔH:  Change in Enthalpy 
ΔS:  Change in Entropy 
 

The relation between enthalpy and interaction energy within the RHHO approximation 
and contribution from volume change has the following: 
 

ΔH =  ΔE +  ΔH0 to 298K
RHHO                       (Eqn. 3.1.3-1) 

∆𝐸 =  ∆𝐸𝑆𝑄𝑀 + ∆𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛                      (Eqn. 3.1.3-2) 

 
All results in: 

∆𝐺 =  ∆𝐸𝑆𝑄𝑀 + ∆𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 + ∆𝐻0−298
𝑅𝑅𝐻𝑂 − 𝑇∆𝑆298

𝑅𝑅𝐻𝑂                     (Eqn. 3.1.3-3) 

 
Table III.4-4 compares various compensation relations for enthalpy and entropy values. 
Comparisons in between non-optimized interaction energies, ΔEo, optimized interaction 
energies ΔE, interaction enthalpies ΔH and free interaction energies, ΔG, calculated with 
the QM, SQM and MM methods, take place. Correlations are given by Pearson correlation 
parameters, R.   

 
 

  I II III IV V VI 

  ΔEo vs ΔE ΔE vs ΔH ΔE vs –TΔS ΔE vs ΔG ΔH vs -TΔS ΔH vs ΔG 

S22d 

QMa 1.00 1.00 -0.87 0.95 -0.86 0.95 

SQM 1.00 0.97 -0.79 0.71 -0.66 0.85 

MMb 0.87 1.00 -0.97 0.67 -0.96 0.70 

S66e 

QMa 1.00 1.00 -0.59 0.91 -0.59 0.91 

SQM 0.99 0.98 -0.44 0.80 -0.36 0.87 

MMc 0.92 1.00 -0.76 0.75 -0.75 0.75 

Table III.4-4: Pearson correlation coefficients R, for the comparison of non-optimized interaction 
energies ΔEo, and optimized interaction energies ΔE, interaction enthalpies ΔH, entropic 

contributions –TΔS and free interaction energies ΔG for QM, SQM and MM methods. 
[a] data from reference [338] 

[b] Excluding entry 7 and 14 because of missing parameters 
[c]: 55 and 56 are excluded because of missing FF parameters  

[d]: 3 linear structures are excluded for S22 
[e]:  7 linear structures are excluded for S66 
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 Entry I mainly has high correlation values in between non-optimized (ΔEo) and 

optimized interaction energies (ΔE). Within all results, the highest values are with 
SQM and QM level methods (QM and SQM has R=1.00 for S22 set, and both of them 
have 1.00 and 0.99 respectively for S66). 

This finding also indicates that optimization causes almost no change for QM, SQM 
and MM methods, especially for these tested systems. If to compare between each 
other, only MM seems behaves a little bit different than the others with a lower 
R=0.87 for the S22 set, and R=0.92 for the S66 set. Overall, it can be mentioned 
that, optimizing the interaction energy, comparably have more effect on MM 
method, and specifically more for the S22 set. 

 Entry II shows high correlation values between the optimized interaction energies 
(ΔE) and enthalpies (ΔH) for all QM, SQM and MM methods (with R values ranging 
in between 0.97 and 1.00 values).  

For comparison, SQM is the one with a minor numerical deviation here (having 
R=0.97 or R=0.98) from the “perfect” correlation, whereas, QM and MM have that 
perfect correlation (R=1.00). Overall, it can be reported that enthalpic corrections 
have only a little effect on the ranking for all these methods.  

 Entry III is about the correlation between the optimized interaction energy (ΔE) 
and entropic contributions (–TΔS), and it brings about huge differences. Almost all 
correlations are low, and even lower for the S66 set than the S22 set.  

The highest correlations amongst them are with MM methods for both S22 and S66 
with highest R values. However these high values for MM (even higher values than 
QM), indicates that, it is because MM might overestimate the compensation.  

 Entry IV shows the relation between the optimized interaction energy (ΔE) and the 
free interaction energy (ΔG).  

SQM and MM results are still far from a good correlation.  MM has lower correlation 
values for both S22 and S66 sets, and it is observed that, SQM is not close to the 
QM results when entropic effects are involved.  

Therefore, regarding both to Entry III and Entry IV, results indicate that entropy is 
a special concern to keep in mind, and based on these results, its contribution leads 
to correlations with lower values.  

 Entries V and VI are similar to the Entries III and IV, only this time, instead of 
optimized interaction energies (ΔE), the enthalpy (ΔH)  is the being compared with 
entropic effects (–TΔS) and free energies (ΔG). Similar results are observed. 

Previously, Korth showed that [338],  

o non-covalent interactions are compensated by entropic effects not in equal 
terms but instead by the differences based on their electronic natures, and,  
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o much higher compensating effects for non-polar interactions (dispersion) 
are found when compared with the compensating effects for polar 
(hydrogen-bond) interactions.  

 

Therefore, due to these previous findings, the correlation between the ΔE and –TΔS values 
as in Table III.4-4 are expected to be different for dispersion or hydrogen-bond dominant 
systems.  

In order to analyse this consideration further, Table III.4-5 is constructed. Here, the S22 
and S66 data sets are grouped up in few different categories based on the main 
characteristic groups of the sets, and so that, EEC, (part 6 in Figure III.2-1) is once more 
investigated with different perspectives.  

In total, three main type of sets are considered and grouped. Aim here is to compare these 
with the original full set which they are derived from. The newly grouped sets are called: 
“H set” and “D set” and they are prepared for S22 and S66. The further explanations are 
given below: 

Full set : the full version of the set (either S22 or S66). 

H set  : dominantly hydrogen-bonded subsets (of either S22 or S66).  

D set  : dominantly dispersion-bound subsets (of either S22 or S66).  

 

It is observed that, classifying the characteristics and then grouping the similar ones 
within the subsets enables a more detailed analysis, and sometimes yields to a higher 
correlation depending on these specific group features.  

When decomposing the interaction energies, the following approach is used: 

 

For QM and SQM methods: 

First dispersion correction is taken as the basis for “nonpolar” interaction estimation, and 
then, the rest is assigned as the “polar” part for these methods.  

Scheme III.4-1: Approach for SQM and QM methods 

 

 

1. Taking the dispersion correction effect (D), as a basis for the estimation of 
“nonpolar” interactions

2. Assign the rest of interactions as the “polar” nature for QM 
(DFT) and SQM methods.
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For MM methods: 

Coulomb terms are assigned as “polar” parts and Van der Waals (vdW) is assigned as the 
“nonpolar” part.  

Scheme III.4-2: Approach for MM methods 

 

Basically with this approach, when we look at the “repulsive van der Waals interaction 
(Pauli repulsion)” terms, they are assigned differently by the methods. They are,  

 in the “polar” part of QM(DFT) and SQM methods, but  

 in the “nonpolar” part of the MM methods.   

The way how MM is treated is more correct, however assignments are done in a different 
way for the QM and SQM methods. These difference in the approaches is based on the ease 
of the further applications that are considered. For example, we will later on need 
extrapolations of the energy terms for enthalpic/entropic and solvation contributions. 
Hence for QM and SQM methods, the assignments are convenient in this way.  

 

  S22a,c S66b,d 

  Full sete H set D set Full sete H set D set 

QM 
ΔE vs -TΔS -0.87 -0.98 -0.97 -0.59 -0.84 -0.75 

ΔH vs -TΔS -0.86 -0.97 -0.97 -0.59 -0.84 -0.74 

SQM 
ΔE vs -TΔS -0.79 -0.97 -0.98 -0.44 -0.76 -0.60 

ΔH vs -TΔS -0.66 -0.93 -0.87 -0.36 -0.72 -0.65 

MM 
ΔE vs -TΔS -0.97 -0.95 -0.98 -0.76 -0.84 -0.57 

ΔH vs -TΔS -0.96 -0.95 -0.98 -0.75 -0.84 -0.56 

Table III.4-5: Pearson correlation coefficients, R, for the comparison of ΔH vs –TΔS and ΔE vs –TΔS 
values with QM, SQM and MM methods, for three specified sets of S22 and S66. 

[a] MM: excluding entry 7 and 14 because of missing parameters 
[b]: 55 and 56 are excluded because of missing FF parameters  

[c]: 3 linear structures are excluded for S22 
[d]:  7 linear structures are excluded for S66 

 [e]:  data from Table III.4-4 
 

 

1. The “polar” part being assigned as the Coulomb term (QQ)

2. The van-der-Waals is the “nonpolar” term for the MM method.
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 Generally it is clear from the results that all methods show higher correlation 
values with their separated H sets and D sets compared to their full set versions.  

 However, for the less diverse S22 set, the results show much higher correlations. 
It can be stated that, in contradiction with QM the methods, there is something 
different with the polar and non-polar interactions of the full set treatments of 
SQM and MM methods which leads them to have very high correlation values 
specifically with these subsets.  

 In case of S66 set with the MM method, there is some decrease in the correlation 
with the D set compared to the full set version of it.  

 

In the following section with Table III.4-6, non-optimized interaction energies ΔEo, 
optimized interaction energies ΔE, interaction enthalpies ΔH and free interaction energies 
ΔG, are listed for SQM and MM methods based on their correlation to QM levels. 

 

  SQM MM SQM MM 

  MD MAD RMSD MIMA MD MAD RMSD MIMA R R 

 

 

S22a,c 

ΔEo  -1.41 1.64 2.34 7.71 -4.51 4.51 5.98 14.30 0.99 0.91 

ΔE -0.74 1.01 1.30 4.16 -1.63 2.09 3.08 11.10 0.99 0.92 

ΔH -3.15 3.21 4.30 9.23 -1.75 2.20 3.24 7.15 0.97 0.92 

-TΔS -3.79 3.79 3.94 3.98 2.36 2.36 2.83 4.51 0.93 0.94 

ΔG -6.93 6.93 7.35 6.91 0.61 2.88 3.45 12.35 0.85 0.70 

 

 

S66b,d 

ΔEo  -1.70 1.80 2.46 9.35 -4.10 4.10 4.81 10.48 0.97 0.90 

ΔE -0.96 1.14 1.39 4.30 -1.65 1.88 2.25 9.71 0.96 0.94 

ΔH -2.51 2.51 3.12 8.04 -1.68 1.88 2.30 9.83 0.96 0.94 

-TΔS -3.49 3.49 3.71 4.96 2.13 2.25 2.62 9.99 0.73 0.77 

ΔG -6.00 6.00 6.25 5.11 0.45 1.71 2.19 9.59 0.89 0.81 

Table III.4-6: Comparison of non-optimized interaction energies ΔEo and optimized interaction 
energies ΔE, interaction enthalpies ΔH, entropic contributions –TΔS and free interaction energies 

ΔG for SQM and MM level with the same magnitudes at QM level. 
[a] MM excluding entry 7 and 14 because of missing parameters 

[b]: 55 and 56 are excluded because of missing FF parameters  
[c]: 3 linear structures are excluded for S22 
[d]:  7 linear structures are excluded for S66 
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 MAD values for SQM method are around 3kcal/mol for enthalpic and entropic 
contributions (for ΔH and –TΔS) for both the S22 and S66 sets. Comparably these 
group of values are lower for the MM method and they are around 2kcal/mol.  

 On the other hand, when the correlation for enthalpic and entropic contributions 
with QM values is concerned, then for ΔG results, it looks like SQM is producing a 
better correlation with it (R=0.85 and R=0.89 for S22 and S66 sets respectively), 
whereas MM has a bit lower values (R=0.70 and 0.81 for the S22 and S66 sets 
respectively). Altogether, it looks like enthalpic/entropic effects somehow affect 
these methods adversely especially if ranking will be the matter to focus. 

 

Figure III.4-3, is the graphical representation related to Table III.4-6. Once more to 
indicate, these are actual data values in the graph, and the tabulated MAD values are the 
differences in between these data points.   

This time, a scaled and shifted SQM results are also given here (in blue) because of the 
systematic error profile as can be seen clearly in the Figure III.4-3.  

 

Figure III.4-3: Both for S22 and S66, actual free interaction energies ΔG (without solvation 
energies), at QM, SQM, SQM shifted and MM level.  

MM methods are excluding entry 7 and 14 because of missing parameters. 
MM methods are excluding entry 55 and 56 because of missing FF parameters  

3 linear structures are excluded for S22 
7 linear structures are excluded for S66 
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Energetic Effects (with solvation) 

Optimized interaction energies that are compared with the high-level extrapolated 
CCSD(T)/CBS reference data [331,332], are given in the cases of either or not including the 
solvation effects. The previously obtained Table III.4-1 values (which are denoted by [x]) 
show the values “without solvation”, and they are appended next to the newly obtained 
“with solvation” results to have an easy comparison. 

 

  MD MDx MAD MADx RMSD RMSDx MIMA MIMAx 

 

S22e 

QMa 0.08 -0.89 0.15 0.90 0.20 1.65 0.62 5.16 

SQMb 0.14 -0.23 0.24 0.40 0.31 0.60 1.08 2.17 

MMc 1.65 1.69 1.66 1.70 2.41 3.14 7.30 10.57 

 

S66f 

QM 0.13 -0.43 0.21 0.43 0.29 1.09 1.18 5.78 

SQM 0.31 0.30 0.45 0.37 0.65 0.53 3.09 2.84 

MMd 2.22 2.02 2.22 2.02 2.63 2.48 8.11 7.53 

PLI10 SQM 1.82 – 11.90 – 19.45 – 82.92 – 

Table III.4-7: Mean deviation , MD, mean absolute deviation, MAD, root mean square deviation, 
RMSD, maximum error span, MIMA values for QM, SQM and MM methods , all including solvation 

effects, which is compared with high-level (extrapolated CCSD(T)/CBS) reference data from 
references [331,332] for the original geometries which is excluding solvation effects (MDx, MADx, 

RMSDx, MIMAx). 
[a] Excluding entry 14 for technical reasons 
[b] Excluding entry 10 for technical reasons 

[c] Excluding entries 7 and 14 because of missing parameters and, value 12 for technical reasons 
[d] Excluding entries 55 and 66 for technical reasons 

[x] Table III.4-1values appended (energetic effects without solvation effects) 
[e] 3 linear structures are excluded for S22 
[f] 7 linear structures are excluded for S66 

 

 

 From Table III.4-7, it can be clearly observed that, in case of QM methods, error 
values seem to get better for both S22 and S66 sets when the solvation is included. 

 This is artificial in the sense that the reference method is the high-level 
extrapolated CCSD (T)/CBS, which does not take solvation effects into account. 
Therefore, this positive effect is thought to be a result of the geometry optimization 
changes compared to the original structures being smaller within the implicit 
solvent.  

 In case of PLI10,   no data is available to compare, but this resultant optimized 
interaction energies are no surprise for us, because, PLI10 is a set derived from a 
real protein-ligand systems, and they lack the stabilizing effect of the rest of the 
protein structure/surrounding.  
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Enthalpic and Entropic Effects (with Solvation) 

Next, the correlation values with solvation effects are given for the comparison of non-
optimized interaction energies ΔEo, optimized interaction energies ΔE, interaction 
enthalpies ΔH, and free interaction energies ΔG. Data from Table III.4-4 (which is having 
enthalpic and entropic effects “without solvation”) is appended next to the new results 
which are this time “with solvation”. 

 

  I II III IV V VI 

  ΔEo vs ΔE ΔE vs ΔH ΔE vs -TΔS ΔE vs ΔG ΔH vs -TΔS ΔH vs ΔG 

S22x 

 (without 
solvation ) 

QMe 1.00 1.00 -0.87 0.95 -0.86 0.95 

SQM 1.00 0.97 -0.79 0.71 -0.66 0.85 

MMf 0.87 1.00 -0.97 0.67 -0.96 0.70 

 

S22g 

QMa 1.00 1.00 -0.57 0.20 -0.60 0.16 

SQMb 0.99 0.35 -0.64 -0.30 0.29 0.71 

MMc 0.25 1.00 -0.80 -0.75 -0.77 -0.71 

S66x 

 (without 
solvation ) 

QMe 1.00 1.00 -0.59 0.91 -0.59 0.91 

SQM 0.99 0.98 -0.44 0.80 -0.36 0.87 

MM 0.92 1.00 -0.76 0.75 -0.75 0.75 

 

S66h 

QM 0.99 0.99 0.00 0.69 -0.05 0.66 

SQM 0.96 0.68 -0.27 0.16 0.19 0.67 

MMd 0.99 0.97 -0.03 0.89 0.01 0.93 

PLI10 
(without 

solvation) 
SQM – 

PLI10 SQM 0.06 0.98 -0.89 0.95 -0.85 0.99 

Table III.4-8: Correlation coefficients, Pearson R, for the comparison of non-optimized interaction 
energies ΔEo, optimized interaction energies ΔE, interaction enthalpies ΔH, entropic contributions –
TΔS and free interaction energies ΔG for the QM, SQM and MM methods, with inclusion of solvation 

effects. (Parts from Table III.4-4, which are the values in case without solvation effects, are 
appended for S22 and S66 comparison purposes and denoted by x) 

[a] Excluding entry 14 for technical reasons 
[b] Excluding entry 10 for technical reasons 

[c] Excluding entries 7 and 14 because of missing parameters and 12 for technical reasons 
[d] Excluding entries 55 and 66 for technical reasons 

[e] Data from reference38 
[f] Excluding entry 7 and 14 because of missing parameters 

[x] Data from III.4-4 
[g] 3 linear structures are excluded for S22 
[h] 7 linear structures are excluded for S66 
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 From Entry I, it is observed that the solvation effect makes a difference for MM 
methods in a prominent way and especially for S22 set (when it was R=0.87 
without solvation, now it is R=0.25 with the solvation effects).  

QM and SQM stay similar with/without solvation contributions.  

MM, has such a big change, and this might be indicating that MM level has a low 
quality treatment for the solvation terms. This assumption will nevertheless be 
studied with the next Table III.4-9. 

 For Entry II, there is a major change for SQM methods. The R values were around 
0.99 and 1.00 “without solvation” for the sets S22 and S66 before, but this time 
values drop to 0.35 and 0.68 respectively when it is “with solvation” effects. The 
numerical drop for the S22 case is even more apparent.  

 As a general tendency, it is seen that when the solvation effects are included, then 
almost all correlation values becomes smaller. To have a comparison amongst the 
situation of the data sets, it is observed that, when it is with solvation effects, then 
the S22 set has less correlation than before, but on the other hand there is almost 
no correlation for S66 set. 

 Looking at the other entries III, IV, V and VI, it is observed that, QM has almost no 
correlation when solvation is added. When it is about Entry VI (which shows the 
correlation in between enthalpy and free interaction energy), then, a little 
correlation can be mentioned for SQM with S22 set, but this is not the case with 
the Entry IV (which shows the correlation in between interaction energy and free 
interaction energy). In meantime, with these Entries IV and VI and for the set S22, 
MM has a higher but a negative correlation. 

 

These results overall show that EEC is less systematic when solvation is considered. The 
reason are thought to be either because of the inaccuracies either in the solvation 
treatments, or, about the interaction balance.  

Table III.4-9 shows the comparison of the SQM and MM level non-optimized interaction 
energies ΔEo, optimized interaction energies ΔE, interaction enthalpies ΔH, entropic 
contributions –TΔS, free interaction energies ΔG, and reports their correlation with QM 
level.   
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  SQM MM SQM MM 

  MD MAD RMSD MIMA MD MAD RMSD MIMA R R 

 

 

S22a,c 

ΔEo  -1.08 1.41 1.71 5.55 -8.95 8.97 21.30 88.17 0.93 0.13 

ΔE -1.02 1.32 1.64 4.73 -2.87 2.93 3.86 8.46 0.93 0.64 

ΔH -7.26 7.26 7.96 6.68 -6.24 6.24 6.93 3.99 0.26 0.54 

-TΔS 2.94 3.60 4.36 12.47 13.30 20.95 27.18 83.68 0.80 0.56 

ΔG -4.32 4.45 5.54 11.02 7.25 8.64 10.25 26.17 0.44 0.22 

 

 

S66b,d 

ΔEo  -1.57 1.71 2.12 6.00 -4.49 6.14 9.91 90.17 0.82 -0.03 

ΔE -1.39 1.59 1.98 5.50 -2.40 4.14 8.94 86.82 0.83 -0.07 

ΔH -6.78 6.78 7.13 7.57 -5.58 8.06 12.42 104.82 0.51 -0.08 

-TΔS 4.11 4.13 4.65 9.89 -0.52 9.31 13.17 90.95 0.62 0.33 

ΔG -2.67 3.13 4.11 12.42 5.46 7.65 13.65 109.42 0.51 -0.15 

Table III.4-9: Comparison of the SQM and MM methods with QM data, non-optimized interaction 
energies ΔEo, optimized interaction energies ΔE, interaction enthalpies ΔH, entropic contributions –

TΔS and free interaction energies ΔG 
[a] SQM: excluding entries 10 and 14 for technical reasons, MM: excluding entries 7 and 14 because 

of missing parameters and 12 for technical reasons 
[b]: Entries 55 and 56 are excluded for MM because of missing FF parameters  

[c]: 3 linear structures are excluded for S22 
[d]:  7 linear structures are excluded for S66 

 

 For non-optimized (ΔEo) and optimized interaction energies (ΔE), SQM has very 
good (low) MAD values which are around 1.5±0.2 kcal/mol and, also together with 
high R values being around 0.8 and 0.9 for S22 and S66 sets respectively. This is a 
better result when compared with the MM findings for these entries.  

 However when it is about the enthalpy (ΔH), SQM and MM have similarly poor 
behaviour, and their MAD values are both around 7±1 kcal/mol. SQM has slightly 
better results for the S66 set, and MM for the S22 set.  R values are not promising 
for them (for SQM it is R=0.26 and R=0.51 whereas, for MM, it is R=0.54 and R=-
0.08 for S22 and S66 respectively). 

 In case of the entropic contributions (-TΔS), MAD values are around 3-4 kcal/mol 
for SQM for both sets, whereas for MM method, they are 20.95 and 9.31 kcal/mol 
for S22 and S66 respectively. Correlation values are R=0.80 and R=0.62 for SQM 
and, R=0.56 and R=0.33 for the MM method respectively for S22 and S66 sets. 

 About free energies (ΔG), MAD values for SQM are in between 3-4 kcal/mol for 
both sets, and they have correlations of R=0.44 and R=0.51 for S22 and S66 
respectively. On the other hand, for MM, MAD values are around 7.5 to 8.5 kcal/mol 
for both sets where it resulted in low correlation values of R=0.22 and R=-0.15 for 
S22 and S66. This basically indicates that there isn’t any correlation with QM.  
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The following Figure III.4-4 is related to the Table III.4-9, which presents the free 
interaction energies, ΔG, with solvation effects. SQM is given in addition with its scaled 
and shifted form for a better comparison. 

 

  

Figure III.4-4: Both for S22 and S66, actual free interaction energies ΔG (with solvation energies at 
QM, SQM, SQM-shifted and MM level.  

MM methods are excluding entry 7 and 14 because of missing parameters. 
MM methods are excluding entry 55 and 56 because of missing FF parameters  

3 linear structures are excluded for S22 
7 linear structures are excluded for S66 

data from reference [338] 

 

 

As it can be observed, the scaled and shifted version of SQM shows a closer figure to the 
QM trend, whereas, MM method clearly seems to have several outliers. 
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III.5   Discussions  

Once more presenting Figure III.2-1, 

 

Figure III.2-1: The representation of the delicate balance of biomolecular interactions.  
Part 1: energetic protein-ligand interactions,  
Part 2: energetic solute-solvent interactions,  
Part 3: entropic protein-ligand interactions,  
Part 4: entropic solute-solvent interactions,  

Part 5: energy-solvation compensation (ESC),  
Part 6: energy-entropy compensation (EEC),  

Part 7: energy-entropy compensation: EEC with solvent: (solvent EEC),  
Part 8: entropy-solvation compensation (SSC). 

 

 

Compared with the QM/COSMO values, the following can be stated: 

 For Part 1: SQM and MM methods lead to very good (close to QM) interaction 
energies, SQM being a bit better in comparison. 

 For Part 2: SQM/COSMO solvation is observed to be quite good for energetic 
solute-solvent interactions, MM/GBSA solvation is rather poor.  

 For Part 3: Neither SQM nor MM treats entropic contributions well enough. 

 For Part 5: It is found out that, QM, SQM and MM methods are similar to eachother 
for describing energy solvation compensations (ESC). 



 

152 

 

 For Part 6: Overall description of the energy-entropy compensation is similar for 
all methods, however, it is found that SQM underestimates the regularity of 
enthalpy-entropy compensation (EEC) whereas, MM overestimates. 

 Coupling of ESC (energy-solvation compensation) and EEC (energy-entropy 
compensation) makes EEC less systematic, but this is not the case for ESC. However 
this observation might be due to the QM/COSMO reference.  

 Enthalpic-entropic contributions for the SQM and MM methods get worse with 
solvation effects included. 

 Compensation relations are more systematic for the larger systems (as in PLI10). 

 Part 4 (entropic solvation effects), part 7 (solvent EEC) and part 8(SSC) could not 
be investigated due to technical reasons. Thus, EEC/SSC coupling was not able to 
be investigated either. It is in principle possible that there will be some 
compensation resulting from the replacement of the “fixed” water molecules from 
the surfaces of proteins and ligands.  In that sense, entropic solvation effects are 
expected to be depending on the number of displaced water molecules, as well as 
depending on the effective size of the ligand, which is related with the 
conformational flexibility as well.   

 

The most important results so far are the following: After testing the performances of MM 
and SQM and observing their problems, we find that QM is preferable, especially when it 
is about “solvation” and more importantly when it is about “enthalpic and entropic 
effects”. On the other hand, when it is about the interaction energies, then, SQM is a good 
choice due to its computational speed as well. 

SQM and MM have problems with enthalpic/entropic/solvation terms, on the other hand, 
somewhat a systematic compensation relation between the interaction energy terms and 
these enthalpic/entropic/solvation terms are observed. Then, such a question arises: 
what would be the result, if we extrapolate these values for SQM and MM methods? 

 

III.5.1   Extrapolation of Energy Terms 

The extrapolation results of the solvation interaction energy contributions from the polar 
interaction energy terms are tabulated in Table III.5.1-1.  
 
The upcoming Table III.5.1-2 includes extrapolation of enthalpic and entropic free energy 
contributions from non-polar and polar interaction energy terms. 
 
These tables involve both the intermediate and the final extrapolation results for the S22 
and S66 benchmark sets. Parameter dependence and the overall robustness of the 
extrapolation procedures are described in the following parts. 
 
Later on with Table III.5.1-3 the calculated and extrapolated free interaction energies are 
compared.  
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Extrapolation of Solvation Interaction Energy Contributions from Polar 
Terms 

(Part 2 of Figure III.2-1) 
 

 

Type a(S22) 

New values fitted 
according to a(S22)  

a(S66) 

New 
values 
fitted 

according 
to a(S66) 

a(ave) 

New values 
fitted 

according to 
a(ave) 

S22 S66 S66 S22 S66 

MAD R MAD R MAD MAD MAD 

QM P 0.70 1.5 0.93 1.7 0.83 0.6 1.7 0.75 1.5 1.6 

SQM P 1.0 1.1 0.93 0.7 0.89 0.9 0.7 0.95 1.1 0.7 
  P* 1.1 1.1 0.96 1.0 0.87 1.1 1.0 1.10 1.1 1.0 

MMa,b P 0.7 1.3 0.96 1.5 0.54 0.7 1.5 0.70 1.3 1.5 
  P* 0.9 2.0 0.86 - - 0.6 1.8 0.70 2.2 1.9 

Table III.5.1-1:  Extrapolation of solvation interaction energy contributions from polar interaction 
energy terms. Polar energy term based extrapolation is denoted by P.  If the optimization is done, 

not with the original level of theory, but with respect to the QM data, then it is indicated by P*. 
a(S22), a(S66) and a(ave) are the definitions of parameters optimizations with for sets S22, S66 

and averaged S22-S66 respectively. 
 [a]S22; excluding entry 7 and 14 because of missing parameters  

[b]MM methods are excluding entry 55 and 56 because of missing FF parameters 
 

 
First of all, the optimized parameters that used for the sets S22 and S66 are averaged and 
these new parameters are denoted as a(S22) and a(S66).   
 
The parameters are used as in the following: 
 

ΔEsolvation = - Epolar * a                                                    (Eqn. 3.1.3-4) 
 
Also, an additional parameter is created from averaging these a(S22) and a(S66) values 
(averaging the average). It is denoted as a(ave), and obtained as follows: 
 

𝑎(𝑎𝑣𝑒) =
𝑎(𝑆22)+𝑎(𝑆66)

2
                                       (Eqn. 3.1.3-5) 

 
Once an average parameter, a(S22), a(s66) or a(ave) is obtained, then, the relevant 
computed results with it, are listed right next to it. 
 
When this procedure is done for a(S66), only the S66 set was tested with this parameter, 
since a(S66) turned out to be very similar to a(S22) in terms of the numerical values.  
 
The extrapolations of solvation interaction energy contributions that are calculated from 
the polar terms are symbolized with “P”. The results that are obtained with P all have very 
similar numerical values of R and MAD for all parameters: a(S22),  a(S66)  and a(ave). This 
indicates that extrapolation from P is very robust. 
 



 

154 

 

The part shown as P*, is for the extrapolations which are done with respect to the QM 
level reference. This QM level based parameter supposedly gives more accurate values. 
However looking at the values, it is observed that P and P* are similar for this case.  
 

 To have a comparison in between P and P*, values with the a(S22) parameter can 
be examined further for the set S22. SQM has a correlation of R=0.93 and R=0.96 
respectively for similar P and P* values. On the other hand, this situation changes 
a bit for MM, with the respective correlations of R=0.96 and R=0.86 for P and P*. 
 

 

Extrapolation of Enthalpic and Entropic Free Energy Contributions from Non-
polar (Dispersion) and Polar (Hydrogen Bond) Interaction Energy Terms 

(Part 3 of Figure III.2-1) 

 
Previously, Korth showed that [338] the compensation effects for non-polar (dispersion) 
were found to be three times higher than for polar (hydrogen-bond) interactions, and two 
different extrapolation schemes were tested there. Here, in a similar way, the 
extrapolation for the enthalpic and entropic free interaction energy contributions from 
non-polar and polar energy terms are tested and results are tabulated in Table III.5.1-2.   
 
One of the extrapolation is based on full interaction E, and the other one is based on split 
polar (P) and non-polar (dispersion, D) type of interactions. E* and PD* denotes 
extrapolations which are done according to the QM level.  
 

 

Type a(S22)c 

New values fitted to a(S22)  

a(S66)d 

New 
values 
fitted 

to 
a(S66) 

a(ave) 

New values 
fitted to 
a(ave) 

S22 S66 S66 S22 S66 

MAD R MAD R MAD MAD MAD 

QM E 0.8 3.8 0.94 4.7 0.80 1.2 3.8 1.0 4.1 4.1 
PD 0.6 2.1 0.94 2.1 0.90 0.75 1.6 0.7 2.6 1.7 

SQM E 1.4 6.3 0.88 7.1 0.77 2.2 5.8 1.8 6.6 6.1 
PD 1.1 4.0 0.92 4.4 0.80 1.4 3.2 1.3 4.5 3.4 
E* 0.8 4.0 0.73 4.6 0.39 1.25 3.7 1.0 4.1 4.0 

  PD* 0.6 2.3 0.90 3.0 0.60 0.8 2.1 0.7 2.5 2.4 

MMa,b E 1.0 1.4 0.97 2.9 0.77 1.2 2.6 1.1 1.6 2.7 
PD 1.1 1.0 0.96 2.0 0.78 1.4 1.7 1.2 1.0 1.8 
E* 0.7 3.9 0.78 4.8 0.33 1.2 3.7 1.0 4.0 4.0 

  PD* 1.1 3.4 0.82 3.0 0.40 1.5 2.3 1.3 3.5 2.5 

Table III.5.1-2: Extrapolation of enthalpic and entropic free interaction energy contributions from 
polar and non-polar interaction energy terms. Polar and dispersion energy term based 

extrapolation is denoted by PD, overall energy based extrapolation is denoted by E.  If the 
optimization is done, not with the original level of theory, but with respect to the QM data, then it is 

indicated by PD* and E* respectively. a(S22), a(S66) and a(ave) are the definitions of parameter 
optimization for sets S22, S66 and averaged S22-S66 respectively. 
[a]  S22; excluding entry 7 and 14 because of missing parameters  

[b]: MM methods are excluding entry 55 and 56 because of missing FF parameters  
[c]: 3 linear structures are excluded for S22 
[d]:  7 linear structures are excluded for S66 



 

155 

 

The parameters are used as in the following: 
 

ΔGenthalpic/entropic = - ΔE * a (for E)                                               (Eqn. 3.1.3-6) 
 

ΔGenthalpic/entropic = - ΔEp * ap – ΔED * aD (for PD part)              (Eqn. 3.1.3-7) 
 

aD = ap * constant 
 

 This time, the extrapolation is found to be comparably less robust than it was for 
solvation contribution in Table III.5.1-1.  

 
 For all cases, the version based on the P and D interactions (PD), is always found 

to more beneficial than the full interaction (E) based extrapolation.  
 

 The optimal ratio of P and D parameters are around 3 for QM and SQM methods, 
whereas for MM method, this is about 2. Therefore, for all these methods, it seems 
that, only a very little can be gained with optimizing parameters independently, 
and that for all methods, only one parameter can fix both of these contributions.  

 
 When a(ave) was considered for SQM and MM, then final parameters with them 

are P*=0.7 and P*=1.3 respectively. This is with a MAD value of about 2.5 kcal/mol 
MAD and R=0.90 for SQM and with a MAD value about 3 kcal/mol MAD and R=0.82 
for MM in comparison to QM contribution. Here the wrong ratio of polar and non-
polar interactions for MM and the high MAD values for both SQM and MM, again 
emphasize the difficulty of treating enthalpic/entropic effects correctly. 

 

Extrapolation of Free Interaction Energies 

Here, the previously calculated values for the free interaction energy, will be compared 
with the free interaction energy values obtained by extrapolation. These will be presented 
under the entries as “ΔG-calculated” and “ΔGextra-extrapolated”. Results are given in Table 
III.5.1-3 with the following additional denotations: 
 

ΔG- ΔE  :enthalpic/entropic contribution 
 
(combined) :Electronic, solvation, enthalpic/entropic contribution calculated at 

the same time. 
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Extrapolated c Calculated 

S22 S66 S22a,d S66b,e 

MAD R MAD R MAD R MAD R 

ΔE 
MM - - - - 3.0 0.78 1.9 0.94 
SQM - - - - 1.0 0.99 1.1 0.98 

ΔEsolv 

MM 2.0 0.86 1.8 0.66 1.7 0.91 1.5 0.83 
SQM 1.1 0.96 1.0 0.87 1.1 0.94 0.8 0.95 
QM 1.5 0.93 1.6 0.83 - - - - 

ΔG- ΔE 

MM 3.5 0.82 2.5 0.40 3.5 0.70 2.2 0.79 
SQM 2.5 0.90 2.4 0.60 6.2 0.94 5.0 0.73 
QM 2.6 0.94 1.7 0.90 - - - - 

ΔE(combined) 
MM - - - - 3.0 0.70 4.1 -0.07 
SQM - - - - 1.3 0.95 1.6 0.83 

ΔEsolv(combined) 

MM 2.0 0.86 1.9 0.66 1.6 0.90 1.8 0.77 
SQM 1.1 0.96 1.5 0.93 0.8 0.89 0.7 0.95 
QM 1.7 0.97 2.3 0.90 - - - - 

ΔG- ΔE(combined) 

MM 6.4(4.5)c 0.62 7.6(6.8)c 0.95 9.6 0.53 8.2 0.27 
SQM 6.3(4.0)c 0.57 7.5(3.8)c 0.32 4.0 0.51 2.1 0.54 
QM 5.3(3.4)c 0.67 5.9(3.1)c 0.40 - - - - 

Table III.5.1-3: Comparison of the free interaction energies, ΔG , based on extrapolated enthalpic 
entropic and solvation contributions, with the free interaction energies, ΔG based on computed 

enthalpic entropic and solvation contributions [a,b]. 
[a] S22:excluding QM entry 14, SQM entry 10, MM entry 12 for technical reasons and MM entries 7 

and 14 because of missing parameters  
[b] S66: excluding MM entries 55 and 66 for technical reasons 

[c] With a parameter optimized including solvation effects: aQM=1.1, aSQM=1.4, aMM=3.2. 
[d]: 3 linear structures are excluded for S22 
[e]:  7 linear structures are excluded for S66 

 

 

Upper Half of the Table III.5.1-3  
(About ΔE, ΔEsolv and ΔG-ΔE) 
 
It is observed that when it is about the solvation contributions (ΔEsolv), then, the 
extrapolated and calculated MAD values are so similar, but looking at the R values, they 
are slightly less correlated with QM. In case of enthalpic-entropic contributions, (ΔG- ΔE), 
only for MM method, the extrapolated and calculated values are so similar to eachother. 
The extrapolated SQM values are more accurate than the calculated ones, but they are also 
less correlated with the QM data (especially for the more diverse (S66) set). This indicates 
that the extrapolation becomes less reliable with more mixed-up interactions that are in 
the S66 set. 
 
Lower Half of the Table III.5.1-3  
(About ΔE(combined), ΔEsolv(combined) and ΔG-ΔE(combined)  
 
Calculation of combined contributions results in less systematic correlations. Following 
Figure III.5.1-1 includes the extrapolated data, and this is compared with Figure III.4-4, 
which has the calculated data instead. For an easier comparison, they are shown next to 
each other. 



 

 

1
5

7
 

 
Figure III.4-4: Both for S22 and S66, free interaction energies ΔG (with 

solvation) at QM, SQM, SQM-shifted and MM level.  
MM methods are excluding entry 7 and 14 because of missing parameters. 

MM methods are excluding entry 55 and 56 because of missing FF 
parameters  

3 linear structures are excluded for S22 
7 linear structures are excluded for S66 

data from reference [338] 

 

 
Figure III.5.1-1: Both for S22 and S66 sets, free interaction energies ΔG 

(which includes solvation effects) at QM, SQM and MM level with SQM 
and MM enthalpic, entropic and solvation energy contributions 

extrapolated from interaction energies (equivalent to Figure III.4-4 only 
now with extrapolated SQM and MM data from Table III.5.1-3).  

S22:excluding QM entry 14, SQM entry 10, MM entry 12 for technical 
reasons and MM entries 7 and 14 because of missing parameters  

S66: excluding MM entries 55 and 66 for technical reasons 
with a parameter optimized including solvation effects: aQM=1.1, 

aSQM=1.4, aMM=3.2. 
3 linear structures are excluded for S22 
7 linear structures are excluded for S66 

 
 
It can be clearly seen that, the extrapolated version of MM does a similar good job as the calculated version (when it is compared with the 
QM data).  
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Implications for the Design of Scoring Functions 

i. Part 1 of Figure III.2-1 (Energetic protein-ligand contributions), will be partly 
cancelled through EEC and ESC by part 2 (energetic solute/solvent contributions) 
and part 3 (entropic protein/ligand contributions). 

ii. ESC, part 5 is very systematic and cancels by around 75% of all polar energetic 
contributions for our model systems.  

iii. EEC, part 6 is somehow systematic and cancels about 25% of polar and 75% of 
non-polar energetic contributions for our model systems.  

iv. As mentioned above, part 4, part 7 (solvent EEC) and part 8 (SSC) could not be 
investigated in this research, but the following assumption can be made: if they 
behave similar to the EEC and ESC, then, there should be a partial cancellation of 
the interaction terms again.  

Once more, it should be emphasized that, in reality these partial balances are 
dynamically coupled unlike our uncoupled, static analysis. Therefore a rough 
approximation is made here, but still, our tests can identify/emphasize some 
important contributions, and these can be listed as follows: 

a. The non-polar interaction energy can be counted as the most important one 
amongst these contributions, because by scaling this energy, the largest 
part of the effective internal (not conformational) entropy change could 
also be taken into account.  

b. The polar interaction energy is almost completely cancelled. Even though it 
is not a full cancellation, the resulting term is small in comparison to the 
other terms.   

Both of these reasoning (in a. and b. above) can be seen from the 
optimized parameters.  

ΔGenthalpic/entropic = - ΔEp * ap – ΔED * aD    (for PD part)      (Eqn. 3.1.3-8) 
 
The term “ΔEp * ap” is roughly about 3, whereas, the term “ΔED * aD” 
is roughly about 1 in ratio. 
 
Also, for the following: 

ΔEsolvation = - Epolar * a                                                (Eqn. 3.1.3-9) 
   

 The term “Epolar * a” is about 1 for SQM, and about 0.75 for QM.  

Due to our findings SQM level solvation can almost be equally treated via 
scaling polar interactions. 

c. Related with the cancellation of the non-polar effects and up to a certain 
degree the cancellation of the polar effects, the protein/ligand internal 
entropic effects play a role and, at least at MM level, they can be included 
via scaling interaction energies.  
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The effect of improving the interaction energies for protein-ligands, while 
going from MM to SQM and then to QM level is low. Hence, only a better 
treatment of the energetic solvation contributions (at least at SQM level) 
and internal entropic contributions (at least at QM level) can likely make a 
change. 

d. Finally, the entropic solvation contributions and the conformational 
entropy have likely also some impact.  

Deriving conclusions from the remarks listed above, it looks like, even the simplest 
scoring function: 

  Should have at least a scaled estimate of the dispersion (non-polar) protein/ligand 
interaction energy, which also implicitly gives the reasoning for the main part of the 
internal entropy changes, and also for the conformational entropy changes up to a 
point.  

  Can be an estimator for conformational entropy effects, but unfortunately there isn’t 
any proper QM way of treating conformational entropy so far, and this results in an 
option of skipping the relevant term totally. Even if it is not an ideal solution that way, 
at least, this approach might also eliminate the problematic terms in it.  

 In order to implicitly account for the solvation effects, scaled polar interaction terms 
can be added.  

Due to the low accuracy & poor treatment of hydrogen bonding of MM, separate 
solvent terms might not be advantageous at this level, but, on the other hand, surface 
area related non-polar solvent terms can be helpful in the regard that they might 
indirectly add some flexibility to the explanation of protein-ligand dispersion 
contributions, even if they cannot directly help describing the solvation effects.  

 Any possible terms, which can additionally or indirectly influence the important terms 
(like dispersion interaction or conformational entropy related terms) would be 
beneficial to consider.  

QM based scoring functions have the advantage of having a proper treatment for the polar 
interaction energy contributions, solvation effects and internal enthalpic/entropic 
contributions. Still, even if the effect of all terms are considered together, their overall 
effect is not as much as:  

i. The dispersion interaction terms, 

ii. conformational entropy, presumably.  

In that regard, conformational entropy is important to investigate.  

 

The contributing terms for commonly used scoring functions are tabulated in Table 
III.5.1-4 to show that our findings are in line with existing scoring functions.  
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 contributions 

 
Scoring 

functions 
N1 P C S H N2 M other 

FF-based 

Goldscore [358] √ √ X X Optional X X X 

Autodock  [359] √ √ Optional Optional √ X X X 

VSGB 2.0  [360] √ √ √ X √ √ X X 

Empirical 

Chemscore  [361] X X X √ √ √ √ X 

Glide [362] √ √ √ √ √ √ √ 
P/N* 

interactions 

XScore [363] √ X X √ √ √ X X 

Knowledge-
based 

LigandFit [364] X X X X X √ X Shape factor 

eHits [365] X X X X (√) √ (√) T factor 

Table III.5.1-4: Common scoring functions listed according to the interaction terms included.  
  √: indicates that feature is included. 

X: indicates that feature is not included. 
Optional: feature is optional. 

N1: Non-polar contribution (dispersion and exchange repulsion contributions) 
N2: Non-polar equivalent contribution (hydrophobic/lipophilic, special π stacking terms, surface 

point interactions etc.) 
P: polar 

C: solvation 
S: entropy 

H: hydrogen bonding 
M: metal interaction 

 
There are different types of scoring functions [366].  

FF based scoring functions use scaled force-field terms for all main interactions, and 
amongst them Autodock or Goldscore can be counted as advanced types. These main 
interactions can be listed as,  

o Polar and non-polar energetic contributions 
 Description of hydrogen bonds terms by these are usually improved 

by special hydrogen bonding terms.  
o Explicit internal entropy and solvation terms can also be represented 

through scaling of these interaction terms. 
 

Empirical scoring functions, like ChemScore, Glide, or XScore scoring functions, omit the 
basic interaction terms, and treat the others in a simple way too.  

However, as an important note here, this type of scoring functions still  

o take care of the dispersion interaction terms (as an example: entropy or 
dispersion-equivalent ones) in a good way, and,  

o They also have additional special hydrogen bond terms.  
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Knowledge based scoring functions, like LigandFit or eHiTS, store the contact-area 
related information. “Surface point interactions” and “shape fit” can be listed among the 
information that is kept. These are relevant to the dispersion interactions and also 
roughly to conformational entropy loss.  

Overall, it is explained that [210] the very best scoring functions from each (FF, empirical 
or knowledge based) category, perform similar to each other in terms of the accuracy and 
the correlation. The similar performance of them is attributed to the parametrization that 
they have, rather than their conceptual differences.  
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III.5.2   Application Examples 

Two application cases are chosen to further investigate the findings of the previous 
sections.  

III.5.2.1   Case Study A 

First study is based on a scoring study by Greenidge et al. [367] on 855 protein/ligand 
complexes of the PDBbind2009 database. The advanced VSGB 2.0 scoring function is used 
in their work. 

Taking this 855 number of (PDBbind 2009 set based) complexes from Greenidge’s study 
as a reference, we have studied a subset with a number of 580 complexes from PDBbind 
2007.  

Their study resulted in Pearson R value of R=0.79 for 855 complexes, whereas our subset 
of 580 complexes give about R=0.81. This shows that our PDBbind2007 based smaller 
subset is not a simplification when compared with the PDBbing2009 based set. 

Following Table III.5.2.1-1 shows the correlation in between different energy 
contributions based on the 580 complexes computed with VSGB 2.0. Only 580 files are 
selected [367] to have a correspondence with our study that has 580 complexes in common. 

The terms are given according to the reference denotations. 

ΔE  : overall,  
ΔEQQ  : polar interaction term,  
ΔEGB  : polar solvation term,  
ΔEvdw  : explicit dispersion (and repulsion) interaction term, and,  
ΔEhydrophobic : hydrophobic contributions (i.e. implicit dispersion term) 

 

ΔE ΔEQQ ΔEGB ΔEvdw ΔEhydrophobic 

ΔE -0.03 0.00 0.87 0.89 

 ΔEQQ -0.97 -0.12 -0.15 

  ΔEGB 0.00 0.04 

   ΔEvdw 0.85 

Table III.5.2.1-1: Pearson R values for the VSGB 2.0 and the energy contributions, ΔE: overall, 
ΔEQQ: polar interaction term, ΔEGB: polar solvation term, ΔEvdw: explicit dispersion (and repulsion) 
interaction term and ΔEhydrophobic : hydrophobic contributions. All data is based on PDBbind 2009 

data reference [367] selected for 580 protein and ligand complexes.  

One finds that, the polar interaction term ΔEQQ cancels outs almost perfectly with the 
(polar) solvation term ΔEGB with a correlation of R=-0.97. This corresponds to an average 
polar interaction contribution (ΔEQQ) of -34 kcal/mol, average solvation contribution 
(ΔEGB) of +38 kcal/mol.  
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It can be also observed that, the overall interaction energy (ΔE) has the highest 
correlations with two terms, and these are: 

 ΔEvdw, explicit dispersion (and repulsion) interaction term, and,  

 ΔEhydrophobic, for hydrophobic interactions by reinforcing non-polar contacts.  
 

Hydrophobicity is related to energetic and entropic balance of the non-polar and polar 
interactions between a solute and solvent (in this situation, protein), relative to the 
balance of the non-polar and polar interactions between a solute and water. Therefore, if 
there is any term linked with hydrophobicity, then that term is related to the dispersion 
interaction energy term as well. It can add weight or flexibility to the dispersion 
interaction term or it can account for solvent and protein/ligand entropic contributions. 

 

Table III.5.2.1-2 compares these mentioned interaction terms and their combinations 
based on their ability to make predictions with respect to the experimental binding 
affinities.  

Entry Contribution Type 
Pearson, 

R 

I ΔE vs ΔEvdw 0.87 

II ΔE vs ΔEvdw + ΔEQQ + ΔEGB 0.87 

III ΔE vs ΔEvdw + ΔEhydrophobic 0.91 

IV ΔE vs ΔEvdw + ΔEhydrophobic + ΔEQQ + ΔEGB 0.98 

V pK vs ΔE  -0.81 

VI pK  vs ΔEvdw -0.74 

VII pK  vs ΔEvdw + ΔEhydrophobic -0.77 

VIII ΔED2 vs ΔEvdw 0.92 

IX ΔED2 vs ΔEvdw+ ΔEhydrophobic 0.90 

X ΔED2 vs ΔE 0.89 

Table III.5.2.1-2: Pearson R values for the correlation between VSGB 2.0 energy contributions [a], 
with experimental binding affinities pK and with D2 dispersion energy contributions, ΔED2 for 580 

protein/ligand complexes from PDBbind 2009 database [367]. ΔE: overall, ΔEQQ: polar interaction 

term, ΔEGB: polar solvation term, ΔEvdw: explicit dispersion (and repulsion) interaction term, based 
on PDBbind 2009 data reference (70) selected for 580 protein and ligand complexes. 
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The following can be stated: 

 ΔEvdw and ΔEhydrophobic   are the most significant (effective) terms. 

 Comparing the Entries I, II, III and IV, the addition of the term “ΔEQQ + ΔEGB” seems 
to have no effect on the correlation. 

 As for the Entries V, VI and VII, ΔEvdw term alone, seems to have the predictive 
power itself (with R=-0.74 in Entry VI), which is almost similar to the full scoring 
function effect (with R=0.-81 in Entry V). However, adding ΔEhydrophobic term to 
ΔEvdw improves the situation a bit more (with R=-0.77 in Entry VII).  

 So, it can be indeed observed that, ΔEvdw and ΔEhydrophobic terms are the most 
important ones to have an impact. Also from the Entries VIII, IX and X, it can be 
noted that ΔED2 is perfectly correlated with ΔEvdw (or with “ΔEvdw + ΔEhydrophobic”) 
terms even if it is differently computed. 
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III.5.2.2   Case Study B 

The second case study focuses on the scoring function comparison study by Wang et al. 
[209], where they use PDBbind2007 refined set (with 1297 protein/ligand complexes). 
Here, the dispersion interaction energy based estimates are compared to the results of 
Wang’s study. The importance of this contribution is indeed observed here once again, 
especially for diverse protein/ligand systems.  

  

Pearson, R 

Experimental 

Geometry 
(PDBbind set)a  

Top scoreb Best poseb 

 ΔED2 0.51 (0.54c) - - 

Knowledge-
based 

LigandFit [364] 

(ver. 2.3) 
- 0.33 0.28 

eHits [365] 

(ver. 9.0) 
- 0.62 0.54 

Empirical 

FlexX [368] 

(ver. 2.2.1) 
- 0.32 0.30 

Glide [362] 

(ver. 4.5) 
- 0.50 0.48 

Surflex [369] 

(ver. 2.2) 
- 0.57 0.47 

FF-based 

GOLD [370] 

(ver. 3.2) 
- 0.41 0.25 

AutoDock [359] 

(ver. 4.2.1) 
- 0.50 0.44 

Table III.5.2.2-1: For the 1297 protein-ligand complexes of the refined set of the 2007 PDBbind 
database, the Pearson R values for the correlation in between the dispersion interaction energy 

ΔED2 and experimental binding affinities pK for several commonly used scoring functions. 
[a] This work 

[b] Data from Plewczynski et al. [210] here as R instead of R2 values 
[c] Logarithmic regression 

 

The correlation of TPSS-D2 dispersion interaction energies (ΔED2), with the experimental 
binding affinities (pK) of the refined PDBbind2007 set (with 1297 protein-ligand 
complexes) is given. ΔED2 itself shows a medium degree correlation with R=0.51 or R=0.54 
with logarithmic regression. 
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“Top score” in the Table III.5.2.2-1 means, geometries are chosen according to the best 
score values. Based on the study of Plewczynski and coworkers [210] the Pearson R 
correlation values are in the best range of 0.32 to 0.62 for this top scoring set and for 
different types of the scoring functions. This is in agreement with an earlier study by 
Cheng and coworkers [209], where they tested the 195 protein-ligand complexes from the 
“core set” of the PDBbind2007 database.  

“Best pose” in the table means that the geometries that are closer to the taken 
experimental values. Plewczynski and coworkers [210] have the correlation values in the 
best range of 0.25 to 0.54 for this part. For the top scoring and for the best pose cases, 
their results are similar or worse compared to the ΔED2 prediction cases. If the DFT-D 
parameters are investigated, modifying the relevant parameters (s6 and sr) does not allow 
improvements on the R values.  

Based on the high correlation (R=0.84) between the ligand size and ΔED2, ligand size also 
show that it can be a good indicator for proton-ligand binding affinities (R=0.40). These 
results support our previous statements that any good empirical dispersion interaction 
energy estimator should work well enough on its own to predict the protein-ligand 
binding affinities in the PDBbind set.  

This is not in agreement with the literature on the performance of scoring functions for 
selected problems, which indicates that the quality of the PDBbind data is low, because:  

i. The trend which is dominating, is the correlation of binding affinities with the 
dispersion contribution. 

ii. Dispersion interactions are first of all related to the size of the ligand. The binding 
energy is known to be first of all related to the size of the ligand. The only 
systematic relationships we find for the PDBbind set is thus the most basic relation 
at all, and all other relations seem to be mixed up (hydrogen bond, solvation, and 
enthalpic, entropic terms). The reason behind this is likely because of the 
differences amongst the experiments behind the referred PDBbind data sets.  

 

 

 

III.6   Conclusions 

Looking at the delicate balance of biomolecular interactions and its implication for the 
design of scoring functions, compensation relations were investigated in order to find out 
whether they can be used to extrapolate enthalpic and entropic contributions to the free 
energy of single binding modes. Even though the investigated compensation relations are 
very systematic, they are not systematic enough to be used for this purpose.  
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3.2   Computational screening of energy (battery electrolyte) materials [371] 

A volunteer computing approach is presented for screening a large number of molecular 
structures with respect to their suitability as new battery electrolyte solvents.  Collective 
properties (i.e. melting, boiling and flash points) are evaluated with COSMOtherm and 
with quantitative structure–property relationship (QSPR) based methods, while 
electronic structure theory methods are used for the computation of electrochemical 
stability window estimators. Computational details are tabulated as follows: 

 
Computational Methods 

Method Type Name Computational Details 

DFT 

 

BP86 
[275,276] 

Geometry optimization and frequency calculations were 
done with 

TURBOMOLE 6.4 [280, 281] 

Using: 

 D2 dispersion corrections [279] 

the RI approximation for two-electron integrals [283,284] 

and 

Solvation effects are treated with COSMO [285] 

TZVP, TZVPPP and QZVP AO basis sets are employed 
[282]. 

Using: 

 D2 dispersion corrections [279] 

the RI approximation for two-electron integrals [283,284]  

LPNO (local pair natural orbital) CEPA (coupled 
electron pair [372] approximations are done with ORCA 

2.8 [328] 

TZVP, TZVPPP and QZVP AO basis sets are employed 
[282] 

SQM 

PM6-DH+ 
[50] 

 

 

Calculations were done with MOPAC2012 [58] 

by making use of 

COSMO solvation models [285] 

Table 3.2-1: List of computational methods used for screening of battery electrolyte solvents 
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Two application examples are studied:  
 

i. First, the results of a previous large-scale screening test [373] are re-evaluated with 
respect to the mentioned collective properties.  

 
ii. Second, all reasonable nitrile solvents up to 12 heavy atoms are generated and 

used to illustrate a suitable filter protocol for picking Pareto-optimal candidates. 
 
As a result, the comparison with experimental references showed the high value of 
COSMOtherm and QSPR models for estimating collective properties of electrolyte 
components, especially for ranking compounds with respect to these properties.  

SQM-based COSMOtherm estimates were much faster and they are found almost as 
valuable as DFT-based ones for this purpose. 

Comparison of these two application examples showed that a diversity-oriented approach 
offers more opportunities for balancing thermal stability with ion conductivity. 

From the second study, adiponitrile is found as one of the 17 Pareto-optimal candidates, 
in accordance with recent suggestions from experimental work (as well as several other 
small di-nitriles previously investigated). 
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Chapter 4 

 

 

Discussions and Conclusions 

 

From our research it is found out that, quantum mechanical calculations can be 
represented with smaller model systems without losing their predictive capability. 
However that for an automatic model preparation further adjustments are needed, like 
for instance entropic (and/or enthalpic) effects better be included or revised. 

SQM methods are capable of handling large model systems, while it is still challenging for 
DFT approaches. When ranking is the only concern, it can be concluded that our reference 
SQM method, PM6-DH+ is reliable enough to be recommended for this purpose. On the 
other hand, for any other type of calculations, it is still recommend to use DFT-
D3/TZVP/COSMO (-RS) methods. 

From a methodological perspective, it is observed that an enhanced SQM approach, PM6-
DH+ performs very similar to DFT-D and this shows a substantial improvement upon 
classical potentials. Based on the tests with smaller energy scales, SQM showed a 
deviation of 5% from DFT whereas MM (FF) had a deviation of 15% from DFT. 

After the comparison with higher level methods, SCS-MP2 and B2-PLYP-D3 are found to 
be the most efficient WFT methods, whereas TPSS-D3+Dabc/def2-TZVPP is assigned as the 
best DFT approach. Our SQM reference PM6-DH+ is a fast and an accurate alternative to 
full ab initio treatments.  

Then, main biomolecular interactions and the compensations in between them are 
studied. Overall, it is found that PM6-DH+ provides the opportunity to calculate the 
electronic energy part of the protein-ligand interactions for large number of large protein-
ligand model systems in an accurate way. The extrapolation of enthalpic and entropic 
contributions from energies does not seem to be promising, and therefore, these 
contributions have to be computed using the RRHO approximation.  

On the other hand, in combination with the minima mining approach, averaging over free 
energies for multiple binding modes seems to be a very promising strategy to address the 
protein-ligand biding problem. However, to evaluate this, it is observed that accurate 
experimental energies are needed, and it can be stated that the PDBbind database does 
not seem well suited for this purpose.  

Though, fortunately within the CSAR 2014 scoring challenge, more accurate data seems 
to be available to continue from this point.   
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[265] Grebner, C., Kästner, J., Thiel, W. and Engels, B., J. Chem. Theory Comput., 2013; 9: 
814−821. 

[266] http://www.statisticssolutions.com/correlation-pearson-kendall-spearman/ 

[267] Kendall, G., Biometrika, 1938; 30: 81-93. 

[268] Nelsen, R.B., "Kendall tau metric", in Hazewinkel, Michiel, Encyclopedia of Mathematics, 
Springer, ISBN 978-1-55608-010-4, 2001. 

[269] http://stamash.org/calculating-kendalls-taurank-correlation-coefficient/ 

[270] Halgren, T. A., J. Comput. Chem., 1996; 17: 490−519. 

[271] O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchinson, G. 
R., J. Chem. Inf., 2011; 3: 33−47. 

[272] Wang, J., Cieplak, P. and Kollman, P. A, J. Comput. Chem., 2000; 21: 1049−1074. 

[273] Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. and Case, D. A., J. Comput. Chem. 2004; 
25: 1157−1174. 

[274] Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., 
Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, 
G., Kolossvazary, I., Wong, K. F., Paesani, F., Vanicek, J., Wu, X., Brozell, S. R., Steinbrecher, 
T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M. -J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, 
M. G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P. A., AMBER 11; 
University of California: San Francisco, 2010. 

[275] Becke, A. D., Phys. Rev. A, 1988; 38: 3098−3100. 

[276] Perdew, J. P., Phys. Rev. B, 1986; 33: 8822−8824. 

[277] Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 1996; 77: 3865−3868. 

[278] Tao, J., Perdew, J. P., Staroverov, V. N. and Scuseria, G. E., Phys. Rev. Lett., 2003; 91: 
146401−146405. 

[279] Grimme, S., J. Comput. Chem., 2006; 27: 1787−1799. 
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[282] Schäfer, A., Huber, C. and Ahlrichs, R., J. Chem. Phys., 1994; 100: 5829−5835. 

[283] Eichkorn, K., Treutler, O., Öhm, H., Häser, M. and Ahlrichs, R., Chem. Phys. Lett., 1995; 
242: 652−660. 

[284] Eichkorn, K., Weigend, F., Treutler, O. and Ahlrichs, R., Theor. Chem. Acc., 1997; 97: 
119−124. 

[285] Klamt, A., WIREs Comput. Mol. Sci., 2011; 1: 699−709. 

[286] http://openmopac.net/manual/mozyme.html, 

[287] http://www.bannedbygaussian.org/ 

[288] Cole, D. J., Skylaris, C. -K., Rajendra, E., Venkitaraman, A. R. and Payne, M. C., Europhys. 
Lett., 2010; 91: 37004−37009. 

[289] http://plasmagate.weizmann.ac.il/Grace/. 

[290] Englebienne, P. and Moitessier, N., J. Chem. Inf. Model., 2009; 49: 2564−2571. 

[291] Rao, L., Zhang, I. Y., Guo, W., Feng, L., Meggers, E. and Xu, X., J. Comput. Chem., 2013; 34: 
1636-1646. 

[292] Gleeson, D., Tehan, B., Gleeson, P. and Limtrakul, J., Org. Biomol. Chem., 2013; 10: 7053-
7061. 

[293] Kantardjiev, A. A., Nuc. Acids Res., 2012; 40: W415-W422. 

[294] Bryce, R. A., Fut. Med. Chem., 2011; 3: 683-698. 

[295] Gleeson, M. P., Hannongbua, S. and Gleeson, D., J. Mol. Graph Mod., 2010; 29: 507-517. 

[296] Zhou, T. and Caflisch, A., Chem. Med. Chem., 2010; 5: 1007-1014. 

[297] Zhang, X., Gibbs, A. C., Reynolds, C. H., Peters, M. B. and Westerhoff L. M., J. Chem. Inf. Mod., 
2010; 50: 651-661. 

[298] Söderhjelm, P., Kongsted, J., Genheden, S. and Ryde, U., Int. Sci. Comput. Life Sci., 2010; 2: 
21-37. 

[299] Söderhjelm, P., Kongsted, J. and Ryde, U., J. Chem. Theory Comput., 2010; 6: 1726-1737. 

[300] Söderhjelm, P., Aquilante, F. and Ryde, U., J. Phys. Chem. B, 2009; 113: 11085-11094. 

[301] Briganti, F., Mangani, S., Orioli, P., Scozzafava, A., Vernaglione, G. and Supuran, C. T., 
Biochemistry, 1997; 36: 10384-10392. 

[302] Burkhard, P., Taylor, P. and Walkinshaw, M. D., J. Mol. Biol., 2000; 295: 953-962. 

[303] Ghosh, M., Meerts, I. A. T. M, Cook, A., Bergman, A., Brouwer, A. and Johnson, L. N., Acta. 
Cryst. D, 2000; 56: 1085-1095. 

[304] Lee, J. E., Cornell, K. A., Riscoe, M. K. and Howell, P. L., Structure, 2001; 9: 941-953. 

http://www.turbomole.com/
http://www.bannedbygaussian.org/
http://plasmagate.weizmann.ac.il/Grace/


 

183 

 

[305] Lu, G., Dobritzsch, D., Baumann, S., Schneider, G. and König, S., Eur. J. Biochem., 2000; 267: 
861-868. 

[306] Manuel, R. C., Hitomi, K., Arvai, A. S., House, P. G., Kurtz, A. J., Dodson, M. L., McCullough, 
A. K., Tainer, J. A. and Lloyd, R. S., J. Biol. Chem., 2004; 279: 46930-46939. 

[307] James, L. C. and Tawik, D. S., Proc. Natl. Acad. Sci. USA, 2005; 102: 12730-12735. 

[308] Razavi, H., Palaninathan, S. K., Powers, E. T., Wiseman, R. L., Purkey, H. E., 
Mohamedmohaideen, N. N., Deechongkit, S., Chiang, K. P., Dendle, M. T. A., Sacchettini, J. 
C., Kelly, J. W., Angew Chem. Int. Ed., 2003; 42: 2758-2761. 

[309] Babaoglu, K. and Shoichet, B. K., Nat. Chem. Biol., 2006; 2: 720-723. 

[310] Becke, A. D., J. Chem. Phys., 1993; 98: 5648-5652. 

[311] Stephens, P. J., Devlin, F. J., Chabalowski, C. F. and Frisch, M. J., J. Phys. Chem., 1994; 98: 
11623-11627. 

[312] Lee, C., Yang, W. and Parr, R. G., Phys. Rev. B, 1998; 37: 785-789. 

[313] Weigend, F., Köhn, A., Hättig, C., J. Chem. Phys., 2002; 116: 3175-3183. 

[314] Zhao, Y. and Truhlar, D. G., Theor. Chem. Acc., 2008; 120: 215-241. 

[315] Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., van Dam, H. J. J., Wang, 
D., Nieplocha, J., Aprà, E., Windus, T. L., De Jong, W. A., Comput. Phys. Commun., 2010; 
181: 1477-1489. 

[316] Grimme, S., J. Chem. Phys., 2003; 118: 9095-9102. 

[317] Grimme, S., J. Chem. Phys., 2006; 124: 034108-034116. 

[318] Bachorz, R. A., Bischoff, F. A., Glöß, A., Hättig, C., Höfener, S., Klopper, W., and Tew, D. P., J. 
Comput. Chem., 2011; 32: 2492-2513. 

[319] Dunning, T. H., Jr., J. Chem. Phys., 1989; 90: 1007-1023. 

[320] Kendall, R. A., Dunning, T. H., Jr. and Harrison, R. J.,  J. Chem. Phys., 1992; 96: 6796-6806. 

[321] Woon, D. E., Dunning, T. H., Jr., J. Chem. Phys., 1993; 98: 1358-1371. 

[322] Weigend, F., Phys. Chem. Chem. Phys., 2002; 4: 4285-4291. 

[323] Weigend, F., J. Comput. Chem., 2008; 29: 167-175. 

[324] Huntington, L. M. and Nooijen, M., J. Chem. Phys., 2010; 133: 184109. 

[325] Huntington, L. M. J., Hansen, A., Neese, F. and Nooijen, M., J. Chem. Phys., 2012; 136: 
064101. 

[326] Neese, F., Wennmohs, F. and Hansen, A., J. Chem. Phys., 2009; 130: 114108. 

[327] Neese, F., Hansen, A. and Liakos, D. G., J. Chem. Phys., 2009; 131: 064103. 

[328] Neese, F., WIREs Comput. Mol. Sci., 2012, 2, 73-78. 

[329] Korth, M., Grimme, S. and Towler, M. D., J. Phys. Chem. A, 2011; 115: 11734-11739. 

[330] Raghavachari, K., Trucks, G. W., Pople, J. A., Head –Gordon, M., Chem. Phys. Lett., 1989; 
157: 479-483. 



 

184 

 

[331] Jurečka, P., Šponer, J., Černý, J. and Hobza, P., Phys. Chem. Chem. Phys., 2006; 8: 1985-
1993. 

[332] Rezác, J., Riley, K. and Hobza, P., J. Chem. Theory Comput., 2011; 7: 2427-2438. 

[333] Schwabe, T., J. Comput. Chem., 2012; 33: 2067-2072. 

[334] Schwabe, T. and Grimme, S., Phys. Chem. Chem. Phys., 2007; 9: 3397-3406. 

[335] Korth, M. and Grimme, S., J. Chem. Theory Comput., 2009; 5: 993–1003. 

[336] Liu, L. and Guo, Q. -X., Chem. Rev., 2001; 101: 673-695. 

[337] Lafont, V., Armstrong, A. A., Ohtakta, H., Kiso, Y., Amzel, L. M. and Freire, E., Chem. Biol. 
Drug Des., 2007; 69: 413-422. 

[338] Korth, M., Med. Chem. Commun., 2013; 4: 1025-1033. 

[339] Dunitz, J., Chem. Biol., 1995; 2: 709-712. 

[340] Searle, M. S., Williams, D. H., J. Am. Chem. Soc., 1992; 114: 10690-10697. 

[341] Searle, M. S. and Williams, D. H., Nucleic Acids Research, 1993; 21: 2051-2056. 

[342] Westwell, M., Searle, M. S., Klein, J. and Williams, D. H., J. Phys. Chem., 1996; 100: 16000-
16001. 

[343] Searle, M. S., Westwell, M. S., Williams, D. H., J. Chem. Soc. Perkin Trans., 1995; 2: 141-
151. 

[344] Williams, D. H. and Westwell, M.S., Chem. Soc. Rev., 1998; 27: 57-63. 

[345] Williams, D. H., Stephens, E., O’Brien, D. P. and Zhou, M., Angew. Chem. Int. Ed. Engl., 2004; 
43: 6596-6616. 

[346] Houk, K. N., Leach, A. G., Kim, S. P. and Zhang, X., Angew. Chem. Int. Ed., 2003; 42: 4872- 
4897. 

[347] Ford, D. M., J. Am. Chem. Soc., 2005; 127: 16167- 16170. 

[348] Gallicchio, E., Kubo, M. M., Levy, R. M., J. Am. Chem. Soc., 1998; 120: 4526- 4527.  

[349] Graziano, G., J. Chem. Phys., 2004; 120: 4467-4471. 

[350] Olsson, T. S. G., Ladbury, J. E., Pitt, W. R. and Williams, M. A., Protein Sci., 2011; 20: 1607-
1618. 

[351] Moghaddam, S., Inoue, Y. and Gilson, M. K., J. Am. Chem. Soc., 2009; 131: 4012-4021. 

[352] Forrey, C., Douglas, J. F. and Gilson, M. K., Soft Matter, 2012; 8: 6385- 6392. 

[353] Bissantz, C., Kuhn, B. and Stahl, M., J. Med. Chem., 2010; 53: 5061-5084. 

[354] Stone, A. J., The Theory of Intermolecular Forces, Oxford University Press, Oxford, 1997. 

[355] http://www.begdb.com/ 

[356] Yilmazer, N.D., Schwabe, T. and Korth, M., “On the delicate balance of biomolecular 
interactions and its implication for the design of scoring functions”, in preparation. 

[357] Paton, R. S. and Goodman, J. M., J. Chem. Inf. Model., 2009; 49: 944-955. 

http://www.begdb.com/


 

185 

 

[358] Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R. and Eldridge, M. D., Proteins: 
Struct. Funct. Genet., 1998; 33: 367-382. 

[359] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R. Hart, W. E., Belew, R. K., Olson, A. J., J. 
Comput. Chem., 1998; 19: 1639-1662. 

[360] Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S. and Friesner, R. A., Proteins, 2011; 79: 2794-2812. 
(VSGB2.0 reference) 

[361] Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V. and Mee, R. P., J. Comput. Aided 
Mol. Des., 1997; 11: 425-445. 

[362] Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, 
M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P. and Shenkin, P. S., J. Med. 
Chem., 2004; 47: 1739-1749. 

[363] Wang, R., Lai, L. and Wang, S., J. Comput.-Aided Mol. Des., 2002; 16: 11-26. 

[364] Venkatachalam, C. M., Jiang, X., Oldfield, T. and Waldman, M., J. Mol. Graph Model, 2003; 
21: 289-307. 

[365] Zsoldos, Z., Reid, D., Simon, A., Sadjad, S. B. and Johnson, A. P., J. Mol. Graph Model, 2007; 
26: 198-212. 

[366] Ferrara, P., Gohlke, H., Price, D. J., Klebe, G. and Brooks III, C. L., J. Med. Chem., 2004; 47: 
3032-3047. 

[367] Greenidge, P. A., Kramer, C., Mozziconacci, J. –C. and Wolf, R. M., J. Chem. Inf. Model., 2013; 
53: 201-209. 

[368] Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 1996; 261: 470-489. 

[369] Jain, A. N., J. Med. Chem., 2003; 46: 499-511. 

[370] Jones, G., Willett, P., Glen, R. C., Leach, A. R. and Taylor, R., J. Mol. Biol., 1997; 267: 727-
748. 

[371] Husch, T., Yilmazer, N. D., Balducci, A. and Korth, M., Phys. Chem. Chem. Phys., 2015; 17: 
3394-3401. 

[372] Neese, F., Hansen, A., Wennmohs, F.  and Grimme, S.,  Acc. Chem. Res., 2009; 42: 641-648 

[373] Korth, M., Phys. Chem. Chem. Phys., 2014; 16: 7919-7926.  

 

 

 

 

 

 

 

 



 

186 

 

Erklärung 

 

 

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die 
angegebenen. Quellen und Hilfsmittel verwendet habe. 

Ulm, den  

Nusret Duygu Yilmazer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

187 

 

 
 

       
    

 
 

 
    
       

  
 

     
  

 
        

 
        

  
 

     
    
    
    

 
  

    
    

   
 

 
     

   
 

    
 

 
 
 

 
     

 
 

      
    

 
 

 
 

  
  

 
 

  
 

 
 



 

188 

 

 
 

    
   

 
                    

 
 
 

  
 

 

    
  
  

   
  
 

   
  

  
  

  
  
 

   
  

 
   

 
 

  
 

 
 

   
  

 
  

  

 
  

 

    
     

 
  

 
  

  

 
 
 
 
 
 



 

189 

 

PUBLICATIONS   
 

1. Yilmazer, N.D. and Korth, M., “Recent progress in treating Protein-Ligand 

interactions with quantum mechanical methods”: Invited review for Int. J. Mol. Sci., 

in preparation.  

 

2. Yilmazer, N.D. and Korth, M., “Semiempirical & molecular mechanics treatment of 
noncovalent interactions”: Invited chapter for Encyclopedia of Physical Organic 
Chemistry (John Wiley & Sons), in preparation.  
 

3. Yilmazer, N.D., Schwabe, T. and Korth, M., “On the delicate balance of biomolecular 
interactions and its implication for the design of scoring functions”, submitted. 
 

4. Yilmazer, N.D. and Korth, M., “Enhanced semiempirical quantum-mechanical 
methods for biomolecular interactions”: Invited mini-review for Comp. Struct. 
Biotech. J. (Elsevier), 2015, 13, 169-175. 
 

5. Husch, T., Yilmazer, N. D., Balducci A. and Korth, M., "Large-scale virtual high-
throughput screening for the identification of new battery electrolyte solvents: 
computing infrastructure and collective properties", Phys Chem Chem Phys., 2015, 
17, 3394. 
 

6. Yilmazer, N.D., Heitel, P., Schwabe, T. and Korth, M., “Benchmark of electronic 
structure methods for protein–ligand interactions based on high-level reference 
data”, J. Theor. Comput. Chem., 2015, 14, 1540001. 

 
7. Yilmazer N. D. and Korth, M., “Computational approaches for the prediction of 

solid-electrolyte interface formation”, Bunsen Magazin, 2013, 6, 294. ( Invited 
Article ) 

 
8. Yilmazer, N.D. and Korth M., “Comparison of molecular mechanics, semi-empirical 

quantum mechanical, and density functional theory methods for scoring protein-
ligand interactions.” J Phys Chem B, 2013, 117, 8075 – 8084. ( Computational 
Chemistry Highlight, November 2013 ) 

 
9. Yilmazer, N.D., Fellah M.F. and Onal I., “A DFT Study of Ethylene Hydrogenation 

Reaction Mechanisms on Ni13 Nanocluster”, Topics in Catalysis, 2013, 56, 789 – 
793. 

 
10. Yilmazer, N.D., Fellah M.F. and Onal I., “Ni55 Nanocluster: A Density Functional 

Theory Study of Binding Energy of Nickel and Ethylene Adsorption”, Turk J Chem, 
2012, 36, 55 – 67. 

 
11. Yilmazer, N.D., Fellah M.F. and Onal I., “A Density Functional Theory Study of 

Ethylene Adsorption on Ni10 (111), Ni13 (100) and Ni10 (110) Surface Cluster 
Models and Ni13 Nanocluster”, Appl. Surf. Sci., 2010, 256, 5088 – 5093. 




