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Chapter 1

Introduction

1.1 Motivation and Aim of this Thesis

In this thesis, solutions to two previously unsolved problems in MR imaging of nonuni-

form motion will be proposed: first, the combination of golden angle ordering with

b-SFFP sequences for real-time imaging, and second, the self-gated imaging of nonuni-

form motion. The advantages of the proposed methods will be shown for two clinical

applications.

Cardiovascular MR

Cardiovascular magnetic resonance (CMR) has become the gold standard in the assess-

ment of cardiac function [119]. To assess cardiac function in CMR, routinely a stack of

short axis cine images (Figure 1) is acquired and evaluated for the left and right ventric-

ular volume. The volume ejected by the heart during each stroke (stroke volume) is the

difference of the volume of the contracted heart (end-systolic volume) and the volume

of the relaxed heart (end-diastolic volume) [103]. The ejection fraction is calculated by

dividing the stroke volume by the end-diastolic volume and is used to determine the

severity of a systolic dysfunction, for instance due to congenital diseases, ischemia, or
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myocarditis [103].

The standard MR acquisition protocol for functional CMR is a b-SSFP sequence [114]

in combination with the ECG-gated cine method that partially records the data during

several heart beats. This method requires however several seconds of patients’ breath

hold, and the gating method does not work in case of severe arrhythmia.

For this reason, radial real-time cine methods using the principles of compressed sensing

were developed, that acquire the necessary data during a single heart beat [45]. However,

the essential incoherent sampling trajectories require an abruptly changing gradient

scheme. In combination with a b-SSFP sequence and its sensitive steady state this may

lead to severe, eddy current induced image artifacts [14].

Myocard

Left Ventricle

Papillary Muscles

Right Ventricle

Figure 1: Magnetic resonance image of the human heart in short axis geometry,

showing cross-sections of the left and right ventricle. The blood pool of the two

ventricles appears bright, while the myocard and the papillary muscles appear

dark. The image was acquired using a b-SSFP sequence (balanced Steady State

Free Precession).

MRI of the Temporomandibular Joint

Assessment of the masticatory motion of the temporomandibular joint (TMJ) is of inter-

est for a variety of pathologies, e.g. the intra-articular derangement of the articular disk.

A major question during the assessment of the TMJ is therefore the dynamic relation

of the discus articularis to the condyles and fossa mandibularis [118] (Figure 2).
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Contrast of the articular disc to the surrounding tissue is mainly achieved due to the low

T2 relaxation time of its fibrocartilagenous tissue [115]. Therefore, the preferred image

sequence for dynamic imaging of the TMJ is the b-SFFP sequence due to its fast T2/T1

contrast [157].

Recently developed real-time cine methods allow the real-time imaging of the TMJ

during its movement [60]. However, just as in CMR, the incoherent radial sampling

trajectories lead to eddy current induced image artifacts in combination with the b-

SSFP sequence [14, 153].

For CMR gated imaging still provides higher image quality in terms of SNR and tempo-

ral resolution than real-time imaging. However, the nonuniform and non reproducible

motion of the TMJ prevented the use of gated imaging so far.

In this thesis, solutions to both problems will be proposed: a golden angle real-time

cine method that does not affect the steady state of the b-SSFP sequence, and a self-

gated method that works even in the case of nonuniform motion such as severe cardiac

arrhythmia or the moving TMJ.

Articular Disc

Fossa Mandibularis

Condyle

Figure 2: Parasagittal magnetic resonance image showing the anatomy of the

temporomandibular joint. The articular disc between the condyle and the fossa

mandibularis appears dark due to the low T2 relaxation time of its fibrocartilage-

nous tissue [115] and the T2/T1 image contrast of the b-SSFP sequence (balanced

Steady State Free Precession).
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1.2 Thesis Outline

Chapter 2 gives a brief introduction to magnetic resonance imaging and the fundamental

techniques this work is based on, as well as a short introduction to CMR and TMJ

imaging.

Chapters 3 gives a short summary of the methods used in this work.

Chapters 4 to 6 contain the reprinted journal articles.

In Chapter 4 the new tiny golden angle profile ordering is proposed that has similar

optimal properties as the golden angle ordering but with a smaller angular increment and

therefore allows the combination of golden angle ordering with b-SSFP sequences.

In Chapter 5 it is shown that the new tiny golden angles enable sparse and parallel

imaging using the golden angle radial sparse parallel MRI (GRASP) technique and the

new tyGRASP method is proposed.

In Chapter 6 a new self-gating method is introduced, that solves the problem of gated

imaging of nonuniform motion, in particular for cardiac arrhythmia and motion of the

TMJ.

Chapter 7 summarizes the results of the reprinted publications and Chapter 8 discusses

the results and gives a conclusion.
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Chapter 2

Background

This chapter gives a very compact introduction from MRI physics to practical MRI

imaging. A detailed introduction can be found in [13], [18] and [42], which are also used

as base references for this chapter. Even though nuclear magnetic resonance describes

a quantum mechanical phenomenon, it can be described accurately using classical me-

chanics if a large number of protons is considered [123]. The following will only consider

and start with the classical descriptions of nuclear magnetic resonance.

2.1 Magnetic Resonance Imaging

2.1.1 Bloch Equations

The signal that is used to create image contrast in magnetic resonance imaging comes

from protons, dominantly water molecules. The protons of one spin-ensemble are polar-

ized along a strong magnetic field ~B0 = (0, 0, B0)T (vector in z-direction), which leads

to a steady state magnetization ~M0 = (0, 0,M0)T oriented in the direction of ~B0. The

Bloch equations describe the magnetization vector ~M = (Mx,My,Mz)
T as a function of

time
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d ~M(t)

dt
= ~M(t)× γ ~B(t)−

(
Mx(t)

T2
,
My(t)

T2
,
Mz(t)−M0

T1

)
, (2.1)

where the magnetic field is usually described as ~B(t) = ~BG(t) + ~B0 with the static

main field ~B0 and a time dependent magnetic field ~BG(t). The first term describes

the precession of the nuclear magnetization ~M dependent on the gyromagnetic ratio,

γ = 42.56Mhz/Tesla for hydrogen.

The second term is the relaxation term, that models the longitudinal and transverse

relaxation. The longitudinal relaxation is described by the tissue specific parameter T1,

with Mz being the nuclear magnetization in z-dimension. The transverse relaxation is

described by the tissue specific parameter T2.

The precession frequency, or Larmor frequency, ω0 = γB0, that is only dependent on

the strength of the main magnetic field B0 follows directly from the first term of eq.

2.1.

To move the magnetization ~M out of the steady state, a magnetic field ~B1 that rotates

at the Larmor frequency perpendicular to ~B0 is used. The force induced by ~B1 lets ~M

spiral out of the z-direction towards the xy-plane. The tip angle α between ~M and the

z-axis is defined by the strength and duration of the ~B1 field. When the ~B1 field is

turned off, the magnetization vector ~M continues to precess and starts to relax towards

its steady state along ~B0 and the magnitude M0. In case of an α = 90° tip angle, the

longitudinal and transverse relaxation of the magnetization (Figure 3) can be derived

directly from the Bloch equations as (2.1):

Mz(t) = M0(1− e−t/T1)

Mxy(t) = M0e
−t/T2

The magnetization vector ~M precesses at the Larmor frequency and emits an electro-

magnetic signal whose strength is proportional to the current transverse magnetization
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Mxy(t). The decay of this signal is specific to the tissue dependent parameters T1 and T2,

and is the main source of contrast between tissues in magnetic resonance imaging.
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Figure 3: Magnetization relaxation curves showing T1 recovery and T2 decay.

The T1 and T2 values are tissue specific properties describing the longitudinal

and transverse relaxation of the magnetization. Since the magnetization relaxes

exponentially, the relaxation function can be fully described using a single time

constant that is defined at the point where 1− 1/e = 63.2% has been recovered or

1/e = 36.8% has been decayed (dotted lines).

2.1.2 Spatial Encoding

Gradient coils are used to create a linear field gradient [13, p.215]

~G =
dBz

dx
~ex +

dBz

dy
~ey +

dBz

dz
~ez = (Gx, Gy, Gz)

T (2.2)
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where (~ex, ~ey, ~ez) is the canonical basis of the Cartesian coordinate system. The field

gradient results in a locally variable magnetic field ~BG(r) = ~G·~r~ez that specifies a spatial

variation of the z-component of the magnetic field for each location ~r = (x, y, z)T . ~BG is

superimposed on the magnetic field ~B0 and locally changes the Larmor frequency which

allows spatial encoding of the excitation and the received signal (Figure 4). The spatial

encoding is done in two steps. First, the preselection of a subvolume, and second, the

2D or 3D spatial encoding of this subvolume.

Δx [m]

G

object

ω0 ω0+γGΔx

ΔB [T]

Δx

Larmor frequency:

GΔx

Figure 4: Superimposed field gradient G locally changes the magnetic field B and

therefore the Larmor frequency ω in an object dependent on the location x (one-

dimensional case). Here ω0 is the base frequency, γG∆x describes the frequency

offset caused by the field gradient G, and γ the gyromagnetic ratio. This principle

is used for spatial encoding by the slice selection gradient, the frequency encoding

gradient, and the phase encoding gradient.

Slice Selection Gradient

A bandwidth limited RF pulse, using a sinc-shaped envelope, in combination with a

linear field gradient Gz, excites only protons that precess within the range of Larmor
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frequencies defined by the bandwidth of the excitation pulse. This allows the selective

excitation of a subvolume (or slab) of the object.

Frequency Encoding Gradient

Superimposing a linear gradient Gx in x-direction leads to a spatially varying precessing

frequency difference to ω0 of

ω(x) = γGxx. (2.3)

Applying this gradient during the read-out leads to a controlled dephasing along the

x-axis. The phase at location x and time t is described by

φ(x, t) =

∫ t

0

ω(x, τ)dτ = γ

∫ t

0

Gx(τ)xdτ. (2.4)

Usually, the k-space notation is used, which normalizes the time t to the substitute kx

using

kx = γ

∫ t

0

Gx(τ)dτ, (2.5)

which reduces equation (2.4) in k-space notation to

φ(x, kx) = kxx. (2.6)

The receiver coil integrates the signal of all locations x of the objects transverse mag-

netization m(x) = Mxy(x) which leads with the phase shifts from equation (2.6) to the

complex one dimensional signal equation

s(kx) =

∫
FOV

m(x)e−i2πkxxdx, (2.7)

where FOV is the field of view.
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Phase Encoding Gradient

The encoding of the second dimension y is very similar to the frequency encoding, except

this time the gradient Gy is applied for a short time span T after excitation which leads

to a controlled dephasing along the y-axis. Analog to the equations 2.4 to 2.6, using T

instead of t (and ky instead of kx) one derives

s(ky) =

∫
FOV

m(r)e−i2πkyydy, (2.8)

with the only difference that ky is this time constant during readout and only a single

phase shift will be acquire during each readout. As a consequence, the readout has to

be repeated many times in order to acquire the signal for different values of ky.

image-space k-space

0

0 0

0

FT

fov/2-fov/2
-fov/2

fov/2

kxmax-kxmax
-kymax

kymax

Figure 5: K-space and image-space are dual to each other by the Fourier trans-

form (FT). That means, the signal in k-space equals the distribution of the trans-

verse magnetization (image) in the spatial domain. Abbreviations: field-of-view

(fov).

K-Space

Frequency encoding and phase encoding are independent from each other if the encoding

directions are orthogonal and may be combined. This leads with ~k = (kx, ky), or more
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general ~k = (kx, ky, kz), to the more dimensional signal equation

s(~k) =

∫
FOV

m(~r)e−i2π
~k~rd~r. (2.9)

This equation, which denotes the k-space, is equivalent to the n-dimensional Fourier

transform. Therefore, the signal s in k-space equals the distribution of the transverse

magnetization m in the spatial domain (Figure 5).

s(~k)
FT⇔ m(~r). (2.10)

As a consequence, in the discrete case the distribution of the transverse magnetization

(or image) m can be reconstructed from the signal s by applying a fast Fourier transform

(FFT), presuming the k-space was fully sampled at the Nyquist rate.

2.1.3 Image Sequences

A vast number of MRI sequences exists. The following focuses on the sequences which

are relevant for the core of this work and assumes that basic MRI sequences are already

known by the reader. For a detailed overview of MR sequences see [13].

Gradient Echo

In gradient echo sequences spins are dephased using a prephasing gradient and then

refocused by a frequency encoding gradient to form an echo (Figure 6). During gradient

echo sequences typically small flip angles are used. Therefore, no lengthy period is

needed for T1 recovery [13, p. 580] and a short TR may be used which makes this class

of sequences well suited for dynamic imaging [56].

If the transverse magnetization reaches zero before the next RF pulse is applied, the

sequence is called a spoiled gradient echo. Spoiling of the transverse magnetization is

done by by applying an additional gradient spoiler and often supplemented by phase
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cycling the RF-pulse. The spoiled gradient echo sequence shown in Figure 6 is called

FLASH [56] or T1-FFE, due to the T1-weighted contrast of this sequence. Spoiled

gradient echo sequences are well suited for real-time imaging [135].

Gr

S

Gph

Gs

HF

spoiler

TE TR

Figure 6: Sequence diagram of a spoiled gradient echo sequence. The HF pulse

tips the net magnetization out of alignment with the main magnetic field (red,

top row). The slice selection gradient selects a slab or volume in space (row Gs,

left). The phase encoding gradient encodes one spatial dimension (row Gph). The

spins are dephased using a prephasing gradient and then refocused by a frequency

encoding gradient to form an echo (rows Gr and S). A spoiler gradient after

each echo is used to spoil the remaining transverse magnetization. Abbreviations:

high frequency (HF), slice selection gradient (GS), phase encoding gradients (Gph),

read-out gradient (Gr), signal (S), echo time (TE), repetition time (TR), see [13].

Balanced SSFP

If the transverse magnetization is not spoiled and non-zero before each excitation pulse,

and reaches a steady state, the sequence is called steady state free precession (SSFP).

Since SSFP sequences use a combination of pulses over several TR, additional echos,

called Hahn echos [57], are formed. For this reason, SSFP sequences may form complex

spin trajectories whose analysis is beyond the scope of this work.
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Balanced SSFP sequences [90] are SSFP sequences where the integral of switched gra-

dient pulses equals zero over TR. The difference to a non-balanced SSFP sequence is

shown in Figure 7. Due to the fully balanced gradients, dephasing and rephasing just

cancel each other (under ideal conditions) which means that just before the following

RF-pulse the spins are fully focused again into a single magnetization vector. In total, it

appears as if only relaxation effects affected the magnetization vector between the two

RF-Pulses. In particular, at TE = TR/2 the field inhomogeneity-induced phases are

nearly completely refocused [114]. Therefore, the steady state contrast depends mainly

on T2 instead of T2∗, in contrast to other gradient echo sequences. The signal equation

is [114]

MS = M0
sinα

1 + cosα + (1− cosα)(T1/T2)
e−TE/T2; TR� T1, T2. (2.11)

For an optimal flip angle α the signal approaches MS = 1
2
M0

√
T2/T1 and if T1 ≈ T2

the maximum signal is close to 50% of M0. This is why the b-SSFP sequence results in

the best signal-to-noise ratio per time of all known sequences.

On the downside, the steady state of the b-SSFP sequence is very sensitive to off-

resonances. A relative off-resonance of v (Hz) results in a dephasing of θ = 2πvTR

within TR and thus the magnetization vector rotates by θ around the z-axis during two

excitation pulses. In fact, the dephasing starts at an angle of θ/2 from the x-axis and

ends at −θ/2, and the magnetization is refocused during the echo at TE = TR/2 [114].

Figure 8 plots the signal in relation to the phase offset and shows that the signal suddenly

breaks down if the dephasing is near θ = π. Thus, the image may exhibit sudden signal

drops that typically manifest as dark-banding artifacts, where the location of the bands

depends on the local shim.

In addition to the static homogeneity of the magnetic field, the b-SSFP sequence is also

very sensitive to eddy current induced inhomogeneities. In particular, the permanently

and abruptly changing gradient scheme of non-linear phase encoding schemes [14] or due

to the large angular increment of golden angle radial acquisition schemes [152] leads to

13



Gr

S

Gph

Gs

HF

balanced 
SSFP

TE
-α

Gr

S

Gph

Gs

HF

SSFP
TE TR

TE
α

α α

Figure 7: Steady state free precession (SSFP) and fully balanced SSFP sequence

and their associated evolution of the net magnetization (bottom). For SSFP the the

readout-gradient (row Gr) is not balanced, resulting in a dephased magnetization

at the time of the second HF pulse [114]. For the balanced SSFP sequence all

three gradients (Gs, Gph, and Gr) are fully balanced, which leads, under ideal

conditions, to a single magnetization vector at the time of the second HF pulse.

Abbreviations: high frequency (HF), slice selection gradient (GS), phase encoding

gradients (Gph), read-out gradient (Gr), signal (S), echo time (TE), repetition time

(TR), see [114].
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Figure 8: Steady state signal amplitude and phase for a b-SSFP sequence at TE

= TR/2 in relation to the phase offset θ = 2πvTR between two pulses due to an

off-resonance frequency v. A strong signal loss appears if the dephasing is near π,

leading to the characteristic banding artifacts of b-SSFP sequences. Abbreviations:

balanced steady State Free Precession (b-SSFP), echo time (TE), repetition time

(TR). See [114].
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rapidly changing eddy currents in the conducting part of the magnet, and in turn to

rapidly varying field inhomogeneities. This usually leads to strong signal fluctuations

and strong image artifacts [14].

2.2 Radial Imaging

Cartesian k-space trajectories use a combination of frequency- and phase-encoding to

sample the k-space on a Cartesian grid. Beside Cartesian k-space sampling trajectories

also non-Cartesian sampling trajectories are used. The most prominent examples are

spiral trajectories [16], and radial trajectories [72]. This work focuses on the use of radial

trajectories due to its beneficial features regarding motion and aliasing artifacts [111].

In radial MRI the k-space is sampled with a set of radial profiles traversing the k-space

center.

The resulting sampling pattern shows a decreasing sampling density with increasing

distance to the k-space center. In particular, k0 is sampled during each readout (Figure

9) and the surrounding of the k-space center is strongly oversampled.

For radial trajectories, two or three frequency encoding gradients in x-, y-, and z-

direction are superimposed to generate a single frequency encoding gradient with an

arbitrary orientation [72, 111], which equals the angle of the associated radial k-space

profile. No phase encoding gradient is used. In the two-dimensional case, for a Nyquist

coverage of the high frequencies N = π/2 ·d radial profiles are needed (if the profiles are

spaced uniformly), where d is the diameter of the field-of-view in pixels. Even though

nominally more sample points are needed than for a Cartesian trajectory of the same

resolution, radial trajectories are robust to a certain degree of undersampling and in

practice a sampling density below the Nyquist rate is used, e.g. N = d profiles.
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kx

ky

Figure 9: Radial two-dimensional k-space sampling trajectory with 9 radial pro-

files. Since each profile traverses the k-space center, the sampling density around

the k-space center is much denser than on the circumference and the origin k0 is

sampled during each read-out.

2.2.1 Non-Cartesian Reconstruction

For non-cartesian trajectories the gradient encoded signal equation from 2.9 becomes

[89]

s( ~kn) =

∫
FOV

m(~r)e−i2π
~kn~rd~r, (2.12)

where s(~kn) indicates that the signal is sampled at the non-cartesian sampling points

~kn. To reconstruct an image from the k-space samples s, the weighted inverse discrete

Fourier transform (IDFT ) may be used [84, 82]:

m̂(~r) =
Ns−1∑
n=0

w(~kn)s(~kn)ei2π
~kn~r. (2.13)

The weighting function w accounts for the nonuniform density of the k-space sampling

trajectory, and m̂ is the image with the inherent artifacts to be expected by the discrete

17



Fourier transform. If the sampling density approaches the Nyquist rate, then m̂ ≈ m at

the locations ~r.

2.2.2 Discrete Matrix Notation

This section introduces the compact matrix / vector notation using linear algebra that

will be used throughout the rest of this work [107]. In discrete form the acquisition

process can be modeled, analog to equation (2.13), using the discrete Fourier transform

(DFT)

ŝ(~kn) =
Nm−1∑
j=0

m(~rr)e
−i2π~kn~rj . (2.14)

where ~rj is the sequence of Cartesian image coordinates inside the field-of-view. This is

a linear transformation and might thus be written in matrix form

s = DFT (m) = Am, (2.15)

where s ∈ CNs is the complex signal, m ∈ CNm the complex image vector, and A ∈

CNs×Nm the Fourier matrix defined by equation (2.14). Note, that two- or three-

dimensional images and k-spaces are represented by one-dimensional vectors. Similar,

the weighted IDFT from equation (2.13) might be written in matrix form as

m̂ = IDFT (Ws) = BWs = AHWs, (2.16)

where AH denotes the complex conjugate transposed of A, and W the diagonal sampling

density compensation matrix with Wn,n = 1/w(kn) [106]. The relation B = AH follows

directly from the diagonal symmetry of the Fourier matrix and the relation eix = e−ix.

The matrix A is called the system matrix. It is m̂ ≈ m in case a W is found such that

AHW ≈ A†, where A† is the pseudoinverse of A [7].
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2.2.3 Gridding Reconstruction

The complete evaluation of the inverse discrete Fourier (IDFT) transform is computa-

tional not practical. Even the explicit representation of A in computer memory is usually

not feasible due to the large dimensions of A.

Therefore, practically a convolution interpolation (gridding) method is used [112], that

interpolates an arbitrary k-space sampling pattern onto a Cartesian grid using a con-

volution kernel, which then allows the use of the Fast Fourier Transform (FFT). The

gridding method is a fast and accurate approximation of the IDFT and is composed of

the following steps [61]:

1. Convolution of k-space with gridding kernel

2. Resample result onto Cartesian grid

3. Apply FFT

4. Apodization Correction

The signal s from equation (2.12) is sampled using the sampling function T (k-space

trajectory) which has the value 1 at the non-Cartesian sampling points and otherwise 0.

The gridding method uses a convolution with the gridding kernel C and a subsequent

discretization using a Dirac comb function III [8] with

m̂[r] = FT−1{[s(k) · T (k)

w(k)
∗ C(k)]III(Gk)}(r) · a(r), (2.17)

where r ∈ [−N/2;N/2 − 1] are the discrete pixel locations, ∗ is the convolution op-

erator, FT−1 the inverse Fourier transform, G the number of k-space pixels, a(r) =

1/FT−1{C(k)}(r) the apodization correction, and k ∈ [−0.5; 0.5] the k-space locations.

The density compensation function w compensates for the varying sampling density of

the sampling function T .

Selection of the exact gridding kernel, kernel width, kernel sampling, and oversampling

ratio has been subject to a long debate [61, 116, 112, 8, 120, 49, 48]. The optimal kernel
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is the sinc function of infinite extent [91], but in practice usually the finite Kaiser-Bessel

window is used [61] to minimize aliasing side lobes. The difference between gridding

and the weighted IDF can be made arbitrary small by selecting the right oversampling

ratio and gridding kernel [7], leading to a trade-off between accuracy and computation

time. Practically, the improved gridding method proposed in [49] (NUFFT) is used

often, that uses interpolation kernels which are numerically optimized to minimize the

approximation error.

Note, that equation (2.17) formulates the IDFT transform. The matching DFT, that

will be needed for iterative image reconstruction, is expressed similar without the density

compensation w as

ŝ[k] = FT{[m(r)

a(r)
· III(r)] ∗ C(r)}(k) · T (k). (2.18)

2.3 Parallel Imaging and SENSE

The knowledge of the spatial sensitivity profile of the receive coils implies spatial in-

formation about the origin of the detected MR signals, that is complementary to the

spatial encoding by image gradients [72]. If more than one receive coil is used in parallel,

this spatial information might be used during the reconstruction process to resolve the

ambiguities (aliasing) due to k-space undersampling, resulting in an acceleration of the

MR scan [107].

2.3.1 Coil Sensitivity Maps

Each coil of a coil array has a complex local coil sensitivity profile Si. This sensitivity

map is practically estimated using a reference scan mbc using the homogeneous main

body coil and a second scan mi using the coil array. The complex coil sensitivity maps

Si include the coil sensitivities relative to the homogeneous body coil, as well as the coil
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induced phase shifts relative to the body coil. S is calculated using a complex division

of the form

Si = mi/mbc. (2.19)

Care has to be taken in image regions without or a very low signal, since the division

with small numbers leads to noise amplification. Careful masking of areas not containing

sufficient signal is required with successive interpolation of void regions [137] under the

assumption that S contains only low image frequencies. Other work used an iteratively

regularized solution of (2.19) [4].

Alternatively, in autocalibrating parallel MRI methods, the sensitivity maps are in-

cluded as additional unknowns to equation (2.21) with a regularizing term that enforces

smoothness of the sensitivity maps [133, 156]. This results in a non-linear problem, that

is more difficult to solve, with the benefit of not needing a separate sensitivity profile

scan.

2.3.2 Parallel Image Reconstruction

In the following, parallel imaging using image-based reconstruction methods is presented.

A second class of reconstruction methods exists, that are k-space-based and will not be

covered in this work. For more details regarding k-space-based methods see [54], and

the relation between both methods [134, 6].

For parallel imaging the acquisition model (2.15) is modified, such that s ∈ CNsNc

holds the k-space samples of all Nc receiver coils and the linear model A ∈ CNsNc×Nm

of the acquisition process combines the coil sensitivities S and the nonuniform Fourier

transformations F into the block diagonal matrix F̂
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s =


s1

...

sNc

 , S =


S1

...

SNc

 , F̂ =


F . . . 0
...

. . .
...

0 . . . F

 and s = F̂Sm = Am, (2.20)

where si ∈ CNs is the data recorded by the ith of Nc coils with Ns samples in k-space, Si is

an estimation of the coil sensitivity of the ith coil, and m ∈ CNm the image vector.

In principle, parallel image reconstruction is a deconvolution problem, where the con-

volution with an aliasing kernel (or point-spread-function) K = AHA during the image

reconstruction with AH , is undone using a deconvolution matrix K−1 leading to the

reconstruction equation [106]

m = K−1AHs = (AHA)−1AHs. (2.21)

The direct inversion of K is, due to the size of K, computational not feasible. Instead, an

iterative approach is used solving the equation (2.21) for m in the following form

(AHA)m = AHs, (2.22)

for example using a conjugate gradient solver since the coefficient matrix AHA is positive

definite [106]. In theory, an unique solution m exists if NcNs >= Nm, that means the

number of coils exceeds the undersampling factor R. In practice, the undersampling is

limited by noise and the increasingly ill-conditioned posed problem for large reduction

factors R. Various regularization methods have been proposed in the literature to solve

the amplification of noise [66, 75, 74].

The main computational efforts during this process are the vector matrix multiplica-

tions with A and AH , or more specifically the gridding and inverse gridding operations

described by equations 2.17 and 2.18.
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2.4 Compressed Sensing

The Shannon/Nyquist theorem [121] states that to fully capture all information of a

signal, one must sample at twice the sampling rate than the signals bandwidth. Surpris-

ingly, it was discovered in 2004 independently by Donoho [35] and Candés et al. [24], that

the compressed sensing (CS) method is under certain conditions able to reconstruct an

image (or signal) from a measurement that was sampled incomplete, below the Nyquist

sampling rate. There are three preconditions for compressed sensing [21, 81, 2] in order

to work:

1. P1 - Sparsity in ψ: The signal must be compressible in some base ψ.

2. P2 - Incoherence with φ: The measurement base φ and the sparsity base ψ must

be incoherent.

3. P3 - Random sub-sampling X: The sub-sampling must be random and uniform

A signal or image x is compressible if a linear basis ψ ∈ CNx×NX exists that transforms

the signal into a sparse representation x′ with

x = ψx′. (2.23)

The signal x′ is k-sparse if only k of the coefficients in x′ are non-zero. The signal x is

compressible if x′ has few large and many small coefficients [22].

In a compressed sensing framework the measurement process takes fewer measurements

at a sampling rate below the Nyquist theorem. The measurement process uses a mea-

surement matrix A ∈ RNb×Nx and a random sub-sampling matrix X to take the samples

b

b = Ax = Xφx = Xφψx′. (2.24)

If φ and ψ are mutually incoherent, a compressed sensing framework is able to fully
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recover x from the sub-sampled measurement b using a non-linear reconstruction algo-

rithm [21]. The art of compressed sensing is to find a good pair of a measurement matrix

φ (that needs to be a model of the sensing hardware) and a fitting sparse representation

matrix ψ with low coherence. It was shown by [37] that the mutual incoherence property

(MIP) is a practical condition to measure the coherence

µ =
√
n ·maxi 6=j|φTi ψj|. (2.25)

The value of µ is inverse proportional to how many samples are minimally needed to

recover a k-sparse signal - a lower µ indicates a lower k. Other related conditions for

suitable matrices exists, e.g. the restricted isometry property (RIP) [25].

2.5 Sparse MRI

It is well known that most images, including medical and MRI images, are compressible.

Many image compression methods (e.g. JPEG 2000 [128]) are based on a transforma-

tion into a sparse representation of the image and are storing only the most significant

coefficients. Thus, the first precondition for compressed sensing is given in MRI.

Unfortunately, the second and the third preconditions are not directly fulfilled in MRI.

The Fourier sampling matrix used in MRI exhibits a maximal high coherence with the

common sparsity transformations for medical images (e.g. finite difference or wavelet

transform) [68, 2]. For example, the low scale wavelets obviously correlate with the low

Fourier frequencies. Fortunately, it was shown first empirically [81, 23] and recently more

formally [68, 2] that compressed sensing in this setting works if variable-density sampling

instead of uniform random sampling is used. That means, low k-space frequencies are

to be sampled denser than the high k-space frequencies.

Choosing the incoherent sub-sampling matrix X in MRI means choosing a specific sub

sampled k-space trajectory. Incoherent sampling trajectories suited for compressed sens-
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ing were first described by Lustig et al. [81]. Examples are Cartesian trajectories with

Gaussian random phase encoding or non-Cartesian radial trajectories that were already

demonstrated in the original work by Candès [23].

In case of MR imaging, the acquisition process is modeled by the discrete linear imaging

equation s = Am = Xφm where φ is the sensing matrix in terms of compressed sensing

(Section 2.4) and A the system matrix as introduced in equation (2.15). The recon-

struction problem is to find the image m for a given signal s. In case of undersampled

data (Ns < Nm), the linear system of equation is under-determined and no unique solu-

tion, but a set of solutions exists. The reconstruction algorithm has to select the right

solution, that is assumed to be sparsest solution of the set [35]. To select the sparsest

solution under the sparsity transform ψ l0-minimization is used [36]

argmin
m:Am=s

‖ψm‖0. (2.26)

Unfortunately, l0-minimization is a NP-hard problem in general [51]. Donoho [36] showed

that l1-minimization is able to exactly recover k-sparse solutions with a high probability

using

argmin
m:Am=s

‖ψm‖1. (2.27)

The l1-minimization favors sparse solutions, in contrast to l2-minimization, which pe-

nalizes large values and favors small values. This optimization problem is called basis

pursuit [27]. The l1-minimization problem is not only convex but also insensitive to

noise added during the measurement process s = Am + ε. Considering noise ε, the

equation (2.27) becomes

argmin
m

‖ψm‖1 subject to ‖Am− s‖2
2 < ε. (2.28)

This system might be solved using a non-linear conjugate gradient solver [88] in combi-

nation with the unconstrained La-Grange formulation of equation (2.28) suggested by
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[81]:

argmin
m
{‖Am− s‖2

2 + λ‖ψm‖1}. (2.29)

The variable λ should be chosen such that ‖Am−s‖2
2 ≈ ε [79]. In practice, the following

objective function is minimized:

f(m) = ‖Am− s‖2
2 + λ‖ψm‖1. (2.30)

The non-differentiable absolute function that is part of the l1-Norm is modified to become

differentiable using the approximation abs(x) ≈
√
x2 + ε, which is also known as corner

rounding [81]. The gradient of equation (2.30) is similar to equation (2.22)

δ

δm
f(m) = 2AHAm− 2AHs+ λψH

ψm√
(ψm)H � (ψm) + ε

, (2.31)

where the square root, division, and vector-vector multiplication � are element-wise

operations.

Equation (2.29) can also be interpreted as a l1-regularized reconstruction, where λ bal-

ances the data fidelity of m to the signal s and the sparsity of m under ψ, to suppress

aliasing and noise amplification. The nonlinear conjugated gradient method provides an

easy solution to solve equation (2.29) but even with corner rounding the Hessian can

have a very high curvature leading to a slow convergence [110, 108]. More advanced

gradient descent algorithms such as MFISTA [10, 9] and split-Bregman-type algorithms

[52, 109] handle non-smooth regularizers exactly without corner rounding and a higher

convergence rate.

26



2.6 Time-Resolved MRI

Time-resolved MRI, or dynamic MRI, adds a temporal dimension by capturing an object

in a changing state frame by frame. In a frame-by-frame acquisition process the maximal

frame rate is limited by the acquisition time needed for a single frame, which is in

turn limited by physical constraints (gradient strength and slew rate) and physiological

constraints (nerve stimulation) [132].

The spatial resolution specifies to what minimal distance two lines can be resolved in

an image and the unit for spatial resolution is usually line pairs per millimeter [38].

Accordingly, temporal resolution specifies to what frequency a blinking pixel may be

resolved and the unit is cycles per second or Hertz. Just as an insufficient spatial

resolution (in relation to the object) leads to spatial blurring, an insufficient temporal

resolution (in relation to the moving object) leads to temporal blurring.

Important applications for time-resolved MRI are cardiovascular magnetic resonance

(CMR) [158], functional MRI of the brain [77], time resolved angiography [53], joint

kinetics (e.g. TMJ [20], knee [62] or wrist [17]), and imaging of the vocal tract [138].

Similar to equation (2.20), dynamic imaging can be formulated by combining the mea-

surements for each frame into a single vector s, and by combining the Cartesian or

nonuniform Fourier transforms for each frame Fn of Nf frames into the block-diagonal

matrix F̂

s =


s1

...

sNf

 , F̂ =


F1 . . . 0
...

. . .
...

0 . . . FNf

 and s = F̂m = Am, (2.32)

where si ∈ CNs is the data recorded for the nth of Nf frames with Ns samples in k-space,

and m ∈ CNmNs is the dynamic image vector.
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2.6.1 l2-Methods for Accelerating Time-Resolved MRI

To accelerate time-resolved MRI beyond the limits of the gradient system, k-space sub-

sampling may be used. Two general sources of information are used to unfold the aliased

images: sensitivity encoding as described in section 2.3 and spatiotemporal redundancy.

Many methods were proposed that use one or both sources, the most relevant of them

are listed in Table 1.

As described in Section 2.3, undersampling k-space leads to an underdetermined system

of equations, with infinite valid solutions. All methods shown in Table 1 calculate the

least square (l2-norm) solution and the spatiotemporal redundancy is either exploited by

constraining or through regularization of the linear system. The reconstruction equation

of those methods may be written in the generalized Tikhonov form [155, 131, 142]:

m̂ = argmin
m
|Am− s|2P + |m−m0|2Q, (2.33)

with |x|2Q being the weighted norm xTQx. The equation has the explicit solution

m̂ = (AHPA+Q)−1(AHPs+Qm0). (2.34)

The methods mainly differ in the method of regularization (choice of P and Q) and the

way the system is constrained to make it over-determined. The k-t BLAST method

uses a training dataset in x-f space with low spatial but high temporal resolution to

construct the temporal regularization matrix P . Using the Fourier transformed k-t space

called x-f space leads to a compact representation that exploits quasi-periodic signal

changes. The k-t PCA method is a generalization of k-t BLAST by constraining the

system to the principal components of the training dataset, making it over-determined.

The NoQuist method constrains the system to the dynamic parts of the image making

it over-determined. The UNFOLD method is able to resolve non-overlapping aliasing

using temporal low-pass filtering (choice of Q). All methods use Cartesian trajectories
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and vary k-space sampling pattern in the phase encoding direction over time in order to

decorrelate aliasing in the temporal dimension.

Table 1: Overview of linear methods that solve aliasing due to undersampling us-

ing spatiotemporal redundancies. For each method (left column) an according vari-

ant that works with parallel imaging exists (right column). The methods mainly

differ by additional constraints that is applied to the objective function (second

column) and by the regularization method (third column). Abbreviations: una-

liasing by Fourier-encoding the overlaps in the temporal dimension (UNFOLD),

sensitivity encoding (SENSE), SENSE with temporal filtering (TSENSE), field-

of-view (FOV), reduced FOV method (NoQuist), parallel imaging and NoQuist in

tandem (PINOT), k-t Broad-use Linear Acquisition Speed-up Technique (BLAST),

principal component analysis (PCA).

Method Constraint Regularization Parallel Version

UNFOLD [83] Limit aliasing Temporal low-pass TSENSE [64]

NoQuist [19] Dynamic parts of

image

- PINOT [58]

k-t BLAST [132] Transform to x-f

space

Training data k-t SENSE [132]

k-t PCA [102] Principal com-

ponents in x-f

space

Training data k-t PCA/SENSE

[102]

2.6.2 Compressed Sensing Time-Resolved MRI

The methods mentioned in the previous section all use the least square solutions of the

system model. Compressed Sensing may also be used for dynamic imaging, exploiting

sparsity in the temporal dimension similar to the methods in section 2.6.1, but using

l1-norm regularization, enabling a higher undersampling factor.

Different sparsity transforms were suggested for the temporal dimension. Lustig et al.
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[78] suggested using the wavelet transform for the spatial dimension and the Fourier

transform for the temporal dimension. Gamper et al. used the Fourier transform for

the temporal dimension [50]. Adluru et al. [3] suggested using the total variation (TV)

transform in the spatial as well as in the temporal dimension. Feng et al. suggested using

the temporal TV transform with an additional temporal Fourier transform [47].

The formulation of the reconstruction equation is the same as for non-dynamic com-

pressed sensing in equation (2.29) in combination with the definitions for dynamic imag-

ing from equation (2.32).

2.6.3 Golden Angle Radial MRI

Radial k-space trajectories are less sensitive to artifacts introduced by motion and there-

fore are often used for imaging of dynamic physiological processes [111]. Additionally,

compared to Cartesian trajectories, radial trajectories are known to be robust to a cer-

tain level of azimuthal undersampling, which is used in time-resolved imaging to increase

the temporal resolution. Sliding window reconstruction [111] is used to further increase

the image update rate. Using the conventional radial sampling scheme, the width of the

reconstruction window is fixed and must be selected before the acquisition is started. In

most cases however, the optimal acquisition window size is not known a priori. Changing

the acquisition window size requires rescanning of the subject with an adapted radial

trajectory.

The golden angle ψgold = π/τ = 111.24...° divides the semicircle by the golden ratio

τ = (1 +
√

5)/2. The golden angle trajectory is the radial k-space trajectory where

successive radial profiles are placed using a successive angle increment of ψgold. Note,

that in this work a full revolution is defined by π instead of 2π due to the symmetry of

the center-through trajectory that is used for most radial MRI sequences. The uniform

angle increment is defined by ψuni = π/P and provides the most uniform radial sampling

trajectory for a given number of radial profiles P . If P cannot be predetermined prior to

the acquisition, it was shown that the golden angle trajectory guarantees a near-optimal
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uniformity of the radial distribution for an arbitrary number of successive profiles [144].

The uniformity reaches a local maxima if P is an element of the Fibonacci series (Figure

10).

This means, that the number of profiles in the reconstruction window, and thus the

degree of undersampling, can be adjusted retrospectively to adapt to different levels of

motion. During the last years, the golden angle ordering scheme has found widespread

use in various applications from real-time imaging, over self-gated acquisition, to single

scan T1- and T2-mapping [60, 76, 101, 117, 41, 125].

Another advantage of the golden angle is, that the separation in training scan and main

scan that is necessary for some reconstruction methods becomes obsolete in golden angle

radial MRI, since the same scan may be reconstructed in any combination of spatial and

temporal resolution. A generalization of the golden angle will be presented in the first

part of this work in Chapter 3.

P = 3 P = 21 P = 23P = 5

***

P = 15

Figure 10: Golden angle k-space trajectory for various number of profiles P . Suc-

cessive profiles are spaced by the golden angle increment ψgold = π/r = 111.24...°,

where τ is the golden ratio (1+
√

5)/2. Profile distributions where P is an element

of the Fibonacci sequence F1 = 1;F2 = 1;FN = FN−1 + FN−2 exhibit a particular

uniform distribution and are marked using the ∗ sign.

2.6.4 Golden Angle Radial Sparse Parallel MRI

In particular, radial trajectories with a golden angle ordering scheme have been used in

combination with time-resolved parallel imaging and compressed sensing [33, 136, 34],

31



due to the intrinsic properties of this trajectory. First, the variable density sampling

in k-space that oversamples the k-space center, second, the flexibility in the degree of

retrospective undersampling, and last, the incoherent aliasing artifacts that are essential

for compressed sensing [80, 26].

Feng et al. combined radial golden angle trajectories with parallel imaging and com-

pressed sensing using temporal TV regularization into the iGRASP method [46]. This

method will be extended in Chapter 4 of this work and is described in more detail in

the following.

To combine parallel imaging and time-resolved imaging, the signal for all coils and all

frames are combined into a signal vector s. The system equation according to equation

(2.32) and equation (2.20) is

ŝn =


sn,1

...

sn,Nc

 , ŝ =


ŝ1

...

ŝNf

 , Ŝn =


S1

...

SNc

 , S =


Ŝ1

...

ŜNf

 , (2.35)

F̂n =


Fn . . . 0
...

. . .
...

0 . . . Fn

 , F̂ =


F̂1 . . . 0
...

. . .
...

0 . . . ˆFNf

 and ŝ = F̂Sm = Am, (2.36)

where bn,c is the signal from the nth frame and cth coil, Nc the number of coils, Nf the

number of frames, and Fn contains the nonuniform Fourier transform with the golden

angle trajectory for the nth time frame. Equation (2.36) becomes the fidelity term

according to the compressed sensing framework of equation (2.30)

argmin
m
{‖Am− s‖2

2 + λ‖∇tm‖1}, (2.37)

with ∇t being the temporal gradient operator. ∇t in combination with the l1-norm is

the total variation (TV) [21].

32



The temporal TV constraint expects the function of a single pixel over time to be ap-

proximately piece-wise constant. This model seems reasonable, if a piece-wise constant

object changes mostly gradually over time (see Figure 11). In contrast, the Fourier trans-

form, which may also be used for the sparsifying transform in the temporal dimension,

models a cyclic and continuous pixel function over time.

time

0 ms 100 ms 200 ms 400 ms

0 ms 100 ms 200 ms 400 ms time

0.0

1.0

0 ms 100 ms 200 ms 400 ms time

∇I

0.0

1.0

-1.0

I

Figure 11: The intensity function (middle row) of a single pixel (red cross) from

a cine image of a piece-wise constant object (top row) is also piece-wise constant

in time if the object moves continuously. The finite difference ∇I (bottom row)

of the intensity function I is therefore a sparse function and the finite difference

often a suitable sparsifying transform for the reconstruction of cine images, e.g. of

the contracting heart.
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2.6.5 Gating and Self-Gating

Gating is an alternative time-resolved imaging method to resolve cyclic uniform motion

that is to fast to be captured during a single motion cycle, even for rapid imaging

sequences. The k-space for a single image of a specific motion phase is gradually filled

during many cycles of a cyclic motion. The current motion phase is determined using a

gating signal. For cardiac imaging the ECG signal is commonly used as gating signal [70]

and for each cycle a reference (zero-phase) position is identified using the ECG’s R wave.

ECG-gating is the current gold standard for CMR and is used in clinical routine.

If no gating signal is available, self-gating methods may be used to retrospectively extract

a gating signal from the k-space data itself. This method may be used for gating of the

cardiac motion, but also for additional gating of the respiratory motion during cardiac

scans [101].

For the image-based self-gating method suggested by Larson et al. [71] a preliminary

image series m with low spatial and high temporal resolution is reconstructed using a

sliding window reconstruction with window width w. The image series m is restricted

to a region of interest (ROI) containing the myocardial wall. The 1D self-gating signal

g is defined using the Pearson correlation ρ [40] of all images mn to a selected template

image mt

gn = ρ(mt,mn). (2.38)

This technique performs well in comparison to other self-gating methods and may be

combined with golden angle sampling [93, 130]. Usually, the 1D gating signal g has to

be low-pass filtered, e.g. using a temporal median filter. Peaks of the signal are detected

to identify a zero-phase (trigger point) for each motion cycle. The k-space profiles are

sorted into time frames, based on the time interval to the neighboring peaks. Finally,

the time frames are reconstructed frame-by-frame using gridding reconstruction. Cycles

differing by more than a certain percentage in length from the mean cycle interval, for

instance due to arrhythmia, are rejected.
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2.7 Applications

Even though the core focus of this work is of a general nature, in a sense that it can be

used for many applications, the results were demonstrated for two selected applications.

A brief introduction to both applications is given in the following.

2.7.1 Cardiovascular Magnetic Resonance Imaging

Cardiovascular magnetic resonance imaging (CMR) is the assessment of the heart using

magnetic resonance imaging techniques (Figure 12). CMR is used for the diagnosis

of various cardiac diseases, e.g. valvular and congenital heart disease, or myocardial

ischemia and infarction [103], using various MR techniques, e.g. ECG gating, myocardial

perfusion imaging, or real-time imaging [113].

CMR has become the de facto standard in the assessment of cardiac function of both

normal and abnormal ventricles and is e.g. superior to echocardiography [119].

0ms 125ms 250ms

375ms 500ms 625ms

systole

end-diastole

Figure 12: Cine magnetic resonance image of one cycle of a beating human

heart in short-axis view, showing cross-sections of the left and right ventricle at

consecutive points in time. The blood pool appears with a bright signal.

Prospective ECG triggered acquisition is the gold standard for cardiovascular magnetic
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resonance imaging. Despite the use of rapid imaging sequences and accelerated parallel

imaging for real-time imaging, the best spatial and temporal resolution is still achieved

with ECG triggered, segmented breath-hold studies [70]. In absence of an ECG sig-

nal, retrospective self-gating (SG) might be used to reach a similar image quality [127,

71].

All gating methods have in common, that the gating signal is used to identify a zero-

phase image (e.g. R wave) for each cycle. Under the assumption that all cardiac cycles

are identical in motion, the partially sampled k-space of all cycles is combined into a

fully sampled k-space.

In case of cardiac arrhythmia, the assumption of identical motion cycles is not valid.

In practice, if the interval between two R waves deviates from the mean interval, the

cycle is discarded. This leads to an increased acquisition time and sub-optimal image

quality. Furthermore, the result misleadingly suggests a single motion cycle, concealing

the arrhythmic cycles.

Balanced SSFP sequences have become the imaging method of choice for cardiac function

at 1.5 Tesla [105]. Cardiac imaging benefits from the high SNR and intrinsic flow

compensation of b-SSFP, which reduces artifacts and enhances the signal of inflowing

blood [15].

2.7.2 MR Imaging of the Temporomandibular Joint

Temporomandibular joint dysfunction is a common problem that affects up to 28% of

the population [124]. While only a few have organic diseases (e.g. arthritis, trauma,

ankylosis, or neoplasia), the majority exhibits functional disorders, e.g. clicking sounds

during mastication, facial pain, or limited joint motion [55]. Assessment of the motion

of the TMJ therefore is of interest for a variety of pathologies, in particular the intra-

articular derangement of the articular disc. One major question during the assessment

of the TMJ is the dynamic relation of the discus articularis to the condyles and the fossa

mandibularis [118].
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While other modalities (axiography [104], sonography[69, 85], palpation) are also used

for the examination of the TMJ, only MR imaging provides direct imaging of the

disc-condyle complex, including the articular disc, and is considered the gold standard

[141].

Early work on dynamic imaging of the TMJ started with the acquisition of a series

of static images in different positions using differently sized bite blocks or incremental

mouth opening devices [20, 31, 32]. These pseudo-dynamic images provided no accurate

insight on the joint kinematics and are physiologically not equivalent to active movement

of the mandibula [12, 39].

Therefore, various efforts have been made towards real-time imaging of the TMJ using

fast imaging sequences like b-SSFP [1, 122, 5] and HASTE [140]. For these methods

the patients were instructed to very slowly and continuously open and close the mouth,

which requires some patient instruction and patient training. Due to the slow TMJ

movement, these methods still do not reflect the true kinematics during a realistic joint

motion.

Recently, real-time dynamic cine MRI using fast sequences in combination with radial

trajectories were used for the imaging of the TMJ [60, 157] providing improved spatial

and temporal resolution. However, imaging under realistic mastication speed is still

limited by the limited spatiotemporal resolution of these methods. Table 2 shows an

overview of previous work regarding time-resolved imaging of the TMJ.

During dynamic imaging of the articular disc the contrast to the surrounding tissue is

achieved mainly due to the low T2 of the fibrocartilagenous tissue (T2 ≈ 26ms [115],

T2∗ ≈ 7ms [29]). For this reason, if FLASH sequences with T1 weighted contrast are

used the articular disc is hardly visible. It was shown previously, that the b-SSFP

sequence [90] enable the visibility of the articular disc with very short TE/TR due to

its T1/T2 contrast [157] and is therefore the sequence best suited for dynamic imaging

of the TMJ. However, the steady state of the b-SSFP sequence is very sensitive to

off-resonances, especially if induced by abruptly changing eddy currents [14].
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Table 2: Overview of time-resolved temporomandibular joint acquisition meth-

ods. The methods differ mainly in the used image sequence, its image contrast

(second and third column), and the maximum achievable spatial and temporal

resolution (fourth, sixth, and seventh row). Some methods are accelerated us-

ing an undersampled sampling scheme (8th column). Abbreviations: steady state

free precession (SSFP), balanced SSFP (b-SSFP), half Fourier acquisition single

shot turbo spin echo (HASTE), fast low angle shot (FLASH), T1 weighted turbo

spin echo (T1W-TSE), k-space weighted image constrast (KWIC), fast field echo -

echo planar imaging (FFE-EPI), proton density (PD), undersampling factor (R),

Resolution (Res.).

Author Sequence Con-

trast

Slice

Thick-

ness

[mm]

Cycle

Time

[s]

Spat.

Res.

[mm]

Temp.

Res.

[Hz]

R

Chen 2000 [28] FFE-

EPI

PD 5 7 1.1 2 1.25

Abolmaali 2004 [1] b-SSFP T2/T1 7 40 1.2 4 2

Beer 2004 [11] T1W-

TSE

T1 5 12 1.6 3 1

Shimazaki 2007 [122] b-SSFP T2/T1 10 72 1.2 1.7 1

Wang 2007 [140] HASTE PD 7 35 1.0 0.9 1

Azuma 2009 [5] b-SSFP T2/T1 3 21 1.8 0.7 1.3

Zhang 2011 [157] b-SSFP T2/T1 5 50 0.75 0.6 1

Hopfgartner 2013 [60] FLASH T1 3 15 0.59 1.5 KWIC†

† KWIC filtered, frequency dependent
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Chapter 3

Summary of Methods

3.1 Tiny Golden Angles

In the first part of this work, a sequence of angles ψN = π/(τ + N − 1) is introduced

where τ = (1 +
√

5)/2 is the golden angle Ψ1 and the complementary small golden angle

Ψ2. The new angles ΨN>2 are called Tiny Golden Angles and numerical simulations are

performed to show that these angles (49.750..°, 32.039... °, 27.198... °, 23.628...°, ... )

have the same optimal sampling efficiency SEΨ
N = SNRΨ/SNRuni as the golden angle

for an arbitrary reconstruction window P > 2N , where SNRuni is the optimal signal to

noise ratio for an uniform radial sampling scheme [143]. The peak sampling efficiencies

are located at members of the generalized Fibonacci sequence GN
1 = 1;GN

2 = N ;GN
n =

GN
n−1 +GN

n−2.

To proof, that the tiny golden angles are a suitable small surrogate for the golden angle

in time-resolved radial MRI, images of a standard test phantom, time-resolved images of

the moving heart in short-axis view, and cine images of the moving TMJ were acquired.

Images were acquired at 3 T using a balanced SSFP sequence in combination with a

radial trajectory using the golden angle, and the new tiny golden angles. The resulting

images were compared to reference images acquired with uniform radial sampling by the

normalized root mean square error, and visually analyzed for the appearance of eddy
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current induced image artifacts.

3.2 Tiny Golden Angle Radial Sparse Parallel MRI

(tyGRASP)

In the second part of this work, the tiny golden angle trajectories are analyzed for their

incoherence properties in relation to sparse imaging by means of their time-resolved

point-spread functions. Then, tiny golden angle radial sparse parallel MRI (tyGRASP)

is introduced, a variant of the iGRASP method (see Section 2.6.4) in combination with

the tiny golden angle ordering scheme. To proof, that the new method reconstructs

images with a comparable image quality, a simulation experiment is performed using

the numerical cardiac phantom MRXCAT [145]. Further, to show that the smaller

angular increments of the new method enables the combination of the iGRASP method

with b-SFFP sequences, both methods are evaluated with two applications.

For the feasibility study time-resolved short axis cardiac datasets of five healthy volun-

teers were acquired using tyGRASP with the tiny golden angles ψ1 to ψ7 and a b-SSFP

sequence. To analyze image quality, the coefficient of variation of the left ventricle was

measured for all datasets. Further, sagittal time-resolved images of the TMJ of five

healthy volunteers were acquired using tyGRASP and the tiny golden angles ψ1 to ψ7

a b-SSFP and a FLASH sequence. The coefficient of variation of the TMJ area was

measured for all datasets.

3.3 Nonuniform Self-Gating

A new nonuniform self-gating method for cyclic motion trajectories with a nonuniform

pace is proposed. A sequence of radial k-space profiles in tiny golden angle order is

acquired during multiple cycles of the nonuniform motion. Sliding window reconstruction

is used to reconstruct an initial undersampled image sequence m. The sequence m is
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restricted to a region of interest around the condyle and the pairwise Pearson correlation

[40] of all images in m is used to calculate a 2D gating matrix, that exhibits a typical

rhombus-structure for a cyclic but nonuniform motion (Figure 13). Instead of finding

peaks in a 1D gating signal, as in image-base self-gating [71], the proposed method finds

contours in the 2D gating matrix. Smooth and continuous curves are fitted onto the line

structures of the matrix using active contour matching [63]. For each row one frame of

the cine image is reconstructed using all k-space profiles in a neighborhood around the

intersections with the active contours.

For the feasibility study short axis time-resolved data sets were acquired from three

patients with known severe cardiac arrhythmia. The cine images were reconstructed

using the proposed nuSG method and for comparison by an image-based self-gating

method (SG)[71] and the iGRASP [46] real-time method. Further, time-resolved images

of the TMJ from 8 healthy volunteers and 7 patients with suspected TMJ derangement

were scanned. The patients were instructed to continuously open and close the mouth

within 8 seconds. Images were reconstructed with nuSG, SG and iGRASP. For each cine

image, the sharpness was calculated along a profile that was placed for cardiac images

over the septal myocardial wall, and for TMJ images over the condyle edge. Significance

of sharpness increase was assessed using the one-sided Wilcoxon signed rank test. A

quantitative analysis of the left ventricular blood pool area was done using standard

software (Segment, Medviso, Lund, Sweden (24)).
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Figure 13: Structure of the pair-wise correlation matrix for an arrhythmic heart.

Higher values indicate higher similarity of the template image (row) to the com-

parison image (column). The reference image is similar to images in the same

position and same movement direction (lines parallel to the main diagonal) and in

the same position and the opposite movement direction (lines orthogonal to the

main diagonal). A row of the matrix equals the one-dimensional self-gating signal

used in image-based self-gating (top). The peaks in the one-dimensional gating

signal form curved lines in the two-dimensional gating matrix (bottom, red).
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Chapter 4

A Small Surrogate for the Golden

Angle in Time-Resolved Radial MRI

Based on Generalized Fibonacci

Sequences (reprinted article)

This article [153] was published as

Wundrak, S., Paul, J., Ulrici, J., Hell, E., and Rasche, V. A Small Surrogate for the

Golden Angle in Time-Resolved Radial MRI Based on Generalized Fibonacci Sequences.

IEEE Transactions on Medical Imaging 34.: 1262–1269, 2015

and is © 2014 IEEE. Reprinted with permission.

43



1262 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 6, JUNE 2015

A Small Surrogate for the Golden Angle
in Time-Resolved Radial MRI Based on

Generalized Fibonacci Sequences
Stefan Wundrak*, Jan Paul, Johannes Ulrici, Erich Hell, and Volker Rasche

Abstract—In golden angle radial magnetic resonance imaging
a constant azimuthal radial profile spacing of
guarantees a nearly uniform azimuthal profile distribution
in -space for an arbitrary number of radial profiles. Even
though this profile order is advantageous for various real-time
imaging methods, in combination with balanced steady-state
free precession (SSFP) sequences the large azimuthal angle
increment may lead to strong image artifacts, due to the
varying eddy currents introduced by the rapidly switching
gradient scheme. Based on a generalized Fibonacci sequence,
a new sequence of smaller irrational angles is introduced
( ).
The subsequent profile orders guarantee the same sampling
efficiency as the golden angle if at least a minimum number of
radial profiles is used for reconstruction. The suggested angular
increments are applied for dynamic imaging of the heart and the
temporomandibular joint. It is shown that for balanced SSFP
sequences, trajectories using the smaller golden angle surrogates
strongly reduce the image artifacts, while the free retrospective
choice of the reconstruction window width is maintained.
Index Terms—Golden angle, radial trajectory, real-time

imaging.

I. INTRODUCTION

I NRADIALmagnetic resonance imaging (MRI) the -space
is sampled with a set of radial profiles that each pass through

the -space center [1]. Radial -space trajectories are less sen-
sitive to artifacts introduced by motion and therefore are often
used for imaging of dynamic physiological processes [2]. Ad-
ditionally, compared to Cartesian trajectories, radial trajectories
are known to be robust to a certain level of azimuthal undersam-
pling, which is used in time-resolved imaging to increase the
temporal resolution. Sliding window reconstruction [2] is used
to further increase the image update rate. Using the normal ra-
dial sampling scheme, the width of the reconstruction window
is fixed and must be selected before the acquisition is started.
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In most cases however, the optimal acquisition window size is
not known a priori. Changing the acquisition window size re-
quires rescanning of the subject with a differently spaced radial
trajectory.
It was shown in [3] that if radial profiles are placed using

the golden angle profile order which uses a consecutive profile
spacing of (golden angle), a nearly uniform pro-
file distribution is guaranteed for an arbitrary number of suc-
cessively acquired profiles. This means that the number of pro-
files in the reconstruction window and thus the degree of under-
sampling can be adjusted retrospectively to adapt to different
levels of motion. During the last years the golden angle ordering
scheme has found widespread use in various applications from
real-time imaging, over self-gated acquisition, to single scan
T1- and T2-mapping [4]–[10]. In particular, radial trajectories
with a golden angle ordering scheme have been used in combi-
nation with parallel imaging and compressed sensing [11]–[13]
due to the intrinsic properties of this trajectory. First, the vari-
able density sampling in -space that oversamples the -space
center, second the flexibility in the degree of retrospective un-
dersampling, and last the incoherent aliasing artifacts that are
essential for compressed sensing [14], [15].
In this work we introduce a new sequence of angles that is

based on a generalized Fibonacci sequences. We show that the
smaller tiny golden angles exhibit properties that are very sim-
ilar to the original golden angle.
We show the advantages of the newly introduced angles

for dynamic MR imaging in combination with fully balanced
steady-state free precession sequences (b-SSFP) [16]. The large
angular increment of the golden angle profile order leads to a
permanently and abruptly changing gradient scheme, which
leads to rapidly changing eddy currents in the conducting part
of the magnet, and in-turn to rapidly varying field inhomo-
geneities. The equilibrium of the b-SSFP sequence is especially
sensitive for these varying eddy current effects and may ex-
hibit strong signal fluctuations [17]. These image artifacts are
avoided by the smaller angle increments of the new surrogate
angles while preserving the inherent properties of the golden
angle ordering scheme for dynamic imaging.

II. THEORY

A. Golden Angle Trajectory
The golden angle divides the semicircle by the

golden ratio . The golden angle trajectory is
the radial -space trajectory where successive radial profiles are

0278-0062 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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placed using a successive angle increment of . Note, that
in this work a full revolution is defined by instead of due
to the symmetry of the center-through trajectory that is used
for most radial MRI sequences. The uniform angle increment
is defined by and provides the most uniform radial
sampling trajectory for a given number of radial profiles . If
cannot be predetermined prior to the acquisition, it was shown
that the golden angle trajectory guarantees a near-optimal ra-
dial distribution for an arbitrary number of profiles [3]. The
golden angle increment successively divides one of the largest
remaining azimuthal gaps by the golden ratio.
To compare the quality of different sampling trajectories the

sampling efficiency is calculated. A nonuniform profile distribu-
tion has a nonuniform azimuthal sampling density, which affects
the signal-to-noise ratio (SNR) of the reconstructed image. The
SNR for a given trajectory can be derived directly from the sam-
pling density of the -space sampling schemes. The sampling
efficiency for a given and for radial profiles equals
the ratio of the SNR of the uniform sampling scheme
and the SNR of the sampling scheme [18]. This leads
to the following definition of the sampling efficiency proposed
by Winkelmann et al. (see [3] for details)

(1)

with being the mean azimuthal distance of the th profile to
its two adjacent profiles. The sampling efficiency of the golden
angle falls never below 0.9732 for all and has its
local maxima if is a Fibonacci number [3].

B. Tiny Golden Angles
The aim of this work is to find smaller angles that exhibit

similar properties as the golden angle. A geometric construction
is used for a new sequence of angles (Fig. 1). If angle increments

are used the th radial profile will have an
angle larger than if . We define all angles that
divide the last azimuthal gap before reaching by the golden
ratio using the relation

(2)

Solving (2) for using the known relation
leads to the sequence of angles

(3)

The first twomembers for and of this sequence
are the well-known golden angle and the complementary small
golden angle

(4)

In this work we will call all for tiny golden angles.
The first ten members of the sequence are shown in Table I.
Some of these angles are known to be found in the process of
phyllotaxis of various plants [19], [20]. Fig. 2 shows the profile
placement for a selection of angles and values for . The sam-

Fig. 1. Geometric construction of for . Last gap before the profile
angle gets lager than , between the fourth and the first profile, is divided by the
golden ratio. Sixth profile divides the next gap also by the golden ratio. Solving
the relation leads to .

TABLE I
FIRST 10 ELEMENTS OF THE SEQUENCE

pling efficiency has its local maxima if is a member of
the generalized Fibonacci sequence [21], that is defined by

(5)

where is the well-known Fibonacci sequence. In fact, the
sequence could be directly derived from the generalized
Fibonacci sequences itself (see Appendix A).
If radial profiles are added successively spaced by the con-

stant increment , each additional profile after divides
one of the currently largest azimuthal gaps by the golden ratio
(see Appendix B for proof). The sampling efficiency is com-
parable to the sampling efficiency of the golden angle trajectory
(Fig. 3) for and the bounds defined by the local minima
and maxima of converge to the bounds of .
The guaranteed bounds for were calculated numerically for
the window using (1) and are shown in
Table I.

C. Beyond the Tiny Golden Angles
A radial trajectory using any constant irrational angle incre-

ment will exhibit at most three different gap sizes, and will suc-
cessively divide one of the largest gaps (proven by Knuth [22]).
Furthermore, any irrational number can be expressed by a reg-
ular continued fraction [23] of the form

(6)
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Fig. 2. Placements of the radial profiles using the tiny golden angle increments for . Sampling efficiency is printed under each
profile distribution. Profile distributions where is an element of the generalized Fibonacci sequence , are marked using the * sign.

Fig. 3. Sampling efficiency for (a) and (b) compared to the golden angle
increment . Logarithmic scale is used on the -axis. Max-
imum sampling efficiencies are reached if is a member of the generalized Fi-
bonacci sequence . For
(7, 15) the sampling efficiency stays practically within the extremal bounds of
the golden angle. Plots for to are provided as supplementary material.

Using this notation and the well-known definition of
[24], the angles as defined in (3) can be expressed by

the regular continued fraction

(7)

Fig. 4 shows a plot of the minimal sampling efficiency for all
angle increments between 0 and using the function

(8)

The arbitrary choice of ensures on the one hand
that for the first 10 angles (see Section II-B) which
covers angles , and on the other hand is still a
small enough reconstruction window for most real-time appli-
cations. The plot shows clearly that all are located at high
local maxima of . Note that the maxima for are not vis-
ible in this plot due to the choice of .
However, additional local maxima are visible in between the

locations of . Analog to the original geometric construction
of (Fig. 1), we define the set of angles by dividing
the last segment using the ratio instead of . Analog
to (2) the relation leads to the definition of

(9)

The angles , , , , , and specify the
prominent maxima below 90 shown in Fig. 4 (dotted green
lines) that were not covered by any . Analog to (5) the gen-
eralized Fibonacci sequence that defines the peak sampling ef-
ficiencies for is

(10)

Theoretically, one could extend this scheme to use more co-
efficients of the continued fraction to explore more angles in
the set . One would find
more sub-optimal angles, but with increasing and the local
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Fig. 4. Minimum sampling efficiency in the window for all angle increments in calculated with a resolution of 0.002 . Dotted red lines
are local maxima located at the sequence of the tiny golden angles . Each tiny golden angle has side-maxima located at the set (dotted green lines, shown
for , , and only). Plot is symmetrical to 90 due to the radial center-through trajectory. The maxima of for are not visible (left of 15 ) due
to the arbitrary choice of .

maxima get less distant from each other and exhibit worse uni-
formity. Practically, two coefficients and are sufficient
to reach all relevant local maxima (compare Fig. 4).

III. MATERIAL AND METHODS

A. Experiments
1) Point Spread Function Analysis: Time-resolved se-

quences of two-dimensional point spread functions (PSF) were
created using radial sampling patterns with a constant azimuthal
increment of and . For both the PSF were created using
the optimal resolution for ( ) and for ( ).
For all four sampling schemes the temporal maximum intensity
projection (t-MIP) [15] was created by taking the maximum
value of each pixel of the PSF sequence over time. The point
spread functions were generated by an inverse gridding recon-
struction followed by a successive gridding reconstruction of
an image of 256 256 pixel that contained one single pixel
with a signal intensity greater than zero.
2) Phantom Imaging: A standard test phantom (Philips,

Best, The Netherlands) was scanned using a radial trajectory
with a constant azimuthal increment using the golden angle
, as well as the tiny golden angles to . In addition, a

reference trajectory with a small azimuthal sampling increment
of 0.5 was used that leads to a perfect uniform trajectory
if a multiple of radial profiles are used for the
image reconstruction window. The acquisition parameters for
the balanced SSFP sequence were ms,

, pixel bandwidth of 934.8 Hz, a spatial
resolution of 0.75 0.75 8 mm , and a 320 320 pixel
acquisition matrix.
3) Real-Time Cardiac Imaging: Dynamic short axis

real-time cardiac data sets were acquired from a healthy
volunteer using a radial trajectory with a constant azimuthal
increment using the golden angle , and the angles , ,

. A reference image was acquired using a constant sampling
increment of 3 which leads to an uniform trajectory if a
multiple of radial profiles are used for the image recon-
struction window. A 32 channel cardiac coil was used during
breathhold. The acquisition parameters for the balanced SSFP
sequence were ms, ,
pixel bandwidth of 2688 Hz, spatial resolution of 2.74 2.74
8 mm , and a 124 124 pixel acquisition matrix.
4) Dynamic Temporomandibular Joint Imaging: Dynamic

images of the temporomandibular joint (TMJ) were acquired
under a slow and continuous opening and closing motion of
the mandibular. The volunteer was instructed to open and
close the mouth continuously and as uniformly as possible
within 20 s. The fully balanced SSFP sequence was used due
to its T1/T2 contrast at short echo times which is essential
for the fast imaging of the discus articularis [25]. A radial
-space trajectory with a constant angular increment using
the tiny golden angle was used. The scan was repeated
using the balanced SSFP sequence as well as a FLASH se-
quence [26]. A 2 4 channel carotid coil (Chenguang Medical
Technologies, Shanghai, China) was used. The acquisition
parameters for the balanced SSFP sequence were: in-phase,

ms, flip angle , pixel bandwidth of
949 Hz, and spatial resolution of 0.75 0.75 5 mm with an
acquisition matrix of 256 256 pixel. The acquisition param-
eters for the FLASH sequence were the same, except that the
flip angle was reduced to 15 .
All datasets were acquired on a Philips 3T Achieva system

(Philips Healthcare, Best, The Netherlands). Written informed
consent was obtained in all cases prior to examination.

B. Reconstruction

For all experiments the images were reconstructed using grid-
ding convolution interpolation with a Kaiser-Bessel-window
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Fig. 5. Point spread function analysis using T-MIPs of and for a window
width of (a) radial profiles (optimal for ), and (b) radial
profiles (optimal for ). Plots display the signal intensity over 100 pixels across
the horizontal central line of the T-MIPs.

width of five pixel [27]. The density compensation was adapted
to compensate the variations of azimuthal gaps [3]. Prior to
reconstruction, the -space data was corrected for phase errors
by identifying pairs of profiles that were measured in approxi-
mately opposite directions. For each pair a trajectory shift was
estimated using linear regression of the profiles' phase deviation
in image space as described in [28] and [29]. The cardiac image
sequence was filtered using a total variation filter along the
temporal dimension to remove the remaining incoherent streak
artifacts [30], all other image sequences are unfiltered. All
images were reconstructed using an in-house software package
implemented with MATLAB (MathWorks, Natick, MA, USA).

IV. RESULTS

A. Point Spread Function Analysis

Fig. 5 shows the result of the point spread function analysis.
For 55 radial profiles shows lower aliasing lobes than
[Fig. 5(a)]. This is explicable, since is a Fi-
bonacci number which is optimal for the golden angle profile
order, but not for the profile order. In case of pro-
files, is the generalized Fibonacci Number , thus yielding
lower aliasing lobes for the acquisition order [Fig. 5(b)].

Fig. 6. NRMSE for images acquired with radial angle increments and a
b-SSFP sequence, in comparison to a reference image acquired with uniform
sampling at 0.5 (a). Reconstructed images for a selection of radial angles
exhibit strong image artifacts for (b). NRMSE is given in percent for
each image. Signal intensity was scaled by a factor of two to accentuate the
image artifacts.

B. Phantom Imaging
The images taken from the test phantom using the tiny

golden angles were compared to the reference image that were
taken with a small angle increment of 0.5 . The normalized
root mean square error (NRMSE) was used for comparison.
Fig. 6(a) shows that with a decreasing azimuthal angle the error
also tends to decrease. Despite the small local maxima at
and , for the error falls below 1.4%. Fig. 6(b) shows
a selection of the images that were used to create the plot in
Fig. 6(a). The image artifacts are shown accentuated by scaling
the image intensity by a factor of two. The image artifacts are
clearly strongest with the large and the small golden angle

and ( ), and are reduced for to a
visually acceptable level in comparison to the reference image
( ).

C. Real-Time Cardiac Imaging
Fig. 7(a) shows short axis views of the heart in systolic state.

The images were reconstructed from continuously acquired
radial profiles using a retrospectively chosen reconstruction
window width of radial profiles. The image acquired
with the golden angle azimuthal increment shows strong
image artifacts, which decrease with decreasing angular incre-
ment. The image artifacts are reduced if the angle gets smaller
( , ). The image that was acquired with the smallest angle

exhibits an artifact level visually comparable to the refer-
ence image. Since the resting phase of the heart in end-diastolic
phase is significantly longer than the resting phase of the
systole, the reconstruction window width could be increased



WUNDRAK et al.: A SMALL SURROGATE FOR THE GOLDEN ANGLE IN TIME-RESOLVED RADIAL MRI BASED ON GENERALIZED FIBONACCI SEQUENCES 1267

Fig. 7. Cardiac short-axis view scanned multiple times with different constant angle increments and 3 using a b-SSFP sequence during breathhold. Systole
was reconstructed with 60 radial profiles (a), the diastole with 120 profiles (b). Golden angle shows strong image artifacts due to the large angle increment and
the resulting rapidly changing eddy currents.

to 120 radial profiles without introducing temporal blurring
[Fig. 7(b)]. The image artifacts show similar behavior as for
the systolic reconstructions.

D. Dynamic Temporomandibular Joint Imaging
The resulting images of the moving TMJ during its opening

phase are shown in Fig. 8. The image that was reconstructed
using the tiny golden angle has comparable image quality
to the reference image that was acquired with the 3 uniform
sampling scheme (middle row). The borders of the discus artic-
ularis are clearly visible (arrow) due to the T1/T2 contrast of the
b-SSFP sequence. In contrast to the uniform sampling scheme,
the tiny golden angles profile order allows the reconstructing
using an arbitrary reconstruction window width without in-
troducing additional artifacts due to a nonuniform sampling
scheme (top row). Using the original golden angle profile order

introduces strong image artifacts (bottom right). These
perturbations are not visible if a FLASH sequence is used, but
at the cost of reduced SNR and the reduced visibility of the
discus articularis (bottom left, white arrows).

V. DISCUSSION

In this work a modified golden ratio acquisition order using
smaller angular increments has been introduced for radial MRI.
The angular spacing is chosen according to a generalized Fi-
bonacci sequence. It has been shown that the proposed order
yields similar properties as the well-known golden angle acqui-
sition order [3], but shows improved performance for balanced
SSFP sequences with respect to eddy-current related artifacts.
The existence of the tiny golden angles became evident in a nu-
merical simulation of the sampling efficiency for all possible
angular increments (Fig. 4). Similar results were reported pre-
viously in the field of theoretical biology using the distribution
uniformity of leaves [19] and a shadow cast model [20] as ob-
jective functions.
It was shown previously that the golden angle increment

guarantees a near uniform profile distribution for an arbitrary

Fig. 8. Moving TMJ during its opening phase acquired with a b-SSFP and a
FLASH sequence, using a radial trajectory with azimuthal increments of 3 ,

, and . Images acquired with were reconstructed with arbitrary window
sizes of 70, 228, and 120 spokes (top row, center left) and show no additional
artifacts compared to the reference image (center right). Image acquired with the
golden angle and the b-SSFP sequence shows strong image artifacts (bottom
right). Using the FLASH sequence the image artifacts disappear, at the cost of
reduced SNR and reduced visibility of the discus (white arrows).

number of radial profiles. Using numerical simulation it was
shown that for the practically relevant parameters the proposed
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tiny golden angles guarantee a similar optimal sampling effi-
ciency if at least a minimum of radial profiles are used,
thus enabling free choice of the retrospective reconstruction
window.
For the reconstruction of extremely undersampled datasets

from e.g., less than 8 radial -space lines [4], the minimum of
radial profiles may seem like a limitation for

or higher. In this case however, selecting the first or second
generalized Fibonacci number (e.g., or ) still
guarantees a high sampling efficiency. In general, has to
be chosen application specific to ensure that is large enough
for a sufficiently small angular increment, and at the same time
that is small enough for a sufficiently small reconstruction
window width.
One important application for the tiny golden angles that was

examined in this work is time-resolved imaging with b-SSFP se-
quences. In combination with a b-SSFP sequence large angle in-
crements may lead to strong image artifacts induced by rapidly
changing eddy currents. An abrupt change of the field inho-
mogeneities generates deviations from the dynamic equilibrium
and induces large signal fluctuations [17].
Through plane equilibration as described in [17] is to our

experience not sufficient to fully compensate the large gradient
steps involved with the golden angle ordering scheme. In the
samework itwas suggested to pair profiles that do approximately
have the same angle. For time-resolved imaging this would
however lead to a by a factor of two lowered temporal resolution.
The original publication by Winkelmann et al. also applied

the golden angle ordering scheme to cardiac b-SSFP imaging
on a 1.5T system. Despite the observations made by Bieri et al.
[17], no severe image perturbations were observed in their work
[3]. However, it is known that eddy-current effects are highly
dependent on the MRI system and the actual gradient switching
scheme. Their impact on the image quality in b-SSFP sequences
is likely higher on 3T systems, which may explain the effects
observed in this work. To our experience, eddy current effects
due to large angle increments are also observable in b-SSFP
images at 1.5T, but to a much lesser degree.
The experiments in this work showed that using the smaller

azimuthal angle increments of the tiny golden angles signifi-
cantly reduces the eddy current induced artifacts. The experi-
ments showed that the strength of the image artifacts is difficult
to predict. For instance, the artifacts in the cardiac experiment
appeared much stronger than in the TMJ experiment. Further-
more, the phantom experiment showed that the image artifact
level does not necessarily decrease strictly monotonic with de-
creasing angles [Fig. 6(b)]. However, in all cases an angle in-
crement between and seemed sufficient to suppress most
image artifacts to an acceptable level, which enables the com-
bination of b-SSFP sequences with the tiny golden angle profile
ordering.
In case of TMJ imaging, this result is important, since the

T1/T2 contrast of the b-SSFP sequence is essential for imaging
the discus articularis which in most cases is the main interest
of the physician [31]. No fast sequence with a T2 dependent
contrast is known that could replace the b-SSFP in this case.
In this work gridding reconstruction was used. In prac-

tical applications, parallel imaging [32], [33] and compressed

sensing with an iterative reconstruction [14] could be used to
increase the temporal resolution. The quasi-random property of
the golden angle profile ordering with its incoherent aliasing ar-
tifacts [15] is essential for achieving a high temporal resolution
in combination with compressed sensing bases approach, e.g.,
k-t SPARSE SENSE [4], [34]. The PSF analysis showed that
the tiny golden angles exhibit similar incoherent point spread
functions as the golden angle (Fig. 5) and should therefore
work well with compressed sensing based approaches.
It should be possible to use most other applications that

depend on the golden angle in conjunction with the introduced
golden angle surrogates, e.g., time-resolved contrast enhancing
[3], [10], single shot T1- or T2-mapping [9], [35], or self-gating
[6], [7]. In future, other applications may be identified where a
smaller surrogate for the golden angle may be beneficial, e.g.,
for the reduction of the acoustic noise during time-resolved
acquisitions.

APPENDIX A
This work initially derived the tiny golden angles from a geo-

metric construction. Alternatively, the angles could be derived
directly from the generalized Fibonacci sequence using

APPENDIX B
Hypothesis: If radial profiles are successively added

spaced by the constant increment , each additional profile
after divides one of the currently largest azimuthal gaps
by the golden ratio .

Lemma 1: All members of the sequence are irrational.
Proof: All can be expressed using an infinite contin-

uous fraction and are thus irrational, see (7).
Lemma 2: If is irrational, only two or three different

gap sizes appear, and each additional profiles after di-
vides one of the largest gaps.
The proof for Lemma 2 can be derived directly from the proof

given by Knuth for any irrational angle [22]. The following
proofs the hypothesis using induction:

Invariant 1: Either three gap sizes exist with
and (which implies ),

or two gap sizes exist with .
Proof by induction that Invariant 1 is valid for all .
Induction Start: : Two gap sizes exist, and Invariant

1 is clearly valid due to the definition of through (2).
Inductive Step: If for the profile distribution Invariant 1

is valid, show that for the profile distribution Invariant 1
is still valid.

Case 1: Three gap sizes exist and is not the
last gap of its size.
Then the th profile divides one of the largest gaps
of size (Lemma 2) into (no th gap
size allowed due to Lemma 2 and due to
Invariant 1).

Three gap sizes , , and
exists and Invariant 1 is valid for .
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Case 2: Three gap sizes exist and is the last
gap of its size.
Then the th profile divides the largest gap of size

(Lemma 2) still into , since
would imply , and is not allowed
due to Lemma 2.

Two gap sizes and are left and
Invariant 1 is valid for .
Case 3: Two gap sizes exist and is not the last
gap of its size.
Then the th profile divides the largest gap of size
(Lemma 2) into , since due
to Invariant 1 and since irrational.
Since and follows:

Three gap sizes , , and
exists and Invariant 1 is valid for .

Case 4: Two gap sizes exist and is the last gap of
its size.
This case never happens. For to be of Case 3, had
to be of Case 2. But Case 2 will always create at least two
gaps of the size .

The Invariant 1 is valid for in all 3 cases. Together
with Lemma 2 this proves the hypothesis.
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Golden Ratio Sparse MRI Using Tiny Golden Angles

Stefan Wundrak,1,2* Jan Paul,1 Johannes Ulrici,2 Erich Hell,2 Margrit-Ann Geibel,3

Peter Bernhardt,1 Wolfgang Rottbauer,1 and Volker Rasche1

Purpose: The combination of fully balanced SSFP sequences

with iterative golden angle radial sparse parallel (iGRASP) MRI
leads to strong image artifacts due to eddy currents caused
by the large angular increment of the golden angle ordering.

The purpose of this work is to enable the combination of itera-
tive golden angle radial sparse parallel MRI with balanced

SSFP using the recently presented tiny golden angles.
Methods: The tiny golden angle trajectories are analyzed for
their incoherence properties in relation to sparse imaging using

the time-resolved point-spread functions. Tiny golden angle
radial sparse parallel (tyGRASP) MRI is introduced and eval-

uated with applications in cardiac imaging and dynamic imag-
ing of the temporomandibular joint. The results are analyzed in
detail for 3 T and verified for 1.5 T.

Results: The incoherence properties of the tiny golden angle
trajectory are comparable to the incoherence properties of the

golden angle trajectory and are well suited for sparse MRI
reconstruction. The proposed tiny golden angle radial sparse
parallel MRI method strongly reduces eddy current related arti-

facts for both applications.
Conclusion: This work enables sparse, golden-ratio-based
imaging with balanced SSFP sequences. Magn Reson Med
000:000–000, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: cine; cardiac; TMJ; sparse MRI; golden angle;
compressed sensing; iGRASP

INTRODUCTION

Balanced steady-state free precession sequences (b-SSFP)
are known in MRI to provide very high signal-to-noise
ratio and T2/T1-weighted image contrast. It has become
the de facto standard for cardiovascular magnetic reso-
nance imaging at 1.5 Tesla (1). Cardiac imaging benefits
from the intrinsic flow compensation of b-SSFP, which
reduces artifacts and enhances the signal of inflowing
blood (2). Furthermore, the T2/T1-weighted contrast of
b-SSFP sequences allows, for example, the imaging of
the articular disc of the temporomandibular joint (TMJ)
with short pulse repetition time (TR) (3). In particular,
b-SSFP sequences are commonly used for real-time MR
imaging (3–5).

Sparse MRI (6) is an acceleration strategy that exploits
spatial and temporal image sparsity to reconstruct the
original signal from incoherently undersampled measure-
ments using techniques known from compressed sensing
(CS) (7). Various approaches for CS in MRI have been
proposed (6,8,9). Recently, iterative golden angle radial
sparse parallel MRI (iGRASP) was introduced (10),
which uses sparse MRI in combination with parallel
imaging (11). Golden angle radial k-space trajectories
(12) are well suited for sparse MRI due to their incoher-
ent aliasing artifacts (13,14) and their low sensitivity to
motion (15). The iGRASP method is able to reconstruct
time-resolved cardiovascular images from as low as 21
radial profiles per time frame.

The large angular increment (111:246
�
) of the golden

angle trajectory leads to rapidly changing eddy currents
in the conducting part of the magnet, and in turn to rap-
idly varying field inhomogeneities. The steady-state of
the b-SSFP sequence is especially sensitive for these
varying eddy current effects and may exhibit strong sig-
nal fluctuations (16). This effect often prohibits the com-
bination of iGRASP with the b-SSFP sequence. In (17), a
profile ordering using tiny golden angles was introduced
that has comparable properties to the golden angle with-
out rapid gradient changes.

The purpose of this work is to evaluate the combina-
tion of iGRASP with b-SSFP. First, the incoherence
properties of the tiny golden angles are analyzed, then
the tiny golden angle radial sparse parallel MRI
(tyGRASP) method is introduced and verified with
applications in cardiac imaging and imaging of the TMJ.

METHODS

Iterative Golden Angle Radial Sparse Parallel MRI

Sparse MRI requires a variable density sampling scheme
that leads to incoherent aliasing (6,18). Radial trajecto-
ries naturally fulfill this requirement by densely sam-
pling the k-space center. The radial golden angle profile
ordering ensures an optimal sampling efficiency for an
arbitrary number of consecutive profiles (12). Further-
more, the golden angle leads to a quasirandom distribu-
tion of radial profiles which leads to temporal
incoherent aliasing artifacts (14) that is a fundamental
requirement for CS (19). The iGRASP method combines
golden angle radial sampling with CS and parallel imag-
ing (10). In the following, the iGRASP technique is
described as used in this work. First, radial k-space pro-
files are acquired continuously using the golden angle
profile ordering and are sorted into a time-series of
frames. Images are reconstructed iteratively by solving
the nonlinear reconstruction problem
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jjF � S � x � bjj22 þ ltjjrtxjj1 þ lsjjrsxjj1; [1]

b ¼

b1

�

bc

2
664

3
775; S ¼

S1

�

Sc

2
664

3
775; F ¼

F̂ . . . 0

� . .
.

�

0 . . . F̂

0
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CCCA [2]

where F̂ is the nonuniform Fourier transformation from

Cartesian x – t to radial k – t space and S contains the

coil sensitivity maps for all c coils. The l2-norm enforces

data consistency between the k – t space samples b and

the reconstructed image sequence x in x – t space. rs

and rt denote the gradient operator along the spatial

and temporal dimension, respectively. The combination

of r with the l1-norm forms the total variation regulari-

zation, which exploits sparsity of rsx and rtx by assum-

ing a piecewise constant signal function for each pixel in

space and over time (20), resulting in most coefficients

of rtx and rsx to be zero.

Tiny Golden Angles

Tiny golden angles (17) are small irrational angles that

exhibit properties similar to the original golden angle.

Tiny golden angles are defined using the golden ratio

t ¼ ð1þ
ffiffiffi
5
p
Þ=2 and the sequence

cN ¼ p=ðtþN � 1Þ; N ¼ 1;2; ::: : [3]

The first two members of this sequence are the

well-known golden angle c1 ¼ 111:246:::
�

and the com-

plementary small golden angle c2 ¼ 180
� � 111:246:::

�
.

The angles cN>2 are called tiny golden angles (c3 ¼
49:750 :::

�
; c4 ¼ 38:977 :::

�
; c5 ¼ 32:039 :::

�
; c6 ¼ 27:198:::

�
;

c7 ¼ 23:628:::
�
; ::: ) which have the same optimal proper-

ties regarding the radial profile distribution for an arbi-

trary reconstruction window size w, if more than 2N

radial profiles are used (Fig. 1a). The angle wN leads to

the most uniform distribution if w is an element of the

generalized Fibonacci sequence (17)

GN
1 ¼ 1; GN

2 ¼ N ; GN
n ¼ GN

n�1 þ GN
n�2 [4]

where the first sequence G1 is the well known Fibonacci

sequence and, for example, G7 ¼ 1; 7; 8; 15;23; 38; ::: the

generalized Fibonacci sequence for w7.

Incoherence Properties of the Tiny Golden Angles

Sparse MRI reconstruction presumes a sampling trajectory

with incoherent aliasing artifacts (6). The less coherent

aliasing of the golden angle sampling scheme compared

with uniform radial sampling was previously shown in

(21). To analyze the incoherence properties of the tiny

golden angle sampling trajectories in comparison to the

golden angle trajectory, the point spread functions (6)

were calculated for a sequence of time frames using

PSFi;j ¼ eH
j FH Fei [5]

where ei is the ith canonical basis vector. The point

spread functions were calculated for w1 to w7, for a

reconstruction window width w of 5 to 60, and a resolu-

tion of 256 � 256 pixel. The sidelobe-to-peak ratio (SPR)

(6), which is directly related to the mutual incoherence

(22), was used as a measure for coherence and was cal-

culated for each frame using

SPR ¼ max
i 6¼j

PSFi;j

PSFi;i

� �
[6]

and combined along the temporal dimension using the

maximum intensity projection (14). A lower SPR means

lower coherence and better characteristic for the CS

reconstruction (22).

Tiny Golden Angle Radial Sparse Parallel MRI

The proposed tyGRASP method is equivalent to iGRASP

described by Eq. 1 with the difference that a tiny golden

angle trajectory is used for the acquisition process. The

angle w7 was used in all experiments, as it was, on the

one hand, sufficiently small to avoid most b-SSFP

related artifacts and, on the other hand, the minimum

window width w > 2N þ 1 ¼ 15 is still sufficiently small

for fast imaging with a high temporal resolution.
The objective function (1) was minimized using a non-

linear conjugate gradient solver with corner rounding (6)

for the gradient calculation of the l1-term and an inexact

backtracking line search. The system was left-

preconditioned using the square root of the k-space sam-

pling density function (23) and the solver was termi-

nated after 100 iterations in all cases. The k-space data

FIG. 1. Golden angle ordering w1 compared to tiny golden angle
ordering w7. a: Both exhibit a near optimal radial profile distribu-

tion if w > 2N, especially if w is an element of the generalized
Fibonacci sequence GN (marked with �). b: Incoherence of the

tiny golden angle sampling trajectory w7 analyzed using the SPR
in the time-resolved point spread functions. Red and blue dotted
lines indicate the generalized Fibonacci numbers GN. Both trajec-

tories show similar SPRs, with a slightly better incoherence for wN

if w 2 GN.

2 Wundrak et al.



were normalized to an arbitrary l2-norm of 100 multi-

plied by the number of time-frames.

Simulation

A simulation experiment was performed using the
numerical cardiac phantom MRXCAT (24), the angles w1

to w7, and a varying window width w of 3 to 40 spokes

per frame. Simulation parameters were: reconstruction

matrix 256 � 256, 24 time frames, 16 coils, added Gaus-

sian noise to yield an SNR of 35. The regularization was
fixed to lt ¼ 0:005 and ls ¼ 0:0005, based on preliminary

experiments to minimize the normalized root mean

square error (NRMSE) for w¼ 8 and w¼ 30. The experi-

ments were repeated ten times with a different random

noise seed. For the resulting images the NRMSE to the
noise free ground truth was calculated.

Volunteer Studies

The tyGRASP method was verified in volunteer studies

for cardiovascular magnetic resonance imaging and imag-

ing of the TMJ. All studies were approved by the local
ethics committee and written informed consent was

obtained prior to the examination. All scans were per-

formed on a Philips 3T Achieva system (Philips Health-

care, Best, The Netherlands). As a measure for the noise

level and residual artifacts, the signal variation was esti-
mated from the magnitude in all images and averaged.

The coefficients of variation were calculated as the

standard deviation divided by the mean value in 5 � 5

pixel masks over all time frames.

Cardiac Experiment

Dynamic short axis time-resolved cardiac data sets were

acquired from five healthy volunteers during a 2.3 s

breathhold. A radial trajectory with the the radial angle
increments w1 and w7 was used in combination with a

b-SSFP and a FLASH sequence. The parameters for the

b-SSFP sequence were: TR/TE¼ 2.3/1.15 ms, flip angle

43
�
, resolution 2:3� 2:3 mm2, slice thickness 8 mm,

acquisition matrix 148 � 148. The FLASH sequence was

used with the same parameters, except for TR/TE¼ 2.3/

1.6 ms and flip angle¼ 15
�
. Coil sensitivity maps for the

32 coils where acquired using a separate calibration

scan. The regularization parameter were set manually to

w¼ 23, lt ¼ 0:04 and ls ¼ 0:001 based on experiments to
optimize the perceived image quality. A verification data

set was acquired on a second MR system (Philips 1.5T

Ingenia) to account for the system dependent influence

of eddy currents, using the same parameters as on the 3T
system.

TMJ Experiment

Sagittal images of the TMJ of five healthy volunteers
were acquired by means of a 2 � 4 channel carotid coil

(Chenguang Medical Technologies, Shanghai, China)

using a b-SSFP and a FLASH sequence. The parameters

for the b-SSFP sequence were: TR/TE¼ 4.6/2.3 ms, flip
angle 48

�
, resolution 0:75� 0:75 mm2, slice thickness

5 mm, acquisition matrix 256 � 256. The FLASH

sequence was used with the same parameters, except for
TR/TE¼ 4.8/2.3 ms, flip angle 20

�
. The data were

acquired using the radial angle increments w1 and w7.

The reconstruction parameters were set manually to
w¼ 38, lt ¼ 0:05 and ls ¼ 0:002 after experiments to

reach the best perceived image quality. The volunteers

were instructed to open the mouth in about 4 s, as uni-

formly as possible, and to close it again in about 4 s.

RESULTS

Coherence Analysis

Figure 1b shows the SPR of w1 and w7 as a function of

the window width w. The plots for w3 to w9 can be found

in the Supporting Information (Supporting Information
Fig. S6). Generally, for w 2 G1 the w1 are more incoher-

ent (blue dotted lines) and for w 2 GN the wN are more

incoherent (red dotted lines). For w < 2N the golden

angle is better than wN, except if w 2 GN . The mean SPR
difference between wN and w1 with w > 2N is below

0.002, the minimum and maximum difference is in the

range ½�0:018; 0:019�. This means, that for w > 2N , all
angles wN define a sampling trajectory that has a similar

level of incoherence as the original golden angle

trajectory.

Simulation

Figure 2a shows the numerical phantom reconstructed

with tyGRASP using radial trajectories and angular

FIG. 2. Numerical heart phantom reconstructed with tyGRASP

and varying window size w. a: Reconstruction with w¼8 spokes
(cropped) shows highest errors at the moving myocardium border
with no apparent difference in image quality between w1 and the

tiny golden angle w7. b: Images show about the same NRMSE for
both angles and all w. For w<8, the solver did not converge reli-

ably due to noise and high undersampling, leading to higher var-
iance in NRMSE.
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increments of w1 and w7, as well as a window width of
w¼ 8. Both images exhibit the same image quality with
artifacts mainly around the moving myocard, and the
same NRMSE of 1.25%. Figure 2b shows the NRMSE for
w1 and w7 for a range of window width w. Both angles
led to about the same NRMSE for all w. Increased error
ranges occurred for w< 8 as the combination of noise
and high undersampling led to a lower convergence. In
contrast to the point spread function analysis, there is no
improvement for w 2 GN .

Cardiac Experiment

Figure 3 shows short axis views of the heart in systolic
and diastolic state and corresponding M-mode plots. The
images acquired with the golden angle w1 and the b-
SSFP sequence show strong eddy current and aliasing
artifacts. The images acquired using w7 exhibit a clearly
improved image quality and show no apparent eddy cur-
rent or aliasing artifacts. The FLASH sequence shows
about the same level of artifacts for w1 and w7. For b-

FIG. 3. Diastole (left), systole (middle), and
M-mode plots of cardiac short-axis views

reconstructed with tyGRASP and w¼23
profiles. The balanced sequence at 3 T
shows very strong eddy current related

artifacts (arrow—top row). The artifacts
disappear if the smaller tiny golden angle

w7 is used (second row). FLASH in combi-
nation with the golden angle sequence
does not show similar artifacts (fourth

row). Similar artifacts are observed for the
1.5 T system (fifth and sixth row).
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SSFP sequence, the mean coefficient of variation of the
left ventricle (blood pool and myocardium) is reduced
from 0.12 60.02 for w1 to 0.07 60.01 for w7 (Fig. 4). The
effect is stronger for b-SSFP than for FLASH sequences.
Videos of this data set and of more volunteers can be
found in the Supporting Information (Supporting Infor-
mation Video S1 and S2). Similar effects appear for the
second 1.5T MR system. The w1 scan shows strong image
artifacts that do not appear for w7 (Fig. 3 bottom, Sup-
porting Information Video S3).

TMJ Experiment

Figure 5 shows sagittal views of the TMJ in opened and
in moving state, and M-mode plots of a profile through
the moving condyle head. The images acquired with w1

and b-SSFP show eddy current artifacts, which are par-
ticularly strong for the articular disc (arrow). The images
at w7 show clearly improved image quality with no appa-
rent eddy current artifacts. The mean coefficient of varia-
tion is reduced from 0.22 60.05 for w1 to 0.16 60.03 for

FIG. 4. Coefficient of variation

of the left ventricle (left) and
the TMJ (right) for all acquisi-

tions. Lower signal variation
indicates less image artifacts.
The angular increment of the

golden ratio trajectory has a
strong influence on the signal
variation.

FIG. 5. Moving TMJ reconstructed
using tyGRASP with a golden angle
and a tiny golden angle trajectory:

in closed condyle position (left), dur-
ing condyle movement (middle), and

M-mode plots (right). The golden
angle trajectory leads to strong
image artifacts (top row, arrow) that

do not occur with the tiny golden
angle w7 (second row). The FLASH

sequence does not show artifacts
at the cost of SNR and the visibility
of the discus articularis (bottom

row, arrow).
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w7 (Fig. 4). The condyle head remains sharp through all
motion phases. The images acquired with the FLASH
sequence are not affected by eddy current artifacts, but
at the cost of visibility of the articular disc [see (25)] and
lower SNR. Videos are part of the supporting material
(Supporting Information Video S4 and S5).

DISCUSSION

The aim of this work was to combine iterative golden
angle radial parallel MRI with balanced SSFP on 3T sys-
tems. So far, the combination of both methods was not
feasible, as the large angular increment of the golden
angle led to eddy current related artifacts. Therefore, it
was evaluated if the tiny golden angles are sufficient to
replace the golden angle ordering in iterative golden
angle radial sparse parallel MRI.

The incoherence analysis showed that the tiny golden
angle trajectories exhibit comparable incoherence to the
golden angle if the window width is w > 2N . Simula-
tions using a numerical phantom and the tyGRASP
reconstruction confirmed that the tiny golden angles and
the golden angle led to comparable results. There was no
noticeable visual difference, no significant difference in
NRMSE, and no difference in convergence between w1

and the smaller angles if w > 2N . This suggests that the
tiny golden angles are a good surrogate for w1 in golden
ratio based sparse MRI.

For the rest of the work, we focused on w7, which is
sufficiently small to avoid most eddy current related arti-
facts (17), while still being large enough to ensure a win-
dow width of 2N þ 1 ¼ 15 that is sufficient for most real-
time applications. If a smaller window size is needed,
the first or second generalized Fibonacci number
(w ¼ G7

2 ¼ 7; w ¼ G7
3 ¼ 8) still guarantees good sampling

efficiency and better incoherence than w1 (see Fig. 1).
Fewer than 7 radial profiles per window are usually not
used; however, a window width of 5 or 6 could be
achieved with the second generalized Fibonacci number
of w5 and w6.

Due to the more stable steady-state of FLASH sequen-
ces, the large angular increment did not show any appa-
rent eddy current related artifacts. For cardiac images,
the coefficient of variation however decreased for tiny
golden angles (Fig. 4). Similar effects for FLASH sequen-
ces were already reported (26) and are related to gradient
spoilers that are rotated with the projection direction.
The large angular increment reduces the spoiler effi-
ciency and leads to artifacts caused by incomplete spoil-
ing. In previous work, these spoiling related artifacts
appeared in combination with CG-SENSE and could be
reduced (27) using the previously known small golden
angle c2 ¼ 68:75

�
.

In combination with the less stable steady-state of the
b-SSFP sequence the images were strongly affected and
showed strong eddy current artifacts and convergence
problems. This was previously described for perma-
nently and abruptly changing gradient schemes (16,17).
Iterative reconstruction could not suppress these image
artifacts, as not undersampling, but inconsistencies in k-
space data are the source of artifacts. This is evident, as
the artifacts in Figure 3 (arrow) were also visible in the

fully sampled images. These artifacts could also not be

caused by static off-resonance (“banding artifacts”) (2),

as these artifacts would also appear for w7.
Due to through plane motion and through plane flow

in both applications, parts of the images are likely meas-

ured in transient state (28). To exclude the possibility,

that transient signal oscillation is the dominating cause

for the observed differences between the w1 and w7 tra-

jectories, a resting TMJ was scanned. Even though steady

state conditions were certainly reached, a similar

dependence of image artifacts was observed (see Sup-

porting Information Fig. S7).
Previous work reported a varying appearance and

strength of eddy-current effects with b-SSFP sequences

(16,17,29–31), likely due to the strong system dependent

appearance of eddy-currents. Even though the reduction

of image artifacts by the smaller angle w7 was verified on

a second MRI system (Fig. 3), eddy current effects

remain generally hard to predict.
The results from cardiac imaging were also confirmed

for TMJ imaging. This result is important for time-

resolved imaging of the TMJ, as the T2/T1 contrast of the

b-SSFP sequence is essential for imaging of the discus

articularis which usually is the main interest of the phy-

sician (32). No fast sequence with a T2 dependent con-

trast is known that could replace b-SSFP in this case.
In conclusion, the tiny golden angles enable b-SSFP

imaging in combination with the advantages of golden ratio

based iterative image reconstruction.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Supporting Video S1: This video supports Figure 3 and shows the short-
axis view acquired with w1 and w7 at 3T.
Supporting Video S2: This video shows another volunteer in short-axis
view acquired with w1 and w7 at 3T.
Supporting Video S3: This video shows another volunteer in short-axis
view acquired with w1 and w7 at 1.5T.
Supporting Video S4: This video supports Figure 3 and shows the moving
TMJ acquired with w1 and w7.
Supporting Video S5: This video of the moving TMJ shows another volun-
teer acquired with w1 and w7.
Supporting Figure S6: This figure supports Figure 1 and shows the SPR
for the tiny golden angles w3 to w9.
Supporting Figure S7: Non-moving TMJ scanned at 3T using a b-SSFP
sequence and the angles w1 and w1.
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NOTE

A Self-Gating Method for Time-Resolved Imaging
of Nonuniform Motion

Stefan Wundrak,1,2* Jan Paul,1 Johannes Ulrici,2 Erich Hell,2 Margrit-Ann Geibel,3

Peter Bernhardt,1 Wolfgang Rottbauer,1 and Volker Rasche1

Purpose: To develop a self-gating method capable of assess-

ing nonuniform motion, e.g., in cardiovascular magnetic reso-
nance imaging of patients with severe arrhythmia, or for

imaging of the temporomandibular joint.
Methods: The proposed method allows cyclic motion trajecto-
ries with a nonuniform pace by replacing the one-dimensional

gating signal of conventional image-based self-gating with a
two-dimensional gating matrix. The resulting image quality is
compared with conventional self-gating and real-time MRI.

Results: Nonuniform self-gating resulted in superior image
quality compared with conventional self-gating and the feasi-

bility study showed significantly improved image sharpness
(P<0.01). Further, improvements in image quality were shown
compared with golden angle radial parallel sparse MRI.

Conclusion: A new self-gating method was proposed that
allows cardiovascular magnetic resonance of arrhythmic

patients, which is a common problem in clinical practice. Fur-
ther, the proposed method enables self-gated imaging of the
temporomandibular joint. Magn Reson Med 000:000–000,
2015. VC 2015 Wiley Periodicals, Inc.

Key words: self-gating; cine; cardiac; cardiovascular magnetic
resonance; temporomandibular joint; arrhythmia

INTRODUCTION

Prospective electrocardiogram (ECG) triggered acquisition
has become the de facto standard for cardiovascular mag-
netic resonance imaging. Despite the use of rapid, acceler-
ated real-time cine imaging (1,2), ECG gated (3) or
retrospective self-gated techniques for cine imaging (4–6)
achieve better image quality in terms of signal-to-noise ratio
(SNR) for a comparable temporal and spatial resolution pro-
vided that no additional artifacts occur due to wrong bin-
ning caused by irregular heart beats or patient movement.

Gating methods usually identify a reference (zero-
phase) position (e.g., R wave) for each cycle. Under the
assumption that all cycles show identical motion, a fully
sampled k-space dataset is compiled from k-space data
acquired during multiple motion cycles.

In case of e.g., cardiac arrhythmia the assumption of
identical motion cycles is not valid, as the contraction of

the myocardium is a complex, nonlinear movement, and
cardiac motion phases show a highly nonlinear relation
to the heart rate (7,8). Therefore, simple linear rescaling
of the cardiac motion phases to the ECG signal will lead
to wrong binning and artifacts or temporal blurring. In
current practice, cycles deviating substantially from the
mean interval are discarded. This leads to increased
acquisition time and often degraded image quality. Fur-
thermore, information about the arrhythmic motion is
lost.

While real-time imaging was successfully used for car-
diovascular imaging, in particular in case of arrhythmia,
the clinical evaluation is still ongoing. More specifically,
all real-time methods that achieve the necessary tempo-
ral resolution of 20–50 ms use temporal regularization or
filtering and the impact on the effective temporal resolu-
tion/functional parameters is still under debate. For
example, Voit et al. (1) reported a 10% lower ejection
fraction for real-time imaging compared with breath-hold
ECG gated imaging, which was confirmed by our prelim-
inary results (9). In contrast, Aandal et al. (2) did not
report any deviations in global functional parameters. A
gating method capable of imaging arrhythmia might cir-
cumvent these challenges and will fit well into the exist-
ing clinical routine of gated acquisitions.

Similar to cardiac arrhythmia, self-gated imaging of
active joint motion is prevented by the usually not per-
fectly reproducible motion cycles, e.g., for imaging of the
moving temporomandibular joint (TMJ) (10,11).

In this work, we propose a self-gating method that
uses a two-dimensional gating matrix without presuming
identical motion cycles, but motion cycles that at least
partially follow the same motion trajectory, possibly at a
different pace.

METHODS

Image-Based Self-Gating

Larson et al. (5) suggested to reconstruct a preliminary
image series m with low spatial and high temporal reso-
lution using a sliding window reconstruction with win-
dow width w. The image series m is restricted to a
region of interest containing the myocardial wall. The
one-dimensional self-gating signal g is defined using the
Pearson correlation q (12) of all images mn to a selected
template image mt

gn ¼ rðmt;mnÞ: [1]

This technique performs well in comparison to other
self gating methods (13,14) and was selected as reference
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method for this work. The one-dimensional gating signal
g is low-pass filtered using a temporal median filter with
width s. Peaks are detected to identify the zero-phase
(trigger point) of each motion cycle. The k-space profiles
are sorted into time frames based on the time interval to
the neighboring peaks. The time frames are reconstructed
frame-by-frame using gridding reconstruction. Cycles dif-
fering by more than D ¼ 30% in length from the mean
cycle interval are rejected. The method is referenced as
SG in the rest of this work.

Nonuniform Self-Gating

Overview

In case of nonreproducible motion cycles the SG method

is not suitable, since k-space profiles of different motion

phases will be sorted into the same bin. A nonuniform

self-gating method (nuSG) with a weaker precondition is

proposed, that presumes motion cycles that at least par-

tially follow the same motion trajectory, possibly at a dif-

ferent pace. This motion model is expressed by curved

line structures in a two-dimensional correlation matrix

(see Fig. 1 and the following section). The suggested

method comprises the following steps (see Fig. 2):

1. Acquire N golden angle radial k-space profiles
2. Reconstruct low spatial, high temporal resolution

image series m
3. Restrict image series m to region of interest covering

the moving anatomy of interest
4. Calculate pair-wise correlation matrix D for image

series m
5. Fit active contours on line structures in D that indi-

cate similar motion stages
6. Grow contours and detect gaps

7. Reconstruct cine images from k-space data selected by
the active contours

8. Filter remaining streak artifacts

Contours in the Correlation Matrix

The N � N correlation matrix D is calculated using the
pairwise Pearson correlation of all images in m,
restricted to the region-of-interest region of interest.

D ¼ ðdr;cÞ; dr;c ¼ rðmr ;mcÞ: [2]

Thus, each row r of D contains the one-dimensional
gating signal from Eq. [1] using the template image mr

(Fig. 1). The two-dimensional gating matrix D for a
cyclic moving object exhibits the rhombus structure
shown in Figure 1. High correlation values indicate
images in the same motion state as the reference image.
The bright and straight main diagonal of the matrix
result from the perfect similarity of each reference image
to itself. If the object moved in identical cycles the
matrix would exhibit perfectly straight lines parallel to
the main diagonal. The nonuniform motion leads to
curved lines that are only approximately parallel to the
main diagonal. Lines approximately orthogonal to the
main diagonal indicate images in the same motion state,
but in the opposite motion direction of the reference
image (e.g., contraction instead of relaxation).

Contour Fitting

If two motion cycles at least partially follow the same
motion trajectory, possibly at a different pace, the corre-
lation matrix exhibits a continuous and smooth line
approximately parallel to the main diagonal. Therefore,
smooth and continuous curves are fitted onto the line
structures of D using active contour matching (15). The

FIG. 1. Structure of the pair-wise correlation matrix D for an arrhythmic heart. Higher values indicate higher similarity of the template
image (row) to the comparison image (column). The reference image is similar to images in the same position and same movement
direction (lines parallel to the main diagonal) and in the same position and the opposite movement direction (lines orthogonal to the

main diagonal). A row of the matrix equals the one-dimensional self-gating signal used in image-based self-gating (top). The peaks in
the one-dimensional gating signal form curved lines in the two-dimensional gating matrix (bottom—red).
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one-dimensional parametric open active contour v(r)

specifies the column position for each row r of D.

Econt ¼
XN

r¼1

Eintðv; rÞ þ Eimgðv; rÞ [3]

where the external energy term Eimgðv; rÞ ¼ �dr;vðrÞ forces the

active contour toward the maxima of the correlation matrix D

and the internal energy term Eint models the continuity and

smoothness of the contour using the first- and second-order

derivatives Eintðv; rÞ ¼ ðajv 0ðrÞj2 þ bjv 00ðrÞj2Þ=2. The parame-

ters a and b balance the tension and stiffness of the active

contour. The active contour is relaxed using the Euler-

Lagrange equation (see (16) for details).

Image Reconstruction

Each image x�r is reconstructed using all k-space profiles

in a neighborhood w� around the intersections vkðrÞ of

all K contour lines with the row r of the correlation

matrix D. In detail

x�r ¼
XK

k¼1

XvkðrÞþw�
2

n¼vkðrÞ�w�
2

Gnsn ; [4]

where Gn describes the linear gridding operator for the

nth radial profile of a golden ratio trajectory (17), and sn

the corresponding sampling values. Due to the golden

ratio acquisition scheme, the window w� can be chosen

independently from the window width w that was used

to generate the undersampled images of the distance

matrix D. The neighborhood w� may be set to a fixed

value to directly define the temporal resolution, or may

be adapted such that the reconstructed images x�r are

sampled using w� ¼ pPm=ð2CÞ, where C is the actual

number of cycles, m is the width of the acquisition

matrix, and P the user defined sampling density.

Remaining streak artifacts are filtered using a temporal

total variation filter (18).

Grow Contours and Detect Gaps

If the motion path partially deviates from cycle to cycle,

e.g., if in end-systole the myocardium did not fully con-

tract, or the mandibula was not fully opened, or the TMJ

exhibits “clicks,” the line structures exhibit gaps (see

Figs. 2 and 5). These gaps are detected by excluding val-

ues of the contour that are below a threshold g relative

to the mean of all correlation coefficients along the con-

tour line.

FIG. 2. Schematic overview of the pro-
posed nuSG method.
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If two frames have a similar ordering of radial profiles,

the aliasing artifacts correlate and exhibit structures in

the correlation matrix D parallel to the main diagonal.

To avoid “locking” of the active contours during fitting

to these superimposed structures in regions with broad

correlation peaks (e.g., during a long resting phase), the

neighborhood w� is locally increased to cover d percent

of the correlation peak, where d is a user defined

parameter.

Feasibility Studies

The feasibility of the nuSG method was shown for the

reconstruction of cardiac MRI data from patients with

severe arrhythmia, and for assessment of the active

motion of the TMJ. All studies were approved by the

local ethics committee and written informed consent

was obtained prior to the examination. All images were

reconstructed using an in-house software package imple-

mented with MATLAB (The MathWorks, MA).
For all scans a radial golden ratio profile ordering (17)

was used, which proved to be beneficial for self-gating

(13,19) by allowing a sliding window reconstruction

with flexibility in the choice of the window width.

Instead of the golden angle � 111:246
�

the smaller tiny

golden angle � 23:628
�

was used (20) to avoid eddy cur-

rent artifacts in combination with the balanced steady-

state free precession sequence.
The parameters a and b for the active contours were

optimized to fit the contour lines in all experiments as

accurately as possible. The window width w was chosen

to reach a trade-off between contrast and resolution in

the gating matrix. The temporal median filter width was

set to s ¼ 2w, which is a good trade-off between reduc-

tion of undersampling artifacts and temporal blurring.

The grow threshold was set to d ¼ 95% that prevented

the locking to artifact correlation without influencing the

temporal resolution during fast motion.
All datasets were additionally reconstructed using the

real-time method golden angle radial sparse parallel MRI

(GRASP) (21,22). The temporal regularization parameter

l was set to the smallest value that removed the radial

undersampling artifacts in the region of interest.

Cardiac Experiment

Dynamic short axis time-resolved cardiac datasets were

acquired from three patients (2 women, 1 man, aged 79–

83 years) with known severe cardiac arrhythmia result-

ing in varying cardiac cycle length even during a short

6.3 s breathhold. Datasets were acquired on a Philips

1.5T Ingenia system (Philips Healthcare, Best, The Neth-

erlands) with a 32-element cardiac coil. The acquisition

parameters were: balanced steady-state free precession

sequence, TR/TE¼2.6/1.3 ms, flip angle¼ 60
�
, resolution

1:7� 1:7 mm2, slice thickness 8 mm, acquisition matrix

212 � 212. The reconstruction parameters were 50 ms

bin size for SG, w¼ 23, sampling window size

w� ¼ 20; a ¼ 0:001; b ¼ 0:005, and g ¼ 66% for nuSG.

The reconstruction window of GRASP was also set to w�

¼ 20 profiles which equals a temporal resolution of 52

ms.

TMJ Experiment

Datasets from eight healthy volunteers (three women,
five men, aged 21–51 years) were acquired. Further,
seven patients with suspected TMJ derangement were
scanned (six women, one man, aged 31–49 years). Sagit-
tal images were acquired on a Philips 3T Achieva system
(Philips Healthcare, Best, The Netherlands) using a 2 � 4
channel carotid coil (Chenguang Medical Technologies,
Shanghai, China). The acquisition parameters were: in-
phase balanced steady-state free precession, TE/TR¼ 2.3/
4.6 ms, flip angle¼ 48

�
, pixel bandwidth of 949 Hz, spa-

tial resolution of 0:75� 0:75� 5 mm3, 256 � 256 pixel
acquisition matrix, and a scan time of 60 s. The patients
were instructed to continuously open and close the
mouth within 8 s during the acquisition. The recon-
struction parameters were 45 phases for SG, w¼ 38,
P ¼ 75%; a ¼ 0:001; b ¼ 0:2, and g ¼ 66% for nuSG. The
window size of GRASP was set to w� to achieve the
same temporal resolution as nuSG.

Image Analysis

For each reconstructed image sequence, the image sharp-
ness was calculated. For cardiac images, a profile was
placed over the septal myocardial wall in the end-
diastole frame as shown in Figure 3. For TMJ images the
profile was placed over the condyle edge, in the center-
frame between the open and the closed position. Edge
sharpness was calculated as the mean intensity slope
between the 20% and 80% signal level of the profile
similar to (23). Significance of sharpness increase was
assessed for TMJ using the one-sided Wilcoxon signed
rank test. No significance tests were performed for cardi-
ovascular magnetic resonance due to the small number
of cases. A quantitative analysis of the left ventricular
blood pool area was done using one short axis slice cine
and standard software [Segment, Medviso, Lund, Swe-
den (24)].

RESULTS

Cardiac Experiment

Reconstructions were performed successfully in all
cases. The number of rejected/detected cardiac cycles in
SG was 2/5, 2/8, and 1/7, for the three patients,
respectively.

A comparison between SG, nuSG, and GRASP recon-
structions is provided in Figure 3 and as cardiac cines in
the Supporting Information. The M-mode of SG clearly
shows that the arrhythmic cycles are concealed, while
for nuSG and GRASP all cycles are visible (asterisk). Vis-
ually, the images from SG have more residual streaking
artifacts, especially in patient 1, and appear less sharp
than the images from nuSG. The visual impression of
increased wall sharpness in nuSG over SG is confirmed
by quantitative evaluation (see Fig. 5), showing an
increase of 80% on average for the three patients. In
comparison to GRASP, nuSG also appears less noisy, as
can be appreciated from the M-Mode plots, and sharp-
ness is increased by 96% on average. The end-diastolic
left ventricular blood pool area was on average
19.6 6 2.9, 19.5 6 1.4, 19:662:6 cm2 for SG, nuSG,
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GRASP, respectively. The end-systolic area was on aver-
age 9.6 6 3.1, 10.5 6 1.4, 13:861:6 cm2, respectively.

TMJ Experiment

In comparison to SG, the proposed method resulted in
improved image quality in all cases. Figure 4 shows four
frames during the opening movement of the TMJ. Visual
comparison of the two methods shows a clear improve-
ment in image quality by nuSG for the moving condyle
over SG and GRASP. The nuSG reconstruction provided
sharp edges even during the phase of the fast condyle
movement. In contrast, the SG reconstruction leads to
strong blurring of the condyle. The M-mode plots show
that the nuSG reconstruction is able to reproduce a
higher temporal fidelity than SG and GRASP. Movies of
the moving TMJ for volunteers and patients are available
as Supporting Information.

Figure 5 summarizes the increase of image sharpness
over the SG reconstructed images during the phase of
condyle movement. The sharpness of the moving con-
dyle edge was significantly increased by nuSG over SG
for both groups (P< 0.01). The effective mean open/clos-
ing time was 4.2 6 0.9 s for the volunteers and 3.9 6 1.9 s
for the patients. The temporal resolution based on the
window width w� was 180 6 48 ms for the volunteers,
and 176 6 87 ms for the patients.

DISCUSSION

The poor results of the SG method show the limited fea-
sibility of image-based self-gating methods in case of
nonuniform motion. Even though only one self-gating
variant was tested in this work, other variants like center
of mass kymogram or echo peak signal (25) will likely
lead to a similar result, as the underlying model of uni-
form motion cycles is not fulfilled.

In case of cardiac imaging, a rejection threshold is set
to exclude arrhythmic cycles. Therefore, from the
remaining uniform cycles, SG is usually still able to
reconstruct cine images, however, with incomplete k-
space data. The rejection threshold D, is a trade off
between SNR and image sharpness. A low threshold
excludes many cycles which leads to a low SNR or
incomplete k-space. A high threshold keeps cycles that
do not match which leads to image blurring and image
artifacts. For example, patient 1 (Fig. 3) showed frequent
extra-systoles and 40% of the cycles were rejected lead-
ing to low SNR and aliasing artifacts. Increasing the
acquisition time was not an option due to breathhold
limitations. In case of patient 3, the motion was even
more irregular (fast and very irregular systoles) and the
separation into valid and invalid cycles was not possi-
ble. In this case, SG is not able to reproduce any usable
images (Fig. 3). In contrast, nuSG is able to use a larger

FIG. 3. Comparison of images (left columns) and M-modes (right columns) for the three reconstruction methods and for all arrhythmia

patients (rows). The M-modes of the cardiac cine reconstructions (SG) (replicated for better visualization), indicates a single cyclic
motion, while cardiac cycles of different length due to arrhythmia (asterisks) can be appreciated in the M-modes of nuSG and GRASP.
Images from nuSG appear less noisy than from SG, as more k-space data was used for reconstruction, whereas in SG the cardiac

cycles with arrhythmia had to be excluded from reconstruction. In GRASP only the k-space data of the current cardiac phase is used
for reconstruction leading to increased noise, and due to temporal regularization to some temporal blurring. Cardiac cines for this figure
are available as Supporting Information.
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fraction of the acquired data, which leads to less aliasing

and higher image sharpness.
As in the cine images reconstructed with GRASP,

nuSG allows full appreciation of the arrhythmic heart-
beats and shows all distinct cardiac cycles. In contrast,

the SG method might misleadingly suggest a rhythmic

heart. Even though real-time cine methods allow the

acquisition without breath-hold, breath-hold acquisitions

are day-to-day clinical routine and are justified for our
method by the improved image quality of nuSG over

GRASP.
The average end-diastolic volume was similar across

the three methods, the end-systolic volume was overesti-

mated by GRASP, which may be due to temporal regula-
rization and leads to an underestimation of ejection

fraction. Even though the number of cases were too small

for any significance calculation, these results are in line

with (9) and (1). In our experience, the proposed nuSG
method is significantly less complex to implement,

needs less computing power and is easier to parameter-

ize than iterative real-time reconstruction methods.
In case of TMJ imaging, the proposed method allows the

measurement of the TMJ opening/closing movement at a

pace of about 8 s at 0:75� 0:75� 5 mm3 with little or no
temporal blurring. Compared with previous work (26)

where the same spatial resolution was used, this work

shows about the same acquisition length and the same
image quality, but a 9-fold increase in the nominal tempo-
ral resolution (� 180 ms instead of 1655 ms). The effective
temporal resolution may be lower, due to inaccuracy of
the contour fitting. It still has to be evaluated how the
method performs in case of sudden motion, like TMJ
clicks (27), or in case of mastication under load (11).

Adaptive averaging methods (28,29) are related to
image-based self-gating, in a sense that an image similar-
ity function is used to identify subsets of images in an
image sequence to be averaged. However, in adaptive

FIG. 5. Sharpness measured for three cardiac patients (on myo-
card wall), eight TMJ volunteers and seven TMJ patients (on con-

dyle edge). TMJ sharpness for nuSG was significantly increased
(P<0.01) over SG; for cardiovascular magnetic resonance no sig-

nificance was calculated due to the limited number of patients.

FIG. 4. a: Four equally spaced frames
and M-mode plots of the opening TMJ
reconstructed with nuSG, SG, and

GRASP. The volunteer was opening the
mouth within 3.4 s. The SG and itera-

tive GRASP reconstruction show tem-
poral blurring of the condyle (arrow). b:
two-dimensional gating matrix of the

same volunteer with active contours
(red).
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averaging no model of cyclic motion is used, and fully
sampled images instead of partially sampled k-space
views are combined.

In conclusion, a new self-gating method was proposed
that allows cardiovascular magnetic resonance imaging
of arrhythmic patients which is a common problem in
clinical practice. Further, the proposed method enables
SG imaging of the moving TMJ. More applications may
be possible, e.g., SG imaging of the knee or wrist joint,
or imaging of the soft palate.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Supporting Video 1: This supporting video shows the comparison of SG,
nuSG, and GRASP for cardiac arrhythmia patient 1 from Figure 3.

Supporting Video 2: This supporting video shows the comparison of SG,
nuSG, and GRASP for cardiac arrhythmia patient 2 from Figure 3.

Supporting Video 3: This supporting video shows the comparison of SG,
nuSG, and GRASP for cardiac arrhythmia patient 3 from Figure 3.

Supporting Video S4: This supporting video shows the comparison of SG
and nuSG for the TMJ reconstruction shown in Figure 4.

Supporting Videos S5 to S7: These supporting videos show the compari-
son of SG and nuSG for three TMJ patients. The first patient exhibits an ante-
rior displacement of the disc without reposition at a flattened articular
tubercle with an unphysiological and limited movement pattern. The second
patient exhibits thinned structures between the condyle and the fossa articu-
laris without recognizable physiological structure of the discus and a limited
movement sequence. The third case exhibits an anatomical inconspicuous
discus condyle relation. The movement terminates at the zenith of the articu-
lar tubercle.
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Chapter 7

Summarized Results

In the first part, this work generalized the golden angle and introduced the series of tiny

golden angles (ψN = π
τ+N−1

)1, whose first two members are the well known golden angle

ψ1 = 111.246...° and the small golden angle ψ2 = 68.753...°. The series continues with

decreasing angles (49.750...°, 38.977...°, 32.039...°, 27.198...°, and 23.628...° ...). It was

shown, that similar to the golden angle, the tiny golden angles guarantee a near uniform

distribution for an arbitrary number of radial profiles. Using numerical simulations it

was proven that the proposed tiny golden angles guarantee a similar optimal sampling

efficiency if at least a minimum number of 2N + 1 radial profiles are used. Experiments

showed that the smaller azimuthal angle increments of the tiny golden angles signifi-

cantly reduce the eddy current induced artifacts (Figure 14). This was demonstrated for

phantom, cardiac and TMJ imaging. In all cases an angle increment between ψ5 and ψ7

seemed sufficient to suppress the eddy current induced image artifacts to an acceptable

level.

In the second part of this work it was shown that the newly introduced tiny golden

angles are well suited for sparse MRI imaging. The incoherence analysis showed that

tiny golden angle trajectories exhibit comparable incoherence to the golden angle if the

window width is P > 2N . Simulations (without the consideration of eddy current effects)

1where τ is the golden ratio 1+
√
5

2
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Ψ1 Ψ3 Ψ5 Ψ7 Uniform 3°

a)1

b)1

Figure 14: a) The systole reconstructed with 60 radial profiles. The image ac-

quired with the golden angle azimuthal increment ψ1 shows strong image artifacts.

Image artifacts are reduced if the angle gets smaller. b) The enddiastolic phase

was reconstructed with 120 radial profiles (due to the longer resting phase).

using a numerical phantom and the proposed tyGRASP reconstruction confirmed that

the tiny golden angles and the golden angle lead to comparable image quality. For in-

vivo cardiac imaging at a temporal resolution of 53ms using the b-SFFP sequence, eddy

current related image artifacts were clearly reduced for tyGRASP using ψ7 compared

to GRASP. These effects could be shown on two different MRI system (1.5 T and 3 T)

and were quantified showing a significant reduction of the coefficient of variation. The

same results could be shown for in-vivo dynamic imaging of the TMJ. In particular,

the combination of tiny golden angle imaging and b-SFFP allowed to depict the moving

articular disc at high temporal (175ms) and spatial (0.75 × 0.75 × 5mm3) resolution

without eddy current induced artifacts (Figure 15).

In the third part of this work a new self-gating approach for nonuniform motion was

introduced. The proposed method (nuSG) replaces the 1D gating signal of conventional

self-gating with a 2D gating matrix to allow motion cycles that at least partially follow

the same motion trajectory, possibly in a different pace. The proposed method was able

to depict patients with severe cardiac arrhythmia despite the non-linear relation between

heart rate and cardiac motion phases. Further nuSG was able to depict the nonuniform

motion of the moving TMJ. NuSG resulted in superior image quality compared to con-
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ψ7

ψ1

ψ7

ψ1 b-SSFP

b-SSFP

FLASH

FLASH

Figure 15: Moving temporomandibular joint reconstructed using tyGRASP with

a golden angle and a tiny golden angle trajectory: in closed condyle position (left),

during condyle movement (middle), and M-mode plots (right). The golden an-

gle trajectory leads to strong image artifacts (top row, arrow) that do not occur

with the tiny golden angle ψ7 (second row). The FLASH sequence does not show

artifacts at the cost of signal-to-noise ratio and the visibility of the discus articu-

laris (bottom row, arrow). Abbreviations: fast low angle shot (FLASH), balanced

steady state free precession (b-SSFP).
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ventional self-gating (Figure 16). The feasibility study for three patients with severe

arrhythmia showed significantly improved image sharpness of the myocardial wall. In

direct comparison to tyGRASP the average end-diastolic volume was similar to nuSG.

However, the end-systolic volume was overestimated by tyGRASP, which may be due

to temporal regularization and leads to an underestimation of ejection fraction. These

results are in line with the observations of [139], [151], and [30] regarding temporal regu-

larization. Improvements in image quality were also shown for the moving condyle edge

during TMJ imaging. Compared to real-time cine imaging and conventional self-gating,

nuSG showed significantly improved image sharpness (p < 0.01) of the moving condyle

edge.

SG nuSG GRASP SG nuSG GRASP

Figure 16: Comparison of the resulting images (left columns) and M-modes

(right columns) for a patient with severe arrhythmia. The M-modes of the conven-

tional self-gated reconstructions (SG) (replicated for better visualization), indicate

a single cyclic motion, while cardiac cycles of different length due to arrhythmia

(asterisks) can be appreciated in the M-modes of nuSG and GRASP. The GRASP

reconstruction shows increased noise, and due to the temporal regularization some

temporal blurring. Abbreviations: self-gated (SG), nonuniform self-gated (nuSG),

golden angle radial sparse parallel MRI (GRASP).
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Chapter 8

Discussion and Conclusion

In this work a modified golden ratio acquisition order using smaller angular increments

has been introduced for radial MRI. It has been shown that the proposed order yields

similar properties as the well-known golden angle acquisition order [3] regarding the

uniformity for an arbitrary number of radial profiles, but shows improved performance

for b-SSFP sequences with respect to eddy-current related artifacts.

Interestingly, similar results regarding the uniformity of a radial distribution using some

of the tiny golden angles were reported previously in the field of theoretical biology,

explaining the distribution uniformity of leaves [86], and independently by King et al.

for a shadow cast model [67]. However, in the presented form these angles were previously

not known, in particular for MR imaging.

The image artifacts caused by the combination of golden angle ordering and b-SSFP

sequences were verified on two Philips MRI systems for 1.5 T and 3 T, and were re-

cently confirmed for one 1.5 T Siemens MRI system by [59]. While these artifacts were

previously known from step-wise changing phase-encoding gradients [14] and interleaved

imaging [87], no artifacts were found in the work of Winkelmann et al. [143]. Further,

Speier et al. [126] showed less severe artifacts also for a spoiled gradient echo sequences,

that could not be observed in this work. However, it is known that eddy-current effects

are highly dependent on the MRI system and the actual gradient switching scheme, are
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hard to predict, and vary from system to system.

The tiny golden angles enable the combination of b-SSFP sequences with golden ratio

profile ordering. In case of TMJ imaging, this result is highly relevant, since the T1/T2

contrast of the b-SSFP sequence is essential for imaging the discus articularis, which

in most cases is the main interest of the physician [31]. No fast sequence with a T2

dependent contrast is known that could replace the b-SSFP in this case.

While there was much previous work on sparse MRI using the principles of compressed

sensing in combination with radial golden angle trajectories [33, 26, 46], the GRASP

method was predominantly used for dynamic contrast enhanced MRI [65, 46, 43] and

no work using GRASP with b-SSFP was published so far. This is likely due to the

eddy current induce image artifacts described in this work. Note, that in case of a 3D

stack-of-stars acquisition this problem may be circumvented by sequentially acquiring a

profile for each stack before advancing to the angular position, which basically equals

the golden angle grouping technique describe by [87].

Despite the recent progress in real-time methods, including the tyGRASP method pre-

sented in this work, ECG gated imaging is still considered the gold standard in clin-

ical practice for cardiac imaging and is used in day-to-day clinical practice. In gen-

eral, breath-hold ECG gated imaging or self-gating will achieve better image quality

in terms of SNR at comparable temporal & spatial resolution than real-time imaging,

provided that no additional artifacts occur due to wrong binning caused by irregular

heart beats.

For example, to avoid compromises in temporal and spatial resolution, decent real-time

methods employ temporal regularization or filtering to achieve a nominal temporal reso-

lution of 20 - 50ms. The impact on the effective temporal resolution and the functional

parameters is still under debate. For instance, Voit et al. [139] reported a 10% lower

ejection fraction for real-time imaging compared to breath-hold ECG gated imaging,

which was confirmed by preliminary results in [151] and further discussed in [30].

The strongest advantages of real-time cardiac imaging over gated imaging are the ac-
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quisition during free-breathing, and the inherent robustness to arrhythmia. While work

has been done towards self-gated free-breathing acquisitions using additional self-gating

of the respiratory motion and motion compensation [73], the latter problem has not yet

been approached. In this work, the self-gated acquisition of severe cardiac arrhythmia

was shown for the first time using the proposed nuSG method.

As in the cine images reconstructed with tyGRASP, nuSG allows full appreciation of

the arrhythmic heartbeats and shows all distinct cardiac cycles. In contrast, the con-

ventional self-gating methods will misleadingly suggest a rhythmic heart with identical

motion cycles. Even though real-time cine methods have the advantage of free-breathing

acquisitions, breath hold acquisitions are day-to-day clinical routine and are justified for

nuSG by the improved image quality in comparison to tyGRASP.

Further, to our experience, the proposed nuSG method is significantly less complex to

implement than advanced real-time methods, needs less computing power and is easier

to parameterize than iterative real-time reconstruction methods.

In case of TMJ imaging, the proposed nuSG method allows the measurement of the

TMJ opening / closing movement at a pace of about 8 seconds at 0.75 × 0.75 × 5mm3

with little or no temporal blurring. Compared to previous work (28) where the same

spatial resolution was used, this work shows about the same acquisition length and the

same image quality, but a 9-fold increase in the nominal temporal resolution ( 180 ms

instead of 1655 ms). The effective temporal resolution may be lower, due to inaccuracy

of the contour fitting.

Future research could be directed to combine the two proposed methods, e.g. by us-

ing tyGRASP reconstruction for the reconstruction of the resorted profiles from nuSG.

Alternatively one could separate the cardiac motion from the breathing motion using

nuSG and exploit the increased sparsity along both dynamic dimensions, similar to the

XG-GRASP method recently proposed by Feng et al. [44].

In conclusion, this thesis proposed solutions to two severe problems in time-resolved

imaging of nonuniform motion: a golden angle real-time cine method that does not
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affect the steady state of the b-SSFP sequence, and a retrospectively nonuniform gating

method that works with the nonuniform motion of severe cardiac arrhythmia and the

moving TMJ.
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