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Abstract
In this article we present a new representation-free formalism, which can significantly simplify the
analysis of interferometers comprised of atomsmoving in time-dependent linear potentials.We
present amethodology for the construction of two pairs of time-dependent functions that, once
determined, lead to two conditions for the closing of the interferometer, and determine the phase and
the contrast of the resultant interference. Using this new formalism,we explore the dependency of the
interferometer phase on the interferometer timeT for different atom interferometers. By now, it is
well established that light pulse atom interferometers of the typefirst demonstrated byKasevich and
Chu (1991 Phys. Rev. Lett. 67, 181–4; 1992Appl. Phys.B 54, 321–32), henceforth referred to asMach–
Zehnder (MZ) atom interferometers, have a phase scaling asT2. A few years ago,McDonald et al (2014
Europhys. Lett. 105, 63001)have experimentally demonstrated a novel type of atom interferometer,
referred to as the continuous-acceleration bloch (CAB) interferometer, where the phase reveals a
mixed scalingwhich is governed by a combination ofT2 andT3.Moreover, we have recently proposed
a different type of atom interferometer (Zimmermann et al 2017Appl. Phys.B 123, 102), referred to as
theT3-interferometer, which has a pure T3 scaling, as demonstrated theoretically. Finally, we conclude
that theCAB interferometer can be shown to be a hybrid of the standardMZ interferometer and the
T3-interferometer.

1. Introduction

Atom interferometers [1–3] and in particular light pulse atom interferometers [4, 5]were first demonstrated in
1991. Since then different technologies and interferometer schemes have emerged, driven by the demand of
high-sensitivity devices for precisionmeasurements. In this article we compare three atom interferometers
sensitive to linear accelerations bymeans of a novel formalism,which provides uswith an intuitive picture for
the scaling of their particular interferometric phase shift with respect to the interferometer timeT7.

1.1. Enhancing the sensitivity of atom interferometers
Because of their extreme interferometric sensitivity, atom interferometers have been used to preciselymeasure
physical quantities such as the polarizability of alkali atoms [6–9], the ‘magic wavelength’ for potassium,
rubidium and calcium [10–12], Planck’s constant to the cesiummass ratio h/mCs [13], thefine structure
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constant [14–18], and theNewtonian gravitational constant [19–22]. On amore applied side, there has been
much activity in the development of interferometers as sensors of acceleration [23–43], rotation [44–47], gravity
gradients [48–53], magnetic fields andmagnetic field gradients [54–58], and dual accelerometer/gyroscopes
[59–61]. Some of theseworks have been reviewed in [62, 63].

Despite the already demonstrated exquisite sensitivity of an atom interferometer, there are variousways to
push it even further. The interferometer sensitivity usually depends on themass of the particles in the
interferometer [64], so using heavier atoms (e.g. rubidiumor cesium instead of sodium) is one straightforward
way for improvement. The sensitivity of the interferometer with respect to a constant acceleration or rotation
also depends on the area enclosed by the interferometer [65–67]. This is due to the fact that light pulses not only
create a coherent superposition of electronic states, but also transfermomentum. As a consequence, one finds
the corresponding phase contribution to scale as the enclosed space-time area. Therefore, there have been
several demonstrations of large-area interferometers by using composite and othermore exotic pulses inducing
a largemomentum transfer [68–75].

For an interferometer in the conventionalMach–Zehnder (MZ) configuration, for instance, the enclosed
area scales asT2, whereT is the total time of the interferometer. However, instead of increasing the effective
momentum transferred by the pulses, there is an alternate way to improve the sensitivity of an interferometer by
changing the interferometer scheme in order to achieve a different scaling of the phasewith respect toT.
McDonald et al [76] have demonstrated an interferometermeasuring the gravitational accelerationwith a
combination of aT2 andT3 scaling, with the potential to achieve even higher-order scalings.Moreover, we have
proposed an interferometer [77]with a pure T3 scaling as acceleration sensor being sensitive tomagnetic field
gradients. Indeed, these three setups serve asmotivation for this article: rederiving their scaling behavior by
means of a representation-free description for interferometers in time- and state-dependent linear potentials.

Interestingly, also rotations and gravity gradients [78, 79] can lead to phase contributions, which are
proportional toT3. However, a discussion of these effects goes beyond the scope of this article.

1.2. An intuitive representation-free description of atom interferometers
In this article we develop a novel formalismbased on the ideas and results presented in [80–82], valid for atoms
moving in any time- and state-dependent linear potential. In order to determine the phase and contrast of an
atom interferometer, the complete time evolution is usually split into pieces describing the time-evolution
resulting from its basic building blocks: beam splitters,mirrors, and free propagation. This is generally the case
within the path-integral approach [65], the ABCD formalism [83–85], and even in representation-free
approaches based on operatormethods [80, 86].

Within a representation-free formalism the resulting product of the corresponding unitary operatorsmay
lead to very complicated expressions, owing to the rise of nested commutators within the calculation as the
Hamiltonian governing the evolution of the atoms does usually not commutewith itself at different times. In
contrast, our formalism involves time-dependent functions instead of operators. The action of the different
building blocks directly enter into these functions, which immediately determine the complete time-evolution.
Additionally, in our formalismmomentum and phase changes imprinted by laser pulses and other external
potentials are both described in a coherent way.

Essentially, we present amethodology to construct only two pairs of time-dependent functions
w{ ( ) ( )}t tF ,u u and w{ ( ) ( )}t tF ,l l whichwe associate with the upper and lower branch of the interferometer,

respectively. Two closing conditions are determined solely by the difference δF(t)≡Fu(t)−Fl(t) and lead to
general expressions for the phase and contrast of the interferometer in terms of δF(t), º +¯ ( ) [ ( ) ( )]t t tF F F1 2 u l ,
and δω(t)≡ωu(t)−ωl(t).

1.3.Outline
First, we use in section 2 a representation-free approach [80–82, 86, 87] and introduce beam splitters,mirrors,
and free propagation in terms of unitary operators.We showhow to combine these building blocks in order to
obtain a general expression for the phase and contrast of the interference pattern. Next, in section 3we present
the details of our formalismdescribing atom interferometers exposed to time- and state-dependent linear
potentials. Using the resulting schematic rules, we paint a newdescription of atom interferometers in section 4.
Herewe briefly describe the three types of atom interferometersmentioned before: (a) theMZ interferometer,
(b) theT3-interferometer, and (c) the continuous-acceleration bloch (CAB) interferometer, focusing on the
different experimental realizations that lead to their particularT scaling. For each interferometer type, we use
our formalism to calculate theT dependence of the phase of the interferometer, thereby showing the versatility
and utility of our formalism. As a result of our analysis, we are also able to show that theCAB interferometer can
be viewed as a hybrid between theMZ interferometer and theT3-interferometer, whichwe discuss in section 5
before concluding in section 6.
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In order to keep our article focused on the essential ideas, we present detailed calculations in four
appendices. In appendix Awe derive effectiveHamiltonians corresponding to the upper and lower branch of the
atom interferometer. Next, we determine in appendix B the dynamics induced by theseHamiltonians and
analyse in appendix C the contrast and phase shift resulting from the interference of the two interferometer
branches. Finally, we discuss in appendixD the phase shift of theCAB interferometer in detail.

2. Atom interferometers

The basic working principle of an atom interferometer is to coherently split the atomicwave packet into several
components that probe the environment—especially the action of certain potentials such as the gravitational
one—and tofinally recombine the different components. After recombination the interference signal contains
information about the interactions which have occurredwithin the interferometer.

In order to describe the atoms in our interferometer, we introduce an effective two-level system consisting of
the two orthogonal states ñ∣1 and ñ∣2 .Moreover, including the center-of-massmotion of the atoms in the state
ñ∣k (k=1, 2) described by y ñ∣ ( )tk , we arrive at

y yY ñ = ñ ñ + ñ ñ∣ ( ) ∣ ( ) ∣ ∣ ( ) ∣ ( )t t t1 2 11 2

characterizing the entire atomicmatter-wave at time t.
The three key steps in atom interferometry are (i) the initial preparation, (ii) the implementation of a certain

interferometer sequence, and (iii) thefinal read-out. Typically, in step (i) only the state ñ∣1 is initially populated
and the read-out in step (iii) alsomeasures the population of this state. The interferometer sequences discussed
in this article consist of two beam splitter pulses being separated by a period of free propagation, whichmay be
interrupted by a certain number ofmirror pulses.

2.1. Building blocks of atom interferometers
2.1.1. Free propagation
During free propagation the atom experiences no transitions between the two states ñ∣1 and ñ∣2 . Therefore, the
correspondingHamiltonian

 = Ä + Ä ñá + Ä ñáˆ ˆ (ˆ ) ∣ ∣ (ˆ ) ∣ ∣ ( )
m

V t V t
p

r r
2

, 1 1 , 2 2 20

2

1 2

is diagonal in the ñ ñ{∣ ∣ }1 , 2 -basis with

 = ñá + ñá∣ ∣ ∣ ∣ ( )1 1 2 2 3

being the identity operator in the subspace spanned by these states. Herem denotes the atomicmass, and r̂ and p̂
are the position andmomentumoperators of the atomic center-of-massmotion, respectively.

Generally, the atommight probe two different potentials

w= - +(ˆ ) ( ) ˆ ( ) ( )V t t tr F r, , 4k k k

whichwe both assume to be linear in position and are determined by the time-dependent functions ( )tFk and
ωk(t) corresponding to the state ñ∣k (k=1, 2). The termproportional to Fk(t)may describe the interaction of the
atomwith a linear gravitational potential or the interaction of amagnetic dipolemoment corresponding to the
state ñ∣k with amagnetic field having a constant gradient [54, 77]. In the latter case the potentials (ˆ )V tr,k become
state-dependent if themean values of themagnetic dipolemoments corresponding to the two internal states
differ. Specific examples of Fk(t) appear later in sections 3 and 4.

On the other hand, the termproportional toωk(t) in equation (4)may include the energy of an internal
atomic state and additional time-dependent contributions due to, for instance, the interaction ofmagnetic-
sensitive states with a homogeneousmagnetic field.However, in the interaction picturewith respect toωk(t)
determined by the unitary operator

 ò t w t w t= - ñá + ñá
⎧⎨⎩

⎫⎬⎭ˆ ( ) [ ( )∣ ∣ ( )∣ ∣] ( )( )
t t, exp i d 1 1 2 2 , 5

t

tI
i 1 2

i

the contribution ÿωk(t) to the potential (ˆ )V tr,k , equation (4), can be absorbed in the time-evolution of thewave
function during the free propagation. Here ti denotes the initial time before applying the first beam splitter pulse.
Hence, in this picture equation (2) for theHamiltonian reads

 = Ä - Ä ñá - Ä ñáˆ ˆ ( ) ˆ ∣ ∣ ( ) ˆ ∣ ∣ ( )
m

t t
p

F r F r
2

1 1 2 2 6
2

1 2

3
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leading to the evolution operator

 =
⎛
⎝⎜

⎞
⎠⎟

ˆ ( )
ˆ ( )

ˆ ( )
( )t t

E t t

E t t
,

, 0

0 ,
7b a

b a

b a

22

11

between the times ta and tb. Herewe have introduced the time evolution operator ˆ ( )E t t,kk b a corresponding to
theHamiltonian

= -ˆ ˆ ( ) ˆ ( )H
m

t
p

F r
2

8k k

2

with k=1, 2.

2.1.2. Beam-splitter andmirror pulses
In this sectionwe describe perfect beam-splitter andmirror pulses for an atom interferometer. As it is often done
[80], we assume that these pulses are so short that the atomic center-of-massmotion during the pulsesmay be
neglected. As a result, these pulses act instantaneously at a given time tj. Indeed, the interaction of an atomwith a
near resonant electromagnetic fieldmay fulfill this requirement and thus offers an experimental realization for
beam splitters (p 2-pulse) andmirrors (p-pulse). However, we note that the consequences of a finite pulse
duration are discussed in [88, 89].

In order to describe the atom-light interactionwe include the effects of a possiblemomentum transfer ÿk
and a laser phasef(tj). Using the effective wave vector k and the effective phase

òf w t w t w tF = - + -( ) ( ) [ ( ) ( )] ( )t t t d 9j j j
t

t

L 2 1
j

i

depending on the laser frequency wL, we obtain [80, 88, 90, 91] the unitary beam splitter operator

 =
+

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( )

ˆ ( )
ˆ ( )

( )t
L t

L t

1

2

1

1
10j

j

j

in the frame defined by equation (5), assuming w w>( ) ( )t tj j2 1 . The operator ̂( )tj creates an equally weighted
superposition of the two states ñ∣1 and ñ∣2 and is determined by the unitary operator

= -  + Fˆ ( ) { [ ˆ ( )]} ( )L t tkriexp i . 11j j

Here the prefactor 1 2 in equation (10) ensures the unitarity of the operator ̂( )tj .
A perfectmirror instead should create a perfect inversion of the populations of the states ñ∣1 and ñ∣2 . This

case is described by the unitary operator

 =
+

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( )

ˆ ( )
ˆ ( )

( )t
L t

L t

0

0
12j

j

j

with ˆ ( )L tj being defined by equation (11). It is important to emphasize that these ideal beam-splitter andmirror
pulses imprint additional phases and lead to displacements inmomentumof±ÿkwithout distortion of the
center-of-mass wave packet.

2.2. Interferometer sequence
Wehave now all the ingredients at hand to construct the atom interferometers discussed in detail in section 4.
Indeed, each interferometer consists of a period of free evolution (ti, t1), an opening beam splitter pulse applied
at time t1, followed by a number of n−1 periods (t1, t2), (t2, t3),K, (tn−1, tn) of free evolution, being separated
by n−2mirror pulses applied at times tj ( j=2,K, n−1), and a closing beam splitter pulse applied at time tn,
followed by a free evolution period (tn, tf), as depicted infigure 1.

In order to describe such an interferometer sequence with instantaneous laser pulses, we use the building
blocks presented by equations (7), (10), and (12), and obtain the total evolution operator

         = ¼- -ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )t t t t t t t t t t t t t t t t, , , , , , 13n n n n nf i f 1 1 3 2 2 2 1 1 1 i

of this interferometer with the initial time ti<t1 and thefinal time tf>tn.
Nowwe use the facts that the free evolution operator ̂ , equation (7), is diagonal and the operator ̂,

equation (12), is anti-diagonal in the ñ ñ{∣ ∣ }1 , 2 -basis. In this case, the operator

= á ñ º +ˆ ∣ ˆ ( )∣ [ ˆ ˆ ] ( )U t t U U1 , 1
1

2
, 1411 f i u l

describing the time evolution of the atombeing prepared in ñ∣1 and detected in ñ∣1 , is determined by the sumof
the evolution operators

4
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= ¼- -ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )U E t t B t E t t M t E t t M t E t t B t E t t2 , , , , , 15n n n n nu 11 f 12 22 1 21 1 11 3 2 12 2 22 2 1 21 1 11 1 i

for the upper branch and

= ¼- -ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )U E t t B t E t t M t E t t M t E t t B t E t t2 , , , , , 16n n n n nl 11 f 11 11 1 12 1 22 3 2 21 2 11 2 1 11 1 11 1 i

for the lower branch of the interferometer with an evennumber of pulses.Here we have introduced the notation

º á ñˆ ( ) ∣ ˆ ( )∣ ( )B t i t k 17ik j j

and

º á ñˆ ( ) ∣ ˆ ( )∣ ( )M t i t k . 18ik j j

With equations (10) and (12)we recast equations (15) and (16) in terms of the operator ˆ ( )L tj as

= ¼- - + - - +ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )U E t t L t E t t L t E t t L t E t t L t E t t, , , , , 19n n n n nu 11 f 22 1 1 11 3 2 2 22 2 1 1 11 1 i

and

= ¼- - - +ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )U E t t L t E t t L t E t t, , , , 20n nl 11 f 1 1 22 3 2 2 11 2 i

accordingly.
Similarly, for an odd number of pulses we obtain instead

= ¼- - - - +ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )U E t t L t E t t L t E t t L t E t t, , , , 21n nu 11 f 1 1 11 3 2 2 22 2 1 1 11 1 i

and

= ¼- - + - +ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )U E t t L t E t t L t E t t L t E t t, , , , . 22n n n n nl 11 f 22 1 1 22 3 2 2 11 2 i

It is important to recall that the operators Ûu and Ûl are unitary by construction and describe the time
evolution from ti to tf for the upper and lower branch of the interferometer, respectively.

Next, we relate these operators Ûu and Ûl to the observables such as the contrast and phase of the
interferometer. Assuming an atombeing prepared in the state ñ∣1 corresponding to the initial state

yY ñ = ñ ñ∣ ( ) ∣ ∣ ( )t 1 , 23i i

where y ñ∣ i describes the initial state of the center-of-massmotion, the probability P11(tf) to observe atoms in the
state ñ∣1 after the closing beam splitter pulse (at t=tn), as shown infigure 1, is thus given by

 = áY ñá Y ñ = áY ñá Y ñ( ) ( )∣ ∣ ( ) ( )∣ ˆ ( )∣ ∣ ˆ ( )∣ ( ) ( )†
P t t t t t t t t t1 1 , 1 1 , . 2411 f f f i f i f i i

Applying equation (14), we arrive at

y y df= á ñ = +( ) ∣ ˆ ˆ ∣ [ ( )] ( )†
P t U U C

1

2
1 cos , 2511 f i 11 11 i

where the contrastC and phase δf of the interferometer are themodulus and argument of thematrix element

y yá ñ º df∣ ˆ ˆ ∣ ( )†
U U Ce 26i l u i

i

of the operator product ˆ ˆ†
U Ul u determined by the initial state y ñ∣ i of the center-of-massmotion. In the case that

the atom is prepared in state ñ∣1 , butmeasured in state ñ∣2 , the probability reads

Figure 1.Aone-dimensional sketch of a space-time diagramof a general two-branch interferometer for a two-level atomhaving the
states ñ∣1 (dashed blue line) and ñ∣2 (solid red line), and being exposed to a time- and state-dependent linear potential. The atom
interacts with two beam splitter pulses at times t1 and tn and -n 2 mirror pulses at times tj ( = ¼ -j n2, , 1 ).
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df= -( ) [ ( )] ( )P t C
1

2
1 cos . 2721 f

3. An intuitive picture of the interferometer

3.1. Interferometer contrast andphase
In the preceding sectionwe have shown that the contrastC and the interferometer phase δf are both determined

by thematrix element y yá ñ∣ ˆ ˆ ∣†
U Ui l u i , equation (26). The operator Ûb, equations (19)–(22), describes the time

evolution along the upper (b=u) and lower (b=l) branch of the interferometer. As shown in appendix A, this
operator can be associatedwith the effectiveHamiltonian

w= - +ˆ ( ) ˆ ( ) ˆ ( ) ( )H t
m

t t
p

F r
2

28b

2

b b

determined by the time-dependent functionsωb(t) andFb(t), accordingly. In appendix Bwe obtain the time-
evolution operator ˆ ( )U t t,b i in terms of these functions, andfind in appendix C a general expression for the
operator product

f d
d

d= D - -
⎡
⎣⎢

⎤
⎦⎥ˆ ˆ [ ( )] ˆ ( ) ( ) ( ) ( ) ( )†

U U t D t
t

m
t t tr

p
pexp i , . 29l u f f

f
f i f

HereΔf(tf) is a phase factor and


= - -

⎡
⎣⎢

⎤
⎦⎥ˆ [ ] ( ˆ ˆ) ( )D R P Rp Pr, exp

i
30

is the displacement operator with argumentsP andR being determined in equation (29) by the time-dependent
vectors

òd t d t=( ) ( ) ( )tp Fd 31
t

t

i

and

ò òd t t d t=
t

( ) ( ) ( )t
m

r F
1

d d 32
t

t

t
1 2 2

i i

1

with

d º -( ) ( ) ( ) ( )t t tF F F . 33u l

Indeed, the vectors δp(t) and δr(t) correspond to the relative displacements inmomentum and position
between the two classical trajectories associatedwith the two branches of the interferometer, respectively [82].

In order tomaximize the interferometer contrast

y d
d

d y= á - - ñ
⎡
⎣⎢

⎤
⎦⎥∣ ˆ ( ) ( ) ( ) ( ) ∣ ( )C D t

t

m
t t tr

p
p, 34i f

f
f i f i

independently of the initial state y ñ∣ i , we require that the operator D̂ in equation (34) is the identity operator,
which leads us to the closing conditions of the interferometer, that is

òd t d t= =( ) ( ) ( )tp Fd 0 35
t

t

f
i

f

and

ò òd t t d t= =
t

( ) ( ) ( )t
m

r F
1

d d 0, 36
t

t

t
f 1 2 2

i

f

i

1

or the relative displacements inmomentum and position between the two branches should vanish at the final
time tf. In this case we speak of a closed interferometer.

6
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Consequently, the interferometer phase

df f df df= D = +( ) ( )t 37f 0 1

is a sumof two phases

òdf t dw tº - ( ) ( )d 38
t

t

0
i

f

and

 òdf t t d tº ¯ ( ) ( ) ( )F r
1

d 39
t

t

1
i

f

with

dw w wº -( ) ( ) ( ) ( )t t t 40u l

and

º +¯ ( ) [ ( ) ( )] ( )t t tF F F
1

2
. 41u l

Weemphasize that the interferometer phase δf is independent of the initial state y ñ∣ i for a closed
interferometer.Moreover, for F̄ being time-independent, the phase contribution δf1, equation (39), is
proportional to the enclosed area between the upper and lower branch of the interferometer in the space-time
diagram, shown infigure 1. In the case that the two interferometer branches cross in space, it is the signed area
which is relevant. Needless to say that the general result derived in appendix C agrees with the considerations
presented in [81, 82]which are valid for both Raman andBragg diffraction. In the special case of a closed
interferometer, equation (37) coincides with the result obtainedwithin the semi-classical description [67].

3.2. Schematic rules
Nowwe are in the position to summarize our scheme in order to obtain the contrast and phase of the general
interferometer presented infigure 1.

The key ingredient of ourmethod is the construction of only two pairs of time-dependent functions
w{ ( ) ( )}t tF ,u u and w{ ( ) ( )}t tF ,l l corresponding to the upper and lower branch of the atom interferometer,

accordingly, as depicted infigure 2.Here a dashed blue line indicates the state ñ∣1 while a solid red line
corresponds to the state ñ∣2 .

Since the initial state is assumed to be prepared in the state ñ∣1 , equation (23), both branches start from the
dashed line. The procedure to obtain the functionsωb(t) and Fb(t) (b=u, l), as well as the contrast and phase of
the interferometer consists of four steps.

Step 1: Each functionωb(t) is the sumof all contributions arising fromposition-independent potentials and
consists of summands8 having the form−Φ−(t)δ(t−tj) at the transition ñ  ñ∣ ∣1 2 (change fromdashed
to solid line) orΦ+(t)δ(t−tj) at the transition ñ  ñ∣ ∣2 1 (change from solid to dashed line), where

p
F º F ( ) ( ) ( )t t

2
, 42j j

andΦ(tj) is defined by equation (9). The difference δω(t), equation (40), of the functionsωb(t) for the upper
and lower branch determines the contribution δf0, equation (38), to the interferometer phase.

Step 2:Each function Fb(t) is the sumof all contributions (see footnote 6) presented infigure 2 originating from
(i) the free evolution between pulses applied at the times t=tj and t=tj+1, that is P +( ) ( ∣ )t t t tF ,j j1 1 (dashed
blue line) and P +( ) ( ∣ )t t t tF ,j j2 1 (solid red line) for an atom in the state ñ∣1 or ñ∣2 , respectively, and (ii) the
momentumkick ÿkδ(t−tj) at the transition ñ  ñ∣ ∣1 2 (change fromdashed to solid line), or−ÿkδ(t−tj)
at the transition ñ  ñ∣ ∣2 1 (change from solid to dashed line).

Step 3:Obtain the difference δF(t) of the functions Fb(t) defined by equation (33), as well as the functions δp(t),
equation (31), and δr(t), equation (32), and check the two closing conditions (35) and (36).

Step 4(a): If the interferometer is closed, the contrastC=1. Find the function ¯ ( )tF defined by equation (41),
which determines together with δr(t) the contribution δf1, equation (39). The interferometer phase δf,
equation (37), is the sumof δf0 and δf1.

8
Here δ(t) denotes theDirac delta function and P( ∣ )t a b, is the rectangular function of unit height on the interval (a, b) as defined in

equation (43).
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Step 4(b): If the interferometer is not closed, then the contrastC is given by equation (34) and depends on δr(tf),
δp(tf), as well as the initial state y ñ∣ i . Its phase δf is derived in appendix C.1.

4. A comparison of three atom interferometers

In this sectionwe apply our formalism introduced in section 3 to theMZ interferometer
[4, 5, 54, 65, 80, 84, 88, 92], theT3-interferometer [77], and theCAB interferometer [76].We extend the analysis
of these interferometers discussed briefly in [77]. As a result of our formalism, we present a simple explanation of
the different scalings of the interferometer phase with respect to the total interferometer timeT. In particular, we
show that theCAB interferometer is a combination of theMZ and theT3-interferometer.Moreover, we discuss
the different experimental techniques used to imprint forces, namely Raman transitions,magnetic field
gradients, Bragg transitions, andBloch oscillations.

In order to obtain a coherent description of these interferometers, we introduce the following family of
functions vanishing outside the interval (a, b)with a<b and c≡(a+b)/2, which are based on theDirac delta
function δ(t).

• The rectangular function

ò t d t d tP º - - -
-¥

( ∣ ) [ ( ) ( )] ( )t a b a b, d 43
t

of unit height.

Figure 2.Upper (a) and lower (b) branch of the space-time diagram for the interferometer presented infigure 1. Below each diagram
we show a pair of the corresponding time-dependent functions w ( )tb andFb(t) (b=u, l). Each functionωb(t) is a sumof all
contributions arising fromposition-independent potentials and contains (see footnote 6) the scalar termsmΦm(t)δ(t−tj), as defined
by equations (9) and (42).Moreover, each function Fb(t) is a sumof (i) contributions P +( ∣ )t t tF ,k j j 1 describing the free evolution of
the atom in the state ñ∣k (for k=1, 2), where ñ∣1 and ñ∣2 correspond to a dashed blue and solid red line, and (ii) themomentumkicks
+ÿkδ(t−tj) and−ÿkδ(t−tj) for the transition ñ  ñ∣ ∣1 2 and ñ  ñ∣ ∣2 1 , respectively. Here j=1,K n, where n is the number of
pulses.
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• The triangular function

ò t t tL º P - P
-¥

( ∣ ) [ ( ∣ ) ( ∣ )] ( )t a b a c c b, d , , 44
t

with the height (b−a)/2.

• The piece-wise quadratic function

ò t t tW º L - L
-¥

( ∣ ) [ ( ∣ ) ( ∣ )] ( )t a b a c c b, d , , 45
t

with the height (b−a)2/16.

4.1.MZ interferometer
4.1.1. Description
Webriefly review the physics underlying the basicMZ atom interferometer, emphasizing the points salient to
this article. In particular, we discuss the origin of the scaling of the interferometer phasewithT2.

A standardMZ type atom interferometer is depicted infigure 3(a). For this interferometer typewe focus on
the case of driving Raman transitions between two ground electronic states, labeled ñ∣1 and ñ∣2 . Atoms entering
the interferometer have usually been prepared in the state ñ∣1 . The atoms are subject to a beam-splitter pulse
applied at time t1=0which creates a coherent superposition of states ñ∣1 , shownby a blue dashed curve in
figure 3(a), and ñ∣2 , depicted by a red solid curve. Subsequently, the atoms evolve in the dark for a timeT/2. Then
they experience amirror pulse at t2=T/2, which causes the states to ‘flip’, that is ñ  ñ∣ ∣1 2 and ñ  ñ∣ ∣2 1 . The
atoms evolve again in the dark for another timeT/2. Finally, the two arms of the interferometer are recombined
with afinal beam splitter pulse at t3=T.

In the case of theMZ interferometer both states ñ∣1 and ñ∣2 are exposed to the same linear time-independent
potential leading to

Figure 3. (a) Space-time diagramof a standardMach–Zehnder type interferometer in a linear potential for an atomhaving the two
internal states ñ∣1 and ñ∣2 . The atom interacts with two short laserπ/2-pulses (at t=0 and t=T) and aπ-pulse (at t=T/2), whereT
is the total interferometer time.During each pulse the atomabsorbs (emits) themomentum ÿk in combinationwith the transition
ñ  ñ∣ ∣1 2 ( ñ  ñ∣ ∣2 1 ). The z-component of the relative displacements in (b)momentum δp(t), equation (55), and (c)position δr(t),

equation (56), as a function of time t.
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= º( ) ( ) ( )t tF F F 461 2 0

for the functions F1,2(t) in equations (4), (6), and (8).
This is the case for atoms being exposed to (i) the gravitational field [4, 5]with the constant gravitational

acceleration g, where F0=mg, and (ii) themagnetic field

= + ( ) ( ) ( )B z BB r e 47z z z0

with constant gradient∇zBz and the unit vector ez in the z-direction
9 . The latter case leads to F0=μz∇zBzez,

when the atomhas the same z-component of themean value of themagnetic dipolemomentμz=μ1z=μ2z

withm mº á ñ∣ ˆ ∣k kk (k=1, 2) for the states ñ∣1 and ñ∣2 , as presented in [54].
As shown below, the relative displacement inmomentum δp(t) between the two branches of the

interferometer is piece-wise constant, figure 3(b), whereas the relative displacement in position δr(t) is piece-
wise linear in t,figure 3(c), leading to an interferometer phase scaling asT2.

4.1.2. Analysis of theMZ interferometer
According to Step 1 of our procedure (section 3.2), as well as tofigures 2 and 3(a), we arrive at

w d d= -F + F -- +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )t t

T
t

T
0

2 2
48u

for the upper branch together with

w d d= -F - + F -- +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )t

T
t

T
T t T

2 2
49l

for the lower branch of theMZ interferometer determining the difference

dw d d d= -F + F + F - - F -- + - +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( ) ( )t t

T T
t

T
T t T0

2 2 2
50

ofωu(t) andωl(t).Wemake use of equations (38) and (42), and arrive at

df = F - F + F⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )T

T0 2
2

510

describing the phase contribution arising from the position-independent potentials.
Next, we follow Step 2 of our analysis and identify according tofigures 2 and 3(a) the functions

 d d= + - -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )t t t

T
F F k

2
52u 0

for the upper and

 d d= + - - -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )t t

T
t TF F k

2
53l 0

for the lower branch of theMZ interferometer having the difference

d d d d= - - + -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( ) ( )t t t

T
t TF k 2

2
. 54

Next, we check the closing conditions for this interferometer. The difference δF(t), equation (54), gives rise
to the time-dependent vectors for the relative displacement inmomentum

d = P - P
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )t t

T
t

T
Tp k 0,

2 2
, , 55

shown infigure 3(b), and in position


d = L( ) ( ∣ ) ( )t

m
t Tr

k
0, , 56

depicted infigure 3(c), according to equations (31) and (32). As evident from figures 3(b) and (c), and
equations (55) and (56), we immediately prove that

9
Herewe use the notation  = =¶

¶
( )B r 0z z

B

z
z for the derivative of the z-component of themagneticfieldB=B(r) along the z-direction at

the origin r=0. This derivative is assumed to be small compared toB0, such that  ∣ ∣ ∣ ∣L B Bz z 0 , where L is the total length of the
interferometer.Moreover, we note that the formof themagneticfield given by equation (47) is an approximate one. Indeed, according to the
Maxwell equation  =· B 0, which is valid everywhere, a non-zero value of∇zBz induces non-zero values of∇xBx and∇yBy, such that
∇xBx+∇yBy=−∇zBz, whereBx andBy are the components ofB along the x- and y-axis.However, in the limit of  ∣ ∣L B Bz z 0 the
magneticfieldB given by equation (47) is approximately directed along the z-axis.
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d d= =( ) ( ) ( )t tp r 0 57

for t>T, that is theMZ interferometer is closed. Thus, the interferometer contrastC=1 and the
interferometer phase

df df df= + ( )580 1

is defined by equation (37), where δf0 is given by equation (51).
In order to determine δf1, we consider the average


d d= + - -¯ ( ) [ ( ) ( )] ( )t t t TF F

k

2
590

of Fu(t), equation (52), and Fl(t), equation (53). According to equation (39) and by using equation (56)we arrive
at the second contribution to the interferometer phase

òdf t t d d= L + - =( ∣ ) [ ( ) ( )] ( )
m

T T
m

T
F k k

r r
F k

d 0,
2

0
4

60
T

1
0

0

0 2

arising from the linear potentials, wherewe have used the fact that δr(0)=δr(T)=0 and

ò t tL =( ∣ ) ( )T
T

d 0,
4

61
T

0

2

being the area of a triangle with baseT and heightT 2 according tofigure 3(c).
In the case of the gravitational field F0=mgwith the gravitational acceleration g, we obtain forT=2T1 the

familiar result kgT1
2 [4, 5] for the phase δf1, whereT1 is the time between the first and second laser pulse.

Moreover, the combination of a gravitational field and amagnetic field of constant gradient∇zBz yields
F0=mg+μz∇zBzez, andwe obtain the result of [54].

4.2.T3-interferometer
4.2.1. Description
Wenowmove to theT3-interferometer [77] having an interferometer phase scaling purely asT3.

The key idea of this interferometer is to apply constant linear potentials with differentmagnitude to each of
the two states ñ∣1 and ñ∣2 . For this purposewe have suggested [77] to use two atomic states ñ∣1 and ñ∣2 having
differentmean values of themagnetic dipolemomentm1,2 and expose them to themagnetic fieldB,
equation (47), with constant gradient∇zBz.

Thus, we obtain two different constant functions

= - D ( )F F F
1

2
621 0

and

= + D ( )F F F
1

2
632 0

assigned to the states ñ∣1 and ñ∣2 , respectively, where

m m
= +

+
 ( )m BF g e

2
64z z

z z z0
1 2

and

m mD = - ( ) ( )BF e . 65z z z z z2 1

TheT3-interferometer, as depicted infigure 4(a), consists of two beam-splitter pulses at the times t1=0 and
t4=T, while the twomirror pulses act at the times t2=T/4 and t3=3T/4, whereT is again the total
interferometer time. The twomirror pulses are necessary to close the interferometer.Moreover, since co-
propagating Raman pulses are used as beam-splitter andmirror pulses, we assume that there is no transfer of
photonmomentum to the atoms, that is we set k=0.

As shown infigure 4(b), the relative displacement inmomentum δp(t) between the two arms of the
interferometer is nowpiece-wise linear in t, whereas the relative displacement in position δr(t) presented in
figure 4(c) is piece-wise quadratic in t, leading to a total interferometer phase scaling asT3.
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4.2.2. Analysis of theT3-interferometer
According to Step 1 of our procedure (section 3.2) and tofigures 2 and 4(a), we obtain the functions

w d d

d d

=-F + F -

- F - + F -

- +

- +

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
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( ) ( ) ( )

( ) ( ) ( )

t t
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t
T

T
t

T
T t T

0
4 4

3

4

3

4
66

u

for the upper branch, together with

w d d= -F - + F -- +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
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T
t

T T
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4 4

3

4

3

4
67l

for the lower branch of theT3-interferometer, which determine the difference

dw d d

d d

=-F + F + F -

- F + F - + F -

- + -

- + +
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By using equation (38), we obtain the first contribution to the interferometer phase

df p= F - F + F - F -⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( )T T

T0 2
4

2
3

4
, 690

being determined by the position-independent potentials, where the last term−π is a result of the even number
of pulses used in this interferometer.

Next, we follow Step 2 of our procedure and obtain according tofigures 2 and 4(a) the functions

= P + P + P
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )t t

T
t

T T
t

T
TF F F F0,

4 4
,

3

4

3

4
, 70u 2 1 2

Figure 4. (a) Space-time diagramof theT3-interferometer for an atomhaving two states ñ∣1 and ñ∣2 and interactingwith two short
laserπ/2-pulses (at t=0 and t=T) and twoπ-pulses (at t=T/4 and t=3T/4), withT being the total interferometer time.We
assume that during the light pulses there is no transfer of photonmomentum to the atoms. Instead, the two states ñ∣1 (dashed blue
line) and ñ∣2 (solid red line) are exposed to two different linear potentials. The z-component of the relative displacements in
(b)momentum δp(t), equation (73), and (c) position δr(t), equation (74), for theT3-interferometer as a function of the time t. The
area enclosed by the two interferometer branches in the space-time diagram is the same as the one of the dashed triangle.
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for the upper branch, together with

= P + P + P
⎛
⎝⎜

⎞
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, 71l 1 2 1

for the lower branch of theT3-interferometer, leading to the difference

d = D P - P + P
⎡
⎣⎢

⎛
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⎞
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⎛
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wherewe have used equations (62) and (63).
Next, we verify the closing conditions given by equations (35) and (36). Indeed, by applying equations (31)

and (32)we obtain the relative displacement inmomentum

d = D L - L
⎡
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⎛
⎝⎜

⎞
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⎛
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t

T
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shown infigure 4(b), and in position

d =
D

W( ) ( ∣ ) ( )t
m

t Tr
F

0, 74

presented infigure 4(c). As evident fromfigures 4(b) and (c), and equations (73) and (74), we obtain

d d= =( ) ( ) ( )t tp r 0 75

for t>T, that is theT3-interferometer depicted infigure 4(a) is closed.Hence, its contrastC=1 and its phase

df df df= + ( )760 1

is defined by equation (37), where δf0 is given by equation (69).
Now,we determine the phase contribution δf1 and thus consider the average

= P¯ ( ) ( ∣ ) ( )t t TF F 0, 770

of Fu(t), equation (70), and Fl(t), equation (71), wherewe have used equations (62) and (63). According to
equation (39) togetherwith δr(t), equation (74), we obtain the phase contribution

 òdf t t=
D

W =
D( ∣ ) ( )

m
T

m
T

F F F F
d 0,

32
78

T

1
0

0

0 3

arising from the linear potentials, wherewe have used the fact that

ò t tW =( ∣ ) ( )T
T

d 0,
32

79
T

0

3

being the area of a triangle with baseT and heightT2/16 according to the one presented infigure 4(c) by a gray
dashed line.

These results entirely agree with the ones presented in [77] for = +( )m a aF ez0
1

2 1 2 , andΔF=m(a2−a1)
ez, where akez (k=1, 2) denotes the acceleration of the atom in the state ñ∣k andT=4T1, withT1 being the time
between the first two laser pulses.

Moreover, it is interesting to note that the functions δF(t), equation (72), δp(t), equation (73), and δr(t),
equation (74), are identical to the ones presented in the context of a Stern–Gerlach interferometer [93–95],
where the time-dependence of these functions is not induced by applyingmirror pulses, but by changing the
direction of themagnetic field gradient at the timeT/4 and 3T/4. In this scheme [93–95] only the case F0=0
has been considered, and thus the cubic scaling of the interferometer phase did not occur in the analysis of the
Stern–Gerlach interferometer.

4.3. CAB interferometer
4.3.1. Description
As pointed out in section 4.1, it is the fact that the relative displacement in position δr(t) is piece-wise linear in t
that leads to aT2 scaling in a standardMZ interferometer.Motivated by this argument,McDonald et al [76]
suggested and implemented an interferometer inwhich the relative displacement δr(t) between the two branches
is piece-wise proportional toα0t

2+β0t. Under these conditions, the interferometer phase scales as
α1T

3+β1T
2 withαi andβi (i=0, 1) being constant. The interferometer scheme is similar to theMZ style

interferometer, that is it employs the same pulse sequence with beam splitter pulses at t1=0 and t3=T,
separated by amirror pulse at time t2=T/2.However, during the free evolution between the pulses, the state ñ∣1
is exposed to a time-dependent linear potential.

In this work [76], the beam splitter andmirror pulses are created by Bragg diffraction resulting in a
momentum transfer±nÿk1, where n is the diffractive order and ÿk1 is themomentum transfer for afirst-order
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diffraction. After the first beam splitter pulse at t=0, atoms in themomentum state labeled by ñ∣1 are loaded
into a stationary optical lattice during the timeTr, accelerated via Bloch oscillations for a timeTb before being
brought back to the initial acceleration during the timeTf. The loading timeTr and the deceleration timeTf are
very short compared to the acceleration timeTb. The acceleration timeTb is hence approximately equal to the
timeT/4. In this way, the additional average acceleration


D º - ( )n

mT
a

k2
80b

b

1

imprinted by the Bloch lattice could be reinterpreted as the action of an effective linear potential during the time
interval (0,T/4), where nb is the number of the Bloch oscillations imprinted during the timeTb.

Subsequently, as indicated by the arrows infigure 5(a), the directionof the accelerationΔa inducedby theBloch
lattice is inverted and the sequence is repeated for the interval (T/4,T/2). The lattice ismoving sufficiently fast so
that the atoms in themomentumstate labeled by ñ∣2 experience only a time-averagedpotential from theBloch
latticewhich imparts no additional acceleration. In the followingwewill not consider the additional phase shift
imprinted by this potential.

At time t=T/2 a Braggπ-pulse acts asmirror pulse and the same acceleration sequence is now applied to
the other branch of the interferometer. Afinal p 2-pulse closes the interferometer.

As a result, atoms in the state ñ∣2 only experience a constant (background) linear potential described by

= ( )F F , 812 0

whereas the time-dependent linear potential experienced by atoms in the state ñ∣1 is determined by
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where


D º D = - ( )m

n

T
F a

k2
. 83b

b

1

Herewe neglect the loading timeTr and the deceleration timeTf.

Figure 5. (a) Space-time diagramof theCAB interferometer for an atomhaving the states ñ∣1 and ñ∣2 , and interactingwith two short
laserπ/2-pulses (at t=0 and t=T) and aπ-pulse (at t=T/2). The state ñ∣1 (blue dashed line) is accelerated by a Bloch lattice, where
the arrows indicate the direction of acceleration.However, the state ñ∣2 (solid red line) is exposed to a constant linear potential. The
z-component of the relative displacements in (b)momentum δp(t), equation (88), and (c) position δr(t), equation (89), for the CAB
interferometer as a function of the time t.
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4.3.2. Analysis of the CAB interferometer
According to Step 1 of our procedure (section 3.2) andfigures 2 and 5(a), we obtain the time-dependent
functionsωu(t), equation (48), for the upper path andωl(t), equation (49), for the lower path identical to the ones
of theMZ interferometer discussed in section 4.1 as the same pulse sequence is used. Thus, we also arrive at the
same phase contribution

df = F - F + F⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )T

T0 2
2

840

for theCAB interferometer arising from the position-independent potentials.
Next, we follow Step 2 of our procedure and according tofigures 2 and 5(a), we identify the functions

 d d= - - + P + P⎜ ⎟
⎡
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for the upper branch together with
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⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )t t

T
t T t t

T
t

T
TF k F F

2
0,
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for the lower branch of theCAB interferometer, where F2 and F1(t) are given by equations (81) and (82),
respectively. The difference of Fu(t) and Fl(t) yields

10
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Weobserve that δF(t) is a combination of the corresponding expressions for theMZ interferometer (section 4.1),
equation (54), and theT3-interferometer (section 4.2), equation (72).

In the next step, we check the closing conditions equations (35) and (36) for theCAB interferometer.
According to equations (31) and (32), we obtain the time-dependent vectors for the relative displacement in
momentum

d = P - P - D L - L
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shown infigure 5(b) and in position


d = L -

D
W( ) ( ∣ ) ( ∣ ) ( )t

m
t T

m
t Tr

k F
0, 0, 89

presented infigure 5(c).
As a result of equations (57) and (75), we immediately obtain

d d= =( ) ( ) ( )t tp r 0 90

for t>T, resulting from the fact that both theMZ and theT3-interferometer are closed.Hence theCAB
interferometer is closed aswell. Thus, its contrastC=1 and its phase

df df df= + ( )910 1

is defined by equation (37), where δf0 is given by equation (84).
In order to determine the phase δf1 we consider the average


d d= - - +

+
P¯ ( ) [ ( ) ( )] ( ) ( ∣ ) ( )t

m
t t T

t
t TF

k F F

2
0, 921 2

of Fu(t), equation (85), and Fl(t), equation (86). In contrast to the average functions F̄ for theMZ interferometer,
equation (59), and theT3-interferometer, equation (77), which are constant in the interval 0<t<T, due to the
time-dependence of F1(t), also the average ¯ ( )tF is now time-dependent during the interferometer sequence.
However, as shown in appendixD, due to the symmetries of δr(t), equation (89), and ¯ ( )tF , only the constant
term F0 in F2, equation (81), andF1(t), equation (82), will contribute to the phase shift δf1 arising from the linear
potentials. According to equation (39)we thus obtain the second contribution

10
Herewe use P = P( ∣ ) ( ∣ )t a b t a b, ,2 , which is true for ¹t a b, .Moreover, P( ∣ )a a b, and P( ∣ )b a b, will not contribute to any integral

independent of their exact value.
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df = -

D ( )
m

T
m

T
F k F F

4 32
931

0 2 0 3

to equation (91), which is a combination of the corresponding phases for theMZ interferometer, equation (60),
and theT3-interferometer, equation (78).

In the case ofT=2T1,F0=ma, k=2nk1, whereT1 denotes the time between the first two pulses andΔ F
is defined by equation (83)with τ1≡Tb/nb, this expression agrees with the one presented in [76].

It is remarkable, that even in this special case of a time-dependent average function ¯ ( )tF , equation (92), the
phase δf1 is again proportional to the enclosed area between the two branches in the space-time diagramof the
CAB interferometer.

5.Discussion

Section 3 represents one of themain features of this article—amethodology to analyze an atom interferometer
consisting of two branches, assuming the atoms are exposed to linear potentials.More specifically, we
formulated the rules for constructing two pairs of time-dependent functions w{ ( ) ( )}t tF ,u u and w{ ( ) ( )}t tF ,l l

corresponding to the upper and lower branch of the interferometer, which depend on the pulse protocol and the
(possible state-dependent) potentials the atomsmove in.Once the potentials and the pulse sequence are
specified, the functions δω(t)=ωu(t)−ωl(t), δF(t)=Fu(t)−Fl(t), and = +¯ ( ) [ ( ) ( )]t t tF F F1

2 u l are

completely determined.
The function δF(t) defines the relative displacements inmomentum δp(t) and position δr(t) of the two

interferometer branches. Thus, in order to fulfill the closing conditions given by equations (31) and (32), an
experimental control of the physical quantities determining δF(t) is necessary. Additionally, it is important to
emphasize that the closing conditions are independent of the functions δω(t) and ¯ ( )tF , and hence the
interferometer can be used tomeasure the physical quantities governing these functions. Under the condition
that the interferometer is closed, its contrast equals unity and the functions δω(t), ¯ ( )tF , and δr(t) are used to
determine the phase, equations (37), (38), and (39), of the interferometer, which is in this case independent of
the initial state. The power of ourmethodology is shown in section 4.

5.1. Review of the three atom interferometers
In section 4, we presented the analysis of three interferometers: (a) theMZ interferometer, (b) the
T3-interferometer, and (c) the CAB interferometer. For all three cases, we derived the expression for δF(t) given
by equations (54), (72) and (87), respectively, and used them to show that the interferometers are all closed.
Closing occurs when both the relative displacement inmomentum δp(t) and position δr(t) between the two
branches of the interferometer vanishes for t>T, as demonstrated by equations (57), (75), and (90),
respectively.

Of greater significance are the phases of these interferometers. In all three cases, the interferometer phase is
written as the sumof two contributions: the phase δf0 determined by the laser phases and the position-
independent potentials, and the phase δf1 due to themotion of the atoms in a linear potential.

Wefirst focus on the expressions for the phase δf0. For each type of interferometer this phase is given by
equation (51), (69), and (84), accordingly, and is reproduced here again for convenience:
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, 960
CAB

where a superscript indicates the corresponding interferometer.
It is clear that the contribution for theCAB interferometer is identical to the one of theMZ interferometer,

being a discrete second-order derivative of the functionΦ(T), that is

df @ F( ) ( )( ) T
1

4
0 970

MZ 2

asT→ 0.However, for theT3-interferometer we obtain instead a discrete third-order derivative ofΦ(T), that is

df p@ - F¢¢¢ -( ) ( )( ) T
1

32
0 98T

0
33
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asT→ 0. It is interesting to note that the scaling with respect toT, and even the absolute value of the coefficients
in equations (97) and (98) agreewith the values of the integrals (61) and (79) determining the phase δf1 for the
MZ and theT3-interferometer, respectively.

We now turn to a discussion of the contribution δf1 of each interferometer, equations (60), (78), and (93),
respectively, whichwe reproduce here for the ease of comparison:

df = ( )( )

m
T

F k

4
, 991

MZ 0 2


df =

D ( )( )

m
T

F F

32
, 100T

1
0 33


df = -

D ( )( )

m
T

m
T

F k F F

4 32
. 1011

CAB 0 2 0 3

By comparing equations (99), (100) and (101), we immediately see that the CAB interferometer can be
thought of as a hybrid between the standardMZ interferometer and theT3-interferometer. The phase for the
CAB interferometer is the sumof a contribution that scales asT2, which is identical to theMZT2-phase, and a
contribution that scales asT3, which is identical to theT3-term of theT3-interferometer. However, it is
important to bear inmind that the force differenceDF is caused by the application of amagnetic field gradient in
the case of theT3-interferometer, whereas it is generated by a Bloch lattice for theCAB interferometer.

5.2. Interpretation of the interferometer phase
Finally, we turn to an interpretation of the phase of the interferometer induced by the linear potentials.
Examining equation (39), we observe that the contribution δf1 is the integral of the product d¯ ( ) ( )t tF r for t
between ti and tf. In the case of ¯ ( )tF being time-independent for ti< t< tf, as in the case of theMZ interferometer
and theT3-interferometer, this term is proportional to the enclosed area between the two branches in the space-
time diagramof the interferometer displayed infigures 3(a) and 4 (a). However, even in the special case of the
CAB interferometer where ¯ ( )tF is time-dependent, the phase contribution δf1 is again proportional to the
enclosed area of the interferometer in the space-time diagram, as discussed in section 4.3.2 and shown in
figure 5(a).

The connection between the phase and the area enclosed by the interferometer in a space-time diagramwas
also analyzedwithin the semi-classical approach [67]. Our results are derived using only knowledge of the
functions δF(t), δω(t), and ¯ ( )tF and are completely consistent with the ones obtained in this reference.

Moreover, it is important to highlight that it is the signed area, which is relevant for the calculation of the
interferometer phase. For example in the Butterfly geometry [86] the signed area vanishes, and the resulting
interferometer phase becomes insensitive to F̄, assuming F̄ is time-independent. Hence, this devicemight be
used to probe the influence of higher-order effects such as gravity gradients.

More generally, we can consider an interferometer having the pulse protocol p p- -¼- -p p
2 2

, where

thefirst and the last two pulses are each separated by the timeT1 and all other pulses have a separation time of
2T1. In the case that the force difference δF is only determined by themomentum transfer±ÿk induced by the
laser pulses, the dependence of the interferometer phase on F̄ is determined by the parity of the number of
pulses. For an odd number of pulses the interferometer phase depends on F̄, whereas for an evennumber of
pulses it is insensitive to a constantmean force F̄.

Intuitively, onemight expect that the interferometer phase always scales with the enclosed area for a closed
interferometer and arbitrary time-dependent linear potentials. However, since the closing conditions of the
interferometer are only determined by δF(t), interferometers which are closed for a time-independent function F̄
will also be closed in the case that ¯ ( )tF is time-dependent. Therefore, the interferometer phasewill in general not
scale as the enclosed area. Nevertheless, it is interesting to ask the questionwhich information about the time-
dependent potentials determining ¯ ( )tF will be obtained by different interferometer schemes.

5.3. Limitations of our approach
In principle, we can consider within our approach additional effects such asfinite pulse durations, gravity
gradients, and rotations.However, in the case offinite pulse durations, both the pulse profile and the atomic
motion during the atom–light interaction have to be taken into account, as discussed in [88, 89]. As a result,
equations (10) and (12) for the beam-splitter andmirror operators would have to bemodified: (i) themirror
operator, equation (12), will not have anti-diagonal form and instead contains also non-vanishing diagonal
elements. This corresponds to the case that after each pulse new branches appear and it is impossible to describe
the interferometer only based on two branches, as presented in our article. (ii) It is not anymore possible to
interpret the action of the pulses as being induced by effective linear potentials. Indeed, in addition to a phase
shift and a displacement of the atomic center-of-mass wave packet inmomentum as it is the case for a perfect
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beam-splitter ormirror, the resulting complicated potentials also lead to a state-dependent distortion of the
center-of-mass wave packet. The additional interferometer branches give rise to interferometer outputs
depending on the initial state of the atomic center-of-massmotion aswell as the parameters of the pulse.We
emphasize that inmost cases the resulting equations for an actual experimental setup can only be solved
numerically.

Moreover, we point out that the representation-free approach presented in [86] valid for state-independent
gravity gradients and rotations has already been generalized in [82] to state-dependent quadratic potentials. In
the future it would be of interest to consider these effects within our simplified treatment.

6. Conclusion

In conclusion, we have considered atom interferometers exposed to time- and state-dependent linear potentials.
We have studied the scaling of the output phase withT, the total interferometer time, for three types of atom
interferometers—theMZ, theT3-, and theCAB interferometer. To aid in the analysis, we have first developed a
new formalism based simply on functions thatwere derived from the knowledge of the potentials inwhich the
atomsmove and the pulse sequence used for the interferometer. Our formalism leads directly to expressions for
closing conditions in bothmomentum andposition, which allow to immediately determine if an interferometer
is closed. Additionally, the phase and contrast can also be obtained.We used thismethod to determine
expressions for the phase of the three types of interferometersmentioned. In particular, we derived thewell-
known result that the phase of theMZ interferometer scales asT2. Our results also confirm the ones presented in
[77]. Here the phase for an interferometer usingmagnetically sensitive states with differentmean values of the
magnetic dipolemoment and being exposed to an appliedmagnetic field gradient scales asT3. Finally, we
showed that the recently demonstrated CAB interferometer [76] is a hybrid between the standardMZ
interferometer and theT3-interferometer.
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AppendixA. EffectiveHamiltonians for two interferometer branches

In this appendixwe derive the effectiveHamiltonian Ĥb corresponding to the unitary operator Ûb,
equations (19)–(22), for the upper (b=u) and lower (b=l) branch of the interferometer, respectively.

First, we note that the unitary operator +ˆ ( )E t t,kk j j1 describing the free evolution of the atom in the state ñ∣k
from the time tj to tj+1, as defined by equations (6) and (7), is the time evolution operator of theHamiltonian Ĥk,
equation (8), with k=1, 2.

Second, following [80, 82], the unitary operator ˆ ( )L tj given by equation (11) can be identified as an
evolution operator corresponding to theHamiltonian

 dº + F -  ˆ [ ˆ ( )] ( ) ( )( )
H t t tkr , A.1

L
j j

where δ(t)denotes theDirac delta function and

p
F º F ( ) ( ) ( )t t

2
. A.2j j

Nowwe are in the position to consider the time-ordered product of the unitary operators L̂ and Êkk, which
determines the operators Ûu and Ûl.
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A.1. EffectiveHamiltonians for an even number of pulses
In the case of an evennumber of pulses the operators Ûu and Ûl are given by equations (19) and (20). Using
equations (7), (8), (11) and (A.1), we arrive at theHamiltonians
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for the upper branch, and
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for the lower branch of the interferometer. Here =  e
t t tj j with an infinitesimally small positive time tε and

j=1,K, n.

A.2. EffectiveHamiltonians for an oddnumber of pulses
In the case of an odd number of pulses we arrive at a slightlymodified result, namely
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and
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for the lower branch of the interferometer.
As a result, the two effectiveHamiltonians Ĥu and Ĥl, equation (A.5), for the upper and lower branch of the

interferometer describe themotion of a particle in a time-dependent linear potential with the time-dependent
functions Fu(t),Fl(t),ωu(t), andωl(t).

Appendix B. Propagation in a time-dependent linear potential

Themotion of a particle ofmassm in a linear potential is determined by theHamiltonian

w= - +ˆ ( ) ˆ ( ) ˆ ( ) ( )H t
m

t t
p

F r
2

, B.1
2

withF(t) being a time-dependent vector andω(t) a time-dependent scalar function.We represent the
corresponding time evolution operator

f=ˆ ( ) [ ( )] ˆ [ ( ) ( )] ˆ ( ) ( )U t t t D t t U t tR P, exp i , , B.2i 0 i

as a product [82, 83, 96] of the exponent of the phase factorf(t), the displacement operator


= - -

⎡
⎣⎢

⎤
⎦⎥ˆ [ ] ( ˆ ˆ) ( )D R P Rp Pr, exp

i
B.3

depending on the displacements in positionR(t) andmomentumP(t), and the evolution operator


= - -

⎡
⎣⎢

⎤
⎦⎥ˆ ( ) ˆ ( ) ( )U t t

m
t t

p
, exp

i

2
B.40 i

2

i

for a free particle.
By following the approach presented in [82], we derive the equations for the time-dependent functionsR(t),

P(t) andf(t) resulting from the Schrödinger equation

 ¶
¶

=ˆ ( ) ˆ ( ) ˆ ( ) ( )
t

U t t H t U t ti , , B.5i i

for the operator ˆ ( )U t t, i with the initial condition

=ˆ ( ) ( )U t t, . B.6i i

For this purpose, we insert equation (B.2) into the left hand side of equation (B.5)

  f

f

¶
¶

= - +
¶
¶

+

´

⎜ ⎟
⎧⎨⎩

⎛
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†

†

t
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t
D t t D t t

D t t
m
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t D t t U t t

R P R P

R P
p

R P

R P

i , i , ,

,
2

,

exp i , , , B.7

i

2

0 i

where a dot denotes the derivative with respect to t andwe have used the identity

=ˆ [ ] ˆ [ ] ( )†D DR P R P, , . B.8

The relation [97]

= +

+ + ¼
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⎡
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⎤
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d
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d

d
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2
,
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3
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d

d
exp B.9
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for the derivative of the exponential operator [ ˆ ( )]A texp immediately gives rise to

 ¶
¶

= - + -⎜ ⎟⎛
⎝

⎞
⎠ˆ [ ( ) ( )] ˆ [ ( ) ( )] ˙ ( ) ˆ ˙ ( ) ˆ [ ( ) ˙ ( ) ( ) ˙ ( )] ( )†

t
D t t D t t t t t t t tR P R P R p P r R P P Ri , ,

1

2
. B.10

Herewemade use of the commutation relation

d=a b ab[ˆ ˆ ] ( )r p, i B.11

for the components âr of the position r̂ and b̂p of themomentum p̂ operator (α,β=1, 2, 3), where δαβ denotes
theKronecker delta.

Next, we apply theHadamard lemma [98]

= + + + ¼-ˆ ˆ [ ˆ ˆ]
!

[ ˆ [ ˆ ˆ]] ( )ˆ ˆe B B A B A A Be ,
1

2
, , B.12A A

for operators Â and B̂ together with the commutation relation equation (B.11), and obtain

^ ^ ^ ^= -[ ( ) ( )] [ ( ) ( )] [ ( )] ( )†D t t
m

D t t
m

tR P
p

R P p P,
2

,
1

2
. B.13

2
2

As a result, by using equations (B.5), (B.7), (B.10), and (B.13), we arrive at the relation

^ ^ ^ ^ f w- + - + - - + = - +˙ ( ) ˙ ( ) ˙ ( ) [ ( ) ˙ ( ) ( ) ˙ ( )] ( ) ( ) ( ) ( ) ( )t t t t t t t
t

m

t

m
t tR p P r R P P R

P
p

P
F r

1

2 2
B.14

2

for the unknown functionsf(t),R(t), andP(t).
By comparing the coefficients in front of the operators p̂ and r̂ , as well as the remaining non-operator valued

contribution, we obtain

=˙ ( ) ( ) ( )t tP F , B.15

=˙ ( ) ( ) ( )t
t

m
R

P
, B.16

and

  
f w w= - + - + = - +˙ ( ) ( ) [ ( ) ˙ ( ) ( ) ˙ ( )] ( ) ( ) ( ) ( ) ( )t t t t t t

t

m
t t tR P P R

P
F R

1

2 2

1

2
. B.17

2

Note that equations (B.15) and (B.16) correspond to the classical equations ofmotion for a particle ofmassm
having themomentumP(t) and positionR(t) and being exposed to the time-dependent force F(t).

Using the initial conditions

f= = =( ) ( ) ( ) ( )t t tR P 0 B.18i i i

resulting from equations (B.2), (B.3), (B.4), and (B.6), we determine the functions

ò t t=( ) ( ) ( )tP Fd , B.19
t

t

i

ò òt t t=
t

( ) ( ) ( )t
m

R F
1

d d , B.20
t

t

t
1 2 2

i i

1

and

òf t w t t t= - +
⎡
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⎤
⎦⎥( ) ( ) ( ) ( ) ( )t F Rd

1

2
. B.21

t

t

i

AppendixC. Interference of two branches

In section 2we show that the contrast and phase of the interferometer are determined by the product ˆ ˆ†
U Ul u of

the evolution operator Ûb, corresponding to theHamiltonian

w= - +ˆ ( ) ˆ ( ) ˆ ( ) ( )H t
m

t t
p

F r
2

. C.1b

2

b b

Here Fb(t) andωb(t) are the time-dependent functions for the upper (b=u) and lower (b=l) branch of the
interferometer, as discussed in section 3. In order to evaluate ˆ ˆ†

U Ul u we again follow the approach presented
in [82].
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By using equation (B.2) of appendix B, we obtain

f f= -

´

ˆ ( ) ˆ ( ) { [ ( ) ( )]} ˆ ( ) ˆ [ ( ) ( )]
ˆ [ ( ) ( )] ˆ ( ) ( )
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R P
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, , exp i , ,

, , C.2

l i u i u l 0 i l l
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with the functions

ò t t=( ) ( ) ( )tP Fd , C.3
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1

2
C.5

t

t

u,l u,l u,l u,l
i

given by equations (B.19)–(B.21) and corresponding to the upper and lower branch, respectively.
Wefirst apply the commutation relation

= - -
⎡
⎣⎢

⎤
⎦⎥ˆ [ ] ˆ ( ) ˆ ( ) ˆ ( ) ( )D U t t U t t D

m
t tR P R

P
P, , , , C.60 i 0 i i

and the identity

= - -ˆ [ ] ˆ [ ] ( )†D DR P R P, , C.7

in order to rewrite equation (C.2) as

^ ^ ^

^

f f= - - + - -
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wherewe have used the fact that

=ˆ ( ) ˆ ( ) ( )†
U t t U t t, , . C.90 i 0 i

In the next step, we use the identity


= - + +

⎡
⎣⎢

⎤
⎦⎥ˆ [ ] ˆ [ ] ( ) ˆ [ ] ( )D D DR P R P P R P R R R P P, , exp
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2
, C.101 1 2 2 1 2 2 1 1 2 1 2

for the displacement operator ˆ [ ]D R P, and recast equation (C.8)

f d
d

d= D - -
⎡
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m
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p, , exp i , C.11l i u i i

in terms of the relative displacements inmomentum

òd t d t= - =( ) ( ) ( ) ( ) ( )t t tp P P Fd C.12
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t

u l
i

and position
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m

r R R F
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d d C.13
t

t

t
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d º -( ) ( ) ( ) ( )t t tF F F , C.14u l

aswell as a phase factor


f f fD º - + -( ) ( ) ( ) [ ( ) ( ) ( ) ( )] ( )t t t t t t tP R P R
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2
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With equation (C.5)we arrive at
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dw w wº -( ) ( ) ( ) ( )t t t . C.17u l
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By introducing

º +¯ ( ) [ ( ) ( )] ( )t t tF F F
1

2
C.18u l

and rewriting

t t t t t d t t t t t- = + -( ) ( ) ( ) ( ) ¯ ( ) ( ) ( ) ( ) ( ) ( ) ( )F R F R F r F R F R2 , C.19u u l l u l l u

we recast equation (C.16) as

 ò òf f t dw t t d t t t t t t- = - + + -
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1 1

2
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t

t

t

u l u l l u
i i

Nowwe show that the second integral in equation (C.20) equals the third termof the right-hand side of
equation (C.15). Indeed, by using equations (B.15) and (B.16)we obtain
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As a result, equation (C.15)finally reads
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C.1. Contrast andphase of an open interferometer
The contrastC and the phase δfof an interferometer are determined by thematrix element

y yá ñ º df∣ ˆ ˆ ∣ ( )†
U U Ce C.23i l u i

i

of the operator product

=ˆ ˆ ˆ ( ) ˆ ( ) ( )† †
U U U t t U t t, , C.24l u l f i u f i

with respect to the initial state y ñ∣ i , defined by equation (23), where ti and tf are the initial and final time of the
interferometer, respectively.

By using equation (C.11), we obtain the contrast

y d
d

d y= á - - ñ
⎡
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⎤
⎦⎥∣ ˆ ( ) ( ) ( ) ( ) ∣ ( )C D t

t

m
t t tr

p
p, C.25i f

f
f i f i

and the interferometer phase

df f f= D +( ) ( )t , C.26Df

where thewave packet independent contributionΔf(tf) is given by equation (C.22) and

f y d
d

d y= á - - ñ
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⎡
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⎤
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⎫⎬⎭∣ ˆ ( ) ( ) ( ) ( ) ∣ ( )D t
t

m
t t tr

p
parg , C.27D i f

f
f i f i

describes the contribution depending on the initial state y ñ∣ i .More details on open interferometers andwave
packet dependent phases can be found in [81, 82].

C.2. Contrast andphase of a closed interferometer
In the case of a closed interferometer, that is

d d= =( ) ( ) ( )t tp r 0, C.28f f

the displacement operator D̂ in equations (C.25) and (C.27) is the identity implyingC=1.Moreover, the
interferometer phase becomes independent of the initial state y ñ∣ i and is given by

òdf f t dw t t d t= D = - +
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ¯ ( ) ( ) ( )t F rd

1
, C.29

t

t

f
i

f

wherewe have used equations (C.22), (C.27), and (C.28).
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AppendixD. The phase δf1 for theCAB interferometer

In this appendixwe derive the second contribution δf1 to equation (91) for the case of theCAB interferometer.
By using equations (81) and (82), we rewrite equation (92) (see footnote 8) as


 = + +

D¯ ( ) ( ) ( ) ( )t t tF F
k F

2 2
, D.10 I II

wherewe introduced the functions
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T
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T
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4 4
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2 2
,

3

4

3

4
, , D.3II

shown infigureD1.
As a result, according to equation (39) and by using equations (89) and (D.1), we obtain the second

contribution to equation (91)

 òdf t t d t dj dj dj= º + +¯ ( ) ( ) ( )F r
1

d D.4
t

t

1 0 I II
i

f

as a sumof three contributions determined by the corresponding terms in ¯ ( )tF , equation (D.1).
Thefirst contribution to the phase δf1, equation (D.4), reads
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i

f

wherewe have used equations (61) and (79).
The second contribution δjI to the phase δf1 is governed by the function  t( )I , equation (D.2), that is



òdj t t d t=

= L - L -
D
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( ) ( )
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I I
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i

f

with L = L =( ∣ ) ( ∣ )T T T0 0, 0, 0 and W = W =( ∣ ) ( ∣ )T T T0 0, 0, 0.
The third contribution δjII to the phase δf1 is governed by the function  ( )tII , equation (D.3), that is

 
 ò òdj t t d t t t d t=

D
=

D
¢ - ¢ - ¢ =( ) ( ) ( ) ( ) ( )T T
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2
d

2
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0
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Herewe have used the fact that

d d= -( ) ( ) ( )t T tr r D.8

FigureD1.The function  ( )tII defined by equation (D.3).
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and

 = - -( ) ( ) ( )t T t . D.9II II

Indeed, δr(t) is shown infigure 5(c) and consists of the functions L( ∣ )t T0, , defined by equation (44), and
W( ∣ )t T0, , defined by equation (45), which are evenwith respect to the point t=T/2.Moreover, as depicted in
figureD1, the function  ( )tII , equation (D.3), is oddwith respect to the point t=T/2.

Finally, according to equations (D.4)–(D.7), we obtain


df dj= = -

D ( )
m

T
m

T
F k F F

4 32
D.101 0

0 2 0 3

for the second contribution to equation (91).
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