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Abstract

Modern computer systems have changed our way of living fundamentally. They im-
prove our effectiveness by assisting us in our work and daily tasks. However, current
systems are limited to a direct input of commands. Furthermore, they are unable to take
active decisions on the behalf of the user, mostly because of a lack of information about
the user. Cognitive technical systems (CTS) pick up on these deficiencies by recognizing
user states and the user’s environment with the help of sensor data. The derived infor-
mation is collected in a knowledge base and further processed by the application and the
dialog management to perform the decision making.

In this thesis, new methods addressing sensor-based state recognition in the context of
CTS in human-computer interaction are developed and empirically evaluated. The focus
is set on large multimodal and temporal multiple classifier systems. Furthermore, the
work covers the topics sequential classifiers, handling of partially-available information,
and integration of sub-symbolic and symbolic information for complex state recognition.
Following approaches are presented in this work: ensemble Gaussian mixture model
(EGMM), conditioned hidden Markov model (CHMM), fuzzy conditioned hidden Markov
model (FCHMM), hidden Markov model using graph probability densities (HMM-GPD),
Markov fusion network (MFN), Kalman filter for classifier fusion and layered classifier
architectures. The EGMM extends the classical GMM by the ensemble technique in order
to achieve a more robust density estimation. The CHMM and the FCHMM extend the
HMM by an additional causal sequence which influences the hidden states. The CHMM
uses a sequence of discrete causes, whereas the FCHMM uses a sequence of causes with
fuzzy memberships. Both approaches can further be utilized to the integrate symbolic
information. The HMM-GPD introduces graph probability densities as observations
in HMM. MFN and Kalman filter for classifier fusion are probabilistic algorithms for
temporal and multimodal late fusion which are robust against sensor failures. Within
this thesis, the unidirectional layered architecture (ULA) and the bidirectional layered
architecture (BLA) are proposed. Both architectures recognize complex classes based on
probabilistic logical rules and the temporal combination of basic patterns. Each layer
recognizes patterns based on the class predictions of the underlying layer. Hence, upper
layers recognize more complex patterns. The BLA additionally propagates information
in the direction of the lower layers. The empirical evaluation of the proposed methods
is performed on datasets for affective state and activity recognition, e.g. the Freetalk
dataset, AVEC 2011, AVEC 2012, AVEC 2013 and UUlmMAD.

The EGMM proved to be more robust and accurate when compared to the con-
ventional GMM approaches. It was shown that the selection of suitable parameters is
considerably easier. Further evaluations showed that the multimodal late fusion using
the CHMM outperformed the HMM on the Freetalk dataset. The HMM-GPD was stud-
ied in the field of activity recognition and showed a good view-invariant performance.
The classification was performed on sequences of graphs extracted from partially oc-
cluded skeleton models. The MFN and Kalman filter for classifier fusion was studied
on the AVEC datasets and achieved good results in comparision to other approaches.
Furthermore, it was shown that they outperformed classic point-wise and windowed fu-
sion approaches. A comprehensive study analyzing the ULA showed that the FCHMM
is well-suited to recognize states on different layers given unsegmented sequential data.
A dynamic Markov logic network implemented the probabilistic logical rules in the up-
permost layer. The thesis further presents a new dataset which was recorded in order to
study the BLA.

The development of a CTS brings new challenges to the recognition of user’s state
and his environment. The presented work identifies important properties in this area
and proposes and evaluates methods tailored to this operational area.
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Kurzfassung

Moderne Computer Systeme haben unser Leben von Grund auf verändert und steigern
unsere Effektivität bei der Bewerkstelligung von Arbeits- und Alltagsaufgaben. Aktuelle
Systeme beschränken sind jedoch auf eine direkte Eingabe von Befehlen. Des Weit-
eren können sie aufgrund eines Mangels an Information nicht aktiv Entscheidungen im
Interesse des Nutzers treffen. Kognitiv-technische Systeme (engl. Abk.: CTS) greifen
dieses Defizit auf indem sie den Zustand und die Umgebung des Nutzers mittels Sensorik
erkennen. Die erkannten Daten werden in einer Wissensbasis gesammelt und von der
Anwendung und dem Dialog Management zur Entscheidungsfindung verwendet.

In der vorliegenden Arbeit wurden neue Methoden zur sensorischen Zustandserken-
nung im Kontext von CTS für die Mensch-Maschine Interaktion entwickelt und em-
pirisch evaluiert. Im Fokus stehen multimodale und temporale Multi-Klassifikator Sys-
teme. Des Weiteren werden die Themenbereiche sequentielle Klassifikatoren, Behand-
lung von partiell-verfügbaren Informationen und Integration von sub-symbolischen und
symbolischen Informationen zur Erkennung von komplexen Zuständen bearbeitet. Fol-
gende Methoden werden in dieser Arbeit vorgestellt: Ensemble Gaussian Mixture Model
(EGMM), Conditioned Hidden Markov Model (CHMM), Fuzzy Conditioned Hidden
Markov Model (FCHMM), Hidden Markov Model Graph Probability Densities (HMM-
GPD), Markov Fusionsnetzwerk (MFN), Kalman-Filter für die Klassifikatorfusion und
geschichtete Klassifikatorarchitekturen. EGMM erweitern das klassische GMM durch die
Ensemble Technik für eine robustere Dichteschätzung. CHMM und FCHMM erweitern
das HMM um eine zusätzliche kausale Sequenz, welche die versteckten Zustände beein-
flusst und zur Integration von symbolischen Informationen verwendet werden kann. Das
FCHMM verwendet Fuzzy-Werte innerhalb der kausale Sequenz. Die HMM-GPD führen
Graphdichten als HMM Observationen ein. MFN und Kalman-Filter für die Klassifika-
torfusion beschreiben probabilistische Ansätze zur temporalen und multimodalen Fusion
von Entscheidungen, welche robust gegenüber Sensorausfall sind. In dieser Arbeit werden
die Unidirectional Layered Architecture (ULA) und Bidirectional Layered Architecture
(BLA) vorgeschlagen. Beide Architekturen erkennen komplexe Klassen mittels proba-
bilistischer logischer Regeln und der zeitlichen Abfolge von Basismustern. Jede Schicht
erkennt Muster basierend auf den Vorhersagen der darunterliegenden Schicht. Die BLA
propagiert zusätzliche Information in die Richtung der tieferliegenden Schichten. Die
empirische Evaluation der Methoden wurde mit Datensätzen aus dem Bereich Emotions-
und Aktivitätserkennung durchgeführt, unter anderem dem Freetalk Datensatz, AVEC
2011, AVEC 2012, AVEC 2013 and UUlmMAD.

Das EGMM zeigte sich im Vergleich robuster und genauer als konventionelle GMM
Ansätze. Zudem wurde gezeigt, dass die Auswahl von geeigneten Parametern durch die
EGMM deutlich vereinfacht wird. Die multimodale Fusion von Klassifikatorausgaben
auf dem Freetalk Datensatz mit dem CHMM lieferte bessere Ergebnisse als mit dem
HMM. Die HMM-GPD wurde im Bereich der Aktivitätserkennung untersucht und zeigte
die gewünschte Perspektiven-Invarianz bei der Klassifikation von Graph-Sequenzen ex-
trahiert aus teilverdeckten Skelettmodellen. Das MFN und die Kalman-Filter für die
Klassifikatorfusion wurden auf den AVEC Datensätzen untersucht und erzielten im Ver-
gleich zu anderen Ansätzen sehr gute Ergebnisse. Weitere Studien zeigten, dass die
neuen Ansätze eine bessere Leistungen aufweisen als die klassischen Punkt und Fenster-
Fusionenansätze und zudem robust gegenüber Sensorausfällen sind. Die Studie zur Anal-
yse der ULA zeigte, dass das FCHMM gut geeignet ist um Nutzerzustände auf kontinuier-
lichen Daten und auf unterschiedlichen Schichten zu erkennen. Ein dynamisches Markov
Logic Network modellierte zudem die probabilistischen logischen Regeln in der obersten
Schicht. Des Weiteren führt die Arbeit einen neuen Datensatz zur Untersuchung der
BLA ein.

CTS stellen neue Herausforderungen an die Erkennung von Zuständen und Umgebung
des Nutzers. Die vorliegende Arbeit identifiziert wichtige Eigenschaften in diesem Bereich
und entwickelt und evaluiert neue daraufhin angepasste Methoden.
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Chapter 1

Introduction

Over the last decades, the development in computer science has fundamentally changed

our society. Computer systems facilitate our work, help us to organize our life and have be-

come a major part of our spare time. However, although they are ubiquitous in our everyday

life, human-computer interaction (HCI) is still limited to passive devices such as keyboard,

mouse and touch events which forces computer systems to act only responsively on the ba-

sis of directly triggered events. HCI can be regarded as being rather one-directional, since

computers cannot recognize our intentions, interpret ongoing actions and are not able to

access the meaning of situations. The interaction is limited to services being exclusively

triggered by users. Hence, computer systems are unable to instantaneously adapt their

functionality to everyday demands of users. A change of this paradigm requires the devel-

opment of new technologies which enable computer systems to perceive the environment, to

gather useful information about the user and to make pro-active decisions on behalf of the

user. Computer Companion

system

systems possessing these technologies are called Companion systems which

provide the framework for this thesis.

The development of Companion systems is subjected to a number of challenges when

compared with conventional systems. One way to identify these challenges is to divide the

input to a Companion system into three major categories which are virtually omnipresent

in the new HCI paradigm: (1) the explicit user input, e.g. keyboard or multimodal instruc-

tions by gesture and speech; (2) the implicit user input (Schmidt, 2000), e.g. emotion or

disposition (Scherer et al., 2012a); and (3) the recognition of the user’s environment includ-

ing the context of use (Dey and Abowd, 1999; Honold et al., 2013), e.g. location, activities

or the state and manipulation of objects nearby. These Cognitive

technical

system

categories show that Companion

systems must have a strong perception and, therefore, should be regarded as cognitive tech-

nical systems (CTS) (Gamrad, 2011). However, it has to be pointed out that the concrete
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Figure 1.1. Decomposition of a Com-
panion system. The user interface al-
lows explicit inputs (red arrow) and pro-
vides outputs to the user (blue arrow).
The implicit input (red arrow) is realized
by the perception which is monitoring the
user’s state and the situative context from
the environment. The system is decom-
posed into a peripheral building block, i.e.
user interface and perception, and an in-
ner building block which realizes higher
cognitive abilities. The bidirectional ar-
rows represent the information flow be-
tween these building blocks. For a detailed
description please refer to the text.

manifestation of the input categories strongly depends on the application at hand.

In order to recognize the events of interest, Companion systems must implement several

requirements at once. Events of interest are often characterized by having a high variability

and by being only weakly represented in observable features. Furthermore, these events are

likely to have a temporal dimension and to be present in multiple modalities. On major

difficulty is that unexpected events may occur in an open world scenario. This can lead to

wrong recognitions since these events are unknown to the Companion system. Real-world

scenarios can even lead to situations in which CTS have to deal with missing data or even

with sensor failures which further complicates the recognition of the desired events.

A deeper analysis can be performed by taking an alternative view in which a conceived

Companion system is decomposed into a set of basic modules in order to examine the sys-

tem’s information flow (Glodek et al., 2015a). Figure 1.1 depicts the internal information

flow within the system and the information flow between the user, the environment and

the system. The system itself is organized in two building blocks: (1) a peripheral building

block comprising a user interface module and a perception module and (2) an inner building

block comprising a knowledge model module and a decision making module which realize

planning, ontologies, the controlling application and the dialog management. The red input

arrow in the lower right represents the information entering the perception module of the

first building block, i.e. the implicit user input. The perception module is connected to

the knowledge module by a bi-directional arrow which indicates that information should

be exchanged in both directions in a seamless manner. Information is passed towards the

knowledge module such that it can be processed by abstract symbolic artificial intelligence

approaches. However, information should also be passed in the reverse direction such that

the perception can benefit from the derived context utilizing qualified priors. On the upper

right, red and blue arrows represent the conventional explicit input and output of the sys-

tem. The commands which are combined and interpreted by the user interface module are, if

necessary, proceeded to the inner decision making module which then adapts the knowledge
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model, planning and dialog management accordingly. The bi-directional arrow indicates

that the output should be tailored to the user and his current input preference. Therefore,

these arrows represent not only the fusion of information but also a fission in which high-level

knowledge is transferred back to the periphery (Honold et al., 2012). The implementation

of the bi-directional information flow inside the system is challenging because each of the

four modules faces characteristic requirements: (1) perception has to be omni-present and

recognized classes must have a sufficient level of abstraction, (2) knowledge has to handle

the perceived information dynamically, and still be persistent for further processing, (3) de-

cision making has to be pro-active and (4) user interface has to be concise (effective) and

instantaneously available. The bi-directional arrows represent the transformation of infor-

mation from one module to another, while still meeting the requirements of the individual

modules. This work focuses on pattern recognition and the seamless bidirectional exchange

of information with the knowledge module in the context of CTS perception (Glodek et al.,

2015a).

1.1. Research Questions

In the following, three research questions will be formulated which are of central impor-

tance to this work:

(i) How to combine multimodal and temporal probabilistic classifier results?

(ii) How to handle missing information in sequential classifiers?

(iii) How to create high performance classifiers for complex classes?

The remainder of this section will clarify and elucidate the three questions in greater detail.

(i) How to combine multimodal and temporal probabilistic classifier results?

The first question addresses a classic topic of pattern recognition, namely late classifier

fusion in which decisions from multiple classifiers are combined to increase the over-all per-

formance. In general, late classifier fusion is done by independently classifying the same set

of classes which are directly observable and combining the resulting decisions subsequently.

In CTS, patterns often have a natural expansion over time such that late classifier fusion

needs to be extended to temporal domain, i.e. the combination needs to be performed with

decisions from multiple modalities or feature views and multiple time steps. A large number

of approaches have been proposed to combine non-temporal classifier decisions. In case of

crisp classifier decisions, the combination is commonly performed using majority vote, i.e.

the decision occurring most frequently is selected (Kuncheva, 2004, page 112ff.). However,

3



1 Introduction

the classifier fusion techniques based on crisp decisions have their limitations since the un-

certainties associated with the classifier decisions are disregard (Thiel, 2010). In contrast,

probabilistic classifier outputs allow more sophisticated combinations, such as the sum or

product rule (Kittler et al., 1998). More advanced combination approaches are adaptive

fusion mappings (Schwenker et al., 2006) or Dempster-Shafer classifier fusion (Szczot et al.,

2012). However, these approaches are still missing a unified formulation for temporal classi-

fier fusion. Dietrich et al. (2004) were among the first groups that systematically extended

classic fusion techniques to temporal fusion. They focused on the question whether fusion

over time should be performed before or after the classic classifier fusion.

The research question is addressed by presenting and analyzing novel multimodal and

temporal fusion techniques. A special focus is set on probabilistic methods and the handling

of missing classifier decisions. Furthermore, the incorporation of measured uncertainty and

the applicability to real-world scenarios plays an important role.

(ii) How to handle missing information in sequential classifiers?

The development of CTS which are deployed in real-world scenarios demands for techniques

which allow the system to deal with multiple kinds of internal exceptions. Exceptions can

take place on almost all stages of the system’s architecture. However, especially the acquisi-

tion of information before classifier fusion can be affected. For instance, a complete modality

may fail such that alternative modalities need to take over. This can for example concern

the audio modality in case the person remains silent or is located in a noisy environment,

or the video modality in case a monitored person leaves the camera’s field of view. In these

circumstances, the classification has to permanently or temporarily resign from features of

one entire modality. However, features can also become partially unavailable, e.g. persons

may become partially occluded due to the view-point of the camera. These incomplete fea-

tures vectors represent a real challenge for classification. Complete loss of feature vectors

can be handled at fusion level and, therefore, is addressed by the first research question.

Incomplete feature vectors can be efficiently dealt with at the stage of classification. This

case is addressed by this research question.

The most common strategy is to discard incomplete feature vectors and to use only

the feature vectors which are complete. Classification of sequences which are composed of

complete and lost feature vectors can be performed by repairing the sequence on feature

or on decision-level with the help of past and future information. The reconstruction on

feature-level can be done using a Markov chain which models hidden causes emitting the

feature vectors (Peursum et al., 2004; Chen et al., 2006). The reconstruction on decision-level

is, as already mentioned, addressed by the first research question. However, such kind of

reconstruction can compensate only short-time losses. An alternative strategy to handle this
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issue is to create a fixed-length feature vector representation by clustering a large variable-

sized collection of available feature vectors using the so-called bag-of-words approach (Fei-Fei

and Perona, 2005). Again, this approach tends to wash out and discard valuable feature

information. The best treatment of incomplete feature vectors in a sequence is to avoid

the loss of valuable information by not dealing with the incompleteness before classification.

Instead, the classification algorithm has to use what is available and to disregard just the

missing parts.

To do so, the starting point has to be a sequential classifier which is capable of propagat-

ing information temporarily. In addition, the classifier must be able to represent incomplete

feature vectors. Such an algorithm handles the issue at classification-level which is reason-

able since some classes do not depend on the observation of complete feature vectors. As a

consequence, the number of sensors can be reduced and an increased classifier performance

can be expected. Furthermore, such a classifier would allow the training on datasets also

containing incomplete feature vectors.

(iii) How to create high performance classifiers for complex classes?

Companion systems which adapt to the user’s demands and attitudes are in need of high-

level knowledge to perform their decision making. However, simple stand-alone classes, e.g.

detected single objects or the presence of a face in an image, are insufficient and cannot

be regarded as useful information for further processing in the inner building block. Since

the decision making module utilizes methods from symbolic artificial intelligence (AI), it is

essential to recognize complex classes with high-level relations from which new information

can be derived. An example of a useful recognition could be “Person A is currently sitting in

front of the home-entertainment-system drinking a cup of coffee while having breakfast”. The

“Person A” is grounded to a distinct individual and is related to his location and actions.

The entities, their relations and already available prior knowledge can be associated to

perform further valuable reasoning (Möller and Neumann, 2008). However, from a pattern

recognition perspective it is still not clear how to detect such complex patterns. It is worth

noting that sub-patterns which are directly observable, such as “Drinking coffee”, “Reading

newspaper” and “Eating toast”, compose complex categories, such as “Having breakfast”.

Technically, the composition of observable sub-patterns to complex patterns has to account

for uncertainty and needs to be performed in multiple moderate steps. This procedure can

be regarded as a seamless transition from sub-symbolic knowledge to symbolic knowledge.

The recognition of complex patterns bears many challenges: A robust detection of sub-

patterns can benefit from multiple modalities, temporal fusion and the preservation of un-

certainties. In addition, it is important to use sequential classifiers to account the temporal

nature of patterns in real-world scenarios. On higher levels, a smooth shift to symbolic AI
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methods is inevitable. Pattern recognition approaches at this level would require datasets

with a large number of samples of complex patterns. However, this is practically infeasi-

ble because complex patterns have a high variability in their appearances. Symbolic AI

methods on the other hand often rely on crisp spatial or temporal relations. Such a crisp

logical framework is less suitable in the given application since the recognition of basic pat-

terns are typically afflicted with uncertainty. A good choice is the use of a probabilistic

logical framework which allows complex classes to recover from wrongly recognized sub-

patterns (Domingos et al., 2006). It is even thinkable that information which was extracted

at the level of complex patterns can be propagated back to the recognizers closer to the

sensors in order to enhance the overall performance.

1.2. Related Work

Companion systems need to perceive the situative context and the user state in order

to correctly assess the condition the user is in. The user state refers to the collection of

states restricted to the user, e.g. emotion, common knowledge or body pose without any

relations to the environment and the system. As opposed to that, the situative context

deals with spatial and temporal relations between the user and the environment. Examples

in the spatial domain are relations between user and objects, e.g. a user can interact with

an object or a user expresses an emotion towards an object (disposition), but also relations

between two objects itself, e.g. one object is part of another. The temporal domain relates

events to each other. For example, a complex activity can be composed of a sequence of

shorter actions, or a change of emotion or knowledge can be triggered by information which

was passed to the user. The user state and the situative context are both stored in the

knowledge model for further processing.

The research questions are going to be addressed in the context of Companion systems

and, hence, with a special focus on the recognition of the user state and situative context.

Therefore, the first research question is going to be examined taking the application of

emotion recognition in HCI. The second research question is addressed by using the example

of action recognition, whereas the last research question is concerned about the recognition

of user preferences.

In the following, an overview about the related work which has been achieved regarding

these three topics is given.

1.2.1. Emotion Recognition in Human-Computer Interaction

The research on emotion has evolved over a large period of time (Cannon, 1927; Ek-

man, 1972; Russell, 1980; Mehrabian, 1996; Marsella and Gratch, 2009). One of the first
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approaches to explain the origin of emotions is the James-Lange theory which was proposed

in 1884 (Cannon, 1927). Almost a century later, Ekman (1972) published his theory of uni-

versals and cultural differences in facial expression of emotions. According to this theory,

humans have a pan-cultural set of emotions which is expressed according to cultural dis-

play rules. The genesis of an emotion can be divided into three stages: elicitation in which

different events may induce a different emotion depending on the cultural background; the

presence of a universal emotion; and the display of this particular emotion which again de-

pends on the cultural background. In the years that follow, advanced models to structure

emotions were developed. Russell (1980) proposed a two-dimensional circumplex model

in which emotions are spanned in the pleasure-arousal space. Later the two-dimensional

model was extended by a third dimension — the well-known pleasure-arousal-dominance

model (Mehrabian, 1996). Ambady and Rosenthal (1992) showed that even short observa-

tion snippets of expressive behavior allow accurate social perception. The study showed that

humans are able to efficiently communicate social information via unintended and uncon-

scious cues. The categorization and studies on emotion perception gave important evidences

which motivate the application of automated affective state recognition in HCI.

The automated recognition of emotions in HCI is a challenging task (Palm and Glodek,

2013). The target emotional categories must be present in the actual Companion application.

The dataset recorded for training must be accurately annotated. Robust features must be

extracted from the modalities of the dataset, and the trained classifiers must be robust and

provide a measure for the uncertainty associated with the classification. Furthermore, The

situative context of the subject should be inferred in order to assess the user’s disposition.

First approaches of automated emotion recognition restricted themselves to unimodal and

acted datasets (Kanade et al., 2000; Tian et al., 2001; Lee et al., 2004; Wagner et al., 2007;

Maganti et al., 2007). The accuracies on these datasets range between 70% to 80% which is

close to the human emotion recognition performance (Kanade et al., 2000; Burkhardt et al.,

2005; Bänziger and Scherer, 2007). Later approaches were evaluated on multimodal datasets

with naturalistic emotions which are clearly more demanding with respect to annotation and

pattern recognition (Douglas-Cowie et al., 2003; Campbell et al., 2006a; Martin et al., 2006;

Douglas-Cowie et al., 2011; Strauß et al., 2008; McKeown et al., 2010; Schuller et al., 2007;

Zeng et al., 2009). The accuracies of these approaches vary strongly depending on the appli-

cation, the dataset and the annotation. In the naturalistic setting, it is generally difficult to

obtain a ground truth annotation since there is no exact and indisputable definition of emo-

tion. Labels are strongly related to the dataset such that distinct emotional categories are

often insufficiently covered, e.g. “Disgust” or “Fear”. The annotation is further complicated

by weakly expressed emotions and unexpected events which appear only once in a dataset or

are not covered by the annotation schema (Douglas-Cowie et al., 2011; Strauß et al., 2008).
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However, that kind of datasets also offer many opportunities, e.g. multiple modalities, tem-

poral evolvement and context information (Scherer et al., 2012a; Metallinou et al., 2012;

Wöllmer et al., 2010; Wendt et al., 2008; Batliner et al., 2008). Cowie et al. (2001) argued

that the multi-faceted categories of emotions can be captured by artificial systems using

the two-dimensional representation of “Activation” and “Valence”. Furthermore, the authors

pointed out that emotions occur in multiple temporal granularities, e.g. expression, attitude,

mood or trait. Vinciarelli et al. (2008) stated that social signals are indispensable in human

interaction and, therefore, are an essential part of next-generation computing. The machine

analysis of a social interactions can be realized by observing multiple behavioral cues which

together compose a social signal. This topic was further addressed by Scherer et al. (2012a);

Scherer (2011) who proposed to investigate the user’s disposition towards the interacting

system, e.g. involvement, agreement, understanding.

In the next step of the Companion system development, the output of the automated

emotion recognition needs to be integrated into the processing of the knowledge and decision

making modules. However, so far the role allocation between humans and the emotionally

aware CTS is undefined. This issue makes it difficult to perform an importance rating of

emotional categories. Hence, the behavior towards such a CTS is commonly studied with the

help of a Wizard-of-Oz experiment (Kelley, 1984; Frommer et al., 2012; Walter et al., 2011;

Bertrand et al., 2011; Strauß et al., 2008). In a Wizard-of-Oz experiment, the participant

interacts with a sophisticated computer system without knowing that it is remote-controlled

by an investigator, the so-called wizard. Datasets which are derived based on recordings of

such Wizard-of-Oz experiments are counted to be the most challenging ones and, therefore,

are going to be addressed in this work.

1.2.2. Human Action Recognition

Action recognition is a vivid research field in pattern recognition offering a multitude

of difficulties (Poppe, 2010; Ahad et al., 2008; Turaga et al., 2008; Layher et al., 2012).

Sheikh et al. (2005) identified three main challenges: view-invariance, execution rate and

anthropometry of actors. These challenges can be solved on different stages of processing.

The anthropometry is ideally addressed on an early feature extraction stage, while the

execution rate is most efficiently handled during classification. To achieve view-invariance,

the feature extraction and the classification need to efficiently interplay with each other to

gain as much information as possible from the sequential data representing an action, as

already pointed out in Section 1.1. However, only few methods have been proposed which

address view-invariance in such a way.

According to Poppe (2010), image-based representations for human action recognition

can be divided into global and local representations. The global representation is obtained
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in a top-down fashion starting with a localization of the person and a subsequent encoding of

the corresponding region. One approach is to extract fixed-length features from the human

silhouette, e.g. edges and optical flow. Bobick and Davis (2001) proposed to extract the

so-called motion-energy by cumulating the differences of binary silhouettes between frames.

Chen et al. (2006) used a fixed-length feature vector derived from a star skeleton, i.e. an

optimal fit of lines having a common origin in the contour of a human. Global features

require a robust detection of the region of interest. Finer structures are often disregarded

and the application to recordings in which the region of interest is partially occluded is very

limited.

Alternatively, local image representations make use of a collection of independent patches

which are sampled from an image. Sampling can be done densely over the complete im-

age (Poppe, 2010) or using an interest point detector, e.g. the scale space extrema detec-

tor (Cheung and Hamarneh, 2007) or the 3D Harris Detector (Gorelick et al., 2007). The

patches in the image are then used to extract features such as histogram of gradients (Dalal

and Triggs, 2005) or histogram of optical flow (Lucas et al., 1981). Therefore, features are

extracted from patches of interest without knowing whether they actually belong to the

human and despite a possible partial occlusion of the human. Hence, the problem of occlu-

sion is not solved but stalled, since it has to be handled by the classifiers operating on the

features. Thus, the occlusion problem is often addressed by recording a dataset which has

a large number of samples such that the machine learning algorithm can learn a sufficient

statistic on the complex feature distribution.

Apart from the global and local image representations, Poppe (2010) further outlines the

application-specific representation in which rich image features are extracted especially for

the domain of action recognition. These features are commonly given by skeleton models

which are composed of joint locations and angles. In case the extraction is performed

based on a plain RGB image, the resulting the skeleton model is typically limited to two-

dimensional coordinates. Alternatively, a more sophisticated motion capturing system can

be utilized which provides view-invariant three-dimensional joint locations. However, such

a system is in general expansive and obtrusive. A good compromise, is a three-dimensional

skeleton model derived using a depth-map camera, e.g. the Kinect camera1. Depth-map

cameras are not view-invariant due to their single viewpoint (Shotton et al., 2013). However,

skeleton models can be extracted from the visible part of the subject and occluded parts

can be marked as such. The biggest benefit is that these cameras are available on the retail

market.

Many experiments treat view-invariance as being solved by making use of fully observable

(or at least advantageously recorded) data (Schuldt et al., 2004; Tran and Sorokin, 2008).

1The KinectTM camera is an input device developed by MicrosoftR© which captures human body poses.
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Nonetheless, there is some literature addressing the topic of view-invariance in human action

recognition with new features and/or classification techniques (Ahad, 2011). Ben-Arie et al.

(2002) proposed a method for activity recognition which is based on multi-dimensional

indexing and voting. Each of the tracked body parts acts as an expert which independently

votes for an activity. The votes are then averaged and evaluated over time using sequencing.

The use of body parts to group independent experts allows a native handling of occlusions,

which albeit was not addressed in the study. However, the overall architecture does not rely

on standard classifiers, and neither on a probabilistic framework which makes it difficult

to predict the performance with respect to occlusion and view-invariance. Peursum et al.

(2004) introduced a modified hidden Markov model (HMM) for action recognition using

discrete observations based on a star skeleton representation. In case the pose estimation

fails to extract a valid star skeleton, the observation is completely discarded. The HMM deals

with the incomplete sequence by omitting the emission probabilities in case observations are

missing. However, star skeletons which were marked as being invalid might still contain

valuable information which could have been exploited. One can argue that the extraction

of data was not performed efficiently.

1.2.3. Complex Pattern Recognition

In literature, complex class recognition usually focuses on a particular problem rather

than evaluating a generic approach (Turaga et al., 2008). Hence, the comparison of proposed

approaches is not straight forward, also because the addressed problem definition often relies

on a dataset which is not publicly available. Nonetheless, the state-of-the-art in this area has

evolved and the progress made so far is encouraging. Rao et al. (2002) proposed to recognize

high-level action classes by extracting the curvature of a hand trajectory. The curvature is

fragmented into instants and intervals. An instant is an entity that occurs for only one frame

and represents an important change in the motion characteristics. An interval represents

the time period between two instants. The view-invariant representation is then classified

using an algorithm matching the current observed curvature to a set of known curvatures.

Wrede et al. (2004) developed a cognitive vision system for scene analysis which makes use

of an active memory. The system has the ability to relate objects to actions. The observed

concepts, e.g. hand, typing, keyboard, are stored in a volatile memory. The content of the

memory is processed by additional algorithms, e.g. a consistency validation, which would

reject the recognition of certain actions in case no supporting objects were found in the

scenery. An approach to recognize office activities using the context of manipulated objects

was proposed by Biswas et al. (2007). The context is modeled using a Markov logic network

(MLN) which operates on multiple weak feature sources, i.e. object information, body pose
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and body movement. The combination of the observed features in the MLN resolves ambi-

guities and, thus, provides a more robust recognition. Tran and Davis (2008) presented a

system for the surveillance of an outdoor parking lot. Despite the noisy observations, the

system recognizes humans and cars with the goal to derive high-level information using an

MLN, e.g. people shaking hands, trunks get loaded or a person gets into a car. Kembhavi

et al. (2010) developed a system for scene understanding which utilizes an MLN to combine

image analysis and reasoning. The key concept is to assign a functionality to zones in the

scene which were derived in a pre-processing segmentation step, e.g. roads, sidewalks, cross-

walks, pedestrian entrances or bus-stops. The MLN input is given by the segmented zones,

tracked objects over time, e.g. bus, car or pedestrian, and world knowledge in the form of

rules, e.g. “Cars stop at crosswalk in order to let people pass”. Oliver et al. (2004) proposed a

multi-layered architecture to recognize office activities based on multiple sources. The lower-

most layer recognizes basic patterns. Each following layer performs the classification based

on the output of the proceeding layer. Hence, with each layer the temporal granularity and

the level of abstractness increases such that more complex classes are recognized. Gehrig

et al. (2011) utilizes a similar multi-layered approach to detect human intentions based on

six activities and motion primitives. Domain knowledge is applied (by the means of labeled

ground truth to learn transition probabilities) either to recognize motion, activity or both.

1.3. Organization of the Thesis

The remainder of this manuscript is structured as follows.

Chapter 2 provides a thorough compendium of the work which constitutes the basis of this

thesis. The focus is set on probabilistic models, multiple classifier systems and support vector

machines (SVM). Relevant probabilistic models for this work are: Gaussian mixture model

(GMM), graph probability density (GPD), hidden Markov model (HMM), latent-dynamic

conditional random field (LDCRF), Kalman filter and Markov logic network (MLN). Fur-

thermore, an introduction to the terminology and basics of multiple classifier systems is

given. This is followed by a detailed presentation of the layered HMM (LHMM) for complex

class recognition as proposed by (Oliver et al., 2004). Finally, an introduction to fuzzy-in

fuzzy-out multi-class SVM is provided.

Chapter 3 presents the contributions being made based on the basics presented in the

previous chapter. First, the ensemble GMM (EGMM) is introduced which provides more

robust estimations of probability densities than classic approaches with the help of an en-

semble of GMM. Thereafter, the conditional HMM (CHMM) and fuzzy conditional HMM

(FCHMM) are described which both extend the standard HMM by a sequence of outer

causes influencing the hidden states. The FCHMM additionally features fuzzy sequences

of outer causes. Following this, HMM using GPD (HMM-GPD) are proposed which model
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sequences of variable-sized graphs as observations. The CHMM using GPD (CHMM-GPD)

further allows the training of a unified model which shares hidden states between classes.

The Markov fusion network (MFN) and Kalman filter for classifier fusion are proposed to

combine a continuous stream of multimodal classifier decisions. This is followed by a presen-

tation of the unidirectional layered architecture (ULA) and bidirectional layered architecture

(BLA). The ULA is an extension of the LHMM which is still limited to an unidirectional

information flow towards the upper layers. The BLA further allows a back-propagation

of information from the upper layers recognizing complex classes to the lower layers op-

erating on data derived from the sensors. Subsequently, an alternative fuzzy-in fuzzy-out

multi-class SVM is presented which is called the inequality constraint multi-class fuzzy-in

fuzzy-out SVM (IC-MC-F2-SVM).

A number of empirical studies were conducted in order to evaluate the proposed ap-

proaches. The empirical evaluations have a strong focus on real-world datasets addressing

among others emotion recognition in HCI, action recognition and user preference recogni-

tion. Chapter 4 introduces the datasets and evaluation criteria. The results of the empirical

evaluations are then presented in Chapter 5. Each evaluation of a study is followed by a

short summary which shortly recapitulates and interprets the results.

The discussion of the proposed methods and their empirical evaluations are provided in

Chapter 7. Finally, Chapter 7.1 provides a conclusion to the work done which also addresses

the three research questions raised in this introduction. The last chapter further gives an

outlook on interesting aspects of possible future work.

12



Chapter 2

Basics

The introduction expounded the requirements, context and challenges to be addressed

in this work. The approaches which will be proposed in the subsequent chapter rely on a

large number of basic methods which are going to be presented in this chapter. The work

puts a strong focus on probabilistic graphical models. Consequently, this chapter will begin

by discussing the concepts of probability theory, graphical models and the most frequently

utilized models of the thesis, i.e the Gaussian mixture model (GMM) and the hidden Markov

model (HMM). Following this, a brief outline of the HMM-related Kalman filter and the

Markov logic network (MLN) is given. Then the scope is broadened to alternative classifier

approaches and architectures, starting with the concepts of multiple classifier systems and

layered HMM (LHMM). Finally, the state-of-the-art regarding fuzzy-in fuzzy-out support

vector machines is presented.

2.1. Probability Theory

In our (real) world only a few laws are absolute — in most cases outcomes and predictions

of events can be considered as being rather uncertain (Bloch et al., 2001; Palm, 2012). Several

mathematical theories have been developed to describe the uncertainty of such events (Thiel,

2010, page 41ff.; Pearl, 1988;Shafer, 1986). One of the most elementary theories is the

“frequentist” setting which is built on the assumption that experiments are reproducible

such that a statistical evaluation of the occurrences of an event can be performed (Bortz

and Schuster, 2010; Bishop, 2006). Such kind of probabilities are also often referred to

as “objective probabilities” because they are well-founded on a multitude of observations.

However, it is not always possible to observe an event frequently enough to setup sufficient

statistics. For instance, it is not possible to create a statistic on an outcome of a sport game
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using the frequentist setting, since it depends on factors which were never observed before,

e.g. the combination of players on the field or the physical state of the players.

Nonetheless, human experts are still able to give a subjective prediction on how likely

outcomes of a unreproducible event may be (Casella and Berger, 2001). The most popular

paradigm based on “subjective probabilities” is the Bayesian theory (Koller and Friedman,

2009), although alternative approaches such as the Dempster-Shafer theory or the possibility

theory have attracted a reasonable amount of interest in recent times (Dempster, 1967;

Heinsohn and Socher-Ambrosius, 1999; Dubois, 2006).

In the next section, a short introduction to the frequentist setting will be given which

is followed by an overview of the Bayesian theory with a special focus on graphical models,

i.e. Bayesian networks and Markov networks.

2.1.1. Frequentist Setting

The frequentist setting is based on the counting of observed events. Let x and y be two

random variables each one modeling an event. possible outcomes can be assigned to the

random variables x or y from a closed set of states {x1, . . . , xMx} and {y1, . . . , yMy}. The

joint probability of observing a certain assignment of the two random variables depends on

the number of observed outcomes in the past

p(x = xi, y = yj) =
nij
N

(2.1)

where nij denotes the number of observed outcomes (xi, yj) and N =
∑Mx

i=1

∑My

j=1 nij

denotes the total number of all observations. In order to ensure that this probability is

unbiased, the observed outcomes need to be drawn from the same experiment and need to

be independent from each other. In other words, the observations have to be independent

and identical distributed (i.i.d.). This property holds for all statistical approaches in this

work and, therefore, is generally assumed as being given. Furthermore, it is mandatory

that a sufficient number of outcomes have been observed for each random variable to ensure

sufficient statistics. In the given setting, the conditioning of the random variable y being in

state yj given an outcome xi is obtained by normalizing the distribution of events

p(y = yj |x = xi) =
nij
Ni

(2.2)

where Ni =
∑My

j=1 nij . Figure 2.1 depicts the counting of observed events in the frequentist

setting. Each observed outcome (xi, yj) adds one to the element nij of the matrix which

was initialized with zeros. The divisor Ni which is used for the normalization is obtained

by summing the elements along the line of xi which is highlighted in gray.
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2.1 Probability Theory

Figure 2.1. Counting of events in the frequentist set-
ting. Each observed event xi and yj of the random variables x
and y increments the corresponding entry nij (Figure adapted
from Bishop (2006), page 13).

Two rules can be derived based on the probabilities defined so far, i.e. the sum rule and

the product rule. The Sum rulesum rule which is also often referred to as marginalization is given

by

p(x = xi) =

My∑
j=1

p(x = xi, y = yj). (2.3)

The rule eliminates the effect of random variable y. In this setting, the matrix shown

in Figure 2.1 reduces to a vector. The product rule Product rulecan be used to derive the joint distribu-

tion with the help of a conditioned probability:

p(x = xi, y = yj) = p(y = yj |x = xi)p(x = xi). (2.4)

By applying the product rule and due to symmetry, the following equations can be obtained

p(x, y) = p(x, y) (2.5)

⇔ p(y|x)p(x) = p(x|y)p(y) (2.6)

⇔ p(y|x) =
p(x|y)p(y)

p(x)
. (2.7)

Although this equation looks similar to the Bayes’ theorem which will be introduced in the

next section it is still technically fundamentally different because of the frequentist setting.

More details about this topic can be found in (Vapnik, 1999; Koller and Friedman, 2009;

Bishop, 2006).

2.1.2. Bayesian Probability Theory

The starting point of the Bayesian probability theory is the assumption that the degree

of uncertainty regarding states in the world can be assigned by experts using a subjective

score within the interval of [0, 1], where values close to one means that an event is very

certain to occur and values close to zero indicate that the occurrence of an event is almost

impossible. The key idea of the Bayesian theory is that hypotheses can be updated in the

light of new data with the help of so-called priors. In doing so, the Bayesian theory follows

precisely the same calculus as the one of the frequentist setting (Bishop, 2006, page 21ff.).

The Bayes’

theorem

most famous application of the Bayesian probability theory is the Bayesian theorem.
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Let M be a model which is capable to generate data D. The theorem states that

p(M|D) =
p(D|M)p(M)

p(D)
. (2.8)

The likelihood p(D|M) describes how likely D originates from M. The quantities p(M) and

p(D) are priors and represent the probability of the model itself, i.e. before taking the data

into account, and the probability of observing the data alone (Koller and Friedman, 2009,

page 19). The prior p(D) is located in the divisor and normalizes the distribution. The

left-hand term of the Bayes’ theorem describes the so-called posterior distribution p(M|D).

In machine learning, it is often desirable to derive the posterior of different models in

order to compare them and to select the model with the highest probability. However in

many cases, it is sufficient to compute only the model likelihood p(D|M) with disregard of

the model and data priors (Koller and Friedman, 2009). The goal of machine learning is to

find the most probable model which fits to a given dataset. This is usually achieved by se-

lecting suitable parameters for a fix configurable model. The procedure is called maximum

likelihood (ML), because the fitting of the parameters intends to increase the likelihood.

Finding the parameters which directly maximize the posterior distribution is referred to as

the maximum a posterior (MAP) approach. The posterior is obtained by weighting the

likelihood using the prior p(M) and normalizing the distribution using the data prior p(D).

However, in some applications it is favorable to omit the normalization, because of the ex-

tensive computational effort associated with evaluation of the data prior, e.g. in continuous

state space. Fortunately, many applications are concerned only with finding the most likely

model, rather than the exact posterior probability.

The theory of probability requires that all possible outcomes of a random variable are

defined from the beginning. This requirement is called closed world assumption. An open

world scenario can be defined with the help of a special event, e.g. a model for all uncovered

events or a so-called background model. Alternative approaches to model uncertainty, such

as the the Dempster-Shafer theory (Shafer, 1976), provide a more intuitive framework for

the open world assumption. However, the Dempster-Shafer theory requires the power set of

all states to be evaluated.

2.1.3. Bayesian Networks

Graphical models reduce the complexity of joint distributions by decomposing them into

a set of smaller probability distributions. Hence, the number of parameters required to

describe the distribution is reduced (Pearl, 1988; Heckerman, 1998; Bishop, 2006; Koller

and Friedman, 2009). The idea of Bayesian networks is to exploit causal dependencies
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Figure 2.2. Distribution decomposed by a Bayesian
network. The joint distribution given by p(x1, x2, x3, x4)
can be decomposed to factors of conditioned probability dis-
tributions p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x3).

between random variables to obtain a sparser representation. These dependencies are usually

visualized using a directed graph. An important restriction which is often considered for

computational reasons is to restrain from directed cycles. Such graphs are called directed

acyclic graph (DAG) what entails that the nodes are ordered (Bishop, 2006, page 362ff.).

For instance, in order to represent the joint distribution p(x1, x2, x3, x4) a matrix of the

size M4 is needed where the number of states M is assumed to be the equal for all random

variables without loss of generality. A possible decomposition of the joint distribution can

for example be given by

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x3). (2.9)

This alternative description of the joint distribution has a significantly reduced complexity

of M +M2 +M2 +M3. The graphical model which corresponds to Equation 2.9 is depicted

in Figure 2.2.

Literature provides a number of algorithms to perform inference in graphs which differ in

efficiency and exactness depending on the graph structures. Exact inference can be achieved

using a message passing algorithm, called the sum-product algorithm, which is applicable

to graphs having a tree-structure (Bishop, 2006, page 402ff.). Due to the structure, the

probabilities can be derived in two passes in which the messages are propagated from one

end of the network to the other end and back, i.e. forward and backward passes. The sum-

product algorithm can be generalized to the so-called “loopy” belief propagation which can

be applied to graphs with cycles. The algorithm ignores that messages may be propagated

to parts of the network which were already visited by the message passing (Koller and

Friedman, 2009).

A Naïve Bayes

classifier

popular Bayesian network which will be used in the following sections to exemplify

the differences between graphical models is the naïve Bayes classifier (NBC). The Bayes

classifier decomposes the distribution p(x, y) into a likelihood p(x|y) and a prior over classes

p(y):

p(y,x) = p(x|y)p(y). (2.10)

The likelihood describes the dependency of the observed feature vector x given the class
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(a) (b)

Figure 2.3. Graphical representation of the Bayes classifier and naïve Bayes classifier.
(a) The Bayes classifier has only a single random variable modeling the observed feature vector
x which is conditioned to the class random variable y. (b) The naïve Bayes classifier treats the
elements of the feature vector x independently. The feature vector is composed of four elements,
resulting in four random variables x1, x2, x3 and x4 where each depends on the class random variable
y.

label random variable y. Figure 2.3a depicts the graphical model of the Bayes classifier in

which observed variable is depicted by a filled circle. The observation vector of the random

variable x is conditioned to the class label random variable y. However, this approach has

the drawback that the modeling of the distribution p(x, y) requires the estimation of a large

number of parameters. Especially, the observed feature vector increases the complexity of

the model. Therefore, it is beneficial to use a more rigid decomposition of the distribution

in case not enough samples are available for learning. This in turn leads to a more stable

and robust classifier. Such a decomposition is performed by the NBC (Mitchell, 2005)

which treats the elements of the observed feature vector as being independent. Hence, each

element xm with m ∈ {1, . . . ,M} of the observation vector x is independently conditioned

to the class label random variable y. The distribution of the NBC is given by

p(y, x1, . . . , xM ) = p(y)

M∏
m

p(xm|y). (2.11)

The graphical model of the NBC with M = 4 is shown in Figure 2.3b. The likelihood is

maximized by optimizing the parameters of the model with respect to the data. Consider

a dataset T = {(x(n), y(n))}Nn=1 of discrete observations x(n) = (x
(n)
1 , . . . , x

(n)
M ) and class

labels y(n). Then the multinomial distribution of the random variable xm conditioned to

y = y is given by

p(xm = xm|y = y) = µmxmy (2.12)

with the additional assumption
∑
xm∈xm µmxmy = 1. The individual samples are treated as
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being i.i.d. such that the probability of the observations given a class is given by

p(Tym|y = y) =

Ny∏
n=1

µ
mx

(n)
m y

(2.13)

where the set Tym contains only samples of the random variable xm associated with the

label y = y which are indexed by n = 1, . . . , Ny. In order to determine the maximum

likelihood of the parameters, the objective function is created by taking the logarithm of

Equation 2.13. The logarithmic function has no effect on the optimization process since it

is monotone. Furthermore, the constraint
∑
x∈xm µmxy = 1 is added using the Lagrange

multiplier λ:

L(µ) =

N∑
n=1

M∑
m=1

lnµ
mx

(n)
m y

(n) +
∑
ŷ∈y

M∑
m=1

λym

( ∑
x̂∈xm

µmx̂ŷ − 1

)
. (2.14)

The maximum is determined by taking the derivative of the function and setting it equal

to zero. In the second step the equation has to be rearranged to make the parameter the

subject:

∂L(µ)

∂µmxmy
=

N∑
n=1

δ
x
(n)
m =xm

δ
y
(n)

=y

1

µ
mx

(n)
m y

(n)︸ ︷︷ ︸
Nmxmy/µmxmy

+λym = 0 (2.15)

⇔ µmxmy = − Nmxmy

λ
. (2.16)

The Lagrange multiplier is determined by substituting the outcome back into Equation 2.15

which results in λym = −Nym. The final parameter is then given by

µmxmy =
Nyxmm

Ny
. (2.17)

Classification is performed by evaluating the likelihoods p(x̂m|y) for all possible labels y.

The joint distribution is then obtained by multiplying the outcome with the corresponding

prior p(y). The prior can either be learned from the data, e.g. γy = p(y = y) = Ny/N , or

set manually.

2.1.4. Markov Networks

Markov networks which are also often referred to as Markov random fields (MRF) de-

scribe joint distributions using cliques of random variables. The random variables contained

in a clique are assumed to be correlated. Without loss of generality, the joint distribution can

be regarded as a factorization of functions based on the variables of maximal cliques (Bishop,
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2006, page 385ff.)

p(x=x)=
1

Z

∏
c∈C

φc(xc) (2.18)

where C denotes the set of cliques,Potential

function

xc the states of the random variables being in the clique c,

φc(·) the potential function for the clique c, and Z the normalization constant required to

ensure that the probabilities sum (or integrate) up to one. The quantity of Z which is also

often referred to thePartition

function

partitioning function is given by

Z =
∑
x∈x

∏
c∈C

φc(xc). (2.19)

Since the potential function has to be strictly positive, the most popular representation of

the function is based on the exponential function:

φc(xc) = exp
(
− E(xc)

)
(2.20)

where −E(·) can be regarded as an energy function (Bishop, 2006, page 387ff.). A differentFeature

function notation is based on so-called feature functions which are defined for every possible state

of the random variables (Sutton and McCallum, 2007; Richardson and Domingos, 2006). A

feature function fx̂(x) for a particular state configuration x̂ returns a real-value. However,

often an additional restriction to binary feature function is made such that the function

returns one in case the state configuration is met and zero otherwise. TheLog-linear

model

log-linear model

utilizing feature functions is given by

p(x=x) =
1

Z
exp

(∑
c∈C

∑
x̂∈c

wx̂fx̂(x)

)
. (2.21)

where wx̂ ∈ R≥0 weights the respective functions and is defined for each state configuration

x̂. The sum over x̂ ∈ c iterates over all possible configurations of the random variables

contained in the clique c. There are infinite parameter weighting settings which describe

the same distribution, since the parameters can take any real value. Hence, a regularization

term is often added to a model in order to constrain the parameter space. The log-linear

model utilizing feature functions is well-suited for the definition of template models.

The graphical representation of Markov networks is given by nodes corresponding to ran-

dom variables and links connecting pairs of nodes according to the feature functions (Bishop,

2006, page 383ff.; Koller and Friedman, 2009, page 103ff.). However, in contrast to Bayesian

networks the links are undirected and describe a correlation between the connected ran-
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(a) (b)

Figure 2.4. Naïve Bayes classifier interpreted as a Markov network. (a) Classic repre-
sentation of Markov network. (b) Markov network with highlighted cliques.

dom variables. Figure 2.4a shows the NBC introduced in the previous section in form of

a Markov network. Since the Bayesian network representation is more restrictive than the

Markov network representation, the transformation of the NBC into a Markov network is

quite straightforward and the number of parameters remains the identical. The correspond-

ing log-linear model describing the NBC is given by

p(y, x1, . . . , xm)=
1

Z
φy(y)

M∏
m=1

φxmy(xm, y) (2.22)

=
1

Z
exp

(∑
l∈y

γ̃lfy(l)
) M∏
m=1

exp
(∑
l∈y

∑
s∈xm

µ̃mslfxm,y(s, l)
)

(2.23)

=
1

Z
exp

(
γ̃y +

M∑
m=1

µ̃mxmy

)
. (2.24)

The links representing the cliques φy and φxmy(xm, y) of Equation 2.22 are highlighted in

Figure 2.4b. Equation 2.23 shows the log-linear model using the feature functions where γ̃y

and µ̃mxmy are parameters to weight the configuration of a clique of random variables. The

feature functions can be omitted because of the clear structure of the network. Equation 2.24

shows the representation without feature functions which will be used in the following.

In order to derive the optimal parameters for γ̃y and µ̃mxmy an additional constraint

is added which restricts Z to be one. As a result, the representation of the probability

distribution can be simplified such that it takes a similar form to Equation 2.14:

p(y, x1, . . . , xm)=
1∑̂

x∈x

∑̂
y∈y

M∏
m=1

µmx̂mŷ · γŷ︸ ︷︷ ︸
1/Z=1/1

· exp
(

ln γy +

M∑
m=1

lnµmxmy

)
(2.25)

= γy ·
M∏
m=1

µmxmy (2.26)

where the denominator in Equation 2.25 can be interpreted as the normalization constant
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Z which is set equal to one. In the next step, the logarithmic function is applied and addi-

tional constraints are added using the Lagrange multipliers λ and κ such that the objective

function is given by

L(γ,µ)=

N∑
n=1

ln γ
y
(n) +

M∑
m=1

lnµ
mx

(n)
m y

(n)+

∑
ŷ∈y

M∑
m=1

λym

( ∑
x̂∈xm

µmx̂ŷ − 1

)
+ κ

(∑
ŷ∈y

γŷ − 1

)
. (2.27)

The parameters are determined analogously as described in the previous section.

While graphical networks are generally used to perform inference or parameter learning

on joint distributions, Lafferty et al. popularized in 2001 the so-calledConditional

random

field

conditional random

field (CRF). Again, a good showcase to explain the CRF is the NBC (Sutton and McCallum,

2007). The idea is to condition the labels to the observations by replacing the normalization

constant Z using the function Z(x1, . . . , xm). The new function depends on the observations

such that the distribution is written as

p(y=y|x1, . . . , xm)=
1

Z(x1, . . . , xm)
exp

(
γ̃y +

M∑
m=1

µ̃mxmy

)
. (2.28)

The normalization function is obtained by marginalizing over the labels y:

Z(x1, . . . , xm)=
∑
ŷ∈y

exp

(
γ̃ŷ +

M∑
m=1

µ̃mxmy

)
. (2.29)

In general, the conditioning can be performed similarly to Bayesian networks. However, the

application of Markov networks in classifiers experiences a renaissance due to CRF.

Markov networks have many advantages compared to Bayesian networks: They are de-

fined by cliques of correlating random variables which are easier to be identified than the

causal dependencies of Bayesian networks. Furthermore, the restriction of the Bayesian net-

work to acyclic graphs is no longer given. Hence, Markov networks can be defined using any

structure including loops. However, the softening of the constraints comes at the expense

of general parameter learning and inference which might no longer be exact and have an

increased computational cost.

TheMarkov

property

name of the Markov network originates from the so-called Markov property which

relates to the fact that random variables are influenced by a limited number of other random

variables, i.e. the random variables being in the same clique or, more general, in the Markov

blanket (Freno and Trentin, 2011; Bishop, 2006, page 383ff). The MRF is a popular choice
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in image processing where each pixel is often modeled by a random variable being connected

to adjacent pixel random variables (Hassner and Sklansky, 1980; Geman and Geman, 1984;

Diebel and Thrun, 2006). However, the Markov property is not limited to Markov networks.

For example, in temporal template models such as the HMM, the state of a random variable

at time step t+ 1 is influenced by the distribution over the random variable of time step t.

2.1.5. Factor Graphs

As already mentioned, the classical representation of the Markov network is disadvanta-

geous because the decomposition of a clique is ambiguous. A more qualified representation

is the factor graph (Bishop, 2006, page 399ff.; Sutton and McCallum, 2007 ;Koller and Fried-

man, 2009, page 123ff.) which is a bi-partite graph where one type of nodes denote variables

and a second type of nodes represent factors. In the following, variables are depicted by

circular nodes and factors by squared nodes. The edges connecting the random variables

with the factors indicate which variables are included in the factor. Figure 2.5 shows the

NBC as a factor graph. The alternative representation explicitly depicts the factors φx1y,

φx2y, φx3y, φx4y and φy by the squared nodes. This information could not be deduced from a

classic Markov network representation which was already shown in Figure 2.4.

Factor graphs can also be utilized to represent Bayesian networks. Figure 2.6a shows the

Bayesian graphical model of the joint distribution p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). The

corresponding factor graph is shown in Figure 2.6b. As to be seen, a graphical Bayesian

network can be unambiguously transformed into factor graph.

Figure 2.7a shows the Markov network which derived by so-called “marrying” the Bayesian

directed links of Figure 2.6a (Bishop, 2006, page 390ff.). However, the resulting Markov

network cannot be unambiguously transformed to a unique factor graph. Besides the true

underlying decomposition shown in Figure 2.6b, Figure 2.7b and Figure 2.7c show two fur-

ther valid factorizations. Figure 2.7b shows the factorization φ1(x1, x2)φ2(x2, x3)φ3(x3, x1),

whereas the factorization of Figure 2.7c is given by φ1(x1)φ2(x2, x3)φ3(x1, x2, x3). All three

interpretations of the Markov network are valid. Hence, the factor graph representation is

Figure 2.5. Naïve Bayes classifier depicted as a factor graph. Random variables are de-
picted by circular nodes, whereas the squared nodes represent factors, or in case of Markov networks
the cliques. The links connecting the random variables with factors indicate, which variables are
included in the factor.
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(a) (b)

Figure 2.6. Conversion from a Bayesian network to a factor graph. The example shows
how the transformation of the Bayesian network results in a unique factor graph.

(a) (b) (c)

Figure 2.7. Conversion from a Markov network to a factor graph. The Markov network
(a) can lead to different representations. Both factor graphs (b) and (c) are valid interpretations of
the Markov network (a).

preferable, because it reveals the true structure of the Markov network. However, additional

constraints, e.g. weight regularization, are still not being represented by the factor graph.

2.2. Gaussian Mixture Model

So far, the introduced formalizations were based on discrete random variables. However,

in many applications it is necessary to use random variables which are defined over real-

valued states (Bishop, 2006, page 78–126; Parzen, 1962). One of the most popular models

for a random variable with real-valued states is the Gaussian distribution (Gauß, 1809). The

distribution is described by a mean value and a standard deviation:

N (x p µ,Σ)=
1

(2π)D/2
1

det(Σ)1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(2.30)

where Σ denotes the covariance matrix, µ the mean and D the dimensionality of the random

variable x. Although the Gaussian distribution turned out to be a fundamental model for

myriad of observations in nature, the expressiveness of the density is still limited.

Alternative approaches are kernel density and nearest-neighbor estimators (Bishop, 2006,

page 120–127), or the Gaussian mixture model (GMM) which makes use of a superposition of

Gaussians. The GMM is frequently utilized in this thesis because of its advantageous prop-

erties. The GMM parameter learning is a well-known probabilistic formalism and, hence,
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used in various other approaches of this work. Furthermore, the GMM can be extended to

realize more complex densities than real-valued density estimation. The basic idea is that

a discrete state k of a latent random variable k selects a Gaussian distribution. Hence, the

probability is described by

p(x|k = k)= N (x p µk,Σk). (2.31)

The probability of the latent random variable itself which can be regarded as a prior is

given by p(k = k p νk) where the variable which follows the short vertical bar denotes the

parameter defining the probability. The density of an observation x is given by the marginal

distribution of the conditional and prior probability:

G(x p θ)=

K∑
k=1

p(k = k)p(x|k = k) (2.32)

=

K∑
k=1

νkN (x p µk,Σk) (2.33)

where K denotes the number of mixture components, θ = {νk,µk,Σk}Kk=1 denotes the set

containing the GMM parameters. and the weights νk satisfy the condition
∑K
k=1 νk = 1,

νk > 0 ∀k = 1, . . . ,K. As already mentioned, the GMM is able to describe densities which

are more complex than the densities of a single Gaussian model. However, with respect

to parameter learning, such GMM do not have a unique solution in contrast to a single

Gaussian model. That means that the fitting of parameters can lead to different outcomes.

The GMM parameter EM-algorithmare determined using the well-known expectation-maximization (EM)

algorithm (Dempster et al., 1977) in which each iteration is composed of two steps, i.e. the

expectation (E-step) and the maximization (M-step). The algorithm is given by the follow-

ing listing (Bishop, 2006, page 435ff.):

Input: A dataset T = {x(n) : x(n) ∈ RD, n = 1, . . . , N} and the number of mixture

components K.

1. Initialize µk, Σk and νk, e.g. by using k-means clustering and compute the log-

likelihood of the model:

ln p({x(n)}Nn=1 p θ) =

N∑
n=1

ln

K∑
k=1

πkN (x(n) p µk,Σk). (2.34)

= LL(θ) (2.35)

2. (E-step) Estimate the conditional probability for each mixture component k to be

responsible for the observation x(n):
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p(k = k|x(n)) =
νkN (x(n) p µk,Σk)∑K
j=1 νjN (x(n) p µj ,Σj)

= γ(n)(k). (2.36)

3. (M-step) Adapt the means and the covariance matrices of the Gaussians and the mixing

parameters to maximize the likelihood:

νnew
k =

Nk
N
, (2.37)

µnew
k =

1

Nk

N∑
n=1

γ(n)(k)x(n) (2.38)

Σnew
k =

1

Nk

N∑
n=1

γ(n)(k)(x(n) − µk)(x(n) − µk)T (2.39)

where Nk =
∑N
n=1 p(k = k|x(n)) =

∑N
n=1 γ

(n)(k).

4. Update the parameters. Calculate the log-likelihood and check for stopping criteria,

e.g. maximal number of iterations or a threshold based on the relative change of the last

two log-likelihoods. In case stopping criteria were met, prepare the output. Otherwise

return to step 2.

Output: The set of GMM parameter θ = {νk,µk,Σk}Kk=1.

The density of a new data sample x̂ is computed by evaluating:

G(x̂, θ) =
∑K
k=1 νkN (x̂ p µk,Σk) where θ = {{νk,µk,Σk}Kk=1}.

The EM algorithm for GMM is parameterized by the number of mixture components,

the shape of the covariance matrices, e.g. full or diagonal, the number of iterations and the

stopping criteria. A configuration which is too restrictive leads to a density function which

does not appropriately represents the underlying data. Conversely, choosing parameters

which allow to many degrees of freedom results in convergence problems. The algorithm

is sensitive to singularities, i.e. a mixture component gets responsible for a single observa-

tion, which leads to an infinitesimal variance and a likelihood diverging to infinity. Such

singularities can be avoided by resetting the afflicted Gaussian using a heuristic or using

a regularization term on the variance (Bishop, 2006; Ormoneit and Tresp, 1996). Hence,

model parameters should be defined by experts or by model selection. However, the latter

has the obvious drawback that most of the models will get rejected although they potentially

render a good approximation of the underlying density.

2.3. Hybrid Joint Distribution

In the previous sections, joint distributions were based on either discrete or continuous

random variables, or on joint distributions with continuous variables in which the discrete
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random variables were latent, i.e. the variables were not observed. The modeling of joint

distributions in which discrete and continuous random variables are both observed will

be addressed in this section. In this work, the joint distribution of observed discrete and

continuous random variables, to which we will refer to as hybrid joint distribution, is modeled

using a GMM extended by an additional discrete random variable.

The sample x is given by a tuple x = (̊x, x̃) where x̊ represents a discrete observation

of a finite set and x̃ an observed continuous vector of real numbers. The density of the

continuous variable is modeled using a GMM which is selected based on the discrete state x̊:

p(x = x p θ) = p(̊x = x̊, x̃ = x̃ p θ) (2.40)

=

K∑
k=1

νx̊kN (x̃ p µx̊k,Σx̊k) (2.41)

where the parameters of the model are θ = {νx̊k,µx̊k,Σx̊k}Kk=1,̊x∈̊x. The parameters are

maximized using the EM-algorithm by first determining the responsibilities p(k = k|x(n))

of a given dataset T = {x(n)}Nn=1. For i.i.d. data samples, the function to be maximized is

given by

ln p(T p θ) =

N∑
n=1

ln

K∑
k=1

νx̊(n)kN (x̃ p µx̊(n)k,Σx̊(n)k). (2.42)

In order to determine the maximum likelihood of the mixing parameter νx̊k with k = 1, . . . ,K

a Lagrange multiplier is added which ensures that the parameters will sum up to one. Tak-

ing the derivative and setting the outcome equal zero results in

∂ ln p(T p θ)
∂νx̊l

=
∂

∂νx̊l

N∑
n=1

δx̊(n)=x̊ ln

K∑
k=1

νx̊kN (x̃(n) p µx̊k,Σx̊k)−κ
( K∑
k=1

νx̊k−1

)
(2.43)

=

N∑
n=1

δx̊(n)=x̊

νx̊lN (x̃(n) p µx̊l,Σx̊l)∑K
k=1 νx̊kN (x̃(n) p µx̊k,Σx̊k)︸ ︷︷ ︸

γ(n)(l)

−κ = 0. (2.44)

Analogously to the EM-algorithm for the GMM, the new variable γ(n)(l) describes the re-

sponsibility of a Gaussian for the lth mixing component and the nth data sample. The

update formula of the weight νx̊l is derived by first determining the Lagrange multiplier κ.

The outcome is then substituted back into the original equation and rearranged to obtain

νx̊l which results in

νx̊l =

∑N
n=1 δx̊(n)=x̊γ

(n)(l)∑N
n=1

∑K
k=1 δx̊(n)=x̊γ

(n)(k)
. (2.45)
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The update formula of the mean µx̊l is obtained similarly by following transformations:

∂ ln p(T p θ)
∂µx̊l

=
∂

∂µx̊l

N∑
n=1

δx̊(n)=x̊ ln

K∑
k=1

νx̊kN (x̃(n) p µx̊k,Σx̊k) (2.46)

=

N∑
n=1

δx̊(n)=x̊

νx̊lN (x̃(n) p µx̊l,Σx̊l)∑K
k=1 νx̊kN (x̃(n) p µx̊k,Σx̊k)︸ ︷︷ ︸

γ(n)(l)

Σ−1
x̊l (x̃(n) − µx̊l) (2.47)

=

N∑
n=1

δx̊(n)=x̊γ
(n)(l)Σ−1

x̊k (x̃(n) − µx̊k) = 0 (2.48)

⇔ µx̊l =

∑N
n=1 δx̊(n)=x̊γ

(n)(l)x̃(n)

Nx̊l
(2.49)

where Nx̊l =
∑N
n=1 δx̊(n)=x̊γ

(n)(l). Finally, the update formula of the covariance matrix

Σx̊l is derived by

Σx̊l =

∑N
n=1 δx̊(n)

t =x̊
γ(n)(l)(x̃(n) − µx̊l)(x̃

(n) − µx̊l)
T

Nx̊l
. (2.50)

It is important to emphasize that a single discrete random variable as described here can

encode an arbitrary number of discrete random variables using the Cartesian product. An

alternative model for observed hybrid random variables is the so-called random forest which

was proposed by Breiman (2001).

2.4. Graph Probability Density

So far, the distributions presented were limited to an ordered set of discrete or contin-

uous variables. However, there are particular applications in which this representation is

insufficient and distributions of more complex structures are required (Cook and Holder,

2006). A prominent example of such structures are graphs.

Let G = (V, E) be a graph with a set of vertices V defined over a fixed universe and a set of

edges E . An edge is given by a tuple of two vertices em = (vm, wm) where vm, wm ∈ V andm

indexes all edges in the graph E = {e1 . . . eM}. To augment graphs with weights, additional

functions are defined. Let fV(·) be a function providing a vector of weights attached to a

vertex and fE(·, ·) be a function rendering a vector of weights attached to an edge.

Graphs have a flexible structure which makes it challenging to extract relevant and fre-

quent features. Especially the large variability of graphs complicates the search of an optimal

model which avoids underfitting and overfitting. Trivial approaches transform graphs into a

fixed-length feature vector, e.g. by counting vertices and edges or by determining the max-

imal fan-in and fan-out. Classification of graph can then be performed using a standard
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2.4 Graph Probability Density

classifier. A clear drawback of this approach is that the extraction of fixed-length feature

vectors will give only a faint excerpt of the actual graph structure. A more sophisticated ap-

proach aims at finding characteristic sub-patterns which appear frequently in a set of graphs

by using a classifier being inspired by the Apriori algorithm which was proposed by Inokuchi

et al. (2003). Gärtner et al. (2007) proposed the use of kernel methods to map a graph to a

real-valued vector. They suggested two graph kernels, namely the walk kernel (WK) and the

cyclic pattern kernel (CPK). The first kernel maps directed graphs to sequences of vertices

along edges which correspond to walks in graphs. Since no restrictions are made regarding

loops, the length of the walks can be infinite such that approximations may be necessary,

e.g. to a short walk. For two undirected graphs, the CPK is defined as the cardinality of the

intersections of the graphs’ cyclic and tree patterns. An alternative kernel which extends

marginalized kernels based on random walks from sequences to graph has been proposed

by Kashima et al. (2003). Besides the attempt to merely classify graphs, an alternative

approach is to learn a probability distribution for a set of graphs. The estimation of a graph

probability density is a challenging since the structure of graphs has to be parameterized in

many different dimensions, e.g. number of vertices and edges, fan-in and fan-out, weights

on nodes or edges, number of cliques and so forth. Classic approaches make use of a fixed-

length intermediate representation such that a standard density estimator can be applied,

e.g. a GMM (Schmidt and Schwenker, 2011). However, Trentin and Di Iorio (2009, 2007a,b)

proposed a novel concept called graph probability density (GPD) which shifts the focus from

generative models to predictive models, i.e. discriminating classifiers. In the following, this

new approach will be presented in detail.

The distribution p(y|G) provides the probability for a class random variable y given an

observed graph G. According to the Bayes’ theorem, the probability of y given a graph G

can be derived using the likelihood and the priors

p(y = y|G) =
p(G|y = y p λy)p(y = y)

p(G)
(2.51)

where λy is the set of model parameters describing the distribution of graphs of class y. The

key idea of the new approach is to consider the edges as being i.i.d. such that the graph gets

decomposed into its main elements. In other words, each individual vertex depends only on

its neighboring vertices which corresponds to an implicit Markov assumption in the vertices

space. Such assumptions are frequently used in probabilistic graphical models and several

other statistical machine learning approaches.

The GPD is defined by p(G|y p λy) = p(e1, . . . , eM |y p λy) =
∏M
m=1 p(em|y p λy) where

p(em = em|y p λy) denotes the probability of the edge em ∈ E given the model of λy. In

case the graph is composed of weighted and labeled vertices and edges, an edge is described

by a high-dimensional vector xm = (vm, wm, fV(vm), fV(wm), fE(vm, wm)) with discrete and
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continuous elements. This vector can be modeled by the hybrid joint distributions which

were presented in the previous Section 2.3. Inserting the likelihood using the independence

assumption p(G|y p λy) =
∏M
m=1 p(xm|y p λy) into the Equation 2.51 results in

p(y|
M⋂
m=1

xm) =

∏M
m=1 p(xm|y p λy)p(y)

p(
⋂M
m=1 xm)

. (2.52)

The new formalization can handle arbitrary-sized graphs indifferent of whether they are

cyclic or acyclic and directed or undirected.

Hence, the input to GPD is given by a set of tuples x = {(̊xm, x̃m)}Mm=1 where each

tuple corresponds to a hybrid joint distribution. The discrete state x̊m identifies a unique

edge with the help of the labeled vertices. The vector x̃m ∈ RD represents the weights asso-

ciated to the edge and the corresponding vertices. Without lose of generality, the quantity

M indexes the fix number of edges in the actual graph. The density over the set x is then

defined by:

p(x p λ) =
M∏
m=1

p(̊xm, x̃m p θm) (2.53)

=

M∏
m=1

K∑
k=1

νx̊mkN (x̃m p µx̊mk,Σx̊mk) (2.54)

wherem indexes the discrete edge identifier x̊m. In order to derive the parameters λ = {θm}Mm=1

for a given dataset {x(n)}Nn=1, the log-likelihood of the distribution

ln p({x(n)}Nn=1 p λ) =

N∑
n=1

ln

M∏
m=1

p(̊x(n)
m , x̃(n)

m p θm) (2.55)

needs to be maximized. This is achieved by determining the derivative of the target param-

eter and setting the outcome equal to zero:

∂ ln p({x(n)}Nn=1 p λ)

∂θm
=

∂

∂θm

N∑
n=1

ln

M∏
m=1

p(̊x(n)
m , x̃(n)

m p θm) (2.56)

=

N∑
n=1

M∑
m=1

∂

∂θm
ln p(̊x(n)

m , x̃(n)
m p θm) = 0. (2.57)

The update formula of the mixing component νx̊l is derived by introducing a term containing

the Lagrange multiplier κ which ensures that all components of an edge sum up to one:

∂ ln p({x(n)}Nn=1 p λ)

∂νx̊l
=

∂

∂νx̊l

N∑
n=1

M∑
m=1

δ
x̊
(n)
m =x̊

ln

K∑
k=1

νx̊kN (x̃(n)
m p µx̊k,Σx̊k)−

κ

( K∑
k=1

νx̊k − 1

)
(2.58)
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=

N∑
n=1

M∑
m=1

δ
x̊
(n)
m =x̊

νx̊lN (x̃
(n)
m p µx̊l,Σx̊l)∑K

k=1 νx̊kN (x̃
(n)
m p µx̊k,Σx̊k)︸ ︷︷ ︸

γ̃(n)(x̊,l)

−κ = 0 (2.59)

where δ
x̊
(n)
m =x̊

is one in case the equation x̊
(n)
m = x̊ holds true and zero otherwise. The

new variable γ̃(n)(̊x, l) describes the responsibility of the indexed Gaussian to have gener-

ated the edge encoded by x̊ and the mixture component l. Re-arranging the formula to κ

and substituting the result back into the Equation 2.59 gives

νnew
x̊l =

∑N
n=1

∑M
m=1 δx̊(n)

m =x̊
γ̃(n)(̊x, l)νx̊l∑N

n=1

∑M
m=1

∑K
k=1 δx̊(n)

m =x̊
γ̃(n)(̊x, k)νx̊k

. (2.60)

Analogously, the update formulas of the mean and covariance matrix are given by

µnew
x̊l =

∑N
n=1

∑M
m=1 δx̊(n)

m =x̊
γ̃(n)(̊x, l)x̃

(n)
m∑N

n=1

∑M
m=1 δx̊(n)

m =x̊
γ̃(n)(̊x, l)

(2.61)

Σnew
x̊l =

∑N
n=1

∑M
m=1 δx̊(n)

m =x̊
γ̃(n)(̊x, l)(x̃

(n)
m − µx̊l)(x̃

(n)
m − µx̊l)

T∑N
n=1

∑M
m=1 δx̊(n)

m =x̊
γ̃(n)(̊x, l)

. (2.62)

The proposed GPD has many advantageous characteristics: Due to the Markov property,

the density is applicable to variable-sized graphs. Furthermore, the approach can be applied

to directed and undirected graphs which can further have labeled or weighted vertices or

edges. Conversely, the GPD can be used only for discriminative purposes and is restricted to

graphs which are small enough to ensure numerical stable estimations. Each possible edge

and labeling has to be present in the database to guarantee that a proper density function

is learned.

2.5. Hidden Markov Model

Up to this point, probability densities of fixed-length and variable-length random vari-

ables have been discussed. In this section, another characteristic by which patterns can be

discriminated shall be addressed: their manifestation over time. A popular approach to

model sequences of observations is the hidden Markov model (HMM) (Koller and Friedman,

2009; Rabiner, 1989).

The HMM bases on the assumption that an observed sequence X ∈ RD×T was generated

by a hidden sequence of discrete states w ∈ ΩTw where D is the length of the observed fea-

tures, T is the number of discrete time steps of the sequence, and ΩTw denotes the set of all

possible sequences of the random variables (w1,w2, . . . ,wT ) = w. While the observations xt

are treated as being independent from each other given a hidden state, the hidden random
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Figure 2.8. Graphical representa-
tion of the HMM. The Markov chain
w is composed of a sequence of hidden
random variables wt. Each hidden ran-
dom variable wt, except the one of first
first time step, depends on its prede-
cessor wt−1. Furthermore, each hidden
random variable emits an observation
xt.

variables w capture the sequential dependencies by a Markov chain p(wt = wt|wt−1 = wt−1).

Each observation xt is emitted by the corresponding hidden state wt according to the prob-

ability distribution p(xt|wt = wt p θwt
). The graphical model representing the HMM decom-

position of the probability distribution is shown in Figure 2.8. The probability of a sequence

X for an HMM λ is given by

p(X p λ) =
∑

w∈ΩT
w

p(X,w p λ) (2.63)

=
∑

w∈ΩT
w

p(w1 = w1 p π)
T∏
t=2

p(wt = wt|wt−1 = wt−1 p A)·

T∏
t=1

p(xt|wt = wt p θ) (2.64)

where λ = {A,π,θ} denotes the set of model parameters. The probability is divided into three main

components: the initial probability, the transition probability and the emission probability. The

initial probability p(w1 = w1 p π) specifies the probability of an initial hidden state and is defined by

π with a number of |Ωw| parameters. The Change from one hidden state of time step t−1 to another

hidden state of the time step t is described by the transition probability p(wt = wt|wt−1 = wt−1 p A)

specified by A with a number of |Ωw| × |Ωw| parameters. To reduce the number of parameters, the

transition matrix is often restricted to the so-called left-to-right matrix in which the hidden states

are ordered and only transitions to the succeeding or the same states are permitted while transitions

to preceding nodes are not allowed. The model parameters of the observations are given by θ. In

the following, parameters are omitted whenever not explicitly needed for the sake of clarity. The

Template

model

HMM can be seen as one of the simplest nontrivial examples of a dynamic Bayesian network created

according to a template model principle (Koller and Friedman, 2009, page 203). For each time step,

a hidden random variable is instantiated such that the unrolled model compiles enough time slices

to match the number of observations.

Rabiner and Schafer (1978) prominently definedThree

problems

for HMM

“three basic problems for HMM ”:

1. Given an HMM λ: How likely has a sequence of observations X been generated by λ?

This probability can be determined using the Equation 2.64 which marginalizes over all

possible combinations of the Markov chain w. This computationally expensive procedure can

be circumvented by using the forward algorithm which is based on dynamic programming.

The forward algorithm will be introduced in Section 2.5.1.
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2. Given a set of sequences T = {X(n)}Nn=1: What are the parameters having the highest likeli-

hood? The problem is generally referred to as parameter learning and can be solved by the EM

algorithm (Dempster et al., 1977). The EM algorithm is based on the forward and backward

algorithms with an additional maximization step and will be presented in Section 2.5.2.

3. Given an HMM λ and a sequence X: What is the most likely sequence of hidden states?

Different solutions were proposed depending on the definition of “most likely sequence”. The

Viterbi algorithm is probably the most popular solution to this question. Since this question

has only marginal relevance for this thesis, the interested reader is referred to (Bishop, 2006,

page 629).

Classification using HMM is performed by assigning a class y to a sequence of observations X.

This is realized in the same manner as for the NBC introduced in Section 2.1.3. In the first step,

an HMM λy is learned for each class y using a corresponding set of observed sequences. A new data

sample X̂ is then tested by evaluating p(X̂ p λy) for all classes. The probability distribution given

a new data sample is then obtained by

p(y = y|X̂) =
p(X̂ p λy)p(y = y)∑
ŷ∈Ωy

p(X̂ p λŷ)p(y = ŷ)
(2.65)

where the likelihood p(X̂ p λy) is determined with the help of inference and the class prior

p(y) is obtained from data or generated by hand (Bishop, 2006, page 38ff.).

In the following, we discuss the algorithms to perform inference and parameter learning.

2.5.1. Inference

To Forward

algorithm

infer the likelihood that a sequence X was generated by the HMM λ it is necessary to

marginalize over all possible sequences of hidden states. At the first glance, this marginaliza-

tion appears to be computationally expensive. However, by utilizing dynamic programming

the complexity can be reduced to O(T · |Ωw|2). For each time step t and hidden state j the

so-called forward variable is evaluated (Bishop, 2006, page 411ff. and 618ff.):

αt(j) = p(X1..t,wt = j) (2.66)

where X1..t denotes the selection of observations starting from the first time step to the time

step t. The recursive formulas using dynamic programming are given by

αt(j) = p(xt|wt = j)
∑
i∈Ωw

αt−1(i)p(wt = j|wt−1 = i) (2.67)

α1(j) = p(x1|w1 = j)p(w1 = j). (2.68)

Hence, the probability of a sequence X given an HMM λ can be derived by performing a
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sum over the forward variable of the last time step:

p(X p λ) =
∑
i∈Ωw

αT (i). (2.69)

The learning of parameters which will be addressed in the next section requires two ad-

ditional probability distributions, i.e. the responsibility γt(j) = p(wt = j|X) of hidden

state j at time step t given the complete sequence X, and the probability ξt−1,t(i, j) =

p(wt−1 = i,wt = j|X) of the transition from state i in time step t− 1 to the hidden state j

in time step t given the complete sequence X. InBackward

algorithm

order to determine these probabilities, the

backward variables βt(j) = p(Xt+1..T |wt = j) are required which are derived similarly to

the forward variable:

βT (j) = 1 (2.70)

βt(j) =
∑
i∈Ωw

βt+1(i)p(xt+1|wt+1 = i)p(wt+1 = i|wt = j) (2.71)

β0(·) =
∑
i∈Ωw

β1(i)p(x1|w1 = i)p(w1 = i). (2.72)

The responsibility of hidden state j at time step t given the observations is obtained by

γt(j) = p(wt = j|X) =
p(X|wt = j)p(wt = j)

p(X)
(2.73)

=
p(X1..t, wt = j)p(Xt+1..T |wt = j)

p(X)
(2.74)

=
αt(j)βt(j)

p(X)
(2.75)

and the probability of the transition from state i at time step t − 1 to state j at time

step t given the observations is obtained by

ξt−1,t(i, j) = p(wt−1 = i,wt = j|X) (2.76)

=
p(X1..t−1, wt−1 = i)p(wt = j|wt−1 = i)

p(X)
· (2.77)

p(xt|wt = j)p(Xt+1..T |wt = j)

=
αt−1(i)p(wt = j|wt−1 = i)p(xt|wt = j)βt(j)

p(X)
. (2.78)

The forward-backward algorithm tends to be numerically unstable for long sequences of

X because of probabilities which take values below the machine precision. Therefore, the

variables are commonly normalized using scaling factors p(X1..t) =
∑
j∈wt

αt(j) for each

time step:

α̂t(j) = p(wt = j|X1..t) =
αt(j)

p(X1..t)
. (2.79)
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Furthermore, it is advisable to perform the calculations in logarithmic space. A detailed

description of the normalization can be found in (Bishop, 2006, page 627ff.).

2.5.2. Parameter Learning

The parameters of the HMM λ given a set of sequences T = {X(n)}Nn=1 can be derived

using the EM-algorithm (Rabiner, 1989; Dempster et al., 1977). The posterior distributions

of the latent variables p(w|X p λold) are determined in the E-step as already described in

the previous section. The M-step then maximizes the parameters in λ with respect to the

expectation of the complete-data log-likelihood

Q(λ, λold) =

N∑
n=1

∑
w∈Ωw

p(w|X(n) p λold) ln p(X(n),w p λ). (2.80)

The equation is expanded by replacing the joint distribution p(X(n),w|λ) with the Equa-

tion 2.64 and the quantities p(w|X(n) p λold) with γt(i) and ξt−1,t(i, j) of Equation 2.75

and 2.78. The likelihood is then given by

Q(λ, λold) =

N∑
n=1

∑
w1∈Ωw

γ
(n)
1 (w1) lnπw1 +

T∑
t=2

∑
wt−1∈Ωw

∑
wt∈Ωw

ξ
(n)
t−1,t(wt−1, wt) ln awt−1wt+

T∑
t=1

∑
wt∈Ωw

γ
(n)
t (wt) ln p(x

(n)
t |wt = wt p θ) (2.81)

=

N∑
n=1

Q(n)(λ, λold) (2.82)

where awt−1,wt is an element of the matrix A, πw1 an element of the vector π and θ holds the

observation parameters. In the M-step, each holds arameters is maximized separately. To

keep the notation uncluttered, the evaluation of the expected log-likelihood is first outlined

only for a single data sample X(n), i.e. Q(n)(λ, λold), and later expanded to the complete

dataset.

In order to maximize the probability distribution of the initial hidden state p(w1 = w1 p

π), an additional constraint
∑
i∈Ωw

πi = 1 with the Lagrange multiplier κ is added. Taking

the derivative with respect to πw1
and setting the outcome equal to zero results in

∂Q(n)(λ, λold)

∂πw1

=
∂

∂πw1

∑
i∈Ωw

γ
(n)
1 (i) lnπi − κ

( ∑
i∈Ωw

πi − 1

)
= 0 (2.83)

⇔ γ
(n)
1 (w1)

πw1

− κ = 0 (2.84)

⇔ γ
(n)
1 (w1)− πw1κ = 0. (2.85)

The quantity of the Lagrange multiplier κ is derived using the constraint
∑
i∈Ωw

πi = 1:
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∑
i∈Ωw

γ
(n)
1 (i)− πiκ = 0 (2.86)

⇔
∑
i∈Ωw

κπi =
∑
i∈Ωw

γ
(n)
1 (i) (2.87)

⇔ κ =
∑
i∈Ωw

γ
(n)
1 (i). (2.88)

The update formula is obtained by substituting the outcome back into Equation 2.85:

γ
(n)
1 (w1)

πw1

− κ =
γ

(n)
1 (w1)

πw1

−
∑
i∈Ωw

γ
(n)
1 (i) = 0 (2.89)

⇔ πw1 =
γ

(n)
1 (w1)∑

i∈Ωw
γ

(n)
1 (i)

. (2.90)

The final update formula is obtained by transferring the finding to the complete dataset.

Hence, the initial parameter is maximized by

πw1 =

N∑
n=1

γ
(n)
1 (w1)∑

i∈Ωw
γ

(n)
1 (i)

. (2.91)

The update formula for elements of the transition matrix A is obtained by again adding

a regularization term with a Lagrange multiplier κ and setting the derivative with respect

to avw equal to zero:

∂Q(λ, λold)(n)

∂avw
=

∂

∂avw

T∑
t=2

∑
i∈Ωw

∑
j∈Ωw

ξ
(n)
t−1,t(i, j) ln aij−

κ
∑
i∈Ωw

∑
j∈Ωw

aij − 1 = 0 (2.92)

⇔
T∑
t=2

ξ
(n)
t−1,t(v, w)

avw
− κ = 0 (2.93)

⇔
T∑
t=2

ξ
(n)
t−1,t(v, w)− avwκ = 0. (2.94)

Again the update formula is obtained by first determining the quantity of the Lagrange

multiplier and then substituting the outcome back into the original equation:

T∑
t=2

ξ
(n)
t−1,t(v, w)

avw
− κ =

T∑
t=2

ξ
(n)
t−1,t(v, w)

avw
−
∑
j∈Ωw

ξ
(n)
t−1,t(v, j) = 0 (2.95)

⇔ avw =

∑T
t=2 ξ

(n)
t−1,t(v, w)∑T

t=2

∑
j∈Ωw

ξ
(n)
t−1,t(v, j)

. (2.96)
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The final update formula for the complete dataset is then given by

⇔ avw =

∑N
n=1

∑T
t=2 ξ

(n)
t−1,t(v, w)∑N

n=1

∑T
t=2

∑
j∈Ωw

ξ
(n)
t−1,t(v, j)

. (2.97)

The parameters of the observation probability p(xt|wt = wt p θ) are derived by solving

the derivative of the individual hidden state i

∂Q(n)(λ, λold)

∂θi
=

∂

∂θi

T∑
t=1

∑
j∈wt

γ
(n)
t (j) ln p(xt|wt = j p θ) = 0. (2.98)

In literature, multiple models for observations have been proposed. Discrete random vari-

ables are modeled using the multinomial distribution, whereas continuous random variables

are often modeled using GMM. In the following, the integration of these probability distri-

butions into the HMM will be presented.

2.5.3. Discrete Observed Variables

Sequences Multinomial

distribution

of observed discrete random variables are modeled using one multinomial

distribution for each hidden state i. Each distribution is defined over a set of states Ωx such

that the probability distribution is given by

p(xt=x|wt= i p θ) = νix. (2.99)

The update formula is derived by introducing an additional constraint which ensures that

the probabilities of the states sums up to one. Applying the logarithm and taking the

derivative which is then set equal to zero leads to

νix =

∑N
n=1

∑T
t=1 γ

(n)
t (i)δ

x
(n)
t =x∑N

n=1

∑T
t=1 γ

(n)
t (i)

(2.100)

where δ
x
(n)
t =x

is equal one in case x(n)
t = x holds true and zero otherwise.

2.5.4. Continuous Observed Variables

One of the most popular models for continuous observations in HMM is the GMM.

Analogously to the multinomial distribution, one GMM is defined for each hidden state i:

p(xt=xt|wt= i p θ) =

K∑
k=1

zikN (xt|µik,Σik). (2.101)
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The maximization of the GMM parameters is performed similarly to the EM-algorithm for

GMM presented in Section 2.2. However, in the current setting the HMM responsibility

γ
(n)
t (i) is insufficient. An additional responsibility γ̂(n)

t (i, k) is required which expresses the

probability of the kth Gaussian in the ith GMM to have emitted the data sample x
(n)
t . Again,

the parameters are maximized by taking the derivative of Equation 2.85 with respect to the

desired parameter and setting the outcome equal to zero. The update formula of the mixing

component is given by

zik =

∑N
n=1

∑T
t=1 γ

(n)
t (i)γ̂

(n)
t (k)∑N

n=1

∑T
t=1

∑K
l γ

(n)
t (i)γ̂

(n)
t (l)

(2.102)

and the update formulas of the mean and covariance matrix are given by

µik =

∑N
n=1

∑T
t=1 γ

(n)
t (i)γ̂

(n)
t (i, k)x

(n)
t∑N

n=1

∑T
t=1 γ

(n)
t (i)γ̂

(n)
t (i, k)

(2.103)

and

Σik =

∑N
n=1

∑T
t=1 γ

(n)
t (i)γ̂

(n)
t (k)(x

(n)
t − µik)(x

(n)
t − µik)T∑N

n=1

∑T
t=1 γ

(n)
t (i)γ̂

(n)
t (k)

. (2.104)

2.6. Latent-Dynamic Conditional Random Field

The plain structure of the HMM can directly be transfered into the Markov network

representation. Morency et al. (2007) extended this representation and developed the latent-

dynamic conditional random field (LDCRF) based on the concept of CRF introduced in

Section 2.1.4. The LDCRF performs a mapping from the sequence of hidden states w

and observations X to a sequence of labels y. In a first step, the conditioned probability

distribution is defined by the decomposition:

p(y|X p λ) =
∑
w∈w

p(y|w = w,X p λ)p(w = w|X p λ) (2.105)

where w denotes the sequence of hidden states, X denotes the sequence of observations and

y denotes the sequence of labels.

Figure 2.9 shows the graphical model of the LDCRF. The observed variables are depicted

by nodes colored in dark gray. They are given by the sequence X. The nodes colored in

lighter gray represent random variables which are observed in parameter learning but are

unknown in case inference. They are given by the sequence of labels y. The LDCRF model

is restricted to a disjoint set of hidden states associated with each class label in order to

keep parameter learning and inference tractable. Let Ωyw be the set of hidden states being
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2.6 Latent-Dynamic Conditional Random Field

Figure 2.9. Graphical representa-
tion of the LDCRF. Analogously to
the HMM, the hidden states are con-
nected to a Markov chain w. Each hid-
den state wt is further connected to an
observation xt and to a label state yt.

associated with the class label y. As a result, the LDCRF model simplifies to

p(y|X p λ) =
∑

w∈w∧wt∈Ω
yt
w

p(w = w|X p λ). (2.106)

The probability distribution is given by the energy function:

p(w|X, λ) =
1

Z(X)
exp

( K∑
k=1

θk
∑
t

fk(wt,xt, t)+

L∑
l=1

θl+K
∑
t

gl(wt−1, wt, t)
)

(2.107)

where the partition function depends on the sequence of observations and the set λ = {θ}

contains all model parameters. The first feature function fk(wt,xt, t) is the so-called state

function. If the observations are defined by a discrete random variable, the function is

reduced to return binary values. However, if the observations are modeled using continu-

ous random variables, the function has a real-valued range. The second feature function

gl(wt−1, wt, t) is the transition function in which all combinations of the discrete states wt−1

and wt are indexed by l. In order to perform parameter learning from a dataset, the follow-

ing objective function needs to be minimized

E(λ) =

N∑
n

p(y(n)|X(n))− 1

2σ2
||θ||2. (2.108)

The last term of the function regularizes the growth of the parameters. Generally, gradient

descent is performed in order to derive the optimal parameter setting (Morency et al., 2007;

Sutton and McCallum, 2007). An algorithm comparable to the EM-algorithm can be used

to perform inference since the structure of the LDCRF allows exact inference. Introducing

labels which influence the states of the hidden random variables opens many interesting

fields of applications. However, modeling the distribution with a Markov network limits the

prospect to directly transfer achievements made in the field of Bayesian network HMM to

the LDCRF. Furthermore, the model is significantly restricted by the fact that each class is

assigned to a distinct set of hidden states.
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2.7. Kalman Filter

The Kalman Filter (Kalman, 1960) is a popular algorithm to enhance the quality of

noisy measurements over time. It finds application in the field of navigation and object

tracking (Blackman and Popoli, 1999; Bar-Shalom and Li, 1993). Instead of calculating a

moving average over the measurements, the Kalman filter models explicitly the measurement

noise to weight the influence of measurements (Bishop, 2006, page 635ff.). The Kalman filter

is based on a Markov chain which, in contrast to HMM, is realized by continuous latent

variables. The model has the same tree-like structure as the HMM such that exact inference

and parameter learning can also be performed efficiently. However, for our purposes it will

be sufficient to discuss the inference and to refer the interested reader to the large range of

literature, e.g. (Bar-Shalom and Li, 1993; Bishop, 2006; Koller and Friedman, 2009).

Inference is done by deriving the predicted state estimate p(wt+1|X1..t) based on the

past observations X1..t where wt+1 denotes a continuous multi-dimensional latent random

variable. To obtain an efficient inference algorithm in which the functional form of the

continuous variable wt is preserved the Gaussian function is a tractable choice (Bishop,

2006, page 636). Hence, the probability distribution of the Markov chain and the emission

probability are modeled by

p(wt|wt−1) = N (wt p Awt−1,Q) (2.109)

p(xt|wt) = N (xt p Hwt,R) (2.110)

where A is the state transition model, Q the noise model, H the measurement matrix and

R the error covariance. In order to predict an enhanced measurement, the latent state and

the associated certainty for p(xt|wt) have to be derived. The respective mean µt+1 and the

covariance Σt+1 are obtained in two steps using the current observation xt+1 and the last

mean µt and covariance Σt. First, the mean µ̂t+1 and the covariance Σ̂t+1 of the predicted

state estimate are obtained by

µ̂t+1 = Aµt + Bu (2.111)

Σ̂t+1 = AΣtA
T + Q (2.112)

where B is the control-input model and u is the control vector. The latent random variable

must not necessarily have the same dimensionality as as the actual observations e.g. it

cannot only model the velocity buy also the acceleration. In the second step the updated

state distribution is derived by first computing a set of auxiliary variables:

γ = (xt+1 −Hµ̂t+1) (2.113)
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S = (HΣ̂t+1H
T + R) (2.114)

Kt+1 = Σ̂t+1H
TS−1 (2.115)

where γ denotes the innovation and S the corresponding covariance matrix. The so-called Kalman

gain Kt+1 affects the impact of new measurements to the prediction. A low Kalman gain smoothes

the measurements, whereas a high Kalman gain keeps close track to the measurements. The final

mean and covariance matrix of the predicted state estimate are then determined with

µt+1 = µ̂t+1 + Kt+1γ (2.116)

Σt+1 = (I−Kt+1H)Σ̂t+1. (2.117)

Within this work, the parameter learning for Kalman filter has only been addressed

marginally. For further details on this topic, the interested reader is referred to the litera-

ture (Bar-Shalom and Li, 1993; Kalman, 1960).

2.8. Markov Logic Network

The recognition of patterns by analyzing the compliance to logical rules requires a close

coupling of symbolic and sub-symbolic knowledge. It is advantageous to make use of a

less rigid logic representation in order to handle real-world scenarios afflicted with uncer-

tainty and to realize a smooth transition from pattern recognition to symbolic AI (Domin-

gos, 2006). In literature, a couple of promising approaches to probabilistic logic were pro-

posed (de Salvo Braz et al., 2008; De Raedt, 2008; Pasula and Russell, 2001). Among these

approaches, the Markov logic network (MLN) which combines probability and first-order

logic has attracted considerable attention (Richardson and Domingos, 2006). The MLN can

been regarded as a template model for constructing Markov networks based on first-order

logic. According to Richardson and Domingos (2006), a first-order knowledge base can be

regarded as a set of hard constraints on the set of possible worlds. In case a world violates

even one formula, it has a probability of zero. The idea of MLN is to soften these constraints:

When a world violates one formula in the knowledge base it is less probable, but not im-

possible. An MLN ML,C is defined by a set of formulas Fi and their corresponding weights

wi, i.e. L = {(F1, w1), (F2, w2), . . . , (F|L|, w|L|)}, and a set of constants C = {c1, c2, . . . , c|C|}.

The sets L and C represent the template model to create the Markov network which is done

according to the following two rules:

1. Create a binary random variable for each theoretical grounding of the predicates based

on the constants in C. In case the node is indeed grounded, the binary node equals

one if the atom is true and zero otherwise.
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2. Create a binary feature function for each formula Fi and all possible configuration of

grounded predicates involved in the formula. The weight of the feature function is

given by wi.

An example of an MLN in the “Pet owner” domain is given in Table 2.1. In this table, the

rows specify the weights, the first-order logic formulas, the descriptions in natural language

and the function identifiers. Formula F1 describes the strength by which a thing y is owned

by x, or in other words how much something is owned. The second formula F2 expresses

the prior of being a pet in the world. Formula F3 specifies that a pet is never an owner

but is always owned. The last formula F4 constitutes that owners are happy. The weight

of formula F3 is set to infinity in order to express that this proposition always holds. The

remaining weights can only be interpreted with respect to each other in an instantiated

network. However, the formula F1 which is weighted by 2.0 has a higher probability than

formula F2 which is weighted by −1/2. Hence, it is less likely to be a pet than to be an

owner.

The first rule to create the MLN generates all possible groundings of the predicates based

on the constants C = {bob, cat}, e.g. pet(bob), pet(cat) or own(cat,cat). The second rule

creates the feature functions connecting these predicates according to the formulas, e.g. for-

mula F4 generates four feature functions: own(bob,cat) ⇒ ishappy(bob), own(bob,bob)

⇒ ishappy(bob), own(cat,bob) ⇒ ishappy(cat) and own(cat,cat) ⇒ ishappy(cat). Fig-

ure 2.10 shows the factor graph of the grounded Markov network given the two constants. A

Figure 2.10. Grounded MLN of the “Pet owner” domain. The MLN is grounded according
to the formulas and weights of Table 2.1 using the constants C = {bob, cat}.
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Table 2.1. MLN description of the “Pet owner” domain. A template model of an un-
grounded MLN is given by weighted first-order logic formulas. Textual descriptions and indentifiers
for formulas are additionally provided.
Weight First-order logic Description ID
2.0 own(x, y) Prior of owning things F1

−1/2 pet(x) Prior of being a pet F2

∞ own(x, y)⇒ ¬pet(x) ∧ pet(y) Ownership is subjected to non-pets F3
4/5 own(x, y)⇒ ishappy(x) To own things makes one happy F4

Table 2.2. MLN prediction on the predicates in the “Pet owner“ domain. The tables
shows the probabilities assigned to all possible predicates in case the predicate pet(bob) has been
set to false.

ishappy(bob) 73.79% ishappy(cat) 50.01%
own(bob,bob) 0% own(bob,cat) 61.67%
own(cat,bob) 0% own(cat,cat) 0%
pet(cat) 76.26%

query to the network is carried out by setting observed predicates to either true or false and

subsequently performing the inference, e.g. using Gibbs sampling (Bishop, 2006), Table 2.2

shows the outcome of a query to the MLN in which the predicate pet(bob) has been set to

false. The table shows that the predicate pet(cat) is true with a probability of 76.26% and

that the cat is owned by bob with a probability of 61.67%. Furthermore, bob is likely to

be happy with a probability of 73.79%, whereas the probability of the cat to be happy is

undeceive with being close to 50%.

The dynamic Markov logic network (DMLN) extends the concept of the MLN by enrolling

a template model over time, analogously to the HMM. Geier and Biundo (2011) proposed a

new approximate online inference technique for the DMLN which is more computationally

efficient. The DMLN updates only selected new nodes and reuses messages emitted by older

nodes. The DMLN will be utilized later on in the empirical evaluations.

2.9. Multiple Classifier Systems

The creation of robust and accurate classifiers has always been in the focus of pat-

tern recognition. Solutions range from sophisticated non-linear discriminant functions to

heuristics to solve non-separable classifier problems, but also include large systems based

on multiple classifiers, so-called multiple classifier systems (MCS) (Kuncheva, 2004; Kittler

et al., 1998). MCS have been designed for a large number of purposes, other than the

objectives robustness and performance. A common task is the combination of recognition

outcomes from different modalities, e.g. audio and video channels, or the fusion of recogni-

tion outcomes over time (Dietrich, 2004). Other MCS solve multi-class problems or make

use of hierarchical or layered architectures to recognize complex classes. Combiners in MCS
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(a) Early fusion (b) Mid-level fusion (c) Late fusion

Figure 2.11. Early, mid-level and late fusion schemes utilized in MCS architectures.

can be categorized by the time at which information from multiple sources are brought to-

gether. A distinction is made between early, mid-level and late fusion approaches (Valstar

et al., 2007; Sanderson and Paliwal, 2004). An overview of these three concepts is depicted

in Figure 2.11.

Early fusion Early fusion describes the procedure to concatenate multiple input feature vectors to a

single high-dimensional feature vector. The assumption is that the combined input feature

vectors are dependent to each other and that a classifier operating on the concatenated

feature vector can learn correlations between them. The early fusion is illustrated in Fig-

ure 2.11a. Two input feature vectors which are given by the blue and green arrows are

combined to a new single feature vector which is represented by the mixed colored thin

block. The resulting new feature vector is then fed into a classifier depicted by the larger

block. The classifier maps the concatenated feature vector to the final output depicted by

the red arrow. Early fusion is promising for low-dimensional features which can comple-

ment each other and which, taken by themselves, are not discriminative enough to solve

the recognition problem. However, the drawback of this approach is the danger of running

into the so-called curse of dimensionality. in which the number of data samples is to low

with respect to their dimensionality. As a result, the space of possible separating classifier

functions can contain trivial solutions which will not generalize (Bishop, 2006; Vapnik, 1999;

Schels et al., 2013a). We will not regard the early fusion as a full member of MCS. However,

this kind of information fusion is frequently part of large MSC architectures.

In contrastLate fusion to early fusion, the idea of late fusion is to create multiple individual classifiers

for the identical classes which are then combined using a fusion rule, e.g. voting, averaging

or the product rule (Kittler et al., 1998; Thiel, 2010, page 133ff.; Giacinto and Roli, 2002;

Schels et al., 2013c). Advanced classifier fusion rules are realized by learning a mapping

to the final class, e.g. using a linear associative memory, decision template, pseudo inverse

or NBC (Schels et al., 2010; Schwenker et al., 2010, 2006). The late fusion is illustrated
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in Figure 2.11c. Two features which are depicted by the blue and green arrows are used

independently to classify the same red-colored target class. The classifier outcomes are then

combined to a final decision by some fusion rule. The objective is to increase the accuracy

and robustness by combining classifiers outputs which are diverse, i.e. the classifiers outputs

do not agree on falsely classified samples (Kuncheva, 2004).

Classifier diversity can be achieved in many ways, e.g. different feature views, features

from different modalities, bagging, different base classifier or varying the model parame-

ters (Kuncheva, 2004; Breiman, 1996). However, it is still mandatory for late fusion that

the individual classifiers have an acceptable accuracy (Kuncheva, 2004). A set of classifiers

which are trained with the objective to be diverse are often referred to as classifier ensemble.

According to Dietterich (2000), there are three main reason why ensembles of classifiers have

the ability to outperform a single model, i.e. “statistical”, “computational” and “represen-

tational” reason. From a statistical perspective, it is safer to combine the outputs of an

ensemble rather than selecting a single model (Kuncheva, 2004). This strategy reduces the

risk of picking a single model which does not generalize. From a computational perspective,

the aggregated model is useful in scenarios in which the optimization procedure leads to

different local optima. Combining a set of models trained with different initial parameters

bears a lower risk than picking an individual model. Furthermore, combined models offer a

richer representation in terms of a more accurate classifier function than a single model.

The Mid-level

fusion

third fusion technique realizes a compromise of both aforementioned fusion tech-

niques. The idea is to create a mid-level fusion with the help of a layered (or hierarchical)

compound of classifiers. In the first layer, the feature vectors are mapped to two sets of

intermediate classes. The corresponding class outputs are then concatenated to form a new

feature vector which is then processed by a classifier on the second layer. The classifier in

the second layer performs the final mapping to the actual target class. Figure 2.11b depicts

the mid-level fusion. The blue feature vector is mapped to an intermediate orange class,

while the green feature vector is independently mapped to another intermediate class which

is indicated by the color magenta. Both class outputs are then concatenated and used as

input to a classifier in the second layer which performs the final mapping to the red target

class. The idea is to realize a smooth transition to the final target class by using interme-

diate classifier outputs which gradually densifies the information. The intermediate classes

have to be tailored to the information in the feature vectors, be of relevance for the final

target class and have to complement each other. This concept contrasts to late fusion in

which all classifiers of the ensemble aim at recognizing the identical classes. A mixture of

late fusion and mid-level fusion is realized by multi-class MCS Multi-class

MCS

, i.e. one-vs-one or one-vs-rest

classifier systems (Bishop, 2006, page 182ff.). A one-vs-one classifier system is based on a

set of I · (I − 1)/2 classifiers where I denotes the number of classes. One classifier is trained

45



2 Basics

for every pair of the I · (I − 1)/2 possible class combinations. The final class assignment is

obtained by collecting and combining all classifier decisions, e.g. by performing voting. How-

ever, this approach can lead to regions in feature space in which no class assignment can be

carried out (Bishop, 2006, page 182ff.). The problem can be solved by using base classifiers

with probabilistic class memberships outputs. The classifier outputs can then be transfered

to the final distribution over I classes using a trained classifier or a mapping algorithm, e.g.

pairwise coupling (Hastie and Tibshirani, 1998). An alternative to the one-vs-one classifier is

of a one-vs-rest classifier system in which only I base classifiers are required. In this setting,

every class is trained once against the joined set of the remaining classes (Theodoridis and

Koutroumbas, 2006, page 127ff.).

In both, mid-level fusion and late fusion the outputs of classifiers have to be combined

in a way that as much information as possible is preserved. This can be achieved by using

classifiers which provide additional outputs beside crisp classifier decisions (Thiel, 2010). An

obvious choice is to use a measure which describes the uncertainty associated with a classifier

decision. However, there is a large number of possible interpretations of uncertainty (Bloch

et al., 2001) and it is not always clear how to determine and represent uncertainty. Two

of the most frequently used models for uncertainty are: (1) class membership probability,

i.e to which degree of certainty is a data sample a member of a class; and (2) classifier

confidence, i.e. how certain is the classifier about the current decision (Thiel, 2010, page

42ff.). Class membership probabilities can be derived using probabilistic models or in case

of discriminative approaches by assessing the distance to the separating hyperplane (Platt,

2000). Classifier confidences can be derived using the certainty of the class memberships:

The closer the class membership probability gets to zero or one, the more confident is

the classifier decision (Bishop, 2006, page 42ff.). An alternative classifier confidence is de-

rived by measuring the agreement in a classifier ensemble with respect to class probability

memberships (Kuncheva, 2004, page 295ff.; Chow, 1970), e.g. based on standard deviation.

Confidences can be used to weight or to reject classifier decisions.

ManyTemporal

fusion

real-world scenarios, require that not only classifier outputs from multiple fea-

ture sets (or modalities) are combined, but also classifier outputs from different time in-

stances (Jeon and Landgrebe, 1999; Box et al., 2008). In order to perform temporal fusion,

the most recent classifier outputs have to be collected in form of a stream. The fusion

can then be performed by shifting a window over the stream and combining the contained

classifier decisions to a single classification output using standard late fusion approaches,

e.g. voting or averaging (Meudt et al., 2013). Temporal fusion can significantly improve the

accuracy by smoothing noisy classifier decisions over time. However, it creates also many

challenges such as the handling of missing classifier decisions, e.g. due to sensor failures.

Furthermore, several streams of multimodal classifier outputs may need to be combined.
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This raises further questions such as how to handle different sample rates or what is the

optimal fusion strategy: multimodal followed by temporal fusion or temporal and followed

by multimodal fusion (Schels et al., 2014; Dietrich et al., 2003; Dietrich, 2004).

2.10. Layered Hidden Markov Model

Section 1.2.3 introduced a number of classifier architectures which are able to recognize

complex classes based on elementary cues. The layered hidden Markov model (LHMM)

proposed by Oliver et al. (2002) forms the basis to the layered architectures developed later

in this thesis. The functional principle of the LHMM is illustrated in Figure 2.12. The

depicted example comprise two layers indexed by k. Each layer consists of a set of HMM for

classification and a stream containing the crisp class decisions of the HMM for each time step.

The classification is performed using a window which is temporally shifted over the stream

of the preceding layer. The stream in each layer is given by a binary matrix Z(k) ∈ RT×Ik

where T represents the last time step available and Ik the number of classes of layer k. In

Figure 2.12, the layer k = 1 is composed of the window with the HMM for classification

at the bottom and the stream of classifier decisions at the top. Since no preceding layer

is available in the lowest layer, the window is shifted over the features extracted from the

Figure 2.12. Processing in the
LHMM as proposed by Oliver
et al. (2002). Each layer consists of
a set of HMM and a stream of deci-
sions. Each layer recognizes a specific
set of classes using a window that is
shifted over the input stream. The
crisp class decisions form a stream by
continuously concatenating the latest
class decision. The stream can be ac-
cessed by the subsequent layer which
uses again a set of HMM to recog-
nize a set of classes. The procedure
is repeated until the last layer pro-
duces an output stream of class de-
cisions. Schematic drawing adapted
from Oliver et al. (2004).
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recognition

recognition Output
Classification

Figure 2.13. LHMM passing discrete class assignments to the next layer. The lowest
layer operates on the stream of real-valued features. The subsequent layers operate on the streams
of the former layer which is composed of crisp class assignments.

sensor data. The data contained in the window is used by the HMM to recognize multiple

sequential sub-patterns. The resulting discrete class assignments are then stored into the

binary matrix Z(1). The subsequent layer k = 2 shifts a new window over the stream of

the preceding layer’s binary matrix Z(1). The sequence in the window is passed to a new

set of HMM in order to recognize the next set of patterns. Again the recognized classes are

stored into a binary matrix Z(2). In the given example, the classes recognized in the second

layer are considered as the final output. Figure 2.13 provides a more detailed example of

the information encoded in the streams. The set of HMM in the lowest layer operates on

a stream of real-valued vectors which are depicted by a sequence of frames containing blue

bars with varying heights. The resulting binary class decisions are concatenated to a new

stream depicted in the figure by a sequence of frames with discrete color-coded numbers.

This stream is then processed in the next layer which results in a new stream of crisp class

decisions. The procedure is repeated until the final class decision is available.

The LHMM can recognize more complex patterns in higher layers since they will be

composed of sub-patterns provided in preceding layers. A side-effect is that the temporal

granularity, i.e. the time covered by the windows, increases in each layer with respect to

the sensor data. Furthermore, the LHMM is robust against changes in the environment.

Especially upper layers which process more abstract inputs are less dependent on sensor

changes. The architecture can be trained in a bottom-up fashion using cross-validation,

starting with the lowest layer. Once the first layer is trained, the test set output can be

used to form a new complete training set for the subsequent layer. This procedure can be

repeated for all layers of the architecture. However, the outputs of the test set are obtained

by classifiers which were trained on the development set. Therefore, one can argue that the

cross-validation is corrupted. To obtain unbiased generalized outputs, it is necessary to hold
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back a set of test data which has never been involved in the training process such that an

unbiased evaluation of the final layer can be conducted.

Oliver et al. (2002) evaluated the LHMM in an office scenario to detect the desktop

activities: “Phone conversation”, “Presentation”, “Face-to-face conversation”, “User present”,

“Engaged in some other activity”, “Distant conversation” (outside the field of view) and

“Nobody present”. The first layer detects classes using the audio and video modalities. From

the audio channel, the system recognizes the classes: “Human speech”, “Music”, “Silence”,

“Ambient noise”, “Phone ringing” and “Keyboard typing sounds”. From the video channel the

system derives: “Nobody”, “One person”, “One active person present” or “Multiple people

present”. The evaluation of the LHMM showed promising results. However, the study

possesses some critical issues. Patterns recognized as the final outputs are distinguishable

merely by the occurrences of unique events in the preceding layer. For instance, a single

person speaking gives clear evidence to a “Phone conversation”, whereas the combination of

a single person speaking and keyboard events encode the class “Presentation”. Hence, the

temporal progress of the second layer is negligible in the given scenario. Furthermore, only a

distinct set of activities can be recognized due to the limited size of the window. Oliver et al.

(2004) remarked that passing discrete class assignments to the next layer is disadvantageous

since useful information is discarded and, alternatively, suggested to pass the HMM log-

likelihoods to the next layer. In fact, in more complex scenarios the propagation of discrete

class assignments can be a serious restriction. However, real-valued log-likelihoods are not

suitable for the application in LHMM since they need to be modeled by density functions

which usually have problems covering the complete range of real-values.

2.11. Fuzzy-in Fuzzy-out Support Vector Machine

As already pointed out in Section 2.9, uncertainty in classification can arise from multi-

ple sources. Recordings in real-world scenarios can be afflicted with noise, for instance due

to measurements which are interfering with the target pattern. Furthermore, patterns can

have a large variety of appearances such that a simple discriminative function can be insuffi-

cient for a successful separation. Uncertainty in real-world scenarios can also originate from

ambiguous class definition which leads to inconsistent annotations of data samples. This

ambiguity can be soften by using a fuzzy class membership annotation scheme in which

class labels range in [0, 1] and sum up to one. One of the most popular advances in sta-

tistical learning theory in the last decades is the support vector machine (SVM) (Vapnik,

1999; Christiani and Shawe-Taylor, 2000) which addresses the problem of structural risk

minimization by maximizing the margin of the separating hyperplane to the data samples

of the different classes. Platt (2000) extended the SVM approach by probabilistic outputs.

Thiel et al. (2007) picked up this concept and introduced the fuzzy-in fuzzy-out support
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vector machine (F2-SVM) which extends the SVM and enables it to learn from fuzzy class

membership labels. The F2-SVM will be presented in the following.

The dataset T = {(x(n), y(n))}Nn=1 describes a two-class classification problem with N

data samples x(n) where each data sample is associated with a fuzzy class membership y(n)

in the range of [0, 1]. For convenience, the notation is extended by the subscripts − and +

to specify the class memberships from the two perspectives y(n)
+ = y(n) and y(n)

− = 1− y(n).

The classification constraints of the F2-SVM are defined by

1− ξ(n)
+ ≤ wTx(n) + b (2.118)

−(1− ξ(n)
− ) ≥ wTx(n) + b (2.119)

0 ≤ ξ
(n)
+ (2.120)

0 ≤ ξ
(n)
− (2.121)

where w and b describe the normal vector and bias of the hyperplane. In contrast to the

conventional SVM, two slack variables ξ(n)
+ and ξ(n)

− are given for each of the two class mem-

bership perspectives. The objective function is defined by

minimize
1

2
wTw + C

N∑
n=1

(ξ
(n)
+ y

(n)
+ + ξ

(n)
− y

(n)
− ). (2.122)

The slack variable compensates a misclassification of a data sample at the cost of a penalty,

as to be seen in Equation 2.118 and Equation 2.119. The penalty is weighted by the fuzzy

class membership. The trivial solution of negative slack variables is eliminated by Equa-

tion 2.120 and Equation 2.121. The Lagrangian function combines the objective function

with the constraints using the Lagrange multipliers β(n)
+ , β(n)

− , α(n)
+ and α(n)

− :

L(w, b, ξ+, ξ−,α+,α−,β+,β−) = 1
2
wTw + C

∑N
n=1(ξ

(n)
+ y

(n)
+ + ξ

(n)
− y

(n)
− )

−
N∑
n=1

(β
(n)
+ ξ

(n)
+ + β

(n)
− ξ

(n)
− )

−
N∑
n=1

α
(n)
+ (wTx(n) + b− 1 + ξ

(n)
+ )

+

N∑
n=1

α
(n)
− (wTx(n) + b+ (1− ξ(n)

− )). (2.123)

The current problem formulation is to complex to find the optimal parameters which min-

imize the given function. Therefore, the dual form has to be derived which depends only

on α(n)
+ and α

(n)
− . In the following, we refrain from listing all variables in the head of the

Lagrangian function to keep the notation uncluttered. The dual form is derived by taking

the derivative of w, b, ξ(n)
+ and ξ(n)

− and setting the outcome equal to zero:
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∂L

∂w
= w −

N∑
n=1

α
(n)
+ x(n) +

N∑
n=1

α
(n)
− x(n) = 0 (2.124)

⇔ w =

N∑
n=1

(α
(n)
+ − α(n)

− )x(n) (2.125)

∂L

∂b
= −

N∑
n=1

α
(n)
+ + α

(n)
− = 0 (2.126)

∂L

∂ξ
(n)
+

= −Cy(n)
+ − β(n)

+ − α(n)
+ = 0 (2.127)

∂L

∂ξ
(n)
−

= −Cy(n)
− − β

(n)
− − α(n)

− = 0. (2.128)

The resulting equations have to be rearranged and substituted back into the original prob-

lem formulation of Equation 2.123. Further, rearranging leads to the compact dual form

L(α+,α−) = −1

2

N∑
n1=1

N∑
n2=1

(α
(n1)
+ − α(n1)

− )(α
(n2)
+ − α(n2)

− )x(n1)Tx(n2)

+

N∑
n=1

(α
(n)
+ + α

(n)
− ) (2.129)

constrained by

N∑
n=1

(α
(n)
+ + α

(n)
− ) = 0 (2.130)

0 ≤ α(n)
+ ≤ Cy(n)

+ (2.131)

0 ≤ α(n)
− ≤ Cy(n)

− . (2.132)

The optimization takes the form of a quadratic programming problem which can be solved

using the sequential minimal optimization (SMO) algorithm (Platt, 1999; Thiel et al., 2007).

Classification of a new data sample x̂ is performed by evaluating

d(x̂) =

N∑
n=1

(α
(n)
+ − α(n)

− )x(n)Tx̂ + b (2.133)

where the sum is usually reduced to iterate only over the support vectors. Data samples are

called support vectors in case the corresponding Lagrangian variables αn+ and αn− strictly

fulfill the Equation 2.131 and Equation 2.132. The outcome d(x̂) represents the distance of

the test sample to the hyperplane. The bias b is determined with the help of the support

vectors αn+ and αn− for which the hyperplane is per definition one. Hence, b can be derived
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by solving the equation

b =

N∑
n=1

(α
(n)
+ − α(n)

− )x(n)Tx(n) − 1. (2.134)

A discrete class assignment can be performed using the sign of d(x̂). To obtain a fuzzy class

membership output, an additional transformation from the distance to the target distribu-

tion has to be performed with the help of a sigmoid function (Platt, 2000).

Multi-class classification problems can be addressed by applying one-vs-rest and one-vs-

one classifier systems. The corresponding MCS operate on the dataset T = {(x(n),y(n))}Nn=1

with I classes where y(n) = (y
(n)
1 , . . . , y

(n)
I ), y

(n)
i ∈ [0, 1] and

∑I
i=1 y

(n)
i = 1. According to

Thiel et al. (2007), a one-vs-rest classifier system using F2-SVM can be realized by creating

I classification problems of the form y
(n)
+ = y

(n)
i and y

(n)
− = 1 − y(n)

i where i ∈ 1, . . . , I.

The I classifiers are then combined using a multi-class extension of the probabilistic output

algorithm (Platt, 2000). A one-vs-one classifier system can be realized by creating I(I−1)/2

classifier problems of the form y
(n)
+ = y

(n)
i and y(n)

− = y
(n)
j for each pair i, j ∈ 1, . . . , I, i 6= j.

In practical applications, Thiel et al. (2007) propose to reduce the complexity of the problem

by including only samples with a membership being above the uniform class distribution.

The final fuzzy class membership distribution is obtained by performing pairwise coupling

on the classifier outputs as proposed by Hastie and Tibshirani (1998).

2.12. Multi-class F2-Support Vector Machine

Weston and Watkin (1998) introduced the multi-class support vector machine (MC-

SVM) which integrates the training of the multiple SVM usually required for the one-vs-rest

classifier systems into a single optimization problem. Schwenker et al. (2014) combined the

F2-SVM and MC-SVM and proposed the multi-class fuzzy-in and fuzzy-out support vector

machine (MC-F2-SVM) which will be presented in this section.

The dataset T = {(x(n),y(n))}Nn=1 describes an I-class classification problem where the

fuzzy class memberships are given in form of a vector y(n) = (y
(n)
1 , . . . , y

(n)
I ), y

(n)
i ∈ [0, 1]

and
∑I
i=1 y

(n)
i = 1. Similarly to Weston and Watkin (1998), the MC-F2-SVM uses I one-

vs-rest hyperplanes. The constraints of the MC-F2-SVM are given by

1− ξ(n)
i ≤ (wT

i x(n) + bi)− (wT
j x(n) + bj) n ∈ Ci and j 6= i (2.135)

0 ≤ ξ
(n)
i (2.136)

where wi and bi describe the hyperplane separating class i from the rest of the dataset. The

set Ci = {n : n = 1, . . . , N | y(n)
i > y

(n)
j and j = 1, . . . , I} contains the data samples for

which the class i has the largest class membership compared to other classes. Equation 2.135
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specifies the separation functionality of the hyperplanes, whereas Equation 2.136 excludes

the trivial solution of negative slack variables. The objective function is defined by

minimize
1

2

I∑
i=1

wT
i wi + C

I∑
i=1

∑
n∈Ci

I∑
j=1

ξ
(n)
i (y

(n)
i − y(n)

j ). (2.137)

Analogously to the F2-SVM, the fuzzy class memberships are utilized to weight the slack

variables. The stronger the class membership compared to the remaining classes, the higher

the penalty of the corresponding slack variable. Practically, the term (y
(n)
i − y(n)

j ) in which

j is equal to i is canceled out and, hence, can be removed from the sum. However, the sum

will remain unchanged in order to keep the notation uncluttered. The complete Lagrangian

function is given by

L({wi, bi, ξi,αi,βi}
I
i=1) =

1

2

K∑
i=1

wT
i wi + C

I∑
i=1

∑
n∈Ci

I∑
j=1

ξ
(n)
i (y

(n)
i − y(n)

j )

+

I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i

(
1−ξ(n)

i +(wT
i x(n)+bi)−(wT

j x(n)+bj)
)

−
N∑
n=1

I∑
i=1

β
(n)
i ξ

(n)
i . (2.138)

The dual form is derived by taking the derivative with respect to the parameters and setting

the result equal to zero

∂L

∂wi
= wi +

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i x(n) −

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
j x(n) = 0 (2.139)

⇔ wi =
∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
j x(n)

︸ ︷︷ ︸
=:ui

−
∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i x(n)

︸ ︷︷ ︸
=:vi

(2.140)

∂L

∂bi
=
∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i −

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
j = 0 (2.141)

⇔ bi

I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i − bj

∑
j

∑
n∈Cj

I∑
i=1
i 6=j

α
(n)
i = 0 (2.142)

⇔
I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i (bi − bj) = 0 (2.143)

∂L

∂ξ
(n)
i

= C

I∑
j=1
j 6=i

(y
(n)
i − y(n)

j )−
I∑
j=1
j 6=i

α
(n)
i − β(n)

i = 0. (2.144)

Equation 2.140 provides the definition wi = ui − vi which is used to substitute wi in the
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primal form:

L({wi, bi, ξi,αi,βi}Ii=1) = 1
2

∑I
i=1

(
ui − vi

)(
ui − vi

)
(2.145)

+

I∑
i=1

∑
n∈Ci

ξ
(n)
i

( I∑
j=1
j 6=i

C(y
(n)
i − y(n)

j )−
I∑
j=1
j 6=i

α
(n)
i − β(n)

i

)
︸ ︷︷ ︸

= 0 according to Equation 2.144

(2.146)

+

I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i (2.147)

+

I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i (ui − vi)

Tx(n) − α(n)
i (uj − vj)

Tx(n) (2.148)

+

I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i (bi − bj).

︸ ︷︷ ︸
=0 according to Equation 2.143

(2.149)

Further substituting and rearranging using Equation 2.144 and Equation 2.143, results in

the final dual form given by

L({αi}Ii=1) = −1

2

I∑
i=1

(
ui − vi

)(
ui − vi

)
+

I∑
i=1

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i . (2.150)

The dual form is optimized with respect to the lower and upper bounds 0 ≤ α(n)
i ≤ C(y

(n)
i −

y
(n)
j ) and the equality constraints

∑
n∈Ci

∑I
j=1
j 6=i

(
α

(n)
i − α(n)

j

)
= 0. The distance to the ith

hyperplane is given by

di(x̂) =
∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
j x(n)Tx̂−

∑
n∈Ci

I∑
j=1
j 6=i

α
(n)
i x(n)Tx̂ + bi. (2.151)

The bias is determined using a set of linear equations:

1 = (wT
i x(n) + bi)− (wT

j x(n) + bj) (2.152)

⇔ bi − bj = 1−wT
i x(n) −wT

j x(n) (2.153)

where n is an index taken from the set of support vectors which fulfill the constraints

0 < α
(n)
i < C(y

(n)
i − y(n)

j ). The additional constraint
∑I
i=1 bi = 0 can be added to obtain a

problem having a complete rank.
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Chapter 3

Methodological Advances

in Cognitive Technical Systems

The current chapter presents the scientific contributions based on the basics introduced in

the preceding chapter. It begins by presenting the ensemble GMM (EGMM) for enhanced

probability density estimation. Subsequently, two extensions to the HMM are proposed,

namely the conditioned hidden Markov model (CHMM) and the fuzzy conditioned hid-

den Markov model (FCHMM). The CHMM extends the HMM by an additional sequence

of causal states which influence the selection of hidden states. The FCHMM replaces the

sequence of causal states by a sequence of causal fuzzy memberships. The next section ad-

dresses the integration of the GPD into the HMM. The integration results in two approaches,

namely HMM using GPD (HMM-GPD) and CHMM using GPD (CHMM-GPD). In contrast

to the HMM-GPD, the hidden states of the CHMM-GPD can be shared and, therefore, be

supported by different classes. Following this, two fusion approaches for multimodal tem-

poral MCS are presented, i.e. the Markov fusion networks (MFN) and the Kalman filter for

classifier fusion. Both approaches are able to handle loss of decisions in a unified frame-

work. Subsequently, two concepts for layered architectures are introduced which allow the

integration of sub-symbolic and symbolic knowledge and the recognition of complex classes,

i.e. the unidirectional layered architecture (ULA) and the bidirectional layered architecture

(BLA). The ULA propagates information from the lower layer operating on data derived

from sensors to the upper layers in which more complex classes are recognized. The BLA

additionally propagates information downwards such that lower layers can benefit from the

context known in the upper layers. In the last section, an alternative approach to implement

the MC-F2-SVM is proposed, namely the IC-MC-F2-SVM which integrates the fuzzy labels
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into the problem formulation using the inequality constraints.

The approaches in this chapter are designed to be applied in CTS. They follow various

paradigms which are of benefit in real-world scenarios being afflicted with many sources of

uncertainty. One aspect which is frequently underestimated in such scenarios is the impor-

tance of time in pattern recognition. Therefore, most of the proposed approaches process

temporal data sequences, i.e. CHMM, FCHMM, HMM-GPD, CHMM-GPD, MFN, Kalman

filter for classifier fusion, ULA and BLA. Sequences of incomplete features or decisions which

vary in size over time can be handled by the HMM-GPD, CHMM-GPD, MFN and Kalman

filter for classifier fusion. The handling of uncertainty is addressed by EGMM, FCHMM,

MFN, Kalman filter for classifier fusion, ULA, BLA and IC-MC-F2-SVM. The integration

of sub-symbolic and symbolic information can be realized using the CHMM, FCHMM, ULA

and BLA. Multi-class problems are addressed by the CHMM, CHMM-GPD, MFN, Kalman

filter for classifier fusion, ULA, BLA and IC-MC-F2-SVM. Multimodal decisions derived

from different channels can be combined using the CHMM, MFN and Kalman filter for clas-

sifier fusion. In the following, the proposed approaches will be explained in greater detail

along with their properties.

3.1. Ensemble GMM

As outlined in Section 2.2, the EM algorithm for the GMM has several drawbacks (Bishop,

2006, p. 434). First of all, it is unlikely that a density was generated by a mixture of Gaus-

sians. Therefore, it is generally difficult to find an optimal GMM parameter configuration,

i.e. number of mixture components or constraints on the covariance matrix (spherical or

diagonal). The EM algorithm depends on the initialization of parameters and, hence, may

end in different local optima. Furthermore, the EM algorithm suffers from the appearance

of singularities, i.e. one mixture component can become responsible for a single observation.

The ensemble GMM (EGMM) addresses these issues by making use of the MCS concept

of ensembles (Glodek et al., 2013c, 2010). The ensemble technique increases the robustness

and performance of models by combining a set of diverse models (Kuncheva, 2004, p. 237ff.).

The EGMM follows the same principles and combines a set of diverse GMM.

Ormoneit and Tresp (1998) first suggested the combination of a set of GMM to obtain

an improved density. The proposed approaches make use of subset averaging (without

replacement) and bagging (with replacement). Furthermore, two extensions to the GMM

EM algorithm were presented, namely the maximum penalized likelihood and the so-called

Bayesian approach. The two extensions regularize the estimation of the GMM by the means

of a conjugated prior to the model parameters. However, no variations in the initial GMM

configurations were suggested. An alternative approach named aggregated EM (Ag-EM) was

proposed by (Shinozaki and Kawahara, 2008). The Ag-EM algorithm divides the dataset
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into L partitions in order to obtain L different estimates in the E-step. The estimations

are then used in the M-step to create M different models. As a result, the following E-step

creates L×M estimates which are then reduced down to L estimates using averaging. The

iteration starts again by creating M models in the following M-step. A major limitation

of this approach is that the GMM configurations must be identical for all models to be

combined (Shinozaki and Kawahara, 2008).

The EGMM combines a set of M individually trained GMM. The diversity of these

models is realized by using subsets of the training data, random initialization of parameters,

i.e. mixture components, means and covariances, and differently shaped covariance matrix.

The EGMM algorithm is given by following listing:

Input: A dataset T = {x(n) : x(n) ∈ RD, n = 1, . . . , N}, the number of potential

ensemble members L, the number of members in the final ensemble M ≤ L.

1. Generate a set of initial GMM parameters {θl}Ll=1 and datasets {Tl}Ll=1.

a) Create the GMM configuration θl, e.g. by varying the number of mixture com-

ponents or the shape of the covariance matrices

b) Create the training set Tl from T , e.g. using bootstrap samples (Breiman, 1996).

2. Make use of the EM algorithm to maximize the likelihoods of the GMM parameterized

by θ1, . . . , θL.

3. Select M out of the L GMM which have the highest log-likelihoods. Without loss

of generality these M GMM are parameterized by θ1, ..., θM . The EGMM is called

pruned EGMM if M < L.

4. Compute the weights w1, . . . , wM with wm ∈ [0, 1] and
∑M
m=1 wm = 1, e.g. wm = 1/M .

Output: The EGMM density of a new data sample x̂ is obtained by evaluating

E(x̂, {θm}Mm=1) =
∑M
m=1 wmG(x̂, θm).

The averaging preserves the properties of the probability density, e.g. smoothness or∫∞
−∞ E(x̂, θm)dx = 1. The parameter M should be chosen with the objective to limit the

complexity of the final probability density function or to discard GMM with singularities.

Alternatively, singularities can be compensated by using a suitable combination rule such as

the point-wise median which is robust against ensemble outliers. However, this combination

rule provides an estimate will not integrate to one.

3.2. Conditioned Hidden Markov Model

The HMM is still one of the most frequently used approaches to model sequences in

pattern recognition. Classification using HMM is performed by creating specific models for
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each class. The class assignment is then determined according to the model with the highest

likelihood given the test sequence. The conditioned hidden Markov model (CHMM) was

developed in order to create a unified model such that more information can be drawn from

limited training data. The hidden states of the CHMM represent the entire dataset such that

a mapping from classes to hidden states is performed in order to obtain a class assignment.

Furthermore, the CHMM can be applied to perform a unified training of datasets contain-

ing symbolic and sub-symbolic sequences. The CHMM extends the HMM by an additional

sequence of outer causes y which influence the hidden states. The likelihood of the CHMM

is given by

p(X|y p λ) =
∑

w∈ΩT
w

p(w1 = w1|y1 p π)

T∏
t=2

p(wt = wt|wt−1 = wt−1, yt p A)·

T∏
t=1

p(xt|wt = wt p θ) (3.1)

where the set λ = {π,A,θ} contains the individual model parameters. In contrast to the

HMM, the initial hidden state probability and the transition probability are additionally

influenced by the random variable yt. The probability of the initial hidden state is param-

eterized by π with a total number of |Ωw| × |Ωy| parameters. The transition probability is

given by the matrix A and has |Ωw| × |Ωw| × |Ωy| parameters. Figure 3.1 shows the graphical

model of the CHMM where nodes colored in dark grayed are observed variables and nodes

colored in lighter gray are only observable during training, but unknown when testing a new

sequence. The sequence of hidden random variables w = (w1, . . . ,wT ) effects the sequence

of observations. The hidden variables themselves are influenced by the sequence of outer

causes (or labels) y. The joint probability given the test sequences X̂ and ŷ is determined

by p(X̂, ŷ) = p(X̂|ŷ)p(ŷ) where p(ŷ) can be regarded as a prior over the sequence of labels.

The distribution over the outer causes is given by

p(ŷ|X̂) =
p(X̂, ŷ)∑

y∈ΩT
y
p(X̂,y)

∀ ŷ ∈ ΩTy . (3.2)

There are two types of inference problems concerning the CHMM. The first one addresses

the inference of the probability distribution over hidden states w given a sequence of obser-

vations X and a sequence of causal states mathbfY . The second inference problem aims at

inferring the probability distribution of the sequence of hidden states w and the sequence of

causal states y given a sequence of observations X. The first problem is required for training,

but can also be used for testing a limited set of causal state sequences. For instance, in case

of testing causal sequences which contain only one kind of state in pre-segmented datasets.

It might also be promising to identify the temporal location of a label change. To do so,
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Figure 3.1. Graphical represen-
tation of the CHMM. The Markov
chain w is composed of a sequence of
hidden random variables wt. Each hid-
den random variable wt, except the one
of the first time step, depends on its
predecessor wt−1. Furthermore, each
hidden random variable emits an ob-
servation xt. The selection of the hid-
den state wt is influenced by the hidden
state wt−1 and by the outer cause yt.

the training has to be performed using sequences composed of at least two labels. Testing

can then be done on a fixed set of causal sequences in which the first half of the sequence is

composed of one label and the second half of another label. Performing the exact inference

for both random variables w and y allows direct access to the probability distribution of the

causal sequence. This topic is addressed in detail in Section 3.3.

The sequence of outer causes can also be used to provide additional symbolic knowledge

about which hidden state is more likely. To do so, the sequence of outer causes is augmented

by evidential information. The outer cause random variable takes states from the Cartesian

product of the label and evidence states. Since this procedure eventually significantly extends

the parameter space, it may be advisable to fall back to the HMM classification scheme.

In other words, to use only one label state. Making use of external knowledge relates the

CHMM to the coupled HMM proposed by Brand et al. (1997). In coupled HMM, hidden

states at time step t of one HMM chain are additionally influenced by the hidden states in

time step t− 1 of another HMM chain. In contrast to the coupled HMM, the CHMM does

not use multiple chains of HMM. The hidden states of the CHMM are influenced by outer

causes provided by an independent classifier or another external sources.

The LDCRF described in Section 2.6 extends the HMM in a similar way to the CHMM,

but uses a Markov network. However, the structure of the LDCRF allows exact inference

such that there is no need to resign from Bayesian networks. Especially, because of the

comprehensive work already achieved by modeling the HMM as a Bayesian network. Fur-

thermore, Morency et al. (2007) restricted the model to have a fixed association between

labels and hidden states. While this is advantageous in order to save parameters and, there-

fore, to achieve a good convergence property, the drawback is of course the restricted model.

Another similar structure is given by the input-output hidden Markov model (IOHMM)

which was proposed by Bengio and Frasconi (1996). In contrast to the IOHMM, the CHMM

output does not directly dependent on the input variable. Furthermore, the objective of the

CHMM is not to transform an input sequence to an output sequence, but to infer from the

possible underlying input sequence the output sequence.

In the following, inference and parameter learning for CHMM is explained in detail. Fur-
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thermore, the HMM-MCS and CHMM-MCS for multimodal classifier fusion is introduced.

3.2.1. Inference

InferenceForward

algorithm

in CHMM can be performed by modifying the forward-backward algorithm of

the HMM presented in Section 2.5.1. The new forward variable αt,y(j) is defined as the

probability to be in the hidden state j at time step t and to have observed the sequence

X1..t from the first time step to the time step t given the corresponding sequence of outer

causes y1..t. Analogously to the HMM, the forward algorithm uses dynamic programming

such that the recursive formula of the forward variable is given by

αt,y(j) = p(X1..t,wt = j|y1..t) (3.3)

= p(xt|wt = j)p(X1..t−1,wt = j|y1..t) (3.4)

= p(xt|wt = j)
∑
i∈Ωw

p(X1..t−1,wt−1 = i,wt = j|y1..t) (3.5)

= p(xt|wt = j)·∑
i∈Ωw

p(X1..t−1,wt−1 = i|y1..t−1)p(wt = j|wt−1 = i, yt) (3.6)

= p(xt|wt = j)
∑
i∈Ωw

αt−1,y(i) p(wt = j|wt−1 = i, yt). (3.7)

TheBackward

algorithm

backward algorithm starts from the end of the sequences X and y such that the back-

ward variable is given by

βt−1,y(j) = p(Xt..T |wt−1 = j,yt..T ) (3.8)

=
∑
i∈Ωw

p(Xt..T ,wt = i|wt−1 = j,yt..T ) (3.9)

=
∑
i∈Ωw

p(X(t+1)..T |wt = i,y(t+1)..T )·

p(xt|wt = i)p(wt = i|wt−1 = j, yt) (3.10)

=
∑
i∈Ωw

βt,y(i)p(xt|wt = i)p(wt = i|wt−1 = j, yt). (3.11)

The initial and terminal values of the forward and backward variables are given by

α1,y(j) = p(x1|w1 = j)p(w1 = j|y1) (3.12)

βT,y(j) = 1 (3.13)

β0,y(j) =
∑
i∈Ωw

β1,y(j)p(x1|w1 = i)p(w1 = i|y1). (3.14)

Once the forward and backward variables of the sequences y and X are determined, the re-

sponsibility and transition probability can be computed. These quantities are later required
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for parameter learning. The responsibility and transition probability are given by

γt,y(j) =
αt,y(j)βt,y(j)

p(X)
(3.15)

ξt−1,t,y(i, j) =
αt−1,y(i)p(xt|wt = j)p(wt = j|wt−1 = i, yt)βt,y(j)

p(X)
. (3.16)

The probability of X given y is derived by the summing up αT,y(i) over all hidden states i:

p(X|y) =
∑
i∈Ωw

αT,y(i). (3.17)

Analogously to the HMM, the probabilities of the forward and backward variables can take

values close to the machine precision. Therefore, it is again advisable to use scaling factors.

3.2.2. Parameter Learning

The EM-algorithmM-step of the EM algorithm maximizes the expectation of the posterior distribution

over the hidden states with the help of the complete data log-likelihood given by

Q(λ, λold) =

N∑
n=1

∑
w∈ΩT

w

p(w|X(n),y(n) p λold) ln p(X(n),w|y(n) p λ). (3.18)

where the sequences X(n) and y(n) are observation and label sequences of the dataset

T = {(X(n),y(n))}Nn=1. Substituting the responsibility and transition probability of the

E-step into the complete data log-likelihood and expanding the equation results in

Q(λ, λold) =

N∑
n=1

∑
w∈ΩT

w

p(w|X(n),y(n) p λold)·

ln

(
p(w1 = w1|y1 = y

(n)
1 p π)·

T∏
t=2

p(wt = wt|wt−1 = wt−1, y1 = y
(n)
1 p A)·

T∏
t=1

p(xt = x
(n)
t |wt = wt p θ)

)
(3.19)
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=

N∑
n=1

∑
w1∈Ωw

γ
(n)

1,y(n)(w1) lnπ
w1,y

(n)
1

+

T∑
t=2

∑
wt−1∈Ωw

∑
wt∈Ωw

ξ
(n)

t−1,t,y(n)(wt−1, wt) ln a
wt−1,wt,y

(n)
t

+

T∑
t=1

∑
wt∈Ωw

γ
(n)

t,y(n)(wt) ln p(x
(n)
t |wt = wt p θ) (3.20)

=

N∑
n=1

Q(n)(λ, λold). (3.21)

The target parameter are maximized by taking the corresponding derivatives ofQ(λ, λold).

The outcome is then set equal to zero such that the equation can be rearranged to obtain

the update formula

First, the update formula with respect to the initial state probability π is derived. A

constraint which is weighted by the Lagrange multiplier κ is added in order to assert that

the corresponding probability distribution will sum up to one. Furthermore, it is presumed

without loss of generalization that the first element of the outer causal sequence y(n)
1 is in

state y1. The following equation is obtained:

∂Q(λ, λold)(n)

∂πw1,y1

=
∂

∂πw1,y1

∑
j∈Ωw

γ
(n)

1,y(n)(j) lnπwt,y1 − κ
( ∑
j∈Ωw

πj,y1 − 1

)
= 0 (3.22)

⇔
γ

(n)

1,y(n)(w1)

πw1,y1

− κ = 0 (3.23)

⇔ γ
(n)

1,y(n)(w1)− πw1,y1κ = 0. (3.24)

The Lagrangian multiplier κ is determined by adding a sum over the hidden states and

solving the equation:

⇒
∑
j∈Ωw

γ
(n)

1,y(n)(j)− πj,y1κ = 0 (3.25)

⇔
∑
j∈Ωw

κπj,y1 =
∑
j∈Ωw

γ
(n)

1,y(n)(j) (3.26)

⇔ κ =
∑
j∈Ωw

γ
(n)

1,y(n)(j). (3.27)

The outcome is substituted back into Equation 3.24 which results in

⇒
γ

(n)

1,y(n)(w1)

πw1,y1

− κ = 0 (3.28)

⇔
γ

(n)

1,y(n)(w1)

πw1,y1

−
∑
j∈Ωw

γ
(n)

1,y(n)(j) = 0 (3.29)
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⇔ πw1,y1 =
γ

(n)

1,y(n)(w1)∑
j∈Ωw

γ
(n)

1,y(n)(j)
. (3.30)

The next step is to extend the equation to the complete dataset. An additional modification

is required since the first outer cause state might not be the one of interest. Therefore, the

function δ
y
(n)
1 =y1

is used to select the target state. The final update formula is given by

πw1,y1 =

∑N
n=1 δy(n)

1 =y1
γ

(n)

1,y(n)(w1)∑N
n=1

∑
j∈Ωw

δ
y
(n)
1 =y1

γ
(n)

1,y(n)(j)
. (3.31)

In the next step, the update formula for the element av,w,y of the state transition matrix

A is derived. To begin with, it is assumed that the sequence y(n) is composed exclusively of

the target state y. In order to derive the update formula, the relevant terms of Equation 3.20

are kept and a regularization term to ensure that the parameters are correctly normalized

with a Lagrange multiplier κ is added. Hence, the derivate is given by

∂Q(λ, λold)

∂av,w,y
=

∂

∂av,w,y

T∑
t=2

∑
i∈Ωw

∑
j∈Ωw

ξ
(n)

t−1,t,y(n)(i, j) ln ai,j,y−

∑
i∈Ωw

κ

( ∑
j∈Ωw

ai,j,y − 1

)
= 0 (3.32)

⇔
T∑
t=2

ξ
(n)

t−1,t,y(n)(v, w)

av,w,y
− κ = 0 (3.33)

⇔
T∑
t=2

ξ
(n)

t−1,t,y(n)(v, w)− av,w,yκ = 0. (3.34)

The Lagrange multiplier κ is determined by introducing a sum over the hidden states with

respect to the random variable wt. Rearranging the expression to obtain the Lagrangian

multiplier results in

T∑
t=2

∑
j∈Ωw

ξ
(n)

t−1,t,y(n)(v, j)− av,j,yκ =0 (3.35)

⇔
T∑
t=2

∑
j∈Ωw

av,j,yκ =

T∑
t=2

∑
j∈Ωw

ξ
(n)

t−1,t,y(n)(v, j) (3.36)

⇔ κ =

T∑
t=2

∑
j∈Ωw

ξ
(n)

t−1,t,y(n)(v, j). (3.37)

Substituting the expression back into Equation 3.34 yields in

⇒
T∑
t=2

ξ
(n)

t,y(n)(v, w)

av,w,y
− κ =

T∑
t=2

ξ
(n)

t,y(n)(v, w)

av,w,y
−
∑
j∈Ωw

ξ
(n)

t,y(n)(v, j) = 0 (3.38)
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⇔ av,w,y =

∑T
t=2 ξt,y(n)(v, w)∑T

t=2

∑
j∈Ωw

ξ
(n)

t,y(n)(v, j)
. (3.39)

The final update formula is then obtained by extending the equation to the complete dataset

and taking into account that yt might have different target states than y:

av,w,y =

∑N
n=1

∑T
t=2 δy(n)

t =y
ξ

(n)

t,y(n)(v, w)∑N
n=1

∑T
t=2

∑
j∈Ωw δy(n)

t =y
ξ

(n)

t,y(n)(v, j)
. (3.40)

The update formula with respect to the parameters of the observation probability are

identical to the ones of the classic HMM and, hence, can be applied without any changes:

∂Q(λ, λold)

∂θi
=

∂

∂θi

T∑
t=1

∑
j∈wt

γ
(n)
t,y (j) ln p(xt|wt = j p θ) = 0. (3.41)

Therefore, the reader is referred to the Section 2.5.3 and 2.5.4.

Generally, the CHMM needs to be trained with an increased numbers of hidden states,

because, conversely to the classic HMM, the CHMM needs to cover data of all classes. A

qualified initialization of the observation parameters can be performed by first partitioning

the data using the labels of the causal sequence and then carrying out a clustering according

to the number of required hidden states. If the causal sequences are composed exclusively of

one target label, a pre-training with HMM for each label can be performed. The resulting

maximized parameters ãy=y, Ãy=y and θ̃y=y can then be inserted into the initial CHMM.

There are two ways to handle the resulting unassigned elements in the CHMM transition

matrix which yield in two approaches: the restricted CHMM and the unrestricted CHMM.

The transition matrix A of the restricted CHMM is shown in Figure 3.2. The undetermined

values of the matrix are set to zero such that the expressiveness of the CHMM is reduced to

the setting of a classic HMM. However, in this setting the classification is performed using

the probability distribution p(y = y|X = X) and not the model likelihood. In case of the

unrestricted CHMM, a subset or all unassigned parameters of the transition matrix are set

Figure 3.2. Initialization of the restricted CHMM
transition matrix using pre-trained HMM. The re-
stricted CHMM has a sparsely initialized transition matrix.
Provided, that the training label sequences contain only
one sort of label, an HMM is trained for each set of label
sequences. The resulting transition matrices Ãy=y are in-
serted into the transition matrix of the CHMM. Free values
are set to zero.
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to random values. This approach increases the model’s complexity but can also increase

the model expressiveness. Ideally, the training of the unrestricted CHMM is performed

using causal sequences containing multiple labels such that the transitions between labels

are learned.

3.2.3. Late Classifier Fusion Using CHMM

The classification using the HMM is typically performed by individually training one

model for each class and assigning the class by selecting the model which has the highest

likelihood for a given test sequence. However, in some cases it is favorable to train multiple

HMM per class and to perform late fusion. This may be in order to benefit from the

advantages of late fusion, to perform a multimodal classification or to compensate different

sample rates. In the following, late fusion using HMM (HMM-MCS) and late fusion using

CHMM (CHMM-MCS) are presented and compared to each other.

The classification problem to be solved has I classes and sequences obtained from M

modalities. In case of HMM-MCS, one HMM is trained for each class and modality resulting

in a number of I ·M HMM. A class assignment is performed by evaluating the likelihoods

of all models. The likelihoods of each class are multiplied to obtain I combined likelihoods.

The class is assigned to the highest combined likelihood. The CHMM-MCS requires only

one model to be trained for each modality such that M CHMM are obtained. Each CHMM

provides a probability distribution which are regarded as being independent to each other.

Hence, the distributions can be combined by multiplication and a subsequent normalization.

The respective operations should be performed in logarithmic space to avoid numerical

imprecisions.

(a) HMM-MCS (b) CHMM-MCS

Figure 3.3. HMM-MCS and CHMM-MCS late fusion techniques to combine the out-
put of the HMM and the CHMM exemplified using a two-class classification problem
and M feature sets. (a) Fusion architecture using the classic HMM. For each class, all M HMM
outputs are combined independently by multiplying the probabilities derived for each feature. The
final class assignment is obtained by the ratio of the resulting two probabilities. (b) Fusion architec-
ture using the CHMM. The CHMM provides a class distribution for each of the M features. These
distributions can be combined using decision averaging or, as illustrated, the naïve Bayes approach
denoted by the product.
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Figure 3.3 depicts the differences between the HMM-MCS and CHMM-MCS using the

example of a two-class classification problem with M modalities. Figure 3.3a shows the

HMM-MCS in which a model λym is trained for each class and modality. Testing a new

sequence is performed by inferring the likelihoods of all HMM and combining the results of

each modality. The class decision is derived by selecting the class with the highest combined

likelihood or, as shown in the figure, by determining the ratio of the probabilities. The

CHMM-MCS is shown in Figure 3.3b. Since the CHMM provides a probability for a labeled

sequence, only one model has to be trained for each modality. The testing is performed by

determining the probability distributions of all possible label sequences. These probability

distributions are then combined by multiplication. The final assignment to a class is carried

out by choosing the label sequence with the highest combined probability.

3.3. Fuzzy Conditioned Hidden Markov Model

The fuzzy conditioned hidden Markov model (FCHMM) extends the CHMM by replacing

the sequence of discrete outer causes by a sequence of fuzzy outer causes (Glodek et al.,

2014a). For this purpose, the FCHMM is equipped with an additional sequence z of random

variables. The new sequence influences the selection of the discrete causes y. Figure 3.4

depicts the graphical model of the FCHMM. Each state of the expert sequence z encodes an

output which can be provided by an external classifier system. However, since the external

classifier system can theoretically have an infinite number of possible outputs, we choose

z ∈ N such that a definite state can be assigned at each time step. The distribution of

the observations X given the model λ depending on the sequence of outer causes z can be

obtained by marginalizing over all possible causes y:

p(X|z p λ) =
∑

y∈ΩT
y

∑
w∈ΩT

w

p(w1 = w1|y1 p π)·

T∏
t=2

p(wt = wt|wt−1 = wt−1, yt = yt p A)·

T∏
t=1

p(yt = yt|zt p B)p(xt|wt = wt p θ). (3.42)

The distribution p(yt = yt|zt p B) maps an expert state zt to the outer cause yt. The

sequence of expert states z can be represented as a vector of states. However, since each

state zt encodes a probability distribution over the random variable yt, the probability

distribution is directly stored in the matrix B of the size |Ωy| × T . The sequence of expert

z was introduced in order to improve the selection of hidden states. However, the degree

of fuzziness which can for instance be measured by entropy has a considerable impact to

the performance of the FCHMM. An expert sequence in which the fuzzy values are almost
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Figure 3.4. Graphical representa-
tion of the FCHMM. The Markov
chain w is composed of a sequence of
hidden random variables wt. Each hid-
den random variable wt, except the one
of the first time step, depends on its pre-
decessor wt−1. Furthermore, each hid-
den random variable emits an observa-
tion xt. The selection of the hidden
state wt is influenced by the predeces-
sors hidden state wt−1 and by the outer
cause yt. An expert state zt influences
the outer cause yt where each expert
state encodes a unique probability dis-
tribution of yt.
uniformly distributed will most probably lower the performance of the FCHMM. An almost

crisp expert sequence which is labeled inaccurately will let the model converge to wrong

parameters. One reason for this sensitive behavior is that the fuzziness is intensified by

accumulating the values over the sequence. Hence, it is advisable to additionally control or

learn the level of fuzziness, for instance by raising all fuzzy values by the power of p and a

subsequent normalization.

3.3.1. Inference

The Forward

algorithm

forward-backward algorithm of the FCHMM extends the forward-backward algo-

rithm of the CHMM by the new expert sequence z and, thus, additionally marginalizes over

the sequence of outer causes y. The forward variable αt,z(j) for the hidden state j and time

step t is given by

αt,z(j) = p(X1..t,wt = j|z1..t) (3.43)

=
∑

y1..t∈Ωt
y

p(xt|wt = j)p(X1..t−1,wt = j|y1..t)p(y1..t|z1..t) (3.44)

=
∑

y1..t∈Ωt
y

p(xt|wt = j)·

∑
i∈Ωw

p(X1..t−1,wt−1 = i,wt = j|y1..t)p(y1..t|z1..t) (3.45)

=
∑

y1..t−1∈Ωt−1
y

p(xt|wt = j)·

∑
i∈Ωw

p(X1..t−1,wt−1 = i|y1..t−1)p(y1..t−1|z1..t−1)·

∑
k∈Ωy

p(wt = j|wt−1 = i, yt = k)p(yt = k|zt) (3.46)

= p(xt|wt = j)
∑
i∈Ωw

αt−1(i)·

∑
k∈Ωy

p(wt = j|wt−1 = i, yt = k)p(yt = k|zt) (3.47)
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=
∑
k∈Ωy

p(xt|wt = j)·

∑
i∈Ωw

αt−1,z(i)p(wt = j|wt−1 = i, yt = k)p(yt = k|zt) (3.48)

=
∑
k∈Ωy

α̂t,z(j, k). (3.49)

A new variable α̂t,z(j, k) is introduced to keep the notation uncluttered. It auxiliary forward

variable additionally depends on the state k of the causal random variable yt:

α̂t,z(j, k) = p(X1..t,wt = j, yt = k|z1..t) (3.50)

= p(xt|wt = j)
∑
i∈Ωw

αt−1,z(i)p(wt = j|wt−1 = i, yt = k)·

p(yt = k|zt). (3.51)

TheBackward

algorithm

backward variable βt−1,z(j) of the hidden state j and time step t − 1 is analogously

extended:

βt−1,z(j) = p(Xt..T |wt−1 = j, zt..T ) (3.52)

=
∑

yt..T∈ΩT−t+1
y

p(Xt..T |wt−1 = j,yt..T )p(yt..T |zt..T ) (3.53)

=
∑

yt..T∈ΩT−t+1
y

∑
i∈Ωw

p(Xt..T ,wt = i|wt−1 = j,yt..T )p(yt..T |zt..T ) (3.54)

=
∑

yt..T∈ΩT−t
y

∑
i∈Ωw

p(X(t+1)..T |wt = i,y(t+1)..T )·

p(y(t+1)..T |z(t+1)..T )p(xt|wt = i)·∑
k∈Ωy

p(wt = i|wt−1 = j, yt = k)p(yt = k|zt) (3.55)

=
∑
i∈Ωw

βt,z(i)p(xt|wt = i)·

∑
k∈Ωy

p(wt = i|wt−1 = j, yt = k)p(yt = k|zt) (3.56)

=
∑
k∈Ωy

β̂t−1,z(j, k)p(yt = k|zt). (3.57)

Again an auxiliary variable is introduced to keep the notation uncluttered. The new variable

additionally depends on the state k of the causal random variable yt:

β̂t−1,z(j, k) = p(Xt..T |wt−1 = j, yt = k) (3.58)

=
∑
i∈Ωw

βt,z(i)p(xt|wt = i)p(wt = i|wt−1 = j, yt = k). (3.59)

The initial and terminal values of the forward and backward recursions are given by
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α̂1,z(j, k) =
∑
l∈Ωz

p(x1|w1 = j)p(w1 = j|y1 = k)p(y1 = k|z1 = z1) (3.60)

β̂T,z(j, k) = 1 (3.61)

βT,z(j) = 1 (3.62)

β̂0,z(j, k) =
∑
i∈Ωw

β1,z(j)p(x1|w1 = i)p(w1 = i|y1 = k). (3.63)

The responsibilities, i.e. the state probabilities of being in the hidden state j at time step

t given the complete sequences X and z, can be determined using the forward and backward

variables:

γt,z(j) = p(wt = j|X, z) (3.64)

=
αt,z(j)βt,z(j)

p(X)
. (3.65)

The transition probability of passing over from state i to state j at the time steps t− 1 to t

given the complete sequences X and z can be evaluated by

ξt−1,t,z(i, j) = p(wt−1 = i,wt = j|X, z) (3.66)

=
p(X|wt−1 = i,wt = j, z)p(wt−1 = i,wt = j)

p(X)
(3.67)

=
1

p(X)
p(X1..t−1|wt−1 = i, z1..t−1)p(xt|wt = j)·

p(Xt+1..T |wt = j, zt+1..T )p(wt = j|wt−1 = i)p(wt−1 = i) (3.68)

=
1

p(X)
αt−1,z(i)p(xt|wt = j)·( ∑

k∈Ωy

p(wt = j|wt−1 = i, yt = k)p(yt = k|zt)
)
βt,z(j). (3.69)

The responsibility γt,z(j) can be used to derive the parameters θj of the observations emit-

ted by hidden state j. However, the transition probability ξt−1,t,z(i, j) cannot be utilized in

this form, because the transition matrix additionally depends on the causal output yt = k.

Therefore, two additional probabilities are needed. The extended state probability given by

γ̂t,z(j, k) = p(wt = j, yt = k|X, z) (3.70)

=
p(X|wt = j, yt = k, z)p(wt = j, yt = k)

p(X)
(3.71)

=
p(X1..t,wt = j, yt = k|z1..t)p(Xt+1..T |wt = j, zt+1..T )

p(X)
(3.72)

=
α̂t,z(j, k)βt,z(j)

p(X)
(3.73)
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and the extended transition probability given by

ξ̂t−1,t,z(i, j, k) = p(wt−1 = i,wt = j, yt = k|X, z) (3.74)

=
p(X|wt−1 = i,wt = j, yt = k, z)p(wt−1 = i,wt = j, yt = k)

p(X)
(3.75)

=
1

p(X)
p(X1..t−1|wt−1 = i, z1..t−1)p(xt|wt = j)·

p(wt = j|wt−1 = i, yt = k)p(wt−1 = i, yt = k)·

p(Xt+1..T |wt = j, zt+1..T ) (3.76)

=
1

p(X)
αt−1,z(i)p(xt|wt = j)·

p(wt = j|wt−1 = i, yt = k)
( K∑
l=1

p(yt = k|zt)
)
βt,z(j). (3.77)

The extended responsibility γ̂t,z(j, k) together with the former transition probability ξt−1,t,z(i, j)

can be utilized to maximize the parameters in case a independence assumption is made on the

transition matrix, i.e. p(wt= i|wt−1 =j, yt=k,A) = p(wt= i|wt−1 =j,A1)· p(wt= i|yt=k,A2).

In the original setting, the three-dimensional transition matrix can be derived using the ex-

tended transition probability ξ̂t−1,t,z(i, j, k).

The likelihood of an observation sequence X̂ given a sequence of experts z is given by

p(X̂|z) =
∑
i∈Ωw

αT,z(i). (3.78)

The exact inference to obtain the distribution over the random variable y and w can

be computed using γ̂t,z(j, k) by providing a prior of uniform distributed causal states. The

probability distribution of the random variable y is then obtained by marginalizing over the

hidden states.

3.3.2. Parameter Learning

ParameterEM-algorithm learning is realized using again the EM-algorithm. The expected complete

data log-likelihood of the FCHMM is defined by

Q(λ, λold) =

N∑
n=1

∑
w∈ΩT

w

∑
y∈ΩT

y

p(w,y|X, z p λold) ln p(X,w,y|z p λ). (3.79)

In contrast to the parameter learning of the CHMM, an additional marginalization over

the causal states is required. Substituting the model parameters and the responsibilities
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and transition probabilities results in:

Q(λ, λold) =

N∑
n=1

∑
w∈ΩT

w

∑
y∈ΩT

y

p(w,y|X, z p λold)

ln

(
p(w1 = w1|y1 = y1 p π)p(y1 = y1|z1 p B)·

T∏
t=2

p(wt = wt|wt−1 = wt−1, y1 = y1,A)p(yt = yt|zt p B)·

T∏
t=1

p(xt = xt|wt = wt p θ)

)
(3.80)

=

N∑
n=1

∑
w1∈Ωw

∑
y1∈Ωy

γ̂1,z(w1, y1) lnπw1,y1p(y1 = y1|z1 p B)+

T∑
t=2

∑
wt−1∈Ωw

∑
wt∈Ωw

∑
yt∈Ωy

ξ̂t−1,t,z(wt−1, wt, yt)·

ln awt−1,wt,ytp(yt = yt|zt p B)+

T∑
t=1

∑
wt∈Ωw

γt,z(wt) ln p(xt|wt = wt p θ). (3.81)

First, the update formula of the parameter πi,y1 which models the initial hidden state

probability will be derived. Adding the constraint with the Lagrange multiplier κ and taking

the derivative with respect to the target parameter, as well as setting the outcome equal to

zero leads to

∂Q(λ, λold)

∂πw1,y1

=
∂

∂πw1,y1

∑
j∈Ωw

∑
k∈Ωy

γ̂1,z(n)(j, k) lnπj,kbk,z(n)
1

−

∑
k∈Ωy

κ

( ∑
j∈Ωw

πj,k − 1

)
= 0 (3.82)

=
γ̂1,z(w1, y1)

πw1,y1by1,z(n)
1

− κ = 0 (3.83)

= γ̂1,z(n)(w1, y1)− b
y1,z

(n)
1

πw1,y1κ = 0. (3.84)

Expanding the expression and rearranging the equation to find the solution for the Lagrange

multiplier κ results in:

⇒
∑
j∈Ωw

γ̂1,z(n)(j, y1)− b
y1,z

(n)
1

πj,y1κ = 0 (3.85)

⇔ κ
∑
j∈Ωw

b
y1,z

(n)
1

πj,y1 =
∑
j∈Ωw

γ̂1,z(n)(j, y1) (3.86)

⇔ κ =

∑
j∈Ωw γ̂1,z(n)(j, y1)

b
y1,z

(n)
1

. (3.87)

The outcome is substituted back into Equation 3.83 which is then rearranged to obtain
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the target parameter:

γ̂1,z(n)(w1, y1)

πw1,y1by1,z(n)
1

− κ = 0 (3.88)

⇔
γ̂1,z(n)(w1, y1)

πw1,y1by1,z(n)
1

−
∑
j∈Ωw

γ̂1,z(n)(j, y1)

b
y1,z

(n)
1

= 0 (3.89)

⇔
πw1,y1by1,z(n)

1

γ̂1,z(n)(w1, y1)
=

b
y1,z

(n)
1∑

j∈Ωw
γ̂1,z(n)(j, y1)

(3.90)

⇔ πw1,y1 =
γ̂1,z(n)(w1, y1)∑
j∈Ωw γ̂1,z(n)(j, y1)

. (3.91)

Considering the complete dataset, the update formula of the initial parameter is given by

πw1,y1 =

∑N
n=1 δy(n)

1 =y1
γ̂1,z(n)(w1, y1)∑N

n=1

∑
j∈Ωw δy(n)

1 =y1
γ̂1,z(n)(j, y1)

. (3.92)

Next, the update formula for the state transition probability aijk will be derived. In

the first step, a regularization constraint with a corresponding Lagrange multiplier κ is

added. Subsequently, the derivative of the formula given the target parameter is taken. The

outcome is set equal zero and rearranged:

∂Q(λ, λold)

∂av,w,y
=

∂

∂av,w,y

T∑
t=2

∑
i∈Ωw

∑
j∈Ωw

∑
k∈Ωy

ξ̂t−1,t,z(n)(i, j, k) ln ai,j,kbk,z(n)
t
−

∑
k∈Ωy

∑
i∈Ωw

κ

( ∑
j∈Ωw

aijk − 1

)
= 0 (3.93)

⇔
T∑
t=2

ξ̂t−1,t,z(v, w, y)

av,w,yby,z(n)
t

− κ = 0 (3.94)

⇔
T∑
t=2

ξ̂t−1,t,z(n)(v, w, y)− av,w,yby,z(n)
t
κ = 0. (3.95)

The equation is then extended by a sum over all hidden states in order to determine the

Lagrange multiplier κ to obtain:

T∑
t=2

∑
j∈Ωw

ξ̂t−1,t,z(n)(v, j, y)− av,j,yby,z(n)
t
κ =0 (3.96)

⇔
T∑
t=2

b
y,z

(n)
t

∑
j∈Ωw

av,j,yκ =

T∑
t=2

∑
j∈Ωw

ξ̂t−1,t,z(n)(v, j, y) (3.97)

⇔ κ =

T∑
t=2

∑
j∈Ωw

ξ̂t−1,t,z(n)(v, j, y)

b
y,z

(n)
t

. (3.98)

Substituting the outcome back into Equation 3.94 and further rearranging yields in the

update formula:
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⇒
T∑
t=2

ξ̂t−1,t,z(n)(v, w, y)

av,w,ybyt,z(n)
t

− κ = 0 (3.99)

⇔ 0 =

T∑
t=2

ξ̂t−1,t,z(n)(v, w, y)

av,w,yby,z(n)
t

−

∑
j∈Ωw

ξ̂t−1,t,z(n)(v, j, y)

b
y,z

(n)
t

(3.100)

⇔ av,w,y =

∑T
t=2 ξ̂t−1,t,z(n)(v, w, y)∑T

t=2

∑
j∈Ωw

ξ̂t−1,t,z(n)(v, j, y)
. (3.101)

The final update formula on the complete dataset is then given by

av,w,y =

∑N
n=1

∑T
t=2 δy(n)

t =y
ξ̂t−1,t,z(n)(v, w, y)∑N

n=1

∑T
t=2

∑
j∈Ωw δy(n)

t =y
ξ̂t−1,t,z(n)(v, j, y)

. (3.102)

Analogously to the HMM and CHMM, an observation xt depends only on the corre-

sponding hidden stat wt. Therefore, all observation models presented for the HMM can also

be applied to the FCHMM without any modifications.

3.4. HMM Using Graph Probability Densities

The GPD introduced in the previous chapter can be used to fit densities to small variable-

sized labeled and weighted graphs. This section describes how GPD can be integrated into

an HMM (Glodek et al., 2013d). The resulting HMM using GPD (HMM-GPD) cannot only

process sequential patterns but also observations of variable length.

We begin with defining a graph observation xt = {(̊xmt, x̃mt)}Mm=1 for a time step t. The

discrete element x̊mt encodes an edge which, by definition, can occur only once in a time

step. The continuous vector x̃mt contains the weights assigned to the edge and its vertices.

Each hidden state i is associated with a GPD model θi:

p(xt|w = i p θ) =

M∏
m=1

p(̊xmt, x̃mt|w = i p θ) (3.103)

=

M∏
m=1

K∑
k=1

νi̊xmtkN (x̃mt p µi̊xmk,Σix̊mtk). (3.104)

To update the parameters of the GPD in the M-step, the GPD has to be placed into

the complete-data log-likelihood of the HMM given by Equation 2.81. The parameters are

maximized by taking the derivative and the setting the expression equal to zero:

∂Q(n)(λ, λold)

∂θi
=

∂

∂θi

N∑
n=1

T∑
t=1

∑
j∈wt

γ
(n)
t (j) ln

M∏
m=1

p(̊x
(n)
mt , x̃

(n)
mt |w = j p θ) (3.105)
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=

N∑
n=1

T∑
t=1

γ
(n)
t (i)

M∑
m=1

∂

∂θi
ln p(̊x

(n)
mt , x̃

(n)
mt |w = i p θ) = 0. (3.106)

The final update formulas are derived analogously as in Section 2.4. Hence, the update

formula for the mixing variables is given by

νi̊xl =

∑N
n=1

∑T
t=1

∑M
m=1 γ

(n)
t (i)δ

x̊
(n)
mt =x̊

γ̃
(n)
t (i, x̊, l)νi̊xl∑N

n=1

∑T
t=1

∑M
m=1

∑K
k=1 γ

(n)
t (i)δ

x̊
(n)
mt =x̊

γ̃
(n)
t (i, x̊, k)νix̊k

(3.107)

and the updates formula for the means and the covariance matrices are given by

µi̊xl =

N∑
n=1

T∑
t=1

M∑
m=1

γ
(n)
t (i)δ

x̊
(n)
tm =x̊

γ̃
(n)
t (i, x̊, l)x̃

(n)
tm

T∑
t=1

N∑
n=1

M∑
m=1

γ
(n)
t (i)δ

x̊
(n)
tm =x̊

γ̃
(n)
t (i, l, x̊)

(3.108)

and

Σi̊xl =

N∑
n=1

T∑
t=1

M∑
m=1

γ
(n)
t (i)δ

x̊
(n)
tm =x̊̃

γ
(n)
t (i, x̊, l)(x̃

(n)
tm− µix̊l)(x̃

(n)
tm− µix̊l)

T

T∑
t=1

N∑
n=1

M∑
m=1

γ
(n)
t (i)δ

x̊
(n)
tm =x̊

γ̃
(n)
t (i, l, x̊)

. (3.109)

Similar to the GPD a sufficient number of samples for each edge and hidden state is required

for training in order to set up sufficient statistics. This requirement can be reduced with

the help of CHMM which allows the sharing of hidden states.

3.5. Markov Fusion Network

Real-world applications using pattern recognition have demanding requirements such as

real-time processing, robustness against noise and failure safety. These requirements are

often addressed by making use of late fusion MCS. However, there are only a few late fusion

approaches which explicitly address these requirements in a unified way.

Pattern recognition algorithms must provide their outputs in time to allow succeeding

algorithms to process their predictions. Therefore, all parts of the pattern recognition archi-

tecture need to be capable of real-time processing. Furthermore, the classifier architecture

has to be as robust as possible to noisy inputs. Mostly because the sensor inputs are derived

under less restricted conditions. For instance, there might be interfering signals in the audio

channel or changing illumination settings in the video channel. In addition, the system must

be able to handle sensor failures which may not only be caused by a sensor malfunction,

but by the absence of a sensor signal, e.g. silence instead of an utterance or a person who

has turned away instead of facing the camera. The issue of robustness is usually addressed

by combining multiple modalities using late fusion. However, real-world scenarios can also
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Figure 3.5. Graphical representa-
tion of the MFN. The sequence of
combined estimates yt is influenced by
the available decisions Xmt of the source
m and t ∈ Lm and adjacent combined
estimates yt−1 and yt+1.

bring the advantage to perform an additional temporal fusion. In multimodal and temporal

fusion, the main challenge is to deal with contradicting cues from different sources (Schels

et al., 2012b; Palm and Glodek, 2013).

The Markov fusion network (MFN) is a novel late fusion algorithm which addresses these

requirements (Glodek et al., 2014c; Siegert et al., 2013; Schels et al., 2013b; Krell et al.,

2012; Glodek et al., 2012c,b). The MFN combines uncertain decisions over time provided by

multiple classifiers. The classifier decisions are temporally connected by a Markov chain in

order to smooth out outliers and to reconstruct missing decisions. The output is given by a

combined decision stream which is calculated based on multiple input decision streams, e.g.

from different modalities. The MFN is controlled by parameters which weight the different

decision streams and the similarity of decisions over time. Furthermore, the approach allows

the use of multinomial input distributions. The combined output decision stream of the

MFN is conform with the axioms of probability theory.

The input to the MFN is given by a number of M × T probability distributions over I

classes where M denotes the number of classifiers providing decisions and T is the number

of time steps. In other words, for each time step a classifier provides a class distribution

in every modality. The probability distribution of a classifier m = 1, . . . ,M at time step

t ∈ Lm is a vector xmt ∈ [0, 1]I of which the elements sum up to one. The set Lm contains

the time steps in which probability distributions of the classifier m are available. A proba-

bility distribution may not be available in case of a sensor failure. Assuming without loss of

generality that the probability distributions are available for all time steps. Then the MFN

will integrate the classifier predictions Xm ∈ [0, 1]I×T to a combined estimate Y ∈ [0, 1]I×T

by making use of two main objectives. The first objective requires that in each time step the

estimated probability distribution is similar to the provided classifier decisions. The objec-

tive is realized by setting up a dependency between the estimates and the classifier decisions.

The second objective is based on the assumption that the estimated probability distribu-

tions have similarities in the temporal proximity. The temporal fusion is implemented by

connecting the estimates of each time step using a Markov chain. The MFN reconstructs

regions which have no supporting classifier decisions by propagating information along the

Markov chain.
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Figure 3.5 depicts the graphical model of an exemplary MFN which integrates two se-

quences of classifier decisions X1 and X2 to a combined estimate Y. For each time step,

the classifier decisions are connected to the corresponding estimate. Whenever a class dis-

tribution is not available, the input node and the connecting link is omitted. The estimates

themselves are temporally connected by the Markov chain.

The MFN is defined by three potential functions, namely the data potential Ψ, the

smoothness potential Φ and the distribution potential Ξ. TheData

potential

data potential Ψ is a sum

over Ψm enforcing the estimates yt to be similar to the classifier distributions xmt. The

data potential is given by

Ψ =

M∑
m

Ψm =

M∑
m

I∑
i=1

∑
t∈Lm

kmt(xmit − yit)2 (3.110)

where K ∈ RM×T≥0 weights the reliability of the classifier m at time step t. TheSmoothness

potential

second

potential Φ models the Markov chain which enforces lateral smoothness. The smoothness

potential is given by

Φ =

T∑
t=1

I∑
i=1

∑
s∈N(t)

wmin(t,s)(yit − yis)2 (3.111)

where w ∈ RT−1
≥0 weights the differences between two adjacent nodes in the chain, or in

other words, the parameter controls the strength of smoothing over time. The set N(t)

contains indices of the adjacent nodes for a given time step t, e.g. N(t) := {t−1, t+1}. TheDistributional

potential third potential Ξ asserts that the resulting estimate satisfies the probability axioms. The

distributional potential is given by

Ξ = u ·
T∑
t=1

((
1−

I∑
i=1

yit
)2

+

I∑
i=1

δ[0>yit] · y2
it

)
(3.112)

where u weights the relevance of the potential and δ0>yit equals one in case the condi-

tion 0 > yit holds true and zero otherwise. For each time step, the potential enforces the

estimate to sum up to one and penalizes negative values. It is possible to omit the distri-

butional potential in case a crisp two-class classification problem is estimated using a scalar

stream.

The final probability density function of the estimate Y and the classifier decisions Xm

is given by

p(Y,X1, . . . ,XM ) =
1

Z
exp

(
− 1

2

(
Ψ + Φ + Ξ

))
. (3.113)

However, it is computational infeasible to determine the actual probability density because

the partition function has to be computed by sampling over the complete state space. For-

tunately, it is sufficient to find the mode of the density function such that the most likely
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estimate Y can be derived with only marginal computational effort.

To find the most likely sequence of Y for a given set of parameters, we make use of an it-

erative gradient descent algorithm. Each iteration of the gradient descent algorithm requires

only O(T ·I ·M), see Algorithm A.2. However, in large regions of missing class distributions

the lateral similarity might only be propagated slowly. In these cases, it is beneficial to

choose the initial values of Y carefully. A suitable initialization can be performed by taking

the mean of the available probability masses for each time step and a linear interpolation in

regions in which no distributions are available. A threshold which is based on the change of

the estimate between two consecutive iteration steps can be used as a stopping criterion.

The MFN can be utilized in an offline processing mode in which a complete recording

of a fixed length is computed at once. Alternatively, the MFN can be applied only to the

most recent data utilizing a sliding window. In the following, we refer to this approach as

the online processing mode.

Three artificially generated show cases are presented in order to demonstrate the effect

of the parameters to the algorithm. Figure 3.6a depicts the influence of the parameter w

which enforces the similarity over time. The orange dots represent a two-class distribution

provided by a classifier (only one class of the probability distribution is shown), whereas the

gray line is assumed to be the ground truth which shows a sudden change at the 50th frame

and is only marginally covered by the input data. The dashed line shows the MFN estimate

using constant values for the parameter w which offers a close fit to the orange dots (kt1 = 2

for t = 1 . . . T and wt = 128 for t = 1 . . . T − 1). In case additional knowledge about the

class change is available, it is possible to weaken the similarity by a sudden decrease of the

parameter w. The solid black line is based on the same parameter configuration with the

exception of time step t = 49 in which we set w49 = 0.5. The time series of the parameter

w is shown in the lower part of the figure. The estimate based on the alternative setting is

making a steep step downwards in order to minimize the energy function. Obviously, this

estimate is closer to the assumed ground truth function.

The second example is shown in Figure 3.6b and demonstrates the control of the estimate

using the data parameter k. Again, the gray line represents the ground truth which is in

this example given by a linear decay. The input distributions (orange dots) are locally

distorted and, again, only one class of the probability distribution is depicted. The level of

distortion increases depending on the distance to the ground truth function. The dashed

black line shows the estimate using the configuration kt1 = 2 for t = 1 . . . T and wt = 128

for t = 1 . . . T − 1. Hence, all classifier decisions effect the outcome with the same strength.

In the given artificial setting, it is self-evident to derive classifier confidence based on the

standard deviation. For this purpose, a sliding window of ten frames is utilized to create a

dynamic measure which weights the input decisions using the data parameter k. The solid
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Figure 3.6. MFN show cases demonstrating the influence of different potential pa-
rameters and explaining the online and offline processing modes. (a) Influence of the
smoothness parameter w to the estimated decisions utilizing noisy classifier decisions as input to
the MFN. (b) Influence of the dynamic weighting of the parameter ktm to the estimated decisions
utilizing noisy classifier decisions as input to the MFN. (c) Online and offline proceesing modes
using the MFN. In online processing mode, a window is shifted over the stream of classifier deci-
sions. The MFN is applied in each window. In offline processing mode, the MFN is applied to the
complete sequence at once. For a detailed description please refer to the text.

black line shows the estimate using the dynamic weighting of k as shown in the lower part

of the figure. In regions of low variances the parameter kt1 takes values close to 2, whereas

in regions of heavily scattered input decisions the parameter kt1 gets close to 1. The plot

shows that the output of the MFN using a dynamical weighting is clearly less influenced

78



3.5 Markov Fusion Network

by outliers. The differences between the online and offline processing modes are explained

in Figure 3.6c. The dashed curve shows the estimate of the MFN applied to the complete

sequence at once, i.e. offline processing mode. The solid curve shows the online processing

mode which is performed by determining the estimate using a sliding window of 15 frames,

as indicated by the filled light blue square. For each frame, the MFN is fitted to the decisions

covered by the respective window using the initialization of the preceding window. If a slight

delay is in accordance with the specification of the application, it is advisable to refrain from

the estimate of the last time step as the final result since an estimated value being placed in

the middle of the window is less sensitive to outliers. In the figure we utilized the estimate

at frame number ten within the window which is indicated by the vertical blue line.

The MFN offers a large set of advantageous properties: (1) It models the temporal rela-

tionship between probabilistic classifier decisions; (2) it combines multiple classifier decisions

from different modalities or views and is able to weight them dynamically; (3) it handles

missing classifier decisions, e.g. due to sensor failures; (4) the estimate follows the probability

axioms; and (5) it can easily be deployed in real-time scenarios.

3.5.1. Parameter Learning

This section presents an MFN learning procedure which can be used to derive the opti-

mal assignments of the data and smoothness potential parameters based on a training set

T = {{X(n)
m }Mm=1,Y

(n)}Nn=1. The learning of the parameters depends on many factors. One

important factor is the share of missing class decisions in each individual input decision

stream. Furthermore, the task is complicated by the fact that there are no restrictions

for the parameters such that not a unique but an infinite number of solutions are possi-

ble. In addition that, the data and smoothness potential parameters have a strong mutual

dependency. Therefore, the proposed parameter learning approach is restricted to a data

parameter k ∈ RM with no temporal resolution and a single scalar w for the lateral smooth-

ness. The algorithm is composed of two steps in which the data and smoothness potential

parameters are optimized. First, a regularization term is introduced to enforce k to converge

to a unique solution. This is achieved by constraining the Euclidean length of data potential

parameter vector to one. The resulting objective function to be minimized is thus given by

Ψ =
N∑
n=1

M∑
m=1

1

|L(n)
m |

I∑
i=1

∑
t∈L(n)

m

km(x
(n)
mit − y

(n)
it )2 +

β

2
(

M∑
m=1

k2
m− 1) (3.114)

where β is the Lagrange multiplier of the regularization term. The update formula is ob-

tained by taking the derivative with respect to the parameter km:
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=
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|L(n)
m |

I∑
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∑
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(x
(n)
mit − y

(n)
it )2 + βkm = 0. (3.116)

By normalizing km with 1/|Lm| the focus is set only on the reliability, i.e. how accurate

are the decisions of one classifier with disregard to the number of misses. Rearranging the

formula and expanding it by km and isolating the Lagrange multiplier β results in

⇒ −βkm =

N∑
n=1

1

|L(n)
m |

I∑
i=1

∑
t∈L(n)

m

(x
(n)
mit − y

(n)
it )2 (3.117)

⇔
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βk2
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⇔ β = −
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M∑
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km
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Re-substituting the solution back into Equation 3.116, we obtain the gradient:

∆knew
m =

N∑
n=1

1

|L(n)
m |

I∑
i=1

∑
t∈L(n)

m

(x
(n)
mit − y

(n)
it )2−

km

M∑
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1

|L(n)
m |

I∑
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t∈L(n)

m

(x
(n)
mit − y

(n)
it )2. (3.120)

The optimal parameter k can be determined by iteratively computing the gradient and eval-

uating:

knew
m =km + ε∆knew

m (3.121)

where ε ∈ (0, 1] is the learning rate which approaches zero. The optimal scalar parameter

w of the smoothness potential is determined by minimizing the root mean square (RMS)

error between the ground truth annotation provided by the dataset T and the MFN esti-

mate. The MFN estimate can be computed by choosing a value for w and using the optimal

data parameter k and the input decisions streams of the dataset. Since there is only one

unique solution for the smoothness potential parameter in this setting, the optimization

algorithm starts with two initial values ŵ and w̌ for which the corresponding RMS errors

are determined. The errors are then used to derive the change in direction of the parameter

in which the RMS error decreases. This minimization can be performed using a standard

optimization algorithm.

In summary, the complete algorithm starts by finding the optimal data potential pa-
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rameter k and then finds the best fitting smoothness potential parameter w. If multi-class

problems are addressed, the optimization algorithm has to additionally keep track of finding

a suitable parameter u to ensure that the probability axioms are not violated.

3.5.2. Early, Mid-level and Late Fusion Architectures

The MFN offers a large variety of possible MCS to combine multimodal sequential data.

Three tasks of a temporal multimodal MCS can be identified: multimodal fusion, tempo-

ral fusion and handling of missing classifier decisions. These tasks can be transfered to a

categorization of MCS similar to the one proposed by Dietrich (2004). We decompose the

MCS into three components, namely the F-step (fusion of decisions), the R-step (rejection

of uncertain decisions) and the T-step (temporal integration of decisions). By varying the

F-step, we obtain three architectures FRT, RFT and RTF which can be regarded as early,

mid-level and late-fusion architectures from the perspective of classifier outputs.

Figure 3.7 illustrates these architectures based using the example of affective state recog-

nition in a dialog using audio and video channels. The audio recognition processes human

utterances such that decisions are only fragmentarily available, while the video recognition

operates on facial features requiring that the subject is facing the camera. Furthermore, it

is presumed that the classifiers provide not only probabilistic classifier decisions, but also

their decision confidences.

In case of the early fusion (FRT) architecture, the decisions and the confidences are

combined before the rejection and temporal fusion takes place, as shown in Figure 3.7a. For

each frame, the available decisions and confidences are averaged. In case no decisions are

provided by any classifier, the final frame will be marked as having no decision available. Due

to the early and rather rudimentary fusion, no outstanding performance can be expected

by the FRT architecture. Figure 3.7b illustrates the mid-level (RFT) architecture which

first rejects audio and video decisions separately based on confidences and then performs

simultaneously a multimodal and temporal fusion using the MFN. The late fusion (RTF)

architecture which is shown in Figure 3.7c implements the multimodal fusion after the

temporal integration using an NBC. The temporal fusion in each modality is performed

using the MFN.

3.6. Kalman Filter for Classifier Fusion

The Kalman filter constitutes an alternative approach for temporal multimodal classifier

fusion (Glodek et al., 2013b; Kächele et al., 2014a). The input to the Kalman filter for

classifier fusion is again a temporal sequence X ∈ [0, 1]M×T of M classifier decisions having

the length T where the classifier decisions of each time step sum up to one. However, in
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(a) Early fusion (FRT) architecture. (b) Mid-level fusion (RFT) architecture.

(c) Late fusion (RTF) architecture.

Figure 3.7. Three MFN architectures FRT, RFT and RTF. The architectures are composed
of three steps: the F-step (fusion of decisions), the R-step (rejection of uncertain decisions) and
the T-step (temporal integration of the decisions). (a) The FRT architecture first combines the
modalities, rejects uncertain classifier decisions and then performs the temporal fusion. (b) The
RFT architecture first rejects uncertain classifier decisions and then performs the multimodal and
temporal fusion together. (c) The RTF architecture first rejects uncertain classifier decisions, then
performs the temporal fusion and then performs the late multimodal fusion using an NBC. For a
detailed description please refer to the text.

contrast to the MFN the current design of the Kalman filter for classifier fusion does not

allow a multi-class fusion. The estimate of the proposed Kalman filter models only a one-

dimensional sequence. Therefore, only two-class classification problems can be considered.

However, the Kalman filter takes natively care of missing classifier decisions.

The Kalman filter for classifier fusion has a reduced complexity compared to the tradi-

tional formalization in Section 2.7. The predicted state estimate is given by

µ̂t+1 = a · µt + b · u (3.122)

σ̂t+1 = a · σt · a+ q (3.123)

where the matrices are replaced by scalars. The update and control terms are weighted by a
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and b, respectively. The control u can be used to bias the prediction to a certain value, e.g.

the least informative classifier prediction 0.5 in case of a two-class problem and with pre-

dictions ranging between [0, 1]. Due to the restriction of the state space to the values [0, 1],

the use of popular process models like dead reckoning which propagates the state using the

last state and its first derivation with respect to the time is not used. Consequently, a non-

linear version of the dead reckoning model would be necessary to keep the state restrictions.

The covariance of the prediction is given by σ̂t and obtained by combining the a posteriori

covariance with an additional covariance q which models the process noise. The successive

update step is performed for every classifier m and requires three auxiliary variables, namely

the residuum γ, the innovation variance s and the Kalman gain kt+1:

γ = xmt+1 − h · µ̂t+1 (3.124)

s = h · σ̂t+1 · h+ rm (3.125)

kt+1 = h · σ̂t+1 · s−1 (3.126)

where h is the observation model which maps the predicted quantity to the new estimate

and rm is the corresponding observation noise. These outcomes are then used to obtain the

updated mean and variance:

µt+1 = µ̂t+1 + kt+1 · γ (3.127)

σt+1 = σ̂t − k · s · k. (3.128)

Missing classifier decisions are replaced by a measurement prior x̃mt equals to 0.5 and a cor-

responding observation noise r̃m which is set to a large value compared to the observation

noise.

The final result is given by the vector of updated mean values µ. However, other quan-

tities of the Kalman filter can provide additional information about the fusion process, such

as updated variance which can serve as a confidence measure for the classification. Parame-

ter learning can be performed by an additional backward pass comparable to the backward

algorithm of the HMM and maximizing the parameters (Bishop, 2006, page 642ff.).

3.7. Layered Architectures for Complex Pattern

Recognition

There Basic and

complex

entities

is a significant difference between pattern recognition operating close to the sen-

sors and the abstract knowledge processing in symbolic AI (Dinsmore et al., 1992). Both

paradigms use opposed types of entities with particular properties. This section starts by

working out the details of these entities. In the following, we will call the classes detected
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Table 3.1. Properties of basic and complex entities. Basic and complex entities describe
patterns spanning from reification to abstraction. For a detailed description please refer to the text.

Properties Basic entity Complex entity
Observability Direct Indirect
Appearance Similar Variable
Context Isolated Relational
Temporal granularity Small Large
Divisibility Elementary Compiled
Processing Sub-symbolic Symbolic
Model origin Data-driven Human-generated

by pattern recognition the basic entities, and the relations modeled in symbolic AI the com-

plex entities. A detailed list of properties describing these entities is provided in Table 3.1.

The two entities can be distinguished by the properties: observability, appearance, context,

temporal granularity, divisibility, processing and model origin.

The detection of basic entities is usually based on features which are extracted directly

from sensor data. Hence, basic entities are regarded as being directly observable, whereas

complex entities are only indirectly accessible with the help of the symbolic AI rules.

Basic entities are learned from observations given by a limited-sized dataset which covers

all possible variations of the entity’s appearance. Patterns having to many variations and

which are further insufficiently covered by observations cannot be appropriately represented

by statistical learning approaches. This reflects the fact that patterns of a basic entity

are characterized by similar appearances. Opposed to that complex entities are defined by

relationships on an abstract level. The reifications of a complex entity generally have a large

variety of appearances (Glodek et al., 2014a).

As already mentioned, complex entities are defined by their relational rules. Usually these

rules have a temporal or spatial nature which embeds the complex entities into a context,

e.g. a temporal order of activities or a spatial linkage to other entities in the proximity.

Basic entities on the other hand focus on patterns which are rather isolated, e.g. limited to

a region of interest or a closed temporal window comprising only the target pattern.

Since basic entities usually disregard the context, they are typically characterized by a

short-term, virtually static, perception span. Complex entities on the other hand usually

have a temporal expansion, because state changes which are essential in symbolic AI require

time to be executed. Hence, complex entities have a larger temporal granularity than basic

entities (Oliver et al., 2004).

Complex entities can be compiled of basic entities by making use of the temporal and

spatial relationships. Basic entity can be regarded as being elementary. An isolated object

without any context provides only a minimal gain of information. However, linking basic

entities to each other using relational rules can increase the value of information significantly.

Therefore, basic entities (sub-patterns) can be used to compile complex entities (Glodek
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et al., 2011b, 2013a).

The next property distinguishes complex entities from basic entities by their way of

processing. Basic entities are statistically learned from data and, therefore, described sub-

symbolically. As a result, it is difficult for a human to put in words what constitutes a

basic entity. In contrast to that, complex entities are described by a set of symbolic rules

which enables humans to reproduce the decision making leading to a complex entity. It

is important to emphasize that the terms symbolic and sub-symbolic do not relate to the

representation but to the way of processing.

The last property is the model origin which is closely linked to the processing of the

entities. Basic entities are derived using data-driven approaches. That means that they are

statistically learned by fitting model parameters to a given dataset. Complex entities on

the other side describe complex relationships in the real world such that the corresponding

representations usually need to be generated by human.

The goal of this work is to bridge the gap between these two entities. This can be achieved

by bringing both paradigms closer together such that they meet each other halfway. The

classifiers have to detect basic entities which are useful for being processed by the symbolic

AI, while the symbolic AI has to incorporate the uncertainty resulting from statistical pattern

recognition.

3.7.1. Unidirectional Layered Architecture

The unidirectional layered architecture (ULA) extends the LHMM presented in Sec-

tion 2.10 in multiple ways (Glodek et al., 2014a, 2013a, 2012a,d, 2011b,a).

In the ULA, the stream of discrete class assignments in a layer is replaced by stream

of distributions over classes in order to increase the amount of information passed to the

next layer. Figure 3.8 depicts an exemplary ULA in which streams of class distributions are

propagated to the subsequent layers. Obviously, more information is transfered than in the

LHMM architecture depicted in Figure 2.13.

Furthermore, the requirements on machine learning algorithms which are allowed to be

deployed in the layers are relaxed. Different classifiers approaches may be more suitable

depending on the characteristics of the patterns to be recognized within a layer. In case

a pattern has no temporal expansion, it is plausible to resign from HMM and to use a

standard classifier, e.g. NBC or SVM. However, generally the use of dynamic Markov models

is still advisable since, as already pointed out, patterns in real-world scenarios are often

characterized by their temporal nature. Patterns to be recognized in higher layers will start

to show the properties of complex entities. The increasing variability of these patterns

makes it difficult to collect a sufficient amount of data in order to train conventional pattern

recognition approaches. However, the property that complex entities can be compiled from
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recognition

recognition Output
Classification

Figure 3.8. ULA passing probability distributions over classes to the next layer. The
lowest layer operates on the stream of real-valued features. The subsequent layers operate on the
stream of the former layer which is composed of probability class distributions.

basic entities using relational rules allows the application of symbolic AI. But the symbolic AI

methods must make commitments: It is important that the seamless handling of uncertainty

is preserved. Therefore, the transition to the next layer cannot be realized by strict symbolic

AI methods, but requires probabilistic logic (Glodek et al., 2014a). A good candidate to do

so is the DMLN which was introduced in Section 2.8. The distributions over classes from

the previous layer are provided to the DMLN as observed inputs. The DMLN itself requires

an additional random variable which represents the same class distribution, but can change

during inference.

3.7.2. Bidirectional Layered Architecture

The ULA propagates information from the lower layers to the upper layers. That means,

complex entities are compiled of basic entities. However, complex entities can also be used

to validate basic entities. The recognition using sensor data may be based on misleading

observations such that wrong information is propagated upwards. Ideally, this leads to an

inconsistent situation in an upper layer which has the effect that the fault is identified and

corrected. Alternatively, the upper layer can also propagate inferred information back to

lower layers. The lower layer can then reconsider the proposed class distribution and help

to eliminate the inconsistency.

The proposed bidirectional layered architecture (BLA) requires many design decisions to

be made regarding the training and inference of the complete system. Questions are among

others: Given that ground truth is available for each layer, should the training be performed

separately in each layer? How can the feedback of the upper layers be integrated into the
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lower layer? How and at which time of the processing can the feedback be propagated

forward and backward in time?

The BLA was developed in close collaboration with Thomas Geier from the Institute of

Artificial Intelligence of the University of Ulm. In order to implement the BLA, the layered

architecture is again restricted to the CHMM in the lower layer and the DMLN in the upper

layer. The key idea is to improve the exchange of state information between the CHMM

and the DMLN during inference. The Figure 3.9 shows a graphical representation of the

BLA in which a schematic drawing of the DMLN is shown in the upper layer and the lower

layer depicts a CHMM. The depicted fictional structure of DMLN must realize temporal

connections between the template time slices and provide random variables which can be

shared with the CHMM during inference. The DMLN models the distribution p(y,Z) where

Z are the states of the first-order logic rules and y are the states which the DMLN has in

common with the CHMM. The CHMM models the distribution p(X|y) where X are the

observations extracted from sensor data which are conditioned to the shared states. The

actual structure of the DMLN is human-generated, but the parameters of the DMLN can

be trained using the labeled ground truth. The unobserved random variables of the causal

Figure 3.9. Schematic drawing of the BLA illustrating the connection between the
last two layers. The upper part of the figure displays a DMLN modeling the distribution p(y,Z),
whereas the lower part represents the CHMM modeling p(X|y). By connecting the shared random
variables of the CHMM and DMLN layers, a complete model with the probability distribution
p(X,y,X) is realized. Computationally efficient inference is performed by shifting a window over
the stream of the former layer which should ideally comprise multiple entities. For the purpose of
illustration, the depicted inference window spans only over a small set of time slices. For a detailed
description please refer to the text.
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Figure 3.10. Training and testing of the BLA. The training of the CHMM is performed using
the CHMM data and the CHMM labels. The DMLN is trained using the CHMM labels as inputs
and the DMLN labels as targets. In order to perform the final testing, the CHMM and DMLN are
joined and inference is conducted on the complete model. The shared random variables ensure that
information is propagated between the layers. For a detailed description please refer to the text.

sequence of the CHMM are shared with the DMLN during inference which is required for

testing. Figure 3.10 depicts the procedure of training and testing. Initially, each layer is

trained individually. The CHMM layer is trained using observed data and the corresponding

crisp ground truth. Usually the training data will comprise long sequences with multiple

labels on the level of complex entities. Hence, the performance rating of trained models

requires the incrementally testing as described in Section 3.2. The parameters for both

model are fixed after the training is conducted. However, the final testing will be performed

differently using both models.

In order to perform inference, the CHMM and DMLN get connected using the shared

random variables y. As a result, the predicted causal sequence of the CHMM can directly

influence the DMLN and vice versa. The probability of the complete model is given by

p(Z,y,X) = p(X|y)p(y,Z). The sharing of states between both models is illustrated in

Figure 3.10 by an ellipse encircling the causal random variable of the CHMM and the random

variable of the DMLN having the same semantics. The CHMM and the DMLN are both

dynamic models such that the connections will unavoidably produce loops. Hence, inference

has to be performed by a suitable algorithm such as loopy belief propagation (Koller and

Friedman, 2009).

Another important issue which need to be addressed is the size of the model. With each

time step, the model grows and becomes increasingly computational expensive. Therefore,

we propose the use of an inference window as indicated in Figure 3.9. The reason to do so

is that the influence of past events vanishes and will have only a minor effect on the most

recent state. However, the inference window has to span over sufficient basic entities such

that inconsistencies can still be deduced.
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3.8. Inequality Constraint Multi-class F2-Support Vector

Machine

The MC-F2-SVM which was presented in Section 2.12 uses the objective function to

influence the hyperplane with the given multi-class fuzzy labels. This section will present a

new approach to realize an MC-F2-SVM called the inequality constraint multi-class fuzzy-in

and fuzzy-out support vector machine (IC-MC-F2-SVM) (Glodek et al., 2014b). The new

approach incorporates the fuzzy values using the inequality constraints.

The dataset T = {(x(n),y(n))}Nn=1 is again given by N tuples. A data sample is de-

noted by x(n) and the corresponding fuzzy class membership over I classes is denoted by

y(n) = (y
(n)
1 , . . . , y

(n)
I ) where y(n)

i ∈ [0, 1] and
∑I
i=1 y

(n)
i = 1. The objective function is then

given by

minimize
1

2

I∑
i=1

wT
i wi + C

N∑
n=1

I∑
i=1

ξ
(n)
i y

(n)
i (3.129)

where the slack variable ξ(n)
i is additionally weighted by the quantity of the corresponding

fuzzy membership y
(n)
i . This weighting amplifies the importance of the labeled member-

ships. The larger the membership value, the higher the penalty of the slack variable which

penalizes data samples being assigned to the wrong side of the hyperplane. The inequality

constraints are defined by

1− ξ(n)
i ≤ (y
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j )(wT
i x(n) + bi)− (y
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j )(wT
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0 ≤ ξ
(n)
i . (3.131)

The first inequation uses the difference between two fuzzy memberships to ensure that the

hyperplane separates the data samples accurately. The second inequation restricts the slack

variable to be non-negative in order to avoid a trivial solution of the problem. The objec-

tive function and the inequality constraints together assemble the constraint optimization

problem which is given by

L({wi, bi, ξi,αi,βi}
I
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1
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The problem formulation introduces the additional Lagrange multipliers α(n)
i and β(n)

i which

both have to be non-negative in order to satisfy the Karush-Kuhn-Tucker conditions (Bishop,

2006, p. 710). In the following, the Lagrange multipliers will no longer be listed as argu-
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ments of the Lagrangian function to keep the notation uncluttered. The dual form is derived

by taking the derivatives of the model parameters and setting the outcomes equal to zero:

∂L

∂wi
= wi +

N∑
n=1

I∑
j=1

(y
(n)
j − y(n)

i )
(
α

(n)
i + α

(n)
j

)
x(n) = 0 (3.133)

⇔ wi =

N∑
n=1

x(n)

( I∑
j=1

(y
(n)
i − y(n)

j )α
(n)
i︸ ︷︷ ︸

=:u
(n)
i

+

I∑
j=1

(y
(n)
i − y(n)

j )α
(n)
j︸ ︷︷ ︸

=:v
(n)
i

)
(3.134)

∂L

∂bi
=

N∑
n=1

I∑
j=1

α
(n)
j (y

(n)
j − y(n)

i )− α(n)
i (y

(n)
i − y(n)

j ) = 0 (3.135)

⇔
I∑
i=1

N∑
n=1

I∑
j=1

(y
(n)
i − y

(n)
j )α

(n)
i bi =

I∑
j=1

N∑
n=1

I∑
i=1

(y
(n)
i − y

(n)
j )α

(n)
i bj (3.136)

∂L

∂ξ
(n)
i

= Cy
(n)
i −

I∑
j=1

α
(n)
i − β(n)

i = 0. (3.137)

Equation 3.134 introduces two new variables u(n)
i and v

(n)
i which will used in the follow-

ing to keep the notation uncluttered. The obtained results are substituted back into the

Equation 3.132. In the first step, wk is substituted which yields

L(wi, bi, ξ
(n)
i ) =

1

2

I∑
i=1

∑
n1

∑
n2

(
u

(n1)
i + v

(n1)
i

)(
u

(n2)
i + v

(n2)
i

)
x(n1)Tx(n2) (3.138)

+

N∑
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I∑
i=1

ξ
(n)
i

(
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(n)
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α
(n)
i − β(n)

i

)
︸ ︷︷ ︸
= 0 according to Equation 3.137

(3.139)

+
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Further rearranging and substituting lead to the final dual form:

L(wi, bi, ξ
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The dual form needs to be optimized with the additional constraints 0 ≤ α
(n)
i ≤ Cy

(n)
i

and
∑N
n=1

∑I
j=1(y

(n)
i − y(n)

j )
(
α

(n)
i + α

(n)
j

)
= 0. The testing of a new data sample x̂ is done
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by determining the distance to the I hyperplanes and to choose the largest distance:

di(x̂) =

N∑
n=1

( I∑
j=1

(y
(n)
i − y(n)

j ) · (α(n)
i + α

(n)
j )
)
x(n)x̂ + bi. (3.144)

The bias is identified by collecting a set of support vectors for which the inequality constraints

0 < α
(n)
i < Cy

(n)
i are strictly fulfilled. These support vectors give rise to a set of linear

equations

1 = (y
(n)
i − y(n)

j )(wT
i x(n) + bi)− (y

(n)
i − y(n)

j )(wT
j x(n) + bj) (3.145)
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i x(n) + bi −wT

j x(n) − bj −
1

(y
(n)
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j )
(3.146)

⇔ bi − bj = wT
j x(n) −wT

i x(n) +
1

(y
(n)
i − y(n)

j )
. (3.147)

The linear system can be solved using the pseudo inverse or a linear solver. A complete rank

of the linear system can be derived by adding an additional constraint
∑I
i=1 bi = 0.
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Chapter 4

Datasets and Evaluation Criteria

This chapter presents the datasets and evaluation criteria which will be used to assess the

performance of the methods proposed in the previous chapter. The results of the empirical

evaluations are provided in Chapter 5 and are going to be organized in the same way as the

current chapter. The results of the empirical evaluations will be discussed in Chapter 6.

The first part of this chapter presents the datasets used for the empirical evaluations.

Section 4.1.1 presents two datasets for assessing the density estimation performance of the

EGMM and related approaches. The following Section 4.1.2 describes two datasets which

will be utilized to study the HMM-GPD and CHMM-GPD in the area of action recognition.

The evaluation of the temporal multimodal fusion approaches, i.e. MFN and Kalman filter

for classifier fusion, is mainly done using three datasets for affective state recognition which

will be presented in Section 4.1.3. The last two presented datasets were recorded in order

to evaluate the ULA and BLA and are described in Section 4.1.4.

The second part of this chapter introduces the measures utilized to rate the performance

of the algorithms in the empirical evaluations. Two types of measures are presented: (1) per-

formance measures for crisp classifier predictions and (2) performance measures for density

estimation.

4.1. Datasets

The current section gives a detailed overview of the datasets being empirically evaluated

in the following chapter. Within this work, the feature extraction is generally seen as part

of a dataset, since the focus is set on the evaluation of the developed machine learning

algorithms.

93



4 Datasets and Evaluation Criteria

4.1.1. Density Estimation Datasets

Two artificial datasets are utilized to assess the performance of the EGMM and related

state-of-the-art approaches. The first dataset is based on two classification problems which

were proposed by Ormoneit and Tresp (1996) to measure density estimation performances.

The second dataset evaluates the errors between an estimated density and a ground-truth

density using the bias-variance decomposition. This evaluation criterion will be presented

later in Section 4.2.

4.1.1.1. Ormoneit Dataset I and Ormoneit Dataset II

The first dataset will be used to rate density estimation algorithms by solving a non-

separable two-class classification problem which is defined by two overlapping ring-shaped

distributions. The performance is measured by estimating the densities for each class. The

class densities are then used in an NBC. The dataset is created by drawing samples from the

respective class distribution, see Algorithm A.1 in the Appendix for details. Ormoneit and

Tresp (1996) who originally proposed the dataset suggested two parameter configurations.

These parameter configuration are referred to as Ormoneit Dataset I (ODI) and Ormoneit

Dataset II (ODII). The proposed parameter configurations are listed in Table 4.1 where σ

determines the dispersion around the ring, ∆ denotes the offset from the center of each ring

from the origin, andN corresponds to the overall sample size of the dataset. The ODI has 400

two-dimensional samples, whereas the ODII has 800 ten-dimensional samples. Especially,

ODII can be considered as being a challenging dataset because of the low number of samples

Table 4.1. Configurations of the
Ormoneit Dataset I and Ormoneit
Dataset II. Each dataset is defined by a
configuration of the Algorithm A.1 provided
in the Appendix.

Name σ ∆ D N
Ormoneit Dataset I 0.2 ±0.5 2 400
Ormoneit Dataset II 0.2 ±0.3 10 800

Figure 4.1. Surface plot of the probability densities defined by the Ormoneit Dataset I.
The density representation is obtained using a Gaussian kernel density estimation applied to
N = 1000000 drawn samples per class.
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and the high dimensionality. Figure 4.1 visualizes the two independent ring-shaped class

densities colored in red and blue that are learned from the ODI using a large number of

N = 1000000 samples per class.

4.1.1.2. Beta Distribution Dataset

The second dataset which is named Beta Distribution Dataset (BDD) was designed to

measure the ability of density estimation algorithms to model non-Gaussian distributions.

To do so, three beta distributions with different parameters a and b are used which range

from sub-Gaussian to almost Gaussian shapes (Joanes and Gill, 1998). The higher the

parameters of the beta distribution, the more the distribution resembles the shape of a

Gaussian distribution. The three parameters used for the dataset are (1) a = b = 1, (2)

a = b = 2 and (3) a = b = 10. Figure 4.2 shows the shape of the selected distributions.

A number of N = 350 samples were drawn from each of the distributions. The similarity

to the beta distribution will be studied using the bias-variance decomposition which will be

presented in Section 4.2.
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Figure 4.2. Three configurations of the beta distribution being part of the Beta Dis-
tribution Dataset. The configurations are (a) a = b = 1, (b) a = b = 2 and (c) a = b = 10.

4.1.2. Action Datasets

Two different datasets were recorded to study the HMM-GPD and CHMM-GPD which

were presented in Section 3.4. Both datasets address the application of action recognition.

The first dataset was recorded to conduct a feasibility study and It attests that the HMM-

GPD can reliably recognize actions even under heavy occlusions. The second dataset is

situated in a more complex setting and features a larger set of samples, classes and self-

occlusions from three camera perspectives.
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4.1.2.1. Occlusion Action Dataset

The first action dataset named Occlusion Action Dataset (OAD) was introduced to

demonstrate the application of the HMM-GPD on data provided by the KinectTM camera1.

The camera captures an RGB image, a matching depth map, bit masks of tracked users and

fitted skeleton models for up to two persons. The camera has the advantageous property not

of being obtrusive, i.e. the camera does not actively emit any signal in the visible spectrum

and the human does not have to wear a special gear. However, the skeleton model of the

user may suffer from self-occlusions due to the single camera viewpoint. The HMM-GPD

will be utilized to demonstrate how to make use of the technical benefits of the camera while

circumventing the problem of self-occlusions.

The dataset contains three actions which were performed using the left or the right hand:

(1) “Drink” (DC), (2) “Eat” (EA) and (3) “Read” (RN). Figure 4.3 shows the action EA in

a shortend sequence of four frames. The camera was placed directly in front of the subject

such that the recordings are free from any occlusions. The displayed frames show the depth

map overlayed with the bit mask of the person and the skeleton model provided by the

camera. The frames are resampled at 10Hz in order to compensate the varying frame rates.

The dataset is partitioned into 10 × 10 cross-validation folds, see Algorithm A.3.1 in the

Figure 4.3. Sequence of four selected frames showing the action class “Eat” in the
Occlusion Action Dataset. Each frame displays the depth map overlayed by the user’s bit mask
and skeleton model. The subject picks up an apple from the desk, takes a bite and then returns it
back to the desk.

Table 4.2. Statistics on the Occlusion
Action Dataset. Ninitial and Nmirror denote
the sample size of the original dataset and the
dataset after mirroring the skeleton model, re-
spectively. Nmirror+jitter is the number of sam-
ples in the dataset after performing the mirror-
ing and jittering.

Action Ninitial Nmirror Nmirror+jitter
Drink (DC) 32 64 640
Eat (EA) 30 60 600
Read (RN) 25 50 500

1The KinectTM camera is an input device developed by MicrosoftR©. A detailed description of the camera
specifications can be found at http://www.xbox.com/en-US/xbox-360/accessories/kinect (last
visited 10/06/2015).
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(a) No node missing (b) Head node missing

(c) Left hand node missing (d) Right hand node missing

(e) Two nodes on the left side missing (f) Two nodes on the right side missing

Figure 4.4. The six occlusion configurations of the Occlusion Action Dataset. Different
parts of the skeleton model were removed in a post-processing step. The numbered nodes represent
the joints of the skeleton model. Blackened nodes are masked to simulate occlusion. The black
solid lines connect the nodes to form the actual skeleton model. The dashed lines indicate the edges
of the graph derived by connecting the non-occluded joint nodes. The complete graph is available
in the occlusion configuration (a). Graphs with varying missing joint nodes are provided in the
occlusion configurations (b,c,d,e,f).

Appendix for details. Once the folds are determined, the samples are duplicated and one

instance is horizontally flipped. Furthermore, the data are multiplied by creating ten copies

with a small jitter which is applied to the head, hands and elbows of the skeleton model.

Thus, the number of samples per fold has increased by a factor of 20 which is summarized

in Table 4.2.

In the next step, a graph representation is extracted from the skeleton model using the

Euclidean distances between selected joint nodes. The occlusion is artificially modeled by

systematically removing sets of joints nodes. Due to the removed joint nodes, distances

cannot be computed such that an incomplete graph is obtained. Figure 4.4 shows the six

different occlusion configurations to extract graphs from the skeleton model. The numbered

nodes mark the joints available for the feature extraction, whereas the blackened nodes are

assumed to be occluded. The actual skeleton model is depicted by solid black lines. The
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dashed lines represent the edges of the extracted graph. If there is no occlusion, a number

of ten edges is extracted as shown in Figure 4.4a. The lowest number of extracted edges in

a graph is six in which the hand and elbow joints of one side are removed, i.e. Figure 4.4e

and Figure 4.4f. Altogether six different occlusion configurations are considered: (a) “None”,

(b) “Head”, (c) “Left hand ”, (d) “Right hand”, (e) “Left hand and left elbow” and (f) “Right

hand and right elbow”. In the following, the different occlusions configurations are referred

to by the labels a, b, c, d, e and f, as shown in Figure 4.4. For further processing, the data

sequences are transformed into the representation as described in Section 2.4. A graph in

the dataset is represented by xt = {(̊xmt, x̃mt)}Mm=1 where t is the time step and M denotes

the number of edges. Each edge is indexed using a discrete label x̊mt and is associated with

the Euclidean distance x̃mt between the involved joint nodes.

4.1.2.2. UUlm Multi-perspective Action Dataset

The UUlm Multi-perspective Action Dataset (UUlmMAD) was created in the course of

this thesis in collaboration with Georg Layher from the Vision and Perception Science Lab,

University of Ulm (Glodek et al., 2015b). The goal of the dataset was to provide a basis for

the development of novel action recognition approaches with many-faceted challenges.

The unique characteristics of the dataset result from the experimental setup which is

schematically drawn in Figure 4.5. Three cameras1 were placed in the equidistant distance

of 7m and 2m height from the center of the action workspace with a 45◦ angular offset

between the cameras. The subjects performed a number of predefined actions in front of

Figure 4.5. Experimental setup of the UUlm Multi-perspective Action Dataset. Three
cameras c1, c2 and c3 are placed in equidistant distances of 7m to the subject and 2m height with
45◦ angular offset to capture center of the action workspace. The action workspace is revetted with
a green screen.

1Pike F-145 from Allied Vision with a Tevidon 1,8/16 lens.
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Figure 4.6. The fourteen action classes of the UUlm Multi-perspective Action Dataset.
The action classes are taken from the areas of fitness sports (SP), stretching (ST) and everyday
life (EL). For each action, the table provides a pictogram, a short description, the abbreviation,
the number of repetitions or variants and the average duration with standard deviation over all
subjects.

a green screen. In the following, the frontal camera is named c1, the side-view or lateral

camera c2 and the diagonally-placed camera c3. The cameras have a focal length of 16.3mm

and a sensor size of 2/3"and recorded with a synchronized and constant frame rate of 30Hz

using a resolution of 960 × 1280 px. All three cameras were calibrated intrinsically and

extrinsically. Furthermore, the subjects wore an inertial motion capturing system1 which

recorded the 3D joint positions based on 3D gyroscopes, accelerometers and magnetome-

ters (Roetenberg et al., 2009) to capture the body movements. The black motion capturing

suit possesses orange inertial sensors which have a prominent appearance. Hence, it was

covered by additional clothing whenever possible.

The performed actions are taken from the field of fitness sports (SP), stretching (ST)

and everyday life (EL). The 14 actions are shown in Figure 4.6 with a pictogram, a short

description, an abbreviation for future references, the conducted repetitions of an exercise,

variants and the average duration with standard deviation in seconds. The actions are inten-

tionally chosen in a way such that, depending on the viewpoint, actions may have a similar

visual appearance, e.g. “Squat jump” (SP3) and “Jumping Jack” (SP2) or “Pick up” (EL2)

and “Toe touch” (ST4). Each action was recorded three times. However, the subjects per-

1Xsens MVN BiomechTM https://www.xsens.com/ (last visited 10/06/2015)
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Figure 4.7. Variants of actions recorded in the UUlm Multi-perspective Action
Dataset. A subset of sport action was recorded with four variants “Normal”, “Pausing”, “Fast”
and “Deceleration”. The figure illustrates the concept of these variants. Each plot displays the nor-
malized summed absolute optical flow of the frontal camera of action “Dumbbell lateral raise” (SP5)
as performed by the subject p24. They are characterized by typical temporal patterns corresponding
to the action variant. For a detailed description please refer to the text.

formed a subset of actions four times in different variants, i.e. “Normal”, “Pausing”, “Fast”

and “Deceleration”. An action is composed of segments of movements which are repeated

four times. All recordings start in a natural pose, i.e. the subject stands upright and faces

camera c1 with arms placed beside the body.

Figure 4.7 exemplifies the concept of the four action variants using the action “Dumbbell

lateral raise” (SP5) performed by the subject p24 from the perspective of the frontal camera

c1. Each plot shows the normalized summed absolute optical flow over time for the variants

“Normal“, “Pausing“, “Fast“ and “Deceleration“. On the top of each plot, the action is

sectioned in its elementary movements by dotted lines, i.e. each time the dumbbell is raised

and lowered a segment ends and the next begins. As seen from the plots, all recordings

start with an initial state in which the subjects were asked to take up the neutral pose

for three seconds. Hence, the summed absolute optical flow values in the beginning of all

four plots are low. The uppermost plot shows the “Normal” variant in which the subject

performed a continuous movement with average speed. The second plot shows the “Pausing”

variant in which the subject was asked to hold still in-between the elementary movements.

In this scenario, the amount of absolute optical flow drops almost to zero at the end of each

movement segment. The third plot displays the variant in which the subject performed the

variant “Fast”. Here, the temporal duration of the action is reduced to a short period with

high amplitude values on the absolute optical flow. The lowest plot shows the “Deceleration”

variant in which the subjects was asked to act as if the performed action would require

physical strain. The plot shows a lower absolute optical flow than the other plots and a
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lower acceleration in the beginning of each repetition. The variants represent sub-classes of

actions which can be additionally recognized if needed.

Overall 31 subjects were recorded with an average age of 28.77± 4.22 yr, an average

height of 177.04± 11.57 cm and an average weight of 75.01± 13.79 kg. The male to female

ratio is 77%. The dataset will be evaluated using leave-one-subject-out cross-validation.

The dataset will be used to study the HMM-GPD, CHMM-GPD and a related image-

based state-of-the-art classifier architecture. The sequence of graphs was extracted similarly

to the OAD using the Euclidean distances derived from the joints of the skeleton model.

The self-occlusions was generated based on an artificial 3D avatars such that the graphs

vary over time. In the following, details on the the generation of 3D avatar video sequences

will be presented.

Generation of Self-occlusion Data Using 3D Avatars

To derive self-occlusion information, the motion capturing data were processed by a

software named Poser1 which is specialized for rendering human avatars. The software

allows the generation of new action sequences in which a virtual human can be rendered

from any perspective and under various illumination conditions. The shaders of the avatar

were replaced such that the human body appeared to be solid black while important joints

of the rendered body were augmented with uni-colored spheres. The colors were taken from

equidistant locations of the hue channel in the hue-saturation-value (HSV) color space. Each

action was then rendered using the same setup as the three cameras c1, c2 and c3. The

information of the rendered images were used to create histograms of the sphere’s colors. In

case the number of pixels in one bin felt under a certain threshold, the joint was assumed

to be occluded.

Figure 4.8 illustrates the generation of new video material. Figure 4.8a depicts an orig-

inal video frame of camera c1 of the action “Hand wave” (EL1). Figure 4.8b shows the

corresponding frame as generated by the software using the motion capturing data and a

realistic avatar and background from the perspective of camera c3. Figure 4.8c shows the

rendering output to derive the self-occlusion information from the viewpoint of camera c1.

For further processing, the skeleton model was normalized according to its total height.

The visible joints were used to create a complete graph where each edge between two joints

was labeled with a unique identifier and weighted by their Euclidean distance. In case all

joints are visible the complete graph has 68 edges. The sequence of graphs for all actions and

subjects were derived for four settings, i.e. the perspectives of camera c1, camera c2, camera

c3 and all joints visible, with a frame rate of 5Hz. Five graph datasets were created based on

these four settings: one dataset for each camera perspective, a dataset containing all camera

1PoserTMis a 3D modeling software for human avatars by Smith Micro Software.
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(a) Camera c1 (b) Camera c3 (c) Camera c2

Figure 4.8. Generation of additional rendered video material in the UUlm Multi-
perspective Action Dataset. The motion capturing data can be processed by a rendering
software to generate new action sequences in a post hoc fashion to change the perspective or
the illumination condition. The figures show the action class “Hand wave” (EL1) from different
perspectives: (a) original input image, (b) rendered human avatar with street background and (c)
human avatar to derive self-occlusion data.

Figure 4.9. Extracted graph with occlusions
derived from the rendered self-occlusion video
of the action class “Hand wave” (EL1) in the
UUlm Multi-perspective Action Dataset. The
self-occlusion video is used to identify the visible joints
which are then connected to create the graph. The
joints are depicted by colored circles. Visible joints are
additionally encircled by a black stroke. Each edge be-
tween two joints is labeled with unique identifier and
weighted by the Euclidean distance between the joints.

perspectives and a complete graph dataset. Furthermore, an initialization dataset was cre-

ated based on the first three seconds of the actions where the subjects waited in the neutral

position. The initialization dataset was composed of complete graph sequences. Figure 4.9

depicts the occlusion information extracted from the rendered image of Figure 4.8c. The

extraction of the self-occlusion from the perspective of camera c2 led to a number of bins

being below the predefined threshold. The corresponding joints were encircled by a black

stroke. Figure 4.10 and Figure 4.11 depict the distribution of the number of edges per action

and camera perspective over all subjects and sequences. In case all edges of an action were

observed for all frames, the maximal number of edges is constantly 68 for all edges. The

overall maximal number of possible edges strongly depends on the camera perspective, but
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(a) EL1 “hand wave”

(b) EL2 “Pick up”

(c) EL3 “Sit down”

(d) SP1 “Rope jump”

(e) SP2 “Jumping Jack”

(f) SP3 “Squat jump”

(g) SP4 “Push up” (variants)

Figure 4.10. Bar chart showing the number of edges accumulated over all persons in
the UUlm Multi-perspective Action Dataset for the cameras c1, c2 and c3. The number
of edges depends on the self-occlusions which is heavily influenced by the camera perspective. A
number of zero edges is marked by a red bar. The frontal camera c1 has the highest chance of
observing all edges, whereas the lateral camera c2 usually observes the lowest number of edges.
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(a) SP5 “Dumbbell lateral raise” (variants)

(b) SP6 “Dumbbell shoulder raise” (variants)

(c) SP7 “Dumbbell frontal raise” (variants)

(d) ST1 “Stationary lunge” (variants)

(e) ST2 “Torso twist”

(f) ST3 “Shoulder stretch”

(g) ST4 “Toe touch” (variants)

Figure 4.11. Bar chart showing the number of edges accumulated over all persons in
the UUlm Multi-perspective Action Dataset for the cameras c1, c2 and c3. The number
of edges depends on the self-occlusions which is heavily influenced by the camera perspective. A
number of zero edges is marked by a red bar. The frontal camera c1 has the highest chance of
observing all edges, whereas the lateral camera c2 usually observes the lowest number of edges.
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also on the length of the sequences. Edges which do not occur in an action and a camera

perspective are highlighted by a red bar. As to be seen from the figures, most edges were

usually visible from the perspective of the frontal camera c1. In general, fewer edges were

visible from the perspective of the diagonally-placed camera c3, and even lesser edges from

the lateral perspective of camera c2. However, there were exceptions such as action SP4

(Figure 4.10g), action ST2 (Figure 4.11e) and action ST3 (Figure 4.11f). In case of these

three actions, the subjects performed a rotation in which they faced the camera c2 for a

short-duration. As a result, all edges are present at some time in the data of all camera

perspectives. The opposed extreme is given by action EL1 (Figure 4.10a), action SP5 (Fig-

ure 4.11a) and action ST4 (Figure 4.11f). Here, the subjects performed movements in the

direction of camera c3 such that the far side of their bodies was permanently occluded. As

a result, these actions have a large number of totally missing edges.

4.1.3. Datasets for Affective State Recognition

Datasets containing affective human expressions provide a welcome domain to study

MCS. Due to the nature of the classification problem, the data are often multimodal and

uncertain (Kächele et al., 2014b; Schels et al., 2012a). Furthermore, classes are often an-

notated using fuzzy labels. In this work, three datasets will be studied: (1) the Freetalk

Dataset, (2) the AVEC 2011 Dataset and (3) the AVEC 2012 Dataset. In the following,

these three datasets will be presented in detail.

4.1.3.1. Freetalk Dataset

The Freetalk Dataset1 was created with the objective to study multimodal temporal MCS

for the recognition of laughter. The dataset comprises two separate 90 minute recordings of

four people sitting around a table involved in a lively and unconstrained natural conversation.

The recordings were done using a single unobtrusive 360◦ spherical camera and a microphone

which was placed on the middle of the table. Figure 4.12 shows a video frame of the dataset

to exemplify the recording setting. The faces were tracked in the video stream (Viola and

Jones, 2002) and for each face the relative head movement was derived as a feature (MOV).

From the audio channel two features were extracted: the modulation spectrum (MOD) and

the perceptual linear prediction (PLP) (Hermansky and Morgan, 1994; Maganti et al., 2007).

The MOD feature captures the dynamics in the channel and was derived from the 16 kHz

audio signal using a window of 50ms shifted by 20ms and an inner window which spans

over 200ms such that a laughter can be adequately represented. The final feature vector

representation is eight-dimensional. The PLP feature was extracted from a 32ms window

shifted by 10ms rendering a 21-dimensional vector. Further details on the feature extraction

1The Freetalk Dataset is available at http://www.speech-data.jp/ (last visited 10/06/2015)
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Figure 4.12. Video frame taken from the Freetalk Dataset. The recordings were done using
a 360◦ spherical camera. The depicted video frame is overlayed by dashed lined squares marking
the detected faces.

Table 4.3. Statistics on the Freetalk Dataset. Number of samples and average length of the
pre-segmented and unsegmented datasets being part of the Freetalk Dataset. The pre-segmented
dataset is composed of short snippets of single laughs and utterances. The unsegmented dataset is
based on one continuous recording in which laughter and utterances have been annotated.

Property Pre-segmented Unsegmented
Number (Laughter) 256 194
Number (Utterance) 2270 195
Avg. length (Laughter) 0.95±0.53 s 2.02±1.94 s
Avg. length (Utterance) 1.57±0.96 s 22.98±31.79 s

can be found in (Scherer et al., 2012b). Both recordings were labeled for “Utterance” and

“Laughter” with the annotator using both available modalities. Since only one microphone

was used, the recording contains overlapping speech and laughs of all four persons which

made the annotation difficult.

Table 4.3 provides statistics about the dataset derived from the two recordings. Based

on the first recording a pre-segmented dataset was created with a number of 256 laughter

and 2270 utterance samples. The annotation was performed on the level of sentences and

laughters which were precisely isolated. Hence, the number of 2270 utterances is clearly

higher than the number of 256 laughters. The average length of the laughters is 0.95 s

while an average utterance lasts around 1.57 s The second recording will be used to examine

unsegmented sequential data. Hence, it was not segmented into their target classes, but only

the changes between laughters and utterances were annotated. As a result, no fine-grained

laughters or sentences can be identified when testing on the unsegmented dataset. The

average length of an annotated laugh has increased to 2.02 s with a standard deviation of

1.94 s. The average length of an utterance is 22.98 s. The number of laughters and utterances

are balanced to 194 and 195, respectively.
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4.1.3.2. AVEC 2011 Dataset

The Audio/Visual Emotion Challenge (AVEC) was used to study different MCS which

implement temporal multimodal fusion. The first challenge dataset was the AVEC 2011

which was introduced as a workshop being part of the ACII 2011. It contains audio-visual

recordings of 13 subjects interacting with four emotionally stereotyped artificial agents, each

having a particular affective characteristic (Schuller et al., 2011; McKeown et al., 2010). The

dataset was labeled with four affective dimensions: “Arousal”, “Expectancy”, “Power” and

“Valence” (Fontaine et al., 2007). For each recording, the number of annotators range from

2 to 8. The annotations were averaged for each dimension resulting in a real-valued label for

each time step. Subsequently, the labels were binarized using a threshold equal to the grand

mean of each dimension. In addition to the sensor data and affect annotation, a word-by-

word transcription of the spoken language and conversational turns was provided. Three

sub-challenges were proposed: an audio challenge on word-level, a video challenge on frame-

level and an audio-visual challenge on the frame-level of the video channel1. According to

the official guideline of the challenge, the goal is to predict the four label dimensions using

exclusively features derived from either audio, video or both modalities. The final ranking

of the challenge submissions was done only on the label dimension of “Arousal”, since the

submissions on other dimensions yielded poor results.

The dataset was divided into training, development and test sets. The labels of the

test set have not been published. Table 4.4 shows the partitioning and statistic of the

challenge dataset. For further studies, we re-partitioned the available datasets into 4 ×

4 cross-validation folds in a way such that each fold has a disjunct set of test subjects.

Besides the raw video and audio recordings, the challenge organizers provided a large range

of pre-computed audio and video features. However, we decided to give preference to our

own extracted features. In the following, a detailed description of the utilized features will

be provided.

Audio Features

Three different kinds of features were extracted from the audio signal:

• The fundamental frequency values were extracted using the f0 tracker tool available

in the ESPS/waves+ software package. Besides the f0 track, the energy and the linear

predictive coding (LPC) of the plain wave signal were derived (Rabiner and Juang,

1993). All three features were concatenated to form a ten-dimensional early fusion

feature vector.

1A comprehensive description and the data can be found at http://sspnet.eu/avec2011/ (last visited
10/06/2015).
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Table 4.4. Statistics on the AVEC 2011 Dataset. The dataset was partitioned into training,
development and test sets. The table specifies the number of recordings, frames and words, as well
as the complete length and the average word length of each partition. Table adapted from (Schuller
et al., 2011).
Property Training Development Test Total
Number of recordings 31 32 32 95
Frames 501,277 449,074 407,772 1,358,123
Words 20 183 16 311 13 856 50 350
Complete length (hh:mm:ss) 2:47:10 2:29:45 2:15:59 7:32:54
Avg. word length (ms) 262 276 249 263

• The representation of the mel frequency cepstral coefficients (MFCC) is inspired by the

biological perceptual variations in the human auditory system. It is modeled using a

linearly spaced filter bank in lower frequencies and logarithmically in higher frequencies

in order to capture the phonetically important characteristics of speech. The MFCC

were extracted as described in (Zheng et al., 2001).

• The perceptual linear predictive (PLP) analysis is based on two perceptually and bio-

logically motivated concepts, namely the critical bands and the equal loudness curves.

Frequencies below 1 kHz need higher sound pressure levels than the reference and

sounds between 2 – 5 kHz need less pressure. This follows the way of human percep-

tion. The critical band filtering uses equally spaced filters based on the Bark scale

which are trapezoidal shaped. After the critical band analysis and equal loudness con-

version, the subsequent steps required for the relative spectral (RASTA) processing

extension follow the implementation recommendations provided by Hermansky et al.

(1992). Subsequent to the transforming the spectrum to the logarithmic domain and

the application of RASTA filtering, the signal is transformed back using the exponen-

tial function. The PLP were extracted using the same parameters as described in the

Freetalk Dataset.

Video Features

Two different video feature sets were extracted from the AVEC 2011 Dataset. The first

set is composed of biologically-inspired video features which were kindly provided by the

Vision and Perception Science Lab1. The second set contains high-level features extracted

by the computer expression recognition toolbox (CERT) (Littlewort et al., 2011).

The biologically-inspired feature set models two mainly independent pathways. The first

one is specialized for the processing of form and shape, while the second one is specialized

for motion. Both pathways are hierarchically organized with larger scales of interaction

1http://www.informatik.uni-ulm.de/ni/staff/HNeumann/ (last visited 10/06/2015)
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Figure 4.13. Visual features extracted from the AVEC 2011 Dataset. The feature ex-
traction models two biologically-inspired mainly independent pathways: a form and shape pathway
and a motion pathway. For a detailed description please refer to the text.

in higher states of processing (Rolls, 1994). The form pathway is basically orientation

selective and combines activities to build representations of localized features and shape

configurations. The motion pathway on the other hand is direction selective and combines

activities to build representations of flow discontinuities as well as motion patterns. It is

assumed that the hierarchical processing in both pathways is organized in a similar fashion.

The features processing architecture is shown in Figure 4.13. The architecture is a modified

variant of the object-recognition model proposed by (Mutch and Lowe, 2008; Riesenhuber

and Poggio, 1999; Serre et al., 2005). Motion and form features are processed along two

separate pathways, composed of alternating layers of filtering (S) and non-linear pooling (C)

stages. In layer S1, different scale representations of the input image are convolved with

two-dimensional Gabor filters of different orientations (form path) and a spatio-temporal

correlation detector which is used to build a discrete velocity space representation (motion

path). Layer C1 cells pool the activities of S1 cells of the same orientation (direction) over

a small local neighborhood and two neighboring scales and speeds, respectively. The layer

S2 is created by a simple template matching of patches of C1 activities against a number of

prototype patches. These prototypes are randomly selected during the learning stage (Mutch

and Lowe, 2008). In the final layer C2, the S2 prototype responses are again pooled over

a limited neighborhood and combined into a single feature vector which serves as input to

the successive classification stage. A more detailed description about the extraction of the

feature set can be found in (Glodek et al., 2011d).
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The second feature set was extracted using the well-known computer expression recog-

nition toolbox (CERT) (Littlewort et al., 2011). The toolbox provides recognition modules

for emotion-related facial features such as action units or basic emotions, but also general

attributes such as gender or glasses. The output of modules “Basic Emotions 4.4.3”, “FACS

4.4”, “Unilaterals” and “Smile Detector” were extracted and concatenated which resulted in

an overall 36-dimensional feature vector per frame. The tracking of prominent facial mark-

ers which are needed for the extraction of the features requires a successful detection of the

face. However, the detection of face occasionally failed because of the unrestricted recording

settings, e.g. subjects may turn away or leave the visual range of the camera. In about 8%

of the video frames the face was not recognized such that no features are available for these

frames.

4.1.3.3. AVEC 2012 Dataset

The follow-up event to the AVEC 2011 was the AVEC 20121. The new task extended the

previous challenge by replacing the binarized labels with continuous labels. The challenge

was composed of two sub-challenges: the word-level sub-challenge (WLSC) and the fully

continuous sub-challenge (FCSC). It was up to the participants to use either audio, video

or both modalities. The winner of the challenge was determined by comparing the absolute

value of the averaged correlation coefficients between the prediction and the ground truth

label of each sessions. Figure 4.14 shows the means and standard deviations of the four

continuous labels plotted against the video frames which were sampled at 50Hz. The number

of displayed frames was restricted to the median number of frames over all sessions in order to

handle the varying length of the recordings. The labels have clear temporal characteristics

with comparably low standard deviations. For instance, Figure 4.14a and Figure 4.14c

show a quasi-logarithmic curve. The reason for these remarkable curve shapes can most

probably be related to the utilized annotation tool Freetrace (Cowie et al., 2000) which, by

default, initializes at a fixed label position. It is an open question, whether the prominent

curve shapes superimpose the annotated emotions (Schels et al., 2013a). An impression

about the strength of the superimposition can be gained by evaluating the correlation to

the most obvious function, i.e. logarithmic function log(t) (Glodek et al., 2012c). Table 4.5

shows the absolute correlation coefficients (CC) of the baseline and the challenge winner

and compares them to the absolute correlation coefficients derived using the logarithmic

function and the annotated label computed according to the challenge guidelines. Since the

logarithmic function was not learned, the results on the training set and development set are

as expressive as the results on test set. The best results are marked using a bold typesetting.

1http://sspnet.eu/avec2012/ (last visited 10/06/2015).
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Figure 4.14. Real-valued labels over time in the AVEC 2012 Dataset. Average value and
standard deviation of the continuous labels plotted against the frames. Plots are truncated to show
only the median length of all frames. The gray area represents the standard deviation. Continuous
labels taken from the training set and the development set.

The labels “Arousal” and “Power” which were already identified to have a logarithmic-

inspired curve correlate very well with the logarithmic function. The label “Valence” has a

low correlation with the function. Comparing the outcome with the best baseline results

by Schuller et al. (2012), it became obvious that all efforts making use of pattern recognition

to predict the continuous labels can easily be outperformed by exploiting the labels’ temporal

artifacts. The most impressive performance of the logarithmic function is achieved in the

FCSC with respect to the label “Power” which has an CC of 0.488. Opposed to that,

the corresponding baseline achieved only an CC of 0.138. The results using the logarithmic

functions in the WLSC with respect to the labels “Expectancy” and “Power” even outperform

the AVEC 2012 winner Savran et al. (2012) with correlations of 0.304 and 0.302, respectively.

However, the performance of the logarithmic function is generally lower than the winners

of the AVEC 2012. The discovered artifacts do not put the dataset in question. As to

be seen from the Figure 4.14, all label dimensions saturate after a certain amount of time

once the annotators became familiar with the annotation tool. The findings rather show the
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Table 4.5. Results of the challenge winner and the logarithmic function on the AVEC
2012 Dataset. The absolute correlation coefficients (CC) are obtained by taking the absolute value
of the averaged correlation coefficients of each recording. Baseline and challenge winner results on
the test set. Performance of logarithmic function based on the training set and development set.

Arousal Expectancy Power Valence Mean
Dataset ↑CC ↑CC ↑CC ↑CC ↑CC

Baseline
FCSC Test 0.149 0.110 0.138 0.146 0.136
WLSC Test 0.103 0.105 0.066 0.111 0.096

Logarithmic function
FCSC Train 0.417 0.217 0.559 0.084 0.319
WLSC Train 0.303 0.258 0.411 0.006 0.245
FCSC Development 0.393 0.239 0.510 0.023 0.291
WLSC Development 0.327 0.250 0.323 0.116 0.254
FCSC Test 0.377 0.250 0.488 0.080 0.299
WLSC Test 0.230 0.304 0.302 0.044 0.220

Challenge winner

FCSC
Nicolle et al. (2012)

0.612 0.314 0.556 0.341 0.456

WLSC
Savran et al. (2012)

0.302 0.194 0.293 0.331 0.280

difficulties to annotate affective states.

Analogously to the AVEC 2011, a large set of pre-computed features was provided.

However, we extracted a custom set of features for both modalities. The studies in this work

which are using the AVEC 2012 utilize the audio feature set as introduced in Section 4.1.3.2

and the set of high-level video features extracted with CERT as described in Section 4.1.3.2.

4.1.4. Layered Architectures Datasets

Two datasets were created in order to study the performance of the layered architectures

presented in Section 3.7. Dataset and layered architecture form a close relationship such

that many design decisions have to be set beforehand. According to the proposed architec-

ture, layers of classes with increasing complexity need to be provided by the dataset. The

uppermost layer must be composed of complex entities which require the use of probabilistic

logical rules.

The first dataset which is named Office Layered Architecture Dataset (OLAD) is situ-

ated in an office scenario and comprise three layers. The idea is to recognize basic entities

close to the sensors and to propagate the predictions to the higher layers which are more

abstract. The final layer needs to be realized by a probabilistic symbolic AI component

to infer the complex entities. The information flow of the first dataset is designed to be

unidirectional. The second dataset which is called UUlm Generic Layered Architecture

Dataset (UUlmGLAD) will be used to study the bidirectional exchange of information be-

tween the recognizers of basic and complex entities which was proposed in the BLA.
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4.1.4.1. Office Layered Architecture Dataset

The Office Layered Architecture Dataset (OLAD) is based on recordings in which a

subject performs a set of activities in front of a desk. The recorded patterns allow a de-

composition into three layers in order to demonstrate the composition of basic entities to

complex entities. The main goal was to create a meaningful and challenging dataset which

incorporates adverse conditions, e.g. similarities between movements. The first layer is

composed of the basic elementary actions: (1) “Pick up object” (PUP1), (2) “Move object

towards head” (MTH1), (3) “Move object from head” (MFH1), (4) “Move object towards ta-

ble” (MTT1), (5) “Move object from table” (MFT1), (6) “Lay back object” (LBA1), (7) “Ma-

nipulate object in hand” (HAM1), (8) “Manipulate object at table” (TAM1) and (9) “Manip-

ulate object close to head” (HEM1). The activities in the second layer are (1) “Drink from

cup” (DC2), (2) “Fill milk into a cup” (MC2), (3) “Read note” (RN2), (4) “Stir cup” (SC2),

(5) “Add sugar and stir” (SSC2) and (6) “Write note” (WN2) and are composed of a sequence

of the first layer’s actions. The activities are performed by manipulating the objects: “Cup”,

“Can”, “Paper”, “Spoon” and “Pencil”. In addition to these five classes, the class “Bare hand”

was annotated. Figure 4.15 illustrates how sequences of actions compose the activities “Read

note”, “Fill milk into a cup” and “Drink from cup”. For instance, the activity “Read note” is

composed of three actions, i.e. “Pick up object”, “Manipulate object in hand” and “Lay back

object”. Certain activities are likely to be confused such as “Read note” and “Write note”

since both comprise the same sequence of action patterns. Furthermore, activities may also

have partially identical patterns such as “Write note” and “Stir cup” where in both sequences

the subject raises the spoon to the mouth after stirring the cup. The sequence of recognized

activities is used as the input to the third layer in which the user is categorized according to

his preference: (1) “Black coffee” (BC3), (2) “White coffee” (WC3), (3) “Sweet coffee” (SC3)

and (4) “Sweet white coffee” (SWC3). These categories follow rules, but can be encoded in
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Figure 4.15. Schematic drawing of the decomposition of activities into actions in the
Office Layered Architecture Dataset. Three examples of activities segmented into actions:
(1) “Pick up object”, (2) “Move object towards head”, (3) “Move object from head”, (4) “Move
object towards table”, (5) “Move object from table”, (6) “Lay back object”, (7) “Manipulate object
in hand”, (8) “Manipulate object at table” and (9) “Manipulate object close to head”.
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(a) (b)

Figure 4.16. Scene from the Office Layered Architecture Dataset. (a) The RGB image
shows the subject performing the activity “Write note” (WN2) (b) The corresponding depth map
shows the tracked user (colored in blue) overlaid with the fitted skeleton model (white lines).

sequence of activities with variable length. The activities “Read note” and “Write note” are

not related the user preference categories and, therefore, can be repeated arbitrary often.

Figure 4.16 shows an exemplary frame of the dataset. The recordings were made using

the KinectTM camera. The video stream was sampled down to 20Hz and the audio signal was

recorded with 16 kHz and 32 bit depth. Figure 4.16a depicts the RGB image. The subject

sits at the desk on which objects are placed while performing a sequence of activities. In

the displayed frame, the subject performs the activity “Write note” (WN2) and, hence, uses

the pencil to write a note on a paper block. Figure 4.16b shows the corresponding depth

map in which the tracked subject is colorized in blue and overlayed by the fitted skeleton.

The region of interest with the currently used object was determined by utilizing the

image coordinates of the skeleton’s right hand. Based on this region of interest, a fixed-sized

RGB sub-image was extracted. Although this method was quite accurate, the extracted

image occasionally contained other objects located close to the hand, e.g. the milk can in

Figure 4.16a. The recognition of objects was further complicated by fast movements of the

hand which resulted in blurred sub-images or a minor delay in the skeleton fitting such that

a wrong region of the image was extracted.

Three feature sets containing (1) histograms of orientation gradients (HOG) (Free-

man and Roth, 1995), (2) histograms of colors (HOC) (Swain and Ballard, 1991) and (3)

MFCC (Huang et al., 2001) were extracted from the sub-images of the hand and the audio

channel The HOG was based on a grid of 2× 2 and eight bins, each one covering 45◦. Fur-

thermore, the HOG was normalized by the sum over all bins. The HOC was created using

the HSV color space and uses a number of ten bins for the hue dimension and three bins

for the saturation dimension. The value dimension was discarded to realize light invariance.

The MFCC (Huang et al., 2001) was extracted using a 20ms window with an offset of 10ms.

Furthermore, the energy of the audio signal was extracted and utilized for silence detection.

Two recording sessions were conducted. The data of the first recording session were
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Table 4.6. Statistics on the Office Layered Architecture Dataset. Number of samples and
average length in seconds for all three layers: actions, activities and user preferences. For a detailed
description please refer to the text.

Layer 1: Actions # Avg. length Layer 2: Activities # Avg. length
Pick up object (PUP1) 334 0.89±.37 s Drink from cup (DC2) 54 4.54±.38 s
Move object towards head (MTH1) 164 0.54±.18 s Fill milk into a cup (MC2) 53 4.66±.81 s
Move object from head (MFH1) 164 0.38±.12 s Read note (RN2) 57 5.41±1.26 s
Move object towards table (MTT1) 285 0.66±.22 s Add sugar and stir (SSC2) 62 9.13±1.28 s
Move object from table (MFT1) 285 0.46±.21 s Write note (WN2) 60 1.9±3.17
Lay back object (LBA1) 334 0.95±.25 s Layer 3: User Preferences # Avg. length
Manipulate object in hand (HAM1) 176 1.29±1.42 s Black coffee (BC3) 20 24.15±9.12 s
Manipulate object at table (TAM1) 288 2.91±2.73 s White coffee (WC3) 20 41.94±10.49 s
Manipulate object close to
head

(HEM1) 164 0.95±.44 s Sweet coffee (SC3) 20 39.11±9.24 s
Sweet white coffee (SWC3) 20 51.21±15.29 s

cut into pre-segmented sequences which were used for training and testing the action and

activity layers. The data of the second recording session were used for the evaluation of the

third layer. Table 4.6 shows the number of the samples and the average length in seconds

of all layers. In total, the first and the second layer consist of 2194 and 334 sequences,

respectively. The third layer contains 20 randomly generated sequences for each category of

user preferences which are based on the second recording session. The first recording session

was partitioned into 10 × 10 cross-validation folds. The second recording session was used

only for testing.

4.1.4.2. UUlm Generic Layered Architecture Dataset

The UUlm Generic Layered Architecture Dataset (UUlmGLAD) was recorded in the

same setting as the UUlmMAD which was presented in Section 4.1.2.2. A table with a

sport bag containing a dumbbell, a bottle and a towel was placed in front of the subject.

Nine actions were performed in this setting: putting one of the three objects onto the table,

returning one of the three objects to the bag and manipulating one of the three objects, i.e.

“Lifting the dumbbell once”, “Drinking from the bottle” or “Wiping the face with the towel”.

The sequences of actions were prompted on a monitor screen for the subjects to follow and

were based on a fixed set of rules:

1. All object have to be placed in the bag in the beginning and at the end of the recording.

2. Objects are taken out of the bag only once.

3. Objects can be manipulated only if they are already placed on the table.

4. The bottle and towel can be used only after the dumbbell was used.

5. The bottle (or the towel) has to be used if the dumbbell was used twice.

6. The towel has to be used after the last use of the dumbbell.

The rules can be used to identify complex entities, e.g. beginning, course and end of the

training. Figure 4.17 shows a representative video frame taken from the recording. The
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Figure 4.17. Scene from the UUlm Generic
Layered Architecture Dataset. The subject
is allowed to perform nine different actions using
three objects, i.e. putting an object onto the table,
returning an object to the bag or manipulating an
object where the object can be a dumbbell, a bot-
tle or a towel. The order of actions is randomized,
but follows rules. In the scenery, the subject has
already placed all objects onto the table and is
about to perform the action “Drinking from the
bottle”.

subject has placed the dumbbell, bottle and towel onto the table and is in act of grabbing

the bottle in order to perform the action “Drink from the bottle”.

According to the rules, objects are either in the bag, on the table or in the hand of the

subject, depending on the actual and past actions. As a result, every contradicting infor-

mation generated from the sub-symbolic recognizers should be suppressed. Furthermore,

the temporal order of actions can help to correct sub-symbolic and symbolic recognitions.

An object which is assumed to be located in the bag cannot be involved in an action in

which the object is manipulated or returned to the bag. Hence, it is possible to identify

sub-symbolic recognitions which are contracting the symbolic rules. However, it is possible

to revise symbolic decisions in the past.

The dataset was recorded using three video cameras and a motion capturing suit which

were calibrated to each other in a post-processing step. In a first step, an intrinsic camera cal-

ibration, an extrinsic calibration across the cameras and a fitting of the three-dimensional

motion capturing data to the image plane were performed. The camera calibration was

achieved by using a separate recording of a calibration pattern which was made prior to the

beginning of each recording session. The camera geometry was determined using standard

computer vision approaches (Hartley and Zisserman, 2003). The fitting of the motion cap-

turing data was performed by manually labeling a subset of prominent skeleton model joints

in three frames in each camera view. These labels and the extrinsic calibration were used to

derive the three-dimensional locations of the joints in the world coordinate system. In the

last step, the motion capturing skeleton model was fitted to the three-dimensional locations

of the joints. The procedure is visualized in Figure 4.18 using a frame from the UUlmMAD

which shows the subject p28 performing the action “Dumbbell frontal raise” (SP7). The

116



4.1 Datasets

original image

frame 100 frame 250

p
ro
je
ct
io
n

camera 01 camera 02 camera 03 camera 01 camera 02 camera 03

3D joint positions projection

Figure 4.18. Projection of the motion capturing skeleton model into the camera image
plane in the UUlmMulti-perspective Action Dataset. The upper part of the figure shows the
original image, the motion capturing skeleton model and the projection of the skeleton model into
the camera image plane. The lower part of the figure depicts two frames of the action “Dumbbell
frontal raise” (SP7) performed by subject p28 overlayed with the post-processed skeleton model
projection.

Figure 4.19. Features extracted from
the skeleton model of the UUlm
Generic Layered Architecture Dataset.
The extracted feature vector has five ele-
ments containing distances and angles. The
three distances marked by a dashed gray line:
(1) head – hand, (2) head – shoulder and
(3) hip – hand. The two angles marked by a
gray sector of a circle: (1) neck – shoulder –
elbow and (2) shoulder – elbow – hand.

upper part of the figure shows from left to right: the original image, the three-dimensional

joints as provided by the motion capturing and the original image overlayed with the skele-

ton model after the fitting process. The lower part of the figure shows the action from all

three camera perspectives at two different times. The left example is taken from frame 100

where the subject stands motionless in the neutral position. The right example is taken

from frame 250 and shows the subject performing the movements of the action, i.e. the

subject holds the dumbbell in his hands and his arms are passing each other with maximal

speed. The displayed frame of the last example reveals a small lag in the motion capturing

data. In camera c3, the skeleton model joints of the arms are running slightly after the

actual location of the arm. However, with regard that both data originate from independent
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sources the calibration of the motion capturing data and the cameras worked very exact.

A sub-image of 96× 96 pixel was specified for each frame based on the image coordinate

of the right hand. For all sub-images, HOG and HOC features were extracted. The HOG

features were based on a grid of 3× 3 and eight bins each one covering an angle of 45◦. The

bins were subsequently normalized. The HOC made use of the HSV color space and utilized

a number of eight bins for the hue dimension and four bins for the saturation dimensions.

Again, the value dimension was discarded for light invariance. The skeleton model was used

to extract a feature with five elements, i.e. three distances: (1) head – hand, (2) head –

should and (3) hip – hand; and two angles: (1) neck – shoulder – elbow and (2) shoulder –

elbow – hand. Figure 4.19 illustrates the extracted features using a schematic drawing of

the skeleton model’s torso. The three distances are marked by dashed gray lines and the

two angles are marked by a gray sector of a circle.

4.2. Evaluation Criteria

Two kinds of measures will be presented in the following sections which are used to assess

the performance of the proposed methods: (1) performance measures for crisp classifier

decisions and (2) performance measures for density estimations.

4.2.1. Performance Measures of Crisp Classifier Predictions

The most frequently used performance measures in machine learning are based on the

ratios derived from the confusions between the ground-truth classes and the predictions of a

classifier. Given a dataset of N test samples, a classifier can be examined by determining the

classifier’s prediction for each sample and comparing it to the ground-truth label. Correct

class assignments and errors are binned into the four categories of a confusion matrix, as

shown in Figure 4.20. The four bins of the confusion matrix are: true positive ntp, false

negative nfn, false positive nfp and true negative ntn. Different measures can be derived

from the confusion matrix. A popular measureAccuracy and

error rate

is the classifier accuracy which is computed

by

accuracy =
ntp + ntn

N
.

An alternative measure to the accuracy is the classification error which describes the fraction

of misclassified samples:

error = 1− accuracy =
nfp + nfn

N
.

Both, the accuracy and the error rate, are probably the most frequently used performance
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Figure 4.20. Confusion matrix with different measures to rate the performance of
classifiers. The matrix lists four types of errors which can be used to derive further performance
measures, such as the recall, specificity, precision or the negative prediction value.

measures for classifiers. However, Precision and

recall

these measures capture only a part of the actual perfor-

mance of a classifier. For instance, the class distribution of a dataset might be unbalanced,

i.e. samples of one class are more frequent. If the examined classifier turns out to be uni-

lateral and favors the majority class, the accuracy and error rate will not be able to reveal

this classifier deficit. Hence, it is beneficial to take a closer look at additional performance

measures such as the precision and the recall which are given by

precision =
ntp

ntp + nfp

recall =
ntp

ntp + nfn
.

The precision is the ratio between the number of correctly predicted positive samples and

the overall number of samples assigned by the classifier to the positive class. The recall

describes the share of true positives and the overall number of samples labeled with true.

The interpretation of which class is regarded as true and false depends on the viewpoint of

the experimenter. The specificity and the negative prediction value are the negative coun-

terparts of the precision and recall. In order to perform a comprehensive evaluation of the

performance of a classifier, the precision and the recall should be provided for all available

classes in the dataset. However, it might be confusing to provide four additional performance

measures for a two-class problem. The F1-measureF1-measure can be used to reduce the number of

performance measures and is given by

F1 = 2 · precision · recall
precision + recall

.

The F1-measure is defined as the weighted average of precision and recall and, thus, in-

dicates the share of correct and false assignments. The examination of the F1-measure for
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every class of the dataset provides a good intuition of the recognition balancedness.

4.2.2. Performance Measures of Density Estimation

The performance of probability density algorithms will be assessed in two ways: a classifi-

cation scenario and the well-known bias-variance decomposition (Bishop, 2006, page 147ff.).

In case of the classification scenario, a probability density is determined for each class

of a given classification problem. The densities are then utilized as parts of an NBC. The

classifier performance obtained when testing on a disjunct test set serves as a performance

measure for the estimated densities.

TheBias-variance

decomposition

second way to rate the performance of a density estimation algorithm is to use the

bias-variance decomposition. The starting point to derive the bias-variance decomposition

is the expected squared loss function given by

E(L) =

N∑
n=1

{y(xn)− h(xn)}2

where L(a) = a2 is the squared loss, the function y(·) represents the estimated density,

h(·) is the target function which is assumed to be free of noise, and {xn}Nn=1 are the data

samples. The goal is to asses the uncertainty of models where the different models are given

by their parameter configurations. Therefore, the loss function is expanded by the average

over a specific modelM and by adding and subtracting EM[y(x;M)]:

{y(x)− h(x)}2 = {y(x;M)− EM[y(x;M)] + EM[y(x;M)]− h(x)}2

= {y(x;M)− EM[y(x;M)]}2 + {EM[y(x;M)]− h(x)}2

= 2 · {y(x;M)− EM[y(x;M)]}{EM[y(x;M)]− h(x)}.

Once the term is expanded, the expectation of the expression with respect to M is taken.

As a result, the cross-term vanishes and the final decomposition is obtained:

EM[{y(x)− h(x)}2] = {EM[y(x;M)]− h(x)}2︸ ︷︷ ︸
bias2

+EM[{y(x;M)− EM[y(x;M)]}2]︸ ︷︷ ︸
variance

.

The expected squared loss function comprises two terms. TheSquared bias

and variance

first term is referred to as

the squared bias and represents the extent to which the average prediction differs from the

desired density function. The second term which is called variance measures the extent to

which the solution for individual models vary around their average. The reader will find
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further information on the bias-variance decomposition in the book written by Bishop (2006,

page 147ff.).
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Chapter 5

Empirical Evaluations

The current chapter presents the results of the empirical evaluations based on the pro-

posed methods and datasets introduced in the previous chapters. The organization of this

chapter follows the same structure as Chapter 4 addressing the datasets. Each study in this

chapter is followed by a summary which outlines the main findings. A detailed discussion

of the results will be provided in Chapter 6. The best results are marked in the tables by

using a bold typesetting.

The evaluation begins with Section 5.1 which presents the results of the EGMM and

related approaches. Section 5.2 provides the action recognition results to assess the perfor-

mance of the HMM-GPD and CHMM-GPD. The results of the multimodal temporal fusion

algorithms are presented in Section 5.3 and Section 5.4. Finally, Section 5.5 provides the

results of the study performed using the ULA.

5.1. Ensemble GMM for Enhanced Density Estimation

The EGMM which was introduced in Section 3.1 promises to be more robust in terms of

accuracy and less sensitive for singularities (Glodek et al., 2013c). Furthermore, the EGMM

aims at reducing the effort in finding the best performing parameter configuration compared

with conventional GMM. Figure 5.1 exemplifies the advantage which can arise from using the

EGMM. Figure 5.1a shows the density of an exponential decay, i.e. p(x) = exp(−x), together

with 250 data samples drawn from the corresponding distribution which was utilized for the

training of the density models. Two individual GMM, one with two mixture components

and the other with three mixture components, were derived from the data samples. Their

densities are plotted in Figure 5.1b using dashed curves. The EGMM which was computed

using the unweighted average of both individual GMM is depicted by the solid red curve. The
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Figure 5.1. Comparison of classic GMM and EGMM using the example of a distribu-
tion generated from the exponential decay. (a) Shows the probability density (solid line) from
which the data samples are derived (x-marks at the bottom of the plot). (b) The data samples are
utilized to estimate two Gaussian mixture models with two and three mixture components (dashed
lines). Both models give a good approximation of the original density. However, the EGMM created
by averaging the two GMM (red line) has a closer fit to the original function.

accuracies of the three densities were measured by comparing the estimates to the ground

truth function using the integral of the absolute difference ranging in [0, 5]. The GMM

with two mixture components and the GMM with three mixture components resulted in an

error of 0.29 and 0.22, respectively. The EGMM rendered a lower error of 0.19. Although

the example is constructed, it shows that especially for non-Gaussian distributions a clear

improvement in performance can be expected. In the following, we will fall back on the

datasets already described in Section 4.1.1.

5.1.1. Ormoneit Dataset I and Ormoneit Dataset II

The first experiment examines the two artificial classification problems ODI and ODII.

Ormoneit and Tresp (1998) evaluated six density esimtation approaches: (1) standard maxi-

mum likelihood; (2) simple averaging of multiple identical models trained on the same data;

(3) subset averaging (resample from the dataset without replacement) of multiple identical

models; (4) bagging (resample from the dataset with replacement); (5) penalized likelihood

(which adds a regularizing term in form of conjugated priors to the log-likelihood function);

and (6) a Bayesian approach which makes use of conjugated priors in combination with

Gibbs sampling. The last two approaches regularize the estimation of the GMM and, there-

fore, it is difficult to related them to the EGMM presented in this work. All GMM used

in the experimental evaluation have 20 mixture components. In case of subset averaging

and bagging, the data were resampled by drawing 70% from the original data without and
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Ormoneit Dataset I Ormoneit Dataset II
Method ↑Acc. ↑Acc.

Maximum likelihood† 79.03±2.6% 72.59±0.2%
Simple averaging† 80.43±2.0% 76.55±0.2%
Subset averaging† 80.73±1.8% 76.39±0.2%

Bagging† 81.20±1.4% 76.65±0.2%
Penalized likelihood† 82.28±1.4% 81.70±0.2%

Bayesian† 82.70±1.3% 64.76±0.9%
EGMM 84.55±2.1% 78.80±0.2%

EGMM (M = 25) 84.77±2.5% 77.40±0.2%

Table 5.1. Accuracies of the EGMM on the Ormoneit Dataset I and Ormoneit
Dataset II in comparison to the methods proposed by Ormoneit and Tresp (1996).
Results marked by (†) indicate the best performance achieved in the study of Ormoneit and Tresp
(1996). All values averaged with standard deviation. Arrows indicate how to rate the measures.

with replacement, respectively. The number of replications was chosen to be 50 according

to Breiman (1996).

The EGMM was analyzed in two settings: (1) using all evaluated GMM configurations

and (2) using only the 25 best GMM rated against the model likelihood (pruned EGMM).

The numbers of mixture components ranged from 5 to 14 with five replications resulting in

50 GMM configurations. Resampling was additionally performed by drawing 70% of samples

from the original dataset without replacement.

The mean classification accuracies of all approaches together with the corresponding

standard deviation over 20 simulations are presented in Table 5.1. The left part of the table

shows the results of the ODI which comprises two-dimensional samples: Ormoneit and Tresp

(1998) reported an accuracy of 79.03% for the standard maximum likelihood approach. The

accuracies of the averaging and bagging approaches ranged from 80.43% to 81.20%. The

penalized likelihood and the Bayesian approach using a conjugated prior achieved accuracies

of 82.28% and 82.70%, respectively. The EGMM method achieved an accuracy of 84.55%

and the pruned EGMM using only the 25 best GMM achieved the highest accuracy of

84.77%.

The results of the ODII are presented in the right part of the table. The ODII is

based on ten-dimensional samples and, therefore, is clearly more challenging. Applying

the classic maximum likelihood approach to ODII resulted in an accuracy of 72.59%. The

accuracies of the averaging and bagging approaches ranged from 76.39% to 76.65%. The

penalized likelihood achieved the highest accuracy of 81.70%. The Bayesian approach using

the conjugated prior achieved only an accuracy of 64.76%. The EGMM and the pruned

EGMM approaches had the second and third highest results with accuracies of 78.8% and

77.4%.
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(a) GMM bias-variance decomposition. Beta
distribution parameter a = 1 and b = 1.
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(b) EGMM bias-variance decomposition. Beta
distribution parameter a = 1 and b = 1..
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(c) GMM bias-variance decomposition. Beta
distribution parameter a = 2 and b = 2.

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Beta distribution a=2 b=2

(d) EGMM bias-variance decomposition. Beta
distribution parameter a = 1 and b = 1.
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(e) GMM bias-variance decomposition. Beta
distribution parameter a = 10 and b = 10.
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(f) EGMM bias-variance decomposition. Beta
distribution parameter a = 10 and b = 10.

Figure 5.2. Bias-variance decomposition of classic GMM and EGMM on the Beta
Distribution Data. Bias-variance decomposition for different beta distribution parameters using
the classic GMM (a, c, e) and the EGMM (b, d, f). Each plot shows the squared bias (dashed line),
the variance (dotted line) and the test error given by the sum of the squared bias and variance (solid
line). Please note, that the scale of the Figure 5.2e and Figure 5.2f differ from the other figures.
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5.1.2. Beta Distribution Dataset

The second experiment examines the EGMM and classic GMM using the BDD. The

experiment analyzes the bias-variance decomposition using the sub-Gaussian beta distribu-

tions which were described in Section 4.1.1 and Section 4.2.2. In case of the classic GMM, the

models had different number of mixture components ranging from 1 to 16. The EGMM were

evaluated with an increasing complexity: The number of mixture components range from one

to the index of the current model. Hence, the ensembles {{1}, {1, 2}, {1, 2, 3}, . . . , {1 . . . 16}}

were evaluated. The loss function was computed using a numerical integration with equidis-

tant samples generated in the interval [−0.5, 1.5] and a step size of 10−3. For each value,

the model was estimated 20 times in order to derive the squared bias and the variance.

The results of the bias-variance decompositions are shown in Figure 5.2. The conventional

maximum likelihood GMM results are shown on the left-hand side in the Figures 5.2a, 5.2c

and 5.2e, while the results of the EGMM are shown in the Figures 5.2b, 5.2d and 5.2f. The

plots which show the beta distributions with a = b = 10 have different scales on the y-axis.

The squared bias (dashed curve) captures the average prediction difference from the desired

density function. As to be seen in the figure, the squared bias had over a wide range only

a minor contribution to the squared loss (solid line). The variance (dotted curve) which

measures the extend to which individual solutions vary around the average generally had

a bigger impact to the squared loss. Figure 5.2a, Figure 5.2c and Figure 5.2e show the

performance of classic maximum likelihood GMM for different beta distributions starting

from a non-Gaussian distribution to distributions which are closer to the Gaussian distri-

bution. For all evaluations, the variance and squared bias increased with higher model

complexities. In Figure 5.2a, the squared bias dropped slightly for GMM having around

four mixture components. In general, the squared loss significantly increased for all plots.

The Figure 5.2b, Figure 5.2d and Figure 5.2f depicting the EGMM showed a clearly different

behavior. In contrast to the classic GMM, the squared loss of the EGMM remained stable in

case the complexity of the models increased. Regarding the non-Gaussian beta distribution

(a = b = 1) the squared loss error even started to decrease, mostly due to the low variance.

5.1.3. Summary

The study on EGMM comprise of two experiments which showed that the EGMM pro-

vides robust and accurate density estimations. The first experiment compares the EGMM

with conventional and partially problem-tailored approaches (Table 5.1). The EGMM is the

best performing algorithm on the ODI and the second best performing algorithm on the

ODII. The penalized likelihood which had the best performance on the ODII based on a
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regularized density with a conjugated prior such that the estimations can be regarded as

being tailored to the problem setting.

The second experiment examines the robustness of the EGMM approach using the BDD.

The classic GMM was compared with the EGMM with the help of the bias-variance decom-

position. The results showed that with increasing model complexity, the test errors of the

GMM increased, while the test errors of the EGMM remained stable (Figure 5.2). This be-

havior was further examined by decomposing the test error (squared loss) into the squared

bias and variance. It turned out, that for both approaches the squared biases stayed stable.

However, the variances of the GMM and EGMM showed different behaviors. The variances

of the GMM increased which indicates that the variation between the models was higher for

more complex GMM. In contrast to that, the variances of the EGMM did not increase. This

proves that the EGMM approach can provide more robust models with lower variations.

5.2. HMM Graph Probability Densities for Action

Recognition

This section studies the HMM-GPD using the two datasets presented in Section 4.1.2.

First, the results on the OAD are presented followed by the results on the UUlmMAD.

5.2.1. Occlusion Action Dataset

The classification using the OAD was performed by training one HMM-GPD for each

of the three actions classes “Drink”, “Eat” and “Read”. The class assignment given a new

sample sequence was done by choosing the model with the highest likelihood. The meta-

parameters of the HMM, e.g. number of hidden states, shape of the covariance matrix and

type of transition matrix, were determined using the inner cross-validation folds.

As already described in Section 4.1.2.1, the training and test sets of the OAD comprise six

different occlusion configurations which were introduced in Figure 4.4 and match the letters

from a to f. Table 5.2 reports the performances on compilations of occlusion configurations.

Two settings were evaluated: (1) a training set without occlusion and (2) a training set

with samples of mixed occlusions. The upper half of the table shows the results when

performing the training without sequences containing incomplete graphs. In this setting,

each HMM-GPD was trained using four hidden states and a full transition and covariance

matrix. According to the second setting which is presented in the lower part of the table the

models were trained using all occlusion configuration sets. The corresponding HMM-GPD

were trained with five hidden states and a full transition and covariance matrices.

In the first setting, the classification performances decreased with the degrees of occlu-

sion. The reference experiment testing the occlusion configuration (a) which was free of any
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Table 5.2. Accuracies and F1-measures for HMM using graph probability on the Oc-
clusion Action Dataset. The first column and second column show the occlusion configurations
used for training set and test sets. All values averaged with standard deviation. Arrows indicate
how to rate the measures.
Training Testing ↑Accuracy ↑F1(Drink) ↑F1(Eat) ↑F1(Read)

a a 80.1±2.6 % 75.4±4.9% 79.6±8.6 % 86.8±7.6 %
a b 78.1±7.5% 77.3±11.6 % 73.6±4.9% 84.7±9.9%
a c 72.2±6.5% 64.7±5.9% 79.2±6.6% 71.2±9.0%
a d 70.4±4.2% 62.9±4.0% 76.9±2.8% 70.4±11.3%
a e 68.7±3.0% 63.6±5.3% 74.5±3.1% 68.0±5.6%
a f 69.0±5.3% 63.0±10.1% 70.7±5.0% 74.2±5.3%
a ab c d e f 72.7±2.7% 67.6±5.2% 74.4±3.2% 77.0±5.6%
ab c d e f a 81.5±6.8 % 79.6±10.2 % 81.6±6.8 % 83.0±10.6 %
a b c d e f b 71.7±9.2% 75.7±7.1% 71.4±7.5% 65.1±20.1%
ab c d e f c 74.2±7.1% 69.7±11.1% 77.6±6.8% 74.7±8.5%
ab c d e f d 73.2±3.5% 68.7±7.9% 77.3±3.6% 73.3±7.4%
ab c d e f e 69.5±3.3% 65.8±3.8% 72.6±3.3% 70.1±6.7%
ab c d e f f 66.8±4.1% 63.8±3.9% 68.9±2.7% 68.3±12.2%
ab c d e f a b c d e f 72.8±5.9% 71.0±7.9% 74.9±5.4% 71.4±6.0%

occlusions led to a three-class classification accuracy of 80.1%. Testing with the occlusion

configuration (b), i.e. all edges containing the head node were removed, yielded only in a

slightly decreased accuracy of 78.1%. Removing the head node preserved the information of

both hands which explains the good performance in the sparse graph. Removing the left or

the right hand nodes from the samples of the test set, i.e. occlusion configuration (c) and (d),

led to accuracies of 72.2% and 70.4$ being clearly lower than the baseline accuracy of the

occlusion configuration (a). In case of occlusion configuration (e) and (f), i.e. the complete

left side or right side was removed from the samples of the test set, the three-class accuracies

dropped down to 68.7% and 69.0%. The last experiment shows the performance when train-

ing on sequences containing exclusively complete graphs and testing on all possible occlusion

configurations. The experiment achieved an accuracy of 72.7%.

The lower part of Table 5.2 shows the results of the second experiment in which the

training was performed using a mixed sample set containing all sorts of occlusion config-

urations. Performing the test on the data of occlusion configuration (a) led to the overall

highest accuracy of 81.5%. The test set in which the head node and the adjacent edges

were removed, i.e. occlusion configuration (b), yielded in a reduced accuracy of 71.7%. The

low accuracy can be explained by the low performance of the third class “Read note” which

is revealed by the F1-measures. Occlusion configuration (c) and (d) had slightly increased

performances compared with the results of the upper half of the table and achieved accu-

racies of 74.2% and 73.2%, respectively. Removing a complete side of the skeleton model,

i.e. configuration (e) and (f), resulted in the overall lowest accuracies of 69.5% and 66.8%.

The last experiment in which training and testing was performed using the mixed set of

occlusion configurations led to an accuracy of 72.8%.
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In addition to the accuracies, per-class F1-measures were provided for all experiments.

The values differed only slightly which indicates that the recognition was not unilateral, but

balanced over all classes. The only exception constituted the setting in which the training

was performed on the mixed set of occlusion configuration and testing was conducted on data

of occlusion configuration (b). Here, the class “Read note” has a noticeable low F1-measure.

5.2.2. UUlm Multi-perspective Action Dataset

This section presents three experiments which were conducted using the UUlmMAD.

The first experiment serves as a baseline. It provides comparative results by evaluating a

conventional approach. The second experiment and third experiment examine the HMM-

GPD and CHMM-GPD, respectively.

5.2.2.1. Baseline Experiment

The baseline experiment examines the state-of-the-art architecture which is shown in

Figure 5.3 and was proposed by Laptev et al. (2008). The architecture is composed of a

feature extraction step including bag of words generation and a classification step. In a

first step, the high-resolution RGB videos are converted into gray scale videos having a

resolution of 240 × 320. Prior experiments showed that this conversion is optimal for the

given recognition task. A Harris 3D interest point detector was then used to find informative

locations in the spatial and temporal domain of a video (Harris and Stephens, 1988; Laptev,

2005). Scale-invariance was achieved by using three different scales where the image size

was halved at each scale. The number of detected interest points varied strongly from 240

to 1500 depending on the motions and contours present in the video. Histogram of oriented

gradients (HOG) and histogram of optical flow directions (HOF) features were extracted

from the patches covering the pixel neighborhoods of the interest point locations. The sizes

of these patches were based on the detection scale. Each patch was subdivided into a 3× 3

spatial grid and two cubes in the temporal domain. In every cube, a HOG with four bins

of orientations and a HOF with five bins of flow directions were computed. The HOG

and HOF features were then concatenated to a hybrid histogram of 162 dimensions, i.e.

4 × 3 × 3 × 2 = 72 HOG features and 5 × 3 × 3 × 2 = 90 HOF features. Subsequently, the

distribution of the hybrid histograms of all detected interest points was transformed into a

fixed-length representation using the bag-of-words approach (Laptev et al., 2008). To do so,

a codebook using a clustering algorithm was generated. The fixed-length representation was

created by identifying the cluster assignments and binning them into a histogram, the so-

called signature. The codebook was generated using a training set composed of 200 randomly

chosen hybrid histograms from each video. A number of 2000 codebook clusters, i.e. the

words, were learned using the k-means algorithm. The signature of a new test recording was
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Figure 5.3. State-of-the-art classifier architecture used for the baseline experiment
on the UUlm Multi-perspective Action Dataset. The feature extraction was based on an
interest point detector. HOG and HOF features were extracted in the neighborhood of these
interest points which were then transformed into a bag-of-words representation. The classification
was then performed using a multi-class SVM. The solid arrows show the information flow of the
training procedure, whereas the dashed line represents the information flow of the test procedure.
A partition of the data for training was used to perform the k-means clustering.

created using 200 randomly chosen hybrid histograms. Classification was realized using a

one-vs-one L2 soft-margin SVM with linear kernels. The generation of the codebook and the

SVM training and the related parameter search was conducted using leave-one-subject-out

cross-validation.

Table 5.3 shows the results obtained using four training configurations. The first three

training configurations used data from one of the three camera perspectives. The fourth

training configuration utilized all three camera views for training. Testing was performed

using all three camera perspectives independently.

Table 5.4a shows the results in which the training was performed using the data of the

frontal camera c1. Testing on the data from the same camera c1 rendered an accuracy of

99.3% which turned out to be the highest accuracy in the complete study. In this setting,

“Hand wave” (EL1) and “Pick up” (EL2) were occasionally confused which is also reflected

in the slightly weaker F1-measures of 96% and 97%. This can be related to the fact that

both actions have a similar downward motion in common. Testing on the data of the side-

view camera c2 resulted in a low accuracy of only 27.7%. The numerous class confusions

were caused by the change of the camera perspective. The class “Torso twist” (ST2) having

a high F1-measure constituted an exception. The good performance can be explained by

the fact that in action ST2, the subjects turns from camera c1 to camera c2. This results

prominent and similar movements in both views which in turns led to similar features.

The class “Stationary lunge” (SP1) had the second highest F1-measure. It was recognized
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Table 5.3. Accuracies and F1-measures of the baseline architecture on the UUlm
Multi-perspective Action Dataset. (a, b, c) Training performed using data derived from only
one camera perspective and testing on data derived from all three cameras perspectives. (d) Training
and testing performed on data derived from all three cameras perspectives. All values averaged with
standard deviation.

(a)
Training c1
Testing c1↑ c2→ c3 →
↑Acc. 99.3±1.3 % 27.7±6.5% 56.4±8.0%

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 1.00±.00 0.00±.00 0.87±.29
EL2 0.96±.11 0.00±.00 0.06±.16
EL3 0.97±.07 0.01±.06 0.25±.38
SP1 1.00±.00 0.76±.17 0.91±.12
SP2 1.00±.00 0.45±.39 0.79±.32
SP3 1.00±.00 0.20±.31 0.65±.39
SP4 1.00±.00 0.24±.20 0.82±.15
SP5 0.99±.03 0.00±.00 0.42±.31
SP6 0.99±.03 0.01±.08 0.32±.32
SP7 0.99±.03 0.02±.06 0.10±.17
ST1 1.00±.02 0.21±.19 0.46±.10
ST2 1.00±.00 0.91±.20 0.99±.05
ST3 1.00±.00 0.48±.24 0.64±.08
ST4 0.99±.03 0.00±.00 0.03±.10

(b)
Training c2
Testing c1↑ c2→ c3 →
↑Acc. 28.9±5.8% 96.9±2.8 % 69.0±6.7%

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.00±.00 0.94±.14 0.03±.16
EL2 0.00±.00 0.79±.29 0.33±.31
EL3 0.00±.00 0.99±.04 0.86±.20
SP1 0.66±.19 0.99±.04 0.82±.15
SP2 0.26±.39 0.99±.03 0.68±.34
SP3 0.38±.36 1.00±.00 0.99±.04
SP4 0.25±.03 1.00±.02 0.57±.15
SP5 0.03±.12 0.98±.07 0.12±.21
SP6 0.20±.23 0.95±.09 0.70±.19
SP7 0.00±.00 1.00±.00 0.67±.27
ST1 0.00±.00 1.00±.00 0.99±.03
ST2 0.85±.27 1.00±.00 1.00±.00
ST3 0.55±.30 0.99±.04 0.78±.20
ST4 0.00±.00 0.87±.16 0.47±.36

(c)
Training c3
Test c1↑ c2→ c3 →
↑Acc. 58.3±7.5% 76.0±5.6% 99.2±2.0 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.76±.36 0.02±.09 1.00±.00
EL2 0.23±.34 0.67±.30 0.96±.09
EL3 0.02±.09 0.97±.09 1.00±.00
SP1 0.83±.13 0.85±.15 0.98±.09
SP2 0.71±.31 0.72±.34 0.99±.05
SP3 0.77±.15 0.97±.08 1.00±.00
SP4 0.45±.08 0.95±.09 1.00±.00
SP5 0.83±.27 0.00±.00 0.99±.04
SP6 0.58±.18 0.52±.19 0.99±.03
SP7 0.04±.13 0.79±.17 1.00±.00
ST1 0.06±.14 0.98±.08 1.00±.00
ST2 0.95±.11 0.98±.06 1.00±.00
ST3 0.91±.12 0.73±.17 1.00±.00
ST4 0.24±.30 0.81±.21 0.96±.12

(d)
Training c1 c2 c3
Testing c1↑ c2→ c3 →
↑Acc. 97.8±2.6 % 95.4±3.4 % 98.7±2.7 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 1.00±.00 0.93±.12 0.99±.04
EL2 0.92±.12 0.82±.23 0.93±.13
EL3 0.97±.07 0.99±.05 1.00±.00
SP1 0.97±.10 0.97±.11 0.96±.19
SP2 0.98±.06 0.98±.06 0.99±.06
SP3 1.00±.00 1.00±.00 1.00±.00
SP4 1.00±.02 0.99±.03 1.00±.00
SP5 0.98±.04 0.94±.13 0.99±.04
SP6 0.97±.07 0.94±.08 0.99±.03
SP7 0.99±.03 1.00±.00 1.00±.00
ST1 0.99±.03 1.00±.00 1.00±.00
ST2 1.00±.00 1.00±.00 1.00±.00
ST3 0.99±.05 1.00±.00 1.00±.00
ST4 0.93±.10 0.89±.12 0.94±.13

with a high precision, however, “Torso twist” (SP2) was often confused with SP1 which

resulted in a low recall and, hence, in a lower F1-measure. In both actions the subjects

were asked to jump and raise their arms. The test performed on the diagonally-placed

camera c3 achieved an accuracy of 56.4%. A large number of classes had a high recall, e.g.

“Rope jump” (SP1), “Push up” (SP4), “Stationary lunge” (ST1), “Torso twist” (ST2) and

“Shoulder stretch” (ST3). However, there were many confusions leading to a low precisions

which in turn yielded lowered F1-measures. The action SP2 which had a recognition rate

of 75% constitutes as a representative example. An error of 23% was related to a confusion

with action SP2.

Table 5.4b shows the results when performing the training on the data of the lateral

camera c2. Testing on the data of the same camera c2 resulted in a slightly lower accuracy

of 96.9% than the previous training configuration. The accuracies based on data generated
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for the camera c1 and camera c3 were 28.9% and 69.0%, respectively. The action “Hand

wave” (EL2) had the lowest F1-measure of 79% when testing on data derived from the

camera c2. The corresponding recognition rate achieved only 80% which can be related

to the confusion with “Toe touch” (ST4). In turn, the action ST4 had the second lowest

F1-measure of 87% because it was mainly confused with EL2 10%. This can be accounted to

the fact that both actions are composed of a similar downward motion. The testing on data

derived from camera c1 had the second lowest accuracy in this experiment which can be

explained by the dramatic change from one camera perspective to the other. In this setting,

many samples from different classes were attracted by the multifariousness movements of

the class “Push up” (SP4), such as EL1, EL2, EL3, SP3, SP4, SP6, ST1 and ST4. The

action SP4 contains: a turn to the right, the transition to the push up starting position, the

downwards and upwards motions of the exercise, the uprise and, finally, a turn to the left.

In the third setting in which testing was performed using data from camera c3 the highest

F1-measure of 100% was achieved by the action class “Torso twist” (ST2). This can again

be attributed to the advantagous movements which can be observed in all three cameras.

Table 5.4c holds the results of the training configuration in which the training was per-

formed on data derived from the diagonally-placed camera c3. This setting achieved the

most robust accuracies so far. Using the data derived from the same camera for testing

yielded in an accuracy of 99.2%. Testing on data derived from camera c1 and c2 achieved

only accuracies of 58.3% and 76.0%, respectively. The testing on data obtained from camera

c3 resulted in a symmetric confusion of 4% between the actions “Pick up” (EL2) and “Toe

touch” (ST4). Testing on the data extracted from camera c1 shows that almost no samples

were attracted to the classes “Pick up” (EL2), “Dumbbell frontal raise” (SP7) and “Rope

jump” (SP1). Furthermore, a large set of classes were frequently misclassified, e.g. “Dumb-

bell frontal raise” (SP7) was confused with “Dumbbell shoulder press” (SP6) with about

89% and “Stationary lunge” (ST1) was confused with “Push up” (SP4) with about 87%.

Using the data of camera c2 for testing resulted in a better performance than using the data

of camera c1. In this setting, the actions “Hand wave” (EL1) and “Dumbbell lateral raise”

(SP5) had low recognition rates of about 1%. EL1 was often confused with SP6 (40%) SP7

(21%) ST3 (32%), wheras SP5 was often confused with SP6 (49%) SP7 (29%) ST3 (16%).

The results of the last training configuration are presented in Table 5.4d. In this setting,

the training was performed using the data derived from all three camera views. Evaluating

the test data led to accuracies of 97.8% for the data of camera c1, 95.4% for camera c2

and camera c3 98.7%. Analogously to the accuracies, the F1-measures of this training

configuration were exceptionally good, although slightly lower performances were achieved

compared with the first three training configurations which used data derived from only one

camera perspective.
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In summary one can say that a good action recognition can be achieved in case data from

the perspective to be test is already part of the training dataset. The experiments show that

view-invariance cannot be expected from the studied state-of-the-art approach as proposed

by (Laptev et al., 2008). A reliable recognition was only possible in case the training data

comprised the perspectives of the target test data.

5.2.2.2. HMM Graph Probability Densities Experiment

The HMM-GPD approach is examined in the second experiment. All HMM-GPD were

trained using five hidden states and two GMM mixture components for each edge. The

results of the four training configurations are provided in Table 5.5. The first three training

configurations were based on data using only one camera perspective for training. The

fourth training configuration used all three camera views for training. Testing was performed

using all camera perspectives individually. A successful classification using the HMM-GPD

requires that the training data covers all edges sufficiently such that good and representative

statistics can be learned.

Table 5.6a shows the results obtained when training on the data generated using the

viewpoint of the frontal camera c1. This perspective had almost no self-occlusions such

that the HMM-GPD was able to learn a good representation of all actions. Hence, the

approach achieved good results when performing the recognition on each of the three test

sets. The perspectives of camera c1, c2 and c3 achieved accuracies of 98.0%, 87% and

95.7%, respectively. Testing the data of the camera c2 perspective constituted an exception

by having a very low accuracy. Taking a closer look at the F1-measures reveals that some

actions were recognized with low rates, i.e. “Rope jump” (SP1), “Squat jump” (SP3), “Push

up” (SP4) and “Toe touch” (ST4). Especially, the action SP4 stood out by an F-1-measure

of only 5%. This can be related to the unique characteristics of the action SP4 in which the

subjects turns from camera c1 towards camera c2 in order to perform the push up exercise.

As a result, some parts of the body are hidden during the sport exercise from the camera

perspective c1 such that no proper statistics for these edges were learned. However, these

parts became visible from the perspective of camera c2. The insufficient statistics learned for

action SP4 led to a low model likelihood such that the samples of this action were attracted

by samples of other classes, such as SP1 and SP3. For instance, 75.8% of the decisions which

should be assigned to the class SP4 were recognized as the class SP1. The class ST4 was

further frequently confused with the class SP3. The reason for this confusions can be related

to similar extreme positions of the exercise and insufficient data for fitting the observations.

Table 5.6b shows the results obtained when training on data generated using the view-

point of the lateral camera c2. The data of this perspective are associated with heavy

self-occlusions for most of the actions. Generally, the far side of the body is permanently
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Table 5.5. Accuracies and F1-measures of HMM-GPD on the UUlm Multi-perspective
Action Dataset. (a, b, c) Training performed using data derived from only one camera perspective
and testing on data derived from all three cameras perspectives. (d) Training and testing performed
on data derived from all three cameras perspectives. All values averaged with standard deviation.

(a)
Training c1
Testing c1↑ c2→ c3 →
↑Acc. 98.0±2.4 % 87.0±5.0% 95.7±4.1 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 1.00±.00 0.96±.13 1.00±.00
EL2 0.97±.10 0.81±.31 0.80±.34
EL3 0.98±.07 0.98±.06 0.98±.06
SP1 0.93±.14 0.64±.15 0.93±.13
SP2 0.97±.07 0.98±.07 0.98±.06
SP3 0.96±.09 0.77±.19 0.85±.17
SP4 0.96±.18 0.05±.15 0.96±.11
SP5 0.98±.07 0.98±.07 0.98±.07
SP6 1.00±.03 0.97±.08 0.99±.04
SP7 0.99±.03 0.99±.03 1.00±.03
ST1 0.99±.06 1.00±.00 1.00±.03
ST2 0.99±.04 0.99±.04 0.99±.04
ST3 1.00±.00 1.00±.00 1.00±.00
ST4 0.97±.05 0.74±.39 0.84±.31

(b)
Training c2
Testing c1↑ c2→ c3 →
↑Acc. 11.3±2.9% 97.0±3.9 % 31.8±5.5%

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.00±.00 0.96±.08 0.00±.00
EL2 0.00±.00 0.96±.08 0.00±.00
EL3 0.00±.00 0.95±.13 0.00±.00
SP1 0.00±.00 0.96±.10 0.00±.00
SP2 0.02±.09 0.97±.06 0.52±.14
SP3 0.00±.00 0.95±.10 0.31±.21
SP4 0.16±.00 0.92±.18 0.27±.05
SP5 0.00±.00 0.97±.07 0.00±.00
SP6 0.00±.00 0.95±.13 0.00±.00
SP7 0.00±.00 0.97±.11 0.66±.32
ST1 0.00±.00 0.99±.04 0.03±.10
ST2 0.49±.45 0.99±.05 0.96±.11
ST3 0.00±.00 0.98±.05 0.37±.36
ST4 0.00±.00 0.99±.03 0.00±.00

(c)
Training c3
Testing c1↑ c2→ c3 →
↑Acc. 18.1±3.6% 98.3±2.5 % 98.2±2.5 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.09±.21 0.97±.10 1.00±.00
EL2 0.00±.00 0.99±.04 0.96±.13
EL3 0.08±.22 0.99±.04 0.99±.05
SP1 0.00±.00 0.96±.18 0.96±.10
SP2 0.02±.09 0.98±.07 0.99±.06
SP3 0.00±.00 0.97±.07 0.96±.09
SP4 0.17±.01 0.96±.18 0.95±.18
SP5 0.00±.00 0.97±.07 0.98±.07
SP6 0.00±.00 0.97±.06 0.99±.04
SP7 0.00±.00 0.99±.04 0.99±.05
ST1 0.00±.00 1.00±.00 1.00±.00
ST2 0.98±.06 0.99±.04 0.99±.04
ST3 0.50±.34 1.00±.00 1.00±.00
ST4 0.01±.07 1.00±.00 0.98±.07

(d)
Training c1c2c3
Testing c1↑ c2→ c3 →
↑Acc. 98.3±2.4 % 98.3±2.6 % 98.1±2.6 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 1.00±.00 0.97±.10 1.00±.00
EL2 0.96±.08 0.98±.06 0.93±.14
EL3 0.98±.05 0.99±.05 0.99±.04
SP1 0.96±.10 0.96±.18 0.96±.11
SP2 0.98±.07 0.98±.07 0.98±.07
SP3 0.99±.04 0.98±.05 0.97±.07
SP4 0.94±.19 0.96±.18 0.95±.18
SP5 0.98±.07 0.98±.07 0.98±.07
SP6 1.00±.02 0.97±.06 0.99±.04
SP7 0.99±.04 0.99±.04 0.99±.04
ST1 1.00±.00 1.00±.03 1.00±.00
ST2 0.99±.04 0.99±.04 0.99±.04
ST3 1.00±.00 1.00±.00 1.00±.00
ST4 0.98±.07 1.00±.00 0.98±.07

hidden such that no statistics on related edges were learned. This is also reflected in the

results: The recognition based on the same perspective achieved an accuracy of 97.0%,

whereas the recognition based on the diagonally-placed camera c2 has a clearly lowered

accuracy of 31.8% and the recognition based on the frontal camera c1 achieved only an

accuracy of 11.3%. In both cases, the low accuracies can be related to the low number of

observed edges. In this setting, the class “Push up” (SP4) attracted basically all samples of

the other classes.

Table 5.6c shows the results when using the data generated using the diagonally-placed

camera c3 for training. The testing using data rendered from the same camera perspective

c3 and the lateral camera c2 yielded high accuracies of 98.2% and 98.3%, respectively.

However, the recognition based on the frontal camera c1 achieved only an accuracy of 18.1%.

The highest F1-measures in this setting were achieved by the classes “Torso twist” (ST2),

“Shoulder stretch” (ST3) and “Push up” (SP4). In all of these three actions, the subjects
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were asked to perform one or multiple turns towards the camera c2 such that the sequences

representing these actions get a good coverage of all edges. This in turn leads to informative

training and test data.

Table 5.6d shows the last training configuration in which the training was performed on

the mixed dataset generated using all three camera perspectives. In this setting, the testing

on data generated using the viewpoints of camera c1, camera c2 and camera c3 generally

yielded good accuracies of 98.3%, 98.3% and 98.1%, respectively.

The experiment clearly shows that the recognition is less dependent on the viewpoint

of the test data. However, a sufficient coverage of all edges for all actions in the training

data is still mandatory. This issue is addressed in the next section by replacing the HMM

with the CHMM. In a CHMM, hidden states which are associated with GPD can be shared

over actions. Hence, edges with insufficient coverage can be learned with the help of related

actions. The next experiment presents the results obtained using the CHMM-GPD.

5.2.2.3. CHMM Graph Probability Densities Experiment

The last experiment on the UUlmMAD combines the benefits of the GPD with the

benefits of the CHMM. The sharing of hidden states in the CHMM-GPD allows to set up

statistics on edges for action which are observed by other actions. All CHMM were trained

using 50 hidden states and edges being modeled using two GMM mixture components. The

results of the four training configurations are provided in Table 5.7.

Table 5.8a shows the accuracies and F1-measures in case the training was done with data

generated from the viewpoint of the frontal camera c1. Testing data of all three camera

perspectives c1, c2 and c3 led to a view-invariant recognition with accuracies of 97.1%,

94.1% and 95.5%, respectively. The lowest F1-measure of 93% was obtained regarding the

class “Toe touch” (ST4) when using test data generated from the perspective of c1. The

performance of the class ST4 can be related to the frequent confusion with the classes “Squat

jump” (SP3) 6.2% and “Sit down” (EL3) 3.1%. This result is not surprising given that no

orientation and location with respect to the world coordinate system is presented in the

graph data. In case the data were derived from the viewpoint of camera c2, the class “Pick

up” (EL2) has the lowest F1-measure of 83%. The strongest confusion took place with the

classes “Squat jump” (SP3) 9.4%, “Push up” (SP4) 6.2%, “Sit down” (EL3) 4.2% and “Toe

touch” (ST4) 3.1%. Again the confused actions were characterized by similar movements.

The reasons for this low performance are most probable the limited observability of the

graphs due to the perspective and the coarse modeling of the exact movement execution

times in the Markov model. The lowest F1-measure of 80% regarding the data generated

for the viewpoint of camera c3 was as well achieved by the class “Pick up” (EL2). The

confusions were exactly the same as with the data generated for the viewpoint of camera c2.
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Table 5.7. Accuracies and F1-measures of CHMM-GPD on the UUlm Multi-
perspective Action Dataset. (a, b, c) Training performed using data derived from only one
camera perspective and testing on data derived from all three cameras perspectives. (d) Training
and testing performed on data derived from all three cameras perspectives. All values averaged
with standard deviation.

(a)
Training c1
Testing c1↑ c2→ c3 →
↑Acc. 97.1±3.3 % 94.1±5.8 % 95.5±4.5 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 1.00±0.00 0.86±0.27 1.00±0.00
EL2 0.95±0.11 0.83±0.30 0.80±0.34
EL3 0.95±0.10 0.89±0.19 0.94±0.10
SP1 0.97±0.08 0.97±0.08 0.97±0.08
SP2 1.00±0.03 0.99±0.04 1.00±0.03
SP3 0.95±0.08 0.93±0.11 0.92±0.11
SP4 0.93±0.12 0.89±0.19 0.91±0.19
SP5 0.98±0.07 0.95±0.09 0.98±0.07
SP6 0.99±0.04 0.96±0.06 0.99±0.04
SP7 0.99±0.03 0.99±0.05 0.99±0.03
ST1 0.99±0.06 0.98±0.07 0.98±0.08
ST2 0.95±0.13 0.96±0.13 0.94±0.14
ST3 1.00±0.00 1.00±0.00 1.00±0.00
ST4 0.93±0.19 0.86±0.23 0.90±0.16

(b)
Training c2
Testing c1↑ c2→ c3 →
↑Acc. 46.4±7.8% 96.5±4.1 % 78.7±7.9%

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.00±0.00 0.92±0.14 0.13±0.28
EL2 0.55±0.35 0.90±0.25 0.79±0.32
EL3 0.74±0.31 0.97±0.07 0.87±0.21
SP1 0.38±0.15 0.98±0.06 0.84±0.21
SP2 0.51±0.34 0.96±0.18 0.95±0.18
SP3 0.69±0.20 0.94±0.11 0.69±0.17
SP4 0.44±0.15 0.93±0.19 0.81±0.22
SP5 0.01±0.07 0.94±0.11 0.76±0.32
SP6 0.05±0.18 0.97±0.07 0.55±0.38
SP7 0.17±0.34 0.99±0.03 0.92±0.10
ST1 0.65±0.39 0.98±0.07 0.87±0.24
ST2 0.92±0.15 0.97±0.10 0.96±0.11
ST3 0.44±0.41 0.99±0.04 0.75±0.25
ST4 0.16±0.32 0.99±0.04 0.58±0.41

(c)
Training c3
Testing c1↑ c2→ c3 →
↑Acc. 73.8±9.4% 95.9±4.7 % 96.8±3.6 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.50±0.41 0.82±0.32 1.00±0.00
EL2 0.64±0.34 0.92±0.15 0.89±0.20
EL3 0.93±0.13 0.93±0.20 0.95±0.11
SP1 0.56±0.21 0.98±0.06 0.98±0.06
SP2 0.80±0.28 0.99±0.04 1.00±0.03
SP3 0.83±0.17 0.98±0.05 0.95±0.09
SP4 0.67±0.18 0.90±0.19 0.91±0.14
SP5 0.43±0.45 0.95±0.09 0.99±0.06
SP6 0.56±0.43 0.96±0.09 0.99±0.04
SP7 0.51±0.46 0.99±0.03 0.99±0.03
ST1 0.92±0.15 0.98±0.07 0.98±0.07
ST2 0.83±0.25 0.96±0.13 0.95±0.15
ST3 0.95±0.11 1.00±0.00 1.00±0.00
ST4 0.78±0.27 0.97±0.06 0.96±0.09

(d)
Training c1c2c3
Testing c1↑ c2→ c3 →
↑Acc. 97.2±3.7 % 97.3±3.7 % 96.9±3.7 %

↑F
1
-m

ea
su
re
s
pe

r
cl
as
s

EL1 0.99±0.04 0.97±0.10 0.96±0.18
EL2 0.94±0.12 0.95±0.11 0.93±0.12
EL3 0.98±0.06 0.95±0.19 0.98±0.05
SP1 0.98±0.06 0.99±0.05 0.98±0.06
SP2 0.99±0.04 1.00±0.03 0.99±0.04
SP3 0.98±0.08 0.97±0.07 0.96±0.10
SP4 0.91±0.19 0.92±0.19 0.93±0.19
SP5 0.98±0.07 0.97±0.08 0.98±0.07
SP6 0.99±0.03 0.99±0.04 0.98±0.05
SP7 0.99±0.03 0.99±0.04 0.99±0.03
ST1 0.97±0.09 0.97±0.08 0.97±0.09
ST2 0.95±0.13 0.96±0.13 0.95±0.13
ST3 0.99±0.04 1.00±0.00 0.99±0.06
ST4 0.95±0.09 0.96±0.08 0.93±0.13

Table 5.8b shows the performance when training with data generated from the viewpoint

of the lateral camera c2. The data of this perspective are strongly affected by self-occlusion

since most actions were performed in the direction of camera c1. Hence, the achieved

accuracies of 46.4%, 96.5% and 78.7% for the testing on data generated using the viewpoint

of camera c1, c2 and c3 have only a mid-field performance. Regarding the test data rendered

from the perspective of camera c1, samples of almost all classes were occasionally confused

with either “Rope jump” (SP1) or “Push up” (SP4). This is most probably related to the

fact that these actions have a high chance to provide sequences of complete graphs during

training such that they were well represented in the learned CHMM-GPD. As excepted,

testing on the data using the same perspective of camera c2 performed good. The class

“Pick up” (EL2) had the lowest F1-measure of 90% since it was occasionally confused with

the class “Squat jump” (SP3) 9.4% and class “Push up” (SP4) 2.1%. In case of testing on
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the data created from the viewpoint of camera c3, the classes “Squat jump” (SP3) and “Push

up” (SP4) attracted a large number of samples from other classes. The class “Hand wave”

(EL1) constituted an exception since it achieved only an F1-measure of 13%. In this special

case, most of the class samples were assigned to the action “Shoulder stretch” (ST3) 53.1%

and “Dumbbell frontal raise” (SP7) 19.8%. The low performance is most likely related to

the extremely low number of visible edges. In the worst cases regarding the action “Hand

wave” (EL1), only the hand and head nodes of the upper skeleton model can be observed

from the viewpoint of camera c2.

Table 5.8c shows the results when training with data using the viewpoint of the diagonally-

placed camera c3. The testing on data generated using the perspectives of camera c1, c2 and

c3 achieved accuracies of 73.8% 95.9% and 96.8%, respectively. The lowest accuracy was

obtained when testing on data created using the perspective of camera c1. In this setting,

a large number of samples was attracted by the classes “Rope jump” (SP1) and “Push up”

(SP4). The lowest F1-measure of 43% was achieved by the class “Dumbbell lateral raise”

(SP5). Here, a major share of 51.5% of the samples were attracted by the class SP1. Testing

on data generated from the perspectives of camera c2 and c3 achieved very good recognition

rates. The class “Hand wave” (EL1) has the lowest F1-measure of 82% using the data cre-

ated for the viewpoint of camera c2. The samples of the class were confused with “Dumbbell

lateral raise” (SP5) 11.5% and “Dumbbell shoulder press” (SP6) 9.6%. Regarding the data

generated for the viewpoint of camera c3 the lowest F1 measure of 89% was achieved by class

“Pick up” (EL2) because of a confusion with the classes “Push up” SP4 7.3% and “Squat

jump” (SP3) 6.2%.

Table 5.8d shows the performance of the last configuration in which the training was

performed using samples generated from all three perspectives. The testing on data created

for the individual camera perspectives c1, c2 and c3 achieved accuracies of 97.2%, 97.2%

and 96.9%, respectively. The action “Push up” (SP4) has the lowest F1-measure of 91%

among all actions when testing on data generated using the viewpoint of camera c1. The

class attracted a large number of samples from other classes such as “Stationary lunge”

(ST1) 5.5% and “Torso twist” (ST2) and “Pick up” (EL2), both with 4.2%. Given that the

data were rendered from the perspective of camera c2, the action “Pick up” (EL2) had the

lowest F1-measure of 95%. In this setting, the samples of class EL2 were mainly confused

with “Squat jump” (SP3) 3.1% and “Push up” (SP4) 2.1%. Testing with data derived from

the viewpoint of camera c3 led to low F1-measures of 93% for the class “Pick up” (EL2),

“Push up” (SP4) and “Toe touch” (ST4). These F1-measures were largely related to the

classes “Squat jump” (SP3) and “Push up” (SP4) which attracted samples of other classes.

Furthermore, EL2 and ST4 were occasionally confused in both directions.

The CHMM-GPD showed the best view-invariance performance of all three examined
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Figure 5.4. Probability distribution over time derived performing exact inference on
the CHMM-GPD. The figure shows the process of data extraction and the output probability
distribution. The upper part of the figure shows from left to right: the frame of the camera c2, the
rendered human avatar to derive the self-occlusion information, the skeleton model in which the
red markers indicate the joints to be removed and the probability distribution of the current frame
and the accumulated probability distribution. The lower plot shows the class probability over time,
whereas the orange area denotes the actual action class. For a detailed description please refer to
the text.

approaches. Recognitions using the CHMM-GPD can be performed from any perspective

once a sufficient statistics was trained. This was for instance the case in the first training

configuration.

Figure 5.4 depicts the inferred probability distribution of the random variables of the

causal sequence using a uniform prior. The picture on the left-hand side shows a frame of the

camera c2 depicting the subject in the middle of the action “Rope jump” (SP1). The second

picture from the left shows the rendered human avatar generated using the motion capturing

data which was used to derive the self-occlusion information. The second picture from the

right shows the skeleton model itself. The green markers show the joints visible, whereas the

red markers represent the joint which cannot be observed due to self-occlusion. The occluded

joints were removed from the sequence of skeleton models past to the CHMM-GPD. The

picture on the right-hand side shows the probability distribution of the current frame and the

accumulated probability distributions so far. The currently highest probability is assigned

to the action “Rope jump” (SP1), while the second highest probability is given to the action

“Push up” (SP4). This can be explained by the fact that the orientation of skeleton model

was not considered. The current pose has a similarity with the pose of a subject facing the

floor and performing the push up exercise. The accumulated probability distribution shows
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that the action “Rope jump” (SP1) has gathered the highest amount of probability so far.

The distribution over time is depicted in the plot at the bottom of the figure. The beginning

of the sequence, contains a long phase in which the subject remains in the neutral position.

The orange area represents the probability assigned to the actual action class. Whenever

the subject’s rope is in the back and gains momentum for the next swing, the probability

over time forms a peak. Obviously having the arms pushed back as far as possible is a good

indicator for the actual action.

5.2.3. Summary

The study to examine the HMM-GPD and CHMM-GPD is composed of two parts.

The first part using the OAD shows that the HMM-GPD approach can handle datasets

of incomplete features during training and testing. The second part which was performed

using the UUlmMAD shows that the graph sequences can be composed of graphs with

variable appearances. It examines a state-of-the-art architecture (Laptev et al., 2008), the

HMM-GPD and the CHMM-GPD which uses a common representation across classes.

In the first part, the HMM-GPD was used to train and test on sets created from different

occlusion configurations of the OAD. The results show that despite incomplete feature sets, a

training and classification can still be performed (Table 5.2). In both cases, the performances

decreased only marginally with the degree of occlusions. Within the OAD, each sequence

was composed of graphs with varying weights, but with the same structure.

The second part uses the UUlmMAD which features sequences of graphs having variable

size. Results of three experiments were provided: (1) a state-of-the-art image-based action

recognition architecture, (2) HMM-GPD and (3) CHMM-GPD. In all experiments, four

training configurations were analyzed: (1,2,3) training on data generated using only one of

the three perspectives and testing on data of each single perspective and (4) training on

mixed data generated using all perspectives and testing on data of each single perspective.

The first experiment shows that the image-based action recognition architecture is sen-

sible for changes in the perspective. In case the training was performed using data from

only one perspective, the recognition rates severely dropped when testing on data recorded

from other perspectives. Only in the case training was performed on data of all three camera

perspectives, good recognition rates was achieved for the very same perspectives (Table 5.3).

Hence, actions have to be recorded for all perspectives which are intended to be recognized.

The second experiment examines the HMM-GPD. The major requirement for a success-

ful application of the HMM-GPD is to obtain sufficient statistics on all edges of the graphs.

As pointed out in Section 4.1.2.2, there are specific perspectives under which the data cover

certain actions insufficiently. The results show that if a representation based on one perspec-

tive was learned, it is likely that the HMM-GPD approach is able to recognize the actions
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given data generated using the same perspective (Table 5.5). Complete view-invariance can

be achieved in case the training data sufficiently cover all edges. This is already the first

step towards view-invariance.

In the third experiment, the HMM-GPD was replaced by the CHMM-GPD in order to

find a common representation for all actions. The CHMM-GPD shares the hidden states

for all actions and, hence, clusters similar body poses. Actions which cover edges insuf-

ficiently can benefit from the distributions of edges of other related actions. The results

show that it is clearly more likely to learn a sufficient representation compared with the

HMM-GPD. The CHMM-GPD achieved higher recognition rates which confirm an improved

view-invariance (Table 5.7). In three cases low accuracies of 46.4%, 73.8% and 78.7% were

achieved for the 14-class classification problem. These cases can be explained by the insuffi-

cient coverage of edges in the training data. In all other nine cases, the classifier accuracies

were over 94%. Hence, the CHMM-GPD outperforms the HMM-GPD and the state-of-the-

art architecture.

5.3. CHMM MCS for Laughter Spotting

The next study examines three temporal classifier architectures operating on unseg-

mented data and the HMM-MCS and CHMM-MCS in particular. It is composed of two

experiments which base on the Freetalk Dataset. The first baseline experiment compares

the three MCS based on the different classifiers (Scherer et al., 2012b), whereas the second

experiment examines the HMM-MCS and the CHMM-MCS (Glodek et al., 2011c).

5.3.1. Baseline Experiment

The experiment examines three MCS using different base classifiers, namely (1) the

neuronal-motivated echo state network (ESN) (2) the probabilistic HMM and (3) the L2 soft-

margin SVM from the statistical learning theory. All MCS are depicted in the Figure 5.5.

In the following, short outlines of these classifier architectures are given.

5.3.1.1. ESN architecture

The first classifier architecture makes use of the ESN and is depicted in Figure 5.5a. An

ESN is a recurrent neuronal network which can process sequential patterns (Jaeger, 2002).

The key idea is to generate a sparse random matrix W which is called the reservoir and

a random input neuron matrix Win. The input and output of the network are given by

xt ∈ RM and yt ∈ [0, 1]I where t denotes the time step, M denotes the feature dimension

and I denotes the number of classes to be predicted. The state of the neural network zt+1 is

given by f(Winxt+1+Wzt) where f is a sigmoid function. The network output is derived by
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(a) ESN architecture (b) HMM architecture

(c) SVM architecture

Figure 5.5. MCS architectures studied using the Freetalk Dataset.

yt+1 = fout(Woutzt+1) where fout is as well a sigmoid function. Mapping from the network

state to the target label is performed by the matrix Wout. It is trained by collecting the

reservoir states in a matrix Z and using the pseudo-inverse Z+ to obtain the weighting

matrix Wout = (Z+Ŷ)T where Ŷ is the matrix of inverted sigmoid teacher signals. The

level of reservoir activation is controlled using the spectral radius of the matrix W. The

network requires a number of iteration to adjust itself to the input data. Therefore, the

input sequences must have a sufficient length in order to perform a successful training.

The training on Freetalk Dataset is done by concatenating the pre-segmented data samples.

The operations to perform the matrix calculations and the collecting of the intermediate

reservoir states led to high requirements to the computer’s working memory such that only

the MOV and MOD features were able to be processed. The multimodal fusion was achieved

by buffering the audio network output and then downsampling it to the rate of the video

network output. The final outputs were obtained by using a weighted average. The audio

and video modalities were weighted with 0.7 and 0.3, respectively.

5.3.1.2. HMM architecture

The second architecture uses the HMM as the base classifier and is depicted in Fig-

ure 5.5b. All HMM utilized left-to-right transition matrices and eight hidden states. The
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Figure 5.6. Time window used by the HMM architecture to handle of different sample
rates. The utilized time window has a fixed temporal expansion based on the average length of
the utterances and laughters in the pre-segmented dataset. The combined output of the HMM is
considered to be aligned at the end of the time window.

MOD, PLP and MOV feature sets were utilized and modeled using GMM having eight mix-

ture components with full covariance matrices. The length of the window which was shifted

over the sequential data was based on the average duration of the utterances and laughters

in the pre-segmented dataset. The outputs of all three models were combined by summing

up the log-likelihoods of the same class. The combination was performed by multiplying the

model probabilities. The different sample rates of the feature sets were addressed by nor-

malizing the likelihoods using the length of the individual sequences. Decisions of the HMM

were assumed to be observed at the end of the utilized window, as shown in Figure 5.6.

5.3.1.3. SVM architecture

The SVM architecture which is shown in Figure 5.5c makes use of an additional pre-

processing step. A universal background model (UBM) was created to obtain a fixed-length

feature vector providing an alternative view on the data. The UBM was derived using the

Gaussians being part of a GMM (Scherer et al., 2012b) to form the so-called super-vector.

The generation and adaption process of the UBM GMM is illustrated in Figure 5.7. The

lower left-hand side of the figure shows the generation of the UBM in which a GMM is fitted

to features extracted from training data. The generation of the UBM discards the temporal

order and, hence, treats all samples independently. Test data was provided to the algorithm

in the form of sequences created utilizing a window which was shifted over the recording.

The features extracted from this sequence were again treated independently and passed to

the EM algorithm to perform a fixed number of iterations. The means of the adapted GMM

were then concatenated to obtain the output super vector. Due to the fixed number of

EM adaptations, the means of the GMM representing the super vector moved towards the

distribution of the given test features. Hence, the super vector encodes the difference of the

input sequence to the UBM. The application of the UBM GMM leads to a representation

which has a decreased dimensionality when compared to the original complete sequence of

extracted features. The UBM representing the eight-dimensional MOD features used 20

mixture components and, hence, encoded a 160-dimensional super vector. The UBM which
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Figure 5.7. Generation and adaption of the GMM UBM in the SVM architecture
applied to the Freetalk Dataset. In the first step, the classical feature extraction is performed.
The left-hand side of the figure shows the generation of the GMM UBM based on the features
extracted from the training data. The super vector is obtained by performing a limited number
of EM adaption steps on the extracted features of the test data and then concatenating the mean
vectors of the GMM.

was trained to represent the 21-dimensional PLP features was composed of eight mixture

components which in turn led to a 168-dimensional super vector. No UBM was created for

the MOV features because no suitable GMM parameter configuration could be found. The

fixed-length and time-independent super vector was used to train an L2 soft-margin SVM

having a Gaussian radial basis function kernel and probabilistic outputs (Campbell et al.,

2006b; Platt, 2000). The combination of the decisions from different channels was achieved

by taking the average of the probabilistic outputs.

5.3.1.4. Results

Table 5.9 shows the result of the empirical evaluation of the three architectures in the

setting of pre-segmented and unsegmented pattern recognition. The pre-segmented dataset

was evaluated using 10 × 10 cross-validation. The unsegmented dataset was analyzed us-

ing the independent test recording and was evaluated on frame-level. The table provides

classification performances on the pre-segmented and unsegmented datasets. The first two

columns specify the utilized classifier, i.e. ESN, HMM or SVM, and the utilized feature sets,

i.e. MOD, PLP and MOV. Additional columns provide the F1-measure of the class laughter,

as well as the precision and the recall. Quantities which could not be evaluated are denoted

as being not available “n/a”.

The first part of the experiment is shown on the left-hand side of the table and provides

the results in the pre-segmented setting. The network could not be initialized properly,
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Table 5.9. Error rates, F1-measures, precisions and recalls for different temporal MCS
on the pre-segmented and unsegmented datasets of the Freetalk Dataset. The first
column assigns the utilized classifier architecture, whereas the second column denotes which feature
set was used. The third column shows the error rates obtained on the pre-segmented dataset.
The remaining columns cover the results derived on the unsegmented dataset. The columns show
the error rates, F1-measures, precisions and recalls. All values averaged with standard deviation.
Arrows indicate how to rate the measures.

Pre-segmented Unsegmented

Architecture Feature set ↓Error ↓Error ↑F1 ↑Precision ↑Recall

ESN (MOD) n/a 13.4% 62±16% 50±16% 81±15%
ESN (MOV) n/a 17.8% 46±06% 38±10% 58±19%
ESN (MOD,MOV) n/a 9.1% 63±10% 52±12% 81±15%

HMM (MOD) 9.4% 6.7% 68±17% 63±18% 75±18%
HMM (MOV) 30.2% 26.8% 56±11% 42±10% 85±10%
HMM (PLP) 10.1% 6.8% 70±18% 66±21% 75±19%
HMM (MOD,MOV) 8.2% 7.4% 62±15% 59±21% 65±15%
HMM (PLP,MOV) 7.3% 7.3% 69±17% 67±21% 71±19%
HMM (MOD,PLP) 6.5% 6.5% 72±18% 64±20% 80±18%
HMM (MOD,MOV,PLP) 6.3% 7.1% 69±16% 70±18% 68±18%

SVM (MOD) 4.1% 7.6% 48±16% 93±24% 32±11%
SVM (PLP) 7.0% 8.1% 44±12% 53±15% 38±11%
SVM (MOD,PLP) 3.7% 7.2% 38±15% 95±19% 24±10%

because of the shortness of the pre-segmented test sequences. The lengths of the sequences

were insufficient to carry out the adaptation phases of the ESN. Hence, no ESN architecture

results were provided in the pre-segmented setting. The HMM architecture was evaluated

for all feature combinations. In general, the unimodal HMM architectures achieved the

highest error rates of 30.2%, 10.1% and 9.4% for the MOV, PLP and MOD feature sets,

respectively. The combinations of two feature sets achieved notably lower error rates of

8.2%, 7.3% and 6.5% for the (MOD, MOV), (PLP, MOV) and (MOD, PLP) feature sets,

respectively. Combinations with the MOV feature yielded consistently higher error rates

than the combination of the two best unimodal features MOD and PLP. The HMM archi-

tecture which used all three feature sets has the lowest error rate of 6.3% so far. Only three

SVM architecture were empirically evaluated since only the MOD and PLP feature sets were

available. Analogously to the HMM architectures, the multimodal feature set combination

outperformed the unimodal architectures. The unimodal SVM architectures achieved error

rates of 7.0% and 4.1% for the PLP and MOD feature sets, respectively. The multimodal

SVM architecture yielded an error rate of 3.7% and, hence, was the architecture with the

lowest error rate using the pre-segmented dataset.

The right-hand side of the table shows the results of all classifier architectures in the

setting of the unsegmented dataset. Regarding the ESN architecture, the multimodal setting
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(MOD, MOV) rendered the lowest error rate of 9.1%. The ESN architecture using only the

MOD feature achieved an error rate of 13.4%, whereas the architecture using only the

MOV feature set had the highest error rate of 17.8% of all ESN architectures. Again, the

HMM architecture was evaluated for all available features sets. So far, a large number of

modalities was a good indicator for low error rates. However, the results on the unsegmented

dataset were more complex. The HMM architectures making use of the MOV feature set

achieved high error rates of 26.8% (MOV), 7.4% (MOD, MOV), 7.3% (PLP, MOV) and

7.1% (MOD, MOV, PLP). The remaining unimodal and multimodal HMM architectures

performed clearly better and achieved error rates of 6.8% (PLP), 6.7% (MOD) and 6.5%

(MOD, PLP). These error rates were among the lowest for the unsegmented dataset. The

SVM architecture on the unsegmented dataset had a lower performance than on the pre-

segmented dataset. The unimodal SVM architectures yielded error rates of 8.1% (PLP)

and 7.6% (MOD). These error rates were higher than the error rate 7.2% of the multimodal

SVM architecture (MOD, PLP). The highest precision was achieved by the multimodal SVM

architecture with 95%. However, the approach had at the same time the lowest recall of

24% and, hence, had the lowest F1-measure of 38%. It can generally be noted that the SVM

architectures achieved low F1-measures. The architecture with the highest performance on

the unsegmented dataset was the HMM architecture using the MOD and PLP feature sets.

It achieved the highest F1-measure of 72% with a balanced precision and recall. The highest

recall of 85% was achieved by the HMM architecture with the overall highest error rate using

only the MOV feature. A detailed description of all methods and training procedures can

be found in the joint work of Scherer et al. (2012b).

5.3.2. CHMM-MCS and HMM-MCS experiment

The second experiment on the Freetalk Dataset compares the CHMM-MCS and HMM-

MCS architectures which were presented in Section 3.2.3 (Glodek et al., 2011c). The findings

of the previous experiment are used as a baseline. In general, model parameters were chosen

with regard to comparability between the HMM-MCS and CHMM-MCS. Therefore, all

HMM and CHMM were trained using GMM with Gaussians having full co-variance matrices

and a prior based on the number of the class occurrences was utilized.

For each modality, one HMM was trained using eight states with full transition matrix.

In a first step, the ratio of each class per feature set was evaluated to perform the multimodal

late fusion. The ratios were then multiplied in order to obtain a combined overall decision

as described in Section 3.2.3. The calculations were performed in log-space. The error

rates and the corresponding standard deviations are shown in Table 5.11a and were derived

146



5.3 CHMM MCS for Laughter Spotting

Table 5.10. Error rates and F1-measures of the HMM-MCS, the restricted CHMM-
MCS and the unrestricted CHMM-MCS on the Freetalk Dataset. Statistically signifi-
cantly higher results with respect to the HMM-MCS with the lowest error rate are marked by ?.
All values averaged with standard deviation. Arrows indicate how to rate the measures.

(a) HMM-MCS. Models set to 8 hidden states, full transition matrix and 6 mixture components.
Feature set ↓Error rate ↑F1(Laughter) ↑F1(Utterance)

MOD 8.44±1.88% 55.8±11% 95.3±1%
PLP 8.87±1.99% 58.5±9% 95.0±1%
MOV 29.26±5.78% 23.4±5% 81.8±4%
MOD*MOV 8.95±1.82% 53.0±11% 95.0±1%
MOD*PLP 7.45±1.83% 61.5±10% 95.9±1%
PLP*MOV 8.83±2.27% 58.3±10% 95.1±1%
MOD*PLP*MOV 7.29±1.84% 62.1±10 % 96.0±1 %

(b) Restricted CHMM-MCS. Models set to 16 hidden states, restricted transition and 6 mixture
components.
Feature set ↓Error rate ↑F1(Laughter) ↑F1(Utterance)

MOD 9.62 ±1.08% 51.9±7% 94.7±1%
PLP 8.94 ±1.46% 57.5±8% 95.0±1%
MOV 25.43±5.11% 26.5±5% 84.5±4%
MOD*MOV 9.10±1.20% 53.3±7% 95.0±1%
MOD*PLP 7.44±1.73% 61.8±10% 95.9±1%
PLP*MOV 8.87±1.62% 57.3±9% 95.1±1%
MOD*PLP*MOV 7.37±1.80% 61.9±10% 95.9±1%
MOD+MOV 9.05±1.24% 53.6±7% 95.0±1%
MOD+PLP 5.77±1.09%? 67.7±8 %? 96.8±1 %?

PLP+MOV 8.76±1.60% 57.7±9% 95.1±1%
MOD+PLP+MOV 8.24±1.52% 56.5±8% 95.4±1%

(c) unrestricted CHMM-MCS.Models set to 16 hidden states, unrestricted transition matrix and
6 mixture components.
Feature set ↓Error rate ↑F1(Laughter) ↑F1(Utterance)

MOD 10.10±1.84% 52.4±7% 94.3±1%
PLP 8.67±1.21% 38.8±14% 95.3±1%
MOV 21.94±5.12% 24.9±7% 87.0±4%
MOD*MOV 9.98±1.47% 51.1±7% 94.4±1%
MOD*PLP 5.70±1.04%?? 62.6±9 % 96.9±1%??

PLP*MOV 8.43±0.80% 39.9±10% 95.5±0%
MOD*PLP*MOV 5.74±0.99%?? 62.4±9% 96.9±1%??

MOD+MOV 9.96±1.53% 51.2±7% 94.4±1%
MOD+PLP 5.62±1.07%?? 62.5±9% 97.0±1 %??

PLP+MOV 8.30±0.70% 40.3±10% 95.5±0%
MOD+PLP+MOV 7.84±1.36% 51.3±9% 95.7±1%

using 10 × 10 cross-validation. The unimodal classifier performances based on a single

feature set are provided in the first three rows, and achieved error rates of 8.44%, 8.87% and

29.26% for the MOD, PLP and MOV feature sets, respectively. The fusion results based on

combinations of features sets can be found in the consecutive rows. The lowest error rate

of 7.3% was achieved by combining all features set, i.e. MOD, PLP, MOV. The corresponding

F1-measure of 96.0% for the class “Utterance” turned out to be very high, while the F1-

measure of the class “Laughter” achieved only 62.1%. Hence, the class “Utterance” was
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Figure 5.8. Histogram of the class probability distributions provided by restricted
CHMM on the Freetalk Dataset. Probabilities of the class “Utterance” given by black bars,
whereas the probabilities of the class “Laughter” given by gray bars. Model set to 16 hidden states,
restricted transition matrix and 6 mixture components.
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Figure 5.9. Histogram of the class probability distributions provided by the unre-
stricted CHMM on the Freetalk Dataset. Probabilities of the class “Utterance” given by
black bars, whereas the probabilities of the class “Laughter” given by gray bars. Model set to 16
hidden states, unrestricted transition matrix and 6 mixture components.

reliably detected but the class “Laughter” was frequently confused with the opposing class.

The HMM-MCS using only the MOD and PLP feature sets achieved a similar error rate

of 7.45%. The HMM-MCS using the feature sets (MOD*MOV) and (PLP*MOV) achieved

error rates of 8.95% and 9.83%, respectively.
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In the next step, the restricted CHMM-MCS was evaluated. The CHMM utilized in

the MCS was restricted to have the same expressive capabilities as the HMM in the pre-

vious MCS. The restricted CHMM was configured with 16 hidden states and a transition

matrix which was set to zero except for the elements that were initialized by the classic

HMM. One CHMM was trained for each modality using the repeated label as the causal

sequence. The distribution of the class random variable y allows the application of two

different fusion strategies, i.e. multiplication and averaging which are denoted by * and +,

respectively. The error rates and standard deviations of the CHMM-MCS are shown in

Table 5.11b. For brevity, only the most relevant results will be pointed out in the following.

While the unimodal MCS based on the MOD and PLP features achieved slightly higher

error rates of 9.62% and 8.94%, respectively, the MCS based on the MOV feature showed

a clear improvement of around 4%, i.e. an error rate of 25.43%. The *-fusion strategy had

a performance comparable to the fusion using the HMM-MCS, although the multiplica-

tion in both approaches were fundamentally different. The results ranged between 7.44%

(MOD*PLP) to 9.10% (MOD*MOV). The +-fusion strategy achieved as well only mid-range

error rates, however, with one exception. The CHMM-MCS combining MOD+PLP outper-

formed clearly all previous results and achieved an error rate of 5.8% with an F1-measure

of 96.8% for the class “Utterance” and 67.7% for the class “Laughter”. The error rate and

the two F1-measures were statistically significantly better with respect to the paired t-test

than the reference HMM-MCS (MOD*PLP*MOV) with the lowest error rate of the previous

experiment. The p-values below 5% were marked by the symbol ? and below 1% are marked

by the symbol ??.

Figure 5.8 shows the distributions of the restricted CHMM-MCS outputs per class in a

histogram. Each histogram covers a range of [0, 1] with ten bins. The black bars represent

the class “Utterance” having a large number of samples, whereas the gray bars represent the

class “Laughter”. Figure 5.8a, Figure 5.8b and Figure 5.8c show the output distributions

of the unimodal restricted CHMM. The decisions of the unimodal restricted CHMM using

the audio features MOD and PLP had similar class distributions. Almost all decisions

had a high degree of certainty, i.e. they ranged either close to zero or close to one. The

restricted CHMM using the MOV feature set had a broader distribution which expresses

the uncertainty associated with the video modality. Figure 5.8d and 5.8e illustrate the

combined distributions using multiplication and averaging. While the *-fusion strategy

enforced the decidedness of a classes recognition, the +-fusion strategy regarded the diversity

of the classifiers and, therefore, was more easily affected by false decisions due to the MOV

features.

The last part of the experiment analyzes the unrestricted CHMM-MCS using CHMM

with 16 hidden states and fully-populated transition matrix. The results are shown in
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Table 5.11c. Again only the most relevant results will be pointed out in the following.

Applying the +-fusion strategy output of the unrestricted CHMM based on the MOD and

PLP feature sets resulted in a low error rate of 5.7% with an F1-measure of 97.0% for the

class “Utterance” and 62.5% for the class “Laughter”. Furthermore, the *-fusion strategy of

MOD and PLP, as well as MOD, MOV and PLP led to error rates of around 5.7%. The

highest F1-measure of 62.6% regarding the class “Laughter” was achieved by unrestricted

CHMM operating the features MOD and PLP. All three fusion strategies had an error rate

and F1-measure for the class “Utterance” which were statistically significantly better than

the best performing HMM-MCS (MOD*PLP*MOV).

The distributions of the class random variable of the unrestricted CHMM-MCS are pre-

sented in Figure 5.9. The histograms of the unimodal unrestricted CHMM are shown in

Figure 5.9a, Figure 5.9b and Figure 5.9c. While the decisions obtained using the MOD or

PLP feature sets were always certain (also in case of confusions), the CHMM based on the

MOV feature set was considerably less certain about the class decision. Figure 5.9d shows

the *-fusion strategy based on the MOD, PLP and MOV feature sets which achieved the

second lowest error rate. The combination had reduced the error rate while keeping the

decisions certain. The CHMM-MCS using the +-fusion strategy was strongly influenced

by the CHMM using the MOV feature set such that no comparable performance could be

achieved.

5.3.3. Summary

Two experiments examine the performance of the HMM-MCS and CHMM-MCS: (1) a

baseline experiment and (2) an experiment on HMM-MCS and CHMM-MCS in the same

setting.

The first experiment provides the baseline results of three representative architectures:

(1) HMM architecture, (2) ESN architecture and (3) SVM architecture. The pre-segmented

datasets are frequently used to evaluate classifier performances. However, the results can-

not necessarily be transferred to the unsegmented setting. The best approach in the pre-

segmented setting was the SVM architecture followed by the HMM architecture. But it

turned out that the HMM architecture was the best performing approach in the unseg-

mented dataset followed by the SVM architecture (Table 5.9). The reason for the lowered

performance of the SVM architecture can be concluded from additional performance mea-

sures. The low recall and the relatedly low F1-measure showed that the SVM architecture

provided only an unilateral class distribution, i.e. the classifier almost exclusively assigned

decisions to the majority class. In contrast to that, the HMM architecture showed no ten-

dencies for unilateral classifier decisions. Hence, the HMM architecture is clearly the best

choice to perform this recognition task in the unsegmented setting.
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In second experiment, the HMM-MCS was compared with the CHMM-MCS using the

pre-segmented dataset. While one HMM needs to be trained to model each modality and

class of the classification problem, the CHMM requires only one model to be trained for each

modality. In the given setting, the repeated label was used to form the causal sequence.

Two types of CHMM-MCS were evaluated which made use of the restricted CHMM and

the unrestricted CHMM. The probability class distribution provided by the CHMM-MCS

was furthermore used to study two fusion strategies, namely averaging (+) and multiplica-

tion (*). The HMM and restricted CHMM were parameterized to have an almost identical

expressiveness. The unrestricted CHMM still had the same number of hidden states as the

HMM and restricted CHMM, but had no restriction regarding the transition between the

hidden states.

The results showed that the restricted CHMM-MCS significantly outperformed the HMM-

MCS when using the +-fusion strategy and feature sets from all modalities (Table 5.11a and

Table 5.11b). Other combinations of feature sets and fusion strategies turned out to have

a similar or lower performance compared to the best result of the HMM-MCS. The unre-

stricted CHMM-MCS achieved the best results and outperformed the HMM-MCS in three

cases (Table 5.11c). Two out of three of the best unrestricted CHMM-MCS made use of

the *-fusion strategy. Furthermore, the restricted and unrestricted CHMM-MCS clearly

outperformed the HMM architecture in the first experiment. A more detailed analysis was

performed regarding the two fusion strategies. It was shown that the +-fusion strategy is less

sensible to wrong classifier decisions (Figure 5.8). However, the final outputs had a broader

distribution over classes and, therefore, can be regarded as less certain. The *-fusion strat-

egy was susceptible to wrong unimodal classifier decisions with high certainty (Figure 5.9)

because the multiplication tended to favor the most certain ensemble member decisions.

The studies showed that the CHMM-MCS can be successfully applied in the setting

of multimodal fusion and the class probability distributions allow the use of multiple fu-

sion strategies. Furthermore, the study provided evidences that results obtained on pre-

segmented datasets cannot directly be transferred to unsegmented dataset since they are

generally considerably more challenging.

5.4. MFN and Kalman Filter for Affective State

Recognition

This section presents the experiments studying the proposed approaches for temporal

multimodal classifier fusion using the AVEC 2011 Dataset and the AVEC 2012 Dataset.

The first part presents the baseline experiment in which a reference architecture on the
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AVEC 2012 Dataset was empirically evaluated. Subsequently, the architectures of the MFN

and Kalman filter are specified and analyzed.

5.4.1. AVEC 2011 Participation — MCS Baseline Study

The baseline experiment which was conducted on the AVEC 2011 Dataset was designed

to meet the special requirements of an real-world scenario. The goal was to create a tempo-

ral multimodal MCS which is less sensitive to noise, e.g. present in annotation, sensor data,

extracted features or classification. The architecture addressed these issues by using bag-

ging (Breiman, 1996), robust base classifiers and the preservation of the uncertainty between

different components of the architecture. The outputs of the architecture were submitted

to the AVEC 2011 (Glodek et al., 2011d). In the following, three MCS are presented, i.e.

the audio MCS, the video MCS and the audio-visual fusion MCS. The outputs of the MCS

were submitted to the corresponding three sub-challenges.

The MCS which was designed for the audio sub-challenge is depicted in Figure 5.10. The

recognition of each class made use of bagging where each bag was composed of five HMM

classifiers (Breiman, 1996). The HMM were trained for all three feature sets and for each

class and its negation. The number of hidden states and mixture components of the HMM

were optimized using an exhaustive parameter search, resulting in the selection of three

hidden states and two GMM mixture components with Gaussians having full covariance

matrices. In case a feature set turned out to be not informative with respect to a label

dimension, the corresponding HMM were pruned. The evaluation showed that all audio

feature sets carried information about the class “Arousal”. The classes “Expectancy” and

“Power” were supported by the feature set energy, fundamental frequency f0, LPC and the

feature set MFCC. The class “Valence” was only reliably recognized by the HMM making

use of the MFCC feature set. The log-likelihoods were accumulated for the time span

of a conversational turn according to the assumption that the affective state of a subject

changes only slowly and is likely to remain stable within a turn. The classifier fusion was

performed by summing up the all available log-likelihoods of one class. The class decisions

were obtained by choosing the class with the highest likelihood. The resulting crisp class

decisions were submitted to the audio sub-challenge. However, the log-likelihoods were also

used for further processing in the audio-visual MCS.

A schematic drawing of the MCS prepared for the video sub-challenge is depicted in

Figure 5.11. A number of 300 form and 300 motion features were concatenated to train

a ν-SVM having a linear kernel and probabilistic outputs (Schölkopf et al., 2000; Platt,

2000). Due to memory constraints only 10.000 randomly drawn samples from the complete

video sequence were used for training. The optimal values for ν were chosen according to

the parameter search to be 0.3 for “Arousal” and “Power” and 0.7 for “Expectancy” and
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Figure 5.10. Baseline MCS submitted
to the AVEC 2011 audio sub-challenge.
Each label dimension is recognized by a bag
of HMM using a selection of the three feature
sets. The likelihoods are normalized for the
audio-visual MCS. Crisp decisions are obtained
by selecting the classes with the highest likeli-
hoods.

Figure 5.11. Baseline MCS submitted
to the AVEC 2011 video sub-challenge.
Each class is recognized by a ν-SVM having
probabilistic outputs. All outputs are passed
to an MLP for each class which refines the class
predication. Crisp decisions are obtained by se-
lecting the classes with the highest activations.

Figure 5.12. Baseline MCS submitted to the AVEC 2011 audio-visual sub-challenge.
The outputs of the audio and video MCS are collected and passed an MLP for each class which
refines the class predication. Crisp decisions are obtained by selecting the classes with the highest
activations.

“Valence”. The probability masses of all four ν-SVM were concatenated and used as input

to a multi-layer perceptron (MLP) (Haykin, 1999) to obtain a new mapping to the target

classes. The class decisions for the video sub-challenge were derived by choosing the class

with the highest activation. Analogously to the audio sub-challenge MCS, the activations

were used for further processing in the audio-visual MCS.
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Table 5.12. Weighted accuracy and unweighted accuracy of the baseline MCS on the
AVEC 2011 Dataset. The weighted accuracy (WA) corresponds to the correctly detected samples
divided by the total number of samples. The unweighted accuracy (UA) is given by the averaged
recall of the two classes of a label dimension. The table provides the results on the development set
and the challenge test set.

Arousal Expectancy Power Valence
Dataset ↑WA ↑UA ↑WA ↑UA ↑WA ↑UA ↑WA ↑UA

Audio sub-challenge
Devel. set 66.9% 67.5% 62.9% 58.5% 63.2% 58.4% 65.7% 63.3%
Test set 63.5% 65.7% 41.1% 41.4% 43.3% 29.9% 65.4% 65.4%

Video sub-challenge
Devel. set 58.2% 53.5% 53.5% 53.2% 53.7% 53.8% 53.2% 49.8%
Test set 56.9% 57.2% 47.5% 47.8% 47.3% 47.2% 55.5% 55.5%

Audio-visual sub-challenge
Devel. set 69.3% 70.6% 61.7% 60.1% 61.3% 59.1% 68.8% 66.4%
Test set 54.2% 54.3% 58.5% 57.8% 42.7% 40.0% 44.8% 35.9%

The MCS submitted to the audio-visual sub-challenge relied on the outputs of the audio

and video MCS which were already introduced. The design of the architecture is depicted

in Figure 5.12. The log-likelihoods of the MCS of the audio sub-challenge were normalized

and transformed to probabilistic outputs ranging from zero to one and summing up to

one. The activations of the MLP provided by the MCS of the video sub-challenge were as

well transformed to meet the probability axioms. In the next step, the probabilistic outputs

were collected on word-level and combined using averaging and multiplication. The resulting

values were again normalized to range from zero to one and to sum up to one. All values

were concatenated to form a new 12-dimensional feature vector containing the predictions

of all four classes. The feature vectors were then utilized to derive a new mapping using an

MLP. The final decisions were created on the level of conversational turns by normalizing

and collecting the outputs within one turn and combining them using multiplication.

The parameters of the three MCS were determined using all available datasets having

class labels, i.e. the development and training sets. The MCS which provided the final

submission results was trained using the same datasets. Hence, an overfitting on the provided

datasets was intentionally done in order to achieve a generalized result on the test set.

After the submission deadline exposed, the rating of the AVEC 2011 was cut down to

the class “Arousal” since no submissions showed an adequate performance regarding the

other class labels. The audio-visual challenge was withdrawn because of the low number

of two participants. Table 5.12 shows the weighted and unweighted accuracies obtained for

every sub-challenge, class and the two official data partitions: development set and test

set. The proposed MCS of the audio sub-challenge scored second of nine contributions,

whereas the MCS submitted to the video sub-challenge achieved the third place among four

contributions. The weighted accuracy (WA) corresponds to the ratio of correctly detected

samples and the total number of samples. The unweighted accuracy (UA) is given by the
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averaged recall of the actual class and its negation (Schuller et al., 2010).

The accuracies of the sub-challenge MCS ranged generally close to chance levels. As

expected due to the overfitting, the results achieved on the development set regarding all

sub-challenges and classes were commonly higher than the results on the test set. The

audio sub-challenge MCS achieved good test accuracies of 63.5% and 65.4% for the classes

“Arousal” and “Valence”. The accuracies of the classes “Expectancy” and “Power” were below

chance level, i.e. 41.1% and 43.2%, respectively. Similarly, the video sub-challenge MCS

achieved good test accuracies of 56.9% and 55.5% for the classes “Arousal” and “Valence”,

whereas the classes “Expectancy”, “Power” obtained only accuracies below chance level, i.e.

47.5% and 47.6%, respectively. However, the results of the video sub-challenge MCS were

consistently closer to 50% than the results of the audio sub-challenge MCS. According to

the weighted accuracies, the outputs of the audio-visual sub-challenge MCS appeared to be

even less informative. The classes “Arousal”, “Expectancy”, “Power” and “Valence” had test

accuracies of 54.2%, 58.5%, 42.7% and 44.8%, respectively. Obviously, the performance of

the multimodal MCS was below the performance of the unimodal MCS.

The audio classification architecture showed first good results, whereas the video archi-

tecture did not provided any convincing results. This can most probably be related to the

utilized video features which were too generic. The low performance of the audio and the

video classification architectures in turn led to the low performance of the audio-visual clas-

sification architecture. The multimodal and temporal fusion was performed heterogeneously,

i.e. the combination took place on different stages of the architecture and required several

normalization steps. In addition to that the architectures combined first the outputs of the

modalities and then the aggregated the decisions of multiple time steps. However, it is not

clearly in which order the combination should ideally be performed or whether it should

even be performed simultaneously.

The participation in the AVEC 2011 was the beginning of the development and extensive

research of temporal multimodal MCS fusion techniques which are empirically evaluated in

the follow sections.

5.4.2. AVEC 2012 Participation — Markov Fusion Network

The MFN was developed for the submission to the AVEC 2012. All classifiers were ex-

tended to not only provide a probabilistic output, but also an additional confidence measure.

Classifier robustness was again achieved by bagging (Breiman, 1996) and by classifier func-

tions of low complexity which had proven to be well-suited for the recognition of the task at

hand. The final decisions were obtained by averaging the individual outputs of a classifier

ensemble (Breiman, 1996). The calculation of the confidences was based on the standard

deviation σ of the classifier ensemble outputs within a window of two seconds shifted over
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Table 5.13. Absolute correlation coefficient (CC) and root-mean squared error (RMS)
of the MFN MCS on the AVEC 2012 Dataset. The absolute correlation coefficient (CC)
is obtained by taking the absolute value of the averaged correlation coefficients of each recording.
The root-mean squared measure (RMS) error is obtained by averaging the root-mean squared
difference of the predictions and ground truth over all sessions. The table provides the results on
the development set and challenge test set.

Arousal Expectancy Power Valence Mean
Dataset ↑CC ↓RMS ↑CC ↓RMS ↑CC ↓RMS ↑CC ↓RMS ↑CC ↓RMS

Audio sub-challenge
WLSC Test 0.080 3.8 0.130 189.9 0.048 4.1 0.038 4.3 0.074 50.5
WLSC Devel. 0.053 4.3 0.180 194.2 0.081 3.8 0.093 5.6 0.102 52.0

Video sub-challenge
FCSC Test 0.069 24.7 0.140 1133.4 0.022 27.1 0.180 23.3 0.103 302.1
WLSC Test 0.075 4.3 0.182 200.2 0.012 4.3 0.185 4.6 0.113 53.3
FCSC Devel. 0.119 22.2 0.198 1073.2 0.182 22.9 0.137 27.8 0.159 286.5
WLSC Devel. 0.127 4.4 0.195 190.7 0.128 3.9 0.105 5.7 0.139 51.2

Audio-visual sub-challenge
FCSC Test 0.294 32.2 0.268 1178.9 0.268 30.8 0.131 21.7 0.201 315.9
WLSC Test 0.141 4.6 0.223 197.0 0.183 197.0 0.162 4.4 0.177 52.6
FCSC Devel. 0.202 31.4 0.204 1301.4 0.393 27.0 0.148 26.8 0.237 346.6
WLSC Devel. 0.088 5.5 0.211 191.1 0.245 4.5 0.150 5.5 0.174 51.6

the sequence. The measure itself was derived by evaluating 1 − σ multiplied by a ratio of

how many decisions in the window were available. In case the window contained no classifier

outputs, the corresponding confidence was set to zero. Hence, confidence values were higher,

if the consensus of the classifier was strong and many decisions were available. Large parts

of the architecture presented in the previous section were revised. Among others changes,

the video sub-challenge MCS was replaced by a new architecture which made use of the

high-level features extracted from CERT. The video sub-challenge MCS provided its deci-

sions based on a bag of five NBC which was derived for each class. The audio sub-challenge

MCS performed the classification on word-level using a fixed-length feature representation

obtained with the help of HMM according to Bicego et al. (2003). The fixed-length features

were classified using five bags of random forests (Breiman, 2001). Outputs of the audio and

video MCS were systematically rejected in case of a low confidence measure. The rejection

was performed using a rejection rate which defined the ratio of decisions to be discarded.

The MFN was used to combine the outputs of the audio, video and audio-visual MCS. Since

only a two-class classification problem had to be solved, the distributional potential of the

MFN was omitted.

The smoothness and the data potential parameters of the MFN, as well as the rejection

rates for audio and video outputs, were optimized on the development set for each sub-

challenge and class. During conversational turns, the smoothness potential parameters were

lifted to higher values for stronger smoothing. According to cross-validation, the classes

“Arousal” and “Valence” benefit from a strong similarity over time for all sub-challenges.

Therefore, 192 was chosen for the smoothness potential parameter. At the beginning of

each conversational turn, the smoothness parameter was decreased to 8 in the corresponding

frame. The data parameters were set to 0.5 for the outputs of the video MCS and to 0.3
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for the outputs of the audio MCS. A detailed listing of the parameter setting is provided in

Table A.1 in the Appendix.

The influence of the parameters and of the outputs provided by the audio and video

MCS to the MFN cannot be directly conceived due to the complexity of the performed

calculations. One aspect is that there are far more outputs provided by the video MCS

than outputs of the audio MCS. Furthermore, the ratio of rejected samples has a strong

impact, e.g. 90% of the video outputs but only 50% of the audio outputs were rejected in

the audio-visual sub-challenge of the class “Arousal”.

Table 5.13 shows the absolute correlation coefficients (CC) and the root-mean-square

(RMS) errors achieved with the decisions provided by the submitted audio, video and audio-

visual sub-challenge MCS. The final rating of the sub-challenges were performed by taking

the mean of the absolute correlation coefficients of all four classes. In most cases, the

achieved class results clearly outperformed the baseline results of Table 4.5. In particular the

audio-visual sub-challenge MCS regarding the classes “Expectancy” and “Valence” obtained

good performances. However, comparing the CC to the performance of the logarithmic

function and the challenge winner, the achieved results are not competitive. Only the

WLSC regarding the class “Expectancy” in the audio-visual sub-challenge MCS achieved a

higher CC than the challenge winner.

The average performance of the submitted architecture can be related to the ambitious

endeavor of us to recognize the emotional state without further context knowledge, such as

the time or the identity of the emotionally colored interlocutor. As already pointed out, the

annotation of emotional states is very demanding. Errors can originate from the annotation

process which depends on the interpretation and subjective perception of the labels, the

annotators mood and the use of the annotation range and scale, but also on the interface of

the annotation tool. Especially, the temporal dependencies of the classes in the AVEC 2012

Dataset which were identified in Section 4.1.3.3 urged us to refrain from the continuously

labeled dimensions and to return to the crisp class assignments.

5.4.3. AVEC 2011 — Markov Fusion Network

The follow-up experiment analyses the MFN on the AVEC 2011 Dataset in the context of

three classifier architectures which model early, mid-level and late fusion of decisions. The so-

called FRT, RFT and RTF architectures were introduced in Section 3.5.2. Each architecture

realizes three steps, namely the F-step (fusion of decisions), the R-step (rejection of uncertain

decisions) and the T-step (temporal integration of the decisions). The three architectures

are created by varying the F-step. The empirical evaluation focuses on:

1. Early, mid-level and late fusion of decisions

2. A real-world scenario with sensor failures
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3. Confidence-based rejection option

4. Temporal integration of context information (conversational turns)

5. Additional weighting of predictions using classifier confidences

6. Online and offline processing modes.

The temporal integration of context information and the additional weighting of pre-

dictions were performed in the same manner as in the previous experiment on the AVEC

2012 Dataset. However in this experiment, the confidences were not only used to implement

the reject option, but also to weight the data potential by multiplying the data potential

parameter k with the confidence measures over time. The decisions having the lowest confi-

dences were rejected first. A rejection rate defined the ratio of decisions to be discarded. All

architectures were evaluated utilizing the offline and online processing modes as described

in Section 3.5. The window in the online processing mode was set to five seconds and the

estimate of the forth second in the window was stored as the final output. The MFN utilized

the outputs of the last estimation process as initial inputs to speed-up convergence. The

initial inputs were shifted according to the elapsed time of the last estimation process.

5.4.3.1. Unimodal Results

Table 5.14 shows the performance of the raw unimodal audio and video classifier outputs.

Accuracies and F1-measures of the classifiers without rejections are provided in Table 5.15a.

The accuracies of all classes ranged close to 58%. An exception constituted the audio

classifier of the class “Arousal” for which a marginally higher accuracy of 61.8% was observed.

The audio classifiers recognizing the classes “Expectancy”, “Power” and “Valence” rendered

slightly unbalanced class distribution as indicated by the F1-measures. The video classifier

provided generally lower accuracies, but showed less strong tendencies for unbalanced class

distributions compared to the audio classifier. Table 5.15b and Table 5.15c list the classifier

performances when rejecting 10% and 90% of the decisions. Generally, the audio and video

classifiers improved their recognition rates. In Table 5.14, the highest accuracies of 62.7%,

59.1% and 59.1% with respect to the classes “Arousal”, “Expectancy” and “Power” were

achieved when using the audio classifier and rejecting 90% of the samples. The highest

accuracy with regard to the class “Valence” of 67.8% was obtained when using the video

classifier and rejecting 90% of the samples. The F1-measures remained rather stable which

indicates that the class distributions had not changed significantly although rejection was

performed. However, the rejection of decisions resulted in a sparse stream of classifier

predications which were reconstructed using the MFN.

In the next step, the performance of the MFN applied to single modalities for online

and offline processing modes is analyzed. Parameters and rejection rates were determined
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using the training sets of the cross-validation. The MFN parameters utilized are provided

in Table A.3a in the Appendix. The results are presented in Table 5.16. The calculated

performance measures based on the reconstructed decisions, i.e. decisions of all frames were

evaluated. The recognition rates were similar or higher compared to the results of the

raw unimodal audio and video classifier outputs. For example, the accuracies of the class

“Arousal” increased to 71.1% and 63.4% when applying the MFN in online processing mode

to the audio outputs and video outputs, respectively. The accuracies of the classes “Ex-

pectancy”, “Power” and “Valence” remained almost unchanged. However, it has to be re-

marked that, in contrast to the raw unimodal outputs, the decisions provided by the MFN

were available for every frame. The F1-measures of the MFN audio outputs concerning “Ex-

pectancy”, “Power” and “Valence” indicate that the classifier outputs became increasingly

unbalanced which can be related to the sparse and uneven input class distribution. The

class distributions provided by the video MFN were clearly more stable with respect to

Table 5.14. Accuracies and F1-measures of the unimodal word-wise and frame-wise
recognition of the audio and video classifiers for different rejection rates on the AVEC
2011 Dataset. All values averaged with standard deviation. Arrows indicate how to rate the
measures.

(a) No rejection
Audio Arousal Expectancy Power Valence
↑Acc. 61.8±3.6% 58.9±6.3% 57.5±9.4% 57.5±7.9%
↑F1 65.8±3.8% 16.4±7.1% 69.6±9.3% 70.1±6.8%
↑F1 56.7±3.4% 72.6±5.2% 24.7±6.6% 24.9±8.4%
Video Arousal Expectancy Power Valence
↑Acc. 57.0±4.3% 54.7±4.0% 55.7±2.8% 59.9±7.4%
↑F1 60.9±5.1% 49.6±9.4% 57.4±11.3% 67.1±11.5%
↑F1 51.3±9.3% 56.6±10.7% 48.7±12.2% 43.5±7.1%

(b) 10% rejection rate
Audio Arousal Expectancy Power Valence
↑Acc. 62.0±3.5% 58.7±6.3% 57.5±9.4% 57.5±7.6%
↑F1 66.1±3.8% 15.8±7.3% 69.6±9.3% 70.1±6.6%
↑F1 56.9±3.3% 72.5±5.2% 24.5±6.2% 24.4±8.8%
Video Arousal Expectancy Power Valence
↑Acc. 57.7±4.3% 55.0±3.9% 55.7±2.8% 60.4±7.8%
↑F1 61.5±5.2% 50.3±9.5% 57.2±11.3% 67.6±11.9%
↑F1 51.8±9.3% 56.6±10.6% 49.1±12.2% 43.5±7.5%

(c) 90% rejection rate
Audio Arousal Expectancy Power Valence
↑Acc. 62.7±3.1 % 59.1±6.6 % 59.1±9.9 % 57.5±7.6%
↑F1 67.3±2.8% 15.9±8.8% 71.1±9.4% 70.1±6.6%
↑F1 56.4±4.3% 72.7±5.6% 24.2±5.3% 24.4±8.8%
Video Arousal Expectancy Power Valence
↑Acc. 59.5±4.3% 56.9±1.6% 54.4±4.1% 67.8±10.4 %
↑F1 65.0±5.1% 56.0±13.5% 54.9±10.3% 75.6±11.8%
↑F1 50.6±9.3% 52.5±14.0% 50.7±10.0% 41.0±12.7%
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Table 5.16. Accuracies and F1-measures of the reconstructed unimodal streams using
the MFN on the AVEC 2011 Dataset. All values averaged with standard deviation. Arrows
indicate how to rate the measures.

(a) Audio
Online Arousal Expectancy Power Valence
↑Acc. 71.7±6.4 % 56.2±6.7% 58.3±9.8% 60.2±10.6%
↑F1 74.7±6.2% 5.6±3.5% 69.6±9.4% 72.9±8.3%
↑F1 67.3±7.6% 71.3±5.5% 30.7±7.0% 21.6±13.3%
A. rej. 10% 50% 90% 50%
Offline Arousal Expectancy Power Valence
↑Acc. 68.7±6.3% 56.4±6.3% 55.5±10.4% 59.0±10.5%
↑F1 72.6±5.6% 9.5±3.6% 69.4±9.7% 72.8±8.1%
↑F1 63.1±8.6% 71.1±5.5% 10.9±12.4% 11.9±13.8%
A. rej. 0% 90% 0% 50%

(b) Video
Online Arousal Expectancy Power Valence
↑Acc. 63.4±1.9% 58.7±3.9 % 59.0±4.9 % 65.8±9.5 %
↑F1 66.2±5.3% 55.2±11.6% 60.7±13.9% 73.2±11.7%
↑F1 57.0±11.8% 57.9±14.0% 48.4±16.7% 45.9±7.0%
V. rej. 50% 90% 0% 90%
Offline Arousal Expectancy Power Valence
↑Acc. 62.5±4.0% 57.9±4.8% 58.5±5.0% 64.4±9.7%
↑F1 65.0±4.8% 51.5±12.7% 59.9±14.2% 72.0±11.3%
↑F1 56.6±14.2% 58.3±14.7% 48.1±16.8% 45.7±9.2%
V. rej. 50% 10% 0% 90%

the F1-measures when compared with the audio MFN. Furthermore, the offline processing

mode apparently outperformed the online processing which can be attributed to the small

window size. The smoothing in offline processing mode integrated past and the future class

decisions, whereas the window in the online processing was limited to a small segment of

five seconds. Hence, no information of future events was propagated to the position of the

window which provided the final output. This procedure resembles the annotation process

and, hence, is likely to be the reason for the good performance.

5.4.3.2. Multimodal Results

Table 5.19a, Table 5.19b and Table 5.19c provide the performance measures of the mul-

timodal FRT, RFT and RTF architectures. All three architecture provided continuously

decisions even if one modality got temporally lost. The Table 5.19a shows the performance

of the FRT classifier architecture. Both, the online and offline processing modes rendered

similar accuracies and F1-measures. The results showed only a marginal improvement com-

pared with the results of the reconstructed unimodal MFN decisions. The accuracies of the

classes “Arousal” and “Valence” in the online processing mode achieved 66.8% and 62.9%,

respectively. They were lower compared with the accuracies of the unimodal MFN outputs
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Table 5.18. Accuracies and F1-measures of the reconstructed multimodal streams using
three different MFN architectures on the AVEC 2011 Dataset. All values averaged with
standard deviation. Arrows indicate how to rate the measures.

(a) FRT architecture (Figure 3.7a)
Online Arousal Expectancy Power Valence
↑Acc. 66.8±4.4% 60.3±3.9% 58.4±3.7% 62.9±8.7%
↑F1 70.5±3.5% 47.9±10.6% 64.8±8.4% 73.3±8.5%
↑F1 61.5±8.0% 66.7±7.1% 44.5±11.8% 33.3±12.5%
Offline Arousal Expectancy Power Valence
↑Acc. 66.8±4.4% 60.0±3.9% 58.6±8.0% 62.2±9.2%
↑F1 70.7±3.7% 48.5±11.3% 67.7±10.1% 72.7±8.8%
↑F1 61.1±8.2% 65.8±7.5% 38.3±4.4% 32.3±12.4%
A. rej. 10% 90% 90% 90%
V. rej. 90% 90% 90% 90%

(b) RFT architecture (Figure 3.7b)
Online Arousal Expectancy Power Valence
↑Acc. 68.8±5.2% 62.1±2.9 % 61.0±6.0 % 64.3±9.0 %
↑F1 72.5±4.6% 46.5±12.7% 67.2±8.7% 72.9±10.5%
↑F1 63.4±8.6% 69.6±5.2% 45.7±14.9% 40.3±10.3%
Offline Arousal Expectancy Power Valence
↑Acc. 68.2±4.6 % 60.9±4.1 % 59.9±6.2 % 62.6±9.2%
↑F1 72.2±4.3% 42.0±11.9% 64.4±10.6% 72.3±9.6%
↑F1 62.4±7.5% 69.6±5.7% 46.4±16.7% 35.2±12.3%
A. rej. 10% 50% 90% 90%
V. rej. 50% 90% 0% 90%

(c) RTF architecture (Figure 3.7c)
Online Arousal Expectancy Power Valence
↑Acc. 68.9±8.2 % 59.2±5.2% 54.6±3.3% 64.1±9.1%
↑F1 66.7±10.0% 41.2±8.1% 57.2±1.8% 68.1±14.7%
↑F1 70.3±7.9% 68.7±4.3% 50.7±9.4% 54.0±7.3%
Offline Arousal Expectancy Power Valence
↑Acc. 65.8±5.6% 56.8±8.7% 51.4±6.7% 63.4±10.2 %
↑F1 68.7±2.5% 28.9±17.4% 63.4±4.0% 69.3±14.9%
↑F1 61.0±11.8% 67.8±8.7% 25.9±18.2% 46.9±11.2%
A. rej. 10% 50% 90% 50%
V. rej. 50% 90% 0% 90%

in Table 5.16. However, the classes “Expectancy” and “Power” had slightly higher accuracies

of 60.3% and 58.4% compared with the corresponding accuracies in Table 5.16.

Table 5.19b shows the results of the RFT architecture which realizes the temporal and

multimodal fusion simultaneously. Compared to the previous architecture the accuracies

had clearly improved. Furthermore, the RFT architecture outperformed the accuracies of

the unimodal MFN outputs in case of the classes “Expectancy” and “Power” utilizing the

online and offline processing modes. The accuracies of the classes “Expectancy” and “Power”

using the online processing mode were 62.1% and 61.0%, respectively. The accuracies of the

classes “Expectancy” and “Power” using the offline processing mode were 60.9% and 59.9%,

respectively. The accuracies achieved by the RFT architecture for the classes “Arousal” and
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Figure 5.13. Predications for the class “Arousal” derived from multiple modalities
combined by the MFN RFT architecture using data from the AVEC 2011 Dataset. The
orange dots and the blue squared-shaped markers correspond to the video and audio predictions.
Markers in lighter color have been rejected and do not contribute to the MFN. The red ticks indicate
turns or pauses within the conversation. The thick black curve corresponds to the fusion result.
The light gray curve displays the ground-truth. The parameters used are wnormal = 128, wturn =
4, kvideo = .5 and kaudio = 5.

“Valence” were lower than the corresponding accuracies using the unimodal MFN. The class

“Arousal” achieved an accuracy of 68.8% in online processing mode and 68.2% in offline

processing mode. The accuracies of the class “Valence” were 64.3% and 62.6% utilizing the

online and offline processing modes, respectively.

The performance measures of the RTF architecture are shown in Table 5.19c. The RTF

architecture achieved a performance similar to the RFT architecture regarding the classes

“Arousal” and “Valence”, i.e. accuracies of 68.9% and 64.1% using the online processing mode.

The offline processing mode achieved accuracies of 65.8% and 63.4% for the classes “Arousal”

and “Valence”, respectively. The accuracies of the classes “Expectancy” and “Power” were

lower than in the RFT architecture. The online processing mode achieved 59.2% and 54.6%

with respect to the classes “Expectancy” and “Power”, respectively. The offline processing

mode achieved 56.8% and 51.4% with respect to the classes “Expectancy” and “Power”,

respectively. The F1-measures indicate that the outputs were generally more balanced then

the outputs of the RFT architecture and the unimodal fusion. The lowered performance

compared with the RFT architecture can be related to the fact that, due to the early

temporal fusion, less information was available in each channel during temporal fusion.

Figure 5.13 provides an example of the output of the MFN on the AVEC 2011 Dataset.

The classifier outputs for the class “Arousal” based on the audio (blue squares) and video

(orange dots) channel are plotted along the time axis. Only the positive probability mass

of the two-class classification problem per channel is shown. Decisions with low confidences

which were rejected are plotted in a lighter color. The solid black curve represents the

estimate of the MFN. The red ticks on the top and bottom of the figure are the beginnings

of conversational turns in which the temporal smoothness was suppressed based on the

assumption that an affective state remains stable within a turn. As to be seen in the figure,

the procedure led to the formation of stable regions and spots of changes whenever a turn
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occurred.

5.4.4. AVEC 2011 — Kalman Filter for Classifier Fusion

So far, a baseline experiment and an experiment using the MFN were evaluated on the

AVEC 2011 Dataset. In this experiment, the Kalman filter for classifier fusion is examined.

The raw unimodal audio and video classifier outputs provided in the MFN experiment were

also used as inputs to the Kalman filter for classifier fusion which makes the comparison of

both methods more intuitive.

Figure 5.14 shows the Kalman filter for classifier fusion in the same setting as the MFN

in Figure 5.13. Again, the same classifier outputs for the class “Arousal” based on the audio

(blue squares) and video (orange dots) channels are plotted along the time axis. Decisions

with low confidences which were rejected are plotted in a lighter color. The solid black curve

represents the estimate of the Kalman filter, whereas the gray line depicts the ground truth.

The area surrounding the Kalman filter estimate corresponds to the associated variance. It

was scaled by the factor of ten for illustration purposes.

5.4.4.1. Unimodal Results

Table 5.21a and Table 5.21b show the performance of the unimodal Kalman filter fusion.

Each table shows the results in the upper part and the utilized parameters in the lower

part. Analogously to the MFN, the parameters were optimized for each class independently

using the training sets of the cross-validation. The measurement prior z̃mt was set to 0.5

and the corresponding observation noise r̃m was set a magnitude higher than the assigned

r. Hence, estimates converged slowly to the prior in case measurements were continuously

missing. The accuracies of the audio Kalman filter fusion regarding the classes “Arousal”

and “Expectancy” improved when compared with the accuracies of the audio-based MFN

shown in Table 5.17a. The accuracy of 74.3% regarding the class “Arousal” will later on turn

out to be the highest accuracy in the complete study. The rejection rate used to perform

the audio Kalman filter fusion for the class “Arousal” was selected to be 10%. In contrast,

the audio Kalman filter fusion for the class “Expectancy” and “Power” utilized rejection

rates of 90% which indicates that the raw audio classifier decisions were less reliable. The

accuracies of the class “Expectancy” and “Power” were 57.5% and 56.5%, respectively. The

audio Kalman filter fusion performed for the class “Valence” achieved an accuracy of 59.7%.

In case of the classes “Expectancy”, “Power” and “Valence”, the F1-measures of the classes

“Expectancy”, “Power” and “Valence” show that the outputs of the Kalman filter tended to

be unilateral. The process noises were generally set to be low and the observation noises

ranged from 0.1 to 0.75. The performance measures of the video Kalman filter fusion are

shown in Table 5.21b. Analogously to the audio Kalman filter fusion, the accuracies of 64.5%
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Figure 5.14. Predications for the class “Arousal” derived from multiple modalities
combined by the Kalman filter for classifier fusion using data from the AVEC 2011
Dataset. The orange dots and the blue squared-shaped markers correspond to the video and audio
predications. Markers in lighter color have been rejected and do not contribute to the Kalman filter.
The thick black curve corresponds to the fusion result, while the area around the curve corresponds
to the variance determined by the Kalman filter (scaled by 10 for illustration purposes). The light
gray curve displays the ground-truth. The parameters used are qaudio = 10−6, qvideo = 10−5 and
r = 0.75.

and 59.1% regarding the classes “Arousal” and “Expectancy” were higher than the accuracies

of the corresponding video-based MFN which are shown in Table 5.17b. The accuracies of

the classes “Expectancy” and “Power” achieved 58.9% and 65.4%. and, therefore, performed

lower than the corresponding accuracies of the video-based MFN. In general, the accuracies

of the video Kalman filter fusion were slightly lower than accuracies of the audio Kalman

filter fusion. However, the F1-measures of the video Kalman filter fusion tended to be more

balanced than the F1-measures of the audio Kalman filter fusion. The selected parameters

for the process noises and the observation noises were similar to the parameters of the audio

Kalman filter fusion. This finding can be related to the identical classifier output range

of [0, 1].

5.4.4.2. Multimodal Results

The performance measures of the multimodal Kalman filter fusion are shown in Ta-

ble 5.22. The accuracies of the classes “Expectancy” and “Power” achieved 62.5% and 61.8%

which was higher than the accuracies of the corresponding unimodal Kalman filter fusion.

The multimodal Kalman filter fusion regarding the class “Arousal” achieved an accuracy of

68.5% and, hence, was outperformed by the audio Kalman filter fusion which achieved an

accuracy of 74.3%. Analogously, the multimodal Kalman filter fusion yielded an accuracy

of 64.2% and, therefore, was outperformed by video Kalman filter rendering an accuracy of

65.4%. The mid-field performance of the multimodal Kalman filter fusion regarding class

“Arousal” can most probably be related to the combination of two sources of decisions with

different quality. Although, the unimodal Kalman filter fusion outperformed the multimodal

Kalman filter fusion in two cases, it has to be pointed out that the class distribution of the
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Table 5.20. Averaged accuracies and F1-measures of the reconstructed unimodal
streams using the Kalman filter for classifier fusion on the AVEC 2011 Dataset. The
lower part of the tables list the parameter assignments. All values averaged with standard deviation.
Arrows indicate how to rate the measures.

(a) Audio
Audio Arousal Expectancy Power Valence
↑Acc. 74.3±6.6 % 57.5±6.2% 56.5±11.2% 59.7±11.0%
↑F1 77.4±6.5 12.5±6.2 69.1±10.2 72.9±8.5
↑F1 69.4±8.2 71.8±5.3 22.7±8.9 16.2±14.1
Reject 10% 90% 90% 50%
qaudio 10−7 10−7 10−5 10−4

r 0.1 0.1 0.1 0.75

(b) Video
Video Arousal Expectancy Power Valence
↑Acc. 64.5±2.9% 59.1±4.7 % 58.9±5.0 % 65.4±9.8 %
↑F1 67.9±4.2 56.7±11.1 60.6±13.8 73.3±11.4
↑F1 57.3±12.7 56.4±17.5 48.2±17.1 44.2±8.5
Reject 50% 90% 0% 90%
qvideo 10−7 7.5−6 5−5 10−4

r 0.1 0.1 0.1 0.75

multimodal Kalman filter fusion were generally more balanced. Furthermore, the estimates

of the multimodal Kalman filter fusion were less susceptible against sensor failures.

5.4.4.3. Comparison to AVEC 2011 Submission Results

Table 5.23 summarizes the performances of the MFN and the Kalman filter for classifier

fusion and compares them to the official challenge baseline and winner of the AVEC 2011.

The accuracies provided in the table were obtained by averaging the accuracies of all four

affective classes. The averaged baseline accuracies of the audio and video sub-challenges

achieved 45.05% and 47.50%, respectively. Meng and Bianchi-Berthouze (2011) from the

University College London (UCL) were the winner of the audio sub-challenge. They achieved

an average accuracy of 53.28%. The video sub-challenge was won by Ramirez et al. (2011)

from the University of Southern California (USC) with an average accuracy of 61.03%, The

averaged accuracies of the raw audio classifier already outperformed the winner of the audio

sub-challenge. However, the average accuracy of the raw video classifier was always lower

than accuracy of the winner of the video sub-challenge. The raw classifier results using high

rejection rates performed best and achieved 59.60% using the audio modality and 59.65%

using the video modality. However, it is important to emphasize that these and the following

results based on a repartitioned (subject-independent) dataset composed of the development

and training sets for which labels were available, as explained in Section 4.1.3.2.

The unimodal offline MFN achieved averaged accuracies of 59.90% and 60.83% using

audio and video channels, respectively. In two out of three cases, the multimodal MFN
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Table 5.22. Accuracies and F1-measures of the reconstructed multimodal streams using
the Kalman filter for classifier fusion on the AVEC 2011 Dataset. Lower part of table
lists the parameter assignments. All values averaged with standard deviation. Arrows indicate how
to rate the measures.

Audio-visual Arousal Expectancy Power Valence
↑Acc. 68.5±5.7% 62.5±4.9% 61.8±6.6% 64.2±9.3%
↑F1 72.6±4.2 42.2±15.7 69.1±7.6 72.6±10.9
↑F1 59.7±15.1 71.1±5.8 43.5±18.0 43.7±3.0
A. rej. 0% 0% 0% 90%
V. rej. 50% 50% 0% 10%
qaudio 10−6 5−6 10−7 5−5

qvideo 10−5 10−5 10−5 10−4

r 0.75 0.1 0.1 0.75

outperformed the unimodal offline MFN. The best multimodal offline MFN average accuracy

of 62.09% was achieved by the RFT architecture. The unimodal online MFN achieved

averaged accuracies of 61.60% and 61.73% using the audio and video modalities, respectively.

The best multimodal online MFN average accuracy was again achieved by RFT architecture

which yielded 64.05%.

All previous results were outperformed by Kalman filter for classifier fusion. The uni-

modal Kalman filter fusion achieved 62.00% using the raw audio classifier outputs and

61.98% using the raw video classifier outputs. The multimodal Kalman filter fusion achieved

the highest averaged accuracy of 64.25% in the study.

5.4.5. AVEC 2013 Challenge — Kalman Filter for Classifier Fusion

The Kalman filter for classifier fusion was further applied in the submission to the AVEC

2013 challenge (Kächele et al., 2014a). Unfortunately, the results and the paper were not

ready in time such that a participation to the challenge was not possible. However, the

challenge organizers kindly agreed to evaluate the submitted predictions on the test set such

that comparative results can be provided. The submitted approach featured the learning of

two Kalman filter parameters, i.e. noise variance q and the error variance rm. The labels

provided in the challenge were normalized to the range from zero to one and the measurement

priors were set to 0.5. The absolute correlation coefficients (CC) of the Kalman filter and

three competing approaches are listed in Table 5.24, i.e. the baseline results, the winner

of the AVEC 2013 and the approach of Sánchez-Lozano et al. (2013). The audio baseline

achieved the best CC on the development set for all classes. However, the same approach

achieved also the lowest performance on the test set which indicates that the baseline audio

architecture was clearly overfitted. The accuracies of the unimodal Kalman filter fusion on

the development set were comparably low. However, the results on the test set achieved

a clearly better performance, e.g. the video Kalman filter fusion achieved an averaged CC

of 0.130 on the test set which was the best result of all unimodal approaches in the table.
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Table 5.23. Accuracies of the AVEC 2011 baseline, the AVEC 2011 winner, the uni-
modal results, offline MFN, online MFN and Kalman filter for classifier fusion on the
AVEC 2011 Dataset. The accuracies are given by the unweighted average of all four classes.
Researchers from the University College London (UCL) won the audio sub-challenge. Researchers
from the University of Southern California (USC) won the video sub-challenge. Arrows indicate
how to rate the measures.
Approach ↑Acc. Audio ↑Acc. Video ↑Acc. Audio-visual
Baseline 45.05% 47.50% 57.93%
Winner 53.28% [UCL] 61.03% [USC] n/a

Unimodal raw
58.93% [Rej. 0%]

58.93% [Rej. 10%]

59.60% [Rej. 90%]

56.83% [Rej. 0%]

57.20% [Rej. 10%]

59.65% [Rej. 90%]

n/a

Offline MFN 59.90% 60.83%
61.09% [FRT]

62.09% [RFT]

59.35% [RTF]

Online MFN 61.60% 61.73%
62.10% [FRT]

64.05% [RFT]

61.70% [RTF]
Kalman filter 62.00% 61.98% 64.25%

The audio-visual approaches achieved generally higher CC. Sánchez-Lozano et al. (2013)

achieved an averaged CC of 0.134, whereas the winner of the AVEC 2013 challenge achieved

an averaged CC of 0.141. The multimodal Kalman filter fusion achieved an averaged CC of

0.160 on the test set and, therefore, outperformed all previous results.

5.4.6. Summary

Five experiments were conducted to examine temporal multimodal fusion architectures

for the recognition of affective states. A special focus was set on the analysis of the MFN

and Kalman filter for classifier fusion which were proposed in this work.

The first experiment utilized the AVEC 2011 Dataset and examines the performance of a

classifier architecture which was based on conventional classifier and fusion approaches. The

outputs of the architecture were submitted to the AVEC 2011 and achieved the second place

out of nine participants in the audio sub-challenge and the third place out of four participants

in the video sub-challenge (Table 5.12). The audio-visual challenge was withdrawn because

of the low number of two participants.

The second experiment examines the MFN based on AVEC 2012 Dataset (Table 5.13).

The AVEC 2012 Dataset extended the former AVEC 2011 Dataset by featuring a continuous

annotation. The proposed classifier architecture was the first one which made use of the

MFN. However, the submitted results of the MFN classifier architecture achieved only a mid-

field rank. As already noted in the paper accompanying our challenge submission Glodek

et al. (2012c) and Section 4.1.3.3, the continuous annotations showed strong temporal char-

acteristics. These characteristics together with the performance measures of the challenge,

i.e. absolute correlation coefficient (CC), can be exploited to achieve high recognition results
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Table 5.24. Absolute correlation coefficient of AVEC 2013 baseline, the Kalman filter
for classifier fusion, the AVEC 2013 winner, Sánchez-Lozano et al. (2013) on the AVEC
2013 Dataset. Arrows indicate how to rate the measures.

Development set Test set
Arousal Valence Average Arousal Valence Average

Approach ↑CC ↑CC ↑CC ↑CC ↑CC ↑CC
Audio sub-challenge

Baseline 0.338 0.257 0.298 0.089 0.090 0.089
Kalman Filter 0.094 0.103 0.099 0.107 0.114 0.111

Video sub-challenge
Baseline 0.337 0.157 0.247 0.076 0.134 0.105
Kalman Filter 0.153 0.098 0.126 0.118 0.142 0.130

Audio-visual sub-challenge
Sánchez-Lozano
et al. (2013) 0.167 0.192 0.180 0.135 0.132 0.134

AVEC 2013 Winnera n/a n/a n/a n/a n/a 0.141
Kalman Filter 0.134 0.156 0.145 0.150 0.170 0.160

aVisit http://sspnet.eu/avec2013/ for details. The paper of Meng et al. (2013) contains no additional
results regarding the affect sub-challenges (last visited 10/06/2015).

(Table 4.5). As a consequence, the consecutive experiments regarding the MFN and Kalman

filter for classifier fusion were performed on the AVEC 2011 Dataset.

The third experiment examines two unimodal MFN architectures and three multimodal

MFN architectures. All approaches were evaluated using the online and offline processing

mode. The three MFN architectures realize early fusion (FRT), mid-level fusion (RFT)

and late fusion (RTF) of decision. The unimodal MFN architecture were able to improve

the raw unimodal classifier outputs only marginally (Table 5.14 and Table 5.16). However,

the unimodal MFN provide class decisions for every frame of the recording, in contrast

to the raw classifier decisions. The three multimodal MFN architectures further improved

the recognition performance of the unimodal MFN architecture (Table 5.18). The RFT

architecture had the highest accuracies among the multimodal MFN architectures and clearly

outperformed the unimodal MFN and baseline accuracies of the first experiment.

The fourth experiment analyzes the Kalman filter for classifier fusion in the setting of

the previous experiment. The unimodal Kalman filter fusion architecture had improved

accuracies compared with the results of the unimodal MFN architectures (Table 5.16 and

Table 5.20). Furthermore, the multimodal Kalman filter fusion architecture outperformed

all three multimodal MFN architectures and, hence, turned out to be the best performing

architecture of all experiments conducted on the AVEC 2011 dataset (Table 5.22).

The last experiment examines the Kalman filter for classifier fusion on the AVEC 2013

Dataset. Although a participation to the challenge was not possible, the multimodal clas-

sifier architecture was evaluated on the official test set. The experiment featured that the

parameters of the Kalman filter were learned from data. The outputs of the multimodal

Kalman filter fusion clearly outperformed the challenge winner and the results provided
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by Sánchez-Lozano et al. (2013) (Table 5.24).

The experiments showed that the MFN and Kalman filter for classifier fusion are both

promising methods for multimodal temporal fusion which are further capable to reconstruct

regions of missing classifier decisions. The Kalman filter for classifier fusion which was ap-

plied to both modalities showed the best performance among all examined fusion approaches.

5.5. Unidirectional Layered Architectures

The last study of this chapter addresses the ULA for the recognition of complex patterns

as proposed in Section 3.7.1. The BLA is currently analyzed and is going to be published

in an alternative form.

The ULA provides a generic mechanism to recognize complex entities. However, the

setting in which the architecture is applied has a strong impact on further design decisions

details and, as a result, on the final performance. The architecture was studied using

the OLAD which was presented in Section 4.1.4.1. The OLAD provides three layers and,

furthermore, features an object classification problem. The outputs of the object recognition

were used as additional inputs to support the predictions of the classes in the layers. All

parameters and test results were derived using 10 × 10 cross-validation. In the following,

design details and results of the object recognition and the three layers are presented.

5.5.1. Object Recognition Using Markov Fusion Network

The object recognition was realized using a multimodal MFN MCS. The schematic draw-

ing of the architecture is depicted in Figure 5.15. Three different feature sets, i.e. MFCC,

HOC and HOG, were extracted from the audio and video channels and passed to three

individual classifiers which operated on frame level. The video-based object recognitions

made use of a one-vs-one classifier system utilizing L2 soft-margin SVM with probabilistic

outputs Platt (2000). The audio-based object recognition was restricted to the manipulation

of the spoon, since the other objects made no perceptible sound when manipulated. The

stirring of the spoon in the cup was recognized using an NBC. A probability of one was

assigned in case the class “Spoon” was recognized. The classifier returned no probability dis-

tribution at all in cases of silence or the class “Spoon” was not recognized. The three streams

of probability distributions were combined using the MFN operating in offline processing

mode.

Figure 5.16 provides an example of the inputs and outputs of the MFN MCS. The

examined video recording shows the subject performing a series of actions involving multiple

objects. The actions are interrupted by pauses in which the empty hand rests on the table.

The upper three plots show the output of the video and audio classifiers, whereas the fourth
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Figure 5.15. Multimodal multi-class object recognition MCS using the MFN on the
Office Layered Architecture Dataset. MFCC, HOC and HOG feature vectors were extracted
from the raw audio and video data. These features were utilized for classification using an NBC
and two SVM. The derived probability distributions over objects were combined by an MFN.

Figure 5.16. Probability distributions in different stages of the MFN MCS performing
the object recognition in the Office Layered Architecture Dataset. Each plot shows the
change of the probability distributions over time of the three individual classifiers, i.e. the SVM
using HOG, the SVM using HOC and the NBC using MFCC, and the MFN combination. The plot
at the bottom shows the annotated ground truth. The probability distributions sum up to one for
each frame. The color encodes the share assigned to a class. For a detailed description please refer
to the text.

plot shows the output of the MFN combination. The last plot shows the annotated ground

truth. The plots depict the frame-wise share of probabilities distributed allocated to the

objects. Each color represents a class. The color/object assignment can be inferred from the

legend of the figure. For instance, the MFN output distribution in the fourth plot at frame

200 allocated the highest probability mass of approximately 80% to the class “Pencil”. The

second highest probability of about 20% was assigned to the class “Paper”. All other objects

had only marginal shares of probabilities close to zero. Frames in which no estimates were

available are indicated by areas filled with diagonal lines.
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The two uppermost plots show the estimates of the SVM utilizing HOG and HOC fea-

tures. Both classifiers provided noisy probability distributions which, however, were often

close to the ground truth. Furthermore, both classifiers occasionally misclassified small con-

tiguous time periods, e.g. the class “Paper” in the proximity of frame 200. The third plot

shows the predictions of the NBC using the audio features. Since in most frames the energy

of the audio channel was below the noise threshold, no estimates were available except in

the proximity of frame 385 in which the subject picks up the spoon and produces a sound

by stirring the cup. The outputs of the MFN combination is depicted in the fourth plot.

The algorithm combined the classifier decisions and simultaneously smoothed the estimates

over time such that a large number of erroneous decisions were resolved. Apparently, the

outputs provided by the MFN were closer to the annotated ground truth which is shown in

the last plot.

The empirical evaluation is presented in the Table 5.26a and shows the accuracies and

the F1-measures of the three individual classifiers, four alternative fusion approaches and the

MFN. The unimodal raw classier outputs achieved accuracies of 82.5%, 65.7% and 53.5%

using the HOG, HOC and MFCC features, respectively. The F1-measures confirm that

the SVM classifiers using the HOG and HOC features provided balanced recognitions of all

classes with the exception of the class “Hand”. In the recordings, the subject rests his empty

hand between two actions such that, due to the viewpoint of the camera, other objects

may become visible in the extracted sub-images. These other objects were then wrongly

recognized by the imaged-based classifiers. The accuracy of the NBC using the MFCC was

completely based on the performance of the class “Spoon”. Hence, only one F1-measure

related to the class “Spoon” was available which achieved 69.2%.

The performance of the MFN is shown in the last column. The MFN achieved an

accuracy of 92.8% and, hence, outperformed the single classifiers. A similar finding can be

made by examining the F1-measures which all ranged above 90% except the class “Hand”

having only an F1-measure of 80.7%. For comparison, alternative fusion approaches were

evaluated: the sum and product of all modalities for every time step, i.e. point-wise fusion

(_|_), and the sum and product of all modalities using a sliding window with a size of an eighth

of the complete sequence, i.e. windowed fusion (_⊔_). As a result, the utilized windows had

an average length of 10.7 frames (10 frames median). The fusion was conducted by taking

the sum, or respectively the product, of all available values. Subsequently, the quantities

were normalized using the number of available values to obtain a probability distribution

over classes. The accuracies are listed in Table 5.26a and outperformed the results of the

single modalities. However, the MFN combination still outperformed the alternative fusion

approaches. The point-wise sum fusion and the point-wise product fusion had accuracies

of 88.2% and 92.4%, whereas the windowed sum fusion and the windowed product fusion
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Table 5.25. Accuracies and F1-measures of the object recognition obtained by the
classifiers, the point wise (_|_) and windowed (_⊔_) product ∏ and average

∑
fusion and

the MFN on the Office Layered Architecture Dataset. (a) Performance of crisp classifier
decisions. (b) Average rank accuracy. The rank denotes the ordered positions achieved in the
probability distribution. All values in percent averaged with standard deviation. Arrows indicate
how to rate the measures.

(a)
HOG HOC MFCC

∑
_|_

∑
_⊔_

∏
_|_

∏
_⊔_ MFN

(video) (video) (audio) (fusion) (fusion) (fusion) (fusion) (fusion)
↑Acc. 82.5±2.9 65.7±2.7 53.5±10.1 82.2±2.5 92.4±1.5 84.2±3.0 84.0±4.7 92.8±2.5
↑F1(Cup) 92.2±3.0 69.5±2.5 n/a 87.9±2.9 95.9±2.4 92.9±2.9 66.9±6.9 95.8±2.9
↑F1(Can) 83.2±5.3 60.7±4.4 n/a 81.5±4.8 92.4±3.7 85.2±5.1 85.6±5.1 94.7±2.7
↑F1(Paper) 84.6±4.5 57.2±3.7 n/a 83.5±4.4 91.7±1.9 85.3±4.3 88.5±2.8 93.4±3.8
↑F1(Spoon) 83.7±2.5 65.3±4.0 69.2±8.5 82.7±2.4 93.9±1.7 85.6±3.1 90.1±4.0 94.2±2.5
↑F1(Pencil) 82.4±5.1 76.7±4.3 n/a 85.0±4.4 95.7±2.3 86.3±5.1 87.2±9.1 93.7±4.5
↑F1(Hand) 64.6±5.5 47.1±2.9 n/a 64.6±4.7 73.1±4.9 63.6±5.6 70.0±5.6 80.7±6.2

(b)
HOG HOC MFCC

∑
_|_

∑
_⊔_

∏
_|_

∏
_⊔_ MFN

(video) (video) (audio) (fusion) (fusion) (fusion) (fusion) (fusion)
↑Acc.(rank 1) 82.5±2.9 65.7±2.7 53.5±10.1 82.1±2.5 92.4±1.5 84.2±3.0 92.4±1.5 92.8±2.5
↑Acc.(rank 2) 10.7±1.1 17.2±1.3 46.5±10.1 9.9±1.1 4.1±0.8 9.0±1.2 4.1±0.8 5.5±1.1
↑Acc.(rank 3) 3.7±1.0 7.2±0.9 n/a 4.0±0.6 2.1±0.5 3.8±0.7 2.1±0.5 1.4±1.3
↓Acc.(rank 4) 1.6±0.8 4.3±0.5 n/a 2.0±0.5 0.8±0.4 1.5±0.8 0.8±0.4 0.3±0.3
↓Acc.(rank 5) 0.8±0.5 3.3±0.7 n/a 1.2±0.4 0.3±0.3 0.7±0.4 0.3±0.3 0.0±0.1
↓Acc.(rank 6) 0.8±1.1 2.3±0.7 n/a 0.8±0.4 0.2±0.3 0.9±1.2 0.2±0.3 0.0±0.1

achieved accuracies of 84.2% and 84.0%. Hence, the windowed sum fusion was the only

approach with an accuracy which came close to the accuracy to the MFN.

So far, the evaluation was based on a binarized rating of probability distributions. To

take account of the probability distributions provided by the algorithms, rankings of the

object probabilities were performed. The results of these rankings are shown in Table 5.26b.

The accuracy concerning the first rank corresponds to the conventional accuracy. The second

rank denotes the share of frames in which the actual object was rated to be the second most

likely object and so on. The rankings of the SVM classifiers operating on HOG and HOC

features show that a large share of objects to be recognized obtained only the second highest

probability. The first two ranks of both SVM sum up to a share of 93.2% and 82.9%. Again

the decisions based on the MFCC are difficult to rate, since they are only present in a small

portion of frames and assign their probabilities to only one class. The added first two ranks

of the classic fusion approaches achieved 92.0%, 96.5%, 93.2% and 96.4%, i.e. point-wise

sum, windowed sum, point-wise product and windowed product fusion. The MFN provided

the correct class among the first two highest probabilities with a chance of 98.3% which was

clearly the highest share.

The outputs of the MFN MCS object recognition were used as additional inputs to the

HMM and CHMM in the first two layers.
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Table 5.27. Accuracies and F1-measures of the Markov models trained using the raw
features and the classes of the first layer on the OLAD. The Number preceding the stars
coding the significance related to (1) HMM, (2) CHMM or (3) FCHMM. All values averaged with
standard deviation. Arrows indicate how to rate the measures. For a detailed description please
refer to the text.
Layer 1: Actions Input: Raw features
Method HMM CHMM FCHMM

↑Acc. 58.8±3.4% 62.1±2.1%1∗∗ 64.3±2.6%1∗

↑F1 ↑F1 ↑F1

Pick up object (PUP1) 50.0±7.4 58.3±7.3 1∗ 64.2±3.3 1∗∗
2∗

Move object towards head (MTH1) 84.0±7.7 92.5±4.2 1∗∗ 89.9±5.5 1∗

Move object from head (MFH1) 49.8±6.0 46.1±6.4 47.6±8.8
Move object towards table (MTT1) 43.3±5.8 45.1±5.8 45.8±7.0
Move object from table (MFT1) 81.5±5.9 91.0±4.2 1∗∗ 90.3±4.5 1∗∗

Lay back object (LBA1) 51.7±5.8 55.5±6.3 64.0±6.9 1∗∗
2∗

Manipulate object in hand (HAM1) 97.6±3.2 97.7±3.1 96.2±4.4
Manipulate object at table (TAM1) 44.3±6.8 43.0±6.0 41.5±9.3
Manipulate object close to head (HEM1) 48.6±6.6 65.0±7.9 1∗∗ 62.3±15.6 1∗

Empty hand (EH1) 69.4±8.4 69.6±7.1 73.4±5.8

5.5.2. Action Recognition

The lowermost layer has to recognize the action classes. Three sequential classifiers

were evaluated, namely the classic HMM and the two HMM extensions presented in this

thesis, i.e. CHMM and the FCHMM. The CHMM and FCHMM made use of the outputs

provided by object recognition which were provided to the Markov models using the causal

sequences. Cross-validation was used to determine the optimal configurations of the models.

All three Markov models were set to have five hidden states and GMM observations with

full covariances. The HMM utilized a left-to-right transition matrix and a GMM with five

mixture components, whereas the CHMM and FCHMM made use of a full transition matrix

with a GMM having only three mixture components. As already mentioned, the FCHMM

is sensitive to the degree of fuzziness in the causal sequences. Therefore, the additional

parameter p which controls the fuzziness of the object recognition input was optimized and

set to p = 30.

The accuracies and F1-measures of all three models in the first layer are shown in Ta-

ble 5.27. The upper part of the table shows the accuracies of the HMM, CHMM and

FCHMM, whereas the lower part of the table lists the F1-measures of the classes. The

HMM achieved an accuracy of 58.8% and, therefore, was outperformed by the CHMM and

the FCHMM which achieved accuracies of 62.1% 64.3%. Although the FCHMM had the

highest accuracy, the CHMM had a higher level of significance (∗ p < 0.05 and ∗∗ p < 0.01;

paired t-test) with respect to the HMM. The F1-measure of the CHMM and FCHMM signif-

icantly outperformed the HMM in several classes such as PUP1, MTH1, MFT1 and HEM1.

The second layer was trained using the outputs of the first layer. Hence, the outputs of

each test set fold was collected and joint such that a new complete dataset was compiled.
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Table 5.28. Accuracies and F1-measures of the Markov models trained using the output
of the first layer and the classes of the second layer on the Office Layered Architecture
Dataset. The Number preceding the stars coding the significance related to (1) HMM, (2) CHMM
or (3) FCHMM. All values averaged with standard deviation. Arrows indicate how to rate the
measures. For a detailed description please refer to the text.

(a)
Layer 2: Activities Input: layer 1 HMM
Method HMM CHMM FCHMM

↑Acc. 71.1±5.7% 80.8±5.3%1∗∗ 77.4±6.5%1∗∗

↑FHMM
1

↑FCHMM
1

↑FFCHMM
1

Drink from cup (DC2) 85.6±8.2 98.2±3.8 1∗∗ 96.0±6.7 1∗

Fill milk into a cup (MC2) 61.5±17.6 87.9±8.3 1∗∗ 81.1±14.5 1∗

Read note (RN2) 80.3±9.9 88.4±6.9 89.3±9.5
Stir cup (SC2) 39.1±19.8 56.3±12.7 45.9±21.1
Add sugar and stir (SSC2) 64.3±17.5 65.3±19.2 64.5±15.9
Write note (WN2) 56.5±18.1 81.7±11.3 1∗∗ 74.9±12.2 1∗∗

No activity (HEM2) 81.9±7.0 84.1±5.0 81.3±7.8

(b)
Layer 2: Activities Input: layer 1 CHMM
Method HMM CHMM FCHMM

↑Acc. 78.0±3.5% 82.3±5.4%1∗ 81.8±4.7%1∗

↑FHMM
1

↑FCHMM
1

↑FFCHMM
1

Drink from cup (DC2) 97.4±4.2 96.3±6.2 98.3±3.6
Fill milk into a cup (MC2) 89.0±7.6 93.4±7.7 95.4±7.8
Read note (RN2) 80.5±11.5 82.9±9.8 91.3±7.3 1∗∗

2∗
Stir cup (SC2) 48.3±23.1 47.0±19.1 55.7±22.6
Add sugar and stir (SSC2) 59.7±18.9 67.7±19.4 66.0±17.4
Write note (WN2) 79.2±12.8 87.2±9.4 3∗∗ 77.6±7.1
No activity (HEM2) 82.5±7.2 87.4±6.9 85.5±4.1

(c)
Layer 2: Activities Input: layer 1 FCHMM
Method HMM CHMM FCHMM

↑Acc. 78.2±6.3 81.2±6.4 81.8±5.3%
↑FHMM

1
↑FCHMM

1
↑FFCHMM

1
Drink from cup (DC2) 94.8±7.1 97.1±4.7 92.3±9.2
Fill milk into a cup (MC2) 70.5±19.4 94.0±5.3 1∗∗ 93.4±8.4 1∗∗

Read note (RN2) 82.7±14.9 83.4±13.8 88.0±9.3
Stir cup (SC2) 49.0±21.7 46.9±19.0 57.0±13.7
Add sugar and stir (SSC2) 74.7±8.3 2∗ 62.8±11.8 73.4±9.5 2∗

Write note (WN2) 68.9±16.3 79.8±9.1 1∗ 80.3±12.3 1∗

No activity (HEM2) 85.4±4.3 87.8±6.8 84.3±5.8

Table 5.30. Accuracies and F1-measures of the Markov models trained using the raw
features and the classes of the second layer on the Office Layered Architecture Dataset.
The Number preceding the stars coding the significance related to (1) HMM, (2) CHMM or (3)
FCHMM. All values averaged with standard deviation. Arrows indicate how to rate the measures.
For a detailed description please refer to the text.
Layer 2: Activities Input: Raw features
Method HMM CHMM FCHMM

↑Acc. 85.9±5.1% 88.2±3.6% 89.4±4.4%1∗∗

↑FHMM
1

↑FCHMM
1

↑FFCHMM
1

Drink from cup (DC2) 93.7±6.4 99.2±2.4 1∗ 99.1±2.9 1∗

Fill milk into a cup (MC2) 85.4±13.0 90.1±8.7 95.5±6.2
Read note (RN2) 85.9±10.7 85.9±10.8 90.6±5.2
Stir cup (SC2) 71.9±13.3 77.5±11.8 77.4±16.0
Add sugar and stir (SSC2) 83.1±9.0 84.7±7.1 85.9±7.3
Write note (WN2) 81.3±11.3 87.6±11.9 84.2±15.2
No activity (HEM2) 89.6±3.9 89.7±3.1 90.8±4.7

5.5.3. Activity Recognition

The second layer has to recognize the activity classes based on the observed sequences

of actions of the previous layer. The activity recognition was studied using the HMM,

CHMM and FCHMM. The accuracies and F1-measures achieved by the classifiers operating
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in the second layer are shown Table 5.28. Table 5.29c, Table 5.29b and 5.29a provide the

performance measures given that the HMM, CHMM and FCHMM was used to provide the

inputs from the first layer, respectively. The utilized parameters of the models on the second

layer are listed in Table A.5a in the Appendix.

Table 5.29c shows the results in case the HMM outputs of the first layer were used to

recognize the classes of the second layer. In this setting, the CHMM achieved the highest

accuracy of 80.8%, followed by the FCHMM and HMM with 77.4% and 71.1%, respectively.

The Table 5.29b shows the results in case the inputs to the second layer were provided by

the CHMM in the first layer. This configuration led to an HMM accuracy of 78.0% followed

by CHMM and FCHMM accuracies of 82.3% and 81.8%, respectively. The results clearly

outperformed the results presented in the previous Table 5.29c. F1-measures show that

the FCHMM was able to recognize the classes “Stir cup” and “Add sugar and stir” more

robustly. The results of the last configuration in which the inputs were provided by the

FCHMM operating in the first layer are provided in Table 5.29a. The accuracies in this

setting are 78.2% for the HMM, 81.2% for the CHMM and 81.8% for the FCHMM. Hence,

the FCHMM was the approach with the highest performance in this setting. However, the

accuracy of the CHMM in the first and the second layer which is presented in Table 5.29b

was still higher.

The experiments on the second layer showed that the HMM was outperformed by the

CHMM and the FCHMM. Furthermore, the F1-measures revealed that the classes “Stir cup”

and “Add sugar and stir” were often confused. This is of importance, since these classes are

crucial in order to perform a successful recognition of user preferences.

At this point, it is legitimate to inquire the performance of an alternative approach.

Therefore, the next experiment addressed models which were trained directly on the raw

features. Table 5.30 shows the results when applying all three models directly to the raw

features. The utilized parameters are listed in Table A.5b in the Appendix. The performance

measures were clearly higher compared with the layered approach: The HMM achieved an

accuracy of 85.9%, the CHMM of 88.2% and the FCHMM achieved even 89.4%. As already

observed in the previous Section 5.5.2 and also discussed in Scherer et al. (2012b), the

recognition performance of pre-segmented and unsegmented datasets can differ significantly.

Up to this point, the directly trained models promised to be the optimal choice and to be

preferred over the ULA approach. However, there is still one more layer to be analyzed.

The final models of the second layer were trained on the complete segmented dataset, since

the test results in the next section based on a separate dataset.
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Table 5.31. Accuracies and F1-measures of the classes of the second layer at the third
layer using the directly trained Markov models on the Office Layered Architecture
Dataset. The Number preceding the stars coding the significance related to (1) HMM, (2) CHMM
or (3) FCHMM. All values averaged with standard deviation. Arrows indicate how to rate the
measures. For a detailed description please refer to the text.
Layer 3: Activities Input: Raw features
Method HMM CHMM FCHMM
Layer 3: Activities ↑Acc. 49.6±15.1% 65.4±13.9%1∗∗

3∗∗ 57.6±15.4%1∗∗

↑FHMM
1

↑FCHMM
1

↑FFCHMM
1

Drink from cup (DC2) 75.5±25.4 76.3±11.9 73.5±21.0
Fill milk into a cup (MC2) 21.5±28.0 35.7±36.6 1∗∗ 30.2±31.6
Read note (RN2) 40.0±33.5 75.9±27.5 1∗∗ 47.4±29.0
Stir cup (SC2) 9.2±10.2 12.0±15.0 20.6±15.7
Add sugar and stir (SSC2) 24.3±25.2 28.8±30.2 1∗∗ 25.4±26.3
Write note (WN2) 53.6±30.6 62.9±30.4 1∗∗ 58.8±31.3
No activity (HEM2) 2.6±5.3 4.3±4.9 1∗ 4.0±5.3

Table 5.32. Accuracies and F1-measures of the classes of the second layer at the
third layer using the layered architecture on the Office Layered Architecture Dataset.
The Number preceding the stars coding the significance related to (1) HMM, (2) CHMM or (3)
FCHMM. All values averaged with standard deviation. Arrows indicate how to rate the measures.
For a detailed description please refer to the text.

(a)
Layer 3: Activities Input: layer 1 HMM
Method HMM CHMM FCHMM
Layer 3: Activities ↑Acc. 40.9±10.3% 65.4±14.4%1∗∗

3∗∗ 57.1±11.2%1∗∗

↑FHMM
1

↑FCHMM
1

↑FFCHMM
1

Drink from cup (DC2) 69.9±15.6 83.0±11.9 1∗∗ 86.6±7.4 1∗∗
2∗∗

Fill milk into a cup (MC2) 19.5±22.5 39.6±40.6 1∗∗
3∗∗ 33.9±37.2 1∗∗

Read note (RN2) 45.8±26.2 63.3±28.0 1∗∗ 63.5±28.3 1∗∗

Stir cup (SC2) 16.5±14.0 36.7±23.9 1∗∗
3∗∗ 28.4±20.8 1∗∗

Add sugar and stir (SSC2) 15.6±25.0 14.4±14.8 30.4±31.9 1∗∗
2∗∗

Write note (WN2) 33.0±23.8 62.6±32.3 1∗∗
3∗∗ 47.0±27.4 1∗∗

No activity (HEM2) 5.7±11.9 5.1±7.3 5.1±5.7

(b)
Layer 3: Activities Input: layer 1 CHMM
Method HMM CHMM FCHMM
Layer 3: Activities ↑Acc. 53.6±11.4% 62.3±11.3%1∗∗ 64.8±14.5%1∗∗

2∗∗
↑FHMM

1
↑FCHMM

1
↑FFCHMM

1

Drink from cup (DC2) 85.5±11.0 2∗∗ 78.8±9.9 90.1±7.7 1∗∗
2∗∗

Fill milk into a cup (MC2) 30.4±33.5 40.0±41.6 1∗∗ 41.7±43.8 1∗∗

Read note (RN2) 67.1±27.9 66.1±25.4 77.0±27.5 1∗∗
2∗∗

Stir cup (SC2) 29.3±19.0 3∗∗ 34.0±23.1 1∗∗
3∗∗ 24.5±20.7

Add sugar and stir (SSC2) 11.3±11.7 3∗∗ 18.7±19.9 1∗∗
3∗∗ 7.3±8.2

Write note (WN2) 40.7±24.6 58.5±29.0 1∗∗ 57.9±30.3 1∗∗

No activity (HEM2) 5.7±9.7 8.0±8.2 3∗∗ 3.5±7.4

(c)
Layer 3: Activities Input: layer 1 FCHMM
Method HMM CHMM FCHMM
Layer 3: Activities ↑Acc. 53.3±15.1% 67.1±14.1%1∗∗ 72.1±14.8%1∗∗

2∗∗
↑FHMM

1
↑FCHMM

1
↑FFCHMM

1

Drink from cup (DC2) 75.9±15.8 88.4±11.0 1∗∗ 92.4±7.3 1∗∗

Fill milk into a cup (MC2) 28.5±30.9 38.2±40.1 1∗∗ 42.6±43.5 1∗∗

Read note (RN2) 67.1±27.8 74.7±25.9 1∗∗ 77.3±27.9 1∗∗

Stir cup (SC2) 14.2±13.4 23.7±19.8 1∗∗ 35.0±23.3 1∗∗

Add sugar and stir (SSC2) 10.9±18.7 19.3±19.8 1∗∗ 13.7±15.0 1∗

Write note (WN2) 42.7±28.3 61.6±30.7 1∗∗ 64.2±31.9 1∗∗

No activity (HEM2) 2.6±5.8 6.0±6.3 1∗∗ 5.3±8.2 1∗

5.5.4. User Preference Recognition

The third layer has to recognize the preferences of the user. Within this study, this was

accomplished by using a DMLN which operated on a sequence of activities. Two experiments

176



5.5 Unidirectional Layered Architectures

are provided in this section: (1) the models of the second layer and the directly applied

models performing unsegmented activity recognition and (2) the performance of the DMLN.

The performance of the activity recognition using the unsegmented dataset of the third

layer is studied in the first experiment. The accuracies and F1-measures of the directly

applied models are provided in Table 5.31. Table 5.33a, Table 5.33b and Table 5.33c show

the accuracies and F1-measures of the ULA using the HMM, CHMM and FCHMM in the

first layer, respectively. Given the directly applied models, the CHMM achieved the highest

accuracy of 65.4%, followed by the FCHMM and HMM which achieved accuracies of 57.6%

and 49.5%, respectively. However, the results of the ULA clearly outperformed the direct

application of the models. Utilizing the HMM in the first layer achieved the lowest accu-

racies in the evaluation with 40.9%, 65.4% and 57.1% for the HMM, CHMM and FCHMM

in the second layer, respectively. Using the CHMM in the first layer achieved higher accu-

racies of 53.6%, 62.3% and 64.8% for the HMM, CHMM and FCHMM on the second layer.

Table 5.33c provides the performance measures using the FCHMM in the lowermost layer.

The accuracies of the HMM, CHMM and FCHMM on the second layer yielded accuracies of

53.3%, 67.1% and 72.1%. Using the FCHMM in the first and the second layer provided sig-

nificantly higher accuracies and F1-measures than using the FCHMM in the first layer and

the HMM in the second layer. According to the F1-measures, the class “Stir cup” performed

slightly better using the ULA. However, the class “Add sugar and stir” which is crucial for

the recognition of the user preferences “White coffee” and “Sweet white coffee” had a criti-

cally low performance. Generally speaking, the F1-measures of the class “No activity” were

consistently low in Table 5.31 and Table 5.32. This is mostly because it was cross-talked by

activities before and after the target class. Fortunately, this class carries no information for

the third layer and is merely responsible to separate the classes. Furthermore, it is worth

noting that the standard deviations of the accuracies and F1-measures were comparably

high. Nonetheless, the performances of the models were very good considering that an un-

segmented sequential classification problem with seven classes was solved. In the following,

the FCHMM was used in the first and the second layer for further processing.

The second experiment examines the performance of the user preference recognition in

the third layer which was realized using a DMLN. The model of the DMLN utilizes one

static and four temporal random variables. The static (time-independent) random variable

represents the coffee preference of the user (class). The time-dependent variables are the

currently performed activity (perf), the activity that ended during the last time-step or null

(act), the state of the coffee inside the cup (cof), and whether the cup is currently stirred

(stir). Information from the second layer was integrated as soft observations on the perf

variables. The DMLN model ran at a lower temporal resolution of 2Hz compared to the

underlying layers. Hence, only every 10th output of the second layer was included.
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Table 5.34. Probabilistic logical rules of the DMLN model used in the Office Layered
Architecture Dataset. Signature of predicates perf(Time,Activity!), class(Class!),
act(Time,Activity!), cof(Time,Class!), and stir(Time) where “!” denotes a functional
argument. Every formula is prefixed by a weight, where∞means a formula must hold with certainty
for every assignment to its free variables.
Weight First-order logic ID
w perf(t, a) ∧ perf(t+ 1, a) F1

∞ (perf(t, a1) ∧ perf(t+ 1, a2) ⇒ act(t, a1)) ∧ a1 6= a2 F2

∞ (∃a : perf(t, a) ∧ perf(t+ 1, a)) ⇒ act(t,NULL) F3

∞ perf(t,DC2) ⇒ ∃c : cof(t, c) ∧ class(c) F4

∞ cof(0,BC3) F5

∞ cof(t, c) ∧ ¬(act(t,MC2) ∨ act(t, SSC2)) ⇒ cof(t+ 1.c) F6

∞ act(t,MC2) ⇔ (cof(t,BC3) ∧ cof(t+ 1,MC3)) ∨ (cof(t, SC3) ∧ cof(t+ 1,MCS3)) F7

∞ act(t, SSC2) ⇔ (cof(t,BC3) ∧ cof(t+ 1, SC3)) ∨ (cof(t,MC3) ∧ cof(t+ 1,MCS3)) F8

∞ cof(t,BC3) ⇒ stir(t) F9

∞ stir(t) ⇒ ¬act(t, SC2) F10

∞ act(t,MC2) ∨ act(t, SSC2) ⇒ ¬stir(t+ 1) F11

∞ act(t, SC2) ⇒ stir(t+ 1) F12

∞ ¬(act(t,MC2) ∨ act(t, SSC2) ∨ act(t,CS2)) ⇒ (stir(t) ⇔ stir(t+ 1)) F13

∞ perf(t,DC2) ⇒ stir(t) F14

Table 5.35. Accuracies and F1-measures of the DMLN trained using the output of
the second layer and the classes of the third layer on the Office Layered Architecture
Dataset. The results are based on the outputs of the second layer. The outputs of the first and the
second layer were obtained using an FCHMM. All values averaged with standard deviation. Arrows
indicate how to rate the measures. For a detailed description please refer to the text.
Layer 3: User preferences Input: layer 1/2 FCHMM/FCHMM
Method DMLN

↑Acc. 90.0±9.9%
↑FDMLN

1
Black coffee (BC3) 98.0±6.3
White coffee (WC3) 81.3±16.6
Sweet coffee (SC3) 100.0±0.0
Sweet white coffee (SWC3) 90.8±13.3

The probabilistic logical rules of the DMLN are specified in Table 5.34. All formulas in the

DMLN model except Formula F1 are deterministic. Deterministic formulas must hold with

certainty and, therefore, are weighted with an infinite value. The model has been designed

according to our understanding of the process in the dataset. Some rules encode objective

mechanics of the domain. For example pouring milk into black coffee produces “White

coffee” (Formula F7), or pouring something into the coffee “Unstirs” it (Formula F11) while

“Stirring” makes the coffee stirred again (Formula F12). Other rules represent assumptions,

e.g. someone will not stir the coffee if it is already stirred (no explicit formula). Others are

technical details, such as the rule asserting that the coffee is black at the beginning of the

recording (Formula F5). The Formula F1 encodes the probability that a performed activity

will be also performed in the next time step. The weight of this rule describes how likely

an activity changes. Frequent activity changes are less probable with higher weights. The

weight of the Formula F1 was learned using maximum likelihood estimation (MLE) with the

ground truth user preference as evidence. Averaging the weight over all folds of the validation

set yielded in the value of 3.99±0.08 . The fitted models provided the same predictions on

all instances, simply because most of the information is encoded by the deterministic rules

indicating the the exact value of the weighting parameter is of minor relevance.
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Figure 5.17. Probability distributions in different parts of the DMLN model applied in
third layer of the Office Layered Architecture Dataset. From top to bottom: The marginal
probabilities of the state of the coffee cup estimated in the third layer, the currently performed
activity estimated in the third layer, the currently performed activity estimated in the second layer
(input to the third layer), and at the bottom the true current activity. One time step corresponds
to 500 ms.

The accuracies and F1-measures of the DMLN are shown in Table 5.35. The DMLN

achieved an accuracy of 90.0% with 9.9% standard deviation. Considering that the DMLN

had integrated information of about one minute using the inputs provided by the second

layer with an accuracy of 72.1%, the final performance is more than satisfactory. A large

number of class confusions occurring in the previous layer was resolved by the probabilistic

rules.

Figure 5.17 shows the belief over time for a selection of latent variables in the DMLN

model. The figure was generated using a human-assigned weighting of w = 3 which led to

an accuracy of 96.3%. This accuracy was even superior to the performance of the weighting

obtained using MLE. Given the rather noisy and uncertain observations from the second layer

that served as input, it is notable how well the belief about the currently performed activity

obtained from the DMLN model matches the true activity in the figure. Furthermore, it is

interesting to observe how the confusion between adding sugar (SSC2) and stirring (SC2)

was resolved in the interval of frame 10 and 20. This incidence is related to the rule that

stirring will not happen if the coffee is already stirred (and black coffee is always stirred).

Further information regarding the utilized DMLN can found in Glodek et al. (2014a).
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5.5.5. Summary

A large study using the OLAD was performed in order to examine the ULA. The OLAD

is a dataset which is composed of three layers of classes building upon each other. The first

layer comprises action classes which compose the activity classes of the second layer. The

classes of the second layer in turn compose the user preference classes of the third layer. An

additional object recognition can be utilized to support the classifiers of the first two layers.

The HMM, CHMM and FCHMM was evaluated in the first two layers and the DMLN in the

third layer. The CHMM and FCHMM made use of the crisp and fuzzy object recognition.

The object recognition was performed as a part of the study on the ULA. It was used to

additionally evaluate the performance of the MFN. Three individual classifiers were trained

based on features extracted from the audio and video channels. The classifier operating on

the audio channel provided only evidence for one class, due to the properties of the objects

to be recognized. In case the single target class was not recognized, no information was

propagated to the MFN. Two video classifiers were trained using HOG and HOC features as

inputs. The decisions of the classifiers were used to evaluate different fusion approaches, i.e.

the MFN and four temporally extended multimodal fusion methods. The results showed that

the MFN clearly outperformed the conventional fusion methods (Table 5.25). Analyzing the

crisp combined outputs showed that only the windowed product fusion achieved an almost

competitive performance. Further analysis on the fuzzy class memberships revealed that the

MFN had higher chance to predict the correct class under the first two most likely classes

than the windowed product fusion. According to this experiment, the class distributions

obtained from the MFN is to be favored compared to the other fusion approaches.

The following experiments focused on the layers of the ULA. The results achieved on the

first layer showed that the CHMM and FCHMM significantly outperformed the HMM (Ta-

ble 5.27). The F1-measures show that certain classes were recognized with lower reliability.

However, the second layer which operates on the outputs of the first layer integrates infor-

mation on a larger time scale and, hence, should be able to resolve these inconsistencies.

The performance of the second layer was evaluated for all possible Markov models in the

first layer and all three models in the second layer, i.e. the HMM, CHMM and FCHMM (Ta-

ble 5.28). The best out of these nine configurations was the CHMM in the first and the

second layer. The second best configuration utilized the FCHMM in the second layer and the

CHMM or FCHMM in the first layer. The performance of the ULA was validated by models

being directly applied to the classes of the second layer. The results of this experiment

clearly outperformed the layered approach (Table 5.30 and Table 5.28).

The predictions of the second layer are required to perform the user preference recogni-

tion. However, the sequence of activities corresponds to an unsegmented setting. Therefore,

the directly trained models and the ULA were additionally evaluated on the third layer using
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the classes of the second layer. The experiment showed that, in this setting, the ULA clearly

outperformed the direct trained models. The best result was achieved using the FCHMM

in the first and the second layer (Table 5.32 and Table 5.31).

The evaluation of the third layer was performed using the FCHMM in the first and the

second layer and the DMLN in the third layer. The DMLN implemented a set of probabilistic

logical rules which modeled the transition between activities, the state of the coffee cup and

the implication to the user preference class. The DMLN achieved a recognition rate of about

90% (Table 5.35). The experiment showed that the probabilistic logical rules can suppress

wrong predictions from the preceding layers.

The study of the ULA confirmed that the layered architecture can recognize complex

entities based on observations made from sensors using a unified framework. The experiment

in which the Markov models were additionally applied directly to the classes of the second

layer revealed that the benefits of the ULA becomes first perceptible and evident in the

unsegmented setting of the next layer. Furthermore, it was shown that errors in the preceding

layer can be compensated with the help of the logical rules.
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Chapter 6

Discussion

The chapter discusses the results of the empirical evaluation presented in the preceding

Chapter 5. It is thematically organized in the same manner as Chapter 3 which presents

the methodical advances. First the proposed ensemble approach for density estimation,

the EGMM, is discussed. Subsequently, the results achieved using the HMM-GPD and

the CHMM-GPD are discussed. The next section reviews achievements of the novel MCS

approaches, including the CHMM for late classifier fusion and the MFN and the Kalman filter

for multimodal temporal classifier fusion. Finally, the ULA for complex pattern recognition

is discussed which was empirically evaluated using the MFN, CHMM and FCHMM.

Each discussion first summarizes the goals of the study and then analyzes the results in

order to identify advantages and problems of the approach. At the end of each discussion a

preliminary conclusion is drawn. A complete list of abbreviations can be found in Section A.1

in the Appendix. Details on the utilized datasets are provided in the corresponding sections

of Chapter 4

6.1. Ensemble GMM

The EGMM is an approach for robust density estimation which uses an ensemble of

GMM. The study of the EGMM bases on two experiments. The first experiment provides

a comparison to state-of-the-art approaches to assess the performance of the presented ap-

proach. The second experiment provides a deeper insight into the method’s robustness

by systematically evaluating the EGMM using three different beta distributions with the

bias-variance decomposition.

The first experiment compares the proposed algorithm with the approaches studied

by Ormoneit and Tresp (1998) who focused on density estimation algorithms using either
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superpositions of GMM or penalized GMM. The EGMM was evaluated using the Ormoneit

Dataset I (ODI) and the Ormoneit Dataset II (ODII) which were proposed by Ormoneit and

Tresp (1998). ODI is based on an sufficient number of two-dimensional samples, whereas

ODII contains only a low quantity of ten-dimensional samples. The proposed algorithm

clearly outperformed the alternative approaches on the ODI (Table 5.1, page 125). The

EGMM based on the complete set of evaluated GMM achieved on average an accuracy of

84.55%, while the computationally less expensive pruned EGMM which used only the 25

GMM with the highest likelihoods for testing achieved an accuracy of 84.77%. In case of

the ODII, the highest accuracy of 81.7% was achieved by the penalized likelihood approach

(Table 5.1, page 125). However, the EGMM and the pruned EGMM reached the second

and third place with accuracies of 78.8% and 77.4%, respectively. The penalized likelihood

approach regularizes the GMM parameters by adding prior knowledge to the EM algorithm.

Hence, it is difficult to assess the comparability of this approach. However, the EGMM which

does not use additional knowledge yielded good results. The experiment showed that the

EGMM is a good choice for accurate density estimation while having a reasonable computa-

tional effort. The selection of the 25 GMM to set up the pruned EGMM does not guarantee

to obtain an improved accuracy. However, limiting the number of ensemble members can

constrain the model’s complexity and, therefore, can be used to adjust the computational

effort when testing new data samples.

The second experiment examines the Beta Distribution Dataset (BDD) which comprise

three different beta distributions. The bias-variance decomposition was utilized to compare

the EGMM to conventional GMM. For most of the evaluated beta distributions, a GMM

with a small number of mixture components will provide the best approximation. However,

non-Gaussian distributions can only be represented by a GMM having an infinite number of

mixture components. Hence, the experiment simulates the search in a large parameter space

in which the target distribution cannot be described by the actual model. Therefore, this

setting is well suited to examine the robustness of the GMM and EGMM. The evaluation

of the classic GMM showed that the risk of choosing a non-optimal model increases the less

the distribution resembles a Gaussian. In contrast to that, the EGMM can provide stable

estimates (Figure 5.2). Hence, the risk of choosing an unqualified model is considerably

lower with the EGMM than with the classic GMM.

The experiments show that the EGMM provides more accurate estimates to non-Gaussian

densities compared with classic GMM or GMM bagging approaches. Furthermore, the

EGMM provides more robust densities than the GMM with regard to non-Gaussian distri-

butions.
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6.2. HMM and CHMM Using Graph Probability Densities

The HMM-GPD approach integrates the GPD proposed by Trentin and Di Iorio (2008)

into the probabilistic HMM such that not only sequences of variable length, but also variable-

sized feature vectors provided as graphs, can be modeled.

The study of the HMM-GPD examines the performance and flexibility of the approach

using two action recognition datasets, namely the Occlusion Action Dataset (OAD) and the

UUlmMulti-perspective Action Dataset (UUlmMAD). The first experiment which uses OAD

provides an intuition of the HMM-GPD to handle sequences of features with variable length.

The second experiment compares the HMM-GPD and CHMM-GPD with a state-of-the-art

approach for action recognition and utilizes the UUlmMAD.

The experiment on the OAD shows that the recognition of actions can be performed

despite feature vectors of variable-length which originate from simulated occlusions. The

experiment is composed of two parts. In the first part, a set of HMM-GPD was trained using

exclusively complete graph data. The testing of the derived models were then performed on

sets with different degrees of occlusion configurations, i.e. graph data with different degrees

of incompleteness. Testing on the complete graph data resulted in the best performance.

The performance measures showed only a slight decrease of the accuracies and F1-measures

for test sets with increasing occlusions. In case of the heaviest occlusion, the accuracy

dropped around 10% (upper part of Table 5.2, page 129). It is important to note that it is

not self-evident that testing can be performed on data samples which are composed only of

a fraction of what was used to carry out the training of the classifier. In the second part

of the experiment, a set of HMM-GPD was trained using complete and incomplete graph

data. Results were again derived by testing on sets with different degrees of occlusion con-

figurations. The highest accuracy was obtained when testing on the complete graph dataset.

Once more the performance decreased only slightly in case the testing was performed on

incomplete graph data (lower part of Table 5.2, page 129). The results showed that the

approach is able to perform training and testing on incomplete data. This property is of a

particular advantage for the creation of new datasets in real-world scenarios.

The second experiment examines the HMM-GPD and the CHMM-GPD in a more com-

plex scenario using the UUlmMAD. The dataset features 14 actions performed by 31 subjects

and was recorded using three video cameras and a motion capturing system. The dataset is

composed of sequences of graphs in which the number of edges can change every time step.

Graph sequences were generated with the help of occlusion-free skeleton models recorded by

the motion capturing system. A post-processing step then generated the self-occlusions in-

formation by simulating the optical characteristics of retail depth cameras, e.g. the KinectTM

camera. Finally, the self-occlusion information was used to remove the affected joints from

skeleton model. For each action, three self-occlusion sequences were computed matching the
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three perspectives of the video cameras. Hence, the HMM-GPD, the CHMM-GPD and a

state-of-the-art architecture was evaluated on four datasets: three datasets containing data

of only one perspective and a dataset containing data of all three perspectives. Testing was

always done using data of each perspective separately.

The baseline experiment examines the state-of-the-art architecture proposed by Laptev

et al. (2008). The architecture performs the classification in three steps. In the first step,

interest points are assigned to spatial and temporal locations in the video stream. Then,

HOG and HOF features are extracted and further processed to a fixed-length feature vector

using the bag-of-words approach. In the last step, the fixed-length feature vector is classified

using a one-vs-one SVM classifier system. The empirical evaluation yielded that the archi-

tecture is not view-invariant. A successful recognition using data of one perspective can only

be achieved, if data of the target perspective is also present during training. Hence, all three

perspectives were successfully recognized only in case data of all three camera perspectives

were used for training (Table 5.3, page 132).

The second experiment examines the performance of the HMM-GPD approach. The

results show that the HMM-GPD approach is partially view-invariant. The training using

data of a single perspective led always to a reliable recognition on test data of the same

perspective. In two cases, the training on data of a single perspective was sufficient to allow

a reliable recognition using test data of another perspective. Performing the training using

data of all three perspectives again provided a successful view-invariant recognition regarding

each of the three perspectives. The performance measures clearly improved compared to the

state-of-the-art architecture. However, view-invariance regarding the three perspectives was

still only achieved in case the training was performed on data of all perspectives (Table 5.5,

page 135). This finding can be related to the fact that some edges in distinct temporal

segments (represented by hidden states) are insufficiently modeled by the HMM-GPD due

to the missing coverage of the dataset.

The third experiment examines the CHMM-GPD which performs the classification using

only a single trained model. The CHMM-GPD shares hidden states between action classes

such that the chance for a sufficient modeling of edges for all hidden states increases. The

results show a clearly improved view-invariant performance. In nine out of twelve cases,

the approach achieved accuracies of over 94%, whereas two training and test configurations

still achieved accuracies of over 73%. The remaining configurations which still have a lower

performances can again be related to insufficiently modeled edges (Table 5.7, page 137).

However, in case a sufficient data coverage is given, a robust recognition can be achieved on

data generated from any of the three camera perspectives.

The experiments on the OAD and the UUlmMAD show that the HMM-GPD and CHMM-
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GPD can be used to train and to test sequences and features of variable length. In the

given application of action recognition, the data were only partially available due to occlu-

sions. However, the approaches achieved still good view-invariance performance. The best

approach turned out to be the CHMM-GPD which, in contrast to the HMM-GPD, requires

only a single model to be trained due to the sharing of hidden states between classes.

6.3. CHMM-MCS for Spotting Laughter

The next study is composed of two experiments which make use of the pre-segmented

and unsegmented sequences of the Freetalk Dataset which addresses laughter recognition in

unconstrained dialogs. The first experiment examines three temporal multimodal classifier

fusion architectures, whereas the second experiment analyzes the HMM-MCS and CHMM-

MCS.

The first experiment which examines the three multimodal temporal classifier fusion

architectures combines decisions derived from up to three sources, i.e. two audio feature

sets (MOD), (PLP) and a video feature set (MOV). Each of the three architectures uses a

different base classifier, namely the ESN, SVM or HMM. The empirical evaluation of the pre-

segmented dataset showed that the use of additional modalities is in general advantageous

(Table 5.9, page 145). The best performing approach was the SVM architecture using the

MOD and PLP features which achieved an error rate of 3.7%. The second best performance

was achieved by the HMM architecture using all three feature sets and resulted in an error

rate of 6.3%. The ESN architecture was not evaluated because the sequences in the pre-

segmented dataset were too short to perform the required adaptation phase.

The evaluation using the unsegmented dataset further approved the advantage of combin-

ing decisions from multiple modalities. However, a performance similar to the pre-segmented

dataset was not achieved on the unsegmented dataset. Two findings were observed: (1)

architectures making use of the MOV feature set had a lower performance and (2) the per-

formances of the SVM architecture felt behind the one of the HMM architecture. The SVM

architecture combining MOD and PLP features which achieved the best error rate in the

pre-segmented setting yielded only a mid-field performance on the unsegmented dataset.

Nonetheless, the SVM still had an acceptable error rate of 7.2% and the best precision in

the unsegmented setting. However, taking a closer look at the other performance measures

revealed that the outstanding precision came at the cost of the recall which had the lowest

value of 24% in the complete study. The best recall of 85% was achieved by the HMM

architecture using exclusively the MOV feature set. This HMM architecture yielded the

highest error rate of 26.8% and a mid-field ranked F1-measure of 56% due to a low precision

of 42%. The lowest error rate of 6.5% on the unsegmented dataset was achieved by the

HMM architecture using the MOD and PLP feature sets. The ratio of the precision (64%)
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and recall (80%) resulted in the best F1-measure of 72%. In summary, the experiment con-

firmed the benefits of combining multiple sources of decisions, the importance of examining

unsegmented datasets and the need for a wise choice of performance measures.

The second experiment on the Freetalk Dataset examines the fusion performance of the

HMM-MCS and the CHMM-MCS. In HMM-MCS, likelihoods need to be provided for each

class and modality which are then combined using the probability class ratio. In contrast, the

CHMM-MCS combines only the probability distributions over labels of the CHMM trained

for each modality. Hence, the CHMM-MCS comes with the advantage that only one model

needs to be trained for each modality, and that probability distributions over class labels

are given natively which is beneficial for further processing. The experiment examines three

approaches: (1) HMM-MCS, (2) restricted CHMM-MCS and (3) unrestricted CHMM-MCS.

The lowest error rate of 7.29% among all evaluated HMM-MCS was achieved by combin-

ing all available feature sets, i.e. MOD, PLP and MOV. A similar error rate of 7.45% was

achieved using only the MOD and PLP feature sets. The combination of either the PLP or

the MOD feature set with the MOV feature set led to an increase of the error rate which

indicates the weakness of the video MOV feature set (Table 5.11a, page 147).

The restricted CHMM-MCS was designed to have the same expressiveness as the HMM-

MCS by using a comparable transition matrix configuration. Two kinds of fusion strate-

gies were evaluated together with the CHMM-MCS, i.e. averaging and multiplication. The

achieved error rates were generally close to the error rates of the HMM-MCS. However, the

combination of the MOD and PLP feature sets using the averaging fusion strategy achieved

an error rate of 5.77% and, therefore, significantly outperformed the best HMM-MCS (Ta-

ble 5.11b, page 147).

The last experiment studies the unrestricted CHMM-MCS which makes use of a full

transition matrix. The approach outperformed the HMM-MCS in three settings: (1) mul-

tiplication fusion strategy using the MOD, PLP and MOV feature sets with an error rate

of 5.74%, (2) multiplication fusion strategy using the MOD and PLP feature sets with an

error rate of 5.70% and (3) averaging fusion strategy using the MOD and PLP feature sets

with an error rate of 5.62% (Table 5.11c, page 147).

It is important to emphasize that due to the restricted setup of the study the capabil-

ities of the CHMM and their combinations had by far not been driven to their limits. For

instance, it is possible to combine class probability distributions of models with different

configurations, e.g. models having different numbers of hidden states and mixture compo-

nents or different kinds of transition matrices. Furthermore, a weighing of individual CHMM

can be performed according to their classification performances.

Four findings can be drawn from the study: (1) CHMM-MCS are to be favored over the
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HMM-MCS, (2) multimodal fusion can bring a considerable benefit, (3) results based on a

pre-segmented dataset cannot be transfered to an unsegmented setting and (4) additional

appropriate performance measures are of great value to properly assess classifier perfor-

mances.

6.4. MFN and Kalman Filter for Classifier Fusion for

Affective State Recognition

The MFN and the Kalman filter for classifier fusion is examined in a study using the

application of affective state recognition. The introduction to this thesis identified different

MCS requirements which were met during the development and empirical evaluation of the

algorithms, e.g. processing of temporal and multimodal data, robustness to noisy features

and the necessity to handle missing classifier decisions. The MFN and the Kalman filter for

classifier fusion integrate multimodal classifier decisions over time in order to increase the

accuracy and robustness of a classifier system. Furthermore, these approaches can partially

compensate missing classifier decisions occurring for instance due to sensor failures or due

to rejections of decisions because of low classifier confidences.

6.4.1. AVEC — Baseline Experiment

The participation at the Audio/Visual Emotion Challenge (AVEC) in 2011 was the start-

ing point for a large study on temporal fusion MCS. The performance of the submission serves

as a baseline for later experiments. The MCS was composed of three components, i.e. the

audio, video and audio-visual components. The audio and video components utilized bag-

ging with HMM and SVM, respectively. Predictions from the audio and video components

were combined in the audio-visual component using an MLP. The AVEC 2011 provided four

target classes, i.e. “Arousal”, “Valence”, “Expectancy” and “Power”. Nonetheless, the official

winners of the AVEC 2011 were determined using only the class “Arousal”.

In general, the highest accuracies were achieved for the class “Arousal” closely followed

by the class “Valence”. The classes “Power” and “Expectancy” had generally the lowest recog-

nition rates regarding the three components. The proposed audio sub-challenge component

achieved the second place among nine contributions with an accuracy of 63.5%, whereas

the video sub-challenge component achieved the third place among four contributions with

an accuracy of 56.9%. The contribution to audio-visual sub-challenge achieved an accuracy

of 54.2% and, therefore, performed lower than the audio or video component (Table 5.12,

page 154). The audio-visual challenge was officially withdrawn because of the low number of

two participants. There is evidence that the predictions resulting from the audio and video
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modalities conflicted each other such that no stable mapping to the target class could be

learned.

The baseline experiment shows that affective state recognition is a challenging task. Simple

classifier functions and the bagging approach turned out to be the most reliable approaches.

Furthermore, the fusion of classifier decisions on word and conversational turn level con-

firm the advantage of temporal fusion. However, the audio-visual component provided no

satisfying performance due to inconsistent observations made in the individual modalities.

6.4.2. AVEC — Markov Fusion Network

The second experiment studies the MFN. The output of the MFN classifier architecture

was submitted to the AVEC 2012 which extended the AVEC 2011 by providing continuous

labels. The AVEC 2012 was rated using the absolute value of the averaged correlation

coefficients between predictions and annotations derived for each recording. As described in

Section 4.1.3.3, the absolute value of averaged correlation coefficients is a misleading measure

since it can rate negative outcomes positively. Furthermore, we showed that the provided

annotations are temporally biased. An unfitted logarithmic function achieved an outstanding

rating which was able to compete with the winners of challenge and even beat them in one

sub-challenge. A comprehensive discussion on this topic can be found in (Kächele et al.,

2014b; Glodek et al., 2012c).

The proposed MFN classifier architecture processes class probabilities and classifier con-

fidences which were obtained individually from the audio and video components. Class

probabilities with low confidences were rejected such that only the remaining confident

probabilities were combined using the MFN. The smoothness potential parameter was de-

creased for one frame at the beginning of each conversational turn based on the assumption

that the subject’s affective state stays stable within a turn. Our challenge results could

neither compete with the challenge winner nor with the aforementioned logarithmic func-

tion (Table 5.13, page 156). We believe that the continuous annotations and the utilized

performance measure of the AVEC 2012 may have distorted the competition. Therefore,

the following experiments of this thesis were performed using the binarized annotations of

the AVEC 2011.

The third experiment examines the MFN on the AVEC 2011 Dataset in three parts. The

first part analyzes the performances of the raw unimodal base classifiers. The second part

studies the performances of the unimodal fusion architectures using the MFN. Finally, the

last part examines the performances of three MFN architectures which were presented in

Section 3.5.2.
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The results of the unimodal base classifiers provides the baseline for later evaluations

of the MFN. Similar to the first baseline experiment on AVEC 2011 Dataset, the video

modality turned out to be less suitable for predicting the classes “Arousal”, “Expectancy” and

“Power”. Only the label dimension “Valence” constituted an exception. Higher rejection rates

generally improved the accuracies but also amplified the trend of unilateral class distributions

(Table 5.14, page 159).

In the second part, the unimodal decisions were temporally combined using the MFN.

The performance measures were clearly improved compared with the unimodal baseline

results. In case of the class “Arousal”, the audio MFN rendered an accuracy which improved

approximately 10%. Other unimodal MFN achieved performances similar to the unimodal

baseline with high rejection rates (Table 5.16, page 160). However, it has to be emphasized

that the MFN reconstructed missing decisions such that the evaluation in this part of the

experiment was performed considering all frames of the recordings.

The last part of the experiment examines the three MFN architectures for multimodal

temporal fusion which follow the principle of the early (FRT), mid-level (RFT) and late

(RTF) fusion defined in Section 3.5.2. The best performance was achieved by the mid-

level fusion architecture (RFT). which can be related to the concurrent combination of

input decisions when compared to the FRT and RTF architectures. Furthermore, the online

processing mode of the MFN generally outperformed the offline processing mode (Table 5.18,

page 161). This can be explained by the fact that no future information is propagated back

in the online processing mode which matches the annotation process of the dataset.

The experiments show that the MFN can be applied in a large variety of possible archi-

tectures. Using the AVEC 2011 Dataset, the concurrent multimodal and temporal MFN

architecture, i.e. the RFT architecture, using the online processing mode turned out to be

the approach with the best performance. Although the MFN parameters and rejected de-

cisions are easy to be interpreted, it is difficult to predict the implications of the interplay

between the potential functions. Nonetheless, the MFN stands out by its exceptional char-

acteristics: It reconstructs missing classifier decisions which may result from sensor failures

or the use of a reject option. Furthermore, the provided probability distributions are well-

suited for further processing. It is even possible to deploy the MFN in large surveillance

areas. In this setting, classifier decisions from sensors can dynamically be switched on and

off depending on the location of the subject to be monitored.

The results achieved with the MFN clearly outperformed the submission results of the

original challenge. Moreover, the original dataset of the AVEC 2011 was repartitioned using

the parts for which labels were available. As a result, the actual classification problem

became more difficult. The folds were arranged to be subject-independent and, due to only
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a share of the original dataset was used, the folds themselves were smaller. Comparing the

performances of the raw unimodal classifiers, the unimodal MFN and the multimodal MFN,

it becomes clear that a major portion of the performance improvements can be contributed

to the MFN. The next experiments examine the Kalman filter for classifier fusion in the

same setting as the MFN

6.4.3. AVEC — Kalman Filter for Classifier Fusion

The last two experiments address the Kalman filter for classifier fusion using the AVEC

2011 Dataset and the AVEC 2013 Dataset. Analogously to the MFN, the Kalman filter for

classifier fusion provides outputs for every frame, even if a frame is not supported by any

decision.

The experiment which uses the AVEC 2011 Dataset reproduced the last two parts of

the MFN experiment using the Kalman filter for classifier fusion. Therefore, two empirical

evaluations were performed: (1) unimodal Kalman filter fusion and (2) multimodal Kalman

filter fusion. The performance measures of the unimodal Kalman filter fusion improved

the predictions of the raw unimodal classifiers. The unimodal Kalman filter fusion had

a similar performance as the unimodal MFN. The audio and video Kalman filter fusion

approaches achieved higher accuracies for the classes “Arousal” and “Expectancy”, whereas

the unimodal MFN using the online processing mode performed better for the classes “Power”

and “Valence” (Table 5.20, page 165).

Analogously, the multimodal Kalman filter fusion and the multimodal MFN performed

similarly. The multimodal Kalman filter fusion performed slightly better for the classes

“Expectancy” and “Power”, whereas the multimodal MFN outperformed the Kalman filter

fusion with respect to the classes “Arousal” and “Valence”. However, the differences are only

marginal. Nonetheless, the improvement of the multimodal Kalman filter with respect to

the baseline study is worth to be mentioned: The accuracy of the class “Arousal” increased

from 54.2% to 68.5% (Table 5.22, page 166).

The last experiment examines the Kalman filter for classifier fusion using the the AVEC

2013. To do so, the approach was integrated into the classifier architecture which was eval-

uated on the official AVEC 2013 test set. In contrast to the previous study, the parameters

of the Kalman filter were learned using the EM algorithm. The architecture outperformed

the other contributions submitted to the AVEC 2013.

The study of the MFN and the Kalman filter for classifier fusion in the area of affective

state recognition show that both approaches can compensate missing classifier decisions

and, therefore, are well-suited for the application in real-world scenarios, e.g. the recognition

of hard-to-classify affective states. In contrast to the MFN, the Kalman filter models the
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uncertainty explicitly. The MFN on the other hand bears the advantage that the parameters

can be interpreted more intuitively. In summary, the MFN and the Kalman filter for classifier

fusion proved both to be effective multimodal and temporal fusion techniques.

6.5. Layered Architecture for Complex Pattern

Recognition

The recognition of complex entities which are not directly observable and occur in a large

variety of appearances is a challenging task. The generic ULA addresses this issue with the

help of multiple layers. Basic entities are recognized in the lowest layer based on sensor

observations. The corresponding class decisions are collected and passed to the subsequent

layer which uses them in order to recognize more abstract classes. This procedure is repeated

until the desired complex entities is recognized.

The study of the ULA uses the Office Layered Architecture Dataset (OLAD) which was

designed to have three layers of classes. The first layer recognizes elementary action classes

based on features directly extracted from sensor data. The second layer recognizes activity

classes which are composed of the actions classes of the previous layer. The third layer

which uses the predictions of the activity classes as input infers the user preference classes.

An object recognition task is included as well to provide an additional source of symbolic

knowledge (class information) to support the first two layers.

The study addresses a number of topics: the qualification of different Markov models, the

integration of sub-symbolic and symbolic information and the performances of pre-segmented

and unsegmented pattern recognition. Furthermore, an additional experiment examines the

performance of the MFN in the area of object recognition.

6.5.1. Object recognition Using the Markov Fusion Network

According to the design of the OLAD, the user preferences have to be inferred based on

the observations of activities and actions. The activities and actions in turn are recognized

based on the movements of the skeleton model. However, the object which is manipulated by

the subject can provide additional evidence for actions and activities. Therefore, the OLAD

features an additional object recognition task to detect the objects being manipulated in

the hand of the subject.

The MFN MCS performing the object recognition uses the outputs of three base clas-

sifiers. Two classifiers use video feature vectors as inputs and one classifier operates on

audio feature vectors. The multimodal classifier decisions are combined over time using an

MFN. The results of the MFN MCS and four alternative fusion techniques, i.e. frame-wise
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and windowed fusion using the sum or the product, show that the MFN clearly outper-

formed the alternative approaches. Only the combination using the windowed sum achieved

a competing performance (Table 5.26a, page 172). The performances of the approaches

were further analyzed using ranked accuracies. The first two ranks of the windowed sum

fusion achieved an accuracy of 96.5%, whereas the MFN achieved an accuracy of 98.3%

(Table 5.26b, page 172). These results demonstrated the benefit of using the MFN to com-

bine multiple modalities over time. Furthermore, the experiment shows that the MFN also

allows modalities to contribute to one single class in a multi-class problem. The output of

the object recognition was utilized as additional symbolic knowledge which was provided to

the CHMM and FCHMM in the first two layers.

6.5.2. Action and Activity Recognition Using the CHMM and FCHMM

The action and activity recognitions were performed in the first two layers of the ULA.

Three different Markov models were analyzed, i.e. the HMM, CHMM and FCHMM. The

causal sequences provided additional external symbolic information to the CHMM and

FCHMM. The fuzzy causal sequences of the FCHMM were allocated using the object prob-

ability distributions, whereas the causal sequences of the CHMM were allocated with the

crisp object class assignments.

The evaluation of action recognition in the first layer shows that the FCHMM outper-

formed the CHMM and HMM (Table 5.27, page 173). The results provided first evidences

for the benefit of using the additional external symbolic knowledge. A class probability

distribution over actions for each time step was prepared and made available to the second

layer.

The activity recognition in the subsequent layer was evaluated using all combinations

of HMM, CHMM and FCHMM in the first and second layer. It turned out that the best

accuracy of 82.3% was achieved when using the CHMM in the first layer and second layer.

Using either the CHMM or the FCHMM in the first and the FCHMM in second layer yielded

in the second best accuracy of 81.8%. Approaches using the HMM generally performed lower,

e.g. the HMM in the first and second layer achieved an accuracy of only 71.1% (Table 5.28,

page 174).

To validate the benefit of the ULA, an additional experiment in which the HMM, CHMM

and FCHMM were directly applied to the classes of the second layer was performed (Ta-

ble 5.30, page 174). The directly trained models yielded a surprisingly good performance.

However, the high accuracies can be related to the pre-segmentation of the sequences. That

means, the observed sequences of the directly trained models were comparably large, whereas

the training and testing on the sequences provided by the first layer had to make use of
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smaller sequences due to the nested shifted windows. The missing information in the be-

ginning and at the end of the pre-segmented activity test sequences caused that the up-

permost layer had less information available. This assumption is confirmed by a follow-up

experiment, in which the direct and layered activity recognition approaches were tested on

complete user preference sequences. The activity recognition performed on complete user

preference sequences can be compared with an unsegmented recognition setting. In case of

the unsegmented setting, the performance of the directly trained models dropped severely.

The best accuracy among the directly trained models was achieved by the CHMM with

65.4% (Table 5.31, page 176), whereas the layered approach yielded the best accuracy of

72.1% using the FCHMM in the first and the second layer (Table 5.32, page 176). Again we

see that the measured performances based on pre-segmented data cannot be transfered to

the unsegmented setting. Nonetheless, the recognition performance had decreased compared

with the pre-segmented setting, because the unsegmented setting is clearly more challenging.

The user preference recognition was realized using the FCHMM in the first and the second

layer. The second layer provided a class probability distribution over activities for each time

step to the third layer.

The patterns to be recognized in the third layer have a large variety of appearances and,

therefore, require rules which relate activities happening at different points in time to each

other. Hence, the third layer must make use of alternative approaches than classic pattern

recognition approaches.

6.5.3. User Preference Recognition Using the MLN

The last layer recognizes the complex entity of user preference based on the output of

the second layer. The dataset was designed such that logical rules can be used to describe

the user preferences. However, a logic framework is too rigid because of the uncertainty

associated with the predictions of the second layer. Hence, a combination of probability

and first-order logic in form of the DMLN was utilized in the third layer. The complex

interplay of activities and their relevance for the recognition of the user preference required

the DMLN template model to be generated by human. The template model contained only

one model parameter which was trained using the EM algorithm. The DMLN achieved an

outstanding accuracy of 90.0% which is impressive regarding the fact that information was

propagated through three layers (Table 5.35, page 178). Any wrong classifier decision in

the former layer could have a fatal impact to the final user preference class assignment. As

shown in Figure 5.17, the DMLN was able to correct wrong classifier decisions of the second

layer with the help of the first-order logic rules. Hence, the modeled symbolic information

in the DMLN was successfully integrated with sub-symbolic sensor data.
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The study of the ULA on the OLAD offers many interesting findings. In the first part

of the study, the MFN was evaluated and compared with alternative multimodal temporal

fusion techniques among which the MFN turned out to be superior. Furthermore, decisions

which give evidence for only a single class can be integrated into the MFN. The second

part of the study evaluated the performances of the first two layers. The experiments show

that the integration of additional external class information to control the selection of hidden

states can increase the recognition performance of the layers. Furthermore, it was shown that

performance measures obtained on pre-segmented sequences cannot necessarily by transfered

to an unsegmented setting. In order to derive the input for the next layer, an unsegmented

recognition of the next layer’s data steam has to be performed. The errors occurring in this

recognition can be compensated to a certain degree by the next layer. Finally, the last part

of the study has demonstrated that the DMLN is well-suited to recognize complex entities

in the ULA and can even correct wrong inputs originating from the preceding layer.
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Chapter 7

Conclusions

In this work, pattern recognition approaches for cognitive technical systems (CTS) with

a focus on real-world scenarios and complex environments were developed and evaluated.

This chapter reviews the achievements towards the three research questions raised in Sec-

tion 1.1. In the end, an outlook on interesting future work will be given.

(i) How to combine multimodal and temporal probabilistic classifier results?

This question was addressed by introducing and evaluating two novel classifier fusion ap-

proaches, namely the Markov fusion network (MFN) and the Kalman filter for classifier

fusion (Glodek et al., 2014c, 2013b).

Both approaches combine multiple streams of classifier decisions derived from different

modalities to a single temporal stream of decisions. Furthermore, both approaches are able

to handle missing classifier decisions which occur for instance due to sensor failures or due to

a rejection of decisions because of a low classifier confidences (Glodek et al., 2012c,b). Both

approaches allow individual weighting of base classifiers and a temporal smoothing. The

MFN stands out by its intuitive and flexible parameterization, whereas the Kalman filter is

a well understood method with a large number of established extensions. The algorithms

were successfully applied in the context of affective state recognition in multiple editions

of the Audio/Visual Emotion Challenge (AVEC) (Glodek et al., 2014c, 2013b). Further

experiments proved their superiority over conventional fusion techniques (Glodek et al.,

2014a).

Moreover, this thesis addressed parameter learning algorithms for MFN and Kalman

filter for classifier fusion. The development of suitable parameter learning algorithms is

challenging due to differences in base classifier performances and potentially missing class

decisions. For instance, the absence or even different rates of classifier decisions can influ-
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ence the fusion performance. In this work, a heuristic learning algorithm for the MFN was

presented which addressed these aspects. Regarding the Kalman filter for classifier fusion,

the well-known EM algorithm was examined (Kächele et al., 2014a).

(ii) How to handle missing information in sequential classifiers?

The question is addressed by modeling information in the form of graphs which can vary in

shape and size. However, it is not apparent how to perform a classification based on graph

data, and even less on sequential graph data.

In this work, graph probability densities (GPD) as proposed by (Trentin and Di Iorio,

2008) were integrated into the hidden Markov model (HMM) in order to represent sequences

of weighted graphs which vary over time in shape and size (Glodek et al., 2013d). The

training of an HMM using GPD (HMM-GPD) requires that all possible edges in a graph

are sampled at a rate which allows sufficient statistics to be learned. The HMM-GPD can

be used for classification by fitting one model to each class. An alternative representation

is provided by the conditioned hidden Markov model (CHMM) using GPD (CHMM-GPD).

The CHMM-GPD makes it possible to share hidden states over classes such that only one

model is needed to solve a classification problem.

The HMM-GPD and the CHMM-GPD were examined in the setting of activity recogni-

tion in which self-occlusion complicates the training and testing of image-based recognizers.

The novel approaches use an application-specific representation of the subject given by a

skeleton model. Such a skeleton model can be provided by retail depth cameras which,

however, can capture only joints of the skeleton model being not afflicted by self-occlusions.

In order to perform a comprehensive study, a complete skeleton model was recorded and

self-occlusions was added later on with the help of a post-processing step. The partially

available skeleton model is regarded as an incomplete feature vector. Two experiments were

performed to study the new approaches: (1) a feasibility experiment using a retail depth

camera and (2) a comparative experiment using a state-of-the-art motion capturing sys-

tem and three video cameras. The first experiment shows that the HMM-GPD provides

an outstanding classification performance even under heavy self-occlusions. Moreover, the

experiment demonstrates that the algorithm allows the training based on incomplete fea-

ture vectors which facilitates the collection of data in real-world scenarios (Glodek et al.,

2013d). The second experiment examines classifier performances with a special focus on

view-invariance and compares the state-of-the-art computer vision architecture proposed

by Laptev et al. (2008) with the HMM-GPD and the CHMM-GPD. The state-of-the-art

approach recognized actions only from the perspectives which were already provided during

training (Glodek et al., 2015b). The evaluations using the HMM-GPD showed a partial

view-invariant action recognition. Whenever the training set comprised a sufficient coverage
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of graphs the HMM-GPD was able to achieve view-invariance. However, the chance of a

good training set coverage regarding edges turned out to be still to low. The CHMM-GPD

improves this coverage by unifying the representations into a single model. The evaluations

showed that the recognition based on the CHMM-GPD was able to significantly improve

view-invariance.

It has to be emphasized that the proposed algorithms do not only provide good classi-

fication performances, but also stand out by their unique properties. Training and testing

was performed using sequences of graphs with varying size. The CHMM-GPD can group

similar graphs of different classes and represent them jointly in a single hidden state. An

article presenting the findings made in the study performed on the UUlmMAD is going to

be published in the near future.

(iii) How to create high performance classifiers for complex classes?

Two classifier architectures in which the class complexity is gradually increased and symbolic

knowledge is used for the recognition of complex entities were introduced to address this

question. The two proposed layered architectures for the recognition of complex entities

are: (1) the unidirectional layered architecture (ULA) and (2) the bidirectional layered

architecture (BLA).

Both architecture are composed of layers which focuses on a set of classes of differ-

ent complexity. The lowest layer performs the recognition of basic classes which are then

propagated to the next layer in which more complex classes with an increased temporal

granularity are recognized. The ULA propagates information only upwards, whereas the

BLA simultaneously propagates information back to lower layers.

In case of the ULA, any type of classifier can be applied to perform the recognition

within a layer (Glodek et al., 2014a). However, due to the temporal characteristics of

most patterns in real-world applications, the consideration of using Markov models is often

inevitable. Furthermore, it is important to propagate probability distributions over classes

to the next layer rather than crisp class assignments in order to preserve as much information

as possible (Glodek et al., 2012d,d,a). The dynamic Markov logic network (DMLN) Geier

and Biundo (2011) combines probability and first-order logic in a dynamical model and,

hence, is a good candidate to realize the recognition of complex entities (Glodek et al.,

2013a).

The BLA extends the ULA by allowing an exchange of information between the layers.

To do so, the architecture is restricted to a conditioned hidden Markov model (CHMM) in

the lower layer and to the DMLN in the upper layer. The training of the architecture can

be performed similarly to the ULA. However, a set of random variables in both layers need

to encode the same semantics. The random variables are unified during inference such that
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the states of the CHMM and DMLN can exchange their information.

The ULA is able to correct inconsistencies originating from wrong recognitions of lower

layers. In addition to that, the BLA can propagate the corrected inconsistencies back to the

lower layer such that a re-adaption can take place.

Two datasets were recorded to examine the proposed architectures. The first dataset

examines the ULA and addresses the recognition of user preferences in an office scenario.

The subject performs various activities which are composed of short actions. The order

of activities is constrained by logical rules which help to specify the user preference to be

recognized in the last layer. The second dataset was recorded to examine the BLA and is

situated in a workout scenario. The subject performs various activities such as: putting

objects on a table, putting objects back into a bag and using the objects. Again, the

sequence of activities follows a set of rules. However, in this setting the information given

by the rules can help to improve the recognition of the lower layer classes. The findings of

this experiment will be published in the near future in cooperation with Thomas Geier from

the Institute of Artificial Intelligence (University Ulm) and Georg Layher from the Vision

and Perception Science Lab (University Ulm).

The study on the first dataset examines multiple aspects of the proposed ULA (Glodek

et al., 2014a). The implementation makes use of sequential classifiers and realizes a consis-

tent handling of uncertainty. It was shown that fuzzy conditioned hidden Markov models

(FCHMM) are well-suited to be deployed in the lower layers, whereas the DMLN is qualified

to recognize the complex entities. In summary, the study demonstrates the successful inte-

gration of symbolic DMLN knowledge with the sub-symbolic knowledge of classifiers using

multiple layers of intermediate class representations.

In addition to the already presented algorithms further related approaches were devel-

oped and evaluated. One approach is the EGMM which extends the well-known GMM

by the ensemble method to enhance the robustness of density estimation compared with

classic approaches which was confirmed by two experiments (Glodek et al., 2013c). Further-

more, it was shown that an exhaustive parameter optimization which is usually required for

model selection is less vital using the EGMM in order to obtain an accurate density estima-

tion (Glodek et al., 2010). The second approach introduced in this work is the inequality

constraint multi-class fuzzy-in and fuzzy-out SVM (IC-MC-F2-SVM) which is a multi-class

SVM operating on fuzzy class memberships (Glodek et al., 2014b). In contrast to the multi-

class fuzzy-in and fuzzy-out SVM (MC-F2-SVM) proposed by Schwenker et al. (2014) the

fuzzy labels are modeled with the help of inequality constraints. Further work was pub-

lished in collaboration with other scientist, e.g. (Schels et al., 2014; Scherer et al., 2012a,b).

A detailed overview of all publications can be found on page 249 after the reference list.
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7.1. Outlook

Although a large number of studies has been performed during this thesis, there are

still many interesting developments and evaluations possible which can provide a deeper

understanding of the proposed methods.

An exciting issue is the development of extensions to the MFN and Kalman filter for

classifier fusion. Furthermore, a comparative study of both parameter learning algorithms

can be conducted in order to further identify the characteristics and differences between the

MFN and Kalman filter for classifier fusion. The classifier fusion approaches can for example

also be deployed in large surveillance areas where the base classifiers can be dynamically

switched on and off depending on the location of the monitored object.

The HMM-GPD can be studied in the field of object related activity recognition. When-

ever objects are recognized close to the manipulation range of a subject, a corresponding edge

can be dynamically added to the graph. This technique would allow the dynamic switching

of context during classification. Furthermore, it would be beneficial to additionally model

the orientation and location of the subject with respect to the world coordinate system in

order to further reduce confusion between classes with similar movements, e.g. squat jump,

toe touch and sit down. A more detailed examination of the CHMM-GPD regarding the

transition matrix and hidden states can provide a deeper understanding of the model and

the relations of classes.

The CHMM promises to have the ability to recognize class changes in windowed sequen-

tial data by using test label sequences which are composed of one classes in the first half

and the other class in the second half of the causal sequence.

Up to this point, the recognition of complex classes requires human-generated models.

The layered architecture could be extended in order to identify new activities and rules.

At least the learning of rules will most probably still require human assistance, e.g. active

learning. However, an adaptive layered architecture could be of great value for CTS.

In this work, pattern recognition approaches have been combined with approaches from

symbolic AI. This constitutes a first step for the integration of the building blocks presented

in the introduction. In the next steps, further components must be added to the CTS.

However, it is not crucial to add a component to the CTS which can perform a complex

task or do a special task exceptionally good, but to have a vast number of components

realizing small functionalities. They contribute valuable information to the inner building

block which, therefore, can build up a comprehensive model of the world state on which

reasoning can be performed. This in turn leads to interaction patterns which match the

situative context and, therefore, are perceived by the interacting subject as being based on

profound knowledge. The basic components required for the realization of such a Companion
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system have already reached an elaborated state. They have to be assembled based on

the paradigms examined in this work, e.g. small components and consistent handling of

uncertainty (Glodek et al., 2015a). There is still much research to be done in order to

realize the smooth transition and the interplay between these components.
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Chapter A

Appendix

The current chapter provides supplemental material. Section A.1 provides an exhaustive

list of all abbreviation used. The utilized notation is presented in Section A.2. Algorithms

which would have exceeded the scope of text, but are still of relevance to this work, are

provided in Section A.3. Section A.4 presents details on the utilized parameters which would

have as well exceeded the scope of the text. A publication list with additional information

is featured in Section A.5.

A.1. Abbreviations

This section provides a list of all abbreviations used in this thesis. Additional information

about the corresponding term can be found in the index.
Name Abbreviation

Aggregated expectation-maximization Ag-EM

Audio/Visual Emotion Challenge AVEC

Absolute correlation coefficient CC

Beta Distribution Dataset BDD

Bidirectional layered architecture BLA

Computer Expression Recognition Toolbox CERT

Conditioned hidden Markov model CHMM

Cyclic pattern kernel CPK

Cognitive technical system CTS

Conditional random field CRF

Dynamic Markov logic network DMLN

Ensemble Gaussian mixture model EGMM
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Name Abbreviation

Expectation-maximization EM

Echo state network ESN

Fuzzy conditioned hidden Markov model FCHMM

Fully-continuous sub-challenge (AVEC 2012) FCSC

Fuzzy-in fuzzy-out support vector machine F2-SVM

Fusion/rejection of uncertain decision/temporal integration FRT

Graph probability density GPD

Gaussian mixture model GMM

Human computer interaction HCI

Hidden Markov model HMM

Histogram of colors HOC

Histogram of optical flow HOF

Histogram of orientation gradients HOG

Hue-saturation-value color model HSV

Inequality constraint multiple classes fuzzy-in fuzzy-out SVM IC-MC-F2-SVM

Independent and identically distributed i.i.d.

Input-output hidden Markov model IOHMM

Latent-dynamic conditional random field LDCRF

Layered hidden Markov model LHMM

Linear Predictive Coding LPC

Multiple classes fuzzy-in fuzzy-out SVM MC-F2-SVM

Multiple classifier system MCS

Mel frequency cepstral coefficients MFCC

Markov fusion network MFN

Markov logic network MLN

Multi layer perceptron MLP

Modulation spectrum feature (Freetalk datast) MOD

Movement feature (Freetalk datast) MOV

Markov random field MRF

Naïve Bayes classifier NBC

Occlusion action dataset OAD

Ormoneit Dataset I ODI

Ormoneit Dataset II ODII

Occlusion action dataset OAD

Office layered architecture dataset OLAD

Perceptual linear prediction feature PLP

Relative Spectral Transform RASTA
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Name Abbreviation

Red-green-blue color model RGB

Rejection of uncertain decision/fusion/temporal integration RFT

Root mean square RMS

Rejection of uncertain decision/temporal integration/fusion RTF

Support vector machine SVM

Unweighted accuracy UA

Universal background model UBM

Unidirectional layered architecture ULA

UUlm Generic Layered Dataset UUlmGLAD

UUlm Multi-perspective Dataset UUlmMAD

Weighted accuracy WA

Walk kernel WK

Word-level sub-challenge (AVEC 2012) WLSC

Abbreviations in the OAD

OAD class “Drink” DC

OAD class “Eat” EA

OAD class “Read” RN

Abbreviations in uulmGLAD

Layer 1

Pick up object PUP1

Move object towards head MTH1

Move object from head MFH1

Move object from table MFT1

Lay back object TAM1

Manipulate object in hand HAM1

Manipulate object at table TAM1

Manipulate object close to head HEM1

Empty hand EH1
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Layer 2

Drink from cup DC2

Fill milk into a cup MC2

Read note RN2

Stir cup SC2

Add sugar and stir SSC2

Write note WN2

No activity HEM2

Layer 3

Black coffee BC3

White coffee WC3

Sweet coffee SC3

Sweet white coffee SWC3

Abbreviations in UUlmMAD

The abbreviations of classes used in the UUlmMAD are introduced in Figure 4.6 on

page 99.
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A.2. Notation

This section provides a list of notations in note form used in this thesis.

Description Examples

Scalar values are in general denoted by lowercase, italic, non-bold

letters with serifs. If the scalar value denotes a number of a set,

it is usually written using an uppercase letter.

x, y, i, N, M, λ

Vectors are written using lowercase, non-italic, bold letters with

serifs. Elements of vectors are indexed by the corresponding non-

bold letter with an additional subscript, e.g. xi.

x, µ

Matrices are written using uppercase non-italic, bold letters with

serifs. Elements of the matrix are indexed by the corresponding

non-bold letter with an additional subscript, e.g. xij , xn−1,j . The

identity matrix is denoted by I ∈ RD

X, Σ

Sets are written using uppercase calligraphic letters. The cardi-

nality of set are denoted by | · |.

T , C

Sets of number, e.g. the set of real numbers, are written using

blackboard bold letters. The first example shows the set of all

real numbers, the second symbol shows the set of non-negative real

numbers and the third symbol shows the set of natural numbers.

Natural number are defined as positive integers without zero.

R,R≥0,Z

Functions are written using lowercase italic non-bold letters with

serifs with a list of parameters encapsulated by round brackets. In

case the function returns a vector it is written using a bold letter.

f(·), f(·)

Distinct functions are denoted with fixed operator names: The

expected value (E), the variance (var), the covariance (cov), the

determinant (det) and the normal distribution (N ).

E, var, cov, det, N , . . .

Distinct variables are denoted with fixed operator names: The

mean value (µ), the variance (σ), the covarianz (Σ).

µ, σ, Σ, . . .
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Description Examples

Tupels pool an arbitrary but finite number of ordered values using

round brackets. They contain multiple instances of the same kind

of elements.

(x, z), (x, y)

Random variables are denoted using sans-serif letters. Vectors

or matrices of random variables can be denoted using bold and

uppercase letters as already described.

x, x, X

Functions of probabilities are denoted by p(·), or alternatively

q(·). The assignment of random variables are given by x = x.

However, the notation is often simplified by only writing the as-

signment x. Conditioned probabilities are denoted by a vertical

line, e.g. p(x|y). The term p(x|y) is read “probability of x given

y”. To allow the reader a fast mapping from a probability func-

tion, e.g. p(wt = wt|wt−1 = wt−1), to its representing parameter

variable, e.g. A, the parameter will often be written as being part

of the probability function, e.g. p(wt = wt|wt−1 = wt−1 p A).

Certain probability density functions have their own symbols, e.g.

the Gaussian distribution N and the Gaussian mixture model G.

p(·), q(·), p(x = x) = p(x),

p(x = x) = p(x),

p(x|y),

p(xt|w = wt p A)

The quantity δx=y takes the value one in case the equation x = y

holds true and zero elsewhere.

δx=y

Ranges are defined by the two quantities a and b placed within

brackets. Depending on the kind of brackets, endpoints are either

within the interval or not, e.g. [a, b] := {x ∈ R|a ≤ x ≤ b} or

[a, b) := {x ∈ R|a ≤ x < b}.

[a, b], (a, b)

Sets can alternatively be defined using an index with a lower and

upper limit. For instance, the expression {θl : l = 1, . . . , L} is

equivalent to {θl}Ll=1.

{θl}Ll=1
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A.3. Algorithms

The current section provides details on the algorithms which have been used in this work.

However, a comprehensive presentation of these algorithms in the text would have exceeded

the scope of the manuscript.

A.3.1. Cross-validation

The cross-validation was applied multiple times in the empirical evaluations. This section

introduces the procedure and the terms used in this context.

The cross-validation is commonly used in a nested fashion, as illustrated by the 10× 10

cross-validation in Figure A.1. The outer cross-validation takes the complete dataset and

divides it into folds of development sets and corresponding test sets. The partitioning of

the data is depicted in the upper part of the figure with ten folds. Each vertical division

corresponds to a fold based on the complete dataset. Within a vertical division, the gray

block corresponds to the test set and the concatenated white blocks to the development set.

The test set is used to obtain the final statistics on the dataset and utilized models. To avoid

overfitting during the parameter optimization on the development set, the development set

is further divided into folds of training sets and validation sets, as depicted in the lower

part of the figure. Each vertical division corresponds to a fold based on the development

dataset. Within a vertical division, the gray block corresponds to the validation set and

the concatenated white blocks to the training set. The parameters are determined with

the help of all configurations of training and validation sets using parameter search. The

M ×N cross-validation would stand for dividing the complete dataset into M folds and the

development set into N folds.

Figure A.1. Schematic draw-
ing of a 10 × 10 cross-
validation. The upper part of
the figure shows the first partition-
ing of the complete dataset into 10
folds of development and test sets.
The lower part of the figure shows
how the development set is further
partitioning into 10 folds of train-
ing and validation sets.
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A.3.2. Ormoneit I & II

The following algorithm was first described by Ormoneit and Tresp (1996) and defines the

generation of the distributions contained in Ormoneit I Dataset and Ormoneit II Dataset to

study density classification performances.

Algorithm A.1: Algorithm proposed by Ormoneit and Tresp (1996) to create an arti-
ficial dataset for density estimation. Explained in detail in Section 4.1.1.
Data: Dimensionality of samples D, Even number of samples N , offset ∆ of the two

centers from the origin and standard deviation of the centers σ

Result: Training dataset T = {(x(n), y(n))|x(n) ∈ RDand class label y(n)}Nn=1

for n=1 toN do

y(n) =

0 if n ≤ N/2

1 otherwise
; /* Determine class label */

x ∼ N (·|0, ID) ; /* Draw from multivariate distribution */

x = x/||x||2 ; /* Project onto the unit circle */

ε ∼ N (·|0, σ2) ; /* Create dispertion around unit circle */

x = (1 + ε)x ;

x(n) =

x + ∆ if n ≤ N/2

x otherwise
; /* Offset according to class label */

T = T ∪ {(x(n), y(n))}
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A.3.3. Markov fusion network

The program describes the gradient decent algorithm to derive the estimate of the MFN

given a set of predictions.

Algorithm A.2: Markov fusion network gradient descent algorithm.
Data: Current estimate Y ∈ RI×T , predictions X ∈ RM×I×T and

model parameters w ∈ RT−1, k ∈ RM and u

Result: Energy E and the gradient ∂Y
∂yit

Edata = 0; Esmooth = 0; Eprob = 0;

for t=1 toT do

σ = 0 ; /* Initialization */

for i=1 toI do
∂Y
∂yit

= 0;

σ = σ + yit;

Eprob = Eprob + u ·
(

1− σ
)2

;

for m=1 toM do

for i=1 toI do

if isavailable(ximt) then /* Edata */

Edata = Edata + kmt ·
(
yit − ximt

)2

;
∂Y
∂yit

= ∂Y
∂yit

+ 2 · kmt ·
(
yit − ximt

)
if t == 0 then /* Esmooth */

Esmooth = Esmooth + w0 ·
(
yi0 − yi1

)2

;
∂Y
∂yit

= ∂Y
∂yit

+ 2 · w0 ·
(
yi0 − yi1

)
else if t < T - 1 then

Esmooth = Esmooth + wt−1 ·
(
yit − yit−1

)2

+ wt ·
(
yit − yit+1

)2

;
∂Y
∂yit

= ∂Y
∂yit

+ 2 · wt−1 ·
(
yit − yit−1

)
+ 2 · wt ·

(
yit − yit+1

)
else if t == T - 1 then

Esmooth = Esmooth + wT−2 ·
(
yiT−1 − yit−2

)2

;

∂Y
∂yit

= ∂Y
∂yit

+ 2 · wT−2 ·
(
yiT−1 − yit−2

)
;

Eprob = Eprob + u ·
(

1[0>yit] · yit
)2

; /* Eprob */

∂Y
∂yit

= ∂Y
∂yit

+ u · (2− 2 · σ) · (−yit) + u · 2 · 1[0>yit] · yit;

E = Edata + Esmooth + Eprob;
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A.4. Detailed Parameter Setting of Empirical Evaluations

To keep the manuscript uncluttered, we refrained from presentating detailed lists of pa-

rameter configurations during the actual empirical evaluation. The collected lists are to be

found in this part of the Appendix.

Table A.1 contains the parameter settings used for the MFN in the AVEC 2012 which were

used in the evaluation presented in Section 5.4.2.

Table A.1. Parameter settings of the MFN in the submission to the AVEC 2012.
Arousal A. rej. V. rej. kaudio kvideo w wturn

WLCS Audio 50% - 0.3 - 192 8
WLCS Video - 90% - 0.5 64 8
FCSC Video - 50% - 0.5 192 8
WLCS Audiovisual 50% 90% 0.3 0.5 192 8
FCSC Audiovisual 50% 90% 0.3 0.5 192 8
Expectancy
WLCS Audio 10% - 0.3 - 192 8
WLCS Video - 10% - 0.5 128 8
FCSC Video - 90% - 0.5 64 8
WLCS Audiovisual 90% 10% 0.5 0.3 128 8
FCSC Audiovisual 90% 10% 0.5 0.3 128 8
Power
WLCS Audio - - 0.3 - 192 8
WLCS Video - 90% - 0.5 64 8
FCSC Video - 10% - 0.5 192 8
WLCS Audiovisual 50% 90% 0.3 0.5 192 8
FCSC Audiovisual 50% 90% 0.3 0.5 64 8
Valence
WLCS Audio 50% - 0.3 - 192 8
WLCS Video - 10% - 0.5 192 8
FCSC Video - 0% - 0.5 192 8
WLCS Audiovisual 0% 10% 0.3 0.5 192 8
FCSC Audiovisual 50% 50% 0.3 0.5 192 8
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Table A.2 provides the parameters used for the different MFN architectures evaluated on

the AVEC 2011 dataset presented in Section 5.4.3.

Table A.2. Parameter settings of the MFN for the study using the AVEC 2011 Dataset.

(a) Unimodal (Table 5.16)
Audio A. E. P. V.

wu 400 96 400 256
wt 32 96 32 32
kaudio 0.1 0.2 0.1 0.2
Video A. E. P. V.

wu 400 128 400 96
wt 32 4 32 96
kvideo 0.1 1.0 1.0 1.0

(b) Multimodal (Table 5.18)
FRT A. E. P. V.

wu 400 400 400 400
wt 32 32 32 32
k 0.5 0.5 0.5 0.5
λaudio 1.0 0.1 0.1 1.0
λvideo 0.1 1.0 1.0 1.0
RFT A. E. P. V.

wu 400 128 400 96
wt 32 4 32 96
kaudio 0.1 1.0 1.0 1.0
kvideo 0.1 1.0 1.0 1.0
RTF A. E. P. V.

wu
audio 400 96 128 96

wt
audio 32 96 4 4

kaudio 0.5 0.3 0.1 0.1

wu
video 400 128 400 96

wt
video 32 4 32 96

kvideo 0.05 0.3 0.05 0.3

Table A.4 provides the parameters utilized for the HMM, CHMM, FCHMM in the Unidi-

rectional layered architecture on the OLAD presented in Section 5.5.

Table A.4. Parameter settings of the Markov models in the second layer used in
the study of the Office Layered Architecture Dataset. (a) Layered architecture parameter
setting of the models on the second layer. (b) Parameter setting of the models directly trained to
the classes of the second layer.

(a)
Layer 1 Layer 2 Hidden Mix. left-to- Covari- p

states comp. right ance
FCHMM FCHMM 5 2 no diag 50
FCHMM CHMM 5 3 yes diag -
FCHMM HMM 2 3 no full -
CHMM FCHMM 5 4 no diag 100
CHMM CHMM 5 3 yes diag -
CHMM HMM 2 4 yes full -
CHMM FCHMM 5 2 no diag 50
CHMM CHMM 5 3 no diag -
CHMM HMM 2 4 no diag -

(b)
Layer 2 Hidden Mix. left-to- Covari- p

states comp. right ance
FCHMM 4 4 no full 30
CHMM 4 3 yes full -
HMM 3 4 yes full -
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A.5. Abstracts of Main Contributions

This section provides a detailed list of publications in which the author of this thesis

was involved. The elements of the list are color coded. The light gray color indicates a

workshop contribution, the medium gray color a contribution to a conference and the dark

color a contribution to an article. Each element lists the title, the abstract (if available),

a set of Keywords, the citation and the name of the document enclosed to the thesis. The

contributions are listed in chronological order.

Fusion Paradigms in Cognitive Technical Systems for Human-Computer
Interaction

Abstract:
Recent trends in human-computer interaction (HCI) show a development towards cognitive technical
systems (CTS) to provide natural and efficient operating principles. To do so, a CTS has to rely on
data from multiple sensors which must be processed and combined by fusion algorithms. Further-
more, additional sources of knowledge have to be integrated, to put the observations made into the
correct context. Research in this field often focus on optimizing the performance of the individual
algorithms, rather than reflecting the requirements of CTS. This article presents the information
fusion principles in CTS architectures we developed for Companion Technologies. Combination of
information generally goes along with the level of abstractness, time granularity and robustness,
such that large CTS architectures must perform fusion gradually on different levels—starting from
sensor-based recognitions to highly abstract logical inferences. In our CTS application we sectioned
information fusion approaches into three categories: perception-level fusion, knowledge-based fusion
and application-level fusion. For each category, we introduce examples of characteristic algorithms.
In addition, we provide a detailed protocol on the implementation performed in order to study the
interplay of the developed algorithms.

Keywords: Temporal, multimodal, fusion, incomplete sequences of decisions, sequences of incom-
plete features, MCS, ULA, MFN, Kalman filter for classifier fusion

Citation:
M. Glodek, F. Honold, T. Geier, G. Krell, F. Nothdurft, S. Reuter, F. Schüssel, T. Hörnle, K. Diet-
mayer, W. Minker, S. Biundo, M. Weber, G. Palm, and F. Schwenker. Fusion paradigms in cognitive
technical systems for human-computer interaction. Neurocomputing, 161(2015):17–37, 2015a. doi:
10.1016/j.neucom.2015.01.076
Filename: 2015_Glodek_HGKNRSHDMBWPS_NEUROCOMP.pdf
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UulmMAD—A Human Action Recognition Dataset for Ground-Truth Evaluation
and Investigation of View Invariances

Abstract:
In recent time, human action recognition has gained increasing attention in pattern recognition.
However, many datasets in the literature focus on a limited number of target-oriented proper-
ties. Within this work, we present a novel dataset, named UUlmMAD, which has been created
to benchmark state-of-the-art action recognition architectures addressing multiple properties, e.g.
high-resolutions cameras, perspective changes, realistic cluttered background and noise, overlap of
action classes, different execution speeds, variability in subjects and their clothing, and the availabil-
ity of a pose ground-truth. The UUlmMAD was recorded using three synchronized high-resolution
cameras and an inertial motion capturing system. Each subject performed fourteen actions at least
three times in front of a green screen. Selected actions in four variants were recorded, i.e. normal,
pausing, fast and deceleration. The data has been post-processed in order to separate the subject
from the background. Furthermore, the camera and the motion capturing data have been mapped
onto each other and 3D-avatars have been generated to further extend the dataset. The avatars have
also been used to emulate the self-occlusion in pose recognition when using a time-of-flight camera.
In this work, we analyze the UUlmMAD using a state-of-the-art action recognition architecture to
provide first baseline results. The results emphasize the unique characteristics of the dataset. The
dataset will be made publicity available upon publication of the paper.

Keywords: Sequences of incomplete features, dataset

Citation:
M. Glodek, G. Layher, F. Heilemann, F. Gawrilowicz, G. Palm, F. Schwenker, and H. Neu-
mann. UUlmMAD—a human action recognition dataset for ground-truth evaluation and in-
vestigation of view invariances. In F. Schwenker, S. Scherer, and L.-P. Morency, editors, Pro-
ceedings of the International Workshop on Multimodal Pattern Recognition of Social Signals
in Human-Computer-Interaction (MPRSS), volume 8869 of Lecture Notes in Computer Science
(LNCS), pages 77–91. Springer International Publishing, 2015b. ISBN 978-3-319-14898-4. doi:
10.1007/978-3-319-14899-1_8
Filename: 2015_Glodek_LHGPSN_MPRSS.pdf

On Annotation and Evaluation of Multi-modal Corpora in Affective
Human-Computer Interaction

Abstract:
In this paper, we discuss the topic of affective human- computer interaction from a data driven
viewpoint. This comprises the collection of respective databases with emotional contents, feasible
annotation procedures and software tools that are able to conduct a suitable labeling process. A
further issue that is discussed in this paper is the evaluation of the results that are computed using
statistical classifiers. Based on this we propose to use fuzzy memberships in order to model affective
user state and endorse respective fuzzy performance measures.

Keywords: Temporal, multimodal, fusion, MCS, Kalman filter for classifier fusion

Citation:
M. Kächele, M. Schels, S. Meudt, V. Kessler, M. Glodek, P. Thiam, S. Tschechne, G. Palm, and
F. Schwenker. On annotation and evaluation of multi-modal corpora in affective human-computer
interaction. In R. Böck, F. Bonin, N. Campbell, and R. Poppe, editors, Proceedings of Multimodal
Analyses enabling Artificial Agents in Human-Machine Interaction, volume 8757 of Lecture Notes
in Computer Science (LNCS), pages 35–44. Springer, 2014b. doi: 10.1007/978-3-319-15557-9_4
Filename: 2015_Kaechele_SKGTTPS_ma3hmi.pdf
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A layered architecture for probabilistic complex pattern recognition to detect
user preferences

Abstract:
The recognition of complex patterns is nowadays one of the most challenging tasks in machine learn-
ing, and it promises to be of great benefit for many applications, e.g. by allowing advanced human
computer interaction to access the user’s situative context. This work examines a layered architec-
ture that operates on different temporal granularities to infer complex patterns of user preferences.
Classical hidden Markov models (HMM), conditioned HMM (CHMM) and fuzzy CHMM (FCHMM)
are compared to find the best configuration in the lower architecture layers. In the uppermost layer,
a Markov logic network (MLN) is applied to infer the user preference in a probabilistic rule-based
manner. For each layer a comprehensive evaluation is given. We provide empirical evidence show-
ing that the layered architecture using FCHMM and MLN is well-suited to recognize patterns on
different layers.

Keywords: Temporal, integration of sub-symbolic and symbolic information, ULA, CHMM,
FCHMM

Citation:
M. Glodek, T. Geier, S. Biundo, and G. Palm. A layered architecture for probabilistic complex pat-
tern recognition to detect user preferences. Journal of Biologically Inspired Cognitive Architectures,
9:46–56, 2014a
Filename: 2014_Glodek_GBP_BICA90.pdf

Combination of sequential class distributions from multiple channels using
Markov fusion networks

Abstract:
The recognition of patterns in real-time scenarios has become an important trend in the field of
multi-modal user interfaces in human computer interaction. Cognitive technical systems aim to
improve the human computer interaction by means of recognizing the situative context, e.g. by
activity recognition, or by estimating the affective state of the human dialogue partner. Classifier
systems developed for such applications must operate on multiple modalities and must integrate
the available decisions over large time periods. We address this topic by introducing the Markov
fusion network (MFN) which is a novel classifier combination approach, for the integration of multi-
class and multi-modal decisions continuously over time. The MFN combines results while meeting
real-time requirements, weighting decisions of the modalities dynamically, and dealing with sensor
failures. The proposed MFN has been evaluated in two empirical studies: the recognition of objects
involved in human activities, and the recognition of emotions where we successfully demonstrate
its outstanding performance. Furthermore, we show how the MFN can be applied in a variety of
different architectures and the several options to configure the model in order to meet the demands
of a distinct problem.

Keywords: Temporal, multimodal, fusion, MCS, MFN

Citation:
M. Glodek, M. Schels, F. Schwenker, and G. Palm. Combination of sequential class distributions
from multiple channels using Markov fusion networks. Journal on Multimodal User Interfaces
(JMUI), 8(3):257–272, 2014c. doi: 10.1007/s12193-014-0149-0
Filename: 2014_Glodek_SSG_JMUI.pdf
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A New Multi-class Fuzzy Support Vector Machine Algorithm

Abstract:
Abstract. In this paper a novel approach to fuzzy support vector machines (SVM) in multi-class
classification problems is presented. The proposed algorithm has the property to benefit from fuzzy
labeled data in the training phase and can determine fuzzy memberships for input data. The algo-
rithm can be considered as an extension of the traditional multi-class SVM for crisp labeled data,
and it also extents the fuzzy SVM approach for fuzzy labeled training data in the two-class clas-
sification setting. Its behavior is demonstrated on three benchmark data sets, the achieved results
motivate the inclusion of fuzzy labeled data into the training set for various tasks in pattern recog-
nition and machine learning, such as the design of aggregation rules in multiple classifier systems,
or in partially supervised learning.

Keywords: MC-F2-SVM

Citation:
F. Schwenker, F. Markus, M. Glodek, M. Kächele, S. Meudt, M. Schels, and M. Schmidt. A new
multi-class fuzzy support vector machine algorithm. In N. El Gayar, F. Schwenker, and C. Suen,
editors, Proceedings of the International Workshop on Artificial Neural Networks in Pattern Recog-
nition (ANNPR), volume 8774 of Lecture Notes in Computer Science (LNCS), pages 153–164.
Springer, 2014. doi: 10.1007/978-3-319-11656-3_14
Filename: 2014_Schwenker_FGKMSS_ANNPR.pdf

Fusion of audio-visual features using hierarchical classifier systems for the
recognition of affective states and the state of depression

Abstract:
Reliable prediction of affective states in real world scenarios is very challenging and a significant
amount of ongoing research is targeted towards improvement of existing systems. Major problems
include the unreliability of labels, variations of the same affective states amongst different persons
and in different modalities as well as the presence of sensor noise in the signals. This work presents
a framework for adaptive fusion of input modalities incorporating variable degrees of certainty on
different levels. Using a strategy that starts with ensembles of weak learners, gradually, level by
level, the discriminative power of the system is improved by adaptively weighting favorable decisions,
while concurrently dismissing unfavorable ones. For the final decision fusion the proposed system
leverages a trained Kalman filter. Besides its ability to deal with missing and uncertain values, in its
nature, the Kalman filter is a time series predictor and thus a suitable choice to match input signals
to a reference time series in the form of ground truth labels. In the case of affect recognition, the
proposed system exhibits superior performance in comparison to competing systems on the analysed
dataset.
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Using Speaker Group Dependent Modelling to Improve Fusion of Fragmentary
Classifier Decisions

Abstract:
Current speech-controlled human computer inter- action is purely based on spoken information. For
a successful interaction, additional information such as the individual skills, preferences and actual
affective state of the user are often mandatory. The most challenging of these additional inputs
is the affective state, since affective cues are in general expressed very sparsely. The problem can
be addressed in two ways. On the one hand, the recognition can be enhanced by making use of
already available individual information. On the other hand, the recognition is aggravated by the
fact that research is often limited to a single modality, which in real-life applications is critical since
recognition may fail in case sensors do not perceive a signal. We address the problem by enhancing
the acoustic recognition of the affective state by partitioning the user into groups. The assignment
of a user to a group is performed at the beginning of the interaction, such that subsequently a
specialized classifier model is utilized. Furthermore, we make use of several modalities, acoustics,
facial expressions, and gesture information. The combination of decisions not affected by sensor
failures from these multiple modalities is achieved by a Markov Fusion Network. The proposed
approach is studied empirically using the LAST MINUTE corpus. We could show that compared
to previous studies a significant improvement of the recognition rate can be obtained.

Keywords: Temporal, multimodal, fusion, MCS, MFN

Citation:
I. Siegert, M. Glodek, and G. Krell. Using speaker group dependent modelling to improve fusion of
fragmentary classifier decisions. In Proceedings of the International IEEE Conference on Cybernetics
(CYBCONF), pages 132–137. IEEE, 2013. doi: 10.1109/CYBConf.2013.6617458
Filename: 2013_Siegert_GPKSAW_Siegert_Cybconf.pdf

Using unlabeled data to improve classification of emotional states in human
computer interaction

Abstract:
The individual nature of physiological measurements of human affective states makes it very difficult
to transfer statistical classifiers from one subject to another. In this work, we propose an approach
to incorporate unlabeled data into a supervised classifier training in order to conduct an emotion
classification. The key idea of the method is to conduct a density estimation of all available data
(labeled and unlabeled) to create a new encoding of the problem. Based on this a supervised classifier
is constructed. Further, numerical evaluations on the EmoRec II corpus are given, examining to what
extent additional data can improve classification and which parameters of the density estimation
are optimal.
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Multi-Modal Classifier-Fusion for the Recognition of Emotions

Abstract:
<no abstract available>
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Multi-View Video Based Tracking and Audio-Visual Identification of Persons in
a Human-Computer-Interaction Scenario

Abstract:
User identification and tracking are definitely the basic tasks in any human computer interaction
(HCI) scenario. For these tasks we propose a multi-view approach utilizing multi- camera systems
and audio processing systems. Face detectors and face recognizers are based on orientation histogram
and eigenface techniques, and Mel Frequency Cepstral Coefficients (MFCC) are applied for speaker
identification. In order to achieve a robust user identification and localization spatio-temporal
classifier fusion methods have been integrated into the overall classifier system, support vector
machines (SVM) and k nearest neighbor (kNN) models are used as base classifiers. A general office
environment with up to six persons was the test bed for data collection and numerical evaluation.
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A Appendix

Recognizing User Preferences Based on Layered Activity Recognition and
First-Order Logic

Abstract:
Only few cognitive architectures have been proposed that cover the complete range from recognizers
working on the direct sensor input, to logical inference mechanisms of classical artificial intelligence
(AI). Logical systems operate on abstract predicates, which are often related to an action-like state
transition, especially when compared to the classes recognized by pattern recognition approaches.
On the other hand, pattern recognition is often limited to static patterns, and temporal and multi-
modal aspects of a class are often not regarded, e.g. by testing only on pre-segmented data. Recent
trends in AI aim at developing applications and methods that are motivated by data-driven real
world scenarios, while the field of pattern recognition attempts to push forward the boundary of
pattern complexity. We propose a new generic architecture to close the gap between AI and pattern
recognition approaches. In order to detect abstract complex patterns, we process sequential data in
layers. On each layer, a set of elementary classes is recognized and the outcome of the classification
is passed to the successive layer such that the time granularity increases. Layers can combine
modalities, additional symbolic information or make use of reasoning algorithms. We evaluated our
approach in an on-line scenario of activity recognition using three layers. The obtained results show
that the combination of concepts from pattern recognition and high-level symbolic information leads
to a prosperous and powerful symbiosis.
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Hidden Markov Models with Graph Densities for Action Recognition

Abstract:
Human action recognition in video streams is a fast developing field in pattern recognition and
machine learning. Local image representations, e.g. space-time interest points, have proven to be
the current most reliable choice of feature in sequences in which the region of interest is difficult
to determine. However, the question how to deal with more severe occlusions has large been ig-
nored. This work proposes a new approach which directly addresses heavy occlusions by modeling
the skeleton-based features using a probability density functions (PDF) defined over graphs. We
integrated the proposed density into an hidden Markov model (HMM) to model sequences of graphs
of arbitrary sizes, i.e. occlusions setting may change over time. The approach is evaluated using
a dataset embracing three action classes, studying six different types of occlusions (involving the
removal of subgraphs from the graphical representation of action sequence). The presented study
shows clearly that actions from even heavily occluded sequences can be reliably recognized.
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Kalman Filter Based Classifier Fusion for Affective State Recognition

Abstract:
The combination of classifier decisions is a common approach to improve classification performance.
However, non-stationary fusion of decisions is still a research topic which draws only marginal
attention, although more and more classifier systems are deployed in real-time applications. Within
this work, we study Kalman filters as a combiner for temporally ordered classifier decisions. The
Kalman filter is a linear dynamical system based on a Markov model. It is capable of combining
a variable number of measurements (decisions), and can also deal with sensor failures in a unified
framework. The Kalman filter is analyzed in the setting of multi-modal emotion recognition using
data from the audio/visual emotional challenge 2011. It is shown that the Kalman filter is well-
suited for real-time non-stationary classifier fusion. Combining the available sequential uni- and
multimodal decisions does not only result in a consistent continuous stream of decisions, but also
leads to significant improvements compared to the input decision performance.
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Fusion of Fragmentary Classifier Decisions for Affective State Recognition

Abstract:
Real human-computer interaction systems based on different modalities face the problem that not
all information channels are always available at regular time steps. Nevertheless an estimation of
the current user state is required at anytime to enable the system to interact instantaneously based
on the available modalities. A novel approach to decision fusion of fragmentary classifications is
therefore proposed and empirically evaluated for audio and video signals of a corpus of non-acted
user behavior. It is shown that visual and prosodic analysis successfully complement each other
leading to an outstanding performance of the fusion architecture.
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Multi-Modal Fusion Based on Classifiers Using Reject Options and Markov
Fusion Networks

Abstract:
Classifying continuous signals from multiple channels poses several challenges: different sample
rates from different types of channels have to be incorporated. Furthermore, when leaping from the
laboratory to the real world, it is mandatory to deal with failing sensors and also uncertain or even
incorrect classifications. We propose a new Multi Classifier System (MCS) based on the application
of classifier making use of an reject option and a Markov Fusion Network (MFN) which is evaluated
in an off-line and on-line manner. The architecture is tested using the publicly available AVEC
corpus, that collects affectively labeled episodes of human computer interaction. The MCS achieved
a significant improvement compared to the results obtained on the single modalities.
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Spotting Laughter in Natural Multiparty Conversations: A Comparison of
Automatic Online and Offline Approaches Using Audiovisual Data

Abstract:
It is essential for the advancement of human-centered multimodal interfaces to be able to infer the
current user’s state or communication state. In order to enable a system to do that, the recognition
and interpretation of multimodal social signals (i.e., paralinguistic and nonverbal behavior) in real-
time applications is required. Since we believe that laughs are one of the most important and widely
understood social nonverbal signals indicating affect and discourse quality, we focus in this work
on the detection of laughter in natural multiparty discourses. The conversations are recorded in a
natural environment without any specific constraint on the discourses using unobtrusive recording
devices. This setup ensures natural and unbiased behavior, which is of this work. one of the
main foci To compare results of methods, namely Gaussian Mixture Model (GMM) supervectors as
input to a Support Vector Machine (SVM), so-called Echo State Networks (ESN), and a Hidden
Markov Model (HMM) approach, are utilized in online and offline detection experiments. The SVM
approach proves very accurate in the offline classification task, but is outperformed by the ESN
and HMM approach in the online detection (F1 scores: GMM SVM 0.45, ESN 0.63, HMM 0.72).
Further, we were able to utilize the proposed HMM approach in a cross-corpus experiment without
any retraining with respectable generalization capability (F1 score: 0.49). The results and possible
reasons for these outcomes are shown and discussed in the article. The proposed methods may
be directly utilized in practical tasks such as the labeling or the online detection of laughter in
conversational data and affect-aware applications.
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Recognizing Human Activities Using a Layered Markov Architecture

Abstract:
In the field of human computer interaction (HCI) the detection and classification of human activity
patterns has become an important challenge. The problem can be understood as a specific problem
of pattern recognition which addresses three topics, namely fusion of multiple modalities, spatio-
temporal structures and a vast variety of pattern appearances the more abstract a pattern gets.
In order to approach the problem, we propose a layered architecture which decomposes temporal
patterns into elementary sub-patterns. Within each layer the patterns are detected using Markov
models. The results of a layer are passed to the next successive layer such that on each layer the
temporal granularity and the complexity of patterns increases. A dataset containing activities in an
office scenario was recorded. The activities are decomposed to basic actions which are detected on
the first layer. We evaluated a two-layered architecture using the dataset showing the feasibility of
the approach.
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A Generic Framework for the Inference of User States in Human Computer
Interaction

Abstract:
The analysis of affective or communicational states in human-human and human-computer inter-
action (HCI) using automatic machine analysis and learning approaches often suffers from the
simplicity of the approaches or that very ambitious steps are often tried to be taken at once. In
this paper, we propose a generic framework that overcomes many difficulties associated with real
world user behavior analysis (i.e. uncertainty about the ground truth of the current state, subject
independence, dynamic realtime analysis of multimodal information, and the processing of incom-
plete or erroneous inputs, e.g. after sensor failure or lack of input). We motivate the approach,
that is based on the analysis and spotting of behavioral cues that are regarded as basic building
blocks forming user state specific behavior, with the help of related work and the analysis of a large
HCI corpus. For this corpus paralinguistic and nonverbal behavior could be significantly associated
with user states. Some of our previous work on the detection and classification of behavioral cues is
presented and a layered architecture based on hidden Markov models is introduced. We believe that
this step by step approach towards the understanding of human behavior underlined by encourag-
ing preliminary results outlines a principled approach towards the development and evaluation of
computational mechanisms for the analysis of multimodal social signals.
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Revisiting AVEC 2011 – An Information Fusion Architecture

Abstract:
Combining information from multiple sources is a vivid field of research. The problem of emotion
recognition is inherently multi-modal. As automatic recognition of the emotional states is performed
imperfectly by the single mode classifiers, its combination is crucial. In this work, the AVEC 2011
corpus is used to evaluate several machine learning techniques in the context of information fusion.
In particular temporal integration of intermediate results combined with a reject option based on
classifier confidences. The results for the modes are combined using a Markov random field that is
designed to be able to tackle failures of individual channels.
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Multi-Modal Classifier-Fusion for the Classification of Emotional States in WOZ
Scenarios

Abstract:
Learning from multiple sources is an important field of research in many applications. Amongst of
the benefits of such an approach is that different sources can correct each other or that a failure of a
channel can be easier compensated. The emotion of a subject can give helpful cues for a computer in
a human machine dialog. The problem of emotion recognition is inherently multimodal. The most
intuitive way of inferring a user state is to use facial expression and spoken utterances. However,
bio-physiological readings can be helpful in this context. In this study, a novel information fusion
architecture for the classification of human emotions in a computer interaction is proposed. We
use information from the three modalities above mentioned. It turned out that the combination
of different sources can be helpful for the classification. Also, a reject option for the classifiers is
evaluated and yields promising results.
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Towards Emotion Recognition in Human Computer Interaction

Abstract:
The recognition of human emotions by technical systems is regarded as a problem of pattern recog-
nition. Here methods of machine learning are employed which require substantial amounts of ’emo-
tionally labeled’ data, because model based approaches are not available. Problems of emotion
recognition are discussed from this point of view, focusing on problems of data gathering and also
touching upon modeling of emotions and machine learning aspects.

Keywords: Dataset

Citation:
G. Palm and M. Glodek. Towards emotion recognition in human computer interaction. In A. Es-
posito, S. Squartini, and G. Palm, editors, Neural Nets and Surroundings, volume 19 of Smart
Innovation, Systems and Technologies, pages 323–336. Springer Berlin Heidelberg, 2013. doi:
10.1007/978-3-642-35467-0_32
Filename: 2012_Palm_G_Wirn12_preprint.pdf

Ensemble Gaussian Mixture Models for Probability Density Estimation

Abstract:
Estimation of probability density functions (PDF) is a fundamental concept in statistics. This
paper proposes an ensemble learning approach for density estimation using Gaussian mixture models
(GMM). Ensemble learning is closely related to model averaging: while the standard model selection
method determines the most suitable single GMM, the ensemble approach uses a subset of GMM
which are combined in order to improve precision and stability of the estimated probability density
function. The ensemble GMM is theoretically investigated and also numerical experiments were
conducted to demonstrate benefits from the model. The results of these evaluations show promising
results for classifications and the approximation of non-Gaussian PDF.
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Multiple Classifier Combination Using Reject Options and Markov Fusion
Networks

Abstract:
The audio/visual emotion challenge (AVEC) resembles a benchmarking data collection in order to
evaluate and develop techniques for the recognition of affective states. In our work, we present a
Markov fusion network (MFN) for the combination of different individual classifiers, that is derived
from the well-known Markov random fields (MRF). It is capable to restore missing values from
a sequence of decisions and can integrate multiple channels and weights them dynamically using
confidences. The approach shows promising challenge results compared to the baseline.
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Detecting Actions by Integrating Sequential Symbolic and Sub-symbolic
Information in Human Activity Recognition

Abstract:
Detecting human activities is a challenging field for sequential algorithms in machine learning and
several approaches have already been proposed. One approach is to make use of the hierarchical
structure of the activities to be classified by subdividing them into more elementary actions [12].
Alternatively the fusing of additional context information has been investigated to obtain a more
meaningful feature space. Within this work both approaches are pursued by utilizing the layered
architecture proposed by Oliver et al. with the conditioned hidden Markov model (CHMM) [8]. The
model is evaluated using a dataset containing sequential sub-symbolic information (i.e. the position
of body parts) and symbolic information (i.e. the detected object the person interacts with). The
results outperform the classical approach making no use of the additional symbolic information.
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Multimodal Emotion Classification in Naturalistic User Behavior

Abstract:
The design of intelligent personalized interactive systems, having knowledge about the user’s state,
his desires, needs and wishes, currently poses a great challenge to computer scientists. In this study
we propose an information fusion approach combining acoustic, and bio-physiological data, compris-
ing multiple sensors, to classify emotional states. For this purpose a multimodal corpus has been
created, where subjects undergo a controlled emotion eliciting experiment, passing several octants
of the valence arousal dominance space. The temporal and decision level fusion of the multiple
modalities outperforms the single modality classifiers and shows promising results.
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On the discovery of events in EEG data utilizing information fusion

Abstract:
One way to tackle brain computer interfaces is to consider event related potentials in electroen-
cephalography, like the well established P300 phenomenon. In this paper a multiple classifier ap-
proach to discover these events in the bioelectrical signal and with them whether or not a subject has
recognized a particular pattern, is employed. Dealing with noisy data as well as heavily imbalanced
target class distributions are among the difficulties encountered. Our approach utilizes partitions of
electrodes to create robust and meaningful individual classifiers, which are then subsequently com-
bined using decision fusion. Furthermore, a classifier selection approach using genetic algorithms
is evaluated and used for optimization. The proposed approach utilizing information fusion shows
promising results (over 0.8 area under the ROC curve).
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Multiple Classifier Systems for the Classification of Audio-Visual Emotional
States

Abstract:
Research activities in the field of human-computer interaction increasingly addressed the aspect of
integrating some type of emotional intelligence. Human emotions are expressed through different
modalities such as speech, facial expressions, hand or body gestures, and therefore the classification
of human emotions should be considered as a multimodal pattern recognition problem. The aim of
our paper is to investigate multiple classifier systems utilizing audio and visual features to classify
human emotional states. For that a variety of features have been derived. From the audio signal the
fundamental frequency, LPC and MFCC coefficients, and RASTA-PLP have been used. In addition
to that two types of visual features have been computed, namely form and motion features of in-
termediate complexity. The numerical evaluation has been performed on the four emotional labels
Arousal, Expectancy, Power, Valence as defined in the AVEC dataset. As classifier architectures
multiple classifier systems are applied, these have been proven to be accurate and robust against
missing and noisy data.
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Conditioned Hidden Markov Model Fusion for Multimodal Classification

Abstract:
Classification using hidden Markov models (HMM) is in general done by comparing the model
likelihoods and choosing the class more likely to have generated the data. This work investigates a
conditioned HMM which additionally provides a proba- bility for a class label and compares different
fusion strategies. The notion is two-fold: on the one hand applications in affective computing might
pass their uncertainty of the classification to the next processing unit, on the other hand different
streams might be fused to increase the performance. The dataset studied incorporates two modalities
and is based on a naturalistic multiparty dialogue. The goal is to discriminate between laughter and
utterances. It turned out that the conditioned HMM outperforms classical HMM using different
late fusion approaches while additionally providing a certainty about class decision.
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A.5 Abstracts of Main Contributions

Incorporating Uncertainty in a Layered HMM Architecture for Human Activity
Recognition

Abstract:
In this study, conditioned HMM (CHMM), which inherit the structure from the latent-dynamic
conditional random field (LDCRF) proposed by Morency et al. but is also based on a Bayesian
network. Within the model a sequence of class labels is influencing a Markov chain of hidden states
which are able to emit observations. The structure allows that several classes make use of the same
hidden state. Categories and Subject Descriptors

Keywords: Temporal, multimodal, fusion, MCS, ULA, CHMM

Citation:
M. Glodek, L. Bigalke, M. Schels, and F. Schwenker. Incorporating uncertainty in a layered HMM
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Recognizing Human Activities Using a Layered HMM Architecture

Abstract:
The development of so-called computer systems shows a tendency towards being aware of the user
and the environment, offering a broad variety of interactions with the user. It is already feasible
to detect faces, estimate the pose of the user, recognize emotion from speech, be aware of the
environment and augment it with additional information. In this context, Oliver et al. proposed
a layered cognitive system to detect human activities based on a multitude of modalities. The
architecture detects complex activities based on a stream of crisp class assignments rendered by
classifiers on the preceding layer. The current study investigates the possible increase in performance
by passing the uncertainty of the class decision instead of crisp class assignments to the next layer.
Oliver et al. utilized hidden Markov models (HMM) to detect the class on each layer. In order
obtain a distribution over classes an alternative classifier, namely the conditioned HMM (CHMM)
has been examined. The CHMM has the same structure as the latent-dynamic conditional random
fields (LDCRF). Unlike the LDCRF, which is based on a Markov network, the CHMMM is based
on a directed graph. Compared to the HMM each latent random variable is additionally influenced
by a class node. The input-output hidden Markov model (IOHMM) proposed by Bengio et al.
is, except of two aspects, also closely related to the CHMM. On the one hand, the IOHMM has
additional edges connecting the class with the observation node for each time step. On the other
hand, the CHMM models in analogy to the HMM and in contrast to the IOHMM the observations
as emissions. The strong relation to HMM has the advantage that scientific contributions achieved
for HMM can be applied without effort to the CHMM.
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A Appendix

Multiple Classifier Systems for the Recognition of Human Emotions

Abstract:
Research in the area of human-computer interaction (HCI) increasingly addressed the aspect of
integrating some type of emotional intelligence in the system. Such systems must be able to rec-
ognize, interpret and create emotions. Although, human emotions are expressed through different
modalities such as speech, facial expressions, hand or body gestures, most of the research in affective
computing has been done in unimodal emotion recognition. Basically, a multimodal approach to
emotion recognition should be more accurate and robust against missing or noisy data. We consider
multiple classifier systems in this study for the classification of facial expressions, and additionally
present a prototype of an audio-visual laughter detection system. Finally, a novel implementation
of a Java process engine for pattern recognition and information fusion is described.
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A Hybrid Information Fusion Approach to Discover Events in EEG Data

Abstract:
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