
Universität Ulm
Institut für Wirtschaftswissenschaften

Machine Learning in Economics

Kumulative Dissertation

zur Erlangung des Doktorgrades Dr. rer. pol.
der Fakultät für Mathematik und Wirtschaftswissenschaften

der Universität Ulm

vorgelegt von

Martin Kies

aus Berlin

Amtierender Dekan:
Prof. Dr. Martin Müller

Erster Gutachter:
Prof. Dr. Sebastian Kranz (Universität Ulm)
Zweiter Gutachter:
Prof. Dr. Georg Gebhardt (Universität Ulm)

Tag der Promotion:
07. Oktober 2020

II

Acknowledgements

I am deeply thankful to all the people who supported me directly or indirectly to
write this doctoral thesis.

Most importantly, I thank my academic supervisor, Professor Sebastian Kranz,
for accepting me as a doctoral student and employing me at both the Institute
of Economics and the Institute of Sustainable Corporate Management. I am very
grateful for him leaving me considerable intellectual freedom to pursue my research
interests, while at the same time giving a lot of helpful advise. I can not overstate
how thankful I am for his great and elaborate feedback and him always having an
open ear and time for discussions. I further thank Professor Georg Gebhardt who
accepted the invitation to become my second supervisor.
I am very grateful for the fruitful cooperation with my colleague Frederik Collin,
who not only co-authored one of my articles, but also gave very insightful input to
my other projects.
I thank the targens GmbH for the provision of the data set needed for my third
article.
Furthermore, I thank all persons which provided me with valuable ideas, feedback
and discussions, but most notably, in alphabetical order, Maria Baier, Dr. Patrick
Biermann, Daniel Blochinger, Dr. Kay Jahnke, Dr. Enno Giese, Maxim Ott and
Dr. Thomas Roscher. I also thank Julius Düker and Clara Ulmer for their support
regarding my officelessness situation.
I thank my former colleagues at the Institute of Economics for the friendly atmosphere
and the always interesting conversations. It was a pleasure working with you!

Finally, I thank my family and friends for all the invaluable moral support. First of
all, I thank my parents Simone and René Kies for their love and unwavering support,
not only during my doctoral studies but also throughout my whole life. I also thank
my sister, Annika Kies, for being an important pillar of my life and always having
my back.
I thank my friends who were always there for me, gave me much needed support
and put up with me even in bad times. A very big thank you goes to Boon Choo,
Sarah Menzel and Surya Wöhrle. A special thank you goes to Richard Verbeet, who
believed in me, even though he suffered financial loss due to it.

III

Contents

Page

Overview of Research Papers VII

Introduction 1

Research Papers

1 Finding Best Answers for the Iterated Prisoner’s Dilemma Using Im-
proved Q-Learning 5

2 Impacts of Sponsored Data on Infrastructure Investments and Welfare 185

3 Impact of Near-Time Information for Prediction on Microeconomic Bal-
anced Time Series Data using Different Machine Learning Methods 237

V

Overview of Research Papers

Research papers included in this dissertation

1. Martin Kies (2020). “Finding Best Answers for the Iterated Prisoner’s Dilemma
Using Improved Q-Learning”. In: Available at SSRN. doi: 10.2139/ssrn.

3556714. url: https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3556714

2. Martin Kies (2017). “Impacts of Sponsored Data on Infrastructure Investments
and Welfare”. In: Available at SSRN. doi: 10.2139/ssrn.3042563. url:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042563

3. Frederik Collin and Martin Kies (2020). “Impact of Near-Time Information
for Prediction on Microeconomic Balanced Time Series Data using Different
Machine Learning Methods”. In: Available at SSRN. doi: 10.2139/ssrn.

3559645. url: https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3559645

Copyright note

All articles have been published on SSRN. While this gives SSRN the non-exclusive
rights to post and distribute my articles, this did explicitly not transfer my copyright.
For this reason I am free to publish the articles again as part of this dissertation.

VII

https://doi.org/10.2139/ssrn.3556714
https://doi.org/10.2139/ssrn.3556714
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556714
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556714
https://doi.org/10.2139/ssrn.3042563
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042563
https://doi.org/10.2139/ssrn.3559645
https://doi.org/10.2139/ssrn.3559645
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3559645
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3559645

Introduction

The ever increasing possibilities to generate, distribute and analyze data have a
profound impact on consumers, companies and research. With this doctoral thesis
my goal is to not only further magnify these possibilities, but also to deepen the
understanding of them. I hereby present three articles, which each touch on one of
these facets:

Generate

Recent efforts in digitalization allow organizations to collect and store data more
easily than ever. This type of data has an important drawback: Only events which
have actually happened can be observed. As these depend on particulars of past
actions and realized chances, it is difficult to develop an understanding about what
could have been.
In certain situations, however, it is possible to generate a model of the system of
interest. However, even if the rules of the environment can be described sufficiently,
it might still be non-obvious which actions lead to the optimization of a given key
performance indicator. Within this simulated environment one can simulate actions
to observe their outcomes and effects on the indicator. Doing so might be considerably
cheaper and faster than actually performing these actions in reality. However, it
might nevertheless not be sufficient to blindly chose them by chance. This holds in
particular, if the system is very complex, different situations require different actions
or the sequence of actions is important.
Reinforcement Learning provides techniques and methods on how to chose which
action in which situation. Choosing the correct actions optimizes how valuable the
generated data is. The article Finding Best Answers for the Iterated Prisoner’s
Dilemma Using Improved Q-Learning (Kies, 2020) presents several improvements to
the known reinforcement learning algorithm Q-Learning. These improvements are
tested and analyzed on the use case of the Iterated Prisoner’s Dilemma game with
imperfect public monitoring. In Kies (2020), I developed an algorithm which takes a
black box strategy as input and returns good, and often times near optimal counter-
strategy. The performance of this counter-strategy allows researchers to have an
easy numerical measurement of the exploitability of the given strategy. Additionally
Kies (2020) gives a detailed introduction about the main ideas of Q-Learning and
reinforcement learning in general aimed at economists.
The contents of Kies (2020) are presented in Chapter 1.

1

Distribute

Not all data of interest can be found in tabular data bases. In particular for consumers
data often times means something completely different: When agreeing on a data
plan with their internet service provider, the most data-intensive usages can lie in
the field of entertainment. Examples include streaming music, movies and TV-serials
as well as playing online games. The increasing demand for these services might
require the internet service provider to invest into network infrastructure to guarantee
sufficient distribution of data.
In my article Impacts of Sponsored Data on Infrastructure Investments and Welfare
(Kies, 2017) I developed a theoretical model to analyze Sponsored Data, an alternative
revenue stream for the internet service provider. Instead of having the consumers
pay a flat price allowing them to access a given amount of data, a content provider
might pay the internet service provider to take its specific content out of the data
cap of the consumer. The model shows, that allowing Sponsored Content may indeed
increase investments into the network infrastructure given that the costs to do so are
very high. If the profitability of the content provider however is comparably high,
i.e. he is willing to pay a lot for Sponsored Content, this can lead to bad incentives
for the internet service provider. When considering the revenue from the content
provider it can be more profitable for the internet service provider to invest less into
network infrastructure than otherwise. A decrease in net welfare can be the result.
The contents of Kies (2017) are presented in Chapter 2.

Analyze

Having generated or received data begs the question on how to best utilize it.
Especially regarding industry-applications, but also in research, one is often interested
in predicting responses based on input variables or in being able to continue a time
series. A multitude of Machine Learning methods emerged over the years allowing to
do so. The article Impact of Near-Time Information for Prediction on Microeconomic
Balanced Time Series Data using Different Machine Learning Methods (Collin and
Kies, 2020) analyzes a variety of Machine Learning methods and compares their
performance on a time series data set. The analyzed methods are Linear Regression,
Elastic Nets, Partial Least Squares, Generalized Additive Models, Random Forests,
Gradient Boosting and Neural Networks. The data set consists of daily deposits of a
multitude of stores. This allowed us to analyze whether it is possible to use same-day
data of other stores to improve the prediction performance of a given store.
We find that in our case all methods perform at approximately the same level when
being restricted to data from the store itself. Using same-day information of other
stores improved prediction quality considerably. This held in particular for the
method Random Forest which reduced the root mean squared error on the test data
set by 24% compared to the best performing method using store-only data. The
out-of-sample performance of Random Forests was considerably more robust when
increasing the number of input parameters compared to Partial Least Squares.

2

To have a fair comparison between the different methods, we also developed a novel
hyperparameter-optimization technique which uses a Regression Tree to find optimal
settings for each Machine Learning method.
In contrast to the other two articles, this article was written in cooperation with
Frederik Collin, with equal contributions.
The contents of Collin and Kies (2020) are presented in Chapter 3.

3

1 Finding Best Answers for the Iterated
Prisoner’s Dilemma Using Improved
Q-Learning

Source:

Martin Kies (2020). “Finding Best Answers for the Iterated Prisoner’s Dilemma
Using Improved Q-Learning”. In: Available at SSRN. doi: 10.2139/ssrn.3556714.
url: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556714

5

https://doi.org/10.2139/ssrn.3556714
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3556714

Finding Best Answers for the Iterated
Prisoner’s Dilemma Using Improved

Q-Learning∗

Martin Kies§

Wednesday 18th March, 2020

Given an arbitrary black-box strategy for the Iterated Prisoner’s
Dilemma game, it is often difficult to gauge to which extent it can
be exploited by other strategies. In the presence of imperfect public mon-
itoring and resulting observation errors, deriving a theoretical solution
is even more time-consuming. However, for any strategy the reinforce-
ment learning algorithm Q-Learning can construct a best response in
the limit case. In this article I present and discuss several improvements
to the Q-Learning algorithm, allowing for an easy numerical measure
of the exploitability of a given strategy. Additionally, I give a detailed
introduction to reinforcement learning aimed at economists.

Keywords: Iterated Prisoner’s Dilemma, Repeated Prisoner’s Dilemma,
Imperfect Public Monitoring, Reinforcement Learning, Q-Learning, Neu-
ral Networks, Gradient Boosting, Machine Learning

JEL Classification: C61, C63, C72, C73

∗I thank Sebastian Kranz for excellent feedback and support. I am grateful to Frederik Collin,
Maxim Ott, Kay Jahnke, Enno Giese and Patrick Biermann for helpful discussions and comments.

§Department of Mathematics and Economics, Ulm University.
E-mail: martin.kies@uni-ulm.de

1

Electronic copy available at: https://ssrn.com/abstract=3556714

Contents

1. Introduction 1

2. Theoretical Foundation 5
2.1. The Iterated Prisoner’s Dilemma game with Noise 6

2.1.1. Rules of the Game and Nomenclature 6
2.1.2. Strategies . 10

2.2. Basic Framework . 17
2.3. Reinforcement Learning . 26

2.3.1. Dynamic Programming . 26
2.3.2. Model-Free Reinforcement Learning 30
2.3.3. Q-Learning . 38
2.3.4. Approximative Solutions . 39

2.4. Supervised Learning . 41
2.4.1. Gradient Boosting . 41
2.4.2. Neural Networks . 44
2.4.3. Recurrent Neural Networks 47

3. Finding Best Answers 51
3.1. Overview . 51
3.2. Performance . 54
3.3. Approach of Analysis . 60
3.4. Q-Switching . 65
3.5. Multi-Exploration . 73

3.5.1. ε-exploration . 73
3.5.2. Noisy Actions . 74
3.5.3. Maximizing Surprise . 76
3.5.4. Minimizing Familiarity . 77
3.5.5. Effects of Different Exploration Types 78
3.5.6. Effects of Multi-Exploration 80

3.6. Exploration Pathing . 84
3.7. Feature Selection . 91
3.8. Experience Replay . 97
3.9. Choice of Function Approximator . 101
3.10. Model Persistence . 106
3.11. Memory Initialization . 109
3.12. Summary of Analysis . 112

Appendices 122

A. General Features of Successful Strategies 123

B. Non-Observability of States 126

Electronic copy available at: https://ssrn.com/abstract=3556714

Contents

C. General Structure of Algorithm 129

D. Comparison of Boltzmann distribution to Noisy Actions 134

E. Compare.Exploration 135

F. Testing Pool 136
F.1. strat.a . 137
F.2. strat.b . 138
F.3. strat.c . 139
F.4. strat.d . 142
F.5. strat.e . 143
F.6. strat.f . 144
F.7. strat.g . 146
F.8. strat.h . 148
F.9. strat.i . 149

G. Parameters and Specifics 152
G.1. Common Parameters . 152
G.2. Q-Switching . 154
G.3. Multi-Exploration . 156
G.4. Exploration Pathing . 159
G.5. Feature Selection . 160
G.6. Experience Replay . 161
G.7. Choice of Function Approximator . 162
G.8. Model Persistence . 163
G.9. Memory Initialization . 163

H. Source Code for Final Results 164
H.1. Recurrent Neural Network . 164
H.2. Gradient Boosting . 167
H.3. Q-Learning . 170

3

Electronic copy available at: https://ssrn.com/abstract=3556714

List of Figures

List of Figures

1. An illustrating example of a decision tree 42
2. An illustrating example of gradient boosting. 43
3. A schematic perceptron as a building block for a neural network. . . 44
4. A schematic Neural Network. 45
5. Difference between the perceptron activation function and the sigmoid

activation function. 46
6. An illustrating example of a function approximated by a Neural Network. 47
7. A schematic view of a generic recurrent neural network 48
8. A schematic LSTM Cell . 48
9. A schematic view of the LSTM network used. 49
10. Final results against known strategies from the literature. 54
11. Schematic representation of how the final results have been generated. 55
12. Final results against each strategy of the testing pool. 57
13. A schematic overview of how the data for the following sections has

been generated. 61
14. Exemplary figure to show learning behavior 63
15. Exemplary figure to show final performance 64
16. Q-Switching performance per training blocks 68
17. Q-Switching performance for the strategies strat.e and strat.f 69
18. Boxplot of Q-Switching performance 71
19. Comparison of performance of different single exploration strategies 78
20. Boxplot of ε-exploration, noisy actions and a combination thereof in

a non-noisy setting against a special strategy 80
21. Boxplot of ε-exploration, noisy actions and a combination thereof in

the standard setting . 81
22. Comparison of the performance of several Multi-Exploration approaches 82
23. Performance of Exploration Pathing 85
24. Comparison of different feature selection systems. 93
25. Comparison of using only the last X periods as a feature selection. . 95
26. Comparison using different features on a Recurrent Neural Network. 96
27. Comparison of changing the size of the replay data set on various

function approximators. 98
28. Effects of forcing the last X blocks on the training data set instead of

using a random selection . 99
29. Comparison of different function approximators by training block. . 102
30. Comparison of different function approximators by time. 103
31. Performance of using Model Persistence 107
32. Performance of memory initiatilization 111
33. Comparison of noisy actions to Boltzman-exploration 134

4

Electronic copy available at: https://ssrn.com/abstract=3556714

1. Introduction

Repeated games have been used extensively to study reoccurring interactions between
different factions that allow for cooperation and conflict. Consider for example the
long-term working relationship between two companies and assume further that they
want to cooperate on a wide area of different projects. Due to the heterogeneity of
their projects it is necessary to craft a specialized contract for each project separately.
Both aim to streamline contract negotiations as much as possible. This results in most
proposed wordings to be accepted by the other party without detailed proof-reading.
If one of the companies sneaks in clauses which are favorable for it and the other
company trustingly signs this contract, the profits of the project are distributed
more uneven as per the general agreement. This might anger the other company
after the fact and so they might try to recoup these calculatory losses by sneaking
in favorable clauses as well. As each project is somewhat idiosyncratic however, an
unfavorable clause might not be easily distinguishable between an honest mistake
due to wrongfully perceived costs or a malevolent attempt to make the cooperation
more one-sided.
The classic game theoretic approach is to study equilibria of repeated games. In a
symmetric Nash equilibrium, the equilibrium strategy is a best response against itself.
This means that given that the other players follow this strategy it is also optimal for
oneself to follow it. Most game theoretic equilibrium concepts share this requirement
of the strategies being best responses while adding additional constraints. In the case
of the Subgame Perfect Equilibrium, for example, in every subgame the continuation
equilibria must be mutual best responses.
The well-known folk theorems show for a large class of repeated games that, given
the limit case of not discounting future payoffs, every feasible payoff that grants
each player at least her Min-Max payoff of the stage game can be implemented as
the expected equilibrium payoff (see e.g. J. W. Friedman (1971), Fudenberg et al.
(1994) or Abreu, Dutta, et al. (1994)). Given a fixed discount factor reducing the
impacts of future payoffs, there may exist a large, infinite set of equilibrium strategies
and a large set of equilibrium payoffs. Algorithms to compute these equilibrium
payoff sets for fixed discount factors have been developed conceptually for example
by Abreu, Pearce, et al. (1990) and with a concrete numerical implementation by
Judd et al. (2003). For the case of repeated games with transfers Goldlücke and
Kranz (2012) provide a fast algorithm. Both numerical approaches are limited to
perfect monitoring.
A crucial assumption in game theoretic equilibrium analysis is that the played
equilibrium strategies are commonly known by all players. This might not necessarily
be the case. If a player follows a slightly different strategy, the resulting outcome is in
some cases much worse than the equilibrium outcome. For example, the grim trigger
Nash reversion strategies proposed by J. W. Friedman (1971) can very efficiently
implement mutual cooperation in the Iterated Prisoner’s Dilemma (IPD) game if
they are exactly followed by both players.

Electronic copy available at: https://ssrn.com/abstract=3556714

1. Introduction

Should one player however slightly deviate and for some reason defect once on the
equilibrium path, the other player retaliates. Following the strategy, the first first
player is triggered to strike back in turn, which results in a defection spiral for both
players. This problem is enhanced by the fact that typically a large set of equilibrium
strategies exists. Coordinating on a specific game theoretic equilibrium can be a very
daunting task in reality, in particular, if parties do not extensively communicate with
each other.
An alternative approach to study repeated games has been popularized by Axelrod
(1984). He invited experts to submit computer coded strategies for the IPD game.
Afterwards he pitted all strategies against each other and declared the winner as the
strategy with the highest average payoff against the pool of submitted strategies. The
underlying idea of this approach is to evaluate a strategy based on their performance
within a tournament setting. Interestingly, strategies which possess desired game-
theoretic properties do not necessarily perform well according to this metric. The
grim trigger Nash reversion strategy that allows to implement cooperation for the
lowest discount factor in a subgame perfect equilibrium for example ranked place
52 of 63 in the second Axelrod tournament (Axelrod, 1984, p. 196). The strategy
Tit-for-Tat on the other hand is not a subgame perfect equilibrium, but won both
tournaments (Axelrod, 1984, p. 193ff.).
An advantage of using a tournament is that it is possible to use this metric for
arbitrary complex strategies. In contrast to a possibly time-consuming theoretical
analysis, it is sufficient to translate the strategy of interest into computer code and
set it against a fixed pool of pre-defined strategies.
However, while a strategy might perform well against this pool, it might nevertheless
have substantial weaknesses. If no strategy exists in the tournament pool which
exploits these weaknesses, then they will not influence the performance measurement.
To have a more comprehensive picture of the strategy it is thus necessary to construct
a best response against the strategy. If the investigated strategy possesses considerable
weaknesses, then the best response will achieve a substantially higher payoff against
the strategy than the strategy against itself. If on the other hand the payoff of the
best response is identical to the strategy, we know, that the strategy is an equilibrium
and can not be exploited.
Theoretically deducing a best response can be very time-consuming if the submitted
strategy is sufficiently complex. To evaluate an arbitrary invented strategy it would
thus be useful to have a numerical tool that can construct best responses.
This article presents such a tool, using and extending modern machine learning
approaches. It does so not only in the comparatively easy case of perfect information
games, but also given imperfect public monitoring, where observations about the
actions of the investigated strategy are non-reliable. The underlying algorithm has
been built and tested on strategies playing an IPD game with discount factor and
imperfect public monitoring, but can be extended to other economic games, as long
as they fulfill the criteria as specified by Section 2.2.

2

Electronic copy available at: https://ssrn.com/abstract=3556714

While to my knowledge nobody developed a machine learning algorithm with the
goal in mind to find weaknesses in arbitrary strategies, several other articles have
been published which use machine learning methods in the context of the Prisoner’s
Dilemma game and other economic games.
One topic of interest is the emergence of cooperation, where reinforcement learning
algorithms are used to simulate adapting or evolving behavior. J. Zhang et al. (2011),
using particle swarm optimization, and Xue et al. (2017), using TD(λ)-Learning, study
the emergence of cooperation in an evolutionary setting given a spatial Prisoner’s
Dilemma game, where players interact with their immediate neighbors. To construct
adaptive strategies in an evolutionary setting W. Wang et al. (2018) use a variety
of modern machine learning algorithms to study the evolution of cooperation in
the IPD game by manipulating the degree of cooperation of different agents. Leibo
et al. (2017) investigate different types of games, including the IPD game, to study
the emergence of cooperating behavior which may be motivated by greed and/or
fear. They use the IPD game as their example for a payoff matrix where players are
motivated by both. Foerster et al. (2018) use their developed approach LOLA to not
only model the mind of the opponent but also to actively consider the learning of
the opponent and are thus able to modify their behavior to train the opponent with
the goal of achieving mutually beneficial outcomes.
The explicit goal to develop strategies with a high performance in a tournament setting
pursue Harper et al. (2017), who use particle swarm algorithms and evolutionary
reinforcement strategies to produce strategies which win against the corpus of
strategies archived in The Axelrod project developers (2016a). Similarly, Brunauer
et al. (2007) use genetic algorithms with Lookup-Tables of various lengths to develop
a strategy which shows a good performance against a subsection of the strategies of
the original Axelrod tournament. A similar approach is pursued by Ashlock et al.
(2014) who explicitly admix strategies which have an exploitation key which is a
played pattern after which the strategy is exploitable. The master thesis Thomas
(2018) combines the Soar cognitive architecture and Q-Learning to train against a
selected number of deterministic strategies in a deterministic setting. As a tournament
environment from the view of a reinforcement agent is very similar to training against
a single strategy, all of the aforementioned approaches are also able to be trained
against a single strategy.
A stronger focus on single strategies can be found with Sandholm and Crites (1996)
who use basic Q-Learning with Boltzman exploration on an IPD game to train agents
with Lookup-Tables and an Elman Recurrent Neural Network. As a basic proof that
their algorithm converges against a given strategy they check against Tit-For-Tat.
This has been extended by the course project K. Wang (2017) to LSTM networks
and several other stationary strategies.

3

Electronic copy available at: https://ssrn.com/abstract=3556714

1. Introduction

This article contributes to the existing literature by

1. Helping to bridge the gap between game theory and machine learning by
developing an algorithm which uses various techniques to explicitly try to find
and exploit weaknesses given an arbitrary strategy. With the exception of
Harper et al. (2017), all mentioned articles trying to optimize against other
strategies limit themselves to simple or classical strategies. I use an unbiased
pool of strategies which vary greatly in complexity.

2. Allowing for observation errors to occur, thus significantly increasing the
complexity of the optimization task.

3. Evaluating and discussing various known improvements of the Q-Learning
algorithm in the context of the IPD game, which have only been discussed in
other domains so far.

4. Developing and evaluating novel improvements of the Q-Learning algorithm,
which improve performance and learning behavior in the dimensions of final
result, necessary training data and necessary computational resources.

Section 2 lays the theoretical groundwork for this article regarding both, the game
theoretic aspects and machine learning. It gives a fast-track introduction to develop
an understanding of the concepts relevant to understand the resulting algorithm.
Afterwards in Section 3, the developed algorithm is described and the different
features of it are evaluated in detail.
Readers with a background in machine learning which are mainly interested in the
developed improvements of the Q-Learning algorithm are encouraged to jump to
Section 3.1 for an overview of the proposed improvements to Q-Learning. Section 3.2
compares the performance to Q-Learning and Section 3.12 summarizes the effects of
the individual improvements.
Readers with a background in economics which are mostly interested in using the
accompanying R-package Kies (2019) to have a numerical tool to find the exploitation
potential in their strategies are encouraged to read Section 2.1.1 for the economic
reasoning and the rules of the game where the algorithm has been tested on. Section
2.2 defines the basic requirements a game has to meet, if one wants to use the
algorithm in another context.

4

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

This section gives an introduction to the foundational works upon which the algo-
rithm presented in this article has been developed. The algorithm itself is presented
in Section 3.
The main motivation behind the development of the algorithm has been to ap-
proximate best replies for the IPD with imperfect public monitoring. Section 2.1
gives context regarding this game in general. Section 2.1.1 defines the rules of the
used variant of the IPD and introduces necessary nomenclature. Afterwards an
assortment of well-known strategies is discussed in Section 2.1.2. These are used to
explain basic concepts which help to understand the effects of some of the algorithmic
improvements and pose as a benchmark.
Section 2.2 introduces the framework and the notation necessary to discuss the task
of finding counter-strategies. The algorithm can be used to find optimal behavior in
other games and environments as well, as long as these games meet the requirements
of this presented framework.
Afterwards, in Section 2.3 an introduction to the machine learning field of Rein-
forcement learning is given. First, in Section 2.3.1 we present classic approaches
to find optimal policies given that we have a complete model of the environment.
The ideas herein are extended in Section 2.3.2 to algorithms which have to learn the
environment as well. This allows us to find counter-strategies even if only the actions
of a strategy can be observed and the strategy itself is not given explicitly. Section
2.3.3 presents the Q-Learning algorithm, which builds the basis to our improvements.
As the classic Q-Learning algorithm assumes the environment to be sufficiently simple
to try every combination of actions and save their results, Section 2.3.4 extends this
algorithm by introducing function approximators. These are used to estimate the
value of proposed actions even if a specific situation has never occurred before.
The machine learning field of Supervised Learning studies function approximators.
We will focus in Section 2.4 on three of them: Gradient Boosting (Section 2.4.1),
Neural Networks (Section 2.4.2) and Recurrent Neural Networks (Section 2.4.3).

5

Electronic copy available at: https://ssrn.com/abstract=3556714

2.1. The Iterated Prisoner’s Dilemma game with Noise

2.1.1. Rules of the Game and Nomenclature

The Prisoner’s Dilemma game was coined by Albert Tucker based on puzzles created
by Merril Flood and Melvin Dresher in 1950 and has since been analyzed and
referenced in thousands of scientific articles (Kuhn, 2019). A myriad of variants and
extensions to the idea behind this economic game emerged over time. Within this
article we concentrate on the following version:
Two players play an infinitely often repeated decision problem, the stage game, where
each player has two actions: Cooperate (C) and Defect (D). Both players decide on
their action without knowing the action of the other player. We will use the term
period to refer to this single decision made by both players.
After each period, each player observes both, the previous action of their opponent
and their own previous action. This observation may or may not correctly represent
the taken action. With probability errD a cooperation is erroneously displayed
as a defection and with probability errC a defection is erroneously displayed as a
cooperation. We call the incorrect display of a previous action noise. Both opponents
make the same observations, which makes this an imperfect public monitoring game.
As a consequence each player always knows whether or not noise occurred regarding
his own action.
We call the sequence of periods belonging to an Iterated Prisoner’s Dilemma (IPD)
game an episode. The players are allowed to remember past observations within
an episode. This capacitates them to play complex patterns to react to the past
observed behavior of the opponent.
We define a strategy as a full set of instructions for a player what to do in which
situation given the perceived history within the episode. These instructions can be
stochastic - we allow mixed strategies which randomize between actions in the same
situation.
Each period t ∈ N has an associated payoff rt for the given player according to the
(undiscounted) payoff matrix of the stage game shown in Table 1.

Player 2

Pl
ay
er

1 Cooperate Defect
Cooperate (R,R) (S, T)
Defect (T, S) (P, P)

Table 1: Undiscounted payoff matrix of the stage game of the IPD game. If player
1 cooperates and the other player defects, player 1 receives a payoff of S and his
opponent a payoff of T .

6

Electronic copy available at: https://ssrn.com/abstract=3556714

2.1. The Iterated Prisoner’s Dilemma game with Noise

Table 1 defines a Prisoner’s Dilemma game if T > R > P > S and 2R > S + T .
This way, the dilemma unfolds: For each player it is individually beneficial to defect,
irrespective of the choice of his opponent. The highest mutual payoff, however, is
generated when both players cooperate.
To keep the nomenclature of the machine learning literature, the payoff of a period
will be termed reward. The rewards are calculated based on the actually taken actions
of the players regardless of possible observation errors. While noise may influence
the behavior of the players, it does not directly affect the rewards. As it would be
possible to infer observation errors based on received rewards, the rewards are not
available to the players within an episode.
The performance of a given strategy in a specific episode is measured by its average
reward r̄ over periods, where each new reward is cumulatively discounted using the
factor γ ∈ (0, 1). The average reward r̄ is therefore calculated by

r̄ := (1− γ) ·
∞∑

t=1
γt−1rt

It can be interpreted as the representative stage game reward of the strategy for the
complete episode as it holds that

r̄ = (1− γ) ·
∞∑

t=1
γt−1r̄

Due to noise and possibly stochastic elements of the strategies, rt may differ between
different episodes, even given a fixed period t and a fixed strategy pair (s, s′).
Assume that the strategy of the opponent s′ is fixed. We define the expected reward
of strategy s in period t as

Rt(s) := E[rt|s, s′]
The expected average reward R̄(s) is calculated analogously to r̄:

R̄(s) := (1− γ) ·
∞∑

t=1
γt−1Rt(s) (1)

A best response against some strategy s′ is defined as a strategy s∗ for which it holds
that

R̄(s∗) ≥ R̄(s) ∀ s ∈ S
with S being the set of all possible strategies. Of particular interest for us is the
difference

δR := R̄(s∗)− R̄(s′) ≥ 0 (2)
i.e. the difference in the average expected reward between the optimal strategy
against s′ and the average expected reward of the strategy against itself. In the
case of δR = 0 the strategy s′ establishes a Nash equilibrium, i.e. is a best response
against itself.
The purpose of the algorithm presented in Section 3 is to find a strategy s, where
R̄(s) comes as close to R̄(s∗) as possible. This allows us to estimate δR and thus the
exploitability of strategy s′.

7

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

As it is not possible to simulate an infinite number of periods to calculate the
performance of a strategy s, we use the following approach, as introduced by Roth
and Murnighan (1978):
Instead of a discount factor one can interpret γ as the probability that an exogenous
force allows our game to continue. In other words, with a probability of 1 − γ
the episode ends after the played period. Implementing the game this way, the
non-discounted averaged value over all played periods converges towards the desired
value R̄(s) with increasing number of episodes. This approach is implemented in the
R-package StratTourn (Kranz and Kies, 2019) which is used for the performance
measurements of Section 3.2.
As is detailed in Section 3.3, the testing pool for the algorithm is based on a
tournament held by Ulm university. Consequently we use the same parameter
settings as in the tournament within this article:

• The values R = 1, S = −1, T = 2 and P = 0 for the payoff matrix of the stage
game.

• A discount factor/continuation probability γ = 0.95, leading to an average
episode length of 20 periods.

• An observation error probability errD = 0.15. Given that the opponent cooper-
ates, there is thus a 15% probability of erroneously detecting this action as a
defection.

• An observation error probability errC = 0. A defection is always correctly
perceived as one.

The presented rules are similar, but not identical to the implementation of the second
tournament of Axelrod (see Wu and Axelrod (1995)). Our setting differs in the
following aspects:

1. Axelrod used the values R = 3, S = 0, T = 5 and P = 1 for the payoff matrix
of the stage game (Axelrod, 1984, p. 8).
One way to compare the difference in payoff matrices is to assume that the
default case is mutual cooperation (C,C) and to ask how many non-discounted
periods of successful unilateral defections (D,C) the strategy needs to offset
the negative effects of one mutual defection (D,D). With Axelrod exactly one
period is needed, so player 1 is indifferent between the patterns {(D,D), (D,C)}
and {(C,C),(C,C)}. In our setting the same holds as well.
If by contrast one asks how many non-discounted periods of successful unilateral
defections (D,C) are needed to offset the negative effects of the opponent
unilaterally defecting (C,D), the effects differ. With Axelrod’s values one needs
1.5 periods, but within our setting 2 periods are needed. In our setting it is thus
more damaging to be caught in the situation of having cooperated when the
opponent defected. This might reflect on the relative performance of strategies,
with our setting favoring more cautious or aggressive strategies.

8

Electronic copy available at: https://ssrn.com/abstract=3556714

2.1. The Iterated Prisoner’s Dilemma game with Noise

2. Axelrod used 5 episodes averaging to 151 periods in his second tournament
(Axelrod, 1984, p. 193). While our performance tests in Section 3.2 using
1000 episodes are designed to average the effects of stochastic strategies and
observation errors, the approach of Axelrod allows strategies to better adapt
to the behavior of their opponent within an episode. Interestingly, complicated
strategies did not fare better or worse than simple strategies in Axelrod’s
tournament (Axelrod, 1984, p. 43), so it is not obvious to which extent this is
relevant.

3. The noise in Axelrod’s tournament was symmetric, i.e. errD = errC . This
has strong implications on which strategies perform well. Take for example
a strategy which defects after a certain number of observed defections of its
opponent until sufficiently many cooperations of its opponent can be observed.
If this strategy is set against itself, it performs comparatively worse in our
setting as measured by R̄(s). While in the setting of Axelrod there exists a
certain probability, that bilateral observation errors allow the strategies to
cooperate again, this is not possible in our setting, where a defection is always
correctly observed as one.

4. The noise in Axelrod’s tournament was implemented by a random shock which
forced the strategy to implement the opposite action. This leads to a different
reward of the strategies in this period. With our implementation there might be
a wrongful observation, but the actually played actions are used to determine
the reward. A strategy which always cooperates will therefore have an expected
average reward R̄(s) = R = 1 against itself despite observation errors. Using
the actual actions as basis for the rewards allows us to use less simulations
when estimating R̄(s).

9

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

2.1.2. Strategies

Over time various strategies in the IPD game with noise emerged. In this section we
will have a look at some strategies which are either useful as archetypes to explain
some key features or have been developed with the goal in mind to create a good
strategy. What constitutes as good depends on the specific intentions of the developer.
In most cases the goal was to develop a strategy which achieves a high ranking in a
tournament against unknown strategies.
We start with strategies which are interesting due to their simplicity:

1. Always Cooperate (always.cooperate)
This strategy, sometimes also called ALLC, always cooperates independent of
period or observed actions. If always.cooperate plays against itself it always
receives an average reward of 1 in our setting, no matter the amount of actual
noise. As no retaliatory measures are incorporated, this strategy has the
maximum potential for exploitation.

2. Always Defect (always.defect)
Also called ALLD, this strategy can be seen as the ultimate antagonist, as
it always defects. It is by definition unexploitable and will always have at
least the same average reward as the opposing strategy. Consequently, should
the success of a strategy be measured by the number of matches where the
strategy had a higher average reward than its opponent, always.defect is the
best possible strategy. always.defect is a subgame perfect equilibrium even
without noise and the best response against all non-retaliatory strategies, such
as always.cooperate.
Interestingly it is not obvious how good always.defect fares in a tournament, as
this strongly depends on the fraction and harshness of the retaliatory strategies.
If there is only a small percentage of retaliatory strategies, always.defect is able
to generate high rewards from the non-retaliatory ones and might be able to
ensure a good placing.

3. Random Action (random.action)
As the name implies, this strategy plays a random action independent of
period and observations. Within this article, we set the probability to play a
cooperation pC = 0.5, but other variants are possible. This is another example
of a non-retaliatory strategy, against which always.defect is a best response.

10

Electronic copy available at: https://ssrn.com/abstract=3556714

2.1. The Iterated Prisoner’s Dilemma game with Noise

4. Grim Trigger (grim.trigger)
grim.trigger is the main example for a maximally harsh retaliator:

If First Period: Cooperate
If At least one defection of opponent in previous periods observed

Defect
Else

Cooperate

The strategy cooperates until the very first defection is observed from the
opponent and defects from then on. Thus, a single defection of the opponent
is punished severely. In the absence of noise both, always.cooperate and
grim.trigger itself, achieve an average expected reward of R̄(s) = R = 1 in our
setting by always cooperating. In fact, given the payoff matrix of our setting
(grim.trigger, grim.trigger) is a subgame perfect equilibrium in the absence of
noise and sufficiently high discount factor γ (see e.g. McGillivray and Smith
(2000)). However, if observation errors are possible, it is just a matter of time
until grim.trigger changes into its punishing mode, thus decreasing the average
reward against itself considerably.
As measured by tournament performance, grim.trigger is a sub-optimal. The
strategy received place 52 of 63 in the second Axelrod Tournament (Axelrod,
1984, p. 196). Note, that within this tournament grim.trigger was called
FRIEDMAN, as it was the entry of Prof. James W. Friedman1.

5. Tit-for-Tat (tit.for.tat)

If First Period: Cooperate
If Observe defection of opponent in previous period

Defect
Else

Cooperate

This strategy starts with a cooperation and copies the move of the opponent
in the following periods. This starting move allows the strategy to cooperate
against itself and similar strategies until an observation error occurs.
While being a very simple strategy, it was made famous by winning the first two
rounds of Axelrods Prisoner’s Dilemma tournament (Axelrod and Hamilton,
1981). Both times, tit.for.tat was the entry of Prof. Anatol Rapoport, a mathe-
matical psychologist who researched the Prisoner’s Dilemma intensively (see e.g.
Rapoport et al. (1965)). The success of tit.for.tat triggered intensive research
leading to a deep understanding of this strategy, including its limitations.

1Economics Department, The University of North Carolina at Chapel Hill, *1936-†2016

11

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

One of the main problems of tit.for.tat in our setting is the limited robustness
when confronted with noise, especially if it is asymmetrical as in our case. When
tit.for.tat plays against itself or a sufficiently similar strategy an observation
error leads to never ending defections as defections are always correctly observed.
In a symmetric setting of observation errors, such as in the second Axelrod
tournament, tit.for.tat resembles a random.action strategy. (Molander, 1985).
Several variants of tit.for.tat exist, which show a higher performance in the
presence of noise, both in tournament settings and against themselves. These
will be presented later in this Section as examples for good strategies.

Using the methods of Section 2.2, it is possible to explicitly calculate a best response
for the presented strategies. The basic idea is to reduce the problem to a number of
so called states. These states can be interpreted as all situations in which a strategy
might be, as seen solely from the point of view of the strategy itself. The number
of states depends on the complexity of the strategy one wants to optimize against.
In the case of always.cooperate, always.defect and random.action a single state is
sufficient. All those strategies do not react to their observations and are therefore
always in the same situation. Solving for the optimal action in this state, we see that
it is always optimal to defect. In the case of grim.trigger two states are sufficient.
Either grim.trigger has been triggered or not. Against grim.trigger, a strategy which
defects if grim.trigger has been triggered and cooperates otherwise is a best response.
A similar situation occurs with tit.for.tat. Here the two states depend on whether a
defection has been observed in the previous period or not. The best response against
tit.for.tat is always.cooperate.
In contrast to the situation with those simple strategies, calculating a best response
for an arbitrary strategy which takes the complete observation history into account
might become very complex. With each period the possible state space up to a given
period increases by a factor of 8 (given that noise affects both actions) or 6 (given
that noise affects only one action, as in our specific case) per period:
Taking the perspective of one of the two players, imperfect public monitoring implies,
that this player is able to observe whether his own action of the last period has been
observed correctly, leading to

2 (no. of actions) · 2 (own action correct?) · 2 (observed action of opponent) = 8

states in total per period if both of his possible action choices might be influenced
by noise. With increasing number of periods the state space might thus become
quite large even concentrating on pure strategies. With the possibility of having
mixed strategies, where actions may be chosen based on underlying probabilities, the
number of possible strategies becomes infinite and thus difficult to handle.
A strategy which aims to have a high tournament standing has to be able to perform
well in a wide array of situations. Consequently, there was a strong focus in the
literature on comparably easy and robust strategies. A general discussion on how to
construct strategies which have a good chance to perform well, even in the presence
of noise, is presented in Appendix A.

12

Electronic copy available at: https://ssrn.com/abstract=3556714

2.1. The Iterated Prisoner’s Dilemma game with Noise

Notable strategies which have shown good performance in tournaments which include
noise are:

1. Variants of tit.for.tat, in particular

a) Generous Tit-for-Tat (generous.tit.for.tat)

If First Period: Cooperate
With probability 0 < c < 1: Cooperate; Else:
If Observe defection of opponent in previous period

Defect
Else

Cooperate

This strategy cooperates with a fixed probability and follows the strategy
tit.for.tat otherwise.
Generous.tit.for.tat has been suggested by Axelrod (1984) and has first
been formally examined by Molander (1985). Wu and Axelrod (1995)
showed that generous.tit.for.tat fares well with noise, especially if the
noise is comparatively small.
The big advantage of this strategy is, that in contrast to tit.for.tat a never
ending defection loop due to observation errors can be avoided. Increasing
the value of c decreases the number of expected periods with mutual
defections. The unconditional cooperation probability c can and in most
cases should be chosen in a way that the expected value of a defection is
smaller than the expected value of a cooperation which makes this strategy
unexploitable and forces an all-knowing opponent to always cooperate.
Two obvious caveats of this strategy come to mind: The probability c
stays constant even when faced with an obviously mean spirited opponent.
The higher the ratio of often-defecting strategies, the more the average
reward is decreased due to unconditional generosity. Additionally, c does
not incorporate all available information. The strategy generous.tit.for.tat
does not take into account whether its own actions have been observed as
a defection. Doing so might help to deduce whether or not the observed
defection of the opponent was retaliatory or predatory in nature. This
problem is solved by contrite.tit.for.tat.

13

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

b) Contrite Tit-for-Tat (contrite.tit.for.tat)

If First Period:
Status ← “content”
Cooperate

NewStatus ← Status
If Unilateral observed defection of the opponent in previous period AND
Status is “content” : NewStatus ← “provoked”
If Observed cooperation of opponent in previous period AND Status is
“provoked” : NewStatus ← “content”
If Unilateral observed defection of myself in previous period AND Status
is “content” : NewStatus ← “contrite”
If Observed cooperation of myself in previous period AND Status is
“contrite” : NewStatus ← “content”
If NewStatus is “content” or “contrite”
Cooperate; Status of next period is current NewStatus

Else
Defect; Status of next period is current NewStatus

This strategy assumes that a retaliatory action against an observation
error is excusable and thus does not retaliate. Even if the apology attempt
after the observation error is hit by an observation error an additional
time, the strategy keeps trying to cooperate until a successful apology has
been made by making a visible cooperation. In the absence of noise it
behaves like tit.for.tat.
The strategy contrite.tit.for.tat has been proposed by Sugden (1986). Its
name was coined by Boyd (1989). Wu and Axelrod (1995) compare this
strategy to generous.tit.for.tat and find a similar performance given a noise
probability of around 1%. Increasing the probability for noise, they find
an increasing edge for contrite.tit.for.tat. Unfortunately no pseudo-code is
given by the original sources, which leads to different interpretations and
versions of this particular strategy. The strategy as displayed here has
been extracted based on the explanations given by Wu and Axelrod (1995).
An alternative interpretation ContriteTitForTat is implemented by The
Axelrod project developers (2016a). Here, a bilateral defection after being
“content” also results in the strategy to become “provoked”. In our specific
setting this is a disadvantage, as playing against itself and getting hit by
a bilateral observation error results in never-ending defections.
The main advantage of contrite.tit.for.tat is to have a high expected
average reward R̄(s) against itself. While each observation error results
in a small loss, it has no lasting effects on the willingness to cooperate in
the long run.

14

Electronic copy available at: https://ssrn.com/abstract=3556714

2.1. The Iterated Prisoner’s Dilemma game with Noise

c) tft.2forgive

If First Period: Cooperate
If Observed cooperation of opponent in the last period
Cooperate

Else
If Observed coop. of opponent in the two periods before this one.

Cooperate
Else

Defect

Structurally tft.2forgive behaves similar to tit.for.tat, but declares the
other strategy to be sufficiently nice after the successful observation of
two consecutive cooperating actions to refrain from retaliation.
It should be intuitively understandable, that the best response against this
strategy has to be to cooperate until tft.2forgive observes two consecutive
cooperations and defect immediately afterwards, assuming a sufficiently
high discount factor γ. That this intuition is correct is shown in Section
2.2.

Several other notable variants of tit.for.tat exist, with a rich body of literature
behind them. An extensive list of tit.for.tat-like strategies can be found with
The Axelrod project developers (2016b).

2. Pavlov (pavlov)

If First Period: Cooperate
If Observed, that both cooperated in the last period: Cooperate
If Observed, that opponent cooperated and I defected: Defect
If Observed, that opponent defected and I cooperated: Defect
If Observed, that observation, both defected in the last period: Cooperate

This strategy is the embodiment of the idea of “Win-Stay, Lose-Shift” and is
thus sometimes called by this name. Originally developed by Rapoport et al.
(1965) (here named “simpleton”), this strategy was made famous by Nowak
and Sigmund (1993) and named by them based on the ideas behind D. Kraines
and V. Kraines (1989) due to the reflex-like behavior to the last period.
Effectively this strategy tries to switch back from situations, where it is either
exploited (C,D) or the result is bad for both parties (D,D) and stays with its
last action otherwise. The strategy is vulnerable to always.defect, where it
reduces its average reward considerably by making a peace offering every second
period. Despite that, Nowak and Sigmund (1993) show that pavlov is able to
handle noisy environments. Their analysis shows, that pavlov performs better

15

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

than the compared tit.for.tat-variants in certain settings by being able to extort
always.cooperate and otherwise non-retaliatory strategies. Wu and Axelrod
(1995) compare various tit.for.tat strategies against each other and against
pavlov and find that pavlov lacks robustness compared to contrite.tit.for.tat
and generous.tit.for.tat.

3. The net.nice family, as for example “Moderate Envy”Lahno (2000) (net.nice0):

def.count.me ← “No. of my defections as displayed by history”
def.count.other ← “No. of opponent defections as displayed by history”
diff ← def.count.me - def.count.other
If diff ≥ 0 :

Cooperate
Else

Defect

This strategy has been published by Lahno (2000) and allows to punish the opponent
through a mechanism which takes the complete history into account. A defection
of the opponent, assuming a sufficiently high discount factor γ, is not profitable, as
similar to tit.for.tat a direct retaliation is the answer. On the other hand, net.nice0
is forgiving, as it resumes with the cooperation after evening out the rewards between
itself and its opponent.
Depending on the number of noise it is not obvious, that specifically net.nice0, i.e.
setting the threshold for diff to 0, is the best choice within the net.nice family.
Indeed, empirically within the tournament at Ulm university, net.nice1 achieved
a higher average reward even though it tolerated one additional defection of the
opponent, making it obviously exploitable. When playing against itself, or sufficiently
similar opponents however, one can see, that allowing this additional defection may be
beneficial as more mutual cooperations can be played in total due to more observation
errors being absorbed without retaliation.

16

Electronic copy available at: https://ssrn.com/abstract=3556714

2.2. Basic Framework

This section describes the basic framework and establishes necessary notations. They
are based upon the notations and the general approach of Silver (2015) and Sutton
and Barto (2018), but we deviate when useful to focus on necessary aspects regarding
the algorithm and the IPD game.
The following framework is described through the lenses of an IPD game, where we
take the role of one of the players, the so called agent. The strategy of the other
player, the opponent, is fixed. The goal is to find a best response to the strategy of
the opponent or at least a strategy which is performance-wise at about the same
level.
Despite framing the examples with the help of the IPD game, it should be kept in
mind, that the framework is a lot more flexible. It can be used for other games
as well, as long as the basic requirements which are presented in this section are
met. Without changes to the algorithm itself it is for example possible to use this
framework for the optimization against an environment without a dedicated opponent
(e.g. a multi-armed bandit problem) or for a game with multiple opponents who all
have fixed strategies (e.g. an IPD game tournament). In the spirit of the IPD game
of section 2.1.1 however, we will use notations which imply a single opponent which
always plays as player 2.
Assume a progression of state spaces St, t = 1, ...,∞ with St being finite for each
fixed period t. In each state St ∈ St the agent has to choose an action At ∈ A out of
a finite action space A. Afterwards the agent transitions to a new state St+1 ∈ St+1
into the next period. Which state St+1 is realized depends on the realization of state
St, the chosen action At and the rules of the underlying game, which might allow
non-deterministic state changes.
The union ⋃∞t=1 St is the set of all possible states. In the case of an IPD game as
defined in Section 2.1.1 this union can be infinite in the case of some strategies which
consider the complete history of the game, e.g. net.nice0. Given our goal, this is of
no relevant concern:
We are interested in the average expected reward of a given strategy R̄(s) (see
Equation 1) which is calculated using discount factor γ < 1. The game of interest
has a bounded payoff matrix (see Table 1) which determines the reward of each
period. Due to the cumulative discounting of the rewards, the relevance of future
rewards vanishes with increasing number of periods. We can thus always find some
Tmax ∈ N where the maximum impact of the possible rewards rt for all t > Tmax,
even in aggregate, falls below some given ε-threshold. For all practical purposes we
can therefore ignore sufficiently high t.
It should be kept in mind, that the strategy of the opponent is fixed. Having a Tmax
does thus not imply, that backwards induction leads to never ending defections. This
would be the case, if we allowed both players to iteratively optimize against each
other.

17

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

We define

S :=
Tmax⋃

t=1
St

To simplify notations, we will use this finite S while still considering games with
infinitely many periods. To achieve this formally, one slightly changes the game to
have a new special state S∗. If the rules of the original game stipulate a transition
to a state which is not part of S, the resulting state is set to S∗. The special state
S∗ thus plays the role of a game end state. Once the game end state is reached, the
game never leaves this state and no further rewards are acquired. The same idea
can be used to model games with a finite, but undetermined number of periods. If
one for example considers an IPD game which ends with a certain probability after
a played period, the ending of the game is defined by a transition to the game end
state. All definitions within this section can easily be extended to incorporate S∗,
but we will refrain from doing so to increase readability and to keep the focus on
core concepts.
Within the context of the IPD game it holds that

A = {Cooperate , Defect} = {C,D}

Regarding the states and state spaces of the IPD game one can take one of two
stances:

1. If the strategy of the opponent is known and this strategy only acts upon
publicly available information, it is possible to construct a state space based
on its internal evaluations.
Given that the opponent does not take into account the history of the game at
all and acts consistently across all periods (e.g. always.cooperate, always.defect
or random.action), it is only necessary to have one default state. One of the
actions in A is always optimal and should be repeated. To find a best response
it is thus sufficient to find this optimal action.
If playing against an consistent opponent which only relies on observations of
the single last period, as e.g. tit.for.tat, the state space can be reduced to the
following five states: “No information available”, (C,C), (C,D), (D,C), (D,D).2
In the case of tit.for.tat, which does not take into account the own action of
the last period, a further reduction is possible, as (D,C) and (D,D) may be
combined to a “D” state. Here it should be noted that the opponent, in our
case player 2, determines the state space, but all states are writing from the
perspective of player 1.

2That the player with the shortest memory dictates the “rules of the game” has been used by Press
and Dyson (2012) to develop their famous Zero-Determinant strategies. Here one may also find
the proof of this proposition in a more general setting.

18

Electronic copy available at: https://ssrn.com/abstract=3556714

2.2. Basic Framework

In the case of consistent multi-period memory strategies it is sufficient to
accommodate only the combinations of the respective number of periods.
When reducing the state-space even further, it is not sufficient to only consider
states which are explicitly used by the opponent strategy for its choice of action.
A good example for this effect may be found with strategy tft.2forgive (see
Section 2.1.2), where our state space S may be reduced to the following states:

“no.info” - tft.2forgive has no observations to rely upon, i.e. the very first period.

“C” - tft.2forgive observes a cooperation of its opponent in the previous period,
but not in the period before the previous one. Here it doesn’t matter,
whether this period does not exist (i.e. we are in the second period) or a
defection has been observed.

“D” - tft.2forgive observes a defection of its opponent in the previous period
and not only cooperations in the two periods before that. Here it doesn’t
matter, whether these periods do not exist (i.e. we are in the second or
third period) or another defection has been observed.

“CC” - tft.2forgive observes two consecutive cooperations of its opponent in the
two previous periods. This state is also used in the case of more than two
consecutively observed cooperations in the previous periods.

“CCD” - tft.2forgive observes the actions “CCD” by its opponent in this particular
order in the three previous periods.

Here, tft.2forgive does not explicitly check for a “CC” state. From its point of
view the situation “CC” is identical to the situation “C”. However, the state
is still necessary to act as a bridge to the state “CCD”. Using just states, we
have to be able to exhaustively graph the structure of the game and capture
all relevant information.

2. Alternatively one can take the black box approach and define the state space
St based on all available information to us at time t, i.e the publicly available
history of the episode based on the observations of the actions up to time t− 1
and the privately known information of the own actions up to time t− 1. With
this approach the size of St necessarily explodes with t approaching infinity
and the end game state S∗ is needed.
The main advantage of this approach is, that it is not necessary to analyze
the opponent strategy by hand. Consequently, we use this interpretation of
states for the algorithm of Section 3. The obvious problem however is, that
significantly more data is needed to find a best response, as one has to find the
optimal action for each of those states.

There exist methods which explicitly deal with the fact, that the opponent might
react to private information which is not inferable by us. In this case it is possible to
extend the state space by separating between a true states and observed states. The
algorithm presented in Section 3 does not do that. Instead, it treats the observed state

19

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

as the true state within a stochastic environment. As long as all available information
is used, this approach still infers the optimal actions given that information. A more
detailed discussion of the non-observability of states can be found in Appendix B.
The transition between states is modelled based on the state transition function P
with

P(s, a, s′) := P[St+1 = s′|St = s,At = a]

denoting the probability to transition to state s′ if the agent is in state s and takes
action a. This function is defined by the rules of the game, e.g. the observation error
probabilities and the strategy of the opponent.
By design all states St are Markov, i.e.

P[St+1 = s′|St = s,At = a]
= P[St+1 = s′|St = s, St−1 = st−1, ..., S1 = s1, At = a]

∀st−1, ..., s1 ∈ St−1, ...,S1

In other words the transition probability does not depend on former states but only
on the current state s.
Given the black box approach of states which model the complete history of the
episode, the following effects have to be considered in contrast to having a well-defined
small state space for a strategy:

1. Methods which rely strongly on the Markov Property (i.e. Q-Learning, Section
2.3.3) do not necessarily work very well. For any feasible number of simulations
most states will not be visited at all. Even in the case of deterministic strategies
observation errors result in different observed paths and therefore different
states.

2. Approximating states by using only part of the history (e.g. the last three
periods as done by Harper et al. (2017)) can make the underlying math much
more complicated and inconsistent to the algorithms discussed here due to
losing the Markov property. In fact, one can show, that the resulting strategy
does not have to converge to the optimal one (see Appendix B for an example
in a similar situation).

While switching the state the agent receives a to be discounted and potentially
stochastic reward Rt ∈ R. Given the IPD game as defined by section 2.1.1 the reward
function R(s, a) is defined as

R(s, a) := E[Rt|St = s,At = a] =
∑

a2

P2(a2|s)g(a, a2) ∀ s ∈ S

R(s, a) is the expected reward given action a and starting state s. P2(a2|s) in this
case is the probability that the opponent plays action a2 given state s and g(a, a2) is
the reward of the combination of action a by the agent and action a2 by the opponent
according to the payoff matrix depicted in Table 1.

20

Electronic copy available at: https://ssrn.com/abstract=3556714

2.2. Basic Framework

To reflect that future rewards might be not as important or that they might not
happen due to the game ending, a discount factor γ ∈ [0, 1] can be used. In the
case of the IPD game, this discount factor is identical to the γ introduced in Section
2.1.1. Generally speaking, the main motivation to use a discount factor γ is to find
meaningful good policies in non-ending games (Sutton and Barto, 2018, p. 55).
A policy π is defined as the distribution

π(a|s) = P[At = a|St = s]

giving the probability that action a is chosen given state s. Following, the wording
policy is used to describe the strategy we want to generate using machine learning
methods, while the term strategy stays for the, possibly handcrafted, strategy of
the opponent. Despite this differentiation to increase readability, both strategy and
policy are interchangeable concepts.
The policy is time-independent per design, i.e.

At ∼ π(·|St), ∀t > 0

As the opponent strategy might react time-dependent, it might be necessary to use
time-specific information such as the number of the current period when deciding on
an action to find a best response. In this case the time-specific information has to be
already incorporated into the state space.
The tuple 〈S,A,P,R, γ〉 describes a so called Markov Decision Process (MDP). A
key feature of an MDP is, that the transition probability and the reward only depend
on a fixed probability distribution based on the state and the chosen action. It is
thus sufficient for any optimizing agent to know its current state to determine an
optimal action.
We define aπ(s) as the action which is played in state s given policy π, which may or
may not be stochastic. To simplify notations the definition of the reward function R
and the transition probability P are extended and redefined for stochastic aπ(s) to

R(s, aπ(s)) :=
∑

a∈A
π(a|s)E[Rt|St = s,At = a]

P(s, aπ(s), s′) :=
∑

a∈A
π(a|s)P[St+1 = s′|St = s,At = a]

In the case of π being a deterministic policy, this definition is consistent to the
previous one.
To directly incorporate the policy, we write

Rπ(s) := R(s, aπ(s))
Pπ(s, s′) := P(s, aπ(s), s′)

The term Rπ(s) is the expected reward if starting from state s and acting according
to policy π. Correspondingly, Pπ(s, s′) is the transition probability from state s to
state s′ if acting according to policy π

21

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

The tuple 〈S,Pπ,Rπ, γ〉 describes a so called Markov Reward Process (MRP). In
contrast to a Markov Decision Process the actions will be taken by a specific policy
are already incorporated. An MRP can therefore be used to evaluate and categorize
the results and the quality of a given policy.
The goal is to find a policy which maximizes the sum of discounted future rewards. An
intuitive idea to try to maximize those rewards is to use the action which maximizes
R(s, a) in each state, i.e.

πmax(a|s) :=





1 if a = argmax
a∈A

R(s, a)

0 otherwise

or in other words

aπ-max(s) = argmax
a

∑

a2

P2(a2|s)g(a, a2)

This method results in a defection in the IPD game for all periods. While being the
rational choice in the non-iterated Prisoner’s Dilemma (i.e. γ = 0), this might be
sub-optimal given a sufficiently high importance of later periods (i.e. γ � 0).
Take for example the strategy grim.trigger (see Section 2.1.2) in an IPD game without
observation errors but according to the payoff matrix of Table 1. We start in the
first period. Here, grim.trigger cooperates. If γ = 0 a defection from the agent
results in a reward of 2, i.e. one point higher than with a cooperation. If γ > 0, each
period after this will at best (i.e. the agent continues to defect) result in an average
reward of zero. Should the agent instead opt for a cooperation in the first period and
each one afterwards, it receives a to be discounted reward of unity for all eternity.
Comparing those two policies it holds that

R̄(always.defect) = (1− γ) · 2 ≥ (1− γ)
∞∑

t=1
γt−1 · 1 = R̄(always.cooperate)

⇔ (1− γ) · 2 ≥ 1

In this case we see, that with γ > 1
2 the myopic option always.defect of choosing the

best reward of the very next period is the worse option.
While more immediate periods are more important, it is still necessary consider the
long lasting effects of decisions. In particular it might be prudent for the policy of
the agent to maneuver the opponent into a situation where it is possible to extract
higher rewards without being punished. To maximize the rewards it is thus necessary
to keep in mind the state changes which may be influenced by the policy.
The state-value function vπ : S → R is defined as

vπ(s) = Eπ

[∞∑

k=0
γkRt+k|St = s

]

The state-value function measures the expected sum of discounted rewards given a
specific policy starting from state s and starting the discounting at this point.

22

Electronic copy available at: https://ssrn.com/abstract=3556714

2.2. Basic Framework

It holds that

vπ(s) = Eπ

[∞∑

k=0
γkRt+k|St = s

]

= Eπ

[
Rt + γ

∞∑

k=0
γkR(t+1)+k|St = s

]

= Eπ [Rt + γvπ(St+1)|St = s]
= Rπ(s) + γ

∑

s′∈S
Pπ(s, s′)vπ(s′)

or short
vπ = Rπ + γPπvπ (3)

as Rπ(s) and Pπ(s, s′) can be written as a vector/a matrix due to the finite structure
of S. This so called Bellman equation for vπ allows for an explicit solution.
By allowing to deviate from the policy in the very first step the action-value function
is given by

qπ(s, a) := Eπ

[∞∑

k=0
γkRt+k|St = s,At = a

]

The function qπ(s, a) measures the value of a state, given that the agent will chose
action a at the present decision and continue afterwards according to policy π.
The relationship between state-value function vπ and action-value function qπ is
given by

vπ(s) =
∑

a∈A
π(a|s)qπ(s, a)

This means, that we can calculate the value of a state s under policy π by calculating
all action values of this state and weighting them by the probability, that the specific
action will be chosen under policy π. Analogously to the definitions above we can
use the notation

vπ(s) = qπ(s, aπ(s))

We can now write the Bellman equation for qπ:

qπ(s, a) = R(s, a) + γ
∑

s′∈S
P(s, a, s′)vπ(s′)

= R(s, a) + γ
∑

s′∈S
P(s, a, s′)qπ(s′, aπ(s′)) (4)

Transferring these concepts to the example of the IPD game, we write the problem
in a more concise fashion. By definition, as no previous history is known our policy
always starts with the same “no.info” state s1. It holds for each policy π, that

R̄(π) = (1− γ)vπ(s1) = (1− γ)qπ(s1, aπ(s1))

23

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

Having calculated vπ(s1) for some policy π it is therefore straightforward to calcu-
late the average expected reward of a given policy in the IPD game. As a direct
consequence we have an easy metric to compare different policies to each other by
comparing their vπ(s1)-values.
More generally speaking, two different problems are of interest when confronted with
a MDP:

1. Find values qπ for each state such that all those values are consistent with each
other according to Equation 4. [Evaluation]

2. Find the optimal policy π∗ which maximizes those values for each state. [Opti-
mization]

To further specify and later on find a solution to the second problem, the optimal
action-value function q∗(s, a) is defined as

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S, a ∈ A

The relation
π ≥ π′

is defined to hold if it holds that

qπ(s, aπ(s)) ≥ qπ′(s, aπ′(s)) ∀s ∈ S
In this spirit policy π is said to be better than policy π′ if for every state at least
the value of policy π′ could be achieved and there exists at least one state s where it
holds that qπ(s, aπ(s)) > qπ′(s, aπ′(s)).
It holds that (Silver, 2015, chapter 2, p. 43):

Theorem 1 For any Markov Decision Process
• There exists an optimal policy π∗ that is better than or equal to all other

policies, π∗ ≥ π,∀π
• All optimal policies achieve the optimal action-value function, qπ∗(s, a) =
q∗(s, a) ∀s ∈ S, a ∈ A

Of course, depending on the problem, π∗ does not have to be unique and there might
actually be vastly different optimal policies achieving the same result. For simplicity
sake we will nevertheless only talk about the optimal policy π∗ as we are mainly
interested in the value R̄(π) and not in finding all possible optimal policies. The
machine learning concept of π∗ and the game theoretic concept of a best response
can be used interchangeably in the context and the scope of this article.
Given that qπ∗(s, a) is known it is straightforward to construct a deterministic optimal
policy by

π∗(a|s) =





1 a = argmax
a′∈A

q∗(s, a′)

0 otherwise

24

Electronic copy available at: https://ssrn.com/abstract=3556714

2.2. Basic Framework

The basic idea here is that the best possible action in a given state is to chose the
action which maximizes the reward under the assumption that we continue to act
optimal. Should there be several optimal actions one may chose any of those.
Given that the agent fully observes in which state it is, it is always possible to find a
deterministic optimal policy. One can nevertheless design a stochastic optimal policy,
by giving all optimal actions a positive probability and all non-optimal actions a
probability of zero (Sutton and Barto, 2018, p. 64).

25

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

2.3. Reinforcement Learning

2.3.1. Dynamic Programming

Dynamic programming is an umbrella term summarizing a class of algorithms which
are used to find “optimal policies given a perfect model of the environment as a Markov
decision process” (Sutton and Barto, 2018, p. 59) and was initially developed by
Richard E. Bellman in the 1950er years 3. The basic idea is to compute intermediate
steps, using the different Bellman equations (see Section 2.2) to find the value of
each state or state-action pair given a specific policy and use those to iteratively
determine the best possible policy. How optimal policies can be found without a
perfect model of the environment is presented in Section 2.3.2.
For small problems one can solve Equation 3 directly:

vπ = Rπ + γPπvπ
vπ − γPπvπ = Rπ

(I − γPπ)vπ = Rπ
vπ = (I − γPπ)−1Rπ (5)

Here a γ < 1 ensures that (I − γPπ)−1 exists and that every state is valued with a
finite number.
There exist two main directions to achieve optimal play:

1. Policy iteration - One tries different policies in a way, that they converge
towards the best possible policy. To do so it is helpful to be able to evaluate a
given policy, e.g. through the direct method of Equation 5.

2. Value iteration - One knows the solution to some sub-problems v∗(s′) and tries
to make them compatible and to find solutions v∗(s) for states s which are
able to reach s′. Afterwards an optimal policy can be constructed by always
playing the best possible action.

While the first direction corresponds to a more intuitive way a human might approach
a problem (’Lets try something and if it works do something similar’), the second
direction corresponds to a more structured approach not unlike the basic strategy of
backwards induction in game theory.

3See Bellman (2003) for the updated version of his book about dynamic programming

26

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

Policy Iteration Given that the Markov Decision Problem 〈S,A,P,R, γ〉 is known,
one algorithm to iterate the policy is (adapted from Silver (2015, chapter 3, p. 12)):

Generate some policy π by generating a distribution π(a|s) for each state
s ∈ S.
Repeat until stop condition π-good:

Calculate qπ(s, aπ(s)) for each s ∈ S # Evaluation step
qπ(s, a)← R(s, a) + γ

∑
s′∈S
P(s, a, s′)qπ(s′, aπ(s′))

Redefine π by setting π(a|s) =





1 a = argmax
a′∈A

qπ(s, a′)

0 otherwise
End Repeat

The condition π-good can be set to be a certain number of iterations or be based
on an ε-criterion, i.e. stopping as soon as the policy improvements start to become
sufficiently small. It can be shown, that by increasing the number of repetitions to
infinity the policy converges to the optimal policy π∗ (Silver, 2015, chapter 3, p. 12).
This holds independent from the choice of the initial strategy π.
There are several reasons, why calculating qπ(s, aπ(s)) can prove troublesome in
a practical setting even though 〈S,A,P,R, γ〉 is known. For small state spaces
Equation 5 using identity qπ(s, aπ(s)) = vπ(s) can be used. If the state space is too
large however, the more direct approach

qπ(s, aπ(s)) = Eπ

[∞∑

k=0
γkRt+k|St = s

]

has to be used. Even given the MDP is completely known, calculating Ri for big i
can be very complicated and numerically unstable due to the game branching out. To
circumvent this, it is possible to use Bellman Equation 4 for an iterative calculation:

Initialize values q0(s, aπ(s)) ≡ 0 ∀s
k ← 0
Repeat until stop condition q-good:

qk+1(s, aπ(s)) = R(s, aπ(s)) + γ
∑
s′∈S
P(s, aπ(s), s′)qk(s′, aπ(s′)) ∀s ∈ S

End Repeat

For k to infinity qk converges to qπ (Sutton and Barto, 2018, p. 65). The condition
q-good might be set again to a certain number of steps or with an ε-criterion.
To summarize, with policy iteration one starts with some arbitrary policy and
calculates, possibly using an iterative approach, the value of each state given that
we continue with this policy. Based on this the policy is improved. This is repeated
until a satisfying result is achieved.

27

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

Value Iteration Bellmans Principle of Optimality (Bellman, 1957, paraphrased)
tells us:

Theorem 2 A policy π(a|s) achieves the optimal value from state s, vπ(s) = v∗(s),
if and only if for any state s′ reachable from s π achieves the optimal value from
state s′, vπ(s′) = v∗(s′)

Analogously to backwards induction it is therefore possible to deduce the optimal
state-value v∗(s) and a corresponding policy if the optimal state-values of all reachable
states are known. If the game has terminal states, i.e. game end states, than these
are already known and can be used as a basis for subsequent iterative calculations

v∗(s) = max
a∈A



R(s, a) + γ

∑

s′∈S
P(s, a, s′)v∗(s′)





If no terminal states exist, for example due to loops between the state in an infinite
game, this principle can’t directly be used. However, similar to the policy evaluation
step of the policy iteration it is possible to iterate through the values using

vk+1(s) = max
a∈A



R(s, a) + γ

∑

s′∈S
P(s, a, s′)vk(s′)



 ∀s ∈ S

Instead of trying to evaluate a specific policy π, calculating qπ values and acting
greedy afterwards, we assume that our policy is greedy all the time. This way it
is possible to ignore the actual policy iteration and generate the policy based on
converged state-values vk directly. The algorithm is (Sutton and Barto, 2018, p. 67):

Initialize values v0(s) ≡ 0 ∀s
k ← 0
Repeat until stop condition v-good:

vk+1(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S
P(s, a, s′)vk(s′)

}
∀s ∈ S

End Repeat
kn is the index of the most recent value iteration.

π(s|a) =





1 a = argmax
a′∈A

{
R(s, a′) + γ

∑
s′∈S
P(s, a′, s′)vkn(s′)

}

0 otherwise
∀s ∈ S

28

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

Example given a strategy To illustrate dynamic programming in the IPD game
setting of Section 2.1.1 we use policy iteration on the strategy tft.2forgive. We show
that the intuitive candidate for a best response from Section 2.1.2 is indeed correct.
It is to show, that π = “Cooperate unless the opponent observed me playing two
cooperations, then defect” is the best possible policy. To be more precise, as policy
iteration converges toward the optimal policy π∗, it is sufficient to show that the
resulting policy π′ = π, that i.e. the policy is already fully converged and an
additional step does not change policy π.
Recall from section 2.2, that tft.2forgive may be reduced to the states “no.info”, “C”,
“D”, “CC” and “CCD”. As a first step it is necessary to calculate qπ(s, aπ(s)) = vπ(s)
for all these states. Equation 5 states that

vπ = (I − γPπ)−1Rπ

Due to the structure of the game and given strategy π it holds for transition matrix
Pπ that

Pπ =




no.info C D CC CCD

no.info 0 1− errD errD 0 0
C 0 0 errD 1− errD 0
D 0 1− errD errD 0 0

CC 0 0 0 errC 1− errC
CCD 0 1− errD errD 0 0




and

Rπ =




no.info 1
C 1
D −1

CC 2
CCD 1




Using errD = 0.15, errC = 0 and γ = 0.95 it holds that

vπ = (I − γPπ)−1Rπ ≈




no.info 21.11
C 21.54
D 19.11

CC 22.06
CCD 21.11




Now, using the identity qπ(s′, aπ(s′)) = vπ(s′), we calculate qπ(s, a)

qπ(s, a)← R(s, a) + γ
∑

s′∈S
P(s, a, s′)qπ(s′, aπ(s′))

29

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

It holds that

qπ(s,Cooperate) ≈




no.info 21.11
C 21.54
D 19.11

CC 21.82
CCD 21.11




; qπ(s,Defect) =




no.info 20.16
C 20.16
D 18.16

CC 22.06
CCD 20.16




Updating the strategy so that the maximum value qπ(s, a) is chosen gives us

π′




no.info
C
D
CC

CCD




= argmax
a∈A

qπ(s, a) =




Cooperate
Cooperate
Cooperate
Defect

Cooperate




which is identical to our starting policy π: The policy iteration has already converged
and we have shown that π is already a best response. It holds that π = s∗, using the
notation from section 2.1.1.
With these results it is straightforward to calculate the expected average reward,
given the best response to the strategy tft.2forgive:

R̄(s∗) = (1− γ)qπ(s1, aπ(s1))
= (1− γ)qπ(no.info, aπ(no.info))
= (1− γ)qπ(no.info, “C”) = 1.055

2.3.2. Model-Free Reinforcement Learning

Both, policy iteration and value iteration, as presented in Section 2.3.1 use the full
knowledge of the MDP 〈S,A,P,R, γ〉. This holds true even when using the iterative
approach to find state or state-action values instead of the direct calculation method
of Equation 5. In most practical situations and indeed in our case however neither
transition matrix P nor reward function R are known. Given our specific example of
the IPD game the rules of the game are known, but the actual rewards and transition
probabilities depend on the opponent. A calculation as seen in Section 2.3.1 for
tft.2forgive can only be made for the most simple strategies with reasonable effort.
Even if the strategy of the opponent is explicitly given, it is therefore often unfeasible
to calculate P and R explicitly.
Model-free reinforcement learning does not depend on knowing P and R but rather
approximates them based on collected data. We will concentrate here on two different
methods: Monte Carlo learning and One-step temporal difference learning. Monte
Carlo learning provides an important aspect of the algorithm of Section 3. One-step

30

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

temporal difference learning on the other hand is an important predecessor of the
ideas behind Q-Learning, which is presented in Section 2.3.3.
First we discuss how these methods can be used to estimate the value function of
such an unknown MDP and afterwards we show the optimization and construction
of a resulting policy.

Model-Free Evaluation The goal of this subsection is to find a way to accurately
approximate q(s, aπ(s)) even in the absence of knowledge about Pπ and Rπ. This
allows us to compare two given strategies, but does not allow us to construct a new,
improved strategy. To improve a strategy, e.g. analogously to policy iteration, it
is necessary to evaluate alternative actions. Here, we calculate q(s, aπ(s)) for fixed
policies π and not q(s, a) for arbitrary actions a. It is therefore not possible to
directly apply the same methods as before to find a best policy, even if q(s, aπ(s)) is
known.
Both, Monte Carlo learning (MC) and Temporal Difference learning (TD), generate
data by playing the game and estimate state values q(s, aπ(s)) = vπ. The difference
is that MC learning uses the data of a complete game directly. TD learning on the
other hand uses possibly limited number of state transitions. In particular, the last
transition does not have to be to an end-state. One-step TD learning for example
uses the one step from one state to its very next successor to estimate vπ.

Monte-Carlo Learning Monte-Carlo methods are known since the 1940s and exist
in a wide variety of versions (Sutton and Barto, 2018, p. 76). We concentrate on an
archetype to generate an understanding of the core principles. For more details the
reader is referred to Sutton and Barto (2018).
The basic idea behind Monte-Carlo reinforcement learning is that a game is played
from the beginning to an end period T and the actual historic rewards rt are used to
estimate the state values q(s, aπ(s)). Such a complete game run is called an episode,
in line with the definition of the term in Section 2.1.1. One can use multiple episodes
with the same starting state s to get more accurate results. In this case the rewards
are aggregated by averaging them to approximate an expected value:

q(st, aπ(st)) ≈
1
N

N∑

i=1

T−t∑

k=0
γkr

(i)
t+k (6)

Here, r(i)
t+k is the historically observed reward in period t + k and episode i with

observed state st in period t and acting according to the to be evaluated policy. With
N approaching infinity, i.e. infinitely many episodes, this construct converges to the
true value of q(st, aπ(st)) (Sutton and Barto, 2018, p. 76).
With games which do not have a natural end, e.g. the IPD game as introduced in
Section 2.1.1, MC learning out of the box is not possible. We mitigate this problem
by using an artificial maximal period Tmax after which the game is aborted, as
discussed in Section 2.2. It should be kept in mind that we are mainly interested

31

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

in q(s1, aπ(s1)), i.e. correctly assessing the starting state, to calculate the expected
average reward R̄(π) for a specific strategy. Tmax can thus be chosen by considering
the discounting effect of γ, the payoff matrix and the wanted precision of R̄(π).
Having artificially shortened the game, we use Tmax as T .
MC can be implemented the following way (see Silver (2015, chapter 4, p. 11)):

Initialize V (s) ≡ 0 ∀s # V (s) shall converge to the value vπ(s) = q(s, aπ(s))
Initialize N(s) ≡ 0 ∀s # N(s) is the number of visits of state s
Repeat until stop condition V -good:

Run an episode of the MDP and generate s1, a1, r1, ..., sT
For each st, t = 1, ..., T :

Calculate Gt ←
T−t∑
k=0

γkrt+k

N(st)← N(st) + 1
V (st)← (1− α(N(st)) · V (st) + α(N(st)) ·Gt

End For each
End Repeat

Given that Pπ and Rπ stay constant, a natural way to choose the function α is as
α(N(st)) = 1

N(st) . This way the correct mean is generated incrementally (compare
Silver (2015, chapter 4, p. 10)) and the idea behind Equation 6 is achieved.
V-good can be set via a fixed, sufficiently large number of iterations or with an
ε-criterion, where the algorithm stops when the change in V (st) is only miniscule.
The problem becomes more complex, as soon as Pπ and Rπ do not stay constant.
They might for example change if we want to optimize, and therefore change, π as an
additional step within this algorithm. In this case it is necessary to forget old episodes
- ideally in a way, that no complex calculations are necessary. Assume that strategy π
is gradually changed to strategy π′ and that there is a reasonably smooth underlying
problem. In this case one should expect that more recent rewards sequences are more
useful to estimate the desired vπ′(s) values. Older episodes however might still hold
some information. It is thus prudent to save computation resources and iterations
by using old rewards, but one does not want them to dominate more recent data.
One way to achieve a continuous update in the face of changing Pπ and Rπ is to use
α(N(st)) ≡ α for some reasonable value of 0 < α ≤ 1. With this fixed α effectively
running mean is tracked, even if this opens up the MC algorithm to some of the
critiques discussed in the one-step difference learning section below.
With a higher value of α a greater importance is put on more recent episodes.
Choosing an optimal value for α strongly depends on the change of pace of Pπ and
Rπ as well as the underlying rate of randomness of the problem. With a higher rate
of randomness one should chose a lower value for α as it is necessary to build enough
data to accurately estimate the expected value. Otherwise one risks to overwrite the
generated estimations with a particularly (un-)lucky reward sequence.

32

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

One-Step Temporal Difference Learning The early beginnings of temporal dif-
ference learning can be attributed to Samuel (1959), but a rich variety of different
variants emerged since then. Similar to the approach with MC learning, we will
concentrate on one specific form, one-step temporal difference learning, to explain
the main features.
In contrast to MC, TD uses a bootstrapping like approach to calculate the state
values q(s, aπ(s)) instead of solely relying on historic rewards. This allows TD to be
used on incomplete episodes. It is therefore applicable for never-ending MDPs as
well. Given a terminating game, some variants of TD incorporate information about
the environment at run time without having to wait for the MDP to terminate.
As we do not necessarily wait for the game to terminate, it is not possible to draw on
the rewards up to the end-state. It is however possible to use previously learned esti-
mations V (st). In the simplest variant of TD-Learning, so called TD(0) or one-step
TD learning, only the very next state is considered. The update rule is

V (st)← (1− α)V (st) + α (rt + γV (st+1))

Here rt + γV (st+1) replaces Gt of the MC algorithm and is called the TD target.
Despite these advantages, for simplicity sake we will now concentrate on an algorithm,
where the learning takes place offline, i.e. not at run time. This is done for two
reasons:

1. Having the game terminate similar to the MC algorithm allows for a better
comparison and contrasting of both algorithms.

2. In the IPD game with the black box encoding there are by design no loops
within our states, i.e. each state is only visited once each episode. It is thus
preferable to run a lot of short episodes to running few (or one) very long one.

One possible implementation of an (offline) TD(0)-algorithm is (see Silver (2015,
chapter 4, p. 13):

Initialize values V (s) ≡ 0 ∀s # V (s) is the appr. of the value vπ(s) =
q(s, aπ(s))
Repeat until stop condition V -good:

Generate s1, a1, r1, ..., sT by running the MDP until period T or until the
MDP terminates.
For each st, t = 1, ..., T :

V (st)← (1− α)V (st) + α (rt + γV (st+1)))
End For each

End Repeat

33

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

In contrast to the MC algorithm there exist several possibilities why this TD algorithm
in a general setting might not stop or fail to converge towards the correct values
q(s, aπ(s)):

1. As TD learning is designed to work with non-terminating MDPs it is necessary
to chose T exogeneously as it might not be inferred from experience. Choosing T
too small might lead to the situation that certain states s are never experienced
as they are only visited after a certain number of steps. It is thus necessary to
choose T very carefully and reasonably high.

2. If the MDP is stochastic in nature, the update using the factor α leads to a
change in V (st) even if one assumes, that it already holds the correct value
V (s) = q(s, aπ(s)) ∀s as the value of the specific reward rt depends on a
random draw. If V-good is thus an ε-criterion which has been set to narrow,
the algorithm might never stop. This effect can be mitigated by choosing a
smaller α or by depending V-good on a sufficiently large running mean of the
V (st) which negates the random fluctuations.
Dayan and Sejnowski (1994) show for the more general TD(λ) algorithm, that
using an decreasing α over the episodes with

∞∑

i=1
αi =∞ and

∞∑

i=1
α2
i <∞

solves this problem given a stationary MDP and achieves convergence of the
TD algorithm. However, using a diminishing step update rate might prove
problematic in the case of a changing, non-stationary MDP - which we have,
as soon as we want to want to improve, i.e. change our policy π.

Silver (2015, chapter 4, p. 18) notes, that in contrast to the unbiased estimate Gt
of the MC algorithm, the TD-algorithm uses with the TD target rt + γV (st+1) a
biased estimator. The bias is introduced when the V -Values are initialized with some
arbitrary values. While this bias vanishes with an increasing number of update steps
given the here discussed tabular approach, the same does not necessarily hold true
when using function approximators. Here some of those biases may persist or even
lead to numerical instabilities.
Sutton and Barto (2018, p. 169) name as an advantage of TD learning over MC
learning that a specific TD target shows a lower variance if a lower number of steps
(e.g. only one, as discussed here) is considered. This stabilizes the learning, at least
if there are loops across state transitions. Silver (2015, chapter 4, p. 18) summarizes
that MC learning shows good convergence properties, works well with function
approximation and is not as sensitive to the initial values, while TD is usually more
efficient and makes much better use of the Markov property.
The classic Q-Learning algorithm draws strongly from the TD(0) algorithm. In the
use case of the IPD game we effectively do not use the Markov property and depend
on function approximators. Extending Q-Learning with an Monte Carlo element, as
done in Section 3.4, consequently improves upon the classic Q-Learning approach in
our setting.

34

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

Model-Free Optimization The evaluation step of policy iteration can be replaced
by the algorithms discussed above. To improve the policy however, policy iteration
uses Pπ and Rπ which are not necessarily known. Similarly, value iteration is not
possible if Pπ and Rπ are unknown, as those are used in the calculation of the next
iteration.
Both, MC learning and TD(0) learning, as far as discussed, are only able to evaluate
a given, fixed policy. One could in theory generate all possible policies, evaluating
all of them either with MC or TD(0) and choose the best one. This however is only
a viable option in very limited environments. We want therefore to limit the policies
which have to be evaluated or find an alternative approach to construct a good policy
based on experienced episodes.
Based on the idea behind policy iteration one might have the idea to replace the
policy improvement step from policy π to policy π′

π′(a|s) =





1 a = argmax
a′∈A

{
R(s, a) + γ

∑
s′∈S
P(s, a, s′)qπ(s′, aπ(s′))

}

0 otherwise

with

π′(a|s) =





1 a = argmax
a′∈A

Qπ(s, a′)

0 otherwise

where Qπ(s, a) are the empirically calculated values of the state-action values qπ(s, a)
based on an empirical valuation with MC or TD(0).
This proves troublesome as with this approach all generated policies π′ are deter-
ministic. This approach however assumes, that it is possible to calculate different
Qπ(s, a′)-Values to determine their maximum. After the first update only the same
action will be taken given the same state s and alternative actions are never explored.
To complete these thoughts, it is necessary to define a policy which given enough
episodes takes each action with non-zero probability, for example

π′(a|s) =





ε
m + 1− ε a = argmax

a′∈A
Qπ(s, a′)

ε
m otherwise

These types of policies are called ε-greedy. Here, ε ∈ (0, 1] controls the probability to
take the (assumed) optimal action. A value of ε = 1 implies complete randomness
between all actions. Choosing ε = 0 on the other hand would imply that only the
greedy action is taken and results in the problem discussed above. The value m is
the number of actions which can be taken in this state. With a slight extension to
the discussed framework it is possible to allow for games where the available actions
differ between states. In this case it can hold that m < |A|. In the case of the
IPD game the rules of the game always allow both actions. It therefore holds that
m = |A| = 2.

35

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

Incorporating these elements, policy iteration is able to find the best possible ε-greedy
strategy with fixed ε. Lowering ε slowly and gradually allows us to find the best
deterministic strategy in the limit case (Silver, 2015, chapter 5, p. 16).
This leads us to the following Monte Carlo algorithm (Silver, 2015, chapter 5, p. 16):

Initialize values Q(s, a) ≡ 0 ∀s, a; N(s, a) ≡ 0 ∀s, a; k = 0
Repeat until stop condition Q-good:

k ← k + 1
Generate s1, a1, r1, ..., sT by running the MDP until period T or until the
MDP terminates.
For each st and at, t = 1, ..., T in this episode:

N(st, at)← N(st, at) + 1

Q(st, at)←
(

1− 1
N(st,at)

)
Q(st, at) + 1

N(st,at)

T−t∑
k=0

γkrt+k

End For each
ε← 1

k

π′(s|a) =





ε
m + 1− ε a = argmax

a′∈A
Q(s, a′)

ε
m otherwise

End Repeat

This algorithm converges towards the optimal policy π∗ (Silver, 2015, chapter 5, p.
16) despite not waiting until the policy iteration with fixed ε has converged.
Analogously one can generate an algorithm based on TD(0)-Learning to make use of
the advantages of temporal difference learning. With the following algorithm (based
on Sutton and Barto (2018, p. 106) with some small changes to keep consistency)
it is for example not necessary to wait until the episode ends before updates are
possible:

Initialize values Q(s, a) ∀s, a.
Repeat until stop condition Q-good:

Chose starting state s of this episode # This is always the same state
with the IPD game
Choose action a using a policy derived from Q (e.g. ε-greedy)
Repeat until final state is reached:

Take action a, observe r and resulting state s′
Choose action a′ from s′ using policy derived from Q (e.g. ε-greedy)
Q(s, a)← (1− α)Q(s, a) + α (r + γQ(s′, a′))
s← s′; a← a′

End Repeat

36

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

As with TD(0) learning the factor γ is the discounting rate and α measures the
learning rate. Using diminishing ε and α, analogously to TD(0) learning, this
algorithm converges toward the optimal state-action values q∗(s, a) (Silver, 2015,
chapter 5, p. 26). Given these values, an optimal policy can be created.
This algorithm is known under the name SARSA (State-Action-Reward-State-
Action) and has been developed by Rummery and Niranjan (1994). Despite the
structure in this document, SARSA has been developed after the development of
Q-Learning, which is discussed in the next section. The main advantage of SARSA
over Q-Learning is that SARSA by design is more accurate in estimating the values of
the current (ε-greedy) strategy instead of trying to calculate the state-action values
of the optimal strategy directly. As an effect SARSA tends to be more robust in
finding a good answer, but is not as suited to find the optimal answer.
Note, that the description of this algorithm may easily be changed to define a new
policy with each step explicitly, as has been done with the Monte Carlo algorithm.
We have refrained from doing so, as SARSA is not restricted to ε-greedy policies.

37

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

2.3.3. Q-Learning

Q-Learning is a reinforcement learning algorithm developed as a Ph.D. thesis by
John Watkins (Watkins, 1989) whose convergence was proven by Watkins and Dayan
(1992). To keep consistency with more recent literature and the rest of the article,
we do not use the original definitions and notations, but the notations of Sutton and
Barto (2018, p. 107) with some small changes:

Initialize values Q(s, a) ∀s, a.
Repeat until stop condition Q-good:

Chose starting state s of this episode # This is always the same state
with the IPD game
Repeat until final state is reached:

Choose action a using a policy derived from Q (e.g. ε-greedy)
Take action a, observe r and resulting state s′

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

â
Q(s′, â)

)

s← s′

End Repeat

The main difference to SARSA is, that Q-Learning does not use the action which
is used according to the current policy to update the Q-Values. Instead it assumes,
that we will continue optimal from outgoing from the current state. While the
Q-Values of SARSA approximate qπ according to the current policy, Q-Learning
aims to approximate the optimal q∗-values directly. In fact, given enough data, this
Q-Learning algorithm will converge for each Q(s, a) to the optimal state-action values
q∗(s, a) (Sutton and Barto, 2018, p. 108). Having obtained them, it is possible to
construct the best possible strategy π∗.
As the update rule does not depend on the current exploration but on the assumed
optimal choice, Q-Learning does not require the current policy to converge towards
the optimal policy. Using ε-greedy policies, all discussed algorithms up to this
point required a vanishing ε. This is not the case with Q-Learning. Even using
only uniformly random actions Q-Learning generates an optimal policy given suf-
ficient iterations. In the words of Peng and Williams (1994): “Q-learning is not
experimentation-sensitive”.
Nevertheless it is sub-optimal to use uniformly random exploration when the state
space is very large, like in our case with the IPD game. If it is not feasible to visit
and process all state spaces, it is a prudent idea to start with a broad assessment of
the state space and concentrate on the most promising actions. This way less time is
spent on assessing low-value states and an optimum can be found faster. Depending
on chance and the speed of the reduction of the exploration (e.g. the ε parameter)
this might however only be a local optimum. Further discussions regarding optimal
exploration can be found in Section 3.5 and Section 3.6.

38

Electronic copy available at: https://ssrn.com/abstract=3556714

2.3. Reinforcement Learning

2.3.4. Approximative Solutions

Up to this point all discussed algorithms have been so called tabular solution methods.
Here the assumption is that it is possible to hold all information, e.g. all possible
and visited states, the taken actions, subsequent rewards and successor states, in one
single table. These methods provably produce the optimal policy π∗.
In a lot of practical problems, and indeed given the IPD game as discussed in Section
2.1, this tabular approach is not feasible due to two reasons:

1. With increasing state space it might be difficult to hold all states or state-
action pairs in the memory. Chess, which can be modeled with the presented
framework, for example has 1043 board states without considering game history
(Shannon, 1950). The IPD game has infinitely many states in its untruncated
form. Given the simplification from Section 3.3 with a maximum period limit
of Tmax = 60 there are still around 1046 states and thus more than chess.

2. It is necessary to visit each state sufficiently often to ensure a correct Q-Value.
Parallel to the necessity to save each possible, or at least each theoretically
visitable, state this implies the necessity for a lot of computational resources
to calculate this tabular data by playing the game sufficiently often.

Given the IPD game, an obvious approach to solve these problems might be to
simplify the state space:

1. One could analyze the opponent strategy to find the true state space as discussed
in Section 2.2. If one wants to optimize against a simple strategy and this is
easily doable this is certainly a viable approach. However, if the strategy does
not allow for an easy state space or one wants a simple algorithm where one
does not have to analyze the strategy by hand, this approach is insufficient.

2. One could limit the state space to the last X periods, as has been done for
example by Harper et al. (2017) or Sandholm and Crites (1996). This works
well against some simple strategies which only act upon the last X periods.
However, there exist strategies where the loss of information by doing so is
too grave. In fact, one might not even get a good answer, for example if the
opponent strategy tries to find patterns to exploit on run time and the discount
factor γ is sufficiently high.

Both solutions have in common, that they want to reduce the state space through
some mechanism - either through theoretical analysis or through the assumption,
that the very last periods are the most important.
The most elegant solution however would be to find a function f∗ which is defined
for all states and actions and accurately approximates the state-action values, i.e.

f∗(s, a) ≈ q∗(s, a) ∀s ∈ S, a ∈ A (7)

As the state-action values are not known, one might construct a series of function
approximators f1, ..., fN , with N being the most recent episode, which approximate

39

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

the Q-Values of the tabular method. The construction of fi is chosen well, if
fi → f∗ (i → ∞) not only for encountered combinations of state-action pairs
(s, a), but for all of them. This necessitates that the function approximators fi
are able to extract all relevant information out of historic episodes regarding to be
evaluated state-action pairs (s, a). This could for example be achieved if the function
approximators are able to identify and recognize states which are near each other in
the sense, that these states inhibit the same optimal course of action.
A selection of function approximation methods is presented in Section 2.4. The
effects of using them in our setting are shown in Section 3.9.
A possible implementation of Q-Learning with function approximation is:

Initialize function approximator f : (s, a) 7→ f(s, a) ∀s, a in some way.
Repeat until stop condition Q-good:

Chose starting state s of this episode
Repeat until final state is reached:

Choose action a using a policy derived from f(s, ai), ai ∈ A (e.g.
ε-greedy)
Take action a, observe r and resulting state s′
Update f(s, a) in line with the Q-Learning update rule
s← s′

End Repeat

This formulation of the algorithm enables on-line learning, i.e. to improve the
function approximator while an episode is playing. This is not necessarily optimal
due to the following considerations:

1. It is non obvious whether on-line learning is necessary if there are no repeating
states as with a complete encoding of the state space of the IPD game.

2. Depending on the technical implementation of the function approximator, the
update step might be accompanied by fixed time costs. Loading the updating
routine after each single step might thus severely impact the speed of the
algorithm.

3. Updating each step might introduce oscillations and other fluctuations in the
learning process of the function approximator and thus have a negative impact
on convergence stability.

In fact Mnih et al. (2015), who developed the so called deep Q-network (DQN), used
mini-batch processing, where the update is not done after each step but rather on
uniformly random drawn samples (s, a, r, s′) out of the memory. This allows a more
stable learning, as old memories can stabilize the function approximator and is a
special form of so called experience replay which was introduced by Lin (1992).
The effects of experience replay given the IPD game and our implementation are
further discussed in Section 3.8.

40

Electronic copy available at: https://ssrn.com/abstract=3556714

2.4. Supervised Learning

2.4. Supervised Learning

In Section 2.3.4 we introduced the concept of function approximators, which are
necessary to reduce the complexity of the state-action space. Generally speaking
with the approximation of state-action values one tries to find a function f such
that f(s, a) is sufficiently close to the to be learned Q/Qπ-Values as given by the
experienced state-action pair (s, a) and the learning algorithm. Furthermore f should
be able to generalize in a way, that given a never before seen state-action pair
(s, a) the difference between f(s, a) and hypothetically encountered corresponding
Q/Qπ-Values is minimal by some specified metric. The machine learning field
supervised learning provides a wide array of possible methods and approaches on
how to construct a good function approximator.
No clear rule exists which function approximation method is the best. Sutton and
Barto (2018) describe in great detail linear function approximators, where - possibly
handcrafted - features are given weights. The sum product of those features can
then be used to estimate Q-Values. Learning takes place by gradually changing the
weights of these features.
If one wants to allow arbitrary complex functions, linear function approximators may
not suffice. We focus on three different non-linear approaches in this section which
allow for complex generalizations:

1. Gradient Boosting - Build several simple decision trees in sequence which
capture not yet captured features of the to be predicted variable.

2. Neural Networks - Interconnected layers of so called neurons allowing arbi-
trarily complex calculations.

3. Recurrent Neural Networks - A special case of neural network, where the
output depends on a sequence of inputs and an internal mechanism allows the
recurrent neural network to extract valuable information out of the current
input and save it in some kind of short-term and/or long-term memory.

2.4.1. Gradient Boosting

Gradient boosting is a supervised learning technique which was developed by J.
Friedman et al. (2000) based on Adaboost (Freund, Schapire, et al., 1996). We
will focus here on developing a basic intuition. For good introductions the reader
is referred to Grover (2017), Gorman (2017) and for a more rigorous in-depth
introduction to C. Li (2016). An interactive graphical tool to develop an intuitive
understanding can be found with Rogozhnikov (2016).
Gradient boosting is a special type of a so called boosting technique. The idea
behind boosting is to use one or several, possibly very simple, function approximators
in sequence. Here each of the simple function approximators aims to predict the
residuals of the function approximators before it. Gradient boosting as a concept
does not dictate which kind of simple function approximator should be used. So

41

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

called decision trees are one of the most common choices and are also chosen within
this article.
A decision tree is a simple function approximator which separates the data set in
different groups, so called leafs by asking, usually binary, questions. A graphical
representation of a decision tree is depicted in Figure 1.

Did the opponent defect
in the first period?

Is action a =“D”?

Q̂(s, a) = 5

Yes

Q̂(s, a) = 4.5

No

Yes

Is the ratio of defections
of the opponent > 0.3?

Is action a =“D”?

Q̂(s, a) = 6

Yes

Q̂(s, a) = 7.5

No

Yes

Q̂(s, a) = 10

No

No

Figure 1: An illustrating example of a decision tree, estimating a Q(s, a)-Value.
Assume (s, a) to be given.

Figure 1 shows, that these questions can be asked in regards to categories (“Is
action a =“D”?”) or in regards to numerical values (“Is the ratio of defections of the
opponent > 0.3?”). Note, that calculations like the ratio or the sum of features have
to be given by the encoding (see Section 3.7 for a more detailed discussion).
An example on how a sequence of decision trees can generate a good fit in a scenario
with one single numerical explanatory variable is given by Figure 2. Here the
maximum depth of the trees is 2 levels. In other words, each tree can only generate
22 = 4 leafs. Even these simple trees are able to approximate a complicated and
non-continuous function to a very high degree.

42

Electronic copy available at: https://ssrn.com/abstract=3556714

2.4. Supervised Learning

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

Y

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

R
es

id
ua

ls

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

Y

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

R
es

id
ua

ls

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

Y

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

R
es

id
ua

ls

−1.0
−0.5

0.0
0.5
1.0

0.00 0.25 0.50 0.75 1.00
X

Y

Figure 2: An illustrative example of gradient boosting. The goal is to find a good
function (blue) which approximates the data points (green). Each row represents
one boosting step. In the first column the current residuals are seen after applying
all previous decisions trees in sequence. These residuals are then approximated by
a new decision tree. The results of aggregating these simple decision trees with a
maximum depth of 4 (so a maximum of four build categories) up to the step of the
respective row can be seen in the second column.

Gradient boosting as used within this article is more complicated due to several
improvements made over the last years. The first improvement is that the decision
trees can be pruned. Pruning a tree is defined as discarding sub-trees to minimize
complexity and reduce overfitting (see e.g. Almuallim (1996) for pruning of trees).
Additionally, gradient boosting is normally not applied to the full extend as has been
done in Figure 2. Instead each tree only contributes with a certain factor ν ∈ (0, 1)
to the result of the tree sequence. This makes the result more conservative and thus
less prone to overfitting (Hastie et al., 2009, p. 364).
While gradient boosting shows good results in classical supervised learning tasks and
competitions, it is seldom used in reinforcement learning. The most important reason
not to use gradient boosting is that it does not allow for incremental improvements
based on new data. In fact, to improve our model with gradient boosting we build it
from scratch each time. As gradient boosting is much faster than the alternatives
however, it is still a viable in our case, as is shown in Section 3.9.

43

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

2.4.2. Neural Networks

Neural networks are a very powerful supervised learning technique which have found
great interest in the recent years. They provide a key component to impressive recent
developments in machine learning in a wide area of applications. Examples include
image classification tasks (Krizhevsky et al., 2012), adding color to black and white
images (Iizuka et al., 2016) or predicting mortality of hospital patients (Rajkomar
et al., 2018).
Of special interest for us are their usefulness in the field of reinforcement learning, as
they were a corner stone for several new algorithms. These were able to achieve feats
such as beating grand masters in the ancient game of Go (Silver, Schrittwieser, et al.,
2017) or achieving super human scores in ATARI games (Van Hasselt et al., 2016).
Modern neural networks have developed significantly from their historical roots, which
were motivated by McCulloch and Pitts (1943) and Hebb (2002), first published in
1949. Still used, the perceptron of Rosenblatt (1958) is a simple part of a neural
network and allows to develop an intuition about this supervised learning method.
For a more in depth introduction the reader is referred to Nielsen (2019).
Assume, within our context of the IPD game, we receive observations of the last
three periods of the opponent. Assume further more, that we want to defect if the
opponent defects often and/or recently. One way to model this would be using the
perceptron of Rosenblatt (1958):

x1

x2

x3

Output

PerceptronInputs

Figure 3: A schematic perceptron as a building block for a neural network.

If we encode a defection with 1 and a cooperation with 0 and define x1 to be the
observation three periods ago, x2 two periods ago and x3 the very last period, we
have encapsulated all available information in the vector x.
Each of the three edges of Figure 3 is weighted with a weight wi, defining the vector w.
Additionally, a perceptron has an internal threshold b. The output of the perceptron
is defined the following way:

Output =
{

0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(8)

Using the weights w1 = 1, w2 = 1, w3 = 3 and b = 2.5 achieves our goal. The
perceptron recommends a defection if the very last period has been a defection, the

44

Electronic copy available at: https://ssrn.com/abstract=3556714

2.4. Supervised Learning

two periods before that or all three of them and a cooperation otherwise.
Using layers of perceptrons as seen in Figure 4 allows for more complicated calcula-
tions. Here the output of a perceptron is used as the input for another one. This
way is possible to build arbitrarily complex logic gates (Nielsen, 2019) and thereby
solve arbitrarily complex problems.

Input #1

Input #2

Input #3

Output

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 4: A schematic Neural Network outputting a single value with two hidden
layers of 5 and 3 hidden neurons. Given the IPD game, Input 1 might be 1 if the
opponent defected in the last period and 0 otherwise. Input 2 might be equivalently
coded for the action of the agent itself from the last period. Input 3 might similarly
be the to be evaluated action a.

Two obvious challenges remain with perceptions:

1. Given the discussed algorithms, we want to approximate numeric Q-Values
which are not binary.

2. While finding good values w and b was straightforward in the example above,
this is not the case in a complex system of hundreds of neurons and thousands
of edges.

To show how these problems are solved, we will first generalize the inner workings
of the perceptrons. General neurons can have different ways of handling the term
wx+ b in contrast to the step-wise function of the perceptron of Equation 8.
The output layer might for example have a linear activation function, i.e. we simply
output wx+b. As w and b can be changed, the resulting output can have an arbitrary
value, even if all inputs x are constrained to the interval [0, 1] from previous layers.
To make it easier to find fitting weights w and b while at the same time keeping the
feature of being able to generate arbitrary logic gates one can smooth the step-wise
function of the perceptron.

45

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

A common way to smooth the step-wise function of the perceptron is to use the
sigmoid function

Output = 1
1 + e−(wx+b)

which is illustrated in Figure 5.

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
X

Y

Type
perceptron
sigmoid neuron

Figure 5: Difference between the perceptron activation function and the sigmoid
activation function. X is the weighted input wx+ b.

The advantage of using such a smooth function is that an incremental change of one
of the weights wi leads to an incremental change in the output. The reverse holds
true as well: If the output is non-optimal, i.e. the neuron outputs a value which is
marginally to high, one can change the weights to increase the fit, as it holds that

∆Output ≈
∑

i

∂Output
∂wi

∆wi + ∂Output
∂b

∆b (9)

We use gradient descent to decide which of the weights should be changed how
strongly. The basic idea is to choose the direction of the biggest change.
While gradient descent is an important idea to update a single neuron, explicit
gradient descent on the whole network is too costly to do when confronted with
several hidden layers as for example in Figure 6. Rumelhart et al. (1986) proposed
using the so called backpropagation algorithm to solve this problem. Here, the effects
of different layers on the output are solved iteratively starting from the output layer
- the back - by using fast to compute matrix operations. This allows to efficiently
change exactly those neurons which have the most impact on the difference between
current and desired output.
Using a neural network to approximate structurally the same function as with the
example for gradient boosting results in Figure 6. In contrast to gradient boosting
the neural network is better in the approximation of the linear parts of the function.
However, it has significantly more difficulties with the step-wise parts. Given a
sufficiently complex structure, sufficient training data and sufficient time to converge
however, both techniques are able to approximate the example function to an arbitrary
degree.

46

Electronic copy available at: https://ssrn.com/abstract=3556714

2.4. Supervised Learning

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
X

Y

Figure 6: An illustrative example of a function approximated by a neural network.

2.4.3. Recurrent Neural Networks

Standard neural networks are feedforward. This means, that the information and
calculation flow starts with the input neurons and propagates through the different
layers with the last layer producing the output. By contrast, recurrent neural
networks go through a sequence of inputs, calculate intermediate results, so called
hidden states, and use the same network multiple times to evaluate the sequence.
This effect is illustrated with Figure 7. If one wants to calculate the respective output,
an additional output layer to transform the relevant hidden state is used.
Their sequential design makes them ideal candidates for all data which are naturally
sequential, like text-to-speech transformation, translations, interpreting videos or
generating texts. They are also used in reinforcement learning, most notably with
The AlphaStar Team (2019), where a program was able to play Starcraft II on an very
high level, challenging and beating professional players. Their advantage relative to
normal neural networks is that there is no necessity to provide the complete history
of a sequence. Instead, one can provide only recent events and have the network
work out itself which kind of information should be transferred to the next iteration.

47

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

=

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 7: A schematic view of a generic recurrent neural network. Given is a
sequence of inputs xt. The recurrent network processes the input and information
based on previous cells, outputs the hidden states ht and gives some information to
the next part of the sequence.

Historically, Recurrent Neural Networks are based on the works of Rumelhart et al.
(1986) but they received their big takeoff with the development of Long short-term
memory (LSTM) cells by Hochreiter and Schmidhuber (1997). A schematic view of a
standard LSTM cell is given by Figure 8. A good explanation on the inner workings
of such a cell is given by Olah (2015).

σ σ Tanh σ

× +

× ×
tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

htHidden

Figure 8: A standard LSTM Cell based on the schematics of Olah (2015). Two
conjoining lines are a vector concatenation, × is an element-wise multiplication, +
an element-wise addition. The single tanh within an elliptic box is the element-wise
application of the tanh-function. A σ within a tetragon stands for a transformation
of the vector according to a sigmoid layer, i.e. between 0 and 1. The single Tanh
within a tetragon transforms the vector according to a tanh-layer, i.e. between -1
and 1.

48

Electronic copy available at: https://ssrn.com/abstract=3556714

2.4. Supervised Learning

One of the main problems of basic recurrent neural networks is that they tend to
forget information along the way as they have no good mechanism to decide which
information to keep. This problem is solved by the LSTM cell, utilizing three sigmoid
gates. Each of those gates takes as input the concatenation of the so called hidden
state and the input xt. The output is a vector with some size n which is both the
dimension of the hidden state and the so called cell state. The cell state is used to
hold long-term memories without strong changes. One such memory could be the
information “I am playing against a strategy of type X”.
In more detail, the intuition behind the three sigmoid gates is as follows:

1. The first sigmoid gate decides which parts of the cell state should be forgotten.
Those parts of the cell state which should be forgotten are then multiplied with
0 and those which should be retained are multiplied with 1.

2. The second sigmoid gate is the so called input gate. The tanh-layer extracts
the necessary information out of the input and the current hidden state and
after the filtration through the second sigmoid layer adds them to the cell state.
The cell state has thus been updated with the new information and may be
used in the next LSTM cell.

3. The third sigmoid gate is the so called output gate, as here the new hidden
state is generated. One could say, that the new hidden state is the new cell
state - normalized by a element-wise tanh operation - which is filtered by the
output gate.

When using the recurrent neural network, we are interested in the very last ht,
which is an array of the length of the number of used hidden neurons. Analogously
to the neural network we filter this result through an output layer which scales
and aggregates the calculated values to a single usable Q-Value. Similarly to the
multi-layered neural network one can use additional intermediary layers and filters
to increase the power of the network and capture more complicated patterns. The
actual schematic of the LSTM as used in Section 3 is shown in Figure 9.

LSTMxt
ht

σ σ ot

Figure 9: A schematic view of the Recurrent Neural Network as implemented in
Section 3. There is a sequence of inputs up to xt. The recurrent network processes
this sequential input using LSTM cells, and filters the result through a sigmoid
activation function, a dense hidden layer with sigmoid activation and finally the
output layer with linear activation function and a single neuron to produce the
output.

49

Electronic copy available at: https://ssrn.com/abstract=3556714

2. Theoretical Foundation

In the specific case of the IPD game and using one of the simplest encodings, xt
might be the observed actions of both players regarding period t concatenated with
the to be evaluated action. To receive the Q-Value regarding the action of the third
period, the calculation would thus go as following given the specifics of the setup:

1. Vectors h0 and c0 are initialized with a default value.

2. h0, c0 and x1 are given to the (trained) LSTM cell, which outputs c1 and
h1. The vector x1 could for example be (−1, 1, 0, 1) denoting that the agent
observed a defection of itself [first element] and a cooperation of the opponent
in the first period [second element] as well as that that the agent has taken the
second of two possible actions [third and fourth element]4.

3. c1, h1 and x2 are given to the (trained) LSTM cell, which outputs c2 and h2.
Here, x2 could be (1, 1, 1, 0) describing the observations of period 2.

4. c2, h2 and x3 are given to the (trained) LSTM cell, which outputs c3 and
h3. An example of x3 could be (0, 0, 1, 0) indicating, that no info is available
regarding the observations of period 3 and that the agent is currently evaluating
the first of two actions.

5. h3 is filtered through a sigmoid function to keep comparability to the setup of
the neural network.

6. σ(h3) is connected to a dense hidden layer with sigmoid activation, producing
h′3

7. h′3 is connected to a dense linear output layer with a single neuron, resulting
in the wanted Q-Value.

4Actions are encoded differently within the R-package Kies (2019) because the encoding of the state
has been chosen with the specifics of the IPD game in mind, but the action space is managed
game-independently. The IPD game only has two actions, so the encoding -1 for a defection, 0
for having no information and 1 for a cooperation is very space minimizing. In the more general
approach of the action space, all actions are encoded in binary bins for each action and a 1 is
given to the action which is considered/has been played.

50

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.1. Overview

This section presents and discusses an algorithm, whose development was guided by
the following objective:

Find an algorithm which converges fast to the maximum achievable
expected average reward against a black-box strategy in the Iterated
Prisoner’s Dilemma (IPD) game with noise.

In the sense of the objective a black-box strategy is defined as a strategy which
outputs an action a when presented with a game state s but where we are not able
or willing to analyze its explicit plan of action.
We distinguish between the concept of a best response and the so called best answer.
A best response is the game-theoretic optimal counter-strategy s∗ as defined by the
rules of the IPD game in Section 2.1.1. The maximum achievable expected average
reward R̄(s∗) by definition is given by the performance of a best response. By design
the machine learning framework of Section 2.2 allows us to use the machine learning
concept of a best policy π∗ and the best response s∗ interchangeably. In the sense of
the objective it is therefore sufficient to find an algorithm which converges against
the best policy.
The best answer by contrast is the counter-strategy s which shows the best known
performance R̄(s). Hereby it is of no relevance whether this strategy is given by an
explicit plan of action or has been derived as a machine learning policy. If a best
response is known, than it is automatically also the best answer. However, deriving
a provable best response might be unfeasible as the game state space might be large
and the strategy stochastic. If no exogeneously given counter strategies are known a
sequence of increasingly better performing policies π define a new best answer with
each new best policy. To find a best answer therefore means to find a policy π which
is better than all known alternatives.
There exist several algorithms which are guaranteed to find a best policy given an
infinite amount of time. We focus on automatically generating a good counter-policy
given a finite time frame. This way, it is possible to evaluate the susceptibility of a
given strategy to dedicated counter-strategies without having to manually analyze it.
In Section 3.2 it can be seen, that using the performance of the found counter-policies
is a viable alternative to hand-crafting best answers, even if the source code of the
strategy is known.
The detailed algorithm can be found within the R-Package Kies (2019) on GitHub,
including some working samples. The foundation of the algorithm is the Q-Learning
algorithm with function approximation and ε-exploration (see Sections 2.3.3 and
2.3.4). The proposed modifications should therefore be interpreted as modifications
to this baseline.

51

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

The following modifications to the Q-Learning algorithm are analyzed:
1. Q-Switching - In the initial phase of the learning process the state-action

values generated by Q-Learning might be unreliable. Q-Switching uses the
Monte Carlo Values of the experienced episodes to kick-start the learning.
During the learning process a seamless transition to Q-Learning takes place.

2. Multi-Exploration - Instead of a single exploration variant, up to four dif-
ferent ways to explore the policy-space can be combined: ε-exploration (see
Section 2.3.3), noisy actions (similar to Boltzmann exploration), maximizing
surprise and minimizing familiarity.

3. Exploration Pathing - The standard method to use ε-exploration is to
lower the exploration parameter ε in a predefined way. Exploration pathing
automatically changes the exploration parameter based on the impact of the
parameter on the performance of the current policy. This enables us to pre-
specify a certain impact of the exploration parameter at a given time in the
learning process and allows the usage of Multi-Exploration in a controlled
fashion by balancing their exploration parameters to each other.

4. Feature Selection - The power of the algorithm is strongly determined by
how the current state is presented to it. Simply providing raw data (or only
the last X periods) makes it generally harder for a function approximator to
find exploitable patterns. The used state-space representation adds calculated
features to the raw history of the game, as for example the sum of cooperations
of the opponent.

5. Choice of Function Approximator - The main focus in the literature
of reinforcement learning is on neural networks. Using a different function
approximator as for example gradient boosting can significantly improve the
quality of the result given time constraints while at the same time providing a
more robust result.

6. Experience Replay - Instead of updating the function approximator itera-
tively after each action or episode, the data is stored and batches are used to
train the function approximator after a certain number of episodes. This allows
the use of non-updating function approximators like gradient boosting.

7. Model Persistence - Instead of solely using the most recent model for future
actions, both the currently best model and the newest model are used to
generate data. If the best model is preceded by the most current one, it is
replaced. Model Persistence helps to increase the stability of learning and to
avoid local optima.

8. Memory Initialization - Assume that a strategy plays a key action sequence
to identify and subsequently cooperate with other variants of itself. Memory
Initialization sets the strategy against itself and adds these experiences to the
memory pool. This allows the algorithm to copy these action sequences without
having to discover them itself.

52

Electronic copy available at: https://ssrn.com/abstract=3556714

3.1. Overview

The novelty of these modifications ranges from “proposed by this article” (Q-Switching,
Multi-Exploration, Exploration Pathing, Model Persistence) over “novel in its ap-
plication to the IPD game” (Choice of Function Approximator, Experience Replay,
Memory Initialization), sometimes with adaptations to reflect the specific challenges
of the game, to “extension of existing approaches” (Feature Selection). Each modifi-
cation has its own section, discussing it in more detail. Here, we discuss the extent
to which the modifications are new ideas and compare them to similar approaches
pursued in the literature.
In the these sections we also explore to which extent the modification improves
the general performance within our setting (see Section 3.3) or only given special
circumstances. The concept behind noisy actions for exploration for example is
a well-known alternative to ε-exploration and can improve the performance of an
Q-Learning algorithm (see e.g. Tijsma et al. (2016) for a comparison of exploration
strategies given mazes). However, given the specifics of our game, exchanging ε-
exploration with noisy actions does not add any significant benefits. In this article
we not only present novel extensions to the Q-Learning algorithm in general, but
also shed light on the usefulness of known extensions given the challenges of the IPD
game.
Within this article we concentrate on the performance of the algorithm given an
IPD game with noise. Nevertheless, with the exception of the game-specific Feature
Selection, all modifications are game-independent and can be applied to learning
processes in the context of other games. To do so, these games have to match the
general framework laid out in Section 2.2.
A pseudo-code-like overview of the general structure and basic composition of the
algorithm is presented in Appendix C.
The remainder of this section is organized as follows: Section 3.2 discusses the perfor-
mance of the algorithm as a whole as well as the potential for possible improvements.
The subsequent sections dive into the specific modifications. Section 3.3 describes
in detail how the modification-specific studies have been conducted. Sections 3.4 to
3.11 focus on the individual modifications. Section 3.12 gives a summary of the most
important results and motivates the exact configurations which were used for the
final performance tests in Section 3.2.

53

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.2. Performance

The performance of the algorithm making use of the full extent of its capabilities
in regards to the classical strategies (Section 2.1.2) playing the IPD game (Section
2.1.1) are shown in Figure 10. Which modifications were used to which extent is
summarized in Section 3.12.

0.0

0.5

1.0

1.5

2.0

alw
ay

s.c
oo

p

alw
ay

s.d
efe

ct

co
nt

rit
e.

tit.
for

.ta
t

ge
ne

ro
us

.tit
.fo

r.t
at

gr
im

.tr
igg

er

ne
t.n

ice
0

pa
vlo

v

ra
nd

om
.a

cti
on

tft
.2

for
giv

e

tit.
for

.ta
t

Strategy

F
in

al
 a

ve
ra

ge
 p

ay
of

f

best answer algorithm (XGB) against itself

Figure 10: Final results of the developed algorithm against the classical strategies discussed
in Section 2.1.2 given an IPD game played with the rules as outlined by Section 2.1.1. Shown
is the estimated expected average reward after a single run of the algorithm on an arbitrary
chosen seed with a limitation to 60 periods per game. “Best answer” is the performance of
the corresponding best answer strategy or the theoretical expected average reward of the
best response, when available. “Algorithm (XGB)” used gradient boosting and 150 updates
of the function approximator. Between each update of the function approximator the game
was played for 4 episodes. “Against itself” displays the performance of the strategy against
itself. The error bars represent the standard errors of these results based on the methods
of Cochran (1977) after 1000 simulated games using the R-package StratTourn (Kranz and
Kies, 2019) with a maximum period limit of 60 periods. If the result could be calculated
explicitly, this result is shown.
The detailed settings can be found in Appendix H and the R-package Kies (2019).

In all cases except against tit.for.tat the algorithm performs at the same level as
the best answer despite the very noisy environment. As the classical strategies are
not black-box strategies and comparatively trivial to optimize against, the shown
best answers are all best responses. Even in the case of tit.for.tat the algorithm only
performed marginally worse than optimal.

54

Electronic copy available at: https://ssrn.com/abstract=3556714

3.2. Performance

An illustration on how these results have been derived is shown in Figure 11.
60 periods per episode

...

...

...

...

4 episodes

per block

...

...

...

...

...
...

...

...

...

Update
function

approximator

Update
function

approximator

150 / 500 blocks

Play 1000 times
against strategy

Average results

Figure 11: Schematic representation of the generation of the results of Figure 10 and
Figure 12. A block consists of 4 episodes à 60 periods where the algorithm plays against the
strategy. After each block the function approximator is updated. This is repeated 150 or
500 times depending on the analysis, as specified in the respective figure. The final policy is
set 1000 times against the strategy using the R-package StratTourn (Kranz and Kies, 2019),
taking into account the period cap of 60 periods. The average result of this analysis is the
displayed final average reward.

While the performance against the classical strategies poses a good test of robustness,
it does not allow for an adequate evaluation on how the algorithm would fare against
more complicated strategies. The classical strategies tend to be simple and easy to
optimize against. This does not necessarily hold true for arbitrary strategies humans
might find fitting for tournament participation. Generally speaking, evaluating
the performance of machine learning algorithms is difficult, as the effectiveness of
a particular change in an algorithm strongly depends on the underlying problem.
Even given a specified environment (e.g. the Iterated Prisoner’s Dilemma game)
deviations (e.g. changing the complexity of the strategy of the opponent) can and
will significantly influence the performance of a learning algorithm. This change
not only impacts the absolute performance level, but can also change the relative
performance of different variants of learning algorithms to each other.
A standard approach to evaluate a new learning algorithm is to run it, as well as
proposed counter candidates, on a set of specified environments. A popular choice
for such environments are for example ATARI games (see e.g. Kaiser et al. (2019),
Hessel et al. (2018)). If the new algorithm scores higher in an aggregated metric, one
has some indication that it provides value. Examples for such metrics are the sum of
games an algorithm outperforms its opponents or the mean over standardized scores
which can be calculated in each environment.
We are interested in the performance of our algorithm given economic games with a
strong focus on the IPD game. Of special interest to us are strategies which have been
developed by humans expecting that their strategies should fare well in a tournament.
These strategies inhibit two important features: On the one hand they are special in
the sense, that they are not arbitrary candidates of the strategy space but actually
expected to be good, and thus relevant, strategies. On the other hand they might
be much more complex than the classical strategies and possess hard to find flaws
which can be exploited. Having such a pool of strategies would therefore be a natural
environment to test our algorithmic modifications.

55

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

The Institute of Economics at Ulm university hosted a tournament where participating
students developed strategies for the IPD game. The students were tasked to set up
teams and to

1. Develop a strategy which will perform well in a tournament setting and is
stable against attackers as a first stage of their task.

2. Build individual counter-strategies against the strategies of the other teams as
a second stage.

This tournament provided the input to build our testing pool. In contrast to the
strategies of the Axelrod tournament (Axelrod, 1984) it also provides corresponding
best answers as a benchmark and normalization factor of our performance tests.
The strategies of our testing pool have been developed to behave identical to the
strategies of the student teams of the first stage of the tournament. Based on the
ideas of the counter-strategies of the second stage I developed a set of corresponding
best answers.
Each used best answer matches at least the performance of all corresponding counter-
strategies provided by the second stage of the tournament. These best answers are
not necessarily the actual game-theoretic best responses. In fact in one case, with
strategy strat.i, our algorithm has been able to generate a policy which achieves
a higher average reward than the hand-crafted best answer. Despite this result,
one should have high confidence that improving upon the best answers is at least
non-trivial. For most strategies the very same counter-strategy has been submitted
in the second stage, giving some indication, that a best response might have been
found. The results of the algorithm against the testing pool are shown in Figure 12.
To mirror the situation against the classical strategies, the algorithm variant “alg.
(XGB)” was deployed with the same configuration for Figures 10 and 12.
In contrast to Figure 10, Figure 12 shows two additional variants of learning algorithms
against the testing pool strategies:

1. While the standard configuration “alg. (XGB)” used gradient boosting for a
fast development of the policy, the configuration “alg. (RNN)” used a recurrent
neural network with LSTM-cells. Additionally, this alternative configuration
ran longer both in terms of computation-time as well as the number of played
episodes. Furthermore, it was allowed to update its function approximator
more often with 500 updates compared to the “alg. (XGB)” variant with 150
updates. This configuration allows to estimate the upper limits of the algorithm
lacking time constraints.

2. The configuration “Q-Learning” is included as a benchmark. Its parameters
were optimized based on the studies of the following sections but it did not
use the modifications which are proposed by this article. To make for a fair
comparison, it uses the same number of played episodes and updates of the
function approximator as “alg. (XGB)”.

56

Electronic copy available at: https://ssrn.com/abstract=3556714

3.2. Performance

0.0

0.5

1.0

1.5

str
at

.a

str
at

.b

str
at

.c

str
at

.d

str
at

.e
str

at
.f

str
at

.g

str
at

.h
str

at
.i

Strategy

F
in

al
 a

ve
ra

ge
 p

ay
of

f

best answer alg. (RNN) alg. (XGB) Q−Learning against itself

Figure 12: Final estimated expected average reward of the developed algorithm against
the training pool after a single run on an arbitrary chosen seed with a limitation to 60
periods per game. “Best answer” is the performance of the corresponding hand-crafted
best answer strategy. “Alg. (RNN)” used a Recurrent Neural Network with LSTM-cells
and 500 updates of the function approximator. “Alg. (XGB)” used Gradient Boosting and
150 updates. “Q-Learning” used basic Q-Learning without the modifications proposed by
this article but otherwise optimized parameters. It used ε-exploration, a neural network,
the feature selection of Harper et al. (2017) and 150 updates of the function approximator.
Between each update of the function approximator the game was played for 4 episodes in all
configurations. “Against itself” displays the performance of the strategy against itself. The
error bars represent the standard errors of these results based on the methods of Cochran
(1977) after 1000 simulated games using the R-Package StratTourn (Kranz and Kies, 2019)
limited to 60 periods.
The detailed settings can be found in Appendix H and the R-Package Kies (2019).

On average, we achieved a final difference in average rewards to the best answer of
-0.013 [-0.019 without strat.i] with the more powerful recurrent neural network run
and -0.049 [-0.047 without strat.i] with the gradient boosting run given the testing
pool. The Q-Learning run achieved -0.13 [-0.147 without strat.i]. In other words,
using the proposed modifications to Q-Learning reduced the distance to the best
answer by 62% [68% without strat.i] in the aggregated view and using the same
number of episodes and updates of the function approximator.

57

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

Both, the gradient boosting run and the normal Q-Learning run, took about 40
minutes run time per strategy. The recurrent neural network run lasted about 8
hours per strategy. The basis for these times is the implementation of the algorithm
by the R-package Kies (2019) and using a notebook as specified by Appendix
G.7. The presented run times correspond to the time difference between starting the
algorithm and having calculated the final model, without considering the performance
measurement phase with the StratTourn package. Note, that the figures of the
following sections show a final performance difference of around -0.1. These studies
were conducted on a limited function approximator and used fewer updates and
episodes than the final performance tests. To achieve this result, which lies between
the performance of the gradient boosting run and the Q-Learning run, the algorithm
ran approximately 10 minutes per strategy. In other words, even if one is content with
a performance level as displayed by the Q-Learning run, one can use the modifications
of this article to quarter the necessary run time.
Assessing the performance in regard to the individual strategies, we were always able
to improve upon the strategy against itself. In most cases we effectively matched
the best answer. The worst result was against the comparatively complex strategy
strat.c which uses a Bayesian updating rule to detect exploitation. The recurrent
neural network run achieved the best results on average but not for each strategy
individually. Gradient boosting performed better with strategies which are based on
simple rules. These strategies are more easily captured by the specific encoding of
the Feature Selection which favors gradient boosting. If one has sufficient resources,
it might thus be beneficial to run both approaches and then use the best resulting
policy. This procedure exploits the different strengths of the different function
approximators.
The recurrent neural network run beat classical Q-Learning in every single instance.
The same does not hold true with the more comparable gradient boosting run. Here,
the algorithm beat Q-Learning 7 out of 9 times, with 5 substantial improvements.
Q-Learning beat the gradient boosting 2 out of 9 times with only one meaningful
difference. This difference could be achieved with the peculiar case of strategy strat.i.
Notably, the standard Q-Learning algorithm failed to beat the performance of the
strategy against itself in 3 out of 9 cases.
Strat.i shows deviating results from the other strategies and as such merits a deeper
analysis. The source code of both the strategy and its proposed best answer can be
found in Appendix F.9. The strategy is quite complex, changing thresholds when
to defect throughout an episode. The proposed best answer is to always cooperate
when the opponent observed a defection of the strategy and defect otherwise. This
counter-strategy can be played by directly mapping the simpler Feature Selection of
Harper et al. (2017) to the to be taken action. This Feature Selection of Harper et al.
(2017) has been used for the classical Q-Learning run. As a consequence it was able
to capture this counter-strategy perfectly. The configuration of the gradient boosting
run is able to produce policies of same complexity. This can be observed in Figure
10 against the classical strategies. The best response against strat.i however is not
this specific counter-strategy, as can be seen by the performance of the recurrent

58

Electronic copy available at: https://ssrn.com/abstract=3556714

3.2. Performance

neural network run. While the standard Q-Learning is trapped in the local optimum
of the proposed best answer, the gradient boosting run is not. In this case this leads
to a worse result, as the gradient boosting run correctly identifies the proposed best
answer as non-optimal, but fails to produce a better policy.
Figures 10 and 12 have both been generated based on a single run on a single
parameter set on an arbitrary chosen seed. Using multiple runs this result may easily
be improved upon, as the resulting model is always subject to stochastic draws within
the learning process. For that, one simply runs the algorithm multiple times using
different stochastic seeds and takes the best generated policy.
Using hyperparameter tuning - especially on a per strategy level - will also improve
the results. As this procedure increases training time immensely, I have refrained
from doing so. Another meta-approach which increases training time is to run the
algorithm repeatedly using a changing complexity of the underlying feature set. The
results regarding strat.i highlight how a local optimum might still be better than
chasing the global optimum.
All results shown in Figures 10 and 12 are generated using a limit of Tmax = 60
periods. The results of the recurrent neural network configuration tested in an infinite
period setting are comparable and can be found for each strategy in Appendix F.
While the training took place on 60 periods, the recurrent neural network was able
to interpolate the policy exceeding the period limit.
A variety of other improvements of Q-learning exist, which are notably combined in
the state-of-the-art algorithm Rainbow by Hessel et al. (2018). Further research might
reveal whether the improvements by Rainbow, which were tested on ATARI-games,
are helpful for our case and which of my modifications may be worked into Rainbow
to further enhance performance.
While the performance results of this section highlight that the algorithm is able to
develop good counter-policies, they do not provide insights in respect to the relative
importance of the different proposed modifications. A detailed analysis is given in
the following sections.

59

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.3. Approach of Analysis

In most cases the proposed improvements to the basic Q-Learning algorithm fall in
one or both of two categories:

1. Improvements which increase the final performance of the generated policy.

2. Improvements which increase the speed of learning measured by the number
of played episodes - mostly due to improved data processing or by improving
exploration.

Improvements of the first category can be shown using a performance test analogously
to the studies of Section 3.2. However, to gauge the effects of the second type of
improvement one would ideally perform such a test after each policy change. Indeed,
the package RLR - Reinforcement Learning with R (Kies, 2019) does allow for a
dedicated evaluation of the performance of the current policy after each update of
the function approximator.
Since the game itself, the update of the function approximator, and the exploration
methods all inhibit stochastic elements, it is necessary to repeat all runs sufficiently
often to show whether changes to the algorithm are significant. To draw general
conclusions which are not limited to specific features of individual strategies, one
has to repeat the analyzes for every strategy within the testing pool. A performance
measure analogously to Section 3.2 after each update of the function approximator
is therefore very time-consuming. Instead, we exploited an inherent feature of the
algorithm, the so called best effort episode. In this case after each update of the
function approximator an episode is played according to the most recently developed
policy without any type of exploration. Since an update of the function approximator
is a necessary requirement for a change in the played policy, this approach guarantees
that at least one episode is played for each developed policy.
We call a block the set of played episodes between two updates of the function
approximator. A standard block uses a single best effort episode in addition to a
single exploration episode. Unless noted otherwise, these standard blocks are used in
the subsequent sections.
A graphical representation of the used approach is shown in Figure 13. It shows,
how periods, episodes, blocks, and runs are nested into each other. The runs are
all independent and used to eliminate stochastic effects with respect to the learning
behavior of the algorithm as well as to aggregate over all strategies of the testing pool.
Unless noted otherwise, each strategy always provided the same number of runs in
each analysis. Comparisons take place across different sets of such runs, were within
each set all parameters remained unchanged, except for replacing the strategies. The
different sets of runs differ in their use of the to be analyzed modification of the
algorithm.

60

Electronic copy available at: https://ssrn.com/abstract=3556714

3.3. Approach of Analysis

Update function approximator

...

...
(best effort) episode

(exploration) episode
block i=1

...

...
(best effort) episode

(exploration) episode
block i=2

. . .
...
...

(best effort) episode

(exploration) episode
block i=100

t

Pi=1,j=1
i

run j=1

. . . run j=2

run j=#j

j

Pi=1,j=1

Pi=100,j=1

Update function approximator

...

...
(best effort) episode

(exploration) episode
block i=1

...

...
(best effort) episode

(exploration) episode
block i=2

. . .
...
...

(best effort) episode

(exploration) episode
block i=100

t

Pi=1,j=1
i

run j=1

. . . run j=2

run j=#j

j

Pi=1,j=1

Pi=100,j=1

Update function approximator

...

...
(best effort) episode

(exploration) episode
block i=1

...

...
(best effort) episode

(exploration) episode
block i=2

. . .
...
...

(best effort) episode

(exploration) episode
block i=100

t

Pi=1,j=1
i

run j=1

. . . run j=2

run j=#j

j

Pi=1,j=1

Pi=100,j=1

Figure 13: A schematic of how the data of the figures of Sections 3.4 to 3.11
have been generated, unless noted otherwise. Each run consists of 100 blocks of
two episodes each. In each block a best effort episode and an exploration episode is
played. The best effort episode is played optimally according to the most recently
generated policy, while the exploration episode takes suboptimal choices to generate
information about the environment. After each block the function approximator is
updated, which most likely leads to a change in the policy. Each episode is an IPD
game, consisting of 60 periods. The performance indicator Pi,j is calculated based
on the best effort episode of block i in run j.

As the testing pool strategies differ in their average expected reward up to a factor
of 2, we introduce the standardized performance measure for block i of run j

Pi,j = Rbest
T − 1− γ

1− γT ·
T∑

t=1
γt−1rt,i,j

where rt,i,j is the reward for the policy in period t, block i and run j of the best effort
episode. Rbest

T is the numerically generated expected average reward of the proposed
best answer of the considered strategy limited to T periods. The Rbest

T for each
strategy can be found in Appendix F and have been generated using 1000 episodes.

61

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

The correction factor (1−γ)/(1−γT) accounts for the limited number of periods.
The performance indicator Pi,j is a numerically generated variant of δR from Equation
2 in Section 2.1.1. Each generated Pi,j is the realization of a random variable due
to observation errors inherent to our version of the IPD game and might therefore
take different values even given the same generating policy. In fact, some episodes
generated a performance measure Pi,j which is larger than zero even were the proposed
best answer was indeed a best response.
Optimally, the performance of the algorithm is evaluated in a setting of indefinitely
often repeated periods. For practical reasons however we chose a cut-off T = 60
after which we assumed all further rewards to be negligible, in analogy to Section
3.2. One might argue, that the algorithm was able to learn an end-of-episode effect,
as it is always optimal to defect in the last period. Generously assuming that this
last period would have been a cooperation otherwise, this does indeed bias our result
- assuming the algorithm achieves to learn this effect - with a value of approximately
0.002. The end-of-episode effect is thus negligible compared to the effect sizes of the
analyzed modifications.
There are two main approaches to reduce noise that allow for a comparison of
parameter sets and their speed of learning:

1. Aggregate all runs of the same parameter set over Pi,j with fixed block i to
some measure

P̃i =
∑

j

Pi,j

The indicator P̃i shows the average performance of the given parameter set at
block i. Comparing P̃i given different blocks i does allow to observe the speed
of learning.

2. Use a smoothing function within each run j, where each data point P̃i,j is
calculated by combing neighboring blocks i, e.g. using kernel smoothing.

The first approach allows for a fine view on the actual convergence of the algorithm
over blocks. Solely relying on this approach is however time consuming because of the
large number of runs necessary to obtain a sufficiently smooth, interpretable curve.
The second approach might obfuscate the exact block number where a paradigm shift
takes place, but since the performance of the algorithm tends to shift smoothly on
aggregate, using neighboring data points allows for a better exploitation of our data.
To limit necessary run time, we combined both approaches. Using a localized triangle
kernel with 12 blocks to either side, the results within a run were smoothed and
aggregated afterwards across several runs of the same parameter set. This defines an
aggregated measure Pi for each block.
An example of plotting this smoothed indicator Pi is presented in Figure 14, here
for the modification Q-Switching. The difference to zero can be interpreted as the
remaining learning potential, given that the best answer Rbest

T is indeed optimal.
Across Sections 3.4 to 3.11 we will use analogous figures to highlight the learning
properties of the algorithm.

62

Electronic copy available at: https://ssrn.com/abstract=3556714

3.3. Approach of Analysis

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Q−Learning
Q−Switching
Monte Carlo
Against themselves

Figure 14: Exemplary convergence using the improvement Q-Switching.

The figures always show the performance of different parameter sets given a baseline
algorithm. These changes are for example variations in the specifics of a modification
or the existence the modification itself. The baseline algorithm used the modifications
Q-Switching, a Multi-Exploration with a combination of ε-exploration and noisy
actions, Exploration Pathing, the main encoding as defined by Section 3.7, the
function approximator gradient boosting and Experience Replay but neither Model
Persistence nor Memory Initialization.
The shaded areas behind the lines are 95%-confidence intervals as calculated according
to the methodology of Morey (2008). Here, the differences between strategies are
normalized to reflect a within-subject design. Additionally, a dashed black line
denotes the average performance of each strategy against itself as a basic benchmark.
In those cases, where we want to compare a sizeable number of variants and are
mainly interested in the final performance after training, we use the type of chart
presented in Figure 15. Here, only the vary last block P100 with corresponding
confidence intervals is shown. As with the figures varying across blocks, the dashed
line shows the average performance of each strategy against itself.
In expectation, using more blocks leads to a better final performance. However, with
an increasing number of blocks the marginal rate of improvement shrinks. Since
each block costs computational resources, the training was limited to 100 blocks as a
compromise between resources and final performance.

63

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

A more powerful function approximator (e.g. more trees for gradient boosting
or more neurons in the case of a neural network) would improve the results of
the algorithm as well5. This however would also increase necessary computational
resources. In contrast to Section 3.2, a less powerful and more resource efficient
function approximator has been used. This allowed us to run a sufficient number
of runs to show significant effects. The specific parameters of the used function
approximator are referenced in the corresponding sections. These less powerful
function approximators explain the worse overall performance displayed in Sections
3.4 to 3.11 compared to the performance test of Section 3.2.

−0.3

−0.2

−0.1

0.0

Q−Learning Q−Switching Monte Carlo

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 15: Exemplary performance at block i = 100 to show final performance.
Here, the same data as in Figure 14 is presented. The dashed line shows the average
performance of each strategy against itself.

5While increasing the number of blocks practically always improves or at least does not reduce
performance, a similar effect does not necessarily hold true in the case of increasing the power of
the function approximator. A very powerful function approximator in combination with a low
number of blocks leads to overfitting of the training data. If one wants to increase the power of
the function approximator, one has to increase the number of blocks in turn as well.

64

Electronic copy available at: https://ssrn.com/abstract=3556714

3.4. Q-Switching

3.4. Q-Switching

Recall (see Section 2.3.3) that the update rule of Q-Learning is

Q(s, a)← (1− α)Q(s, a) + α

[
r + γmax

â
Q(s′, â)

]

where (s, a, r, s′) are observed values of the tuple (St, At, Rt, St+1) from one of the
played episodes.
On-policy Monte Carlo learning for a fixed policy and non-approximated state-action
pairs under the assumption that each state can only be visited at a specific time t
uses

Q(s, a) = 1
N

N∑

i=1

T−t∑

k=0
γkr

(i)
t+k

Here, N is the number of visitations of the given state-action pair (s, a) and r(i)
t+k

the historic reward in period t+ k after its i-th visitation. The outer sum calculates
the mean reward of all discounted rewards which have historically been experienced
based on state s when taking action a.
The notation becomes more complex when encoding the states in a way that infor-
mation is lost. Encoding for example each state with only its last X periods might
group multiple distinct states. This grouped state representation might be visited
several times within the same episode and at different times t across several episodes.
Additionally, a function approximator might collapse distinct states onto grouped
state representations as well.
As is detailed in Section 3.7, we used an encoding which includes a period counter.
Consequently, the encoding does not collapse states of different periods by itself. Un-
less noted otherwise, an encoded state by construction can thus only be experienced
once and at a specific point t within an episode. Using this encoding also implies,
that the distinction between every-visit Monte Carlo and first-visit Monte Carlo is
obsolete in our case. For the sake of simplicity, we will keep the notation despite the
usage of a possibly collapsing function approximator to focus on the key elements of
Q-Switching.
Q-Switching combines Monte Carlo learning and Q-Learning by changing the update
rule to

Q̃(s, a) = (1− α)Q(s, a) + α ·
[
r + γmax

â
Q(s′, â)

]

QMC(s, a) = (1− αMC)Q(s, a) + αMC ·Q(i)
hist(s, a)

Q(s, a)← (1− w)Q̃(s, a) + w ·QMC(s, a)

with

Q
(i)
hist(s, a) =

T−t∑

k=0
γkr

(i)
t+k

65

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

The learning rate αMC ∈ (0, 1) measures how strong the updating element Q(i)
hist is

weighted and is conceptually identical to the learning rate α. The weighting factor
w ∈ [0, 1] balances Q̃ and QMC and therefore the weight which should be put on the
Monte Carlo part of the update.
The value Q̃ is built according to Q-Learning while Q(i)

hist is the historic Monte Carlo
value of some episode i. Without Experience Replay (see Section 3.8) and without
using several episodes per block for the update of the function approximator, episode
i is by definition the most recent episode. Otherwise Q(s, a) is updated according to
the specific rewards experienced in the former episode(s) currently used in the replay.
To allow learning from single state-action pairs instead of complete episodes, it is
necessary to save the tuple (s, a, r, s′, Q(i)

hist) into the memory instead of (s, a, r, s′).
The value Q(i)

hist is only calculated once for each experienced state-action pair after
completing the episode and is not updated with information of new episodes in
contrast to normal Monte Carlo Learning. This prevents not only costly searches and
recalculations but also allows us to forego possibly induced variance of the function
approximator.
The weighting factor w is not constant, but rather calculated separately for each
update of the function approximator. For early updates, the parameter w is set to
high values and is reduced afterwards. For the purposes of our analyzes we started
with w = 1 and decreased w by 10% with each function update. Alternative rules to
decrease w lead to similar results. To reduce computational resources, one can for
example refrain from calculating QMC if w is small enough to have no discernible
impact. If w converges towards zero, Q-Switching converges towards Q-Learning
and consequently inherits the same properties. If one for example uses ε-exploration,
Q-Switching converges towards the optimal policy given that the rate of convergence
of w towards zero is higher than the one of ε.
The basic intuition to use Monte Carlo learning is that it stabilizes and jump-starts
the learning process. As mentioned in Section 2.3.2, Monte Carlo is a viable choice
if the underlying problem does not rely too much on the Markov property. This
might for example be the case if the to be countered strategy actively uses the
current period number or a long history of observed actions to determine its next
action. Additionally, Monte Carlo learning shows a better performance, if the first
few periods determine actions of much later periods. Here, Q-Learning has to use
a lot of update cycles to propagate the Q-Values through the periods. This effect
becomes more relevant given a very high discount factor γ and a high maximum
period limit T .
Another advantage of Monte Carlo learning is, that in the early stages of the learning
process the value of max

â
Q(s′, â) is inaccurate. A strong dependence on the function

approximator to correctly extrapolate from past experiences is the result. The value
Q

(i)
hist on the other hand is known and well defined by former episodes and can thus

be used more reliably.

66

Electronic copy available at: https://ssrn.com/abstract=3556714

3.4. Q-Switching

Monte Carlo learning has the major disadvantage that one does not receive accurate
Q-Values of the best policy. Instead, the calculated values represent the specific
policy used when generating (s, a, r, s′, Q(i)

hist). This leads to two major effects:
With an increasing number of played periods, the algorithm should be able to improve
its actions and receive higher rewards than historically observed. For this reason,
the value Q(i)

hist becomes inherently more untrustworthy compared to max
â

Q(s′, â)
the more the understanding of the environment increases. When using Experience
Replay, i.e. updating the function approximator based on historic observations, older
episodes might thus misrepresent the actual values which can be achieved by taking
a certain action. Section 3.8 shows, that it is beneficial to use these older episodes to
boost the rate of learning. Simply using only the very last episode is therefore not a
viable alternative.
The other effect is, that even if one limits oneself to the very last episode, Q(i)

hist is still
influenced by the occurring exploration and is therefore not a correct representation
of the optimal policy. Imagine for example a situation where we must chose between
two general ways of playing: On the one hand, we can play a very specific string
of actions to receive a high reward. This comes at the cost of receiving a very low
reward if we deviate slightly. On the other hand we can play a safe policy which
always generates a medium reward. Using Monte Carlo learning based on exploration
episodes, which sometimes play suboptimal actions, lets us severely underestimate
the potential of the first path.
One can mitigate the effect of learning from suboptimal policies by using so-called
importance sampling. Here, data from a suboptimal exploratory policy is used to
improve the understanding of the optimal policy by weighting the rewards according
to the similarity of the policies. This, however, is computationally expensive and
might introduce a lot of variance into the results (Silver, 2015, lecture 5, p. 37).
Q-Learning, by contrast, does not need importance sampling (Silver, 2015, lecture
5, p. 39) and works well with Experience Replay. Here an accurate model of the
environment can be build by the function approximator. This makes Q-Learning
a good choice to find the optimal strategy. However, the major drawback is, that
it takes several updates of the function approximator to transport the information
of a good early decision back to the state where the decision was made. In fact, in
early tries using a neural network as a function approximator and only the average
expected reward of the episode as learning input all useful information got lost in the
variance of the function approximator. Consequently, the algorithm did not converge
against a high performing policy. Using a Monte Carlo approach fixed this problem,
which suggests, that the advantages of Q-Switching are even more pronounced in a
setting with sparse rewards or in games with a very long duration where the opponent
uses the complete history to make decisions.

67

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

By using Q-Switching, we are able to benefit from the advantages of Q-Learning
and the Monte Carlo approach: Early on the Monte Carlo approach sets the state
from which a more refined policy can be developed. Interestingly, using Q-Switching
also works even if the exploration strategy is completely random at this point of
the learning process and one might thus expect Q(i)

hist to be quite inaccurate. Still, a
sufficiently powerful function approximator is able to infer that on average certain
combinations of actions lead to good or bad outcomes and estimates the corresponding
actions accordingly. While the estimated values Q(s, a) might be inaccurate, the
order of actions in terms of added value might still be correct, leading to a good
policy. With increasing number of episodes and updates of the function approximator
the understanding of the environment increases, allowing the algorithm to face more
complex combinations, which makes it beneficial to increasingly switch to Q-Learning.
The difference of the convergence between pure Monte Carlo learning as specified by
QMC, Q-Learning and Q-Switching is shown in Figure 16.

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Q−Learning
Q−Switching
Monte Carlo
Against themselves

Figure 16: Comparison of Q-Learning (blue, dotted), Q-Switching (dark turquoise,
dot-dashed) and Monte Carlo learning based on QMC (green) according to the
methodology described in Section 3.3.
The Q-Switching weight w starts at unity and decreases by 10% each block. We
chose α = αMC = 0.25 for all variants. Each calculation is based on 50 runs of each
of the strategies. For the specific parameters we refer to Appendix G.2.

68

Electronic copy available at: https://ssrn.com/abstract=3556714

3.4. Q-Switching

We see that Q-Switching develops a suitable policy much faster in terms of number
of necessary blocks compared to both pure variants. In the beginning, Q-Switching
and Monte Carlo learning are identical, so they show a very similar performance. By
allowing Q-Learning to take over, Q-Switching is able to generalize the necessary
patterns to improve the performance over both pure approaches. While all three
approaches seem to converge towards the same value6, even after 100 blocks Q-
Learning was not able to catch up to Q-Switching.

strat.e strat.f

0 25 50 75 100 0 25 50 75 100

−0.8

−0.6

−0.4

−0.2

0.0

Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Q−Learning
Q−Switching
Monte Carlo
Against itself

Figure 17: Comparison of Q-Learning (blue, dotted), Q-Switching (dark turquoise,
dot-dashed) and Monte Carlo learning based on QMC (green) according to the
methodology described in Section 3.3 for the strategies strat.e and strat.f.
The Q-Switching weight w starts at unity and decreases by 10% each block. We
chose α = αMC = 0.25 for all variants. For the specific parameters see Appendix G.2.

The optimal approach depends strongly on the examined strategy. From Figure 17
we see, that neither approach is always the best. Here, we chose the most extreme
strategies based on their final performance in regards to Q-Learning and Monte Carlo
Learning.

6All figures within this section have been generated with the same Exploration Path with a final
target exploration value of 99% at block 100. As Monte Carlo learning in our implementation is
strictly on-policy learning, it is expected that the final value of Monte Carlo learning is slightly
lower due to the exploration effects. Given our specific setting, this effect lowers the expected
average reward of the final block by approximately 0.005.

69

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

Both strategies are described in detail in Appendix F, but the key difference can be
summarized as follows:
strat.e is a grim.trigger-like strategy which defects with some random component.
The best answer cooperates until it detects that observation errors have triggered
strat.e and defects afterwards. Finding a good policy is thus a question of identifying
whether the strategy is triggered or not. The strategy uses the complete observed
history to check whether it should be triggered, so it is not sufficient to check the
last few observations. Optimally, the algorithm is able to detect the trigger condition
at the same time as strat.e itself. As a second best, the algorithm might recognize
whether the strategy has been triggered after the fact and change to an always-defect
mode. In both cases one is not able to mitigate the negative effects by playing
specified patterns. Once triggered, all subsequent Q-Values are considerably worse
than before the triggering. Given the situation that the next action might trigger
strat.e and both actions have been experienced in the past, Monte Carlo learning
shows a clear difference in the evaluation of those actions, even if a pure random
policy is played in the subsequent periods. Q-Learning on the other hand has to use
several updates to pinpoint the exact situation where the triggering happened.
This in mind, one can influence the performance of Q-Switching: If one suspects
a path dependence, the performance of Q-Switching can be considerably increased
by modifying the changing-rate of the switching parameter w. The higher the path
dependence, the longer the algorithm should stay with Monte Carlo learning and vice
versa. This effect is further highlighted by comparing the performances in regard to
strategy strat.f.
Strategy strat.f does not take into account a long history. The best answer against
this strategy needs the last 4 periods of data to determine the best course of action.
Here, Monte Carlo learning loses all its advantages, as it is not possible to make
a lasting mistake and there is nearly no path dependence. Q-Learning is quick in
determining the optimal pattern and stays there, as there is no necessity to attribute
a bad reward to a far-away action. Q-Switching takes much longer to converge
because it has to unlearn all path dependencies which where implied by its Monte
Carlo aspect.
Having the extreme examples of strat.e and strat.f in mind, it might be possible
to improve upon the mechanic decrease of the weight w by determining a way to
automatically detect whether Q-Learning or Monte Carlo learning is more relevant.
Future research might find cheap heuristic ways to set w, which could considerably
improve performance.
Additionally to the assumed path dependence, the complexity of the strategy can
also be used to set weighting factor w. A more complex strategy which takes a lot of
information into account might require a more nuanced policy and more input for
the function approximator. In this case one might want w to decrease slower as this
relates to less dependency on the accuracy of the function approximator. One way
to determine the complexity of the strategy at run time might be to use a second,
more simple, function approximator to predict the next action of the strategy. If the
accuracy of this estimation is low, this might imply a complex strategy.

70

Electronic copy available at: https://ssrn.com/abstract=3556714

3.4. Q-Switching

Another advantage of Q-Switching is shown in Figure 18.

−0.8

−0.6

−0.4

−0.2

0.0

Q−Learning Q−Switching Monte Carlo

Type of learning

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 18: Boxplot of performance in the final block of Q-Learning (blue), Q-
Switching (dark turquoise) and Monte Carlo learning based on QMC (green) using
the testing pool strategies.
All other parameters have been held constant. The Q-Switching weight w starts
at unity and decreases by 10% each block. For the specific parameters we refer to
Appendix G.2.

Figure 18 shows that not only the final performance is higher with Q-Switching than
with the pure alternatives, but that it is also more stable. While one should not
draw strong conclusions about the outliers, the difference between the 25% percentil
and the 75% percentil is lower as indicated by the size of the box. In a practical
setting one probably wants to run the algorithm only once or at at least very few
times, so using Q-Switching provides a more stable approach to assess the stability
of a strategy.
While Q-Switching to my knowledge is a novel approach to combine the advantages of
Q-Learning and Monte Carlo learning, there have been other approaches to combine
long-term and short-term views on the rewards:
Both, one-step-temporal difference learning and Monte Carlo learning, as described
in Section 2.3.2 may be generalized to so-called TD(λ) learning, developed by Sutton
(1988). A parameter λ is defined, which determines how strong the effects of future
rewards have to be weighted. A λ of unity implies an equal weighting of all discounted

71

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

rewards and thus Monte Carlo learning. On the other hand, vanishing λ implies
that only the very next step is weighted, i.e. one-step temporal difference learning,
TD(0). The parameter λ controls the importance of future rewards by discounting
them exponentially7. In contrast to Q-Switching in the limit case, TD(λ) is on-policy,
i.e. does not explicitly optimize over actions but rather explains the current policy.
As we want to find the optimal policy, we have to let the current policy converge
towards the optimal one when using TD(λ). This necessitates a difficult balance in
the speed of changing the exploration parameter, as decreasing the exploration too
fast increases the risk of getting stuck in a local optimum. Tuning the parameter w is
a lot less problematic, as it only changes the speed of convergence towards the global
optimum, as long as w does indeed go to zero in the limit, given that we always have
some amount of exploration.
This strictly on-policy concept of TD(λ) has been extended to Q(λ)-Learning by
Peng and Williams (1994). Even though here a Q-Learning part allows for better gen-
eralizations, the values generated this way are still policy-dependent. Consequently,
Q(λ) learning “cannot be expected to converge to the correct [theoretical Q-Values]
under an arbitrary policy that tries every action in every state” (Peng and Williams,
1994, p. 6). They note, that gradually reducing the λ Parameter would mitigate this.
Indeed, while being calculated differently, this is very comparable to reducing the
parameter w in Q-Switching. Using a constant factor w would result in the same
problem. The drawback of using Q(λ)-Learning however, is that the values for the
state-action pairs are recalculated at each step, thus being a lot more computational
expensive than our approach.
Another on-policy variant of combing TD(λ)-Learning with Q-Learning which shows
better performance than Q(λ)-Learning can be found in Wiering (2005). They use
the state-value function (i.e. the Q(s, aπ(s)) values) to calculate their Q-Values. The
same drawbacks as with TD(λ) apply due to the on-policy nature of the algorithm.
The state-of-the-art Q-Learning classed algorithm Rainbow (Hessel et al., 2018), as
measured by the performance on ATARI games, uses so called multi-step learning to
address the challenge Q-Learning faces with its myopic update rule. With multi-step
learning not only the very next step but a forwards-view n-step reward is used. The
integer n is generally of medium to short length - in fact, they find within their
setting n = 3 to be optimal. This improvement, while certainly helpful compared to
basic Q-Learning, is not sufficient in our case due to the strong path dependence one
can expect from strategies of the IPD game. Classificator strategies as for example
discussed in J. Li et al. (2011) use the first few periods to determine the rest of their
play. The optimal actions against those strategies strongly depend in the those first
periods and it is thus necessary to take a very long term view as we do with Monte
Carlo learning.

7This is a direct consequence of not being able to visit the same state twice within an episode. As
there are no loops, the concept of eligibility traces simplifies.

72

Electronic copy available at: https://ssrn.com/abstract=3556714

3.5. Multi-Exploration

3.5. Multi-Exploration

In addition to the basic ε-exploration several other types of exploration strategies
exist. Thrun (1992) gives a review of the most common ones. We focus on the
following exploration strategies:

1. ε-exploration
The most basic exploration strategy: With a certain probability a random
action is taken.

2. noisy actions
A variant of so called Boltzmann exploration. To each calculated Q-Value a
normally distributed random variable is added and the action with the highest
value is taken.

3. maximizing surprise
Actions which resulted in a stronger update ofQ-Values of comparable situations
in the past are preferred.

4. minimizing familiarity
An additional function approximator tries to keep track which action has been
taken in the past in a similar situation. Less common actions are preferred.

No single exploration strategy is dominant, which is why the algorithm may use all
of them at the same time in unison. On the specific balancing of the exploration
strategies the reader is referred to Section 3.6, the section about Exploration Pathing.
This section is organized as follows: First every exploration strategy is explained in
detail. Subsequently we will have a look at the performance of using solely these
single exploration types. Afterwards we discuss why it can be a good idea to combine
them and whether such a combination is indeed beneficial in our case.

3.5.1. ε-exploration

One of the most basic exploration strategies is ε-exploration with decreasing ε:

With P(ε):
Choose random action based on uniform distribution over all actions

Else:
Choose greedy action, i.e. a = argmax

â∈A
Q(s, â)

Given infinitly many episodes and no time or memory limitations, this exploration
strategy convergences against the optimal policy π∗ given a sufficiently slow descent
of ε and an on-policy learning algorithm such as SARSA (see Section 2.3.2). This
descent is sufficiently slow if all states are visited infinitely often, despite vanishing ε.

73

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

Q-Learning and in the limit case Q-Switching, however, are off-policy algorithms. It
is thus not necessary that ε actually converges towards zero. In an extreme case one
might have a constant ε of unity (random exploration) and due to the converging
property of Q-Learning itself the optimal policy π∗ will still be found (Sutton and
Barto, 2018, p. 108).
However, such an approach is inefficient. As discussed in Section 3.6, it can be
beneficial to focus on learning to play the best action given optimal and near-optimal
play. Learning to play optimal actions in situations which only arise after playing
suboptimally is not an efficient use of exploration episodes if one wants to estimate
the potential of the optimal policy. Decreasing ε is therefore beneficial even given an
off-policy algorithm.
One of the main drawbacks of ε-exploration is that the environment might react with
differing harshness to a suboptimal action. Some strategies only search for patterns
within the last few periods. Missing one of such patterns leads to a suboptimal
performance, but the severeness of the error is limited. With strategies which behave
grim.trigger-like, we might find ourselves in the situation, that playing the wrong
action in a key situation has severe consequences for all following rewards of this
episode. As is shown in Section 3.5.5, making the right choice in this situation
can help to increase the usefulness of the currently played episode. A common
exploration strategy which aims to minimize very unfavorable actions is soft-max
learning, usually in the form of Boltzmann exploration, which will be discussed in
the following section.

3.5.2. Noisy Actions

The main idea behind the exploration strategy noisy actions is to play more promising
actions with a higher probability. This allows to vary uniformly between actions
which have about the same Q-Value and to refrain from playing an action which has
a high probability to waste the usefulness of the episode. The most discussed variant
is Boltzmann exploration (see e.g. Kaelbling et al. (1996)).
Here the action to be played is chosen according to the Boltzmann distribution

P (At = ai|St) = e−Q(St,ai)/θ

M∑
j=1

e−Q(St,aj)/θ

with M being the number of actions, and θ > 0 controlling the exploration strength.
For θ approaching infinity a random action is chosen and for θ approaching zero
only the best action is used. For fixed θ, actions with higher Q-Values are chosen
more often. In the case of two identical Q-Values a random selection is the result.
For all values of θ every action is chosen with non-zero probability. As a result, with
infinitely many repetitions and sufficiently slow convergence of θ approaching zero,
all combinations of the environment will be explored and the optimal policy will be
achieved.

74

Electronic copy available at: https://ssrn.com/abstract=3556714

3.5. Multi-Exploration

Given only two actions to chose from, this distribution is identical to a logistic
function (Sutton and Barto, 2018, p. 29). In fact, the well-known multinomial logit
model as used in economics has the same form as the Boltzmann distribution.
The Boltzmann distribution has remarkable mathematical properties, but concep-
tually easier and with a factor of 4 faster to compute is the following approach to
choose an action, which is used by the algorithm:

Calculate Q(s, aj) for all aj ∈ A for a given state s
Draw iid variables Nj ∼ N(0, σ2), j = 1, ..,M # M equals number of actions
For j = 1 to M :

Q′(s, aj)← Q(s, aj) +Nj

a← argmax
aj

Q′(s, aj)

The basic idea is to add to each calculated Q-Value a random shock Nj with some
variance σ2 > 0 and to take the highest resulting value. For all intents and purposes
this is fundamentally the same approach as Boltzmann exploration, except that a
slightly different distribution for the shock is used. In fact, using an extreme value
distribution for Nj instead of a normal distribution would imply that the noisy action
approach is mathematically identical to Boltzmann exploration. See Appendix D for
a numerical comparison with respect to similarity and speed.
Consequently all relevant features can be found analogously:
For σ approaching infinity the calculated Q-Values lose their impact and only the
random draw of the shock is relevant. A uniformly random choice between the
actions is the result. For vanishing σ the algorithm approaches a greedy selection.
For all fixed values of σ all actions will be played with non-vanishing probability,
thus ensuring to find the optimal policy. If the calculated Q-Values have a higher
distance to each other, for fixed σ it is less likely to chose the lower estimated option.
Both the approach presented above and Boltzmann exploration suffer from the same
drawback I encountered frequently in the development of the algorithm: While those
methods outperform ε-exploration in finding a better and more precise policy, there
was a noticeable probability that the policy got stuck in a local optimum. Due to
the theoretical possibility of choosing a series of actions to escape the local optimum
with a sufficient amount of tries, this effect can be mitigated by having a slower
decrease of σ and training longer. Nevertheless this effect is at odds with our goal to
find a best answer in a reasonable time frame.
An interesting alternative to making the actions noisy has been explored by Plappert
et al. (2017), who add noise to the parameters of a neural network, i.e. change the
values of the neurons slightly, instead of adding noise to the actions. As we analyze
and use different types of function approximators (see Section 3.9), I refrained from
implementing this method.

75

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.5.3. Maximizing Surprise

Inspired by the general ideas of Martin et al. (2017), Burda, Edwards, Storkey,
et al. (2018) and Burda, Edwards, Pathak, et al. (2018), the third variant of Multi-
Exploration is based on surprise: Ideally, the algorithm notices which action led to a
considerably different outcome as expected in a previous block and tries to recreate
the situation in an effort to further understand what has happened. Especially in
combination with other exploration variants doing so could lead to a higher probability
to explore situations which provide richer information about the environment.
Incorporating surprise as the only exploration variant results in the following way to
chose an action:

Calculate Q(s, aj) for all aj ∈ A for a given state s
Calculate S̃(s, aj) for all aj ∈ A for a given state s based on a function
approximator.
For j = 1 to M :

Q′(s, aj)← Q(s, aj) + ssurp · S̃(s, aj)
a← argmax

aj

Q′(s, aj)

Here, a second function approximator is trained the following way within the general
updating routine:

S̃(s, a)← (Qold(s, a)−Qnew(s, a))2 ∀(s, a) within the training batch

With maximizing surprise the algorithm tries to estimate the quadratic difference
between the Q-Value of a given state-action pair before the update of the function
approximator, Qold(s, a), and the Q-Value of the same state-action pair after the
update, Qnew(s, a). Actions which let to a higher difference receive a preferential
treatment in the exploration episodes. The strength of this treatment is calibrated
though the factor ssurp > 0 which is changed each block according to the exploration
path, analogously to ε of ε-exploration and σ of noisy actions.
The calculation of S̃(s, a) has been inspired by the supervised learning method
ordinary least squares. Using the quadratic distance has the effect, that it does not
matter, whether the Q-Value increased or decreased. Additionally, more pronounced
changes in Q-Values are over-weighted compared to a linear approach. Further
research might show whether this particular formulation is superior (and in which
cases) to maximizing positive surprises or to an equal treatment of all deviations.
Using maximizing surprise has the disadvantage, that by design the algorithm is only
driven by already experienced changes in Q-Values. Additionally, using this concept
of surprises can lead to procrastination-like behavior, where the algorithm optimizes
to reach environments which have a high rate of natural noise. Confusing Q-Value

76

Electronic copy available at: https://ssrn.com/abstract=3556714

3.5. Multi-Exploration

updates which occur due to increased environmental randomness with updates which
reflect actual learning progress may severely hinder learning performance (Burda,
Edwards, Pathak, et al., 2018).

3.5.4. Minimizing Familiarity

Minimizing familiarity aims to avoid the backward-looking behavior of maximizing
surprise while keeping an explicit drive of the agent to explore the environment. Simi-
larly to noisy actions and maximizing surprise, minimizing familiarity is implemented
the following way:

Calculate Q(s, aj) for all aj ∈ A for a given state s
Calculate F̃ (s, aj) for all aj ∈ A for a given state s based on a function
approximator.
For j = 1 to M :

Q′(s, aj)← Q(s, aj) + ffam · (1− F̃ (s, aj))
a← argmax

aj

Q′(s, aj)

The factor ffam > 0 is calibrated each block to keep the exploration episodes on the
exploration path. The value F̃ (s, aj) aims to measure the familiarity of choosing
action a given state s.
Let π̄ be a notional policy, which represents the past behavior of the algorithm. The
approximation F̃ (s, aj) is calculated using a second function approximator and aims
to predict the probability with which the policy π̄ would chose the given action. In
other words, given that the algorithm has always chosen action aj given state s,
F̃ (s, aj) should be predicted to be unity. Analogously to the estimation of Q-Values,
the function approximator has to extrapolate π̄ to states which have never been
previously encountered. For the purpose of representing π̄ no distinction is made
between exploration and best effort episodes.
F̃ is updated the following way within the general updating routine:

For each (s, aj)i within the memory batch underlying the update:
Define Fi(s, aj)← 1
Define Fi(s, ak)← 0 ∀k 6= j

Train/Update the function approximator F̃ on those Fi.

To have a sufficient prediction power of function approximator F̃ , it is necessary to
use a sufficiently large set of experiences and/or a function approximator, which is
updateable and does not forget past trainings. However, even using only the last
block and a non-updating function approximator (e.g. gradient boosting which is

77

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

only calculated based on this last block) results an interesting effect: The algorithm is
encouraged to do something different compared to the last block, but only to a certain
degree. As ffam · (1− F̃ (s, aj)) still has to be greater than the difference between the
best action and its alternative this approach aims to avoid very suboptimal plays.

3.5.5. Effects of Different Exploration Types

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

epsilon
noisy
surprise
familiarity
against.itself

−0.3

−0.2

−0.1

0.0

epsilon noisy surprise familiarity
Type of Exploration

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 19: Comparison of ε-exploration, noisy actions, maximizing surprise and
minimizing familiarity over all strategies according to the methodology described in
Section 3.3. No confidence bands are shown to improve readability.
All parameter sets used the same exploration path. For each result 35 runs of each
of the 9 testing pool strategies were used. For the specific parameters and more
detailed information see Appendix G.3

Both, theoretical considerations and empirical evidence, suggest that using more
sophisticated exploration methods can be benefical over ε-exploration (see e.g. Thrun
(1992)). In our specific case this does not hold true however. All methods show
approximately the same learning behavior as can be seen in Figure 19. In fact,
after 100 blocks ε-exploration shows the best performance. Minimizing familiarity
performs second best, but uses a second function approximator. Even if one limits
the potential of this function approximator, this necessarily implies much more
computational power. Maximizing surprise does worst, but not by a great margin. I
also implemented count-based exploration in the feature space as developed by Martin
et al. (2017) as a baseline alternative to maximizing surprise, but while working fine
on toy models, it often ran into numerical instabilities within our setting.

78

Electronic copy available at: https://ssrn.com/abstract=3556714

3.5. Multi-Exploration

Based on the results discussed above, one might be inclined to think, that the best
exploration method given the IPD game is ε-exploration. This is not necessarily the
case and might depend on our specific setting, e.g. the high probability of observation
errors. An example where noisy actions is superior to ε-exploration is shown in
Figure 20. The data for Figure 20 has been generated using an IPD game without
observation errors and against the strategy compare.exploration.
I developed the strategy compare.exploration (see Appendix E for the pseudo code)
to highlight the difference between ε-exploration and noisy actions and to explain
why it can be beneficial to combine several exploration strategies. When detecting a
defection within the first nine periods, compare.exploration reacts grim.trigger-like
and defects from here on out. After the first nine periods the strategy categorizes
its opponent as “generally friendly” and repeats the opponents move, similar to
tit.for.tat (see Section 2.1.2). To allow the policy to learn something more complex as
having to play always.cooperate, a random (but fixed) selection of 15 specific periods
after the first ten ones have been sampled, where the strategy will cooperate against
any “generally friendly” strategy independent on the most current observation.
A good procedure to find a best answer from a human perspective is to quickly
understand that in the beginning there is a grim.trigger-like time span and to try
to pinpoint the exact period where this mode changes. Afterwards one should
focus all exploration efforts on later periods to identify those where a defection goes
unpunished. Indeed, noisy actions focuses its exploration efforts most times on the
later periods after having experienced very unfavorable rewards when defecting in
the early periods. There is however a considerable drawback:
With non-vanishing probability the first episodes are played in such a way, that the
function approximator draws wrong conclusions. In the most extreme case it may
assume every deviation from always.defect to be expensive. From its point of view,
the Q-Values of both actions are then so different from each other that the random
shock is insufficient to bridge their gap with a relevant probability. As a result
the algorithm is stuck in an unfavorable local optimum. Consequently all played
episodes, exploration episodes and best effort episodes alike, are played according
to always.defect. This behavior is only temporary due to counter-acting effects of
the modification Exploration Pathing (see Section 3.6). The modification increases
σ until a difference between exploration episodes and best effort episodes can be
observed. Nevertheless this is suboptimal behavior as several blocks are needed to
adjust and then re-adjust the level of σ, thereby wasting blocks where no profitable
exploration takes place.
As this example shows, the main motivation for combining different exploration
methods is to decrease the chance of getting stuck in a local optimum while still
focusing on the most promising actions even given the possibility that the function
approximator might completely misjudge the environment.

79

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

−0.75

−0.50

−0.25

0.00

eps100.noisy0 eps50.noisy50 eps0.noisy100
Fraction of Exploration Type

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 20: Boxplot of the final performance of ε-exploration (eps100.noisy0), noisy
actions (eps0.noisy100) and a combination of both of them (eps50.noisy50) against
the strategy compare.exploration. Each Boxplot has been generated using 50 runs.
In contrast to other figures this IPD game was played without observation errors.
The specific parameters are listed in Appendix G.3.

3.5.6. Effects of Multi-Exploration

The next step is to investigate the effects ofMulti-Exploration based on the exploration
methods ε-exploration and noisy actions. Given only those two methods, Multi-
Exploration is identical to the following algorithm:

Calculate Q(s, aj) for all aj ∈ A for a given state s
With P(ε):

Choose random action based on uniform distribution over all actions
Else:

Draw M iid variables Nj ∼ N(0, σ2) # M equals number of actions
For j = 1 to M :

Q′(s, aj)← Q(s, aj) +Nj
a← argmax

aj

Q′(s, aj)

The balancing between the exploration values σ of the noisy actions part and ε of
the ε-exploration part is done by the mechanism of Exploration Pathing.

80

Electronic copy available at: https://ssrn.com/abstract=3556714

3.5. Multi-Exploration

A comparison of the final performance between the pure methods and Multi-
Exploration against the strategy compare.exploration is depicted in Figure 20. Here,
Exploration Pathing aimed to keep an equal balance between both exploration meth-
ods in the Multi-Exploration approach. One can see, that Multi-Exploration not
only achieves a better performance in most cases, but also shows considerably less
variance in its results.
Using only ε-exploration implies that each action has the same probability to deviate.
Within the first nine periods a deviation is very costly due to the grim.trigger-like
behavior of compare.exploration. Given that the algorithms has already learned that
the first nine periods should never be defected, a defection within this time frame
has no potential to generate an improved policy. It is thus necessary to chose ε
sufficiently small to have a realistic chance of playing nine cooperations in sequence.
Such a choice, however, has the disadvantage that very few exploratory actions occur
within the periods of interest. Using noisy actions allows us to approach this problem
by concentrating our deviations on those actions which are more promising. However,
only using noisy actions, there is a non-vanishing chance of getting stuck in a local
optimum. Combining both approaches increases the probability of playing actions
outside of the local optimum and does therefore allow a change in the policy. This
increases the performance of the algorithm, even at the cost of wasting some of the
episodes by defecting within the first few periods.

−1.00

−0.75

−0.50

−0.25

0.00

eps100.noisy0 eps50.noisy50 eps0.noisy100
Fraction of Exploration Type

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 21: Boxplot of the block 100 performance of pure ε-exploration (left), equal
mixing of ε-exploration and noisy actions through an exploration path (middle) and
pure noisy actions (right) over all testing pool strategies. Each Boxplot has been
generated using 35 runs on each of the 9 testing pool strategies.
Note that a performance of larger than zero does not imply that we have found a
policy which consistently beats the best answer, due to the noisiness of the game.
The specific parameters are listed in Appendix G.3

81

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

Figure 21 shows the analogous situation for our setting with observation errors using
all strategies of the testing pool. The positive effect is not nearly as pronounced
compared to the proof-of-concept example. While the combination of both exploration
methods is slightly better in terms of median performance, this difference is barely
noticeable and not significant. Given the complete testing pool one can see, that noisy
actions generated outlier performances which are considerably worse compared to the
other approaches. This effect can be mitigated by setting a more exploration-oriented
exploration path, i.e. higher values of σ and ε throughout the run, in combination
with a higher number of blocks. Increasing the number of blocks also increases
computational power, so using Multi-Exploration might be a better alternative.

−0.3

−0.2

−0.1

0.0

eps100.noisy0 eps50.noisy50 noisy33.fam33.surp33 all25
Type of Exploration

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 22: Comparison of pure ε-exploration, an equal mixing of ε-exploration, an
equal mixing of ε-exploration, noisy actions and minimizing familiarity and an equal
mixing of all four exploration strategies (from left to right) on the complete testing
pool according to the methodology described in Section 3.3.
For each result 35 runs of each of the 9 testing pool strategies were used. The specific
parameters are listed in Appendix G.3.

Combining more than two types of exploration by adding their respective shocks S̃
and F̃ to the Q-Values leads to the results presented in Figure 22. Here, four different
exploration approaches are show: Only using ε-exploration, using an equal balance
between ε-exploration and noisy actions, combining all exploration variants given
constant ε = 0 and using an equal balance between all four presented exploration
methods. All of them show a comparable performance and do not differ significantly.
Interestingly, even though pure ε-exploration performed best given single-type ex-
ploration, refraining from using it and only using the three others still produces a
comparable result.

82

Electronic copy available at: https://ssrn.com/abstract=3556714

3.5. Multi-Exploration

Even though Burda, Edwards, Storkey, et al. (2018) suggest that curiosity-driven
learning might improve performance, our results imply that using it in our setting is
not beneficial. Neither as single-exploration methods nor withinMulti-Exploration the
methods maximizing surprise and minimizing familiarity where able to significantly
improve performance. As both those methods need a second function approximator,
they are considerably more computationally expensive. Consequently, we refrain
from using them within our algorithm.
As the combination of ε-exploration and noisy actions showed a slightly, albeit
non-significantly, higher average performance and performed better in other settings,
we use this combination for our algorithm.
In addition to the explored variants of equal mixing of different exploration strategies,
the R-package Kies (2019) allows for arbitrary mixing ratios. Another feature
provided by the package is to vary the mixing ratios during the learning process
by setting different ratios for the first and last block. The mixing ratios for the
intermediate blocks are then interpolated. This allows the user for example to start
with ε-exploration to generally map the environment and then circle in using more
precise exploration types. Within our setting however, this approach and also other
tested variants performed approximately in line with the shown results.
While most examined modifications can be used independently, Multi-Exploration is
strongly interconnected with Exploration Pathing as this mechanism balances the
values of the exploration parameters. At the start of a run, the exploration parameter
of each method has to be set to a predefined value. I chose these starting values
to approximately produce the desired balances between the exploration methods.
As the Exploration Path mechanism needs several blocks to achieve the specified
balance, the choice of these starting values still influences the results. Similarly, if the
Exploration Pathing mechanism fails to balance the different exploration methods
properly, the presented results are also influenced.
All discussed exploration methods are generalizable to other games. In fact one
should expect Multi-Exploration to perform better in a setting with more than two
actions. If specific patterns out of several actions have to be played, the more
sophisticated approaches can help to navigate the player to the territory which has
to be mapped, while ε-exploration can help to avoid over-optimization of suboptimal
policies.

83

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.6. Exploration Pathing

The standard approach to balance learning is to start with completely random actions
and lower the exploration parameter gradually in a pre-determined fashion. In the
case of off-policy learning, e.g. Q-Learning, there is no necessity for the learning rate
to got to actual zero. Consequently, one often introduces a minimal learning rate.
State of the art Q-Learning algorithm as measured by performance against ATARI
games Rainbow (Hessel et al., 2018) for example does so with ε-exploration. It starts
with ε = 1 and after staying there for 4 million frames gradually lowers ε to 0.01.
This approach is not necessarily optimal, as one can easily image a situation where
the basics of the game have been figured out quickly and only further refinement is
necessary. Recall the example situation from Section 3.5 with compare.exploration.
Gradually decreasing the exploration parameter in a pre-defined way can easily lead
to the situation, that most episodes of the run are spent suboptimally. Episodes
where the strategy gets triggered can not be used to gather information about optimal
behavior in later periods. More generally speaking, this problem always exists if
the policy might act in a way which is non-recoverable, e.g. against any kind of
grim.trigger like strategy.
Exploration Pathing solves this problem by calibrating the exploration parameter
on the current best effort episode. Every block the current exploration episode is
compared to an episode (or an aggregate of previous episodes) without exploration.
Exploration Pathing now calibrates the exploration parameter(s) in a way that the
average reward of the exploration episode is a specified fraction of the best effort
episode. This fraction can depend on the current block number, i.e. the progress of
the run. Changing this fraction during the run, for example by letting it converge
towards unity, signals the algorithm that it has to reduce the exploration parameter.
Effectively this means, that in uncharted environments exploration stays high. In
an environment where there is no information about good actions, we expect that
the performance of the best effort episode is comparable to taking random actions.
The fraction between the performance of these episodes is therefore high. Assuming
that the desired fraction between both types of episodes is lower this means that the
exploration parameter is increased.
When the algorithm finds a way to exploit the environment (i.e. the best effort
episode is a lot better than random), the exploration parameter is quickly adapted.
The result is the automatic focus on interesting states within the exploration episodes.
As has been discussed in Section 3.5, Exploration Pathing can also be beneficial to
avoid local optima. If the best effort episode and the exploration episode show the
same performance this can be a sign that not enough exploration takes place. In
this case the exploration parameter is gradually increased until a sufficient amount
of exploration takes place again.
Despite these deliberations, Exploration Pathing does not guarantee that it is impos-
sible to get stuck in a local optimum. Using only noisy actions and an ill-calibrated
function approximator for example can lead to the situation that the exploration
episode is stuck playing the same kind of suboptimal actions while still maintaining

84

Electronic copy available at: https://ssrn.com/abstract=3556714

3.6. Exploration Pathing

the correct fraction to the best effort episode. It is therefore advised to at least
partially use ε-exploration within Multi-Exploration.
The results of using Exploration Pathing can be seen with Figure 23. Here, four
different kinds of exponentially decreasing ε-exploration are shown, ranging from
a depreciation with a factor of 0.85 (ε below 0.01 after 29 blocks) to 0.99 (ε still
above 0.35 at the end of the 100 blocks). All of them perform significantly worse
than the two displayed variants of Exploration Pathing. To show general robustness
of Exploration Pathing, one of of the two paths is held constant at a fraction of 85%,
while the other one starts at 90% and increases to 99%.
It is possible to construct arbitrary bad exploration paths, for example by setting
the fraction to constant zero. They do however perform stable and consistently well
within our setting, as long as the fractions are chosen in a reasonable vicinity to
unity with at least some room for exploration. To avoid being influenced by different
exploration types and to have a fair comparison, all data points were generated using
only ε-exploration.

−0.3

−0.2

−0.1

0.0

Decr85 Decr9 Decr95 Decr99 Path85 Path90−99
Type of Exploration Path

S
co

re
 d

iff
er

en
ce

 to
 a

ss
um

ed
 o

pt
im

al
 v

al
ue

Figure 23: Comparison of different parameter sets without (four on the left) and
with (two on the right) Exploration Pathing over all strategies according to the
methodology described in Section 3.3.
All sets are ε-exploration only. With DecrXY exponential decreasing of the explo-
ration parameter took place: Starting with ε = 1, the parameter was multiplied by
XY% each block. Path85 used a constant pathing fraction of 85%, Path90-99 used a
pathing fraction which starts with 90% and linearly increases up to 99%.
For each result 30 runs of each of the 9 testing pool strategies were used. The specific
parameters can be found in Appendix G.4.

85

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

One of the main reasons to develop Exploration Pathing was the necessity to have
an objective measure to balance Multi-Exploration. If multiple different types of
exploration are used, it is non-obvious how the different exploration parameters
should be calibrated to each other. A decrease in one parameter might non-linearly
effect the ratio of the exploration types to each other depending on the environment.
Pre-defined rules as used for a single exploration parameter are therefore not feasible.
Exploration Pathing solves the balance problem between the different exploration
parameters. It is therefore possible to demand an equal share of exploration between
noisy actions and ε-exploration despite their different ways to induce exploration.
Technically speaking this is achieved through the use of modified PID controllers,
which are a well known tool within the field of electrical engineering and have its
origins in Minorsky (1922). The abbreviation PID stands for Proportional-Integral-
Derivative and describes the three components which are analyzed to determine the
force and direction of the change of a specific exploration parameter.
In the following paragraphs is described how Exploration Pathing is achieved. To
be able to understand its functioning in Sections 3.10 (Model Persistence) and 3.2
(Performance) the explanations are more general than necessary for the largest part
of the analysis. In particular it is shown how Exploration Pathing deals with multiple
different episodes of the same type per block as well as different types of best effort
episodes.
To reduce complexity we first present the procedure given a single exploration type:

1. Restrict underlying data points to the last Ndb.best blocks.
As within the learning process of the algorithm several paradigm changes might
take place, it is necessary to forget old results. If not as many blocks have been
generated, Ndb.best is the number of available blocks.

2. Calculate ceiling of the best effort episodes Cbest

Within the restricted data points generate a vector

Cbest =
(
Cbest

1 , ..., Cbest
Ndb.best

)

using

Cbest
k =

k∑

i=1
wbest
i Bbest

k , wbest
i = γk−ibest

k∑
j=1

γk−jbest

with Bbest
k being the mean average reward over all runs which are of type best

(historically best) or current (most recent model) of the respective block (see
Section 3.10 for more details). Discount factor γbest ∈ (0, 1] determines how
strong older blocks should be weighted.
Effectively this allows us to calculate a smoothed ceiling of the actual rewards
of the best effort episodes over time. Due to the restriction of the blocks in the
first step, Cbest

1 corresponds to the earliest available block, i.e. the one Ndb.best
blocks before, and Cbest

Ndb.best
to the most recent one.

86

Electronic copy available at: https://ssrn.com/abstract=3556714

3.6. Exploration Pathing

3. Calculate goal vector G
Based on the wanted starting fraction of the path and the final one, the fractions
frack are interpolated given their relative position in the run. It holds that for
G = (G1, ..., GNdb.best)

Gk = Cbest
k · frack

The values Gk define which values we would have wanted for the exploration
episodes.
In rare cases the best effort episode might have a negative performance given
the rules of the IPD game of Section 2.1.1. This results in negative Cbest

k .
The standard calculation of Gk in this case results Gk > Cbest

k as frack < 1.
This would lead to a correction of the exploration parameter into the wrong
direction. In this exceptional case Gk is therefore calculated by dividing Cbest

k

by frack.

4. Calculate error vector err = (err1, ..., errNdb.best)
It holds that

errk = Gk −Bexpl
k

with Bexpl
k being the mean average reward over all exploration episodes of the

respective block.
A positive errk implies, that the performance of exploration episode was too low
and the exploration parameter should be decreased. A negative errk implies
a too high performance of the exploration episode and therefore a necessary
increase in the exploration parameter.

5. Use a modified PID-controller to determine the change of the exploration
parameter to get the next errk to zero.
It holds that

δPID = KP · PPID +KI · IPID +KD ·DPID

with KP > 0, KI > 0 and KI > 0 being weights which balance the different
components.
In the basic PID-theory one uses the very last data point to calculate PPID,
all data points to calculate IPID and the last two data points to calculate
DPID. The extreme randomness of the used setting makes this classic approach
unstable. Instead, we use smoothed averages as this stabilizes our controls. We
use the last NP , NI and ND data points of errk to calculate the respective
components. To simplify notations, we now assume the vector to be already
filtered for each component separately and the indizes of errk to be shifted
accordingly.

87

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

PPID is the so called proportional response. It manages the direct response
of increasing the exploration parameter if more recent errk are negative and
decrease it otherwise. PPID is calculated by

PPID =
NP∑

i=1
wP
i · erri, wP

i = γNP−iP
NP∑
j=1

γNP−jP

IPID is the integral component. If the errk are constantly positive (e.g. due to
there being a constant upwards shift of the best effort episodes), this component
increases the force on the exploration parameter:

IPID =
NI∑

i=1
γ

(NI−i)
I · erri

In the standard version of PID-controlling it holds that γI = 1. We used
a number close to unity, as this achieves a similar effect, but smooths out
the effect of using only the last NI data points instead of all of them. In
practice balancing NI and γI results in similar behavior. It is possible to chose
a comparatively low NI with an γI = 1 on the one hand or NI = Ndb.best =∞,
resulting in the usage of all available data points, and a lower γI on the other
hand.
DPID is the derivative component. It aims to avoid an overcorrection of the
PID controller: If more recent errk are moving fast in the correct direction,
then one might want to dampen the correction to avoid overshooting the target.
Failing to do so might result in oscillatory behavior of errk.

DPID =
ND∑

i=2
wD
i · (erri − erri−1), wD

i = γND−iD
ND∑
j=2

γND−jD

Having calculated δPID it is added to the exploration parameter. As δPID might
be negative, the exploration parameter is capped at zero should the addition
result in a negative exploration parameter otherwise.

If there are multiple exploration types at the same time, the algorithm stays similar.
The calculation of errk differs, as will be detailed below. Additionally, the factors KP ,
KI and KD have to be chosen on a per exploration type basis. In fact, within these
analyzes I chose KP , KI and KD to be each by factor 10 smaller for ε-exploration
than for noisy actions. The performance of exploration episodes is considerably
more sensitive to directly choosing another action compared to a small nudge of the
Q-Values. As a result, this has to be reflected in the magnitude of the PID factors
which directly influence the strength of change of an exploration parameter.

88

Electronic copy available at: https://ssrn.com/abstract=3556714

3.6. Exploration Pathing

The basic idea behind the calculation of errexpl
k on a per exploration type basis is

to divide the occurred total errk between the different exploration types. To do so,
a so called suboptimality score ξt,j,k is calculated for each single action at period t
of exploration episode j of block k. Additionally, for each of the exploration types
a type-specific suboptimality score is calculated. If there are multiple exploration
episodes within one block, the arithmetic average is used. The suboptimality scores
are calculated the following way:

1. If the action with the higher Q-value has been taken it holds that ξt,j,k = 0 for
the total suboptimality score of this action and for each of the idiosyncratic
exploration suboptimality scores.

2. If the ε shock has been realized, it holds

ξt,j,k = ξεt,j,k = Q(s, a1)−Q(s, a2); ξnoisy
t,j,k = ξsurprise

t,j,k = ξfam
t,j,k = 0

with Q(s, a1) being the Q-value of the best possible action as determined by
the most recent function approximator and Q(s, a2) the Q-value of the actually
chosen action.

3. If the ε shock has not been realised, it holds

ξt,j,k = (Nnoisy
2 −Nnoisy

1) + (N surprise
2 −N surprise

1) + (N fam
2 −N fam

1)
ξεt,j,k = 0
ξnoisy
t,j,k = (Nnoisy

2 −Nnoisy
1)

ξsurprise
t,j,k = (N surprise

2 −N surprise
1)

ξfam
t,j,k = (N fam

2 −N fam
1)

Here, Nnoisy
2 the noise due to noisy actions of the chosen, suboptimal action.

The difference between N2 and N1 is therefore the effective noise which influ-
enced the decision of the respective exploration type. The other values are
defined analogously.

4. These values are aggregated to block-wise suboptimality scores:

ξ̄k = 1
T ·Nep

T∑

t=1

Nep∑

j=1
ξi,j,k

ξ̄expl
k = 1

T ·Nep

T∑

t=1

Nep∑

j=1
ξexpl
t,j,k

with T the number of periods/actions of an episode (i.e. 60 in our default
case), Nep being the number of exploration episodes within a block (i.e. 1 in
our default case and 2 for Section 3.10 and Section 3.2) and “expl” being a
stand-in parameter for each of the exploration types.

89

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

5. Calculate

wexpl
k = ξ̄expl

k

ξ̄k

errexpl
k =

(
Cbest
k −Bexpl

k

)
· wexpl

k −
(
Cbest
k −Gk

)
· wexpl,goal

k

with wexpl,goal
k the wanted fraction of block k given exploration type “expl”.

The value wexpl
k by contrast is the actually observed influence of the given

exploration type. The first part of the subtraction is the effective distance
generated by the given exploration type, while the second part measures the
desired distance.

6. Use an PID-controller to set future errexpl
k to zero analogously to the single

exploration case of above.

The current R-package Kies (2019) provides linear and exponential paths between
start and end fractions. I found linear paths to work marginally better, but it is not
obvious, that this is an optimal shape. In fact, Rainbow from Hessel et al. (2018) uses
an exploration period of completely random actions to set the stage. This implies
that a more s-shaped path might be suitable in some settings, even though we can
easily replicate this aspect using Memory Initialization (see Section 3.11).
Exploration Pathing might be further improved by integrating automatic PID-tuning
methods (see e.g. Cominos and Munro (2002)). This would allow a more accurate
path compared to a coarse manual adjusting of different tuning parameters as has
been done for these analyses.
As far as I am aware, this type of automatic setting of exploration parameters is a
novel idea within the context of machine learning, both regarding the concept of an
exploration path in general and regarding the usage of a PID controller to balance
different parameters.

90

Electronic copy available at: https://ssrn.com/abstract=3556714

3.7. Feature Selection

3.7. Feature Selection

Feature Selection is the decision on what parts of the raw data should be used in
which way as input for the function approximator. If the selection is too narrow this
has direct effects on the definition of the effective space state S. Additionally, one
can enrich raw data by precalculating and providing useful statistics.
Feature Selection plays an important role for nearly all machine learning methods.
Generally speaking, function approximators can greatly profit from working on
preprocessed data. Image recognition for example can be improved considerably by
using convolutional neural networks instead of simply providing raw pixels of each
image to a neural network (Krizhevsky et al., 2012).
Not only the final performance, but also also the speed of learning depends strongly
on Feature Selection. Encoding heuristics as additional information can help the
algorithm to guide it across the environment. In the edge case, one might explicitly
provide the algorithm with the actual states of the opponent as discussed in Section
2.2.
Directly providing the actual states means that any additionally provided information
is noise and hurts the learning rate of the algorithm. In this case it has to learn
which parts of the provided input are irrelevant. This might be non-trivial due to
spurious correlations and complex chains of effects. Given the strategy grim.trigger
for example only providing whether or not it is triggered optimizes the speed of
learning.
On the other hand it is important to provide sufficient information in the sense, that
each state can be identified based on the input data. Failing to do so implies that the
function approximator is unable to map input data to true states of the underlying
MDP. In this case, the learning algorithms loses the theoretical property to converge
against the best possible policy. This might for example be the case, if only the last
two episodes are provided and the opponent strategy uses the last three episodes
to make its decision. Compare Appendix B for a discussion regarding unobservable
states.
To summarize, ideally exactly the necessary states are provided. This might not be
possible. Our stated goal to find best answers for black-box strategies for example
implies that these states are unknown. In this case one has to guarantee that the
provided encoding at least contains all possible information which might be relevant
for finding a best answer. Given a true black-box strategy this means that the
encoding may not destroy any information. The performance can be enhanced by
additionally providing useful heuristics. These might be used to deduce a possible
state of the opponent, even if they in and for themselves do not represent the states
directly.

91

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

As mapping the states directly gives an immense boost to the algorithm, I decided
to use the following encoding without analyzing the pool of strategies beforehand:

1. The complete observed history of the actions of the agent itself (including
observation errors) (1 if cooperated, -1 if defected, 0 if this period has not been
observed yet)

2. The complete actual history of the actions of the agent itself (1 if cooperated,
-1 if defected, 0 if this period has not been observed yet)

3. The complete observed history of the actions of the opponent (1 if cooperated,
-1 if defected, 0 if this period has not been observed yet)

4. The complete observed reverse history of the actions of the agent itself outgoing
from the current period (including observation errors) (1 if cooperated, -1 if
defected, 0 if this period has not been observed yet)

5. The complete actual reverse history of the actions of the agent itself outgoing
from the current period (1 if cooperated, -1 if defected, 0 if this period has not
been observed yet)

6. The complete observed reverse history of the opponent outgoing from the
current period (1 if cooperated, -1 if defected, 0 if this period has not been
observed yet)

7. The current period

8. The average number of observed defections of the opponent

9. The sum of observed defections of the opponent

10. The average number of observed defections of the agent itself

11. The sum of observed defections of the agent itself

12. The difference of observed defections between the agent and the opponent

13. The ratio of observed defections between the agent and the opponent

14. The absolute value of the average reward the agent would receive, given that
the reward would be calculated based on the observed actions.

This encoding is called the main encoding.
An advantage to include the reverse history is, that this makes it significantly easier
for the function approximator to map common patterns. Such a pattern might
be “something happened within the last X periods”, which is for example used by
tit.for.tat. With this encoding the most recent period is always at the same position
within the input data. The alternative would be, that the function approximator
has to cross reference the number of the current period with the actions or correctly
handle abstract concepts such as the importance of “the last input which is not a zero
in a certain part of the input array”. This would pose a challenge for all discussed
function approximators of Section 2.4.

92

Electronic copy available at: https://ssrn.com/abstract=3556714

3.7. Feature Selection

Additionally, I added the history in the correct order as it seems probable that an
opponent strategy might use actions at specific periods to change its behavior. A
plausible case for this are the very first actions which might fundamentally change
the behavior of the opponent.
This encoding is a strict superset of the encoding of Harper et al. (2017). They restrict
themselves to the two first and last observed actions and lack relative data regarding
the comparison between both strategies. Additionally, they do not incorporate the
number of the current period.

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Last 4 periods + private history
Last 4 periods /wo private history
Main Encoding
Harper
Against themselves

Figure 24: Comparison of learning behavior between the following encodings from
top to bottom: Only using the last 4 periods, Only using the observable history of
the last 4 periods, the main encoding used throughout this article and finally the
encoding from Harper et al. (2017). The methodology described in Section 3.3 has
been used.
All data points have been generated on 50 runs for each strategy. For the specific
parameters and more detailed information see Appendix G.5.

A comparison of an encoding using only the very last four episodes with and without
using private information, the main enconding and the encoding of Harper et al.
(2017) is shown in Figure 24. Restricting the algorithm to the last four periods allows
it to converge considerably faster. At approximately block 25 however, i.e. after
having played 25 episodes with and 25 episodes without exploration, the algorithm
stops to improve. Here, the algorithm has already found the (nearly) optimal policy
given available information. The main encoding on the other hand reaches its
potential at around block 75. At this point the learning is stopped by other factors.
Possible causes include local optima, the complexity of the function approximator
and a possibly to high learning weight a in the Q-Learning algorithm. Choosing a

93

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

high learning weight might lead to an overweight of recent noisy information. This
might result in oscillatory learning behavior and a failure to capture expected values.
The encodings which use the last 4 periods do not differ meaningfully. The effects
when including private information are significant, but weak in effect size. As
should be expected, providing the encoding with additional information leads to
a minimally slower convergence in the beginning. After processing sufficient data,
final performance is minimally higher when including private information. However,
the effect size is negligible and has no practical relevance. This is not an aggregate
effect, as both graphs follow approximately the same path for every single testing
pool strategy. This should be expected, as the underlying states are defined by
the opponent, which by design is not able to observe the actual actions of the
agent. The optimal policy can therefore be constructed using only the observed
history. Nevertheless, having private information as part of the input might allow
the algorithm to infer hidden states when the complete history is not available.
The encoding of Harper et al. (2017) performs strictly worse than simply using the
last four periods. Despite lacking input about actions 3 and 4 periods ago, their final
performance convergences to the same level as the 4-period-encodings. This shows,
that on aggregate over all strategies additional information can balance missing
periods. However, both are not interchangable even given sufficient training time.
Their relative performance depends on the analyzed strategy. With the quite complex
strategy strat.c (see Appendix F) for example the encoding of Harper et al. (2017)
shows significantly worse performance. The grim.trigger like strategy strat.e on the
other hand explicitly uses the number of defections of its opponent to change its
state. This information explicitly included in the encoding of Harper et al. (2017).
Consequently, it performs considerably better than the 4-period-encodings.
The final performance of the main encoding is considerably higher than the tested
alternatives. This is bought by a slower convergence in the beginning, where the
function approximator has to learn which parts of the input are not relevant.
Brunauer et al. (2007) analyzed on their testing pool the relevance of the number of
provided periods. They focused on “last X periods” encodings due to their simplicity.
These types of encodings are of special interests, as they are comparatively common
(see Harper et al. (2017)). Brunauer et al. (2007) find, that a history of 4 or 5 periods
performs best within their setting. The results of an analogous analysis in our setting
are shown in Figure 25.

94

Electronic copy available at: https://ssrn.com/abstract=3556714

3.7. Feature Selection

−0.4

−0.3

−0.2

−0.1

0.0

1 2 2.Harper 3 4 5 6 7 8 60 60.Main
Usage of the last X periods

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 25: Comparison of performance if only the last X periods are given as input
to the encoding according to the methodology described in Section 3.3. Additionally
two more complex encodings are shown: “60.Main” is the main encoding, which uses
all 60 periods. “2.Harper” is the encoding of Harper et al. (2017) which uses the last
two periods and additionally provided aggregated data.
All data points have been generated on 20 runs for each strategy, except 3, 4,
“2.Harper” and the main encoding, where 50 runs have been used. For the specific
parameters and more detailed information see Appendix G.5.

In our setting 4 to 6 periods perform best, similarly to Brunauer et al. (2007). Indeed,
using all 60 periods leads to a significantly lower performance. The main encoding
therefore does profit from the additionally provided statistics, similarly to Harper
et al. (2017).
A recurrent neural network, for example with LSTM cells, should be able perform
well even when restricted to the very last observation. In theory it should be able to
extract all relevant information and create an internal state representation (see Section
2.4.3 for an overview of RNNs). Furthermore, the LSTM function approximator
should be able to calculate helpful intermediary information by itself. Statistics as
provided by the main encoding should therefore be less relevant.
Figure 26 shows that this is indeed the case in our setting. Here, the comparison
between two different LSTM encodings is shown. Main LSTM Encoding is identical
to the normal main encoding, except that history-wise only the last 10 periods are
explicitly used as input to save computation time. Additional statistics are generated
on the complete history and provided analogously to the main encoding. Minimal
LSTM Encoding receives only the very last period, including the actually played
action of the last period, as input.

95

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

Both encodings achieve the same performance after 100 blocks and show similar
learning rates. The minimal encoding is able to achieve a higher average reward
around block 20, probably due to finding a good local optimum based on the
less complex information. As before, using more complex input data results in a
slower start of the learning process. Extracting complicating patterns however is
comparatively easier when providing more complete information as well as additional
statistics directly. The main LSTM encoding therefore catches up and dominates
the majority of the run.

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Main LSTM Encoding
Minimal LSTM Encoding
Against themselves

Figure 26: Comparison of performance of two different encodings (with additional
information and history vs. only the last period, respectively) using the LSTM
function approximator according to the methodology described in Section 3.3. For a
detailed description of the different encodings see Section 3.7.
All data points have been generated on 20 runs for the “Main LSTM Encoding”
and 10 runs for each strategy with the “Minimal LSTM Encoding”. For the specific
parameters and more detailed information see Appendix G.5.

96

Electronic copy available at: https://ssrn.com/abstract=3556714

3.8. Experience Replay

3.8. Experience Replay

Instead of only using the very last period or episode to update the function ap-
proximator, as is suggested by classical Q-Learning, it is prudent to use non-recent
experiences as well. Re-using data from older episodes when updating the function
approximator is called Experience Replay. The basic idea behind this technique was
developed by Lin (1992).
Within the update routine the function approximator is changed to reflect new data.
Some function approximators are updated by re-building the underlying model from
scratch. One such example is gradient boosting. In this case using Experience Replay
is crucial as sufficient data is necessary to build an accurate model. So called updating
function approximators provide an alternative. They use new data to reshape the
existing model. The standard example are neural networks which can be retrained.
As these function approximators already incorporate data from old episodes it might
seem intuitive to only use recent experiences for their update. However, this can lead
to overfitting and a less stable function approximator.
The Deep Q-Network (DQN) algorithm from Mnih et al. (2015) was for a short time
the gold standard for the often used ATARI games benchmark. They used Experience
Replay, within their article called mini-batch processing, to increase the robustness of
their neural network. DQN generates a memory (s, a, r, s′) of all state-action pairs,
their rewards and their successor states and updates the function approximator based
on a uniformly drawn sample of those experiences out of the memory.
Experience Replay is particularly effective combined with an off-policy learning al-
gorithm like Q-Learning. An off-policy learning algorithm is able to generate an
optimal policy out of suboptimal exploration data. This is important, as we expect
older episodes to contain a larger number of suboptimal actions. When using an
on-policy algorithm, as for example Monte Carlo learning, older data should therefore
negatively impact performance. The proposed concept Q-Switching is on-policy at
the start of the learning process and only asymptotically off-policy. Even though
Experience Replay for Q-Learning is an established technique, albeit in other domains,
it is therefore not obvious whether or not and to which extent it should be used in
our case. Consequently, we study its effects on our algorithm and given the IPD
game.
Analogously to the approach of Mnih et al. (2015), we build up a memory stack of all
experiences made by the algorithm. For this memory we do not differentiate between
best effort and exploration episodes. I added one additional feature to the baseline of
Mnih et al. (2015): Instead of using uniformly random experiences, one can force the
algorithm to use the most recent experiences up to a number of specified blocks when
updating the function approximator. The intuition behind this change is that while
there is a stabilizing effect in using older experiences we do not want to refrain from
learning from the newest ones. Using random mini-batches to update the function
approximator might lead to not evaluating the most recent episode at all. A possible
paradigm shift of the function approximator might therefore go undetected. If this
paradigm shift leads to a significantly worse performance, we produce episodes with

97

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

this suboptimal policy until this knowledge is incorporated. This is an inefficient use
of resources.

Neural Network RNN Gradient Boosting

1 3 5 10 1 2 3 10 20 50 75

−0.4

−0.3

−0.2

−0.1

0.0

Size of replay dataset

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 27: Comparison of various sizes of replay data sets, as measured by number
of blocks, when updating the function approximator. Displayed are the function
approximators neural network (left), recurrent neural network with LSTM Cells
(middle) and gradient boosting (right) according to the methodology of Section 3.3.
Each of the testing pool strategies has been run 15 times in the case of the neural
network, except for replay size 3, where 50 runs have been used. In the case of
the recurrent neural network 10 runs per strategy have been used. In the case of
Gradient Boosting 25 runs per strategy have been used. For the specific parameters
and more detailed information see Appendix G.6.

The effects of using Experience Replay with a fixed inclusion of the very last block
are shown in Figure 27. All things equal, a bigger replay data set increases the
performance of all function approximators. Doing so however shows a decreasing
marginal effect size.
Using a higher number of episodes in the update cycle increases run time of the
algorithm. In particular for neural networks and recurrent neural networks run time
scales approximately linear with the size of the replay data set. While a certain size
of the replay data set is recommended, a further increase might be inefficient.
The performance increase of the networks can not be attributed to longer training

98

Electronic copy available at: https://ssrn.com/abstract=3556714

3.8. Experience Replay

time alone. Training them longer without using Experience Replay resulted in
overfitting the training data, thereby decreasing performance.
Gradient Boosting shows the same general effects as the networks, but uses a
considerably higher number of episodes in the replay data sets to achieve a comparable
performance level. This should be expected, as gradient boosting is non-updating.
While using a non-updating function approximator is generally not recommended in
machine learning literature (Sutton and Barto, 2018, p. 162) this does not necessarily
hold true given our setting. Section 3.9 compares the performance of different function
approximators.

−0.3

−0.2

−0.1

0.0

Random Mini−Batch Force Last Block Force Last 2 Blocks Only Last 3 Blocks
Type of replay dataset

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Figure 28: Comparison of the effects of forcing the last X blocks to be used in the
replay data set according to the methodology of Section 3.3.
For this figure a neural Network with a replay size of 3 blocks has been used. All
parameter sets use 50 runs per strategy. For the specific parameters and more
detailed information see Appendix G.6

The effect of forcing the last X blocks is presented in Figure 28. Forcing the very
last block increases performance. This performance increase however is negligible
and non-significant. Further increasing the number of forced blocks decreased
performance. In fact, only using the last three blocks showed the lowest performance.
The stabilizing effect of using older episodes is therefore not only beneficial given the
ATARI benchmark, but also in our setting of the IPD game.

99

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

One possible explanation of this lower performance when using only the last three
blocks is that only complete episodes were used for the update. Using uniform
sampling on the other hand implies that experience sets (s, a, r, s′) are drawn out
of the complete body of the memory independent of the generated episode. As
experiences within one episode are highly correlated this richer diversity might drive
the results. A possible “more recent information is more valuable” effect might
therefore be counteracted. An interesting extension to this idea might thus be to use
random sampling which is not uniform, but rather prefers more recent experiences
to combine the advantages of both approaches. Alternatively, further improvements
might be achieved using prioritized replay, which was proposed by Schaul et al.
(2015). Here, experiences are prioritized which had the highest effect on changing
associated Q-Values.

100

Electronic copy available at: https://ssrn.com/abstract=3556714

3.9. Choice of Function Approximator

3.9. Choice of Function Approximator

Classic Q-Learning uses a tabular approach where all possible state-action pairs
(s, a) are saved and evaluated explicitly. In our case this is not possible due to the
large state space. A function approximator f(s, a)→ Q generalizes from historical
experiences to similar situations. This allows to construct a policy which is defined
outside of already experienced state-action pairs and plays there profitably.
The theoretical foundation regarding function approximators is built in Section 2.3.4.
Section 2.4 gives an overview about the function approximators discussed in this
section. Here, we will concentrate on the effects of different function approximators
within our specific setting as measured by the approach as defined by Section 3.3.
While the R-package Kies (2019) is customizable and supports different types of
function approximators, our analysis focuses on the following three:

1. Gradient boosting shows very strong performance in supervised learning, is
fast to train, but can not be updated.

2. Neural networks are the go to standard approach in reinforcement learning,
can be updated and scale well.

3. Recurrent neural networks create policies for arbitrary large episode lengths T
even if all training data is capped at a lower level.

The following points determine which function approximator to use:

1. In howfar is the function approximator able to capture the underlying best
answer and generalize correctly?

2. How fast does the function approximator generate a good policy?

3. Is the function approximator able to generalize to games with a longer number
of episodes?

Regarding the first point it holds that after optimizing hyperparameters by hand, all
three discussed function approximators show practically the same performance after
100 blocks. All are therefore able to generate policies of the same quality. Figure 29
shows that all function approximators receive an average reward of the same level on
the last 25% of blocks.
Regarding the second point, one has to differentiate between two definitions of speed.
On the one hand, speed of learning can refer to the number of episodes necessary to
achieve a certain quality in the generated policy. One the other hand it can refer to
the actual time difference until the final policy has been generated.
Given a specific problem, the actual time is the more important factor. If one wants
to generalize however, it is important to keep in mind the other concept as well.
If one for examples wants to find a best answer against a strategy which needs
considerable time for each action, the number of played episodes becomes relatively
more important than the update time for the function approximator.

101

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

In the following we will focus on the challenges of our specific setting, aggregated
over the testing pool. It should be kept in mind however, that a change in the
environment might have profound effects on these results.
The performance of the different function approximators given the number of used
blocks is presented in Figure 29.

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Gradient Boosting
Neural Network
Recurrent Neural Network
Against themselves

Figure 29: Comparison of performance of three different function approximators
with optimized hyper parameters for each according to the methodology described
in Section 3.3.
All data points have been generated on 100 runs for each strategy for gradient
boosting and 15 runs for each strategy for neural network and recurrent neural
network respectively. All use the same features of the algorithm, except for a
difference in size of the replay dataset (see Section 3.8) which has a strong interaction
with the chosen function approximator. Additionally, recurrent neural network uses
its own encoding (see Section 3.7). For the specific parameters and more detailed
information see Appendix G.7.

Figure 29 gives some indication, that gradient boosting is better able to generalize
based on a smaller number of episodes. While being practically relevant, for example
if one stops the evaluation after a specific block, this does not guarantee, that the
displayed graph represents the upper potential of the networks given the data.
The networks use the same potential effort to update after each block. If new data
of early blocks is especially informational, these update efforts might be chosen too
small in the beginning. Using Experience Replay, this information is then potentially
incorporated steadily when updating the networks in later blocks. The slow rise
in performance might in this case be partially attributed to the networks having a
longer set up time to incorporate new information.

102

Electronic copy available at: https://ssrn.com/abstract=3556714

3.9. Choice of Function Approximator

Gradient Boosting on the other hand uses the majority of all experienced episodes in
the update cycle. In fact, for the calculations of Figure 29 gradient boosting used all
available data up to block 50. It is therefore able to update Q-Values based on a
large proportion of the data simultaneously and make them consistent to each other.
Having stops (i.e. every 10 blocks), where the networks try to incorporate all data
would more accurately show the potential of the available data. This could be
combined with using several replay cycles subsequently to increase the consistency of
Q-Values. These ideas can be implemented using the R-package Kies (2019). Doing
so, however, increased run time considerably. They are therefore not feasible for
practical applications in our setting.
Alternatively, one could set the replay data set to the same sizes as for gradient
boosting. This also allows the networks to show a higher performance relative to the
number of played blocks. As has been discussed in Section 3.8 however, increasing the
replay data set has declining marginal utility. As simultaneously the training time
increases linearly, this approach is also not practicable under efficiency considerations.

−0.8

−0.6

−0.4

−0.2

0.0

0 1000 2000
Seconds

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Gradient Boosting
Neural Network
Recurrent Neural Network

Figure 30: Comparison of performance of three different function approximator
types according to the methodology described in Section 3.3 in relation to used
seconds.
Displayed is the best aggregated performance up to the respective time over all
hyper-parameter combinations given the respective function approximator type with
at least 10 runs. The ticks have a distance of approximately 2.5 seconds. For
the specific parameters, the specifications of the used hardware and more detailed
information have a look at Appendix G.7.

103

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

Instead of focusing on the number of episodes, it is possible to ask what kind of final
performance can be achieved if the hyperparameters are optimized with a specific
time limit in mind. In the case of the networks one can for example increase the
number of used neurons within a broad range to simultaneously increase performance
and training time. Conversely, gradient boosting can change the number and depth of
the used trees. The corresponding chart is depicted in Figure 30. Here, a simulation
study over a wide variety of hyperparameters has been conducted. Depicted is the
best result which could be achieved in the given time. To limit the impact of outliers,
the depicted result had to be achieved by 10 runs. Nevertheless this method by
design generates an upwards bias for each data point.
It can be seen, that in terms of time gradient boosting significantly outperforms
the alternatives. If one is not interested in generating an extremely accurate final
performance but rather wants to have a quick estimate about the strategy, gradient
boosting is clearly the superior option.
This is not an artifact induced by the R-package Kies (2019). The overhead in
regards to all function approximators is approximately the same. The bulk of the
difference between the calculation times lies in external packages: Kies (2019) uses
the R-package xgboost (xgboost.ai, 2019) for gradient boosting and keras for R
(Arnold, 2019) for the networks.
Nevertheless, non-standard control of these external functions might influence the
displayed times. Indeed, two major points should be discussed:
With the current implementation of the recurrent neural network each state-action
pair is seen independently, just as with the other function approximators. This
implies, that for each decision the complete history has to be recalculated and the
hidden states of former calculations are not used as stepping stones. Fixing this issue
should significantly speed up the recurrent network. Despite this consideration, the
majority of time is lost on the actual training of the model and not the execution of
the actions. The general point of the recurrent neural network being considerably
slower therefore still stands.
On the other hand both networks are significantly speed up by an innovation I
developed and implemented in Kies (2019). Classically, one generates a replay data
set each replay and trains the network on it for a certain, fixed number of training
epochs. An epoch of a neural network is a full update cycle of the network through
the training data. Choosing the number of training epochs has a profound effect
on convergence speed and the quality of the final result due to over/underfitting. I
developed a simple method which changes the number of epochs at run time. Instead
of choosing a single parameter for the number of epochs, two parameters are defined.
Those are a base epoch number and the number of maximum repetitions. First,
the network is trained on a number of epochs equal to the base epoch number.
Afterwards, the algorithm checks the mean squared error on the training data. If this
error is at least as small as in the previous replay the algorithm continues. If this is
not the case, the network is trained again according to the base epoch number. The
algorithm stops training the network if either the maximum number of repetitions is
reached or the new training error is at least as small as the one of the previous replay.

104

Electronic copy available at: https://ssrn.com/abstract=3556714

3.9. Choice of Function Approximator

This method allows the algorithm to concentrate training time on those updates
which are actually relevant. In other words, more effort is used to update the network
when the new data is surprising in the sense that a big correction in the network has
to take place. If the to be trained Q-Values on the other hand are already expected,
only a small amount of training time is used. As a result, the same performance can
be achieved with significantly less training time. Indeed, always using the maximum
number of epochs, i.e. base epochs multiplied with maximum number of repetitions,
not only increases run time, but also lower performance due to overfitting.
Gradient Boosting could be greatly sped up, if one could update it incrementally.
This however is currently not yet possible, even though incremental improvements for
Gradient Boosting have been developed by C. Zhang et al. (2019) for classification
problems.
We now focus on the third point on how to determine which function approximator
should be used when arbitrary long games are of interest. In principle all function
approximators can be used for arbitrary long games if the encoding (see Section
3.7) is chosen appropriately. One might for example only use the last X periods
in combination with some additional helpful aggregate statistics over the complete
history as input. This however can lead to forgetting important information from the
beginning of the episode if it is not accurately reflected by the additional aggregate
information. Only the recurrent neural network provides the built-in functionality
to avoid this situation. If the goal is to evaluate the strategy without limiting the
number of periods, the recurrent neural network is therefore the best choice.
To summarize, no function approximator is the optimal choice in all cases. In partic-
ular it is not obvious, that the standard approach of using a neural network is the
recommended choice given the setting. If fast results are desired, gradient boosting
is the best choice based on our studies. Given sufficient time and a high number of
episodes, an updating function approximator might be the best choice. The more
flexible and in the end more powerful version according to our studies is the recurrent
neural network.
These studies can easily be extended to other function approximators, as for example
genetic algorithms or particle swarms. The function approximator random forest
is already implemented in the R-package Kies (2019). Here, the underlying imple-
mentation of the R-package grf (J. Tibshirani et al., 2019) has been used. Random
forest produces results very similar to gradient boosting. It has however the strong
disadvantage that the evaluation of actions takes considerably longer. It is necessary
to evaluate a great number of state-action pairs when generating experiences. Using
random forest therefore slows down the speed of learning significantly and makes it
a weaker choice than gradient boosting.

105

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.10. Model Persistence

In theory Q-Learning, and by extension the algorithm, convergences toward the
optimal policy given a sufficient function approximator. The learning process is
not deterministic due to stochastic exploration and innate features of the setting.
Consequently, convergence is not monotonous, even though the shown figures might
suggest otherwise. All displayed figures are based on aggregating up to several hundred
runs and display an approximation of the convergence path in expectation. Within
a single run it can easily be the case, that an update of the function approximator
results in a worse policy. This might for example happen when non-characteristic
observation errors suggest Q-Values which are in line with a suboptimal policy.
The, to my knowledge, novel approach of Model Persistence introduces a simple
concept: Do not throw away a model which has performed good in the past, even if
it no longer accurately represents current experiences. A model in this case is the
set of all approximated Q-Values and therefore directly defined by the used function
approximator. Saving a model is consequently identical to saving the mathematical
representation of the specific function approximator itself. The name has been
chosen because Model Persistence can directly be applied to tabular Q-Learning.
The existence of a function approximator is therefore not required.
Note, that a different model does not necessarily imply a different policy. To change
the policy there has to be at least one state, where a different action is taken. A
change in Q-Values is a necessary but not a sufficient condition for this.
Within the R-package Kies (2019) this is implemented by using at least one additional
episode per block or alternatively replacing one of them. This new episode is played
according to the so-called best model. The standard approach within this article uses
one exploration episode and one episode according to the current model per block.
Including Model Persistence we might therefore for example use one exploration
episode, one with the best model and one with the current model per block.
The best model is chosen the following way:

Both models, current and best, are initialized.
For i = 1 to number of to be played blocks:

Play the episodes of block i.
If (average) performance of current model in block i > (average) perfor-
mance of best model in block i

best model ← current model
Else

Nothing happens, the best model stays the same
current model is updated.

The underlying used performance is the average historic reward of the episodes with
the given class of the block in question. By design Model Persistence requires at
least one episode according to the current model per block. As before, at least

106

Electronic copy available at: https://ssrn.com/abstract=3556714

3.10. Model Persistence

one exploration episode per block is necessary to have a learning process. Also
analogously to before all experiences are indiscriminately saved into the memory.

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Explo.2−Cur.1−Best.1
Explo.2−Cur.2−Best.0
Against themselves

Figure 31: Comparison of performance of two different block compositions according
to the methodology described in Section 3.3. “Explo.2-Cur.2-Best.0” uses two episodes
with exploration and two episodes with the most recent, current model per block.
“Explo.2-Cur.1-Best.1” uses two episodes of exploration, one episode of the best model
and one episode of the most current model.
All data points have been generated on 20 runs for each strategy. For the specific
parameters and more detailed information see Appendix G.8.

The effects of using Model Persistence are shown in Figure 31. It can be seen, that
using Model Persistence has a significant and relevant effect on the performance across
all stages of learning as well as final performance. Note, that to keep comparability
only the average performance of the episodes with the current model are shown.
Additionally, each block uses the same number of total episodes. Having the same
number of total episodes allows to separate the effects of Model Persistence from
having more training data.
To understand why Model Persistence is beneficial, consider the following:

1. While the best model does not reflect the most recently gained knowledge it
is by design able to generate high rewards. Assume that there is a difference
between the best and the current model and the best model scores higher. This
implies, that the Q-Values estimated by the current function approximator do
not represent the true values. Generating more data with the best model might
thus improve the algorithm by providing more example data on how to play
with a high performance.

107

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

2. Having two different best effort episodes allows for more variation in learn-
ing. This variation allows for a different form of exploration additionally to
the exploration episode. Using data generated this way makes the function
approximator more robust and thereby better able to generalize.

It might be reasonable to conduct further research regarding Model Persistence
and variants thereof. The performance increase due to Model Performance might
be dependent on the amount of randomness within the environment. With the
current implementation the best model is often replaced because of a different draw
in observations errors and not necessarily due to the newer model having a better
expected performance. It is possible to counteract this effect by playing a higher
number of episodes per block for each type of episode. This allows to get a more
accurate representation of the expected value of the performance of the underlying
policies. Doing so however comes with a cost. The algorithm learns considerably
slower, as the function approximator is updated less often in relation to the number
of episodes. A more sophisticated approach however might be to have a stack of
best models and using the most probable best model with a higher probability, for
example using Bayesian updating.
At first glance similar, but fundamentally different is the concept of double Q-Learning
(see Van Hasselt (2010) for the origin and Van Hasselt et al. (2016) for the combination
of double Q-Learning with the Deep Q-Network of Mnih et al. (2015)). Double
Q-Learning addresses the problem, that there is an upwards bias in the Q-Learning
algorithm which overestimates the value of the to be chosen action. A good intuitive
explanation for this effect can be given if one assumes, that there is a stochastic
environment and all actions lead to the same probability of next state and expected
reward. Due to chance some of these actions will have higher rewards within the set
of experiences. As the Q-Learning algorithm takes these results at face value, the
calculated Q-Values for these actions are too high. Double-Q Learning trains two
different function approximators, which each train on a random subset of experiences,
thus differing in their assessment. When updating a function approximator one
of them is used to determine which action â should be played, but the other one
generates the Q(s, â) value used for the update. This counteracts a significant portion
of the upwards bias. Double Q-Learning is compatible with both Q-Switching as well
as Model Persistence. Extending the algorithm of this article with double Q-Learning
could increase final performance and speed of learning.

108

Electronic copy available at: https://ssrn.com/abstract=3556714

3.11. Memory Initialization

3.11. Memory Initialization

Basic Q-Learning uses a blank slate approach to learn about the environment. This
means that all Q-Values are initialized independent on their specific state-action pairs.
Several initialization variants exist for the tabular approach. One basic approach is
to initialize each Q-Value with the same value.
Function approximators also have to be initialized. As a default case they are often
initialized as zero. This approach is also used with gradient boosting throughout
this article. The convergence of neural networks can strongly be increased by using
various techniques to initialize the weights of the network to non-zero (Mishkin and
Matas, 2015). The R-package Kies (2019) adds small random noise when setting up a
network by default. This type of initialization has been used for the studies regarding
the networks. From a reinforcement learning point of view this approach however
still effectively amounts to an initialization at zero, as the effect on the generated
Q-Values is small. While adding noise to the starting-weights of the network is
beneficial for technical reasons, it therefore has no relevant influence on the starting
policies.
If already some information about the environments is known, it can be incorporated
into the initialization. If for example theoretical considerations imply certain actions
to be more desirable, these actions can be initialized with higher starting values. The
algorithm will then play these actions with higher probabilities, thus giving it a head
start.
Given a game with sparse rewards this approach might not be sufficient. Take for
example a racing game, where a policy is judged by the time it needs to complete
a lap. Having random or zero initialization of Q-Values and always starting at the
start of the lap, it might take a nearly infinite time to actually complete a lap at all.
One possible solution is to introduce subgoals. The algorithm might for example get
an additional reward based on the time the policy needs to complete the first percent
of the lap. In this case, however, the incentives for the algorithms get distorted. As a
result hard-coding additional rewards for subgoals can result in a suboptimal policy
as measured by the initial performance measure.
Often times a more elegant way to nudge the algorithm in the right direction is
Memory Initialization. This method works in unison with the concept of Experience
Replay: The memory database is initialized with experiences which were not calcu-
lated by the algorithm itself, but through other means. The general approach is to
provide the memory database with successful experiences. These allow the algorithm
to correctly calibrate on the to be expected rewards given good play. In the example
of the racing game this could for example be data based on several completed laps.
This type of initialization is often done with experiences of human experts. Silver,
Schrittwieser, et al. (2017) for example used a data set of 30 million game-state
positions to build the groundwork for their policy network of AlphaGo.

109

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

The R-package Kies (2019) provides a variety of types of initialization. Within
this article however we focus on a particularly important one, which we call self
initialization. Self initialization in this context is the acquisition of experiences by
having the strategy play against itself. Without noise a single run is sufficient, but
in our setting it is favorable to observe how the strategy reacts to noise at different
points in its play.
One advantage of self initialization is that no environment specific knowledge is
needed. This form of initialization therefore does not require manual pre-analysis.
Given the goal to evaluate the stability of a strategy, self initialization is particularly
interesting. If the strategy is a Nash equilibrium, no deviation from the strategy
itself can be found. Having a memory database with self-play, it is probable, that
the generated policy at least matches the general performance level of the strategy.
This is beneficial if the strategy indeed already is a Nash equilibrium.
Even if the strategy is not a Nash equilibrium, there is a distinct chance that
the optimal counter-policy will be found in some vicinity to it. Two examples for
such strategies are grim.trigger and tft.2forgive. Here the best responses are slight
deviations of the strategies themselves. That the optimal policy might be found
within the vicinity of the strategy holds especially true, if the strategy uses some kind
of key pattern to determine self-play and ensuing cooperation. A good candidate for
optimal play against this kind of strategy is a policy which masks itself by playing the
key pattern. Afterwards a switch to exploiting the opponent can take place. Finding
such a key pattern might be difficult if it is sufficiently distinct from patterns which
generate promising rewards otherwise. Given self initialization, however, exploration
episodes will tend to explore policies which are similar to the strategy itself. This
allows the algorithm to find these types of policies considerably faster.
Memory Initialization is not without risk, however. The algorithm might get stuck in
a local optimum if the provided experiences strongly suggest a particular avenue of
play but a slight deviation is costly. If the best policy follows a sufficiently different
paradigm, it might never be found. This is one of the reasons why the DeepMind
Team made the deliberate decision to forgo Memory Initialization when constructing
AlphaZero (Silver, Hubert, et al., 2017). This allowed them to negate possible bias
of human strategies.
The actual effect of using self initialization given our setting is presented in Figure 32.
Using a higher number of self plays indeed significantly improves performance at the
beginning of the learning phase. Even using a simple initialization with just a single
playthrough of the strategy against itself notably speeds up learning. Interestingly,
this does not matter in the long run, as all variants converge towards the same final
performance.

110

Electronic copy available at: https://ssrn.com/abstract=3556714

3.11. Memory Initialization

−0.8

−0.6

−0.4

−0.2

0.0

0 25 50 75 100
Number of blocks

P
ay

of
f d

iff
er

en
ce

 to
 b

es
t k

no
w

n
an

sw
er

Initialization 50
Initialization 1
No Initialization
Against themselves

Figure 32: Comparison of different strengths of self initialization according to the
methodology described in Section 3.3. “Initialization X” filled the memory database
with X episodes of self-play of the opponent strategy beforehand.
The data for both self initialization types has been generated using 20 runs for each
of the strategies. In the case of no initialization, 60 runs per strategy have been
simulated. For the specific parameters and more detailed information see Appendix
G.9.

Given the setting and approach of analysis, the following summary can be made:

1. Memory Initialization considerably improves the performance at the beginning
of the learning process.

2. At least on average the algorithm is not trapped in a local optimum due to
Memory Initialization. Branching out the search space outgoing from self
initialization does not hurt final performance.

3. The testing pool strategies do not have patterns, which are not otherwise de-
ducible by the Exploration Path with a ε-exploration / noisy action exploration.
Memory Initialization is therefore not necessary if only final performance is
considered.

111

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

3.12. Summary of Analysis

To test exploitability of given strategies in the Iterated Prisoner’s Dilemma game
with noise, I developed an algorithm which uses reinforcement learning to find near
optimal policies as proxies for game-theoretic best responses. Outgoing from a basic
Q-Learning algorithm with function approximation as described in Sections 2.3.3
and 2.3.4, I developed and/or tested the following modifications. Each of them is
detailed in its respective section. The following list gives a short summary of the
main learning points given the testing environment. It also discusses briefly which
configurations were used for the final algorithm to generate Figures 10 and 12 (see
Section 3.2).

1. Q-Switching
Combining Monte Carlo learning and classic Q-Learning allows both pure ap-
proaches to contribute with their respective advantages. The learning process
when using Q-Switching shows in the beginning approximately the same perfor-
mance as Monte Carlo learning. However, with increasing number of episodes
it improves faster. Across the complete training period, Q-Switching generates
policies with a higher expected average reward than its pure alternatives. In
particular, the average performance of the final policy was highest when using
Q-Switching.
Additionally, policies generated by Q-Switching show less variation in final
performance compared to the analyzed alternatives. This modification therefore
increases reliability of training.
Strategies exist, where either Monte Carlo learning or Q-Learning is a much
better choice to construct a counter-policy compared to the other one. In these
cases Q-Switching performs between both pure approaches. This makes it a
generalized approach which is useful in the absence of deeper knowledge about
the to be analyzed strategy but not necessarily optimal in edge cases.
Q-Switching was used in the final algorithm due to its clear advantages.

2. Multi-Exploration
Situations and settings exist, where more sophisticated exploration methods
improve learning behavior compared to ε-exploration. In the analyzed setting,
however, this proved not to be the case. Pure ε-exploration performs best
compared to using pure methods based on Boltzmann-exploration, trying to
maximize surprise or encouraging exploration by letting the agent seek out
unfamiliar territory.
Given the IPD game, there exist parameter settings, where ε-exploration
indeed performs worse. With these settings, we showed that combining several
exploration methods can increase performance. However, this does not hold
true for the standard setting. Here, the combination of exploration approaches
does not achieve significant improvements. It is therefore questionable to use
exploration methods which are comparatively resource intensive.

112

Electronic copy available at: https://ssrn.com/abstract=3556714

3.12. Summary of Analysis

The combination of ε-exploration and noisy actions showed the best performance
and is resource-efficient. Additionally, there exist theoretical and empirical
arguments in favor of their combination. Consequently, this combination was
used for the final configuration.

3. Exploration Pathing
Instead of decreasing the exploration factor by a fixed rule, it is possible to let
the degree of exploration depend on relative performance between episodes with
exploration and those without. This allows for a more efficient use of exploration
episodes. Exploration Pathing results in a significantly better performance of
the average final policy compared to a fixed exponential decreasing rule.
Furthermore, Exploration Pathing complements Multi-Exploration by balancing
the size and therefore relative importance of different exploration parameters.
For the final configuration a constant ratio between exploration episodes and
best effort episodes of 85% was used. My intention was to balance the effects
of possibly getting stuck in a local optimum on the one hand and staying
sufficiently near the optimal policy to achieve efficient exploration on the other
hand. On the recurrent neural network run with a much higher number of
episodes the ratio increased linearly from 85% to 95% to reflect the goal of
generating a near optimal policy.

4. Feature Selection:
Using the right features for the input of the function approximator has a
profound impact on the performance of the developed policy. I propose an
encoding which works well on a wide selection of strategies and produced
policies with a higher performance than the encoding of Harper et al. (2017).
If the encoding is restricted to only use raw data of the last X periods, then
using 4 to 6 periods resulted in the best performances.
Using a recurrent neural network which is able to keep track of desired features
mitigates the need for a handcrafted feature space.
I used my developed feature selection for the gradient boosting run. Only the
very last period as raw data was used for the recurrent neural network run, as
this configuration showed comparable performance but was considerably more
resource-efficient.

5. Experience Replay
The improvement of Mnih et al. (2015) to use random batches of the memory
to train the function approximator is beneficial in our setting as well. These
benefits are not limited to neural networks and hold over a variety of different
function approximators.
Due to being a non-updating function approximator, gradient boosting has to
use Experience Replay. As it also proved beneficial for the recurrent neural
network, it was used here as well.

113

Electronic copy available at: https://ssrn.com/abstract=3556714

3. Finding Best Answers

6. Choice of Function Approximators
The standard choice of using a neural network as the function approximator is
not a forgone conclusion. Gradient boosting achieves the same final performance
in a faster time and earlier in the training process, i.e. using less training data.
The recurrent neural network is slower in computation and speed of learning,
but generates policies which do not have to be restricted to a maximum number
of periods. In contrast to gradient boosting the recurrent neural network is
updating, i.e. needs approximately a constant amount of time per update when
converging towards the best policy. Gradient boosting on the other hand has
to be rebuild on an increasing amount of training data if the same effect has to
be achieved and needs therefore an increasing amount of time per update. The
recurrent neural network is therefore the preferred choice if a very large amount
of training data needs to be generated to achieve a high degree of precision.

7. Model Persistence
Instead of deleting old models when updating the function approximator, it is
beneficial to keep the historically best performing model and use it to generate
more data. This significantly improves the speed of the learning process as well
as the average performance of the final policy.
Consequently, I used this feature for both variants of the final algorithm.

8. Memory Initialization
Instead of using a green field approach, one can initialize and pre-train the
function approximator on training episodes. We analyzed the effect of using
episodes of the strategy playing against itself to set a starting point for explo-
ration. Doing so significantly improves performance of the policies generated
at the start of the learning process. However, this effect tethers out in our
setting. Given a sufficient number of training episodes, final performance is
not significantly changed.
Even though no real benefits for the final policy are to be expected, I used this
feature due to it being non-harmful and adding only a relatively small amount
of computation time.

114

Electronic copy available at: https://ssrn.com/abstract=3556714

References

Abreu, Dilip, Prajit K. Dutta, and Lones Smith (1994). “The Folk Theorem for
Repeated Games: A NEU Condition”. In: Econometrica: Journal of the
Econometric Society, pp. 939–948. doi: 10.2307/2951739.

Abreu, Dilip, David Pearce, Ennio Stacchetti, et al. (1990). “Toward a Theory of
Discounted Repeated Games with Imperfect Monitoring”. In: Econometrica
58.5, pp. 1041–1063. doi: 10.2307/2938299.

Almuallim, Hussein (1996). “An efficient algorithm for optimal pruning of decision
trees”. In: Artificial Intelligence 83.2, pp. 347–362. doi:
10.1016/0004-3702(95)00060-7.

Arnold, Taylor (2019). kerasR: R Interface to the Keras Deep Learning Library.
Version 0.6.1. url: https://cran.r-project.org/package=kerasR.

Ashlock, Daniel, Joseph Alexander Brown, and Philip Hingston (2014). “Multiple
Opponent Optimization of Prisoner’s Dilemma Playing Agents”. In: IEEE
Transactions on Computational Intelligence and AI in Games 7.1, pp. 53–65.
doi: 10.1109/TCIAIG.2014.2326012.

Axelrod, Robert (1984). The Evolution of Cooperation. New York: Basic Books.
isbn: 9780465021222.

Axelrod, Robert and William D. Hamilton (1981). “The Evolution of Cooperation”.
In: science 211.4489, pp. 1390–1396. doi: 10.1126/science.7466396.

Bellman, Richard E. (1957). Dynamic Programming. Princeton University Press.
isbn: 9780691146683.

— (2003). Dynamic Programming. Dover Books on Computer Science Series. Dover
Publications. isbn: 9780486428093.

Boyd, Robert (1989). “Mistakes Allow Evolutionary Stability in the Repeated
Prisoner’s Dilemma Game”. In: Journal of theoretical Biology 136.1, pp. 47–56.
doi: 10.1016/S0022-5193(89)80188-2.

Brunauer, Richard et al. (2007). “Evolution of Iterated Prisoner’s Dilemma
Strategies with Different History Lengths in Static and Cultural Environments”.
In: Proceedings of the 2007 ACM symposium on Applied computing. ACM,
pp. 720–727. doi: 10.1145/1244002.1244163.

Burda, Yuri, Harrison Edwards, Deepak Pathak, et al. (2018). “Large-Scale Study of
Curiosity-Driven Learning”. In: arXiv preprint arXiv:1808.04355. url:
https://arxiv.org/abs/1808.04355.

Burda, Yuri, Harrison Edwards, Amos Storkey, et al. (2018). “Exploration by
Random Network Distillation”. In: arXiv preprint arXiv:1810.12894. url:
https://arxiv.org/abs/1810.12894.

Cochran, William G. (1977). Sampling Techniques, 3rd Edition. Wiley & Sons Ltd.
isbn: 9780471162407.

Cominos, P. and N. Munro (2002). “PID controllers: recent tuning methods and
design to specification”. In: IEE Proceedings-Control Theory and Applications
149.1, pp. 46–53. doi: 10.1049/ip-cta:20020103.

115

Electronic copy available at: https://ssrn.com/abstract=3556714

References

Dayan, Peter and Terrence J. Sejnowski (1994). “TD (λ) Converges with Probability
1”. In: Machine Learning 14.3, pp. 295–301. doi: 10.1007/BF00993978.

Foerster, Jakob et al. (2018). “Learning with Opponent-Learning Awareness”. In:
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, pp. 122–130. url:
https://dl.acm.org/citation.cfm?id=3237408.

Freund, Yoav, Robert E. Schapire, et al. (1996). “Experiments with a New Boosting
Algorithm”. In: icml. Vol. 96. Citeseer, pp. 148–156. isbn: 9781558604193. url:
https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf.

Friedman, James W. (1971). “A Non-Cooperative Equilibrium for Supergames”. In:
The Review of Economic Studies 38.1, pp. 1–12. doi: 10.2307/2296617.

Friedman, Jerome, Trevor Hastie, Robert Tibshirani, et al. (2000). “Additive
Logistic Regression: A Statistical View of Boosting (With Discussion and a
Rejoinder by the Authors)”. In: The Annals of Statistics 28.2, pp. 337–407. url:
https://web.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf.

Fudenberg, Drew, David Levine, and Eric Maskin (1994-09). “The Folk Theorem
with Imperfect Public Information”. In: Econometrica 62.5, pp. 997–1039. doi:
10.2307/2951505.

Goldlücke, Susanne and Sebastian Kranz (2012). “Infinitely repeated games with
public monitoring and monetary transfers”. In: Journal of Economic Theory
147.3, pp. 1191–1221. doi: 10.1016/j.jet.2012.01.008.

Gorman, Ben (2017). A Kaggle Master Explains Gradient Boosting. url: http:
//blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/
(visited on 2019-10-07).

Grover, Prince (2017). Gradient Boosting from scratch. url:
https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d
(visited on 2019-10-07).

Harper, Marc et al. (2017). “Reinforcement learning produces dominant strategies
for the Iterated Prisoner’s Dilemma”. In: PloS one 12.12, e0188046. doi:
10.1371/journal.pone.0188046.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of
Statistical Learning: Data mining, Inference, and Prediction. Springer Science &
Business Media. isbn: 9780387848570.

Hebb, Donald Olding (2002). The Organization of Behavior: A Neuropsychological
Theory. Psychology Press. isbn: 9780805843002.

Hessel, Matteo et al. (2018). “Rainbow: Combining Improvements in Deep
Reinforcement Learning”. In: Thirty-Second AAAI Conference on Artificial
Intelligence. url: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17204.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural computation 9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Iizuka, Satoshi, Edgar Simo-Serra, and Hiroshi Ishikawa (2016). “Let there be Color!:
Joint End-to-end Learning of Global and Local Image Priors for Automatic

116

Electronic copy available at: https://ssrn.com/abstract=3556714

References

Image Colorization with Simultaneous Classification”. In: ACM Transactions on
Graphics (Proc. of SIGGRAPH 2016) 35.4. doi: 10.1145/2897824.2925974.

Judd, Kenneth L., Sevin Yeltekin, and James Conklin (2003). “Computing
Supergame Equilibria”. In: Econometrica 71.4, pp. 1239–1254. doi:
10.1111/1468-0262.t01-1-00445.

Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore (1996).
“Reinforcement Learning: A Survey”. In: Journal of artificial intelligence
research 4, pp. 237–285. doi: 10.1613/jair.301.

Kaiser, Lukasz et al. (2019). “Model-Based Reinforcement Learning for Atari”. In:
arXiv preprint arXiv:1903.00374. url: https://arxiv.org/abs/1903.00374.

Kies, Martin (2019). RLR. https://github.com/MartinKies/RLR. url:
https://github.com/MartinKies/RLR/commit/
3b8b1bfd4b4766b1e612de85a96c8d24e95d33e6.

Kraines, David and Vivian Kraines (1989). “Pavlov and the prisoner’s dilemma”. In:
Theory and decision 26.1, pp. 47–79. doi: 10.1007/BF00134056.

Kranz, Sebastian and Martin Kies (2019). StratTourn.
https://github.com/skranz/StratTourn. url: https://github.com/skranz/
StratTourn/commit/7c942551f510084de5ab20c5874d62fbe47332d5.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet
classification with deep convolutional neural networks”. In: NIPS’12 Proceedings
of the 25th International Conference on Neural Information Processing Systems.
Vol. 1, pp. 1097–1105. url: https://dl.acm.org/citation.cfm?id=2999257.

Kuhn, Steven (2019). “Prisoner’s Dilemma”. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta. Summer 2019. Metaphysics Research Lab,
Stanford University. url:
https://plato.stanford.edu/archives/sum2019/entries/prisoner-dilemma/.

Lahno, Bernd (2000). “In Defense of Moderate Envy”. In: Analyse & Kritik 22.1,
pp. 98–113. doi: 10.1515/auk-2000-0105.

Leibo, Joel Z. et al. (2017). “Multi-agent Reinforcement Learning in Sequential
Social Dilemmas”. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, pp. 464–473. url:
http://www.ifaamas.org/Proceedings/aamas2017/pdfs/p464.pdf.

Li, Cheng (2016). A Gentle Introduction to Gradient Boosting. url: http://www.ccs.
neu.edu/home/vip/teach/MLcourse/4_boosting/slides/gradient_boosting.pdf
(visited on 2019-10-07).

Li, Jiawei, Philip Hingston, and Graham Kendall (2011). “Engineering Design of
Strategies for Winning Iterated Prisoner’s Dilemma Competitions”. In: IEEE
Transactions on Computational Intelligence and AI in Games 3.4, pp. 348–360.
doi: 10.1109/TCIAIG.2011.2166268.

Lin, Long-Ji (1992). “Self-Improving Reactive Agents Based On Reinforcement
Learning, Planning and Teaching”. In: Machine learning 8.3-4, pp. 293–321. doi:
10.1007/BF00992699.

117

Electronic copy available at: https://ssrn.com/abstract=3556714

References

Littman, Michael L. and Richard S. Sutton (2002). “Predictive Representations of
State”. In: Advances in Neural Information Processing Systems 14. Ed. by
T. G. Dietterich, S. Becker, and Z. Ghahramani. MIT Press, pp. 1555–1561.
url: http://papers.nips.cc/paper/1983-predictive-representations-of-state.pdf.

Martin, Jarryd et al. (2017). “Count-Based Exploration in Feature Space for
Reinforcement Learning”. In: arXiv preprint arXiv:1706.08090. url:
https://arxiv.org/abs/1706.08090.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics 5.4,
pp. 115–133. doi: 10.1007/BF02478259.

McGillivray, Fiona and Alastair Smith (2000). “Trust and Cooperation through
Agent-specific Punishments”. In: International Organization 54.4, pp. 809–824.
doi: 10.1162/002081800551370.

Minorsky, Nicolas (1922). “Directional Stability of Automatically Steered Bodies”.
In: Journal of the American Society for Naval Engineers 34.2, pp. 280–309. doi:
10.1111/j.1559-3584.1922.tb04958.x.

Mishkin, Dmytro and Jiri Matas (2015). “All you need is a good init”. In: arXiv
preprint arXiv:1511.06422. url: https://arxiv.org/abs/1511.06422.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518.7540, pp. 529–533. doi: 10.1038/nature14236.

Molander, Per (1985). “The Optimal Level of Generosity in a Selfish, Uncertain
Environment”. In: Journal of Conflict Resolution 29.4, pp. 611–618. url:
https://www.jstor.org/stable/174244.

Monahan, George E. (1982). “State of the Art—A Survey of Partially Observable
Markov Decision Processes: Theory, Models, and Algorithms”. In: Management
Science 28.1, pp. 1–16. doi: 10.1287/mnsc.28.1.1.

Morey, Richard (2008). “Confidence Intervals from Normalized Data: A correction to
Cousineau (2005)”. In: Tutorials in Quantitative Methods for Psychology 4,
pp. 61–64. doi: 10.20982/tqmp.04.2.p061.

Nielsen, Michael (2019). Neural Networks and Deep Learning. url:
http://neuralnetworksanddeeplearning.com/index.html (visited on 2019-10-07).

Nowak, Martin and Karl Sigmund (1993). “A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the Prisoner’s Dilemma game”. In: Nature 364.6432,
pp. 56–58. doi: 10.1038/364056a0.

Olah, Christopher (2015). Understanding LSTM Networks. url:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (visited on
2019-10-07).

Peng, Jing and Ronald J. Williams (1994). “Incremental Multi-Step Q-Learning”. In:
Machine Learning Proceedings 1994. Elsevier, pp. 226–232. doi:
10.1016/B978-1-55860-335-6.50035-0.

Plappert, Matthias et al. (2017). “Parameter Space Noise for Exploration”. In:
arXiv preprint arXiv:1706.01905. url: https://arxiv.org/abs/1706.01905.

Press, William H. and Freeman J. Dyson (2012). “Iterated Prisoner’s Dilemma
contains strategies that dominate any evolutionary opponent”. In: Proceedings

118

Electronic copy available at: https://ssrn.com/abstract=3556714

References

of the National Academy of Sciences 109.26, pp. 10409–10413. doi:
10.1073/pnas.1206569109.

Rajkomar, Alvin et al. (2018). “Scalable and accurate deep learning with electronic
health records”. In: NPJ Digital Medicine 1.1, p. 18. doi:
10.1038/s41746-018-0029-1.

Rapoport, Anatol, Albert M. Chammah, and Carol J. Orwant (1965). Prisoner’s
Dilemma: A Study in Conflict and Cooperation. Vol. 165. University of Michigan
press. isbn: 9780472061655.

Rogozhnikov, Alex (2016). Gradient Boosting Interactive Playground. url: http:
//arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
(visited on 2019-10-07).

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6, p. 386.
doi: 10.1037/h0042519.

Roth, Alvin E. and J. Keith Murnighan (1978). “Equilibrium Behavior and
Repeated Play of the Prisoner’s Dilemma”. In: Journal of Mathematical
psychology 17.2, pp. 189–198. doi: 10.1016/0022-2496(78)90030-5.

Rumelhart, David E., Geoffrey E. Hinton, Ronald J. Williams, et al. (1986).
“Learning representations by back-propagating errors”. In: Nature 323. doi:
10.1038/323533a0.

Rummery, Gavin A. and Mahesan Niranjan (1994). On-Line Q-Learning Using
Connectionist Systems. Vol. 37. University of Cambridge, Department of
Engineering Cambridge, England. url:
https://www.researchgate.net/publication/2500611_On-Line_Q-
Learning_Using_Connectionist_Systems.

Samuel, Arthur L. (1959). “Some Studies in Machine Learning Using the Game of
Checkers”. In: IBM Journal of Research and Development 3 (3), pp. 210–229.
doi: 10.1147/rd.33.0210.

Sandholm, Tuomas W. and Robert H. Crites (1996). “Multiagent reinforcement
learning in the Iterated Prisoner’s Dilemma”. In: Biosystems 37.1-2,
pp. 147–166. doi: 10.1016/0303-2647(95)01551-5.

Schaul, Tom et al. (2015). “Prioritized Experience Replay”. In: arXiv preprint
arXiv:1511.05952. url: https://arxiv.org/abs/1511.05952.

Shannon, Claude E. (1950). “Programming a computer for playing chess”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
41.314, pp. 256–275. doi: 10.1007/978-1-4757-1968-0_1.

Siebrasse, Norman (2006). “’The Prince’-A Robust Strategy in the Repeated
Prisoner’s Dilemma with Noise”. In: SSRN. doi: 10.2139/ssrn.952370.

Silver, David (2015). UCL Course on RL. University College London. url:
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html (visited on
2019-10-07).

Silver, David, Thomas Hubert, et al. (2017). “Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning Algorithm”. In: arXiv preprint
arXiv:1712.01815. url: https://arxiv.org/abs/1712.01815.

119

Electronic copy available at: https://ssrn.com/abstract=3556714

References

Silver, David, Julian Schrittwieser, et al. (2017). “Mastering the game of Go without
human knowledge”. In: Nature 550.7676, p. 354. doi: 10.1038/nature24270.

Sugden, Robert (1986). The Economics of Rights, Co-Operation, and Welfare.
Oxford: Blackwell Pub. isbn: 9780333682395.

Sutton, Richard S. (1988). “Learning to Predict by the Methods of Temporal
Differences”. In: Machine learning 3.1, pp. 9–44. doi: 10.1007/BF00115009.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An
introduction. MIT press. isbn: 9780262039246. url:
http://incompleteideas.net/book/RLbook2018.pdf.

The AlphaStar Team (2019-01-24). AlphaStar: Mastering the Real-Time Strategy
Game StarCraft II. url: https://deepmind.com/blog/alphastar-mastering-real-
time-strategy-game-starcraft-ii/ (visited on 2019-10-07).

The Axelrod project developers (2016a-04). Axelrod: v4.6.0. doi:
10.5281/zenodo.3050770.

— (2016b). Axelrod: Version v4.6.0, Source code for axelrod.strategies.titfortat.
url: https://axelrod.readthedocs.io/en/stable/_modules/axelrod/strategies/
titfortat.html (visited on 2019-10-07).

Thomas, Konstantinos (2018). “Building a Reinforcement Learning A.I. for the
Iterated Prisoner’s Dilemma using Soar cognitive architecture”. Master Thesis.
National and Kapodistrian University of Athens. url: https:
//pergamos.lib.uoa.gr/uoa/dl/frontend/file/lib/default/data/2778307/theFile
(visited on 2019-10-07).

Thrun, Sebastian B. (1992). Efficient exploration in reinforcement learning.
Tech. rep. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.4011.

Tibshirani, Julie et al. (2019). grf: Generalized Random Forests. Version 0.10.4. url:
https://cran.r-project.org/package=grf.

Tijsma, Arryon D, Madalina M Drugan, and Marco A Wiering (2016). “Comparing
Exploration Strategies for Q-learning in Random Stochastic Mazes”. In: 2016
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, pp. 1–8.
doi: 10.1109/SSCI.2016.7849366.

Van Hasselt, Hado (2010). “Double Q-learning”. In: Advances in Neural Information
Processing Systems 23. Ed. by J. D. Lafferty et al. Curran Associates, Inc.,
pp. 2613–2621. url: http://papers.nips.cc/paper/3964-double-q-learning.pdf.

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep Reinforcement
Learning with Double Q-Learning”. In: Thirtieth AAAI conference on artificial
intelligence. url: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389.

Wang, Keven (2017). “Iterated Prisoners Dilemma with Reinforcement Learning”.
Course Project. Stanford University. url:
http://web.stanford.edu/class/psych209/Readings/2017ProjectExamples/
wangkeven_17581_1628229_psych209_paper.pdf.

120

Electronic copy available at: https://ssrn.com/abstract=3556714

References

Wang, Weixun et al. (2018). “Towards Cooperation in Sequential Prisoner’s
Dilemmas: a Deep Multiagent Reinforcement Learning Approach”. In: arXiv
preprint arXiv:1803.00162. url: https://arxiv.org/abs/1803.00162.

Watkins, Christopher John Cornish Hellaby (1989). “Learning from Delayed
Rewards”. Ph.D. Thesis. King’s College. url: https://www.researchgate.net/
publication/33784417_Learning_From_Delayed_Rewards.

Watkins, Christopher John Cornish Hellaby and Peter Dayan (1992). “Q-learning”.
In: Machine Learning 8.3, pp. 279–292. doi: 10.1007/BF00992698.

Wiering, Marco A. (2005). “QV(λ)-learning: A New On-policy Reinforcement
Learning Algorithm”. In: Proceedings of the 7th European Workshop on
Reinforcement Learning, pp. 17–18. url:
https://dspace.library.uu.nl/handle/1874/20276.

Wu, Jianzhong and Robert Axelrod (1995). “How to Cope with Noise in the Iterated
Prisoner’s Dilemma”. In: Journal of Conflict resolution 39.1, pp. 183–189. url:
https://www.jstor.org/stable/174327.

xgboost.ai (2019). Scalable and Flexible Gradient Boosting. Version 0.71.2. url:
https://xgboost.ai/ (visited on 2019-10-07).

Xue, Lei et al. (2017). “An Adaptive Strategy via Reinforcement Learning for the
Prisoner’s Dilemma Game”. In: IEEE/CAA Journal of Automatica Sinica 5.1,
pp. 301–310. doi: 10.1109/JAS.2017.7510466.

Zhang, Chongsheng et al. (2019). “On Incremental Learning for Gradient Boosting
Decision Trees”. In: Neural Processing Letters, pp. 1–31. doi:
10.1007/s11063-019-09999-3.

Zhang, Jianlei et al. (2011). “Resolution of the Stochastic Strategy Spatial
Prisoner’s Dilemma by Means of Particle Swarm Optimization”. In: PloS one
6.7, e21787. doi: 10.1371/journal.pone.0021787.

121

Electronic copy available at: https://ssrn.com/abstract=3556714

Appendices

122

Electronic copy available at: https://ssrn.com/abstract=3556714

A. General Features of Successful Strategies

There exists no single perfect strategy, as the performance of a strategy strongly
depends on its opponents. Against very simple strategies it can be feasible to construct
a best answer, a candidate for a best response, by hand. Against complicated
strategies one can use machine learning approaches to construct best answers, for
example the algorithm presented in this article. These approaches against specific
strategies are however not suited to construct a strategy which has to hold its own
against a myriad of unknown opponents.
Fortunately, there exist some basic ideas which can be extracted from the most
successful strategies. Here, the underlying assumption is, that the pool of opponents
shows a wide array of different behaviors: Some opponents might be very erratic,
some might be very friendly and exploitable, some might be overly aggressive and
other might be build with the same ideas in mind as will be discussed in the following
paragraphs.
Siebrasse (2006) describes his strategy the.prince the following way:

1. Win-Stay, Lose-Shift

a) Never give a sucker an even break

b) If you can’t beat ’em, join ’em

2. Punishment proportionate to the crime

a) Crime doesn’t pay

b) Forgive a wrongdoer who has paid his debts

While intended to highlight the specific features of the.prince, these basic ideas may
be used to explain desired properties of good strategies in general:

1. Win-Stay, Lose-Shift

a) Never give a sucker an even break
A good strategy aims to maximize its own rewards and does not want to
waste potential. Paired with a sucker, i.e. an exploitable strategy which
does not (sufficiently) retaliate, it is beneficial to act aggressively and
exploit as much as possible. When constructing a best answer by hand,
this is the recommended way to go: Find a pattern which allows the beast
answer to defection as much as possible without triggering retaliations.
Confronted with an unknown pool it is not obvious how aggressive one
might want a good strategy to act. Most historical good strategies err on
the side of being too nice as it is not obvious how high the percentage
of extremely harsh retaliators, as for example grim.trigger, might be.
Probing whether the opponent is a sucker by defecting a few times or
starting with a defection is thus not recommended (Axelrod, 1984, p. 202).
Several empirically successful strategies work around this by not being

123

Electronic copy available at: https://ssrn.com/abstract=3556714

A. General Features of Successful Strategies

the first one to defect, but examining closely how the opponent reacts
when confronted with a defection due to an observation error.

b) If you can’t beat ’em, join ’em
If it is not possible to exploit the opponent it has to be guaranteed, that
one is not exploited oneself, as this would result in a bad tournament
standing. One way to achieve this is to try to match the rewards generated
by the other strategy.
Two simple ways to do so are used by strategies of the tit.for.tat family
and the net.nice family. tit.for.tat copies the move of the other strategy,
thereby ensuring a certain kind of fairness and automatic retaliation.
net.nice aims to keep the difference between observed defections between
itself and the opponent within a small range and defects if the opponent
defected (a certain number of times) more than itself. Given that the
other strategy is reasonably sophisticated, it might deduce, that a strategy
build with If you can’t beat ’em, join ’em in mind can’t be exploited
and might thus prefer mutually beneficial cooperation, thus generating
comparatively high average reward for both strategies.

In general when having a good setup - e.g. mutual cooperation or a pattern
which is able to exploit the opponent - it is a good idea to keep this pattern.
Conversely, if the current setup does not work, it might be sensible to change
tactics.

2. Punishment proportionate to the crime
a) Crime doesn’t pay

The crime in this case being a defection, a good strategy often times
ensures that the expected value of a defection against it is not higher
than a cooperation. In other words the optimal action of the opponent
strategy against me should be to always cooperate. Combining this
with If you can’t beat ’em, join ’em implies, that the strategy should
-ideally- be constructed in a way that it cooperates as often as possible if
vetted against itself. Ideally this would mean, that the strategy plays the
highest possible Nash equilibrium against itself, i.e. that any deviation
from playing a cooperation all the time results in a worse outcome in
expectation.
Given the absence of noise and sufficiently high discount factor γ,
grim.trigger is ideal in the sense that always.cooperate is a best answer. As
a single defection results in a never ending series of retaliatory defections,
grim.trigger can be seen as the archetype of a Crime doesn’t pay strategy.

b) Forgive a wrongdoer who has paid his debts
As soon as noise is introduced to the game, or the other strategies do not
know that they are playing against grim.trigger, which might lead them
to test the waters by defecting, grim.trigger answers too harshly. Given a
reasonable high probability errD of a cooperation wrongfully perceived as a

124

Electronic copy available at: https://ssrn.com/abstract=3556714

defection in combination with a sufficiently high continuation probability
γ, grim.trigger shows a similar behavior as always.defect, as only the
first few periods are played cooperative. Consequently a lot of potential
cooperation is wasted and the strategy should place rather badly in a
tournament with sufficiently many strategies willing to cooperate.
The idea behind Forgive a wrongdoer who has paid his debts is that while
there is a need to retaliate when faced with an aggressive strategy, it is
unwise to discard the potential for future cooperation. In this sense it is
recommended to defect only the necessary amount.

Punishment proportionate to the crime aims to strike the right balance between
having a strong enough retaliatory reaction against aggressive strategies so
that defections are deterred while still projecting the image of a cooperation
friendly strategy. The optimal way to do so depends on the opponent, as a
retaliatory action has to be perceived as one which depends on the probability
of an detection error and the expected length of the game.
Generally speaking an increasing possibility of wrongfully perceiving a coop-
eration as a defection favors more lenient strategies. This can be exemplified
with the strategy tit.for.tat, which always copies the perceived move of the
opponent and starts in the first period with a cooperation: Assume there are
no detection errors and tit.for.tat plays against itself. Both strategies start
with a cooperation, will not deviate and generate the maximum joined reward.
However, introducing the possibility that a cooperation might be perceived as a
defection changes this picture. As soon as one of the two strategies wrongfully
detects a defection, it retaliates with a defection. The other strategy answers
likewise and both strategies are thus stuck in a loop of never ending defections.
With a higher probability of this defection error this effect happens at an
earlier point in time and thus reduces the expected average reward. Building in
some leniency mitigates this problem and prevents this defection loop. Given a
higher probability for a wrongfully observed defection the number of observed
defections increases and thus it is necessary to increase the leniency if one
wants to maintain a steady cooperation.

Most strategies, which are presented as successful in tournaments in Section 2.1.2
incorporate one or all of those aphorisms. The optimal balance between those ideas
however depends strongly on the pool of opponents and the given parameters of the
game. In the absence of noise against a pool which consists of only tit.for.tat-like
strategies and always.coop-strategies, it might be prudent to use a defection early on
to separate those two groups and play accordingly given the gained information. If
there are very harsh retaliators in the pool, it might be necessary to forgo the potential
of exploiting the very nice strategies to limit retaliatory measures of the other ones.
Given noise, the same situation holds still but the effects are less pronounced due to
the stochastic nature of the game. The main difference is, that one can cooperate in
the beginning and still utilize random observation errors to gauge the strongness of
retailiatory measures.

125

Electronic copy available at: https://ssrn.com/abstract=3556714

B. Non-Observability of States

As a general assumption throughout this article it is assumed that the agent is
perfectly able to observe the state as defined by Section 2.2. This is not necessarily
the case in a game with private information, where some information is only known
to the opponent. Instead, the agent has to rely on publicly available information and
possible private information of its own. The set of all possible information available
to the agent at this point in time is called the observation.
Practically speaking there might be a direct mapping between some or all of the
observations and states. In an extreme case with an opponent who does not react to
inputs (e.g. random.action or always.cooperate) and assuming that the environment
does not incorporate the history as well (as per the rules of the IPD game of Section
2.1.1), only one state exists. On can therefore map all observations to this single
state and only has to determine which action is optimal. Repeating this optimal
action regardless of the history determines the best policy.
A similar argumentation can be made for the class of strategies, which only rely on
public information. Here one can infer all relevant states based on the observations
and develop an optimal policy. However, as soon as the opponent takes information
into account which is not public, the best policy given full information might differ
from the best policy based on public information. In fact, it is not possible to
determine the correct state St.
Some ideas exist on how to deal with such missing information. One popular approach
is using a so called Partially Observable Markov Decision Process (POMDP) (Sutton
and Barto, 2018, p. 384). Here the basic idea is, that there exists an unobserved
hidden Markov model with a true, but hidden state Xt. Which observations Ot are
made each period depend on this hidden state and thus allow the agent to infer the
distribution of possible states Xt. Depending on which information about the model
is known, Bayesian updating can for example be used to calculate this distribution.
A survey of some popular approaches on how to deal with POMDPs in particular
can be found with Monahan (1982).
An alternative to POMDPs are so called Predictive State Representations (Littman
and Sutton, 2002) with the basic idea to use tests to predict future states and actions
and update a vector which tracks the probability distribution over those tests. This
vector is then used as the Markov state.
Our approach was to use neither of those methods but instead use the observations
Ot directly as states St and filter them through the function approximator. This was
done for the following reasons:

1. Due to the complexity of the problem the theoretically optimal dynamic pro-
gramming approaches of Section 2.3.1 are not viable and function approximators
have to be used in any case. The usage of approximating functions is very
similar to having partially observable states and is a viable way to circumvent
some problems regarding non-observability (Sutton and Barto, 2018, p. 161).
An approximation function per design flattens the dimension of the parameter

126

Electronic copy available at: https://ssrn.com/abstract=3556714

space and loses information. Even with perfect public monitoring the agent
therefore does not see the full state of the state, but only the representation as
shown by the function approximator. Some of the limitations of the partial
observation can therefore be transferred to the considerations in regard to the
function approximation which are further discussed in Section 3.7 and Section
3.9.

2. Adding another layer of complexity increases runtime due to computational
complexity. At least in the case of POMDPs Sutton and Barto (2018, p. 385)
write that they “scale poorly”. Even using alternative versions of keeping track
or building hypotheses are necessarily very memory intensive in our case. With
other problems one might have access to a considerable amount of data to
infer one of a few states, but with our specific problem we have to assume
in every single period that there has been an observation error. Tracking all
those different routes increases complexity exponentially. Nevertheless, there
certainly exist situations, where it might be prudent to use more sophisticated
models without increasing complexity too much:
Assume that a strategy decides before its first action, whether it wants to play
with policy A or policy B. Having a way to infer which of those two policies is
played in an explicit way might greatly improve the algorithm to find a best
answer. A fundamentally comparable situation takes place if the agents plays
against a pool of known opponents. Using an explicit model to determine the
specific opponent might improve tournament performance. As this was not the
focus of this article and I wanted to present general solutions, I refrained from
implementing this idea.

3. Some considerations have to be made to keep the Markov property. If the agent
for example only considers the very last period, but the opponent uses the last
two periods to calculate its action, the best possible achievable policy might
be sub-optimal. In such a situation it no longer holds, that our best possible
policy has to be deterministic. Limiting the agent to deterministic strategies
can therefore result in it not even converging to the best possible one-period
strategy.
An example for this effect in a gridworld setting can be found with Silver (2015,
Lecture 7, p. 7). A similar example can be constructed in our case. As a basic
intuition one should think about an opponent strategy which wants to see one
of two specific patterns and rewards the strategy strongly if it observes the
pattern. Which pattern is rewarded is chosen by chance at the beginning of
the game. The perfect deterministic one-period policy might be able to always
play the pattern with the higher expected value, but loses out on all games
with the other pattern, given that the patterns are reasonable different. A
mixed policy on the other hand might be able to find a distribution which has
a high chance to activate both patterns of the other strategy, thus reaping the
reward in both cases.
Thanks to correct representation and encoding (see Section 3.7) this challenge

127

Electronic copy available at: https://ssrn.com/abstract=3556714

B. Non-Observability of States

is solvable. It has to be guaranteed, that it is not possible to loop through
observed states, so that the same sub-optimal action is repeated.
In the case of the IPD game the right move has to be made in the right
situation and each state might only be visited once per episode, for example if
the strategy of the opponent depends on the period counter. Using all available
information, i.e. the public history, the period counter and the private history of
the game, the agent might not be able to necessarily play the best theoretically
possible policy, but is able to play the best possible policy using all available
information as the Markov property is maintained. Even though the opponent
might act differently based on his private information, this becomes a feature of
the environment from the view of the agent. Using sufficiently many episodes
the actions of the opponent become effectively a stochastic part of the game.
This stochastic element is eliminated by the function approximation which tries
to estimate the expected utility.

To summarize: By using function approximation and correct encoding of states, e.g.
a period counter, private information does not invalidate the idea of Markov states
but rather changes the effective environment the agent experiences. As this is the
environment we want to optimize, it is possible to use the same kinds of algorithms
as with perfect information but a stronger stochastic component.

128

Electronic copy available at: https://ssrn.com/abstract=3556714

C. General Structure of Algorithm

The main algorithm follows the following structure:

Define game information and save it into game.object # Step 1

Define parameters of algorithm and save them into algo.par # Step 2

Define parameters of function approximator and save them into model.par #
Step 3

Initialize and instantiate function approximators (evaluator) and all changeable
variables (algo.var). # Step 4

If relevant: Generate memory according to memory initialization # Step 5

At this point the Training function is called which executes the following
steps

If relevant: Update function approximators # Step 5

For i=0 to # of blocks:

Play a specified number of episodes with and without exploration. # Step
6

Update the memory based on new episodes # Step 7

Observe and save aggregated rewards and exploration influences of the
different play modes. # Step 8

Delete some part of the memory, if memory stack is full. # Step 9

If relevant: Select new best model. # Step 10

Replay-step: Train function approximator based on memory and experi-
ence replay. # Step 11

Recalculate exploration variables. # Step 12

Here the Training function ends

Evaluate model and save results # Step 13

In more detail, these steps solve the following objectives:

1. Define game information and save it into game.object
The package ReinforcementLearningwithR (RLR) (Kies, 2019) can easily be
extended to a wide array of different games, given that they are turn-based and
have a finite number of executable actions. game.object provides all relevant
information and functions regarding the game. Examples include the number
of actions, the number of periods (which may be stochastic), a function which
determines how a state is changed given an action and a mapping function
from the internal state to the state as viewed from the agent. This view might

129

Electronic copy available at: https://ssrn.com/abstract=3556714

C. General Structure of Algorithm

be obfuscated due to noise and/or enhanced with helpful calculated statistics.
More information regarding the importance of the encoding can be found in
Section 3.7.

2. Define parameters of algorithm and save them into algo.par
Here, all parameters which do not change within a single execution of the
algorithm are defined. Notably, this parameter list determines which of the
developed features (in contrast to classic Q-Learning) are activated and which
properties they possess. Examples include the exact nature on how to explore
the environment, the parameters regarding Q-Switching, Experience Replay
including memory usage and how many episodes are played.

3. Define parameters of function approximator and save them into model.par
The R-package Kies (2019) allows for flexible usage of several function approx-
imators and may easily be extended with additional ones. In this step the
function approximator, for example a neural network or gradient boosting, as
well as their specific parameters are specified. This includes but is not limited
to the number of neurons and layers, type of activation function and number
of training epochs for the neural network and number and complexity of trees
in the case of gradient boosting. More information regarding the effects and
relevance of the function approximator can be found in Section 3.9.

4. Initialize and instantiate function approximators (evaluator) and all changeable
variables
In this technical step instances of the function approximators are initialized so
that for all encountered states a meaningful default value can be delivered.
Additionally the (empty) memory is built and variables which change within a
run, e.g. the ε in the case of ε-exploration, are set to their starting values.

5. Generate memory according to memory initialization and update function
approximators
In this optional step the feature Memory Initialization is executed. Here, a
data base is initialized as a memory foundation. This data base is generated by
playing the game according to specified rules. Examples for such rules are taking
random actions or simply repeating the same action. As the exploitability of
the to be analyzed strategy is of interest, the studied memory initialization
method within this article is self-play. With self-play, the strategy is set against
itself to built the memory data base. Why this might significantly improve
performance is discussed in Section 3.11.

6. Play a specified number of episodes with and without exploration.
The number of blocks the algorithm is cycling through defines the number
of replays, i.e. the number of times the function approximator is updated.
Depending on the complexity of the function approximator it might be time-
consuming to update it relative to generating more data by playing more
episodes. In this case it might be beneficial to increase the number of episodes
played by the same function approximator before retraining. Increasing this

130

Electronic copy available at: https://ssrn.com/abstract=3556714

number corresponds to increasing the size of each block. Another benefit of
increasing the block size is that within a stochastic environment the function
approximator can more easily infer the actual expected values of a given policy
if several episodes generated by the same policy exist. Further discussions on
why it is beneficial to train the function approximator on several episodes can
be found in Section 3.8.
In line with the function approximator, all other variable parameters of the
algorithm are only updated on a per block basis. Examples include the
exploration parameter ε given ε-exploration.
Within a block, episodes with the following features can be played:

a) Trying to play as well as possible using the current function approximator,
i.e. the most recently trained.

b) Trying to play as well as possible using the best function approximator of
the past. Why this might prove beneficial in addition to the most current
one is discussed in Section 3.10.

c) Exploring, using only ε-exploration.

d) Exploring, using only noisy actions.

e) Exploring, using only maximizing surprise.

f) Exploring, using only minimizing familiarity.

g) Exploring, using a to be specified combination of noisy actions and ε-
exploration.

h) Exploring, using a to be specified combination of all 4 exploration strate-
gies, named Multi-Exploration (see Section 3.5). This combination might
exclude certain exploration strategies, if one so wishes.

Multi-exploration is able to emulate all other exploration strategies listed here.
They are listed separately however, as one can decide to run them separately
within the same block. This way one might for example run a single episode
using only noisy actions, another single episode using only ε-exploration and
five episodes playing a combination of both exploration variations. The function
approximator will then be retrained on this pool of experiences.
To use the feature of Exploration-Pathing (see Section 3.6), it is mandatory
to have at least one best effort episode per block. In this context a best effort
episode is defined as an episode which has either been generated by the current
or the best function approximator. This best effort episode is used to generate
a benchmark of the current ability of the function approximator to generate
rewards. Based on this benchmark the exploration parameters are adjusted.
Providing at least one episode for exploration is not technically mandatory but
necessary to generate learning behavior. The ability of the algorithm to learn
depends strongly on differently played actions and correspondingly different
rewards. A certain minimum of exploration is therefore necessary.

131

Electronic copy available at: https://ssrn.com/abstract=3556714

C. General Structure of Algorithm

Within this step various useful statistics are saved for later analysis. One such
calculated statistic is the estimated aggregated sub-optimality of the various
exploration strategies within Multi-Exploration. This allows the algorithm to
adjust them in subsequent blocks in the direction of their respective targets.

7. Update the memory based on new episodes
In this step the episodes which were generated in the step before are integrated
into the memory storage. For each experienced period the values of the current
state, the next state, the reward and whether or not it was a closing state are
saved. If Q-Switching (see Section 3.4) is used additionally the Qhist-Value is
added. This value measures the discounted rewards of the periods until the
end of the covered episode.
If count-based exploration in the feature space according to Martin et al. (2017)
is activated, the age of the experience is noted and Rφ is updated as well. See
Martin et al. (2017) for more detail.

8. Observe and save aggregated rewards and exploration influences of the different
play modes.
In this technical step detailed information on each block are saved. This
includes the aggregated reward of each episode, the aggregated reward of the
mean of all episodes within the block corresponding to the same exploration
family and measures regarding the sub-optimalities due to exploration.

9. Delete some part of the memory, if memory stack is full.
The following considerations apply:

a) With an increasing number of played episodes, one might exceed the
limits of the hardware. Given the current implementation in Kies (2019)
the most relevant ceiling is the working memory which limits the size of
R-objects.

b) Q-Learning, and in extension our algorithm, in theory converges against
a correct understanding of the best action choice for every single state
of the game. For practical purposes however, we are more interested in
states which have a realistic chance to be encountered by high performing
policies. With an increasing number of blocks the policies should converge
towards the best policy. More recent strategies are thus more valuable.
This does not imply, that very old experiences are useless. If we use a
function approximator which is not incremental but has to be built from
scratch (e.g. gradient boosting) excluding old experiences may lead to
repeating the same mistakes periodically.

Using old memories can increase the performance in the case of incremental
function approximators (see Section 3.11). Given function approximators which
are newly generated each block, using old information is essential. Due to
the aforementioned reasons however, we limit the memory space by deleting a
specified percentage out of the experienced state-transitions once the memory

132

Electronic copy available at: https://ssrn.com/abstract=3556714

overflows. The algorithm uses a uniform sampling to decide which states have to
be deleted. This procedure aims to mitigate the problem that very unfavorable
states might be visited periodically.

10. Select new best model.
In this optional step the modification Model Persistence (see Section 3.10) is
executed. It is checked whether the model defined by the current function
approximator is plausibly better than the assumed best model. If the current
model shows better performance, the best model is replaced with the current
model.

11. Replay-step: Train function approximator based on memory and experience
replay.
In this step first a part of the memory is selected. Several variants on how to
select this part are provided by Kies (2019). One might for example choose to
only select all data generated since the last update of the function approximator.
Alternatively one can chose random state-transitions out of all episodes in the
memory storage. It is also possible to combine both of those approaches. This
selection choice is discussed in more detail in Section 3.8.
Based on this selection, for each experiences state-action pair theQ-Value (either
based on Q-Learning, Q-Switching or Monte Carlo learning) is calculated. This
calculation assumes that Q-Values of the next states are correctly approximated
by the function approximator. In the supervised learning problem used to
update the function approximator those Q-Values are the response variable.
The concatenation of the encoded state and the chosen action are used as the
explanatory variables. The function approximator is then updated based on
this data.

12. Recalculate exploration variables.
Given only standard Q-Learning in this step the exploration variable ε is
recalculated. Analogously the current block number and data from the most
recent and older blocks is used to calculate the current set of exploration
variables according to Exploration Pathing. More information regarding these
calculations is presented in Section 3.6.

13. Evaluate model and save results.
This last step takes place after the policy has been developed by the reinforce-
ment algorithm. The most current function approximator defines the final
model. This model is evaluated using the StratTourn-package. Optionally
one can also additionally execute an evaluation for each single block. This
generates more precise data about the learning process of the algorithm.
Finally, the function approximator as well as the memory stack and various
additional data useful to analyze the algorithm are saved.

133

Electronic copy available at: https://ssrn.com/abstract=3556714

D. Comparison of Boltzmann distribution to Noisy Actions

In Section 3.5.2 we discussed the similarities between the variants noisy actions and
the more traditionally used Boltzmann exploration.

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25
sigma of Normal distribution

pr
ob

ab
ili

ty
 o

f c
ho

os
in

g
ac

tio
n

2

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
theta of Boltzmann distribution

pr
ob

ab
ili

ty
 o

f c
ho

os
in

g
ac

tio
n

2

Figure 33: Comparison of noisy actions (left) to Boltzmann exploration (right)
given different values of σ and θ, where action 1 is preferred over action 2. The chart
with Boltzmann exploration uses calculated values, while the chart with noisy actions
has been numerically generated and averaged.

In Figure 33 one can see, that both, noisy actions and Boltzmann exploration show
a very similar behavior in regard to their parameter.
Using noisy actions gives a small speed advantage given our implementation in R:
> benchmark (" no i sy "={
+ rands <− rnorm(length (a) ,mean=0, sd=2)
+ act . va lue s <− a + rands
+ re s <− which . i s .max(act . va lue s)
+ } ,
+ " bo l t z "={
+ P. a <− sapply (a ,FUN=function (x){exp(x/20)/sum(exp(a/20))})
+ r e s <− sample (length (a) , s i z e =1,prob=P. a)
+ } , replications=1000000
+)

t e s t replications e lapsed r e l a t i v e user . s e l f sys . s e l f
2 bo l t z 1000000 59 .63 4 .411 58 .39 0 .06
1 no i sy 1000000 13 .52 1 .000 13 .23 0 .00

134

Electronic copy available at: https://ssrn.com/abstract=3556714

E. Compare.Exploration

In Section 3.5.5 and Section 3.5.6 we discuss the strategy compare.exploration, which
is shown here.

Pseudo-Code

If First period:
StateIsNice ← TRUE
Cooperate

If Period number ≤ 10 AND defection of opponent in the previous
period observed:

StateIsNice ← FALSE
Defect

If StateIsNice == TRUE
If Current period is one of the numbers 11, 15, 17, 23, 26, 28, 30,
34, 37, 38, 40, 51, 53, 56, 58

Cooperate # Independent of opponent
Else

If Observe cooperation of opponent in the previous period
Cooperate

Else
Defect

Else # Defection of opponent within the first 9 periods observed
Defect

135

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

Here, the specific strategies which are the basis for the analysis as described in
Section 3.3 as well as their proposed counter-strategies.

For each strategy 7 types of scores are given

1. Best Answer Score (60 periods) - Measures the average performance R̄best
T of

the proposed counter-strategy against the strategy with a maximum number
of periods of T = 60.

2. Algorithm Best Score (60 periods) - Measures the average performance of the
final best policy generated by the algorithm according to the performance
test of Section 3.2 against the strategy with a maximum number of periods
of T = 60. The best of both function approximators, gradient boosting and
recurrent neural network is displayed.

3. Q-Learning Score (60 periods) - Measures the average performance of the
strategy against the basic Q-Learning algorithm with a maximum number of
periods of T = 60.

4. Score against itself (60 periods) - Measures the average performance of the
strategy against itself with a maximum number of periods of T = 60.

5. Best Answer Score (no period limit) - Measures the average performance R̄best
T

of the proposed counter-strategy against the strategy without a period limit.

6. RNN Best Score (no period limit)- Measures the average performance recurrent
neural network run of the final best policy generated by the algorithm according
to the performance test of Section 3.2 against the strategy without a period
limit.

7. Score against itself (no period limit) - Measures the average performance of
the strategy against itself without a maximum number of periods.

Each score has been calculated by running a StratTourn-tournament (Kranz and
Kies, 2019) over 1000 games after setting the random seed to 234567.

136

Electronic copy available at: https://ssrn.com/abstract=3556714

F.1. strat.a

F.1. strat.a

Basic facts

Best Answer Score (60 periods): 1.321
Algorithm Best Score (60 periods): 1.317
Q-Learning Score (60 periods): 1.291
Score against itself (60 periods): 0.920
Best Answer Score (no period limit): 1.325
RNN Best Score (no period limit): 1.319
Score against itself (no period limit): 0.919
Short Summary: Starts with a cooperation and counts the difference between
cooperations and defections of the opponent in each period. If the number of observed
cooperations is greater than the number of observed defections, cooperate.

Pseudo-Code

If First period:
CooperationDiff ← 0
Cooperate

If Observe cooperation of opponent in previous period
CooperationDiff ← CooperationDiff + 1

Else
CooperationDiff ← CooperationDiff - 1

If CooperationDiff ≥ 0
Cooperate

Else
Defect

137

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

Best Answer

If First period:
CooperationDiff ← 0
Cooperate

If Observe cooperation of myself in previous period
CooperationDiff ← CooperationDiff + 1

Else
CooperationDiff ← CooperationDiff - 1

If CooperationDiff ≥ 2
Defect

Else
Cooperate

This strategy effectively calculates the state of mind of strat.a and defects if there is
a sufficient margin of observed self-cooperations.

F.2. strat.b

Basic facts

Best Answer Score (60 periods): 0.747
Algorithm Best Score (60 periods): 0.747
Q-Learning Score (60 periods): 0.684
Score against itself (60 periods): 0.495
Best Answer Score (no period limit): 0.746
RNN Best Score (no period limit): 0.703
Score against itself (no period limit): 0.487
Short Summary: This strategy is a variant of generous.tit.for.tat. It starts with a
cooperation. After each observed cooperation of the opponent the strategy answers
with a cooperation. Every second defection is answered with a guaranteed defection,
every other defection there is a 15% chance of there being a cooperation.

138

Electronic copy available at: https://ssrn.com/abstract=3556714

F.3. strat.c

Pseudo-Code

If First period:
defection.counter ← 0
Cooperate

If Observation of Cooperation of Opponent
Cooperate

Else
defection.counter ← defection.counter+1
If defection.counter == 3

defection.counter ← 1
Defect

Else
Cooperate (with 15%) or Defect (with 85%)

Best Answer

This strategy has no opening to sneak in defections. Even in the case of there being
less than three defections, defection is not a fruitful action. It is thus optimal to play
always.coop.

F.3. strat.c

Basic facts

Best Answer Score (60 periods): 1.156
Algorithm Best Score (60 periods): 1.1
Q-Learning Score (60 periods): 0.941
Score against itself (60 periods): 0.979
Best Answer Score (no period limit): 1.159
RNN Best Score (no period limit): 1.097
Score against itself (no period limit): 0.98
Short Summary: In contrast to the other strategies, this strategy does not try to
induce cooperation. The goal of this strategy is to play perfect cooperation if vetted
against another version of itself, but defect otherwise. It uses Bayesian updating to
calculate the probability of playing against itself instead of a counterfactual strategy,
which cooperates with a certain probability.

139

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

Pseudo-Code

If period 1 :
Initialize parameters and variables
Pi ← 0.5 # A-priori probability of being me. Will be updated based on
my observed actions about me to accurately reflect the state of mind of
my opponent (under the assumption, that the opponent plays the same
strategy
Pa ← 0.5 # A-priori probability of the opponent playing the same strategy
as I am. Will be updated based on my observed actions about his actions.
threshold ← 0.25 # Cooperate, if I assume that I am playing with at
least this probability against myself.
Fratio← 0.4 # Measuring the probability of cooperation against myself
of the counter factual opponent strategy.
PD ← 0.25 # Probability to erroneously perceive a D due to an observa-
tion error. This parameter is set to the value of the game.
PC ← 0 # Probability to erroneously perceive a C due to an observation
error. This parameter is set to the value of the game.

Else # Update variables
If Pi ≥ threshold # Given I play against myself the opponent assumes
(correctly) that I am me

If I observe cooperation of opponent in previous period # What was
expected
Pa ← Pa·(1−PD)

Pa·(1−PD)+(1−Pa)·(PC +Fratio·(1−PD−PC))
Else Observation error or not playing against myself
Pa ← Pa·(PD)

Pa·PD+(1−Pa)·(PD+(1−Fratio)·(1−PD−PC))
Else The opponent strategy should assume that I am not me

If I observe cooperation of opponent in previous period # Other
strategy or observation error [May never happen with PC == 0]
Pa ← Pa·PC

Pa·PC+(1−Pa)·(PC+(1−Fratio)·(1−PD−PC))
Else What was expected
Pa ← Pa·(1−PC)

Pa·(1−PC)+(1−Pa)·(PD+Fratio·(1−PD−PC))

Update Pi analogously to Pa from the view of the opponent.
If Pa ≥ threshold I assume I play against myself

Cooperate
Else

Defect

140

Electronic copy available at: https://ssrn.com/abstract=3556714

F.3. strat.c

Best Answer

If period 1 :
Use the same parameters and variables as strat.c and initialize them
identically

Else
Update Pa and Pi identical to strat.c

If Pa > 0.9999999: Pa ← 0.99
If Pi ≥ 0.85: Defect
If Pa ≥ threshold: Cooperate
Defect

This strategy copies the internal mechanism of strat.c to effectively pose as this
strategy. If strat.c assumes, that it is playing against itself, a defection is sneaked in,
otherwise the same behavior as strat.c is shown. The limitation of Pa does not have
a game-theoretic motivation, but rather a numerical one.

141

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

F.4. strat.d

Basic facts

Best Answer Score (60 periods): 1.317
Algorithm Best Score (60 periods): 1.312
Q-Learning Score (60 periods): 1.114
Score against itself (60 periods): 0.98
Best Answer Score (no period limit): 1.319
RNN Best Score (no period limit): 1.315
Score against itself (no period limit): 0.98
Short Summary: After a starting phase of five periods this strategy rewards
consecutive cooperations with cooperation, punishes consecutive defections with
a defection and cooperates otherwise, given a sufficiently good ratio of observed
cooperations of 50%.

Pseudo-Code

If period 1-5 : Cooperate
If Observed consecutive defects in the last 3 periods: Defect
If Observed consecutive cooperations in the last 2 periods: Cooperate
If Observed actions of opponent are more than 50% cooperations: Cooperate
Else Defect

Best Answer

If period 1 : Cooperate
If Number of observed cooperations of myself ≤ Number of observed defections
of myself +2 : Cooperate
Else Defect

This strategy aims to have at least 50% cooperations with some safety margin and
thus nearly always triggers the “50% cooperation” condition, except in the case of
bad luck with the observation errors.

142

Electronic copy available at: https://ssrn.com/abstract=3556714

F.5. strat.e

F.5. strat.e

Basic facts

Best Answer Score (60 periods): 0.743
Algorithm Best Score (60 periods): 0.743
Q-Learning Score (60 periods): 0.395
Score against itself (60 periods): 0.672
Best Answer Score (no period limit): 0.708
RNN Best Score (no period limit): 0.696
Score against itself (no period limit): 0.638
Short Summary: This strategy resembles grim.trigger, but the trigger are in total
4 observed defections of the opponent.

Pseudo-Code

If period 1 : Cooperate
If 4 or more observed defections of opponent in total:

Cooperate
Else

Defect

Best Answer

If period 1 : Cooperate
If Opponent has not yet observed 4 total defections of myself :

Cooperate
Else

Defect

This strategy cooperates until the trigger condition of strat.e is met and defects
afterwards, as strat.e can’t be appeased.

143

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

F.6. strat.f

Basic facts

Best Answer Score (60 periods): 1.503
Algorithm Best Score (60 periods): 1.499
Q-Learning Score (60 periods): 1.358
Score against itself (60 periods): 0.833
Best Answer Score (no period limit): 1.503
RNN Best Score (no period limit): 1.497
Score against itself (no period limit): 0.831
Short Summary: This strategy cooperates in the first period and has two different
states: “skeptic” and “content”. It starts “skeptic” and switches to “content” as soon
as a cooperation of the opponent is observed. As long as no cooperation is observed,
the strategy defects. Once switched to “content”, the strategy cooperates no matter
what for the following three actions.

144

Electronic copy available at: https://ssrn.com/abstract=3556714

F.6. strat.f

Pseudo-Code

If period 1 :
Switch to status “Skeptic”
Cooperate

If Skeptic:
If Cooperation of opponent in last period is observed:

Switch to “Content”
Else

Defect
If “Content” within both last two periods: Switch to “skeptic” # Note that
this condition and the following parts of the code are only executed if the
current status is “Content”
Cooperate

Best Answer

If period 1 :
count ← 2
Cooperate

If count = 0 :
count ← 2
Cooperate

If count = 1 :
count ← 0
Defect

If count = 2 :
If Opponent observed a defection from me in last period:

count ← 2
Cooperate

Else
count ← 1
Defect

The parameter count keeps track of the opponents internal state. If the opponent is
skeptic, one wants cooperate and defect otherwise.

145

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

F.7. strat.g

Basic facts

Best Answer Score (60 periods): 1.328
Algorithm Best Score (60 periods): 1.328
Q-Learning Score (60 periods): 1.321
Score against itself (60 periods): 0.971
Best Answer Score (no period limit): 1.327
RNN Best Score (no period limit): 1.327
Score against itself (no period limit): 0.969
Short Summary: This is a tit.for.tat like strategy, which forgives a single “misstep”,
i.e. needs two defections in a row before retaliation. Additionally after having
observed five defections of the opponent in a row a single peace offering in form of a
cooperation is offered.

146

Electronic copy available at: https://ssrn.com/abstract=3556714

F.7. strat.g

Pseudo-Code

If period 1 :
reset.state ← TRUE
Cooperate

If Observe Cooperation of opponent:
reset.state ← TRUE
Cooperate

If Observe Defection of opponent but reset.state is TRUE :
reset.state ← FALSE
Cooperate

If Observe fifth Defection of opponent in a row:
reset.state ← TRUE
Cooperate

Else
reset.state ← FALSE
Defect

Best Answer

If period 1 :
count ← 0
Defect

If My observed action in the previous period has been a Defection
AND count < 5 :
count ← count+1
Cooperate

Else:
count ← 0
Defect

This strategy starts with a defection and then tries to alternate between observed
defection and cooperation. In the off chance, that due to observation errors five
defections have been observed by the opponent, a real defection is played to utilize
the peace offering of strat.g, as it resets its memory anyway.

147

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

F.8. strat.h

Basic facts

Best Answer Score (60 periods): 1.083
Algorithm Best Score (60 periods): 1.054
Q-Learning Score (60 periods): 0.917
Score against itself (60 periods): 0.962
Best Answer Score (no period limit): 1.046
RNN Best Score (no period limit): 1.018
Score against itself (no period limit): 0.941
Short Summary: This strategy starts by cooperating and generally continues
the cooperation unless the opponent defects three times in a row (based on the
observation of strat.h. After at least 10 defections of the opponent in total have been
observed, the strategy is triggered and defects until the game ends. Effectively this
strategy is thus a more robust variant of a combination of tit.for.tat and grim.trigger.

Pseudo-Code

If period 1 : Cooperate
If Observed opponent to defect the last three actions in a row OR Number of
observed defections of opponent is at least 10 : Defect
Else: Cooperate

Best Answer

If period 1 : Defect
If Number of observed defections of myself greater or equal to 10 : Defect
If Observed own action to defect the last period OR Number of observed
defections of myself is between 5 and 9 : Cooperate
Else: Defect

This strategy starts by defecting and aims to alternate observed defections and
cooperations of itself. After raking up 5 defections, it switches to cooperation to
avoid to hit the 10 defection limit of strat.h. If due to observation errors the defection
limit is hit anyway, the strategy protects itself from the trigger of its opponent by
defecting too.

148

Electronic copy available at: https://ssrn.com/abstract=3556714

F.9. strat.i

F.9. strat.i

Basic facts

Best Answer Score (60 periods): 1.321
Algorithm Best Score (60 periods): 1.356
Q-Learning Score (60 periods): 1.320
Score against itself (60 periods): 0.986
Best Answer Score (no period limit): 1.281
RNN Best Score (no period limit): 1.34
Score against itself (no period limit): 0.983
Short Summary: Start with a cooperation and copy the observed move of the
opponent in the first period in the second period. Afterwards, cooperate after each
cooperation, except if the opponent has earned sufficient mistrust. Mistrust is earned
if the opponent defects sufficiently often in a row. What constitutes as "sufficiently"
depends on the number of such observed rows; Starting with 3 necessary defects,
with each occurrence the number is decreased by one until each defect increases
the mistrust parameter. As long as the number of sufficient defects in a row is not
reached, defects go unpunished, as the strategy reacts with a cooperation.

149

Electronic copy available at: https://ssrn.com/abstract=3556714

F. Testing Pool

Pseudo-Code

If First period:
loss.conf ← 1 # Parameter which measures whether there is an extraor-
dinary amount of opponent defections.
con.def ← 0 # Parameter which mostly measures consecutive defections
of opponent.
mistrust ← 0 # Parameter measuring “mistrust” towards the opponent
Cooperate

If Second period:
If Observe cooperation of opponent in first period

Cooperate
Else

con.def ← 1; mistrust ← 1
Defect

If Observe cooperation of opponent:
con.def ← 0; mistrust ← mistrust -1
If mistrust>2

Defect
Else

Cooperate
Else # Opponent defected

If mistrust>3
con.def ← 0
Defect

Else
If con.def > 2 - loss.conf

loss.conf ← loss.conf+1; con.def ← 0; mistrust ← mistrust+2
Defect

Else
con.def ← con.def+1
Cooperate

150

Electronic copy available at: https://ssrn.com/abstract=3556714

F.9. strat.i

Best Answer

If First period: Cooperate
If Opponent observes Defection

Cooperate
Else

Defect

This very simple strategy effectively alternated between cooperation and defection
except in the case of an observation error, where again a cooperation is offered.
Doing a more in-depth analysis in regards to Feature Selection using this strategy,
one can see, that an encoding with only two periods leads to very fast good results.
We find, that the more powerful encoding effectively leads the algorithm to become
less robust and thus vulnerable to the random fluctuations due to the observation
error. To achieve a comparable result it is thus necessary to have significantly more
training data, so that the randomness of the observation error evens out and the
algorithm is able to accurately estimate the true expected value even of less often
visited states. Using just two periods on the other hands leads to a fast detection of
exactly the algorithm as seen above.
Comparing the performance of this strategy against the superior strategy as found by
the RNN one can see, that the first 20 periods are played at approximately the same
level, but that the ability of the handcrafted anti-strategy to exploit the strategy
tethers out. The strategy of the algorithm on the other hand is able to keep up the
exploitation, probably manipulating the mistrust system.

151

Electronic copy available at: https://ssrn.com/abstract=3556714

G. Parameters and Specifics

In this section the parameters are given to generate the corresponding figures and
analyses within the main body of the thesis. Note that these may vary between
the different figures. As a general rule the parameters have been chosen to allow
sufficiently many runs to receive significance even though this often puts a ceiling on
the power of the result. Unless noted otherwise the results discussed in the main
body of the thesis are expected to generalize.
All parameters refer to the Package Reinforcement Learning with R (Kies, 2019). It
holds for all specifications, that game.object is the name of the game object (default pa-
rameters per Get.Game.Object.PD()), algo.par is the list containing the main param-
eters of the algorithm (default parameters per Get.Def.Par.QLearningPersExpPath())
and model.par the list with parameters regarding the function approximator.
Unless noted otherwise, the parameters parameters which are not specified in neither
the common parameters nor the specific section are irrelevant for the respective
figures.

G.1. Common Parameters

Unless noted otherwise, the parameters as defined here hold true for all figures.

1. General Parameters

memory.init: none

blocks: 100

start.w.training: FALSE

2. game.object

encoding.state: Main.real

game.pars$uCC: 1

game.pars$uCD: -1

game.pars$uDC: 2

game.pars$uDD: 0

game.pars$err.D.prob: 0.15

game.pars$err.C.prob: 0

game.pars$delta: 0.95

game.pars$T: 60

game.pars$T.max: 60

game.pars$intermed: 0

152

Electronic copy available at: https://ssrn.com/abstract=3556714

G.1. Common Parameters

game.pars$direct.rewards: TRUE

3. algo.par

curio.beta: 0

gamma: 0.95

a: 0.25

action.policy: exploration.path

expl.path.multi.start: 0.8

expl.path.multi.end: 0.99

expl.path.multi.decay.type: exponential

expl.path.multi.best.db: 10

expl.path.multi.best.disc: 0.9

expl.path.multi.best.Kp.var: 0.025

expl.path.multi.best.Ki.var: 0.0025

expl.path.multi.best.Kd.var: 0.01

expl.path.multi.best.Kp.shock: 0.0025

expl.path.multi.best.Ki.shock: 0.00025

expl.path.multi.best.Kd.shock: 1e-04

expl.path.multi.best.Kp.db: 10

expl.path.multi.best.Ki.db: 100

expl.path.multi.best.Kd.db: 10

expl.path.multi.best.Kp.disc: 0.9

expl.path.multi.best.Ki.disc: 0.98

expl.path.multi.best.Kd.disc: 0.9

block.curr: 1

block.best: 0

block.expl.var: 0

block.expl.shock: 0

block.expl.surp: 0

block.expl.fam: 0

block.expl.vs: 0

block.expl.multi: 1

153

Electronic copy available at: https://ssrn.com/abstract=3556714

G. Parameters and Specifics

replay.intensive: 1
remove.memory: 0.1
mem.type: game.encoded
batch.size: 6000
max.mem: 12000
force.last: 120
use.rnn: FALSE
only.experienced: TRUE
hybrid.Q: TRUE
Q.Learning: FALSE
MC: FALSE
hybrid.switch: TRUE
hybrid.decay: 0.9
hybrid.Q.apply: always
hybrid.Q.a.MC: 0.25

4. model.par
name: Gradient.Boosting.XGBoost
eta: 0.3
gamma: 0.1
colsample: 0.95
subsample: 0.9
min_child_weight: 1
single.train: TRUE
nthread: 6

G.2. Q-Switching

The following parameters have been chosen to generate Figures 16, 17 and 18:
1. Common Parameters

a) algo.par
expl.path.multi.start.var: 3
expl.path.multi.start.shock: 0.2

154

Electronic copy available at: https://ssrn.com/abstract=3556714

G.2. Q-Switching

expl.path.multi.start.frac.var: 0.8
expl.path.multi.start.frac.shock: 0.2
expl.path.multi.start.frac.surp: 0
expl.path.multi.start.frac.fam: 0
expl.path.multi.end.frac.var: 0.8
expl.path.multi.end.frac.shock: 0.2
expl.path.multi.end.frac.surp: 0
expl.path.multi.end.frac.fam: 0
batch.size: 12000
force.last: 600

b) model.par
nrounds: 10
max_depth: 10

2. Varied Parameters
a) Q-Learning

algo.par$hybrid.Q: FALSE
algo.par$Q.Learning: TRUE
algo.par$MC: FALSE
algo.par$hybrid.switch: FALSE

b) Q-Switching
algo.par$hybrid.Q: TRUE
algo.par$Q.Learning: FALSE
algo.par$MC: FALSE
algo.par$hybrid.switch: TRUE
algo.par$hybrid.decay: 0.9
algo.par$hybrid.Q.apply: always
algo.par$hybrid.Q.a.MC: 0.25

c) Monte-Carlo
algo.par$hybrid.Q: FALSE
algo.par$Q.Learning: FALSE
algo.par$MC: TRUE
algo.par$hybrid.switch: FALSE

155

Electronic copy available at: https://ssrn.com/abstract=3556714

G. Parameters and Specifics

G.3. Multi-Exploration

The following parameters have been chosen to generate Figure 19, Figure 21 and
Figure 22:

1. Common Parameters

a) algo.par

expl.path.multi.start.var: 0.05

expl.path.multi.start.surp: 0.05

expl.path.multi.start.shock: 0.05

expl.path.multi.start.fam: 0.05

b) model.par

nrounds: 20

max_depth: 5

c) model.par.surp with identical parameters to model.par, except

nrounds: 30

max_depth: 3

d) model.par.fam with identical parameters to model.par.surp

2. Varied Parameters

a) ε-exploration = eps100.noisy0

algo.par$expl.path.multi.start.frac.var: 0

algo.par$expl.path.multi.start.frac.shock: 1

algo.par$expl.path.multi.start.frac.surp: 0

algo.par$expl.path.multi.start.frac.fam: 0

algo.par$expl.path.multi.end.frac.var: 0

algo.par$expl.path.multi.end.frac.shock: 1

algo.par$expl.path.multi.end.frac.surp: 0

algo.par$expl.path.multi.end.frac.fam: 0

b) noisy actions = eps0.noisy100

algo.par$expl.path.multi.start.frac.var: 1

algo.par$expl.path.multi.start.frac.shock: 0

algo.par$expl.path.multi.start.frac.surp: 0

algo.par$expl.path.multi.start.frac.fam: 0

156

Electronic copy available at: https://ssrn.com/abstract=3556714

G.3. Multi-Exploration

algo.par$expl.path.multi.end.frac.var: 1

algo.par$expl.path.multi.end.frac.shock: 0

algo.par$expl.path.multi.end.frac.surp: 0

algo.par$expl.path.multi.end.frac.fam: 0

c) maximizing surprise

algo.par$expl.path.multi.start.frac.var: 0

algo.par$expl.path.multi.start.frac.shock: 0

algo.par$expl.path.multi.start.frac.surp: 1

algo.par$expl.path.multi.start.frac.fam: 0

algo.par$expl.path.multi.end.frac.var: 0

algo.par$expl.path.multi.end.frac.shock: 0

algo.par$expl.path.multi.end.frac.surp: 1

algo.par$expl.path.multi.end.frac.fam: 0

d) minimizing familiarity

algo.par$expl.path.multi.start.frac.var: 0

algo.par$expl.path.multi.start.frac.shock: 0

algo.par$expl.path.multi.start.frac.surp: 0

algo.par$expl.path.multi.start.frac.fam: 1

algo.par$expl.path.multi.end.frac.var: 0

algo.par$expl.path.multi.end.frac.shock: 0

algo.par$expl.path.multi.end.frac.surp: 0

algo.par$expl.path.multi.end.frac.fam: 1

e) eps50.noisy50

algo.par$expl.path.multi.start.frac.var: 0.5

algo.par$expl.path.multi.start.frac.shock: 0.5

algo.par$expl.path.multi.start.frac.surp: 0

algo.par$expl.path.multi.start.frac.fam: 0

algo.par$expl.path.multi.end.frac.var: 0.5

algo.par$expl.path.multi.end.frac.shock: 0.5

algo.par$expl.path.multi.end.frac.surp: 0

algo.par$expl.path.multi.end.frac.fam: 0

157

Electronic copy available at: https://ssrn.com/abstract=3556714

G. Parameters and Specifics

f) noisy33.fam33.surp33

algo.par$expl.path.multi.start.frac.var: ≈ 0.3̄

algo.par$expl.path.multi.start.frac.shock: 0

algo.par$expl.path.multi.start.frac.surp: ≈ 0.3̄

algo.par$expl.path.multi.start.frac.fam: ≈ 0.3̄

algo.par$expl.path.multi.end.frac.var: ≈ 0.3̄

algo.par$expl.path.multi.end.frac.shock: 0

algo.par$expl.path.multi.end.frac.surp: ≈ 0.3̄

algo.par$expl.path.multi.end.frac.fam: ≈ 0.3̄

g) all25

algo.par$expl.path.multi.start.frac.var: 0.25

algo.par$expl.path.multi.start.frac.shock: 0.25

algo.par$expl.path.multi.start.frac.surp: 0.25

algo.par$expl.path.multi.start.frac.fam: 0.25

algo.par$expl.path.multi.end.frac.var: 0.25

algo.par$expl.path.multi.end.frac.shock: 0.25

algo.par$expl.path.multi.end.frac.surp: 0.25

algo.par$expl.path.multi.end.frac.fam: 0.25

The parameters to generate Figure 20 have been chosen identical to Figure 19, except
for the following deviations:

1. Common Parameters

a) game.object

game.pars$err.D.prob: 0.0

b) algo.par

batch.size: 12000

c) model.par (To reflect that overfitting is a non-issue without noise)

nrounds: 10

max_depth: 10

eta: 1

gamma: 0.00001

colsample: 1

158

Electronic copy available at: https://ssrn.com/abstract=3556714

G.4. Exploration Pathing

subsample: 1
2. Varied Parameters

a) eps100.noisy0
algo.par$expl.path.multi.start.frac.shock: 1
algo.par$expl.path.multi.start.frac.var: 0
algo.par$expl.path.multi.end.frac.var: 0
algo.par$expl.path.multi.end.frac.shock: 1

b) eps50.noisy50
algo.par$expl.path.multi.start.frac.shock: 0.5
algo.par$expl.path.multi.start.frac.var: 0.5
algo.par$expl.path.multi.end.frac.var: 0.5
algo.par$expl.path.multi.end.frac.shock: 0.5

c) eps0.noisy100
algo.par$expl.path.multi.start.frac.shock: 0
algo.par$expl.path.multi.start.frac.var: 1
algo.par$expl.path.multi.end.frac.var: 1
algo.par$expl.path.multi.end.frac.shock: 0

G.4. Exploration Pathing

The following parameters have been chosen to generate Figures 23:
1. Common Parameters

a) model.par
nrounds: 20
max_depth: 5

2. Varied Parameters
a) Decr85, Decr90, Decr95, Decr99

algo.par$block.expl.shock: 1
algo.par$block.expl.multi: 0
algo.par$epsilon.start: 1
algo.par$epsilon.decay: as specified (e.g. 0.85 for Decr85)
algo.par$epsilon.min: 0

159

Electronic copy available at: https://ssrn.com/abstract=3556714

G. Parameters and Specifics

b) Path85, Path90-99

algo.par$expl.path.multi.start.shock: 0.5

algo.par$expl.path.multi.start.frac.var: 0

algo.par$expl.path.multi.start.frac.shock: 1

algo.par$expl.path.multi.start.frac.surp: 0

algo.par$expl.path.multi.start.frac.fam: 0

algo.par$expl.path.multi.end.frac.var: 0

algo.par$expl.path.multi.end.frac.shock: 1

algo.par$expl.path.multi.end.frac.surp: 0

algo.par$expl.path.multi.end.frac.fam: 0

algo.par$expl.path.multi.start: 0.85 for Path85, 0.9 for Path90-99

algo.par$expl.path.multi.end: 0.85 for Path85, 0.99 for Path90-99

algo.par$expl.path.multi.decay.type: linear

G.5. Feature Selection

The following parameters have been chosen to generate Figures 24 and 25:
Unless noted otherwise, the same parameters have been chosen as with Q-Switching
(see Appendix G.2.)

When generating the game.object with Get.Game.Object.PD

encoding.state: “last.X.rounds” for only using the last X periods,
“Main.real” for the main encoding and “Harper” for the encoding of
Harper et al. (2017).

encoding.params

real: TRUE for all graphs except “Last 4 periods /wo private history”,
where FALSE has been chosen.

rounds: number of periods, which should be considered

The following parameters have been chosen to generate Figure 26:
Unless noted otherwise, the same parameters have been chosen as with Q-Switching
(see Appendix G.2.)

When generating the game.object with Get.Game.Object.PD

encoding.state: “TimeSeries.flexible” for the encoding “Main LSTM Encod-
ing”, “TimeSeries.minimal” for the encoding “Minimal LSTM Encoding”.

encoding.params (only relevant if TimeSeries.flexible)

160

Electronic copy available at: https://ssrn.com/abstract=3556714

G.6. Experience Replay

last.rounds: 10

rounds.bin: TRUE

av.def: TRUE

diff.bin: TRUE

prev.val.as.seen: TRUE

algo.par

batch.size: 360

use.rnn: TRUE

model.par

epochs: 10

batch.size.train: 100

give.up.precision: 5

hidden.nodes: (128,64)

drop.out: (0,0)

recurrent.dropout: 0

input.dropout: 0

activation.hidden: (sigmoid, sigmoid)

single.dimensional: TRUE

enforce.increasing.precision: TRUE

give.up.precision: 5

G.6. Experience Replay

In regards to Figures 27 and 28 it holds that

1. the parameters for the Neural Network are identical to the optimal Neural
Network of Appendix G.7 unless noted otherwise

2. the parameters for the RNN are identical to the “Minimal LSTM Encoding”
Network of Appendix G.5 unless noted otherwise

3. the parameters for the Gradient Boosting algorithm are identical to the optimal
Gradient Boosting algorithm of Appendix G.7 unless noted otherwise

4. insofar as the size of the replay data set has been changed the parameter
“algo.par$batch.size” is set to 2 · 60· “size of replay data set” with a default of
360 if the replay data set is not varied.

161

Electronic copy available at: https://ssrn.com/abstract=3556714

G. Parameters and Specifics

5. insofar as the size of the number of most recent experiences has been forced,
it holds that the parameter “algo.par$force.last” is set to 2 · 60· “number of
forced blocks” with a default of 120 (i.e. one forced block) if the number of
forced blocks is not varied.

G.7. Choice of Function Approximator

The following parameters have been chosen to generate Figure 29 and Figure 30. If
not noted otherwise, the same parameters have been chosen as with Q-Switching
(Appendix G.2).
With Figure 29 the following parameters have been chosen with model.par, unless
otherwise noted:

1. Gradient Boosting

nrounds: 50

max_depth: 5

2. Neural Network

(algo.par), batch.size: 600

epochs: 10

batch.size.train: 100

hidden.nodes: (128,64)

activation.hidden: (sigmoid, sigmoid)

activation.output: linear

optimizer: optimizer_adam(lr=0.001)

dropout: (0,0)

input.dropout: 0

single.dimensional: TRUE

enforce.increasing.precision: TRUE

give.up.precision: 5

3. Recurrent Neural Network has been chosen identically to the “Main encoding”
of the LSTM from Appendix G.5.

The calculation time has been calculated based on the following hardware:

• CPU: Intel Core i7-3630QM (2.40 GHz)

• RAM: 8 GB

162

Electronic copy available at: https://ssrn.com/abstract=3556714

G.8. Model Persistence

G.8. Model Persistence

The following parameters have been chosen to generate Figure 31.

1. The same parameter set as with the optimal Gradient Boosting parameter set
has been used from Appendix G.7, except

2. algo.par

block.cur: 2 for “Explo.2-Cur.2-Best.0”, 1 for “Explo.2-Cur.1-Best.1”

block.best: 0 for “Explo.2-Cur.2-Best.0”, 1 for “Explo.2-Cur.1-Best.1”

block.expl.multi: 2

G.9. Memory Initialization

The following parameters have been chosen to generate Figure 32.

1. Common Parameters identical to Section 3.4 (see Appendix G.2)

2. Varied Parameters

a) No Initialization identical to Q-Switching, i.e.

start.w.training: FALSE

b) Initialization 1

start.w.training: TRUE

With Initialise.QLearningPersExpPath:

memory.init: “self.play”

memory.param: list(no=1)

c) Initialization 50

start.w.training: TRUE

With Initialise.QLearningPersExpPath:

memory.init: “self.play”

memory.param: list(no=50)

163

Electronic copy available at: https://ssrn.com/abstract=3556714

H. Source Code for Final Results

This code may be used to generate the results behind Figure 12 and Figure 10. These
files are also available at Kies (2019).

H.1. Recurrent Neural Network

l ibrary (ReinforcementLearningwithR)
require (compi le r)

s t r a t <− c (" s t r a t . a " , " s t r a t . b " , " s t r a t . c " , " s t r a t . d " , " s t r a t . e " , " s t r a t . f " ,
↪→ " s t r a t . g " , " s t r a t . h " , " s t r a t . i ") #" s t r a t . a " to " s t r a t . i " wi th g e t .
↪→ a n t i s t r a t or any o ther s t r a t e g y (v e c t o r) wi thout " s e l f " i m p l i e s
↪→ s e l f p l ay .

a n t i s t r a t <− " none " #or " none " i f none o f the s t r a t e g i e s o f above or
↪→ s e v e r a l s t r a t e g i e s are g iven .

f i l e . name <− paste0 (" opt . run . " , paste0 (s t ra t , c o l l a p s e=" . ") , " . " , Sys . Date
↪→ () , " .RNN") #Fi le , where the r e s u l t s are saved

#Parameters o f game . Current ly suppor ted : " B a t t l e O f S t r a t e g i e s T h e s i s .
↪→ Base l ine " and " B a t t l e O f S t r a t e g i e s 2 0 1 9 "

game . s e t t i n g <− " Ba t t l eO fS t r a t e g i e sThe s i s . Base l i ne "

b lock . no <− 500 #Number o f Blocks to Play . More shou ld be always b e t t e r
↪→ , bu t time i n c r e a s e s somewhat l i n e a r (g i ven the memory i s
↪→ s u f f i c i e n t l y f u l l) , wh i l e we have s t rong d imin i sh ing re turn in
↪→ the f i n a l performance depending on the comp lex i t y o f the s t r a t e g y
↪→ .

eval . no <− 1000 #Number o f p layed matches to e v a l u a t e f i n a l performance
↪→ o f model wi th the model StratTourn

T.max <− 60 #Number o f pe r i od s o f game . Note : I f one wants to change
↪→ t h i s , i t i s recommended , t h a t a l go . par$batch . s i z e i s changed as
↪→ w e l l .

#I f Memory i n i t i l i z a t i o n through s e l f . p l ay i s wished i t may be s e t here
↪→ . 0 means no i n i t i a l i z a t i o n .

memory . i n i t i a l i z a t i o n <− 100

#Set the most important parameters o f Recurrent Neural Network here .
nodes . l a y e r .1 measures the number o f nodes in the f i r s t hidden l a y e r

↪→ . More means more complex s t r a t e g i e s may be tack l ed , but r i s k s
↪→ o v e r f i t t i n g and might need more t r a i n i n g data and more epochs .

nodes . l a y e r .2 measures the number o f nodes in the second hidden
↪→ l a y e r . More means more complex s t r a t e g i e s may be tack l ed , but
↪→ r i s k s o v e r f i t t i n g and might need more t r a i n i n g data and more
↪→ epochs .

batch . s i z e . t r a i n i s the RNN i n t e r n a l s i z e o f how b i g a neura l
↪→ network batch shou ld be (see h t t p s : // s t a t s . s tackexchange . com/
↪→ q u e s t i o n s /153531/what−i s−batch−s i z e−in−neural−network) . More
↪→ means more s t a b l e , but s l ower /more epochs needed .

##rnn . epochs i s the number o f how o f t e n the complete t r a i n i n g data
↪→ shou ld be propagated through the network . More means more

164

Electronic copy available at: https://ssrn.com/abstract=3556714

H.1. Recurrent Neural Network

↪→ o v e r f i t t i n g but b e t t e r accuracy in d e s c r i b i n g the t r a i n i n g data .
↪→ Very r e l e v a n t f o r speed .

##g i v e . up . p r e c i s i o n c o n t r o l s a method used in the t h e s i s o f Martin Kies
↪→ : Af ter t r a i n i n g epochs t imes i t i s checked whether the new LOSS
↪→ i s b e t t e r than the one in the b l o c k b e f o r e . I f not the t r a i n i n g
↪→ i s repea ted up to g i v e . up . p r e c i s i o n t imes . The a c t u a l number o f
↪→ epochs such may vary between rnn . epochs and rnn . epochs∗ g i v e . up .
↪→ p r e c i s i o n

func . approx . params <− l i s t (nodes . l a y e r .1=126 , nodes . l a y e r .2=64 , batch .
↪→ s i z e . t r a i n =600 , rnn . epochs=5, g ive . up . p r e c i s i o n =10)

#This d e f i n e s the fu nc t i on which a l l o w s an easy acces s to the package
generate . bes t . s t r a t <− function (s t r a t , a n t i s t r a t=" none " , game . s e t t i ng ,

↪→ func . approx . params , memory . i n i t i a l i z a t i o n , b lock . no , eval . no , T.
↪→ max, f i l e . name) {

r e s t o r e . po int (" generate . bes t . s t r a t ")

game . ob j e c t <− Get .Game . Object .PD(encoding . s t a t e=" TimeSer ies . minimal "
↪→ , game . s e t t i n g=game . s e t t i ng , s t r a t s=s t ra t , eval . s t r a t e gy = "Model
↪→ . s t r a t .RNN. TimeSer ies . minimal ")

a s s i gn (" game . ob j e c t " , game . object , env i r =.GlobalEnv) #necessary f o r the
↪→ tournament

#Define the non−changing parameters o f the a l gor i thm l i k e which
↪→ f e a t u r e s and parameters to be used .

a lgo . par <− Get . Def . Par . QLearningPersExpPath (s e t t i n g=" ThesisOpt .RNN")
a lgo . par$gamma <− game . ob j e c t$game . pars$de l t a #recommended as the

↪→ a l gor i thm otherw i s e op t im i s e s f o r a d i f f e r e n t s e t t i n g as the
↪→ game i t s e l f

#Define the fu n c t i o n approximator and i t s parameters
model . par <− Get . Def . Par .RNN(s e t t i n g=" ThesisOpt ")
model . par$hidden . nodes [1] <− func . approx . params$nodes . l a y e r . 1
model . par$hidden . nodes [2] <− func . approx . params$nodes . l a y e r . 2
model . par$batch . s i z e . t r a i n <− func . approx . params$batch . s i z e . t r a i n
model . par$epochs <− func . approx . params$rnn . epochs
model . par$g ive . up . p r e c i s i o n <− func . approx . params$g ive . up . p r e c i s i o n

#Setup the model and o ther v a r i a t i o n a l a s p e c t s
eva lua to r <− Setup . QLearningPersExpPath (game . object , a lgo . par=algo .

↪→ par , model . par=model . par)
i f (memory . i n i t i a l i z a t i o n==0){

memory . i n i t <− " none "
} else {

memory . i n i t <− " s e l f . p lay "
}
a lgo . var <− I n i t i a l i s e . QLearningPersExpPath (game . object , a lgo .par ,

↪→ memory . i n i t=memory . i n i t , memory . param=l i s t (no=memory .
↪→ i n i t i a l i z a t i o n) , model . par=model . par)

#Execute the a l gor i thm
r e s <− Train . QLearningPersExpPath (eva lua to r=eva luator , model . par=

↪→ model .par , a lgo . par=algo .par , a lgo . var=algo . var , game . ob j e c t =
↪→ game . object , b locks=block . no , eval . only=FALSE, start .w. t r a i n i n g

165

Electronic copy available at: https://ssrn.com/abstract=3556714

H. Source Code for Final Results

↪→ = TRUE, out . f i l e=paste0 (f i l e . name , " . tmp"))

#Save Memory & model
eva lua to r <− r e s$ eva lua to r
a lgo . var <− r e s$a lgo . var
i d i o . name <− paste0 (" opt . run .RNN. f u l l . " , paste0 (s t ra t , c o l l a p s e=" . "))
f i l e . name <− paste0 (i d i o . name , format (Sys . time () , "%d−%b−%Y␣%H.%M") , "

↪→ be f o r e . StratTourn " , sep=" ␣ ")
save (eva luator , a lgo . var , a lgo .par , game . object , model .par , f i l e=f i l e

↪→ . name)

Do the StratTourn e v a l u a t i o n
game = make . pd . game(uCC=game . ob j e c t$game . pars$uCC, uCD=game . ob j e c t$

↪→ game . pars$uCD, uDC=game . ob j e c t$game . pars$uDC, uDD=game . ob j e c t$
↪→ game . pars$uDD, e r r .D. prob=game . ob j e c t$game . pars$ e r r .D. prob , e r r
↪→ .C. prob=game . ob j e c t$game . pars$ e r r .C. prob , d e l t a=game . ob j e c t$
↪→ game . pars$de l t a)

#Prepare l i s t o f s t r a t e g i e s f o r StratTourn
i f (a n t i s t r a t !=" none ") {

s t r a t . tourn = n l i s t (Model . s t r a t .RNN. TimeSer ies . minimal , get (s t r a t)
↪→ , get (a n t i s t r a t))

names(s t r a t . tourn) [2] <− s t r a t
names(s t r a t . tourn) [3] <− a n t i s t r a t

} else {
s t r a t . tourn = c (Model . s t r a t .RNN. TimeSer ies . minimal , lapply (s t r a t ,

↪→ FUN=function (x) {
i f (x !=" s e l f ") {

return (get (x))
} else {

return (NULL)
}

}))
names(s t r a t . tourn) <− seq_along (s t r a t . tourn)
s t r a t . tourn [sapply (s t r a t . tourn , i s . null)] <− NULL
names(s t r a t . tourn) [1] <− "Model . s t r a t .RNN. TimeSer ies . minimal "
names(s t r a t . tourn) [2 : length (names(s t r a t . tourn))] <− s t r a t [s t r a t !=

↪→ " s e l f "]
}

#I n i t i a l i z e tournament
tourn = i n i t . tournament (game=game , s t r a t=s t r a t . tourn)
tourn = run . tournament (tourn=tourn , R = eval . no , T.max=T.max)

#Ca l c u l a t e a s i n g l e r e l e v a n t s t a t i s t i c . I f a g a i n s t a s i n g l e s t r a t e g y
↪→ t h i s i s the re turn a g a i n s t t h i s s t r a t e g y . I f a g a i n s t a
↪→ tournament t h i s i s the tournament performance .

i f (length (s t r a t)==1){
r . l im i t <− get . matches . vs . matrix (tourn$dt) ["Model . s t r a t .RNN.

↪→ TimeSer ies . minimal " , s t r a t]
} else {

srfm <− s t r a t . rank . from . matches (tourn$dt)
r . l im i t <− srfm [srfm$ s t r a t=="Model . s t r a t .RNN. TimeSer ies . minimal " ,

↪→ mean]

166

Electronic copy available at: https://ssrn.com/abstract=3556714

H.2. Gradient Boosting

}

f i l e . name <− paste0 (i d i o . name , format (Sys . time () , "%d−%b−%Y␣%H.%M") ,
↪→ sep=" ␣ ")

#Save Memory & model
save (eva luator , a lgo . var , a lgo .par , game . object , model .par , r . l im i t ,

↪→ tourn , f i l e=f i l e . name)

#Show Tournament
show . tournament (tourn)

}

d i s ab l e . r e s t o r e . points (TRUE)
enableJIT (3)
generate . bes t . s t r a t (s t r a t=s t ra t , a n t i s t r a t=an t i s t r a t , game . s e t t i n g=game

↪→ . s e t t i ng , func . approx . params=func . approx . params , memory .
↪→ i n i t i a l i z a t i o n=memory . i n i t i a l i z a t i o n , b lock . no=block . no , eval . no=
↪→ eval . no , T.max=T.max, f i l e . name=f i l e . name)

H.2. Gradient Boosting

l ibrary (ReinforcementLearningwithR)
require (compi le r)

s t r a t <−c (" s t r a t . a " , " s t r a t . b " , " s t r a t . c " , " s t r a t . d " , " s t r a t . e " , " s t r a t . f " , "
↪→ s t r a t . g " , " s t r a t . h " , " s t r a t . i ") #" s t r a t . a " to " s t r a t . i " wi th g e t .
↪→ a n t i s t r a t or any o ther s t r a t e g y (v e c t o r) wi thout " s e l f " i m p l i e s
↪→ s e l f p l ay .

a n t i s t r a t <− get . a n t i s t r a t () [s t r a t] #or " none " i f none o f the
↪→ s t r a t e g i e s o f above or s e v e r a l s t r a t e g i e s are g iven .

f i l e . name <− paste0 (" opt . run . " , paste0 (s t ra t , c o l l a p s e=" . ") , " . " , Sys . Date
↪→ () , " .XGB") #Fi le , where the r e s u l t s are saved

#Parameters o f game . Current ly suppor ted : " B a t t l e O f S t r a t e g i e s T h e s i s .
↪→ Base l ine " and " B a t t l e O f S t r a t e g i e s 2 0 1 9 "

game . s e t t i n g <− " Ba t t l eO fS t r a t e g i e sThe s i s . Base l i ne "

b lock . no <− 150 #Number o f Blocks to Play . More shou ld be always b e t t e r
↪→ , but time i n c r e a s e s somewhat l i n e a r (g i ven the memory i s
↪→ s u f f i c i e n t l y f u l l) , wh i l e we have s t rong d imin i sh ing re turn in
↪→ the f i n a l performance depending on the comp lex i t y o f the s t r a t e g y
↪→ .

eval . no <− 100 #Number o f p layed matches to e v a l u a t e f i n a l performance
↪→ o f model wi th the model StratTourn

T.max <− 60 #Number o f pe r i od s o f game . Note : I f one wants to change
↪→ t h i s , i t i s recommended , t h a t a l go . par$batch . s i z e i s changed as
↪→ w e l l .

#I f Memory i n i t i l i z a t i o n through s e l f . p l ay i s wished i t may be s e t here
↪→ . 0 means no i n i t i a l i z a t i o n .

memory . i n i t i a l i z a t i o n <− 100

#Set the most important parameters o f Gradient Boost ing here .

167

Electronic copy available at: https://ssrn.com/abstract=3556714

H. Source Code for Final Results

xgb . rounds measures the number o f b u i l d t r e e s
xgb . depth measures the depth o f each t r e e .
In genera l i t ho l d s more i s more p r e c i s e (which might imply more

↪→ t r a i n i n g data i s necessary) which i s good but c o s t l y in time .
func . approx . params <− l i s t (xgb . rounds=50, xgb . depth=5)

#This d e f i n e s the func t i on which a l l o w s an easy acces s to the package
generate . bes t . s t r a t <− function (s t ra t , a n t i s t r a t=" none " , game . s e t t i ng ,

↪→ func . approx . params , memory . i n i t i a l i z a t i o n , b lock . no , eval . no , T.
↪→ max, f i l e . name) {

r e s t o r e . po int (" generate . bes t . s t r a t ")

game . ob j e c t <− Get .Game . Object .PD(game . s e t t i n g=game . s e t t i ng , s t r a t s=
↪→ s t r a t)

a s s i gn ("game . ob j e c t " , game . object , env i r =.GlobalEnv) #necessary f o r the
↪→ tournament

#Define the non−changing parameters o f the a l gor i thm l i k e which
↪→ f e a t u r e s and parameters to be used .

a lgo . par <− Get . Def . Par . QLearningPersExpPath (s e t t i n g=" ThesisOpt .XGB")
a lgo . par$gamma <− game . ob j e c t$game . pars$de l t a #recommended as the

↪→ a l gor i thm otherw i s e op t im i s e s f o r a d i f f e r e n t s e t t i n g as the
↪→ game i t s e l f

#Define the func t i on approximator and i t s parameters
model . par <− Get . Def . Par . XGBoost (s e t t i n g=" ThesisOpt ")
model . par$nrounds <− func . approx . params$xgb . rounds
model . par$max_depth <− func . approx . params$xgb . depth

#Setup the model and o ther v a r i a t i o n a l a s p e c t s
eva lua to r <− Setup . QLearningPersExpPath (game . object , a lgo . par=algo .

↪→ par , model . par=model . par)
i f (memory . i n i t i a l i z a t i o n==0){

memory . i n i t <− " none "
} else {

memory . i n i t <− " s e l f . p lay "
}
a lgo . var <− I n i t i a l i s e . QLearningPersExpPath (game . object , a lgo .par ,

↪→ memory . i n i t=memory . i n i t , memory . param=l i s t (no=memory .
↪→ i n i t i a l i z a t i o n) , model . par=model . par)

#Execute the a l gor i thm
r e s <− Train . QLearningPersExpPath (eva lua to r=eva luator , model . par=

↪→ model .par , a lgo . par=algo .par , a lgo . var=algo . var , game . ob j e c t =
↪→ game . object , b locks=block . no , eval . only=FALSE, start .w. t r a i n i n g
↪→ = TRUE, out . f i l e=paste0 (f i l e . name , " . tmp"))

#Save Memory & model
eva lua to r <− r e s$ eva lua to r
a lgo . var <− r e s$a lgo . var
i d i o . name <− paste0 (" opt . run .XGB. f u l l . " , paste0 (s t ra t , c o l l a p s e=" . "))
f i l e . name <− paste0 (i d i o . name , format (Sys . time () , "%d−%b−%Y␣%H.%M") , "

↪→ be f o r e . StratTourn " , sep=" ␣ ")

168

Electronic copy available at: https://ssrn.com/abstract=3556714

H.2. Gradient Boosting

save (eva luator , a lgo . var , a lgo .par , game . object , model .par , f i l e=f i l e
↪→ . name)

Do the StratTourn e v a l u a t i o n
game = make . pd . game(uCC=game . ob j e c t$game . pars$uCC, uCD=game . ob j e c t$

↪→ game . pars$uCD, uDC=game . ob j e c t$game . pars$uDC, uDD=game . ob j e c t$
↪→ game . pars$uDD, e r r .D. prob=game . ob j e c t$game . pars$ e r r .D. prob , e r r
↪→ .C. prob=game . ob j e c t$game . pars$ e r r .C. prob , d e l t a=game . ob j e c t$
↪→ game . pars$de l t a)

#Prepare l i s t o f s t r a t e g i e s f o r StratTourn
i f (a n t i s t r a t !=" none ") {

s t r a t . tourn = n l i s t (Model . s t r a t . Main . real . Exp . Path , get (s t r a t) ,
↪→ get (a n t i s t r a t))

names(s t r a t . tourn) [2] <− s t r a t
names(s t r a t . tourn) [3] <− a n t i s t r a t

} else {
s t r a t . tourn = c (Model . s t r a t . Main . real . Exp . Path , lapply (s t r a t ,FUN=

↪→ function (x) {
i f (x !=" s e l f ") {

return (get (x))
} else {

return (NULL)
}

}))
names(s t r a t . tourn) <− seq_along (s t r a t . tourn)
s t r a t . tourn [sapply (s t r a t . tourn , i s . null)] <− NULL
names(s t r a t . tourn) [1] <− "Model . s t r a t . Main . r e a l . Exp . Path "
names(s t r a t . tourn) [2 : length (names(s t r a t . tourn))] <− s t r a t [s t r a t !=

↪→ " s e l f "]
}

#I n i t i a l i z e tournament
tourn = i n i t . tournament (game=game , s t r a t=s t r a t . tourn)
tourn = run . tournament (tourn=tourn , R = eval . no , T.max=T.max)

#Ca l c u l a t e a s i n g l e r e l e v a n t s t a t i s t i c . I f a g a i n s t a s i n g l e s t r a t e g y
↪→ t h i s i s the re turn a g a i n s t t h i s s t r a t e g y . I f a g a i n s t a
↪→ tournament t h i s i s the tournament performance .

i f (length (s t r a t)==1){
r . l im i t <− get . matches . vs . matrix (tourn$dt) ["Model . s t r a t . Main . r e a l .

↪→ Exp . Path " , s t r a t]
} else {

srfm <− s t r a t . rank . from . matches (tourn$dt)
r . l im i t <− srfm [srfm$ s t r a t=="Model . s t r a t . Main . r e a l . Exp . Path " ,mean]

}

f i l e . name <− paste0 (i d i o . name , format (Sys . time () , "%d−%b−%Y␣%H.%M") ,
↪→ sep=" ␣ ")

#Save Memory & model
save (eva luator , a lgo . var , a lgo .par , game . object , model .par , r . l im i t ,

↪→ tourn , f i l e=f i l e . name)

169

Electronic copy available at: https://ssrn.com/abstract=3556714

H. Source Code for Final Results

#Show Tournament
show . tournament (tourn)

}

d i s ab l e . r e s t o r e . points (TRUE)
enableJIT (3)
generate . bes t . s t r a t (s t r a t=s t ra t , a n t i s t r a t=an t i s t r a t , game . s e t t i n g=game

↪→ . s e t t i ng , func . approx . params=func . approx . params , memory .
↪→ i n i t i a l i z a t i o n=memory . i n i t i a l i z a t i o n , b lock . no=block . no , eval . no=
↪→ eval . no , T.max=T.max, f i l e . name=f i l e . name)

H.3. Q-Learning

l ibrary (ReinforcementLearningwithR)
require (compi le r)

s t r a t <− c (" s t r a t . a ") #" s t r a t . a " to " s t r a t . i " wi th g e t . a n t i s t r a t or any
↪→ o ther s t r a t e g y (v e c t o r) wi thout " s e l f " i m p l i e s s e l f p l ay .

a n t i s t r a t <− " none " #or " none " i f none o f the s t r a t e g i e s o f above or
↪→ s e v e r a l s t r a t e g i e s are g iven .

f i l e . name <− paste0 (" opt . run . " , paste0 (s t ra t , c o l l a p s e=" . ") , " . " , Sys . Date
↪→ () , " .NN") #Fi le , where the r e s u l t s are saved

#Parameters o f game . Current ly suppor ted : " B a t t l e O f S t r a t e g i e s T h e s i s .
↪→ Base l ine " and " B a t t l e O f S t r a t e g i e s 2 0 1 9 "

game . s e t t i n g <− " Ba t t l eO fS t r a t e g i e sThe s i s . Base l i ne "

b lock . no <− 150 #Number o f Blocks to Play . More shou ld be always b e t t e r
↪→ , bu t time i n c r e a s e s somewhat l i n e a r (g i ven the memory i s
↪→ s u f f i c i e n t l y f u l l) , wh i l e we have s t rong d imin i sh ing re turn in
↪→ the f i n a l performance depending on the comp lex i t y o f the s t r a t e g y
↪→ .

eval . no <− 1000 #Number o f p layed matches to e v a l u a t e f i n a l performance
↪→ o f model wi th the model StratTourn

T.max <− 60 #Number o f pe r i od s o f game . Note : I f one wants to change
↪→ t h i s , i t i s recommended , t h a t a l go . par$batch . s i z e i s changed as
↪→ w e l l .

#I f Memory i n i t i l i z a t i o n through s e l f . p l ay i s wished i t may be s e t here
↪→ . 0 means no i n i t i a l i z a t i o n .

memory . i n i t i a l i z a t i o n <− 0

#Set the most important parameters o f a Neural Network here .
nodes . l a y e r .1 measures the number o f nodes in the f i r s t hidden l a y e r

↪→ . More means more complex s t r a t e g i e s may be tack l ed , but r i s k s
↪→ o v e r f i t t i n g and might need more t r a i n i n g data and more epochs .

nodes . l a y e r .2 measures the number o f nodes in the second hidden
↪→ l a y e r . More means more complex s t r a t e g i e s may be tack l ed , but
↪→ r i s k s o v e r f i t t i n g and might need more t r a i n i n g data and more
↪→ epochs .

batch . s i z e . t r a i n i s the NN i n t e r n a l s i z e o f how b i g a neura l network
↪→ batch shou ld be (see h t t p s : // s t a t s . s tackexchange . com/ q u e s t i o n s /
↪→ 153531/what−i s−batch−s i z e−in−neural−network) . More means more
↪→ s t a b l e , but s lower /more epochs needed .

170

Electronic copy available at: https://ssrn.com/abstract=3556714

H.3. Q-Learning

##epochs i s the number o f how o f t e n the complete t r a i n i n g data shou ld
↪→ be propagated through the network . More means more o v e r f i t t i n g
↪→ but b e t t e r accuracy in d e s c r i b i n g the t r a i n i n g data . Very
↪→ r e l e v a n t f o r speed .

##g i v e . up . p r e c i s i o n c o n t r o l s a method used in the t h e s i s o f Martin Kies
↪→ : Af ter t r a i n i n g epochs t imes i t i s checked whether the new LOSS
↪→ i s b e t t e r than the one in the b l o c k b e f o r e . I f not the t r a i n i n g
↪→ i s repea ted up to g i v e . up . p r e c i s i o n t imes . The a c t u a l number o f
↪→ epochs such may vary between epochs and epochs∗ g i v e . up . p r e c i s i o n .
↪→ As t h i s i s the showcase f o r a benchmark case the d e f a u l t uses no
↪→ g i v e . up . p r e c i s i o n

func . approx . params <− l i s t (nodes . l a y e r .1=126 , nodes . l a y e r .2=64 , batch .
↪→ s i z e . t r a i n =32, epochs=50, g ive . up . p r e c i s i o n=0)

#This d e f i n e s the func t i on which a l l o w s an easy acces s to the package
generate . bes t . s t r a t <− function (s t r a t , a n t i s t r a t=" none " , game . s e t t i ng ,

↪→ func . approx . params , memory . i n i t i a l i z a t i o n , b lock . no , eval . no , T.
↪→ max, f i l e . name) {

r e s t o r e . po int (" generate . bes t . s t r a t ")

game . ob j e c t <− Get .Game . Object .PD(encoding . s t a t e=" Harper " , game .
↪→ s e t t i n g=game . s e t t i ng , s t r a t s=s t ra t , eval . s t r a t e gy = "Model . s t r a t
↪→ .NN. Harper ")

a s s i gn (" game . ob j e c t " , game . object , env i r =.GlobalEnv) #necessary f o r the
↪→ tournament

#Define the non−changing parameters o f the a l gor i thm l i k e which
↪→ f e a t u r e s and parameters to be used .

a lgo . par <− Get . Def . Par . QLearningPersExpPath (s e t t i n g="QLearning . Bas ic
↪→ ")

a lgo . par$gamma <− game . ob j e c t$game . pars$de l t a #recommended as the
↪→ a l gor i thm otherw i s e op t im i s e s f o r a d i f f e r e n t s e t t i n g as the
↪→ game i t s e l f

#Define the fu n c t i o n approximator and i t s parameters
model . par <− Get . Def . Par . Neural . Network (s e t t i n g=" Thes i sBas i c ")
model . par$hidden . nodes [1] <− func . approx . params$nodes . l a y e r . 1
model . par$hidden . nodes [2] <− func . approx . params$nodes . l a y e r . 2
model . par$batch . s i z e . t r a i n <− func . approx . params$batch . s i z e . t r a i n
model . par$epochs <− func . approx . params$epochs
model . par$g ive . up . p r e c i s i o n <− func . approx . params$g ive . up . p r e c i s i o n
i f (func . approx . params$g ive . up . p r e c i s i o n==0){

model . par$ en f o r c e . i n c r e a s i n g . p r e c i s i o n <− FALSE
} else {

model . par$ en f o r c e . i n c r e a s i n g . p r e c i s i o n <− TRUE
}

#Setup the model and o ther v a r i a t i o n a l a s p e c t s
eva lua to r <− Setup . QLearningPersExpPath (game . object , a lgo . par=algo .

↪→ par , model . par=model . par)
i f (memory . i n i t i a l i z a t i o n==0){

memory . i n i t <− " none "
start .w. t r a i n i n g <− FALSE

171

Electronic copy available at: https://ssrn.com/abstract=3556714

H. Source Code for Final Results

} else {
memory . i n i t <− " s e l f . p lay "
start .w. t r a i n i n g <− TRUE

}
algo . var <− I n i t i a l i s e . QLearningPersExpPath (game . object , a lgo .par ,

↪→ memory . i n i t=memory . i n i t , memory . param=l i s t (no=memory .
↪→ i n i t i a l i z a t i o n) , model . par=model . par)

#Execute the a l gor i thm
r e s <− Train . QLearningPersExpPath (eva lua to r=eva luator , model . par=

↪→ model .par , a lgo . par=algo .par , a lgo . var=algo . var , game . ob j e c t =
↪→ game . object , b locks=block . no , eval . only=FALSE, start .w. t r a i n i n g
↪→ = start .w. t r a in ing , out . f i l e=paste0 (f i l e . name , " . tmp"))

#Save Memory & model
eva lua to r <− r e s$ eva lua to r
a lgo . var <− r e s$a lgo . var
i d i o . name <− paste0 (" opt . run .NN. f u l l . " , paste0 (s t ra t , c o l l a p s e=" . "))
f i l e . name <− paste0 (i d i o . name , format (Sys . time () , "%d−%b−%Y␣%H.%M") , "

↪→ be f o r e . StratTourn " , sep=" ␣ ")
save (eva luator , a lgo . var , a lgo .par , game . object , model .par , f i l e=f i l e

↪→ . name)

Do the StratTourn e v a l u a t i o n
game = make . pd . game(uCC=game . ob j e c t$game . pars$uCC, uCD=game . ob j e c t$

↪→ game . pars$uCD, uDC=game . ob j e c t$game . pars$uDC, uDD=game . ob j e c t$
↪→ game . pars$uDD, e r r .D. prob=game . ob j e c t$game . pars$ e r r .D. prob , e r r
↪→ .C. prob=game . ob j e c t$game . pars$ e r r .C. prob , d e l t a=game . ob j e c t$
↪→ game . pars$de l t a)

#Prepare l i s t o f s t r a t e g i e s f o r StratTourn
i f (a n t i s t r a t !=" none ") {

s t r a t . tourn = n l i s t (Model . s t r a t .NN. Harper , get (s t r a t) , get (a n t i s t r a t
↪→))

names(s t r a t . tourn) [2] <− s t r a t
names(s t r a t . tourn) [3] <− a n t i s t r a t

} else {
s t r a t . tourn = c (Model . s t r a t .NN. Harper , lapply (s t r a t ,FUN=function (x) {

i f (x !=" s e l f ") {
return (get (x))

} else {
return (NULL)

}
}))
names(s t r a t . tourn) <− seq_along (s t r a t . tourn)
s t r a t . tourn [sapply (s t r a t . tourn , i s . null)] <− NULL
names(s t r a t . tourn) [1] <− "Model . s t r a t .NN. Harper "
names(s t r a t . tourn) [2 : length (names(s t r a t . tourn))] <− s t r a t [s t r a t !="

↪→ s e l f "]
}

#I n i t i a l i z e tournament
tourn = i n i t . tournament (game=game , s t r a t=s t r a t . tourn)
tourn = run . tournament (tourn=tourn , R = eval . no , T.max=T.max)

172

Electronic copy available at: https://ssrn.com/abstract=3556714

H.3. Q-Learning

#Ca l c u l a t e a s i n g l e r e l e v a n t s t a t i s t i c . I f a g a i n s t a s i n g l e s t r a t e g y
↪→ t h i s i s the re turn a g a i n s t t h i s s t r a t e g y . I f a g a i n s t a
↪→ tournament t h i s i s the tournament performance .

i f (length (s t r a t)==1){
r . l im i t <− get . matches . vs . matrix (tourn$dt) ["Model . s t r a t .NN. Harper " ,

↪→ s t r a t]
} else {

srfm <− s t r a t . rank . from . matches (tourn$dt)
r . l im i t <− srfm [srfm$ s t r a t=="Model . s t r a t .NN. Harper " ,mean]

}

f i l e . name <− paste0 (i d i o . name , format (Sys . time () , "%d−%b−%Y␣%H.%M") ,
↪→ sep=" ␣ ")

#Save Memory & model
save (eva luator , a lgo . var , a lgo .par , game . object , model .par , r . l im i t ,

↪→ tourn , f i l e=f i l e . name)

#Show Tournament
show . tournament (tourn)

}

d i s ab l e . r e s t o r e . points (TRUE)
enableJIT (3)
generate . bes t . s t r a t (s t r a t=s t ra t , a n t i s t r a t=an t i s t r a t , game . s e t t i n g=game

↪→ . s e t t i ng , func . approx . params=func . approx . params , memory .
↪→ i n i t i a l i z a t i o n=memory . i n i t i a l i z a t i o n , b lock . no=block . no , eval . no=
↪→ eval . no , T.max=T.max, f i l e . name=f i l e . name)

173

Electronic copy available at: https://ssrn.com/abstract=3556714

2 Impacts of Sponsored Data on
Infrastructure Investments and Welfare

Source:

Martin Kies (2017). “Impacts of Sponsored Data on Infrastructure Investments
and Welfare”. In: Available at SSRN. doi: 10.2139/ssrn.3042563. url: https:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=3042563

185

https://doi.org/10.2139/ssrn.3042563
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042563
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3042563

Impacts of Sponsored Data on Infrastructure

Investments and Welfare∗

Martin Kies§

December 13, 2017

With increasing demand for wireless data and new requirements to uphold “net

neutrality”, internet service providers try new methods to ensure their profits. Spon-

sored content, the archetype of “Zero-Rating”, allows the content provider to pay for

the accrued traffic instead of the consumer.

This paper shows, using a theoretical model, that allowing sponsored content has

ambiguous results both on infrastructure investments and net welfare.

Sponsored content may be used by the ISP to internalize additional profits of the

content provider and thus motivate higher infrastructure investments, especially gi-

ven very high network costs. However, given a sufficiently high profitability of the

content provider, the internet service provider might be more interested in optimi-

zing the income stream from the content provider than in the satisfaction of the

consumer. This not only decreases effective network capacity but might also lead to

a decrease in net welfare.

Keywords: Net Neutrality, Two-Sided Markets, Sponsored Content, Sponsored

Data, Zero Rating, Zero-Rating, ISP, Internet Service Provider

JEL Classification: D42, D60, L51, L86, L96

∗I thank Sebastian Kranz for excellent feedback. I am grateful to Frederik Collin and Maria Baier for helpful

discussions and comments.
§Department of Mathematics and Economics, Ulm University. E-mail: martin.kies@uni-ulm.de

1

1. Introduction

Net neutrality as coined by T. Wu (2003) wants to ensure, that all traffic within the internet

receives “fair” treatment and that Internet Service Providers (ISPs) do not earn money by discri-

minating the speed or accessibility of content. The literature review paper Krämer, Wiewiorra,

and Weinhardt (2013) defines net neutrality the following way:

“Net neutrality prohibits Internet service providers from speeding up, slowing down

or blocking Internet traffic based on its source, ownership or destination.”

Net neutrality remains a controversial topic, especially in the USA. Internet service providers

tried to establish innovations like fast-track internet lanes (see e.g. Sasso (2014)) leading to a

public outcry. Consequently several initiatives like the“Internet Slowdown”(FightForTheFuture,

2015) formed, demanding that net neutrality should be enforced by the law. President Obama

positioned himself as an advocate of net neutrality (The White House, 2015). Due to this

political pressure the Federal Communications Commission (FCC) published several new laws

and guidelines (Federal Communications Commission, 2015), defining internet broadband as a

“Common Carrier” thereby ensuring net neutrality. However, after the change of presidency

in the U.S., the new chairman of the FCC Ajit Pai aggressively targets consumer protection

regulations and got the FCC to vote for rolling back the net neutrality rules (Fiegerman, 2017),

starting the process to change the rules once again.

A similar discussion took place in the European Union, which also implemented net neutrality

rules (European Commission, 2017). Since April 30th, 2016 blocking, throttling and discrimina-

tion of internet traffic is not permitted within the EU, save for some exceptions due to special

circumstances.

Even though both in the U.S. and the EU - regarding normal internet traffic - no speed discri-

mination may take place and thus the ISP may not increase the Quality-of-Service of favored

content providers this way, both markets currently allow a certain form of economic discrimina-

tion: The practice of “zero-rating”.

Not uncommon for broadband internet in the U.S. and the most common form of contract for

mobile internet in both the U.S. and the EU is a form of fixed data cap contract, where the

consumer pays a fee per period and receives in return the right to consume a fixed amount of

internet traffic. With a zero-rating contract certain content is exempted from this data cap.

Given that the data cap otherwise doesn’t change and the ISP is able to absorb the additional

traffic, this type of feature is very attractive both to the consumer and the content service

provider. The consumer can now consume as much of this content as she wants and the content

provider can use the additional traffic to increase its advertisement earnings or can transform

the additional publicity and attractiveness to more sales or subscriptions. A special form of

2

zero-rating contracts are sponsored data contracts, where the content provider whose content is

exempted from the data cap pays the ISP to do so.

Such contracts are on the rise and Welsh de Grimaldo (2015) estimates a strong growth of such

business models in the future. Notable examples include AT&T (2017) in the U.S., where the

content provider pays for the traffic induced through their services instead of the consumer. The

ISP T-Mobile US offers for most of their plans that the streaming of music from a lot of different

specific content providers does not count toward the data cap of the consumer (T-Mobile US,

2017b) as well as a similar service called “Binge On” with regard to video streaming (T-Mobile

US, 2017a).

Within the EU, or more specific Germany, T-Mobile offered for several months the option that

the music streaming service Spotify can be included as zero-rated content by the consumer

(Schuhmacher, 2016). The current state of zero-rating with a strong focus on Germany can be

found with Goldhammer, Wiegand, and Birkel (2016).

In other countries similar contracts have been standard for quite some time, as for example with

the case of the ISP Bharti Airtel, which was sponsered to a great extent by Google (airtel India,

2015) before the Indian regulator Trai adopted a very strong stance in favor of net neutrality,

forbidding this practice (Gustin, 2016).

With this paper I show that the possibility of sponsored content strongly influences a monopo-

listic internet provider in his decision on how much network capacity to provide. In my model,

the consumer faces a single data cap contract with a usage-independent price and -if beneficial

to the the respective companies- unlimited content for one content provider. The ISP has two

potential income streams: The payment of the consumer and the payment of the content pro-

vider. He finds himself in a dilemma, where increasing one decreases the other. By deciding

how much network capacity to build, and which contracts to offer, the ISP determines whether

sponsored content proves beneficial or detrimental to total welfare.

With a sufficiently high profitability of the content provider, sponsored content will be implemen-

ted, exclusively so, if the profitability is very high. Given that non exclusive sponsored content

is implemented and the profitability of the content provider is comparatively low, sponsored

content increases network capacity relative to the non-sponsored case. With increasing profita-

bility of the content provider the network capacity decreases and can fall below the respective

network capacity of the non sponsored situation. Within our model the consumer and the non

sponsoring content provider never profit from sponsored content. Net welfare only increases if

network capacity increases and always decreases if the preference of the consumer towards the

sponsored content is sufficiently low and non exclusive sponsored content is implemented. Gi-

ven that both, network costs and profitability of the content provider, are very high, sponsored

content leads to a situation of exclusive sponsored content, where net welfare increases.

We start in section 2 with an overview of the model. Section 3 and section 4 set baseline

points by solving the first best solution and the setting without sponsored content, respectively.

Afterwards section 5 introduces sponsored content and highlights which fundamentally different

3

situations can happen with sponsored content. The effects on network capacity are discussed

in section 6. Section 7 examines the welfare effects of allowing sponsored content. In section

8 the model is changed so that the bargaining power now lies with the content provider, thus

providing a robustness check of the model. Finally, in section 9 related literature is discussed

and section 10 offers some concluding remarks.

2. The Model

Internet Service

Provider

Representative

consumer

Big Content

Provider B

Fringe Content

Provider F

pays fee P

grants

quota q

generates traffic qB

generates traffic qF

can pay fee cSC to sponsor its content

Figure 1: Interactions between the different actors. If content provider B pays the fee, than the

consumer generates traffic qB independent from the received quota q.

We assume that there exists one monopolistic last-mile internet service provider (ISP) which

builds internet capacity κ > 0 with constant marginal costs cκ > 0. The single, representative

consumer signs a contract (q, P) with the ISP to access the internet and creates traffic for the

two content service providers (CSP) B and F as seen in Figure 1. Quota q > 0 is the allowed

maximum traffic the consumer can generate, while P > 0 is the internet access fee she pays

to the ISP. We assume that this data cap q is final and no additional traffic can be generated,

neither through overcharge fees nor through throttled speeds.

If sponsored content is permitted, content provider B is eligible to sponsor its traffic, while

content provider F can be seen as a stand-in for the fringe content providers. One can image

B to be a big content provider with market power and a sizable traffic volume, as for example

YouTube or Netflix, while F are all other forms of internet traffic, including Peer-2-Peer, voice

over internet and other services. The ISP can offer content provider B that for a fee cSC > 01

its content will be sponsored. If CSP B agrees, B pays the fee to the ISP and the traffic of B

does not count toward the quota of the consumer. The timeline of the model is thus

1. The ISP decides to build internet capacity κ.

2. The ISP can offer B a take-it-or-leave-it offer to pay the fee cSC to sponsor its content.

1One can show that this is equivalent to a payment per traffic unit, as all information are known to all parties

and there are no fixed costs within the model.

4

3. B can accept or decline that offer and pays cSC if the offer has been accepted.

4. The ISP offers the consumer a take-it-or-leave-it contract with a specific quota q for a fixed

fee P .

5. The consumer accepts the contract, if sensible, and creates traffic for B and F.

We assume that all firms want to maximize their profits. As we have perfect and complete

information, we can restrict our attention to those cases, where only contracts are offered which

will be accepted.

The utility function of the consumer if the contract of the ISP has been accepted is defined as

U(qF , qB) = qF + qB −
1

2(1− β)α
q2
F −

1

2βα
q2
B − P (1)

with qB ≥ 0 and qF ≥ 0 being the traffic generated for CSP B or F, respectively. We assume,

that the consumer receives zero utility if the contract of the ISP is rejected.

If no content is sponsored, the consumer faces the usage restriction

qB + qF ≤ q (2)

In the case that the content of CSP B is sponsored the usage restriction

qF ≤ q (3)

applies.

The exogenously given parameter β describes the preference of the consumer towards content

provider B. It holds, that 0 < β < 1 so the consumer will always be interested in the content of

both CSPs. The parameter α > 0 denotes the internet affinity of the consumer and equals her

saturation point given unlimited quota.

The profits of the CSPs are defined as

πF = d · qF πB =




d · qB if content is not sponsored

d · qB − cSC if content is sponsored
(4)

with d > 0 being the marginal profit of greater traffic on their pages and cSC > 0 the payment

from the content provider to the internet service provider.

The profit function of the ISP given all his offers are accepted is given by

πISP(κ, cSC, P) =




P − cκ · κ if content is not sponsored

P + cSC − cκ · κ if content is sponsored
(5)

The ISP has thus to optimize between costs of network cκ, the extraction from the consumer

P and the extraction from the CSP B cSC. We assume, that cκ < 1, which guarantees that

the ISP will enter the market. Note, that there is never any incentive for the ISP to shut out

5

the consumer, so we will assume that the ISP always offers a fee P which is acceptable to the

consumer.

The ISP has to ensure network stability, i.e. given the offered contract and resulting consumer

choices it has to hold that

qF + qB ≤ κ (6)

To keep case differentiations to a minimum, we will assume that the ISP already incorporates

the utility maximization of the consumer and thus always builds internet capacity be above the

saturation point of the consumer, i.e. it holds that

κ ≤ α (7)

This condition is motivated by the idea, that the ISP has no way to force the consumer to

consume certain internet content, even if this might be welfare enhancing due to high profits of

the CSP. Additionally he may not pay the consumer to use the internet.

3. First Best Solution

To understand the effects of the model and to have a baseline comparison, we will have a look

at the first best solution, where everybody acts to maximize total welfare given by

W (qF , qB, κ) = U + πF + πB + πISP

= (qF + qB)(1 + d)− 1

2(1− β)α
q2
F −

1

2βα
q2
B − cκκ

Note, that sponsored content does not matter in this scenario, as the payments cSC and P are

welfare neutral. The only thing that matters is therefore the choice of the consumer on how to

optimally divide her traffic and the choice of the ISP on the capacity κ.

First, we study the case, where the ISP has already implemented a specific network capacity

κ ≤ α.

The welfare optimal consumption choices solve

(qoF , q
o
B) = arg max

qF>0, qB>0
W (qF , qB, κ) w.r.t. qF + qB ≤ κ (8)

As W is monotonously increasing in qF and qB we can use Lagrange optimization leading to

qoF (κ) = (1− β)κ, qoB(κ) = βκ (9)

Both CSPs have the same profitability d which makes a shift between the CSPs welfare neutral

except for the effects on the consumer. Optimizing total welfare is thus equivalent to optimizing

the benefit of the consumer, given κ. Intuitively it can be seen, that qoB increases in consumer

preference β.

6

Now, we allow capacity to be endogenous:

κo = arg max
0<κ≤α

W (qoF (κ), qoB(κ), κ)

= arg max
0<κ≤α

{
(1− cκ + d)κ− κ2

2α

}

which results in

κo =




α(1− cκ + d) if d ≤ cκ
α if d > cκ

(10)

It can be seen that a full network κ = α is implemented if and only if the profitability of the

CSPs d is greater or equal than the network costs cκ. Near the saturation point of the consumer

the welfare increase due to the consumer is negligible, so the only relevant forces are the marginal

network costs and the marginal profit from the CSPs.

Total welfare is given by

W o = W (qoF (κo), qoB(κo), κo) =





1
2α (1− cκ + d)2 if d ≤ cκ
α
(

1
2 − cκ + d

)
if d > cκ

(11)

Optimal welfare is increasing in internet affinity α, CSP profitability d and decreasing in network

costs cκ.

4. No sponsored content

In this subsection we will examine the equilibrium outcome given that sponsored content is

forbidden. This is necessary to provide a baseline for the ISP and content provider B. Even if

sponsored content is allowed, the ISP can always enforce this setting by not offering a contract

to content provider B. CSP B on the other hand can simply decide not to accept the contract

of the ISP. This situation can’t arise by design, as the ISP already incorporates this decision

process of B in his decision to built network capacity and offers a corresponding contract.

Assuming sponsored content is forbidden, the timeline can be shortened to

1. The ISP decides to build internet capacity κ.

2. The ISP offers the consumer a take-it-or-leave-it contract with a specific quota q for a fixed

fee P .

3. The consumer accepts the contract, if sensible, and creates traffic for B and F. If the

consumer does not accept the contract she receives a utility of 0.

7

Given an accepted contract (q, P) with q ≤ κ ≤ α, the consumer will thus maximize her utility

by optimizing her traffic towards the content providers qF and qB:

(qF,NSC(q), qB,NSC(q)) = arg max
qF>0
qB>0

U(qF , qB, P) given that qF + qB ≤ q (12)

leading to

qF,NSC(q) = (1− β)q, qB,NSC(q) = βq (13)

which can be calculated using Lagrange optimization. The setting of q itself is costless to the

ISP. The utility of the consumer, and thus possible price P is monotonously increasing in q. The

ISP will thus always set q = κ. Hence we find

Proposition 1 For any given capacity κ it holds that

WNSC(κ) = W (qoF(κ), qoB(κ), κ)

with WNSC(κ) being the total welfare realized in the case of “no sponsored content” (NSC)

given κ.

In other words the case of no sponsored content and the first best solution provide the same

total welfare with κ given exogenously.

Given exogenous network capacity κ the ISP can calculate the maximal extractable price

P̄NSC(q = κ) = κ
(

1− κ

2α

)
, (14)

setting the utility of the consumer to zero. He has to balance this income against the costs of

providing the network, thus solving

κ∗NSC = arg max
κ

πISP(κ) = arg max
κ

{
P̄NSC(κ)− cκ · κ

}
(15)

with κ∗NSC being the implemented network capacity when the ISP can not offer a sponsored

content contract to the CSP or does not want to do so. Optimizing κ∗NSC results in

κ∗NSC = α(1− cκ) (16)

Proposition 2 It holds that

κ∗NSC < κo (17)

i.e. if sponsored content is forbidden, the ISP will always set the network capacity below the

optimal network capacity of the first best solution.

Given that the ISP is not allowed to receive additional payments, the CSPs can not subsidize

the ISP, so it doesn’t matter for the ISP how much welfare is lost on their side. Consequently

8

the ISP does not internalize the positive externatilities on the CSPs.

It can be seen, that the ISP builds more network capacity with increasing internet affinity α but

does not care about the distribution of the traffic, making κ∗NSC independent of β. Unsurprisingly

the ISP builds less capacity if the costs rise, and in fact builds no capacity at all in the limit

case cκ → 1.

Definition 1 We define investment distortion ID to be the difference in total welfare

between the first best solution and the best solution achievable given κ

ID(κ) = W o −W (qoF(κ), qoB(κ), κ)

Due to Proposition 1 the investment distortion is the only welfare reducing effect in the NSC

case. It holds that

Proposition 3 If there is no sponsored content the investment distortion is strictly increasing

in marginal CSP profitability d and consumer internet affinity α and weakly increasing in

network costs cκ as it holds that

ID(κ∗NSC) =





1
2 · α · d2 if d ≤ cκ
1
2αcκ(2d− cκ) if d > cκ

(18)

In contrast to the first best solution, the ISP is not inclined to built more network capacity due

to an increase in d, but rather keeps it constant, thus creating a bigger investment distortion.

As long as network costs cκ are smaller than the marginal CSP profitability d, the first best

solution results in the full network independent on the actual value of cκ. Given that the ISP

chooses the network capacity profit maximizing, he will reduce the network capacity κ with

increasing cκ, thus increasing the investment distortion effect.

The internet affinity α of the consumer simply acts as a multiplier to those effects.

Seeing that the ISP clearly lacks the incentive to account for the needs of the CSPs, thus

creating the investment distortion, internalizing some of the profits of the CSPs might lead to a

higher network and thus to a higher total welfare. One possible instrument might be sponsored

content.

5. Introducing Sponsored Content

In this subsection we will solve the complete model with (optional) sponsored content as intro-

duced in Section 2. To do so, we will use backwards induction, starting with the consumer.

The consumer solves, given a contract (q, P) with sufficiently low price P and q ≤ (1− β)α,

(qF,SC(q), qB,SC(q)) = arg max
qF>0
qB>0

U(qF , qB, P) under the condition that qF ≤ q (19)

9

leading to

qF,SC(q) = q, qB,SC(q) = βα (20)

which means that the complete quota is used for the fringe content provider and the consumer

will generate traffic for content provider B according to her saturation point with respect to B.

Given that the ISP has already built a specific network capacity κ, he has the choice to either

a) Offer the quota q = κ without sponsored content, or

b) Offer the quota q = κ − βα with sponsored content, with βα being the saturation point of

the consumer in respect to B.

Offering less quota would unnecessarily reduce the profits of the ISP and offering more would

imply that the network stability is no longer warranted.

The de facto effect of sponsored content on the consumer, given that network capacity κ is

constant, is that she is “forced” to depart from her optimal traffic allocation. This change

implies a lower utility of the consumer and has thus to be countered by a lower price P . We

find the ISP will offer

P̄SC(q = κ− βα) =
κ

1− β −
κ2 + α2β

2α(1− β)
(21)

with P̄SC(q) being the price which sets consumer utility to zero given sponsored content and a

given quota q.

Definition 2 We define choice distortion to be the difference in optimal contract price P

with and without sponsored content, given a fixed network capacity κ, i.e.

CD(κ) = P̄NSC(q = κ)− P̄SC(q = κ− βα) (22)

Proposition 4 It holds for κ < α that

CD(κ) =
β (α− κ)2

2α (1− β)
> 0 (23)

so unless the demand of the consumer is completely met, the choice distortion is always

positive.

In other words, given fixed network capacity κ < α, the price with sponsored content has

always to be lower than without sponsored content. Additionally it can be seen, that the choice

distortion decreases when increasing network capacity - as the need of the consumer regarding

the fringe content is already reasonably met.

This choice distortion is, given network capacity κ, the only welfare distorting effect of sponsored

content, since we assumed that both content providers have the same profitability. Combining

Proposition 1 and Proposition 4 leads to

10

Proposition 5 It holds that

W o −WSC(κ) = ID(κ) + CD(κ)

with WSC(κ) being the realized total welfare given sponsored content is implemented and

network capacity κ is given.

This means, that the investment distortion and the choice distortion make up the difference

in total welfare to the first best solution given sponsored content.

As a direct result, should the investment distortion be zero, i.e. κ = κo the choice distor-

tion is the only welfare distorting effect. It also means that even if sponsored content would

lead to an optimal network, the choice distortion guarantees that the first best solution is not

implemented.

Content provider B observes the built network capacity κ and the reactions of the consumer and

is thus able to calculate the maximal price cSC(κ) it is willing to pay for the sponsoring of its

content:

cSC(κ) = πB,SC(κ)− πB,NSC(κ) (24)

= dβ(α− κ) (25)

The content provider is thus willing to pay more, if the consumer is more interested in its content,

it is more profitable and if the network capacity κ is small. The ISP is able to come to the same

conclusions and will thus offer cSC as the price CSP B has to pay for the privilege of sponsored

content.

Given those intermediary results based on network capacity κ the ISP chooses the network

capacity profit optimizing:

arg max
κ

πISP(κ) =




πISP, NSC(κ) if κ ≤ βα
max {πISP, NSC(κ), πISP, SC(κ)} if κ > βα

(26)

with

πISP, NSC(κ) = P̄NSC(q = κ)− cκ · κ (27)

and

πISP, SC(κ) = P̄SC(q = κ− βα) + cSC(κ)− cκ · κ (28)

being the optimal profits of the ISP in the given case with network capacity κ.

Before we will go into detail regarding the actual network and welfare effects, we will analyze

the specific routes the ISP can take:

• In the No Sponsored Content (NSC) case the ISP will simply implement the solution of

section 4 without sponsored content. This is the case if the profitability d is sufficiently low

such that the CSP B isn’t able to pay a meaningful payment cSC, thus making sponsored

content unattractive to the ISP.

11

• In the Sponsored Content (SC) case the ISP will build a network strong enough to allow

sponsored content and make the corresponding arrangements. Here two cases have to be

distinguished:

– In the basic case the consumer is able to satisfy all her needs toward CSP B and can

otherwise use the internet for CSP F using her offered quota.

– In the Exclusively Sponsored Content (ESC) case the ISP will build network

capacity only to the extent that sponsored content is possible. The consumer thus

receives a quota of q = 0 and the offer to use the content of CSP B unlimitedly for a

fixed price. This is the best course of action for the ISP if profitability d and network

costs cκ are sufficiently high. In this case one could imagine, that the CSP B is so

profitable, that it simply pays the ISP to build its network infrastructure.

Which scenario is implemented depends on the specific relation between profitability d and

network costs cκ, given that all other parameters are held constant. For a graphical illustration

of a numerical example see Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

SC

ESC

NSC

cκ

d

Figure 2: Different optimal decisions of the ISP given network costs cκ and marginal CSP profi-

tability d with β = 0.2 and internet affinity α = 1. NSC is the case where no sponsored content

is implemented even if permitted. For all combinations above the NSC area sponsored content

is implemented. In the the upper right corner the special situation of exclusively sponsored

content (ESC), i.e. an offered quota of q = 0, occurs.

The following propositions show, that the numerical illustration of Figure 2 is representative for

a wide array of parameter combinations. The specific formulas to calculate πISP and the chosen

case can be found in the Appendix with Proposition I.1.

12

Proposition 6 There exists a minimal profitability d(cκ) > 0 such that the ISP will implement

sponsored content content if and only if it holds that marginal profitability d > d(cκ). d(cκ)

is strictly monotonically increasing in marginal network costs cκ with lim
cκ→0

d(cκ) = 0.

If marginal network costs cκ are negligible, the optimal provided network is very large and the

consumer near her saturation point. The choice distortion of switching is therefore negligible.

Even if the CSP is only willing to pay a small fee cSC, this would be sufficient for the ISP to

pursue the route of sponsored content.

On the other hand, if marginal network costs cκ are fairly high, the optimal network capacity in

the NSC case is very low. In fact, it can be so low, that more network capacity is needed to even

offer sponsored content. Even if that is not the case a low network capacity implies that offering

sponsored content leads to a comparatively bigger change in consumer behavior, thus increasing

choice distortion. Consequently the ISP will only pursue the route of sponsored content, if he

expects a high fee cSC from the content provider B.

CSP B will only agree to sponsored content if the additional traffic offsets the fee cSC. The

higher the profitability d, the higher B values the additional traffic and thus the payment cSC

increases as well, leading to the implementation of sponsored content. As the threshold for the

necessary cSC increases with higher network costs, the minimal necessary profitability d increases

accordingly as well.

Proposition 7 There exists a minimal profitability d̄(cκ) ≥ d(cκ) such that the ISP imple-

ments exclusively sponsored content if and only if d > d̄(cκ).

Given fixed network costs cκ the ISP always offers exclusive contracts if the marginal profita-

bility of CSP B is high enough. If the CSP has an extremely high profitability, the utility of

the consumer becomes irrelevant as it is much more important to optimize the payment cSC.

cSC decreases in network size as the advantage due to the sponsored content contract itself is

decreased. The ISP thus tries to generate a situation, where the consumer generates the least

amount of traffic for CSP B, so that sponsoring content is as attractive for the CSP as possible.

Proposition 8 There exists a minimal profitability c∗κ =
√

1− β such that the ISP only

implements either the case of no sponsored content or the case of exclusively sponsored

content for all cκ > c∗κ.

For cκ < c∗κ it holds that d(cκ) < d̄(cκ), i.e. there exists a range of marginal profitability d

with d(cκ) < d ≤ d̄(cκ) where non exclusive sponsored content is implemented.

If the network is relatively cheap, sponsored content is attractive to the ISP, as he can simply

counteract the choice distortion effect by building more network capacity and thus profiting both

13

from a relatively high P and the payment cSC. With higher network costs however, the marginal

increase in P is not sufficient to justify an increase in network capacity over the necessary minimal

network capacity κ = βα. Consequently, the ISP switches directly from the NSC case to the

ESC case.

The exact position of c∗κ depends on the consumer preference β: If β is fairly low, i.e. the

consumer is not that interested in B, implementing the case of exclusively sponsored content is

a very drastic step. This is only justified by extremely high network costs in combination with

a relatively high profitability d. Note, that the relatively high profitability d follows directly out

of the strict monotonous increase of d(cκ).

6. Network Sizes

We have argued that sponsored content might be a viable instrument to mitigate the effect of the

investment distortion. In this section we will thus examine the effects on the realized and from

the view of the ISP optimal network capacity κ∗. A representative figure given comparatively

small network costs cκ < c̃κ = 1− β can be found with Figure 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

NSC ESCSC

d

κ
∗

Figure 3: Realized network capacity κ∗ given marginal CSP profitability d with β = 0.2, internet affinity

α = 1 and network costs cκ = 0.75, i.e. cκ < c̃κ = 1−β. The dashed line denotes the case where sponsored

content is forbidden. One can see, that with increasing profitability d at one point sponsored content is

implemented, which results in a discrete jump in network capacity. With increasing profitability d the

network capacity decreases until the case of exclusive sponsored content is reached.

Proposition 9 Given that cκ < c̃κ = 1− β, for comparative statics in the CSP profitability

d, it holds that

1. Within the case of non-exclusively sponsored content, the implemented network capacity

14

κ∗ is strictly monotonously decreasing, as it holds here that

κ∗SC = α(1− (1− β)(cκ + dβ)) (29)

2. The network capacity κ∗ of both the NSC and ESC case is constant with

κ∗NSC = α(1− cκ)

κ∗ESC = αβ

As it holds that cκ ≤ 1− β it follows that κ∗NSC > κ∗ESC.

3. There exists a minimal profitability d(cκ) < d∗(cκ) < d̄(cκ), i.e. within the case of non-

exclusive sponsored content, where sponsored content leads to less network capacity for

all d > d∗

4. There is a discrete jump in network capacity κ∗ of

αcκ(1−
√

1− β) > 0 (30)

when switching from the NSC to the SC case.

5. The transition from the SC case to the ESC case is continuous.

As was argued in section 5, the ISP has to weigh up the payment cSC against the resulting choice

distortion. Both streams depend on the network capacity:

• An increase in network capacity implies that the choice distortion is decreased, as the

utility difference for the consumer between a contract with and without sponsored content

shrinks. The extractable price P thus increases with an increase in network capacity.

• An increase in network capacity implies that the payment cSC is decreased . More network

capacity implies less additional traffic which has to be attributed to the sponsoring of the

content itself.

The ISP would like to set the network to a small value if the payment cSC is important relative

to the choice distortion and increase network capacity otherwise.

The consumer does not care about the profits of the content providers, holding the choice

distortion constant with changes in d. However the payment cSC is strongly sensitive in the

profitability d with a higher profitability allowing a higher payment.

In other words an increase in d means that the payment cSC becomes more important to the ISP

relative to the price of the consumer contract, thus leading to a decrease in network capacity.

This effect continues with an increase in d until the ESC case is reached, where the network

capacity stagnates. A representation of the importance of the two income streams can be found

with Figure 4.

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

NSC ESCSC

P̄SC

cSC

d
P̄
,
c S

C

Figure 4: Numerical comparison of earnings of the ISP due to consumer price P̄SC, with sponsored

content (thick line) and contract price between CSP B and the ISP cSC (thin line) given marginal CSP

profitability d. We used CSP affinity β = 0.2, internet affinity α = 1 and network costs cκ = 0.75. In all

cases network capacity κ has been chosen to be optimal for the ISP, i.e. κ = κ∗.
One can see, that with increasing profitability d the importance of the contract between CSP B and the

ISP increases in relation to the payment of the consumer.

Analyzing increased network costs above the threshold of c̃κ = 1−β gives us Proposition 10.

Proposition 10 Given that cκ > c̃κ = 1 − β and the implementation of sponsored content,

the built network capacity is higher than with forbidden sponsored content.

Given that cκ > c̃κ and forbidden sponsored content, the ISP would like to build network capacity

below the saturation point of the consumer in respect to content of CSP B. The implementation

of sponsored content is thus only possible if the network capacity is increased at least to this

level. Depending on the specific combination of network costs cκ, marginal profitability of CSP

B d and the preference for its content β non-exclusive sponsored content will be implemented

or - in the case of extremely high network costs - a direct switch to exclusive sponsored content

might take place.

Generally, if we increase cκ, the network capacity of the ESC case stays constant, the network

capacity of the NSC case decreases and the SC area shrinks as can be seen in Figure 5, where

only the value of cκ has been changed in relation to the settings of Figure 3.

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

NSC ESCSC

d
κ

Figure 5: Network capacity κ given marginal CSP profitability d with β = 0.2, internet affinity α = 1

and network costs cκ = 0.85, i.e. 1 − β = c̃κ < cκ. The dashed line denotes the case where sponsored

content is forbidden.

Regarding the jump in network capacity when implementing sponsored content it should be

kept in mind, that choice distortion can be mitigated by simultaneously increasing the network

capacity. If network costs cκ are high, the NSC case provides a low network capacity. Switching

to sponsored content with a fixed demand, a low network capacity implies an especially high

choice distortion, thus making an higher increase necessary.

If no corner-solution-scenario is implemented, the increase in network capacity is directly paid

for by the CSP, as Proposition 11 shows.

Proposition 11 We define κ1 = κ∗(d(cκ)) to be the profit maximizing network capacity of the

non-sponsored content case and κ2 = limd→d(cκ)+ [κ∗(d)] to be the profit maximizing network

capacity after switching to sponsored content by increasing profitability d incrementally from

the case of non-sponsored content to the case of non-exclusively sponsored content. It holds

that the costs of the increase in network capacity equals the payment cSC from CSP B to the

ISP, i.e. formally

cκ · (κ2 − κ1) = cSC (κ2) given cκ ≤ c∗κ =
√

1− β

From the view of the ISP one necessary condition to switch away from non-sponsored content is,

that there are no effective additional costs to do so. The difference in costs of optimal network

capacities has thus to be paid by the contract price cSC.

The effective utility of the consumer is not changed by the behavior of the ISP: While she receives

a higher quota due to the increase in network capacity, having a contract with sponsored content

simultaneously lowers her utility due to not being able to structure her traffic optimally. The

increase in network capacity cancels the higher quota, leaving the effective price constant.

The same does not hold in the case of changing directly to the case of non-exclusive sponsored

content, as here the ISP is not as flexible with his optimal network and thus price P̄SC, as here

17

always the network κ = αβ is implemented. The consumer might thus enjoy so much more

network capacity, that she shoulders some of the network costs.

Even though some of the gains of B are internalized by allowing sponsored content, this does

not hold for the possible earnings of the fringe content provider F.

Proposition 12 When allowing sponsored content the realized network capacity k∗ is smaller

than the welfare optimizing network capacity ko.

To summarize one can say, that sponsored content, as well as the case of forbidden sponsored

content never achieves the desired welfare-optimizing network capacity. However, given very

high network costs cκ and/or a sufficiently low profitability d sponsored content might increase

the built network. Quite a few scenarios exist though, were allowing sponsored content not only

implies the welfare decreasing effect of increasing choice distortion but also directly decreases

the build network, thus increasing the investment distortion as well.

7. Welfare analysis

Allowing and implementing sponsored content has the following effects on the different parties:

1. The consumer changes her internet usage, thus creating choice distortion. Per design the

ISP sets the utility of the consumer to zero, thus negating all direct effects of the consumer

and transferring the utility loss due to choice distortion to the ISP.

2. The fringe content provider F is never explicitly addressed in the optimization process of

the ISP, leading to:

Proposition 13 Given that sponsored content is allowed and implemented the fringe

content provider F always loses profits relative to the situation of forbidden sponsored

content. In other words given that the ISP implements sponsored content it holds that

π∗F,NSC = d · qF,NSC(q = κ∗NSC) > d · qF,SC(q = κ∗ − βα) = π∗F,SC (31)

3. Regarding content provider B it should be noted, that all effects of the payment cSC are

neutral in respect to total welfare. Given that the ISP makes the take-it-or-leave-it offer,

the profit of B is always limited to the profit in the NSC case given built network capacity

k∗, as all excess profit is taken by the ISP. Therefore, B profits exactly than, if sponsored

content leads to more network capacity (k∗ > k∗NSC) and makes less profits, if it leads to

less network capacity (k∗ < k∗NSC).

18

4. The ISP never loses by being presented with the additional option of sponsored content,

as he can always choose to not draw this option. The effects on the ISP are the balance

act between the payment cSC and the choice distortion and have already been discussed

in the previous chapters.

To reiterate the following effects influence total welfare:

a) The choice distortion leads to a decrease in the profits of the ISP.

b) The investment distortion depends on the chosen network capacity - a higher network capacity

κ∗ relative to the network capacity in the NSC model κ∗NSC implies higher profits for the sum

of the CSPs, a smaller choice distortion but higher network costs.

Definition 3 We define the total welfare given sponsored content is forbidden as

W ∗NSC := WNSC(k∗NSC)

and total welfare given sponsored content is allowed as

W ∗ :=




WNSC(k∗) if the ISP does not implement sponsored content

WSC(k∗) if the ISP does implement sponsored content

The rather complicated explicit formulas can be found with Proposition I.4 in the Appendix.

Proposition 14 Having a higher network due to sponsored content is a necessary but not

sufficient condition that total welfare increases when allowing sponsored content. It holds

that

W ∗ > W ∗NSC ⇒ κ∗ > κ∗NSC (32)

but the opposite direction does not hold.

As a direct consequence, in all situations where where sponsored content leads to a decrease in

network capacity, e.g. as seen in Proposition 9 with relatively low network costs cκ < 1− β and

d > d∗(cκ), total welfare is reduced.

Proposition 15 Given that a non exclusive-sponsored content contract would be implemen-

ted, sponsored content leads to a loss in total welfare if the consumer preference β towards

content of content provider B is less than β̃ =
√

5−1
2 ≈ 0.61.

In other words under all conditions, where there is a comparatively small content provider B and

sponsoring does not lead to a “CSP B only” network, the total welfare is reduced by allowing

sponsored content. The investment distortion might be somewhat mitigated by a higher network

capacity, but the choice distortion works against it, especially if the content of CSP B is not

19

that well liked. However, should the consumer indeed prefer to predominately generate traffic

for B, the choice distortion is not as bad, as the consumer uses most of her traffic quota for B

anyway.

Proposition 16 There exists a minimal network cost c̃κ = 1 − β and a minimal content

profitability ¯̄d(c̃κ) > 0, where for all combinations cκ, d with cκ > c̃κ and d > ¯̄d(cκ) it holds

that allowing sponsored content increases total welfare.

Note that cκ > (1−β) implies per Proposition 10 that sponsored content leads to more network

capacity.

If the content provider is so profitable, that it effectively pays the ISP to build up the network

structure for its content, sponsored content indeed leads to an increase in total welfare. In

this parameter subset the ISP always chooses to implement exclusively sponsored content, as

the payment of the consumer becomes comparatively irrelevant. As a direct result the choice

distortion no longer is the driving factor: Allowing sponsored content allows the ISP optimize

the joint income of both CSP B and himself. Consequently, the investment distortion in this

instance is greatly reduced.

8. Robustness check: Giving Bargaining Power to the Content

Provider

One of the main reasons leading to welfare loss follows out of the exploitation of the content

provider by the ISP due to throttled network capacity. The main force behind this behavior is

the possibility of the ISP to dictate the details of the contract between the ISP and the content

provider. One might argue, that a more realistic setting would be, that the ISP builds up

network capacity and is approached by the content provider. The new timeline is thus

1. The ISP decides to build internet capacity κ.

2. Content provider B offers the ISP a take-it-or-leave-it offer to get its content sponsored.

3. The ISP can accept or decline that offer.

4. The ISP offers the consumer a take-it-or-leave-it contract with a specific quota q for a fixed

fee P .

5. The consumer accepts the contract, if sensible, and creates traffic for B and F.

Proposition 17 If the content provider offers the take-it-or-leave-it offer, the ISP will always

built the network capacity k∗NSC, optimal for the case where sponsored content is forbidden.

20

The total welfare is reduced by the amount of the choice distortion CD(κ∗NSC) when imple-

menting sponsored content.

Given that the network has already been built, the content provider has no incentives to pay

more than necessary to the ISP and will therefore structure the offer in a way, that the ISP

barely accepts it. The ISP will therefore make the same amount of profits as in the NSC case.

Consequently he will optimize the network capacity identical to the scenario, where sponsored

content is forbidden. Here the ISP has no incentive to decrease the investment distortion, as

he can’t internalize the corresponding profits. Consequently we do not observe the increased

network capacity of Propositions 9 and Proposition 10.

On the other hand the choice distortion still happens when implementing sponsored content.

Assuming that both content providers have identical profitability d, changing the content from

the fringe content provider to the big content provider is welfare neutral, but the consumer is

still hurt by not being able to consume the content in her optimal distribution.

While in the main model the ISP internalized the choice distortion and had to balance between

the payment of the content provider and the choice distortion, here the choice distortion is simply

passed on to the content provider. CSP B will offer the contract if its expected additional traffic

is greater than the choice distortion and will thus still be present in the total welfare.

9. Related Literature

An overview of the different effects of (non-existing) net neutrality in various forms can be found

with Greenstein, Peitz, and Valletti (2016). For an extensive overview of existing literature

regarding net neutrality see Krämer, Wiewiorra, and Weinhardt (2013).

Focusing on the specific notion of actually implemented zero-rating, one can find with Yoo

(2016) a recent review of several zero-rating programs. He argues, that zero rating has to be

judged on a case by case basis and that blanket statements are sub-optimal. An overview on the

regulatory implementation of zero rating worldwide can be found with Marsden (2016). Saenz

De Miera Berglind (2016) conducted an empirical study on the effects of zero-rating. He finds

that zero-rating increases estimated consumer surplus.

Regarding zero rating and more specifically sponsored content several articles exists which use

verbal argumentation to point out potential benefits or warn of potential dangers. Notable

examples are R. S. Lee and T. Wu (2009), Eisenach (2015), Rogerson and Charles (2016), as

well as Brake (2016) arguing largely in favor of sponsored content. They adduce positive effects

as increased economic efficiency, increased competitiveness between internet service providers

and the possibility to penetrate otherwise too costly markets. In particular this last argument

will be strengthened by our model.

21

On the other side, Schewick (2015) takes a general stance against zero-rating and Schewick

(2016) argues in detail why the service “Binge On” from T-Mobile US (T-Mobile US, 2017a) can

be quite harmful, even though it is arguably constructed in a way that every video streaming

provider can attach itself to this program without costs.

In the following paragraphs notable theoretic models are provided. Our model differs structurally

insofar as all the following models either do not examine network capacity at all or assume within

their welfare analysis that it is given exogenously and thus do not find the effect, that the ISP

has an incentive to limit his network.

Zhang, W. Wu, and Wang (2015) model, given a fixed network capacity, sponsoring costs and

a monopolistic ISP the effects of sponsored content with a two-stage Stackelberg Game: First

the ISP decides on the contract details for the consumer and afterwards the CSPs can decide

whether they want to participate in the sponsoring scheme. They find that while sponsored

content can enlarge the unbalance in revenue distribution between content providers, at least in

the short run consumers win through sponsored content independent on the congestion of the

network.

Ma (2014) examines a monopolistic ISP with a quantity of content service providers each bringing

in their own consumers. The number of consumers depends on the per-byte charge of the ISP,

which can in part be subsidized by the CSP. The actual usage, and thus revenue of the ISP,

depends on the congestion of the built network. Ma (2014) finds that in particular profitable

CSPs will subsidize their content, thus increasing efficiency of the market and both the profit

margins of the ISP as well as total welfare, at least in presence of pricing regulations.

Caron, Kesidis, and Altman (2010) model consumer demand in a world with multiple ISPs and

CSPs through a consumer demand function, which depends on the price the consumer pays per

byte to both the ISP and the CSP. To determine how the choices of content of the consumers

are divided, Caron, Kesidis, and Altman (2010) account for consumer loyalty. Both the ISP

and the CSP are allowed to make side payments to improve their situation. They find that

paradoxically side payments can be detrimental to the receiving side by reducing the Nash

equilibrium revenues.

Andrews, Özen, et al. (2013) model a single CSP and a single ISP with a Stackleberg Game,

where the ISP can set the pricing parameters and the CSP can determine a maximum number

of views which can be sponsored. It is assumed, that sponsored views will always be used,

while non-sponsored views will or will not be used based on chance. Both, the situation where

the consumer pays per byte and a fixed quota are analyzed. The demand of the consumer is

modeled via a random variable of potential views. They show, that a coordinating contract in

their setting can be developed which maximizes system profits.

Andrews (2013) introduces a general frame work for a monopolistic ISP and several CSPs and

Users, where the CSP can decide to sponsor some data packets but not others and the ISP has

the final decision on whether he will allow this or not. This framework does not cover network

investments.

Somogyi (2017) uses a monopolistic ISP but two potentially sponsoring, competing CSPs and a

22

single outsider CSP. The consumers are assumed to be either capped by their allowed capacity

or by their bliss point and anticipate congestion of the exogenously available network. Somogyi

(2017) calculate that within their model the ISP can offer sponsored content contracts either if

the content is very attractive or very unattractive but not in the intermediate region.

Supported by empirical data and numerical simulation, Joe-Wong, Ha, and Chiang (2015) argues

that sponsored content favors less cost-constrained content providers and more cost-constrained

consumers. They use a model with heterogeneous consumers, which pay for traffic on a per byte

basis and receive this traffic in the form of both actual content and advertisement.

The following models do determine network capacity endogenously but not by a strategic decision

of the ISP. It is assumed, that the ISP has access to an infinite network, but has to pay a marginal

price for each byte of traffic.

Jullien and Sand-Zantman (2012) assume a mass of content providers which can be separated in

two groups: low and high. High content providers are characterized by offering content which is

valued at a higher price as the marginal network costs. Without sponsored content consumers

can not discriminate between those contents, as they pay the same for traffic of both kinds.

Sponsored content thus can be welfare enhancing as it allows to direct the focus of the consumer

to higher valued content.

Zhang and Wang (2014) calculate which content providers and to which extent they would like

to participate. They find that whether big or small content providers profit from sponsored

content depends on whether one takes a short term view with fixed market rates or a long term

view. Their article is extended by a empirical estimation of their parameters with Andrews,

Bruns, and H. Lee (2014).

While the other articles assume complete knowledge of all participants, Andrews, Jin, and

Reiman (2016) assume that this does not necessarily have to be the case at all times. Their

focus lies on devising a pricing strategy for the ISP to incentivize the CSPs to truthfully report

their parameters.

With a similar structure as my paper Pil Choi and Kim (2010) focuses on the dilemma of the

ISP to optimize between the fee paid by the content provider versus the fee paid by the consumer

and the subsequent effects on infrastructure investments. In contrast to my paper, however, they

don’t examine the effects of zero-rating with undiscriminating traffic: Here, the content provider

sponsors a favorable speed to increase Quality-of-Service in a tiered, and therefore not neutral

internet. Modeling network congestion using queuing theory they conclude that, similar to my

paper, a low profitability of the content providers leads the ISP to prefer a neutral internet,

while a higher profitability has ambiguous results.

23

10. Concluding Remarks

We assumed, that a content provider can pay the monopolistic internet service provider for the

privilege of having its content sponsored. A contract with sponsored content has the feature,

that this sponsored content does not count toward the data cap of the consumer.

Allowing sponsored content can lead to more infrastructure investments due to internalizing

possible profits of the content provider. With sponsored content allowed, the ISP has to juggle

two income streams - the traditional payment by the consumers and the payment from the

content provider, who expects more traffic due to the sponsoring of his content. A higher

network capacity implies more willingness to pay from the consumers, but a lower willingness to

pay from the content provider, as the comparative advantage due to sponsored content shrinks.

A high profitability of the content provider can thus lead to a lower network capacity due to the

ISP trying to maximize this income stream. With a very high profitability and comparatively

high network costs this can result in an internet, where the consumer de facto only pays for

(unlimited) access to the sponsored content but does not receive any regular internet access.

By implementing sponsored content, our model predicts total welfare to be reduced in a wide

array of cases. Given that we have a relatively normal “broadband” setting, i.e. some content

might be sponsored for a sizable but not dominating content provider, total welfare decreases

when allowing sponsored content. In the case of very high network costs and comparatively high

profitability of the sponsoring content provider however, sponsored content might be beneficial.

One might think about rural areas in less developed nations, where sponsored content might

allow a big content provider, or a conglomerate thereof, to open up this market. This type of

sponsored infrastructure might be profitable for the ISP, the content providers and the consumers

who now have access to the internet which they otherwise wouldn’t have. In developed areas

one might justifiably be wary of the effects of sponsored content, especially given that a lot

of negative effects are beyond the scope of this paper. For example one might argue, that

sponsored content can lead to a monopolisation of the content provider and thus to market

distorting effects, or that consumers are heterogenous and therefore suffer to a greater extent

due to the lack of options as has been modelled within this paper.

The model might be extended by modeling the consumer(s) with heterogeneous preferences

and the explicit wish for variety in their internet usage. I would expect, that this strengthens

the negative effects of sponsored content. Similarly, heterogeneous consumers might make it

sensible to allow the ISP to offer different kind of contracts, with changing prices, quotas and

with or without sponsored content. The market of the EU might be better modelled by having

a small number of internet service providers bidding to gain access to the consumers. One

might supplement the model by using differing marginal profitabilities over an array of content

providers as well as modeling efficiency effects of content providers due to increased traffic. It

could be interesting to see how the concept of using sponsored content as a “loss-leader” for

24

underdeveloped areas fares within this framework by letting the satisfaction point of the

consumer depend on the traffic of previous periods and having multiple network investment

decisions.

References

airtel India (2015). Airtel partners with Google to lead India broadband growth story. url:

http://www.airtel.in/about-bharti/media-centre/bharti-airtel-

news/telemedia/airtel-partners-with-google-to-lead-india-broadband-growth-

story (visited on 04/30/2015).

Andrews, Matthew (2013). “Implementing sponsored content in wireless data networks”. In:

Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton Conference.

IEEE, pp. 1208–1212. doi: 10.1109/Allerton.2013.6736663.

Andrews, Matthew, G. Bruns, and Hyoseop Lee (2014). “Calculating the benefits of sponsored

data for an individual content provider”. In: 2014 48th Annual Conference on Information

Sciences and Systems (CISS), pp. 1–6. doi: 10.1109/CISS.2014.6814145.

Andrews, Matthew, Yue Jin, and Martin I Reiman (2016). “A truthful pricing mechanism for

sponsored content in wireless networks”. In: Computer Communications, IEEE INFOCOM

2016-The 35th Annual IEEE International Conference. IEEE, pp. 1–9. doi:

10.1109/INFOCOM.2016.7524559.

Andrews, Matthew, Ulaş Özen, et al. (2013). “Economic models of sponsored content in

wireless networks with uncertain demand”. In: Computer Communications Workshops

(INFOCOM WKSHPS), 2013 IEEE Conference. IEEE, pp. 345–350. doi:

10.1002/9781118899250.ch10.

AT&T (2017). Want to become a Sponsored Data provider? url:

https://www.att.com/att/sponsoreddata/en/index.html (visited on 12/08/2017).

Brake, Doug (2016). “Mobile Zero Rating: The Economics and Innovation Behind Free Data”.

In: Net Neutrality Reloaded: Zero Rating, Specialised Service, Ad Blocking and Traffic

Management. Ed. by Luca Belli, pp. 132–154. isbn: 978-8-5632-6576-0.

Caron, Stephane, George Kesidis, and Eitan Altman (2010). “Application Neutrality and a

Paradox of Side Payments”. In: Proceedings of the Re-Architecting the Internet Workshop.

ReARCH ’10. Philadelphia, Pennsylvania: ACM, 9:1–9:6. isbn: 978-1-4503-0469-6. doi:

10.1145/1921233.1921245.

Eisenach, Jeffrey A (2015). “The Economics of Zero Rating”. In: url: http:

//www.nera.com/content/dam/nera/publications/2015/EconomicsofZeroRating.pdf

(visited on 12/12/2017).

European Commission (2017). Open Internet. url:

https://ec.europa.eu/digital-single-market/en/open-internet-net-neutrality

(visited on 12/08/2017).

25

Federal Communications Commission (2015). “Protecting and Promoting the Open Internet”.

In: Federal Register 80.FR 19737. url:

https://www.federalregister.gov/articles/2015/04/13/2015-07841/protecting-

and-promoting-the-open-internet (visited on 12/08/2017).

Fiegerman, Seth (2017). FCC votes to move forward with net neutrality rollback. url:

http://money.cnn.com/2017/05/18/technology/fcc-net-neutrality-vote/index.html

(visited on 12/08/2017).

FightForTheFuture (2015). Sept. 10th is the Internet Slowdown. url:

https://www.battleforthenet.com/sept10th/ (visited on 12/08/2017).

Goldhammer, Klaus, André Wiegand, and Mathias Birkel (2016). Marktstudie Zero-Rating.

German. Goldmedia GmbH Strategy Consulting. url:

https://www.blm.de/files/pdf1/goldmedia-marktstudie-zero-rating-2016-3.pdf.

Greenstein, Shane, Martin Peitz, and Tommaso Valletti (2016). “Net neutrality: A fast lane to

understanding the trade-offs”. In: The Journal of Economic Perspectives 30.2, pp. 127–149.

doi: 10.1257/jep.30.2.127.

Gustin, Sam (2016). India Just Banned Zero-Rating. Your Move, FCC. url:

https://motherboard.vice.com/en_us/article/indias-new-open-internet-law-is-

stronger-than-the-united-states (visited on 12/08/2017).

Joe-Wong, Carlee, Sangtae Ha, and Mung Chiang (2015). “Sponsoring mobile data: An

economic analysis of the impact on users and content providers”. In: Computer

Communications (INFOCOM), 2015 IEEE Conference. Kowloon, Hong Kong: IEEE. doi:

10.1109/INFOCOM.2015.7218528.

Jullien, Bruno and Wilfried Sand-Zantman (2012). “Internet Regulation, Two-Sided Pricing,

and Sponsored Data”. In: TSE Working Paper 12.327. revised March 2017.

Krämer, Jan, Lukas Wiewiorra, and Christof Weinhardt (2013). “Net neutrality: A progress

report”. In: Telecommunications Policy 37. 9, pp. 794–813. doi:

10.1016/j.telpol.2012.08.005.

Lee, Robin S and Tim Wu (2009). “Subsidizing creativity through network design: Zero-pricing

and net neutrality”. In: The Journal of Economic Perspectives 23.3, pp. 61–76. doi:

10.1257/jep.23.3.61.

Ma, Richard T.B. (2014). “Subsidization competition: Vitalizing the Neutral Internet”. In:

Proceedings of the 10th ACM International on Conference on emerging Networking

Experiments and Technologies. ACM. Sydney, Australia, pp. 283–294. doi:

10.1145/2674005.2674987.

Marsden, Christopher T. (2016). “Comparative Case Studies in Implementing Net Neutrality:

A Critical Analysis of Zero Rating”. In: SCRIPTed 13, p. 1. doi: 10.2966/scrip.130116.1.

Pil Choi, Jay and Byung-Cheol Kim (2010). “Net neutrality and investment incentives”. In: The

RAND Journal of Economics 41.3, pp. 446–471. doi: 10.1111/j.1756-2171.2010.00107.x.

26

Rogerson, William P and E Charles (2016). “The economics of data caps and free data services

in mobile broadband”. In: url: http://www.ctia.org/docs/default-source/default-

document-library/081716-rogerson-free-data-white-paper.pdf.

Saenz De Miera Berglind, Oscar (2016). “The Effect of Zero-Rating on Mobile Broadband

Demand: An Empirical Approach and Potential Implications”. In: International Journal of

Communication 10, p. 18. url: http://ijoc.org/index.php/ijoc/article/view/4651.

Sasso, Brandon (2014). On Net Neutrality, Verizon Leads Push for ’Fast Lanes’. url:

http://www.nationaljournal.com/tech/on-net-neutrality-verizon-leads-push-

for-fast-lanes-20140718 (visited on 05/04/2015).

Schewick, Barbara van (2015). “Network Neutrality and Zero-Rating”. In: Attachment to

Barbara van Schewick’s Ex Parte in the Matter of Protecting and Promoting the Open

Internet submitted February 19.2015, pp. 14–28. url: https://cyberlaw.stanford.edu/

files/publication/files/vanSchewick2015NetworkNeutralityandZerorating.pdf.

– (2016). “T-Mobile’s Binge On violates key net neutrality principles”. In: url:

https://cyberlaw.stanford.edu/downloads/vanSchewick-2016-Binge-On-Report.pdf.

Schuhmacher, Merlin (2016). Spotify: Telekom stampft unlimitiertes Datenvolumen für

Musikstreaming ein. German. url:

https://www.heise.de/newsticker/meldung/Spotify-Telekom-stampft-

unlimitiertes-Datenvolumen-fuer-Musikstreaming-ein-3280776.html (visited on

03/21/2017).

Somogyi, Robert (2017). The Economics of Zero-Rating and Net Neutrality. Working Paper,

Version November 27, 2017. Université catholique de Louvain, Center for Operations

Research and Econometrics (CORE). url:

https://sites.google.com/site/robertsomogyi/Zero_rating_Somogyi.pdf.

The White House (2015). Net Neutrality - President Obama’s Plan for a Free and Open

Internet. url: https://www.whitehouse.gov/net-neutrality (visited on 04/29/2015).

T-Mobile US (2017a). BINGE ON. Video now streams FREE. url:

https://www.t-mobile.com/offer/binge-on-streaming-video.html (visited on

12/13/2017).

– (2017b). Stop burning data when you stream music. url:

https://www.t-mobile.com/offer/free-music-streaming.html (visited on 12/13/2017).

Welsh de Grimaldo, Susan (2015). Measuring the Success of Sponsored Data. Strategy

Analytics. url: https://www.strategyanalytics.com/access-services/service-

providers/service-providers-strategies/reports/report-detail/measuring-the-

success-of-sponsored-data.

Wu, Tim (2003). “Network Neutrality, Broadband Discrimination”. In: Journal of

Telecommunications and High Technology Law 2, pp. 141–160. doi: 10.2139/ssrn.388863.

Yoo, Christopher S (2016). “Avoiding the Pitfalls of Net Uniformity: Zero Rating and

Nondiscrimination”. In: Review of Industrial Organization 50 (4), pp. 509–536. doi:

10.1007/s11151-016-9555-7.

27

Zhang, Liang and Dan Wang (2014). “Sponsoring content: Motivation and pitfalls for content

service providers”. In: 2014 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pp. 577–582. doi: 10.1109/INFCOMW.2014.6849295.

Zhang, Liang, Weijie Wu, and Dan Wang (2015). “Sponsored data plan: A two-class service

model in wireless data networks”. In: ACM SIGMETRICS Performance Evaluation Review.

Vol. 43. 1. ACM. Portland, Oregon, USA, pp. 85–96. isbn: 978-1-4503-3486-0. doi:

10.1145/2745844.2745863.

28

I. Appendix

Proof of Proposition 1. This follows directly out of

qF,NSC(κ) = qoF (κ) qB,NSC(κ) = qoB(κ) (33)

and the fact that any chosen price of the ISP is welfare neutral.

Proof of Proposition 2. The utility of the consumer is

U(qF , qB) = qF + qB −
1

2(1− β)α
q2
F −

1

2βα
q2
B − P (34)

with

(qF,NSC(q), qB,NSC(q)) = ((1− β)q, βq) (35)

Solving

U(qF,NSC(q), qB,NSC(q))
!

= 0 (36)

leads to

P̄NSC(q) = q
(

1− q

2α

)
(37)

The ISP will chose q = κ because P̄NSC(q) is increasing in q, given that q ≤ κ ≤ α which holds

true per assumption.

The ISP thus optimizes his profit by chosing κ

πISP(κ) = P̄NSC(κ)− cκ · κ (38)

= κ
(

1− κ

2α

)
− cκ · κ (39)

where it holds that
∂πISP(κ)

∂κ
= 1− κ

α
− cκ !

= 0 (40)

resulting in

κ∗NSC = (1− cκ)α (41)

For the first best solution it holds that

κo =




α(1− cκ + d) if d ≤ cκ
α if d > cκ

(42)

This means the proposition holds iff

κo − κ∗NSC =




αd if d ≤ cκ
αcκ if d > cκ

> 0 (43)

which is always the case due to d > 0, cκ > 0 and α > 0.

29

Proof of Proposition 3. Keeping in mind Proposition 1 we can directly calculate

ID(κ∗NSC) = W (qoF(κ∗NSC), qoB(κ∗NSC), κ∗NSC)−W o

=





1
2 · α · d2 if d ≤ cκ
1
2αcκ(2d− cκ) if d > cκ

This function is continuous, as it holds that for d = cκ the second part is

1

2
αcκ(2d− cκ) =

1

2
αd(2d− d) =

1

2
αd2 (44)

As it holds that α > 0 and d > 0 the monotony in d and α is straightforward. If d ≤ cκ the

investment distortion does not change, when changing cκ. If d > cκ it holds that

∂ID

∂cκ
= αd− αcκ = α (d− cκ)︸ ︷︷ ︸

>0

> 0 (45)

thus making ID weakly increasing in cκ.

Proof of Proposition 4. It holds that

CD(κ) = P̄NSC(q = κ)− P̄SC(q = κ− βα)

= κ
(

1− κ

2α

)
− κ

1− β +
κ2 + α2β

2α(1− β)

=
β(α− κ)2

2α(1− β)
> 0

as α 6= κ, 0 < β < 1 and α > 0.

Proof of Proposition 5. It holds that

W o −WSC(κ) = ID(κ) +W (qoF(κ), qoB(κ), κ)−WSC(κ)

= ID(κ) +WNSC(κ)−WSC(κ)

= ID(κ) + (dκ(1− β) + dκβ + P̄NSC(κ)− cκκ)

− (d(κ− αβ) + dαβ + P̄SC(κ− αβ)− cκκ)

= ID(κ) + CD(κ)

Note that the payment cSC is welfare neutral and the consumer always receives a utility of 0.

Proposition I.1 The optimal profit of the ISP is

π∗ISP =





1
2α(1− cκ)2 in the NSC case

1
2α(1 + c2

κ(1− β) + d2β2(1− β)− 2cκ(1− dβ(1− β)) in the SC case with q > 0

1
2αβ(1− 2cκ + 2d(1− β)) in the ESC case

(46)

30

where the case is determined by the ISP himself based on the following parameter constella-

tions:




Sponsored Content with q > 0 if d+
√
d(4cκ+d)>2(cκ+dβ) and cκ+dβ≤1

Exlusively Sponsored Content if c2κ−2cκ(1−β)+(1−β)(1−2dβ)<0 and cκ+dβ>1

No Sponsored Content otherwise

(47)

Proof. Based on the results of section 4 it holds that

π∗ISP, NSC = πISP, NSC(κ∗NSC) (48)

= P̄NSC(κ∗NSC)− cκκ∗NSC (49)

= κ∗NSC

(
1− κ∗NSC

2α

)
− cκκ∗NSC (50)

=
1

2
α(1− cκ)2 (51)

as it holds that

κ∗NSC
Eq. 16

= α(1− cκ) (52)

In case of sponsored content it holds that

πISP, SC(κ) = P̄SC(q = κ− βα) + cSC(κ)− cκ · κ (53)

=
1

2

(
α− 2cκκ−

(α− κ)2

α(1− β)
+ 2dβ(α− κ)

)
(54)

given that βα ≤ κ ≤ α and cSC(κ) = dβ(α − κ) as seen in Equation 25. For P̄SC see Equation

21. βα ≤ κ is a direct consequence of Equation 6 ensuring network stability while κ ≤ α is

Equation 7 as the consumer can’t be forced to generate traffic.

It is left to specify the optimal network capacity κ in the case of sponsored content and to

compare it with the alternative of having no sponsored content.

The ISP chooses out of the following four cases:

1. πISP, SC(κ = βα) [Sponsored only, left side solution when choosing κ]

πISP, SC(κ = βα) = 1
2αβ(1− 2cκ + 2d(1− β))

2. πISP, SC(κ = κopt, SC) [Inner solution],

πISP, SC(κ = κopt, SC) = 1
2α(1 + c2

κ(1− β) + d2β2(1− β)− 2cκ(1− dβ(1− β))

κopt, SC = α(1− (1− β)(cκ + dβ))

κopt, SC can be determined by calculating
∂πISP, SC

∂κ
!

= 0.

To make sponsored content feasible it has to hold that, βα ≤ κopt, SC ≤ α which holds if

cκ + dβ ≤ 1

3. πISP, SC(κ = α) [Full network, right side solution when choosing κ]

πISP, SC(κ = α) = 1
2α(1− 2cκ).

31

4. π∗ISP, NSC = 1
2α(1− cκ)2 [Outside option without sponsored content]

We can now determine Equation 47 by comparing the different possible profits which can be

achieved under the given conditions.

It holds that

πISP, SC(κ = α) > πISP, SC(κ = βα) ⇔ cκ + dβ <
1

2
(55)

so if this is the case the ISP will chose the full network case over the ESC case conditional on

the outside option and the inner solution being worse or not applicable. It should be noted, that

cκ + dβ < 1
2 implies that cκ + dβ ≤ 1, so the inner solution is applicable. We have thus to check

whether the inner solution is always better as πISP, SC(κ = α) and indeed it is. In other words

if sponsored content is permitted the ISP will never implement the full network solution.

Furthermore it holds that

πISP, SC(κ = βα) > πISP, SC(κ = κopt, SC) (56)

is always false, so the ISP would always chose the inner option if applicable over the ESC option.

Given that the inner solution is applicable (i.e. cκ + dβ ≤ 1), the inner solution is preferable to

the outside option if and only if

d+
√
d(4cκ + d) > 2(cκ + dβ) (57)

If the inner solution is not applicable (i.e. cκ + dβ > 1) then it holds that

πISP, SC(κ = αβ) > π∗ISP, NSC

⇔ c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0

so with these conditions the ESC case is implemented.

Proposition I.2 The ISP will implement the following network capacity κ∗:

κ∗ =





α(1− cκ) in the NSC case

α(1− (1− β)(cκ + dβ)) in the SC case with q > 0

αβ in the ESC case

(58)

where the case is determined by the ISP himself based on the following parameter constella-

tions:




Sponsored Content with q > 0 if d+
√
d(4cκ+d)>2(cκ+dβ) and cκ+dβ≤1

Exlusively Sponsored Content if c2κ−2cκ(1−β)+(1−β)(1−2dβ)<0 and cκ+dβ>1

No Sponsored Content otherwise

(59)

Proof. This Proposition is a direct result of the proof of Proposition I.1.

32

Proof of Proposition 6. We define d(cκ) as

d(cκ) =




cκ

β+
√

1−β−1
(1−β)β if cκ ≤

√
1− β

c2κ+(1−2cκ)(1−β)
2(1−β)β if cκ >

√
1− β

(60)

The proof is separated into eight parts:

1. We show, that

d > cκ
β +
√

1− β − 1

(1− β)β
⇔ d+

√
d(4cκ + d) > 2(cκ + dβ) (61)

2. We show that

d >
c2
κ + (1− 2cκ)(1− β)

2(1− β)β
⇔ c2

κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0 (62)

3. We show that

d > d(cκ) ∧ cκ >
√

1− β ⇒ cκ + dβ > 1 (63)

4. We show that

cκ ≤
√

1− β ∧ cκ + dβ > 1 ⇒ c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0 (64)

5. We show that

cκ ≤
√

1− β ∧ d ≤ cκ
β +
√

1− β − 1

(1− β)β
⇒ cκ + dβ ≤ 1 (65)

and that

cκ >
√

1− β ∧ d > cκ
β +
√

1− β − 1

(1− β)β
⇒ cκ + dβ > 1 (66)

6. We combine the earlier parts to proof that d(cκ) indeed separates the cases.

7. We show that d(cκ) is strictly monotonously increasing.

8. We show that indeed lim
cκ→0

d(cκ) = 0.

9. We conclude that d > 0.

First, we show that

d > cκ
β +
√

1− β − 1

(1− β)β
⇔ d+

√
d(4cκ + d) > 2(cκ + dβ) (67)

33

We will focus in the notation on “⇒”, but the other direction holds analogously by showing that

≤ on the left side implies ≤ on the right side as well.

If we define ψ := d
cκ
> 0 it holds that

d+
√
d(4cκ + d) > 2(cκ + dβ) (68)

⇔ d+
√
d(4cκ + d)

2cκ
> 1 +

d

cκ
β (69)

⇔
d
cκ

+
√

4 d
cκ

+ d2

c2κ

2
> 1 +

d

cκ
β (70)

⇔ ψ +
√

4ψ + ψ2

2
> ψβ + 1 (71)

If this holds true, than this concludes the first part of the proof.

It holds that

ψβ + 1 =
d

cκ
+ 1 >

β − 1 +
√

1− β
1− β + 1 = −1 +

1√
1− β + 1 =

1√
1− β (72)

But here it holds that

ψβ + 1 >
1√

1− β
ψ > 0⇔ ψ2β2 + 2ψβ + 1 >

1

1− β
0<β<1⇔ (1− β)(ψ2β2 + 2ψβ + 1)− 1 > 0

⇔ β(ψ2β2 + β(2ψ − ψ2) + (1− 2ψ)) < 0

As β(ψ2β2 + β(2ψ − ψ2) + (1− 2ψ)) is a polynomial of third degree it is sufficient to calculate

where it vanishes and testing where it is above and below 0.

It holds that

β1 =
ψ − 2

2ψ
− 1

2

√
ψ + 4

ψ
(73)

β2 = 0 (74)

β3 =
ψ − 2

2ψ
+

1

2

√
ψ + 4

ψ
(75)

It is straightforward to see, that β1 < 0 and thus irrelevant as 0 < β < 1. It holds that

β3 =
ψ − 2

2ψ
+

1

2

√
ψ + 4

ψ
> 0

⇔ ψ − 2 > −ψ
√
ψ + 4

ψ

34

which is obvious if ψ ≥ 2. If ψ < 2 we can see that

ψ − 2 > −ψ
√
ψ + 4

ψ

⇔ ψ2 − 4ψ + 4 < ψ2ψ + 4

ψ
= ψ(ψ + 4) = ψ2 + 4ψ

⇔ 4 < 8ψ

⇔ 1

2
< ψ

It is easy to check, that Inequality 72 holds exactly if 0 < β < β3, thus making ψ > 1
2 a necessary

condition for d > cκ
β+
√

1−β−1
(1−β)β . As Inequality 72 is true due to d > cκ

β+
√

1−β−1
(1−β)β we know that

β < β3 also holds true.

We can now check, whether Inequality 71 holds true. It does indeed, as

ψβ + 1 < ψβ3 + 1 =
ψ − 2

2
+

1

2

√
ψ(ψ + 4) + 1 =

ψ +
√

4ψ + ψ2

2
(76)

The direction “⇐” follows analogously. Here we can show, that it has to follow that β >

max{β3, 0} is a necessary condition, thus proofing an inequality analogously to Inequality 71.

This concludes the first part of the proof.

For the second part we show that

d >
c2
κ + (1− 2cκ)(1− β)

2(1− β)β
⇔ c2

κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0 (77)

This follows directly as

d >
c2
κ + (1− 2cκ)(1− β)

2(1− β)β

⇔ 2dβ(1− β) > c2
κ − 2cκ(1− β) + (1− β)

⇔ 0 > c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ)

which concludes the second part of the proof.

For the third part we show that with cκ >
√

1− β it holds that

d > d(cκ) ⇒ cκ + dβ > 1 (78)

This follows directly as

cκ + dβ > cκ + d(cκ) · β = cκ +
c2
κ + (1− 2cκ)(1− β)

2(1− β)
> cκ +

(1− β) + (1− 2cκ)(1− β)

2(1− β)

= cκ +
1 + 1− 2cκ

2
= cκ + 1− cκ = 1

which concludes the third part.

35

For the fourth part we show that cκ ≤
√

1− β and cκ + dβ > 1 implies

c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0

It holds that

0 > c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ)

⇔ d >
c2
κ + (1− 2cκ)(1− β)

2(1− β)β

so it is sufficient to show this inequality. This holds as

c2
κ + (1− 2cκ)(1− β)

2(1− β)β
≤ (1− β) + (1− 2cκ)(1− β)

2(1− β)β

=
1 + 1− 2cκ

2β
=

1− cκ
β

< d

which concludes the fourth part.

In the fifth part we show that

cκ ≤
√

1− β ∧ d ≤ cκ
β +
√

1− β − 1

(1− β)β
⇒ cκ + dβ ≤ 1 (79)

and that

cκ >
√

1− β ∧ d > cκ
β +
√

1− β − 1

(1− β)β
⇒ cκ + dβ > 1 (80)

We will only show the first statement, as the other one follows analogously:

cκ + dβ ≤
√

1− β +
√

1− β · β · β +
√

1− β − 1

(1− β)β

=

√
1− β − β√1− β +

√
1− ββ + (1− β)−√1− β

(1− β)

=
1− β
1− β = 1

which concludes the fifth part.

In the sixth part we combine the earlier parts to show the statement.

Combining the second and the third part shows, that it holds that for all d > d(cκ) and cκ >√
1− β exclusively sponsored content is implemented.

Combining the first and fourth part implies that either normal sponsored content with q > 0 or

exclusively sponsored content is implemented if cκ ≤
√

1− β. We know from the first part that

the first condition of normal sponsored content is satisfied, but the second condition (cκ+dβ ≤ 1)

is not shown. There are two possibilities:

1. If the condition is met, normal sponsored content is implemented.

2. If the condition is not met, it follows directly, that the second condition of exclusively

sponsored content is satisfied. The first condition follows out of part four. Exclusively

sponsored content is implemented.

36

No sponsored content with d ≤ d(cκ) is implemented, when neither condition of the sponsored

content cases is met.

Assuming, that cκ ≤
√

1− β it holds due to the first part, that normal sponsored content is

not implemented. Exclusively sponsored content is not implemented, as the first statement

in the fifth part shows that the second condition of this case is not met. Consequently with

cκ ≤
√

1− β no sponsored content is implemented.

Assuming, that cκ >
√

1− β it holds due to the second part, that exclusively sponsored content

is not implemented. Now two cases have to be examined:

1.

d ≤ cκ
β +
√

1− β − 1

(1− β)β
(81)

In this case the first part can be used and the first condition of normal sponsored content

is not met. As exclusively sponsored content has been ruled out, no sponsored content is

implemented.

2.

d > cκ
β +
√

1− β − 1

(1− β)β
(82)

In this case the second statement of the fifth part can be used and the second condition

of normal sponsored content is not met. As exclusively sponsored content has been ruled

out, no sponsored content is implemented.

In the seventh part we show that d(cκ) is strictly monotonously increasing in cκ.

1. Assume cκ ≤
√

1− β

∂

∂cκ

(
cκ
β +
√

1− β − 1

(1− β)β

)
=
β +
√

1− β − 1

(1− β)β
> 0

as

β +
√

1− β > 1

⇔
√

1− β > 1− β

which is true as 0 < β < 1. d(cκ) is thus monotonously increasing within the first case.

2. Assume cκ >
√

1− β

∂

∂cκ

(
c2
κ + (1− 2cκ)(1− β)

2(1− β)β

)
=

2cκ
2(1− β)β

− 2(1− β)

2(1− β)β

=
cκ

(1− β)β
− 1

β

cκ>
√

1−β
>

√
1− β

(1− β)β
− 1− β
β(1− β)

=

√
1− β − (1− β)

β(1− β)
> 0

with the same argumentation as in the case above. We have thus shown, that d(cκ) is also

monotonously increasing within the second case.

37

3. It is left to show, that the d(cκ) is increasing when switching from the first into the second

case.

If cκ =
√

1− β it holds that

d(cκ) =
√

1− ββ +
√

1− β − 1

(1− β)β
=
β +
√

1− β − 1√
(1− β)β

=

√
1− β − (1− β)

β
√

1− β (83)

on the other hand it holds that

lim
cκ→

√
1−β+

d(cκ) =
(1− β) + (1− 2

√
1− β)(1− β)

2(1− β)β
=

1 + 1− 2
√

1− β
2β

=
1−√1− β

β
=

√
1− β − (1− β)

β
√

1− β
d(cκ) is thus continuous which concludes the seventh part.

Now we show that lim
cκ→0

d(cκ) = 0. This follows directly as for small cκ it holds that

d(cκ) = cκ
β +
√

1− β − 1

(1− β)β
(84)

which approaches 0 when cκ approaches 0.

It is left to show that d(cκ) > 0 which follows out of the monotony and the fact that lim
cκ→0

d(cκ) =

0 but cκ > 0 and 0 < β < 1.

Proof of Proposition 7. This proof largely draws from the proof of Proposition 6.

We define

d̄(cκ) :=





1−cκ
β if cκ ≤ c∗κ =

√
1− β

d(cκ) if cκ > c∗κ
(85)

Let there be cκ ≤ c∗κ. It holds that

d > d̄(cκ) ⇔ d >
1− cκ
β

⇔ cκ + dβ > 1 (86)

so the second condition of the exclusively sponsored content case is met. The first condition

of the exclusively sponsored content case is met due to Statement 64. This shows that for all

d > d̄(cκ) exclusively sponsored content is implemented. For all d ≤ d̄(cκ) the second condition

is not met, which shows that in this case exclusive sponsored content is not implemented.

To show that in this case d̄(cκ) ≥ d(cκ) it is sufficient to show that

1− cκ
β
− cκ

β +
√

1− β − 1

(1− β)β
≥ 0 (87)

This holds as

1− cκ
β
− cκ

β +
√

1− β − 1

(1− β)β
=

1− β
(1− β)β

− cκ(1− β)

(1− β)β
− cκ

β +
√

1− β − 1

(1− β)β

=
(1− β)− cκ + cκβ − cκβ − cκ

√
1− β + cκ

(1− β)β

=
(1− β)− cκ

√
1− β

(1− β)β
≥ (1− β)− (1− β)

(1− β)β
= 0

38

Let there be cκ > c∗κ. Proposition 6 shows the proposition for sponsored content. It is left to

show that this can only be exclusively sponsored content. This follows directly out of Statement

63.

It holds that d̄(cκ) ≥ d(cκ) per Construction.

Proof of Proposition 8. The first part of this proposition is a direct corollary of the proof of

Proposition 7.

Regarding the second part it should be noted that d̄(cκ) is monotonously decreasing for cκ ≤ c∗κ
as here it holds that

d′(cκ) = − 1

β
< 0 (88)

From Proposition 6 we know, that d(cκ) is strictly monotonously increasing. Therefore it holds

that d(cκ) < d̄(cκ) and thus the existence of d between those two values is shown as Proposition

7 holds. Combining Proposition 6 and Proposition 7 proves, that for those d non-exclusive

sponsored content is implemented.

Proof of Proposition 9. First of all it should be noted, that cκ < c̃κ = 1− β < c∗κ =
√

1− β and

that here d exists for which non-exclusive sponsored content is implemented (see Proposition 8).

Note, that to prove the existence of d∗ we need the two last features of the proposition. The

order of this proof is thus not identical to the order in the proposition.

Calculation of the jump based on the results of Proposition I.2:

(
lim

d→d(cκ)+
κ∗(d)

)
− κ∗ (d = d(cκ)) = α

(
1− (1− β)(cκ + lim

d→d(cκ)+
dβ)

)
− α(1− cκ)

= α

(
cκ − (1− β)

(
cκ + cκ

β +
√

1− β − 1

(1− β)β
β

))

= αcκ

(
1− (1− β)

(
1 +

β +
√

1− β − 1

(1− β)

))

= αcκ

(
1−

(
(1− β) + β +

√
1− β − 1

))

= αcκ

(
1−

√
1− β

)

It holds that αcκ
(
1−√1− β

)
> 0, as

√
1− β < 1.

The form of κ∗(d) within the sponsored content case can be found within I.2. It is left to show,

that indeed κ∗(d) is monotonously decreasing. This holds as

∂κ∗

∂d
= (1− β)β > 0 (89)

The constant network capacity in the NSC and ESC cases are straightforward results of I.2.

Furthermore it holds that

κ∗NSC − κ∗ESC = α(1− cκ)− αβ > α(1− c̃κ)− αβ = α(1− 1− β)− αβ > 0 (90)

39

which shows that the network capacity in the NSC case is higher.

We will now show, that the transition of the SC case to the ESC case is indeed continuous. It

holds that

lim
d→d̄(cκ)+

κ∗(d) = αβ (91)

and

κ∗(d = d̄(cκ)) = α
(
1− (1− β)(cκ + d̄(cκ)β)

)

= α

(
1− (1− β)(cκ +

1− cκ
β

β)

)

= αβ

which proofs this point.

It is left to show, that there exists a minimal profitability d∗(cκ) within the sponsored content

case, where sponsored content leads to less network capacity for all d > d∗ . We have already

shown that the network capacity in the NSC and the ESC case are independent of d and that in

the ESC case always a lower network capacity is implemented. It is thus sufficient to show for all

d within the sponsored content case. The existence of d∗ follows directly out of the fact, that κ∗

is monotonously decreasing within the sponsored content case, the jump from the NSC to the SC

case is always positive and that the transition from the SC and the NSC case is continuous.

Proof of Proposition 11. Note, that the proposition implies, that cκ < c∗κ as there is a transition

from non-sponsored content to non-exclusive sponsored content.

It holds due to Proposition 9 that

lim
d→d(cκ)+

[κ∗(d)]− κ∗(d = d(cκ)) = αcκ(1−
√

1− β) , (92)

due to the proof of Proposition 6 and Proposition 7 that

d(cκ) = cκ
β +
√

1− β − 1

(1− β)β
(93)

given that we switch from NSC to SC, due to Equation 25 that

cSC = dβ(α− κ∗) (94)

and due to Proposition I.2 that

κ∗ = α(1− (1− β)(cκ + dβ)) (95)

40

in the SC case. We combine those features to show the statement. For κ and d marginally near

the thresholds it holds that

cSC = dβ(α− κ)

= cκ
β +
√

1− β − 1

1− β (α− α(1− (1− β)(cκ + dβ))

= αcκ(β +
√

1− β − 1)(cκ + dβ)

= αc2
κ

(
(1− β)−√1− β(1− β)

1− β

)
= αc2

κ(1−
√

1− β)

As it holds that

cκ ·
(

lim
d→d(cκ)+

[κ∗(d)]− κ∗(d = d(cκ))

)
= αc2

κ(1−
√

1− β) (96)

the statement is shown.

Proposition I.3

a) Given that cκ > c̃κ = 1− β and cκ < c∗κ =
√

1− β the properties of Proposition 9 hold with

the following exception:

Given sponsored content is actually implemented, sponsored content always leads to more

network capacity.

b) Given that cκ > c∗κ and that sponsored content is implemented it holds that the realized

network capacity k∗ increases by

α(cκ + β − 1) > 0 (97)

when sponsored content is allowed. The case of non-exclusive sponsored content is not im-

plemented and identical to Proposition 9 it holds that

κ∗NSC = α(1− cκ)

κ∗ESC = αβ

Proof of Proposition I.3. a) Let there be
√

1− β > cκ > 1− β.

The shared properties as given in Proposition I.3 can be shown analogously as in the proof

of Proposition 9 itself.

The network capacity of the NSC case is κ∗NSC = α(1− cκ) and in the ESC case κ∗ESC = αβ

as per Proposition I.2. Thus it holds that

κ∗NSC = α(1− cκ) < α(1− (1− β)) = αβ = κ∗ESC (98)

i.e. the network capacity of the NSC case is lower than in the ESC case.

41

We have shown, that there is a positive jump when switching from the NSC case to the

ESC case by increasing cκ. Within the cases of sponsored content the function of network

capacity is monotonously decreasing in cκ and continuous. As the ESC case has more network

capacity than the SC case it follows that the network capacity is higher than the NSC case

when sponsored content is implemented and cκ is in the given range.

b) Given that cκ > c∗κ
(

lim
d→d(cκ)+

κ∗(d)

)
− κ∗ (d = d(cκ)) = αβ − α(1− cκ)

= α (cκ + β − 1)

This difference is greater than zero as it holds that

α (cκ + β − 1) > α
(√

1− β + β − 1
)

= α
(√

1− β − (1− β)
)
> 0 (99)

due to 0 < β < 1.

Proof of Proposition 10. This proposition is a direct corollary from Proposition I.3.

Proof of Proposition 12. 1. Given that sponsored content is not attractive to the ISP the

results of the non-sponsored case hold. Propositon 2 thus gives the statement in the NSC

case, i.e. for all d ≤ d(cκ).

2. Given that d̄(cκ) ≥ d > d(cκ), non-exclusive sponsored content is implemented. Assume

cκ < c∗κ =
√

1− β, so that Proposition 8 guarantees the existence of such a d.

a) Assume d ≤ cκ. Based on the Proof of Proposition 6, Proposition I.2 and Equation

10 we have to show that

cκ
β +
√

1− β − 1

(1− β)β
< d ≤ cκ !⇒ 1− (1− β)(cκ + dβ) < 1− cκ + d (100)

which is equivalent to having to show that

d(β + β2 + 1)− βcκ
!
> 0 (101)

It holds that

d(β + β2 + 1)− βcκ > cκ
(β +

√
1− β − 1)(β + β2 + 1)

(1− β)β
− βcκ

=
(β +

√
1− β − 1)(β + β2 + 1)− (1− β)β

(1− β)β
cκ

42

We know that cκ > 0 and (1− β)β > 0 due to 0 < β < 1, so it is left to show that

(β +
√

1− β − 1)(β + β2 + 1)− (1− β)β

= 2β3 − β2 − 1 + β
√

1− β + β2
√

1− β +
√

1− β !
> 0

which can be written as
−2β3 + β2 + 1

β2 + β + 1

!
<
√

1− β (102)

Note that it holds that −2β3 + β2 + 1 > 0, as

−2β3 + β2 + 1 = (1− β)︸ ︷︷ ︸
>0

(2β2 + β + 1)︸ ︷︷ ︸
>0

(103)

so both sides are > 0 and can without further case differentiations be squared:

−2β3 + β2 + 1

β2 + β + 1

!
<
√

1− β

⇔
(−2β3 + β2 + 1

β2 + β + 1

)2
!
< 1− β

⇔ (−2β3 + β2 + 1)2 − (β2 + β + 1)2 + β(β2 + β + 1)2 < 0

⇔ −(1− β)β((4β2 + β + 3)β3 + 1) < 0

which concludes this part of the proof.

b) Assume d > cκ. In this case it holds that κo = α. We know due to Propositon 6 and 7

that the highest network capacity in the SC is necessarily implemented for limd→d+ d,

so if we are able tho show that the condition holds in this case, we have shown it for

all higher d as well. In other words due to Proposition 6 and I.2 it is sufficient to

show that

αcκ(1−
√

1− β) + α(1− cκ) < α

This is easy to see as it holds that

cκ(1−
√

1− β) + (1− cκ) = 1−cκ
√

1− β︸ ︷︷ ︸
<0

< 1 (104)

.

c) For cκ > c∗κ no d exist given the condition, as here only exclusively sponsored content

is implemented.

3. In the case of exclusively sponsored content, i.e. d > d̄ it holds that κ∗ = αβ.

For d > cκ it directly holds, that

κ∗ = αβ < α = κo (105)

43

Given that d ≤ cκ it is sufficient to show the statement for cκ > c∗κ as given cκ ≤ c∗κ the

Propositions 9 and I.3 imply that the highest network capacity is implemented in the SC

case. That in this case it always holds that κ∗ < κo has already been shown in an earlier

section.

Let cκ > c∗κ =
√

1− β and d̄ < d ≤ cκ. It is to show that

ko = α(1− cκ + d)
!
> βα = k∗ (106)

It holds that

1− cκ + d > 1− cκ + d̄ = 1− cκ +
c2
κ + (1− 2cκ)(1− β)

2(1− β)β
(107)

It is thus sufficient to show that

1− cκ +
c2
κ + (1− 2cκ)(1− β)

2(1− β)β
− β !

> 0

⇔ 2(1− β)β − 2cκ(1− β)β + c2
κ + (1− 2cκ)(1− β)− 2(1− β)β2 !

> 0

⇔ 2β3 + 2cκβ
2 − 4β2 + β + c2

κ − 2cκ + 1
!
> 0

As c2
κ − 2cκ + 1 = (cκ − 1)2 > 0 and β < 1 it holds that

2β3 + 2cκβ
2 − 4β2 + β + c2

κ − 2cκ + 1 > 2β3 + 2cκβ
2 − 4β2 + β + β(c2

κ − 2cκ + 1) (108)

which implies that after dividing by β it is sufficient to show that

f(β, κ) := 2β2 + 2cκβ − 4β + 1 + c2
κ − 2cκ + 1

!
> 0 (109)

We show that (β = 1, cκ = 0) minimizes f with f(β = 0, cκ = 1) = 0 which concludes our

proof.

It holds that

fβ =
∂f

∂β
= 4β + 2cκ − 4

!
= 0 ⇒ β = 1− 1

2
cκ

fcκ =
∂f

∂cκ
= 2cκ − 2 + 2β

!
= 0 ⇒ β = 1− cκ

which shows us that (β = 1, cκ = 0) is a stationary point. It is a minimum as

fββ =
∂f

∂β ∂β
= 4 fβcκ =

∂f

∂β ∂cκ
= 2 fcκcκ =

∂f

∂cκ ∂cκ
= 2 (110)

and so it holds that

fββfcκcκ − f2
βcκ = 4 · 2− 22 > 0 and fββ > 0 and fcκcκ > 0 (111)

Finally, indeed it holds that

f(β = 1, cκ = 0) = 2 + 0− 4 + 1 + 0− 0 + 1 = 0 (112)

44

Proof of Proposition 13. It is to show that

π∗F,NSC = d · qF,NSC(q = κ∗NSC) > d · qF,SC(q = κ∗ − βα) = π∗F,SC (113)

It holds that

qF,NSC(q = κ∗NSC) = (1− β)κ∗NSC = (1− β)α(1− cκ) > 0 (114)

on the other hand it holds that (see Proposition I.2)

qF,SC(q = κ∗ − βα) = κ∗ − βα =




α(1− (1− β)(cκ + dβ))− αβ in the SC case

0 in the ESC case
(115)

It is straightforward to see, that the profit suffers in the ESC case. It is thus left to show, that

(1− β)α(1− cκ)− (α(1− (1− β)(cκ + dβ))− αβ) > 0 (116)

This holds as

(1− β)α(1− cκ)− (α(1− (1− β)(cκ + dβ))− αβ) = αβ(1− β)d > 0

Proposition I.4 It holds that

W ∗NSC =
1

2
α(1− cκ)(1− cκ + 2d) (117)

and

W ∗ =





1
2α(1− cκ)(1− cκ + 2d) in the NSC case

1
2α(1− 2cκ(1 + d(1− β)) + c2

κ(1− β) + d(2− dβ(2− β − β2))) in the SC case

1
2αβ(1− 2cκ + 2d) in the ESC case

(118)

Proof. This proposition relies only on algebraic transformations of already proven and calculated

results.

Lemma I.0.1 The conditions of the ESC case imply d > 1
2 .

Proof of Lemma I.0.1. The first condition of the ESC case is

c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0 (119)

It holds that

c2
κ − 2cκ(1− β) + (1− β)(1− 2dβ) < 0

⇔ 1− 2dβ <
2cκ(1− β)− c2

κ

(1− β)

⇔ 2d >
1

β
− 2cκ(1− β)− c2

κ

β(1− β)

45

It is thus sufficient to show that

1

β
− 2cκ(1− β)− c2

κ

β(1− β)
> 1 (120)

This is the case as

1

β
− 2cκ(1− β)− c2

κ

β(1− β)
=

1

β
+
c2
κ − 2cκ(1− β) + (1− β)2

β(1− β)
− (1− β)2

(1− β)β

=
1

β
+

(cκ − (1− β))2

(1− β)β
− (1− β)

β

= 1 +
(cκ − (1− β))2

(1− β)β︸ ︷︷ ︸
>0

> 1

Which concludes the proof.

Proof of Proposition 14.

a) Given that the parameters are in a way, that the NSC case is optimal for the ISP, the initial

condition can never occur, as it holds that W ∗ = W ∗NSC

b) In the ESC case it holds that (see Proposition I.4)

W ∗ > W ∗NSC

⇔ 1

2
αβ(1− 2cκ + 2d) >

1

2
α(1− cκ)(1− cκ + 2d)

⇔ β(1− 2cκ + 2d) > (1− cκ)(1− cκ + 2d)

⇔ β > (1− cκ)
(1− cκ + 2d)

(1− 2cκ + 2d)

as Lemma I.0.1 with d > 1
2 holds.

To show

κ∗ > κ∗NSC

⇔ βα > (1− cκ)α

It is sufficient to show that

β > (1− cκ) (121)

This is obvious as it holds that

β > (1− cκ)
(1− cκ + 2d)

(1− 2cκ + 2d)︸ ︷︷ ︸
>1

> (1− cκ) (122)

due to 1 > cκ > 0. We have used that d > 1
2 which holds due to Lemma I.0.1

46

c) In the SC case it holds that

W ∗ > W ∗NSC

⇔ 1

2
α(1− 2cκ(1 + d(1− β)) + c2

κ(1− β) + d(2− dβ(2− β − β2)) >
1

2
α(1− cκ)(1− cκ + 2d)

⇔ 2cκdβ − c2
κβ − 2d2β + d2β2 + d2β3 > 0

⇔ −2cκd+ c2
κ + d2 < d2(−1 + β + β2)

⇔
(
d− cκ
d

)2

< −1 + β + β2

⇔
(

1− cκ
d

)2
< −1 + β + β2

⇔ (1− t)2 < −1 + β + β2

if t := cκ
d > 0.

It is to show, that

κ∗ > κ∗NSC

⇔ α(1− (1− β)(cκ + dβ)) > (1− cκ)α

⇔ cκ > d(1− β)

⇔ t > (1− β)

Which is the case, as

(1− t)2 < −1 + β + β2

⇒ t > 1−
√
−1 + β + β2

and thus

t > 1−
√
−1 + β + β2 > 1−

√
β2 = 1− β (123)

because β < 1.

The other direction does not hold, as can be seen with the parameter set d = 0.9, β = 0.8, α = 1

and cκ = 0.2. Here it holds that the SC case is implemented if sponsored content is allowed. It

holds that

κ∗ = 0.816 > 0.8 = κ∗NSC

so allowing sponsored content increases the network, but

W ∗ ≈ 0.987 < 1.04 = W ∗NSC

so the total welfare decreases when allowing sponsored content.

Proof of Proposition 15.

47

Given that the parameters imply the non-exclusive sponsored content case and our basic as-

sumptions as e.g. 0 < β < 1 it holds that

W ∗ > W ∗NSC

⇔ 1

2
α(1− 2cκ(1 + d(1− β)) + c2

κ(1− β) + d(2− dβ(2− β − β2)) >
1

2
α(1− cκ)(1− cκ + 2d)

⇔ d(2cκ + d(−2 + β + β2)) > c2
κ

⇔ β >

√
9 + 4cκ(cκ−2d)

d2
− 1

2

To show the statement it is thus left to show, that

√
9 +

4cκ(cκ − 2d)

d2
≥
√

5 (124)

or in other words
4cκ(cκ − 2d)

d2
≥ −4 (125)

This is true independent on cκ and d as

4cκ(cκ − 2d)

d2
= 4

c2
κ

d2
− 8

cκd

d2

t:= cκ
d= 4t2 − 8t ≥ −4 ∀t (126)

Proof of Proposition 16. Let there be cκ > c̃κ = 1− β and d > ¯̄d with

d > ¯̄d := max

{
d̄(cκ),

(1− cκ)2 − β(1− 2cκ)

2(β − 1 + cκ)

}
(127)

As d > d̄(cκ) we know from Proposition 7 that the ESC case is implemented. Within the ESC

case it holds due to Proposition I.4 that

W ∗ > W ∗NSC

⇔ 1

2
αβ(1− 2cκ + 2d) >

1

2
α(1− cκ)(1− cκ + 2d)

⇔ β(1− 2cκ + 2d) > (1− cκ)(1− cκ + 2d)

⇔ β(1− 2cκ) + 2dβ > (1− cκ)2 + 2d(1− cκ)

⇔ 2dβ − 2d(1− cκ) > (1− cκ)2 − β(1− 2cκ)

?⇔ d >
(1− cκ)2 − β(1− 2cκ)

2(β − 1 + cκ)

This does indeed hold per construction of ¯̄d.

? Here we use that cκ > (1− β).

It holds that ¯̄d ≥ d̄(cκ) > 0 as per Proposition 6, which shows ¯̄d > 0

48

Proof of Proposition 17. Who offers the contract does not change the behavior of the consumer.

Thus, all results of the main model hold in regard to the consumer.

We deviate from the main model at the point, were the payment cSC takes place. In contrast to

the main model, where it optimal for the ISP to set the payment cSC in a way that CSP B barely

accepts the contract, CSP B will shape it in a way that the ISP barely accepts the contract,

given that network capacitity κ has already been built. Consequently it has to hold that

πISP, SC(κ) = πISP, NSC(κ)

⇔ P̄SC(κ− βα) + cSC(κ) = πISP, NSC(κ)

⇔ cSC(κ) = πISP, NSC(κ)− P̄SC(κ− βα)

Note that the profit of CSP B is strictly increasing in cSC meaning, that he will set it to the

highest possible value. The ISP has no possibility within the model to punish the CSP for high

payments, as he decreases his own profit when deciding not to offer the consumer the highest

possible quota.

The ISP will thusly optimize his profit under the assumption, that he operates in the NSC case

and will thus built κ∗NSC, main = α(1− cκ).

Thus three situations are possible:

1. Profitability d is sufficiently high, that CSP offers a contract.

2. Profitability d is not high enough and no contract is offered

3. The built network capacity is not high enough (i.e. κ < αβ) and thus no contract can be

accepted.

In the two last possibilities nothing changes relative to the NSC case. In the first case it holds

that

W ∗ = πISP + πB + πF + U

= P̄SC(q=κ∗NSC−αβ)+cSC(κ∗NSC)−cκκ∗NSC+d·(αβ)−cSC(κ∗NSC)+d·(κ∗NSC−αβ)+0

= P̄SC(q = κ∗NSC − αβ)− cκκ∗NSC + dκ∗NSC

= P̄NSC(q = κ∗NSC)− cκκ∗NSC + dκ∗NSC + P̄SC(q = κ∗NSC − αβ)− P̄NSC(q = κ∗NSC)

= W ∗NSC − CD(κ∗NSC)

49

3 Impact of Near-Time Information for
Prediction on Microeconomic Balanced
Time Series Data using Different
Machine Learning Methods

Source:

Frederik Collin and Martin Kies (2020). “Impact of Near-Time Information for
Prediction on Microeconomic Balanced Time Series Data using Different Machine
Learning Methods”. In: Available at SSRN. doi: 10.2139/ssrn.3559645. url:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3559645

Co-Author:

Frederik Collin is a doctoral student at the Institute of Economics at Ulm University.
He received his Masters of Science degree in Mathematics and Management from
Ulm University in 2015.

He contributed in equal parts to the following article, including, but not limited to:

1. Development of the research questions

2. Literature review

3. Design and specification of used models

4. Development and programming of the used source code

5. Structuring and writing the article itself

237

https://doi.org/10.2139/ssrn.3559645
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3559645

Impact of Near-Time Information for Prediction
on Microeconomic Balanced Time Series Data

using Different Machine Learning Methods∗

Frederik Collin§, Martin Kies‡

March 23, 2020

Instead of relying solely on data of a single time series it is possible to use in-
formation of parallel, similar time series to improve prediction quality. Our data
set consists of microeconomic data of daily store deposits from a large number of
different stores. We analyze how prediction performance regarding a given store can
be increased by using data from other stores. First we compare several machine
learning methods, including Elastic Nets, Partial Least Squares, Generalized Addi-
tive Models, Random Forests, Gradient Boosting and Neural Networks using only
data of a single time series. Afterwards we show that Random Forests are able to
better utilize parallel time series data compared to Partial Least Squares. Using
near-time data of parallel time series is highly beneficial for prediction performance.
To allow a fair comparison between different machine learning methods, we present
a novel hyper-parameter optimization technique using a regression tree. It enables a
fast and flexible determination of optimal parameters for a given method.

Keywords: Time Series, Machine Learning, Forecasting, Nowcasting, Partial Least
Squares, Random Forests, Neural Network, Hyperparameter Optimization

JEL Classification: C15, C32, C45, C53, C83

∗We thank targens GmbH for the provision of the data set and a fruitfull collaboration. We are grateful for the
feedback and support of our supervisors Georg Gebhardt and Sebastian Kranz.

§Ulm University, Institute of Economics, Helmholtzstraße 18, 89081 Ulm, Germany, e-mail: frederik.collin@uni-
ulm.de

‡Ulm University, Institute of Economics, Helmholtzstraße 18, 89081 Ulm, Germany, e-mail: martin.kies@uni-
ulm.de

1

Electronic copy available at: https://ssrn.com/abstract=3559645

1. Introduction

Forecasting microeconomic time series is of great interest for a broad range of applications. The

prediction of cash flow for example can be used in liquidity planning.

The key contributions of this article are the following: We present an analysis of recent Ma-

chine Learning methods on a real microeconomic data set. Our data set consists of daily cash

deposits of around 2000 European stores over a period of more than two years. We find that

without Nowcasting all used methods except Elastic Net Regularization perform similar. The

best method in this setting is the Neural Network which outperforms the worst by less than

6%. In addition we disentangle the (positive) Nowcasting effect from the (negative) effect of

more noise due to more features. We show that combining Nowcasting and Random Forest

outperforms the best classical approach by 24%. Finally, we present a novel technique to find

hyperparameters in arbitrary settings. It can be used by all supervised learning methods and

allows for variable objective functions. Our tree based technique improves upon Random Search

by focusing the attention on particularly promising hyperparameter combinations in an assort-

ment of hypercubes.

Nowcasting is the prediction of events close to or equal to the present. It has been utilized

in weather forecasts for a long time and is still broadly used (for a recent Machine Learning

approach see Xingjian et al. (2015)). Economists mainly use Nowcasting in the context of differ-

ent release dates of macroeconomic indicators to forecast macroeconomic time series. Giannone

et al. (2008) show that information contained in intra-monthly data releases helps to predict

current-quarter real gross domestic product.

Throughout this paper we will refer to Nowcasting, whenever we use features that are close in

time or simultaneous to the predicted response. More precisely we will use the term Nowcasting

whenever we use information of other stores of the very same day to predict the deposits of a

given store. This is in general of big interest as many money or cash streams, like bank account

transfers, have to be checked and verified. One way to do so that does not rely on prior verifi-

cation results is to build a prediction model. Comparing the observed with the predicted value

allows to check for significant deviation. In our setting it is quite common that day deposits

are already known but need to be checked prior to transfer. Checking a specific deposit can

therefore be done utilizing information about same day deposits of other stores.

Several articles, such as Choi and Varian (2012), have used the advantage of Nowcasting to

increase prediction power of economic forecasting tasks. Choi and Varian (2012) add Google

Trends data of the present to predict near-term values of economic indicators. They find that

adding Google Trends data increases prediction accuracy for all analyzed indicators. We add

to this literature by showing that Nowcasting is also beneficial in predicting the next time step

of a microeconomic time series. It might also be beneficial in similar microeconomic time series

prediction tasks such as cash flow prediction.

1

Electronic copy available at: https://ssrn.com/abstract=3559645

Nowcasting as defined in this paper can reduce loss in at least two ways:

First, deposits of other stores of the same day potentially capture economic information that

also impacts deposits of the store in question. On the one hand increasing sales of other stores

might indicate an improving economic situation. Including these stores therefore helps us to

capture the overall economic impact. On the other hand it could also be the case, that a change

in sales of another store impacts the sales of the to be predicted store directly. If for example

there are two rival restaurants and one of them introduces a new dish this could drive customers

to them at the cost of its rival.

The other important factor is, that similar stores might be influenced similarly by exogenous non-

economic shocks which are not part of the data set and potentially hard to quantify. Examples

for such shocks are weather effects or regional events like a city wide festival.

Both, economic and non-economic factors, can be summarized as hidden or missing variables.

Analogously to Ahmed et al. (2010) and Choi and Varian (2012) we use recent and broadly used

methods and compare the prediction power of those. Additionally, we shed some light on the

impact that Nowcasting has on different Machine Learning methods in predicting microeconomic

time series. By adding features with different informational value we aim to disentangle the

positive effect of recent information relative to the loss due to more noise.

All used Machine Learning methods need hyperparameter optimization. Many of them need

different types (e.g. boolean or numeric or even abstract classes) of hyperparameters, but for a

fair comparison the optimization process should be identical for all of them. To achieve this we

developed a technique based on decision trees that searches for good hyperparameters without

being restricted to a specific type. Another advantage of our approach is that it is not prone to

the curse of dimensionality and that it is robust to local minima.

The outline of the paper is as follows. We start in Section 2 with a description of the data and

present descriptive statistics. Section 3 explains our approach of analysis. A brief explanation

of the used methods is given in Section 4. Section 5 explains the general procedure to find

hyperparameters for these methods. We briefly elicit on our new approach of hyperparameter

optimization. The main results are presented in Section 6. There, we also give a short note

on the potential implications of the different prediction performances. We end the section by

wrapping up the key findings. The paper ends with a discussion of potential drawbacks, future

improvements and a research outlook in Section 7.

2

Electronic copy available at: https://ssrn.com/abstract=3559645

2. Data

Our data set has been provided through targens1 by a business customer of theirs. The business

model of this customer consists of allowing stores, mainly located in malls, to deposit their cash

earnings into special safes. These safes register the deposited cash and electronically transfer

the respective sum to the company of the store.

The data set we received consists of 2558 stores with data on a “per deposit”-level from 2016-

06-20 to 2018-08-30, i.e. 802 days. We extracted our working data set with 1990 stores based

on the following rules:

� There have been deposits within the first 5 weeks.

� There have been deposits within the last 5 weeks.

� The stores are located within Germany, Austria or Switzerland.

The first two rules aim to filter for stores which are part of the data set throughout the complete

observation period. They aim to throw out those stores which have been added to or removed

from the system. We did not filter based on seasonality, vacation time or similar effects. Stores

which are closed for a longer period of time within the time frame do not receive a special

treatment - the Machine Learning methods have to cope with such situations themselves.

Additionally to these filters, the data set was aggregated according to the following rules:

� Deposits which have been made in a currency other than Euro have been transformed to

Euro based on daily exchange rates provided by Eurostat (2019).

� All deposits have been summed to daily data. In particular, the amount of deposited

money on days without a deposit, including weekends and holidays, has been set to zero

such that all stores have data points for all days of the observation period.

Figure 1 shows the allocation of stores according to a variety of classifications. It can bee seen,

that with few exceptions most stores can be attributed to the industry classification retail. This

is not the case on a company level. Nearly half of all featured companies belong to the industry

classification gastronomy. While there is a sizable number of gastronomy companies they tend

to have only one or very few associated stores. Retail companies on the other hand have a lot

more stores per company within the data set. This assessment is supported by the fact that just

over half of all stores belong to a single retail company. The data is geographically fairly evenly

spread across different areas.

As most stores belong to the same industry, one might assume that they have deposits of a

comparable size. This is not the case. The stores show considerable heterogeneity in their

general deposit level. This can be seen in Figure 2 which depicts a density plot comparing the

average deposits on Mondays.

1targens GmbH, Calwer Straße 33, 70173 Stuttgart, Germany, website: https://www.targens.de/en/

3

Electronic copy available at: https://ssrn.com/abstract=3559645

0.00

0.25

0.50

0.75

1.00
F

re
qu

en
cy

 o
f I

nd
us

tr
y

0.00

0.25

0.50

0.75

1.00

F
re

qu
en

cy
 o

f S
to

re
s

pe
r

C
om

pa
ny

0.00

0.25

0.50

0.75

1.00

F
re

qu
en

cy
 o

f S
to

re
s

pe
r

A
re

a

93.9%

4.9%

1.3%

34.6%

48.7%

16.7%

52.7%

15.1%

7.9%

5.2%

4.5%

14.5%

17.2%

15.8%

13.5%

10.7%

8.7%

6.9%

6.6%

4.6%

16%

store level company level
Industry

other

gastronomy

retail

Company ID

other

5

4

3

2

1

Area

other

Rhineland−Palatinate

Hesse

Lower Saxony

Austria

Baden−Wuerttemberg

Bavaria

Switzerland

North Rhine−Westphalia

Figure 1: Descriptive statistic of the analysed data set after preparation. The first chart shows
the frequency of the industry attribution on a per store and a per company basis. The second
chart displays the frequency of stores per company, while the third one shows in which areas
the stores are located.

0.0000

0.0002

0.0004

0.0006

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Average Deposit on Monday per Store

D
en

si
ty

Figure 2: Density plot and histogram of the average deposit on Monday of all stores within the
95%-percentile.

4

Electronic copy available at: https://ssrn.com/abstract=3559645

0

2000

4000

6000

2016−07 2017−01 2017−07 2018−01 2018−07
Date

D
ep

os
it

in
 E

ur
o

Type Mean Median

Figure 3: Time series of the representative, aggregated store.

−0.25

0.00

0.25

0.50

0.75

1.00

P
ar

tia
l A

ut
oc

or
re

la
tio

n

−0.25

0.00

0.25

0.50

0.75

1.00

P
ar

tia
l A

ut
oc

or
re

la
tio

n

All Days Without Sunday

0 7 14 21 28
Lag in Days

0 6 12 18 24
Lag in Days

Figure 4: Partial autocorrelation based on the stats::pacf() function (R Core Team, 2018) with
and without taking Sunday into account based on mean deposits. The dashed line is based on
a white noise test using a 95% confidence interval.

5

Electronic copy available at: https://ssrn.com/abstract=3559645

A time series of the representative store, either as seen by the arithmetic mean or the median,

is displayed in Figure 3. It can be seen that even when aggregating over all 1990 stores the

deposits still show considerable variation. However, patterns over time can be identified. With

the beginning of a new year for example there is a noticeable drop in the size of the deposits

which persists over spring. Additionally, Figure 3 shows that several days exist, where the

majority of stores do not make any deposits. Those days are holidays and Sundays.

Focusing on seasonality on a small time frame, Figure 4 depicts the partial autocorrelation of

lagged days. It can be seen that deposits are significantly autocorrelated. Using all days as

input there is particularly high correlation with a lag of 7 days, i.e. from the same weekday to

the next. This is highly driven by the fact that most stores close on Sunday. It still holds true if

one repeats the analysis on the data set after filtering out all Sundays. This analysis also shows

that a higher amount of deposits the day before correlates with a higher deposit on the day in

question. That this effect can not be seen in the analysis using all days can be attributed to the

fact that Saturday has a higher deposit amount on average and is directly followed by Sunday.

6

Electronic copy available at: https://ssrn.com/abstract=3559645

3. Approach of Analysis

This section details how we set up our analysis. Our goal is to predict next day deposits for

each store. Consequently, our response variable is the deposit of the next day. The models are

trained on each store separately. All non-changing variables of the store, like industry or region,

have therefore no relevance to the prediction task.

The first set of used features are weekday dummies. Figure 5 shows the mean and median

deposits over all stores by weekday. It can be seen that there is variation during the week and

in particular between workdays and Sunday. Adding weekday dummies allows the methods of

Section 4 to capture these differences.

0

1000

2000

3000

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day

B
y

D
ay

 D
ep

os
it

Mean Median

Figure 5: Aggregated daily deposits of the aggregated store based on the data set.

The second set of features are deposits of the past 7 days, aggregated on daily level. Recall Figure

4 from Section 2 showing partial autocorrelation of the past month. The highest correlation can

be observed to the same day a week before. The second highest correlation is to the same day

two weeks before but only about half in size. Considering the limited number of observations

per store we decided to use 7 days. To further extract potential information incorporated in the

data we added the change in deposits between each subsequent day as well as the sign of this

change. The input available to the methods of Section 4 in the single time series prediction task

is therefore:

7

Electronic copy available at: https://ssrn.com/abstract=3559645

� The day of the week, dummy coded in 7 different variables.

� The day-aggregated deposit of the past 7 days.

� The change in deposits between those previous 7 days, amounting to 6 different variables.

� The sign of change in deposits between those previous 7 days, amounting to 6 different

variables.

In sum this forms a set of 26 features which will be referred to as the standard feature set for the

remainder of the article. As each store is trained separately each combination of used Machine

Learning method and store could have a separate hyperparameter optimization. We refrained

from doing so to save computational resources. Instead we constructed a single hyperparameter

set which is used for each store. To get a representative sample, we drew 20 out of the 1990

stores at random. Afterwards we optimized the hyperparameters of all methods of Section 4

over those 20 stores simultaneously. Based on the pairwise unique correlations among the 1990

stores we assumed that optimizing over 20 sample stores is sufficient. A density plot of those

correlations is given in Figure 6. The average correlation between two unique stores time series

in the training data is 0.54. The median correlation with a value of 0.62 is even higher, justifying

our approach.

0.0

0.5

1.0

1.5

2.0

2.5

−0.5 0.0 0.5 1.0
Correlation

D
en

si
ty

Figure 6: Pairwise unique correlation among stores in the training data. The dotted line depicts
the average correlation.

8

Electronic copy available at: https://ssrn.com/abstract=3559645

The detailed approach of our hyperparameter optimization can be found in Section 5. Hyper-

parameter optimization takes place only on training data with further splitting within.

complete data (802 days)

X training data (424 days) X test data (364 days)

2016-06-20

2016-06-27

2017-08-24

2017-08-31

2018-08-30

Figure 7: Visualization of the data splitting.

The splitting of our data set is visualized in Figure 7. Our data is a time series starting 2016-06-

20, ending in 2018-08-30 and summing up to 802 days. We drop the first 7 days as the deposits

of the previous 7 days are part of the feature space. To honor the time series structure we

opted for the training and test data to be compact and the training dates to be chronologically

before the test dates. We also drop 7 days between training and test data to ensure that any

information used to predict a day in the test data is not contained in the training data. Finally

we end up with training data from 2016-06-27 to 2017-08-24 and test data from 2017-08-31 to

2018-08-30. Thus we are left with 424 days to train and 364 days to test the methods of Section

4.

After optimizing hyperparameters for all methods using the training data and the 20 repre-

sentative stores we trained one model for each method and each store. We used the same

hyperparameters for each method/store combination and the standard feature set. Each model

was then evaluated on the test data of their respective store. This will be called the classical

prediction task and is equivalent to utilizing the standard feature set.

As mentioned in the introduction Nowcasting is beneficial in our setting. Recall that we de-

fined Nowcasting in our specific context as using information of other stores from the very same

day. To single out the effects of Nowcasting the above procedure is repeated in three variants

on different feature sets for the methods Random Forest and Partial Least Squares. We chose

Random Forest and Partial Least Squares for several reasons:

To cover potentially different impacts of Nowcasting on linear and non-linear methods we wanted

representatives of both types. The methods had to be able to handle more features than obser-

vations and be comparatively fast in their execution, i.e. use a feasible amount of computational

resources. Among those left we chose Random Forest as our non linear method due to its wide

spread and its speed in high dimensional large feature sets. Partial Least Squares was the only

linear method left in our setting which fulfilled these criteria.

9

Electronic copy available at: https://ssrn.com/abstract=3559645

The construction of the three additional different feature sets was done the following way:

� We added the deposits of all other stores of the 7 previous days to the standard feature

set. We will refer to this as the full feature set.

� We added the deposits of all other stores of the to be predicted day to the standard feature

set. We will refer to this as the pure Nowcasting feature set.

� We added the deposits of all other stores of the 7 previous days and of the to be predicted

day to the standard feature set. We will refer to this as the full Nowcasting feature set.

The variation in contained information among the feature sets is depicted in Table 1.

Table 1: Feature Set Variation

Feature Set Past
Information
Own Store

Past
Information
Other Stores

Current
Information
Other Stores

Standard X - -

Full X X -

Pure Nowcasting X - X

Full Nowcasting X X X

A priori it is not obvious which of these feature sets do have what kind of effect on our prediction

performance: If the other stores contain important information, i.e. by smoothing out shocks

within the last 7 days, one would expect their inclusion to improve prediction performance. On

the other hand an inclusion implies an enormous increase in the number of free parameters for our

models, i.e. less degrees of freedom, which might result in overfitting. Even with hyperparameter

optimization spurious correlations might negatively impact performance. Similar considerations

apply to the inclusion of up-to-the minute data, where the added informational value also has

to be weighted against the decreasing degrees of freedom. Section 6 presents the results of these

differentiations.

10

Electronic copy available at: https://ssrn.com/abstract=3559645

4. Studied Methods

In this section we briefly discuss the methods used in the analysis. Throughout this section we

denote the number of features by k, the j-th feature by Xj , the response by Y and the set of

all features by X. The total number of observations is denoted n. Time is denoted t. The t-th

observation of feature j is therefore denoted Xjt.

4.1. Linear Regression

Linear Regression in general is perhaps the most often used Machine Learning method in eco-

nomics. Ordinary Least Squares Regression, a specific variant of Linear Regression, is the best

known variant. The key idea is to find the best linear combination of features to explain a

response. The model takes the following form:

Y = β0 +

k∑

j=1

βjXj

The main advantage is its robustness in prediction tasks and its interpretability. Linear Re-

gression can be made much more powerful by using interaction terms between the features to

allow more complex situations. To avoid overfitting it is generally advisable to only use those

interactions that are economically plausible.

The specific form we choose for our model is the following:

Yt = α0 +
∑

i∈{1,2,3,7}
βiYt−i +

∑

j∈{1,2,4,5,6,7}
γjDj +

∑

j∈{1,2,4,5,6,7}
δjYt−1Dj +

∑

j∈{1,2,4,5,6,7}
νjYt−7Dj

Where Dj is a dummy for weekday j (j = 1 corresponds to Monday).

In words, we interact the day before and the same day a week ago with weekday dummies and

add the deposits made two and three days before today to explain today.

This form has been chosen due to the analysis given by Section 2 and Section 3. The most

important days based on Figure 4, depicting autocorrelation, are the day before and the day

exactly one week ago, respectively. We assumed this effect not to be identical for each day

of the week. Due to the knowledge that the weekdays are quite influential, as can be seen in

Figure 5, we interacted them with weekday dummies. The deposits of two and three days before

the to be predicted day are added as they show substantial autocorrelation. We avoided using

interaction effects here, as we wanted to keep the complexity of the model low and assumed any

weekday effects to be sufficiently captured. Indeed, after-the-fact comparisons to alternative

configurations show that this specific model is quite successful.

11

Electronic copy available at: https://ssrn.com/abstract=3559645

4.2. Generalized Linear Model with Elastic-Net Regularization

Penalized regressions such as Lasso or Ridge are a popular way of improving the out of sample

prediction by reducing the variance of the estimator. Both methods rely on shrinking the regres-

sion coefficients towards zero. In contrast to Ordinary Least Squares Regression the methods

work with a penalty that increases in the sum of absolute values (L1-Norm) of the coefficients

(Lasso) or the sum of squared (L2-Norm) coefficients (Ridge).

While Ordinary Least Squares Regression minimizes the residual sum squared (RSS), i.e.

RSS =

n∑

i=1


Yi − β0 −

k∑

j=1

βjXij




2

Ridge adds on this by inflicting a L2-Norm penalty on the coefficients, thus minimizing

RSS + λ

k∑

j=1

β2
j

where λ ≥ 0 is a hyperparameter. Substituting the L1-Norm for the L2-Norm results in the

method Lasso which minimizes

RSS + λ
k∑

j=1

|βj |

where again λ ≥ 0 is a hyperparameter.

The main difference between Lasso and Ridge is that with Lasso some coefficients will be set

exactly to zero while with Ridge those coefficients will be small but typically non-zero. If one

is interested in inference, Lasso might be easier to interpret, given the number of features k is

large.

We use a method that combines Lasso and Ridge linearly called Elastic-Net (Zou and Hastie,

2005). The implementation used is the R-package glmnet (Friedman et al., 2019). The linear

weight 0 ≤ α ≤ 1 is a hyperparameter balancing those two methods. The combined minimization

problem can be written as:

RSS + λ

(
(1− α)

1

2

k∑

i=1

β2
i + α

k∑

i=1

|βi|
)

The extreme case α = 0 corresponds to Ridge, α = 1 to Lasso. Mixing both methods allows for

more flexible solutions and thus potentially smaller loss.

With this method two hyperparameters, α and λ, have to be optimized. For both parameters

we use the built-in optimizer provided by the R-package glmnet (Friedman et al., 2019) due to

its computational efficiency.

12

Electronic copy available at: https://ssrn.com/abstract=3559645

4.3. Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is a dimension reduction method using a linear model

that can also be used for prediction tasks. It works similar to Principal Component Regression

(PCR). Both methods use M < k linear combinations Z1, ..., ZM of the features as explanatory

variables to describe the response Y . We will refer to those linear combinations, which are also

known as latent variables or directions, as components. They can be written as:

Zm =
k∑

j=1

θjmXj ∀m ∈ {1, ...,M}

The weights θjm are real numbers. The response is predicted using

Y = β0 +
M∑

i=1

βiZi

PLSR uses both, variation in the features and in the response, to construct the weights θjm and

thus the components. In this aspect PLSR can be seen as a supervised version of PCR. Several

different implementations and variants of PLSR exist. Here, we present the algorithm as shown

in James et al. (2013, p. 237f):

First all k features X1, ..., Xk and the response Y are standardized. As we update the features

during this process we rename the standardized version of the feature Xj to X
(1)
j . Each of the

features is regressed separately on the standardized response Y :

Y = αj0 + αj1X
(1)
j ∀j ∈ {1, ..., k}

The result are k slope coefficients α̂j1. Those are used as weights θj1 for the first component:

Z1 =

k∑

j=1

α̂j1X
(1)
j with θj1 = α̂j1 ∀j ∈ {1, ..., k}

This guarantees that the first and as we will see all subsequent components place high weights

on variables that have a high correlation with the response. After the first component has been

computed one iteratively constructs weights that explain variation that has not been explained

by previous components. This is done by subtracting the variation from the features that is

already contained in the previous components.

To do so, first one regresses all corrected features separately on the most recently calculated

component Zm−1:

X
(m−1)
j = γ0j + γ1jZm−1

Based on the found γ one can calculate the estimated X̂
(m−1)
j ’s and thus the corresponding

residuals X
(m)
j = X

(m−1)
j − X̂(m−1)

j . The information that has not been explained by the first

m− 1 components is captured by those residuals. They are taken as the corrected features for

the consecutive steps.

13

Electronic copy available at: https://ssrn.com/abstract=3559645

Afterwards one regresses these k residuals separately on the standardized Y :

Y = αj0 + αjmX
(m)
j

The result are k slope coefficients α̂jm that are used as weights in constructing the next com-

ponent:

Zm =
k∑

j=1

θjmX
(m)
j =

k∑

j=1

α̂jmX
(m)
j m ≥ 2

This procedure is repeated until all M components are found. Y can then be constructed as

written in the beginning of this section. This model can now be used to predict response values

in the same fashion as with Ordinary Least Squares Regression.

It remains the question on how to determine an optimal value of M . We used the so called

one-sigma method to find the optimal number of components. This method is provided by the

R-package pls (Mevik, 2019) which we used for Partial Least Squares Regression. It returns

the model with the smallest number of components where the average root mean squared error

on the prediction (RMSEP) on the validation set is within one standard deviation/error of the

absolute optimum. This method is analogous to the one standard error rule described by Hastie,

R. Tibshirani, and Friedman (2009, p. 244). Figure 8 illustrates the one-sigma method.

M

RMSEP on validation set

0
1 2 3 4 5 6 7 8

Figure 8: Visualization of the one-sigma method. In this case the optimal number of compo-
nents M is chosen as 3.

In most cases there exists a number of components c∗, where for M > c∗ it holds that the

RMSEP on the validation set increases with an increase in the number of components M . This

effect is shown in Figure 8 for M ≥ 5. Any model with more components than c∗ is of no interest

14

Electronic copy available at: https://ssrn.com/abstract=3559645

to us. Computing one additional component is not costless in time as it is necessary to execute

2k univariate regressions to do so. Combining those two insights we first selected a Mupper < k

that served as a maximum number of components. Afterwards we used the one-sigma method

to choose the optimal number of components among those that have not more than Mupper

components.

4.4. Generalized Additive Model

Generalized Additive Models (GAM) extend standard linear models by allowing non-linear func-

tions on each feature. They have been developed by Hastie and R. Tibshirani (1986).

Given k features Xj , j ∈ 1, ..., k we switch from the linear form

Y = β0 +

k∑

j=1

βjXj

to

Y = β0 +
k∑

j=1

fj(Xj)

by replacing each linear component βjXi with a potentially non-linear but smooth function

fj(Xj). The main advantage of GAM is providing non-linearity in the features while keeping

the additivity of Linear Regression. This concept allows for a broad set of functions to be

applied.

In contrast to Linear Regression it might not be possible to compute all functions fj at once.

Instead, they are computed iteratively. This procedure is called backfitting. One starts by

calculating the first smoothing spline f1. This is done using only information about the response

Y and the first feature X1. Afterwards one can calculate the estimator f̂1(X1) and repeat the

following step to calculate fl until all features have been considered:

Compute the residuals

Ỹ = Y −
l−1∑

i=1

f̂i(Xi)

Here one takes into account all functions fj which were already calculated, i.e. up to up to l−1.

Then one computes the l-th function fl using information about Ỹ and Xl only. The final model

has the following form:

Y = β0 +

k∑

j=1

f̂j(Xj)

For our implementation we used the R-package gam (Hastie, 2019). It uses smoothing splines for

the functions fj . The used smoothing spline can be interpreted as a natural cubic spline with a

knot at every unique value of our feature. This amount of knots can lead to overfitting. For this

reason they are controlled by setting the allowed degrees of freedom. Our only hyperparameter

in this context therefore was the degrees of freedom of the smoothing splines.

15

Electronic copy available at: https://ssrn.com/abstract=3559645

4.5. Regression Tree

A Regression Tree is formed by iteratively dividing the feature space, consisting of values

Xj1, ..., Xjn, into J non-overlapping regions R1, ..., RJ . This is done via recursive binary split-

ting. One selects feature Xj and cut-point s such that

∑

i:Xji∈R1(j,s)

(Yi − ŶR1)2 +
∑

i:Xji∈R2(j,s)

(Yi − ŶR2)2

is minimized. R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}. The estimator ŶR1 is the mean

response for the training observations in R1(j, s). Analogously, ŶR2 is the mean response for

the training observations in R2(j, s). For the next splitting, one considers all features X1, ..., Xk

and all possible values of the cut-point s for each of the features. Afterwards feature and cut-

point are chosen such that the resulting tree has the lowest Residual Sum Squared (RSS). This

procedure is repeated within already found regions until a stopping criterion is reached.

Prediction is done using the average over Y within the specific region Rr:

Ŷ (X|X ∈ Rr) = ŶRr

where ŶRr is the mean response for the training observations in Rr to which the test observation

X belongs. Specifically this means the prediction for each X ∈ Rr is the same.

For the upcoming two sections we use the following notation for a tree:

f(X) =
J∑

i=1

ŶRi1{X∈Ri}

4.6. Random Forest

The idea of Random Forest is to combine basic tree learners to an ensemble. As base learners

we used Regression Trees as described in Section 4.5. In particular we minimized RSS at each

split of the basic tree learners.

Each tree is bootstrapped on samples from the training set. In contrast to Section 4.5 not all

features are considered for each split. Instead the algorithm is restricted to only consider m ≤ k
chosen features at random. The classical bagging method for trees is therefore a special variant

of the Random Forest method with m = k. Using a subset of features reduces correlation

between the trees relative to classical bagging.

After having grown l such trees (f̂i, i ∈ {1, ..., l}) they are averaged in order to obtain an

aggregated estimate of Y given X. The predicted value for a given X is:

f̂(X) =
1

l

l∑

i=1

f̂i(X)

with f̂i(X) being the prediction of the i’th tree given X.

16

Electronic copy available at: https://ssrn.com/abstract=3559645

We used the R-package grf (J. Tibshirani et al., 2019) for our main analysis of Random Forests

in the context of Nowcasting. As a robustness-check the R-package ranger (Wright et al., 2019)

has been used for the classical approach as well.

We considered the following tuning parameters:

� The sample fraction of each tree. This is the percentage of bootstrapped data used to

construct the tree. Reducing the sample fraction reduces the correlation among trees at

the cost of making each tree weaker.

� The number of randomly drawn feature to be considered at each split m. A lower m

reduces the correlation among trees but makes them individually weaker.

� The minimum number of observations in each leaf. A lower minimum number of observa-

tions per leaf reduces the correlation among trees but might result in overfitting.

� The maximum imbalance of a split (only grf). Larger values result in smaller and therefore

weaker trees but reduces the correlation between them.

The number of trees used to built the forest has been set exogeneously by us without using

hyperparameter optimization. Increasing the number of trees always reduces model loss in

expectation at the expense of training time. Our optimization algorithm will therefore find the

optimal parameter to be at the right edge of the provided interval. Consequently we chose a

value of 1000 trees manually.

4.7. Gradient Boosting

The idea of Boosting is to add basic tree learners sequentially. Each additional iteration aims to

explain variation that has not yet been explained. In contrast to a Random Forest the trees are

therefore not calculated independently from each other. For the method Gradient Boosting we

also used Regression Trees (Section 4.5) as base learners, analogously to the method Random

Forest.

One starts by setting f̂(X) = 0 and Ỹ = Y . With each iteration i ∈ {1, ..., l} a Regression

Tree f̂i(X) with features X and response Ỹ is fitted. Within each iteration the function f̂(X) =

f̂(X)+ηf̂i(X) is updated by adding a shrunken version of f̂i. The shrinking parameter η ∈ (0, 1]

can be interpreted as the learning rate. The response Ỹ = Ỹ − ηf̂i(X) is updated analogously.

After l steps our final model is written as:

f̂(X) =

l∑

i=1

ηf̂i(X)

In words: Each additional tree learner tries to explain the variation still remaining in the response

as measured by the still present residuals. Similarly to Random Forests each tree is generated

on a subset of both training data and feature variables to allow for better generalization.

17

Electronic copy available at: https://ssrn.com/abstract=3559645

We used the implementation of the R-package xgboost (T. Chen et al., 2019) and considered the

following tuning parameters:

� The maximum number of boosting iterations l. A higher number of boosting iterations

increases the performance on the training data but might lead to to a worse performance

on the test data, i.e. produce overfitting.

� The maximum depth of a single tree. Similarly to the number of iterations, a higher depth

of the trees makes each individual tree stronger at the cost of overfitting. A minimum depth

might be required if there are very complex relations among the feature space variables.

� The learning rate η. A higher rate of η reduces the number of necessary iterations. How-

ever, setting a lower rate allows the algorithm to generalize better.

� The number of randomly drawn feature to be considered for a specific tree. Similar to the

approach of Random Forests, it is prudent not to use the complete feature space to avoid

overfitting. On the other hand one has to use a sufficient number of feature variables to

guarantee, that all relevant relations can be found by the base learners.

� The sample fraction of training data chosen before growing each tree. Using a lower sample

fractions reduces the correlation among trees, which is especially useful in combination with

a low learning rate.

� The minimum among the number of observations in each leaf. Increasing the minimum

number of observations per leaf makes each tree individually weaker but allows them better

to generalize, thus reducing overfitting.

18

Electronic copy available at: https://ssrn.com/abstract=3559645

4.8. Neural Networks

Neural Networks are a powerful non-linear supervised learning method which is used in a lot of

different areas. Examples include image classification (Krizhevsky et al., 2012) and prediction

tasks (see e.g. Rajkomar et al. (2018) for predicting the mortality of hospital patients). An

excellent introduction is given in Nielsen (2019).

A standard Neural Network consists of several so called neurons which are arranged into dif-

ferent layers. The layers which are only used internally for computations are called hidden.

Each neuron is connected to all other neurons of the previous layer using individual weights

wi, i ∈ {1, ...,# of neurons in previous layer}. Additionally to the weights, each neuron has

an individual activation threshold b. There are several ways to combine the weights and the

threshold using so called activation functions. We used the sigmoid function

Output =
1

1 + e−(wx+b)

for each hidden neuron and a simple linear combination for the output layer. In this case x is

the output vector of the neurons of the previous layer.

The weights w and the activation threshold b are chosen to minimize the distance between the

calculated output of the network and the desired one. By doing so, logic gates emerge. Providing

a Neural Network with sufficiently many neurons these logic gates allow the approximation of

arbitrarily complex functions (Nielsen, 2019). A schematic illustration of a Neural Network is

depicted in Figure 9.

Input #1

Input #2

Input #3

Output

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 9: A schematic illustration of a Neural Network, as shown in Kies (2020), outputting
a single value using two hidden layers of 5 and 3 hidden neurons.

19

Electronic copy available at: https://ssrn.com/abstract=3559645

In our case we used hyperparameter optimization to find the optimal number of neurons given

up to three hidden layers. Gradient Descent was used to decide which of the weights should be

changed how strongly. The specific variant chosen was the Adam optimizer (Kingma and Ba,

2014).

To increase the power of the Neural Network we used two common techniques:

� Neural Networks tend to work best with inputs which correspond to the output of their

activation functions (i.e. between 0 and 1 with the sigmoid function). Thus we always

normalized each input variable Xj as well as the response variable Y and re-normalized

the response when predicting the actual output. This was done by linearly transforming

each variable separately. The highest value of a given variable in the training data was

mapped to 1. Correspondingly the lowest value in the training data was mapped to 0. In

the test data identical transformations were applied so that here values below 0 and above

1 could be observed.

� We allowed the hyperparameter optimization to set dropout levels based on the method of

Srivastava et al. (2014). The key idea is to randomly drop neurons, or inputs in the case

of input dropout, within the training step. This forces the Neural Network to not rely to

much on single connections which decreases overfitting.

In addition to the number of neurons within the layer and their dropout rates, the hyperpa-

rameter optimzation process optimized over the batch size and the number of epochs. Both

parameters influence the duration of training and are very influential on how well the Neural

Network generalizes.

20

Electronic copy available at: https://ssrn.com/abstract=3559645

5. Hyperparameter Optimization

Each of the Machine Learning methods discussed in Section 4 has several degrees of freedom in

its exact functionality. These parameters which describe the functionality of the method, e.g.

the number of neurons of a Neural Network, are called hyperparameters. Some methods, such

as glmnet from Friedman et al. (2019) provide a built-in functionality to estimate good values

for single parameters and several methods provide good default values for hyperparameters.

However, most methods have the need to set some of their parameters explicitly and/or override

some of their default values to increase performance. This section explains how we decided on

the hyperparameters used to generate the results of Section 6.

Each store has its own optimal combination of hyperparameters for each method. It is very

time consuming to find an idiosyncratic combination of hyperparameters for each store. As a

more stable and efficient variant we used an identical combination of hyperparameters for each

store. Given such a combination, we calculated the performance in regard to a given store

by calculating an out-of-sample root mean square error (RMSE) of nested backwards looking

windows using normalized values. A graphical schematic of the concept of nested backwards

looking windows is given in Figure 10. The pseudo-code follows in Figure 11.

complete training data

train validation

train validation

train validation

train validation

training data of the 4th window validation data of the 4th window

Figure 10: Sketch to show the evaluation of a hyperparameter combination on a single store
using nested backwards looking windows. In this example we draw 4 windows.

Using these backwards looking windows allows us to avoid any possible contamination due to

data points which can’t be known at the time of training the model. We chose the length of the

validation window to be 92 days. This way, we always considered 3 full months of data. The

number of windows was chosen as kwind = 10.

We wanted the representative hyperparameter set to be applicable to all stores. To counteract

the considerable heterogeneity among them (see Figure 2) and in time (see Figure 3) we therefore

normalized the (predicted) response variables before calculating individual RMSE. Not using

normalized values would imply that a store with higher average deposits would get over weighted

when determining optimal parameters.

21

Electronic copy available at: https://ssrn.com/abstract=3559645

Figure 11 Evaluation of a hyperparameter combination on store level.
Note that the functionality of the provided source code is greater and more flexible and thus able
to deal with a greater variety of input data. For readability purposes, we opted to only display
the functionality necessary for our final analysis. The same holds true for the other pseudo-code
figures in this section.

Precondition: .
hi is a combination of hyperparameters.
Ttrain are the days available for training. We assume they are an ordered array with indexing
starting at 1.
Xtrain = {xj,t, t ∈ Ttrain} is the training data of store j available at time t as defined by
Section 3.
Ytrain = {yj,t, t ∈ Ttrain} is the to be predicted values of store j at time t as defined by
Section 3.
kwin is the number of windows which we want to use for the validation (in our setting 10)
lentest is the number of days in the test data set (in our setting 92).

1: function EvaluateHyperParOnStore(hi, Xtrain, Ytrain)
2: for k ← 1 to kwin do

3: tk,start ← Ttrain

[
1 +

⌊
|Ttrain|−lentest

kwin
k
⌋]

4: T val
k ← {t ∈ Ttrain : tk,start ≤ t < tk,start + lentest} . T val

k defines the k-th window.
5: T train

k ← {t ∈ Ttrain : t < tk,start} . T train
k defines the training data available for the

k-th window.
6: Train the method using hi on training data Xtrain and Ytrain limited to T train

k

7: Predict {ŷj,t, t ∈ T val
k } using {xj,t, t ∈ T val

k }
8: for t ∈ T val

k do

9: ynorm
j,t,k ←

yj,t−ȳj,t
sd(yj,t, t∈T val

k)

10: ŷnorm
j,t,k ←

ŷj,t−ȳj,t
sd(yj,t, t∈T val

k)
11: . ȳj,t is the mean and sd

(
yj,t, t ∈ T val

k

)
the standard deviation of yj,t, t ∈ T val

k

12: rmsenorm
j,k ←

√
1
|T val

k |
∑

t∈T val
k

(ynorm
j,t,k − ŷnorm

j,t,k)2

13: rmseval, norm
j ← 1

kwin

kwin∑
k=1

rmseval, norm
j,k

14: return rmseval, norm
j

The actual evaluation of a given combination of hyperparameters is the averaged evaluation over

single stores. Ideally, one would aggregate over all stores but this is very time-consuming. Instead

we opted for drawing 20 random stores out of the data set as a representative example. The

pseudo-code of the evaluation of a given combination of hyper parameters is given in Figure 12.

Having defined a method to evaluate a combination of hyperparameters the question remains

on which combinations should be tested. Besides manual tuning the two most widely used

approaches to generate possible combinations are grid search and random search (Bergstra and

Bengio, 2012). Grid search calculates intermediary values for each parameter using a specified

step size. Afterwards all combinations of all parameters over all these intermediary values

are evaluated. Adaptive, sequential variants circle in on the most promising combination by

adjusting the step size and the range of parameters. The big drawback of this method is

the curse of dimensionality - if one has a lot of hyperparameters, taking and evaluating the

22

Electronic copy available at: https://ssrn.com/abstract=3559645

Figure 12 Evaluation of a hyperparameter combination on data set level.

Precondition: .
hi is a combination of hyperparameters.
Ttrain are the days available for training. We assume they are an ordered array with indexing
starting at 1.
J ⊆ {1, ..., N} is the set of stores chosen as the representative example of the N stores.
{xj,t, t ∈ Ttrain, j ∈ J } is the set of training data of the example stores.
{yj,t, t ∈ Ttrain, j ∈ J } is the set of to be predicted values of the example stores.

1: function EvaluateHyperPar(hi, {xj,t, t ∈ Ttrain, j ∈ J }, {yj,t, t ∈ Ttrain, j ∈ J })
2: for j ∈ J do

3: rmseval, norm
j ← EvaluateHyperParOnStore(hi, {xj,t, t ∈ Ttrain}, {yj,t, t ∈ Ttrain})

4: rmseval, norm ← 1
|J |

∑
j∈J

rmseval, normj

5: return rmseval, norm

combination of all of them is quite resource intensive. A surprisingly effective alternative is

simply drawing random combinations within the provided range (Bergstra and Bengio, 2012)

and taking the best scoring combination.

Our approach, called Hyperpar-Tree, is a natural combination and extension of those two ideas.

We wanted a hyperparameter optimization method which:

� Is easy to implement.

� Works for a large set of methods without making a priori assumptions about the mode of

action and possible interactions of their parameters.

� Is able to work well with a wide range of different parameter types. In other words, we

want to simultaneously optimize hyperparameters, where some of them might assume any

numeric value, some are restricted to integers and some of them are chosen out of an

arbitrary set of fixed strings.

� Is able to work well with complex interaction effects.

� Does not suffer (much) from the curse of dimensionality, e.g. is able to scale well to a large

number of hyperparameters.

� Is able to circle in on the best combination without getting stuck in a local optimum.

Hyperpar-Tree aims to achieve all of those goals. As the starting input, the algorithm receives a

range defining the minimum and maximum value or a list of allowed characterizations for each

hyperparameter. These can be set based on general considerations like time constraints, the

legal range of a parameter or a focus on promising areas. After having defined these inputs a

random search is initialized to provide a data base for further calculations. On this data base a

decision tree is executed that estimates a score, e.g. the root mean squared error, based on the

given hyperparameters. Figure 13 depicts a graphical schematic of such a tree.

23

Electronic copy available at: https://ssrn.com/abstract=3559645

Is Variant =="A"?

rmse = 10

Yes

Is n ≤ 5?

Is n ≤ 2

rmse = 12

Yes

rmse=8

No

Yes

Is n ≤ 8?

rmse = 5

Yes

rmse=2

No

No

No

H
α ∈ (0, 1)
n ∈ {1, ..., 10}
Variant ∈ {”A”, ”B”}

Figure 13: Sketch to show an example of a decision tree. In this example there are three
hyperparameters of different types. α is assumed to have no significant effect on the rmse-
value. If the two best leafs are chosen (highlighted in green), than the next combinations are
drawn out of the ranges {α ∈ (0, 1), n ∈ {6, 7, 8}, Variant ∈ {“B”}} and {α ∈ (0, 1), n ∈
{9, 10}, Variant ∈ {“B”}}

By design each leaf of the decision tree defines a hypercube in the dimension space of the hy-

perparameters and thus defines new ranges. New combinations of hyperparameters are drawn

randomly out of those ranges, defined by the most promising leafs, and are evaluated. Not just

concentrating on the very best leaf allows us to focus on the most promising regions while still

trying to minimize the chance of getting stuck in a local optimum. Broadly speaking using

a higher number of leafs slows down learning but increases the probability to find the global

optimum.

Afterwards the worst combinations are deleted to reduce the variance of the tree and allow for a

circling in on the best answer without having to increase the complexity of the tree itself. The

pseudo-code of executing Hyperpar-Tree on our specific situation is given in Figure 14.

In our case we drew 100 different combinations of hyperparameters out of the starting ranges

and added 20 new ones each for 10 iterations based on the 3 best leafs. This resulted in 300

tested combinations total per method. Each iteration 15 combinations were removed. The final

size of the data set from which the best RMSE was chosen was therefore 150.

The other specific parameters for the tree and the Hyperpar-Tree method are stated in Ap-

pendix A as well as the specific input ranges for the methods. These ranges have been chosen

after a quick manual optimization to avoid spending computational resources on obviously low

performing parameter settings.

24

Electronic copy available at: https://ssrn.com/abstract=3559645

Figure 14 Finding the optimal combination hopt of hyperparameters for a given method.

Precondition: .
H is the set of all possible combinations of hyperparameters as defined by the method itself.
Ttrain are the days available for training. We assume they are an ordered array with index
starting at 1.
N is the number of stores in our data set.
XN

train = {xj,t, t ∈ Ttrain, j ∈ {1, ..., N}} is the training data.
Y N
train = {yj,t, t ∈ Ttrain, j ∈ {1, ..., N}} are the to be predicted values.
nstart is the number of randomly drawn combinations of hyperparameters (in our setting
100).
nbest.splits is the number of the best leafs which should be considered (in our setting 3).
nadd is the number of new combinations of hyperparameters added in each cycle of Hyperpar-
Tree (in our setting 20).
nrem is the number of combinations of hyperparameters removed in each cycle of Hyperpar-
Tree (in our setting 15).
nrep is the number of cycles of Hyperpar-Tree (in our setting 10).

1: procedure OptimizeHyperPar
2: Manually define a set Hman of ranges and suitable options in regards to each hyperpa-

rameter based on H. . We do not want our hyperparameters to have obviously bad values
or values which are too time-consuming to evaluate

3: Draw a number of random stores, defining J
4: . Start Hyperpar-Tree
5: Draw nstart many combinations hi, i = 1, ..., nstart of hyperparameters out of Hman.
6: for i← 1 to nstart do
7: rmsenormi ← EvaluateHyperPar(hi, X

J
train = {xj,t, t ∈ Ttrain, j ∈ J }, Y Jtrain =

{yj,t, t ∈ Ttrain, j ∈ J })
8: H ← List of combinations of hi and corresponding rmsenormi

9: for j ← 1 to nrep do
10: Tree ← Tree(H) . We use Wright et al. (2019), but other implementations can be

used as well
11: for k ← 1 to nadd do
12: Leafk ← Random sample of 1, ...,min{nbest.splits; Tree.NumberOfLeafs}
13: Hk ← Range spanned by Tree.RangeOfLeaf[Leafk] . Assuming

RangeOfLeaf to deliver the ranges ordered from best to worst leaf and indexing starting
with 1

14: Draw one random combination of hyperparameters hk out of Hk.
15: rmsenormk ← EvaluateHyperPar(hk, X

J
train, Y

J
train)

16: Append H with hk and corresponding rmsenormk , k ∈ 1, ..., nadd

17: Delete the entries with the nrem worst rmsenorm out of H.

18: hopt ← h out of H with the best rmsenorm

25

Electronic copy available at: https://ssrn.com/abstract=3559645

6. Results

We predicted daily deposits given the optimal parameters from Section 5, using the feature

sets described in Section 3 based on the methods of Section 4. A graphical visualization of the

performance of the different methods using the standard feature set, i.e. only backwards looking

data from the same store, is given in Figure 15. The specific numbers can be found in Table 15

and Table 16 in Appendix B.

0

500

1000

1500

Mean

Elastic
−Net R

egulariz
atio

n

Partia
l L

east
Squares

Regressi
on Forest

(ra
nger)

Regressi
on Forest

(grf)

Linear R
egressi

on

Generalize
d Additiv

e M
odel

Gradient B
oostin

g

Neural N
etwork

Method

R
M

S
E

Training Test

Figure 15: Mean of the root mean squared errors of all stores in the training and test data
set for each analysed method. Only the standard feature set as specified by Section 3 has been
used. The RMSEs have been ordered by their performance on the test data set. As a basic
benchmark the method Mean is included, which predicts the deposit based on the arithmetic
average across the training data set of the specific store.

Despite being highly significantly different from each other in practically all pair-wise compar-

isons (see Table 14 in Appendix B), all classical methods show approximately the same average

performance. All methods are able to utilize some of the information and outperform the naive

benchmark Mean by a considerable margin. The method Mean estimates for each day the same

deposit per store. This deposit is chosen as the average deposit within the training data of the

relevant store.

It should be noted that this result does not hold for training performance. All tree based meth-

ods are much more likely to overfit the training data. Interestingly, this does not negatively

26

Electronic copy available at: https://ssrn.com/abstract=3559645

impact the performance on the test data set relative to other methods. Most other methods

show the curious result of the training data having a worse fit than the test data. This can

partly be attributed to following fact: The test months show with ≈2290 e a lower average

deposit level than the training period with ≈2470 e. The corresponding standard deviation of

≈4270 in the test and ≈6350 in the training data also differs in favor of the test data.

Looking at the 20 store where hyperparameter optimization took place (see Figure 18 in Ap-

pendix B) shows a very similar picture regarding the performance of the methods. Comparing

the raw numbers, the achieved RMSEs on the 20 stores are a lot lower. This effect however

is not achieved due to better models but can be explained by the generally different level of

deposits with a mean of ≈2386e for the complete data set and only ≈1640e for the 20 sample

stores. Using the normed RMSEs (see Table 17 and Table 18 in Appendix B) one can see that

the performance across all stores is a bit better than across the sample stores. Interestingly this

similarity does not hold in regard to the relative height of training to test data. With the 20

stores one can observe the expected effect of the training performance being better than the test

performance. This implies that the 20 stores are at least somewhat different.

Having discussed the general results we move to the impact of more and recent data on pre-

diction performance. The results regarding the variation of the feature sets given two Machine

Learning methods are visualized in Figure 16.

Partial Least Squares Random Forest (grf)

Standard Full

Full N
owca

stin
g

Pure Nowca
stin

g

Standard Full

Full N
owca

stin
g

Pure Nowca
stin

g

0

500

1000

Feature Set

R
M

S
E

Training Test

Figure 16: Mean of the root mean squared errors of all stores in the training and test data set
for the methods Partial Least Squares and Random Forest given access to different feature sets
according to Section 3.

27

Electronic copy available at: https://ssrn.com/abstract=3559645

For Random Forest we find that adding past information of other stores to the standard feature

set decreases the root mean squared error of the prediction (RMSEP) on the test set from 1122

to 1108. Using this result as the baseline we find that adding current information of other

stores reduces the RMSEP even further to 858. If we combine the standard feature set with

current information of other stores only (omitting past information of other stores) the RMSEP

is smallest with 841. In contrast we see that adding past information of other stores to the

standard feature set harms Partial Least Squares. The RMSEP increases from 1127 to 1250.

This is interesting as the Random Forest results suggest that the full feature set contains usable

information. It seems to be that Partial Least Squares is not capable of filtering out relevant

information as well as Random Forest in the full feature set. Adding current information of

other stores impacts Partial Least Squares structurally the same way as Random Forest. In this

case the RMSEP is reduced down to 1016. Omitting past information of other stores and just

keeping their current information on top of the standard feature set reduces the RMSEP further

to 937. This result is in line with the behavior of Random Forest.

Table 15 and Table 16 in Appendix B show more details including the results regarding the

Median and a normed version of the RMSE/RMSEP. The structurally identical results for the

20 special stores are given by Figure 19, Table 17 and Table 18 in Appendix B.

5257.0

4.4
2.2

21.7

71.3

1.1

35.8

1.0

251.1

18801.2

7301.4

192.5

616.7

128.1

1

10

100

1000

10000

Pa
rti

al
 L

ea
st

 S
qu

ar
es

 (F
ul

l)

Ela
st

ic−
Net

 R
eg

ul
ar

iza
tio

n

Pa
rti

al
 L

ea
st

 S
qu

ar
es

Reg
re

ss
io

n
Fo

re
st

 (r
an

ge
r)

Reg
re

ss
io

n
Fo

re
st

 (g
rf)

Li
ne

ar
 R

eg
re

ss
io

n

G
en

er
al

ize
d

Add
itiv

e
M

od
el

G
ra

di
en

t B
oo

st
in

g

Reg
re

ss
io

n
Fo

re
st

 (g
rf,

 F
ul

l)
Neu

ra
l N

et
wor

k

Pa
rti

al
 L

ea
st

 S
qu

ar
es

 (f
ul

l N
ow

c.
)

Pa
rti

al
 L

ea
st

 S
qu

ar
es

 (p
ur

e
Now

c.
)

Reg
re

ss
io

n
Fo

re
st

 (g
rf,

 fu
ll N

ow
c.

)

Reg
re

ss
io

n
Fo

re
st

 (g
rf,

 p
ur

e
Now

c.
)

Feature Set

T
im

e
(in

 m
ill

is
ec

on
ds

)

Standard Full Pure Nowcasting Full Nowcasting

Figure 17: Comparison of average prediction time in milliseconds of the test data set per
store, assuming the model has been trained. The order of the methods is according to their
performance as measured by the RMSE on the test data set from worst (left) to best (right).
Note that the y-axis is scaled logarithmically.

28

Electronic copy available at: https://ssrn.com/abstract=3559645

The performance increase of using pure Nowcasting is bought by an increase in computing time

for the prediction. Figure 17 presents the different prediction times. All classical methods

except the Neural Network are comparatively fast. On our machine they need less than 0.08

seconds computation time per store. Using pure Nowcasting increases this to approximately

0.13 seconds for the Random Forest and approximately 0.19 seconds in the case of Partial Least

Squares. Comparing the times of Random Forest and Partial Least Squares on the classical set

we see that Random Forest scales much better with the greater magnitude of input variables.

Similar effects can be found regarding the training times. Those are shown in Figure 20 in

Appendix B. Here we observe that adding additional features increases training time as well.

Interestingly, the calculation times of Gradient Boosting behave notably different to each other

compared to the other methods. Gradient Boosting needs a comparatively long time to train

relative to its fast prediction time.

Summing up we find that using Nowcasting for prediction is greatly beneficial. The best

method/feature set combination Random Forest/Pure Nowcasting outperforms the best clas-

sical approach by 24% percent. Adding past information of other stores, which means moving

from standard to full feature set or from pure to full Nowcasting, however, has no obvious pos-

itive effect on performance. On the contrary, these additional features might inject too much

noise. This can be observed despite the fact that both analyzed methods should be able to

handle additional features well and have gotten adapted hyperparameters for the specific fea-

ture sets. In the case of Partial Least Squares the additional features even have a noticeable

detrimental effect. Random Forest is able to handle additional noise a lot better.

29

Electronic copy available at: https://ssrn.com/abstract=3559645

7. Discussion

There are several possible amendments to be discussed. We start by taking a critical look at

our validation method. Afterwards we discuss weaknesses of our current implementation of

hyperparameter optimization. Finally we end this section by pointing towards future research

regarding a subtler analysis of the interaction of more recent information and different ML-

algorithms.

Our validation method of backwards looking windows avoids any usage of future data to calibrate

the model. However it has the following two weaknesses:

� As we want to use all data available to us, our algorithm always uses all available days

to predict each validation window. The earlier days therefore have an influence on each

single window-RMSE. Later ones are in the edge case only used for the prediction of the

very last window. The resulting RMSE is calculated using the arithmetic mean over all

window-RMSEs. Arguably less relevant earlier data points therefore have a comparatively

higher impact than more recent ones.

� Always including the very first days results in a differing length of training data for each

of the folds. This might be problematic if hyperparameters are sensitive to the length of

training data. One example of such a sensitive hyperparameter is the number of neurons of

a Neural Network. Generally speaking the provision of more training data justifies to use

more neurons to keep the current level of overfitting. This allows to capture more complex

interactions within the data, assuming the current model does not already sufficiently

capture all relevant interactions. Consequently our generated hyperparameter sets might

be optimized for shorter time-series than those which are used to build the final model.

One obvious solution to the second problem might be to use a fixed number of training days

for each window. Doing so however throws away a lot of usable validation data if the number

of days is to high. Using a low number of training days on the other hand might increase the

severity of the problem that a found hyperparameter set might be unsuitable to be used on the

complete training data.

An interesting alternative regarding the first problem might be to overweight the RMSEs which

have been generated by more recent validation windows. This way one addresses that those

have a higher information density due to their longer length and their inclusion of more recent

data. Alternatively it is also possible to chose the weights in a way that the effect of the first

problem is negated.

Similar to the basic implementations of grid search and random search, the current implemen-

tation of Hyperpar-Tree takes the best observed combinations of hyperparameters as the final

result. This is not necessarily optimal, as the method might easily have stochastic elements in

its training process. It might be possible, that this results in the usage of non-robust, subopti-

mal combinations of hyperparameters due to them scoring high by chance. This effect might be

mitigated by using a smart kernel smoothing or repeating the most promising combinations to

30

Electronic copy available at: https://ssrn.com/abstract=3559645

confirm whether the high scoring is robust. Alternatively one might consider the leafs of the last

tree itself as a form of smoothing. Assuming sufficiently many data points per leaf, the central

value of the highest scoring leaf might be an alternative candidate for the final hyperparameter

combination.

In the current implementation of Hyperpar-Tree the number of highest scoring leafs, which are

the basis for the newly drawn combinations, is fixed. Instead of using a fixed number it might

be sensible to use a one-sigma like approach and only discard those leafs which are significantly

worse than the very best one.

Regarding the interaction of Nowcasting and Machine Learning methods we have seen that recent

information impacts predictive power differently depending on the used method. It would be

interesting to pinpoint how beneficial more recent information is for each method. One potential

approach would be to rank other stores by a relevance measure such as for example correlation.

Afterwards, one starts with the standard feature set and iteratively adds information of the

most relevant stores one by one for each method. This approach could be used to compute a

relevance-of-information coefficient in prediction for each method and store. Having obtained

those coefficients it would be interesting to see in how far they differ between different methods.

31

Electronic copy available at: https://ssrn.com/abstract=3559645

References

Ahmed, Nesreen K., Amir F. Atiya, Neamat El Gayar, and Hisham El-Shishiny (2010). “An

Empirical Comparison of Machine Learning Models for Time Series Forecasting”. In:

Econometric Reviews 29.5-6, pp. 594–621. doi: 10.1080/07474938.2010.481556.

Atkinson, Beth (2019). Package ’rpart’. Version v4.1-15. url:

https://cran.r-project.org/web/packages/rpart/rpart.pdf (visited on 2019-10-23).

Bergstra, James and Yoshua Bengio (2012). “Random Search for Hyper-Parameter

Optimization”. In: Journal of Machine Learning Research 13.Feb, pp. 281–305.

Chen, Tianqi et al. (2019). Package ’xgboost’. Version 0.90.0.2. url:

https://cran.r-project.org/web/packages/xgboost/xgboost.pdf (visited on 2019-10-24).

Choi, Hyunyoung and Hal Varian (2012). “Predicting the present with Google Trends”. In:

Economic Record 88, pp. 2–9. doi: 10.1111/j.1475-4932.2012.00809.x.

Eurostat (2019). Exchange and interest rates - Overview. url:

https://ec.europa.eu/eurostat/web/exchange-and-interest-rates (visited on 2019-11-19).

Falbel, Daniel, J. J. Allaire, François Chollet, RStudio, Google, Yuan Tang,

Wouter Van Der Bijl, Martin Studer, and Sigrid Keydana (2019). Package ’keras’.

Version 2.2.5.0. url: https://cran.r-project.org/web/packages/keras/keras.pdf (visited on

2019-10-24).

Friedman, Jerome, Trevor Hastie, Rob Tibshirani, Noah Simon, Balasubramanian Narasimhan,

and Junyang Qian (2019). Package ’glmnet’. Version 2.0-18. url:

https://cran.r-project.org/web/packages/glmnet/glmnet.pdf (visited on 2019-10-23).

Giannone, Domenico, Lucrezia Reichlin, and David Small (2008). “Nowcasting: The real-time

informational content of macroeconomic data”. In: Journal of Monetary Economics 55.4,

pp. 665–676. doi: 10.1016/j.jmoneco.2008.05.010.

Hastie, Trevor (2019). Package ’gam’. Version 1.16.1. url:

https://cran.r-project.org/web/packages/gam/gam.pdf (visited on 2019-10-24).

Hastie, Trevor and Robert Tibshirani (1986). “Generalized Additive Models”. In: Statistical

Science 1.3, pp. 297–310.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical

Learning: Data mining, Inference, and Prediction. 2nd ed. Springer Science & Business

Media. Corrected 12th printing.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013). An Introduction

to Statistical Learning. Vol. 112. Springer. isbn: 9781461471370. doi:

10.1007/978-1-4614-7138-7.

Kies, Martin (2020). “Finding Best Answers for the Iterated Prisoner’s Dilemma Using

Improved Q-Learning”. In: Available at SSRN. doi: 10.2139/ssrn.3556714. url:

https://papers.ssrn.com/sol3/papers.cfm?abstract id=3556714.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet classification with

deep convolutional neural networks”. In: NIPS’12 Proceedings of the 25th International

32

Electronic copy available at: https://ssrn.com/abstract=3559645

Conference on Neural Information Processing Systems. Vol. 1, pp. 1097–1105. url:

https://dl.acm.org/citation.cfm?id=2999257.

Mevik, Bjørn-Helge (2019). Package ’pls’. Version 2.7-2. url:

https://cran.r-project.org/web/packages/pls/pls.pdf (visited on 2019-10-23).

Nielsen, Michael (2019). Neural Networks and Deep Learning. url:

http://neuralnetworksanddeeplearning.com/index.html (visited on 2019-10-07).

R Core Team (2018). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria. url: https://www.R-project.org/.

Rajkomar, Alvin et al. (2018). “Scalable and accurate deep learning with electronic health

records”. In: NPJ Digital Medicine 1.1, p. 18. doi: 10.1038/s41746-018-0029-1.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov (2014). “Dropout: a simple way to prevent neural networks from

overfitting”. In: The journal of machine learning research 15.1, pp. 1929–1958. url:

http://jmlr.org/papers/v15/srivastava14a.html.

Tibshirani, Julie, Susan Athey, Rina Friedberg, Vitor Hadad, David Hirshberg, Luke Miner,

Erik Sverdrup, Stefan Wager, and Marvin N. Wright (2019). Package ’grf ’. Version 0.10.4.

url: https://cran.r-project.org/web/packages/grf/grf.pdf (visited on 2019-10-24).

Wright, Marvin N., Stefan Wager, and Philipp Probst (2019). Package ’ranger’. Version 0.11.2.

url: https://cran.r-project.org/web/packages/ranger/ranger.pdf (visited on 2019-10-24).

Xingjian, SHI, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and

Wang-chun Woo (2015). “Convolutional LSTM network: A machine learning approach for

precipitation nowcasting”. In: Advances in neural information processing systems,

pp. 802–810.

Zou, Hui and Trevor Hastie (2005). “Regularization and variable selection via the elastic net”.

In: Journal of the royal statistical society: series B (statistical methodology) 67.2,

pp. 301–320. doi: 10.1111/j.1467-9868.2005.00503.x.

33

Electronic copy available at: https://ssrn.com/abstract=3559645

Appendices

A. Hyperparameter Optimization

In this section we define the parameters and parameter ranges as explained in Section 5.

Note that the type boolean is not implemented within the source code but only used for better

readability. Using 0 for FALSE and 1 for TRUE in combination with the type integer is

identical to allowing the parameter to be both TRUE and FALSE within the

hyperparameter-optimization, albeit of course not at the same time.

A.1. Metaparameters

The following parameters of Table 2 have been chosen to find the hyper-parameters of the
methods for both classical prediction and Nowcasting according to the methodology of section
5. In regard to all other control variables the default values have been used. The method used
in rpart as defined by the parameter method is “anova”.

Table 2: Meta-Parameters regarding the optimization of hyper-parameters.

Name of parameter

within the sourcecode

Value Explanation

Parameters regarding the type of hyperparameter-search.

hyper.par.decision “tree” We do indeed use the tree method. The other

method provided by the source code allows for a

grid-search of hyper-parameters.

hyper.selection.method “window.nested.cross” We use the method as described in Section 5, where

we use evenly spaced validation windows and all

available data up to this point.

window.no 10 Number of validation windows used. Can be inter-

preted similarly to the number k of classical cross-

validation, except that in this instance the size of

the training data for each of the windows is differ-

ent, as only historic data is used. Called kwin in

Pseudo-Code 11.

length.period 92 Number of days which we use as the validation test

set for each window. Identical to the number of

days used in the actual test data. Called lentest in

Pseudo-Code 11.

34

Electronic copy available at: https://ssrn.com/abstract=3559645

Name of parameter

within the sourcecode

Value Explanation

Parameters regarding the data set for the tree.

start.n 100 Defines the number of random random parameter

combinations which build the basis for the further

tree search. Called nstart in Pseudo-Code 14.

add.n 20 How many new parameter combinations are newly

drawn according to the most recent tree? Called

nadd in Pseudo-Code 14.

repeat.no 10 How often do we want to draw new parameter com-

binations? The number of generated data points

this way is start.n + repeat.no · add.n. Called nrep

in Pseudo-Code 14.

best.splits 3 When drawing new parameter combinations, the pa-

rameter “best.splits” defines the number of “top”-

leafs to be used. Using a higher numbers slows down

convergence, but minimizes the chance to land in a

local optimum. Called nbest.splits in Pseudo-Code

14.

remove.n 15 How many parameter combinations do we want to

delete in each cycle? The worst “remove.n” combi-

nations are deleted to minimize variance of the tree

and allow a better circling in on the optimal combi-

nation. Called nrem in Pseudo-Code 14.

Parameters regarding the tree itself as per the R-package rpart (Atkinson, 2019)

tree.param.cp 0.01 Corresponds to cp of rpart.control. “complexity pa-

rameter. Any split that does not decrease the over-

all lack of fit by a factor of cp is not attempted.”

(Atkinson, 2019)

tree.param.minsplit 10 Corresponds to minsplit of rpart.control and is “the

minimum number of observations that must exist in

a node in order for a split to be attempted.” (Atkin-

son, 2019)

tree.param.minbucket 5 Corresponds to minbucket of rpart.control and is

“the minimum number of observations in any ter-

minal <leaf> node.” (Atkinson, 2019)

tree.param.xval 1 Corresponds to xval of rpart.control and is the

“number of cross-validations.” (Atkinson, 2019).

This implies, that we do not use the internal

cross-validation of the method within our hyper-

parameter search.

tree.param.maxdepth 10 Corresponds to maxdepth of rpart.control and it

“[s]et[s] the maximum depth of any node of the fi-

nal tree, with the root node counted as depth 0.”

(Atkinson, 2019).

35

Electronic copy available at: https://ssrn.com/abstract=3559645

A.2. Partial Least Squares

The following parameters have been used in regard to the method “Partial Least Squares” as

described in Section 4.3 and according to the methodology of Section 5:

Table 3: Ranges of Hyperparameters considered for Partial Least Squares. For pls.ncomp we
chose the maximum of 26 for the Standard case and a sufficiently high number for the other
feature sets, so that it is non-limiting to the number of actually chosen components.

Name of

param.

Min Max Best Type Explanation

pls.use.y.log FALSE - boolean Do we want to draw the logarithm of the

to be predicted variable before training and

reverse this operation after prediction?

pls.ncomp 26 (Standard),

50 (Full),

100 (pure N.),

50 (full N.)

- integer Corresponds to the parameter ncomp of the

plsr -function of Mevik (2019) and describes

the number of components which are con-

sidered for the model.

pls.validation CV - factor Corresponds to the parameter validation

of the plsr -function of Mevik (2019) and

describes what kind of internal validation

should be used. “CV” results in cross-

validation.

pls.method nc onesigma - factor Corresponds to the parameter method of

the selectNcomp-function of Mevik (2019)

and describes what kind of selection crite-

rion is used to determine the chosen number

of components. “The approach “onesigma”

simply returns the first model where the op-

timal CV is within one standard error of the

absolute optimum” (Mevik, 2019), which is

based on the method proposed by James et

al. (2013, p. 244).

The number of components actually chosen can be found in Table 4.

36

Electronic copy available at: https://ssrn.com/abstract=3559645

Table 4: Frequency of choosing a certain number of components with the method Partial Least
Squares given the different feature sets as defined by Section 3

Components Standard Full pure Nowc. full Nowc.

1 63 618 194 260

2 13 1332 56 192

3 4 31 410 226

4 1 3 522 641

5 1 0 201 519

6 0 5 75 95

7 0 0 125 13

8 42 0 92 26

9 1660 0 52 8

10 206 0 50 1

11 0 0 45 3

12 0 0 38 1

13 0 0 40 1

14 0 0 27 3

15 0 0 16 0

16 0 0 11 1

17 0 1 4 0

18 0 0 2 0

19 0 0 4 0

20 0 0 6 0

21 0 0 5 0

22 0 0 3 0

23 0 0 1 0

24 0 0 0 0

25 0 0 3 0

26 0 0 0 0

27 0 0 3 0

28 0 0 0 0

29 0 0 0 0

30 0 0 0 0

31 0 0 0 0

32 0 0 0 0

33 0 0 0 0

34 0 0 0 0

35 0 0 1 0

36 0 0 0 0

37 0 0 0 0

38 0 0 1 0

39 0 0 0 0

40 0 0 3 0

37

Electronic copy available at: https://ssrn.com/abstract=3559645

A.3. Generalized Linear Models (glmnet)

The following parameters and parameter ranges have been used regarding the method

“Generalized Linear Models” as specified in Section 4.2. If not listed, the default values from

Friedman et al. (2019) have been used.

Table 5: Ranges of Hyperparameters considered for the Generalized Linear Model.

Name of

param.

Min Max Best Type Explanation

glmnet.use.y.log FALSE - boolean Do we want to draw the logarithm

of the to be predicted variable be-

fore training and reverse this oper-

ation after prediction?

glmnet.alpha 0 1 0.4850 numeric Corresponds to the parameter al-

pha of the glmnet-function of Fried-

man et al. (2019) which describes

the elasticnet mixing parameter. If

alpha equals 1 a LASSO-Regression

is used, while alpha equals 0 results

in a Ridge-Regression.

glmnet.lambda NA - numeric We use the default value of the

parameter lambda of the glmnet-

function defined by Friedman et al.

(2019) which describes the regular-

ization parameter. “NA” means

we use the lambda value which has

been calculated according to the in-

ternal crossvalidation.

glmnet.x.formula “Full” - factor All explanatory variables are used

without any modification.

38

Electronic copy available at: https://ssrn.com/abstract=3559645

A.4. Generalized Additive Models (GAM)

The following parameters and parameter ranges have been used regarding the method

“Generalized Additive Models” as specified in Section 4.4. If not listed, the default values from

Hastie (2019) have been used.

Table 6: Ranges of Hyperparameters considered for the Generalized Additve Model.

Name of

param.

Min Max Best Type Explanation

gam.use.y.log FALSE - boolean Do we want to draw the logarithm

of the to be predicted variable be-

fore training and reverse this oper-

ation after prediction?

gam.family gaussian - factor Corresponds to the parameter fam-

ily of the gam-function of Hastie

(2019) which describes “the error

distribution and link function to be

used in the model” (Hastie, 2019).

gam.k 0 4 1 integer Corresponds to the parameter df

of the s-function of Hastie (2019)

given to the formula of the gam-

function. It is “the target equiv-

alent degrees of freedom, used as

a smooting parameter.” Hastie

(2019).

39

Electronic copy available at: https://ssrn.com/abstract=3559645

A.5. Random Forest (Package “grf”, Classical Prediction)

The following parameters and parameter ranges have been used for the classical prediction

regarding the method “Random Forest” as specified in Section 4.6 in regards to the R-package

grf (J. Tibshirani et al., 2019). If not listed, the default values from the function

regression forest() in J. Tibshirani et al. (2019) have been used.

Table 7: Ranges of Hyperparameters considered for the Random Forest as implemented by the
R-package grf (J. Tibshirani et al., 2019).

Name of param. Min Max Best Type Explanation

rfw.use.y.log FALSE - boolean Do we want to draw the logarithm of the to be

predicted variable before training and reverse

this operation after prediction?

rfw.sample.fraction 0.3 0.9 0.5496 numeric Corresponds to sample.fraction of the regres-

sion forest()-function of J. Tibshirani et al.

(2019) which is the “[f]raction of the data

used to build each tree.” (J. Tibshirani et

al., 2019).

rfw.mtry 2 26 20 integer Corresponds to mtry of the regression forest-

function of J. Tibshirani et al. (2019) which

describes the “[n]umber of variables tried for

each split.” (J. Tibshirani et al., 2019)

rfw.num.trees 1000 - integer Corresponds to the parameter num.trees of

the regression forest-function of J. Tibshirani

et al. (2019) which describes the “[n]umber of

trees grown in the forest.” (J. Tibshirani et

al., 2019)

rfw.min.node.size 2 20 11 integer Corresponds to min.node.size of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which describes the “target for the

minimum number of observations in each tree

leaf.” (J. Tibshirani et al., 2019)

rfw.honesty FALSE - boolean Corresponds to the parameter honesty of the

regression forest-function of J. Tibshirani et

al. (2019) which describes “[w]hether or not

honest splitting (i.e., sub-sample splitting)

should be used.” (J. Tibshirani et al., 2019)

rfw.alpha 0.001 0.2 0.1081 numeric Corresponds to alpha of the regression forest-

function of J. Tibshirani et al. (2019) which

is “tuning parameter that controls the maxi-

mum imbalance of a split.” (J. Tibshirani et

al., 2019)

40

Electronic copy available at: https://ssrn.com/abstract=3559645

A.6. Random Forest (Package “grf”, Nowcasting)

The following parameters and parameter ranges have been used using Nowcasting and the

method “Random Forest” as specified in Section 4.6 in regards to the R-package grf

(J. Tibshirani et al., 2019). If not listed, the default values from the function

regression forest() in J. Tibshirani et al. (2019) have been used.

Table 8: Ranges of Hyperparameters considered for the Random Forest as implemented by the
R-package grf (J. Tibshirani et al., 2019).

Name of param. Min Max Best Type Explanation

rfw.use.y.log FALSE - boolean Do we want to draw the logarithm of the to be

predicted variable before training and reverse

this operation after prediction?

rfw.sample.fraction 0.3 0.9 0.8854 numeric Corresponds to sample.fraction of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which is the “[f]raction of the data

used to build each tree.” (J. Tibshirani et

al., 2019).

rfw.mtry 100 2000 1752 integer Corresponds to mtry of the regression forest-

function of J. Tibshirani et al. (2019) which

describes the “[n]umber of variables tried for

each split.” (J. Tibshirani et al., 2019)

rfw.num.trees 1000 - integer Corresponds to the parameter num.trees of

the regression forest-function of J. Tibshirani

et al. (2019) which describes the “[n]umber of

trees grown in the forest.” (J. Tibshirani et

al., 2019)

rfw.min.node.size 2 20 5 integer Corresponds to min.node.size of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which describes the “target for the

minimum number of observations in each tree

leaf.” (J. Tibshirani et al., 2019)

rfw.honesty FALSE - boolean Corresponds to the parameter honesty of the

regression forest-function of J. Tibshirani et

al. (2019) which describes “[w]hether or not

honest splitting (i.e., sub-sample splitting)

should be used.” (J. Tibshirani et al., 2019)

rfw.alpha 0 0.2 0.1855 numeric Corresponds to alpha of the regression forest-

function of J. Tibshirani et al. (2019) which

is “tuning parameter that controls the maxi-

mum imbalance of a split.” (J. Tibshirani et

al., 2019)

41

Electronic copy available at: https://ssrn.com/abstract=3559645

A.7. Random Forest (Package “grf”, Full)

The following parameters and parameter ranges have been used using full and the method

“Random Forest” as specified in Section 4.6 in regards to the R-package grf (J. Tibshirani

et al., 2019). If not listed, the default values from the function regression forest() in

J. Tibshirani et al. (2019) have been used.

Table 9: Ranges of Hyperparameters considered for the Random Forest as implemented by the
R-package grf (J. Tibshirani et al., 2019).

Name of param. Min Max Best Type Explanation

rfw.use.y.log FALSE - boolean Do we want to draw the logarithm of the to be

predicted variable before training and reverse

this operation after prediction?

rfw.sample.fraction 0.5 0.99 0.9094 numeric Corresponds to sample.fraction of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which is the “[f]raction of the data

used to build each tree.” (J. Tibshirani et

al., 2019).

rfw.mtry 1000 5000 1046 integer Corresponds to mtry of the regression forest-

function of J. Tibshirani et al. (2019) which

describes the “[n]umber of variables tried for

each split.” (J. Tibshirani et al., 2019)

rfw.num.trees 1000 - integer Corresponds to the parameter num.trees of

the regression forest-function of J. Tibshirani

et al. (2019) which describes the “[n]umber of

trees grown in the forest.” (J. Tibshirani et

al., 2019)

rfw.min.node.size 2 20 2 integer Corresponds to min.node.size of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which describes the “target for the

minimum number of observations in each tree

leaf.” (J. Tibshirani et al., 2019)

rfw.honesty FALSE - boolean Corresponds to the parameter honesty of the

regression forest-function of J. Tibshirani et

al. (2019) which describes “[w]hether or not

honest splitting (i.e., sub-sample splitting)

should be used.” (J. Tibshirani et al., 2019)

rfw.alpha 0 0.4 0.2110 numeric Corresponds to alpha of the regression forest-

function of J. Tibshirani et al. (2019) which

is “tuning parameter that controls the maxi-

mum imbalance of a split.” (J. Tibshirani et

al., 2019)

42

Electronic copy available at: https://ssrn.com/abstract=3559645

A.8. Random Forest (Package “grf”, Pure)

The following parameters and parameter ranges have been used using pure and the method

“Random Forest” as specified in Section 4.6 in regards to the R-package grf (J. Tibshirani

et al., 2019). If not listed, the default values from the function regression forest() in

J. Tibshirani et al. (2019) have been used.

Table 10: Ranges of Hyperparameters considered for the Random Forest as implemented by
the R-package grf (J. Tibshirani et al., 2019).

Name of param. Min Max Best Type Explanation

rfw.use.y.log FALSE - boolean Do we want to draw the logarithm of the to be

predicted variable before training and reverse

this operation after prediction?

rfw.sample.fraction 0.3 0.9 0.7374 numeric Corresponds to sample.fraction of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which is the “[f]raction of the data

used to build each tree.” (J. Tibshirani et

al., 2019).

rfw.mtry 100 2015 593 integer Corresponds to mtry of the regression forest-

function of J. Tibshirani et al. (2019) which

describes the “[n]umber of variables tried for

each split.” (J. Tibshirani et al., 2019)

rfw.num.trees 1000 - integer Corresponds to the parameter num.trees of

the regression forest-function of J. Tibshirani

et al. (2019) which describes the “[n]umber of

trees grown in the forest.” (J. Tibshirani et

al., 2019)

rfw.min.node.size 2 20 3 integer Corresponds to min.node.size of the regres-

sion forest-function of J. Tibshirani et al.

(2019) which describes the “target for the

minimum number of observations in each tree

leaf.” (J. Tibshirani et al., 2019)

rfw.honesty FALSE - boolean Corresponds to the parameter honesty of the

regression forest-function of J. Tibshirani et

al. (2019) which describes “[w]hether or not

honest splitting (i.e., sub-sample splitting)

should be used.” (J. Tibshirani et al., 2019)

rfw.alpha 0 0.2 0.1908 numeric Corresponds to alpha of the regression forest-

function of J. Tibshirani et al. (2019) which

is “tuning parameter that controls the maxi-

mum imbalance of a split.” (J. Tibshirani et

al., 2019)

43

Electronic copy available at: https://ssrn.com/abstract=3559645

A.9. Random Forest (Package “ranger”)

The following parameters and parameter ranges have been used regarding the method

“Random Forest” as specified in Section 4.6 in regards to the R-package ranger (Wright et al.,

2019). If not listed, the default values from the function ranger() in J. Tibshirani et al. (2019)

have been used.

Table 11: Ranges of Hyperparameters considered for the Random Forest as implemented by
the R-package ranger (Wright et al., 2019).

Name of param. Min Max Best Type Explanation

rfr.use.y.log FALSE - boolean Do we want to draw the loga-

rithm of the to be predicted vari-

able before training and reverse

this operation after prediction?

rfr.sample.fraction 0.3 0.95 0.6407 numeric Corresponds to the parameter

sample.fraction of the ranger -

function of Wright et al. (2019)

which is the “[f]raction of ob-

servations to sample” (Wright et

al., 2019).

rfr.mtry 2 26 21 integer Corresponds to the parameter

mtry of the ranger -function of

Wright et al. (2019) which is

the “[n]umber of variables to

possibly split at in each node.”

(Wright et al., 2019).

rfr.num.trees 1000 - integer Corresponds to the parameter

num.trees of the ranger -function

of Wright et al. (2019) which de-

scribes the “[n]umber of trees.”

(Wright et al., 2019)

rfr.min.node.size 2 20 15 integer Corresponds to min.node.size of

the ranger -function of Wright et

al. (2019) which describes the

“[m]inimal node size.” (Wright

et al., 2019)

44

Electronic copy available at: https://ssrn.com/abstract=3559645

A.10. Gradient Boosting

The following parameters and parameter ranges have been used regarding the method

“Gradient Boosting” as specified in Section 4.7 using the R-package xgboost (T. Chen et al.,

2019). If not listed, the default values from the function xgboost() in T. Chen et al. (2019)

have been used.

Table 12: Ranges of Hyperparameters considered for Gradient Boosting as implemented by the
R-package xgboost (T. Chen et al., 2019).

Name of param. Min Max Best Type Explanation

xgboost.use.y.log FALSE - boolean Do we want to draw the logarithm

of the to be predicted variable be-

fore training and reverse this oper-

ation after prediction?

xgboost.nrounds 50 1000 185 integer Corresponds to nrounds of the func-

tion xgboost() which is the “max

number of boosting iterations.” (T.

Chen et al., 2019).

xgboost.max depth 2 15 3 integer Corresponds to the value max depth

of the function xgboost() which is the

“maximum depth of a tree.” (T.

Chen et al., 2019)

xgboost.eta 0.001 0.2 0.0178 numeric Corresponds to eta of the function

xgboost() which “control[s] the learn-

ing rate.” (T. Chen et al., 2019).

A lower value of eta prevents over-

fitting.

xgboost.gamma 0.01 - numeric Corresponds to gamma of the func-

tion xgboost() which is the “minimum

loss reduction required to make a fur-

ther partition on a leaf node of the

tree.” (T. Chen et al., 2019).

xgboost.colsample bytree 0.4 1 0.5802 numeric Corresponds to colsample bytree of

the function xgboost() which is the

“subsample ratio of columns when

constructing each tree.” (T. Chen et

al., 2019).

xgboost.subsample 0.4 1 0.5994 numeric Corresponds to the value subsample

of the function xgboost() which is the

“subsample ratio of the training in-

stance.” (T. Chen et al., 2019).

xgboost.min child weight 2 10 3 integer Corresponds to min child weight of

the function xgboost() which is the

“ minimum sum of instance weight

(hessian) needed in a child.” (T.

Chen et al., 2019).

45

Electronic copy available at: https://ssrn.com/abstract=3559645

A.11. Neural Network

The following parameters and parameter ranges have been used regarding the method “Neural

Network” as specified in Section 4.8 using the R-package keras (Falbel et al., 2019). If not

listed, the default values from Falbel et al. (2019) have been used. We use the Adam-optimizer

with default values.

Table 13: Ranges of Hyperparameters considered for the Neural Network as implemented by
the R-package keras (Falbel et al., 2019).

Name of

param.

Min Max Best Type Explanation

batch.size.predict 24 - integer Corresponds to batch size given to

the function predict() and controls

the number of input samples used

within one batch.

batch.size.train 32 96 82 integer Corresponds to batch size given to

the function fit(). batch size is the

“[n]umber of samples per gradient

update.” (Falbel et al., 2019) when

training the model.

neurons.hidden.1 8 512 153 integer Corresponds to units in regards to

the function layer dense() and is

the number of neurons in the first

hidden layer.

neurons.hidden.2 0 128 126 integer Corresponds to units in regards to

the function layer dense() and is

the number of neurons in the sec-

ond hidden layer.

neurons.hidden.3 0 128 18 integer Corresponds to units in regards to

the function layer dense() and is

the number of neurons in the third

hidden layer.

NN.verbose FALSE - boolean Corresponds to the parameter ver-

bose of the function fit() and con-

trols the displayed output. Should

have no effects on performance.

train.epochs 100 2000 997 integer Corresponds to epochs of the func-

tion fit() and is the number of

epochs to train the model.

46

Electronic copy available at: https://ssrn.com/abstract=3559645

Name of

param.

Min Max Best Type Explanation

activation1 sigmoid - factor Corresponds to activation of the

function layer activation() and is

the activation function of the first

hidden layer.

activation2 sigmoid - factor Corresponds to activation of the

function layer activation() and is

the activation function of the sec-

ond hidden layer.

activation3 sigmoid - factor Corresponds to activation of the

function layer activation() and is

the activation function of the third

hidden layer.

activation.end linear - factor Corresponds to activation of the

function layer activation() and is

the activation function of the final

layer.

input.dropout 0 0.6 0.5450 numeric Corresponds to rate of the function

layer dropout(), defining the drop

out rate of the input layer.

dropout1 0 0.6 0.0837 numeric Corresponds to rate of the function

layer dropout(), defining the drop

out rate of the first hidden layer.

dropout2 0 0.6 0.2723 numeric Corresponds to rate of the function

layer dropout(), defining the drop

out rate of the second hidden layer.

dropout3 0 - numeric Corresponds to rate of the function

layer dropout(), defining the drop

out rate of the third hidden layer.

NN.normalize minmax - factor Defines the normalization proce-

dure as explained in Section 4.8.

NN.normalize.log FALSE - boolean Do we want draw the logarithm

of the (normalized) and to be pre-

dicted variable before training and

reverse this operation after predic-

tion?

47

Electronic copy available at: https://ssrn.com/abstract=3559645

B. Results

Table 14: Pairwise p-Values based on a paired t-Test on logged RMSE values on the test data set for all methods on the standard feature set as
defined by Section 3. The methods are ordered based on their performance on the test data set. We chose logged RMSE values, as the RMSEs
across the stores are approximately log-normal distributed. Where a 0 is reported, the p-Value is below the floating point resolution. The paired
t-Test corrects for the variance across stores and reports on the significance of the difference between the mean of two methods. Two methods
might thus be non-significantly different (i.e. between Linear Regression and Neural Network) even though their aggregated performance differs.
This can be explained by making structurally different errors across the stores.

. Mean Elastic-Net
Regulariza-

tion

Partial
Least

Squares

Regression
Forest

(ranger)

Regression
Forest (grf)

Linear
Regression

Generalized
Additive
Model

Gradient
Boosting

Neural
Network

Mean . 0 0 0 0 0 0 0 0

Elastic-Net Regularization . 2.03e-233 4.00e-304 0 1.43e-282 5.26e-313 0 5.50e-320

Partial Least Squares . 1.84e-55 7.81e-84 2.34e-35 9.26e-81 1.24e-61 1.25e-31

Regression Forest (ranger) . 1.63e-54 5.67e-25 6.73e-12 0.69 6.78e-16

Regression Forest (grf) . 1.00e-55 5.00e-39 1.59e-20 2.87e-33

Linear Regression . 1.89e-13 4.01e-26 0.93

Generalized Additive
Model

. 7.23e-13 1.55e-05

Gradient Boosting . 5.78e-19

Neural Network .

48

E
lectronic copy available at: https://ssrn.com

/abstract=
3559645

0

300

600

900

1200

Mean

Elastic
−Net R

egulariz
atio

n

Partia
l L

east
Squares

Regressi
on Forest

(ra
nger)

Regressi
on Forest

(grf)

Linear R
egressi

on

Generalize
d Additiv

e M
odel

Gradient B
oostin

g

Neural N
etwork

Method

R
M

S
E

Training Test

Figure 18: Mean of the root mean squared errors given the 20 stores, where hyperparameter optimiza-
tion took place, on the training and test data set for each analysed method. Here, only the standard
feature set as specified by Section 3 has been used. The RMSEs have been ordered by their performance
on the test data set averaged over all stores. As a basic benchmark the method Mean is included, which
predicts the deposit based on the arithmetic average across the training data set of the specific store.

Partial Least Squares Random Forest (grf)

Standard Full

Full N
owca

stin
g

Pure Nowca
stin

g

Standard Full

Full N
owca

stin
g

Pure Nowca
stin

g

0

250

500

750

Feature Set

R
M

S
E

Training Test

Figure 19: Mean of the root mean squared errors of the methods Partial Least Squares and Random
Forest given access to different feature sets according to Section 3 using only data from the 20 stores,
where hyperparameter optimization took place.

49

Electronic copy available at: https://ssrn.com/abstract=3559645

Table 15: Statistics of the complete training pool on the training data. The methods have been
sorted by their performance on the test data set.
MRMSE = Mean root square error
MRMSEN = Mean root square error normed according to Section 5
MedRMSE = Median root square error
MedRMSEN = Median root square error normed according to Section 5

method MRMSE MRMSEN MedRMSE MedRMSEN

Mean 1665 1.0280 1110 0.9962

Partial Least Squares (Full) 1272 0.7696 803 0.7153

Elastic-Net Regularization 1234 0.7375 764 0.6834

Partial Least Squares 1162 0.6898 714 0.6417

Regression Forest (ranger) 829 0.4848 497 0.4455

Regression Forest (grf) 839 0.4929 507 0.4537

Linear Regression 1112 0.6615 685 0.6144

Generalized Additive Model 1134 0.6752 698 0.6281

Gradient Boosting 925 0.5620 587 0.5276

Regression Forest (grf, Full) 131 0.0796 81 0.0722

Neural Network 1132 0.6762 703 0.6295

Partial Least Squares (full Nowc.) 1008 0.5880 574 0.5134

Partial Least Squares (pure Nowc.) 934 0.5354 506 0.4790

Regression Forest (grf, full Nowc.) 251 0.1183 101 0.0912

Regression Forest (grf, pure Nowc.) 324 0.1633 145 0.1333

50

Electronic copy available at: https://ssrn.com/abstract=3559645

Table 16: Statistics of the complete training pool on the test data. The methods have been
sorted by their performance on the test data set.
MRMSEP = Mean root square error on test set.
MRMSEPN = Mean root square error on test set normed according to Section 5
MedRMSEP = Median root square error on test set
MedRMSEPN = Median root square error normed on test set according to Section 5

method MRMSEP MRMSEPN MedRMSEP MedRMSEPN

Mean 1569 1.0155 1130 1.0056

Partial Least Squares (Full) 1250 0.7983 874 0.7756

Elastic-Net Regularization 1172 0.7470 813 0.7244

Partial Least Squares 1127 0.7151 779 0.6944

Regression Forest (ranger) 1124 0.7033 762 0.6778

Regression Forest (grf) 1122 0.6996 753 0.6722

Linear Regression 1121 0.7084 769 0.6873

Generalized Additive Model 1120 0.7053 767 0.6842

Gradient Boosting 1119 0.7019 762 0.6783

Regression Forest (grf, Full) 1108 0.6947 755 0.6637

Neural Network 1107 0.7074 770 0.6851

Partial Least Squares (full Nowc.) 1016 0.6334 657 0.5973

Partial Least Squares (pure Nowc.) 937 0.5855 597 0.5499

Regression Forest (grf, full Nowc.) 856 0.5200 521 0.4654

Regression Forest (grf, pure Nowc.) 841 0.5123 511 0.4594

51

Electronic copy available at: https://ssrn.com/abstract=3559645

Table 17: Statistics of the performance on the training data on the 20 stores, where the hyper-
parameter optimization took place. The methods have been sorted by their performance on the
test data set of all stores.
MRMSE = Mean root square error.
MRMSEN = Mean root square error normed according to Section 5
MedRMSE = Median root square error on test set
MedRMSEN = Median root square error normed according to Section 5

method MRMSE MRMSEN MedRMSE MedRMSEN

Mean 1109 0.9702 1107 0.9507

Partial Least Squares (Full) 816 0.7285 785 0.6949

Elastic-Net Regularization 800 0.7136 765 0.6696

Partial Least Squares 756 0.6736 711 0.6233

Regression Forest (ranger) 531 0.4751 493 0.4307

Regression Forest (grf) 540 0.4813 505 0.4484

Linear Regression 718 0.6431 671 0.5880

Generalized Additive Model 735 0.6563 695 0.6027

Gradient Boosting 623 0.5569 588 0.5093

Regression Forest (grf, Full) 84 0.0746 82 0.0710

Neural Network 762 0.6750 704 0.6409

Partial Least Squares (full Nowc.) 616 0.5636 543 0.5186

Partial Least Squares (pure Nowc.) 608 0.5507 513 0.5196

Regression Forest (grf, full Nowc.) 114 0.1012 101 0.0930

Regression Forest (grf, pure Nowc.) 163 0.1488 141 0.1367

52

Electronic copy available at: https://ssrn.com/abstract=3559645

Table 18: Statistics of the performance on the test data on the 20 stores, where the hyperpa-
rameter optimization took place. The methods have been sorted by their performance on the
test data set of all stores.
MRMSEP = Mean root square error on test set.
MRMSEPN = Mean root square error on test set normed according to Section 5
MedRMSEP = Median root square error on test set
MedRMSEPN = Median root square error normed on test set according to Section 5

method MRMSEP MRMSEPN MedRMSEP MedRMSEPN

Mean 1166 1.0250 1130 1.0104

Partial Least Squares (Full) 944 0.8375 934 0.8152

Elastic-Net Regularization 892 0.7960 879 0.7817

Partial Least Squares 861 0.7627 822 0.7152

Regression Forest (ranger) 842 0.7553 806 0.7185

Regression Forest (grf) 837 0.7498 802 0.7130

Linear Regression 848 0.7555 816 0.7118

Generalized Additive Model 845 0.7516 805 0.7036

Gradient Boosting 841 0.7495 804 0.7143

Regression Forest (grf, Full) 833 0.7472 820 0.7204

Neural Network 858 0.7614 844 0.7157

Partial Least Squares (full Nowc.) 760 0.6957 733 0.6506

Partial Least Squares (pure Nowc.) 729 0.6706 687 0.6282

Regression Forest (grf, full Nowc.) 666 0.6109 595 0.5656

Regression Forest (grf, pure Nowc.) 661 0.6068 599 0.5615

53

Electronic copy available at: https://ssrn.com/abstract=3559645

73717

87
57

247

749

3

59

474

102283138196
90124

9433

156906

34739

100

101

102

103

104

105

Pa
rti

al
 L

ea
st

 S
qu

ar
es

 (F
ul

l)

Ela
st

ic−
Net

 R
eg

ul
ar

iza
tio

n

Pa
rti

al
 L

ea
st

 S
qu

ar
es

Reg
re

ss
io

n
Fo

re
st

 (r
an

ge
r)

Reg
re

ss
io

n
Fo

re
st

 (g
rf)

Li
ne

ar
 R

eg
re

ss
io

n

G
en

er
al

ize
d

Add
itiv

e
M

od
el

G
ra

di
en

t B
oo

st
in

g

Reg
re

ss
io

n
Fo

re
st

 (g
rf,

 F
ul

l)
Neu

ra
l N

et
wor

k

Pa
rti

al
 L

ea
st

 S
qu

ar
es

 (f
ul

l N
ow

c.
)

Pa
rti

al
 L

ea
st

 S
qu

ar
es

 (p
ur

e
Now

c.
)

Reg
re

ss
io

n
Fo

re
st

 (g
rf,

 fu
ll N

ow
c.

)

Reg
re

ss
io

n
Fo

re
st

 (g
rf,

 p
ur

e
Now

c.
)

Feature Set

T
im

e
(in

 m
ill

is
ec

on
ds

)

Standard Full Pure Nowcasting Full Nowcasting

Figure 20: Comparison of average training time in milliseconds on the training data set per
store, assuming the hyperparameter of the models have been selected. The order of the methods
is according to their performance as measured by the RMSE on the test data set from worst
(left) to best (right). Note that the y-axis is scaled logarithmically.

54

Electronic copy available at: https://ssrn.com/abstract=3559645

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig
angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen
Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner
anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ich bin mir bewusst, dass eine unwahre Erklärung rechtliche Folgen haben wird.

Ulm, den 24.03.2020
(Unterschrift)

293

	Overview of Research Papers
	Introduction
	Finding Best Answers for the Iterated Prisoner's Dilemma Using Improved Q-Learning
	Impacts of Sponsored Data on Infrastructure Investments and Welfare
	Impact of Near-Time Information for Prediction on Microeconomic Balanced Time Series Data using Different Machine Learning Methods

