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Abstract

In this article we present a new representation-free formalism, which can significantly simplify the
analysis of interferometers comprised of atoms moving in time-dependent linear potentials. We
present a methodology for the construction of two pairs of time-dependent functions that, once
determined, lead to two conditions for the closing of the interferometer, and determine the phase and
the contrast of the resultant interference. Using this new formalism, we explore the dependency of the
interferometer phase on the interferometer time T for different atom interferometers. By now, it is
well established that light pulse atom interferometers of the type first demonstrated by Kasevich and
Chu (1991 Phys. Rev. Lett. 67, 181—4; 1992 Appl. Phys. B 54, 321-32), henceforth referred to as Mach—
Zehnder (MZ) atom interferometers, have a phase scaling as T°. A few years ago, McDonald et al (2014
Europhys. Lett. 105, 63001) have experimentally demonstrated a novel type of atom interferometer,
referred to as the continuous-acceleration bloch (CAB) interferometer, where the phase reveals a
mixed scaling which is governed by a combination of 7> and T°. Moreover, we have recently proposed
adifferent type of atom interferometer (Zimmermann et al 2017 Appl. Phys. B 123, 102), referred to as
the T°-interferometer, which has a pure T° scaling, as demonstrated theoretically. Finally, we conclude
that the CAB interferometer can be shown to be a hybrid of the standard MZ interferometer and the
T°-interferometer.

1. Introduction

Atom interferometers [ 1-3] and in particular light pulse atom interferometers [4, 5] were first demonstrated in
1991. Since then different technologies and interferometer schemes have emerged, driven by the demand of
high-sensitivity devices for precision measurements. In this article we compare three atom interferometers
sensitive to linear accelerations by means of a novel formalism, which provides us with an intuitive picture for
the scaling of their particular interferometric phase shift with respect to the interferometer time T”.

1.1. Enhancing the sensitivity of atom interferometers

Because of their extreme interferometric sensitivity, atom interferometers have been used to precisely measure
physical quantities such as the polarizability of alkali atoms [6-9], the ‘magic wavelength’ for potassium,
rubidium and calcium [10-12], Planck’s constant to the cesium mass ratio h/mc, [13], the fine structure

We emphasize that in this article T always denotes the total interferometer time. This notation does in general not coincide with the
traditional one, where T'is used for the time between the first two laser pulses which is here labeled as T}.
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constant [14—18], and the Newtonian gravitational constant [19—-22]. On a more applied side, there has been
much activity in the development of interferometers as sensors of acceleration [23—43], rotation [44—47], gravity
gradients [48—53], magnetic fields and magnetic field gradients [54—58], and dual accelerometer/gyroscopes
[59—61]. Some of these works have been reviewed in [62, 63].

Despite the already demonstrated exquisite sensitivity of an atom interferometer, there are various ways to
push iteven further. The interferometer sensitivity usually depends on the mass of the particles in the
interferometer [64], so using heavier atoms (e.g. rubidium or cesium instead of sodium) is one straightforward
way for improvement. The sensitivity of the interferometer with respect to a constant acceleration or rotation
also depends on the area enclosed by the interferometer [65—67]. This is due to the fact that light pulses not only
create a coherent superposition of electronic states, but also transfer momentum. As a consequence, one finds
the corresponding phase contribution to scale as the enclosed space-time area. Therefore, there have been
several demonstrations of large-area interferometers by using composite and other more exotic pulses inducing
alarge momentum transfer [68-75].

For an interferometer in the conventional Mach—Zehnder (MZ) configuration, for instance, the enclosed
area scales as T, where T'is the total time of the interferometer. However, instead of increasing the effective
momentum transferred by the pulses, there is an alternate way to improve the sensitivity of an interferometer by
changing the interferometer scheme in order to achieve a different scaling of the phase with respect to T.
McDonald et al[76] have demonstrated an interferometer measuring the gravitational acceleration with a
combination ofa T and T° scaling, with the potential to achieve even higher-order scalings. Moreover, we have
proposed an interferometer [77] with a pure T° scaling as acceleration sensor being sensitive to magnetic field
gradients. Indeed, these three setups serve as motivation for this article: rederiving their scaling behavior by
means of a representation-free description for interferometers in time- and state-dependent linear potentials.

Interestingly, also rotations and gravity gradients [78, 79] can lead to phase contributions, which are
proportional to T°. However, a discussion of these effects goes beyond the scope of this article.

1.2. An intuitive representation-free description of atom interferometers

In this article we develop a novel formalism based on the ideas and results presented in [80—82], valid for atoms
moving in any time- and state-dependent linear potential. In order to determine the phase and contrast of an
atom interferometer, the complete time evolution is usually split into pieces describing the time-evolution
resulting from its basic building blocks: beam splitters, mirrors, and free propagation. This is generally the case
within the path-integral approach [65], the ABCD formalism [83-85], and even in representation-free
approaches based on operator methods [80, 86].

Within a representation-free formalism the resulting product of the corresponding unitary operators may
lead to very complicated expressions, owing to the rise of nested commutators within the calculation as the
Hamiltonian governing the evolution of the atoms does usually not commute with itself at different times. In
contrast, our formalism involves time-dependent functions instead of operators. The action of the different
building blocks directly enter into these functions, which immediately determine the complete time-evolution.
Additionally, in our formalism momentum and phase changes imprinted by laser pulses and other external
potentials are both described in a coherent way.

Essentially, we present a methodology to construct only two pairs of time-dependent functions
{E,(¢), wy(t)}and {Fy(¢), w|(¢)} which we associate with the upper and lower branch of the interferometer,
respectively. Two closing conditions are determined solely by the difference 0F(t) = F,(t) — F(t) and lead to
general expressions for the phase and contrast of the interferometer in terms of §F(¢), F(t) = 1/2[E.(¢) + Fi(t)],
and 6w(t) = wy(®) — w(b).

1.3. Outline

First, we use in section 2 a representation-free approach [80-82, 86, 87] and introduce beam splitters, mirrors,
and free propagation in terms of unitary operators. We show how to combine these building blocks in order to
obtain a general expression for the phase and contrast of the interference pattern. Next, in section 3 we present
the details of our formalism describing atom interferometers exposed to time- and state-dependent linear
potentials. Using the resulting schematic rules, we paint a new description of atom interferometers in section 4.
Here we briefly describe the three types of atom interferometers mentioned before: (a) the MZ interferometer,
(b) the T°-interferometer, and (c) the continuous-acceleration bloch (CAB) interferometer, focusing on the
different experimental realizations that lead to their particular T scaling. For each interferometer type, we use
our formalism to calculate the T'dependence of the phase of the interferometer, thereby showing the versatility
and utility of our formalism. As a result of our analysis, we are also able to show that the CAB interferometer can
be viewed as a hybrid between the MZ interferometer and the T°-interferometer, which we discuss in section 5
before concluding in section 6.
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In order to keep our article focused on the essential ideas, we present detailed calculations in four
appendices. In appendix A we derive effective Hamiltonians corresponding to the upper and lower branch of the
atom interferometer. Next, we determine in appendix B the dynamics induced by these Hamiltonians and
analyse in appendix C the contrast and phase shift resulting from the interference of the two interferometer
branches. Finally, we discuss in appendix D the phase shift of the CAB interferometer in detail.

2. Atom interferometers

The basic working principle of an atom interferometer is to coherently split the atomic wave packet into several
components that probe the environment—especially the action of certain potentials such as the gravitational
one—and to finally recombine the different components. After recombination the interference signal contains
information about the interactions which have occurred within the interferometer.

In order to describe the atoms in our interferometer, we introduce an effective two-level system consisting of

the two orthogonal states |1) and |2). Moreover, including the center-of-mass motion of the atoms in the state
|k} (k = 1,2) described by |9, (¢)), we arrive at

() = [i) 1) + [2(D)12) (Y]

characterizing the entire atomic matter-wave at time t.

The three key steps in atom interferometry are (i) the initial preparation, (ii) the implementation of a certain
interferometer sequence, and (iii) the final read-out. Typically, in step (i) only the state | 1) is initially populated
and the read-out in step (iii) also measures the population of this state. The interferometer sequences discussed
in this article consist of two beam splitter pulses being separated by a period of free propagation, which may be
interrupted by a certain number of mirror pulses.

2.1. Building blocks of atom interferometers
2.1.1. Free propagation
During free propagation the atom experiences no transitions between the two states | 1) and |2). Therefore, the
corresponding Hamiltonian
62

o= 2@ 14 Vith 0 @ 1) {1 + Vi, ) © 12)(2 2)
m
is diagonal in the {|1), |2)}-basis with
1= 1) (1] + 12) (2] )

being the identity operator in the subspace spanned by these states. Here m denotes the atomic mass, and  and p
are the position and momentum operators of the atomic center-of-mass motion, respectively.
Generally, the atom might probe two different potentials

Vi(®, 1) = —F(DF + Jawi (1), (C))

which we both assume to be linear in position and are determined by the time-dependent functions Fi(¢) and
wi(f) corresponding to the state |k) (k = 1, 2). The term proportional to Fy(f) may describe the interaction of the
atom with a linear gravitational potential or the interaction of a magnetic dipole moment corresponding to the
state |k) with a magnetic field having a constant gradient [54, 77]. In the latter case the potentials Vi (£, ) become
state-dependent if the mean values of the magnetic dipole moments corresponding to the two internal states
differ. Specific examples of F;(f) appear later in sections 3 and 4.

On the other hand, the term proportional to wi(#) in equation (4) may include the energy of an internal
atomic state and additional time-dependent contributions due to, for instance, the interaction of magnetic-
sensitive states with a homogeneous magnetic field. However, in the interaction picture with respect to wy(t)
determined by the unitary operator

u, 1) = exp{ij;t dr[wi (M) (1] + wa(7)[2) <2|]}, (5)

the contribution 7uw(f) to the potential Vi (£, t), equation (4), can be absorbed in the time-evolution of the wave
function during the free propagation. Here ¢; denotes the initial time before applying the first beam splitter pulse.
Hence, in this picture equation (2) for the Hamiltonian reads

o2

- ZP_m © 1 — F(0)F @ [1){1] — B0)E @ [2) (2] ©
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leading to the evolution operator

@)

Bty 1) = (Ezz(tb, ta) 0 )

0 Eyi(ty, ta)

between the times ¢, and ,,. Here we have introduced the time evolution operator Ej (3, t,) corresponding to
the Hamiltonian

R p>
H = — — K@)t (8)
2m

withk = 1,2.

2.1.2. Beam-splitter and mirror pulses
In this section we describe perfect beam-splitter and mirror pulses for an atom interferometer. As it is often done
[80], we assume that these pulses are so short that the atomic center-of-mass motion during the pulses may be
neglected. As aresult, these pulses act instantaneously at a given time ;. Indeed, the interaction of an atom with a
near resonant electromagnetic field may fulfill this requirement and thus offers an experimental realization for
beam splitters (/2-pulse) and mirrors (7-pulse). However, we note that the consequences of a finite pulse
duration are discussed in [88, 89].

In order to describe the atom-light interaction we include the effects of a possible momentum transfer 7k
and alaser phase ¢(t)). Using the effective wave vector k and the effective phase

£
1) = 6(t) —witj+ [ drfws(r) — w(r)] ©)
ti
depending on the laser frequency wy, we obtain [80, 88, 90, 91] the unitary beam splitter operator
s 1 1 Ly
B(t) = —| . (10)
NG (L(tj) 1

in the frame defined by equation (5), assuming w, (t;) > w(t;). The operator B (t;) creates an equally weighted
superposition of the two states | 1) and |2) and is determined by the unitary operator

Li(t) = —iexp{Li[ki + ®(£)]}. (11)

Here the prefactor 1/+/2 in equation (10) ensures the unitarity of the operator B (@)).
A perfect mirror instead should create a perfect inversion of the populations of the states | 1) and |2). This
case is described by the unitary operator

(12)

. 0 L.
Sty = [ +(t1)]

L) o

with fi(tj) being defined by equation (11). Itis important to emphasize that these ideal beam-splitter and mirror
pulses imprint additional phases and lead to displacements in momentum of +#k without distortion of the
center-of-mass wave packet.

2.2. Interferometer sequence
We have now all the ingredients at hand to construct the atom interferometers discussed in detail in section 4.
Indeed, each interferometer consists of a period of free evolution (%, t;), an opening beam splitter pulse applied
attime t;, followed by anumber of n — 1 periods (¢, 1), (£2, t3), ..., (£, 1, t,,) of free evolution, being separated
byn — 2 mirror pulses applied at times #;(j = 2, ...,n — 1),and a closing beam splitter pulse applied at time t,,,
followed by a free evolution period (t,,, t;), as depicted in figure 1.

In order to describe such an interferometer sequence with instantaneous laser pulses, we use the building
blocks presented by equations (7), (10), and (12), and obtain the total evolution operator

Uts, 1) = Ete, t)BU)Et ta ) M) ... Ets, 1) M) Ety, 1) B(1) Et, 1) (13)

of this interferometer with the initial time #; < ¢, and the final time #; > ¢,
Now we use the facts that the free evolution operator £, equation (7), is diagonal and the operator M,
equation (12), is anti-diagonal in the {|1), |2} }-basis. In this case, the operator

~ ~ J N ~
Un = <1|u(tf) t1)|1> = E[Uu + Ull, (14)

describing the time evolution of the atom being prepared in |1) and detected in |1), is determined by the sum of
the evolution operators
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>

tn—1 tn tr T

Figure 1. A one-dimensional sketch of a space-time diagram of a general two-branch interferometer for a two-level atom having the
states |1) (dashed blue line) and |2) (solid red line), and being exposed to a time- and state-dependent linear potential. The atom

interacts with two beam splitter pulses at times t; and t,,and 7 — 2 mirror pulses at times¢; (j = 2, ..., n — 1).
Us = 2E11(te, ta) Bia(t) Ena(tus ) M1 (t—1) ... E1i(t3, 2)Mia(t2) Exa (2, 1) Bor(8) Evi (1, 1) (15)
for the upper branch and
Or = 2E0(tr, t)Bu(t) Eni (s ta)Mia(ta-1) <. En(ts, ) Mo (2) En(tz, 1) Bii(w) Eni (8, 1) (16)
for the lower branch of the interferometer with an even number of pulses. Here we have introduced the notation
Bix(t) = (B (1) k) (17)
and
Mi(t)) = (il M(@) k). (18)
With equations (10) and (12) we recast equations (15) and (16) in terms of the operator LAi(tj) as
Uu = En(te, ) Lo(t) Exay(ty ta ) La(ta1) .. Eni(ts, )L () Exa(t2, 1) Lo(0) En (5, 1) (19)
and
O = Eute, ta- ) L(tuo1) . Ena(ts, ) Li(02) Eni(t, 1), (20)
accordingly.
Similarly, for an odd number of pulses we obtain instead
Uu = En(te, ta)L(tuz1) ... Evi(ts, ) L(t2) Ena (2, 1) Lo (1) vy (8, 1) (21)
and
U = En(ts, tn) L(tn) Exy(tuy ta_1)Li(tu_1) ... Enp(ts, ) Li(02) By (12, 1) (22)

It is important to recall that the operators U, and Uj are unitary by construction and describe the time
evolution from t; to t¢for the upper and lower branch of the interferometer, respectively.

Next, we relate these operators Uy and Uj to the observables such as the contrast and phase of the
interferometer. Assuming an atom being prepared in the state |1) corresponding to the initial state

[W(5)) = Ii)[1), (23)

where |1;) describes the initial state of the center-of-mass motion, the probability P, (%) to observe atoms in the
state |1) after the closing beam splitter pulse (at t = t,,), as shown in figure 1, is thus given by

Py(te) = (Ut 1) (LD (0) = (W e, 1) 11) (1, 1) 10 (1), (24)
Applying equation (14), we arrive at

At oA 1
Pui(t0) = (104 Ol = 211 + C cos(@0)], (25)
where the contrast Cand phase ¢ of the interferometer are the modulus and argument of the matrix element
AT oA .
(iU Uley) = Ce™ (26)

of the operator product (AJIT U, determined by the initial state |¢/;) of the center-of-mass motion. In the case that
the atom is prepared in state |1), but measured in state |2), the probability reads

5
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Pu(ty) = %[1 — Ccos(80)]. 27)

3. An intuitive picture of the interferometer

3.1. Interferometer contrast and phase
In the preceding section we have shown that the contrast Cand the interferometer phase ¢ are both determined
by the matrix element (1);] UIT UuWJi)» equation (26). The operator Up, equations (19)—(22), describes the time
evolution along the upper (b = u)andlower (b = 1) branch of the interferometer. As shown in appendix A, this
operator can be associated with the effective Hamiltonian

02

Ay(t) = 2= — By(t)f + /wp (D) (28)
2m

determined by the time-dependent functions wy, () and Fy(#), accordingly. In appendix B we obtain the time-
evolution operator Uy (¢, t;) in terms of these functions, and find in appendix C a general expression for the
operator product

U 0, = exp [iA¢(tf)]D[6r<tf) - %(q — 1), 6p<tf>]. (29)
Here A¢(t) is a phase factor and
D[R, P] = exp [—ﬁi(Rﬁ — Pf)] (30)

is the displacement operator with arguments P and R being determined in equation (29) by the time-dependent
vectors

Sp(t) = ft dr SF(7) (1)

and
Sr(t) = % ft " dn ft " dr, SE(m) (32)

with
SE(t) = Fy(t) — Fi(D). (33)

Indeed, the vectors dp(¢) and ér(¢) correspond to the relative displacements in momentum and position
between the two classical trajectories associated with the two branches of the interferometer, respectively [82].
In order to maximize the interferometer contrast

R op(t
c= ‘<wi| R [ G4)
independently of the initial state |¢);), we require that the operator D in equation (34) is the identity operator,
which leads us to the closing conditions of the interferometer, that is
t
6p(t) = [ dr 8F(r) =0 (35)
ti
and
1 tf T
or(ty) = — f dn dn 6F(m) = 0, (36)
m Jy 4

or the relative displacements in momentum and position between the two branches should vanish at the final
time #. In this case we speak of a closed interferometer.

6
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Consequently, the interferometer phase

66 = A¢(tr) = 6¢y + 0¢, (37)
is a sum of two phases
oy = —ftf d7 bw(T) (38)
and
1 4 _
66, = ~ ft dr B(r)6r(r) (39)
with
bw(t) = wy(t) — wi(?) (40)
and
B(0) = SR + F(o)] (41

We emphasize that the interferometer phase 6¢ is independent of the initial state |¢/;) for a closed
interferometer. Moreover, for F being time-independent, the phase contribution §¢;, equation (39), is
proportional to the enclosed area between the upper and lower branch of the interferometer in the space-time
diagram, shown in figure 1. In the case that the two interferometer branches cross in space, it is the signed area
which is relevant. Needless to say that the general result derived in appendix C agrees with the considerations
presented in [81, 82] which are valid for both Raman and Bragg diffraction. In the special case of a closed
interferometer, equation (37) coincides with the result obtained within the semi-classical description [67].

3.2.Schematic rules
Now we are in the position to summarize our scheme in order to obtain the contrast and phase of the general
interferometer presented in figure 1.

The key ingredient of our method is the construction of only two pairs of time-dependent functions
{E,(¢), wu(t)}and {Fy(¢), w|(¢)} corresponding to the upper and lower branch of the atom interferometer,
accordingly, as depicted in figure 2. Here a dashed blue line indicates the state | 1) while a solid red line
corresponds to the state |2).

Since the initial state is assumed to be prepared in the state | 1), equation (23), both branches start from the
dashed line. The procedure to obtain the functions wy,(f) and Fy,(¢) (b = u, 1), as well as the contrast and phase of
the interferometer consists of four steps.

Step 1: Each function wy,(#) is the sum of all contributions arising from position-independent potentials and
consists of summands® having the form —®_ (£)6(t — ;) at the transition |1) — |2) (change from dashed
tosolidline) or & ()é(t — t;) at the transition |2) — |1) (change from solid to dashed line), where

() = B(t) F (42)

and ®(t)) is defined by equation (9). The difference éw(%), equation (40), of the functions wy,(#) for the upper
and lower branch determines the contribution d¢, equation (38), to the interferometer phase.

Step 2: Each function Fy(#) is the sum of all contributions (see footnote 6) presented in figure 2 originating from
(i) the free evolution between pulses applied at the times t = t;jand t = t;, , thatis F;(¢)II(¢|¢), t;1) (dashed
blue line) and F, () I1(¢|t;, tj1) (solid red line) for an atom in the state | 1) or |2), respectively, and (ii) the
momentum kick 7iké(t — t;) at the transition |1) — |2) (change from dashed to solid line), or —7iké(t — t;)
at the transition |2) — |1) (change from solid to dashed line).

Step 3: Obtain the difference 0F(#) of the functions F, () defined by equation (33), as well as the functions dp(#),
equation (31), and 6r(¢), equation (32), and check the two closing conditions (35) and (36).

Step 4(a): If the interferometer is closed, the contrast C = 1. Find the function F(¢) defined by equation (41),
which determines together with ér(#) the contribution é¢;, equation (39). The interferometer phase 6¢,
equation (37), is the sum of 6¢py and 6¢p; .

8 Here 6(f) denotes the Dirac delta function and I1(#|a, b) is the rectangular function of unit height on the interval (a, b) as defined in
equation (43).
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(a) \
z
2 -
1) 12)
it ta tn—1 tn
we = —d_(1)d(t — 1) P (1)3(t — to) b ()6 (t—ta) By (1)3 (t— )

Fo =+F T0(¢ |ty 60 )+hKS(t — t1)+FolL (¢ [ty to )—hKO(t — to) +FoT1 (¢ |ta, ts) .. +hKS (t — tn_1) +Foll (E|tn_1,tn) —hKd (t — t,) +F1IL(E [t tr)

(b) |
z
ce T )

1

D 2

tot t tn-1 th k1
o = (05 (1) AR5 ()
F = +F, 0 (|t £2) +IKG (t — to)+Foll (t|ta,ts)  —hKG (t — tn_1) +F 0 (¢ [ty t)

Figure 2. Upper (a) and lower (b) branch of the space-time diagram for the interferometer presented in figure 1. Below each diagram
we show a pair of the corresponding time-dependent functions wy,(¢) and Fy(¢) (b = u, 1). Each function wy(t) isa sum of all
contributions arising from position-independent potentials and contains (see footnote 6) the scalar terms . ()d(¢ — t;), as defined
by equations (9) and (42). Moreover, each function Fy(t) is a sum of (i) contributions FII(|¢), t;.1) describing the free evolution of
the atom in the state |k) (for k = 1,2), where |1) and |2) correspond to a dashed blue and solid red line, and (ii) the momentum kicks
+Iké(t — t;)and —hké(t — t)) for the transition 1) — [2)and |2) — |1), respectively. Herej = 1, ... n, where n is the number of
pulses.

Step 4(b): If the interferometer is not closed, then the contrast Cis given by equation (34) and depends on 6r(#),
Op(to), as well as the initial state |¢);). Its phase 6¢ is derived in appendix C.1.

4. A comparison of three atom interferometers

In this section we apply our formalism introduced in section 3 to the MZ interferometer
[4,5,54, 65,80, 84, 88, 92], the T°-interferometer [77], and the CAB interferometer [76]. We extend the analysis
of these interferometers discussed briefly in [77]. As a result of our formalism, we present a simple explanation of
the different scalings of the interferometer phase with respect to the total interferometer time 7. In particular, we
show that the CAB interferometer is a combination of the MZ and the T°-interferometer. Moreover, we discuss
the different experimental techniques used to imprint forces, namely Raman transitions, magnetic field
gradients, Bragg transitions, and Bloch oscillations.

In order to obtain a coherent description of these interferometers, we introduce the following family of
functions vanishing outside the interval (a, b)) witha < band ¢ = (a + b)/2, which are based on the Dirac delta
function é(¢).

+ Therectangular function
t
(e, b) = [ dris(—a) = o = b)) (43)

of unit height.
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Figure 3. (a) Space-time diagram of a standard Mach—Zehnder type interferometer in a linear potential for an atom having the two
internal states |1) and |2). The atom interacts with two shortlaser 7/2-pulses (att = O and ¢t = T) and aw-pulse (att = T/2), where T
is the total interferometer time. During each pulse the atom absorbs (emits) the momentum £k in combination with the transition

[1) — [2) (2) — |1)). The z-component of the relative displacements in (b) momentum ép(#), equation (55), and (c) position 8r(z),
equation (56), as a function of time ¢.

+ The triangular function
t
A(tla, b) = f dr[T(rla, ¢) — TI(r|c, b)] (44)

with the height (b — a)/2.

+ The piece-wise quadratic function
t
Qta, b) = [ dr[Ala, ) — AGrle, b)) (45)

with the height (b — a)*/16.

4.1. MZ interferometer

4.1.1. Description

We briefly review the physics underlying the basic MZ atom interferometer, emphasizing the points salient to
this article. In particular, we discuss the origin of the scaling of the interferometer phase with T°.

A standard MZ type atom interferometer is depicted in figure 3(a). For this interferometer type we focus on
the case of driving Raman transitions between two ground electronic states, labeled |1) and |2). Atoms entering
the interferometer have usually been prepared in the state |1). The atoms are subject to a beam-splitter pulse
applied at time #; = 0 which creates a coherent superposition of states |1), shown by a blue dashed curve in
figure 3(a), and |2), depicted by a red solid curve. Subsequently, the atoms evolve in the dark for a time T/2. Then
they experience a mirror pulse at t, = T/2, which causes the states to ‘flip’, thatis |1) — [2)and|2) — |1). The
atoms evolve again in the dark for another time T/2. Finally, the two arms of the interferometer are recombined
with a final beam splitter pulse at t; = T.

In the case of the MZ interferometer both states |1) and |2) are exposed to the same linear time-independent
potential leading to
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Fi(t) = Ey(t) = Fo (46)

for the functions F; »(#) in equations (4), (6), and (8).
This is the case for atoms being exposed to (i) the gravitational field [4, 5] with the constant gravitational
acceleration g, where Fy = mg, and (ii) the magnetic field

B(r) = (By + zV;B;)e, (47)

with constant gradient VB, and the unit vector e, in the z-direction” . The latter case leads to Fy = 1,V _B.e,,
when the atom has the same z-component of the mean value of the magnetic dipole moment p, = pi1, = po,
with p, = (k| f|k) (k = 1,2) for the states |1) and |2), as presented in [54].

As shown below, the relative displacement in momentum p(f) between the two branches of the
interferometer is piece-wise constant, figure 3(b), whereas the relative displacement in position r(¢) is piece-
wise linear in t, figure 3(c), leading to an interferometer phase scaling as T°.

4.1.2. Analysis of the M Z interferometer
According to Step 1 of our procedure (section 3.2), as well as to figures 2 and 3(a), we arrive at

wu(t) = —D_(0)6(¢) + <I>+(§)6(t - %) (48)
for the upper branch together with
wi(t) = —<I>,(§)6(t - %) + & ()6t — T) (49)
for the lower branch of the MZ interferometer determining the difference
T T T
dw(t) = —P_(0)6(r) + [CIL(E) + (I)_(E)]é(t - 5) - o (1ot —T) (50)

of wy(t) and wy(t). We make use of equations (38) and (42), and arrive at
opy = P(0) — 2@(%) + ®(T) (51)

describing the phase contribution arising from the position-independent potentials.
Next, we follow Step 2 of our analysis and identify according to figures 2 and 3(a) the functions

E,(t) = Fo + ﬁk[é(t) - 5(r - %)] (52)
for the upper and
Fi(t) = Fy + ﬁk[é(t - %) —6(t — T)] (53)
for the lower branch of the MZ interferometer having the difference
SF(t) = ﬁk[&(t) - 2(5(t - g) L8t — T)]. (54)

Next, we check the closing conditions for this interferometer. The difference SF(¢), equation (54), gives rise
to the time-dependent vectors for the relative displacement in momentum

op(t) = fzk[H(t ‘ 0, g) — H(t ’ g T)] (55)

shown in figure 3(b), and in position
or(t) = ﬁA(tlo, T), (56)
m

depicted in figure 3(c), according to equations (31) and (32). As evident from figures 3(b) and (c), and
equations (55) and (56), we immediately prove that

Here we use the notation V,B, = B, (r = 0) for the derivative of the z-component of the magnetic field B = B(r) along the z-direction at

the originr = 0. This derivative is assumed to be small compared to By, such that L|V,B,| < | By, where Lis the total length of the
interferometer. Moreover, we note that the form of the magnetic field given by equation (47) is an approximate one. Indeed, according to the
Maxwell equation V - B = 0, which is valid everywhere, a non-zero value of V_B. induces non-zero values of VB, and V,B,, such that
VB, + V,B, = —VB,, where B, and B, are the components of B along the x- and y-axis. However, in the limit of L|V,B,| < By the
magnetic field B given by equation (47) is approximately directed along the z-axis.

10
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Sp(t) = 6r(t) = 0 (57)

fort > T,thatisthe MZ interferometer is closed. Thus, the interferometer contrast C = 1 and the
interferometer phase

¢ = 6¢y + 69, (58)
is defined by equation (37), where ¢y is given by equation (51).
In order to determine d¢;, we consider the average
_ 7k
F(t) = Fy + 7[6(1‘) —6(t—T1)] (59)
of F(#), equation (52), and F(#), equation (53). According to equation (39) and by using equation (56) we arrive
at the second contribution to the interferometer phase

Rk
m

Fik

T k 5
56, = fo dr Ao, T) + [6r(0) — 8r(D)] = 25T (60)

arising from the linear potentials, where we have used the fact that 6r(0) = 6r(T) = 0and

T TZ
f dr A(r]0, T) = — (61)
0 4

being the area of a triangle with base T'and height T'/2 according to figure 3(c).
In the case of the gravitational field Fy = mgwith the gravitational acceleration g, we obtain for T = 2T the
familiar result kg5 [4, 5] for the phase 6, where T is the time between the first and second laser pulse.
Moreover, the combination of a gravitational field and a magnetic field of constant gradient VB, yields
F, = mg + .V _B.e, and we obtain the result of [54].

4.2. T3-interferometer
4.2.1. Description
We now move to the T°-interferometer [77] having an interferometer phase scaling purely as 7°.

The key idea of this interferometer is to apply constant linear potentials with different magnitude to each of
the two states |1) and |2). For this purpose we have suggested [77] to use two atomic states |1) and |2) having
different mean values of the magnetic dipole moment p, , and expose them to the magnetic field B,
equation (47), with constant gradient VB,

Thus, we obtain two different constant functions

F,=F) — %AF (62)
and
1
F, = F) + EAF (63)

assigned to the states |1) and |2), respectively, where

Fo = mg + %VZBZQ (64)
and
AF = (sz - le)szzez- (65)

The T°-interferometer, as depicted in figure 4(a), consists of two beam-splitter pulses at the times #; = 0 and
ty = T, while the two mirror pulses act at the times t, = T/4 and t; = 3T/4, where T'is again the total
interferometer time. The two mirror pulses are necessary to close the interferometer. Moreover, since co-
propagating Raman pulses are used as beam-splitter and mirror pulses, we assume that there is no transfer of
photon momentum to the atoms, that is we setk = 0.

As shown in figure 4(b), the relative displacement in momentum 6p(f) between the two arms of the
interferometer is now piece-wise linear in t, whereas the relative displacement in position ér(¢) presented in
figure 4(c) is piece-wise quadratic in t, leading to a total interferometer phase scaling as T°.

11
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Figure 4. (a) Space-time diagram of the T°-interferometer for an atom having two states |1) and |2) and interacting with two short
laser m/2-pulses (att = O and t = T)and two m-pulses (att = T/4and t = 3T/4), with T being the total interferometer time. We
assume that during the light pulses there is no transfer of photon momentum to the atoms. Instead, the two states |1) (dashed blue
line) and |2) (solid red line) are exposed to two different linear potentials. The z-component of the relative displacements in

(b) momentum ép(#), equation (73), and (c) position ér(f), equation (74), for the T°-interferometer as a function of the time t. The
area enclosed by the two interferometer branches in the space-time diagram is the same as the one of the dashed triangle.

4.2.2. Analysis of the T?-interferometer
According to Step 1 of our procedure (section 3.2) and to figures 2 and 4(a), we obtain the functions

wy(t) =—2_(0)6(1) + ®+(§)6(t - %)

- @,(%)6(1« - %) + & (T)6(t — T) (66)
for the upper branch, together with
T T 3T 3T
0= ()ofe- 1)+ ou(Z)o(e - ) 67
2 (4)( 4) 4 4 7

for the lower branch of the T®-interferometer, which determine the difference

T T T
Sw(t) = —® (0)6(t) + [@(Z) + ¢_(Z)]5(t - Z)
3T 3T 3T
- [(I)(T) 1 ¢+(T)]6(t - T) + & (T)8(t — T). (68)

By using equation (38), we obtain the first contribution to the interferometer phase
by = ©(0) — 2@(2) + 2<I>(E

4 4
being determined by the position-independent potentials, where the last term —7 is a result of the even number

of pulses used in this interferometer.
Next, we follow Step 2 of our procedure and obtain according to figures 2 and 4(a) the functions

o, %)« wne| £, 20} ¢ pan(e| 2. 1) 70)
4 4 4 4

) — () — (69)

R(t) = FZH(t

12
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for the upper branch, together with
T T 3T 3T
Fi(t) = FlII|t |0, — | + BII|t | —, — +FHt‘—,T 71
or=ra0.7) el | Z.57) w271 ”
for the lower branch of the T°-interferometer, leading to the difference

SF(t) = AF[H(t ‘ 0, Z) — H(t Z, ﬁ) + H(t ‘ i, T)] (72)
4 4 4 4

where we have used equations (62) and (63).
Next, we verify the closing conditions given by equations (35) and (36). Indeed, by applying equations (31)
and (32) we obtain the relative displacement in momentum

5p(t) = AF[A(t ‘ 0, g) - A(t ‘ L T)] 73)

shown in figure 4(b), and in position
5r(0) = 2L oo, 1) (74)
m

presented in figure 4(c). As evident from figures 4(b) and (¢), and equations (73) and (74), we obtain
op(¥) = 6r(t) =0 (75)
fort > T, thatis the T°-interferometer depicted in figure 4(a) is closed. Hence, its contrast C = 1 and its phase
66 = 66, + 66, (76)
is defined by equation (37), where §¢ is given by equation (69).
Now, we determine the phase contribution d¢, and thus consider the average
F(t) = FolIl(¢|0, T) (77)

of F(¢), equation (70), and Fy(¢), equation (71), where we have used equations (62) and (63). According to
equation (39) together with ér(#), equation (74), we obtain the phase contribution

FoAF T FoAF
5y = [ draaio, = T3 78
@ m  Jo i ) 327m 78)
arising from the linear potentials, where we have used the fact that
T T3
[ dramion=— (79)
0 32

being the area of a triangle with base T'and height T°/16 according to the one presented in figure 4(c) by a gray
dashed line.

These results entirely agree with the ones presented in [77] for Fy = %m (a1 + ay)e,, and AF = m(a, — a;)
e,, where ae, (k = 1,2) denotes the acceleration of the atom in the state |k) and T = 4T, with T; being the time
between the first two laser pulses.

Moreover, it is interesting to note that the functions 6F(t), equation (72), ép(f), equation (73), and ér(%),
equation (74), are identical to the ones presented in the context of a Stern—Gerlach interferometer [93-95],
where the time-dependence of these functions is not induced by applying mirror pulses, but by changing the
direction of the magnetic field gradient at the time 7/4 and 3T/4. In this scheme [93-95] only the case Fy = 0
has been considered, and thus the cubic scaling of the interferometer phase did not occur in the analysis of the
Stern—Gerlach interferometer.

4.3. CAB interferometer
4.3.1. Description
As pointed out in section 4.1, it is the fact that the relative displacement in position ér(¢) is piece-wise linear in ¢
thatleads to a T° scaling in a standard MZ interferometer. Motivated by this argument, McDonald et al [76]
suggested and implemented an interferometer in which the relative displacement ér(¢) between the two branches
is piece-wise proportional to agt® 4 B,t. Under these conditions, the interferometer phase scales as
a,T° + B, T* with oand 3; (i = 0, 1) being constant. The interferometer scheme is similar to the MZ style
interferometer, that is it employs the same pulse sequence with beam splitter pulsesatt;, = Oandt; = T,
separated by a mirror pulse at time t, = T/2. However, during the free evolution between the pulses, the state |1)
is exposed to a time-dependent linear potential.

In this work [76], the beam splitter and mirror pulses are created by Bragg diffraction resulting in a
momentum transfer £n#k,, where n is the diffractive order and 7k, is the momentum transfer for a first-order

13
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Figure 5. (a) Space-time diagram of the CAB interferometer for an atom having the states | 1) and |2), and interacting with two short
laser 7r/2-pulses (att = 0and t = T) andam-pulse (att = T/2). The state |1) (blue dashed line) is accelerated by a Bloch lattice, where
the arrows indicate the direction of acceleration. However, the state |2) (solid red line) is exposed to a constant linear potential. The
z-component of the relative displacements in (b) momentum ép(t), equation (88), and (c) position dr(¢), equation (89), for the CAB
interferometer as a function of the time t.

diffraction. After the first beam splitter pulse at t = 0, atoms in the momentum state labeled by |1) are loaded
into a stationary optical lattice during the time T, accelerated via Bloch oscillations for a time T}, before being
brought back to the initial acceleration during the time Ty The loading time T, and the deceleration time Tyare
very short compared to the acceleration time T},. The acceleration time T}, is hence approximately equal to the
time 7/4. In this way, the additional average acceleration

Aa = — 2m ik (80)
mT,

imprinted by the Bloch lattice could be reinterpreted as the action of an effective linear potential during the time
interval (0, T/4), where n;, is the number of the Bloch oscillations imprinted during the time T

Subsequently, as indicated by the arrows in figure 5(a), the direction of the acceleration Aa induced by the Bloch
lattice is inverted and the sequence is repeated for the interval (T/4, T/2). The lattice is moving sufficiently fast so
that the atoms in the momentum state labeled by |2) experience only a time-averaged potential from the Bloch
lattice which imparts no additional acceleration. In the following we will not consider the additional phase shift
imprinted by this potential.

Attime t = T/2 aBragg m-pulse acts as mirror pulse and the same acceleration sequence is now applied to
the other branch of the interferometer. A final 7 /2-pulse closes the interferometer.

Asaresult, atoms in the state |2) only experience a constant (background) linear potential described by

F, = Fo, (81)
whereas the time-dependent linear potential experienced by atoms in the state |1) is determined by
Fi(t) = Fy + AF[H(t ‘ 0, Z) — H(t Z, Z) + H(t Z, E) — H(t 2, T)] (82)
4 4 2 2 4 4
where
AF = mAa = —%. (83)
T

Here we neglect the loading time T, and the deceleration time T,

14



10P Publishing

NewJ. Phys. 21(2019) 073031 M Zimmermann et al

4.3.2. Analysis of the CAB interferometer

According to Step 1 of our procedure (section 3.2) and figures 2 and 5(a), we obtain the time-dependent
functions w,(f), equation (48), for the upper path and wi(t), equation (49), for the lower path identical to the ones
of the MZ interferometer discussed in section 4.1 as the same pulse sequence is used. Thus, we also arrive at the
same phase contribution

S¢hy = (0) — 2@(%) + &(T) (84)

for the CAB interferometer arising from the position-independent potentials.
Next, we follow Step 2 of our procedure and according to figures 2 and 5(a), we identify the functions

E () = ﬁk[&(t) - 6(t - g)] + FZH(t ’ 0, g) + Fl(t)H(t ‘ g, T) (85)
for the upper branch together with
Fi(t) = /ik[é(t - g) —6(t — T)] + Fl(t)H(t ’ 0, %) + FZH(t ‘ %, T) (86)

for the lower branch of the CAB interferometer, where F, and F, (¢) are given by equations (81) and (82),
respectively. The difference of F () and Fy(¢) yields10

SE(t) = ﬁk[é(r) _ 25( T) 48— T)]

t— —
2

—AFHt‘O,z — I} ¢ Z,ﬁ +Ht‘£,T . (87)
4 4 4 4
We observe that 0F(#) is a combination of the corresponding expressions for the MZ interferometer (section 4.1),
equation (54), and the T°-interferometer (section 4.2), equation (72).
In the next step, we check the closing conditions equations (35) and (36) for the CAB interferometer.

According to equations (31) and (32), we obtain the time-dependent vectors for the relative displacement in
momentum

T T T T
op(t) = ﬁk[H(r ‘ 0, z) — H(t ‘ X T)] — AF[A(t ‘ 0, E) - A(t ‘ > T)] (88)

shown in figure 5(b) and in position

or(t) = ﬁA(th, T) — EQ(HO, T) (89)
m m
presented in figure 5(c).
As aresult of equations (57) and (75), we immediately obtain
op(t) = or(t) =0 (90)

fort > T, resulting from the fact that both the MZ and the T°-interferometer are closed. Hence the CAB
interferometer is closed as well. Thus, its contrast C = 1 and its phase

0¢p = o, + 6¢, 91)
is defined by equation (37), where ¢y is given by equation (84).

In order to determine the phase ¢», we consider the average

B = X500 — 5 — T + MH(M T) 92)
m

of F,(£), equation (85), and Fy(t), equation (86). In contrast to the average functions F for the MZ interferometer,
equation (59), and the T°-interferometer, equation (77), which are constant in the interval 0 < t < T, due to the
time-dependence of F, (%), also the average F(t) is now time-dependent during the interferometer sequence.
However, as shown in appendix D, due to the symmetries of §r(£), equation (89), and F(t), only the constant
term Fyin F,, equation (81), and F(#), equation (82), will contribute to the phase shift ¢, arising from the linear
potentials. According to equation (39) we thus obtain the second contribution

10 Here we use IT%(t|a, b) = II(t|a, b), which s true for t = a, b. Moreover, I1(a|a, b) and I1(b|a, b) will not contribute to any integral
independent of their exact value.
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%TZ B FoAF T3
4m 32/m

to equation (91), which is a combination of the corresponding phases for the MZ interferometer, equation (60),
and the T°-interferometer, equation (78).

Inthecaseof T = 2T, F, = ma,k = 2nk;, where T| denotes the time between the first two pulsesand A F
is defined by equation (83) with 7y = T}/, this expression agrees with the one presented in [76].

Itis remarkable, that even in this special case of a time-dependent average function F(t), equation (92), the
phase 0¢ is again proportional to the enclosed area between the two branches in the space-time diagram of the
CAB interferometer.

5(151 = (93)

5. Discussion

Section 3 represents one of the main features of this article—a methodology to analyze an atom interferometer
consisting of two branches, assuming the atoms are exposed to linear potentials. More specifically, we
formulated the rules for constructing two pairs of time-dependent functions {E,(¢), w, (¢)}and {F(¢), w;(¢)}
corresponding to the upper and lower branch of the interferometer, which depend on the pulse protocol and the
(possible state-dependent) potentials the atoms move in. Once the potentials and the pulse sequence are
specified, the functions §w(t) = wy(t) — wi(®), B = Fy () — F(),and F(t) = %[Fu(t) + Fy(t)]are
completely determined.

The function 0F(#) defines the relative displacements in momentum ép(#) and position 6r(¢) of the two
interferometer branches. Thus, in order to fulfill the closing conditions given by equations (31) and (32), an
experimental control of the physical quantities determining 6F(¢) is necessary. Additionally, it is important to
emphasize that the closing conditions are independent of the functions §w(f) and F(t), and hence the
interferometer can be used to measure the physical quantities governing these functions. Under the condition
that the interferometer is closed, its contrast equals unity and the functions §w(%), F(t), and 6r(¢) are used to
determine the phase, equations (37), (38), and (39), of the interferometer, which is in this case independent of
the initial state. The power of our methodology is shown in section 4.

5.1. Review of the three atom interferometers

In section 4, we presented the analysis of three interferometers: (a) the MZ interferometer, (b) the
T’-interferometer, and (c) the CAB interferometer. For all three cases, we derived the expression for §F(f) given
by equations (54), (72) and (87), respectively, and used them to show that the interferometers are all closed.
Closing occurs when both the relative displacement in momentum ép(f) and position ér(t) between the two
branches of the interferometer vanishes for t > T, as demonstrated by equations (57), (75), and (90),
respectively.

Of greater significance are the phases of these interferometers. In all three cases, the interferometer phase is
written as the sum of two contributions: the phase ¢, determined by the laser phases and the position-
independent potentials, and the phase 6¢; due to the motion of the atoms in a linear potential.

We first focus on the expressions for the phase d¢,. For each type of interferometer this phase is given by
equation (51), (69), and (84), accordingly, and is reproduced here again for convenience:

5P = B (0) — 2@(%) + O(T), (94)
ST = ®(0) — 2@(%) + 2@(%) — ®(T) — T, (95)

T

5\ = @(0) — 2@(5) + ®(T), (96)

where a superscript indicates the corresponding interferometer.
Itis clear that the contribution for the CAB interferometer is identical to the one of the MZ interferometer,
beinga discrete second-order derivative of the function ®(T), that is

1
MZ) ~ 2
ogy " = Z(I)”(O)T (97)
asT — 0.However, for the T°-interferometer we obtain instead a discrete third-order derivative of ®(T), thatis

ST —%@///(0) TS — 1 98)
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as T — 0.Itisinteresting to note that the scaling with respect to T, and even the absolute value of the coefficients
in equations (97) and (98) agree with the values of the integrals (61) and (79) determining the phase ¢, for the
MZ and the T-interferometer, respectively.

We now turn to a discussion of the contribution 8¢, of each interferometer, equations (60), (78), and (93),
respectively, which we reproduce here for the ease of comparison:

Fok

spMP = —=—T2, (99)
4m
FyAF
ST — 10 T3, 100
4 327im (100
S = Fok o _ FoF 1y (101)
4m 32/m

By comparing equations (99), (100) and (101), we immediately see that the CAB interferometer can be
thought of as a hybrid between the standard MZ interferometer and the T°-interferometer. The phase for the
CAB interferometer is the sum of a contribution that scales as T, which is identical to the MZ Tz—phase, anda
contribution that scales as T°, which is identical to the T°-term of the T°-interferometer. However, it is
important to bear in mind that the force difference AF is caused by the application of a magnetic field gradient in
the case of the T°-interferometer, whereas it is generated by a Bloch lattice for the CAB interferometer.

5.2. Interpretation of the interferometer phase

Finally, we turn to an interpretation of the phase of the interferometer induced by the linear potentials.
Examining equation (39), we observe that the contribution 8¢, is the integral of the product F(¢) §r(¢) for ¢
between f; and #. In the case of F(¢) being time-independent for t; < t < t; as in the case of the MZ interferometer
and the T°-interferometer, this term is proportional to the enclosed area between the two branches in the space-
time diagram of the interferometer displayed in figures 3(a) and 4 (a). However, even in the special case of the
CAB interferometer where F(t) is time-dependent, the phase contribution §¢, is again proportional to the
enclosed area of the interferometer in the space-time diagram, as discussed in section 4.3.2 and shown in

figure 5(a).

The connection between the phase and the area enclosed by the interferometer in a space-time diagram was
also analyzed within the semi-classical approach [67]. Our results are derived using only knowledge of the
functions §F(#), dw(t), and F(t) and are completely consistent with the ones obtained in this reference.

Moreover, itis important to highlight that it is the signed area, which is relevant for the calculation of the
interferometer phase. For example in the Butterfly geometry [86] the signed area vanishes, and the resulting
interferometer phase becomes insensitive to F, assuming F is time-independent. Hence, this device might be
used to probe the influence of higher-order effects such as gravity gradients.

More generally, we can consider an interferometer having the pulse protocol g -T —...= 7= g, where
the first and the last two pulses are each separated by the time T and all other pulses have a separation time of
2T;. In the case that the force difference 6F is only determined by the momentum transfer Ak induced by the
laser pulses, the dependence of the interferometer phase on F is determined by the parity of the number of
pulses. For an odd number of pulses the interferometer phase depends on F, whereas for an even number of
pulses it is insensitive to a constant mean force F.

Intuitively, one might expect that the interferometer phase always scales with the enclosed area for a closed
interferometer and arbitrary time-dependent linear potentials. However, since the closing conditions of the
interferometer are only determined by 6F(¥), interferometers which are closed for a time-independent function F
will also be closed in the case that F(¢) is time-dependent. Therefore, the interferometer phase will in general not
scale as the enclosed area. Nevertheless, it is interesting to ask the question which information about the time-
dependent potentials determining F(¢) will be obtained by different interferometer schemes.

5.3. Limitations of our approach

In principle, we can consider within our approach additional effects such as finite pulse durations, gravity
gradients, and rotations. However, in the case of finite pulse durations, both the pulse profile and the atomic
motion during the atom-light interaction have to be taken into account, as discussed in [88, 89]. As a result,
equations (10) and (12) for the beam-splitter and mirror operators would have to be modified: (i) the mirror
operator, equation (12), will not have anti-diagonal form and instead contains also non-vanishing diagonal
elements. This corresponds to the case that after each pulse new branches appear and it is impossible to describe
the interferometer only based on two branches, as presented in our article. (ii) It is not any more possible to
interpret the action of the pulses as being induced by effective linear potentials. Indeed, in addition to a phase
shift and a displacement of the atomic center-of-mass wave packet in momentum as it is the case for a perfect
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beam-splitter or mirror, the resulting complicated potentials also lead to a state-dependent distortion of the
center-of-mass wave packet. The additional interferometer branches give rise to interferometer outputs
depending on the initial state of the atomic center-of-mass motion as well as the parameters of the pulse. We
emphasize that in most cases the resulting equations for an actual experimental setup can only be solved
numerically.

Moreover, we point out that the representation-free approach presented in [86] valid for state-independent
gravity gradients and rotations has already been generalized in [82] to state-dependent quadratic potentials. In
the future it would be of interest to consider these effects within our simplified treatment.

6. Conclusion

In conclusion, we have considered atom interferometers exposed to time- and state-dependent linear potentials.
We have studied the scaling of the output phase with T, the total interferometer time, for three types of atom
interferometers—the MZ, the T°-, and the CAB interferometer. To aid in the analysis, we have first developed a
new formalism based simply on functions that were derived from the knowledge of the potentials in which the
atoms move and the pulse sequence used for the interferometer. Our formalism leads directly to expressions for
closing conditions in both momentum and position, which allow to immediately determine if an interferometer
is closed. Additionally, the phase and contrast can also be obtained. We used this method to determine
expressions for the phase of the three types of interferometers mentioned. In particular, we derived the well-
known result that the phase of the MZ interferometer scales as T°. Our results also confirm the ones presented in
[77]. Here the phase for an interferometer using magnetically sensitive states with different mean values of the
magnetic dipole moment and being exposed to an applied magnetic field gradient scales as T°. Finally, we
showed that the recently demonstrated CAB interferometer [76] is a hybrid between the standard MZ
interferometer and the T°-interferometer.
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Appendix A. Effective Hamiltonians for two interferometer branches

In this appendix we derive the effective Hamiltonian Hj, corresponding to the unitary operator Uy,
equations (19)—(22), for the upper (b = u)and lower (b = 1) branch of the interferometer, respectively.

First, we note that the unitary operator B (tj11, tj) describing the free evolution of the atom in the state | k)
from the time ¢; to t;, 1, as defined by equations (6) and (7), is the time evolution operator of the Hamiltonian H;,
equation (8), withk = 1,2.

Second, following [80, 82], the unitary operator LAi(tj) given by equation (11) can be identified as an
evolution operator corresponding to the Hamiltonian

ALY = F/0d + D116 — 1), oy

where §(¢) denotes the Dirac delta function and

D(t) = D) T g (A.2)

Now we are in the position to consider the time-ordered product of the unitary operators L. and Ej, which
determines the operators U, and U.
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A.1. Effective Hamiltonians for an even number of pulses

In the case of an even number of pulses the operators U, and U, are given by equations (19) and (20). Using
equations (7), (8), (11) and (A.1), we arrive at the Hamiltonians

A, LSS,
~ (L _
Hi), o <t<t,
A, 4 <t<t,
~ (L _
a®, 5 <t<t,
N g + < o
Ap=4 B B<Ish (A.3)
~ (L _
AY, <<t
B, ot <t<t,,
L _
a®, t, <t<t,
A, tf<t<t,
and
I_Il’ [ g t g t;;
A (L
Hfr Lo <t<t,
. 3 + -
=4 T L<ish (A4)
~ (L _
avY o <t<t,
I_Ila tn 1<t <ty
or
N p?
Hy(t) = — — Fp(OT + Zawy (1), (A.5)
2m
for (b = u,1) with the time-dependent functions
(Fy, E<t<t,
+AKk6(t — 1), <t<t,
F,, th<t<ty,
—7ké(t — 1), , <t<ty),
Fy, L <t<t,
E() =4"" 2 = (A.6)
+AKS(t =ty 1), b <t<t
F,, th,o<t<t,,
—Ak6(t — t), t, <t<t,
| F1, t,m<t<t,
and
07 ti g t g tli’
(1)t —1n), 4 <t<t,
0, tt<t<t,
+P(1)6(t — 1), t; <t<t),
wy () = 3 : (A.7)
—® (D6t —t, ), t, < t<t
0, ti <t<t,,
+O. ()6t — t,), t, <t<t,
0, tr<t<t,
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for the upper branch, and

Fi() =+ :
—Ako(t — ty_1),
ka
and
O)
—d_(1)o(t — t),
w(t) = '

rFl:
+72ké6(t — 1),
FZ)

0,

E<t< L,
ty <t<t),
t<t<ty,

N

t<t<th,

t <t <t

tho<t<t,

M Zimmermann et al

(A.8)

(A.9)

for the lower branch of the interferometer. Here tji = t; = t. with an infinitesimally small positive time ¢. and

j=1..n

A.2. Effective Hamiltonians for an odd number of pulses

In the case of an odd number of pulses we arrive at a slightly modified result, namely

-

ti< tl >

SHoSh St
R +

A A A
-~ ~ = ~ =
INCINCIN NN

—ZKR(t = ty1)s by < E<t g

Fl)
+4Kké(t — 1),
FZ:
Ey(1) = 1 —hké(t — 1),
Fl)
\Fla
and
0,
=d ()6t — 1),
0,
wy(f) = 3

+.(06(1 — 1),

th o <t<tg,

ESESh,
o <t<t,
tt<t<t,
t, <t<t),

+D (6 — ty ), < t< b,

0, th o <t<t,
for the upper branch, as well as
rF], ] < t g t,
Ey, <t<ts,
Fi(t) = < : _

D= k6=t ), £, <t<th,

F,, ti, <t<t,,

—hkS(t —t,), t; <t<tf,

| Fi, <t <1,

(A.10)

(A.11)

(A.12)
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and
(0, E<t< 1,
—d (6 — 1), t <t<t),
wi(t) ==L (O — t, ), t,_ 1< t <t (A.13)
0, L <t<t,
+O, ()6 — ty), tn <t<t/,
0, ti<t<t,

for the lower branch of the interferometer.

As aresult, the two effective Hamiltonians I—AIu and 1:11, equation (A.5), for the upper and lower branch of the
interferometer describe the motion of a particle in a time-dependent linear potential with the time-dependent
functions F,(?), Fi(t), w, (1), and w(2).

Appendix B. Propagation in a time-dependent linear potential

The motion of a particle of mass /1 in a linear potential is determined by the Hamiltonian
a2

A = 2 — F@o)f + (), (B.1)
2m

with F(#) being a time-dependent vector and w(#) a time-dependent scalar function. We represent the
corresponding time evolution operator

Ut 1) = explig()] D[R(®), P()] T (t, 1) (B.2)
asaproduct [82, 83, 96] of the exponent of the phase factor ¢(¢), the displacement operator

DR, P] = exp [— %(Rf) - Pf)] (B.3)
depending on the displacements in position R(#) and momentum P(#), and the evolution operator
Us(t, ;) = ex —iﬁ—z(t - 1) (B.4)
o\t b P ﬁ m i .

for a free particle.
By following the approach presented in [82], we derive the equations for the time-dependent functions R(?),
P(#) and ¢(?) resulting from the Schrédinger equation

iﬁ%f](t, 5 =HnOUG ) (B.5)

for the operator U (t, t;) with the initial condition
U, t) =L (B.6)

For this purpose, we insert equation (B.2) into the left hand side of equation (B.5)

iﬁ%ﬁ(t, t) = {—fw&(t) + (iﬁ%ﬁ[R(o, P(t)])D*[R(t), P()]

A2 R
+ DIR@), P()]12—D'[R(1), P(t)]}
2m

x exp lig (D] DIR@®), P Ty (¢, 1), (B.7)
where a dot denotes the derivative with respect to t and we have used the identity
D[R, PID[R, P] = L (B.8)
The relation [97]
N d . I d
—exp[A(H)] = {EAU) + Z[A(t)’ EA(t)]
+ %[A(t), [A(t), %A(t)]] + ...}exp [A(D)] (B.9)

21



10P Publishing

NewJ. Phys. 21(2019) 073031 M Zimmermann et al

for the derivative of the exponential operator exp [A(1)] immediately gives rise to

(iﬁ%ﬁm(o, P(t)])15T [R(®), P()] = R — P()E + %[R(t)P(t) — POR®)]. (B.10)
Here we made use of the commutation relation

[Fs ﬁd] = iﬁéaﬂ (B.11)

for the components 7, of the position t and ﬁj of the momentum p operator (o, 5 = 1,2, 3), where 0,5 denotes
the Kronecker delta.
Next, we apply the Hadamard lemma [98]

eABeA =B + [A, B] + %[A, [A, B]] + ... (B.12)
for operators A and B together with the commutation relation equation (B.11), and obtain
N B2 4 1
DIR(z), P(1)] P p [R(#), P(1)] = —I[p — P()]. (B.13)
2m 2m
Asaresult, by using equations (B.5), (B.7), (B.10), and (B.13), we arrive at the relation
. | . . P(t). Pt .
~Hb() + RWP ~ POF + SIROPE) — POR®] - PO % — —F@OF + w()  (B14)
m m

for the unknown functions ¢(t), R(¢), and P(¢).
By comparing the coefficients in front of the operators p and t, as well as the remaining non-operator valued
contribution, we obtain

P(t) = E(1), (B.15)
R(t) = M, (B.16)
m

and

bt) = — L ROP@) — PO P2(1) _
O(1) = —w(t) + IROP@) ~ PORD] + — = =

—w(t) + iF(t)R(t). (B.17)

Note that equations (B.15) and (B.16) correspond to the classical equations of motion for a particle of mass m
having the momentum P(#) and position R(#) and being exposed to the time-dependent force F(t).
Using the initial conditions

R(H) =P(t) = ¢(t) =0 (B.18)

resulting from equations (B.2), (B.3), (B.4), and (B.6), we determine the functions

Py = [ dr (), (8.19)
R(t) = — f “dn 7 dn E(r), (B.20)
m Jy ti
and
o) = j: t dr[—w(T) + iF(T)R(r)]. (B.21)

Appendix C. Interference of two branches

In section 2 we show that the contrast and phase of the interferometer are determined by the product UlT U, of
the evolution operator Uy, corresponding to the Hamiltonian

A2
A1) = 2= — By(0)F + Zaoy (0). (C.1)
2m

Here Fy,(f) and wy,(#) are the time-dependent functions for the upper (b = u) and lower (b = 1) branch of the

interferometer, as discussed in section 3. In order to evaluate l}lT U, we again follow the approach presented
in [82].
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By using equation (B.2) of appendix B, we obtain

07 (¢, £)Ou(t, 1) = exp {i[o, (t) — &, (D]} Uy (5 t) D' [Ry(1), ()]

x D[Ry(t), Pu()]Us(t, 1) (C2)
with the functions
P,i(t) = f dr By (1), (C3)
1 t 7
Roi(f) = — f dn [ dm Ey(m) (C.4)
m ti t
and
f 1
G (1) = f dT[—wu,l(T) + EFu,lmRu,l(T)] (C.5)

given by equations (B.19)—(B.21) and corresponding to the upper and lower branch, respectively.
We first apply the commutation relation

DIR, P1Uy(t, t;) = Uy(t, a)D[R “Pan, P] (C.6)
m

and the identity
D[R, P] = D[R, —P] (C.7)
in order to rewrite equation (C.2) as

Pi(t)
m

Oy (¢, ) Uu(t, 1) = exp {ilo, (1) — ¢1(t)]}]§[_Rl(t) + (t— 1), _Pl(t)]

x D[Ru(t) ROy, m(r)], (C8)
m
where we have used the fact that
UJ(R t)Up(t, ) = L. (C.9)
In the next step, we use the identity
DIR;, P,]D[R,, Py] = exp[ﬁ(Ple - Ple)]D[Rl + Ry, P + Py (C.10)
for the displacement operator D[R, P]and recast equation (C.8)
07 (t, )0yt 1) = exp [iAqb(t)]ﬁ[ér(t) ) IO, 6p<t>] (C.11)
m
in terms of the relative displacements in momentum
t
Sp(t) = Pu(t) — Pi(t) = f dr 6F(r) (C.12)
ti
and position
1 t T
or(t) = Ry(t) — Ri(¥) = — f dn dm, 6F () (C.13)
m ti t
with
O6F(t) = K.(t) — Fi(v), (C.14)
as well as a phase factor
1
Ap(t) = ¢, (t) — ¢y(t) + E[Pu(t)Rl(t) — Pi(H)R(D]. (C.15)
With equation (C.5) we arrive at
"dr s L " 4rRR Fi(7)R C.16
t) — ¢(t) = — — L(TR(T) — .
$,(1) — H(1) f T 6w(r) + Zﬁf TR (DR(7) — B(DR(7)] (C.16)
with
bw(t) = wu(t) — wi(d). (C.17)
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= 1
F(t) = E[Fu(t) + Fi()] (C.18)
and rewriting
E(TRy(1) — Fi(T)Ry(1) = 2E(7)6r(7) + F(T)Ri(7) — Fi(T)Ru(7), (C.19)

we recast equation (C.16) as
b (1) — &(t) = ft dT[—(Sw(T) n l1‘:(7)&(7)] T ift dr[F(OR(F) — B(MRL(D].  (C.20)
u 1 - . % 27 . u 1 1 u . .

Now we show that the second integral in equation (C.20) equals the third term of the right-hand side of
equation (C.15). Indeed, by using equations (B.15) and (B.16) we obtain

— t: drR(IR() — BRI = 5 S " dr B (R — PIPRY(T)]

- %[Pua)Rl(t) ~ P(OR()] — % j: dr[B(MRI(r) — PiPRY()]
= LIB®R(®) - PORLODL. (C.21)
27
Asaresult, equation (C.15) finally reads

Ab(t) = ft dT[—éw(T) " %F(T)5I‘(T)i|

t

+ ${5P(t) [Ru(®) + Ri(D)] — r(n)[Pu(t) + Pi(5)]} (C22)

C.1. Contrast and phase of an open interferometer
The contrast Cand the phase 0¢ of an interferometer are determined by the matrix element

(W0} Ouley) = Cei®? (C.23)
of the operator product
UlT U, = UIT(tf) 1) Uy (t, 1) (C.29)

with respect to the initial state |1);), defined by equation (23), where #; and t;are the initial and final time of the
interferometer, respectively.
By using equation (C.11), we obtain the contrast

A op(¢
c= ‘ (i D[ et~ 22— 1), 5900 |10 ‘ (©25)
and the interferometer phase
o = Ap(te) + ép, (C.26)
where the wave packet independent contribution A ¢(#) is given by equation (C.22) and
N op(t
op= arg{wu D[ér(m - B ), 6p<tf>]|wi>} (€27)

describes the contribution depending on the initial state |1);). More details on open interferometers and wave
packet dependent phases can be found in [81, 82].

C.2. Contrast and phase of a closed interferometer
In the case of a closed interferometer, that is

op(tr) = or(tr) = 0, (C.28)

the displacement operator D in equations (C.25) and (C.27) is the identity implying C = 1. Moreover, the
interferometer phase becomes independent of the initial state |1);) and is given by

56 = Ao (1) = f " dT[—éw(T) + éF(T)(Sr(T)], (C.29)

t

where we have used equations (C.22), (C.27), and (C.28).
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AFrr(t)
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Figure D1. The function Jy;(t) defined by equation (D.3).

Appendix D. The phase d¢, for the CAB interferometer

In this appendix we derive the second contribution §¢), to equation (91) for the case of the CAB interferometer.
By using equations (81) and (82), we rewrite equation (92) (see footnote 8) as

_ 2k AF
F(t) = Fy + T}'I(t) + Tfn(l‘), (D.1)
where we introduced the functions
Fit)y=6@) — 6@t —T) (D.2)
and
Fu(t) = H(t‘ 0, Z) — H(t T T) + H( T ST) H(t‘ i, T), (D.3)
4 4 2 2 4 4
shown in figure D1.

As aresult, according to equation (39) and by using equations (89) and (D. 1), we obtain the second
contribution to equation (91)

1 Ig -
66, = = f dr B(r)6r(r) = 8y + 8y + Sy (D.4)

as a sum of three contributions determined by the corresponding terms in F(¢), equation (D.1).
The first contribution to the phase 6¢,, equation (D.4), reads

1 ke

O0py = — d7 Fobr(7)
7 Jy

_ Fok FoAF FoAF

dr Q(rlo, T T2 022 s, D.5

°E [ 4 acrlo, 1) = o (D)

f dr A(7]0, T) —

where we have used equations (61) and (79).
The second contribution §¢; to the phase ¢, is governed by the function F(7), equation (D.2), that s

k 4
Sp; = > dr Fi(r)ér(7)

L

:ﬁ—kz[/\(ﬂo T) — A(0[0, T)] — kA—F[Q(Tm T) — Q(0]0, T)] = 0 (D.6)

with A(0]|0, T) = A(T|0, T) = 0and Q(0]0, T) = Q(T]0, T) = 0.
The third contribution 6y to the phase §¢, is governed by the function Fy(t), equation (D.3), thatis

T T
by = ZA—; fo dr Fu(r)oér(r) = % fo dr’ Fi(T — 7)ér(T — 7') = 0. (D.7)

Here we have used the fact that
or(t) = 6r(T — 1) (D.8)
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and
Fu(®) = =Fu(T — ). (D.9)

Indeed, 6r(¢) is shown in figure 5(c) and consists of the functions A(¢|0, T), defined by equation (44), and
Q(t|0, T), defined by equation (45), which are even with respect to the point t = T/2. Moreover, as depicted in
figure D1, the function Fyi(¢), equation (D.3), is odd with respect to the point t = T/2.

Finally, according to equations (D.4)—(D.7), we obtain
8, = bp, = %TZ — M]ﬁ

(D.10)
4m 32/m

for the second contribution to equation (91).
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