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Abstract

The present thesis deals with variants of the space-time reduced basis method for parametrised
parabolic partial differential equations. The reduced basis method is a well-known projection
based model reduction technique for parameter dependent problems. We consider parabolic
partial differential equations in space-time variational formulation. The formulation includes
integration over space and time and a model reduction is achieved in both, space and time di-
mension.
One objective of this thesis is the development of a reduced basis method to handle functions as
parameters. A parameter in the reduced basis method is usually a vector of real numbers that
describes the underlying model properties. The more general concept of a parameter space that
is a subspace of a Hilbert space requires new reduced basis generation processes. In particular,
the initial value of a parabolic partial differential equation is considered as a function parameter.
A Two-Step Greedy Method is presented where two reduced bases are constructed, one for the
approximation of the initial value and one for the evolution of the solution. The decomposition
into two steps allows for a better approximation error control. A-priori as well as a-posteriori
error bounds are provided.
As the space-time reduced basis method deals with time as additional dimension, the reduced
basis generation process is computationally expensive. We apply the H-Tucker low rank tensor
format in the reduced basis offline phase to reduce the computational costs. The high dimen-
sional linear system is decomposed in its tensor product components and can efficiently be solved
applying the low rank tensor method. The resulting solution of the high dimensional problem
implies an additional approximation error that has to be considered in the basis generation pro-
cess. Error analysis is provided to combine both model reduction methods.
For derivative pricing in finance, one needs to calculate the conditional expectation of the dis-
counted payoff under a risk neutral measure. To this end one can equivalently solve the associated
parabolic partial differential equation in diffusion based models. If we want to apply the reduced
basis method as model reduction scheme, we usually have to construct a new reduced basis for
each payoff function. To avoid this effort, the reduced basis method for parameter functions can
be applied. Two standard option pricing models are considered, the Black-Scholes model and
the Heston model. Both models provide a closed form solution such that the numerical results
can easily be verified.
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Zusammenfassung

In der vorliegenden Arbeit werden zwei Varianten der Space-Time Reduzierten Basis Methode
für parametrische parabolische partielle Differentialgleichungen vorgestellt. Die Reduzierte Ba-
sis Methode ist eine verbreitete projektionsbasierte Modelreduktionsmethode für parameterab-
hängige Probleme. Parabolische partielle Differentialgleichungen werden in sogenannter space-
time variationeller Formulierung betrachtet, welche sowohl die Integration über Raum als auch
über Zeit beinhaltet, wodurch auch die Modelreduktion sowohl in Raum- als auch in Zeitdimen-
sion greift.
Zunächst wird der Parameterbegriff der Reduzierten Basis Methode auf Funktionen als Parame-
ter erweitert. Als Parameter versteht man ursprünglich einen reelen Vektor, dessen Einträge die
zugrundeliegenden Modeleigenschaften definieren. Die Erweiterung auf Funktionen (aus einem
Hilbertraum) als Parameter erfordert neue Basisgenerierungsstrategien. Falls die Anfangswerte
von parabolischen Differentialgleichungen als Funktionsparameter aufgefasst werden, können in
einer zweistufigen Greedy Methode zwei reduzierte Basen erstellt werden, wobei die erste den
Anfangswert und die zweite die Entwicklung der Lösung über die Zeit approximiert. Durch die
Aufteilung in zwei Schritte kann der Approximationsfehler mit Hilfe der entwickelten a-priori
und a-posteriori Fehlerschätzer besonders gut kontrolliert werden.
Die Zeit wird in der Space-Time Reduzierten Basis Methode als zusätzliche Dimension erfasst,
weswegen die Basisgenerierung rechnerisch aufwendig ist. Diesem Problem widmet sich der
zweite Teil der Arbeit. Hier wird das H-Tucker Low Rank Tensor Format in der Offline-Phase
verwendet, um den numerischen Aufwand zu reduzieren. Das ursprüngliche hochdimensionale
System wird hierbei in seine Tensorproduktkomponenten zerlegt und kann dann über das Low
Rank Tensor Format effizient gelöst werden. Allerdings beinhaltet die so erhaltene Lösung einen
zusätzlichen Approximationsfehler, was im Basisgenerierungsprozess beachtet werden muss.
Anwendung finden beide Methoden in der Bepreisung von Finanzderivaten. Anstatt den beding-
ten Erwartungswert des diskontierten Payoffs unter einem risikoneutralen Maß zu bestimmen,
kann alternativ eine assoziierte parabolische partielle Differentialgleichung gelöst werden. Bei
direkter Anwendung der Reduzierten Basis Methode müsste hierbei für jede neue Payofffunktion
eine eigene reduzierte Basis konstruiert werden. Dies kann durch die Verwendung von Parame-
terfunktionen vermieden werden. Zwei klassische Optionspreismodelle – das Black-Scholes und
das Heston Model – werden betrachtet, wobei beide Modelle eine Verifizierung der numerischen
Ergebnisse erlauben.
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1. Introduction

Fitting the real world in a mathematical discription has always some limitation. And the more
complex a model gets the more challenging is the evaluation. This thesis is concerned with the
model order reduction of parametrised parabolic partial differential equations. A reduced basis
method is developed that allows for infinite dimensional function spaces as parameter spaces.
Additionally the reduced basis method is combined with a low rank tensor format for efficient
offline computations and the treatment of higher dimensional state spaces.

1.1. The Reduced Basis Method

Many real world applications are modeled by parametrised partial differential equations. Those
models have often to be solved repeatedly for new parameter sets in a limited amount of time.
The solution with standard numerical methods like the finite element method of finite volume
leads to high dimensional linear systems of dimension N � 0. Model reduction techniques
are required if the arising numerical effort exceeds the given computational resources in terms of
hardware or computational time. The class of projection based model reduction techniques lowers
the original model state space dimension by projection onto a lower dimensional approximation
space. The model reduction in the reduced basis method is achieved by approximation of the
state space w.r.t. the occurring model parameters. For a sample set of parameters µ1, . . . , µN

their corresponding solutions u(µi), for i = 1, . . . , N , are computed in the so-called offline phase.
Here, the high dimensional linear system has to be solved by standard numerical methods.
The reduced basis space is spanned by the precomputed solutions. In the online phase, the
reduced basis space replaces the original solution space and the solutions are computed solving
a corresponding N dimensional linear system. Under the assumption of smooth dependence of
the system operators on the parameter µ, one expects 0 < N � N .

The reduced basis method has been applied to various partial differential equations and was
extended for several frameworks. Our focus is on parabolic partial differential equations that are
given in a space-time variational formulation. The space-time variational formulation is given by
the application of test functions and integration over space and time. The corresponding solutions
are elements of appropriate Bochner spaces. The model reduction is in space dimensions and time
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1. Introduction

dimension. This stands in contrast to reduced basis methods that are based on the standard
weak formulation for parabolic partial differential equations and an underlying time stepping
scheme.

1.2. The Objective

Parameter spaces in the reduced basis method are commonly subspaces of the real valued vector
space Rd. The expression ‘high-dimensional’ referred so far to large values of d � 0. The
extension to parameter spaces that are subspaces of function spaces has not yet been considered.
Functions as parameters allow for very flexible problem formulations. So far, for every possible
function, a new reduced basis space had to be constructed. If there are finitely many functions
that are a-priori known this is an expensive but a feasible strategy. As soon as the class of
functions gets less precise, a more general solution is required. A standard parameter sampling
procedure in the offline phase is performed on a discrete subspace of the original parameter space
– the training set – that reflects the main properties of the parameter space. New basis sampling
strategies are necessary for functions as parameters.

Time as additional dimension in the space-time reduced basis method increases the computation
effort in the offline phase. Imposing a discretisation that is equivalent to a standard time stepping
scheme allows for cheap computations of the detailed solutions. However, those discretisations
do not in general lead to a well-posed discrete problem formulation. To overcome these problems
and at the same time to allow for higher space dimensions the reduced basis method is combined
with a low-rank tensor approximation scheme. The later implies a very efficient storage scheme
for the operator equations and the ansatz and test functions. The ansatz space with state
space Ω ⊂ RN1×...×Nd is decomposed into its tensor product components. The corresponding
coefficients of the solution of the partial differential equation build a tensor in RN1×...×Nd . The
matrix representation of the discrete operator has to be in a so-called CP decomposition. Then,
every matrix-matrix or matrix-vector operation required in the offline phase of the reduced basis
method can be performed without establishing the full system. To guarantee numerical feasibility
an approximation of the detailed solutions is necessary. The reduced basis is therefore spanned
by snapshots that only solve the discrete problem formulation up to a given tolerance. This
approximation has to be considered in the basis sampling procedure and has an influence on the
reduced basis approximation quality. Thus, the a-priori error control is essential.
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1. Introduction

1.3. Application in Option Pricing

We apply the developed methods in derivative pricing in finance. Stochastic processes are used to
describe the dynamics of the underlying assets. Under suitable assumptions the expected value
of a financial derivative is equivalent to the solution of a partial differential equation. Derivative
pricing models in general have a huge amount of parameters. These parameters change for
different underlyings and market situations. The application of the reduced basis method offers
the possibility for e.g. a fast calibration or pricing process.

In finance, price processes in standard pricing models are often modeled as Itô diffusions, i.e.,
stochastic processes that satisfy a standard stochastic differential equation driven by a Brownian
motion. We focus on parabolic partial differential equations that occur in finance when consider-
ing the expected value of an Itô diffusion. Those models can easily be extended to jump-diffusion
models or to higher dimensions for pricing basket options, i.e. options with multiple underlyings.
The restriction to pricing models that provide a closed form solution is not mandatory. The
reduced basis method is fully based on numerical method that are applicable to a wide class of
diffusion models. The associated parabolic partial differential equations have diffusion, convec-
tion and reaction terms with right-hand side equal to zero. The payoff of the option defines the
final condition. The payoff that defines the option type is subject to change and thus a parameter
function in the reduced basis method.

1.4. Thesis Outline

The thesis is divided into four parts.

The first part recalls the space-time reduced basis method. We provide the underlying functional
analytic setting and state the space-time variational formulation. Well-posedness of the problem
formulation is discussed. Possible finite element discretisations are presented. A general intro-
duction to the reduced basis method is given. Different reduced basis simulation techniques for
a stable space-time reduced basis approximation are presented. The underlying implementation
is shortly introduced. We conclude the first part with an application of the standard space-time
reduced basis method on a standard parabolic partial differential equation.

Parameter functions are the subject of the second part. A reduced basis method is introduced
where the initial value of a parabolic partial differential equation is the parameter (function).
The underlying assumption is a given good approximation of the function parameter domain
in the first place. Wavelet bases offer the possibility to achieve good approximation results for
less accurately described parameter domains. The reduced basis method for parameter functions
is separated into two steps. The first results in a reduced basis approximation of the initial

3



1. Introduction

value where the reduced basis for the evolution of the solution is established in the second. An
a-posteriori online efficiently evaluable error estimator is provided as well as an a-priori error
bound for the online approximation. Two variants of the greedy method are presented: the first
fixes the reduced basis space offline; the second allows to choose a customized reduced basis space
online that is optimal for the new parameter function. This flexibility comes with an increased
storage effort. The numerical experiments at the end of the section show the applicability of the
method and the quality of the model reduction.

The third part is concerned with the feasibility of the possibly computationally expensive offline
phase of the space-time reduced basis method and a step towards higher space dimensions.
We present the standard low rank tensor methods that provide a setting to store very high
dimensional problems efficiently and perform computations with an, in comparison very small
computational effort. We provide the necessary error analysis for the usage of the H-Tucker
format in the offline phase of the space-time reduced basis method. A reduced basis for a 2D
parabolic partial differential equation is computed in the numerical example at the end of the
section.

The fourth part provides the application of the afore developed methods on standard derivative
pricing models. For the functional analytical setting we introduce weighted Sobolev spaces. The
standard numerical schemes for option pricing are presented. The payoff function is considered
as parameter function. Therefore a specific treatment of the in finance a-priori unbounded space
domain is required. As standard example, the reduced basis method for parameter functions
is applied to the Black-Scholes model. Further, we introduce the Heston model, a stochastic
volatility model. We again apply the developed reduced basis methods and discuss the difficulties
arising in a real world application. Since both models provide a closed form solution our method
can easily be validated.

A summary and a short outlook are given at the end.

4



2. Space-Time Reduced Basis Method

2.1. Introduction

The Reduced Basis Method (RBM) is a model order reduction method for parametrised partial
differential equations (PPDEs). In this context, we are interested in the model parameters of
the PDE. These parameters specify model properties e.g. the conductivity of a thermal block
or the current stock market situation. The reduced basis method is a useful tool for solving a
PDE for lots of different parameters very fast (in real time), very often (multi-query context) or
on a small device. Possible scenarios are e.g. computations on a board computer of a car or an
optimisation process for model calibration in finance.

The present thesis is in particular concerned with the space-time RBM and its use for parabolic
PDEs in a space-time variational formulation. In contrast to the standard time-stepping ap-
proaches that are shortly described in Appendix B it involves a reduction in the discrete space
and time dimension. A first certified space-time RBM for parabolic PDEs with homogenous
initial condition was proposed by K. Urban and A. T. Patera in [UP14]. An a-posteriori er-
ror bound was introduced and its long time integral behaviour was investigated. The method
is an alternative to other approaches where the error bounds may grow exponentially in time
when the (nonlinear) operator is non-coervice, cf. [NRP09, KNP11]. Applications to nonlinear
problems followed in [YPU14] for the Burgers equation. Homogeneous initial conditions were
used and the error bound was combined with the existing Brezzi-Rappaz-Raviart (BRR) theory,
that provides a framework for non-linear problems, and hp-splitting techniques. Further, they
used an interpolation strategy for the construction of the reduced solution instead of a projec-
tion based method. M. Yano extended this approach and applied it to the Boussinesq equation
in [Yan14]. He removed the interpolation-based approximation and used a hp-Petrov-Galerkin-
projection-based approximation instead. A further application of the space-time RBM was for
time-periodic problems, presented by K. Steih and K. Urban, [SU12]. In this setting the initial
condition of the parabolic problem changes for periodicity. Further, the space-time approach
was adapted by S. Glas and K. Urban to variational inequalities in [GU14]. We applied the
space-time approach to the Heston model and presented a stable test space construction for the
Petrov-Galerkin projection in combination with a treatment for parameter functions in [MU14],
cf. Section 3.2.
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2. Space-Time Reduced Basis Method

2.2. Preliminaries

2.2.1. Space-Time Formulation

The space-time reduced basis method we are going to use to solve parametrised parabolic
PDEs relies on a variational formulation in appropriate function spaces. For the introduction
of the corresponding ansatz and test spaces, we give a short functional analytical overview
of Bochner(-Lebesgue) spaces. In order and notation we mainly follow [Sho97, Ch. III]. We
introduce the general evolution equation and its better known weak formulation first. We
continue with the variational problem formulation and state existence and uniqueness results of
the solution, cf. Ch. Schwab and R. Stevenson [SS09].

In order to better distinguish the vector valued functions taking their values in Banach spaces
of standard Lebesgue integrable functions, we denote their norm by two lines “‖ · ‖” whereas
the standard norms are denoted by only one line “| · |”. To avoid confusions, we indicate the
respective space additionally in the index.

2.2.1.1. Bochner Spaces and Weak Formulation

We extend the concept of Lebesgue measurable functions to Banach space valued functions. For
a generalised concept of measurable and integrable step functions we generalise the concept of
integrability. We restrict our presentation to functions defined on the real interval I = (0, T ) for
0 < T <∞.

Definition 2.2.1. (Bochner integrability.) [Sho97, Thm. 1.2] Let (I,F , µ) be a measurable
space and B be a Banach space equipped with norm | · |B. Let f : I → B be measurable in the
sense that there is a sequence of measurable step functions such that fn → f in B a.s. for s ∈ I.
Then, f is integrable if and only if s 7→ |f(s)|B is (Lebesgue) integrable.

Definition 2.2.2. [Sho97, p. 103] Let 1 ≤ p <∞. Let B be a Banach space with norm | · |B and
dual B′. We denote by Lp(I;B) resp. Lp(0, T ;B) the space of (equivalence classes of) functions
f : I → B such that |f(·)|B ∈ Lp(I;R), i.e.

(∫
I
|f(t)|pBdt

)1/p
<∞.

We often refer to Lp(I;B) as Bochner or Bochner-Lebesgue space. We do not detail the gener-
alisation for p =∞ as it is straightforward.
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2. Space-Time Reduced Basis Method

Proposition 2.2.3. [DL92, Prop. 1] For any Banach space B, the space Lp(I;B) is a Banach
space with the respective norm ‖f‖Lp(I;B) = (

∫
I |f(s)|pBds)1/p for 1 ≤ p <∞.

Theorem 2.2.4. [Sho97, Thm 1.5] Let 1 < p < ∞ and 1
p + 1

p′ = 1. Let B be reflexive, i.e.
B can be isomorphically identified with its bidual space. Then we can identify the dual space
Lp(I;B)′ with Lp′(I;B′).

Proof. Explicit construction of the isomorphism.

After the generalisation of integrability of vector valued functions, we pass on to vector-valued
distributions. In the following we restrict to Hilbert spaces. For a more general introduction we
refer to [DL92, Ch. XVIII §1.1].

Definition 2.2.5. [WZ76, Def. 3.3.1, 3.3.2, Satz 3.3.3] Let 〈·, ·〉V ′×V denote the duality pairing
of V and V ′. By C∞(I;H)′ := L(C∞(I);H) we denote the space of all linear functionals mapping
from C∞(I) onto H.

• Let H be a Hilbert space. We call the linear map u : C∞(I) → H a distribution with
values in H, i.e., u ∈ C∞(I;H)′, if for all compact K ⊂ I there exist p, C ≥ 0 such that
|〈u, φ〉|H ≤ C supx∈K

∑
s≤p |φ(s)(x)| for all φ ∈ C∞(I), supp(φ) ⊂ K.

• The weak distributional derivative u̇ ∈ C∞(Ω;H)′ is defined by 〈u̇, φ〉 := (−1)〈u, φ(1)〉.

Proposition 2.2.6. [WZ76, Satz 3.3.5] Let V,H be Hilbert spaces, V ⊂ H continuously em-
bedded. Then,

C∞(I;V )′ ⊂ C∞(I;H)′.

Remark 2.2.7. [WZ76, p. 153] For f ∈ L2(I;V ) and V Hilbert space, f ∈ C∞(I;V )′ and
ḟ ∈ C∞(I;V ′)′.

The last step is to introduce the so-called Gelfand triple, cf. [WZ76, p.127]: Let H be a Hilbert
space and V be a Banach space. Let V be dense and continuously embedded in H and H be
identified with its dualH ′ (H ∼= H ′). The embedding implies a dense embedding of the associated
dual spaces and using H ∼= H ′ we obtain the Gelfand triple V ↪→ H ↪→ V ′. The dual space V ′

is again a Banach space and in particular this allows to identify (·, ·)H with 〈·, ·〉V ′×V using the
continuous extension of (·, ·)H on V ′ × V .

Denote by | · |V and | · |H the induced norms on V and H respectively. For 1 = 1
p + 1

p′ , consider
the Banach space

Xp = {u ∈ Lp(0, T ;V ) : u̇ ∈ Lp′(0, T ;V ′)} (2.2.1)

with the norm
‖u‖2Xp = ‖u‖2Lp(I;V ) + ‖u̇‖2Lp′ (I;V ′). (2.2.2)
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2. Space-Time Reduced Basis Method

We will use the notations u̇, ∂u∂t or du
dt interchangeably.

Proposition 2.2.8. [Sho97, Prop. 1.2, Cor. 1.1]

• The Banach space Xp is embedded in C([0, T ];H), i.e., there is a constant C for which
‖u‖C([0,T ],H) ≤ C‖u‖Xp , u ∈ Xp.

• For u ∈ X the function |u(·)|2H is absolutely continuous on [0, T ] and d
dt |u(t)|2H = 2u̇(t)(u(t))

a.e. t ∈ [0, T ].

In the following we are mostly interested in the case p = 2 and V being a Hilbert space. With
Theorem 2.2.4 the dual of L2(0, T ;V ) is given by L2(0, T ;V ′). In particular X := X2 is a Hilbert
space, cf. [WZ76, Prop. 3.3.7.], [DL92, Prop. 6].

Let u0 ∈ H and g ∈ L2(I;V ′) be given. Consider a bilinear form a : V × V → R such that for
each pair u, v ∈ V the function a(u, v) is continuous (resp. bounded): there is a Ca > 0 such
that

|a(u, v)| ≤ Ca|u|V |v|V ∀ u, v ∈ V. (2.2.3)

Let A ∈ L(V, V ′) be the induced linear operator given due to Riesz-Fréchet, cf. Proposition
A.1.3, by

〈Au, v〉V ′×V = a(u, v) ∀ u, v ∈ V.

Proposition 2.2.9. [Sho97, Prop. 2.1] The following two problem formulations are equivalent.
Find u where u(t) ∈ V :

u̇(t) +Au(t) = g(t) in V ′ a.e. t ∈ I, (2.2.4a)

u(0) = u0 in H.

(u̇(t), v)H + 〈Au(t), v〉V ′×V = 〈g(t), v〉V ′×V ∀ v ∈ V, a.e. t ∈ I, (2.2.4b)

u(0) = u0 in H.

Remark 2.2.10. For u as element in X, the initial condition is meaningful by Proposition 2.2.8, i.e.,
limt→0〈u(t), v〉V ′×V = (u(0), v)H . Further by not evaluating at a time point t we can understand
the equations in X′. The variational formulation introduced in the next section follows.

2.2.1.2. Variational Formulation

For the variational formulation we require an appropriate test space. Following [SS09] we define

Y := L2(I;V )×H (2.2.5)

8



2. Space-Time Reduced Basis Method

equipped with the norm
‖v‖2Y = ‖v1‖2L2(I,V ) + |v2|2H (2.2.6)

for every v = (v1, v2) in Y. For the linear operator A(t) ∈ L(V, V ′), I = (0, T ) with 0 < T <∞
and g ∈ L2(I;V ′), consider again the associated bilinear form a : V ×V → R with 〈Au, v〉V ′×V =
a(u, v) for all u, v ∈ V . Define for u ∈ X and v = (v1, v2) ∈ Y:

b(u, v) :=
∫
I
〈u̇(t), v1(t)〉V ′×V dt+

∫
I
a(u(t), v1(t))dt+ (u(0), v2)H , (2.2.7a)

f(v) :=
∫
I
〈g(t), v1(t)〉V ′×V dt+ (u0, v2)H . (2.2.7b)

Proposition 2.2.11. [SS09, (5.4)] The variational formulation of the equivalent problem for-
mulations in Proposition 2.2.9 is given by

find u ∈ X : b(u, v) = f(v) ∀v ∈ Y. (2.2.8)

Proposition 2.2.12. The problem formulations (2.2.8) and (2.2.4b) are equivalent.

Proof. Suppose that u ∈ X solves (2.2.4b). Obviously u is a solution of (2.2.8). If u is a solution
of (2.2.8), we know that∫

I
〈u̇(t), v1(t)〉V ′×V dt+

∫
I
a(u(t), v1(t))dt+(u(0), v2)H =∫

I
〈g(t), v1(t)〉V ′×V dt+ (u0, v2)H

for arbitrary v1 ∈ L2(I;V ) and v2 ∈ H. In particular

(u(0), w)H = (u0, w)H

for all w ∈ V ⊂ H, i.e. u(0) = u0 a.e. in the domain of H. Further∫
I
〈u̇(t) +Au(t)− g(t), w̃(t)〉V ′×V dt = 0.

for arbitrary w̃ ∈ L2(I;V ). Thus 〈u̇(t) +Au(t)− g(t), w̃(t)〉V ′×V = 0, a.e. in [0, T ], i.e. (2.2.4b)
holds for all (w̃(t) =)v ∈ V .

Remark 2.2.13. Instead of Equation (2.2.8) we can consider the variational formulation intro-
duced in e.g. [Sho97, Prop. 2.1 (c)]. Given v ∈ H1(0, T ;H), v(T ) ≡ 0,

−
∫
I
(u(t), v̇(t))Hdt+

∫
I
Au(t)(v(t))dt =

∫
I
g(t)(v(t))dt+ (u0, v(0))H . (2.2.9)

The initial condition enters naturally the equation by integration by parts over time of the left-
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2. Space-Time Reduced Basis Method

hand side of the integrated weak formulation. Equation (2.2.8) has advantages for its later use
in the reduced basis methods for parameter functions, cf. Section 3.2.

2.2.1.3. Existence and Uniqueness of the Solution

We have several equivalent problem formulation, thus several possibilities to show the well-
posedeness of the problem and existence and uniqueness of a solution. As we will further use the
results, we show existence and uniqueness of the solution in space-time variational formulation.
We therefore use the following result of J. Nečas [Neč64]:

Proposition 2.2.14. cf. [Bab71, Thm. 2.1], [Bra07, III. §3, Satz 3.6] Let X and Y be Hilbert
spaces and b : X × Y → R a bilinear form with associated linear operator B : X→ Y′,

〈Bu, v〉 := b(u, v) ∀ v ∈ Y.

The linear operator B is an isomorphism if and only if for the associated bilinear form b there
exist Cb ≥ 0 and β > 0 such that

sup
u∈X

sup
v∈Y

|b(u, v)|
‖u‖X‖v‖Y

≤ Cb (continuity), (2.2.10a)

inf
u∈X

sup
v∈Y

b(u, v)
‖u‖X‖v‖Y

≥ β > 0 (inf-sup condition) (2.2.10b)

and
for every 0 6= v ∈ Y exists u ∈ X : b(u, v) 6= 0 (surjectivity). (2.2.10c)

It remains to prove the three properties for the bilinear form b defined by Equation (2.2.7a)
using the following properties of the associated bilinear form a(·, ·). We call a bilinear form a(·, ·)
bounded and say that it satisfies the Gårding inequality if there exist Ca > 0, αa > 0 and λa ∈ R
such that for all φ, ψ ∈ V the following holds

|a(φ, ψ)| ≤ Ca|φ|V |ψ|V , (continuity) (2.2.11a)

a(φ, φ) + λa|φ|2H ≥ αa|φ|2V (Gårding). (2.2.11b)

The following theorem states well-posedeness of (2.2.8).

Theorem 2.2.15. [SS09, Thm. 5.1] For the variational formulation (2.2.8) let a(·, ·) satisfy
(2.2.11a) and (2.2.11b). Then, there exist Cb and β such that the bilinear form b(·, ·) defined
in (2.2.7a) is continuous and satisfies the inf-sup condition. In addition, b(·, ·) is surjective and
there exists a unique solution u for (2.2.8).

10



2. Space-Time Reduced Basis Method

Proof. Cf. [SS09, App. A]. The proof is an application of Proposition 2.2.14. An upper bound
for the continuity constant Cb is explicitly constructed as well as surjectivity can be shown. For
the inf-sup constant, the idea is to define zw := (A∗)−1ẇ for 0 6= w ∈ X. Here A∗ : V → V ′

denotes the adjoint, i.e. 〈A∗φ, ψ〉V ′×V := a(ψ, φ) Using vw = (zw + w,w(0)) as test function, an
explicit lower bound for β can be stated.

We provide the mentioned lower bound of β. Therefore, we introduce the following quantities:

Me := sup
06=w∈X

|w(0)|H
‖w‖X

and % := sup
06=φ∈V

|φ|H
|φ|V

.

Remark 2.2.16. It is known that Me is uniformly bounded and only depends on the final time
point T when T tends to zero ([DL92, Ch. XVIII, Proof of Thm. 1], [SS09]).

Corollary 2.2.17. [UP14, Prop. 2.2, Cor. 2.7], [SS09, App. A] Define

βLB
coer(α, λ,C) := min(1, C−2)(α− λ%2)√

2 max(1, α−2) +M2
e

and
βLB

time(T, α, λ, C) := e−2λT√
max(2, 1 + 2λ2%4)

βLB
coer(α, 0, C + λ%2).

The lower bound βLB for the inf-sup-constant β in Theorem 2.2.15 is given by

βLB(T, αa, λa, Ca) = max(βLB
coer(αa, λa, Ca), βLB

time(T, αa, λa, Ca)).

Remark 2.2.18. The inf-sup lower bound βLBcoer is only meaningful, i.e. positive, if αa− λa%2 > 0,
which is equivalent to the bilinear form a being coercive, i.e. (2.2.11b) for λ = 0 is satisfied.
If a satisfies only the Gårding inequality, βLBcoer may be negative. Then, we consider w.l.o.g.
the transformation û = ue−λat and the corresponding variational formulation, such that the
transformed bilinear form â is coercive. Back-transformation yields βLBtime as lower bound of the
inf-sup constant of the original bilinear form.

We presented the inf-sup lower bounds regarding the norm of X introduced in (2.2.2). Analo-
gously to [UP14] a different norm can be used. Then, the lower bound slightly changes.

Corollary 2.2.19. Cf. [UP14, Proposition 2.2] Theorem 2.2.15 holds for ‖ · ‖X,T given by

‖u‖2X,T := ‖u‖2L2(I,V ) + ‖u̇‖2L2(I,V ′) + |u(T )|2H (2.2.12)

11



2. Space-Time Reduced Basis Method

for u ∈ X. Let αa − λa%2 > 0. We obtain the following lower bound of the inf-sup constant

βLB,X,T
coer (αa, λa, Ca) = min(min(1, C−2

a )(αa − λa%2), 1)√
2 max(1, α−2

a ) +M2
e

.

Proof. The proof follows again [SS09, Appendix A].

Remark 2.2.20. (a) The norm given in Corollary 2.2.19 is well-posed since X ↪→ C(I;H) (cf.
Proposition 2.2.8). By adding |u(T )|2H , the focus is set on the final time-point, which is
the most relevant in e.g. option pricing. Despite that, using ‖ · ‖X,T improves the inf-sup
constant in special cases, cf. Corollary 2.2.22.

(b) Homogeneous initial conditions can be included in the ansatz space X and the test space
reduces to L2(I;V ). The above estimate changes slightly since Me = 0, [UP14, Prop. 2.2,
Cor. 2.7] [MU14, Rem. 3.2].

(c) The lower bound can further be improved by replacing the coercivity constant αa in the
denominator by 0 < β∗a ≤ infφ∈V supψ∈V

a(φ,ψ)
|φ|V |ψ|V , cf. [UP14, Prop. 2.2].

Example 2.2.21. [UP14, Prop. 2.2, Rem. 2.4] Consider A ≡ −∆, V = H1
0 (Ω), H = L2(Ω).

Define |φ|2V = a(φ, φ) such that Ca = 1, λa = 0, αa = 1. We obtain β ≥ 1√
2+M2

e

.

This lower bound can be improved to β ≥ 1.

Corollary 2.2.22. cf. [UP14, Cor. 2.5] For a symmetric coercive bilinear form a : V × V → R
and | · |2V := a(·, ·) the inf-sup constant is given by βLB,X,T

coer = 1.

Proof. Let w ∈ X. For vw = (v1, v2) = ((A∗)−1ẇ + w,w(0)) consider

‖vw‖2Y = ‖v1‖2L2(I;V ) + |v2|2H
= ‖(A∗)−1ẇ + w‖2L2(I;V ) + |w(0)|2H

= ‖ẇ‖2L2(I;V ′) + ‖w‖2L2(I;V ) + 2
∫
I
((A∗)−1ẇ, w)V dt+ |w(0)|2H .

Using 2
∫
I((A∗)−1ẇ, w)V dt = |w(T )|2H − |w(0)|2H we obtain

‖v‖2Y = ‖w‖2X ⇔ ‖v‖Y = ‖w‖X.
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2. Space-Time Reduced Basis Method

The bilinear form b(·, ·) satisfies

b(w, vw) =
∫
I
(ẇ(t), vw(t))V ′×V + a(w(t), vw(t))dt+ |w(0)|H

=
∫
I
a((A∗)−1ẇ(t) + w(t), vw(t))dt+ |w(0)|H

= ‖(A∗)−1ẇ + w‖L2(I;V ) + |w(0)|2H
= ‖w‖2X = ‖w‖X‖v‖Y

and βLB,X,Tcoer = 1.

Certainly, well-posedness can be shown directly for the weak-formulation (2.2.4b) as in e.g.
[LM72, Ch. 4 Thm. 4.1]. As our variational formulation is an equivalent problem formulation, we
would immediately obtain the well-posedeness of the problem as well as existence and uniqueness
of the solution. However, the just discussed inf-sup constant is an important quantity for the a-
posteriori error estimation in the space-time reduced basis method. Furthermore the approach is
analogous for proving well-posedness of the discrete problem formulation in the next section.

2.2.2. Discretisation of the Space-Time Variational Formulation

In this section, we discuss finite element approximations for solving the parabolic PDE numeri-
cally in space-time variational formulation. In a space-time discretisation scheme, we discretise
in space and time at once. Most numerical approaches do not use the functional analytical
background provided in terms of Bochner spaces. In contrary, M. Griebel and D. Oeltz devel-
oped a sparse grid space-time framework in [GO07]. They still rely on the weak formulation but
with an additional integration over time, keeping the initial condition separate. The solution
is given as an element of a tensor space that is isomorphic to the introduced Bochner space X.
Hierarchical bases are used and some convergence results are stated. Further, Ch. Schwab and
R. Stevenson introduced a space-time adaptive wavelet method in [SS09]. Here, the underlying
variational formulation is the one we introduced in the previous section. Deriving stable space-
time Petrov-Galerkin finite element discretisations was the subject of the thesis of R. Andreev,
[And12]. Different discretisation schemes are presented along with discussions on well-posedness
and stability. Useful is the observation that for particular chosen finite element time discretisa-
tions solving the resulting high dimensional linear system is equivalent to solving a corresponding
time stepping scheme as those schemes have the advantage of providing a greater computational
feasibility. Unfortunately, as was shown in [And12], they are not unconditionally stable in an
inf-sup sense and well-posedness of the discrete problem formulation may fail, cf. Section 2.2.2.1.
We present the discretisation that leads to the Crank-Nicolson time stepping scheme in detail in
Section 2.2.2.2. There, ansatz and test space have the same dimension. For XN ⊂ X, YN ⊂ Y
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2. Space-Time Reduced Basis Method

and dim(XN ) = N = dim(YN ) with N <∞, the discrete problem formulation of (2.2.8) is given
by

find uN ∈ XN : b(uN , vN ) = f(vN ) ∀ vN ∈ YN . (2.2.13)

In general, we have to solve a Petrov-Galerkin problem, i.e., XN 6= YN . In [And12] was shown
that there are pairs of unconditionally stable discretisation spaces XN ⊂ X and YM ⊂ Y such
that dim(XN ) = N ≤M = dim(YM). We give a short introduction in Section 2.2.2.3.

2.2.2.1. Well-posedness and Stability

The discrete space-time variational formulation leads to a quasi-optimality result for the ap-
proximation that can be used in the error estimation of the reduced basis method. We state the
theoretical result in the upcoming Proposition. It is an adaption of Nečas result introduced in
Proposition 2.2.14 on finite dimensional approximation spaces. For finite elements it was first
applied in [Bab71, BA72].

Proposition 2.2.23. cf. [Bra07, Hilfssatz 3.7] Let X, Y be real Hilbert spaces. Let Proposition
2.2.14 hold for a bilinear form b : X×Y → R. Consider non-trivial closed subspaces {0} 6= XN ⊆ X
and {0} 6= YN ⊆ Y such that b satisfies (2.2.10) (a) - (c) for XN instead of X and YN instead
of Y. Let CNb be the discrete continuity constant and βN the discrete inf-sup constant. Then,
there exists a unique uN ∈ XN such that

b(uN , vN ) = f(vN ) ∀ vN ∈ YN

and ‖uN ‖X ≤
CNb
βN
‖u‖X for u ∈ X being the corresponding solution. Furthermore, a quasi-

optimality estimate holds, i.e.,

‖u− uN ‖X ≤ (1 + 1
βN

CNb ) inf
wN∈XN

‖u− wN ‖X.

Remark 2.2.24. Since XN ⊂ X, the equality ‖u‖XN = ‖u‖X holds true for all u ∈ XN .

Continuity on the discrete spaces directly follows from continuity on the Hilbert spaces X and
Y, as long as we consider conforming discretisations XN ⊂ X and YN ⊂ Y:

sup
u∈XN

sup
v∈YN

|b(u, v)|
‖u‖X‖v‖Y

≤ sup
u∈X

sup
v∈Y

|b(u, v)|
‖u‖X‖v‖Y

≤ Cb.

Assuming dim(XN ) = dim(YN ) < ∞, injectivity of the linear operator in L(XN , (YN )′) implies
already bijectivity. Therefore, the assumptions of Proposition 2.2.23 are satisfied if and only if

14
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the discrete inf-sup condition

inf
u∈XN

sup
v∈YN

|b(u, v)|
‖u‖X‖v‖Y

≥ βN > 0 (2.2.14)

holds. The inf-sup condition therefore implies the well-posedness of the discretised problem.

Remark 2.2.25. In the Hilbert space setting, the quasi-optimality condition can be improved,
[XZ03, Kat60],

‖u− uN ‖X ≤
1
βN

CNb inf
wN∈XN

‖u− wN ‖X ≤ (1 + 1
βN

CNb ) inf
wN∈XN

‖u− wN ‖X.

For the computation of the inf-sup constant we can equivalently solve a generalised eigenvalue
problem. We shortly recall the main steps and refer to [UP14, p. 13] and references therein for
details. Let the assumptions of Proposition 2.2.23 be fulfilled. To compute the inf-sup constant,
we first apply the Riesz Representation Theorem and define the supremizer Su ∈ Y for given
u ∈ X by

(Su, v)Y = b(u, v) ∀v ∈ Y.

Lemma 2.2.26. For the setting given in Proposition 2.2.23, Su = arg supv∈YN
b(u,v)
‖v‖Y

.

Proof. Recall that Su is defined as the Riesz representant of b in Y, i.e. ‖b(u, ·)‖Y′ = ‖Su‖Y.
Then,

sup
v∈YN

b(u, v)
‖v‖Y

= ‖Su‖Y = (Su, Su)Y
‖Su‖Y

= b(u, Su)
‖Su‖Y

.

Obviously, βN ≤ infu∈XN
‖Su‖Y
‖u‖X

.

Let XN = span{φ1, . . . , φN } and YN = span{ψ1, . . . , ψN }. For any u ∈ XN ,

‖Su‖Y
‖u‖X

= uTBTY−1Bu
uTXu

where u := (ui)i=1,...,N is the coefficient vector of u =
∑N
i=1 uiφi, B := (b(φj , ψi))i,j=1,...,N is the

corresponding cross-Gramian and Y and X are the Gramians w.r.t. the given bases. To compute
βN = infu∈XN

‖Su‖Y
‖u‖X

the generalised eigenvalue problem

BTY−1Bu = λXu
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can be solved correspondingly. The inf-sup constant βN is given by the square root of the smallest
eigenvalue.

2.2.2.2. Crank Nicolson Time Stepping Scheme

Throughout this thesis, the finite element method is used to compute the ‘truth’ (exact solution
of the PDE) that is required for the reduced basis method. Hence, fine discretisations are
needed as the model reduction depends on the exacteness of the PDE solutions. To meet these
requirements, the FEM solution should be as computationally feasible as possible. Therefore,
we introduce a space-time discretisation that is equivalent to solving a Crank Nicolson time
stepping scheme. The advantage is that we solve a linear equation system in every time step
that only depends on the discrete space dimension. In particular, it is not required to establish
the full space-time system. The discretisation does not imply the inf-sup stability in general but
a condition at the step-size of the time discretisation has to be satisfied.

Since L2(I;V ) is isomorphic to L2(I) ⊗ V and H1(I;V ′) to H1(I) ⊗ V ′, [Nou14, Sec. 1.5], we
get for the trial and test spaces X and Y

X = L2(I;V ) ∩H1(I;V ′) = H1(I)⊗ V

and
Y = L2(I;V )×H = (L2(I)⊗ V )×H.

For the function space V , we consider the finite subspace V J , dim(V J ) = J , spanned by a nodal
basis φ := {φ1, . . . , φJ } with respect to the triangulation T Jspace of the underlying space Ω.

For the finite-dimensional temporal subspaces EK+1 ⊂ H1(I) and FK ⊂ L2(I), we will consider
the triangulation of the interval I given by T Ktime := {tk = k∆t : 0 ≤ k ≤ K,∆t = T

K}.

Define EK+1 on the trial side by the piecewise linear space span{σ} = span{σ0, . . . , σK} with
respect to the triangulation T Ktime. For every K > k > 0, we choose σk as the hat function
with nodes tk−1, tk and tk+1 and the remaining ones are defined by σ0 = t1−t

∆t χ[0,t1] and σK =
t−tK−1

∆t χ[tK−1,tK], Figure 2.2.1. Furthermore, FK is chosen as the finite subspace spanned by τ =
{τ1, . . . , τK} with respect to T Ktime, where τk is the characteristic function χIk on Ik := (tk−1, tk].
With this preparation at hand, the discrete approximation subspaces of X and Y are defined as

XN := EK+1 ⊗ V J (2.2.15a)

and
YN := FK ⊗ V J × V J (2.2.15b)
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Figure 2.2.1.: Basis functions of EK+1 for I = (0, 1).

where dim(EK+1) = K+1, dim(FK) = K and dim(V J ) = J , henceN := dim(XN ) = J (K+1) =
JK + J = dim(YN ).

Remark 2.2.27. Ansatz and test spaces are thus given by

YN = span{ (τ ` ⊗ φj , 0), (0, ψm) | ` = 1, . . . ,K; j,m = 1, . . .J }

=: span{ yi | i = 1, . . . ,KJ + J },

where (`, j) 7→ i for i = 1, . . . ,KJ as well as m 7→ i for i = KJ + 1, . . . ,KJ + J and

XN = span{ σ` ⊗ φj | ` = 0, . . . ,K; j = 1, . . . ,J }

=: span{ xi | i = 1, . . . , (K + 1)J }

with a unique map (`, j) 7→ i.

With these notations at hand, the discrete variational formulation (2.2.13) is equivalent to the
(large but sparse) quadratic linear system (LS)

Bu = f,

where B = [b(xi, yj)]i=1,...,(K+1)J ,j=1,...,(K+1)J and f = (f(yj))j=1,...,(K+1)J . The coefficient vector
of the finite element solution uN ∈ XN is denoted by u. Even though the matrix is sparse, it
is very large. To avoid the very expensive tensor evaluation, the time discretisation is evaluated
directly and we show that the Crank Nicolson time-stepping scheme is an equivalent problem
formulation.
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2. Space-Time Reduced Basis Method

Time stepping For given functions w =
∑K
k=0

∑J
i=1w

k
i (σk ⊗ φi) ∈ XN and v = (z, h) =

(
∑K
k=1

∑J
j=1 z

k
j (τk ⊗ φj),

∑J
m=1 hmψm) ∈ YN , we obtain, cf. [UP14, And12, MU14],

b(w, v) =
∫
I
〈ẇ(t), z(t)〉V ′×V + a(w(t), z(t))dt+ (w(0), h)H

=
K∑
k=0

K∑
l=1

J∑
i,j=1

wki z
l
j

∫
I
〈σ̇k(t)φi, τ l(t)φj〉V ′×V + a(σk(t)φi, τ l(t)φj)dt

+
K∑
k=0

J∑
i,j=1

wki hj(σk(0)φi, φj)H

=
K∑
k=0

K∑
l=1

J∑
i,j=1

wki z
l
j(σ̇k, τ l)L2(I)(φi, φj)H + (σk, τ l)L2(I)a(φi, φj)

+
J∑

i,j=1
w0
i hj(φi, φj)H .

For k ≥ 0 and ` ≥ 1 we have (σ̇k, τ `)L2(I) = δk,` − δk+1,` and (σk, τ `)L2(I) = ∆t
2 (δk,` + δk+1,`), in

particular (σ̇0, τ `)L2(I) = −δ1,` and (σ0, τ `)L2(I) = ∆t
2 δ1,`. Set

MJ
space := ((φi, φj)H)j,i=1,...,J and AJspace := (a(φi, φj))j,i=1,...,J .

Remark 2.2.28. The initial condition u0 is left in a general setting as an element of the Hilbert
space H. The numerical treatment of the initial value will be discussed in Section 3.2. So, we
do not specify the discretisation of the initial value on the right-hand side in detail but assume
that u0 has a finite expansion

∑L
`=1 u

`
0δ
`, 0 < L <∞.

Let v = (τ ` ⊗ φj , 0) for some ` (≥ 1) and j ∈ {1, . . . ,J }. We obtain

b(w, (τ ` ⊗ φj , 0)) =
K∑
k=0

J∑
i=1

[
wki (σ̇k, τ `)L2(I)(φi, φj)H + (σk, τ `)L2(I)a(φi, φj)

]
=
[
MJ

space(w` −w`−1) + AJspace
∆t
2 (w` + w`−1)

]
j

with the coefficient vectors w` = (w`i )i=1,...,J for all ` = 0, . . . ,K. On the right-hand side, we use
a trapezoidal approximation

f((τ ` ⊗ φj , 0)) =
∫
I
〈g(t), τ ` ⊗ φj(t, .)〉V ′×V dt =

∫
I`
〈g(t), τ `(t)φj〉V ′×V dt (2.2.16)

≈ ∆t
2 〈g(t`−1) + g(t`), φj〉V ′×V .

The remaining basis functions of the test space are time-independent: For any m = 1, . . . ,J , we
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2. Space-Time Reduced Basis Method

have

b(w, (0, φm)) =
J∑

i,j=1
w0
i (φi, φm)H = [MJ

spacew0]m

and

f((0, φm)) = (u0, φm)H =
L∑
`=1

u`0(δ`, φm)H =: [u0]m.

The assumption of Remark 2.2.28 on the finite representation of the initial condition is needed
to evaluate the scalar product in H numerically. As a consequence, we get the following Crank-
Nicolson scheme

MJ
spacew0 = u0, (2.2.17a)

(2MJ
space + ∆tAJspace)w` = (2MJ

space −∆tAJspace)w`−1 + ∆t〈g(t`−1) + g(t`), φj〉V ′×V , (2.2.17b)

` = 1, . . . ,K.

Introducing implicit and explicit operators, Lim and Lex,

Lim = 2MJ
space + ∆tAJspace,

Lex = 2MJ
space −∆tAJspace,

b`−1 = ∆t〈g(t`−1) + g(t`), φj〉V ′×V

and in every time step the following system of equations is to be solved

Limw` = Lexw`−1 + b`−1.

Stability For symmetric bilinear forms a : V × V → R, R. Andreev showed in [And12, Sec.
5.2.3 A] that the inf-sup constant for the chosen discretisation w.r.t. the presented space-time
norms ‖ · ‖X and ‖ · ‖Y is bounded from below (i.e. infN βN > 0) by

KV ′×V (V J , V J ) := inf
0 6=u∈V J

sup
06=v∈V J

〈u, v〉V ′×V
|u|V |v|V

> 0, (2.2.18)

if the CFL1 condition
CFLN := max ∆T Ktime sup

06=ψ∈V J

|ψ|V
|ψ|V ′

> 0

is satisfied for N > 0. Here, ∆T Ktime := {tk − tk−1 : 0 ≤ k ≤ K}. For the triangulation T Ktime
applies max ∆T Ktime = ∆t = T

K . The results were first published in [And13] and detailed again in
[And14] for the special case of the heat equation.

1Denotes in general conditions for numerical stability, called after R. Courant, K. Friedrichs and H. Lewy.
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2. Space-Time Reduced Basis Method

Proposition 2.2.29. [And14, Prop. 2] Let V J ⊂ V , EK+1 ⊂ H1(I) and FK ⊂ L2(I) be defined
as above. Then, there exists a constant β0 > 0, independent of V J , EK+1 and FK, such that
the discrete inf-sup condition (2.2.14) holds for XN and YN given in (2.2.15) with

βN > β0KV ′×V (V J , V J ) min{1,CFL−1
N }.

Guaranteeing (inf-sup) stability of the discretised problem is equivalent to requirements for the
discretisation in time and the discretisation in space separately. In time, we have to guaran-
tee CFL−1

N > 0, i.e. the discretisation has to be chosen ‘fine enough’. The CFL condition can
not be improved in general for the space-time discretisation that is equivalent to the Crank
Nicolson time-stepping scheme (cf. [And12, Ex. 5.2.12]). In space, we have to guarantee
KV ′×V (V J , V J ) > 0.

The next proposition shows the connection between KV ′×V and the H-orthogonal projection
from V to its closed subspace V J .

Proposition 2.2.30. [And12, Prop. 4.4.8] Let V ↪→ H ∼= H ′ ↪→ V ′ be a Gelfand triple of
Hilbert spaces. Let Q be the H-orthogonal projector onto a closed subspace U ⊂ V . Then, for
any κ > 0 the following are equivalent

(a) KV ′×V (U,U) ≥ κ

(b) |Qv|V ≤ κ−1|v|V for all v ∈ V .

We give an example of a stable finite element discretisation of H1
0 (D), D ⊂ Rd. This is the

d-dimensional generalisation of the discretisation used in [And12, Ch. 8].

Example 2.2.31. Let D = (−1, 1)d ⊂ Rd and define V := H1
0 (D), H := L2(D). Consider the

tensor product spaces isomorphic to V and H, i.e. H1
0 (D) ∼= H1

0 (D(1)) ⊗ . . . ⊗ H1
0 (D(d)) and

H := L2(D) ∼= L2(D(1)) ⊗ . . . ⊗ L2(D(d)), D(i) = (−1, 1) for all i = 1, . . . , d, cf. [Hac12a, Ch.
4]. To ease the notation, we consider on all tensor subspaces an equidistant grid T ` = {xk =
−1 + k∆t : 0 ≤ k ≤ 2`+1,∆t = 2

2`+1 }.

On each space H1
0 (D(i)), let φi be the finite element basis analogously defined to the one for

EK+1, i.e. consider piecewise linear hat functions on T `, setting σ0 ≡ σ2`+1 ≡ 0 to ensure
φi ⊂ H1

0 (D(i)), |φi| = 2`+1− 1. The tensorised basis φ = φ1⊗ . . .⊗φd is a tensor product finite
element basis of V J , J := (2`+1 − 1)d, [BS94, (3.5.2)].

Claim. There exists κ > 0 with KV ′×V (V J , V J ) ≥ κ.
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2. Space-Time Reduced Basis Method

Proof. Let d = 1, [And12, Sec. 8.2]. Let Q` : L2(D) → V` and R` : H1
0 (D) → V` denote the

L2(D)-orthogonal and H1
0 (D)-orthogonal surjective projectors. For Cdir, Cinv > 0, the direct

estimate, [BS94, (4.4.20) Thm.],

|ξ −R`ξ|L2(D) ≤ Cdir2−`|ξ|H1
0 (D) ∀ ξ ∈ H1

0 (D) ∀ ` ∈ N0

and the inverse estimate, [BS94, (4.5.11) Thm.],

|ξ`|H1
0 (D) ≤ Cinv2`|ξ`|L2(D) ∀ξ ∈ V` ∀` ∈ N0

imply stability of the L2(D)-orthogonal projector Q` in H1
0 (D) uniformly in ` ∈ N0: There exists

Cstab > 0 such that |Q`ξ|H1
0 (D) ≤ Cstab|ξ|H1

0 (D) for all ` ∈ N0, ξ ∈ H1
0 (D), [And12, Lemma 8.2.1].

For the general case d > 1 we use the tensor product representation of v ∈ H1
0 (D) given by

v1 ⊗ . . .⊗ vd. Since, [AT14, p. 8],

|v1 ⊗ . . .⊗ vd|2H1
0 (D) =

d∑
µ=1

(
|vµ|2H1

0 (D(µ))

d∏
µ6=µ′=1

|vµ′ |2L2(D(µ′))

)
, (2.2.19)

we get for Cstab > 0 as above

C2
stab|v|2H1

0 (D) = C2
stab|v1 ⊗ . . .⊗ vd|2H1

0 (D) =
d∑

µ=1
(C2

stab|vµ|2H1
0 (D(µ))

d∏
µ6=µ′=1

|vµ′ |2L2(D(µ′)))

≥
d∑

µ=1
(|Q`vµ|2H1

0 (D(µ))

d∏
µ6=µ′=1

|Q`vµ′ |2L2(D(µ′))) = |Q`v|2H1
0 (D).

Taking the square root on both sides leads to

|Q`v|H1
0 (D) ≤ Cstab|v|H1

0 (D).

With the application of Proposition 2.2.30 the lower bound κ := C−1
stab > 0 follows.

A further possibility is to introduce a natural norm on the discretised spaces, [UP14, And12].
The norm is natural in the sense that it avoids the (in general not defined) point evaluation
of the considered Lebesgue function (equivalence class representant). For w ∈ X set w̄k :=
(∆t)−1 ∫

Ik w(t)dt ∈ V and w̄ :=
∑K
k=1 τk ⊗ w̄k ∈ L2(I;V ), then

‖w‖2X,bar := ‖w̄‖2L2(I;V ) + ‖ẇ‖2L2(I;V ′) + |w(T )|2H , (2.2.20)

βN ,bar := inf
wN∈XN

sup
vN∈YN

b(wN , vN )
‖wN ‖X,bar‖vN ‖Y

,
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2. Space-Time Reduced Basis Method

γN ,bar := sup
wN∈XN

sup
vN∈YN

b(wN , vN )
‖wN ‖X,bar‖vN ‖Y

.

For ‖ · ‖X,bar as norm on XN , the following proposition shows stability for b(·, ·). The proposition
is a straightforward extension of [UP14, Prop. 2.9].

Proposition 2.2.32. Let a(., .) be symmetric, bounded and coercive and set |φ|2V := a(φ, φ),
φ ∈ V then βN ,bar = CN ,barb = 1.

Proof. Extension of [UP14, Prop. 2.9] for non-homogeneous initial condition.

2.2.2.3. Minimal Residual Approach

So far, the chosen time discretisation in trial and test space results in the equivalence to the
Crank Nicolson scheme. Unfortunately we get the dependency on the CFL condition. More
general approaches allow for unconditionally stable pairs of discrete trial and test spaces. These
generalised time discretisations were subject of [And12]. It was shown that, as long as some
embedding results for the discretised spaces are valid, we obtain inf-sup stability for the discre-
tised pair of trial and test spaces, [And12, Sec. 5.2.3 B]. The dimension of the discrete trial and
test spaces are not equal any more and least square methods have to be applied, [And12, Ch.
4]. Thus, instead of the usual discrete variational formulation (2.2.13), the discrete (functional)
residual minimisation problem will be solved, i.e.

find uN ∈ XN : uN = arg min
wN∈XN

sup
vM∈YM\{0}

|b(wN , vM)− f(vM)|
|vM|Y

. (2.2.21)

Well-posedness of the minimal residual approach is provided in the following theorem.

Theorem 2.2.33. [And12, Thm. 4.1.9] Let X, Y be real Hilbert spaces, b : X×Y → R a bilinear
form and XN ×YM ⊆ X×Y be a non-trivial pair of subspaces2 that satisfies the discrete inf-sup
condition for b,

inf
uN∈XN \{0}

sup
vM∈YM\{0}

|b(uN , vM)|
‖uN ‖X‖vM‖Y

=: β(N ,M) > 0. (2.2.22)

Then, for any u ∈ X there exists a unique uN ∈ XN which satisfies

uN = arg inf
wN∈XN

(
sup

vM∈YM\{0}

|b(wN − u, vM)|
‖vM‖Y

)
(2.2.23)

for u solving the non-discretised PDE. Moreover, there holds the quasi-optimality estimate

‖u− uN ‖X ≤
Cb

β(N ,M) inf
wN∈XN

‖u− wN ‖X. (2.2.24)

2XN 6= {0}, YM 6= {0}
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The constant Cb denotes the (discrete) continuity constant of the bilinear form b.

Proof. For a proof we refer to the proof of [And12, Thm. 4.1.9].

2.2.3. Introduction to the Reduced Basis Method (RBM)

Up to now, we considered parabolic PDEs or, more general, evolutionary problems without focus
on the parameters that probably define the (bi)linear forms. If such model parameters vary
often, an efficient model reduction scheme should be applied to avoid computationally expensive
recomputations of the same problem repeatedly. Especially if parameters change in real time
problems, an application of a model reduction method is not optional. The basic idea of the
reduced basis method appeared in the late 70s and early 80s. For a historical overview on the
early work we refer to [Rhe93]. In first approaches, parameter dependent systems with only one
parameter were considered. Steps have been taken towards a-posteriori error estimates and the
approach was extended to multi-parameter problems, cf. [FR83, Rhe93, BR95]. The reduced
basis method as used in this thesis was introduced in a series of papers in the beginning of the
20th century, cf. [MPR01, PRV+02, VPRP03] and [PR07] and references therein. Since then,
the reduced basis method was adapted to very different applications and a wide field of partial
differential equations.

2.2.3.1. The Reduced Basis Method

We present the standard RB procedure in the upcoming section. Parts of this chapter were
published in [MU14, Section 2.2]. We recall the main properties of the RBM. For details, we
refer to the survey article [Haa14] and the books [PR07, QMN15, HRS15].

Let X and Y be (infinite-dimensional) Hilbert spaces. Let D ⊂ Rp, p > 0, be the parameter
space3. Let b : X × Y × D → R be a parametric bilinear form on X × Y and f : Y × D → R
a parametric linear functional, f(·;µ) ∈ Y′ for µ ∈ D. For a given parameter µ ∈ D, we are
interested in solving the problem:

Find u(µ) ∈ X : b(u(µ), v;µ) = f(v;µ) ∀v ∈ Y. (2.2.25)

Well-posedness of (2.2.25) is assumed for all µ ∈ D throughout this section.

3A more general setting is considered in Chapter 3.2.
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Example 2.2.34. Let D ⊂ Rd be the parameter space. For the special case of parabolic µPDEs,
we define the ansatz space X := X, cf. Equation (2.2.1) and the test space Y := Y as defined in
Equations (2.2.5) and define for w ∈ X, v = (z, h) ∈ Y and µ ∈ D

b(w, v;µ) :=
∫
I
〈ẇ(t), z(t)〉V ′×V dt+

∫
I
a(w(t), z(t);µ)dt+ (w(0), h)H

f(v;µ) :=
∫
I
〈g(t;µ), z(t)〉V ′×V dt+ (u0, h)H .

This is the space-time variational formulation given in Equation (2.2.8), with the explicit param-
eter dependence detailed in a(·, ·; ·) and on the right-hand side.

The next step is the assumption that a finite discretisation XN ⊂ X, YN ⊂ Y available, in the
sense that the discrete problem formulation

find uN (µ) ∈ XN : b(uN (µ), vN ;µ) = f(vN ;µ) ∀vN ∈ YN

is still well-posed.

The important observation for the RBM is that we are not interested in the full space X but only
in the subspace M := {u(µ) ∈ X : µ ∈ D}. Thus, we are going to replace the approximation space
XN by a much smaller approximation space XN ⊂ XN for M. For the construction of XN we use
XN : in the offline phase we compute high dimensional or often called detailed or truth solutions
uN (µ) ∈ XN ⊂ X with standard numerical methods, like the finite element method. A standard
assumption is that the detailed solution is a good approximation of the true problem solution in
X. We construct an RB as a set of detailed solutions ui := uN (µi), so-called snapshots, for a given
parameter sample set µ1, . . . , µN ∈ D that span a subspace XN of the detailed approximation
space XN .

The model reduction takes place in the online phase. We consider the ansatz space XN :=
span{ui : i = 1, . . . , N} and a suitable (reduced) test space YN ⊂ YN (for simplicity both of
dimension N). The reduced problem formulation reads

find uN (µ) ∈ XN : b(uN (µ), vN ;µ) = f(vN ;µ) ∀vN ∈ YN . (2.2.26)

If N � N , the reduced model is feasible online even though the stiffness matrix of the system on
the left-hand side is in general densely populated. To guarantee existence and uniqueness of the
RB solution, the reduced problem formulation again has to be well-posed. For a visualisation,
we refer to Figure 2.2.2.

Remark 2.2.35. By construction of XN , the approximation error of the detailed solution is a lower
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Figure 2.2.2.: The reduced basis approximation.

bound of the RB approximation error:

inf
uN∈XN

‖u− uN ‖X ≤ inf
uN∈XN

‖u− uN‖X.

Thus, the approximation quality of the RB solution can not be better than the one of the
discrete detailed solution. In addition, the RB approximation error is bounded by ‖u − uN‖ ≤
‖u−uN ‖+ ‖uN −uN‖. If we assume uN (µ) to be a sufficiently good approximation of u(µ), the
focus lies on the error between uN (µ) and uN (µ).

Remark 2.2.36. In the space-time setting of Example 2.2.34, well-posedness is related to an
inf-sup condition, Section 2.2.1.3, that has to be satisfied for the entire parameter space, i.e.

inf
µ∈D

inf
w∈X

sup
v∈Y

b(w, v;µ)
‖w‖X ‖v‖Y

≥ β > 0. (2.2.27)

A corresponding discrete inf-sup condition has again to hold true for the detailed discretisation
and again independent of the parameter space:

inf
µ∈D

inf
wN∈XN

sup
vN∈YN

b(wN , vN ;µ)
‖wN ‖X ‖vN ‖Y

≥ βN > 0 ∀N ∈ N. (2.2.28)

The problem formulation in the reduced basis spaces has thus also to satisfy stability in a uniform
inf-sup-sense, i.e.,

inf
µ∈D

inf
wN∈XN

sup
vN∈YN

b(wN , vN ;µ)
‖wN‖X ‖vN‖Y

≥ βN > 0 ∀N ∈ N. (2.2.29)

Explicit constructions of a test space for the online procedure of parabolic PDEs in space-time
variational formulation are described in Section 2.3.

The ultimate efficiency aim is to realise an online complexity that is independent of N . In
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particular, all quantities that depend on N and that are necessary for solving the system of
linear equations in (2.2.26) have to be precomputed in the offline phase. The key for that
realisation is the assumption that bilinear form and right-hand side functional are separable
w.r.t. the parameter, i.e.,

b(w, v;µ) =
Qb∑
q=1

θbq(µ) bq(w, v), f(v;µ) =
Qf∑
q=1

θfq (µ)fq(v), (2.2.30)

with functions θbq, θfq : D → R and parameter-independent forms bq : X×Y → R and fq : Y → R.
In the RB literature this is often called affine decomposition w.r.t. the parameter. For models that
do not naturally provide this decomposition, there are strategies like the Empirical Interpolation
Method (EIM) that approximate this structure for the use in the reduced basis method, cf.
[BMNP04].

Let {vj : 1 ≤ j ≤ N} be a basis of the space YN . The reduced problem formulation (2.2.26)
reads

find uN := (uN,i)i=1,...,N ∈ RN :
N∑
i=1

uN,i b(ui, vj ;µ) = f(vj ;µ) ∀j = 1, . . . , N. (2.2.31)

Furthermore, let ui =
∑N
n=1 α

i
nxn be the representation of the snapshots in a basis {xn : n =

1, . . . ,N} of XN and correspondingly vj =
∑N
n=1 β

j
nyn in a basis {yn : n = 1, . . . ,N} of YN . If

(2.2.30) holds, the computation of the stiffness matrix and the right-hand side of the reduced
linear system can be split in an offline/online fashion as follows (i, j,= 1, . . . , N)

b(ui, vj ;µ) =
N∑

n,n′=1
αinβ

j
n′ b(xn, yn′ ;µ) =

N∑
n,n′=1

αinβ
j
n′

Qb∑
q=1

θbq(µ) bq(xn, yn′)

=
Qb∑
q=1

θbq(µ)
N∑

n,n′=1
αinβ

j
n′ bq(xn, yn′) =:

Qb∑
q=1

θbq(µ)[Bq]i,j ,

f(vj ;µ) =
N∑
n=1

βjnfq(yn;µ) =
Qf∑
q=1

θfq (µ)
N∑
n=1

βjnfq(yn) =:
Qf∑
q=1

θfq (µ)(fq)j .

The terms [Bq]i,j and (fq)j are µ-independent and can thus be computed offline with complexity
O(N2NQb) resp. O(NNQf ). Online, for a new parameter µ ∈ D, the stiffness matrix of the
RB system is obtained by computing:

[BN (µ)]i,j = b(ui, vj ;µ) =
Qb∑
q=1

θbq(µ)[Bq]i,j , i, j = 1, . . . N, (2.2.32)
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which requires an online-complexity of O(QbN2) that is independent of N (resp. O(QfN) for
the right-hand side).

Example 2.2.37. For X = Y = H1
0 (0, 2π) we consider the heat equation

−µ∆u = sin(x) x ∈ Ω = (0, 2π), µ ∈ [0.5, 1.5].

We assume homogeneous Dirichlet boundary conditions. The weak formulation reads: Find
u ∈ H1

0 (0, 2π) such that

µ

∫
(0,2π)

∇u(x)∇v(x)dx =
∫

(0,2π)
sin(x)v(x)dx ∀ v ∈ H1

0 (0, 2π).

The problem formulation is well-posed with coercivity constant infu∈H1
0 (0,2π)

b(u,u;µ)
|u|2
H1

0

= α(µ) = µ

since b(u, u;µ) = µ
∫

(0,2π)∇u(x)∇u(x)dx = µ|u|H1
0
. We skip the high dimensional discretisation

as we can directly compute the solution for the parameter µ = 1. We set the basis function u1 :=
u(1) = sin(x) and define the one dimensional RB approximation spaces by X1 := span{u1} =: Y1.
Then,

B1 := b(u1, u1) =
∫

(0,2π)
cos2(x)dx = π, f1 := f(u1) =

∫
(0,2π)

sin2(x)dx = π.

For the new parameter µ = 0.5 we solve

0.5B1u1 = f1 ⇔ u1 = 1
0.5 = 2.

Hence, the solution is given by u1(0.5) = 2u1 = 2 sin(x). Verifying, that −0.5∆2 sin(x) =
−∇ cos(x) = sin(x), we have computed the exact solution for the new parameter µ = 0.5 by
solving a 1D linear equation system. Thus, the high dimensional problem is reduced to a one
dimensional one.

2.2.3.2. The Greedy Algorithm

The snapshots defining the reduced space XN are determined by the (offline-)selection of param-
eter samples SN := {µi : i = 1, . . . , N} and those samples are often computed by maximising a
computable error estimate ∆N (µ) w.r.t. the parameter µ.

This can be done e.g. by nonlinear optimisation or a greedy method w.r.t. a finite so called
training set Dtrain ⊂ D. For the training set, we define M(Dtrain) := {u(µ) ∈ XN : µ ∈ Dtrain}.

The basic greedy procedure is presented in Algorithm 2.2.1. In the i-th greedy step we con-
sider the current RB approximation space Xi−1 and identify the error maximising element
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2. Space-Time Reduced Basis Method

ui = arg supu∈M(Dtrain) infw∈Xi−1 ‖u−w‖X. The RB basis is extended by ui. The RB approxima-
tion space is finally given as XN := span(ΞNX ). Since the RB solution ui is given by the (Petrov-)
Galerkin projection of u ∈ M(Dtrain) onto Xi, we compute the current RB approximation ui.
Since

‖uN − uN‖X ≤ C inf
w∈XN

‖uN − w‖X

we replace the computation of the infimum by the error calculation ‖uN − ui‖X for uN ∈
M(Dtrain).

To evaluate the supremum, we have to compute all solutions uN ∈ M(Dtrain) for the given
training set Dtrain. Those computations are computationally expensive and the procedure is
time-consuming for large training sets. The computational effort can be avoided if an a-posteriori

Algorithm 2.2.1 Greedy Algorithm
Input: Dtrain ⊂ D training set, tol > 0 tolerance, Ξ0

X = ∅, i = 1.
Output: ΞNX RB basis.
1: while supu∈M(Dtrain) infw∈Xi−1 ‖u− w‖X > tol do
2: ui := arg supu∈M(Dtrain) infw∈Xi−1 ‖u− w‖X.
3: ΞiX = Ξi−1

X ∪ {ui}.
4: Xi := span{ΞiX}, i← i+ 1.
5: end while
6: N = i.

error estimator ∆N (µ) is available that approximates the error ‖uN − uN‖. We refer to [Haa14,
Rem. 2.39] for different possible error indicator that can be used in the greedy procedure.

The standard error estimator for an inf-sup stable problem is given in the next Proposition.

Proposition 2.2.38. Let XN ⊂ XN and uN (µ) ∈ XN be the solution of (2.2.26). Defining the
residual by rN (v;µ) := f(v;µ) − b(uN (µ), v;µ) = b(uN (µ) − uN (µ), v;µ) for all v ∈ YN , we
obtain the following error estimate

‖uN (µ)− uN (µ)‖X ≤
1
βN
‖rN (·;µ)‖(YN )′ =: ∆N (µ), (2.2.33)

where βN denotes the inf-sup constant given in Equation (2.2.28) of b(·, ·;µ) on XN × YN .

Proof. It immediately follows from (2.2.28) and the definition of the dual norm that

βN ‖uN (µ)− uN (µ)‖X ≤ sup
v∈YN

b(uN (µ)− uN (µ), v;µ)
‖v‖Y

= ‖rN (·;µ)‖(YN )′ .
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2. Space-Time Reduced Basis Method

The error estimator ∆N (µ) given in Proposition 2.2.38 is offline-online efficient since one
can derive an affine decomposition w.r.t. the parameter as in (2.2.30) also for the residual
‖rN (·;µ)‖(YN )′ , cf. Section 2.3.2.

Remark 2.2.39. The error estimator for the space-time reduced basis method requires the (dis-
crete) inf-sup constant. Its computation can be realised by using the successive constraint method
(SCM), which was introduced by D. Huyn, G. Rozza, S. Sen and A. Patera, [HRSP07], as an
offline-online efficient method for estimating the otherwise computationally costly inf-sup or –
for coercive problems – the coercivity constant. The main idea is to precompute β(µi) for µi
in a sample set {µ1, . . . , µK} = DSCM ⊂ D and to use these values to construct a lower bound
βLB(µ) for the inf-sup constant β for any other parameter. This is realised by a greedy approach
offline and solving a linear optimisation problem online.

The idea behind the greedy approach is to approximate the set M(D) = {uN (µ) ∈ XN : µ ∈
D} ⊂ XN up to a given target tolerance by the RB approximation space XN with dim(XN ) = N

and N � N . Optimal subspaces XN ⊂ XN for the approximation can be identified considering
the Kolmogorov N-width

dN (M)X = inf
XN⊂XN

dim XN=N

sup
u∈M(D)

inf
w∈XN

‖u− w‖X. (2.2.34)

Convergence results for the greedy procedure are achieved by applying the convergence rates of
the Kolmogorov N-width, cf. [DPW14, BCD+11].

If the error ‖uN − uN‖X is replaced by an error estimator, we have to ensure that the greedy
procedure succeeds in finding (close to) optimal subspaces XN .

Proposition 2.2.40. [DPW14, Def. 1.1, Rem. 1.2] Let µ ∈ D and let ∆N (µ) be a tight
surrogate in the sense that there exist constants C, c > 0 such that

c ∆N (µ) ≤ ‖uN (µ)− uN (µ)‖X ≤ C∆N (µ). (2.2.35)

Then,
max inf

w∈XN
‖uN − w‖X ≤ κ‖uN (µ)− uN (µ)‖X,

with κ := inf{Cc : C, c satisfy (2.2.35) ∀µ ∈ D,∀N ∈ N}.

The approximation space XN improves if the chosen error estimate ∆N (µ) has an associated κ
close to one.
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2.3. Reduced Basis Simulation for Petrov-Galerkin Problems

The space-time RBM is based on the space-time variational formulation introduced in Equa-
tion (2.2.8). This is in contrast to time-stepping RB methods for parabolic PDEs presented in
Appendix B. We introduce three different possibilities to compute the RB solution within the
space-time RBM:

First, we explore the minimal residual approach used in [Yan14]. This was presented in detail
in [MPR02] for non-coercive problems, including a theoretical analysis of the associated inf-sup
constant.

The second possibility is the explicit construction of an inf-sup stable reduced test space. This
is a direct application of the theory developed for the Navier-Stokes problem, by G. Rozza and
K. Veroy, [RV07], that was adapted by A.-L. Gerner and K. Veroy in [GV12] to general saddle
point problems.

As a third possibility, the associated normal equation is to be solved.

The following proposition shows that all three approaches are equivalent on finite dimensional
approximation spaces and lead to the same RB solution.

Proposition 2.3.1. Let XN := span{x1, . . . , xN } and YN := span{y1, . . . , yN } be the high
dimensional discretised system and let span{u1, . . . , uN} =: XN ⊂ XN be a reduced basis space.
For a given parameter µ, let YN (µ) ⊂ YN be a stable RB test space, i.e. let the inf-sup stability
be guaranteed for XN and YN . Define

Yk,j = (yk, yj)Y, Bj,i = b(ui, yj), fk = f(yk)

∀ i = 1, . . . , N, k, j = 1, . . . ,N .

Then for uN =
∑N
i=1 αiu

i ∈ XN the following are equivalent:

(1) b(uN , v;µ) = f(v;µ) ∀ v ∈ YN (µ),

(2) uN = arg infu∈XN ‖b(u, ·;µ)− f(·;µ)‖(YN )′ ,

(3) for u = (αi)i=1,...,N : BTY−1Bu = BTY−1f.

Proof. This is an adaptation of [And12, Prop. 4.2.5]. We replace the high dimensional trial
space by the RB trial space.
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Throughout this section, we use the notations introduced in Section 2.2.3.1.

Note that the RB simulation is not only part of the online phase of the RBM but can already be
used offline in the parameter sampling procedure 2.2.3.2. We detail its appearance in a greedy
procedure in Algorithm 2.3.1 using the function

RB-SIM : Dtrain × N→ XN , (µ,N) 7→ uN (µ) (2.3.1)

and defining ∆RB-SIM
N (µ) = 1

βLB
‖b(RB-SIM(µ,N), ·;µ)− f(·;µ)‖(YN )′ .

Algorithm 2.3.1 Greedy Algorithm
Input: Dtrain ⊂ D training set, tol > 0 RB target tolerance.
Output: ΞNX RB basis.
1: Choose µ ∈ Dtrain, compute u1 := uN (µ), Ξ1

X = {u1}, ` = 1.
2: while maxµ∈Dtrain(∆RB-SIM

` (µ)) > tol do
3: µ = arg maxµ∈Dtrain(∆RB-SIM

` (µ)).
4: Compute u`+1 := uN (µ), Ξ`+1

X := Ξ`X ∪ {u`+1}, `← `+ 1.
5: end while
6: N := `.

2.3.1. Offline-Online Decomposition in the Space-Time RBM

We recall Example 2.2.34 where we defined for w ∈ X, v = (z, h) ∈ Y and µ ∈ D

b(w, v;µ) :=
∫
I
〈ẇ(t), z(t)〉V ′×V dt+

∫
I
a(w(t), z(t);µ)dt+ (w(0), h)H ,

f(v;µ) :=
∫
I
〈g(t;µ), z(t)〉V ′×V dt+ (u0, h)H .

Here and in the following we assume the affine decomposition w.r.t. the parameter given by

b(w, v;µ) =
∫
I
〈ẇ(t), z(t)〉V ′×V dt+

Qa∑
q=1

∫
I
θaq (µ)aq(w(t), z(t))dt+ (w(0), h)H

=
Qb∑
q=1

θbq(µ)bq(w, v)

with Qb := Qa + 2, b1(w, v) :=
∫
I 〈ẇ(t), z(t)〉V ′×V dt, bQb(w, v) := (w(0), h)H and θb1(µ) =

θbQb(µ) = 1 as well as bi(w, v) :=
∫
I ai−1(w, z)dt, θbi ≡ θai−1 for i = 2, . . . , Qa + 1. For the
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right-hand side we assume a decomposition of the right-hand side g and receive

f(v;µ) =
∫
I

〈Qg∑
q=1

θgq (µ)gq(t), z(t)
〉
V ′×V

dt+ (u0, h)H

=
Qf∑
q=1

θfq (µ)fq(v)

for θfq ≡ θgq , fq(v) :=
∫
I 〈gq(t), z(t)〉V ′×V dt for q = 1, . . . , Qf and fQf (v) := (u0, h)H , θfQf (µ) := 1,

Qf := Qg + 1.

2.3.2. Minimal Residual Projection

By Proposition 2.3.1 the reduced solution uN in (2.2.26) is equivalently given by Proposition
2.3.1 (2). The dual norm of the residual r(v;u, µ) = b(u, v;µ) − f(v;µ), v ∈ YN , u ∈ XN is
computable using its Riesz representant r̂(u;µ) ∈ YN given by (r̂(u;µ), v)Y = r(v;u, µ) for all
v ∈ YN . The RB solution is given by

uN = arg inf
u∈XN

‖r(·;u, µ)‖(YN )′ = arg inf
u∈XN

sup
v∈YN

r(v;u, µ)
‖v‖Y

= arg inf
u∈XN

‖r̂(u;µ)‖Y.

By definition, ‖r̂(u;µ)‖Y is offline-online decomposable in the following way. Let XN := span{ xi :
i = 1, . . . ,N }, YN := span{ yi : i = 1, . . . ,N } and XN := span{u1, . . . , uN}. Every basis
function ui ∈ XN is an element of XN , thus ui =

∑N
j=1 α

i
jxj . Let αi := (αij)j=1,...,N be the

associated coefficient vector. Offline, we precompute the matrix/vector representations

[BBN
q,q′ ]i,j = (αi)T (Bq)TY−1Bq′αj , (BFNq,`)i = (αi)T (Bq)TY−1f` = (FBN

`,q)T

and FFN`,`′ = (f`)TY−1f`′ .

for all q, q′ = 1, . . . , Qb, i, j = 1, . . . , N and `, `′ = 1, . . . , Qf where

[Y]i,j = (yi, yj)Y, [Bq]j,i = bq(xi, yj), and (f`)i = f`(yi)

∀q = 1, . . . , Qb, ` = 1, . . . , Qf , i, j = 1, . . . ,N .

32



2. Space-Time Reduced Basis Method

Let uN (µ) =
∑N
i=1 αi(µ)ui ∈ XN and define the coefficient vector by u := (αi(µ))i=1,...,N . Since

‖r̂(u;µ)‖2Y = (r̂(u;µ), r̂(u;µ))Y = 〈r(·, u;µ), r̂(u;µ)〉Y′×Y we compute the residual by

(Y−1(Bu− f))TY(Y−1(Bu− f)) =
Qb∑

q,q′=1
θbq(µ)θbq′(µ)uTBBq,q′u

−
Qb∑
q=1

Qf∑
`=1

θbq(µ)θf` (µ)(uTBFq,` + FB`,qu)

+
Qf∑

`,`′=1
θf` (µ)θf`′(µ)FF`,`′ .

The online computations are independent of the high dimension N , i.e. of complexity
O(N2Qb). In Equation (2.3.1) the unconstrained nonlinear optimisation problem RB-SIM(µ, `) =
MinRes(µ, `) = arg minu∈X` ‖r̂(u;µ)‖Y is to be solved by e.g. a line-search algorithm. The value
of the residual is given immediately and can be used for the error estimator.

The inf-sup stability of the RB system is deduced from the inf-sup stability of the discrete
high-dimensional system. For given parameter µ ∈ D,

βN (µ) = inf
u∈XN

sup
y∈YN

b(u, v;µ)
‖u‖X‖v‖Y

≥ inf
u∈XN

sup
y∈YN

b(u, v;µ)
‖u‖X‖v‖Y

≥ βN (µ) > 0.

2.3.3. Petrov-Galerkin Projection

The construction of a stabilising reduced test space is necessary for the Petrov-Galerkin projec-
tion. One strategy is to enrich the test space within the greedy procedure by the supremizers
of the current trial space. This method has been applied to general saddle point problems in
[GV12] and to transport-dominated problems in [DPW14]. The later presented a double-greedy
scheme to enrich the test space in a greedy procedure until a required stabilisation is reached.
We present the construction for a parameter dependent test space.

For every parameter µ, the RB test space YN has to guarantee inf-sup stability of the RB system,
i.e.,

inf
u∈XN

sup
v∈YN

b(u, v;µ)
‖u‖X‖v‖Y

> 0.

We follow the notations of the previous Section 2.3.2 and define for ui ∈ XN and a given pa-
rameter µ ∈ D (in particular we do not focus on the associated parameter µi!) the supremizing
operator by Sui(µ) = arg supv∈YN

b(ui,v;µ)
‖v‖Y

. As the supremizer is the Riesz representant given by
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(Sui(µ), v)Y = b(u, v;µ) for all v ∈ YN , the associated coefficient vector in YN is given by

Sui(µ) := Y−1
Qb∑
q=1

θbq(µ)Bqαi =
Qb∑
q=1

θbq(µ)Y−1Bqαi =:
Qb∑
q=1

θbq(µ)Siq.

For all RB basis elements ui, i = 1, . . . , N , we compute the supremizing components Siq for
q = 1, . . . , Qb given by (Siq, v)Y = bq(u, v) ∀ v ∈ YN . The (offline) test space is given by YNQboffline =
span{S1

1 , . . . , S
1
Qb
, . . . , SN1 , . . . , S

N
Qb
}.

Online, for a new parameter µ ∈ D an associated optimal test space YN (µ) = {S1(µ), . . . , SN (µ)}
is considered, where Si(µ) :=

∑Qb
q=1 θ

b
q(µ)Siq. The RB-problem formulation is as introduced in

(2.2.26) given YN (µ) as test space. For every parameter µ ∈ D inf-sup stability is guaranteed by
the test space construction:

βN (µ) = inf
u∈XN

sup
v∈YN

b(u, v;µ)
‖u‖X‖v‖Y

≤ inf
u∈XN

sup
v∈YN

b(u, v;µ)
‖u‖X‖v‖Y

= sup
v∈YN

∑N
i=1 αi(µ)b(ui, v;µ)

‖
∑N
i=1 αi(µ)ui‖X‖v‖Y

=
∑N
i=1 αi(µ)b(ui, Sui(µ);µ)

‖
∑N
i=1 αi(µ)ui‖X‖Sui(µ)‖Y

≤ sup
v∈YN (µ)

b(
∑N
i=1 αi(µ)ui, v;µ)

‖
∑N
i=1 αi(µ)ui‖X‖v‖Y

.

The greedy algorithm 2.3.1 is extended by the test space construction, cf. line 7 in Algorithm
2.3.2.

Algorithm 2.3.2 Greedy Algorithm with Test Space Construction
Input: Dtrain ⊂ D training set, tol > 0 RB target tolerance.
Output: ΞNX RB ansatz space basis, ΞNQbY RB test space basis.
1: Choose µ ∈ Dtrain, compute u1 := uN (µ), Ξ1

X = {u1}, ` = 1.
2: Compute S1

1 , . . . , S
1
Qb

, ΞQbY = {S1
1 , . . . , S

1
Qb
}

3: while maxµ∈Dtrain(∆RB-SIM
` (µ)) > tol do

4: µ′ = arg maxµ∈Dtrain(∆RB-SIM
` (µ))

5: Compute u`+1 := uN (µ′), Ξ`+1
X := Ξ`X ∪ {u`+1}, `← `+ 1

6: Compute S`1, . . . , S`Qb , Ξ`QbY ← Ξ(`−1)Qb
Y ∪ {S`1, . . . , S`Qb}

7: end while
8: N := `.

The RB simulation is given by RB-SIM(µ, `) := PGP(µ, `) =
∑N
i=1(BN (µ)−1fN (µ))iui. Offline, we

additionally have to precompute bq(ui, Sq
′

j ) for all q, q′ = 1, . . . , Qb and i, j = 1, . . . , N to achieve
the desired independence of N . The computational effort is given by O(Q2

bN
2), independent of

N , and Qb-times the one of a standard Galerkin projection where XN = YN .
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Remark 2.3.2. There are several simplifications and strategies that avoid the resulting µ depen-
dence of the test space, as e.g. in [RV07, GV12]. For these strategies the inf-sup stability for
the RB spaces may not be provable any more but was shown in numerical experiments only. A
suboptimal test space in the sense that inf-sup stability is not theoretically guaranteed any more
results in a non-bijective operator BN and may cause instabilities in the greedy procedure.

As already observed in [RV07, Sec. 7], large RB space dimensions N lead to algebraic instabilities
concerning the condition of BN . The algebraic stability can be improved by not taking the
snapshots directly as basis functions but orthogonalising first. Orthogonalisation applied to the
trail space is straight forward, using the well-known Gram-Schmidt algorithm. Since the test
space is parameter dependent, an orthogonalisation of the test space can only be performed
online. We refer to [RV07, Sec. 7] for details.

2.3.4. Normal Equation Projection

The normal equation stated in Proposition 2.3.1 (3) can also be used for the RB simulation. This
possibility was mentioned in [DPW14] but not used, because of their usage of a µ-dependent
test space norm and the therewith associated computational effort. The normal equation does
not need an explicit construction of a reduced test space neither does it require a numerical
optimisation procedure. In comparison to the minimal residual approach, we compute only two
of the already presented operators in Section 2.3.2 and solve the problem

find uN =
N∑
i=1

(u)iui ∈ XN :
Qb∑

q,q′=1
θbq(µ)θbq′(µ)BBq,q′u =

Qb∑
q=1

Qf∑
`=1

θbq(µ)θf` (µ)BFq,`.

Online, the computational effort O(Q2
bN

2) is independent of the high dimension N . The inf-sup
stability of the RB system is again implied by the inf-sup stability of the truth discretisation,

βN (µ) = inf
u∈XN

sup
v∈YN

b(u, v;µ)
‖u‖X‖v‖Y

≥ inf
u∈XN

sup
v∈YN

b(u, v;µ)
‖u‖X‖v‖Y

= βN (µ) > 0.

The RB simulation is given by RB-SiM(µ, `) = GNE(µ, `) =
∑N
i=1(BB−1(µ)BF(µ))iui.

In the numerical experiments throughout this thesis, we use the normal equation approach to
compute the RB solution. The approach does neither require an additional optimisation algo-
rithm nor an additional storage of an RB test space.

35



2. Space-Time Reduced Basis Method

model = test_model;
model_data = gen_model_data(model);
detailed_data = gen_detailed_data(model,model_data);
reduced_data = gen_reduced_data(model,detailed_data);
rb_sim_data = rb_simulation(model,reduced_data);
uN = rb_reconstruction(model,reduced_data);

Figure 2.4.1.: RBMatlab command chain for the reduced basis approximation.

function detailed_data = gen_detailed_data(model,model_data)
% Reduced basis generation
% Input: model and mesh specifications
% Output: Reduced basis
detailed_data.RB{1} = init_data(model,model_data);
detailed_data = rb_extension(model,detailed_data);

Figure 2.4.2.: Reduced basis generation.

2.4. Implementation

2.4.1. Software

The implementation is realised in Matlab [MAT14]. All numerical experiments are embedded in
the working environment of RBMatlab [RBM13], a software project of the University of Stuttgart
and the University of Münster, Germany, that provides a Matlab library for the reduced basis
method. We present the standard command chain in Figure 2.4.1. The partial differential
equation with all its properties is specified in test_model. In particular, the mesh size and
parameter domain specifications are given. All model specifications are stored in the Matlab
structure array model. The second step is the mesh generation and storage in model_data. The
reduced basis offline phase is performed by calling gen_detailed_data, cf. Figure 2.4.2. First,
an initial basis element is computed. Second, the actual reduced basis generation is performed in
rb_extension. In the greedy procedure the functions gen_reduced_data and rb_simulation

are called. The reduced basis is stored in detailed_data.RB. The actual precomputations are
then realised by calling gen_reduced_data. The structure reduced_data only contains N -
independent quantities that are used in the reduced basis simulation rb_simulation where the
actual online computations are performed. The coefficient vector of the reduced basis solution
and the (estimated) error of the approximation are stored in rb_sim_data, cf. Figure 2.4.3.

As the space-time framework is not available in the toolbox, just a few original functions of
RBMatlab remain in the program. However, the implementation follows its original structure.
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rb_sim_data =
uN: ’reduced basis coefficients’
Delta: ’estimated reduced basis approximation error’

Figure 2.4.3.: Matlab structure array rb_sim_data.

For the later use in the context of low rank tensor methods, the underlying finite element solver
needs to return the discrete model in a very specific form and has been implemented in addition.
For the same reason, the implementation provides an interface with the Hierarchical Tucker
Toolbox [Hie13]. Both, the FEM implementation as well as the interface resulted in connection
with F. Grimmers Master thesis [Gri15]. The H-Tucker toolbox was developed by Ch. Tobler
and D. Kressner in 2012, cf. the manual [KT12].

2.4.2. Numerical Realisation of the space-time RBM

For discrete ansatz and test spaces XN = EK+1 ⊗ V J and YN = FK ⊗ V J × V J , cf. Equation
(2.2.15), the problem formulation is given by

For µ ∈ D ⊂ Rd find u ∈ XN : b(u, v;µ) = f(v;µ) ∀ v ∈ YN .

The bilinear form b(·, ·; ·) as well as the linear functional f(·; ·) are defined in Example 2.2.34.

The matrix representation of the left-hand side is given by

B(µ) =
(

Ctime ⊗Mspace + Mtime ⊗Aspace(µ)
(1, 0, . . . , 0)⊗Mspace

)
.

For i = 0, . . . ,K and j = 1, . . . ,K the temporal matrices have the components

[Ctime]ji =
∫
I
σ̇i(t)τj(t)dt, [Mtime]ji =

∫
I
σi(t)τj(t)dt and (1, 0, . . . , 0)T ∈ RK+1.

For i, j = 1, . . . ,J the spatial matrices are given by

[Mspace]ji =
∫

Ω
φi(x)φj(x)dx, [Aspace]ji =

∫
Ω
a(φi(x), φj(x))dx.

The right-hand side is given by

f(µ) =
(
vec(g1(µ))
Mspaceu0

)

for g1(µ) = (
∫
I〈g(t;µ), τ `(t)φj〉V ′×V dt)j=1,...,J ,`=1,...,K and a coefficient vector u0 corresponding

to a chosen expansion of the initial value in HL, L ∈ N. For Itime = [(τ i, τ j)L2(I)]i,j=1,...,K the
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2. Space-Time Reduced Basis Method

discrete operator of the test space norm

‖v‖2Y = ‖v1‖2L2(I,V ) + |v2|2H

for every v = (v1, v2) in YN is given by

Y =
(

Itime ⊗Vspace 0
0 Mspace

)

and the induced operator of the ansatz space norm ‖ · ‖X defined by

‖u‖2X = ‖u‖2L2(I;V ) + ‖u̇‖2L2(I;V ′) for u ∈ XN

is given by, cf. [UP14, Sec. 3.3],

X = Mtime ⊗Vspace + Vtime ⊗ (MspaceV−1
spaceMspace)

for Vtime = [(σ̇k−1, σ̇`−1)L2(I)]k,`=1,...,K+1.

The computational effort is reduced by using (T ⊗ X)vec(w) = vec(XwTT ) for T ∈ Rm×m,
X ∈ Rn×n and w ∈ Rn×m, n,m ∈ N. Here, the vec-operator vec : Rn1×...×nd → Rn1···nd maps a
tensor to a (column) vector in reverse lexicographical order, cf. Section 4.2.1. The structure of
Y allows for a separated computation of the inverse:

Y−1 =
(

I−1
time ⊗V−1

space 0
0 M−1

space

)
.

Remark 2.4.1. Including time as an additional dimension in the variational formulation has ad-
vantages regarding the error estimates and the computational complexity of the online phase.
However, problems may arise in the numerical verification of the inf-sup stability and the compu-
tational feasibility of the offline computations. The actual snapshot computation can be reduced
to the same computational effort as the one of a standard time stepping scheme applying a corre-
sponding discretisation, cf. Section 2.2.2.2. For a symmetric bilinear form a(·, ·) in the variational
formulation the inf-sup stability can be guaranteed for fine time discretisation but a numerical
verification is required for non-symmetric a(·, ·), again cf. Section 2.2.2.2. Applying a low rank
tensor format in the offline phase of the RBM further improves the computational feasibility as
the explicit establishment of the full matrices does not become necessary. For details we refer to
Chapter 4.
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2. Space-Time Reduced Basis Method

2.5. Numerical Example

This numerical example provides a first insight into the space-time reduced basis method. We
consider a parabolic PDE with diffusion, convection and reaction terms.

2.5.1. Diffusion-Convection-Reaction Equation

Let V := H1
0 (Ω) ↪→ L2(Ω) =: H. Let I = (0, 0.3) be the time interval. Let D := [0.5, 1.5] ×

[0, 1] × [0, 1] ⊂ R3 be the parameter domain. For fix parameter µ = (α, β, γ)T ∈ D find u that
solves

u̇−∇ · α∇u+ β∇u+ γu = g on Ω× I = (0, 1)× (0, 0.3),

u(ω, t) = 0 ∀ ω ∈ ∂Ω, t ∈ (0, 0.3)

u(ω, 0) = u0(ω) = sin(2πω) ∀ ω ∈ Ω.

The right-hand side is computed exactly for µ = (1, 0.5, 0.5) ∈ D for the solution u(ω, t) =
sin(2πω) cos(4πt) with

g(ω, t) = sin(2πω)
(

(4π2 + 0.5) cos(4πt)− 4π sin(4πt)
)

+π cos(2πω) cos(4πt),

cf. Figure 2.5.1. For v = (v1, v2) ∈ Y = L2(I;H1
0 (Ω)) × L2(Ω) the space-time variational

formulation reads find u ∈ X = L2(I;H1
0 (Ω)) ∩H1(I;H−1(Ω)) such that∫

I

∫
Ω
u̇(ω, t)v1(ω, t)dω +

∫
Ω
α∇u(ω, t)∇v1(ω, t) + β∇u(ω, t)v1(ω, t) + γu(ω, t)v1(ω, t)dωdt

+
∫

Ω
u(ω, 0)v2(ω)dω =

∫
I

∫
Ω
g(ω, t)v1(ω, t)dωdt+

∫
Ω
u0(ω)v2(ω)dω.

2.5.2. Well-posedness

The problem is well-posed in the Hilbert space setting as long as a(u, v;µ) :=∫
Ω α∇u(ω, t)∇v1(ω, t) + β∇u(ω, t)v1(ω, t) + γu(ω, t)v1(ω, t)dω satisfies a Gårding inequality and
is bounded, cf. Section 2.2.1.3. This is satisfied if A(µ) given by 〈A(µ)u, v〉V ′×V = a(u, v;µ) is
an elliptic operator, [Eva99, Ch. 6 Thm. 2]. Since all coefficients are L∞(Ω) and α ∈ [0.5, 1.5] is
positive, the parabolic PDE is well-posed.
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Figure 2.5.1.: The right-hand side of the PDE is given in (a). The exact solution for µ =
(1, 0.5, 0.5) is given in (b).

2.5.3. Discretisation

We follow Section 2.2.2.2 for the discretisation. We introduce a linear finite element approxima-
tion in space and denote the set of basis functions by {φ1, . . . , φJ }. For L1 ∈ N the number of
intervals is given by 2L1 . The number of basis functions is given by J := 2L1 − 1. The temporal
domain contains 2L2 intervals for fixed L2 ∈ N and K := 2L2 + 1 basis functions are used. With
this discretisation at hand, the discrete operator B of the left-hand side is given by

B =
(

Ctime ⊗Mspace + αMtime ⊗Aspace + βMtime ⊗Bspace + γMtime ⊗Cspace

(1, 0, . . . , 0)⊗Mspace

)
.

The temporal matrices are specified in Section 2.4.2. For i, j = 1, . . . ,J the spatial matrices are
given by

[Mspace]ji =
∫

Ω
φi(x)φj(x)dx, [Aspace]ji =

∫
Ω
∇φi(x)∇φj(x)dx,

[Bspace]ji =
∫

Ω
∇φi(x)φj(x)dx, [Cspace]ji =

∫
Ω
φi(x)φj(x)dx.

The affine decomposition w.r.t. the parameter has four components:

B =
(

Ctime ⊗Mspace

(1, 0, . . . , 0)⊗Mspace

)
+α

(
Mtime ⊗Aspace

0

)
+β

(
Mtime ⊗Bspace

0

)
+γ

(
Mtime ⊗Cspace

0

)
.

The first is independent of the actual parameters, i.e. θ1
b (µ) = 1 for arbitrary µ = (α, β, γ)T ∈

D.
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2. Space-Time Reduced Basis Method

The right-hand side is parameter independent and only has one component and a µ-independent
coefficient. In Figure 2.5.2, the error between the true solution and the finite element solution
is detailed for the parameter µ = (1, 0.5, 0.5). The finite element solution is projected onto the
grid given by L1 = L2 = 10. The analytic solution is evaluated on the same grid. We achieve an
exponential convergence w.r.t. the space discretisation for fine time discretisations.

L
1

2 3 4 5 6 7 8 9
10-3

10-2

10-1

100

L2 = 2

L2 = 3

L2 = 4

L2 = 5

L2 = 6

L2 = 7

L2 = 8

L2 = 9

Figure 2.5.2.: Finite element approximation error ‖u(1, 0.5, 0.5)− uN (1, 0.5, 0.5)‖X,bar measured
by projection on the grid given by L1 = L2 = 10.

2.5.4. Offline and Online Computations

We set L1 = L2 = 6 for a finite element approximation error below 10−1. The training set
Dtrain is given by 17 equidistantly distributed points in every parameter direction. Running the
offline phase, we monitor the condition number of the system matrix BN (µ), cf. Figure 2.5.3.
In Figure 2.5.3 (a) we compare the maximal condition number over all µ in dependence of N
once with using the snapshots directly and once with taking orthonormalised snapshots in the
reduced basis. The condition number is bounded using an orthonormalised reduced basis, cf.
Figure 2.5.3 (b). The condition number behaves like expected and already observed in [RV07,
Sec. 7] for the Stokes equation. The greedy decay is shown in Figure 2.5.5 (a). For N = 16
we reach an RB-tolerance of 10−3 using an orthonormalised reduced basis. We use an estimated
lower bound for the inf-sup constant, βLB = 0.2, cf. Figure 2.5.4. The error estimator presented
in Proposition 2.2.38 is capable to catch the error behaviour, cf. Figure 2.5.5 (a). Performing an
SCM would improve the results and would provide an online feasible strategy for computing the
required inf-sup constants.

In Figure 2.5.5 (b) the RB approximation error for the subset [0.5, 1.5]×{0}×{0} of the parameter
domain is shown and compared to the error estimator. Both, the error and the estimator are
bounded by the chosen approximation tolerance tol = 0.001, as expected. Further, we can see
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(a) Maximal condition using orthonormalised RB vs.
snapshots directly.
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(b) Maximal condition vs. mean for orthonormalised
RB.

Figure 2.5.3.: Condition of the RB system matrix BN (µ).
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Figure 2.5.4.: Inf-sup values for a test set of the parameter domain.

that there are three RB basis elements that correspond to the solution of a parameter given of
the form (µ1, 0, 0).

We achieve a reduction of the high dimension N = 2626 = 4096 to low dimension N = 16.
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(a) RB approximation error decay in the greedy pro-
cedure.
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(b) RB approximation error in comparison to the
error estimator for the full parameter domain D.

Figure 2.5.5.: Offline and online RB approximation errors.
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3. Parameter Functions

Parts presented in this chapter are published in [MU14]. The notation was adapted to the present
thesis and the framework has been extended.

3.1. Introduction

Even if the reduced basis method is a model reduction method specifically designed for parameter
dependent PDEs, a high dimensional parameter space stays a challenging task. When speaking
about high dimensional parameter spaces we have to distinguish between standard parameter
spaces D ⊂ Rd for large 0 � d and (infinite dimensional) function spaces as parameter spaces,
i.e., D ⊂ H for H being a Hilbert space.

A parameter space D ⊂ Rd may called high dimensional for some arbitrary large 0� d ∈ N. Note
that, depending on the application D ⊂ R5 might already be high dimensional. The question here
is how to construct a reduced basis in the first place: The Greedy procedure which is usually used
for the construction relies on a training set that has to describe the parameter space very well. The
offline procedure may become infeasible for very large sampling sets. The works of J. Hesthaven,
B. Stamm, S. Zhang, D. Devaud , A. Manzoni and G. Rozza, [HSZ14, HZ11, DMR13], focus
on these high dimensionalities. Facing large parameter spaces, one can use parameter domain
decomposition techniques, sensitivity analysis approaches or adequate Greedy methods.

This section is concerned with parameter spaces that are not or not entirely a subspace of Rd

anymore but a subspace of an infinite-dimensional Hilbert space H. The before described high
dimensionality may still occur, but in addition we face a whole new type of parameter space -
(a subspace of) an infinite dimensional function space. The idea is to be able to construct a
reduced basis that not only allows to solve the problem for new standard parameters to a given
accuracy but also to allow the variation of the initial condition of the parabolic PDE as a function
parameter. State of the art is to construct a new reduced basis if the model changes in a way
that a new function is needed at some point. E.g. in derivative pricing, this provides us with
the flexibility to construct one reduced basis that can be used for very different and possibly
customized payoff functions.
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3. Parameter Functions

3.2. Reduced Basis Method for Parameter Functions in the Initial
Condition

Recall the space-time framework introduced in Chapter 2. The initial condition of the parabolic
PDE is the parameter function µ0 ∈ D0 ⊂ H for a Hilbert space H. The parameter space
includes a standard parameter µ1 ∈ D1 ⊂ Rd, d ∈ N, in addition to the parameter functions and
is given by D = D0 × D1. The parameter dependence of the (bi)linear forms of the space-time
variational formulation is given by, cf. Example 2.2.34,

b(u, v;µ1) :=
∫
I
〈u̇(t), z(t)〉V ′×V dt+

∫
I
a(u(t), z(t);µ1)dt+ (u(0), h)H

=: b1(u, z;µ1) + (u(0), h)H (3.2.1a)

and

f(v;µ) :=
∫
I
〈g(t;µ1), z(t)〉V ′×V dt+ (µ0, h)H =: g1(z;µ1) + (µ0, h)H (3.2.1b)

for µ = (µ0, µ1) ∈ D and u ∈ X, (z, h) ∈ Y. The problem formulation is of the form (2.2.25),
i.e.

find u(µ) ∈ X such that b(u(µ), v;µ1) = f(v;µ) ∀ v ∈ Y. (3.2.2)

The bilinear form b(·, ·;µ1) only depends on µ1, whereas the right-hand side f(·;µ) depends on the
full parameter µ = (µ0, µ1). For the numerical treatment, we consider non-trivial N -dimensional
discrete subspaces XN ⊂ X and YN ⊂ Y as proposed in Section 2.2.2.2 and we assume well-
posedness of the discrete problem forumlation. For the new greedy procedure as well as the
error estimator we separate the space-time variational formulation into two subproblems: The
first gives an approximation of the solution at time t = 0 using the initial value only and the
second determines the evolution of the solution u. We specify the parameter dependence of the
solution by introducing a second argument, e.g. uN (µ)(0) = uN (0;µ). In the notation of Section
2.2.2.2 define E1

0 := 〈σ0〉 and EK1 := 〈σ1, . . . , σK〉. The ansatz space, given in Equation (2.2.1) is
isomorphic to

XN = E1
0 ⊗ V J ⊕ EK1 ⊗ V J =: QJ ⊕WI

for I := KJ and as before, cf. Equation (2.2.5)

YN = FK ⊗ V J × V J =: ZI × V J . (3.2.3)

By definition, QJ ↪→ X and WI ↪→ X are canonically embedded. Further

WI ∼= {w ∈ X : w(0) = 0} = span{σk ⊗ φi : k = 1, . . . ,K, i = 1, . . . ,J }.
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We divide the problem for µ = (µ0, µ1) ∈ D as follows:

(a) Find q(µ0) ∈ QJ : (q(0;µ0), h)H = (µ0, h)H ∀h ∈ V J , (3.2.4a)

(b) Find w(µ) ∈WI : b1(w, z;µ1) = f1(z;µ1, q(µ0)) ∀z ∈ ZI , (3.2.4b)

with the modified bilinear forms defined in (3.2.1) and the right-hand side f1(z;µ1, q) :=
g1(z;µ1)− b1(q, z;µ1).
Remark 3.2.1. We do not specify the embeddings QJ ↪→ X and WI ↪→ X in the notation, i.e. we
denote the elements in QJ resp. WI by the same letter as their images in X.

Proposition 3.2.2. The discrete problem formulations (3.2.4) and (3.2.2) are equivalent.

Proof. If q and w are the solutions of (3.2.4) we define u := q + w ∈ X satisfying (3.2.2). For a
solution of (3.2.2) we separate the solution into two parts, uN = σ0⊗uN (0)+

∑K
k=1

∑J
`=1 α

`
kσ

k⊗
φ` =: q0 +wI . Then, q0 satisfies Equation (3.2.4a) and wI ∈WI satisfies Equation (3.2.4b).

For µ := (µ0, µ1) ∈ D the residual reads

rN (v;µ) = f(v;µ)− b(uN (µ), v;µ)

= f(v;µ)− b(uN (µ), v;µ)

= g1(z;µ1) + (µ0, h)H − b1(uN (µ), z;µ1) + (uN (µ)(0), h)H
= g1(z;µ1)− b1(uN (µ), z;µ1) + (µ0 − (uN (µ))(0), h)H
=: rN,1(z;µ) + rN,0(h;µ),

for any v = (z, h) ∈ YN . Recall, that we need to construct a reduced basis that ensures a small
residual for the full parameter space D. In order to do so, we need an efficient online computation
of the error estimator ∆N (µ) =

‖rN (·;µ)‖(YN )′

βN
introduced in Proposition 2.2.38 realised by the

decomposition of the residual rN (v;µ) into its affine components. This is no problem for rN,1(z;µ)
due to the separation properties of g1 and b1, cf. Section 2.3.1. The second part rN,0(h;µ) needs
special treatment in the online procedure. By choosing appropriate approximation spaces, the
separation allows to control the error in the initial value directly using the same analysis as for
the general approximation error of the function µ0.

The following estimate is immediate:

‖rN (·;µ)‖Y′ = sup
v∈Y

rN (v;µ)
‖v‖Y

= sup
(z,h)∈YN

rN,1(z;µ) + rN,0(h;µ)
(‖z‖2Z + ‖h‖2H)1/2

= ‖rN,1(·;µ)‖Z′ + sup
h∈H

rN,0(h;µ)
‖h‖H

≤ ‖rN,1(·;µ)‖Z′ + ‖µ0 − uN (0;µ)‖H

=: RN,1(µ) +RN,0(µ0).
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At a first glance it seems that rN,1 (and RN,1) only depends on µ1. However, the RB solution
uN (µ) involves both µ0 and µ1 so that both parameters enter. As already mentioned earlier,
the approximation of the initial value (and hence RN,0), depends only on µ0. For ∆1

N (µ) :=
1
βN
RN,1(µ) and ∆0

N (µ) := 1
βN
RN,0(µ0), the separation of the error estimator follows,

∆N (µ) = ∆1
N (µ) + ∆0

N (µ0). (3.2.5)

3.2.1. A Two-Step Greedy Method

In this first approach, cf. [MU14], we choose in a given approximation space DL0 of D0 the most
relevant functions for the parameter space. We fix the approximation of the function µ0 offline in
a first step and do not take the operator of the PDE into account. In a second step, we perform
a Greedy procedure to obtain a reduced basis for the evolution of the PDE solution. Online, we
stay with the a-priori chosen sample set for the approximation of the initial value. The separated
system is used in the reduced basis construction.

Given the parameter space D = D0 × D1 ⊂ H × Rd, we assume a finite dimensional ap-
proximation space of the function parameter space D0, i.e., µ0 is approximately given by
µ̃0 ∈ DL0 = span{δ1, . . . , δL}. Note, that the set {δ1, . . . , δL} does not have to be a basis in
the classical sense but can be a collection of functions that describe the parameter space as
good as possible. Using the approximation space DL0 , we get the usual separation of the form
(µ̃0, h)H =

∑L
`=1 β`(µ̃0) (δ`, h)H , for the right-hand side of the initial value problem. The second

part RN,0 of the residual is offline-online decomposable using the finite description DL0 . However,
we will see that in the online computations we may have a linear dependence on L, when the
function µ0 is applied in the right-hand side.

Remark 3.2.3. (a) A first idea by introducing a finite dimensional approximation space is to
transfer the parameter function space DL0 to a standard parameter space RL by mapping
µ0 7→ (β1(µ0), . . . , βL(µ0)). This results in an L-dimensional parameter space containing
the coefficients β` as parameters. However, this may become computationally infeasible:
in general the coefficients cannot be bounded and if they can we would need to work
with an L-dimensional hypercube of potentially very large side lengths. Consequently,
determining parameter samples for snapshots e.g. by a greedy method might be extremely
costly, not only for large values of L. In particular, the transformation neglects the fact
that µ0 ∈ span{δ1, . . . , δL}.

(b) For a full error control we require some knowledge of the approximation error ‖µ0 − µ̃0‖H
affecting ∆0

N (µ).
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The separation of the error estimate in Equation (3.2.5) suggests to compute parameter samples
(and snapshots) in two steps, namely first to determine N0 samples µi0 for the initial value by
maximising RN,0(µ0) w.r.t. µ0 ∈ D0 and second to consider the evolution and compute samples
µj by maximising RN,1(µj) using the before-computed snapshots for the initial value contained
in QJ . This corresponds to separated computations.

Let us now describe the two parts in detail. We remark that even though we describe a greedy
method, one could also use a different method to determine appropriate parameter samples e.g.
by using nonlinear optimisation w.r.t. the error estimate, [BTWG08, UVZ14]. The separation
into two steps is independent of the particular maximisation strategy.

3.2.1.1. Offline Phase - Initial Value Approximation

The first step is to generate a reduced basis for the initial value, i.e., we need the solution at
t = 0, which only depends on the parameter function µ0 ∈ D0, as we have seen in (3.2.4). For a
given tolerance tol0 > 0, we are looking for a sample set SN0

0 := {µ1
0, . . . , µ

N0
0 } and corresponding

solutions qi := q(µi0). We denote the corresponding elements in QJ by ui0 := σ0 ⊗ qi ∈ QJ ,
i = 1, . . . , N0 and the embedding ui0 + 0 ∈ XN with the same letter ui0 (i.e., ui0 := σ0 ⊗ qi + wi,
wi ∈WI , wi ≡ 0).

For a parameter µ0 ∈ D0, the corresponding solution q(µ0) ∈ V J is determined by

(q(µ0), φj)H = (µ0, φj)H , 1 ≤ j ≤ J , (3.2.6)

where {φ1, . . . , φJ } is the chosen (FEM) basis for V J . Given a sample set SN0
0 and a corre-

sponding RB space VN0 = {q1, . . . , qN0} (where we should have N0 � J ) a corresponding RB
initial value approximation uinitN0

(µ∗0) for some new parameter µ∗0 ∈ D0 is determined by solving
the system of linear equations corresponding to

(qN0(µ∗0), qi)H = (µ∗0, qi)H , ∀ 1 ≤ i ≤ N0 and qN0(µ∗0) =
N0∑
i=1

αi(µ∗0)qi. (3.2.7)

The inner products (µ∗0, qi)H need to be computed online efficient (i.e., with complexity indepen-
dent of J ). Then, the error contribution reads

RN,0(µ0) = ‖µ0 − qN0(µ0)‖H .

Working with a finite approximation DL0 = span{δ1, . . . , δL} of D0 the sample set {µ1
0, . . . , µ

N0
0 }

can be determined in different ways:
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For a Proper Orthogonal Decomposition (POD) compute the Gramian ML
H :=(

(δ`, δ`′)H
)
`,`′=1,...,L and choose µ1

0, . . . , µ
N0
0 as the (orthogonalised) eigenfunctions corresponding

to the N0 largest eigenvalues of ML
H . If DL0 is chosen well, this approach results in the best

H-orthogonal choice. The obvious drawback is the strong dependence on the choice of the δi,
i = 1, . . . ,L.

For a greedy procedure, one chooses a finite training set Dtrain
0 ⊂ D0 and determines parameter

samples by maximising RN,0(µ0) over µ0 ∈ Dtrain
0 . We obtain the greedy scheme in Algorithm

3.2.1. Of course Dtrain
0 ⊂ DL0 is a reasonable choice.

Algorithm 3.2.1 Initial Value Greedy
Input: Training set of initial values Dtrain

0 ⊂ D0, tolerance tol0 > 0
Output: RB basis ΞN0 , RB space VN0 , sample set SN0

0
1: Choose µ1

0 ∈ Dtrain
0 , S1

0 := {µ1
0}, compute q(µ1

0) as in (3.2.6), normalise Ξ1 := {q(µ1
0)}.

2: for j = 1, . . . , Nmax
0 do

3: µj+1
0 = arg max

µ0∈Dtrain
0

Rj,0(µ0)

4: if Rj,0(µj+1
0 ) < tol0 then N0 := j, VN0 := span(ΞN0); Stop end if

5: Compute q(µj+1
0 ) ∈ V J as in (3.2.6).

6: Sj+1
0 := Sj0 ∪ {µ

j+1
0 }, Ξj+1 := Ξj ∪ {q(µj+1

0 )}, orthonormalise Ξj+1.
7: end for

It remains to discuss the efficient computation of the error term RN0,0(µ0) for a given parameter
µ0 ∈ D0. Note, that we obtain a set of orthonormal functions ΞN0 as an output of Algorithm
3.2.1. Hence, the RB approximation qN0(µ0) coincides with the H-orthogonal projection of µ0

to VN0 . This means that RN0,0(µ0) is the error of the best approximation of µ0 in VN0 . There
are different possibilities to compute this error:

• If µ0 is given as closed formula, then an efficient quadrature may be used.

• If µ0 has a finite expression in terms of a stable basis {δ1, . . . , δL}, one may use an effi-
cient quadrature to precompute (δi, qj)H or transform qN0(µ0) into that basis and use the
coefficients of the difference.

• One could compute an orthonomal basis for the complement V J 	 VN0 and approximate
RN0,0(µ0) by computing coefficients of µ0 w.r.t. that complement basis (e.g. in terms of
wavelets).

3.2.1.2. Offline Phase - Evolution Greedy

The next step is to find a basis for the part of the solution u in WI , given the already determined
reduced space VN0 . For a parameter µ = (µ0, µ1) ∈ D and an approximation qN0(µ0), the
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evolution part w ∈WI is computed as

b1(w(µ), z;µ1) = g1(z;µ1)− b1(σ0 ⊗ qN0(µ0), z;µ1) ∀ z ∈ ZI .

A reduced basis approximation corresponding to µ = (µ0, µ1) ∈ D requires to first determine

qN0(µ0) =
N0∑
i=1

αi(µ0) qi (3.2.8a)

using (3.2.7). Then, given parameter samples SN1
1 = {µ1, . . . , µN1} ⊂ D = D0 × D1 (to be

determined e.g. by a second greedy described below) and corresponding snapshots wi := w(µi) ∈
WI , i = 1, . . . , N1, a reduced basis approximation wN1(µ) ∈ WN1 = span{wi : 1 ≤ i ≤ N1} is
determined by

b1(wN1(µ), zN1 ;µ1) = g1(zN1 ;µ1)− b1(σ0 ⊗ qN0(µ0), zN1 ;µ1), (3.2.8b)

for all zN1 ∈ ZN1 , where ZN1 is a stable reduced space corresponding to WN1 w.r.t. the inner
product b1 in the sense that

inf
wN1∈WN1

sup
zN1∈ZN1

b1(wN1 , zN1 ;µ1)
‖wN1‖W ‖zN1‖Z

≥ β1(µ1) > 0 (3.2.9)

independent of N1 →∞, see Section 3.2.1.5 below. Here, β1 is the inf-sup constant of the bilinear
form b1 w.r.t. WN1 × ZN1 .

It is readily seen that the right-hand side of (3.2.8b) admits a separation w.r.t. the parameter.
In fact, recalling the affine decomposition w.r.t. the parameter, we have

f1(zN1 ;µ1, σ
0 ⊗ qN0(µ0)) = g1(zN1 ;µ1)− b1(σ0 ⊗ qN0(µ0), zN1 ;µ1)

=
Qg∑
q=1

θgq (µ1) gq(zN1) +
Qb∑
q=1

θbq(µ1) bq(σ0 ⊗ qN0(µ0), zN1)

=
Qg∑
q=1

θgq (µ1) gq(zN1) +
Qb∑
q=1

N0∑
n=1

θbq(µ1)α0,n(µ0) bq(σ0 ⊗ qn, zN1)

=:
Qg+N0 Qb∑

q=1
θf1
q (µ) fq(zN1 ;σ0 ⊗ qn) (3.2.10)

with obvious definitions of the involved terms. Hence, we obtain an efficient offline-online split-
ting both for the computation of the reduced basis approximation wN1(µ) and of the resid-
ual rN,1(µ; z) = g1(µ1; z) − b1(µ1;uN (µ), z), where we set uN (µ) := uinitN0

(µ0) + wN1(µ) =
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σ0 ⊗ qN0(µ0) + wN1(µ), which means that

rN1,1(z;µ) = g1(z;µ1)− b1(uN (µ), z;µ1)

= g1(z;µ1)− b1(σ0 ⊗ qN0(µ0), z;µ1)− b1(wN1(µ), z;µ1),

which coincides with the residual of (3.2.8b). The error estimator is given by (cf. (3.2.5)):

∆1
N1(µ) := ‖rN1,1(µ)‖Z′

βLB
= RN1,1(µ)

βLB
,

where βLB is a lower bound of the inf-sup constant of the bilinear form b. We obtain a – more
or less – standard greedy scheme described in Algorithm 3.2.2.

Algorithm 3.2.2 Evolution Greedy
Input: training set Dtrain ⊂ D, tolerance tol1 > 0
Output: RB basis ΞN1 , RB space WN1 , sample set SN1

1
1: Choose µ1 ∈ Dtrain, µ1 := (µ1

0, µ
1
1), S1

1 := {µ1}
2: Compute RB approximation qN0(µ1

0) ∈ VN0 as in (3.2.8a)
3: Compute w(µ1) ∈WI as in (3.2.8b), Ξ1 = {w(µ1)}
4: for j = 1, . . . , Nmax

1 do
5: µj+1 = arg max

µ∈Dtrain
∆1
j (µ)

6: if ∆1
j (µj+1) < tol1 then N1 := j, WN1 := span(ΞN1); Stop end if

7: Compute the RB approximation qN0(µj+1
0 ) ∈ SN0

0 as in (3.2.8a)
8: Compute w(µj+1) ∈WI as in (3.2.8b)
9: Sj+1

1 := Sj1 ∪ {µj+1}, Ξj+1 := Ξj ∪ {w(µj+1)}
10: end for

The question arises how to choose the training set Dtrain in Algorithm 3.2.2, in particular the
training samples for the initial value parameter. To simplify an a-posteriori online error control
it is convenient to take the sample set SN0

0 as the initial value training set in the evolution greedy.
Some experiments on the interaction of sample set SN0

0 and Dtrain
0 are to be found in [MU14,

Sec. 5.3].

3.2.1.3. Online Phase

The reduced basis {q1, . . . , qN0} ⊂ V J for the initial value and the reduced basis {w1, . . . , wN1} ⊂
WI for the evolution of the solution are now available. For any new parameter (µ0, µ1) ∈ D we
first have to solve

(
N0∑
i=1

ᾱi(qi, qj)H)j=1,...,N0 = ((µ0, q
j)H)j=1,...,N0 .
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This is equivalent to solve the system of linear equations

((qi, qj)H)j,i=1,...,N0ᾱ = ((µ0, q
j)H)j=1,...,N0 , (ᾱ)i = ᾱi.

The right hand side leads (as described before) to either

(1) a quadrature rule to evaluate the scalar product in H or

(2) if µ0 =
∑L
`=1 α`δ

` we can detail

(µ0, q
j)H = (

L∑
`=1

α`δ
`, qj)H = (((δ`, qj)H)`=1,...,L)Tα

and pre-compute (δi, qj)H or

(3) the approximation error of µ0 on SN0
0 is available and we just pre-compute (µi0, qj) for all

i = 1, . . . , N0 and directly add the approximation error in the estimator.

Remark 3.2.4. In case (2), the online effort depends on the high dimension L as the number of
multiplications on the right-hand side. Further, if the expansion coefficients of µ0 in DL resp.

SN0
0 are available we can precompute

(∑N0
j=1

(δ`,qj)H
(qi,qj)H

)
i=1,...,N0

for all ` = 1, . . . ,L in (2) resp.(∑N0
j=1

(µ`0,qj)H
(qi,qj)H

)
i=1,...,N0

for all ` = 1, . . . , N0 in (3).

The evolutionary part can be computed as in (3.2.8) independent of the high-dimension N since
b1 and f1 are offline-online decomposable.

3.2.1.4. Online RB Approximation Error

The RB solution computed online may not respect the chosen greedy tolerances. The reason is
that the training set of the parameter function space contains only single functions but linear
combination of these functions are considered online.

By applying the RB to a new parameter µ = (µ0, µ1), we have already seen in Equa-
tion (3.2.5) that the error bound can be separated into two parts. The first part contains
‖µ0 − uN (µ0, µ1)(0)‖H which is equivalent to the error between µ0 and its projection onto
span(SN0

0 ):
‖µ0 − µ̃0‖H .

The error needs to be computed online efficient, i.e. independent of N . We therefore need either
an efficient error estimator for the approximation or in the case of a finite description DL0 of D0

we can use the basis δ1, . . . , δL and receive the offline-online decomposability but with an online
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dependence on L. In any case, the approximation error depends on the approximated function
and may highly differ in the applications.

The second part of the error estimator is offline-online decomposable and efficiently computable.
We deduce an upper bound of the estimator for the evolutionary part in Proposition 3.2.5 below
by assuming that the sample set SN0

0 for the initial value equals the training set of the evolution
greedy.

Proposition 3.2.5. Let VN0 = span{q1, . . . , qN0},WN1 = span{w1, . . . , wN1} and P : D0 → SN0
0

the H-projection of D0 onto SN0
0 . For µ0 define µ̃0 := P (µ0), µ̃0 =

∑N0
`=1 d`(µ0)µ`0. For given

parameter (µ0, µ1) ∈ D let uN (µ0, µ1) = uinitN0
+wN1 be the RB approximation. The initial value

is given by uinitN0
(µ0) =

∑N0
`=1 d`(µ0)q` and the evolutionary part by wN1 =

∑N1
`=1 c`(µ0, µ1)w`.

Then,

‖g1(·)− b1(uN (µ0, µ1), ·;µ1)‖Y′ ≤ |1−
N0∑
`=1

d`(µ0)| ‖g1(·)‖Y′ + |
N0∑
`=1

d`(µ0)|tol1,

for tol1 defined as in Algorithm 3.2.2.

Proof.

‖g1(·)− b1(uN (µ0, µ1), ·;µ1)‖Y′

= ‖g1(·)− b1((uinitN0 + wN1)(µ0, µ1), ·;µ1)‖Y′

= ‖g1(·)−
N0∑
k=1

dk(µ0)b1(σ0 ⊗ qk, ·;µ1)−
N1∑
`=1

c`(µ0, µ1)b1(w`, ·;µ1)‖Y′

≤ ‖g1(·)−
N0∑
k=1

dk(µ0)
(
b1(σ0 ⊗ qk, ·;µ1) +

N1∑
`=1

c̃k` (µk0, µ1)b1(w`, ·;µ1)
)
‖Y′

= ‖g1(·) +
N0∑
k=1

dk(µ0)
(
g1(·)− b1(σ0 ⊗ qk, ·;µ1)−

N1∑
`=1

c̃k` (µk0, µ1)b1(w`, ·;µ1)
)
−

N0∑
k=1

dk(µ0)g1(·)‖Y′

≤ |1−
N0∑
k=1

dk(µ0)| ‖g1(·)‖Y′ + |
N0∑
k=1

dk(µ0)|tol1.

For the third inequality the parameters c`(µ0, µ1) are replaced by
∑N0
k=1 dk(µ0)c̃k` (µk0, µ1) for

` = 1, . . . , N1. The coefficient c̃k` (µk0, µ1) is given by solving (3.2.8) for the initial value µk0 ∈ S
N0
0 ,

for k = 1, . . . , N0 and ` = 1, . . . , N1.

The upper bound can be evaluated before performing the actual RB approximation. It connects
the online RB approximation error and the previously used greedy tolerance. Further, we can
explore that the chosen parameter function has an impact on the RB approximation in terms of
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its expansion coefficients and that the approximation might improve if the right-hand side of the
PDE equals to zero.

3.2.1.5. Stable RB Test Spaces for the Separated System

As for the space-time RBM in general, it remains to construct a stable test space ZN1 in the
sense of (3.2.9). As before, this space is constructed using appropriate supremizers in an efficient
offline-online manner.

Let {w1, . . . , wN1} be the basis of WN1 and fix µ1 ∈ D1. Then, the supremizer Swn(µ1) ∈ ZI ,
1 ≤ n ≤ N1, is defined by the relation

Swn(µ1) := arg sup
z∈ZI

b1(µ1;wn, z)
‖z‖Z

, 1 ≤ n ≤ N1.

In order to compute this quantity, recall that {ζi := τk ⊗ φj : 1 ≤ k ≤ K, 1 ≤ j ≤ J , i = (k, j)}
is the basis of ZI and note that

‖z‖2Z = ‖z‖2L2(I;V ) =
K∑

k,k′=1

J∑
j,j′=1

zkj z
k′
j′ (τk, τk′)L2(I) (φj , φj′)V

= zT (IKtime ⊗MJ
space)z =: zTZIz

with the Gramian matrices MJ
space = ((φi, φj)V )i,j=1,...,J for V J (w.r.t. the V -inner product)

and IKtime = ((τk, τk′)L2(I))k,k′=1,...,K = ∆t1 ∈ RK×K. Next, let the expansion of wn in terms of
the full basis {$i := σk ⊗ φj : i = (k, j), 1 ≤ k ≤ K, 1 ≤ j ≤ J} of WI be denoted by

wn =
I∑
i=1

ωni $i, ωn := (ωni )i=1,...,I .

Then, setting zi := zkj , i = (k, j), we get

b1(µ1;wn, z) =
I∑

i,i′=1
ωni zi′b1(µ1;$i, ζi′) = (z)TBI(µ1)ωn.

The vector sn(µ1) containing the expansion coefficients of Swn(µ1) is given by

sn(µ1) = (ZI)−1BI(µ1)wn.

In view of the separation of b1(µ1; ·, ·) w.r.t. the parameter µ1 we have the decomposition
BI(µ1) =

∑Qb
q=1 θ

b
q(µ1) BIq with parameter-independent matrices BIq . Hence, we obtain the repre-

sentation sn(µ1) =
∑Qb
q=1 θ

b
q(µ1)(Z)−1BIqwn and the terms znq := (ZI)−1BIqwn can be computed
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offline (as they are parameter-independent). Since the µ1-dependent supremizers can be build
by linear combinations (with µ1-dependent coefficients) of the functions znq ∈ ZI corresponding
to the coefficient vectors znq , 1 ≤ n ≤ N1, 1 ≤ q ≤ Qb, we choose for every µ1 ∈ D1

ZN1(µ1) := span{Sw1(µ1), . . . , SwN1 (µ1)}

as reduced test space, where Swn(µ1) =
∑Qb
q=1 θ

b
q(µ1) znq . Of course, instead of explicitly con-

structing the stabilising test space we can reformulate the (sub-)problem into the generalised
Gauss normal equation and solve it accordingly.

3.2.2. Best N-term Approximation Approach

So far we have chosen offline the (RB) approximation space DL0 of the initial value. Unfortunately,
the initial value part of the error will get dominant in situations where the functions in the
parameter space cannot be approximated sufficiently well in the finite dimensional space DL0 . In
the next section we generalise the presented procedure for the offline phase such that for every
parameter function µ0 its (quasi-)best N-term approximation can be chosen online. For this,
we consider wavelet Riesz bases for D0 ⊂ H. Every parameter function µ0 ∈ D0 then has an
in general infinite wavelet expansion. The advantage is that the absolute values of the wavelet
coefficients |dj,k| of µ0 may have an exponential decay regarding their level j. Using a truncated
wavelet basis as training set in the Evolution Greedy, we can hope for a small RB approximation
error for sparse representations of µ0 that coincides with small RB initial value bases online.
Further, the norm equivalences associated with the Riesz bases ensure that the approximation
error in the initial value is online computable with very reasonable effort. However, the method
has increased memory requirements in comparison to the Two-Step Greedy method with a fixed
approximation space for the initial value.

3.2.2.1. Short Introduction to Wavelets

We follow [Dah03] and [Urb09] for this very short overview of the wavelet features that are the
most important in this context.

Definition 3.2.6. [Urb09, Def. 5.3] A countable collection of elements h := {hλ : λ ∈ I },
I ⊂ Z, of a separable Hilbert space H is called a Riesz basis of H if each element v ∈ H has an
expansion v =

∑
λ∈I vλhλ in terms of h, and there exist constants 0 < ch ≤ Ch <∞ such that

ch
∑
λ∈I
|vλ|2 ≤

∣∣∣∣∑
λ∈I

vλhλ

∣∣∣∣2
H

≤ Ch
∑
λ∈I
|vλ|2.
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For every element the sequence of coefficients is uniquely determined. A Riesz basis generalises
the concept of an orthogonal basis.

For a construction of a wavelet basis, we introduce the concept of a Multiresolution Analysis,
i.e., nested spaces equipped with certain properties. For any function g : R→ R, we define

g[j,k](x) := 2j/2g(2jx− k), x ∈ R,

for j ∈ N0 and k ∈ Z.

Definition 3.2.7. [Urb09, Def. 2.3] A sequence (Sj)j≥j0 of spaces Sj ⊂ L2(R) is called Mul-
tiresolution Analysis (MRA), if for j ≥ j0

(a) the spaces are nested, i.e. Sj ⊂ Sj+1;

(b) their union is dense in L2(R), i.e. ∪j≥j0Sj = L2(R);

(c) their intersection is trivial, i.e. ∩j≥j0Sj = {0};

(d) there exists a function φ such that each set Φj := {φ[j,k] : k ∈ Z} is a uniformly stable basis
for Sj ;

(e) the spaces arise by scaling: f ∈ Sj ⇔ f(2·) ∈ Sj+1, j ≥ j0 (dilation);

(f) the spaces are shift-invariant, i.e., f ∈ S0 ⇔ f(· − k) ∈ S0, k ∈ Z.

The index j is referred to as the level. Every element in a high level space SJ can be decomposed
into its part in SJ−1 and into the part that lives in the complement of SJ−1 in SJ . The basis
elements of the complement spaces WJ−1 = SJ 	 SJ−1 are called wavelets on the corresponding
level J−1. By iteration beginning on some high level J down to the coarsest level j0 the space SJ
decomposes to Sj0

⊕J−1
j=j0 Wj , its multiscale representation [Urb09, (5.3)]. This decomposition is

only stable if the complement spacesWj are uniformly stable in the sense that the angle between
Sj andWj is uniformly bounded. The orthogonal complement of Sj in Sj+1 would be the optimal
choice under this criteria but is at the same time restrictive for a wavelet construction: the only
compactly supported scaling functions are those of the family of Daubechies scaling functions,
[Urb09, Sec. 5.3].

For a general construction of wavelets we refer to [Urb09, Sec. 5.2 and 5.3].

Since the union of all spaces Sj given in Definition 3.2.7 is dense in L2(R), cf. Definition 3.2.7
(b), the set of all wavelets {ψ[j,k] : j ≥ j0, k ∈ Z} forms an (orthonormal) basis of L2(R).

Definition 3.2.8. [Urb09, p. 140] The multiscale representation of a function fJ ∈ SJ is its
decomposition into the part in Sj0 and all the details in the orthogonal complements: fJ =
c0φ[j0,0] +

∑J−1
j=j0

∑
k∈Jj⊂Z dj,kψ[j,k].
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Figure 3.2.1.: Fast wavelet transformation: decomposition of coefficient vector cJ into its detail
parts and one scale part.

Remark 3.2.9. Without loss of generality we assume in the following that the lowest level is given
by j0 = 0.

Every element f ∈ SJ has now two equivalent representations:

(1) f =
∑
k∈JJ cJ,kφ[J,k]

(2) f =
∑J−1
j=−1

∑
k∈Jj dj,kψ[j,k].

Here, J−1 := {0} and ψ[−1,0] := φ[0,0]. Given expansion (1), the expansion in terms of wavelets
can be deduced using the fast wavelet transformation (FWT): Let cj = (cj,k)k∈Jj be the coeffi-
cient vector on level j. We define the down-sampling operator [Urb09, (5.17)]

↓: `(Z)→ `(Z), (↓ c)k := c2k, k ∈ Z.

Application of the down-sampling operator on the coefficient vector cj of level j we obtain the
associated coefficient vectors cj−1 and dj−1 of level j − 1 such that

f =
∑
k∈Jj

cj,kφ[j,k] =
∑

k∈Jj−1

dj−1,kψ[j−1,k] +
∑

k∈Jj−1

cj−1,kφ[j−1,k].

The mapping Tj−1,j : cj 7→ (cj−1, dj−1) is called the wavelet transform, cf. [Urb09, p. 143]. The
procedure is visualised in Figure 3.2.1. A reconstruction can be achieved by using the so-called
inverse wavelet transform. For details we refer to [Urb09, 5.4.1].

Example 3.2.10. (Haar Basis.) [Urb09, Sec. 5.12] The Haar basis is an orthonormal wavelet
basis for L2(0, 1). The construction uses the characteristic function on [0, 1), φHaar := χ[0,1). The
Haar function system corresponding to φHaar is the simplest example of an MRA. The so called
mother wavelet is given by

ψ(x) =

1 0 ≤ x < 0.5

−1 0.5 ≤ x < 1.

The set ψHaar
j := {ψ[j,k] : k ∈ Jj ⊂ Z} is an orthonormal basis for Wj . The wavelet basis

functions for the first three levels j = 0, 1, 2 are shown in Figure 3.2.2.
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Figure 3.2.2.: The Haar basis elements for level 0, 1, and 2.

For the application in the space-time RBM for parameter functions we are interested in wavelets
having compact support that behaves like 2−|j| that build Riesz bases. The norm of a function
given in its wavelet expansion is equivalently given by the `2(J )-norm of its wavelet coefficients.
Here, `2(J ) denotes the space of all sequences c = (cλ)λ∈J ⊂ H which satisfy |c|2`2(J ) :=∑
λ∈J |cλ|2 <∞. The Jackson inequality below shows that the decay of the wavelet coefficients

is related to the approximation level and the regularity of the considered function:

inf
vj∈Sj

|v − vj |L2(Ω) . 2−js|v|Hs(Ω), v ∈ Hs(Ω), s ≤ γ,

where γ denotes the highest possible order of approximation, [Urb09, (5.30)]. The . stands for
≤ up to a multiplicative constant.

Let vJ be the wavelet expansion of v up to level J . Then,

|v − vJ |2L2(Ω) . C
∑
j>J

∑
k∈Jj

|dj,k|2.

Consequently, when the parameter functions are approximated by a truncated wavelet expansion,
the approximation error can be computed very efficiently online in terms of the additional wavelet
expansion coefficients.
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3.2.2.2. Offline Phase - Initial Value Approximation with Wavelets

We assume a given wavelet Riesz basis of our parameter function space H and an underlying
finite element basis {φ1, . . . , φJ } of V J defined on a triangulation of step size 1

2` in every spatial
direction. By construction we expect that the coefficients on higher levels play a minor role in
the function representation. Thus, we focus on all wavelet basis functions up to level `. We
impose them as initial value of the PDE and precompute the associated (initial value) snapshots
qj,k ∈ V J that satisfy:

(qj,k, φi)H = (ψ[j,k], φi)H ∀ i = 1, . . . ,J ,∀ j = −1, . . . , `, k = 0, . . . , 2j − 1.

In contrary to the previously described Two-Step Greedy method we will not take all the 2`+1

snapshots into account in the online phase. Nevertheless, we store all 2`+1 initial values in an
initial value library

Linit = {qj,k : j = −1, . . . , `, k = 0, . . . , 2j − 1}.

3.2.2.3. Offline Phase - Evolution Greedy for every wavelet basis function

For the evolutionary part, we perform an Evolution Greedy with training set {ψ[j,k]}×Dtrain
1 for

every wavelet up to the prefixed level `. In contrast to Section 3.2.1.2, we do not compute only
one reduced basis of W I for one very large training set in D. At the end we have 2`+1 RB spaces
W
Nj,k

1
= span{w1

j,k, . . . , w
Nj,k

1
j,k } of dimension N j,k

1 that we collect in an Evolution Library

Levol = {{w1
j,k, . . . , w

Nj,k
1

j,k } : j = −1, . . . , `, k = 0, . . . , 2j − 1}.

We precompute all components that are required online for the quasi basis Levol.

3.2.2.4. Online Phase with Online Orthonormalisation

The online phase is adapted for the given parameter function µ0. We consider its wavelet
expansion and focus on the N wavelets with the largest coefficients (up to truncation of the
level according to the finite element discretisation). This corresponds to a (quasi-)best N -term
approximation:

HN = inf
U⊂H,

dim(U)=N

(
inf
µ̃0∈U

‖µ0 − µ̃0‖L2(Ω)

)
.
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Let ji and ki for i = 1, . . . , N be the indices of the N wavelets. The initial value part can now
directly be computed by

uinitN =
N∑
i=1

dji,kiσ
0 ⊗ qji,ki .

The evolutionary part is computed by taking the set {w`ji,ki : i = 1, . . . , N, ` = 1, . . . , N jiki
1 } as

the new approximation space.

We now choose the corresponding parts of the precomputed quantities and get an N1(N)×N1(N)
linear equation system where N1(N) =

∑N
i=1N

ji,ki
1 depends again on the number of terms used

for the approximation.

In a standard reduced basis offline phase, the greedy procedure itself ensures that linear depen-
dent snapshots do not occure: After the parameter that maximises the greedy error is identified,
the corresponding snapshot will be added to the reduced basis. Thus, all PDE solutions that are
linear multiples of that snapshot are taken into account in the next step and their greedy error
equals zero.

In the described RB setting we choose the RB basis books online out of our library Levol. It
is possible that the new basis composition contains linear dependent snapshots as they have
been sampled in different greedy procedures. We address the problem by performing an online
orthonormalisation so that we can identify and delete linear dependent snapshots.

Orthonormalisation of the RB basis is equivalent to precondition the online system matrix
BN1(N)(µ) with a preconditioner S that is given by ST [(wi, wj)X]i,j=1,...,N1(N)S = 1.

Proposition 3.2.11. The preconditioner that is equivalent to a basis orthonormalisation is
explicitly given by S := U−1D−1/2. The matrices D and U are given by a Singular Value
Decomposition (SVD) of the Gramian [(wi, wj)X]i,j=1,...,N1(N) = UTDU .

Proof.

(U−1D−1/2)T [(wi, wj)X]i,j=1,...,N1(N)U−1D−1/2 = (U−1D−1/2)TUTDUU−1D−1/2

= D−T/2U−TUTDUU−1D−1/2 = 1.

As the preconditioner S depends on the chosen best N -term approximation again (S = S(N) =:
SN ), we are only able to precompute the Gramian matrix for the full library. Online, we get the
Gramian [(wi, wj)X]i,j=1,...,N1(N) by just choosing the corresponding precomputed parts. How-
ever, we have to perform the singular value decomposition online and apply the constructed
preconditioner to the operator BN1(N)(µ). Even though all computations are performed in terms
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of the RB-basis dimension N1(N) this increases the computational effort online. The new online
phase is detailed in Algorithm 3.2.3.

Algorithm 3.2.3 Online Phase with Online Orthonormalisation
Input: N1 := N1(N), Linit, Levol, new parameter µ ∈ D.
Output: RB solution uN1(µ), estimator ∆N1(µ)
1: Compute BN1(µ), FN1(µ)
2: Perform SVD → SN1

3: Orthogonalisation: B̃N1(µ) = STN1
BN1(µ)SN1 , F̃N1(µ) = STN1

FN1(µ)
4: if det(B̃N1(µ)) = 0 then Delete zero rows/columns end if
5: Solve ũN1(µ) = (B̃N1(µ))−1F̃N1(µ)
6: Get uN1(µ) = SN1 ũN1(µ)
7: Compute ∆N1(µ)

3.2.2.5. Online RB Approximation Error

As for the fixed approximation spaces we can use the separation of the standard error estimator
to receive an offline-online efficient error bound. The approximation error in the initial value
is just the sum over all remaining wavelet coefficients associated to the functions that are not
included in the approximation space. As we can now choose the best N-term approximation
for every function, the approximation error of the initial value can be significantly smaller in
comparison to the one in Section 3.2.1. The evolutionary part can – as before – be bounded in
terms of the right-hand side and the afore used (Evolution) Greedy tolerance, cf. Proposition
3.2.5. Again, the right-hand side has an influence on the quality of the approximation.

3.2.2.6. Extensions

As soon as we solve a problem with source term equal to zero, it is possible that the PDE
solution is given in terms of the RB expansion. If the right-hand side is different to zero the
RB approximation quality is restricted by the fact that we only precompute snapshots solving
the inhomogeneous PDE. Performing the above described basis generation of the evolutionary
part for the homogeneous PDE and extending the library Levol by these bases may improve the
performance of the online phase. Even though this might be a solution for some applications,
the offline and online computational effort and the storage requirements double.
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3.3. Generalisations

We point out a few things to be kept in mind when generalising the use of parameter functions in
the reduced basis method. We consider an example to get an idea on how a parameter function
in the bilinear form of the left-hand side influences the approximation.

Example 3.3.1. We are interested in the solution u of

−µ0∆u = g on Ω = (0, 1)

u = 0 on ∂Ω,

for some positive definite function µ0 ∈ D ⊂ C∞(Ω). The weak formulation is straightforward
and reads: Find u ∈ V = H1

0 (Ω) such that

a(u, v;µ) :=
∫

Ω
µ0(x)∇u(x)∇v(x)dx =

∫
Ω
g(x)v(x)dx =: f(v) ∀v ∈ V.

We assume that the computation of uN (µ0) is possible, i.e. that µ0 is given e.g. in closed form.
The standard RB error estimator for coercivity constant α > 0 is given by

|uN (µ0)− uN (µ0)|V ≤
1
α
|f(·)− a(uN (µ0), ·;µ0)|V ′ .

For the parameter function µ0 we denote by µ̃0 the approximation of µ0 in terms of given functions
δ1, . . . , δL, e.g. wavelets. The residual is given by

r(v;µ0) = f(v)−
∫

Ω
µ̃0(x)∇uN (x)∇v(x)dx

= f(v)−
L∑
i=1

αi(µ0)
∫

Ω
δi(x)∇uN (x)∇v(x)dx.

A standard greedy procedure can be performed for finitely many functions δ1, . . . , δL, analogous
to the presented Evolution Greedy procedure. The offline-online decomposition of the error esti-
mator is straightforward using the standard affine decomposition. The influence of the function
approximation error received by projecting µ0 onto span{δ1, . . . , δL} is not explicitly given.

So, for a parameter space D0 × D1 ⊂ F × Rd, with function space F , given ansatz space X and
test space Y and a well-posed problem formulation

find u ∈ X : b(u, v;µ) = f(v) ∀ v ∈ Y
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we have at least to assume an affine decomposition w.r.t. the parameter in the sense that

b(u, v;µ) =
Qb∑
q=1

θq(µ1)bq(u, v) + bQb+1(u, v;µ0).

For the RB simulation, we require the bilinear form to be linear in µ0. In general, the treatment
of parameter functions either in the bilinear form b(·, ·) or in the right-hand side depends highly
on the actual problem formulation.

3.4. Numerical Examples

The numerical experiments test the different methods for parameter (functions) in the initial
condition. The influence of the approximation error of the parameter function in the RB error
(estimator) is investigated. We consider a 1D diffusion problem and keep the influences of
the standard parameters as simple as possible. The numerical solution follows Section 2.2.2.2.
We will precompute all necessary inf-sup constants such that a possible approximation of the
constants with e.g. an SCM, cf. Remark 2.2.39 does not influence the results. In addition we
evaluate the approximation error in the discrete natural norm presented in Equation (2.2.20),
i.e., for w ∈ XN ⊂ X

‖w‖2X,bar := ‖w̄‖2L2(I;V ) + ‖ẇ‖2L2(I;V ′) + ‖w(T )‖2H ,

for w̄k := (∆t)−1 ∫
Ik
w(t) dt ∈ V and w̄ :=

K∑
k=1

τk ⊗ w̄k ∈ L2(I;V ). In Proposition 2.2.32 was

shown that the stability can be improved in the case of a symmetric bilinear form a(·, ·).

3.4.1. Model Problem

For the Hilbert spaces V := H1
0 (0, 1) and H := L2(0, 1) we consider

u̇(x, t)− µ1∆u(x, t) = g(x) for (x, t) ∈ [0, 1]× [0, 0.3]

u(x, 0) = µ0.

The parameter space is given by D = D0 ×D1 where

D0 = L2(0, 1), D1 = [0.5, 1.5].

We take the Haar wavelets as basis of L2(Ω) that we presented already in Example 3.2.10. The
error in the initial value is measured in terms of the coefficients of the wavelets not taken into
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Figure 3.4.1.: The right-hand side gsin.

account in the approximation. In a numerical framework, we compute the sum over all wavelet
coefficients up to truncation on some fixed high level. We impose the space-time discretisation
that is equivalent to the Crank-Nicolson time stepping scheme, cf. Section 2.2.2.2. We perform
the discretisation with step size ∆x = ∆t = 1

26 .

We have not yet specified the right-hand side. The a-priori bound deduced in Proposition 3.2.5
shows that our evolution approximation can be significantly better when the PDE has a right-
hand side equal to zero. We therefore start with a comparison of two settings. The first is
gzero(x) = 0 and the second is a time-depending full right-hand side gsin(x, t) = sin(2πx)cos(4πt),
cf. Figure 3.4.1. The greedy tolerance of the Evolution Greedy stays the same in all experiments,
i.e. tol1 = 0.001. The training set of the standard parameter space D1 is given by Dtrain

1 =
{0.5 + k 1

17 : k = 0, . . . , 17}.

For online tests we test with two different parameters. The first is given by µsmooth = (µ0, µ1) =
(x(1−x), 1) /∈ Dtrain. The function µ0 is smooth and a sparse wavelet representation approximates
the function well, cf. Figure 3.4.5 (a). The (FEM) solutions of the PDE for the respective
right-hand sides are shown in Figure 3.4.2. The parameter function of the second parameter
µL2 = (µ0, µ1) = (|x − 0.5|1/2, 1) /∈ Dtrain is in L2(Ω) only, cf. Figure 3.4.3. The space-time
variational formulation allows explicitly for an initial condition with less regularity than the
PDE solution. The finite element solutions are displayed in Figure 3.4.4. Because of the lower
regularity the wavelet expansion coefficients have a slow decay, cf. Figure 3.4.5 (b).

3.4.2. Fix Initial Value Approximation Online

We start with the Two-Step Greedy method. As we are using a wavelet basis we already know by
its construction that - at least for smooth functions - lower level wavelets have a higher impact
in the approximation procedure. This is not reflected by the basis functions themselves as we
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Figure 3.4.2.: Detailed solution for µsmooth.
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Figure 3.4.3.: The parameter function of µL2 and its weak derivative.
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Figure 3.4.4.: Detailed solution for µL2.
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Figure 3.4.5.: Wavelet expansion coefficients decay. Dark colors correspond to high absolut co-
efficient values.

can see by performing the Initial Value Greedy introduced in Algorithm 3.2.1. The training set
is given by Dtrain

0 := {ψ[j,k] : j = −1, . . . , `, k = 0, . . . , 2j − 1} and the tolerance tol0 = 0.001.
As expected, performing an initial value greedy for wavelets does not lead to the desired result.
The procedure detects the wavelets on high levels as they have (by construction) a very small
support and only reflect very local detail information. The greedy error shown in Figure 3.4.6
(a) stagnates until the snapshots for the higher levels are collected in the basis as one can see in
Figure 3.4.6 (b). We can summarise that

• the additional information of the expected size of the expansion coefficients is not used

and

• the small support of the high level wavelets is responsible for locally very different initial
values that correspond to very different PDE solutions.

Even including a scaling of the high level wavelets e.g. with 2−j on level j does not change the
order in which the wavelets are chosen.

In fact, the first step can be reduced to fixing an N0 that is convenient for the applica-
tion as there exist additional information on the basis construction itself. The first N0

wavelets are now taken for the approximation in the initial value and the reduced basis
{q1, . . . , qN0} is stored for N0 ∈ {22, 23, 24, 25, 26}. Starting with g ≡ gzero we perform the
Evolution Greedy five times: for i = 2, . . . , 6 we set N0 = 2i and consider the training set
Dtrain = {ψ[j,k] : j = 0, . . . , i; k = 0, . . . , 2j − 1} × Dtrain

1 . The greedy error decay for all
i = 2, . . . , 6 behaves very similar for gzero and gsin. We show the decay for g = gzero and
i = 2, . . . , 5 in Figure 3.4.7 (a), (c), (e), (g). There are five parameters in the training set
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Figure 3.4.6.: Initial Value Greedy

Dtrain
1 that have the most impact on the RB approximation of the evolution of the solution.

As the wavelet basis functions are very different, the Greedy ensures that for all functions the
respective five snapshots are in the RB space, cf. Figure 3.4.7 (b), (d), (f), (h). Online, for
the new parameter µsmooth = (x(1 − x), 1) the error of the RB solution to the Crank-Nicolson
detailed solution (Figure 3.4.8 (a)) depends on the considered wavelets. In fact, for g = gzero, an
approximation up to level four suffices for the PDE solution as one can see by the break down
going over to the point were 25 wavelets are included in the training set and for the initial value
approximation, Figure 3.4.8 (a). At this point, the error estimator ∆N (µ) overestimates the
actual error because the value of the the wavelet approximation error part ∆0

N0
= 1

βN
(
∑
|d`|2)1/2

remains high in comparison to ∆1
N1

, cf. Figure 3.4.8 (b). The initial value approximation error
is constantly added to the system even though the PDE system smooths the detail information
from higher wavelet levels. A non-zero right-hand side has an impact on the approximation
quality. For g = gsin, it is not sufficient to consider only wavelets up to level four, cf. Figure
3.4.9 (a). The RB approximation error stays on the same level (> 0.01) for the reduced basis
approximations corresponding to i = 2, 3, 4. The reduced basis – constructed for single wavelet
functions as initial values – is not able to approximate the solution for the new initial value
given in terms of a wavelet expansion, cf. Figure 3.4.9 (b). The influence of the right-hand side
on the solution is obviously high.

The parameter function of the parameter µL2 = (|x − 0.5|1/2, 1) is less smooth. Its
wavelet expansion coefficients have a higher absolute value around the salient point 0.5. The
low-level wavelets that we take into account first do not entirely reflect this behaviour, cf. Figure
3.4.10 (b). The PDE solution is influenced by the initial value but can still be approximated in
case g = gzero, Figure 3.4.10 (a). Here, the initial value approximation error is the dominating
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Figure 3.4.7.: Evolution Greedy performance for different Dtrain and g = gzero.
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Figure 3.4.8.: Error and estimator for the online procedure of µsmooth and right-hand side gzero.
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Figure 3.4.9.: Error and estimator for the online procedure of µsmooth and right-hand side gsin.
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Figure 3.4.10.: Error and estimator for the online procedure of µL2 and right-hand side gzero.
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Figure 3.4.11.: Error and estimator for the online procedure of µL2 and right-hand side gsin.

part. For the non-zero right-hand side gsin the RB approximation actually gets better as for
the smooth initial value, cf. Figure 3.4.11. The RB basis seems to catch the solution behaviour
much better for a non-smooth parameter. Consequently, the linear combination of snapshots
corresponding to single wavelet functions reflect the solution behaviour much better if it includes
very local changes due to the initial value. The dimensions of the two different reduced bases
(for g = gsin and g = gzero) for i = 2, . . . , 6 are stated in Table 3.4.1. The greedy procedure
stops with the same amount of basis functions for both right-hand sides. The high dimensional
discretisation is of dimension N = 2626 = 4096. Performing the Crank Nicolson time stepping
scheme we solve 26 = 64 times a 64-dimensional linear equation system. Using all wavelets up
to level four leads to an approximation that is about one order of magnitude higher than the
original greedy tolerance solving one 32 dimensional and one 160 dimensional linear equation
system. We reduce the discretised system of dimension N = 4096 to an RB system of dimension
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Figure 3.4.12.: The first three elements of Linit.

N = 192. Further, an involved right-hand side negatively affects the RB approximation quality.

i = 2 3 4 5 6
gzero 4 + 20 8 + 40 16 + 80 32 + 160 64 + 282
gsin 4 + 20 8 + 40 16 + 80 32 + 160 64 + 284

Table 3.4.1.: Reduced basis space dimension: N = N0 +N1.

3.4.3. Best N-Term Approximation Online

The second approach is to use the best N-term approximation of the parameter function for
the approximation in the initial condition. The snapshot library of the initial value contains 26

elements, whereby the first three are visualised in Figure 3.4.12. The Evolution Greedy is now
performed 26 times with training sets Dtrain = {ψ[j,k]}×Dtrain

1 for j = −1, . . . , `, k = 0, . . . , 2j−1.
For both right-hand sides gzero and gsin the Evolution Library contains 26 reduced bases of dimen-
sion four to five. The reduced basis approximation for the parameter with smooth initial value
µsmooth is significantly better for the problem formulation with right-hand side equal to zero, cf.
Figure 3.4.13 and Figure 3.4.14. While the error and the estimator for gzero and µsmooth decrease,
both stagnate for gsin until 50 wavelets and their corresponding reduced basis (books) are taken
into account. In both cases, the estimator behaves like the error but overestimates as soon as
the approximation error of the initial condition is the dominating part. As before, the wavelets
having a support that is smaller than the one of the underlying finite elements play a minor role
for the PDE solution process. The RB approximation results of gzero and gsin do not essentially
differ for the less smooth parameter function of µL2, cf. Figure 3.4.15 and Figure 3.4.16. Again,
when gsin is considered, the approximation improves significantly for values N ≥ 32. Here, for
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Figure 3.4.13.: Error and estimator for the online procedure of µ = µsmooth and right-hand side
gzero.
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Figure 3.4.14.: Error and estimator for the online procedure of µ = µsmooth and right-hand side
gsin.
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Figure 3.4.15.: Error and estimator for the online procedure of µ = µL2 and right-hand side gzero.
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Figure 3.4.16.: Error and estimator for the online procedure of µ = µL2 and right-hand side gsin.

the right-hand side equal to zero, the same but less pronounced improvement for N ≥ 32 can
be observed as the reduced bases books associated to higher level wavelets are more important
for a good RB evolution approximation of the non-homogeneous problem. They are considered
earlier for a non-smooth parameter function and the RB approximation gets better for smaller N .
In contrast, the evolution approximation of the homogeneous problem is better for the smooth
parameter function. Apparently, the wavelets that are necessary for a good approximation of the
initial value and the reduced basis books that are relevant for a good approximation may not
coincide. The given right-hand side g = gsin interacts with the input in form of the parameter
function. In the last experiment we take additionally the extreme values of the parameter func-
tion into account by ensuring that the first wavelets in the approximation are the one on level
6 that cover the areas of the extrema max(µ0), min(µ0) and the zero with their support. After
including these wavelets in the RB space, we continue adding the wavelets according to the best
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Figure 3.4.17.: Error and estimator for the online procedure taking extreme values and the best
N − 5-term approximation of the initial value into account.

N-term approximation as before. In particular, we include ψ[6,1], ψ[6,30], ψ[6,31], ψ[6,63] and ψ[6,64].
As expected, the RB approximation of the solution for gzero does not change as the effects of the
wavelets on level six are smoothed out. The RB approximation for gsin and µsmooth improves
significantly, cf. Figure 3.4.17 (a). The RB approximation quality has been satisfying without
the extreme values for gsin and µL2. It improves a little around the break N = 30, Figure 3.4.17
(b). The dimension of the reduced basis depends on the parameter function online. We have
seen – performing the Initial Value Greedy – that a single wavelet as initial value results in a very
specific PDE solution. Thus, the dimensions of the respective reduced basis books just differ by
at most one or two. The number of basis functions grows linearly with N and does not depend on
the scenario, as shown in Figure 3.4.18. Of course, depending on the scenario we receive different
approximation qualities for the same RB size. For a better overview as well as a comparison to
the previously presented method, we detail the dimensions for N ∈ {22, 23, 24, 25, 26} in Table
3.4.2.

N = 4 8 16 32 64
gzero, µsmooth 4 + 20 8 + 40 16 + 80 32 + 158 64 + 305
gsin, µsmooth 4 + 20 8 + 40 16 + 80 32 + 158 64 + 305
gzero, µL2 4 + 20 8 + 40 16 + 80 32 + 160 64 + 314
gsin, µL2 4 + 20 8 + 40 16 + 80 32 + 160 64 + 314

gsin, µsmooth + extrema 4 + 16 8 + 36 16 + 76 32 + 154 64 + 305
gsin, µsmooth + extrema 4 + 16 8 + 36 16 + 76 32 + 156 64 + 312

Table 3.4.2.: Reduced basis space dimension: N +N1.
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Figure 3.4.18.: Overview on RB dimensions in dependence on N .

3.4.4. Comparison and Outlook

Both procedures are decomposed into two steps. We are going to refer to the results of the
first numerical experiments in Section 3.4.2 as the results for ‘Fix-N’ wavelets used for the
parameter functions. In contrast, the second part uses the ‘Best-N’ wavelets in the initial value
approximation. The amount of basis functions used in the approximation of the evolution stays
the same: taking N offline chosen and fix wavelets or the best N-term approximation for the
initial value leads to the same number N1 of basis elements for the evolution, cf. Tables 3.4.1
and 3.4.2.

We are going to compare the error ‖uN (µ) − uN (µ)‖X,bar for µ = µsmooth and µ = µL2 that
we receive in both methods, restricting to N(= N0) ∈ {22, 23, 24, 25, 26}. For a zero right-hand
side, the best N -term approximation improves the quality of the RB approximation for both test
parameters at least up to N = 16, cf. Figure 3.4.19. For N = 32 there is a break for ‘Fix-N’
and the wavelets used on level 5 lead just to the reduced basis elements that catch perfectly the
behaviour of the PDE solution for µ = µsmooth. To cover such a behaviour, an adaptive reduced
basis enrichment would be necessary online. The behaviour is more a happy coincidence than a
rule. As we have seen, the ‘Best-N’ procedure is not working best for non-zero right-hand side
w.r.t. the smooth parameter function. Given these results, it is not surprising that the ‘Fix-N’
procedure leads to better results, cf. Figure 3.4.20 (a). However, including the extremal values
of the initial condition, the ‘Best-N’ results improve significantly for N = 32, Figure 3.4.20 (b).
For µL2, both methods lead to the same approximation quality. Here, again the extreme values
improve the approximation for N = 32. Note that the extreme values are taken first in the
‘Best-N’ procedure in Figure 3.4.20 (b), i.e. we only consider an (N − 5)-term approximation for
the initial value part instead of the best N -term approximation.

At the end it depends on the actual application for which procedure one decides. At least for
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Figure 3.4.19.: Comparison of achieved online approximation errors for gzero and µ ∈
{µsmooth, µL2}.
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(b) Including wavelets in the RB corresponding to
the extremal values.

Figure 3.4.20.: Comparison of achieved online approximation errors for gzero and µ ∈
{µsmooth, µL2}.
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the use of a wavelet basis of the function parameter domain, the ‘Best-N’ procedure offers more
flexibility regarding the size of the RB spaces. We do not enlarge level-wise but just as needed
for the parameter function. Therefore, smaller bases can be used if the function parameter allows
for. Further, for a right-hand side equal to zero, the ‘Best-N’ procedure allows for – in general –
better approximation as the function approximation error is smaller. For a non-zero right-hand
side we require the ad-hoc improvement of the basis by considering the wavelets corresponding to
the extrem values. The disadvantage may be the required storage capacity to store the libraries
needed. In addition the online approximation requires an additional computational effort for
performing the singular value decomposition.

In our example we receive good results for N0 = 32, i.e. we reduced the high-dimension N = 4096
to about 190. The reduction in the initial value part might not be significant on the first glance
for receiving satisfying results. However, we do not solve a linear equation system in that step
but just perform the reconstruction using the corresponding wavelet coefficients. The reduction
in the evolutionary part is – as expected – good: the reduction factor is about 12. The online
computable error estimates in general follow the error behaviour.
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4. H-Tucker Low Rank Tensor Format in the
Reduced Basis Method

4.1. Introduction

Low rank tensor formats are storage formats that are based on a tensor product structure of the
underlying space. The ansatz and test space in the space-time variational formulation provide
this structure naturally separating space and time. The full tensor decomposition of the spatial
domain is achieved by applying a tensorised basis in space too, cf. Example 2.2.31. For example,
the solution of a time dependent 2D problem can be represented by a 3D tensor, with one time
and two space dimensions. Low rank tensor formats efficiently use the tensor product structure
to reduce the numerical effort in the solution process. The basic idea is to avoid the establishment
of the full system and to perform all computations on the tensor components.

We give a short introduction to the tensor decomposition schemes most important for the present
thesis following the introductions of T. G. Kolda and B. W. Bader [KB09], L. Grasedyck [Gra10]
and of L. Grasedyck, D. Kressner and Ch. Tobler [GKT13]. For the introduction to the H-Tucker
format that is the low rank format of choice we also follow the theses of A. Rupp [Rup14] and
Ch. Tobler [Tob12]. We present the BPX-preconditioners for parabolic PDEs in space-time
variational formulation, introduced by R. Andreev in [And12] and used in combination with
the H-Tucker format in the paper of R. Andreev and Ch. Tobler [AT14] for solving parabolic
problems. We investigate the application of the low-rank tensor format in the offline phase of
the space-time reduced basis method. In general it reduces the numerical effort and allows to
solve higher dimensional problems.

4.2. Preliminaries

4.2.1. CP Decomposition and Tucker Format

A d-order tensor is a multidimensional array x ∈ Rn1×...×nd of size n1 × . . . × nd. We denote
the entries of x by xi1,...,id , where iµ ∈ {1, . . . , nµ} for 1 ≤ µ ≤ d. For increasing d the number

78
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of elements N =
∏d
i=1 ni increases exponentially. Low rank tensor formats are storage schemes

that avoid this exponential storage effort.

We start by introducing the CANDECOMP/PARAFAC (CP) decomposition, cf. [KB09, Sec.
3]. The CP decomposition is based on factorising the entries of the tensor

xi1,...,id ≈ x̃
(1)
i1
. . . x̃

(d)
id
.

Collecting the factors of every entry in a corresponding vector u(µ) =
(
x̃

(µ)
1 · · · x̃

(µ)
nµ

)T
∈ Rnµ

we receive
vec(x) ≈ u(d) ⊗ . . .⊗ u(1).

Here, the vec-operator vec : Rn1×...×nd → Rn1···nd maps a tensor to a (column) vector in reverse
lexicographical order. The order is chosen for convenience: Matlab ’s vec-operator uses this
order. The tensor product denotes the standard Kronecker product. For a tensor x in CP format
holds

vec(x) =
r∑
i=1

u
(d)
i ⊗ . . .⊗ u

(1)
i . (4.2.1)

Definition 4.2.1. [KB09, Sec. 3.1] The tensor rank r is the minimum over all r such that x is
exactly CP decomposable with r terms.

Example 4.2.2. The tensor
(

3 6 9
4 8 12

)
∈ R2×3 has the CP decomposition

vec(x) =
(
3 4 6 8 9 12

)T
=


1
2
3

⊗
(

3
4

)
.

Its rank is equal to one.

The storage format is most efficient if the tensor rank is small as we have to store (
∑d
i=1 ni) · r

components. For detailed information, an historical background, computation techniques and
applications we refer to [KB09, Sec. 3].

The Tucker decomposition introduced in [Tuc63], see also [Tuc66], follows the same principle, cf.
[KB09, Sec. 4]. The tensor x is given by

vec(x) = (ud ⊗ . . .⊗ u1)vec(c).

Here, uµ ∈ Rnµ×rµ for all 1 ≤ µ ≤ d are so called factor matrices. The core tensor is a
multidimensional array c ∈ Rr1×···×rd . We call the vector (r1, . . . , rd) the multilinear rank.
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Definition 4.2.3. [Gra10, Def. 2.4] The Tucker rank is defined as the vector of (elementwise)
minimal entries such that there exists (columnwise) orthonormal matrices ui and a corresponding
core tensor such that x is given in Tucker format.

The Tensor Train (TT) format and the H-Tucker format are further developments. We focus
on the H-Tucker format as it was used for solving parabolic PDEs in space-time variational
formulation before, [AT14]. Furthermore, the TT format can be considered as a special case of
the H-Tucker format, [GH11, Sec. 3]. For a short introduction to the TT format we refer to
[GKT13, Sec. 2.3]. For a comparison we also refer to [GH11].

We shortly explain the so-called tensor truncation that allows for using a low rank tensor format
as a compression scheme. Even though we do not need the low rank tensor format as a model
reduction method, the truncation to a tensor of bounded rank is required, e.g., in the solution
process of a linear system in tensor format. Letters marked with an ·̂ -symbol are missing in the
corresponding representation, e.g. (a1, . . . , âk, . . . , an)T := (a1, . . . , ak−1, ak+1, . . . , an)T ∈ Rn−1.
For µ ∈ {1, . . . , d} the µ-matricisation x(µ) of x is an nµ × (n1 . . . n̂µ . . . nd)-matrix given by the
entries of x in rearranged order [GKT13, Sec. 2.2]

x
(µ)
iµ,`

= xi1,...,id , ` = 1 +
∑
ν<µ

(iν − 1)
∏
η<ν

nη +
∑
ν>µ

(iν − 1)
∏

η<ν,η 6=µ
nη (4.2.2)

In particular,

x(µ) = uµc
(µ)(ud ⊗ . . .⊗ ûµ ⊗ . . .⊗ u1)T , c(µ) ∈ Rnµ×n1···n̂µ···nd . (4.2.3)

A more general matricisation is obtained by replacing µ by a set of indices t ⊂ {1, . . . , d}.
The corresponding t-matricisation is the tensor x(t) ∈ Rnt1 ···ntd−k×ns1 ···nsk where {s1, . . . , sk} =
{1, . . . , d} \ t. A higher order singular value decomposition (HOSVD) was introduced for com-
pression, [DLDMV00]. Truncation of x to a tensor of a fixed tensor rank m := (m1, . . . ,md) is
explained in the next definition.

Definition 4.2.4. [Gra10, Def. 2.5], [Rup14, Def. 5.2] Let x ∈ RI , I ⊂ N an index set. For
µ = 1, . . . , d let

x(µ) = uµΣµv
T
µ , uµ ∈ Rnµ×nµ

be the singular value decomposition of the µ-mode matricisation of the tensor x with diagonal
matrix Σµ. The tensor x can be written in Tucker format

vec(x) = (ud ⊗ . . .⊗ u1)c

where
c = (uTd ⊗ . . .⊗ uT1 )vec(x).
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The truncation of x to a tensor of Tucker rank m is defined by

vec(Tm(x)) := (ũTd ũd ⊗ . . .⊗ ũT1 ũ1)vec(x)

= (ũd ⊗ . . .⊗ ũ1)c,

where ũµ is the matrix of the first mµ columns of uµ for all 1 ≤ µ ≤ d and c := (ũTd ⊗ . . . ⊗
ũT1 )vec(x).

The approximation x̃ is the quasi best approximation in the space of all tensors of multilinear
rank m: T (m) := {x = (ud ⊗ . . .⊗ u1)vec(c) : rank(uj) ≤ mj , j = 1, . . . , d} and

‖x− x̃‖2 ≤
√
d min
y∈T (m)

‖x− y‖2.

4.2.2. H-Tucker Format

This section is based on the introductions given in [Rup14, Sec. 5] and [Gra10, Tob12]. The size
of the core tensor in the Tucker decomposition becomes infeasibly large if a large Tensor rank
r = (r1, . . . , rd) is needed to approximate the tensor sufficiently well. The H-Tucker format is
closely related to the Tucker format but further decomposes the core tensor c hierarchically. A
hierarchical tree of tensors is the consequence. We consider an example for a better understand-
ing.

Example 4.2.5. [Rup14, p. 74] Let x ∈ Rn1×...×n4 be a 4-order tensor. Given a Tucker decom-
position

vec(x) = (u4 ⊗ . . .⊗ u1)vec(c)

we decompose c ∈ Rr1×...×r4 by

vec(c) = (b{3,4} ⊗ b{1,2})vec(b{1,2,3,4})

where b{1,2} ∈ Rr1r2×r1,2 and b{3,4} ∈ Rr3r4×r3,4 , b{1,2,3,4} ∈ Rr1,2×r3,4 . Application of (A⊗B)(C⊗
D) = AC ⊗BD results in

vec(x) = (u4 ⊗ . . .⊗ u1)(b{3,4} ⊗ b{1,2})vec(b{1,2,3,4})

= ((u4 ⊗ u3)b{3,4} ⊗ (u2 ⊗ u1)b{1,2})vec(b{1,2,3,4}).

The corresponding dimension tree is shown in Figure 4.2.1.

We now give the formal definition of a dimension tree.
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{1,2,3,4} 

{1,2} {3,4} 

{1} {2} {3} {4} 

Level 
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0 

Figure 4.2.1.: Dimension tree structure of a 4-order tensor in H-Tucker format.

Definition 4.2.6. [Rup14, Def. 5.3], [Gra10, Def. 3.1] A dimension tree Td is a tree with root
{1, . . . , d} such that each node t ∈ Td is either a leaf and a singleton t = {µ}, µ ∈ {1, . . . , d}, or
the union of two disjoint successors t = t` ∪ tr. The level k of the tree is defined as the set of all
nodes having a distance of k to the root, cf. Figure 4.2.1. We denote the set of nodes on level k
of the tree by

T kd = {t ∈ Td : level(t) = k}.

Remark 4.2.7. To be precise, ui := u{i} in Example 4.2.5.

Definition 4.2.8. [Rup14, Def. 5.6] Let Td be a dimension tree and {rt}t∈Td be a family of non-
negative integers. Let (ut)t∈Td be matrices such that ut = (utr⊗ut`)bt with matrices bt ∈ Rrt`rtr×rt

for the inner nodes of the tree I(Td). The matrices ut are called mode frames, the matrices bt
are called transfer tensors. Then, the collection ((bt)t∈I(Td), (ut)t∈L(Td)) is a hierarchical Tucker
representation of the tensor x = u{1,...,d}. The set L(Td) denotes the leaves of the dimension tree
Td. If x is represented by a tree structure with corresponding mode frames and transfer tensors,
we denote it as an element in H.

If x is a d-order tensor and ((bt)t∈I(Td), (ut)t∈L(Td)) the corresponding H-Tucker representation,
it can be written as, [Rup14, Lemma 5.3],

x =
d−1⊗
i=0

u{d−i}

d−1∏
`=0

⊗
t∈T `

d

bt. (4.2.4)

The storage requirements are bounded by (d− 1)r3 + r
∑d
µ=1 nµ, r = maxt∈Td rt.

Remark 4.2.9. [Rup14, Lemma 5.2] For any tensor x ∈ Rn1×···×nd a tree strucre can be ob-
tained: For every t-matricisation x(t) with t = t` ∪ tr it holds span(x(t)) ⊂ span(x(tr) ⊗ x(t`)).
Consequently, for any column u in x(t) there is a vector b such that u = (x(tr) ⊗ x(t`))b. The
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extension to ut, ut` and utr as bases for span(x(t)), span(x(t`)) and span(x(tr)) respectively gives
ut = (utr ⊗ ut`)vec(bt).

To solve a system of linear equations the operator is required in H-Tucker format as well. We
follow [Tob12, Sec. 2.3] and [AT14] for a short explanation regarding parabolic PDEs in space-
time variational formulation. We continue using bold letters for coefficient vectors/tensors as
well as vectors/matrices that represent (bi)linear forms in discrete (sub)spaces.

Example 4.2.10. Assuming a tensorised basis for the discrete approximation in space we deal
with the discrete subspace V J = V J1(1) ⊗ · · · ⊗ V Jd(d) ⊂ V , cf. Example 2.2.31. A solution
u ∈ XN can be represented by a tensor u ∈ RJ1×...×Jd×(K+1). More precise, let {ν(k)

1 , . . . , ν
(k)
Jk }

be the basis of V Jk,(k), 1 ≤ k ≤ d, and {e0, . . . , eK} of the discrete temporal ansatz space EK+1.
The tensor u ∈ RJ1×...×Jd×(K+1) is given by

u(t, x) =
J1∑
i1=1
· · ·

Jd∑
id=1

K∑
id+1=0

ui1,...,id+1(eid+1 ⊗ ν
(d)
id
⊗ · · · ⊗ ν(1)

i1
)(x1, . . . , xd, t)

=
J1∑
i1=1
· · ·

Jd∑
id=1

K∑
id+1=0

ui1,...,id+1eid+1(t)ν(d)
id

(xd) · · · ν
(1)
i1

(x1).

We can formally convert a matrix A ∈ Rm1...md×n1...nd in H-Tucker format if it can be decomposed
in the sum of tensor products of smaller matrices A(µ)

j ∈ Rmµ×nµ for all µ = 1, . . . , d and
j = 1, . . . , R:

A =
R∑
j=1

A
(d)
j ⊗ · · · ⊗A

(1)
j .

Matrix operations as addition of two matrices or a matrix-matrix or matrix-vector multiplication
can be performed directly in H-Tucker format without establishment of the full high dimensional
system. The tensor representation of the matrix is given by the tensor Ā ∈ Rn1m1×...×ndmd such
that

vec(Ā) =
R∑
j=1

vec(A(d)
j )⊗ · · · ⊗ vec(A(1)

j ). (4.2.5)

This corresponds to represent the matrix A by a vectorisation where each of the hierarchical
blocks is converted columnwise with the vec-operator, cf. Figure 4.2.2. This is not the applica-
tion of the vec-operator to the entire matrix. The right-hand side can be interpreted as a CP
decomposition. In the following Lemma the conversion of the CP decomposition in H-Tucker
format is described.

Lemma 4.2.11. [Tob12, Sec. 3.8] Let x ∈ Rn1×...×nd be in exact CP decomposition (4.2.1). For
a dimension tree Td we define

∀ t = {µ} ∈ L(Td) : [ut]· k = u
(µ)
k , k = 1, . . . , r, ut ∈ Rnµ×rµ , rµ := r
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Figure 4.2.2.: A matrix A = A(2)⊗A(1), A(µ) ∈ R2×2 for µ = 1, 2 has four subblocks highlighted
on the left-hand side. The corresponding vectorisation vec(Ā) in tensor format is
shown on the right-hand side.

and the transfer tensors are given by

∀ t ∈ I(Td) \ {1, . . . , d} : (bt)i,j,k :=

1 i = k = j,

0 otherwise
bt ∈ Rrt×rt×rt , rt := r.

The root transfer tensor is given by

(b{1,...,d})i,j,1 :=

1 i = j

0 otherwise
, b{1,...,d} ∈ Rr×r×1.

Moreover there is an isomorphism Φ : L(Rn1×···×nd ,Rm1×···×md)→ Rn1m1×...×ndmd .

Example 4.2.12. Heat equation. Let Ω ⊂ R, I = (0, T ) for 0 < T < ∞, V = H1
0 (Ω) and

H = L2(Ω). For u0 ∈ L2(Ω) the problem formulation denotes

u̇−∆u = 0

u(x, t) = 0 ∀ x ∈ ∂Ω

u(x, 0) = u0 ∀ x ∈ Ω.

The left-hand side of the space-time variational formulation is given by

b(u, v) =
∫
I

∫
Ω
u̇(x, t)v1(x, t)dxdt+

∫
I

∫
Ω
∇u(x, t)∇v1(x, t)dxdt+

∫
Ω
u(x, 0)v2(x)dx.

For the discretisation introduced in Section 2.2.2.2 the operator B is given by

B = Ctime ⊗Mspace + Atime ⊗ Lspace.
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where [Mspace]ij =
∫

Ω φi(x)φj(x)dx, [Lspace]ij =
∫

Ω φ̇i(x)φ̇j(x)dx ∀ i, j = 1, . . . ,J ,

[Ctime]ij =


∫
I σ̇i−1(t)τj(t)dt i = 1, . . . ,K + 1, j = 1, . . . ,K

1 i = j = K + 1

0 else

and [Atime]ij =


∫
I σi−1(t)τj(t)dt i = 1, . . . ,K + 1, j = 1, . . . ,K

0 else
.

The H-Tucker representation of b(·, ·) is given by

u
(2)
{2} = [vec(Ctime), vec(Atime)] u

(1)
{1} = [vec(Mspace), vec(Lspace)]

and b{1,2} =
(

1 0
0 1

)
.

For the matrix-vector product we first look at the result

vec(Ax) =
R∑
j=1

(A(d)
j ⊗ · · · ⊗A

(1)
j )vec(x), A

(µ)
j ∈ Rmµ×nµ .

Lemma 4.2.13. The application of Ā ∈ H to a vector x in H-Tucker format results in a vector
Ax ∈ H. Let ((bxt )t∈I(Td), (uxt )t∈L(Td)) be the H-Tucker representation of x. The mode frames of
Ax are defined by

uAxt = [A(t)
1 uxt , . . . , A

(t)
R u

x
t ], t ∈ L(Td)

and its transfer tensors by
bAxt = bĀ

t ⊗ bxt , t ∈ I(Td).

The transfer tensors bĀ
t of Ā are given by applying Lemma 4.2.11 to the CP decomposition

(4.2.5).

Remark 4.2.14. The upper indices ‘x’, ‘Ax’ and ‘Ā’ are just labels and added for convenience.

The hierarchical rank grows to R. This is important in the usage within the reduced basis
method.

Remark 4.2.15. We have not used the mode frames of the tensor representation Ā of A explicitly
in the matrix-vector product. However, with application of Lemma 4.2.11 the mode frames are
defined by

[uĀ
t ]·µ = vec(A(t)

µ ), A(t)
µ ∈ Rmt×nt , µ = 1, . . . , R.
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4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

For operators in H-Tucker format the matrix-matrix product is an extension of the matrix-vector
product introduced in Lemma 4.2.13 and we refer to [Rup14, Lemma 5.10] for details. We refer
to Appendix C for the scalar multiplication in H-Tucker format as well as the addition of two
tensors.

4.2.3. BPX-preconditioning for Parabolic PDEs

This section shortly introduces preconditioners for parabolic PDEs in discretised space-time
variational formulation. A finite element discretisation with compactly supported basis results
in sparse stiffness matrices. Unfortunately the condition of the matrix grows in dependence of
the size of the matrices, [DK92]. R. Andreev introduced multilevel preconditioners for parabolic
problems in space-time variational formulation. The preconditioners are based on the BPX1-
preconditioners for elliptic problems, [BPX90]. They are optimal in the sense that the polynomial
growth of the condition number with the size of the matrix reduces to a logarithmic growth,
[DK92, BPX90]. The section mainly follows [And12, Tob12, AT14].

Proposition 4.2.16. [And12, Prop. 4.2.3] Suppose that all assumptions of Theorem 2.2.23 are
valid. LetM and N be symmetric positive definite operators that satisfy the norm equivalences

dM‖ · ‖M ≤ ‖ · ‖X ≤ DM‖ · ‖M and dN ‖ · ‖N ≤ ‖ · ‖Y ≤ DN ‖ · ‖N

for 0 < dM ≤ DM and 0 < dN ≤ DN . Let B be the Riesz representation of the bilinear form
b(·, ·), i.e. 〈Bu, v〉 = b(u, v) ∀u ∈ X, v ∈ Y. The condition of B∗ = M−1/2BTN−1BM1/2 is
bounded: √

k2(B∗) ≤ DNDM
dNdM

CNb
βN

.

In the following, the explicit construction of such norm inducing operators are given.

4.2.3.1. Norm-inducing Operators

In the following we collect the requirements on the temporal and spatial domain for the construc-
tion of the BPX-preconditioners, [AT14, Sec. 2.3]. Recall first that the trial and test spaces, cf.
Equation (2.2.1) and (2.2.5), can be splitted into tensor products,

X = H1(I)⊗ V, Y = L2(I)⊗ V ×H.

The Hilbert space V is densly embedded in the Hilbert space H. We require a sequence of
closed nested subspaces in the temporal and spatial domain, {0} = E0 ⊂ E1 ⊂ . . . ⊂ H1(I) and

1Bramble-Pascial-Xu
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4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

{0} = V0 ⊂ V1 ⊂ . . . ⊂ V , with ∪k∈N0Ek ⊆ L2(I) and ∪`∈N0V` ⊆ H dense. Further we assume
given projections Pk : L2(I) → Ek satisfying Ek = Ek−1 ⊕ Pk(L2(I)) and Q` : H → V` with
V` = V`−1 ⊕Q`(H).

Remark 4.2.17. [And12, Sec. 6.2] In general the projection neither need to be surjectiv nor
orthogonal for the respective inner products. Further,

∑
k∈N Pk = IdL2(I) and

∑
`∈NQ` = IdH

considering pointwise convergence.

Assumption 4.2.18. [And12, (6.2.1), (6.2.2), Ass. 6.2.1, Ass. 6.2.2] For the construction of
norm equivalent BPX preconditioners we require the following norm equivalences:

dL2(I)|f |2L2(I) ≤
∑
k∈N
|Pk(f)|2L2(I) ≤ DL2(I)|f |2L2(I) ∀ f ∈ L2(I)

and
dH |f |2H ≤

∑
`∈N
|Q`(f)|2H ≤ DH |f |2H ∀ f ∈ H.

We further assume that there exist constants dH1(I), DH1(I) and a monotone sequence (pk)k∈N ⊂
(0,∞), such that

dH1(I)|f |2H1(I) ≤
∑
k∈N

p2
k|Pk(f)|2L2(I) ≤ DH1(I)|f |2H1(I) ∀ f ∈ H1(I)

and constants dV , DV and again a monotone sequence (q`)`∈N ⊂ (0,∞), such that

dV |f |2V ≤
∑
`∈N

q2
` |Q`(f)|2H ≤ DV |f |2V ∀ f ∈ V. (4.2.6)

The later induces a multilevel norm equivalence on the dual space V ′ of V if Q` are H-orthogonal
projectors on H [And12, Lemma 6.2.3]

D−1
V |f |

2
V ′ ≤

∑
`∈N

q−2
` |Q`(f)|2H ≤ d−1

V |f |
2
V ′ ∀ f ∈ V.

We denote the norm-inducing operators on trial and test spaces byM and N respectively.

Proposition 4.2.19. [And12, Sec. 6.2.2] For any w ∈ XM := ∪k,`∈NEk ⊗ V`, w̃ ∈ X we define
M : XM → X′ by

〈Mw, w̃〉X′×X =
∑
k∈N

∑
`∈N

(q2
` + p2

kq
−2
` )〈(Pk ⊗Q`)w, (Pk ⊗Q`)w̃〉L2(I)⊗H .
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4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

The norm equivalence is given by

dL2(I)dV ‖w‖2L2(I)⊗V + dH1(I)dV ′‖w‖2H1(I)⊗V ′ ≤ 〈Mw,w〉X′×X (4.2.7)

≤ DL2(I)DV ‖w‖2L2(I)⊗V +DH1(I)DV ′‖w‖2H1(I)⊗V ′ .

Proof. The norm equivalence is derived applying the norm equivalences stated in Assumption
4.2.18.

The operatorM can be extended to an s.p.d. operatorM∈ Iso(X,X′).

Proposition 4.2.20. [And12, Sec. 6.2.1] The norm-inducing operator N : YN := ∪k,`∈NEk ⊗
V` × ∪`∈NV` → Y′ is decomposed into two parts, Nw = (N1w1,N2w2) for w = (w1, w2) ∈ YN .
For w ∈ YN , w̃ ∈ Y we define

〈N1w1, w̃1〉Y′1×Y1 :=
∑
k∈N

∑
`∈N

q2
` 〈(Pk ⊗Q`)w1, (Pk ⊗Q`)w̃1〉L2(I)⊗H ,

and
〈N2w2, w̃2〉H :=

∑
`∈N
〈Q`w2, Q`w̃2〉H .

Again the operator yields the norm equivalence to the respective test space norm ‖ · ‖Y on YN .

The continuous extension N ∈ Iso(Y,Y′) is an s.p.d. operator [And12, 6.2.1 3.]. We verify in the
next two examples that the necessary Assumptions 4.2.18 are satisfied in standard situations.

Example 4.2.21. For V = H1
0 (D) ↪→ L2(D) = H we follow Example 2.2.31 for d open intervals

D(µ) ⊂ R, µ = 1, . . . , d. Here, we do not restrict on the intervals (−1, 1). Denote by |D(µ)|
the length of the interval. The nested subspaces V (µ)

`µ
⊂ V are the standard conforming finite

element spaces given by all continuous piecewise linear functions w.r.t. a uniform partition of
D(µ) in 2`µ+1 subintervals. The discretised Hilbert space is given by V` = V

(1)
`1
⊗ · · · ⊗ V (d)

`d
⊆ V ,

` = (`1, . . . , `d), (`)µ = `µ. Let Q` : L2(D) → V` ∩ (
∑
6̀=`′≤` V`′)⊥H be the L2(D)-orthogonal

surjective projection.

Recall Equation (2.2.19) ([AT14, p. 8])

|v1 ⊗ . . .⊗ vd|2H1
0 (D) =

d∑
µ=1

(|vµ|2H1
0 (D(µ))

d∏
µ6=µ′=1

|vµ′ |2L2(D(µ′))).

The norm equivalence stated in Equation (4.2.6) then holds for the monotone sequence

q` :=

√√√√ d∑
µ=1

q2
`µ

=

√√√√ d∑
µ=1

( 2`µ+1

|D(µ)|
)2,
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4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

cf. [GO95, Thm. 3] and [AT14, (2.35)].

The temporal mesh of Ek is also given by the continuous piecewise linear functions on I with
step size ∆t = |I|

2k+1 . The L2(I)-orthogonal surjective projection Pk : H1(I)→ Ek ∩ (Ek−1)⊥L2(I)

satsifies the required norm equivalences. The monotone sequence is given by pk := 2k+1

|I| .

Example 4.2.22. Given the same setting as in the previous example but V := H1(D), H :=
L2(D) we detail

|v1 ⊗ . . .⊗ vd|2H1(D) =
d∏

µ′=1
|vµ′ |2L2(D(µ′)) +

d∑
µ=1

(|vµ|2H1
0 (D(µ))

d∏
µ6=µ′=1

|vµ′ |2L2(D(µ′)))

and the corresponding monotone sequence is defined as, [GO95, Thm. 3],

q` :=

√√√√1 +
d∑

µ=1
q2
`µ

=

√√√√1 +
d∑

µ=1
( 2`µ+1

|D(µ)|
)2.

Again for the temporal related norm equivalence we receive pk := 2k+1

|I| .

The construction of the preconditioners allows for an explicit representation of their inverse,
[And12, Sec. 6.2.3]. Define for orthogonal projectors Pk and Q` where all multilevel equivalences
hold as above [And12, Prop. 6.2.5]

M± =
∑
k∈N

∑
`∈N

(q2
` + p2

kq
−2
` )±1(Pk ⊗Q`). (4.2.8)

It was shown in [And12, Prop 6.2.5] thatM =M+ andM−1 =M−. Analogous we can define
N = N+ and N−1 = N− by

N± = (
∑
k∈N

∑
`∈N

(q2
` )±1(Pk ⊗Q`),

∑
`∈N

Q`). (4.2.9)

4.2.3.2. Explicit Constructions in H-Tucker Format

Let {x1, . . . , xN } and {y1, . . . , yÑ } be the (finite element) bases for ansatz and test space respec-
tively. Define forM± and N± the operator

[M±]ij := 〈M±xi, xj〉X′×X and [N±]k` := 〈N±yk, y`〉Y′×Y

for all i, j = 1, . . . ,N , k, ` = 1, . . . , Ñ and the mass matrices

[M0]ij := 〈xi, xj〉X′×X and [N0]k` := 〈yk, y`〉Y′×Y.
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4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

The matrix representation ofM is M+ as is N+ for N . The matrix representation of the inverse
is given in the next proposition.

Proposition 4.2.23. [And12, Prop. 6.2.6], [AT14, Prop. 2.5] The matrix representation ofM−1

is M−1
+ := M−1

0 M−M−1
0 . For N−1 the matrix representation is given by N−1

+ := N−1
0 N−N−1

0 .

Proof. It suffices to show M0 = M−M−1
0 M+:

x̄TM0x = 〈x̄, x〉X′×X = 〈M−1
+ x̄,M+x〉X′×X = 〈M−x̄,M+x〉X′×X

= (M−1
0 M−x̄)TM0(M−1

0 M+x) = x̄TM−M−1
0 M+x

for x̄ and x being the coefficient vectors of x̄ and x in YN . The proof is analogous for N−1
+ .

For solving the parabolic PDE we require the tensor representation of the bilinear form b(·, ·)
of the left-hand side denoted by B ∈ H and of the right-hand side f ∈ H. One possibility is to
follow [AT14], cf. [Tob12, Sec. 5], using a preconditioned low rank CGNR method for solving
the linear equation system, i.e., the solution u =

∑N
i=1(u)ixi ∈ X is given by M−1BTN−1Bu =

M−1BTN−1f. The problem formulation requires only the inverse of the preconditioners. For an
explicit construction we detail all basis functions of XN in their tensor product representation

eid+1 ⊗ v
(d)
id
⊗ · · · ⊗ v(1)

i1

for id+1 = 0, . . . ,KE , iµ = 1, . . . ,Jµ, µ = 1, . . . , d. We generalise to arbitrary test spaces, e.g. the
minimal residual approach of [And12] where the temporal test space discretisation is a refinement
of the temporal ansatz space discretisation. The basis of YÑ is given by

(fid+1 ⊗ v
(d)
id
⊗ · · · ⊗ v(1)

i1
, 0) and (0,⊗v(d)

id
⊗ · · · ⊗ v(0)

i0
)

where id+1 = 0, . . . ,KF , iµ = 1, . . . ,Jµ, µ = 1, . . . , d. Note that the number of basis functions
in the spatial domain depends on the Hilbert space V and the underlying discretisation of the
spatial domain Ω. We define the mass matrices by

[M(d+1)
e ]ij =

∫
I
ei(t)ej(t)dt, [M(d+1)

f ]ij =
∫
I
fi(t)fj(t)dt, [M(µ)]iµjµ =

∫
Ω(µ)

v
(µ)
iµ

(x)v(µ)
jµ

(x)dx

where Ω = Ω(1) × · · · × Ω(d) and µ = 1, . . . , d. The mass matrices M0 and N0 are given by

M0 = M(d+1)
e ⊗M(d) ⊗ · · · ⊗M(1)

N0 =
(

M(d+1)
f 0
0 1

)
⊗M(d) ⊗ · · · ⊗M(1).
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4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

For the inverse operatorM−1 we also need M+ and M−. Analogously for N−1 we require N+

and N−. We give the explicit construction for M analogous to [AT14, Sec. 3.3]. Storing the
PBX preconditioners in tensor format, the matrix-matrix product is performed in an efficient
way. For this reason, an another interpretation of a matrix in tensor format, [Tob12, Eq. (3.23)],
is required: Given a matrix A in the following format

A =
Rd∑
jd=1
· · ·

R1∑
j1=1

hj1...jd(A
(d)
jd
⊗ · · · ⊗A(1)

j1
),

we can first store the coefficient tensor h ∈ RR1×···×Rd in H-Tucker format. Instead of using
the full coefficient tensor one may approximate the operator by truncation of h ∈ H. For the
preconditionerM and N we refer to [AT14, Sec. 3.3] where this truncation process is described
in detail. Let uh

t ∈ RRt×st for all t ∈ L(Td) and bh
t ∈ Rst`str×st for all I(Td) be the mode frames

and transfer tensors of the H-Tucker representation of h. The tensor representation Ā ∈ H of A
yields the same dimension tree Td. The mode frames are given by

uĀ
t = (vec(A(t)

0 ), . . . , vec(A(t)
Rt

))uh
t ∈ Rntmt×st ∀ t ∈ L(Td).

The transfer tensors are again the same as for the coefficient tensor, i.e., bĀ
t = bh

t . The truncation
of the coefficient tensor is equivalent to a quasi-optimal approximation of the operator in the
Frobenius norm [Tob12, Sec. 3.8]. The approximation of the preconditioners has an effect on
the preconditioning itself. The relation of the precondition effect to the size of the tensor ranks
is explained in [AT14, Sec. 3.3] such that an effective truncation rank can be chosen.

The matrices M+ and M− are now given by [AT14, (3.21)]

M± =
J1∑
`1=0
· · ·

Jd∑
`d=0

KE∑
`d+1=0

(g`1...`d+1)±1(P (d+1)
`d+1

⊗ · · · ⊗ P (1)
`1

)

where the tensor g is given by

g`1...`d+1 :=
( d∑
µ=1

q2
`µ

)
+p2

`d+1

( d∑
µ=1

q2
`µ

)−1
.

The construction of the projection matrices P (µ)
` for all µ = 1, . . . , d + 1, ` = 1, . . . , Rµ2 follows

with standard multigrid methods. The highest levels are deduced from the discretisation, i.e.,
Lµ := Jµ, µ = 1, . . . , d and Ld+1 := KE resp. KF . We denote the mass matrices on level ` by

2Rµ = Jµ for µ = 1, . . . , d and Rd+1 = KE
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M
(µ)
` , ` ∈ {0, . . . , Lµ}, µ = 1, . . . , d+ 1. We define the projection operators by

P
(µ)
` := M(µ)(S(µ)

Lµ↖`(M
(µ)
` )−1S

(µ)
Lµ↙` − S

(µ)
Lµ↖`−1(M(µ)

`−1)−1S
(µ)
Lµ↙`−1)M(µ)

P
(µ)
0 := M(µ)(S(µ)

Lµ↖0(M(µ)
0 )−1S

(µ)
Lµ↙0)M(µ).

The prolongation from level `1 to level `2, `1 ≤ `2 is given by S`2↖`1 . Furthermore, S`1↙`2 =
ST`2↖`1 denotes the restriction.

Remark 4.2.24. [AT14, Sec. 3.3]

(a) The mass matrix M
(µ)
` on a lower level ` is given by M

(µ)
` = S`↙LµM(µ)SLµ↖`. Here,

M(d+1) := M(d+1)
e .

(b) For all µ = 1, . . . , d+ 1: P (µ)
`′ (M(µ))−1P

(µ)
` = δ``′P

(µ)
` ∀ `, `′ ∈ {0, . . . , Lµ}.

(b)
∑Rµ
`=1 P

(µ)
` = M (µ)

The operator N is given by

N =
J1∑
`1=0
· · ·

Jd∑
`d=0

KF∑
`d+1=0

( d∑
µ=1

q2
`µ

)P (d+1)
`d+1

0
0 0

⊗ P (d)
`d
⊗ . . .⊗ P (1)

`1

+
J1∑
`1=0
· · ·

Jd∑
`d=0

(
0 0
0 1

)
⊗ P (d)

`d
⊗ . . .⊗ P (1)

`1
.

4.3. Using H-Tucker in the Space-Time RBM

One of the drawbacks of the space-time variational formulation are the very high dimensional
linear systems after discretisation. Up to now we worked with a time discretisation such that
the linear system is equivalent to a time stepping scheme. But even with the separation of
the temporal and spatial domain for the solution process the method can be computationally
expensive. We require e.g. the dual norm of the residual for computing the error estimate, that
is not fully decomposable. Low rank tensor formats are mainly developed to have an efficient
compression scheme of very high dimensional systems in terms of spatial dimensions. In finance
this was used e.g. for pricing structured financial products [Rup14]. We do not focus on the
low rank tensor format as a model reduction method in the first place. In fact we analyse a
possible use in the offline phase of the space-time RBM. If all operations are performed in tensor
format, it is highly efficient3 and avoids the establishment of the full system. The numerical
experiments in Section 4.4 show the possibilities and the limits using the H-Tucker format in
the RB offline phase. The error analysis is crucial here. In the numerical experiments we use

3As long as the rank of the underlying operator does not exceed a certain level.
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the Hierarchical Tucker Toolbox provided by D. Kressner and Ch. Tobler. A description can be
found in [KT12] and [Tob12, Sec. 3]. The interface for using the H-Tucker toolbox in combination
with the RBMatlab structure, where the numerical experiments are embedded in, was developed
in conjunction with the master thesis of F. Grimmer [Gri15].

4.3.1. Parabolic Partial Differential Equation in H-Tucker Format

Following up the numerical realisation of the PDE operators in Section 2.4.2, we extend the
operator separation to the spatial domain. All computations are performed in H-Tucker format.
The full system does not have to be established when the operator matrices B and f are stored
as tensors. This Section mainly follows [Tob12, Sec. 2.3] as well as [AT14].

For Ω ⊂ Rd and a time interval I ⊂ R, we are interested in a solution to

d

dt
u(t, ω)−∇ · (α(t, ω)∇u(t, ω)) + β(t, ω)∇u(t, ω) + γ(t, ω)u(t, ω) = g(t, ω) (t, ω) ∈ I × Ω

u(0, ω) = u0(ω).

For the ease of the presentation we assume homogeneous Dirichlet boundary conditions

u(t, ω) = 0 (t, ω) ∈ I × ∂Ω.

Suppose that the coefficients α : I ×Ω→ Rd×d, β : I ×Ω→ Rd and γ : I ×Ω→ R as well as the
source term g and the initial value u0 are separable in the temporal and all spatial directions:

αij(t, ω) = α
(d+1)
ij (t)

d∏
µ=1

α
(µ)
ij (ωµ), g(t, ω) = g(d+1)(t)

d∏
µ=1

g(µ)(ωµ),

βi(t, ω) = β
(d+1)
i (t)

d∏
µ=1

β
(µ)
i (ωµ), u0(ω) =

d∏
µ=1

u
(µ)
0 (ωµ),

γ(t, ω) = γ(d+1)(t)
d∏

µ=1
γ(µ)(ωµ).

Here, α = [αij ]i,j=1,...,d and β = (βi)i=1,...,d as well as ω = (ω1, . . . , ωd)T ∈ Rd. Actually a finite
sum of separable functions suffices. For the convenience of the reader we use one summand only.
The tensor basis of the ansatz space X on Ω = Ω(1) × · · · × Ω(d) is given by

{eid+1 ⊗ φ
(d)
id
⊗ · · · ⊗ φ(1)

i1
: id+1 = 0, . . . ,KE , iµ = 1, . . . ,Jµ, µ = 1, . . . , d}
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The basis for the test space Y is given by

{(fjd+1⊗φ
(d)
id
⊗· · ·⊗φ(1)

i1
, 0), (0, φ(d)

id
⊗· · ·⊗φ(1)

i1
) : jd+1 = 0, . . . ,KF , iµ = 1, . . . ,Jµ, µ = 1, . . . , d}.

Remark 4.3.1. We distinguish between KE and KF as we explicitly allow not only for the temporal
discretisation introduced in Section 2.2.2.2 but for the minimal residual approach presented in
Section 2.2.2.3 as well. There, the basis elements fjd+1 are linear hat functions on the refined
discrete time interval and KF = 2KE in that situation.

We define the mass matrices (for µ = 1, . . . , d)

[M(d+1)
e ]ij =

∫
I
ei(t)ej(t)dt, [M(d+1)

f ]ij =
∫
I
fi(t)fj(t)dt and [M(µ)]ij =

∫
Ω(µ)

φ
(µ)
i (x)φ(µ)

j (x)dx.

We add ‘e’ and ‘f’ to distinguish between temporal related matrices of ansatz and test space.
We now state exemplarily the decomposition of the diffusive operator of the left-hand side in its
tensor product components:

Bdiff(x) =
d∑

µ=1
M(d+1)

µ,µ ⊗M(d)
µ,µ ⊗ · · · ⊗M(µ+1)

µ,µ ⊗A(µ) ⊗M(µ−1)
µ,µ ⊗ · · · ⊗M(1)

µ,µ

+
d∑

µ,µ′=1
µ 6=µ′

M(d+1)
µ,µ′ ⊗M(d)

µ,µ′ ⊗ · · · ⊗M(µ+1)
µ,µ′ ⊗V(µ)

µ′ ⊗M(µ−1)
µ,µ′ ⊗ · · ·

· · · ⊗M(µ′+1)
µ,µ′ ⊗ Ṽ(µ′)

µ ⊗M(µ′−1)
µ,µ′ ⊗ · · · ⊗M(1)

µ,µ′ .

Here, M(k)
µ are the mass matrices defined above but inducing now the respective operator

coefficient for k ≤ d: [M(k)
µ,µ′ ]ij =

∫
Ω(µ) α

(k)
µ′,µ(x)φ(k)

i (x)φ(k)
j (x)dx. In addition, [M̂(d+1)

µ,µ′ ]ij =∫
I α

(d+1)
µ,µ′ (x)fi(t)ei(t)dt, M(d+1)

µ,µ′ =
(

M̂(d+1)

0

)
, [A(µ)]ij =

∫
Ω(µ) α

(µ)
µ,µ∇φ(µ)

i (x)∇φ(µ)
j (x)dx,

[V(µ)
µ′ ]ij =

∫
Ω(µ) α

(µ)
µ′,µ(x)∇φ(µ)

i (x)φ(µ)
j (x)dx and [Ṽ(µ)

µ′ ]ij =
∫

Ω(µ) α
(µ)
µ,µ′(x)φ(µ)

i (x)∇φ(µ)
j (x)dx.

The right-hand side is given by

f = f(d+1) ⊗ f(d) ⊗ · · · f(1) + h(d+1) ⊗ h(d) ⊗ · · · ⊗ h(1).

Where (f(µ))i =
∫
Ω(µ) g(µ)(x)φi(x)dx, (h(µ))i =

∫
Ω(µ) u

(µ)
0 (x)φi(x)dx, f(d+1) =(

(
∫
I g

(d+1)(t)fi(x)dt)i=0,...,KF

0

)
, h(d+1) =

(
(0, . . . , 0)T

1

)
. The CP-decomposition of the

operators allows for the storage in H-Tucker format. For its usage in the reduced basis method,
the affine decomposition has to be taken into account. If B =

∑Qb
q=1 θ

b
q(µ)bq(u, v) is the affine

decomposition with respect to the parameter µ, each component bq(u, v) again has its tensor
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decomposition as described above. The combination of both leads to a double sum

B =
Qb∑
q=1

θbq(µ)
T

(q)
b∑
i=1

B
q,(d+1)
i ⊗ · · · ⊗Bq,(1)

i

where we collect the varying tensor components of the respective operator components in the
shortened notation B

q,(j)
i . For the solution and the test function we assume tensorised basis

functions and receive u(x) = u1(x1)u2(x2) as well as v(x) = v1(x1)v2(x2) for x = (x1, x2) ∈
R2. The H-Tucker rank possibly increases when we solve the system for a given parameter by
reconstructing the operator out of precomputed components:

Example 4.3.2. Consider the following diffusion ∇ ·
(
µx1 + 2 0

0 0

)
∇u(t, x) for x ∈ Ω ⊂ R2.

Obviously α =
(
µx1 + 2 0

0 0

)
is separable as required. The weak formulation for that part details

in

∫
Ω

((
µx1 + 2 0

0 0

)(
u1
x1(x1)u2(x2)
u1(x1)u2

x2(x2)

))T (v1
x1(x1)v2(x2)
v1(x1)v2

x2(x2)

)
dx

=
∫

Ω1
(µx1 + 2)u1

x1(x1)v1
x1(x1)dx1

∫
Ω2
u2(x2)v2(x2)dx2.

This part would lead to an H-Tucker representation of rank one. Because of the affine decompo-
sition we have to separate the integral into two parts, to be able to separate the actual parameter
µ from the integral that has to be precomputed offline:

µ

∫
Ω1
x1u

1
x1(x1)v1

x1(x1)dx1

∫
Ω2
u2(x2)v2(x2)dx2 + 2

∫
Ω1
x1u

1
x1(x1)v1

x1(x1)dx1

∫
Ω2
u2(x2)v2(x2)dx2.

Storing the two components separately in H-Tucker format, the reconstructed operator has an
increased rank of two.

Note that the application of the BPX-preconditioners introduced in Section 4.2.3 in the normal
equation BTN−1B = BTN−1f further increases the rank. Of course the higher the ranks get the
less efficient is the representation in low rank tensor format. We come back to this point in our
numerical experiments.

4.3.2. Offline Phase with H-Tucker

There are two main reasons to use the H-Tucker format in the offline phase:

• the computational effort is reduced
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• higher space dimensions can be achieved.

In this section we present two approaches.

The first approach is mainly to handle the first point for 1D or 2D problems. The Crank Nicolson
time stepping scheme is used for the actual solution process. The solution uN ∈ RJ1×···×Jd×KE

is transformed in H-Tucker format via truncation. All further precomputations and the greedy
procedure are performed in low rank tensor format.

The second approach is appropriate for higher dimensional problems. The minimal residual
problem is to be solved. The operators are given in H-Tucker format and an iterative solver is used
for the solution process. The solution is a tensor in H-Tucker format. Again all precomputations
as well as the greedy search are performed in low rank tensor format.

Both approaches have one essential drawback. The snapshot reproducibility fails in general if we
apply the truncation operator as well as if we use an iterative solver. This has to taken care of
in the greedy procedure. In both cases, the approximation error between the detailed solution
uN ∈ XN and its H-Tucker representative uT ∈ H has to be bounded and the greedy tolerance
chosen accordingly. Further, the operator that corresponds to the originally used norm ‖ · ‖X
(resp. ‖ · ‖X,bar, cf. Equation (2.2.2) and (2.2.20)) is not given in CP decomposition. Same holds
for the dual norm operator required for the residual. We therefore replace ‖ · ‖X by ‖ · ‖M and
‖ · ‖Y′ by ‖ · ‖N ′ . Details of the norm equivalences are subject of Section 4.3.2.1.

Additionally we introduce a slightly different version of the BPX-preconditioner – as it was
proposed in [AT14, (2.26)]:

N ∗±(f ⊗ v, h) := (f ⊗
∑
`

q±2
` Q`v, h)

for (f ⊗ v, h) ∈ YN . The preconditioner N ∗ is still a norm inducing operator and – in contrary
to N – also applicable to the finite element discretisation that leads to the Crank Nicolson time
stepping scheme.

4.3.2.1. Norm Equivalences

The norm equivalences have to be taken care of separately. We have three of them:

(i) ∃ 0 < dM ≤ DM such that dM‖ · ‖M ≤ ‖ · ‖X ≤ DM‖ · ‖M

(ii) ∃ 0 < dN ≤ DN such that dN ‖ · ‖N ≤ ‖ · ‖Y ≤ DN ‖ · ‖N

(iii) ∃ 0 < dN ∗ ≤ DN ∗ such that dN ∗‖ · ‖N ∗ ≤ ‖ · ‖Y ≤ DN ∗‖ · ‖N ∗ .
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Notice further [And14, Eq. (35)], that the left-hand side given by the normal equation BTN−1B,
2.3.1 (3), is a symmetric positive-definite operator on XN that satisfies

(iv) βNdMdN ‖ · ‖M ≤ ‖ · ‖BTN−1B ≤ CbDMDN ‖ · ‖M.

The actual value of the constants depend on the choice of the Hilbert spaces V and H. The
value is deduced from the norm equivalences stated in Equation (4.2.7) and the corresponding
estimates for N given in [And12, Sec. 6.2.1]. We receive

dM = min{dL2(I)dV , dH1(I)dV ′}, DM = max{DL2(I)DV , DH1(I)DV ′}

dN = min{dL2(I)dV , dH}, DN = max{DL2(I)DV , DH}

dN ∗ = min{dV , dH}, DN ∗ = max{DV , DH}.

Remark 4.3.3. The improved quasi-optimality estimate of Theorem 2.2.23 stated in Remark
2.2.25, still holds true in ‖ · ‖M,

‖u− uN ‖M ≤
CNb
βN

DNDM
dNdM

inf
wN∈XN

‖u− wN ‖M.

A change of norms further influences the error bound since

‖u− uN ‖M ≤
1
βN

1
dNdM

‖b(u, ·)− f(·)‖N ′ .

In particular, ‖u− uN ‖X ≤ 1
βN

1
dN
‖b(u, ·)− f(·)‖N ′ . If the inf-sup constant is directly computed

for ‖ · ‖M and ‖ · ‖N , we can simply measure the error by ‖ · ‖M. Using N ∗ instead of N gives
the same results for the constants dN ∗ and DN ∗ instead of dN and DN respectively.

4.3.2.2. Crank Nicolson Scheme with Truncation

As long as the space dimensions allow, we can further compute the solution using the Crank
Nicolson time stepping scheme. The H-Tucker format is than used to compute the residual
norms and to perform all required precomputations in the RB offline phase. In this case we
might be interested in the originally introduced norms so the norm equivalences have to be taken
into account.

In Algorithm 4.3.1 the steps of the offline phase are detailed using the Crank Nicolson time
stepping scheme with transformation of the solution into H-Tucker format.
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Algorithm 4.3.1 Greedy Algorithm with CN Scheme and Truncation
Input: Dtrain ⊂ D training set, tol > 0 RB target tolerance.
Output: ΞNX RB basis.
1: For µ1 ∈ Dtrain compute uN (µ1) → T (uN (µ1)) = uT (µ1) = u1, Ξ1

X = {u1}.
2: while maxµ∈Dtrain ∆N (µ) > tol do
3: Compute uN (µi) for maximising µi.
4: ui := T (uN (µi)).
5: ΞiX := Ξi−1

X ∪ {ui}.
6: end while
7: N := i.

Truncation Truncation can be performed regarding an absolute or a relative error bound,
[Tob12, Rem. 3.6]:

‖x− xT ‖2 ≤ εabs
‖x− xT ‖2 ≤ εrel‖x‖2.

Here, ‖ · ‖2 denotes the Frobenius norm. For t ∈ Td \ {troot} the rank rt of xT is chosen such that√∑nt
i=rt+1 σ

2
t,i ≤

εabs√
2d−3 respectively ≤ εrel‖x‖2√

2d−3 . The quantities σt,i are the singular values of the
t-mode matricisation x(t) of x, cf. (4.2.3).

Orthonormalisation We have seen in the numerical experiment in Section 2.5 that orthonormal-
isation is important for numerical stabilisation. A standard Gram Schmidt algorithm requires
a ridge walk between truncation and orthonormality, [Hac12b, Sec. 13.3.6]. We follow the
same strategy as presented in Section 3.2.2.4 for the online phase. We compute the Gramian
[(uiT , u

j
T )X]i,j=1,...,N for the reduced basis {u1, . . . , uN} and apply an SVD. Here, the resulting

preconditioner for the RB system is applied directly to the operator components in the offline
phase. Online, we just transform the coefficients back such that the solution uN is given w.r.t.
the non-orthonormalised RB basis.

Greedy Tolerance Even though we could in theory approximate the Crank Nicolson solution
uN ∈ XN exactly as tensor, the resulting ranks get infeasibly large. By truncation of uN to
uT the Petrov-Galerkin orthogonalisation is not valid any more, i.e. the already mentioned
snapshot reproducibility fails as b(uT , v;µ) 6= f(v) for some v ∈ YN . To receive an accurately
working greedy procedure the greedy tolerance has to be chosen very carefully in accordance to
the truncation accuracy.

Proposition 4.3.4. For a given parameter µ ∈ D ⊂ Rd, d ∈ N, let uN (µ) ∈ XN be the detailed
solution, solving

b(u, v;µ) = f(v;µ) ∀ v ∈ YN (4.3.1)
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for b ∈ L(X,Y′) and f ∈ Y′. Let uT (µ) ∈ XN be the corresponding reduced basis element,
T (uN (µ)) = uT (µ) ∈ H. Let the discrete problem formulation be well-posed, i.e., the inf-sup
condition holds true. Denote by εX(µ) the truncation error measured in the norm ‖ · ‖X, i.e.,

‖uN (µ)− uT (µ)‖X ≤ εX(µ).

Then, the error in the greedy procedure is bounded as follows

‖uN (µ)− uN (µ)‖X ≤
CNb (µ)
βN (µ) ε

X(µ).

Proof. In a first step we use the best approximation result of the Petrov-Galerkin projection. As
uT (µ) is in XN the claim follows:

‖uN (µ)− uN (µ)‖X ≤
CNb (µ)
βN (µ) inf

u∈XN
‖u− uN (µ)‖X ≤

CNb (µ)
βN (µ) ‖u

T (µ)− uN (µ)‖X.

Corollary 4.3.5. With the same assumptions, the standard error estimator ∆N (µ) =
1
βN
‖b(uN (µ), ·;µ)− f(·;µ)‖Y′ is bounded by

∆N (µ) ≤
(
CNb (µ)
βN (µ)

)2
εX(µ).

Proof. We consider the dual norm of the residual only. The first inequality is given by bounded-
ness of the bilinear form b(·, ·), the second is the application of Proposition 4.3.4.

‖b(uN (µ), ·;µ)− f(·;µ)‖(YN )′ ≤ CNb (µ)‖uN (µ)− uN (µ)‖X ≤
(CNb )2(µ)
βN (µ) εX(µ).

With the presented estimates the greedy tolerance and the truncation tolerance can be chosen
accordingly. Performing e.g. a greedy procedure with given tolerance tol using the standard
norms ‖ · ‖X and ‖ · ‖(YN )′ , we have to ensure that εX(µ) ≥ ‖uN (µ)− uT (µ)‖X satisfies

tol ≥ CNb (µ)
βN (µ) ε

X(µ) ⇐⇒ εX(µ) ≤ βN (µ)
CNb (µ)

tol.

Remark 4.3.6. As the associated Riesz operators of ‖ · ‖X and ‖ · ‖Y are not available in CP
decomposition, a change of norms is required for an efficient computation. For the error measured
in ‖ · ‖M the truncation accuracy is given by εM(µ) = βN (µ)

γN (µ)
dM

DM
tol.
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Given a tolerance for a weak greedy procedure using the error estimator ∆N (µ), the truncation
has to be performed w.r.t. a very small tolerance because of the appearance of the square in the
estimate.

As we have the choice what kind of truncation tolerance we consider in the first place, application
of the following corollary might be more sensible.

Corollary 4.3.7. Let the assumptions of Proposition 4.3.4 be valid. For ‖uN − uT ‖M ≤ εM(µ)
the true error in ‖ · ‖X is bounded by

‖uN (µ)− uN (µ)‖X ≤
CNb (µ)
βN (µ)

1
dM

εM(µ).

Of course the operator N can be replaced by N ∗ in all considerations.

4.3.3. Minimal Residual Approach with Iterative Solver

The second possibility is to use an iterative solver that directly solves the parabolic PDE in low
rank tensor format. For higher space dimensions this is mandatory as the Crank Nicolson scheme
separates the temporal and spatial dimensions only. The solution is approximately given w.r.t.
some prefixed tolerance and the snapshot reproducibility fails in the greedy search. A main task
is to adjust the iterative solver such that the tensor ranks stay feasibly small and the quality of
the approximated solution is suitable for the application in the greedy search.

Solving linear systems in H-Tucker format was subject of [Tob12, Sec. 4] where further infor-
mation on low rank iterative solvers is provided. The method of choice is the low rank tensor
variant of the CGNR method proposed in [Tob12, Sec. 5]. The CGNR method is the Conjugate
Gradient (CG) method applied on the system of normal equation

ATAx = AT b

associated to the linear system Ax = b for non-symmetric A, cf. [Saa03, Ch. 8]. The algorithm
is adapted such that the truncation operations are taken into account, cf. Algorithm 4.3.2. The
residual ‖BuT − f‖N−1 is computed in every iteration step and the algorithm stops if it achieves
the desired tolerance. As the iterative method improves the solution in every time step by adding
the new information, the tensor rank of the solution grows in every step. The truncation operator
has to be applied, cf. line 4 in Algorithm 4.3.2. A truncation tolerance that is chosen too large
may prevent a convergence towards the solution. In contrary, large ranks become unfeasible at
some point. Applying the preconditoners increases the ranks again. In the actual computations,
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Algorithm 4.3.2 Preconditioned CGNR for tensors
Input: B, f , preconditionerM−1, N−1, tolerance tol.
Output: Solution uT in H-Tucker format.
1: u0 = 0, R0 = f , S0 = BT (N−1(R0)), P0 =M−1(S0), γ0 = 〈B(P0),B(P0)〉N−1 , k = 0.
2: while ‖R̃0‖N−1 > tol do
3: αk = 〈Sk, Pk〉/γk
4: ũk+1 = uk + αkPk, uk+1 ← T (ũk)
5: R̃k+1 = f − Buk+1, Rk+1 ← T (R̃k+1)
6: S̃k+1 = BT (N−1(Rk+1)), Sk+1 ← T (S̃k+1)
7: Zk+1 =M−1(Sk+1)
8: βk+1 = −〈B(Zk+1),B(Pk)〉N−1/γk
9: P̃k+1 = Zk+1 + βk+1Pk, Pk+1 ← T (P̃k+1)
10: γk+1 = 〈B(Pk+1,B(Pk+1)〉N−1

11: k = k + 1
12: end while
13: uT := uk.

the preconditioners are approximated by operators of lower rank. We evaluate the error in ‖ ·‖M
and the residual in ‖ · ‖N ′ .

Proposition 4.3.8. Recall the setting of Proposition 4.3.4 with generalised test space YÑ and
N 6= Ñ . Let ‖uT (µ)− uN (µ)‖BTN−1B ≤ ε, then

‖uN (µ)− uN (µ)‖M ≤
CNb (µ)

(βN (µ))2 ε.

Here, the continuity constant CNb (µ) := C
(N ,Ñ )
b (µ) and the inf-sup constant βN (µ) := β(N ,Ñ )(µ)

are those w.r.t. ‖ · ‖M and ‖ · ‖N−1 .

Proof. Analogous to the proof of Proposition 4.3.4 we receive,

‖uN (µ)− uN (µ)‖M ≤
CNb (µ)
βN (µ) ‖u

T (µ)− uN (µ)‖M

Corollary 4.3.9. Recall the setting of Proposition 4.3.8. Then

‖uN (µ)− uN (µ)‖BTN−1B ≤
(
CNb (µ)
βN (µ)

)2
ε.
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Proof. As before,

‖uN − uN ‖BTN−1B ≤ CNb (µ)‖uN (µ)− uN (µ)‖M ≤
CNb (µ)2

βN (µ) ‖u
T (µ)− uN (µ)‖M

≤ CNb (µ)2

βN (µ)2 ‖u
T (µ)− uN (µ)‖BTN−1B.

For given greedy tolerance tol w.r.t. the residual norm, the CGNR solver has to satisfy the

approximation tolerance ε ≤
(
βN (µ)
CN
b

(µ)

)2
tol.

4.4. Numerical Experiments

We construct a reduced basis for a 2D diffusion-convection-reaction problem using the H-Tucker
storage format in the offline phase. All matrix-matrix, matrix-vector and scalar multiplica-
tions with matrices are performed in H-Tucker format using the provided functions of the H-
Tucker toolbox [KT12], e.g. apply_mat_to_mat and apply_mat_to_vec. Same holds for addi-
tion and (scalar) multiplication of tensors in H-Tucker format. For tensor truncation the function
truncate_std is used – provided again in the H-Tucker Toolbox.

4.4.1. Problem Formulation

We solve the following problem:

u̇− α∆u+ β∇u+ γu = 0, on I × Ω = [0, 0.3]× (0, 1)2

u(0, ω) = sin(2πω1) sin(2πω2) ∀ω = (ω1, ω2) ∈ Ω

u = 0 on I × ∂Ω.

The parameter domain is given by µ = (α, β, γ) ∈ D = [0.5, 1.5]× [0, 1]× [0, 1]. The space-time
variational formulation is well-posed for V = H1

0 (Ω), H = L2(Ω) as α > 0. We apply a standard
finite element discretisation in space, using linear hat functions in both spatial directions. In
the temporal domain we use linear hat functions in both, ansatz and test space. The grid used
for the temporal test space is refined w.r.t. the grid of the temporal ansatz space. The discrete
system is inf-sup stable, cf. Section 2.2.2.3.
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4.4.2. Truth Solver

We apply the presented CGNR algorithm as truth solver. The truncation tolerance as well
as the space and time discretisation level have an impact on the solver convergence. Consider
the parameter µ = (1, 0, 0) ∈ D. The CP decomposition of the left-hand side operator has
three summands. The first covers the time derivative of the solution, the two other belong
to the diffusion. The corresponding H-Tucker representation is therefore of rank 3. We solve
the PDE for different scenarios given in Table 4.4.1. We run all scenarios for 100 iterations
without restriction on a stopping tolerance ε to compare the achieved solution qualities. The
operator M−1 is represented by a truncated H-Tucker representation as proposed in [AT14,
Sec. 3.3]. We do not truncate the H-Tucker representation of the operator N−1 as this is
the residual norm measuring the error in the reduced basis offline phase. The CGNR residual
‖BN−1Bu − BN−1f‖M−1 (cg-norm) is monitored additionally as it indicates possible reasons
for stagnation in the convergence. In Scenario 1, the convergence error of the CGNR algorithm

Scenario 1 J1 = J2 = 23 KE = 23,KF = 24 εrel = 10−2 max_rank = 50
Scenario 2 J1 = J2 = 23 KE = 23,KF = 24 εrel = 10−6 max_rank = 50
Scenario 3 J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−2 max_rank = 50
Scenario 4 J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−6 max_rank = 50
Scenario 5 J1 = J2 = 29 KE = 29,KF = 210 εrel = 10−2 max_rank = 50
Scenario 6 J1 = J2 = 29 KE = 29,KF = 210 εrel = 10−4 max_rank = 50

Table 4.4.1.: Scenarios 1–6 for the CGNR solver.

stagnates after about 10 iterations for both norms, the residual and the cg-norm, cf. Figure
4.4.1 (a). By increasing the relative truncation tolerance in Scenario 2, the error measured
in the cg-norm decreases further down to 10−16, cf. Figure 4.4.1 (b). The residual error still
stagnates on the same level as in Scenario 1. As the cg-error decreases, the stagnation of the
residual error is caused by the coarse spatial and temporal discretisation. The discretisation
refinement in Scenario 3 brings the residual error down to 10−2, cf. Figure 4.4.1 (c). The value
of the cg-norm reaches a level below 10−3. Increasing the truncation tolerance in Scenario 4
accelerates again the error measured in the cg-norm but does not affect the residual error, cf.
Figure 4.4.1 (d). The residual error stagnates on the approximation level until the spatial and
temporal discretisation is refined in Scenario 5 and 6, cf. 4.4.1 (e) and (f).

For a second parameter µ = (1, 0.5, 0.5) we repeat the computations for Scenario 3 and 5
in different variations, cf. Table 4.4.2. The H-Tucker representation of the left-hand side
operator is now of tensor rank 6. Because of the higher operator rank the procedure is not
computationally feasible anymore for performing Scenario 4 directly. Further, the higher rank
affects the convergence of the CGNR solver: The residual error in Scenario 3 reaches again a
tolerance of 10−2 but the absolute value of 0.0085 is worse in comparison to the results for this
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(d) Scenario 4.
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(e) Scenario 5.
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(f) Scenario 6.

Figure 4.4.1.: Convergence of the CGNR solver.

104



4. H-Tucker Low Rank Tensor Format in the Reduced Basis Method

scenario for µ = (1, 0, 0), cf. Figure 4.4.1 (c). In Scenario 3b the relative truncation tolerance
is increased to 10−4 and the maximal tensor rank decreased to 10 at the same time. The
truncation algorithm tries to reach an approximation accuracy of 10−4 allowing for at most
a tensor of rank 10. The residual error improves, cf. Figure 5.4.5 (b). An increasing of the
maximal rank to 20 in Scenario 3c does not significantly change the results, cf. Figure 5.4.5 (c).
The finer spatial and temporal discretisation in Scenario 5 does not improve the approximation
quality significantly, cf. Figure 5.4.5 (d). Again increasing the relative truncation tolerance to
10−4 and decreasing the maximal rank to 10 in Scenario 5b allows the residual error to go down
to 10−3.

Scenario 3 J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−2 max_rank = 50
Scenario 3b J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−4 max_rank = 10
Scenario 3c J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−4 max_rank = 20
Scenario 5 J1 = J2 = 29 KE = 29,KF = 210 εrel = 10−2 max_rank = 50
Scenario 5b J1 = J2 = 29 KE = 29,KF = 210 εrel = 10−2 max_rank = 10

Table 4.4.2.: Scenarios 3, 3b, 3c and 5, 5b for the CGNR solver.

4.4.2.1. Greedy Procedure and Online Phase

Evaluating the convergence studies of the previous section, we set J1 = J2 = KE = 26 and
KF = 27. The relative truncation tolerance is given by ε = 10−4 and we allow a maximal rank of
50, i.e. we decide for Scenario 3b. We expect the CGNR solver to reach a tolerance of 0.005. We
set the greedy tolerance to tol = 0.008 adding a small safety buffer. Note, that this value does
not include the inf-sup and continuity constants but nevertheless leads to satisfying results. The
greedy procedure follows the standard way. We restrict to the error evaluation in the residual
norm as it is the same norm computed in the truth solver.

The convergence of the RB approximation error is displayed in Figure 4.4.3 (a). Online, we test
the RB approximation for two test sets of the parameter domain, cf. Figure 4.4.3 (b) and (c).
The greedy tolerance is not violated in the online procedure. In fact, the RB approximation of a
solution for a parameter in the sample set is identic to the associated CGNR solution. We even
observe that the RB approximations are of possible better quality than the CGNR solutions.

Offline we compute a problem of high dimension N = 262626 = 262, 144. Online, we
solve a small linear equation system of dimension N = 7. The storage capacities for the
snapshots are capable as they are stored in their low rank tensor representation. For a
parameter that leads to an operator with tensor representation of rank three, the CGNR solver
takes about 10 seconds in mean to converge, cf. Table 4.4.3. The RB approximation, i.e. the RB
simulation and the reconstruction step, takes 0.005 seconds. The reduction is of order 2000:1.
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Figure 4.4.2.: Convergence of the CGNR solver.
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Figure 4.4.3.: Greedy error decay and residual errors in the online application.
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For an operator with tensor representation of rank 6 the CGNR solver takes 70 seconds in mean
to converge. The RB solution is still given by solving a 7 × 7 linear equation system and takes
as before 0.005 seconds in mean. So, the reduction is of order 14000:1. The computational times
of the RBM are significantly shorter and we can achieve even better approximation results.

CGNR solver [sec] RB approximation [sec]
µ = (µ1, 0, 0) 10.0529 0.0053

µ = (µ1, 0.5, 0.5) 73.4399 0.0053

Table 4.4.3.: The mean of computational times: duration of the CGNR procedure vs. duration
of the RB simulation and solution reconstruction.

4.4.3. Further Remarks

We have shown that a low rank tensor format is in general applicable in the offline phase of
the RBM. The disadvantage is the requirement of an iterative solver where – depending on the
application – the approximation quality may not reach the required tolerance for the use as truth
solution in the RBM: For operators with more than a diffusion term, the number of summands in
the CP decomposition further increases. The ranks increase very fast in the iterative solver up to
a magnitude where they are computationally not feasible any more. The operator ranks therefore
set a limit to the method. Despite that, the approximation quality in the online phase of the
reduced basis method is not bounded by the approximation quality of the iterative solver. In
fact, the reduced basis approximation can result in a better approximation of the actual discrete
system.
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5.1. Introduction

The application of model reduction methods in finance can be extremely beneficial. In option
pricing a fast pricing procedure is of advantage not only for pricing itself but especially in the
model calibration process to speed up the therein used numerical optimisation. Pricing options
in terms of partial differential equations has been proposed by F. Black and M. Scholes [BS73] as
well as S. Heston [Hes93]. Even though the standard models provide explicit solution formulas,
numerical methods are needed for more sophisticated models, pricing American, barrier or basket
options, cf. [MNS05, San04]. Various numerical methods have been applied on PDEs derived
from option pricing models – from finite differences or finite element methods to sparse grid
and adaptive wavelet discretisations for the numerical solution, cf. [MNS05, MPS04, HRSW13,
WAW01, San04, Kes13]. Standard numerical schemes are computational expensive especially for
stochastic volatility or multivariate option pricing models where the corresponding PDE space
dimensions get larger than one. Therefore, model reduction techniques are used. The proper
orthogonal decomposition was applied by [SS13, SS08] in the calibration and pricing process of
Lévy driven jump diffusion models solving the underlying PIDEs. Here, the original PIDE is
reformulated in a so-called Dupire-type formulation, cf. [Dup94], for the calibration process to
avoid expensive recomputations of the PIDE if strike prices differ. The new problem formulation
is solved once based on a time stepping scheme for the starting parameter values used in the
calibration process and a POD basis is computed for these solutions at every time step. The
POD basis is then used in the calibration process, i.e. the solution of the small dimensional POD
system replaces the finite element solver. RB-like techniques have been used to price and calibrate
(basket and american) options given in terms of P(I)DEs, cf. [Pir09, Pir12, CLP11, PGB15].
Using the reduced basis method, a small dimensional linear system can again be solved in the
calibration process instead of using e.g. finite elements. As the model reduction takes place
w.r.t. the parameters, we can ensure a certain approximation quality of the RB solution. A
standard RBM approach for parabolic PDEs based on a time-stepping scheme has been applied
for American option pricing in [HSW12, BHSW15]. Here, the Dupire-type reformulation is not
considered and the RB is constructed for only one fixed payoff with one fixed strike price. The
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constructed RB can only be used in pricing for this specific setting. We applied the space-
time RBM for parameter functions on the Heston model, [MU14]. Here, we do not have to
reformulate the problem in a Dupire-type formulation as the payoff of the option is considered
as the parameter function. The constructed reduced basis can thus be used in a calibration
process, for different strike prices, different time to maturities and – in contrast to the Dupire-
type reformulation – even for different type of options.

5.2. Preliminaries

5.2.1. Weighted Sobolev Spaces

The solution of a PDE induced from an option pricing model is in general defined on an un-
bounded domain. Weighted Sobolev spaces cover the boundary behaviour at infinity using so-
called weights. We call σ ∈ C∞(Ω) a weight and define the weighted Sobolev space Lp(Ω, σ)
by

Lp(Ω, σ) = {u ∈ Lloc
1 (Ω) : uσ ∈ Lp(Ω)}.

The associated norm is given by

‖u‖p,σ = (
∫

Ω
|u(x)σ(x)|pdx)1/p. (5.2.1)

Setting σ(x) ≡ 1 we obtain the classical Lebesgue spaces. Weighted Sobolev spaces are a gener-
alisation of the classical ones. In particular in the case p = 2 we set ‖ · ‖0,σ := ‖ · ‖2,σ and define
the canonical scalar product on L2(Ω, σ) by

(u, v)0,σ =
∫

Ω
σ2(x)u(x)v(x)dx. (5.2.2)

Thus, L2(Ω, σ) is a Hilbert spaces as well as H1(Ω, σ) := {u ∈ Lloc
1 : uσ,Duσ ∈ L2(Ω)} equipped

with the norm ‖ · ‖1,σ given by

‖u‖1,σ = (
∑
|α|≤1

‖Dαu‖p0,σ)1/p. (5.2.3)

Obviously H1(Ω, σ) ↪→ L2(Ω, σ) by definition. For a deeper insight in the theory of weighted
Sobolev spaces we refer to the book of A. Kufner [Kuf80].

5.2.2. Option Pricing Models

We state the standard definition of plain vanilla options.
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Definition 5.2.1. [BS73, Introduction] An option is a security giving the right to buy or sell
an asset, subject to certain conditions, within a specified period of time. An ‘American’ option
is one that can be exercised at any time up to the date the option expires. A ‘European’ option
is one that can be exercised only on a specified future date. The price that is paid for the asset
when the option is exercised is called the ‘exercise price’ or ‘strike price’. The last day on which
the option may be exercised is called the ‘expiration date’ or ‘maturity date’.

The right to exercise the option is not an obligation and reflected in the option price. The writer
of the option sells the holder the option. The underlying is one or a basket of risky asset(s) like
stocks or indexes.

There are two basic types of options, the call option gives the holder the right to buy the
underlying for the agreed strike price K. A put option gives the holder the right to sell the
underlying to the writer of the option for the strike price K. So called exotic options vary in
their payoff and underlying structure.

In standard option pricing models the price-dynamics of the underlying(s) are given as real valued
stochastic processes. In stochastic volatility models, the volatility as well as possible correlations
of the underlying are modelled as stochastic processes as well, cf. [Hes93, DFGT07].

In the next proposition a version of the Feynman-Kac formula is presented that provides a link
between stochastic differential equations (SDEs) and (deterministic) PDEs that we examined so
far in the present thesis.

Proposition 5.2.2. cf. [Øks03, Thm. 8.2.1] Let X be a stochastic process, following the Itô
diffusion

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

with independent Wiener processes Wt = (W 1
t , . . . ,W

n
t ) and initial condition X0 = x ∈ Rn. For

p ∈ C2
0(Rn) and interest rate r the conditional expected value u(x, 0) = E(e−rT p(XT )|X0 = x)

can equivalently be computed solving the following PDE,

d

dt
u+

n∑
i=1

µi(x, t)uxi + 1
2

n∑
i,j=1

[σT (x, t)σ(x, t)]i,juxixj − r(x, t)u = 0

u(x, T ) = p(x).

Remark 5.2.3. For a short introduction to stochastic analysis we refer to Appendix A.2.

Remark 5.2.4. A transformation in time given by t 7→ T − t allows to solve the forward equation
with payoff function p as initial condition.

Remark 5.2.5. The extension of standard diffusion models to so called jump-diffusion models
provides more flexibility in the price dynamics. In the one dimensional SDE, the diffusion part
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is replaced by a Lévy process, cf. [CT03]. Again, a Feynman-Kac formula deduces an associated
deterministic differential equation, a partial integro differential equation (PIDE). The additional
integral term represents the jump part. The integral term requires special treatment in the
numerical scheme: a standard finite element discretisation leads to densely populated and ill-
conditioned stiffness matrices, cf. [MNS05, Sec. 1].

5.2.3. PDE based Methods in Option Pricing

Numerical schemes work either on the given stochastic or the induced partial differential equation.
Two well-known methods are Monte Carlo methods and Fourier Pricing. The first works on the
underlying SDE, the second uses the corresponding characteristic function.

Standard numerical schemes are used to solve the associated PDE instead of the SDE. Finite
differences and finite element methods have been applied e.g. in [San04, WAW01]. Further,
wavelet methods are applied if an additional integral term appears, cf. [MNS05, MPS04, Hil09,
Kes13]. For a general overview we refer to [HRSW13]. A main task is the treatment of the
underlying unbounded domain. A standard numerical scheme requires a bounded domain and
imposed boundary conditions.

Localisation In a localisation process, the unbounded domain is truncated and suitable bound-
ary conditions are imposed. The boundary conditions are chosen in accordance to the underlying
model and in particular the initial value. The initial value of the PDE, i.e. the payoff function of
the considered option, has a major impact on the solution. As our goal is to test the numerical
method for parameter functions, especially the initial value is a-priori unknown. Therefore, the
boundary behaviour of the PDE solution cannot or not entirely be derived. A workaround are
procedures used in option pricing for the solution of PIDEs where the integral operator as global
operator requires specific treatment. Weighted Sobolev spaces are imposed for a full description
of the solution behaviour towards infinity. Hence, the solution at every time point t ∈ (0, T ) is
an element of a weighted Sobolev space with suitable weight σ, cf. Section 5.2.1.

For the numerical solution, we consider the PDE with log-transformations in all variables. The
domain Rn is truncated to a bounded domain ΩR = (ΩR1 , . . . ,ΩRn) ⊂ Rn, R = (R1, . . . , Rn),
and ΩRi := (−Ri, Ri). Let u denote the solution of the associated PIDE and p the payoff
function. In the PIDE literature [MNS05, MPS04, Hil09, Kes13], the PIDE associated with the
excess-to-payoff U = u − p is solved instead of the original PIDE. The advantage is that the
access to payoff tends to zero for x to infinity, i.e. U → 0 for |x| → ∞, [MNS05, Sec. 2.3.2].
Thus, homogeneous Dirichlet boundary conditions are naturally imposed. The P(I)DE of the
excess-to-payoff U ∈ X for V = H1

0 (R) has an initial value that equals zero and a right-hand
side given by the operator A applied on the payoff p. We do not follow this approach as for the
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application of the RBM for parameter functions we prefer the parameter function to be in the
initial condition, cf. Chapter 3.

Infinite Elements Infinite elements for the boundary treatment in option pricing models were
proposed by S. Sanfelici in [San04]. This is a reasonable approach to avoid possibly very large
domains ΩR that are required to ensure a certain approximation quality of the solution. If no log-
transformation of the underlying variables is applied, the domain of the underlying price process
is naturally bounded on the positive real numbers. A weighted Sobolev space can be introduced
to cover the behaviour of the underlying price process towards infinity, cf. [San04]. Here, the
weight is piecewise defined; it equals one on the first part of the domain, i.e. on ΩR ∩Rn+ and is
polynomial decreasing on Rn+ \ ΩR. A standard finite element discretisation can be applied on
the bounded part of the domain. For the unbounded part, the infinite elements are used.

5.3. Black-Scholes Model

5.3.1. Model

The Black-Scholes model was introduced in [BS73] and is commonly used for option pricing. In
terms of PDEs it is a model of space dimension one and provides an explicit solution formula.
The model is easily extendible to stochastic volatility as well as jump-diffusion models. We
assume a Black-Scholes market, i.e. an arbitrage and frictional cost free market with one riskless
and one risky asset where the asset price follows a geometric Brownian motion and the interest
rate and the volatility are constants over time. For a full definition we refer to [Sey09, Ass. 1.2].
Let (Ω,F ,P) be a probability space. The spot price Bt of the riskless asset at time t follows an
ordinary differential equation

dBt = rBtdt

with B0 = B being the current spot price and riskless constant interest rate r > 0. The price St
at time t of the risky asset is given by an SDE

dSt = µStdt+ σStdWt, S0 = S,

that is driven by a standard Brownian motion Wt, [Sey09, Ass. 1.2, Model 1.13].

For pricing, we change to the risk neutral evaluation with the risk neutral measure Q, cf. Remark
A.2.6. The stock price follows again a geometric Brownian motion [Sey09, Sec. 1.7.3]

dSt = rStdt+ σStdWt.
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The associated Black-Scholes equation is well known.

Proposition 5.3.1. [Sey09, Def. 1.1] For a financial product with payoff p at the final time
point T the discounted option price u(t, St) = EQ(e−r(T−t)p(ST )|Ft) is equivalently given as the
solution of

d

dt
u+ σ2

2 s
2 d

2

ds2u+ rs
d

ds
u− ru = 0 in (0, T )× (0,∞)

u(T, s) = p(s) in (0,∞).

To overcome the degeneracy in S = 0 we consider the logarithmic return price x = ln(s). Further
we perform a transformation in time, t 7→ T − t. The Black-Scholes equation transforms to

d

dt
u− σ2

2
d2

dx2u− (r − σ2

2 ) d
dx
u+ ru = 0 in (0, T )× R

u(0, x) = p(ex) in R.

We have not yet specified the payoff function p.

Example 5.3.2. (i) For a European call option with strike K and time to maturity T , the
payoff is given by p(s) = max(s−K, 0).

(ii) For a European put option, the payoff is given by p(s) := max(K − s, 0).

In fact, a payoff function is not in L2(R) but may polynomially grow for |s| → ∞ resp. expo-
nentially for the log-transformed payoff and |x| → ∞.

5.3.2. Space-Time Variational Formulation

We introduce the space-time variational formulation of the Black-Scholes equation. As already
mentioned the payoff function is in general not an element in L2(R). Hence, we introduce
weighted Sobolev spaces to catch a possible exponential growth at infinity, following [MPS04].
We define the weighted space H1(R, σ) for σ(x) = eκ|x| with κ ∈ R by

H1
κ(R) := {u ∈ Lloc

1 (R) : ueκ|x|, u′eκ|x| ∈ L2(R)}

and L2,κ(R) := {u ∈ Lloc
1 (R) : ueκ|x| ∈ L2(R)}. We restrict to payoff functions p being an

element in L2,−κ(R) for fixed κ > 1. For u ∈ X, v = (v1, v2) ∈ Y given by V = H1
−κ(R) and

H = L2,−κ(R), cf. Section 2.2.1, and by integration by parts, the left-hand side of the space-time
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variational formulation reads

b(u, v) =
∫

(0,T )

∫
R
u̇(x, t)v1(x, t)e−2κ|x|dx− (r − σ2

2 )
∫
R
∇u(x, t)v1(x, t)e−2κ|x|dx

+ σ2

2

∫
R
∇u(x, t)∇v1(x, t)e−2κ|x| − 2κsgn(x)∇u(x, t)v1(x, t)e−2κ|x|dx

+ r

∫
R
u(x, t)v1(x, t)e−2κ|x|dxdt+

∫
R
u(x, 0)v2(x)e−2κ|x|dx.

The right-hand side is given by

f(v) =
∫
R
p(ex)v2(x)e−2κ|x|dx.

For well-posedness, we require the bilinear form a−κ(·, ·) : H1
−κ(R)×H1

−κ(R)→ R defined by

a−κ(u, v1) := σ2

2

∫
R
∇u(x, t)∇v1(x, t)e−2κ|x|dx+ r

∫
R
u(x, t)v1(x, t)e−2κ|x|dx

−
∫
R

(
σ2κsgn(x) + (r − σ2

2 )
)
∇u(x, t)v1(x, t)e−2κ|x|dx,

to be continuous and to satisfy the Gårding inequality, cf. Theorem 2.2.15.

Proposition 5.3.3. [MPS04, Prop. 2.1] Let κ ∈ R be arbitrary fixed. The bilinear form
a−κ(·, ·) : H1

−κ(R) ×H1
−κ(R) → R is continuous and satisfies the Gårding inequality, i.e. there

exist a constant Ca > 0 and α > 0, λ > 0, such that

(i) |a−κ(u, v)| ≤ Ca|u|H1
−κ(R)|v|H1

−κ(R) ∀ u, v ∈ H1
−κ(R),

(ii) a−κ(u, u) + λ|u|2L2,−κ(R) ≥ α|u|
2
H1
−κ(R).

Proof. Let a(x) := σ2κsgn(x) + (r − σ2

2 ).
(i) Continuity follows from the Cauchy Schwarz inequality.

|a−κ(u, v)| ≤ σ2

2 |∇u|L2,−κ(R)|∇v|L2,−κ(R) + r|u|L2,−κ(R)|v|L2,−κ(R) + |a|∞|∇u|L2,−κ(R)|v|L2,−κ(R)

≤ max(σ
2

2 , r, |a|∞)|u|H1
−κ(R)|v|H1

−κ(R)

(ii) For u ∈ H1
−κ(R)

a−κ(u, u) ≥ σ2

2 |∇u|
2
L2,−κ(R) −

∫
R

(κsgn(x)σ2 + r − σ2

2 )∇u(x)u(x)e−2κ|x|dx+ r|u|2L2,−κ(R)

≥ min(σ
2

2 , r)|u|
2
H1
−κ(R) − |a|∞|∇u|L2,−κ(R)|v|L2,−κ(R)

≥ min(σ
2

2 , r)|u|
2
H1
−κ(R) − |a|∞ε|∇u|

2
L2,−κ(R) − |a|∞

1
4ε |v|

2
L2,−κ(R).
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For ε < min(σ2

2 , r)/|a|∞ we obtain the Gårding inequality.

5.3.3. Localisation

Before performing the localisation procedure by truncating the domain and imposing boundary
conditions we remark the following. Since the option price u is an element inH1

−κ(R), the function
ũ = ue−κ|x| is an element of X for V = H1

0 (R). We can reformulate the above given variational
form for ũ and corresponding test functions ṽ(x, t) = v(x, t)e−κ|x| ∈ Y with H = L2(R).

b̃(ũ, ṽ) =
∫

(0,T )

∫
R

˙̃u(x, t)ṽ1(x, t)dxdt

+
∫
R
ũ(x, 0)ṽ2(x)dx

+
∫

(0,T )

σ2

2

∫
R
∇ũ(x, t)∇ṽ1(x, t)dx

+
∫
R

(
r − σ2

2 κ2 + (σ
2

2 − r)κsgn(x)
)
ũ(x, t)ṽ1(x, t)dx

+
∫
R

(
(σ

2

2 − r)− σ
2κsgn(x)

)
∇ũ(x, t)ṽ1(x, t)dx dt.

We define the transformed payoff by p̃(ex) := p(ex)e−κ|x|. The right-hand side is given by

f̃(v) =
∫
R
p̃(ex)ṽ2(x)dx.

The problem is well-posed as the embedding V ↪→ H is dense and the associated bilinear form

ã(ũ, ṽ) =
∫

(0,T )

σ2

2

∫
R
∇ũ(x, t)∇ṽ1(x, t)dx

+
∫
R

(
r − σ2

2 κ2 + (σ
2

2 − r)κsgn(x)
)
ũ(x, t)ṽ(x, t)dx

+
∫
R

(
(σ

2

2 − r)− σ
2κsgn(x)

)
∇ũ(x, t)ṽ(x, t)dx dt

is bounded and satisfies the Gårding inequality. We localise the problem by restriction to the
bounded domain ΩR = (−R,R). Further, we set V = H1

0 (ΩR) andH = L2(ΩR) in the space-time
variational formulation and impose homogeneous Dirichlet boundary conditions on the boundary
∂ΩR = {−R,R}. The localisation error can be estimated.

Proposition 5.3.4. For the bounded domain ΩR = (−R,R), let X and Y be given by V =
H1

0 (ΩR) and H = L2(ΩR). For any function w ∈ H1
0 (ΩR) we denote its embedding in H1

0 (R) by
the same letter. Let uBS be the true solution of the Black-Scholes equation. Let ũ ∈ X be the
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solution of
b̃(u, v) = f̃(v) ∀ v ∈ Y

with initial value p̃(ex) = p(ex)e−κ|x| for p ∈ L2,−κ(R). Then, for a constant C > 0,

‖uBS − ũ‖2X ≤ C22Rp(eR/2)2e−κR.

Proof. Recall the a-priori estimate for the solution u of a parabolic PDE, cf. [Eva99, Sec. 7.1 b.
Thm 2]. Let C > 0 be a constant, then

‖u‖2X ≤ ‖u‖2L2(I;V ) + ‖u̇‖2L2(I;V ′) + max
t∈[0,T ]

|u(t)|2H ≤ C2
(
‖f‖2L2(I;V ′) + |u(0)|2H

)
.

For the right-hand side f ≡ 0 we receive ‖u‖X ≤ C|u(0)|H . Define the cut-off function, [Hil09,
Thm. 3.12], φR,R/2(x) ∈ C∞(ΩR),

φR,R/2 ≥ 0, φR,R/2 ≡ 1 on ΩR/2 and |∇φR,R/2|∞ ≤ c

for some constant c > 0. The approximation error of uBS and ũ is then given by

‖uBS − ũ‖2X ≤ C|p(ex)e−κ|x| − ũ(0)|2L2(ΩR) ≤ C
2 inf
w∈H1

0 (ΩR)
|p(ex)e−κ|x| − w|2L2(ΩR)

≤ C2|p(ex)e−κ|x| − φR,R/2(x)p(ex)e−κ|x||2L2(ΩR)

= C2
∫

ΩR\ΩR/2

(1− φR,R/2(x))2p(ex)2e−2κ|x|dx

≤ C2R max
x∈ΩR\ΩR/2

(1 + φR,R/2(x)2 − 2φR,R/2(x)) max
x∈ΩR\ΩR/2

p(ex)2e−2κ|x|

= C22Rp(eR/2)2e−κR.

By Proposition 5.3.4, the parameter κ of the weight function does influence the convergence rate.
We have to ensure that our choice for κ does not change the PDE formulation to a convection
dominant problem as our numerical schemes are not suited for those. For a call function we
observe that

p(eR/2)2e−κR = (eR − 2eR/2K +K2)e−κR −→ 0 for R→∞

given κ > 1.
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R
5.3 5.4 5.5 5.6 5.7 5.8 5.9
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‖uBSe
−3|x|

− ũ‖X(ΩR),K = 26

‖uBSe
−3|x|

− ũ‖X(ΩR),K = 211

Figure 5.3.1.: Convergence of the PDE solution ũ towards the transformed true solution uBS
w.r.t. R. The FEM solution is projected onto the finest grid given by 211 intervals,
the Black-Scholes formula is directly evaluated on the finest grid.

5.3.4. Numerical Experiments

We are going to price a call option with strike price K = 60, volatility σ = 0.3, interest rate
r = 0.04 and a weight function given by κ = 3 using the RBM for parameter functions presented
in Section 3.2.2. The error is measured in the discrete space-time natural norm ‖ · ‖X,bar, cf.
Equation (2.2.20). To specify the norm dependence on the truncated domain ΩR and the chosen
weight parameter κ, we write XR,κ for the ansatz space X given by V = H1

−κ(ΩR). Further for
ũ(x) = u(x)e−κ|x| holds

‖uBS(x)e−κ|x| − ũ(x)‖XR,0,bar = ‖uBS(x)− u(x)‖XR,κ ,bar.

We impose the space-time discretisation that is equivalent to the Crank Nicolson time stepping
scheme and introduced in Section 2.2.2.2. We fix the number of subintervals in the time domain
to J = 26. In Figure 5.3.1 we see the convergence behaviour of the space-time error between the
transformed Black-Scholes formula solution and the numerical solution ũ. A refinement w.r.t.
the basis functions of the spatial domain does not significantly improve the approximation result.
We achieve a space-time error below 10−3 for K = 26, J = 26 and R = ln(250) = 5.52. The
temporal domain is given by [0, 0.3].

We assume the payoff to be a parameter function in the initial value. Analogous to the numerical
experiments in Section 3.4.3, we consider Haar wavelets on the spatial domain ΩR = (−R,R)
to approximate the parameter space L2(ΩR). We only consider wavelets up to level 6 for the
initial value approximation. We store 128 initial values in the Initial Value Library Linit. The
volatility σ ∈ [0, 1] is the additional parameter of interest. The strike price K does not need to
be included explicitly in the parameter domain as the full initial value is a parameter function.
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(a) Wavelet expansion coefficients decay of p̃(ex).
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(b) Error and estimator for the online procedure.

Figure 5.3.2.: Online RB approximation for a call option with strike K = 60.

The Evolution Greedy Algorithm 3.2.2 is performed 128 times for a tolerance tol = 0.001 and
a training set Dtrain

1 ⊂ [0, 1] given by 17 equally distributed points. The resulting 128 small, i.e.
N1 ∈ {9, 10, 11}, RB bases are stored in the Evolution Library Levol.

We do not compute the corresponding inf-sup values for the greedy procedure. The decay of the
residual does not change by not applying the inf-sup constant. However, the procedure may stop
earlier by assuming β = 1 as β < 1 in reality.

After the library initialisation, the online procedure is performed for a call with payoff p(ex) =
max(ex − 60, 0). We set the volatility σ = 0.3. The corresponding inf-sup constant is given by
β = 0.0492. The relevant wavelet coefficients, cf. Figure 5.3.2 (a), are close to the boundary
on the right-hand side where the call option payoff takes its non-zero values. The convergence
of the error between the RB approximation and the FEM approximation is shown in Figure
5.3.2 (b). The error estimator, i.e., the sum of wavelet approximation error and the a-posteriori
error estimator for the evolution of the solution, bounds the error as expected. A very good
approximation level of 10−6 is reached including all N = 23 relevant wavelet functions. This
corresponds to an RB basis for the evolutionary part of size N1 = 210. But even only using
the first N = 11 relevant wavelets, the space-time approximation error is below 10−5. Here, the
RB basis has only N1 = 101 basis functions. An additional evaluation of the error between the
RB approximation and the solution of the Black-Scholes formula in the norm of the associated
weighted Sobolev spaces confirms the good approximation results. We achieve an error of about
10−5. We emphasize again that our reduced basis was not constructed for the call payoff function
but arbitrary payoff functions can be used.

The constructed RB can be used not only for pricing but in the calibration process. The offline
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Figure 5.3.3.: Computational time in the online RB approximation.

phase of the space-time RBM for parameter functions takes 0.3205 seconds, 0.0973 seconds are
needed for the initialisation of the Initial Value Library and 0.2232 seconds for the Evolution
Library. In average, the Crank Nicolson truth solver takes 0.0064 seconds to solve the problem
formulation. Consequently, as soon as we are interested in more than 50 evaluations – e.g. for
the optimisation process of the model calibration – the offline phase pays off. For the call option
that we consider online, the Crank Nicolson truth solver takes 0.005812 seconds. The RB online
phase evaluation time depends on the actual number of wavelets that are considered. In Figure
5.3.3 we can observe how the time for the RB setup and the actual RB simulation increases with
the number of wavelets for the approximation of the initial value. For N = 11 the space-time
approximation error is below 10−5. In that case the RB simulation takes 0.0047 seconds what is
80 % of the time the finite element truth solver takes. The time saving using the reduced system
is 20 %.

5.4. Heston Model

5.4.1. Model

The Heston model is a well-known model for option pricing allowing also a non-constant volatility
of the underlying.1 It was invented 1993 by Heston, [Hes93]. The SDEs for the asset price St
and the volatility νt are assumed to be

dSt = rStdt+
√
νtStdz1(t), dνt = κ[θ − νt]dt+ σ

√
νtdz2(t), (5.4.1)

1The first two paragraphs are published in [MU14, Sec. 2.1].
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where z1, z2 are Wiener processes with correlation ρ, r is the return rate of the asset, κ the mean
reversion rate to the long term variance θ and σ is the volatility of the volatility. In particular,
the instantaneous variance νt is modeled as a CIR (Cox-Ingersoll-Ross) process, [CIR85], that is
strictly positive as long as the parameters obey the so called Feller condition 2κθ > σ2. Finally,
the model implies that z1 =

√
1− ρ2dz3 + ρdz2 with independent Brownian motions z2, z3. The

observed market price s0 of the underlying asset and the (implied) volatility v0 at time zero
are the corresponding initial conditions, i.e. S0 = s0 and ν0 = v0. We obtain global existence
and uniqueness of the solution as the coefficients are locally Lipschitz continuous and of at most
linear growth.

Instead of calculating the conditional expectation of the discounted payoff under a risk neutral
measure we can equivalently solve the associated parabolic PDE in x̃ = (S, ν), [Hes93]:

u̇ = Sr
du

dS
+ (κθ − κν)du

dν
+ 1

2νS
2 d

2u

dS2 + νρσS
d

dS

d

dν
u+ 1

2νσ
2d

2u

dν2 − ru.

We first apply a log-transformation regarding the asset prices S and second regarding the volatil-
ity ν. The transformed PDE in x = (x1, x2) = (logS, log ν) is given by

u̇ = (r − 1
2e

x2) du
dx1

+ ((κθ − 1
2σ

2)e−x2 − κ) du
dx2

+ 1
2e

x2 d
2u

dx12 + ρσ
d

dx1

d

dx2
u+ 1

2σ
2e−x2 d

2u

dx22 − ru.

The PDE in non-divergence form hence reads

d

dt
u(t)−∇(α∇u(t)) + β∇u(t) + γ u(t) = 0 for t ∈ (0, T ], u(0) = u0,

where u0 = p(ex1 , ex2) is the payoff and the coefficient functions are given by

α := 1
2

(
ex2 σρ

σρ σ2e−x2

)
β := −

(
r − 1

2e
x2

κθe−x2 − κ

)
, γ := r. (5.4.2)

5.4.2. Space-Time Variational Formulation

We introduce the space-time variational formulation of the Heston model. We define the weighted
Sobolev spaces for κ = (κ1, κ2) ∈ R2 by

H1
κ(R2) := {u ∈ Lloc

1 (R2) |ueκ1|x|eκ2|y|,∇ueκ1|x|eκ2|y| ∈ L2(R2)}

and L2,κ(R2) := {u ∈ Lloc
1 (R2) |ueκ1|x|eκ2|y| ∈ L2(R2)}. We assume that the payoff functions of

interest are elements in L2,−κ(R2) for κ1 > 1 and κ2 > 0. For the ansatz space X, cf. Equation
(2.2.1), we set V := H1

−κ(R2). Further, we choose H = L2,−κ(R2) to define the test space Y,
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cf. Equation (2.2.5). The left-hand side of the space-time variational inequality for α, β and γ
defined in Equation (5.4.2), u ∈ X and v ∈ Y is given by

b(u, v) =
∫

(0,T )

∫
R2
u̇(x, t)v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

+
∫
R2

(
α∇u(x, t)

)T
∇v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

+
∫
R2

(α∇u(x, t))T
(
−2κ1sgn(x1)
−2κ2sgn(x2)

)
v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

−
∫
R2
β∇u(x, t)v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

+ γ

∫
R2
u(x, t)v1(x, t)e−2(κ1|x1|+κ2|x2|)dx dt+

∫
R2
u(0, x)v2(x)e−2(κ1|x1|+κ2|x2|)dx.

The right-hand side is given by f(v) =
∫
R2 u0(x)v2(x)e−2(κ1|x1|+κ2|x2|)dx for v2 ∈ H.

The bilinear form a−κ(·, ·) given by

a−κ(u, v) =
∫
R2

(
α∇u(x, t)

)T
∇v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

+
∫
R2

(α∇u(x, t))T
(
−2κ1sgn(x1)
−2κ2sgn(x2)

)
v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

−
∫
R2
β∇u(x, t)v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

+ γ

∫
R2
u(x, t)v1(x, t)e−2(κ1|x1|+κ2|x2|)dx

is continuous and satisfies the Gårding inequality:

Proposition 5.4.1. Let κ = (κ1,κ2) ∈ R2. The bilinear form a−κ(·, ·) : H1
−κ(R)×H1

−κ(R)→ R
is continuous and satisfies the Gårding inequality, i.e. there exist a constant Ca > 0 and α > 0,
λ > 0, such that

(i) |a−κ(u, v)| ≤ Ca|u|H1
−κ(R)|v|H1

−κ(R) ∀ u, v ∈ H1
−κ(R),

(ii) a−κ(u, u) + λ|u|2L2,−κ(R) ≥ α|u|
2
H1
−κ(R).

Proof. Let a(x) =
(
αT
(
−2κ1sgn(x1)
−2κ2sgn(x2)

)
− β

)
.

(i) Continuity follows again from the Cauchy Schwarz inequality,

|a−κ(u, v)| ≤ |α(x)|∞|u|H1
−κ(R)|v|H1

−κ(R) + |a(x)|∞|u|H1
−κ(R)|v|H1

−κ(R) + r|u|H1
−κ(R)|v|H1

−κ(R).
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(ii) Define g(x1, x2) := r − 1
2e
x2 − κ1e

−x2sgn(x1)− κ2σρ sgn(x2) and h(x1, x2) := κθe−x2 − κ−
κ1σρ sgn(x1)− κ2σ

2e−x2sgn(x2). For u ∈ H1
−κ(R)

a−κ(u, u) =
∫
R2

(
α∇u(x, t)

)T
∇u(x, t)e−2(κ1|x1|+κ2|x2|)dx

+
∫
R2
g(x1, x2)du(x, t)

dx1
u(x, t)e−2(κ1|x1|+κ2|x2|)

+ h(x1, x2)du(x, t)
dx2

u(x, t)e−2(κ1|x1|+κ2|x2|)dx

+
∫
R2
ru2(x, t)e−2(κ1|x1|+κ2|x2|)dx.

Focusing on the convection term, we receive with partial integration

1
2

∫
R2
g(x1, x2) du

dx1
ue−2(κ1|x1|+κ2|x2|) + h(x1, x2) du

dx2
ue−2(κ1|x1|+κ2|x2|)dx

=1
2

∫
R

∫ ∞
0

g(x1, x2) du
dx1

ue−2(κ1|x1|+κ2|x2|)dx1 +
∫ 0

−∞
g(x1, x2) du

dx1
ue−2(κ1|x1|+κ2|x2|)dx1dx2

+ 1
2

∫
R

∫ ∞
0

h(x1, x2) du
dx2

ue−2(κ1|x1|+κ2|x2|)dx2 +
∫ 0

−∞
h(x1, x2) du

dx2
ue−2(κ1|x1|+κ2|x2|)dx2dx1

=
∫
R

(
−1

2

(
r − 1

2e
x2 − κ1e

x2 − κ2e
x2 − κ2σρsgn(x2)

)
+ 1

2

(
r − 1

2e
x2 + κ1e

x2 − κ2e
x2 − κ2σρsgn(x2)

))
u2(0, x2)

− 1
2

∫
R
g(x1, x2)u2(−2sgn(x1)κ1)e−2(κ1|x1|+κ2|x2|)dx1dx2

+
∫
R

(
−1

2

(
−κθ − κ− κ1σρsgn(x1)− κ2σ

2
)

+1
2

(
−κθ − κ− κ1σρsgn(x1) + κ2σ

2
))

u2(x1, 0)

− 1
2

∫
R

(
−κθe−x2 + κ2σ

2e−x2sgn(x2)− 2sgn(x2)κ2h(x1, x2)
)
u2e−2(κ1|x1|+κ2|x2|)dx2dx1

=
∫
R
κ1e

x2u2(0, x2)dx2 +
∫
R
κ2σ

2u2(x1, 0)dx1

− 1
2

∫
R2
g(x1, x2)u2(−2sgn(x1)κ1)e−2(κ1|x1|+κ2|x2|)dx

− 1
2

∫
R2

(
−κθe−x2 + κ2σ

2e−x2sgn(x2)− 2sgn(x2)κ2h(x1, x2)
)
u2e−2(κ1|x1|+κ2|x2|)dx.
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Thus, there exist a λ > 0 such that

a−κ(u, u) + λ|u|2L2,−κ(R)

≥
∫
R2

(
α∇u(x, t)

)T
∇u(x, t)e−2(κ1|x1|+κ2|x2|)

+ (λ+ r − 1
2(g(x1, x2)(−2sgn(x1)κ1) + (−κθe−x2 + κ2σ

2e−x2sgn(x2)− 2sgn(x2)κ2h(x1, x2))))

u2e−2(κ1|x1|+κ2|x2|)dx

≥ α|u|2H1
−κ(R) for α > 0.

5.4.3. Localisation

As for the Black-Scholes model, cf. Section 5.3.3, we reformulate the space-time variational
formulation before the domain truncation. We consider the PDE in transformed variables ũ =
ue−(κ1|x1|+κ2|x2|) ∈ X for V = H1

0 (R2) and ṽ = ve−(κ1|x1|+κ2|x2|) ∈ X for V = H1
0 (R2) and

H = L2(R2). The bilinear form of the left-hand side is given by

b̃(ũ(x, t), ṽ(x, t)) =
∫

(0,T )

∫
R2

˙̃u(x, t)ṽ1(x, t)dxdt

+
∫
R2
ũ(x, 0)ṽ2(x)dx

+
∫

(0,T )

∫
R2
α∇ũ(x, t)∇ṽ1(x, t)dx

−
∫
R2

(
r − 0.5ex2 + ex2κ1sgn(x1) + ρσκ2sgn(x2)

κθe−x2 − κ+ ρσκ1sgn(x1) + σ2e−x2κ2sgn(x2)

)
∇ũ(x, t)ṽ1(x, t)dx

+
∫
R2

(
r − (r − 1

2e
x2)κ1sgn(x1)− (κθe−x2 − κ)κ2sgn(x2)− κ2

1sgn2(x1)1
2e

x2

− ρσκ1κ2sgn(x1)sgn(x2)− 1
2σ

2e−x2κ2
2sgn2(x2)

)
ũ(x, t)ṽ1(x, t)dx dt.

For the transformed payoff p̃(ex1 , ex2) = p(ex1 , ex2)e−(κ1|x1|+κ2|x2|) the right-hand side is defined
as

f̃(ṽ) =
∫
R2
p̃(ex)ṽ2(x)dx.

We localise the domain R2 by truncation onto a subdomain Ω(R1,R2) = ΩR1×ΩR2 := (−R1, R1)×
(−R2, R2), R := (R1, R2). Analogous to Proposition 5.3.4, the convergence towards the true
solution can be ensured.

Proposition 5.4.2. Let X and Y be given by V = H1
0 (ΩR) and H = L2(ΩR). Let uHes be the
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true solution of the Heston model. Let ũ ∈ X be the solution of

b̃(u, v) = f̃(v) ∀ v ∈ Y

with initial value p̃(ex1 , ex2) = p(ex1 , ex2)e−(κ1|x1|+κ2|x2|) for p ∈ L2,−κ(R2). Then,

‖uHes − ũ‖X ≤ C22R1R2p(eR1/2, eR2/2)2e−(κ1R1+κ2R2).

Proof. Analogous to Proposition 5.3.4 we use the a-priori energy estimate. Let C > 0, then

‖u‖2X ≤ ‖u‖2L2(I;V ) + ‖u̇‖2L2(I;V ′) + max
t∈[0,T ]

|u(t)|2H ≤ C2
(
‖f‖2L2(I;V ′) + |u(0)|2H

)
.

For the right-hand side f ≡ 0 we receive ‖u‖X ≤ C|u(0)|H . Recall the cut-off function φR,R/2

introduced in the proof of Proposition 5.3.4. The approximation error of uHes and ũ is then given
by

‖uHes − ũ‖2X ≤ C2|p(ex1 , ex2)e−(κ1|x1|+κ2|x2|) − ũ(0)|2L2(ΩR)

≤ C2 inf
w∈H1

0 (ΩR)
|p(ex1 , ex2)e−(κ1|x1|+κ2|x2|) − w|2L2(ΩR)

≤ C2|p(ex1 , ex2)e−(κ1|x1|+κ2|x2|) − φR,R/2(x)p(ex1 , ex2)e−(κ1|x1|+κ2|x2|)|2L2(ΩR)

= C2
∫

ΩR\ΩR/2

(1− φR,R/2(x))2p(ex1 , ex2)e−2(κ1|x1|+κ2|x2|)dx

≤ C22R1R2 max
x∈ΩR\ΩR/2

p(ex1 , ex2)2e−2(κ1|x1|+κ2|x2|)

= C22R1R2p(eR1/2, eR2/2)2e−(κ1R1+κ2R2).

5.4.4. Numerical Experiments

We are going to price a call option with κ = 0.8, θ = 0.2, ρ = 0.3, σ = 0.6, r = 0.001 and
strike price K = 60. The model parameters ρ, κ, θ and σ are subject to change when pricing
different options. Moreover, we would like to determine prices for different payoff functions,
i.e., we consider the initial value p as a parameter function. The parameter space is given
by [0.5, 1.5] × [0, 1] × [−1, 1] × [0, 1] × L2,−κ(ΩR). The weight κ = (κ1,κ2) has to be chosen
carefully: the interaction between κ1 and κ2 in combination with the different domain sizes
given by R = (R1, R2) leads to very small values of the solution that cannot be represented on
the computer due to the restriction given by the machine epsilon. After first numerical tests we
choose κ1 = 1.5 and κ2 = 0.5.
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Figure 5.4.1.: Convergence of the PDE solution ũ towards the closed form solution uHes w.r.t. R.
The FEM solution at final time point T is projected onto the finest grid given by
28 intervals, the Heston model is directly evaluated on the finest grid.

5.4.4.1. RBM for Parameter Functions

In Figure 5.4.1 the convergence error of the FEM solution at final time point T and the trans-
formed closed form solution of the Heston model measured in the L2-norm is given for different
values of R1. The quantity R2 is fixed to ln(10). We set the boundaries of the truncated domain
to R = (ln(300), ln(10)) and J1 = J2 = 26, K = 25 to obtain an L2-approximation error at
final time point T below 2.2 · 10−3. We apply the RBM for parameter functions as presented in
Section 3.2.2. We extend the wavelet basis functions to the 2D setting by considering the tensor
product basis of the Haar wavelets.

Example 5.4.3. (Tensor Product Wavelets.) [Urb09, Sec. 8.3] Let φ[j,k], ψ[j,k] be the 1D or-
thonormal scaling functions and wavelets on level j for k = 0, . . . , 2j−1. Let (Sj)j≥j0 be a MRA,
cf. Definition 3.2.7, given Ω ⊂ R. Let the set of all scaling functions build a basis for Sj . The
set of all

φ2D[j,`] := φ[j,k] ⊗ φ[j,k′], (k, k′) 7→ `

build 2D orthonormal scaling functions and a basis of S2D
j = Sj ⊕ Sj . The tensor product

functions

ψ2D,1
[j,`] := ψ[j,k] ⊗ φ[j,k′]

ψ2D,2
[j,`] := φ[j,k] ⊗ ψ[j,k′]

ψ2D,3
[j,`] := ψ[j,k] ⊗ ψ[j,k′]

build the corresponding orthonormal wavelet basis ofW 2D
j , S2D

j+1 = S2D
j ⊗W 2D

j . The correspond-
ing wavelet decomposition of a 2D signal organised in a matrix is given by four parts: the coarse
part is represented by the 2D scaling functions φ2D. The horizontal detail corresponds to the
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5. Application in Finance

coefficients of ψ2D,1, the vertical detail to ψ2D,2 and the diagonal detail to ψ2D,3. The coefficients
of the wavelet expansion can be computed by performing the fast wavelet transformation on
every row and column of the scaling expansion coefficients organised in a matrix.

The initial values in the initial value library Linit that correspond to the first wavelet on level
0 and on level 1 are displayed in Figure 5.4.2. In the 2D setting it is not advisable to use all
wavelets on all levels up to the chosen discretisation. There are 16384 initial values to store in the
initial value library and for a complete offline procedure, the computation of the same amount
of reduced bases is necessary. We restrict to the computation of the 94 most relevant bases for
the call option to show the resulting online approximation. However, the choice of an a-priori
fix approximation space is advisable and reduces the resulting computational effort, cf. Section
3.4.2 and [MU14].

The Evolution Greedy is performed for a reduced parameter space ρ ∈ D1 = [−1, 1] ⊂ R
to demonstrate the performance of the method with an reasonable computational effort. The
training set is given by 11 equally distributed points in the parameter domain. The greedy
tolerance is set to tol = 0.1. Here, N1 ∈ {3, 4, 5}.

Given r = 0.001, we consider the test parameter set µ1 = (κ, θ, ρ, σ) = (0.8, 0.3, 0.2, 0.6) and a
call option payoff µ0 = p(ex) = max(ex−60, 0). There are 94 wavelet coefficients greater or equal
to 10−4. The online approximation error is given in Figure 5.4.3. For the estimator evaluation
we assume an inf-sup constant of β ≥ 0.01 – a direct numerical computation is not possible
anymore because of the size of the discrete problem formulation. The estimator overestimates
the error by 1.5 order of magnitude and follows the error behaviour as expected. The actual RB
approximation error is below 10−1, what is a good result for the before chosen Evolution Greedy
tolerance.

The Crank Nicolson truth solver takes 1.274621 seconds for the evaluation. Even if we consider
all 94 wavelets for the initial value approximation, the computational time of the RB simulation
stays below the truth solver evaluation time, as we can see in Figure 5.4.4. E.g. for N = 30 we
receive an RB approximation tolerance of 0.0237. The computational time of the RB simulation
is given by 0.0343 seconds. In comparison to the finite element solver we only require 3 % of
the computational time to achieve a solution. Consequently, if the optimisation in the model
calibration process needs 50 function evaluations, we save over one hour of time replacing the
finite element solver by the RB simulation.

5.4.4.2. H-Tucker Format in the Offline Procedure

We apply the H-Tucker format in the space-time offline phase as presented in Section 4.3.3.
The performance of the CGNR method as truth solver highly depends on the tensor rank of the
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underlying operator in CP decomposition. We fix the boundary by R1 = ln(300) and R2 = ln(10).
For r = 0.001, the payoff p̃(ex) = max(ex1 − 60, 0)e−(1.5|x1|+0.5|x2|) and the parameter µ1 given
by and (κ, θ, ρ, σ) = (0.8, 0.3, 0.2, 0.6) the test scenarios are given in Table 5.4.1. Here, the H-
Tucker representation of the operator is of rank 13. For the test scenarios in Table 5.4.1 the
results are limited by the computational resources due to the large tensor ranks of the operators.
For the coarse discretisation in Scenario 1 and 2 the approximation error is below 10−1, cf.
Figure 5.4.5 (a). As expected, an increased truncation tolerance improves the convergence in
cg-residual norm, Figure 5.4.5 (b). Here, the operator ranks for the preconditioners are still
moderate, cf. Table 5.4.2. We only truncate the preconditioner M as we measure the error in
the norm induced by the preconditioner N . The spatial and temporal discretisation is increased
in Scenario 3 and 4. Here, the operator ranks of the preconditioners increase additionally. The
performed truncation prevents the convergence in the residual norm, cf. Figure 5.4.5 (c) and
(d). The computational effort is significantly smaller when the operator is of smaller tensor

Scenario 1 J1 = J2 = 23 KE = 23,KF = 24 εrel = 10−2 max_rank = 50
Scenario 2 J1 = J2 = 23 KE = 23,KF = 24 εrel = 10−6 max_rank = 50
Scenario 3 J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−2 max_rank = 50
Scenario 4 J1 = J2 = 26 KE = 26,KF = 27 εrel = 10−4 max_rank = 10

Table 5.4.1.: Scenarios 1–4 for the CGNR solver used to solve the Heston model.

J1/2 / KE / KF M N
23 / 23 / 24 1 6
24 / 24 / 25 1 7
25 / 25 / 26 5 8
26 / 26 / 27 5 9
27 / 27 / 28 8 10

Table 5.4.2.: Maximal tensor ranks for preconditionersM (truncated) andN (full) w.r.t. different
spatial and temporal discretisation.

rank. We fix ρ = 0 as well as r = 0 and achieve a corresponding H-Tucker representation of the
operator of rank 8. We again perform Scenario 3 and 4. A slow convergence in the residual norm
is now observable, cf. Figure 5.4.6. Still, we only reach a tolerance below 10−1. For the RBM
we apply the setting given in Scenario 4. We reduce the parameter space to three components,
κ, θ and σ. We set ρ = r = 0 and price a call option with strike price K = 60. The parameter
domain is given by (κ, θ, σ) ∈ D = [0.5, 1.5] × [0, 1] × [0, 1] ⊂ R3. The training set is given by
11 equally distributed points in every parameter domain direction. Because of the large CGNR
solver tolerance that we set on 0.03 (with a restriction to 100 iterations), the greedy tolerance
has to be chosen accordingly and is set to tol = 0.04. This is a large tolerance and consequently
the greedy only performs two steps and stops with a reduced basis of dimension N = 3. The first
parameter in the sample set is given by (0.5, 0, 0), the second is chosen to be (1.5, 0, 0.5) with an
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Figure 5.4.5.: Convergence of the CGNR solver.
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Figure 5.4.6.: Convergence of the CGNR solver for ρ = r = 0.
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Figure 5.4.7.: Online RB approximation error in comparison to the CGNR approximation error
for µ = (κ, 0.5, 0.5) .

approximation error of 0.0566 and the third is (1.5, 1, 0) with approximation error 0.0433.

For a test set of parameters we observe that the RB approximation errors stay below the before
chosen greedy tolerance. The residual errors achieved with the CGNR solver are mainly above the
RB approximation error and even above the chosen greedy tolerance, i.e., we cannot guarantee
a successful greedy sampling, cf. Figure 5.4.7.

5.5. Conclusion

The developed space-time reduced basis method for parameter functions is applicable for both
models and provides satisfying results. Using the RB approximation in the optimisation proce-
dure of the model calibration process results in significant time savings. The more costly the
finite element approximation is the higher is the time saving that can be achieved using the RB
approximation. For the actual model calibration process we require the investigation of the PDE-
constrained parameter optimisation using the RB approximation. This can be done by extending
the work of M. Dihlmann and B. Haasdonk [DH15] to the space-time RBM framework. Allowing
for the best N-term approximation of the initial value online, the resulting computational effort
offline in a 2D setting is enormous and the use of an a-priori fix approximation space is advisable,
cf. [MU14].

Further, we have seen in the numerical experiments in Section 4.4 that the application of the
H-Tucker low rank tensor format in the offline phase of a standard space-time RBM is possible
and can be very efficient. The application for the Heston model shows the limits of the existing
methods and the underlying implementation. The tensor ranks of the operators set a clear limit
in terms of computational feasibility. More precisely, for the Heston model and a discretisation
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(a) j = 1 (b) j = 2

Figure 5.5.1.: Sparsity structure of transfer tensor b0 of S̃j .

given by J1 = J2 = 27, KE = 27, KF = 28 allowing for a maximal rank of 20 and a relative
truncation tolerance of 10−4 we observe the following: in line 6 of Algorithm 4.3.2 the cg-residual
is computed. The sparsity structure of the transfer tensor b0 of S̃1 and S̃2 are displayed in Figure
5.5.1. The transfer tensor is stored as a full 3D matrix. In the first step, truncation can still be
applied and the dimension reduces to 20×20×20. In the second step the size of the transfer tensor
grows again and the 3D object becomes infeasibly large for any further operation. The CGNR
truth solver used in the offline phase only converges very slowly or not at all if the truncation
procedure has to be applied extensively to provide the numerical feasibility. Here, an improved
offline truth solver is required in the RB offline phase.
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6. Conclusion and Outlook

The scope of this thesis is the space-time reduced basis method for its use in the pricing of finan-
cial products. The advantage in comparison to other reduction techniques for time dependent
problems in the reduced basis framework is the additional model reduction in time. We present
the underlying functional analytical framework and different RB simulation techniques.

We extend the original term of high dimensional parameter spaces to function spaces as parameter
spaces. A reduced basis method was introduced, such that the initial value of a parabolic
partial differential equation can be treated as a parameter in the RB setting. The method takes
advantage of the underlying space-time variational formulation. The standard RB error estimator
can be separated into two parts: the first that cares about the approximation quality of the initial
value and the second that attends the error in the evolution of the solution. A finite decomposition
of the function parameter is assumed, e.g. in terms of a (truncated) wavelet expansion. The
first approach takes the same expansion for every possible parameter function online. This may
result in a non-optimal initial value approximation and therefore the reduced basis approximation
quality may suffer online. We overcome this problem allowing for a best N-term approximation of
the parameter function online. Both methods have their justification. While the first one requires
very reasonable storage capacities in the online phase to store the precomputed quantities and
is therefore suitable for applications on small devices, the second requires an increased amount
of storage but provides an improved parameter function approximation.

To overcome the computational costs in the offline phase of the space-time RBM and to allow for
higher space dimensions, we investigate a possible use of the H-Tucker low rank tensor format
in the RB offline phase. In the sampling procedure, all necessary operations are performed in
low rank tensor format. The full system in space and time does not have to be established at
any time. We present two approaches: The first still uses an underlying time stepping scheme as
truth solver in the RBM, the second applies an iterative solver to the system in low-rank tensor
format. In both versions the snapshots added in the greedy procedure to the RB are given in
H-Tucker representation. Consequently, the snapshot reproducibility of the RBM fails. Both
tolerances, the truncation tolerance in the truth solver and the greedy tolerance in the sampling
procedure have to be chosen accordingly. We derive criteria how to determine the tolerances such
that the RB offline phase can be performed. The numerical experiments show that for problems
where the induced operator is of adequate tensor rank the method achieves very good results.
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In fact, as soon as the iterative solver is applicable as truth solver, the RB approximation may
even be of better quality by a significantly reduced computational effort.

The developed methods are applicable on diffusion models in general. To demonstrate the work
in practice they are applied on two standard option pricing models, the Black-Scholes model and
the Heston model. Weighted Sobolev spaces are introduced for the variational formulation. The
RBM for parameter functions is tested on the Black-Scholes model. The method is applicable
and we achieve good results in the online application pricing a standard call option. The Heston
model is of two dimensions. Therefore, the computational effort increases in the offline phase of
the space-time RBM for parameter functions. However, the method is still applicable and leads
to the expected good results. Further, the use of the H-Tucker format in the offline phase of the
space-time RBM of the Heston model is tested. The Heston model leads to an operator with a
tensor representation of large rank. The large ranks are challenging for the CGNR truth solver
– it does hardly converge to a satisfying approximation tolerance. This affects the RBM as the
greedy tolerance has to be chosen accordingly.

All numerical experiments were implemented in the RBMatlab framework and an interface to
the H-Tucker Toolbox is provided.

The concept of parameter functions in the initial value is expandable to parameter functions in
the system operators. Here, an accurate knowledge of the application is required to provide a
sophisticated error analysis. Using the H-Tucker low rank tensor format to improve the compu-
tational feasibility of the offline phase of the space-time RBM yields promising results. However,
in real-world applications, the method is limited by the performance of the applied truth solver.
Especially for the application in finance, the usage of the in [Kes13] developed multi-wavelets as
underlying discretisation can be beneficial. We refer to [ASU14] for the treatment in the reduced
basis method. Further steps have to be done towards RBMs for PIDEs, such that jump diffusion
models are included.
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A. Functional and Stochastic Analysis

This chapter collects shortly basic results in analysis and stochastic analysis. For the functional
analysis we follow the books of D. Werner [Wer07] and W. Arendt and K. Urban [AU10]. For
the stochastic analysis, we focus on the relevant results for the use in numerical/computational
finance. We follow the introduction given in the monographs of R. Seydel [Sey09] and B. Øksendal
[Øks03].

A.1. Functional Analysis

Let Ω be an open subset of Rn. We denote by C∞(Ω) the space of all infinitely often differentiable
functions with values in R. By Lp(Ω) we denote the standard real valued Lebesgue spaces of
order 1 ≤ p ≤ ∞, cf. [Wer07, Beispiel I.1 (h),(i)].

Definition A.1.1. [Wer07, Def. V.1.9] The set of all C∞-functions with compact support is
given by

C∞0 (Ω) := {f ∈ C∞(Ω) : supp(f) = {x ∈ Ω : f(x) 6= 0} is compact in Ω}.

For general Sobolev spaces, the concept of weak derivatives is required and given in the next
definition.

Definition A.1.2. [Wer07, Def. V.1.11] (Weak Derivative.) For a multiindex α = (α1, . . . , αn) ∈
Nn0 , |α| =

∑n
i=1 αi = m, we define the weak α-th derivative of f ∈ L2(Ω) by the function D(α)f

such that ∫
Ω
D(α)f(x)φ(x) dx = (−1)|α|

∫
Ω
f(x)D(α)φ(x) dx ∀φ ∈ C∞0 (Ω)

with partial derivatives D(α)φ := ∂α1 ···∂αn
∂α1x1···∂αnxnφ.

We define the Hilbert space H1(Ω) by ([AU10, Satz 6.15])

H1(Ω) = {f ∈ L2(Ω) |D(α)f ∈ L2(Ω), ∀ |α| ≤ 1}.
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The associated inner product is given by

(u, v)H1(Ω) =
∫

Ω
u(x)v(x)dx+

∫
Ω
∇u(x)∇v(x)dx

and the induced norm defined as

|u|2H1(Ω) =
∫

Ω
u(x)2dx+

∫
Ω

(∇u(x))2dx.

Further, the space H1
0 (Ω) := {u ∈ H1(Ω) | ∃φn ∈ C∞0 (Ω)H

1(Ω) with limn→∞φn = u ∈ H1(Ω)} is
a closed subspace of H1(Ω) and itself a Hilbert space, cf. [AU10, Sec. 6.3]. We equip the space
with the norm [AU10, Kor. 6.33]

|u|2H1
0 (Ω) =

∫
Ω

(∇u(x))2dx.

Proposition A.1.3. [AU10, Satz 4.21] (Riesz-Fréchet.) LetH be a Hilbert space and φ : H → R
a continuous linear form. Then there exists one and only one u ∈ H such that

φ(v) = (u, v)H ∀v ∈ H.

For existence and uniqueness we are interested in densly embedded Hilbert spaces.

Definition A.1.4. Let H and V be two Hilbert spaces. We say that the space V is embedded
in H if V is a subspace of H and there is a constant c > 0 such that

‖u‖H ≤ c‖u‖V ∀u ∈ V.

We denote the embedding by V ↪→ H.

Example A.1.5. By definition,

1. H1(Ω) ↪→ L2(Ω) and

2. H1
0 (Ω) ↪→ L2(Ω).

Lemma A.1.6. [Wer07, Lemma V.1.10] C∞0 (Ω) is dense in Lp(Ω) for 1 ≤ p <∞.

Corollary A.1.7. H1
0 (Ω) is densely embedded in L2(Ω).

Proof. Let Ω ⊂ Rn be open and ∂Ω a null set regarding the Lebesque measure. If C∞0 (Ω) is dense
in L2(Ω) we know that there is for every equivalent class u in L2(Ω) a sequence of functions in
C∞0 such that ‖u − un‖L2 → 0 for n → ∞. By definition, H1

0 (Ω) is the closure of the set of
C∞-functions with compact support, regarding | · |H1(Ω). Particularily, un ∈ H1

0 (Ω) for all n ∈ N
so H1

0 (Ω) ↪→ L2(Ω) dense.
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A.2. Stochastic Analysis

Definition A.2.1. [Sey09, Sec. 1.6] Let I be the interval [0, T ]. A stochastic process X is a
family of random variables Xt for a set of parameters 0 ≤ t ≤ T .

Definition A.2.2. [Sey09, Def. 1.7] A Wiener process (or Brownian motion) W is a time
continuous process with the properties

(a) W0 = 0

(b) Wt ∼ N (0, t) for all t ≥ 0. That is, for each t the random variableWt is normally distributed
with mean E(Wt) = 0 and variance V ar(Wt) = E(W 2

t ) = t.

(c) All increments ∆Wt := Wt+∆t −Wt on non-overlapping time intervals are independent.

Definition A.2.3. For every step function b the Itô integral is defined as [Sey09, (1.29)]

∫ t

t0
b(s) dWs :=

N∑
j=1

b(tj−1)(Wtj −Wtj−1).

The Itô integral of a stochastically integrable function f is defined as∫ t

t0
f(s)dWs := lim

n→∞

∫ t

t0
bn(s)dWs

for simple processes bn defined by [Sey09, (1.30)]

E

(∫ t

t0
(f(s)− bn(s))2ds

)
→ 0 for n→∞.

The integral of f is independent of the choice of the bn.

Definition A.2.4. [Sey09, Def. 1.10] For t ∈ [0, T ], an Itô stochastic differential equation (SDE)
is given by

dXt = a(Xt, t)dt+ b(Xt, t)dWt; (A.2.1)

this together with Xt0 = X0 is a symbolic short form of the integral equation

Xt = Xt0 +
∫ t

t0
a(Xs, s)ds+

∫ t

t0
b(Xs, s)dWs.

We call a solution Xt of the SDE (A.2.1) an Itô process or a stochastic diffusion. The function
a(Xt, t) is the drift term, b(Xt, t) the diffusion of the SDE. Solutions to the SDE for a given
realisation of the Wiener process are called trajectories or paths.
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The same notation as in Definition A.2.4 applies if Xt = (X(1)
t , . . . , X

(n)
t ) is actually an n-

dimensional as well as Wt = (W (1)
t , . . . ,W

(m)
t ) an m-dimensional vector of stochastic processes,

whereby the Wiener processes W (i)
t need not to be correlated, [Sey09, Sec. 1.7.5]. Here, a(Xt, t)

is a vector and b(Xt, t) an n ×m-dimensional matrix. The interpretation of the SDE system is
componentwise [Sey09, (1.41a)], i.e., for every i = 1, . . . , n,

X
(i)
t = X

(i)
0 +

∫ t

t0
(a(Xs, s))ids+

m∑
k=1

∫ t

t0
(b(Xs, s))i,kdW (k)

s .

Example A.2.5. (i) The Wiener process is an Itô process given by the trivial SDE dXt =
dWt.

(ii) The stochastic process St that solves the SDE A.2.1 for a(St, t) = µSt and b(St, t) = σSt

is called a geometric Brownian motion (GBM).

Remark A.2.6. (Risk-neutral valuation.) [Sey09, Sec. 1.7.3] Consider an SDE based option
pricing model where the stock price dynamics follow a GBM. In the risk-neutral valuation, the
original probability P is replaced by the adjusted risk-neutral probability Q. The (probably
unknown) return rate µ is hereby replaced with the risk-free interest rate r. Additionally the
original Wiener process W is removed and replaced by a standard Wiener process under the
risk-neutral measure Q. Moving to the risk-neutral world implies a no-arbitrage assumption for
the evaluation of the price. This leads to the computation of a fair value of the financial product.
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B. Introduction to Reduced Basis Methods for
Parabolic PDEs in Weak Formulation

The present thesis uses the space-time RBM as RB model reduction approach for parabolic
PDEs. The RB approach that is alternatively used for parabolic PDEs is based on the weak
formulation stated in Equation (2.2.4b) and uses a time stepping scheme online.

Reduced basis methods for parabolic PDEs have been introduced in the thesis of M. Grepl,
[Gre05]. In comparison to the well-known elliptic case – and in contrast to the space-time reduced
basis method – the additional temporal dimension is treated by imposing a time discretisation
immediately. Let V be a Hilbert space. For a continuous and coercive bilinear form a : V ×V →
R, the problem formulation reads: Find a solution u, u(t) ∈ V , such that

(u̇(t), v)H + 〈Au(t), v〉V ′×V = 〈g(t), v〉V ′×V a.e. t ∈ I,

u(0) = u0 in H.

A discretisation 0 = t0 < t1 < . . . < tK = T of the time interval I = [0, T ] is assumed and
the solution is obtained by solving a time stepping scheme for discrete V N ⊂ V . The solution
of the PDE is given as set of elements {uNk (µ)}Kk=0 ⊂ V . The RB space will also be a subset
of the Hilbert space V . In particular, the RB reduction is only spatial and does not affect the
time discretisation. Online, the same time stepping method is required to solve the reduced
system. For some parameter µ ∈ D ⊂ Rd, given initial value uN (0;µ) = uN0 (µ) and operators
Lim(µ),Lex(µ) : VN → VN as well as bNt (µ) ∈ RN for t = 1, . . . ,K, a small linear equation system
has to be solved online in every time step:

LNim(µ)uN (t;µ) = LNex(µ)uN (t− 1;µ) + bNt (µ). (B.0.1)

Using e.g. a Crank Nicolson scheme, the online time stepping is computationally costly since the
scheme requires small time steps to satisfy the CFL-condition.

For symmetric bilinear forms, an a-posteriori error estimate for the error mea-

sured in a “spatio-temporal” energy norm ‖|u(tk;µ)|‖ =
(

(u̇(tk;µ), u(tk;µ))H +
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∑k
k′=1 a(u(tk′ ;µ), u(tk′ ;µ);µ)∆t

)1/2
, [Gre05, Sec. 4.4.2 Prop.6], was introduced.

The theory was generalised to a reduced basis method for evolution equations in [HO08]. A finite
volume approximation was introduced for the detailed solution, mainly caused by the considered
hyperbolic problems. A generally defined parametrised evolution scheme was defined as

Definition B.0.1. [HO08, Def. 2.3] Let Lim(µ),Lex(µ) : V N → V N and P : L2(Ω) → V N be
continuous linear operators, Lim(µ) positive definite, and bk(µ) ∈ V N . A parametrised evolution
scheme is defined by

uN0 (µ) = P (u0(µ)),

Lim(µ)uNk+1(µ) = Lex(µ)uNk (µ) + bk(µ)

and produces µ-dependent solutions uNk (µ) ∈ V N for 0 = 1, . . . ,K.

The reduced basis solution again is given as the set of solutions {uN (k)}Kk=0 ⊂ VN by solving
(B.0.1). The introduced greedy method uses the proper orthogonal decomposition (POD), i.e.
the principal component analysis (PCA) for the RB basis generation.

Definition B.0.2. (Basis-extension by PCA with fixspace.) [HO08, p. 293] The trajectory
{uNk }Kk=0 is projected on the orthogonal complement (VN )⊥ of the current RB space VN =
span{φ1, . . . , φN}. The projected sequence is subject to a PCA. The principal component, i.e.
the vector of maximum variance is chosen as φN+1, which is readily orthonormal to φ1, . . . , φN

due to construction.

This is often referred to as the POD-Greedy method. A detailed presentation of the algorithm
and the convergence analysis is presented in [Haa13]. The POD-Greedy is widely used e.g.
in [EKP11] for the hp certified reduced basis method, to solve PDE-constrained optimisation
problems [DH15], for optimal control problems, cf. [KG14], and for the solution of instationary
variational inequalities, [BHSW15].

An a-posteriori estimator for the L2-approximation error is presented.

Proposition B.0.3. [HO08, Lemma 4.1, Prop. 4.2] Let uN = {uNk }Kk=0 denote the detailed
solution of a parametrised evolution scheme and uN (µ) denote the corresponding RB approxi-
mation. We assume that the RB space VN contains the initial data uN0 (µ). For k = 1, . . . ,K− 1
we introduce the residuals

Rk+1(µ) := 1
∆tk

(Lkim(µ)uk+1
N − Lkex(µ)ukN − bk(µ)).
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Then, the L2-approximation error is bounded for all time-steps k by

|ukN (µ)− uNk (µ)|L2(Ω) ≤
k−1∑
n=0

∆tn|Rn+1|L2(Ω)(CE)k−1−n(CI)k−n =: ∆k
N (µ).

The constants CE and CI are given by ‖(Lim)−1‖ ≤ CI and ‖Lex‖ ≤ CE respectively.

All required components are offline-online decomposable.

Remark B.0.4. (1) An important point is that the error estimators imply the assumption
u0(µ) ∈ VN for all µ. Otherwise the error in the initial condition has to be added on
the right-hand side. The error is in general not offline-online decomposable and requires an
N -dependent computation. Adding the initial value directly in the RB space to not get an
additional error fails when having a parameter function as initial value that is only given
approximatively.

(2) The constant CI is smaller or equal to one for a finite volume discretisation. This is not
in general satisfied for a standard finite element discretisation. The error estimator might
then become unusable large.
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C. Scalar Multiplication and Addition in
H-Tucker format

The multiplication of a tensor in H-Tucker format with a scalar value does not require an actual
reconstruction of the full tensor but can directly be performed in the low rank tensor format.
Same holds for the addition of two tensors in H-Tucker format.

C.1. Scalar Multiplication

A tensor x ∈ H of order d with H-Tucker representation ((bt)t∈I(Td), (ut)t∈L(Td)) is given by, cf.
Equation (4.2.4),

x =
d−1⊗
i=0

u{d−i}

`max−1∏
`=1

⊗
t∈T `

d

bt.

The multiplication with a scalar c ∈ R results in

cx = c
d−1⊗
i=0

u{d−i}

`max−1∏
`=1

⊗
t∈T `

d

bt.

The standard way is to include the constant c in the root node b{1,...,d}.

Lemma C.1.1. [Rup14, Lemma 5.7] The tensor y = cx ∈ H is given by uyt = uxt for t ∈ L(Td),
byt = bxt for t ∈ I(Td) \ {1, . . . , d} and by{1,...,d} = cbx{1,...,d}.

C.2. Addition

The addition of two tensors in H-Tucker format does not require any actual computations but
only a restorage.

Lemma C.2.1. [Rup14, Lemma 5.8] Let x, y ∈ H be two tensors of order d with
same dimension tree Td and H-Tucker representation ((bxt )t∈I(Td), (uxt )t∈L(Td)) respectively
((byt )t∈I(Td), (u

y
t )t∈L(Td)). The addition x + y ∈ H is defined by ux+y

t := [uxt , u
y
t ] ∈
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Rmax{nxt ,n
y
t }×rxt +ryt for all t ∈ L(Td). Note that the matrix ut with less rows is embedded in

the larger space by adding zeros. The transfer tensors are given by

(bx+y
t )i,j,k =


bxt 1 ≤ i ≤ rxt , 1 ≤ j ≤ rxt` , 1 ≤ k ≤ r

x
tr

byt rxt + 1 ≤ i ≤ rxt + ryt , r
x
t`

+ 1 ≤ j ≤ rxt` + ryt` , r
x
tr + 1 ≤ k ≤ rxtr + rytr

0 otherwise

for t ∈ I(Td) \ {1, . . . , d} and

(bx+y
t )j,k =


bxt 1 ≤ j ≤ rxt` , 1 ≤ k ≤ r

x
tr

byt rxt` + 1 ≤ j ≤ rxt` + ryt` , r
x
tr + 1 ≤ k ≤ rxtr + rytr

0 otherwise

at {1, . . . , d}.

We do not proof the Lemma but verify the result for a 2-order tensor in the next example.

Example C.2.2. Let x, y ∈ H be 2-order tensor in hierarchical Tucker format. The dimension
tree is given by {1, 2} as root node and the splitting into {1} and {2}, i.e.

x = (ux{1} ⊗ u
x
{2})b

x
{1,2} and y = (uy{1} ⊗ u

y
{2})b

y
{1,2}.

The tensor representation of x+ y is given by (bx+y
12 , {ux+y

{1} , u
x+y
{2} }) described in Lemma C.2.1.

Proof.

(ux+y
{1} ⊗ u

x+y
{2} )vec(bx+y

12 ) =
(

[ux{1}, u
y
{1}]⊗ [ux{2}, u

y
{2}]

)
vec

bx{1,2} 0
0 by{1,2}


=
[
ux{1} ⊗ [ux{2}, u

y
{2}], u

y
{1} ⊗ [ux{2}, u

y
{2}]

]
vec(

bx{1,2} 0
0 by{1,2}

)

=
[
ux{1} ⊗ u

x
{2}, u

x
{1} ⊗ u

y
{2}, u

y
{1} ⊗ u

x
{2}, u

y
{1} ⊗ u

y
{2}

]

bx{1,2}

0
0

by{1,2}


= (ux{1} ⊗ u

x
{2})b

x
{1,2} + (uy{1} ⊗ u

y
{2})b

y
{1,2}

= x+ y.
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