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Abstract

Processing of visual sensory input is mainly determined by filtering mechanisms
to detect the presence of certain features and generate proper representations.
Such features can be derived over several stages of hierarchical processing to ex-
tract increasingly more complex feature compositions characteristic of the input
signal. However, context information often determines the interpretation of lo-
calized feature responses, such that, e.g., an individual item presented as part of
a texture appears different from a presentation in isolation or in contrast to sur-
rounding items. In this thesis, such contextual influences in the visual processing
of form and motion information are presented and their generation is explained
within a model neural architecture. The thesis details how such context infor-
mation changes the gain of feature representation by up- and down-modulating
the activation in distributed feature representations. The modeling investigates
a bio-mimetic architecture of event-based sensor input from a Dynamic Vision
Sensor (DVS). It is demonstrated that local filtering generates initial motion rep-
resentations where competitive mechanisms of pool normalization and modulating
feedback redistribute local responses to emphasize moving features, reducing the
uncertainty for the motion aperture effect and improving the signal to noise ra-
tio of sensory input data. The work shows how benefit is taken from the high
temporal resolution of the sensor and how a representation of motion streaks is
achieved along the ventral pathway. In a hierarchical model of form processing
we present mechanisms of perceptual organization that aggregate localized items
into a meaningful representation of static scene content. With the use of com-
plex hierarchical feedforward and feedback connections, contextual information
about a contour is made available to lower regions. It is shown how labeling of
figure-ground direction of boundaries is achieved by tagging using activities of
competitive interactions that are biased by top-down enhancement from higher
stages.
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1 Introduction

We visually perceive our environment with ease, precision and without any no-
ticeable delay. Without any apparent effort, objects and persons are recognized,
physical structures are precisely perceived in three dimensions, scratchy hand-
writing deciphered or navigation tasks performed even in the presence of a large
amount of occlusion, disruptive or incomplete information.

Developers of hard- and software struggle to achieve any comparable performance
on an artificial system. In order to make computer vision applications useful,
they have to be designed for a very limited, usually low-level task and grant little
variation to the input. Small deviations from the specification usually massively
deteriorate the result. This contrasts human performance on such problems,
which is usually used as the benchmark for visual performance.

Over half a century, anatomical and physiological investigations, psychological
experiments and improvements in image generating methods have increased our
understanding of the functional principles of the brain of our and closely related
species, and the body of knowledge is still rapidly growing. Current evidence
strongly supports the belief that the brain is organized using a modular processing
paradigm, which makes analysis of the participating components valuable and
offers a suggestion about how to achieve a similar functionality and robustness in
an artificial system.

Neural information processing adapts such mechanisms to perform them on ar-
tificial systems. On one hand, this leads to better algorithms and products by
incorporating biologically inspired processing modules. Ideally, following the bi-
ological example leads to technical solutions that have an increased performance,
higher robustness and tolerance towards input variations and better generaliza-
tion to other problem domains. On the other hand, precise models of cortical
mechanisms allow to draw conclusions and build hypotheses which by themselves
contribute to the understanding we have about the involved mechanisms.

However, the hope that a precise analysis of participating components and a
straight-forward connection in an input-output scheme would eventually lead to
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2 Chapter 1. Introduction

similar performance is quickly lost when the connecting mechanisms are con-
sidered as well. Neural regions respond when adequate features are presented to
specific regions of the visual field (the receptive field), and the relation in the spa-
tial and feature domain can be accomplished with a set of techniques (and usually
a lot of patience). But, alas, this is only the beginning. Such isolated features vir-
tually never occur in a realistic environment, where they are surrounded by many
others. The crux of the matter is that neural responses are highly influenced by
such surrounding features, even if they are completely outside the initially found
receptive fields. This contextual influence has the potential to determine the in-
terpretation of localized feature responses by means of re-modulation and by this
to increase the robustness towards input variations and to enrich local represen-
tations to resolve ambiguities or to support responses that are near perceptual
thresholds. The search for and modeling of these influencing mechanisms is very
challenging given the vast amount of connections that are already known to exist
between processing areas.

This thesis presents models of biologically inspired mechanisms of visual mo-
tion and form processing which make use of contextual information to reweigh
the evidence of feature representation. The models build upon generic mecha-
nisms known to exist in visual cortex and show how contextual influences can
be modeled over different hierarchical processing stages to enrich initial feature
representations. The thesis is organized into three main chapters:

• Chapter 2 (page 5) introduces the reader to the physiological background
of vision including a short summary of the optical tract from the retina
to the occipital cortex (Sec. 2.2). More highlight is put on the cortical
mechanisms of visual processing and the neural representation of visual
stimuli (Sec. 2.3). While keeping the mechanisms of single-neuron-models
in mind, a generic model of cortical visual processing is presented that
presents canonical mechanisms of whole processing areas (Sec. 2.3.2). It
has been used in previous models of visual processing and contains three
major stages of processing for a model visual area, namely a stage of initial
filtering, a stage of contextual feedback modulation and a stage of non-linear
filter operations by means of normalization mechanisms. The subsequent
contributions in this thesis are based on these generic components.

• Chapter 3 (page 17) proposes a model of motion processing along the dor-
sal pathway using an event-based retina-like image sensor. The proposed
model applies physiological findings for the generation of a model of op-
tic flow estimation using the output of the sensor. Our model makes use of
neural mechanisms that model the processing capabilities of early and inter-
mediate stages in dorsal pathway of visual cortex (Sec. 3.4.1). The chapter
elaborates on subsequent processing mechanisms that pick up physiological
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and psychophysical findings along the dorsal pathway. We present mecha-
nisms of early surround inhibition that show to contribute to the solution
of the aperture problem (Sec. 3.4.2). Motion integration and its effects on
increasing the robustness of initial motion representation to noise and out-
liers is presented (Sec. 3.4.3). We also present how a spatial code of motion
estimation is incorporated using the effect of motion streaks or speed lines.
In this context the interaction of the dorsal and ventral stream for motion
processing is shown (Sec. 3.5). The chapter closes with considerations of
how a motion algorithm based on an event-based representation of visual
input is designed in order to keep the unique processing advantages like in-
stantaneous estimation of local estimates and sparse representation, where
this algorithm is evaluated with respect to its computational complexity
(Sec. 3.6).

• Chapter 4 (page 77) proposes a model of mechanisms in ventral pathway
that segments a visual scenes into image regions and combines the initial
responses into representations of surfaces and prototypical objects. Multi-
ple mutually connected areas in the ventral cortical pathway receive visual
input and extract local form features that are subsequently grouped into in-
creasingly complex, more meaningful image elements. We propose a mecha-
nism how such a distributed network of processing is capable of representing
highly articulated changes in shape boundary as well as subtle curvature
changes. We propose a recurrent computational network architecture that
utilizes hierarchical distributed representations of shape features to encode
surface and object boundaries over different scales of resolution. Our model
makes use of neural mechanisms that model the processing capabilities of
early and intermediate stages in visual cortex, namely areas V1-V4 and IT
(Sec. 4.3.1). We suggest that multiple specialized component representa-
tions interact by feedforward hierarchical processing (Sec. 4.3.2) that is com-
bined with feedback signals driven by representations generated at higher
stages (Sec. 4.3.3). Based on this, global configurational as well as local in-
formation is made available to distinguish changes in the object’s contour.
Once the outline of a shape has been established, contextual contour con-
figurations are used to assign border ownership directions and thus achieve
segregation of figure and ground. The model, thus, proposes how separate
mechanisms contribute to distributed hierarchical cortical shape represen-
tation and combine with processes of figure-ground segregation. Our model
is probed with a selection of stimuli to illustrate processing results at dif-
ferent processing stages. We especially highlight how modulatory feedback
connections contribute to the processing of visual input at various stages in
the processing hierarchy.





2 Physiology and processing
models of vision

Our rich eye-minded perception of the world is achieved by complex neural pro-
cesses in our visual system. But how are these comprehensive representations
exactly reaped from the patterns of light that enter our eyes? An understanding
of this clearly requires a profound analysis of all the participating mechanisms.
Sadly, our brain neither comes with a detailed system specification nor is it possi-
ble to consult someone that participated during its development. The only way to
achieve knowledge about the underlying mechanisms is to reverse-engineer from
what is observable with the tools that we have at our hands.

An essential tool in this endeavor is the methodology of building models of sys-
tems as abstractions of the real world system in order to investigate particular
questions by testing or demonstrating hypotheses [Trappenberg, 2002]. Such
models help to find the essential components that contribute to an observable
effect. This reveals insights into the relevant mechanisms, their parameters and
interactions and usually leads to more questions that require in-depth investi-
gations. Over time, this iteration leads to a deep and precise understanding of
previously unknown things.

This thesis is going to present models of visual processing in Chap. 3 and 4, but
before, this part will quickly recap methods available for investigations on the
brain and give a brief introduction to the optical pathway from the retina to
the visual cortex. It will then show general principles of how to model neural
activations in different levels of detail. This knowledge will be the foundation of
the subsequent models.

2.1 Observation methods

The knowledge that the brain is the organ that provides us with cognitive capabil-
ities was already known in ancient Greece. The largest part of today’s knowledge
about the anatomical structure was collected in the 19th century by systematic
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6 Chapter 2. Physiology and processing models of vision

research on animals and pathological studies (like autopsies) on humans. The
neuron was discovered as the basic element of cortical processes and the sys-
tematic research on revealed the first pioneering insights into their anatomy and
functional properties[Hubel and Wiesel, 1959].

Brains consists of billions of neurons that show a tremendous degree of intercon-
nectivity. Each neuron keeps contact with up to 10,000 other neurons in close
proximity, but sometimes they also maintain long-range connections. The precise
architecture of these connections is not static, but is subject to continuous modifi-
cations. An individual neuron is a type of cell that is specialized for transmitting
information by means of electrical or chemical signals. Such signals are called
action potentials and travel between neurons through their synapses. A neuron
consists of a soma (the cell body ), a number of dendrites (the incoming connec-
tions) and with very few exceptions precisely one axon (the outgoing connection).
In a nutshell, each neuron acts as a signaling unit listening for incoming action
potentials. When enough of them arrive through the cell’s dendrites, it by itself
generates an action potential that travels along the axons towards dendrites of
other neurons. This can cause an avalanche of potentials among a huge set of
neurons. What we experience as our ability to understand things that we see, our
knowledge, our instincts and everything is coded in the activation and interaction
of patterns of neurons.

This leads to the first question in neural modeling: What level of detail is adequate
to analyze and model neural processes? The current knowledge allows to describe
neurons and their mechanisms on a large range of different levels of detail. For
an in-length discussion of different levels and the implications of each of them the
reader may be pointed to [Churchland et al., 1990]. In a nutshell, neural principles
can be investigated on scales spanning roughly ten orders of magnitude. This
includes an inspection of processes on a molecular level in a metric scale of about
one Ångstrom (10−10m), a focus on single synapses or complete neurons using a
resolution of 10−9 to 10−7m, or the analysis of complete networks and maps of
neurons on a scale of a few milli- or centimeters. A complete nervous system
might as well have a size of one meter. A high level of detail may be precise, but
usually limits the number of instances that are possible to model on this level to
a few neurons or small networks. A higher-order functionality is usually provided
only by arrangements of at least of few thousand neurons and many connections,
so high-detailed models quickly make investigations difficult if not intractable. A
good model works on a scale that captures the essential principles but abstracts
or simplifies everything that does not contribute in a significant way.

In the middle of the 20th century the list of invasive and non-invasive investigation
methods was extended and since then, more fascinating insights in the working,
living brain became possible. These techniques include electro-encephalography
(EEG) that measures electric brain potentials or magneto-encephalography (MEG)
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which measures short-term changes in magnetization. Trans-cranial magnetic
stimulations (TCMS) locally eliminates activations through short bursts of mag-
netic impulses and helps to reveal contributions of certain brain areas to be-
havioral tasks. Psychophysical experiments allow the investigation of percep-
tual mechanisms under controlled and reproducable laboratory conditions. Here,
learning performance, decision times, reactions times and more can be measured
and analyzed by means of statistical analysis. Among the most spectacular meth-
ods for making the activity of a behaving brain visible is positron-emission to-
mography (PET) that measure the concentration of a substrate that was marked
with a radioactive tracer. Areas with high cortical activation require more en-
ergy provided by the blood through glucose and oxygen and this is reflected
in a locally increased concentration of the tracer. Functional magnetic reso-
nance tomographs (fMRI) makes use of the magnetic properties of oxygen-rich
and oxygen-poor blood by three-dimensionaly measuring the blood-oxygen-level
dependent (BOLD) contrast with high spatial resolution. Such scans generate
colorful images of brain activations with a spatial resolution of a few millime-
ters and a temporal resolution of about one second. These parameters slightly
change with the size of the scanned region. Whole brain scans usually provide
less resolution than the focus of smaller regions.

The chapter will now introduce models of visual processing. It starts by summa-
rizing the optical tract which takes the reader from the eyes to the brain and then
it continues by focusing on single neuron models used for models of the visual
cortex.

2.2 Optical pathway

The visual systems extracts a vocabulary of relevant features related to a visual
scene which lead to meaningful perceptions. The visual processing is performed
along the visual path that starts with photo-receptive cells on the retina and
continues in a complex, recurrent, hierarchical architecture of visual areas in
occipital cortex and other areas.

The retina has a three-layered structure of photo-receptive cone and rod cells
that transform incoming light into nervous impulses. The first processing of those
impulses for light adaptation and contrast increase already happens at the second
layer that consists of horizontal cells, bipolar cells and amakrine cells. Ganglion
cells transport processed information to the next step outside the eye. It may be
noted here that the density of light sensitive cells is not evenly distributed across
the retina. A small visual area, the fovea centralis, contains about eighty percent
of the total number of cells. This has an effect to perceivable resolution, that
drops significantly with distance to the fovea centralis. It forces the visual system
to continuously move the eye in a way such that the region of interest projects
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onto the area of highest density. About 15◦ degrees horizontally in nasal direction
the axons of ganglion cells leave the eye at the papilla, where no photoreceptive
cells are available at all and form an effective blind spot. Many, including our,
visual models do not include these deficits but assume homogeneous resolution.

The optic nerve is the bundle of axons leaving at the papilla. It contains about
one million nerves. At chiasma opticum the nerves from left and right eye cross
and connections are to a small degree redistributed. This early interconnection
has a beneficiary effect on depth perception. The optic nerves continue through
the lateral geniculate nucleus, which performs the first neural processing circuitry
outside the retina. The axons continue from here along the optic radiation to the
primary visual cortex (or Brodman area 17) at the occipital cortex. The occipital
cortex (lobus occipitalis) is the back part of the brain (cerebrum) and the smallest
of four brain lobes. It is part of the visual system and contains neural maps that
process the visual impulses and thus called visual centre of the brain.

Each occipital lobe processes the visual impulses of the temporal ipsilateral and
the nasal contralateral retina, meaning that the respective left parts of the retina
are processed in the left occipital lobe, and both right parts of the retina are
processing in the right occipital lobe. Each point of the retina projects to a small
area in visual cortex. A peculiar feature of the visual area is an extra nerve
bundle called Gennari- or Vicq-d’Azyr -stripes. It is noticeable in a macroscopic
scale and therefore the region is also called striped region (area striata) or striped
cortex (striate cortex ).

Individual neurons in neocortex, where the occipital cortex is counted to, are
organized into areas which consist of layered structure of neurons. The six layered-
structure (counted from the outside) can be characterized by the amount cell
type clustering, lateral connections and input output connections [Noback et al.,
2005, Kurzweil, 2012]. Neurons in the upper layers II and III project within other
areas of neocortex. Neuron in the deeper layers V and VI connect to areas out
of the cortex like the thalamus, brainstem and spinal cord. Neuron from outside
the cortex enter at layer IV and this layer distributes it to the other layers for
further processing. Sec. 2.3.2 will show how certain aspects of this layering are
used to build a canonical model of cortical processing.

With the amount of photo-receptive cells varying across the visual field, so is the
size of dedicated cortical areas. The fovea centralis, where the visual resolution
is highest, claims about 80 percent of the visual area. The spatial relationships
on the retina are preserved at in the early visual areas. Cell afferents that stem
from juxtaposed region on the retina are juxtaposed in visual cortex, effectively
realizing a retinotopic arrangement. The projected size of inputs that a cell
assembly receives input from is called receptive field (RF). Visual areas are tuned
to specific stimuli and evoke an activation whenever such a stimulus is present in
their receptive field.
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  Lens   Retina     Blind Spot     Optic Nerve    Optic Tract   Optic Chiasm  LGN   Visual Cortex

TEMPORAL 
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Figure 2.1: The human brain ( cerebrum) viewed from the top and from the
side with selected brain areas labeled. Light enters the eye from the left side and
evokes neural activations on the retina, which travel along the optical tract, pass through
the optic chiasm and LGN and arrive at the occipital cortex, the visual processing center
of the brain.
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Within the recent decades and with help of neuroimaging procedures like fMRI
neurophysiologists have consolidated the opinion that the visual system of pri-
mates is an organization of many different interconnected visual areas [Ungerlei-
der and Haxby, 1994] with have specialized functionalities. More than 30 visual
areas are currently identified [Felleman and Van Essen, 1991] and it is believed
that sixty percent of the cortex is dedicated to the processing and perception of
visual input. That processing hierarchy can be divided into two streams that
specialize in different aspects of processing. While the dorsal stream focuses on
the processing of object locations and motion, the ventral stream determines the
identity of objects [Ungerleider and Haxby, 1994, Mishkin et al., 1983, Felleman
and Van Essen, 1991, Van Essen and Gallant, 1994]. Along these streams, the
receptive fields size change from relatively small retinal areas of about one degree
to larger and larger retinal areas, up to receptive fields that cover almost the
complete visual field. With the increase of receptive field size increases the com-
plexity of stimuli that yield cortical activation. Areas of early visual processing
are activated by simple stimuli like contrasts or local motion into one direction.
The tunings become more and more specialized and range from oriented struc-
tures [Hubel and Wiesel, 1959], to parts of objects, to objects to representations
of complete scenes or sequences. The codings in dorsal stream range from ini-
tial motion detection over an integrated signal to motion patterns and to more
complex motion patterns [Felleman and Van Essen, 1987].

The approaches to explain observations by means of forward-directed mechanisms
like filtering and integration reach an impasse in the light of various non-linear
effects of neural responses. The amount of neural activation does not linearly
increase with the strength of the presented stimulus, but reach a saturation
point[Heeger, 1992, Carandini and Heeger, 1994]. These normalization effects
as a canonical principle do not only appear in visual models, but also in audi-
tory processing, attention and decision making and have a positive effect on the
ability to perceive contrasts and stimuli containing a high dynamic range. Our
models incorporate a normalization principle in inhibitory form using lateral con-
nections, which is elaborated in the upcoming sections. The second option of
how information from outside the receptive field may influence neural activation
is via downward-directed recurrent connections. Here, the source of modulation
lies outside the same brain area and may represent features of another class and
complexity. By this, representations from higher areas reach down and contribute
to the activation found there. The top-down signals add a predictive component
to feature representations and provide competitive advantage to matching acti-
vations in the modeled area[Brosch and Neumann, 2014a]. Of specific interest
for vision research like in this thesis is how such lateral and backward oriented
connections make contextual information available to local processing[Albright,
1984].



2.3. Models of visual neural information processing 11

2.3 Models of visual neural information process-

ing

The principles of individual neurons can be described at different levels of ab-
straction. Over time, five main levels have been identified to be useful.

Detailed compartmental models provide a high level of detail. Here, the com-
plete denditric tree is modeled using individual membrane and synapse conduc-
tances. Those models would allow to e.g. precisely model timings of post-synaptic
propagation of potentials in denditric integration [Herz et al., 2006]. This high
level of detail is throttled in reduced compartmental models, where only one
or few dendrite compartments are represented. The investigations in this thesis
will stick to single-compartment models that neglect the neuron’s structure
and regard it as a point-like process. There exist several models of how action
potentials are generated on this level, like the Izhikevich [Izhikevich, 2007], the
Fitzhugh-Nagumo model [Fitzhugh, 1969, Nagumo et al., 1962], of which the
most elaborated is the Hodgkin-Huxley model [Hodgkin and Huxley, 1990]. This
work will be based on a systematic reduction of the mathematical descriptions
necessary to describe neural activations on this level. The second important type
of single-neuron models are cascade models, where mathematical primitives are
concatenated to model the computational properties. This includes linear filters,
non-linearities and random processes. These types of models have a long tradition
in the investigation of the visual system. Section 2.3.2 describes the canonical
model for neurons and how this internal activation is transformed to a firing rate.
Further reduction of detail is achieved with black-box models, where the bio-
physical machinery is completely ignored and the signal processing capabilities
are modeled by whatever might be adequate. An activation of a neuron might in
this type of model as well be represented by a stochastic process.

2.3.1 Single-compartment models and membrane equa-
tion

Throughout the thesis, single-compartment models are the tool of choice for our
investigations [Koch, 1998, Herz et al., 2006]. These models are motivated by
electrophysiological and anatomical studies performed mostly on the brains of
macaque monkeys [Van Essen and Gallant, 1994] and focus on the mechanisms
of ionic currents below thresholds and the spike generation. They have helped to
quantitatively understand many dynamic phenomena. In this type of model, a
neuron is viewed as a point-like process, without a widespread denditric structure.
In reality an active neuron maintains a voltage gradient across its membrane to
its environment by producing a different concentration of ions at the inside of the
cell with respect to the outside. This causes a continuous equalization effect by
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Figure 2.2: Simplified neuron model in form of a single-compartment model.
The cell’s potential is represented as a capacitor. Leakage of potential as well as influ-
ences of excitatory, inhibitory and surround connections area modeled with basic electric
elements. The dynamic properties of this circuit are captured in the membrane equation.

means of a small current through the cell’s membrane. The cell compensates that
current with ion channels and continuously operating ion pumps. Large changes
of cell voltage elicits the production of an action potential, that quickly travels
along the cell’s axon and elicits afferent connections at other cells.

The electrical functionality of such a simplified neuron can be modeled by a circuit
containing some basic electrical components. The membrane acts as a capacitor
C that separates the inside from the outside of the cell, effectively holding an
electric potential. It also works as a resistor R that allows a leaking current to
flow as a function of voltage, excitatory and inhibitory connections. This leakage
is neutralized with ion pumps. When no input is available, currents balance each
other in a dynamic equilibrium. The application of Kirchhoff’s laws describe the
specific dynamics of such a circuit.

This work incorporates a dynamic model of cell assemblies that represents an
average spike rate code for the simulation of neural activation. We introduce
the canonical form of the dynamic equations using a dynamic membrane model.
We model the potential p of the cell as the electric tension with respect to its
surround. The spike rate r and thus activation or response of a cell is a function
of this value, so the transfer function for a cell in model area A at retinotopic
location x is written as:

rA(x) = f(pA(x)) (2.1)

Common forms of this function are monotonically increasing or sigmoidal. We
will without further notification assume throughout the thesis that the neuron is
operating at conditions where the increase of spike rate increases linearly with
potential.
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The potential of a cell underlies constant change that stems from a leaking current
as a function of current potential. The change rate ṗ(t) is thus formally defined
as

τ ṗ(t) = −A · p(t). (2.2)

In a full dynamic formulation, the dynamic voltage equation is extended by ex-
citatory and inhibitory connections to end with a generalized notation of the
membrane equation [Grossberg, 1988]:

τ ṗ(t) = −A · p(t) + netex · (B − C · p(t))− netinh · (D + E · p(t)) (2.3)

Where A is the strength of the leakage, B, C, D and E transforming the additive
and subtractive components. In a dynamic equilibrium the change rates cancel
each other out, resulting in ṗ(t) = 0. The effect is the same as in a car traveling
at full speed where the force of the motor brought onto the road and the wind
resistance cancel each other out and result in zero acceleration. Depending on
motor strength and aerodynamics, this occurs at different top speeds. In our
model approaches we are interested in the potential and thus, cell activation,
when the balancing happens. Instead of performing a dynamic simulation (which
is time-consuming) we thus often calculate the steady-state equation by setting
ṗ(t) = 0 and solving for p:

p∞ ∝
B · netex −D · netinh

A+ C · netex + E · netinh
. (2.4)

This equation will form the basis for the notational format used in this thesis.

2.3.2 Cascade model

In the neural architecture of neocortex six layers can be identified for each individ-
ual neuron. As a simplification, we use a cascade model with three model stages
that roughly reflect contributions of layer IV (incoming connections and short-
range connections), II and III (intra-cortical connections). A reduction to those
layers represent computational properties that are common in biological neural
architectures and allows modeling of feedforward and feedback connections. The
functional effects of this columnar cascade can roughly be mapped onto compart-
ments of cortical area subdivisions (as suggested in [Self et al., 2012]) and are
namely linear filtering (layer IV), feedback (layers II and III) and response nor-
malization (layer IV). We capture the contributions of the individual layers with
a set of dynamic equations based on the canonical form presented in Eq. 2.3.
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Figure 2.3: Building block of the three-stage cascade model. Model areas are
built following this generic architecture. Input enters the model area from the left and
it is initially filtered using layouts of receptive fields that are adapted to the desired
functionality of the model area. The responses of the filtering stage are then modulated
by input from higher cortical area. At this point, a nonlinear operation is performed on
the signal strength. Center-surround interaction leads to a normalization effect in the
final stage.

Filtering

The first component is a model of how cells respond to visual input. Single cells
as a first approximation compute the weighted sum of light intensity distribution
presented to their receptive field. Two-dimensional visual input is represented
as a luminance function of spatial position. The preferred stimulus of a cell is
characterized by their impulse response function. Thus, the response of a cell
assembly to visual input in conveniently calculated by means of a convolution
operation. The response of model cells at position x is thus

r(x) = I(x) ∗Kpref (2.5)

or

r(x) = r

(
x
y

)
=

∞∑
u=−∞

∞∑
v=−∞

Kpref

(
u
v

)
· I
(
x− u
y − v

)
(2.6)

Feedback

This purely linear formulation does not account for various non-linear effects
that have been reported. Most of the qualities that the visual system provides,
like the robustness to disturbances and the high adaptability and generalization
capabilities, most probably stem from connections that connect higher cortical
areas with lower ones [Hupé et al., 1998, Markov et al., 2013]. Very recently
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[De Pasquale and Murray Sherman, 2013] found evidence for the modulatory
properties of feedback in the visual cortices of mice. Those feedback connections
are believed to play an important role in visual processing, as they enrich local
representations with contextual information that is provided by higher visual
areas.

The effects of such modulatory feedback are subject of research and mechanisms
are not yet understood to a full extent [Hupé et al., 1998, Markov et al., 2013].
This has led to hypotheses about how recurrent modulatory signals might be
incorporated into the processing cascade. No feedback input should leave the
signal unchanged. In contrast, the sole presence of a modulatory signal should not
evoke any response if the preferred stimulus is absent. A simultaneous activation
of both feedforward input and modulatory signal should lead to highest overall
response of cell. These restrictions lead to a multiplicative model of feedback
enhancement. With pfb the modulated cell activation, p its original input from the
filtering stage and netfb the strength of the feedback signal, the overall response
is modeled by

pfb ∝ p · (1 + netfb) (2.7)

or in a dynamic formulation

ṗ(t) = −A · p(t) + netex · λ(1 + β · netfb)(B − C · p(t)) (2.8)

The multiplicative term 1+β ·netfb denotes the response gain modulation gener-
ated by top-down connections. Most of the time netfb stems from an integration
of contextual surround of the cell from areas higher in the hierarchy. In case of
a pure feed-forward signal processing sweep, the modulation is switched off by
setting β = 0.

Normalization

Various non-linear effects that are observable are not captured by the first two
stages of processing. Simple cells exhibit non-linearities in their responses to stim-
uli [Carandini et al., 1997]. We incorporate a stage of divisive normalization in
our model, which extends the linear model to include mutual shunting inhibition
among a large number of cortical cells. It acts divisively upon the activation level
of target neurons and its effect in the model is to normalize the linear responses
by a measure of stimulus energy over a population of cells in the neighborhood
of a neuron.
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Such kind of mutually competitive interaction has been observed in extracellular
recordings of simple cells in the primary visual cortex of anesthetized macaques
[DeValois et al., 1982a, Carandini and Heeger, 1994]. It accounts for both the lin-
ear and the nonlinear properties of the cells and allows to process a high dynamic
range of response activations [Heeger, 1992].

ṗi = −αppi + (β − pi) · Ii − pi · qi (2.9)

q̇i = −αqqi +
∑
j∈N

cjg(pj) (2.10)

with Ii the input and N the neighborhood integration of a neuron i, where cj
denote spatial weighting coefficients of the local neighborhood. At equilibrium,
the following steady state equations can be derived:

pi,∞ =
βIi

αp + Ii + 1
αq

∑
j∈N cjg(pj)

(2.11)

qi,∞ =
1

αq

∑
j∈N

cjg(pj) (2.12)

This application of normalization has previously been investigated [Grossberg,
1980, Heeger, 1992, Carandini and Heeger, 2012, Carandini et al., 1997] and used
in various approaches touching different domains, such as the disambiguation of
local motion [Bayerl and Neumann, 2004, Beck and Neumann, 2011] the process-
ing of transparent motion [Raudies and Neumann, 2010, Raudies et al., 2011] the
detection of texture boundaries [Thielscher and Neumann, 2003], the extraction
of object boundaries using texture compression [Weidenbacher and Neumann,
2009], and the analysis and representation of biological motion sequences [Layher
et al., 2014]. [Brosch and Neumann, 2014a] provides a detailed analysis of the
dynamic equations the model is comprised of.

The thesis now continues with instances of these principles for motion and form
processing. The upcoming Chap. 3 will incorporate the principles in a model of
motion estimation using event-based input from a neuromorphic sensor. Chap. 4
applies the generic mechanisms in a model of form processing, where contextual
influence and normalization mechanisms contribute to a segregation of figure and
ground.



3 Event-based motion processing

3.1 Introduction

Evolutionary success is about optimizing chances of survival, food acquisition
and reproduction. For this reason, many species have developed high mobility
and clear perception of their environment. With the ability to move and others
moving in the vicinity, the brain has developed according sensory mechanisms for
motion perception based on the visual input that enters the brain through light-
sensitive neurons on the retina. In higher mammals, the perceptual capabilities
concerning motion allow the extraction of an immense amount of information
including a motion-based scene segregation into figure and ground, movement
direction, collision avoidance, recognition of individuals, perception of transparent
motion, and more.

To be able to extract that information, the cortex has developed structures and
mechanisms to detect, represent and process visual motion patterns. But how do
these mechanisms work? As seen in Chap. 2, the visual perception starts with
the projection of light onto the retina. Moving individuals or objects moving in
the vicinity cause the projections on the retina and thus, neural activations, to
shift. The descriptive field of movement vectors is called optic flow field. These
temporally variant activations are processed by visual mechanisms in occipital
cortex and extracted motions are represented by neural activations in various
dedicated areas. [Hubel and Wiesel, 1962] found directionally selective (DS)
cells in the visual cortices of cats soon after their work on fundamental neural
processing principles [Hubel and Wiesel, 1959]. Latest after [Barlow and Levick,
1965] discovered the mechanisms of directionally tuned cells in rabbit retina, many
researchers and laboratories started to intensively investigate the mechanisms of
motion processing. [Borst and Euler, 2011] provide a good review and summary
on early stages of motion sensing.

The investigations have led to a number of models that consider the biological es-
timation of visual motion. The first popular model was presented by [Hassenstein

17
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and Reichard, 1956]. It performs a spatio-temporal correlation of visual impulses
that is inspired by the visual system of the fly. Two spatially separated receptor
cells are connected, whereas one of them adds a temporal delay to the output
of its signal. Whenever a visual stimulus first elicits a response at the delayed
receptor and the right time later at the second receptor, the detector elicits a
response and indicates local motion. With only a few extensions like a mecha-
nism to reduce the probability to respond to flickering input this rather simple
concept at an initial stage suffices to allow flying insects like the common house-
fly to become oriented and navigate through their environment. Any reader who
has ever been disturbed by such an insect might agree that despite the simplicity
of the underlying mechanisms its perception of the environment is accurate and
response times are remarkable.

The model of [Hassenstein and Reichard, 1956] was later adapted and simplified
by [Barlow and Levick, 1965]. Another model that has reached a high level of
publicity is presented by [Adelson and Bergen, 1985]. With it, many explanations
of effects in visual motion perception were qualitatively explained. The approach
is based on the detection of oriented spatio-temporal energy. It consists of linear
filters that are oriented in space-time and tuned in spatial frequency. The authors
of [vanSanten and Sperling, 1985] showed that the model of [Hassenstein and
Reichard, 1956] and the model by [Adelson and Bergen, 1985] are mathematically
equivalent.

How is an initial motion estimation potentially performed and what are the mech-
anisms that lead to directionally selective cells? In a nutshell, motion sensing
requires neural mechanisms that are sensitive to objects passing through their
receptive field. In order to be selective to motion instead of static contrast, the
spatio-temporal response function of those cells needs to be non-separable. In pri-
mates, these receptive field types have been discovered [DeAngelis et al., 1995],
and they nicely fit into the concept of [Adelson and Bergen, 1985]. The precise
source of how these inseparable fields are generated from separable components
remained unclear until [DeValois et al., 1982a] who analyzed spatio-temporal re-
ceptive fields in visual cortices of macaque monkeys. These insights showed that
the spatio-temporal characteristic can be achieved by a combination of separable
subfields.

In this work, we present a mechanism of motion estimation based on those physio-
logical findings of macaque visual cortex, see Sec. 3.4. The model uses the output
of a neuromorphic silicon retina [Lichtsteiner et al., 2008] and incorporates phys-
iological findings of receptive field characteristics to generate a motion sensitive
model. The initial estimation is followed by subsequent processing steps, as they
are found in the structures along the dorsal path of the primate brain.

In the following sections, we will first introduce the principles of a new neuromor-
phic sensor that resembles the functionality of retinal photoreceptors (Sec. 3.2).
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This sensor type mimics sensory processing of the retina in that it provides a
continuous stream of visual events that indicate local luminance changes. We
demonstrate how physiological findings about the motion selective cells are ap-
plied to the stream of events to yield a representation of initial motion by means
of directionally selective cells (Sec. 3.4.1). Subsequent processing steps are mo-
tivated by investigations about mechanisms available along the dorsal processing
pathway. Here, canonical elements from Chap. 2.3 are employed. This includes
a recurrent architecture for motion integration, normalization and contextual bi-
asing found in area MT. Effect of such a contextual interaction is an increase
of tolerance towards noise and the effect of generating more homogeneous early
motion representations at V1 (3.4.3). In the proposed model, we also investi-
gate the influence of contextual surround inhibition within model V1 (Sec. 3.4.2).
Such a normalization reduces influence of spurious motion estimates at elongated
1-dimensional image features which positively affects the consequences of the
aperture problem. Physiological as well as psychophysical effects of motion and
form interactions are presented explained using the concept of motion streaks or
speedlines in Sec. 3.5. An example of a possible algorithmic implementation of
the mechanism is shown in Sec. 3.6.

3.2 DVS - A neuromorphic retina-like sensor

Classically, visual input is acquired using a camera that captures full frames at
one point in time. This approach stems from the time when still projections of
scenes were captured on a chemical photo-reactive surface. This concept has been
successfully ported to the recording of scenes in motion as well. Eadweard Muy-
bridge was one of the pioneers of chronophotography and captured the movement
of a running horse with a rapid exposure of multiple photographic plates. When
these images are presented successively in rapid order, our visual systems inte-
grates the individual frames into a moving percept. This striking effect is known
since the late 19th century and our cinematographic technology is still based on
this illusion. Video cameras capture full frames at a fixed frame rate at distinct
points in time, and the concept has survived the transition from photosensitive
material to digital sensors.

When a visual scene is captured at a frame rate R of about 25Hz or higher, the
luminance level of one individual position is very probable to be constant over
multiple frames. Nonetheless, the full set of pixels is transmitted, processed and
stored in modern camera systems. Over the years, resolution and frame rates have
been increased, but the concept of capturing full frames remained. The thirst for
computational power, storage and energy consumption of such camera systems
increased accordingly. On the other hand fast image changes, like flickering or
movements of a rapidly moving object, are still integrated into one frame and
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cause motion blur. One of the basics in signal theory, the Nyquist-theorem,
states that with a given frame rate R (respective sample frequency), only signals
with a frequency or less than R/2 can be reconstructed.

A lot of research and money has been put into the development of full-frame
camera sensors, and their low prices, high quality and ubiquitous availability
have attracted many vision science labs to use them for their research. However,
the immanent concept of a frame as being the input for vision processing has
blurred the fact that at a retinal level, vision works differently and independent
of frames (see also Sec. 2). Here, luminance changes are detected and transmit-
ted asynchronously between local retinal positions. For precise models of visual
perception, a synchronous sampling of all retinal positions does not capture this
fundamental difference.

Therefore, in 1992, [Mahowald, 1994] introduced the first silicon retina that
breaks with the classic paradigm of full frames. It introduces a neuromorphic
concept of building a vision sensor that models individual photoreceptors on a
pixel-level. A dedicated circuit for every pixel emulates the function of each
individual photoreceptor, bipolar and ganglion cells in the retina, see Fig. 3.1.
Such a circuit consists of a photoreceptive element, a differencing amplifier and
decision or comparator units. The current produced by the photoreceptor is con-
stantly monitored and when a change is detected, the circuit generates an event
[Delbrück, 2012]. When an event was fired, the local reference pixel intensity
level is adjusted to the new measurement, that means the pixel is reset to the
new reference luminance. This takes only a few microseconds, the effective sig-
naling frequency of an individual pixel is measured in the order Kilohertz. The
output of such a sensor is a continuous stream of local events that indicate local
changes in contrast and its sign.

This method of sampling provides a list of interesting properties. In the output
stream, every information means a novelty in the sense that it indicates a change
of luminance in the visual field. Redundant information is not transmitted. This
has direct effects e.g. on energy consumption and necessary bandwidth. The
automatic adaptation to local luminance levels allows useful responses over a very
large range of luminance levels. A standard camera needs to adjust to luminance
levels by globally changing sensor sensitivity or changing the aperture size. The
DVS has a sensitivity range of 120dB which means a dark to light ratio 1 : 106, or
an equivalent of about 20 f-stops (aperture levels) in photographic measurements.
For comparison, high-end photographic (still photography) sensors like the ones
built in Canon’s EOS 5D-Series provide an intra-frame dynamic range of about
11 stops (66dB or 1 : 2000) without mechanically changing lens apertures or
sensitivity values [Koo, 2010, Adams, 2010]. The biologically inspired processing
mechanisms of the DVS increase this sensitivity range by two orders of magnitude.

The authors of [Lichtsteiner et al., 2008] engineered this concept to a product con-
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taining a sensor that is small, easy to handle and affordable enough to be acquired
by research facilities (see Figure 3.1, left). For ease of applicability, they wrapped
the sensor circuitry into a framework of signal processing that allows to transmit
event signals to a connected computer via USB port. A data processing layer au-
tomatically resolves event collisions, and dynamic thresholds guarantee constant
performance of the sensitive electronic components independent of surrounding
temperature and other influences. The authors advertise the high sensitivity and
the large brightness range of the sensor. They also provide an API programmed
in Java that supports developments with a large collection of software modules.

On the downside, the spatial resolution of the sensor is lean with only 128×128 on
a 1/2” sensor, because the circuits necessary to model such a processing requires
about 10 times the size of standard pixels in a CMOS approach. Very recently,
[Brandli et al., 2014], from the same lab, published a new version of the sensor
that combines the benefits of a standard frame-based sensor with the event-based
mechanisms. It allows to simultaneously readout the asynchronous detection
of brightness changes and the synchronous readout of linear intensities. Data
from these two different channels can easily be superimposed because of one
common optical system. The resolution is also increased to 240×180 pixels. The
new sensor is called Dynamic and-Active Pixel Vision Sensor (DAVIS ) and also
available from Inilabs.

3.2.1 Previous DVS applications

The availability of such a sensor at an affordable price has motivated many labs
to focus on the challenges and chances that come with the new concept. At the
time of writing, the list of applications ranges from tracking [Drazen et al., 2011]
and detection of gestures or actions [Fu et al., 2008, Lee et al., 2012] to embedded
event-based sensory-motor systems [Delbrück and Lang, 2013, Conradt et al.,
2009, Inilabs, 2014] and stereo applications [Benosman et al., 2011, Camunas-
Mesa et al., 2014]. The resemblance of actual neural mechanisms has motivated
to embed the sensor into larger architectures like CAVIAR [Serrano-Gotorredona
et al., 2009] as well or to provide data for spiking neural network [Gibson et al.,
2014]. The problem of the estimation of optic flow using the sensor has been
approached by [Clady et al., 2014, Benosman et al., 2012, Benosman et al., 2014,
Barranco et al., 2014, Abdul-Kreem and Neumann, 2014]. A novel method is
presented in this thesis, see Sec. 3.3.

3.2.2 Asynchronous visual events

On the DVS, the circuitry of individual pixels on the sensor surface measures
the local luminance level and detects relative intensity changes. If such a change
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occurs, the circuitry evokes one of two possible signals, depending on the sign of
the change. In case of an increase of luminance, a ON signal is produced, and in
the opposite case, when the local intensity decreased, an OFF signal is generated.
The sensor architecture contains a 16-bit counter that generates timestamps with
microsecond precision. Each ON or OFF signal is labeled with the time of
occurrence, thus producing a corresponding event, and forwarded to the data
processing layer, that provides the event to a connected computer via buffering
structures and USB interface. The output of such a sensor is a stream of visual
events with arbitrary spatial order and high temporal precision. We define the
output of the event based sensor as the function

e : R2 × R→ {−1, 0, 1}. (3.1)

No events are produced unless changes in the luminance function occur, so e = 0,
except at positions and times (pk; tk) where

e(pk; tk) =

{
−1 if darker/OFF Event

1 if brighter/ON Event
(3.2)

For applications that require the synchronous operation of multiple DVS cameras,
the timestamps can be synchronized using a 1-pin trigger cable between sensors.
Such a synchronization is necessary for stereo applications or general recordings
with more than one DVS camera.

3.2.3 Adress-event-representation (AER)

The data processing layer of the sensor provides an asynchronous stream of visual
events that consists of spatial and temporal information where events occurred.
This information is provided with data packets that each contain two integer
values T and P . T directly codes the timestamp of the event in microsecond
precision. The second integer value P contains the spatial position and event
type. A few bit transforming operations are required to make it usable. The
event type t is coded within the last bit of P and extracted with a modulo
operation t = P mod 2, where 0 indicates an ON and 1 indicates an OFF-Event.
In the following, P̂ only contains the remaining bits of P without the last one.
The spatial position is extracted as follows:

x = 128− P̂ mod 128 (3.3)

y = 128− (P̂ − x)/128 (3.4)
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3.2.4 Visualization methods

The DVS produces an asynchronous stream of visual events that indicates local
changes in contrast at a retinal position, the sign of the change, and the precise
time of change. There are different ways of visualizing such an event stream. Fig-
ure 3.3 A-F shows a selection used in this thesis. The actual output of the sensor
is a list of integer 2-tupels that contain the position, type and time of individual
events (B). Such an individual event can be visualized in a two-dimensional frame
using the x and y coordinates.

The most straight-forward way to represent an event is a 3-dimensional spatio-
temporal display (C,D). Here, all events are positioned in a cube-shaped space
with the axes position and time. A projection of that space can easily be accom-
plished and presented on screen or paper. This display is especially well suited for
interactive displays, where the camera position can be changed by the viewer in
real time. This type of display nicely shows the continuous character of incoming
events when contrasted with the standard frame-based methods of capturing se-
quences. However, on a printed and thus static medium this type of visualization
sometimes generates a less comprehensive display.

The visualization that is least intuitive but essential for the upcoming investiga-
tions is the 2-dimensional spatio-temporal display (E). It is repeatedly used to
explain the basic concepts of the processing. In this type of display, only one
spatial component (the y or x component) is represented along one axis of the
display. The other axis is replaced by the temporal component of the stimulus.
Throughout the progress of this thesis, the positive temporal component of such
a display will be directed downwards, meaning that events farer down the illus-
tration are younger than those located higher in the visualization. This allows to
make the reader familiar with basic concepts of temporal processing and effects
that occur from the specific way the sensor produces output.

To achieve a more meaningful visualization of the recorded data, multiple events
are integrated and visualized in one image (F). This type of display proved to
be most suitable for printed form, but it easily generates the impression that
individual frames are processed instead of events.

3.2.5 Challenges for real recordings with the DVS

In recording situations, the DVS can be operated like a normal camera. When
the lens focus and aperture are set, the high dynamic range allow recording under
a large range of illumination conditions. However, achieving real recordings with
high precision requires a well-planned setup. The apparently most convenient
way to control and record stimuli would be to generate them synthetically and
display them on a LCD screen. The results of this approach seem satisfying at



3.2. DVS - A neuromorphic retina-like sensor 25

15014
17477
16493
22412
 8565
10105
11124
17502
18286
22272
13695
  :

   730
   747
   784
   803
   814
   818
   837
   888
   888
   912
   985
    :

Addr.   t[µs]
    45
    94
    74
    58
    70
    68
    70
    81
    73
   128
    65
     :

    70
    60
    64
    41
    95
    89
    85
    60
    57
    41
    75
     :

X        Y   Type
     0
     1
     1
     0
     1
     1
     0
     0
     0
     0
     1
     :

recording situation event stream

spatio-temporal display (3D) event stream and comparison 
to frame-based approach

spatio-temporal display

x

t

x

y

t

integrated view

[T..T+5ms]

[T..T+500ms][T..T+50ms]

[T=730]

A. B.

C. D.

  E. F.

Figure 3.3: Different visualization techniques for asynchronous DVS data.
A: Setup of recording situation. B: Snippet from actual data stream that arrives from
the interface. C,D: Projection of a three-dimensional display technique. Here, the dense
sampling of the temporal function is visible in contrast to the synchronous samples as
would happen in a standard camera. E: Spatio-temporal view in y/t system where slanted
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Figure 3.4: Devices used for recordings of stimuli. Top: Rotational device and
construction sketch of linear motion device. Bottom,left: Controllable speeds for both
devices are an approximate linear function of applied voltage. Right: Real recording
situation with random dot kinematogramm on linear device.

first, but they are not. Modern LCD screens operate at a refresh frequency of
60 Hz, that means a new image is presented every 16.6 ms. Modern products
operate at internal refresh rates of 200 Hz and more by repetition of the current
frame. The high temporal resolution of the sensor easily samples this process and
the synchronization provided by the screen is contained in the recorded data.

Recordings for this thesis were performed using two mechanical devices that phys-
ically move the desired stimulus on a rotational or linear path. The first device
performs rotational movements. Stimuli are printed on a 200mm disk and cen-
trally attached to the axis. A geared DC motor with operates at 2 to 12 Volts
generates a rotational motion at speeds between 20 and 130◦/s.

The second device is able to perform linear motion. A 205mm× 733mm sheet is
looped and strained into the device. Again, a DC motor operates at 1 to 12 Volts
and generates a linear motion with a speed of 0 to 700mm/s. Figure 3.4 shows
the two devices and respective speed over voltage settings.
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3.2.6 Processing limitations

The event generation on the DVS is limited by the ability of the data processing
layer to forward events to the USB port, and the maximum data throughput of
the USB port itself. The approximate throughput of the USB 1.0 port is about
1 ∗ 106 bytes per second. One event is represented by a 16-Bit-integer value for
the timestamp and another 16-Bit-integer value for the position, which in sum
equals 32 Bits or 4 Bytes. The maximum throughput of the USB port is thus
approximately 250.000 events with no data overhead considered. The resolution
of the sensor if 128 × 128 = 16.384 pixels, so the data bus is maxed out when
there is more activity than about 15 events per pixel per second. The reader
might recall that the potential refresh rate of individual pixels is about 25kHz.
With complex stimuli covering the complete visual field of the sensor and many
contrasts that are quickly moving, this limitation is easily reached. As a result,
the event stream is interrupted and timestamps of individual events are spurious.
In [Lichtsteiner et al., 2008] the authors specify that the device makes use of the
USB 2.0 standard, which would increase tolerance towards bursts of many events,
but still does not provide enough capacity to completely remove the bottleneck
of event transmission. In the recordings used in this thesis, we paid attention to
not overload the transmission capacities of the sensor.

3.2.7 Synthetic stimuli

With the recording of proper visual stimuli for the DVS being cumbersome, an
option is to create synthetic streams of visual events. Here, direction and speed
of a motion can be controlled precisely. The goal is to create an event stream as it
would be produced by a given shape. In a first step, likelihoods of positions where
events are generated are created using this shape. Events are then statistically
spread over a definable time to yield an effective speed. This method generates
a good approximation of actual sensor output with high flexibility and precision.

The model of movement is an affine transformation of an initial shape or image.
The shape can be defined as a black and white or as gray scale image of the
desired resolution. The resolution may not match the actual resolution of the
sensor, but if we chose to simulate synthetic stimuli in the resolution of the sensor
(128 × 128 pixels). The position of the artificial shape is calculated along its
desired trajectory but with constant speed of one pixel at a time. The movement
is performed by generating transformed versions of the shape using an affine
transformation of each target pixel
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p′ = k T · p (3.5)x′y′
1

 = k ·

a b c
d e f
0 0 1

xy
1

 (3.6)

With a to f the affine parameters including translation, scaling, shearing and
rotation and k the sequence parameter which is slowly increased to generate only
small movements at a time. The difference between the current transformed shape
and the previous image indicates regions where local luminance levels are raised
or decreased. Events will be generated at these positions with their respective
type (ON or OFF). When the shape image contains gray scales between 0 and 1,
so does the difference image. These may be interpreted as probability levels for
event generation.

The final step is to perform the transition from the step-based transformation
of motion to a continuous event stream of defined speed. The model performs
transformations at distinct points in time. Generated events are thus scattered
across the range between two transformations. To simulate the noise level of the
sensor, each pixel is additionally activated with a probability of 0.003. Figure 3.5
illustrated the mechanism of artificial event generation.
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Figure 3.5: Artificial event generation. Using a stimulus model, the generation
mechanism keeps track of locations where ON or OFF events need to be generated with
high probability. If events are locally generated according to the likelihood, they are
scattered over the timespan.
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3.3 On event based motion estimation

Now that the reader is familiar with the sensor we will approach motion estima-
tion. Intuitively, the sensor seems very appropriate for a high-quality estimation
of optic flow, in that it provides changes of visual input with high temporal
precision. As motion estimation is essentially estimating change over time, es-
timation proper motion direction seems straight-forward. Actually, other labs
have already presented algorithms of motion estimation with AER input. There
is a number of approaches from previous labs dealing with motion estimation on
a dynamic vision sensor. [Clady et al., 2014] explored mechanisms to estimate
time-to-contact, and there are works that contribute either adapted [Benosman
et al., 2012, Benosman et al., 2014] or original [Barranco et al., 2014] methods
for motion estimation on the sensor. However, their approaches show deficits
under close investigation. In a nutshell the approaches rely on the estimation
of temporal and spatial derivatives that cannot be estimated reliably using the
sensor input. We will analyze this in the subsequent sections using a formal def-
inition of the sensor input, its implications on the assumptions used for motion
estimation. The core problem is basically that gradients are not easily estimated
with the sensor. We then present a new approach using spatio-temporal filters
that are motivated by physiological findings in Sec. 3.4. Our contribution that is
presented in the following sections contrasts to approaches like [Benosman et al.,
2012, Benosman et al., 2014] in that our mechanism relies on spatio-temporal
filters that resemble neural mechanisms found along early stages in visual cortex.

3.3.1 Nomenclature and principal problem

When motions occur in the visual field of the sensor, it generates a series of ON
and OFF-events. The sampled events are generated at the contrast edges of the
moving object. In x-y-t-space these events cluster into a region where events
occur with a high probability and this region is slanted with respect to the t axis,
where the angle indicates the speed of the motion (see Fig. 3.6). Estimation of
motion and speed is about estimating the slant of the region.

To describe the output of the event-based sensor, we define the function

e : R2 × R→ {−1, 0, 1} (3.7)

which is always zero except for tuples (xk, yk; tk) = (pk; tk) which define the
location and time of an event k generated when the luminance function increases
or decreases by a significant amount. In other words, the function that defines the
event generation e(pk; tk) = ek, generates 1 if the log-luminance changed more
than a threshold ϑ, i.e. an ON event, and −1 if it changed more than −ϑ, i.e. an
OFF event. This sampling of the lightfield essentially represents the temporal
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Figure 3.6: Principle of motion estimation: Left: Moving object in spatial co-
ordinate system at two discrete points in time. Right: In spatio-temporal coordinates,
the object path appears as slanted region with angle to t axis a function of speed. Events
are produced at the proximal and distal edge of the object.

derivative of the luminance function g

d

dt
g(p; t) = gt(p; t) ≈ ϑ

∆t

∑
k: tk∈(t−∆t,t]

ek , (3.8)

with ϑ the sensitivity threshold of the event-based sensor.

offDL

LD

on

on off

x x

g(x) g(x)

g(x) g(x)

Figure 3.7: Moving DL (dark-light) and LD (light-dark) edge, either to the left
or to the right (denoted by blue arrows), have an associated temporal on/off signature.
Note that without knowledge about the edge type (DL vs. LD), an on/off event alone is
insufficient to determine the motion direction.

3.3.2 Luminance constancy assumption

To estimate local translatory motion we assume throughout the paper that the
gray level function remains constant within a small neighborhood in space and
time, i.e. g(x, y; t) = g(x + ∆x, y + ∆y; t + ∆t) (gray level constancy; c.f. [Horn
and Schunck, 1981]). Note that due to the low latency of 15µs of the event-
based sensor [Lichtsteiner et al., 2008], this assumption is more accurate than for
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conventional frame based sensors. Local expansion up to the second order yields
the constraint ∆xT∇3g + 1/2∆xTH3∆x = 0. Here, ∆x = (∆x,∆y,∆t)T ,
∇3g = (gx, gy; gt)

T is the gradient with the 1st order partial derivatives of the
continuous gray-level function, and H3 denotes the Hessian with the 2nd order
partial derivatives of the continuous gray-level function that is defined in the x–y–
t-domain. If we further assume that the 2nd order derivative terms are negligible
(linear terms dominate) we arrive at the spatio-temporal constraint equation that
has been used for least-squares motion estimation. The least-squares formulation
is based on a set of local constraint measures over a small neighborhood under
the assumption of locally constant translations [Lucas and Kanade, 1981], i.e.
gxu+ gyv + gt = 0 given that ∆t→ 0 and uT = (u, v) = (∆x/∆t,∆y/∆t). The
local image motion u of an extended contrast can only be measured orthogonal
to the contrast (normal flow, [Wallach, 1935, Wuerger et al., 1996, Barron et al.,
1994, Fermüller and Aloimonos, 1995]). For simplicity, we assume a vertically
oriented gray level edge (gy = 0). Then the motion can be estimated along the
horizontal directions (left or right with respect to the tangent orientation of the
contrast edge). When the edge contrast polarity is known (light-dark, LD, gx < 0
or dark-light, DL, gx > 0) the spatio-temporal movements can be estimated
without ambiguity. For an DL edge if gt < 0 the edge moves to the right, while
for gt > 0 the edge moves to the left (c.f. Fig. 3.7).

For an LD edge the sign of the temporal derivatives gt changes for both respec-
tive movement directions, i.e. only the ratio of gray-level derivatives yields a
unique direction selector orthogonal to the contrast contour. This means that
sgn(gx/gt) = −1 implies rightward motion while sgn(gx/gt) = 1 implies leftward
motion, irrespective of the contrast polarity. Note, however, that an estimate
of gx is not easily accessible from the stream of events. Thus, a key question is
to what extend the required spatio-temporal derivative information is available
and can be estimated from the plenoptic function P (·) that is sampled by the
asynchronous event sensor.

3.3.3 Moving gray-level edges and the spatio-temporal con-
trast model

We describe the luminance function g for a stationary DL transition by convolving
a step edge H(·) with a parameterized Gaussian,

gσ(x) =
c√
2πσ
· H(x) ∗ exp

(
− x2

2σ2

)
+ g0 = c · erfσ(x) + g0, (3.9)

with c denoting the luminance step height, g0 the basic luminance level, and “∗”
denoting the convolution operator (since we only study the derivatives, we assume
g0 = 0 without affecting generality). The parameter σ controls the spatial blur of
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Movement

Figure 3.8: Rightward moving 1D edge illustrated in the x–t-domain. The
velocity is defined by the direction and the speed of the spatio-temporal change. In the
case depicted here, the direction is to the right and the speed is encoded by the angle θ
between the x-axis and the normal vector n along the spatio-temporal gradient direction
(measured in counter-clockwise rotation). Alternatively, for a contrast edge of known
finite length ∆x, the speed can be inferred from the time ∆t, it takes the contrast edge
to pass a specific location on the x–axis.

the luminance edge with σ → 0 resulting in the step-function. Different contrast
polarities are defined by gDLσ (x) = c · erfσ(x) and gLDσ (x) = c · (1 − erfσ(x)),
respectively [Neumann and Ottenberg, 1992].

When this gray-level transition moves through the origin at time t = 0 it gen-
erates a slanted line with normal n in the x-t-space (c.f. Fig. 3.8). The speed s
of the moving contrast edge is given by s = sin(θ)/ cos(θ), where θ is the angle
between n and the x-axis (this is identical to the angle between the edge tan-
gent and the t–axis). For a stationary gray-level edge (zero speed) we get θ = 0
(i.e. the edge generated by the moving DL transition in the x–t-domain is lo-
cated on the t-axis). Positive angles θ ∈ (0◦, 90◦) (measured in counterclockwise
direction) define leftward motion, while negative angles define rightward motion.
For illustrative purposes, we consider an DL contrast that is moving to the right
(c.f. Fig. 3.8). The spatio-temporal gradient is maximal along the normal direc-
tion n = (cos θ, sin θ)T . The function g(x; t) describing the resulting space-time
picture of the movement in the x-t-space is thus given as

gσθ(x; t) =
c√
2πσ
H(x⊥) ∗ exp

(
− x

2
⊥

2σ2

)
, (3.10)
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with x⊥ = x·cos θ−t·sin θ. The respective partial temporal and spatial derivatives
are given as

∂

∂t
gσθ(x; t) =

−c√
2πσ

exp

(
− x

2
⊥

2σ2

)
· sin θ , (3.11)

∂

∂x
gσθ(x; t) =

c√
2πσ

exp

(
− x

2
⊥

2σ2

)
· cos θ . (3.12)

Now, recall that the event-based DVS sensor provides an estimate of gt at a
specific location (c.f. eqn. (3.8)). For a moving contrast profile this leads to a
changing luminance function along the t-axis (side graph g(0, t) in Fig. 3.8). The
temporal derivative of this profile is formally denoted in eqn. (3.11). Given a
known velocity specified by θ, we can combine equations (3.11) and (3.12) to
determine gx as

∂

∂x
gσθ(x; t) = − ∂

∂t
gσθ(x; t) · tan θ . (3.13)

In sum, the temporal edge transition can be reconstructed in principle from a
(uniform) event sequence at the edge location for a specific motion direction,
given that

• a reliable speed estimate is available to infer a robust value for θ, and

• reliable estimates of temporal changes have been generated as an event
cloud over an appropriately scaled temporal integration window ∆wt.

Note that both parameters, θ and ∆wt, need to be precisely estimated to accom-
plish robust estimates of contrast information of the luminance edge. Alterna-
tively, one can try to directly estimate the partial derivatives used in the motion
constraint equation from the stream of events. The construction of this approach
and its related problems are described in Sec. 3.3.4 in the following.

3.3.4 Estimating spatio-temporal continuity using event-
sequences

The local spatio-temporal movement of a gray-level function can be estimated
by least-squares optimization from a set of local contrast measurements which
define intersecting motion constraint lines in velocity space [Lucas and Kanade,
1981]. Given a dense temporal sampling the spatio-temporal gray-level function
can be reasonably well captured by a first-order approximation (as summarized
in sect. 3.3.1). The key question remains how one could estimate the spatial
and temporal derivatives in the constraint equations, gxu + gyv + gt = 0 from
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event sequences generated by the DVS. Events only encode information about
the temporal derivative gt (c.f. eqn. (3.8)). Thus, without additional information
it is impossible to reliably estimate gx or gy as outlined in the previous Sec. 3.3.3.
The derivative of a translatory moving gray level patch, however, generates a
unique response in h := gt. Thus, we can apply the motion constraint equation
to the function h and solve hxu+ hyv + ht = 0, instead.

Using two temporal windows T−2 = (t − 2∆t, t − ∆t] and T−1 = (t − ∆t, t], we
can approximate ht, for example, by a backward temporal difference

ht(p; t) = gtt(p; t) ≈ ϑ

∆t2

 ∑
t′∈T−1

e(p; t′)−
∑
t′∈T−2

e(p; t′)

 , (3.14)

with p = (x, y)T and ϑ denoting the event-generation threshold. The spatial
derivatives hx and hy can be approximated by central difference kernels [−1, 0, 1]
and [−1, 0, 1]T , respectively. These can be applied to the function h estimated by
integrating over the temporal window T (e.g. T = T−2 ∪ T−1)

hx(p; t) = gtx(p; t) ≈
∑
t′∈T

e(x+ 1, y; t′)−
∑
t′∈T

e(x− 1, y; t′) , (3.15)

hy(p; t) = gty(p; t) ≈
∑
t′∈T

e(x+ 1, y; t′)−
∑
t′∈T

e(x, y − 1; t′) . (3.16)

Consequently, the resulting flow computation results in a sparsification of re-
sponses since stationary edges will not be represented in h. This approach is
similar to that of [Benosman et al., 2012] but consistently employs the second
derivative instead of mixing the first and second derivatives which cannot work
in general.

Note, however, that this approach has multiple issues regarding any real imple-
mentation. The most important observation is that when a luminance edge passes
a pixel’s receptive field of the DVS sensor, the amount of events is in the range
of about 10 events (often even smaller, depending on the contrast, speed and
luminance conditions; c.f. the event cloud in Fig. 3.3). Thus, huge approximation
errors occur for hx, hy and especially in ht (since this is now the second derivative
of the original gray-level function g). Furthermore, we can only estimate ht ac-
curately, if the temporal windows are small enough such that the gray-level edge
has not already passed through the receptive field of a target cell at position p.
This limits the number of events to even less and leads to magnifying the outlined
problems even further. Alternatively, one could try to directly approximate the
temporal derivative for each event by incorporating the time-span since the last
event, i.e.

d

dt
g(p; t) = gt(p; t) ≈ ϑ

∆W t
e(p, t) (3.17)
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with ∆W t representing the time since the last event generated at p. This, how-
ever, assumes a constant intensity change since the last event. This, however
is certainly not true for the first event because first nothing happens for a long
period (i.e. ∆W t is too big, because it incorporates a long time in which nothing
changes) and then occasionally some change occurs that causes the event, i.e. the
estimate will be too small, because ∆W t is too big.

3.3.5 Motion estimation using filter banks

As an alternative to considering the LS regression in estimating the velocity
tangent plane from the cloud of events, the uncertainty of the event detection
might be incorporated directly. At each location, detected events define likelihood
distributions p(e|u) given certain velocities of the visual scene (estimated by a
filter bank, for example). Using Bayes’ theorem, we know that for each event
p(u|e) ∝ p(e|u) · p(u). If each velocity is equally likely to be observed without
a priori knowledge, i.e. p(u1) = p(u2), it holds p(u|e) ∝ p(e|u) and thus, the
velocity uest of the movement that caused event e can be estimated as

uest = argmaxup(u|e) = argmaxup(e|u) . (3.18)

Thus, we can estimate the velocity from the responses p(e|ui), i = 1 . . . of a
filter bank, for example. In addition, a priori knowledge could be incorporated
to reduce noise and to increase coherency.

3.4 Event-based motion estimation using spatio-

temporal filters

Current knowledge suggests that such distributions are represented by the filter
characteristics of the spatio-temporal receptive fields of V1 cells. Thus, we de-
velop a related scheme using filter mechanisms in this section. In addition, we
propose to incorporate a stage of subsequent competitive interaction between fil-
ter responses as well. This additional stage is suggested to take into account the
response non-linearities of initial contrast and motion responses of cortical V1
cells as reported in, e.g., [Carandini et al., 1997, Sceniak et al., 1999] for contrast
detection and [Tsui et al., 2010] for spatio-temporal motion detection. The in-
teresting observation is that response modulations occur by features which alone
would not elicit a response at the target cell [Carandini and Heeger, 2012]. One
proposal is that cell responses are integrated over a neighborhood in the space-
feature domain which defines a large-scale pool of cells. This provides a context
to modulate the localized feature response of a target cell. The response charac-
teristics of such non-linear normalization mechanisms have been studied in detail
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in, e.g., [Brosch and Neumann, 2014b]. In addition, as outlined in [Tschechne
et al., 2014a], the further incorporation of modulating feedback signals enhances
the noisy feature responses and suppresses spurious initial signal detections [Mc-
Clurkin et al., 1994, Cerda and Girau, 2008, Raudies et al., 2011, Brosch and
Neumann, 2014a]. The contribution of such feedback signals might be inter-
preted as a priori information that serves as instantaneous prior information that
helps to maximize the a posteriori estimate of the response likelihood [McClurkin
et al., 1994].

This chapter focuses on a model of motion estimation using mechanisms and
methodologies introduced in Chap. 2.3. Fig. 3.9 shows an overview of the pro-
posed model. First, physiological foundations are summarized and used to define
building blocks in order to generate spatio-temporally tuned filters (Sec. 3.4.1) in
model V1 with application of the generic mechanisms introduced in Chap. 2. This
includes response normalization, motion integration and modulatory feedback. A
second implication of response normalization is presented that shows how early
modulation supports the selectiveness to two-dimensional features and thus helps
to solve the aperture problem (Sec. 3.4.2). Model MT achieves an integration
over an extended spatial extent and thus provides contextual modulation for ini-
tial responses at V1, see Sec. 3.4.3. Finally, implications about the interaction
of motion and form is elaborated in Sec. 3.5, where the representation of Mo-
tion Streaks using event-based data is discussed. Finally, Sec. 3.6 presents an
architecture that utilizes the sparse representation of visual events for an efficient
implementation of the presented algorithm and an assessment of the necessary
computational effort.

3.4.1 Initial estimation stage

In this section, we define spatio-temporal filters that are fitted to the physi-
ological findings as reported in [DeAngelis et al., 1995] and [De Valois et al.,
2000]. We specifically outline in Sec. 3.4.1.1 how Gabor filters and temporal
filters (Sec. 3.4.1.2) are combined to yield a separable spatio-temporal filter.

The authors of [DeAngelis et al., 1995] characterized receptive fields in the genicu-
lostriate pathway and highlighted their resemblance to even and odd compo-
nents of Gabor functions. They also described receptive fields that are spatio-
temporally inseparable. Based on physiological findings, [De Valois et al., 2000]
suggested that inseparable filters stem from a combination of various separable
components. Cortical V1 cells were tested and strong evidence for the coexistence
of populations of cells of two distinct types of receptive fields emerged: One pop-
ulation showed spatio-temporal separable weight functions of either even or odd
spatial symmetry. Such cells further show either temporally mono- or bi-phasic
response characteristics. The other population of cells was spatio-temporally in-
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Model V1

Model MT

Model V2

- initial motion estimation
- early surrond 
   Inhibition

- motion integration
- contextual modulation

- motion streaks
- modulatory feedback

Model retina

- Dynamic Vision Sensor
- event acquisition 

dorsal pathway
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Figure 3.9: The structure of the proposed model is inspired by physiological and
anatomical findings of cortical structures. Visual input is sampled with model retina
sensor. The processing cascade starts at model V1 with initial motion estimation and
includes subsequent processing steps in interacting areas V2 and MT along the dorsal
and ventral pathways.

separable showing a receptive field distribution of selectivity that were slanted
with respect to the time axis. Similar as in Fig. 3.6, the slant direction corre-
sponds to the spatio-temporal direction selectivity either leftward or rightward
orthogonal to the contrast orientation, compare [De Valois and Cottaris, 1998].
De Valois and collaborators further investigated the spatio-temporal response
distribution of receptive field profiles from a statistical point of view. Singu-
lar value decomposition of the response profiles revealed that spatio-temporal
weightings that are separable in space-time are mainly determined by a single
principal component of the 2D receptive field. The weightings that were insep-
arable in space-time are determined by two strong principal components in two
dimensions. These components of the second group were itself spatio-temporally
separable with spatially out-of-phase components and always composed of pairs
of mono- and bi-phasic distributions. This main observation leads us to propose
a family of spatio-temporally direction selective filters as illustrated in Fig. 3.10
that are generated by superposed separable filters with quadrature pairs of spatial
weighting profiles and mono- respective bi-phasic temporal profiles. This idea of
composite assembly of direction-selective cell receptive fields is in the spirit of
[Adelson and Bergen, 1985]. However, the details of the model here differ as they
are directly driven by experimental data.



3.4. Event-based motion estimation using spatio-temporal filters 39

+ =

te
m

po
ra

l (
bi

-p
ha

si
c)

te
m

po
ra

l (
m

on
o-

ph
as

ic
)

spatial (even) spatial (odd) spatio-temporal �lter

20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

te
m

po
ra

l
co

m
po

ne
nt

spatial comp.

Figure 3.10: Spatio-temporal filters for motion estimation. Top: Two principal
components contribute to the generation of a spatio-temporally inseparable filter that is
necessary for motion selectivity. Those components in turn are comprised of simple
spatial and temporal characteristics. Bottom: Parameters of filters were tuned to fit
physiological findings both in the spatial and the temporal domain.
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3.4.1.1 Spatial Gabor filters

To construct the spatial component of the filters illustrated in Fig. 3.10 we define
Gabor filters that are fitted to the experimental findings of [De Valois et al., 2000].

Gσ,f0x ,f
0
y
(x, y) =

2π

σ2
· exp

[
−2π2 · (x̂2 + ŷ2)

σ2

]
· exp

[
2πi(f 0

xx+ f 0
y y)
]

(3.19)

Those filters are maximally selective for the spatial frequency (f 0
x , f

0
y ) and have a

standard deviation of σ in local space. This defines the two components Godd =
I(Gσ,f0x ,f

0
y
) and Geven = R(Gσ,f0x ,f

0
y
) to construct the filters as defined in 3.4.1.

To construct multiple spatio-temporally tuned filters of different spatial orien-
tation selectivity, we employ a filter-bank of kernels as illustrated in Fig. 3.10,
bottom.

3.4.1.2 Mono- and biphasic temporal filters

The temporal components distribute into those with a biphasic temporal compo-
nent and those with a monophasic temporal component to replicate the experi-
mental data of [De Valois et al., 2000]. We define temporal filter functions Tmono
and Tbi that contribute the mono- and bi-phasic temporal component, respec-
tively. To generate a fit with experimental data, we define Tmono as a Gaussian
function

Tmono(t) = Gσmono,µmono(t) (3.20)

and the bi-phasic component as a difference of two spatially shifted Gaussian
functions:

Tbi(t) = −s1 ·Gσbi1,µbi1(t) +−s2 ·Gσbi2,µbi2(t) (3.21)

with the unnormalized Gaussian function

Gσ,µ = exp(−(t− µ)2

2σ2
). (3.22)

When the experimental findings are incorporated, it is only necessary to choose a
value for µbi1. All other parameters can be inferred according to the experimental
data from [De Valois et al., 2000]:
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• The bi-phasic scaling factors s1/2 are adapted to the minimum and maxi-
mum values of the experimental data relative to the maximum value of the
monophasic kernel (which is one), i.e. s1 = 1/2 and s2 = 3/4.

• A good fit with the experimental data reported in [De Valois et al., 2000]
is achieved by setting µbi2 = 2µbi1.

• The standard deviations σmono and σbi1 are chosen such that the Gaussians
are almost zero for t = 0, i.e. σmono = µmono/3, σbi1 = µbi1/3 (3σ–rule; 99.7%
of the values lie within three standard deviations of the mean in a normal
distribution).

• The standard deviation of the second Gaussian of the bi-phasic kernel is
about 3/2 of that of the first, i.e. σbi2 = 3

2
· σbi1 = 1

2
· µbi1.

• The mean of the mono-phasic kernel µmono is given by the zero-crossing of

the biphasic kernel, i.e. µmono = 1
5
·
(

1 + µbi1 ·
√

36 + 10 · ln (s1/s2)
)

.

Figure 3.10 illustrates that these settings result in a good fit of the temporal
filters with the experimental data reported in [De Valois et al., 2000].

3.4.1.3 Combined spatio-temporal filter

The full spatio-temporal filter F is defined according to the scheme of Fig. 3.10, i.e.
by the sum of two products consisting of the odd-spatial Godd and the monophasic
temporal Tmono and the even-spatial Geven and the bi-phasic temporal filter Tbi:

F (x, y, t) = I(Gσ,f0x ,f
0
y
(x, y)) · Tmono + R(Gσ,f0x ,f

0
y
(x, y)) · Tbi(t) (3.23)

The bottom-up input filter response is generated by:

I(x, y, t)ex =
∑
i,j,t′

e(x, y, t) · F (x, y, t) (3.24)

3.4.1.4 Response normalization

We incorporate a stage of divisive normalization in our model, which extends
the linear model to include mutual shunting inhibition among a large number
of cortical cells. It acts divisively upon the activation level of target neurons
and its effect in the model is to normalize the linear responses by a measure of
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stimulus energy over a population of cells in the neighborhood of a neuron. The
normalization step is part of the processing cascade as introduced in Sec. 2.3.2.

ṗi = −αppi + (β − pi) · Ii − pi · qi (3.25)

q̇i = −αqqi +
∑
j∈N

cjg(pj) (3.26)

3.4.1.5 Results

In order to investigate the computational mechanisms of the initial filter-based
motion detection mechanism we have conducted a number of experiments which
were designed to demonstrate the desired functionalities. The model architec-
ture consists of a layer of cortical model columns which realize an input filtering
that is followed by divisive normalization. The initial estimation stage is probed
with artificial and real stimuli that contain rotational and translational motion.
We conducted a series of experiments to validate the modeling approach and its
theoretical properties. The parameters of the spatio-temporal filters were cho-
sen such that they fit the experimental data as reported in [De Valois et al.,
2000] (up to scaling), namely µbi = 0.2 for the temporal filter components, and
σ = 25, f0 = 0.08 for the spatial filter components. The parameters of the nor-
malization mechanism were set to β = 1, αp = 0.1, αq = 0.002 ,cj resemble to
coefficients of a Gaussian kernel with σ = 3.6, and ΨI(x) = Ψq(x) = max(0, x)
denotes a rectifying transfer function. At each location the initial motion esti-
mation creates a population code of length N with each entry corresponding to
the response of a spatio-temporal filter with motion direction selectivity θk. For
visualization purposes (in Fig. 3.12), the velocity components up and vp are in-
ferred from the initial responses Ip;k, k ∈ 1, ..., N at each location p by summing
them up according to

(
up
vp

)
=

N∑
k=1

Ik ·
(
cos(2π(k − 1)/N)
−sin(2π(k − 1)/N)

)
, (3.27)

effectively implementing a local vector addition of component estimates in a neu-
ral population. The visualized results demonstrate that the filter based approach
constitutes a robust tool to compute estimates of contour motion, i.e. locations
of apparently moving contrasts and object boundaries [Barranco et al., 2014].

For an intuitive visualization of results, we use a color coding for estimated motion
directions, see Fig. 3.11. Correct motion direction is estimated for translational
(see Fig. 3.12, A-C) and rotational (see Fig. 3.12, D;E) motions. Along elongated
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Figure 3.11: Motion color code for visualization. Motion directions are indicated
using a color code. Left: Arrows indicating different motion directions are colored to
allow an easy perceptual distinction between different motion directions. Middle and
right: Coloring examples for expanding and rotational motion, respectively.

structures, the algorithm only estimates normal flow that points perpendicular
from the orientation of the structure. This effect is known as the aperture problem
and the following section will highlight detailed aspects of this effect.

3.4.2 Response normalization and 2-d-feature selectivity

The preceding chapter has introduced a mechanism of motion estimation using
visual events from a neuromorphic sensor architecture, and showed how estimates
are normalized to increase their selectivity and dynamic range.

These estimates represent a local estimation of motion from events that lie with-
ing their receptive fields. It is long known that such local estimates of motion
are ambiguous when there is only a straight contour inside the receptive field
[Wallach, 1935, Wuerger et al., 1996, Nakayama and Silverman, 1988]. In this
case, only the motion perpendicular to the contour orientation can be measured,
because the component of parallel motion is unknown. This aperture problem of
motion estimation has challenged neurophysiologists, psychophysisists and mod-
elers for decades, because the precise neural mechanisms that solve the aperture
problem in visual cortex are still largely unknown.

Ongoing debates still consider mainly two different concepts of how the visual
system solves the problem. Some experimental results led to the idea of the se-
lectionist concept. This concept integrates local measurements of motion only
at positions where they are estimated reliably, like at intrinstic two-dimensional
features like corners, junctions or line endings, thus selecting correct estimates.
There have been various suggestions about how the visual system achieves this
task. [Loeffler and Orbach, 1999] proposed separate streams for complex cells
and those tuned to end-stop positions. On the other hand, the integrationist con-
cept proposes a nonlinear integration of local components to achieve a reliable
measurement [Simoncelli and Heeger, 1998, Rust et al., 2006]. Recent experimen-
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A B

C D

E F

Figure 3.12: Results of initial estimation stage. Recorded sequences contained
different motions, in reading order: Linear motion of a vertical bar, an oblique bar and
a pentagram, rotational motion of two orthogonal axes and a photography, articulated
motion of a jumping person. The response strengths (and thus vector lengths) are
normalized.
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tal data suggests that probably both concepts have their contribution to explain
physiological data [Beck and Neumann, 2010].

Neural studies revealed that the aperture problem is solved at visual area MT.
Here, neurons change their response from a representation of normal flow to a
representation of correct flow at elongated contours after time. The observation
that the time they need to change is a function of contour length[Pack and Born,
2001, Born, 2001, Born et al., 2010], which has already motivated functional
models based on the mechanisms that were presented earlier [Beck and Neumann,
2011].

The authors of [Tsui et al., 2010] discuss a possible mechanism of interaction at
area V1 that might already contribute to the solution of the aperture problem
(The aperture problem and its impact on local motion estimation is shown in
Fig. 3.13). With reference to [Heeger, 1992, Simoncelli and Heeger, 1998] and
[Rust et al., 2006] they propose a mechanism to realize the necessary non-linear
interactions and normalization steps in the early area V1. This idea is adapted
by [Born et al., 2010] who argued that the responses can be explained by a single
input stream if the responses are modulated by surround mechanisms. In both
cases the integrated responses at MT level show a reduced influence of ambiguous
normal flow estimates. As suggested in [Tsui et al., 2010], normalization can help
to suppress responses at ambiguous parts of a contour (i.e. the inner parts of an
extended contrast or line) and to enhance responses at line ends or sharp corners
(c.f. Fig. 3.13).

The key question of how responses of V1 cells - that, due to their small recep-
tive fields - are subject to suffer from the aperture problem, can be modulated
within V1 in a way such that they show increased response toward intrinsically
2-dimensional features. The aim is to investigate if the surround modulation can
suppress the influence of spurious estimates of normal flow at the line endings,
and to what level the estimates of normal flow can be reduced in the extent of an
moving elongated contrast.

Our proposed model is inspired by earlier works of [Born et al., 2010] and [Tsui
et al., 2010], who extended the model of [Simoncelli and Heeger, 1998]. Instead
of the motion energy detector that [Adelson and Bergen, 1985] used in the earlier
investigations we employ the output of the initial stage of event-based motion
processing and apply a nonlinear normalization mechanism [Carandini et al.,
1999] to local V1 estimates. The impact on motion representation is empirically
demonstrated by replicating experimental settings.

The normalization step follows the same canonical structure as presented in
Sec. 2.3.2. Activations representing estimates to motion p are modulated by
activations integrated from contextual surround:
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Figure 3.13: The aperture problem in vision. Top: For movements of oblique
elongated edges, only normal flow can be estimated (A) unless two-dimensional features
like line ending are available (B). For an elongated edge that is slanted with respect to
its motion directions, this yields spurious estimates of motion direction, as illustrated
on the polar plot (C). Bottom: V1 surround inhibition reduces the influence of spurious
estimates along an elongated contrast (D and E).
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ṗi = −αppi + (β − pi) · Ii − pi · qi (3.28)

q̇i = −αqqi +
∑
j∈N

cjg(pj) (3.29)

To demonstrate the effects of this mechanism, we generate a test stimulus as
proposed in [Tsui et al., 2010]. The test stimulus is a bar that is moving into one
direction, but the orientation of the bar is rotated 45◦ counter-clockwise against
the motion direction. Along the contour of the bar local receptive fields of the V1
motion estimation will represent normal motion, while the true motion direction
has 45◦ difference. In the simulations we use eight discrete motion directions
evenly distributed between 0..360◦.

The effects of the normalization mechanism are first demonstrated at a V1 level.
Initially, without the modulation, V1 cells respond at line endings as well as at
the elongated contour. The direction at the contour is the normal flow. When
the normalization and surround modulation is activated, the response for one-
dimensional features along the extent of the bar is highly reduced, while at the
same time the sensitivity towards the real motion direction if increased at the
line endings. See Fig. 3.14 for an illustration of the results.

We stated earlier that the aperture problem is solved at area MT. We will now
show how the early modulation already contributes to a reduction of spurious
measurements at MT level without a dedicated mechanism that is located at
MT. The size of an integrating MT neuron is chosen so that it integrates the
complete stimulus [Born, 2001]. The distribution of estimated motion hypotheses
is presented using circular plots that indicate the relative occurrence of motion
directions. A model MT cells integrates the resulting responses with a temporal
response function. The MT cell used in these experiments is tuned to leftward
motion, and all moving oblique bars are presented to that cell. The dominance of
the normal flow direction along the contour causes the response maximum of that
leftward tuned indicating the normal flow direction, which is 45◦ different from the
true motion direction. The results with early inhibition indicate that the tuning
is now more biased in direction of the true motion direction. The mean values
of integrated motion direction in the example change from 224◦ to 201◦ (D,E)
and 270◦ to 233◦ (F,G). These results indicate that normalization significantly
improves the histograms to point more into the true motion direction (Fig. 3.14,
blue lines).

While the initial motion estimates are highly biased by the normal flow estimates
at the longer side of the bar, a surround modulation helps to reduce the response
strengths at positions along the bar where only normal flow can be estimated.
Simultaneously, the tuning towards the real motion direction is improved. The
proposed mechanism is inspired by findings of [Tsui et al., 2010] and reveals a
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potential mechanism of how selectivity towards 2-dimensional features can be
achieved at a level where only local estimates are available. Our model does not
require explicit feature tracking performed outside of the area (say, in the form
channel) and relies only on the local estimates. This contributes to a solution of
the aperture problem at MT level, even if a full solution cannot be achieved with
only this mechanism. Earlier work has already demonstrated that a combination
of mechanism from the selectionist and the integrationist concept are likely to
contribute to the solution of the aperture problem [Beck and Neumann, 2010].
Our proposed early mechanism contributes another computational component to
the solution of this perceptual phenomenon.

3.4.3 Model area MT

In the previous section we demonstrated how direction-selective neurons in model
area V1 may encode spatio-temporal changes of visual patterns. Such cells re-
spond coarsely to movement of gray-level structures given a direction φ orthog-
onal to their orientation selectivity and over a broad range of speeds. It has
already been demonstrated how local normalization effects at V1 contribute to
the solution of the aperture problem at an MT level. In this section, we show
contributions of the MT stage to the representation of motion. First, contextual
influences on the initial motion estimation at an V1 level is demonstrated by
incorporating modulatory feedback connections from MT to V1.

3.4.3.1 Motion integration and re-entry

Supported by physiological investigations, initial motion responses of V1 are in-
tegrated by cells in area MT which obey an increased selectivity to direction and
speed [Born and Bradley, 2005]. The estimations performed initially provide an
initial representation of motion, but these estimates suffer from locally spurious
influences like noise or outliers. This motivates that these initial estimates are
integrated from a larger surrounding context to yield a better robustness towards
these influences. Such an integration of initial estimates is available at dorsal area
MT. Here, cells show an increased selectivity towards motion direction and speed.
Higher in the visual pathway, tunings appear to be more and more specialized
to increasingly complex motion patterns. Model MT with its increased spatial
extent provides contextual input to lower visual areas [Ungerleider and Haxby,
1994].

In the following we further develop the feed-forward sweep of the motion pro-
cessing by incorporating the model area MT, where initial estimates become in-
tegrated to build feature representations of higher complexity along the dorsal
pathway [Ungerleider and Haxby, 1994, Born and Bradley, 2005]. We incorpo-
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Figure 3.14: Effect of surround inhibition at V1 and MT. Top: An oblique bar
moved with 45 difference to its orientation (A). Local estimates at V1 elicit maximum
response for normal flow direction (B.). With local inhibition, the responses along the
line are reduced (C). Bottom: Integrated responses at model MT level for two examples.
Without surround inhibition, integrated responses represent a motion into direction
of normal flow, statistically visualized in polar plots. (D,F). Mean (thick line) and
standard deviation (transparent overlay) are indicated. When surround inhibition is
incorporated, the representation of motion is biased towards the true motion direction,
and the standard deviation of motion hypotheses is increased (E,G).
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rate a stage of integrating early motion responses from model V1 using circular
receptive field weighting functions Λ with Gaussian profile but larger spatial in-
tegration size over a neighborhood approximately five times the size of V1 filters.
A pool normalization is incorporated that acts divisively upon the activities. The
responses are formally calculated by the following mechanism:

ṙMT
φ,s = −αrMT

φ,s +
∑
i,j,θ

rV 1
θφ (i, j) · Λxy,ijΦs − rMT

φ,s · qMT (3.30)

q̇MT = −qMT + β
∑

i,j,(φ,s)

rMT
φ,s (i, j) · Λpool

xy,ij. (3.31)

We demonstrate the effects of motion integration and re-entry of modulatory
signals. The upcoming mechanisms inherit results from [Bayerl and Neumann,
2007] and [Beck and Neumann, 2010] who have investigated in motion processing
and shown how feedback from higher connections can modulate and provide input
to earlier stages. To demonstrate the effect of modulatory feedback, be probe our
MT model with stimuli from the intial motion estimation stage. The hypotheses
are integrated by applying the integration principle of Eq. 3.30 and 3.31. The
effect of the contextual, modulatory feedback are presented in Figs. 3.16 to 3.19.
The initial representation of motion hypotheses with a resolution of 128× 128 is
spatially sub-sampled in MT with a factor of 0.25, resulting in an MT resolution
of (32 × 32). The contribution of V1 positions to adjacent MT cells is weighted
with a Gaussian profile using the distance between the center of the position at
V1, the centers of surrounding MT cells and a deviation of σMT = 2.5.

The integrated activations at the model MT stage now serve as modulatory feed-
back for the preceding visual area, namely V1, where the initial motion estimation
takes place. By the modulator application, the initial estimates profit from the
contextual information gathered by larger receptive field sizes. As a result, the
modulated representation at V1 is spatially smoothed and the amount of out-
liers is reduced, leading to a much clearer representation of the initial estimates.
Again, this methodology is founded on on the generic mechanisms introduced in
Chap. 2.3.

At MT, the apparent spatial resolution is highly reduced and at the same time
the smoothness is increased. This already removes spurious estimates, outliers
and noise and maintains only the dominant motion of a local surround.

While the methodology is already presented in earlier works, this work contributes
the implementation of motion MT for event-based input. Implementation aspects
are elaborated in Sec. 3.6.
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Initial estimation (V1) V1 representation 
with feedback

MT representation

V1 grid size
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Figure 3.15: Effects of contextual motion integration and re-entry. Top:
Comparison of V1 and MT representation resolution and MT integration field size.
Depictions, left column: Initial estimates at model V1. Middle: Spatially sub-sampled
responses at model MT. Right: With contextual feedback from MT to V1, the contribu-
tion of outliers at V1 is highly reduced.
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V1 MT
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Figure 3.16: Model V1 (left) and MT (right) representations (without con-
textual modulation). Snapshots from a sequence with rotating motion with time
increasing downwards. Without a modulatory connection between MT and V1, repre-
sentations are cluttered with large amounts of noise (compare succeeding Fig. 3.17).
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tim
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Figure 3.17: Model V1 (left) and MT (right) representation with contextual
modulation. With a modulatory interaction between V1 and MT the representation in
both areas show less noise and more homogeneous regions that reflect the true motion
(rotation) more adequately (compare previous Fig. 3.16).
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Figure 3.18: Model V1 (left) and MT (right) representations (without con-
textual modulation). Snapshots from a sequence with articulated motion with time
increasing downwards. Without a modulatory connection between MT and V1, repre-
sentations are cluttered with large amounts of noise (compare succeeding Fig. 3.19).
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Figure 3.19: Model V1 (left) and MT (right) representation with contextual
modulation. With a modulatory interaction between V1 and MT the representation in
both areas show less noise and more homogeneous regions that reflect the true motion
(rotation) more adequately (compare previous Fig. 3.18).
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3.5 A spatial code for motion - motion streaks

In the previous Sec. 3.4.1 we demonstrated how direction-selective neurons in
model area V1 may encode spatio-temporal changes of visual patterns and thus
allow an initial estimation of motion. This sensitivity is provided by cells that
have a tuning function which is spatio-temporally inseparable and that are thus
assigned to the class of directionally selective cells. Besides these motion-tuned
cells found in visual cortex, a significant amount (about 20 percent) of cells only
show a tuning to static features [DeValois et al., 1982b]. They provide input to
subsequent areas along the ventral pathway and are thus usually counted to be
responsible for static form processing. Can those non-directionally tuned cells
also contribute to the estimation of motion direction?

Evidence from perceptual psychophysical investigations suggest that under some
conditions the visual system utilizes responses of the form pathway as a spatial
code for local motion direction [Burr, 2000, Geisler, 1999]. The authors of [Geisler,
1999] introduced the comprehensive concept of Motion Streaks (sometimes called
speedlines or motion blur) which basically describes the fact that a quickly mov-
ing stimulus leaves a smeared trail of integrated activation along its movement
path due to the temporal integration time of the photoreceptors. When visual
stimuli move over the retina, they activate juxtaposed luminance receptors in
quick succession. In human vision, the temporal integration time of those recep-
tors is about 120 ms [Barlow, 1958]. For slowly moving stimuli, this prolonged
integration has no or only little effect. Rapidly moving objects, however, leave
a trail of activations across the visual field. Under normal viewing conditions,
these activations are effectively suppressed and not visible [Wallis and Arnold,
2009, Martin and Marshall, 1993]. In [Geisler, 1999] the author suggested that
such motion streaks can help the visual system during motion estimation. With
V1 neurons activated by quickly moving stimuli, they effectively provide a spatial
code of motion direction. The fact that this occurs only for fast speeds supports
the idea that this mechanism could efficiently extend the range of detectable mo-
tion in the V1 stage, where the tuning to motion speed of spatiotemporally tuned
receptive fields is limited to a maximum detectable speed.

The precise neural mechanisms underlying the generation of Motion Streaks rep-
resentation are still to discover, yet there have been numerous investigations along
different tracks. The integration time of photoreceptors is already described in
[Barlow, 1958]. During normal vision, however, the visual perception does not
appear smeared, suggesting that there are active mechanisms that sharpen the
perception of moving objects [Martin and Marshall, 1993, Bedell et al., 2010]. A
dependency of this effect to the speed of the presented objects has been described
in [Burr and Morgan, 1997]. The insight that the mechanisms could act as an
perceptual aid for perceiving motion direction was hypothesized in [Geisler, 1999],
as stated earlier. Later, investigations provided strong evidence that the human
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Figure 3.20: Concept of motion streaks. A. Fast motions cause motion blur,
which is suppressed under normal viewing condition. B. Form features can provide a
compelling impression of motion in static images. C. Generation of motion streaks
in conceptual illustrations for rotation and translatory motion using dot patterns. D.
Event-based processing can elicit responses for cells with receptive fields resembling com-
plex form cells when events are temporally and spatially integrated.

visual system exploits motion streaks for the discrimination of motion direction
[Burr and Ross, 2002]. In [Wallis and Arnold, 2009] the authors reported that
the psychophysical effect of motion-induced blindness (MIB) might be an effect
that is driven by an active mechanism that suppresses the blurred perception
of moving forms. The search for physiological evidence that supports the the-
ory of motion streaks involved experiments using binocular rivalry and masking
[Apthorp et al., 2009, Apthorp et al., 2010, Pavan et al., 2013] until finally neural
evidence for the presence of motion streaks of fast moving objects has been found
using fMRI [Apthorp et al., 2013].

In a nutshell, there is strong evidence that motion streaks contribute to a sig-
nificant degree to the perception of motion, but the neural mechanisms how a
visual motion input elicits responses in the form channel remain unclear. In the
following, we will demonstrate how motion streaks occur in the form channel as a
consequence of the mechanisms used for event-based processing. Event-based pro-
cessing allows the representation of motion streaks in one common architecture,
without the introduction of special components that are exclusively dedicated to
motion streaks. We will demonstrate how motion streaks are represented and how
an interaction of motion and form is realized using mechanisms of the canonical
model introduced in Sec 2.3.2.
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3.5.1 Methods

The sensitivity for motion streaks in our model is elicited by a separate spatial
and temporal tuning function. Along the ventral path, cells with sensitivity
for elongated edges can be modeled using two elongated receptive subfields with
multiplicative connection. An activation of these V2 complex cells is evoked when
fitting visual input is simultaneously presented in their receptive fields. In our
model, these complex cells are activated by temporally integrated visual events
generated by the DVS, when fast objects leave a trail of events along their motion
direction. This leads to a representation of motion in the form channel by complex
cells that are not tuned to visual motion per se.

In the following we will describe the design of spatial and temporal integration
components. We will then show how the response of these filters represents motion
using a set of test stimuli.

3.5.1.1 Spatial integration

The spatial integration functions resemble receptive fields of cells in visual cortex
area V2. Figure-eight shaped integration fields integrate static spatial features
over an extended spatial area. Due to their properties to integrate over a short
period of time, activation of them is also elicited by visual events caused by
fast motions. In our model the receptive fields are comprised of two elongated
Gaussian-shaped integration kernels that are combined into a figure-eight shape
[Peterhans and von der Heydt, 1991, Neumann et al., 2007]:

rstreaksθ,spatial(x) = (I(x) ∗ Nθ,σ1,σ2,+q(x)) · (I(x) ∗ Nθ,σ1,σ2,−q(x)) (3.32)

The orientation selectivity is defined by the proper rotation, θ. N denotes a
rotated Gaussian kernel:

Nθ(x, y) =
1

2πσ2
exp

(
−π
[

(x̂− x0)2

σ2
1

+
(ŷ − y0)2

σ2
2

])
(3.33)

3.5.1.2 Temporal integration

The modeled V2 cells do not produce a response unless enough input stimuli are
available in both subfields. For the representation of motion streaks, temporal
integration of events provides input for the subfields. For the design of this tempo-
ral integration, we are motivated by the integration times of receptive fields from
physiological measurements. Receptive fields of the model neurons incorporate a
temporal tuning function that models the behavior of photoreceptor cells in the
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Figure 3.21: Integration strength functions for events in motion streak pro-
cessing. We employed two options for a temporal decay, and exponential and Gaussian
drop of weight as a function of time.

retina, which integrate visual events for about 100ms (comp. [Barlow, 1958, De-
Valois et al., 1982a, DeAngelis et al., 1995]. Events caused by quickly moving
objects will provide enough activation across the spatial integration window of the
cell during that period and thus yield a representation of that motion orientation.
We considered two options of slightly different temporal integration functions. f1

has the shape of an exponential decay function, while f2 is Gaussian-shaped.

f1(t) = exp(− t

σ2
1

) (3.34)

f2(t) = exp(−(µ− t)2

σ2
2

) (3.35)

Recent events are weighted using one of the functions, resulting in a effective
current streak snapshot at time T :

ST (x) =
∑
p∈I

∫ T

0

e(p, τ) · fn(T − τ)dτ, (3.36)

with n denoting the selected temporal function and p the spatial dimension of
the stimulus. The representation of motion streaks requires a precise modeling of
the temporal characteristics of visual input. Both components are combined into
a common representation of motion streaks:

rstreaksθ,T (x) = (ST (x) ∗ Nθ,σ1,σ2,+q(x) · ST (x) ∗ Nθ,σ1,σ2,−q(x)) (3.37)

For our results, parameters for spatial streak subfields are σ1 = 2.2, σ2 = 0.44
and a spatial shift of subfields q = (cosθ,−sinθ)T · 6.53.
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3.5.2 Results

For the upcoming results of motion streak representation, the parameters of tem-
poral integration functions are set to that the functions drop below 10% of the
initial value at 120ms (σ1 = 7.25, σ2 = 79), see Fig. 3.21 and [Barlow, 1958]. The
results presented on the subsequent pages are produced using the second integra-
tion function f2, because it yields a slightly higher and clearer overall activation.

3.5.2.1 Results for translatory motions

The model is probed with stimuli containing translatory motion of random dots,
see Fig. 3.22. We probed the model with 16 different motion directions of adequate
speed, so that the integrated events fill the receptive fields of spatial cells. We
model a population of 16 motion streak sensitive cells using the spatial integration
fields and temporal integration functions described above. The integrated events
of moving random dots evoke activation of the accordingly tuned integration
cells. This allows differentiation of available motion up to a parallel direction
component. Because the spatial integration fields are symmetric, parallel motions
with same orientation but opposite direction cannot be distinguished.

3.5.2.2 Results for rotating motions

The second stimulus contains events generated from a rotating random dot kine-
matrogram (RDK). Rotation is artificially created by rotating a random dot dis-
play by θ degrees per simulation step and then distributing the events over a
period P (see also Sec. 3.2.7). Figure 3.23 shows the stimulus and results. A
motion orientation field is generated by drawing the corresponding orientation
for the maximum of the population at every image position.

3.5.2.3 Dependency on motion speed

Physiological evidence shows that motion streaks only occur for high speeds [Burr
and Morgan, 1997]. The last experiment tests our model with regard to this
hypotheses. The model is probed with a translating RDK stimulus of different
speeds, see Fig. 3.25. Fig. 3.25 shows results of the motion representation achieved
with motion streaks. As can be seen, for the slow stimulus only little activation
is elicited. In the fast moving condition, the responses show a clear orientation
bias that matches the local motion available in the stimulus.
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Figure 3.22: Representations of motion streaks for translatory motion. A
random dot kinematrogram (RDK) ( center) is moving in different directions (16 steps
from 0◦..360◦), which evokes a response distribution ( polar plots in outer ring) of ini-
tially contrast-sensitive figure-eight shaped cells (RF size indicated inside RDK).
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Figure 3.23: Motion streaks for rotational motion. A random dot pattern is
rotating around its center. Motion streak activations are used to generate an orientation
flow field (center). Motion streak activations are plotted for four quadrants (outer plots).
The dashed circles circumscribe the regions with the input for calculating the population
responses shown in the periphery.
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Figure 3.24: Streak activation as a function of stimulus speed. Represen-
tations of motion streaks only appear for rapid stimulus motion. Bars represent the
activation strength for slow to fast speeds of moving RDKs.
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Figure 3.25: Dependency of motion streak response for different stimulus
speeds with a pattern of translatory motion. A RDK was presented to model cells.
Their response strength is a function of presented speed (see conditions in columns) and
the contained motion direction (rows).
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3.5.3 Form-motion interaction with motion streaks

As stated before, the mechanism of motion streaks might contribute to the es-
timation of motion direction. The possible advantage of a combined mechanism
could lead to an increased precision of motion direction for normal speeds, be-
cause the broad tuning of spatio-temporally tuned filter functions do not allow
a precise direction estimation. Second, it would increase the detectable range of
motion speeds. For high speeds, the precision of motion detection drops as the
speed progressively lies at the extreme end of the detectable range.

We use the initial stage of motion estimation with spatio-temporal filters (see
Sec. 3.4.1) and the estimation of streak responses from the previous section to
show interactions of motion streaks and signals from motion estimation. The
interaction between motion direction cells tuned to estimated motion direction φ
and form cells oriented parallel to that direction is modeled using a modulatory
interaction (see Sec. 2.3.2). We employ a response modulation mechanism such
that

rV 1mod
φ ∝ rV 1

φ · (1 + rV 2
θ ) (3.38)

This modulatory interaction is followed by a pool normalization as already intro-
duced in Eq. 2.9, which we apply in the steady state formulation:

rV 1mod
φ,∞ =

βrV 1mod
φ

αr + rV 1mod
φ + 1

αq

∑
j∈N cjg(pj)

(3.39)

qV 1mod
i,∞ =

1

αq

∑
j∈O

rV 1mod
j (3.40)

We probe the model with stimuli that contain linear motion with different speeds
to highlight the effect of the modulatory input at different speeds, see Fig. 3.26.
The sequence contains moving dots traveling at different speeds. The results
indicate that a representation of quickly moving objects elicits responses in the
form channel due to the integration of motion streak patterns. With modulatory
interaction between model V1, V2 and model MT, the representation of motion
is strengthened.

3.5.4 Summary

When an object is traveling across the visual fields, cells tuned for form show a
response for sufficiently fast motions. We reproduced this behavior using event-
based data from the DVS. For a quickly traveling object, the sensor produces a
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Figure 3.26: Form-motion interaction with motion streaks. Plots indicate
representations gained from RDK stimuli. For slow motions, motion streaks do not
provide extra information. For high speeds, motion directions corresponding to oriented
form responses generated by motion streaks modulate and enhance responses of motion
selective cells.
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cloud of events along the object’s trajectory. Considered an integration period of
a few fractions of a second, the event cloud resembles the form of a streak that
indicates the motion direction of the object. We designed cells in model area V2,
which is originally sensitive to static input such that they respond to the input
produces by a moving stimulus.

The results indicate that in our model likewise oriented contrast-sensitive cells are
co-activated parallel to motion direction, thus representing motion streaks. With-
out the need to assume separate motion channel representations, these streaks
occur in the form channel as a direct consequence of fast coherent motions along
single directions, provided only a temporal weighting function that models tempo-
ral integration characteristic. The representation is only available for fast motions
of random dot kinematograms and is thus in agreement with physiological find-
ings. The model makes predictions concerning the strength of the streak patterns
and sheds new light upon mechanisms of computing motion from form in a unified
representation using event-based visual input.

3.6 An AER neuromorphic motion algorithm

The previous chapters showed mechanisms of motion estimation using event-
based data generated by an asynchronously operating vision sensor. Instead
of full frames at a time, this type of sensor provides a constant stream of vi-
sual events with a data rate that is a function of available image motion in
the scene[Lichtsteiner et al., 2008]. This asynchronous operation provides some
unique qualities that an algorithmic implementation must consider. This sec-
tion will first present the requirements that an algorithmic implementation must
preserve and later how this can be achieved by an adequate software design.

3.6.1 Requirements

An algorithm for the estimation of motion using event-based sensor input must
fulfill the following requirements to preserve the unique features of the sensor
output:

1. The algorithm has to implement the physiologically plausible mecha-
nism presented in Sec. 3.4.

2. The algorithm has to preserve the cortical organization of the model,
namely the relevant compartments V1,MT and V2. Each area contains its
own representational format of events.

3. Incoming events are specified by their position, time and type, the so-called
address-event-representation (AER). Any result of the algorithm should be
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comprised of the same address-event-based format. This includes the
same high temporal resolution of generated output.

4. The date structure and processing should respect the sparse structure of
the incoming data.

5. Events exist independently and are only aggregated for visualization pur-
poses. The algorithm has to achieve a continuous estimation of motion
for each individual incoming event. This includes the initial motion estima-
tion, application of feedback and normalization.

6. When many visual changes appear in the view of the sensor, many events
are generated in a short period of time (see Sec. 3.2.6). When the scene
is not moving, no changes appear. This variation should be reflected in a
non-constant computational load.

7. The algorithm must be comprised of an efficient design with respect to
the data structure and computational complexity.

3.6.2 Algorithmic design

The following paragraphs presents the software architecture that was chosen to
fulfill the requirements. The processing steps of the algorithm is visualized in
Fig. 3.27.

3.6.2.1 Data representation

The algorithm receives input as a list of datagrams, where each item represents an
event with address, a time stamp and a type. For the calculation it uses a buffer
structure and models of weight functions based on temporal differences. Incoming
events and hypotheses are stored in a data structure that allows to quickly access
events in local neighborhoods without traversing the event list. The events are
buffered in an first-in-first-out buffer to allow quick lookup of neighboring events.
The buffer is retinotopic in a way that a short list exists at each image position
that holds events in AER format. This later allows to quickly lookup recent
events at desired positions, without integrating events into a ’flat’ datastructure.

During motion estimation, input is put into relation with previous inputs to
estimate motion hypotheses. Such a motion hypothesis is also comprised of a
spatial and temporal location, but instead of two types for ON- and OFF-events,
the algorithm generates N different directional motion hypotheses.

The algorithm outputs results that represent motion hypotheses in a form similiar
to AER, with motion events instead of events that indicate luminance change.
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Figure 3.27: A neuromorphic algorithm for event-based motion processing.
Top: Data structure for event processing with fast access to newest event in list. Bot-
tom: Sequence diagram of algorithm structure and data pathways. See text for details.
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The time between incoming events is not constant. While in scenes that con-
tain many motions events may arrive at microsecond intervals, static scenes may
contain only very few incoming events generated by sensor noise. When such an
incoming event is put into relation to its neighbors to calculate filter responses,
the temporal difference between the newest event and those in the vicinity is cru-
cial to achieve correct estimates. The buffer structure holds the timestamps Bt

of previous events, and the spatial position is defined by the buffer list itself. The
calculation of a weight H at position p at time t for an incoming event is thus a
combination of two components

H(t,p) =
∑
q∈N

ws(p− q) ·
N∑
n=1

wt(t−Bt(q, n)) (3.41)

with q the position of spatial neighborhood, ws a spatial weight function and
wt a temporal weight functions in an aggregation. In case of the initial motion
estimation step, the two functions are similar to those in Sec. 3.4.1.3.

In case of motion integration in model MT, the spatial representation is sub-
sampled and ws reduced to a Gaussian function of spatial weight, its temporal
function is reduced to a temporal decaying function like

wMT
t (∆t) = exp(−∆t

σ
). (3.42)

with σ to control the steepness of temporal decay and ∆t in microseconds. Typical
values for are σ = 200 to simulate a 100ms timespan of temporal integration (10%
weight at ∆t = 100ms). A data representation like this including the temporal
functions is implemented for V1, MT and for a representation of motion streaks
as seen in Sec. 3.5.

The separation of the temporal and spatial components here reflects the fact
that the neuromorphic filter design (see Sec. 3.4) also incorporates two separable
components in a linear combination to yield a spatio-temporally inseparable filter
for motion detection.

3.6.3 Processing

For clarity, we will in the following specify events of different sources: Original
DVS events that have been used throughout the thesis as e are now referred
to as eDV S to avoid confusion. Motion hypotheses (or motion events) at model
level V1 which represent activation for a motion direction are referred to as eV 1.
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This representation hold the complete population response for different motion
directions, see Sec. 3.4.1.3).

The processing sequence is triggered by an arriving event from the DVS (see
Fig. 3.27), which is stored in the event buffer for future reference. The model
V1 stage polls the buffer entries at the same position and the the surround and
calculates the contribution based on their spatial and temporal distance from the
trigger-event. The final hypothesis of V1 requires feedback influences by MT.
Because the influence of the stored MT hypotheses have changed with the time
passing since their generation, their representation needs to be updated with the
current timestamp. After the initial V1 hypothesis is generated, an update pro-
cess of the MT is thus triggered. This requires to read motion representations of
surrounding V1 events. The MT representations are then applied to modulate
the V1 hypotheses. The final V1 is a population response containing N different
motion directions. This representation is normalized with the available represen-
tations from the surround. The final (modulated) V1 response is then stored as
motion event eV 1. After this processing sequence, the algorithm is prepared to
process the next incoming event.

3.6.4 Considerations on complexity

The proposed algorithm estimates optic flow from an asynchronous representation
of visual events using mechanisms found to exist in early stages along the dorsal
pathway. Instead of operating at a constant frame rate, the computation time
depends on the event sequence that is influenced by the visual structure of the
recorded scene. In this section we derive an approximative estimate of the real
computational effort necessary for optic flow computation.

In order to end up with a comparable assessment of the complexity, we make use of
a simplified version of register machines where the complexity can be summarized
by multiply-and accumulate operations, where the effort r increases with the cost
of every processing step X times the number of its repetition:

r ← r +N ·X (3.43)

For the evaluation we consider a time window T and regard the amount of oper-
ations necessary in a frame-based and in an event-based operating domain. The
number of frames inside T is

Nframe =
T

frame-rate
(3.44)
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With the continuously firing local events in a time-window T , the number of
potential events is

Nevent =
T

event-rate
(3.45)

that yields a gain-factor

λ =
Nevent

Nframe

(3.46)

We will in the following compare the computational complexity of our proposed
method to a hypothetical version of the algorithm that is implemented using a
conventional camera technology. The precise platform will not be of importance
for our considerations, nor are we going to consider any optimization methods
like operation in frequency domain, parallel processing or similar. Our hypothet-
ical camera is operating at a constant and typical frame-rate F of 25 Hz. The
resolution is set to 128 × 128, according to the DVS sensor. The hypothetical
algorithm works analog to the method proposed in Sec. 3.4, in that it calculates
responses of directionally tuned cells by means of spatial integration from their
respective receptive fields. The hypothetical response is generated for a popu-
lation of direction-sensitive cells for different motion directions θ. In addition,
our hypothetical final response at V1 level is generated from a convolution op-
eration of one frame at a a time with the filter functions, following the model
of Sec. 3.4.1.3. All solutions are based on the assumption that for every incom-
ing event a cycle of operations is triggered in the neuromorphic algorithm. The
essential operation is the estimation of response weights given the surrounding
events and their temporal influence function.

Frame-based complexity for motion estimation

In a frame-based approach, motion estimation requires local weighted sums (scalar
products) of surrounding pixels. Here, Xdim is the image size and XF is the filter
size. This needs to be performed at every image location and for every image in
time window T , resulting in the operations Oframe

Oframe = Nframes ·X2
dim ·X2

F (3.47)

Event-based estimation

A time window T is densely sampled by visual events. Operations are calculated
at every pixel in the moment they are provided by the sensor. For each arriving
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event, the algorithm calculates the contribution of the event regarding the filter
neighborhood X2

F and a temporal sub-window XT . These operations occur at
every image location X2

dim times Nevent which ends up with a total number of
operations

Oevent = Nevents ·X2
dim ·X2

F ·XT . (3.48)

= λ ·Nframe ·X2
dim ·X2

F ·XT . (3.49)

Empirical studies and results

From a theoretical viewpoint, the complexity using an event-based processing
algorithm is much higher than with frame-based approach because of the immense
maximum event rate individual pixels can produce. Empirical studies however
revealed that the realistic amount of events in a time window is much lower
which is mainly influenced by the sparseness of data and depends on the contrast
and speed contained in the scene. This results in benefits for the event-based
approach, depending on the scene content. Furthermore, the algorithm efficiently
calculates a sparse scalar product using the buffer structure, so XT simplifies to
a constant factor. The equation which considers a sparseness factor φ of the data
yields

Oevent = φ · λ ·Nframe ·X2
dim ·X2

F . (3.50)

The fundamental and critical aspect of the event-based sensor is the density of
events in the relevant time box. The number fluctuates with the temporal changes
in the visual field. We will show that the typical number of events is small enough
to yield a computational benefit for the event-based processing.

In the introductory part to the sensor (Sec. 3.2) we mentioned the potential
refresh rate of an individual pixel is fp = 25kHz, so the number of theoretically
observable events per pixel is N theo

p,event = T
fp

= 25, 000ev/s..

A far more realistic consideration is the rate that is technically plausible when
dealing with the sensor and its hardware. Sec. 3.2.6 already mentioned a rate of
events that is limited by the bus technology and embedded processing capabilities.
This maximum integrated event-rate is about 250, 000s−1, to yield N tech

event this has
to be divided by the size of the visual field, thus N tech

p,event = T · 250, 000/X2
dim ≈

15ev/s. This marks the maximum event rate from the processing standpoint.

Under real-world conditions, this number drops further, because sequences are
rarely densely filled with motion that could cause events at that rate. We assume
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Figure 3.28: Number of events per time slot for different stimuli. Top-Left:
Theoretical maximum of possible events outnumbers the realistic value significantly.
Top-Right: Event rates in e/s for a set of recorded scenes. Synthetic stimuli ( line,
green) exhibit a low and constant rate of about 20,000 ev/s , whereas the rate in record-
ings of real situations ranges from even less ( butterfly-action, red) to 200,000 ev/s
for a scene containing ego-motion (black). Bottom: Actual event cloud between two
consecutive frames at 25Hz (40ms difference). The available event in that region are
counted. The size XF of used filters is indicated in the central frame.

a typical event rate of N e
typ = 25, 000 in the complete scene, thus N real

p,event =
T · 25, 000/X2

dim ≈ 1.5ev/s.

Fig. 3.28 shows the typical event rate for a set of processed scenes. This stands
against an effort per pixel of 25 ·XF2.

Table 3.1 summarizes the efforts of comparing a hypothetical algorithm of motion
estimation with the proposed event-based mechanism. We set F = 25Hz, S =
128 and N theo

event = T
fp

= 250, 000 and N tech
event = 250, 000 and N real

event = 25, 000.

This means that under typical conditions, the initial stage of the proposed algo-
rithm operates with only about 6% of and equivalent conventional frame-based
algorithm. Even in the case of an event rate that is limited by the bus the
computational benefit is a factor of 1.6.
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class events/pixel in T total events frame-based ops ratio
theo. Max N theo 25,000 409,600,000 409,600 1000:1
tech. Max N tech 15,3 250,000 409,600 0.6:1
emp. N real 1,5 25,000 409,600 0.06:1

Table 3.1: Considerations on operations for event- and frame-based operation.

This consideration does not assume memory demands of the systems. At a closer
inspection, these are however of similar complexity. Both algorithms need to
maintain a data structure that holds a buffer of events at each spatial position.
In our proposed algorithm this buffer was of the size of 20 elements. A similar
storage overhead would be necessary for the conventional algorithms as well to
generate temporal integrations. These investigations are supposed to provide a
first measure of the potential of event-based algorithms. The sparse represen-
tation, high temporal resolution and low energy consumption has earlier been
demonstrated [Delbrück and Lang, 2013] and these calculations motivates the
further investigation of transforming neuromorphic mechanisms to event-based
hardware.

3.7 Conclusion and discussion

This chapter proposed an algorithm that achieves asynchronous estimation of
optic flow from event-based input of a neuromorphic hardware. It applies findings
about the processing structure and architecture of the dorsal pathway.

3.7.1 Summary of contributions

We introduced the DVS128 sensor and its capabilities in Sec. 3.2, along with the
concept of asynchronous events, their representation in the AER format as well
as their visualization for frame-based screens or printed devices. We presented
hardware for the recordings of precise visual input and showed technical solutions
for the generation of synthetic stimuli. Sec. 3.3 focused on theoretical implica-
tions in context with the sensor. We proposed a method of estimation of optic
flow that applied knowledge from physiological findings to generate a model of
initial motion estimation. The model includes subsequent processing steps along
the visual dorsal pathway. We show how motion integration increases robust-
ness by means of modulatory feedback. The liability of the initial filter stage to
the aperture problem is reduced on an early level by application of inhibitory
feedback. This extension of a normalization stage reduces the confidence of esti-
mated events along elongated contrasts, where the local estimates suffer from the
aperture problem. The model also proposed interaction of the motion and form



3.7. Conclusion and discussion 75

pathway by means of motion streaks. The streaks or speed lines provide a spatial
code for motion direction. We showed how a representation and detection of such
motion streaks is available in the dense representation of visual changes of the
event stream. This bridges to the ventral stream of form processing by picking
up the theories of motion streaks. We demonstrated how such motion streaks or
speedlines can be represented using the temporal events from the DVS128 sensor
and how they might be used for an alternative representation of motion hypothe-
ses in the form channel. A possible interaction with the available architecture
of the dorsal stream is also mentioned. Sec. 3.6 shows how such an event-based
estimation mechanism can be implemented while preserving the sparse represen-
tation and asynchronous estimation given the inputs from the event stream. We
propose a data structure and introduce several addition events types along the
processing hierarchy. The chapter concludes by a consideration of complexity of
the proposed algorithm. We compared our implementation of the event-based
mechanisms to a hypothetical algorithm that operates in a frame-based manner.

3.7.2 Relation to previous models

To our knowledge the proposed model is the first to apply mechanisms of motion
estimation and related subsequent processing steps to asynchronous event-based
data that have been acquired from a DVS128 sensor. Previous models of motion
estimation on this type of data exist, but they adapted known approaches like the
Lukas-Kanade-Algorithm to AER data[Benosman et al., 2012, Benosman et al.,
2014]. This approach however introduce conceptual flaws due to the nature of
the contained information in the AER data, which is a temporal derivative of
the luminance function. Furthermore, the robust estimation of image gradients
is difficult in the sparse DVS data, which further deteriorates the estimation
result. We achieve robustness of the estimation by a novel initial estimation stage
and a recurrent architecture inspired by previous models[Bayerl and Neumann,
2004]. Both concepts proved to be very well suited for the asynchronous data
and to generate satisfying results. The models shows a how the output of a
neuromorphic retina sensor (the DVS) and its unusual representation of visual
events is combined with physiological evidence about response characteristics in
the visual cortex to yield motion sensitive cells. Furthermore, our model is able to
functionally link the ventral and dorsal pathway of visual cortex with the concept
of motion streaks, with is a novel approach in modeling mechanisms of motion
estimation. The high temporal resolution and characteristics of the DVS data
makes it possible to model an activation of cells along the form pathway and lets
them represent motion and motion orientation. Those effects have been observed
and there exists evidence for an interaction between the channels. We also propose
a software architecture for an implementation of the proposed functional modules
that maintains the unique features of the data representation like asynchronism
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in the estimation, sparse representation and low computational load.

3.7.3 Limitations

The proposed model emphasized the combination of retina-like event representa-
tion with known principles of filtering and response characteristics of cells along
the dorsal pathway. The functionality is demonstrated with a set of test stimuli.
Limitations of this process are given by the lean resolution of the image sensor and
a processing and data throughput bottleneck that is located on the hardware that
we performed experiments with. Future versions will most certainly increase the
related performances. We performed a theoretical analysis of complexity given
a set of hypothetical and typical event rates to get a feeling for the necessary
operations during motion estimation. However, the prototypical implementation
never intended to achieve real-time capabilities but focused on an understandable
and maintainable implementation that provided many interfaces for experiments.
By the time of writing a new implementation with focus on real-time-processing
is being developed.

3.7.4 Publications

The contributions contained in this chapter are the accumulated outcome of the
preceding research period. Prior investigations and earlier results have been pre-
sented in individual publications. [Tschechne and Neumann, 2014b] introduced
the concept of motion streaks using event-based sensor input. [Tschechne et al.,
2014b] presented the first bio-inspired approach of motion estimation based on
asynchronous sensor data. In [Tschechne et al., 2014a] and [Brosch et al., 2014]
we have focused on more theoretical investigations concerning the utilization and
implications to modeling of such a neuromorphic event-based data stream.



4 Hierarchical representation in
visual cortex - from localized

features to figural shape
segregation

4.1 Introduction

Contextual modulation is a central part in visual processing and the underlying
principles can be observed throughout the visual system [Nurminen and An-
gelucci, 2014] (for an extensive review see [Krause and Pack, 2014]). While the
influence of contextual modulation has been extensively described in the striate
area, also extrastriate areas profit from it.

The last chapter has shown how the generic mechanisms of contextual modulation
have been applied in a model of motion estimation. Here, it improves initial
representations and contributes to a number of effects like an influence to the
aperture problem and motion streaks. The small temporal integration period of
initial receptive fields can be massively extended using contextual feedback.

The mechanism that applied to the motion estimation process can also be used
for other domains. In the following, we will show how it can be applied to
form processing. Here, contextual modulation will influence local representations
that would otherwise suffer from their small receptive fields. The three stages of
the cascadic model (initial filtering, feedback, normalization) allow to introduce
contextual information to other, earlier areas. This on the one hand make rep-
resentation more robust (as already observed in the motion processing), but also
allows some processing steps in the first place. Contextual modulation makes
information from later stages available to earlier areas and thus allows a more
detailed representation of visual information. The processing is comprised of the
same architecture components as were introduced in Sec. 2.3.

77
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4.2 Visual processing along the ventral pathway

We visually perceive our environment as a stable and comprehensive combination
of components. This allows us to easily identify objects and persons and we
efficiently analyze geometrical cues that allow a precise and robust recognition,
navigation and interaction. Local visual features act as a vocabulary for such
a scene description and they are integrated from simple and local features into
more meaningful representations of increasingly complex scene components. The
visual cortex extracts such visual features along the ventral pathway and segments
the environment into image regions and combines those into a representation of
surfaces and prototypical objects.

We propose that on the way from generalizing early local features to higher mean-
ingful representations, the role of object boundaries plays an essential part. Con-
trasts indicate spatial changes in local illumination which might coincide with
object boundaries that allow segregation from background. However, contrasts
indicating a real transition from one object to another or from the object to the
background must be separated from those indicating an illumination change and
those caused by textured regions. This must be accomplished using contextual
information. The region delimited by such a boundary is a surface with locally
constant parameters, and a set of surfaces forms objects, scenes and eventually
our complete visual environment.

We believe that the processing capabilities of early and intermediate stages of
visual cortex are used to transform local representation into an intermediate, more
meaningful representation of contours, shapes and surfaces. Following those ideas,
we propose that a stable representation of shape may be established by interacting
assemblies that are each devoted to specific features properties. Multiple mutually
connected areas in the ventral cortical pathway receive visual input and extract
local form features that are subsequently grouped into increasingly complex, more
meaningful image elements. Such a distributed network of processing must be
capable to make accessible highly articulated changes in shape boundary as well
as very subtle curvature changes that contribute to the perception of an object.

We propose a recurrent computational network architecture that utilizes hierar-
chical distributed representations of shape features to encode surface and object
boundary over different scales of resolution. Our model makes use of neural mech-
anisms that model the processing capabilities of early and intermediate stages in
visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized
component representations interact by feedforward hierarchical processing that
is combined with feedback signals driven by representations generated at higher
stages. Based on this, global configurational as well as local information is made
available to distinguish changes in the object’s contour. Once the outline of a
shape has been established, contextual contour configurations are used to assign
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border ownership directions and thus achieve segregation of figure and ground.
The model, thus, proposes how separate mechanisms contribute to distributed
hierarchical cortical shape representation and combine with processes of figure-
ground segregation.

Our model incorporates processing at low and intermediate areas of visual cor-
tex in a hierarchical architecture of two-dimensional shape representation. Each
model area consists of a three-stage processing cascade of initial filtering, applica-
tion of modulatory feedback effects and center-surround interactions leading to an
activity normalization[Carandini and Heeger, 1994, Carandini et al., 1999, Kouh
and Poggio, 2008, Carandini and Heeger, 2012]. Our model combines the rep-
resentation of visual shapes with mechanisms for figure-ground segregation on
the basis of assigning border ownership and incorporates a distributed repre-
sentation of local contour curvature over different cortical areas. In our model
we emphasize the computational role of feed-forward and feedback mechanisms
[Grossberg, 1980, Edelman, 1993] to generate a hierarchical distributed repre-
sentation of shape information. The feedback amplifies the sensory signal such
that the subsequent competition between neurons builds a competitive advan-
tage [Tsotsos, 1988, Girard and Bullier, 1989, Desimone, 1998, Roelfsema et al.,
2002, Reynolds and Heeger, 2009]). Boundaries and their orientation are repre-
sented after initial processing in model area V1 and a grouping stage in model
area V2. Contextual boundary configurations are also represented at a coarser
spatial level at model V2 and V4 to achieve selectivities towards contour curva-
ture. With the influence of feedback, those cells are enhanced at lower stages
that contribute to a matching bottom-up signal.

The output of our model is a representation of shapes and shape segments where
contextually compatible boundary information benefits from recurrent feedback
connections. Such a representation could provide input to subsequent processing
stages for e.g. object classification tasks, which would clearly benefit from the
enhanced representation.

This model extends previous own works [Neumann and Mingolla, 2001, Hansen
and Neumann, 2004, Weidenbacher and Neumann, 2009] but introduces func-
tional properties that have been inspired by the works of other groups. A model
of curvature representation can also be found in [Cadieu et al., 2007]. The au-
thors modeled physiological findings of the same group [Pasupathy and Connor,
1999, Connor et al., 2007] that has focused on the dynamics of contour process-
ing [Yau et al., 2013b]. Cell representations from early visual areas are combined
to intermediate-level shape descriptors are used in a computational model by
[Rodŕıguez-Sánchez and Tsotsos, 2012]. [Riesenhuber and Poggio, 1999, Riesen-
huber and Poggio, 2000, Mutch and Lowe, 2008] released very powerful models of
object and object class categorization in a hierarchical modeling approach. The
physiological [Zhou et al., 2000, O’Herron and von der Heydt, 2011] as well as
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the computational[Layton et al., 2012] aspects of border ownership are subject
to intense research. Models of contour integration and perceptual grouping also
exist from [Zhaoping, 1998] and [Jehee et al., 2006, Roelfsema, 2006].

The following section introduces the reader to our proposed model. The model
incorporates generic mechanisms of cortical information processing, of which the
most relevant ones are briefly summarized in Sec. 4.3.1. For a complete intro-
duction to the mechanisms the reader may be referred to Chap. 2. Subsequently,
the model areas are described in detail, starting with the forward directed mecha-
nisms in Sec. 4.3.2 and involved areas, followed by the feedback sweep and its role
into providing contextual influence to early representations in Sec. 4.3.3. Results
of all participating areas are presented in a concentrated form at the end of this
chapter, see Sec. 4.4.

4.3 Hierarchical form representation in visual

cortex

Fig. 4.1 presents the overview of the model. Visual input enters the model at the
bottom and is subsequently processed by interconnected functional areas with
increasingly large receptive field sizes. Solid arrows indicate feedforward, dashed
arrows indicate feedback, or modulatory, connections. Each area implements a
generic architecture of building blocks that consists of (i) filtering of the input,
(ii) modulation by feedback and (iii) response normalization (see Sec. 2). Model
V1 consists of image filters that resemble properties of early processing in LGN
and V1, namely simple and complex cells that are tuned to circular or elongated
image contrasts (see Sec. 4.3.2.1). Model V2 integrates responses of model
V1 with long-range integration cells. A multiplicative combination of sub-cells
responds best to elongated contrasts of one dominant orientation. Also at V2,
a population of cells represents border ownership directions. At population of
long-range curved integration cells help represent different boundary curvatures.
The Model V2/V3 complex hosts representations of corners by integrating
V1 responses from orthogonal configurations over a small spatial surround (see
Sec. 4.3.2.2). Model V4 consists of cells that asymmetrically integrate responses
from V1 and V2 to become curvature selective at an increased spatial scale (see
Sec. 4.3.2.3). In Model IT, cells with large receptive fields integrate responses
from V1, V2 and V4 at local figure convexities to achieve a contextual segregation
into figure and ground. Area V4 allows a description of a shape by means of
cues that are represented on distributed areas in the model. Those cues exist at
different spatial scales and their mutual interaction generates dynamic processes
in the model (see Sec. 4.3.2.4).
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Figure 4.1: Overall model architecture. Input enters the model from below and is
hierarchically processed along different model stages. Solid lines denote feedforward con-
nections, dashed lines denote modulating feedback connections. Each stage implements
a model cascade of the components filtering, contextual modulation and normalization.
See text for details.
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4.3.1 Processing mechanisms

Our model is comprised of several hierarchical building blocks. The following
paragraphs recapitulate the basic mechanisms that are of special interest for form
processing. The mechanisms presented in this chapter base upon the architecture
introduced in Chap. 2 and make intensive use of the three-stage cascade that was
presented there. The relevant aspects are briefly repeated here.

The model cascade is comprised of a stage of initial filtering, application of con-
textual feedback modulation, and response normalization.

The first model stage of the cascade is the initial filtering that calculated the
response of a cell assembly with a given receptive field and tuning to presented
input. In our model, neural activations or response levels are modeled using a
scalar representation of the neural firing rate. In general, model cell responses
follow first-order dynamics and represent the changes of membrane potentials.
Such dynamics are influenced by excitatory and inhibitory inputs and a passive
decay of activity (see Chap. 2). In order to simplify the computations in our large-
scale simulations we assume that such linear feed-forward filtering operations
quickly relax at their equilibrium state. We thus model the response for the
preferred stimulus in the visual field with a two-dimensional convolution operation
of the given input I and a model of the tuning function (or preferred stimulus),
which acts as a convolution kernel Kpref . The response of model cells at position
x is thus r(x) = I(x) ∗Kpref or

r(x) = r

(
x
y

)
=

∞∑
u=−∞

∞∑
v=−∞

Kpref

(
u
v

)
· I
(
x− u
y − v

)
(4.1)

A frequently used kernel in our model serves as elementary building block and
is a two-dimensional Gaussian distribution that is elongated along one axis and
rotated around its center. We refer to this distribution by G with parameters for
orientation θ, deviation along the axes σ1, σ2 and the center of the distribution µ.

Gθ,σ1,2,µ(x) =
1

2πσ1σ2

exp

(
−
(

(x̂− µx)2

2σ2
1

+
(ŷ − µy)2

2σ2
2

))
(4.2)

with a contained rotational transformation using

(
x̂
ŷ

)
=

(
cos θ −sin θ
sin θ cos θ

)(
x
y

)
. (4.3)

If parameters are not specified they are considered having the following default
values: θ = 0◦, µ = (0, 0)T , σ1 = σ2 = 1. In the following, functional filter kernels
will often be designed as a combination of multiple such elementary components.
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The coefficients of the kernel that models the preferred stimulus might incorporate
negative weights to account for the inhibitory connections a cell may receive.
This could lead to overall responses that are numerically negative. We thus
use a rectification operator after convolution and feedback stages to ensure that
numerically the response rate r of a population is not negative:

|r|+ = max(0, r) (4.4)

At the second stage of the cascade, response levels are modulated by recurring
input from higher visual areas. We propose a feedback mechanism that exerts a
purely modulatory gain control on the input. That means that feedback alone
cannot generate activities without activation by the initial filtering step (compare
Fig. 2.3). With r being the unmodulated driving signal and netFB being the
strength of the feedback, the modulated response is

rFB ∝ r · (1 + netFB). (4.5)

Using this approach, given r = 0 no signal is generated as output irresponsible
of the strength of the feedback netFB. On the other hand, if no feedback signal
is available, the right part of the equation leaves the input signal r unchanged
[Hupé et al., 1998, Salin and Bullier, 1995, Gilbert and Li, 2013, Eckhorn, 1999].
At times we apply a non-linear transfer function to map the computed responses
to a cell activation level. In our model, we use the following function with k the
nonlinearity parameter.

r̃ = rk (4.6)

At the final stage, we incorporate a mechanism that keeps the response level
limited by using a shunting inhibition that leads to a non-linear compression
of high amplitude activities resembling the Weber-Fechner-Law of perceptual
thresholds. In its dynamic formulation, the rate of change of the signal ṙnormθ

depends on the current activation level as well as the amount of input Inet:

ṙnormθ = −α · rnormθ + β · rθ − rnormθ · Inet (4.7)

Inet =
1

N

N∑
i=1

ri. (4.8)
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With N the number or angles of represented orientations. When this equation is
solved at equilibrium, i.e. when ṙθ = 0, the activation becomes

rnormθ = β
rθ

α + Inet
(4.9)

The constants influence the steepness of the nonlinearity (α) and the scale of the
normalized signal (β).

4.3.2 Feedforward sweep

In the following, we describe the forward sweep of our model, from early towards
intermediate processing stages. After all areas have been described in detail, we
will elaborate on the feedback connections (Sec. 4.3.3) that build the recurrent
model structure.

4.3.2.1 Model Area V1

The processing starts at early stages of visual cortex where we model the func-
tionality of LGN and V1 cells where LGN cell responses provide feed-forward
input to V1 cells. Here, the visual input is initially processed to generate a rep-
resentation of local image contrasts and local contrast orientations [Hubel and
Wiesel, 1962].

rLGN = |I ∗ (Gσ1 − Gkappa)|
+ (4.10)

with σ and κ denoting the width of center and surround kernel, respectively. To
model cells that are tuned to oriented contrasts, we use elongated Gaussian kernels
G that are combined into odd-symmetric simple cell profiles using anisotropic
σ1 and σ2 and a radius ρ1 for the spatial shift of the integration kernels. The
responses of such cells are denoted by the steady-state equation

rV 1
θ (x) =

∣∣rLGN(x) ∗ (Gθ,σ1,2(x + p)− Gθ,σ1,2(x− p))
∣∣+ with (4.11)

p = ρ1

(
px
py

)
= ρ1

(
cos(θ + π)
sin(θ + π)

)
(4.12)

The filter kernel that is defined that way yields high response activations at
positions with local luminance contrasts that match the layout of the filter kernel.
To achieve insensitivity against the sign of contrast, pairs of equally oriented filters
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Figure 4.2: Receptive fields of model cells in a qualitative depiction. From top
to bottom: LGN cells and V1 cells for contrast representation. V2 cells integrate from
two larger excitatory and two smaller inhibitory regions. V2 curvature cells integrate
responses of oriented cell along a curvilinear path that forms around an imaginary
central point c. Integration weights additionally depend on the distance from the cell’s
reference point x, angular difference to the tangential trajectory and a function of local
radius, indicated here by a Gaussian profile. Correctly aligned orientations that result
in a large integration weight w are shown in the right side of the arc, while some that
result in weights close to zero are shown along the left arc in this illustration.

with opposite sensitivity to contrast polarity are used. Such filters populate a
set with evenly distributed orientation tunings that represent possible contrast
orientations. The locally dominant orientation can be derived by selecting the
orientation channel with maximum response, θmax(x) = argmaxθ(r

V 1
θ (x)).

4.3.2.2 Model Area V2/V3 complex

Model area V4 contributes four components to our model. Here, we model cells
sensitive to contextual influences of contour segments that are arranged in larger
spatial extent compared to V1 receptive fields, namely elongated contrasts and
curvatures. In addition, border ownership is represented here. In a complex of
V2 and V3 this stage represents corners as well.
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Elongated contrasts

The integration of elongated contours in V2 makes use of a mechanism that links
cells of like orientations over larger spatial distances. The receptive fields are
modeled using elongated Gaussian kernels positioned at p with offset ρV 2

ex to the
center of the cell. The parameters of the elongated Gaussian kernels are set to
build a combined kernel of an elongated integration field, which reflects the highly
significant anisotropies of long-range connections in visual cortex [Bosking et al.,
1997]. The subfields sample the activations generated by V1 complex cells [Gross-
berg and Mingolla, 1985, Neumann and Sepp, 1999]. The subfields are combined
in a multiplicative fashion. This resembles a logical and -operation for the indi-
vidual subfield activations. Modeled V2 cells only become activated when both
subfields receive input. The response is thus able to bridge local gaps in contours.
This is in line with physiological findings, as V2 neurons respond to elongated
luminance contrasts as well as to illusory contours [Heitger et al., 1998, von der
Heydt et al., 1984] like in the Kanisza square (see Fig. 4.4). This integration
mechanism is enhanced by local inhibitory effects. Smaller and isotropic inte-
gration fields are positioned along an orthogonal axis from the receptive field’s
center with distance ρV 2

inh, building a cross-like zone of excitatory and inhibitory
integration, compare [Piëch et al., 2013]. At those positions p⊥, activity from
all orientations is integrated and has an inhibitory effect on the total response.
This has a strong suppressive effect on contour fragments that are positioned
within a cluttered surround, while isolated boundary segments are not affected.
The complete response for an elongated V2 cell is calculated by the steady state
equation:

rV 2
θ (x) =rV 1

θ ∗ Nθ,σ1,2(x + p) · rV 1
θ ∗ Nθ,σ1,2(x− p) (4.13)

−γrV 1
θ ∗ Nσ3(x + p⊥)− γrV 1

θ ∗ Nσ3(x− p⊥) (4.14)

with

p = ρV 2
ex

(
cos(θ)
sin(θ)

)
(4.15)

p⊥ = ρV 2
inh

(
cos(θ + π)
sin(θ + π)

)
(4.16)

Curvature

We also model V2 neurons that respond to more complex stimuli like they appear
in contours that form curves or angles. We propose a population of V2 cells
tuned to curved contour outlines, rV 2c, that allows integration of smooth and
even fragmented boundary configurations [Field et al., 1993]. They resemble the



4.3. Hierarchical form representation in visual cortex 87

functionality of elongated V2 cells but their integration fields are designed such
that they are curved. A curvature direction is defined either to the left or the
right of the tangent orientation at the target location. The center of curvature c
defines an osculating circle with given curvature-radius ρ.

The model cells integrate activations from V1 neurons. The integration weight
is modeled by a weight function w depending on the current position and ori-
entation tuning where activity is integrated from. This weight function splits
into contributions of a distance weight function wdist, an orientation weight func-
tion wori and a function that models the widths of the integrating lobe, wwidth.
Basically, activations from V1 are integrated with maximum weight only when
their orientation is tangential to the curvature trace at their relative positions.
This yields a sharp tuning of the cell for a certain curvature level. The complete
response for an curved V2 cell is calculated by the steady state equation:

rV 2c
θ (x) =

∑
φ∈N (θ)

∑
p∈N (x)

w(φ,p) · rV 1
φ (p) (4.17)

with φ and p neighborhoods of orientation and position. As described, w splits
into three components. The following weight equations require the center of the
osculating circle c and the angle ξ between the position x, the current integration
positions p and that center c. The calculation of c makes use of a parameterizable
curvature radius ρ.

w(φ,p) = wdist(p) · wori(φ,p) · wwidth(p) (4.18)

c = x + ρ · (cos(θ), sin(θ))T (4.19)

ξ = ](−→cp,−→xc) (4.20)

(4.21)

The overall weight is calculated using contributions of the other weight functions:

wdist(p) = exp(−‖
−→xp‖2

σ2
1

) (4.22)

wori(φ,p) = sin(ξ − θ) (4.23)

wwidth(p) = exp(−(‖−→pc‖2 − ρ)2

σ2
2

) (4.24)

Here, wdist decreases with distance from the response center x using an exponen-
tial function with deviation σ1. wori is modeled with a simple sine function, such
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that tangential orientations receive a higher weight. Finally, wwidth generates
highest weight when the integrating position p is on the curvature radius ρ with
a second deviation parameter σ2.

Border Ownership

Cells in visual cortex V2 also show selectivity to the figure-ground arrangement of
the scene in the visual field [Williford and von der Heydt, 2013]. So-called border
ownership cell responses are elicited when a figure of arbitrary shape is presented
on their preferred side with respect to the center of their receptive field. From
the same group, [O’Herron and von der Heydt, 2013] have also shown that during
visual motion caused by eye motion or object motion, these border ownership
signals are remapped to different neurons. The visual system uses this information
to resolve depth arrangements in the stimulus [Qiu and von der Heydt, 2005]. The
pointing direction of border ownership cells indicates the direction of the frontal
surface at every image location. This reflects to commonly known Gestalt rule
that a boundary is owned by the frontal figure.

We model border ownership cells by a retinotopically arranged population repre-
senting four potential directions where the figure can be positioned relative to the
cell’s center. Border ownership responses are initially isotropic and only occur
together with local contrast activations. Cells indicating opponent border owner-
ship direction are mutually rivaling in our model. The complete response for an
border ownership V2 cell is calculated by the steady state equation:

rV 2B
λ =

{
f(rV 2

θ ) when λ ⊥ θ

0 when λ ‖ θ
(4.25)

The function f() only maps activations of V2 to activations of V2B. In the model,
this functions is a linear transformation to account for different numerical acti-
vations levels that occur in the model.

With λ four border ownership directions [0◦, 90◦, 180◦, 270◦]. The mutual compe-
tition between activations indicating opposing border ownership directions rBOa
and rBOb is calculated by

ṙBOa = −α · rBOa + A(1− rBOa )− β · rBOb (4.26)

ṙBOb = −α · rBOb + A(1− rBOb )− β · rBOa (4.27)

(4.28)
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Corners

Based on empirical evidence of neural representations generated by cells selec-
tive to multiple orientations [Felleman and Van Essen, 1987, Ito and Komatsu,
2004, Anzai et al., 2007] we incorporate model representations of corners in a
dedicated model area V2/V3 complex. We build upon the proposal developed in
[Weidenbacher and Neumann, 2009] that corner and junction configurations can
be made explicit by specific read-out mechanisms. Here, we employ a simplified
version as of [Hansen and Neumann, 2004] to generate corner representations by
grouping V1 responses of orthogonal orientation fields. In a steady-state formal-
ism the response reads

r
V 2/V 3
θ =

∣∣rV 1
θ · rV 1

θ+π

∣∣+ . (4.29)

4.3.2.3 Model Area V4

Inspired by experimental evidence model neurons in model V4 integrate responses
of V1,V2 and V2/V3 to achieve a selectivity that considers large-scale boundary
fragments as well as local variations in curvature and a selectivity for corners
[Pasupathy and Connor, 1999, Yau et al., 2013a]. Curvature selective cells are
modeled in a two-stage cascade of mechanisms. The first level integrates V2 con-
tour responses and is selective to curvature directions, left or right (relative to
the cell’s orientation preference). The second level combines opposite curvature
directions into one response, like in V1 complex cells. This model mechanism
differs from the one proposed by [Rodŕıguez-Sánchez and Tsotsos, 2012] which
utilizes single stage filter computations. In this approach specific subfield mecha-
nisms sensitive to orientation, tangential contour outline and scale are combined
in a non-linear fashion to selectively respond to contour fragments of different
curvatures. We develop a mechanism that is distributed over different stages
to first group responses to extended contour outlines in V1 and V2 suppress-
ing non-contour clutter. In the case of sharply localized corners and junctions
the dedicated representations of localized multi-orientation responses will be ac-
tivated. Those responses of grouping cells (or the junction representations) are
integrated at the subsequent stage. Here, curvature selectivity is made explicit
that distinguishes left and right curvatures. Different integration scales gener-
ate selectivity to curvature. This distribution allows to associate regions of high
contour curvature at an intermediate scale with localized outline details at the
finer scale. The model cell responses in our model are described by the following
equations:
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ṙV 4left
θ = −α4r

V 4left
θ + (1− rV 4left

θ ) · Aθ − (1 + rV 4left
θ ) ·Bθ (4.30)

ṙV 4right
θ = −α4r

V 4right
θ + (1− rV 4right

iθ̂
) · Aθ − (1 + rV 4right

θ ) ·Bθ (4.31)

with

Aθ(x) = rV 2
θ ∗ Gθ,σ4,4b(x + p) (4.32)

Bθ(x) = rV 2
θ ∗ Gθ,σ4,4b(x− p) (4.33)

p = ρV 4

(
(cos(θ)
sin(θ)

)
(4.34)

These responses are calculated at equilibrium and averaged subsequently, leading
to the model V4 filter response

rV 4
θ =

1

2

|(Aθ −Bθ)|+ + |Bθ − Aθ|+

α4 + Aθ +Bθ

. (4.35)

This integration mechanism yields a response for locally curved boundary seg-
ments at a larger spatial scale. For elongated contour segments that show no
curvature, the response of individual cells will be equal and the combined re-
sponse very low.

4.3.2.4 Model Area IT

So far, we have described how our model integrates local features from model V1
into elongated, potentially curved boundaries at model V2-V4. Model area IT
performs contextual integration that allows a segregation into figure and ground
and a representation of prototypical objects at a large spatial scale. As dis-
cussed above, a population of V2 cells responds selectively to the direction of
figure-ground direction. The local representation of border ownership at model
V2 represents a set of available local hypotheses that cannot locally be resolved,
as this step requires contextual influence from a larger spatial surround. Cells
in IT cortex have been shown to be shape selective with properties generalizing
over contrast polarity and mirror reversal [Baylis and Driver, 2001]. The authors
demonstrate that such cells do not, however, generalize over the assignments of
figure-ground direction. The investigation supports the view that the popula-
tion of probed IT cells is mainly driven by the sidedness of contours and less
so by the contour itself. Given the rapidness of ownership selectivity observed
in V2, we propose that ownership computation relies on a network of V2-V4-IT
cell interaction. Our model uses local shape configuration in the outline of an
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Figure 4.3: Tunings of different curvature cells. The x-axis show the curvature
of the presented stimulus, the y-axis the response strength of a curvature cell tuned for
10, 15, 20 and 25 pixels curvature radius in model V2, which correlates for a curvature
of 40, 60, 80 and 100 pixels in model V1. For the smaller curvature radii, subsampling
artefacts cause the tuning function to be less smooth.

object to collect confidence about the direction of figure and ground. We adopt
an approach of [Zhou et al., 2000] and model an integration cell at level IT that
integrates border-ownership hypotheses from a larger spatial extent from model
V2 input. For each location in the image, border ownership activations in a local
neighborhood that point towards the inside of the respective receptive field con-
tribute to the activation of an IT cell. This results in strong responses in model
IT where local image regions are surrounded by contour convexities. Local activ-
ities of border ownership cells in model V2 then receive a positive enhancement
if they contributed to such an integration process. This recurrent architecture
resolves the initially ambiguous assignment of border ownership. Taken together,
this makes the model belong to the class of feedback architectures according to
the categorization in [Williford and von der Heydt, 2013]. The response of cells
and their interaction is denoted by the following equations:

rITθ (x) =
∑

φ∈N (θ)

∑
p∈N (x)

f(x, φ,p) · rV 2
θ (p) · exp(−(ρIT − ‖−→xp‖)2

σ2
) (4.36)

with

f(x, φ,p) = cos(](−→xp, φ)) (4.37)
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Such an IT cell at position x integrates responses of V2 cells in its proximity p.
The integration weight function f(x, φ,p) depends on the angle between x and
p and the currently integrated orientation φ. This grants orientations parallel to
an imaginary line toward x0 high weights, while orthogonal orientations receive
low weights.

This model area receives connections from the early as well as from the intermedi-
ate functional stages V1 and V2 where curvature is represented. This means that
high-resolution local cues as well as contextual cues like corners from a larger
region are available. A shape can thus be described as a set of contributing
prototypical elements that contribute to the local configuration at every image
location. Those elements are not solely generated through integration of lower
areas, but exist as a distributed representation in all modeled areas and profit
from mutual interaction through feedback and exhibit dynamic processes when a
stimulus is presented.

4.3.3 Contextual influence

The following sections will explain the contribution of contextual influence on
local representations of features.

4.3.3.1 Contour enhancement

The mechanisms so far presented contributed to the feed-forward sweep of the
model. We stated earlier that in visual cortex (and in neural processing in gen-
eral), the input of cortical areas of higher stages highly contribute to the per-
formance of individual earlier areas. By such recurring connections, contextual
information is introduced in lower regions. We are thus now going to focus on
the recurrent connections that are incorporated in our model.

Let’s briefly recall that we model feedback connections that have a modulatory
effect [Girard and Bullier, 1989] as outlined in Sect. 2.3.2, eq. 2.7. We mentioned
that a feedback signal alone cannot elicit responses as long as no input activation
is present. On the other hand, feedback that matches input configurations will
increase those activations. We stick to this convention throughout our following
elaborations.

V2 long-range and curved cells represent continuous straight or curved contours.
Their multiplicative combination of receptive field subcomponents caused the cells
to elicit responses whenever a contour of matching orientation was presented in
their receptive fields. Now, those cells in V1 that contributed to the integration
process will receive feedback and be thus increased in activity. The following
non-linear transformation stage increases the difference in response strength with
respect to other oriented contour cells that did not receive feedback. At the sub-
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sequent normalization stage, local response levels are now slightly increased by
the recurrent input. Now, surrounding activations without feedback have a com-
petitive disadvantage and receive a higher divisive normalization relative to their
activation due to the increase response in their neighborhood that contributed to
the sum.

The dynamics of these interactions are denoted in formal terms and can be found
in Chap. 2.

4.3.3.2 Curvature representation

As stated earlier, the modeled V4 cell do not at all or only marginally respond to
straight elongated contours. Responses of V2 cells to curved boundaries are inte-
grated in model V4, where integration cells sensitive to opposite sign of curvature
mutually compete for equal orientations. These cells respond at positions with a
local curved contour configuration, but are silent at elongated straight contours.
Feedback is generated for those V2 cells that contribute to those curved boundary
segments the corresponding model V4 cells respond to maximally. Regions with
curved boundary segments thus elicit a strong response of V4 cells while regions
with mostly straight contours do not elicit such a strong response. This signal
can thus be used to differentiate regions of many straight contour segments from
regions with many curved contours. In formal terms, the V2-V4 cell interactions
are defined by

ṙV 2c = −αrV 2c
θ + (1− rV 2c

θ ) · A(1 + rV 4
θ ) (4.38)

A = rV 2c ∗ Gσ (4.39)

4.3.3.3 Figure-ground segregation

The contribution of feedback to figure-ground segregation is twofold in our model.
First, at a local level, hypotheses of border ownership are generated by intra-
area recurrent connections from long-range grouping cells. Contextual feedback
from model IT resolves the remaining ambiguities. Initially, all directions of bor-
der ownership have equal likelihood along contrasts. With increasing confidence
about local contrast orientations generated by V1 and V2, two options for bor-
der ownership directions are discarded and only two orthogonal border ownership
directions remain. Activations of long-range V2 cells that indicate elongated
surface boundaries and their orientation locally increase activities of those bor-
der ownership cells that are directed perpendicularly to the orientation of the
boundary. Activity normalization for V2 border ownership cells then leads to
a suppression of activities for ownership directions orthogonal to the boundary
orientation. Formally, this is accomplished by the dynamics
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ṙBOφ = −rBOφ + βrV 2
θ − rBOφ · qBOφ (4.40)

q̇BOφ = −αqBOφ +
∑
γ

rBOγ (4.41)

θ = φ+
1

2
mod π. (4.42)

Second, V2 border ownership cells receive feedback from cells in model IT. Here,
border ownership as well as figural cues, e.g., from local junctions, or curvature
maxima, were integrated by IT cells. For the correct inference of figure and
ground, feedback from IT to V2 is essential. Figure-Ground cells at IT level in-
tegrate border ownership activations from V2 in a circular fashion to integrate
the coherence of directions indicating a convex pattern of figure outline. In the
feedback sweep, this contextual information is now fed back to these border own-
ership cells compatible with the configuration using recurrent connections. In
formal terms, this extends the dynamics presented in eqn. 4.40 above by incor-
porating a modulating feedback signal from model IT cells, namely

ṙBOθ = −rBOθ + β(rV 2
θ + htonic) · (1 + λ2 · rITθ )− rBOθ ·

∑
γ

rBOθ (4.43)

This also concludes the feedback sweep of our recurrent model. In the following
section, we will show the performance of the model and its individual areas in
the results section.

4.4 Results

In this section we illustrate the capabilities of our model in a number of sim-
ulations. To demonstrate how the model processes shapes, we use some artifi-
cial images to show working principles of various subcomponents of our model.
These simple shapes were taken from the Webdings font freely available with a
Microsoft R© WindowsTM8.1 operating system. We also include also a depiction of
a Kanisza square [Kanizsa, 1955]. This is a special stimulus because it elicits the
perception of illusory contours at the outline of the occluding square, a sensation
our model is also capable to represent.

To demonstrate the abilities of our model to process real world images we ac-
quired the dataset of [Fowlkes et al., 2007] and selected a few examples that we
included in our results sections. These images have a resolution of 321×481 pixels
in landscape or portrait orientation. They were converted to gray-scale images
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Figure 4.4: Results of early processing stages V1 and V2. The two plots
indicate time courses for V1 activations. Initially, multiple V1 neurons are activated
due to a broad tuning width (first plot). Without feedback, this effect prevails through
iterations. With feedback, the correct orientation (blue) receives feedback and gradually
reduces activations of other orientations (second plot). Bottom: Example how model
V2 neurons show responses at positions formed by illusory contours (in green circle)
due to contextual integration.

using the Mathworks R© Matlab R© rgb2gray function which performs a percep-
tionally weighted combination of the red, green and blue channel. We used 8 to
12 iteration steps to allow recurrent feedback signals to build up. The angular
resolution of cell populations is defined by selecting eight π

8
steps to encode orien-

tation. Border ownership is represented by a population representing 4 directions.
Model V2 curvature cells also used 8 orientations for tangential orientations, but
due to two possible curvature directions, our model contains a population of 16
curvature cells. A list of parameters used is given in table on page 103.

4.4.1 Early processing stages

To begin with, we show how the processing at early stages achieves a representa-
tion of the stimulus concerning contrasts and elongated contours. Local contrasts
are represented in the early stages by model V1 and V2 cells. However, as can
be seen in Fig. 4.4 the responses rapidly change in the first few iteration steps.
The contained contour as well as the added noise signal both elicit responses at
the V1 level (second column) and cause the shapes outline to be not clearly sepa-
rated from the background. However, those responses are grouped into elongated
contour representations in model V2 (4th column). Elongated contour segments
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V2

Grouping of illusory  contours

Input V1

Figure 4.5: Results of early processing stages V1 and V2. Left column: Initial
input images. Second and third column: Cumulated responses of model V1 neurons at
the initial processing iteration and a few iterations steps, respectively.Fourth column:
Responses of model V2 neurons. Elongated edges formed by like-oriented contrasts
are grouped as reflected by responses at respective locations. This stage also shows
activations for illusory contours contours ( third row) at the gaps between contrasts.
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Figure 4.6: Results for border ownership assignment. First two rows: Cells at
model V2 indicate the direction of figure side at positions where boundaries exist. Ini-
tially, four hypotheses exist for possible figure direction. These are refined in model V2,
where only two hypotheses remain after the orientation of the boundary is represented.
Contextual integration in model V4 then provides correct estimates with modulatory
feedback. Subsequent normalisation and mutual competition leaves only one hypotheses
for border ownership direction. See text for details on the time phases of border owner-
ship assignment. Third row: Demonstration of the boundary assignment for a natural
image. The intial responses are improved after a few iteration steps.
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Input Initial corner repr. After 6 iterations Input Initial corner repr. After 6 iterations

Figure 4.7: Corner representation in model V2/V3. For each group of three pictures:
Initially, responses of model V1 did not yet benefit from contextual feedback of model
V2 neurons. Corner representation is thus distorted by noise ( second row, middle).
After a few iterations, when V1 responses have been modulated V2 feedback, the corner
representation is much clearer.

are clearly emphasized. From these V2 activations, a recurrent feedback signal
is generated that modulates V1 activations. After a few iterations, the repre-
sentation at V1 dramatically changed, with the outline of the figure now clearly
visible.

The effect of the feedback signal is also measurable in a quantitative way, see
Fig. 4.4, right. Along the boundary of an object we plotted the activation levels of
the population of V1 neurons that represent the orientation. Initially, the neuron
with preferred orientation responds best, but also those with orientation tunings
close to the real contour (first plot). The situation changes when feedback is added
(second plot). Now, representations of undesired orientations are attenuated and
the activation of the cell representing the contextually valid orientation is highly
increased.

Also in Fig. 4.4, the representation of illusory contours at V2 stage is depicted.
This is illustrated using an input depicting a Kanisza square (last row). A com-
plete square is highly salient for human observers despite the fact that only a
series of circles with cut-out corners are depicted. This is reflected in the group-
ing responses of V2 neurons, they also show activity in the gap between the real
contour fragments. Figure 4.5 shows V2 responses for the same parameter set
and for a parameter set with changed receptive field sizes, to illustrate the effect
even stronger (framed part).
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Figure 4.8: Representation of curved boundary segments and effect of feedback. Top
left:: Model setup without feedback connections. The intial representation at model
V1 and V2 undergo no change. Top right: Feedback from V2 causes a refinement
of elongated structure within a few iterations. Bottom left: Feedback from V4 allows
the accentuation of boundary segments with distinct curvature strength and direction.
Here, a curvature segment as found on the left part of the shape is highly emphasized
by feedback. Bottom right: Same as left, but with selectivity for another segment of the
shape. Note that while boundaries with the same orientation are present in the stimulus,
only the one with matching curvature is emphasized.
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Figure 4.9: Refinement and modulation of shape contours in a real world example.
Left: Within 5 iterations, the outline of the animal is very well visible at V1 and at V2
stage. Right: With modulatory feedback from model V4, various parts of the animal
like those contours with a certain curvature and orientation can be emphasized.

4.4.2 Curvature tuning

Figure 4.3 illustrates the tuning functions we defined for model V2 curved cells.
A curved cell with distinct radius tuning was selected and we presented arcs of
different curvature to this cell and simulated the response. We performed this for
four cells with curvature tuning to 10, 15, 20 and 25 pixels radius. This curvature
definition happens in V2, where the initial resolution of the image had been
subsampled. For this reason, the value here correspond to values 40, 60, 80 and
100 in V1 resolution. In each plot, the peak response occured when the stimulus
with the matching radius was presented. In this simulation, subsampling artefacts
cause the first two plots to elicit some discontinuities.

4.4.3 Shape representation

In the final setup, we show how our model independently represents different
elements of a shape, and how this depends on the recurrent feedback connections.
Fig. 4.8 illustrates the results we achieved for an artificial image. Initially, we
configured the model to only use feed-forward connections from V1 to V2. The
model only achieves an representation at model V1 and a representation at V2
where the elongated boundaries are visible, but surrounded by many spurious
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activations. When recurrent feedback from V2 is added, the representation at V1
improves in the first few iterations before a steady representation is reached. In
parallel, elongated boundaries at V2 are integrated and noise is highly reduced.

To represent prototypical objects at an intermediate level of detail, we stated
that the model needs to represent different contour properties. In the second
row of Fig. 4.8 we show how the model achieves to emphasize V1 responses
when they contribute to a certain contour fragment with desired properties. We
deliberately exaggerated the effect and chose a very narrow tuning so that all
other responses become almost completely suppressed. On the left side, we let
the model emphasize contour parts that are oriented almost vertical but in a
curved context of a matching radius. As can be seen, the model highlights that
parts on the left side of the stimulus that matches and leaves others suppressed,
even if their local orientation would match. On the right side of Fig. 4.8, we
perform the same for a different part of the shape outline.

In Fig. 4.9 we perform the same selection for a realistic photograph depicting an
elephant. On the left side, we show interaction of model V1 and V2 causes an
appealing representation of the animal at stages V1 and V2. On the right side,
we configured the model using model area V4 to emphasize parts of the outline
of the animal that match a certain context and configuration, here, a part of the
outline.

4.4.4 Border ownership and figure-ground assignment

In the segregation of a scene into figure and ground the modeled border ownership
cells participate by indicating the direction where the frontal surface is positioned
at a boundary [Zhou et al., 2000]. Our model incorporates a mechanism using
such border-ownership cells to resolve the direction of a frontal surface from local
boundary cues [Zhou et al., 2000]. We performed such a assignment for our
sample images, see Figure 4.6 for an illustration of the result. The output of
model area V1 and of V2 long-range integration cells are acquired to generate
initial hypotheses of border ownership direction at image regions where local
contrasts are situated. Initially, all four border ownership directions show equal
responses at a boundary location. After stimulus onset, three dynamic effects
occur and their contribution to the resolution of border ownership is reflected in
the time course of cell activation, see Fig. 4.6 for an illustration.

First, local feedback from V2 cells enhances two hypotheses of border ownership
for the directions orthogonal to the local boundary orientations.

A local normalization causes an attenuation of the other two representations
(Fig. 4.6, second row ; Timestep 0 and 1). Second, shape-level integration at
model area IT contributes positive feedback to those border ownership cells that
are directed towards the inside of the figural depiction. Again, normalization
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leaves the net response of the cells constant (timesteps 2-4). Finally, mutual
inhibition among border ownership cells with opposite direction selectivity causes
the dominant direction to gain all available net energy (timestep 5 to 8). At
this point, a stable point is reached and the local ambiguity for border ownership
direction is resolved using feedback from higher cortical areas. The interpretation
of the final representation would be that the frontal surface is to the inside of the
curved boundary.
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Table 4.1: Parameter values used to generate the results of the real-world examples.
References to equations are given in the second column.

General Model Parameters used for simulations
description see equation value
Number of orientations used 8
Number of feedback iterations 6
Number of BO directions 4

Model Area V1
Network size 321 × 481
LGN σ 1.00
LGN κ 1.50
LGN Normalization α (4.9 applied) 2.17e-03
LGN Normalization β (4.9 applied) 2.17e-03
V1 Contrast σ1 4.11 0.23
V1 Contrast σ2 0.12
for p: Excentricity ω1 3.00
V1 Normalization α (4.9 applied) 2.16e-06
Non-Linearity of V1 responses (4.6 applied) 4.00

Model Area V2/V3
V1:V2 subsampling 4.13 1: 3
Network size 107 × 161
Filter size of V2 complex 41.00
V2 complex cell σ1, σ2, σ3 0.21,0.02,0.10
in p: ωV 2

ex 3.70
in p: ωV 2

inh 2.50
V2 Inhibition Strength γ 0.10
V2 Nonlinearity k (4.6 applied) 1.00
Strength of V2-V1 feedback 0.11
Non-Linearity of BOwn 1.00
In c: curvature radius ωc 15.00
in wdist: σ1 40.00
in wori: σ2 2.00
Strength of RV 2Curv feedback 0.15

Model Area V4
V1:V4 subsampling 1: 4
Network size 81 × 121
V4 filter size 31.00
α4 4.30 0.01
σ4,σ4b 4.32 0.43,1.35
ωV 4 4.32 -1.00

Model Area IT
σIT 4.36 0.43
σ 29.00
ωIT 17.00
IT Non-Linearity 3.00
α (4.9 applied) 5.49e-05
Strength of BOwn feedback 50.00
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4.5 Discussion

4.5.1 Summary of contributions

In this contribution we emphasized the role hierarchical representations have in
the organization of shape features and their combinations into a coherent form.
Like some previous model developments [Cadieu et al., 2007, Rodŕıguez-Sánchez
and Tsotsos, 2012, Hatori and Sakai, 2012] our model is based on low and interme-
diate representations of shape features. These proposals are all based on a strictly
hierarchical feed-forward processing sequence. We propose here that such shape
encoding mechanisms may be based on distributed representations that are estab-
lished by interacting assemblies each devoted to specific feature properties. Such
interactions in the model are organized by recurrent interactions of feed-forward
and feedback signals. The underlying structural principles are based on the cor-
tical architecture of the ventral pathway with mutual interactions between such
distributed representations [Markov et al., 2013]. The model architecture incor-
porates principles that have been predicted to minimize the computational efforts
of visual systems to successfully deal with the complexity problem of perception
[Tsotsos, 1988] (compare also [Tsotsos, 2005]). Among those, the hierarchical
organization of representations in model areas, the specific receptive field prop-
erties of model columnar mechanisms, hierarchical pooling of spatially separated
input representations, and top-down (modulatory) feedback are proposed here to
account for the functional properties of cortical shape processing. We did not dis-
cuss complexity advantages in this contribution. However, given the theoretical
predictions by such earlier work our proposal of a model architecture provides a
evidence how distributed intermediate-level mechanisms may help to shape our
understanding of modeling complex visual machinery that captures key cortical
principles.

The main contributions of this chapter are twofold. First, we propose a com-
putational network architecture that utilizes a hierarchical distributed represen-
tation of shape features. Contour features play a major role to track moving
shape in which their strength parametrically change as a function of their saliency
[Caplovitz and Tse, 2007]. This necessitates global configurational as well as local
information to distinguish rather tiny differences in the outline of a 2-dimensional
form (such as curved boundaries vs localized corners, [Pasupathy and Connor,
1999, Ito and Komatsu, 2004]). In order to generate a representation with suf-
ficient spatial resolution combined with spatial context we suggest that multiple
specialized component representations interact by feed-forward hierarchical pro-
cessing that is combined with feedback from representations generated at higher
stages in the hierarchy. Second, we incorporate grouping mechanisms to integrate
like-oriented contour responses that are integrated if they form a smooth outline
fragment of a surface boundary [Grossberg and Mingolla, 1985, Neumann and
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Sepp, 1999, Ben-Shahar and Zucker, 2004]. Such grouping mechanisms operate
at the stage of area V2 and are, thus, involved in the hierarchical processing of
shape. Given the hierarchical processing and representation of boundary infor-
mation in the ventral pathway (see the overview in [Neumann et al., 2007]) the
shape processing observed in area V4 is mainly driven by the output of group-
ing responses. It may be supplemented by input from simple/complex cells in
V1, a principle of convergent signal streams also used in the models described
in [Rodŕıguez-Sánchez and Tsotsos, 2012, Thielscher and Neumann, 2003]. In
addition, we suggest that the shape representation built at the stages of V4 and
IT influences the assignment of border ownership in surface representation [Zhou
et al., 2000] (see overview in [Neumann et al., 2007]). Model IT cells send modu-
latory feedback to those V4 cells that provide relevant input (in V4 and V2) such
that the net sum of convex corners/curvatures determines the ownership direc-
tion. The proposed model thus combines separate findings about the generation
of cortical shape representation with figure-ground segregation mechanisms by
assigning border ownership.

4.5.2 Relation to previous models of shape representa-
tions

Visual shape recognition has already been investigated intensively by consider-
ing the 3-dimensional (3D) surface appearance for object recognition [Riesen-
huber and Poggio, 1999, Serre et al., 2007, Mutch and Lowe, 2008, Yamane
et al., 2008, Serre and Poggio, 2010] as well as 2-dimensional (2D) shape recog-
nition [Schwartz et al., 1983, Mokhtarian and Mackworth, 1986, Mokhtarian,
1995, Rodŕıguez-Sánchez and Tsotsos, 2012]. In the context of view-based mod-
els of object recognition stable views [Logothetis et al., 1995] are associated with
2D shapes so that their analysis can be considered as an intermediate stage of
object processing [Cadieu et al., 2007]. The computational model approaches of
2D shape representation can be subdivided into flat and hierarchical schemes.
Examples of flat processing schemes, e.g., utilize Fourier descriptors [Schwartz
et al., 1983], multi-scale representations of curvature features in the shape out-
line [Mokhtarian and Mackworth, 1986, Mokhtarian, 1995], or global schemes
for integrating oriented line features [Wilson and Wilkinson, 1998]. Hierarchi-
cal multi-layer processing schemes are based on different stages to generate an
increasingly coarse-grained representation of shape features utilizing repetitive
application of local filtering operations [Riesenhuber and Poggio, 1999, Cadieu
et al., 2007, Rodŕıguez-Sánchez and Tsotsos, 2012]. In order to resemble the
feature selectivity of V4 cells in monkey cortex such cells build coarse-grained
orientation-curvature representation of the shape under inspection. The hier-
archical organization of a sequence of processing stages follows the idea of the
Neocognitron [Fukushima, 1980, Fukushima, 1988] by developing low and in-
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termediate representations of richer shape feature compositions [LeCun et al.,
1998, Riesenhuber and Poggio, 1999, Mutch and Lowe, 2008, Tabernik et al.,
2014]. The orientation-curvature representation of V4 cells reported by [Pasupa-
thy and Connor, 1999, Connor et al., 2007] has been investigated in the models
reported in [Cadieu et al., 2007, Rodŕıguez-Sánchez and Tsotsos, 2012, Hatori and
Sakai, 2012]. We share the principles of the hierarchical organization of processing
and the emergence of rich orientation-curvature sensitivity in our proposal. Initial
processing utilizes orientation sensitive filters to extract local oriented contrast.
Unlike the previous models we incorporate a stage of boundary grouping at the
interface between low and intermediate levels of representation. Such grouping
operations integrate oriented contrast responses that are arranged in the local
neighborhood of a target location. The local responses are enhanced by evaluat-
ing a support function that measures feature compatibility ([Neumann and Min-
golla, 2001] for an overview and taxonomy of grouping schemes). The measure of
compatibility depends on the lateral integration that utilizes oriented weighting
functions for contrast features arranged along a model shape outline, e.g., circular
arcs with different radii [Parent and Zucker, 1989]. Such a scheme thus implicitly
incorporates curvature as a local contour feature. In order to make this explicit,
different contour radii and signs of curvature (for individual orientations) have
been considered in [Rodŕıguez-Sánchez and Tsotsos, 2012]. Rather then imple-
menting this curvature selectivity in a hard-wired scheme of local oriented filter
conjunctions, we propose that this selectivity is generated via bottom-up and
top-down filter mechanisms organized in a hierarchy. In this architecture the
responses from model V2 contour groupings (based on different radii) are inte-
grated by model V4 curvature sensitive cells with coarse bipartite odd-symmetric
receptive fields (similar to simple cell profiles, but at much larger spatial scale).
The sign of curvature is distinguished by cells of opposite polarity that mutually
compete for each orientation. As a consequence responses are generated prefer-
entially in cases where a single dominant curvature is present while responses are
suppressed for straight contours which feed curvature cells symmetrically. The
curvature radius is represented through a family of differently scaled integration
sizes of such model V4 cells. Each of these cells have a specific peak selectivity. In
the simulations we used three different sizes for each curvature sign. In order to
make those cell responses selective to the feature specificity but mainly invariant
to luminance contrast we suggested that each V4 cell response competes against
the responses of other curvature selective cells in a local pool that interact via
a mechanism of shunting inhibition. This leads to normalization of responses
just like in those mechanisms proposed to account for various non-linearities at
different stages in cortical processing, e.g., for context related contour responses
in V1 [Carandini and Heeger, 1994, Carandini et al., 1999], attention selection
[Carandini and Heeger, 2012], and higher level cognitive functions [Louie et al.,
2011]. Since the curvature sensitive model V4 cells, in turn, send feedback to their
input contour representations in model V2 and filter response in model V1 those
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corresponding input activations will be enhanced. The amplitude of responses in
distributed boundary representations will be amplified as an emergent net effect
such that local salient curvature features in a shape outline will be amplified to
yield distributed component feature representations of figural shapes.

These local boundary and curvature representations also feed mechanisms of bor-
der ownership assignment at the level of the model V4/IT complex. Such mech-
anisms have been investigated before in [Zhou et al., 2000, O’Herron and von der
Heydt, 2011]. Our computational framework belongs to the group of feedback
models for border ownership encoding (see the overview of the current state in
[Williford and von der Heydt, 2013], see discussion below). We adopted this
generic scheme by integrating responses from curvature selective cells with the
compatible sign of curvature. In such a way the ownership configuration fa-
vors contributions from coarsely presented convex components. If a shape with
multiple convex and concave segments is present then the ownership cells with
opponent direction selectivities compete in order to arrive at a disambiguated
assignment of surface belongingness. This makes the testable prediction that
bumpy outlines should lead to slightly longer ownership disambiguation than for
smooth convex shapes since the disambiguation will take more time when initially
opposite assignment hypotheses coexist.

An additional investigation was argued to be of importance in the work proposed
here. Several experimental investigations have reported that cells in extra-striate
cortex selectively respond to corner junctions. For example, [Ito and Komatsu,
2004] (compare also [Hegdé and Van Essen, 2000]) reported that cells in area
V2 selectively respond as to generate representations of sharp corners, or an-
gles, selective for a particular opening angle. Similarly, [Pasupathy and Connor,
1999, Yau et al., 2013a] show that area V4 cells respond to sharp shape corners
with a sub-population of cells preferring sharp corners with different orientation
and opening angles while another sub-population prefers smooth rounded corners.
While the previous hierarchical models can account for the response selectivity
for any of these generic corner types the perceptual representation of sharp local-
ized features that allow, e.g., to distinguish between sharp and rounded corners
remain unanswered. Sharp corners of any opening angle would be indistinguish-
able from the smooth variants of these corners given the increasing smoothing
and sub-sampling of the visual representation while proceeding in the hierarchy.
Our model argues in favor of a distributed representation: While shape sensitive
cells at an intermediate level represent the salient shape protrusions (as in V4)
the localized detail of an outline is represented at a higher spatial resolution in
lower-level representations, e.g., in V1, V2, V3. In our model we suggest represen-
tations of smooth boundaries with different curvatures represented by groupings
in model V2 while sharp corners are implicitly represented by convergent V1 in-
put in local representations in model V2/V3. We assume that responses of cells
in the model V2/V3 complex mutually compete such that their energy provides
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a measure to normalize individual responses. These provide convergent input to
curvature selective contour cells in model V4 which, in turn, send feedback signals
to their input sites at preceding stages. Since they are driven by either smooth or
sharp contour arrangements the interaction of bottom-up sensory and top-down
context-driven signals leads to selective enhancement of the particular corner con-
figuration in the present stimulus. The specific details of the interaction between
such counter-stream signal flows are discussed below.

4.5.3 Feedback as prediction mechanism to link shape com-
ponents

The hierarchical model architecture proposed here is composed of multiple model
areas each of which is represented by a three-stage columnar cascade model. In
a nutshell, the model cascade consists of (i) an initial stage of input filtering,
(ii) a stage of activity modulation of filter outputs by top-down or lateral re-
entrant signals, and (iii) a stage of center-surround interaction of target cells
against an inhibitory pool of cells leading to activity normalization to generate
the net output response of the model area. These three stages can be roughly
mapped onto compartments of cortical area subdivisions (as suggested in [Self
et al., 2012]). The filtering stage of the driving feedforward input signals is
specific to the particular (model) area under consideration. At the output stage,
the activity normalization is computed by a mechanism of shunting inhibition,
like the non-linear divisive mechanisms proposed in [Carandini and Heeger, 1994,
Carandini et al., 1999, Kouh and Poggio, 2008, Carandini and Heeger, 2012]. The
feedback signal is generated at higher-level cortical stages or parallel processing
pathways and is thought to provide context information that is re-entered at the
stage earlier in the processing hierarchy [Grossberg, 1980, Edelman, 1993].

The functional role feedback signals play still remains controversial. Different pro-
posals how feedback signals interact and combine with the driving feed-forward
stream have been discussed in the literature which have received different sup-
port from the experimental literature [Markov et al., 2013]. One such framework
proposes that the goal of computation is to reduce the residual error between
the different signal streams in order to approach the sensory prediction generated
by higher stages of processing [Ullman, 1995, Bastos et al., 2012]. This idea is
rooted in the Bayesian theory of predictor-corrector mechanisms which yields to
the Kalman optimal filter realization under some restricting assumptions [Rao and
Ballard, 1999]. We follow an alternative route in which the feedback mechanism
is modulatory in nature. Unlike predictive coding which tried to drive the differ-
ence between driving signals and the prediction to zero bottom-up input signals
are amplified by matching feedback signals. This leads to a gain enhancement for
those cell responses where a matching top-down predictive signal template has
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been generated. This feedback signal amplifies the sensory signal such that the
subsequent competition between neurons yields a competitive advantage for the
enhanced response patterns (biased competition; [Girard and Bullier, 1989, Desi-
mone, 1998, Roelfsema et al., 2002, Reynolds and Heeger, 2009]). The modulation
mechanism is reminiscent of the linking mechanism suggested by [Eckhorn et al.,
1990, Eckhorn, 1999] to account for activity synchronization in networks of spik-
ing neurons. We have recently demonstrated [Brosch and Neumann, 2014a] that
such mechanism of convergent bottom-up feedforward and top-down feedback
signal correlation accounts for the signal amplification as measured at the level
of cortical pyramidal cells [Larkum, 2013].

In the shape processing architecture described here the modulatory feedback
serves the role of a predictor [Spratling, 2008]. For example, bottom-up input
in oriented contrast is integrated by mechanisms of contour grouping and inte-
gration to generate continuous boundary representations. This is similar in spirit
as the recent investigation of [Piëch et al., 2013] who emphasized how context
information at higher cortical stages influence more local feature representation
at lower levels. Here, the same principle is replicated over different stages of
model cortical processing. Contour representations after grouping in model V2
and junction configurations in model V3 send their output activations to cur-
vature sensitive cells in model V4 where the activities are integrated. These
cells, in turn, send their feedback to the input populations of neurons that have
generated their input. The computational logic is that the curvature responses
provide a template of context-related information about the local presence of ori-
ented shape features. The modulatory feedback amplifies those inputs that are
consistent with the curvature feature representation. The mutual competition of
responses in a pool of cells at the lower level leads to a suppression of inputs that
do not contribute to the present curvature feature. In all, a distributed represen-
tation of shape information is created that contains coarse-grained configurational
information about stimulus shape and, at the same time, the spatially localized
detail needed to distinguish between sharp and smooth corners. Similarly, the
action of feedback sent from ownership sensitive cells (in the V4/IT complex of
the model) to curvature sensitive and grouping cells in model V2 and V4 also
provides context information for the assignment of configurational information.
Here, the ownership assignment is based on the consolidation of evidence which
convex shape elements make to establish a closed shape region in the visual field.
This context is delivered via feedback to their input that represents fragments of
shape components (irrespective of the sign of curvature) and also to the grouping
representations. Those shapes that finally receive assigned direction of border
ownership, and thus figure-ground direction, will enhance the associated inputs
at the intermediate level orientation-curvature representations.

In all, the hierarchical processing scheme proposed here relies on extensive bidi-
rectional flow of information in which the feedback signals that represent context-
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sensitive templates are gated by feed-forward driving input signals. Such a mod-
ulating feedback driven gain control mechanism relates to mechanisms proposed
by Roelfsema and colleagues [Lamme and Roelfsema, 2000, Roelfsema et al.,
2002, Roelfsema, 2006] in which spatial detail is generated by feature-driven
low-level processes and representations and subsequently associated with coarse-
grained context information provided by intermediate and higher-levels of cortical
computation. The mechanisms implemented in the proposed model are consistent
with theoretical predictions from computational constraints visual perception im-
poses on the underlying architecture [Tsotsos, 1988]. The advantages in compu-
tational complexity have been calculated for principles such as hierarchical orga-
nization, localized receptive field computations, and dedicated (distributed) maps
of feature representation and their combination. Feedback has been suggested to
steer an attentional beam by selecting a spatial region and their computational
resources [Tsotsos, 2005]. In the proposed architecture feedback also selectively
enhances representations of features by increasing their gain which are coherent
with the predictions generated at higher-level stages with more condensed coding
of shape and figural properties. Also we emphasize that this provides a key to
enhance (and make accessible) localized shape features, such as sharp edges, as
part of a shape configuration that is represented on a coarser scale.

4.5.4 Model limitations and further extensions

The proposed model architecture emphasized the computational role of feed-
forward and feedback mechanisms in order to generate a hierarchical distributed
representation of shape information. For that reason, we focused on the repre-
sentational aspects as steady-state solutions of an otherwise dynamic interaction
between neuronal populations and representations distributed over several model
areas. We did not, so far, investigate the temporal response phases observed
for shape sensitive cells in V4 [Yau et al., 2013a]. The work of Roelfsema and
colleagues has shown that different response phases exist that can be reliably as-
signed to different mechanisms in processing, namely for feature detection, figure-
ground segregation, and attention [Roelfsema et al., 2007]. We have demonstrated
that such separate but temporally overlapping phases can be accounted for by
a recurrent network of mutually interacting neuronal sites. The network model
has been composed of the same components like the present model architecture
[Raudies and Neumann, 2010]. It would thus be interesting to reveal whether
similar temporal phases can be identified for model V4 cells that may give rise
to identify different signatures indicative of contributions from delayed neuronal
mechanisms that are involved in the computation of figural shape information.

Different signal streams (particularly in the feed-forward sweep of feature pro-
cessing) operate on different temporal scales. Several lines of evidence suggest
that the dorsal and the ventral streams of processing do not operate entirely
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in isolation but mutually interact at different levels [Felleman and Van Essen,
1991, Markov et al., 2013]. Also different response characteristics of cells may
define different temporal routes of fast and slow processing [Born, 2001] that
may help fusing information from different pathways. Here, we did not take into
account such interactions based on different temporal effectivenesses. However,
other model investigations capitalized on combining information from different
channels to improve the selectivity of representation. For example, edge detec-
tion and grouping (in the ventral pathway) could be enhanced through mutually
inhibitory gain control (which is similar as the normalization stage described
here) generated by representations in the dorsal pathway. Since the dorsal repre-
sentation is created by magno-cellular responses, such inhibition arrives already
early to shape the selectivity of shape representations in the ventral path that is
mainly driven by parvo-cellular responses [Shi et al., 2013]. Similarly, interactions
between the motion and form pathway have been suggested to help disambiguat-
ing localized features that give rise to occlusion cues which, in turn, support the
disambiguation of object representation in the motion representation [Bayerl and
Neumann, 2007, Beck and Neumann, 2010]. Such detailed mechanisms would
further enhance the proposed model architecture in refining the selectivities at
different levels of low and intermediate representation.

As already pointed out above, the focus here is on the processing of 2D shape
representations. In [Cadieu et al., 2007] the authors have highlighted that their
specific model investigation on shape representation in V4 is part of a larger hier-
archically organized architecture for object recognition [Riesenhuber and Poggio,
1999, Serre and Poggio, 2010]. Since their model principles relied on purely feed-
forward processing the insights provided in the work presented here might also
shed some light on the mutual interactions between different processes on an
even larger scale of object recognition processes. In addition, it would be inter-
esting to find out how the representation of 3D surface patches [Yamane et al.,
2008] seamlessly fit into a model computational architecture of recurrent shape
computation.

In the presented coverage our model does not respond to contours elicited by
contrasts of spatial luminance statistics caused by differently textured regions.
However, the core mechanisms, including initial filtering, modulatory feedback
and competitive interaction for normalization, are like those proposed in the cur-
rent contribution. A model that focuses on the processing of such boundaries has
been developed in [Thielscher and Neumann, 2003]. It is thus very likely that the
recent model architecture proposed here can be extended with processing stages
capable to process texture define boundaries as well without changing the basic
architecture and computational principles. Also not considered in the current
version is a multi-scale approach. We acknowledge the theoretical justification of
hierarchical multi-stage processing to build up a pyramid-like structure [Tsotsos,
2005]. Incorporating this representational diversity would allow the processing
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of a wider range of curvature configurations in shape outlines. In addition, this
would support a more robust segregation of border ownership on the basis of
convexities in the figural outline. We have focused our efforts on the specification
of a hierarchically organized network architecture that utilized bottom-up and
top-down convergent processing flows. In order to keep the computational efforts
and the simulation times within reasonable bounds we restricted our description
to single scale components at the different model stages within the hierarchy. A
more extended realization of components is certainly desired but left for future
investigations.

Intermediate level representations involve cells with receptive fields that recruit
multiple sub-field components [Yau et al., 2013a, Mineault et al., 2012]. The
model of [Cadieu et al., 2007] accounts for this by sequentially fitting the sub-
units of intermediate level receptive field models to match the response profiles
of V4 responses measured experimentally. This yields a sampling structure of
statistically significant inputs in a feature space that contributes a significant
amount of feature input to generate the final response of a shape selective cell.
So far, in our modeling we sampled the spatial and the feature domains regularly.
This of course demands high representational as well as computational resources.
Consequently, it would be of interest to see how an irregularly sampled 4D space-
feature domain (with orientation and curvature features) can be embedded into
the scheme of shape representation proposed here.

Publications

The contributions contained in this chapter are the accumulated outcome of the
preceding research period. Prior investigations and earlier results have been pre-
sented in individual publications. The applicability of neurally inspired mecha-
nisms to actual problems of computer vision and machine learning was presented
in [Layher et al., 2011] and [Schels et al., 2013].

The contributions of optical flow for the perception of figure and ground has been
investigated over a period of time and lead to various publications [Tschechne
and Neumann, 2011a, Tschechne and Neumann, 2011b, Tschechne and Neumann,
2012]. In this thesis, the contribution of motion information to the resolving of
spatial arrangements was neglected, however the component of contextual modu-
lation using area IT for the resolving of border ownership assignments from shape
outline was included. The model presented here has been published in [Tschechne
and Neumann, 2014a]. Some depictions in this thesis have been adapted from
this publication.
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One of the wonders of evolution is the brain, a fascinating matter that hosts a con-
glomerate of neurons and synapses. The complexity, the density of neurons and
the level of interconnectedness provides us and other species with highly devel-
oped cognitive and intellectual capabilities, that still outplay artificial intelligence
systems in terms of performance, flexibility, robustness and energy consumption.
How does this grayish matter work, where are the gear-wheels and transmission
lines of perception, knowledge, emotion and instincts? Researchers deal with
these questions for many decades now, but many challenges remain on the way
to a complete understanding.

5.1 Contextual modulation as generic principle

One established insight into the principles of visual processing is that it takes
place along the visual pathway and follows mainly two tracks, one ’what’ pathway
that is dedicated to form processing and one ’where’ pathway that is dedicated to
motion processing. Along these tracks, neural processing areas receive input from
increasingly large receptive fields, which are the regions of the visual field they
receive input from. At first sight, early areas with small receptive fields seem to
only respond to their local input. Interestingly, this is not the case. The surround
of the receptive fields affects the response of cells, and this happens in different
parts of visual cortex [Nurminen and Angelucci, 2014]. The authors of [Krause
and Pack, 2014] review the contribution of contextual modulation with many
examples taken from different parts of the visual system. In a nutshell, contextual
modulation influences local representations with information from outside their
receptive fields. This hypotheses is backed up with results from anatomical and
physiological investigations that revealed that there is a considerable amount of
downward-directed connections in the cortex. However, these downward directed
connections and thus, contextual modulation, is often ignored in models for the
sake of simplicity, but it is believed that they contribute significantly to a list of
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nonlinear effects that can be observed in visual processing.

The hierarchical model architecture proposed here is composed of multiple model
areas each of which is represented by a three-stage columnar cascade model. In
a nutshell, the model cascade consists of (i) an initial stage of input filtering, (ii)
a stage of activity modulation of filter outputs by top-down or lateral reentrant
signals, and (iii) a stage of center-surround interaction of target cells against an in-
hibitory pool of cells leading to activity normalization to generate the net output
response of the model area. These three stages can be roughly mapped onto com-
partments of cortical area subdivisions [Self et al., 2012], see Sec. 2.3. The filtering
stage performs linear or nonlinear integration of afferent input connections. The
modulatory feedback amplifies those inputs that are consistent with the feature
representation. Those enhanced features have a competitive advantage against
others that did not receive top-down modulation. Such a modulating feedback
driven gain control mechanism relates to mechanisms proposed by Roelfsema and
colleagues. Feedback is discussed controversially in literature [Markov et al., 2013]
and can also be regarded as predictor-corrector mechanisms in a Bayesian frame-
work [Rao and Ballard, 1999, Ullman, 1995, Bastos et al., 2012]. In this thesis, we
follow a path where feedback is modulatory. The following mutual competition of
responses in a pool of cells at the lower level leads to a suppression of inputs that
do not contribute to the present feature. Chap. 2 introduces the reader to the
computational foundations of these mechanisms. These computational building
blocks for models of visual processing have previously been used in architectures
for form and motion processing. [Brosch and Neumann, 2014a] recently investi-
gated that the pool normalization accounts for signal amplification at the level
of cortical pyramidal cells.

This concept is applied to two very different models of visual processing, but each
of them makes use of the same generic principles. Our models rely on extensive
bidirectional flow of information in which the feedback signals that represent
context-sensitive templates are gated by feed-forward driving input signals. By
this we show of contextual information can be made available even across different
modalities using the same mechanisms, and how the quality of the representations
benefits from this influence.

5.2 Event-based motion estimation

We present a model of motion estimation based on asynchronous input from a
neuromorphic vision sensor in Chap. 3. We suggest that the receptive field struc-
ture of spatio-temporally motion selective V1 neurons resemble the likelihood
distribution in the x− y − t-domain. Our model is directly motivated by recent
physiological findings described in [De Valois et al., 2000]. These findings suggest
that simple cells in V1 can be subdivided into two groups, namely those that
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are separable in space-time (which prefer stationary stimuli), and those that are
inseparable in space-time (which are sensitive to moving stimuli). A detailed
singular-value decomposition analysis of the spatio-temporal response properties
of such cells revealed that direction-selective cells with spatio-temporally insep-
arable receptive fields are composed by two singular values of one temporally
biphasic and one temporally monophasic cell [De Valois and Cottaris, 1998]. We
propose a simple model to generate the receptive profiles and their linear super-
position. We suggest a simple parameterized model that is capable to generate
a bank of direction sensitive filters in multiple scales. Our investigation is sim-
ilar to the investigation of [Escobar and Kornprobst, 2012] who seek to specify
the spatio-temporal selectivity of direction-selective filters to be employed. Our
mechanism is directly derived from physiological findings and we were able to
derive simple mechanisms for parameterization. Perhaps the most similar scheme
in comparison to our model is the one proposed by [Adelson and Bergen, 1985]
which also suggests to derive spatio-temporally selective kernels by superposing
different receptive fields. We rely on the superposition of space-time separable
filters with out-of-phase temporal modulation filter-responses. Our test applica-
tions of the model implementation successfully demonstrates the functionality of
such initial filtering for motion detection from the spatio-temporal event cloud.
Our model also contains a processing stage that creates a representation of mo-
tion streaks. Those streaks or speed lines occur from the temporal integration
of visual features and result in an activation of cells tuned to form features. We
show how the event-based format directly leads to an activation of form cells
using existing mechanisms of temporal and spatial integration. We show how
the representation of these speed lines may influence a representation of motion
signals in another example of form-motion-interaction.

5.3 Hierarchical representation of form features

The generic cortical mechanisms are also applied throughout a model of hierar-
chical form processing that is presented in Chap. 4. Here we propose a model of
mechanisms in ventral pathway that represents visual scenes as image regions and
allows their combination of surfaces and prototypical objects. Multiple mutually
connected areas in the ventral cortical pathway receive visual input and extract
local form features that are subsequently grouped into increasingly complex, more
meaningful image elements. We propose a mechanism how such a distributed net-
work of processing is capable of representing highly articulated changes in shape
boundary as well as subtle curvature changes. We propose a recurrent computa-
tional network architecture that utilizes hierarchical distributed representations
of shape features to encode surface and object boundaries over different scales of
resolution. Our model makes use of neural mechanisms that model the processing
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capabilities of early and intermediate stages in visual cortex, namely areas V1-V4
and IT. We suggest that multiple specialized component representations inter-
act by feedforward hierarchical processing that is combined with feedback signals
driven by representations generated at higher stages. Based on this, global config-
urational as well as local information is made available to distinguish changes in
the object’s contour. Once the outline of a shape has been established, contextual
contour configurations are used to assign border ownership directions and thus
achieve segregation of figure and ground. The model, thus, proposes how separate
mechanisms contribute to distributed hierarchical cortical shape representation
and combine with processes of figure-ground segregation. Our model is probed
with a selection of stimuli to illustrate processing results at different processing
stages. We especially highlight how modulatory feedback connections contribute
to the processing of visual input at various stages in the processing hierarchy.

The two models showed how contextual information is contributed to early areas
using a hierarchical model of generic building blocks. Contextual information
in the shape of modulatory feedback is elegantly contained in a physiologically
plausible three-stage processing cascade that has versatile use for the processing
of visual features. Such models of visual processing contribute to a precise un-
derstanding of neural principles, the building block they are comprised of and
possible processing strategies in vision and perception that lead to our detailed
and accurate visual capabilities. In addition, the investigation of such neural
principles and their applicability to computer systems has a huge potential for
upcoming generations of signal-processing hard- and software. Current and future
requirements to computer systems are at the moment tough to realize with tra-
ditional methods of computer science. The investigation of biologically inspired
mechanisms provided alternative strategies to achieve robust solutions to complex
problems with the application of mechanisms of neural information processing.
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J. K. (2012). The Roles of Endstopped and Curvature Tuned Computations
in a Hierarchical Representation of 2D Shape. PLoS ONE, 7(8):1–13.

[Roelfsema et al., 2002] Roelfsema, P., Lamme, V., Spekreijse, H., and Bosch,
H. (2002). Figure–ground segregation in a recurrent network architecture. J.
Cognitive Neuroscience, 14(4):525–537.

[Roelfsema, 2006] Roelfsema, P. R. (2006). Cortical Algorithms for Perceptual
Grouping. Annual Review of Neuroscience, 29:203–227.

[Roelfsema et al., 2007] Roelfsema, P. R., Tolboom, M., and Khayat, P. S.
(2007). Different processing phases for features, figures, and selective attention
in the primary visual cortex. Neuron, 56(5):785–92.

[Rust et al., 2006] Rust, N. C., Mante, V., Simoncelli, E. P., and Movshon, J. A.
(2006). How mt cells analyze the motion of visual patterns. Nature Neurosci.,
9:1421–1431.

[Salin and Bullier, 1995] Salin, P.-A. and Bullier, J. (1995). Corticocortical con-
nections in the visual system: Structure and function. Physiological Reviews,
75(1):107–54.

[Sceniak et al., 1999] Sceniak, M. P., Ringach, D. L., Hawken, M. J., and Shapley,
R. (1999). Contrasts Effect on Spatial Summation by Macaque V1 Neurons.
Nature Neuroscience, 2(8):733—-9.

[Schels et al., 2013] Schels, M., Glodek, M., Meudt, S., Scherer, S., Schmidt, M.,
Layher, G., Tschechne, S., Brosch, T., Hrabal, D., Walter, S., Traue, H. C.,
Palm, G., Neumann, G., and Schwenker, F. (2013). Multi–Modal Classifier–
Fusion for the Recognition of Emotions. In Rojc, M. and Campbell, N., editors,
Coverbal Synchrony in Human–Machine Interaction, chapter 4, pages 73–98.
Science Publishers.

[Schwartz et al., 1983] Schwartz, E., Dee, R., Albright, T., and Gross, C. (1983).
Shape Recognition and inferior temporal neurons. Proc. Nat’l. Acad. of Science
USA, 80:5776–5778.



132 Bibliography

[Self et al., 2012] Self, M. W., Kooijmans, R. N., Supér, H., Lamme, V. A., and
Roelfsema, P. R. (2012). Different Glutamate Receptors Convey Feedforward
and Recurrent Processing in Macaque V1. Proc. Nat’l. Acad. of Sciences USA,
109(27):11031–6.

[Serrano-Gotorredona et al., 2009] Serrano-Gotorredona, R., Oster, M., Licht-
steiner, P., Linares-Barranco, A., Paz-Vicente, R., Gómez-Rodŕıguez, F.,
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Summary

This thesis presents models of visual form and motion processing and how neural
representations in either modality are influenced by the context their are embed-
ded within. The work presents the physiological and theoretical foundations that
the investigations are based upon, as well as two models of visual processing. The
work’s content is organized into three main chapters.

Chapter 2 presents the physiological background of vision including a short sum-
mary of the optical tract from the retina to the occipital cortex. More highlight is
put on the cortical mechanisms of visual processing and the neural representation
of visual stimuli. While keeping the mechanisms of single-compartment-models
in mind, a generic cascade model of visual processing in presented that presents
canonical mechanisms of model processing areas. It has been used in previous
models of visual processing and contains three major stages of processing for
a model visual area, namely a stage of initial filtering, a stage of contextual
feedback modulation and a stage of non-linear filter operations by means of nor-
malization mechanisms. The subsequent contributions in this thesis are based on
these generic components.

Chapter 3 proposes a model of motion processing along the dorsal pathway us-
ing the event-based Dynamic Vision Sensor (DVS). The sensor provides a con-
stant stream of visual events that densely samples the plenoptic function. Using
the neuromorphic output of the sensor, the proposed model applies physiologi-
cal findings for the generation of a model of optic flow estimation. Our model
makes use of neural mechanisms that model the processing capabilities of early
and intermediate stages in dorsal pathway of visual cortex. Spatio-temporally in-
separable initial motion filters are combined from separable components to yield
direction-selective filters for the initial stage of motion estimation (V1). The the-
sis elaborates on subsequent processing mechanisms that pick up physiological
and psychophysical findings along the dorsal pathway. Motion integration and its
effects on increasing the robustness of initial motion representation to noise and
outliers is presented. Physiological investigations suggest that the solution of the
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aperture problem is achieved at an MT level, but early mechanisms at V1 might
also contribute to the solution. We present mechanisms of early surround inhibi-
tion that show to contribute to the solution of the aperture problem. The dense
processing allows an representation of motion streaks in the ventral (form) path-
way, that comes with the unique representation of visual events. These motion
streaks or speed lines provide a spatial code for motion processing. In this context
the interaction of the dorsal and ventral stream for motion processing is shown.
The functionality is demonstrated with various stimuli. The chapter closes with
considerations of how a motion algorithm based on an event-based representa-
tion of visual input is designed in order to keep the unique processing advantages
like instantaneous estimation of local estimates and sparse representation. The
dense representation of visual events requires altered processing mechanisms in
that a continuous updating process is required. To conclude the chapter, the
computational advantages of such and algorithm is described using theoretical
and empirical data as well as knowledge about the hardware.

Chapter 4 proposes a model of mechanisms in ventral pathway that segments
visual scenes into image regions and allows their combination to surfaces and
prototypical objects. Multiple mutually connected areas in the ventral cortical
pathway receive visual input and extract local form features that are subsequently
grouped into increasingly complex, more meaningful image elements. We propose
a mechanism how such a distributed network of processing is capable of repre-
senting highly articulated changes in shape boundary as well as subtle curvature
changes. We propose a recurrent computational network architecture that uti-
lizes hierarchical distributed representations of shape features to encode surface
and object boundaries over different scales of resolution. Our model makes use of
neural mechanisms that model the processing capabilities of early and intermedi-
ate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple
specialized component representations interact by feedforward hierarchical pro-
cessing that is combined with feedback signals driven by representations generated
at higher stages. Based on this, global configurational as well as local informa-
tion is made available to distinguish changes in the object’s contour. Once the
outline of a shape has been established, contextual contour configurations are
used to assign border ownership directions and thus achieve segregation of figure
and ground. The model, thus, proposes how separate mechanisms contribute to
distributed hierarchical cortical shape representation and combine with processes
of figure-ground segregation. Our model is probed with a selection of stimuli to
illustrate processing results at different processing stages. We especially highlight
how modulatory feedback connections contribute to the processing of visual input
at various stages in the processing hierarchy.



Zusammenfassung

Diese Arbeit präsentiert Modelle visueller Form- und Bewegungsverarbeitung und
zeigt wie der Einfluss kontextueller (umgebender) Aktivitäten die neuronale Re-
präsentation beeinflusst. Die Arbeit führt die physiologischen und theoretischen
Grundlagen ein, auf denen die Untersuchungen beruhen, danach werden zwei
Modelle visueller Informationsverarbeitung untersucht. Die Arbeit gliedert sich
in drei Kapitel.

Kapitel 2 zeigt den physiologischen Hintergrund der Untersuchungen und bie-
tet eine kurze Zusammenfassung der Komponenten des optischen Pfades. Dabei
wird auf die zu Grunde liegenden kortikalen Mechanismen visueller Informati-
onsverarbeitung und die neuronale Repräsentation visueller Signale fokussiert.
Hierbei zeigt die Arbeit die Mechanismen einfacher Neuronenmodelle (single-
compartment models) und präsentiert die modulare Verarbeitungskaskade, mit
denen optische Areale modelliert werden. Diese wurde bereits ihn vorausgehenden
Arbeiten eingesetzt. Sie gliedert sich in drei hauptsächliche Verarbeitungsschrit-
te: Eine initiale Filterung, eine modulierende Stufe, bei der Kontextinformation
eingebracht wird und eine Stufe nichtlinearer Operationen in Form eines Nor-
malisierungsmechanismus. Die weiteren Ausführungen dieser Arbeit beruhen auf
diesem Kaskadenmodell.

Kapitel 3 zeigt ein Modell der Bewegungsverarbeitung entlang des dorsalen Pfa-
des, das die ereignisbasierten Ausgabedaten des Dynamic Vision Sensors (DVS)
verarbeitet. Dieser Sensortyp tastet optischen Input in hoher zeitlicher Auflösung
ab und liefert einen asynchronen Strom visueller Ereignisse. Das Modell verknüpft
diese neuromorphe Repräsentation mit physiologischen Erkenntnissen über Mo-
delle der Bewegungsschätzung und benutzt die neuronalen Mechanismen der
frühen und mittleren Verarbeitungsschritte im visuellen Kortex entlang des dorsa-
len Pfades. In einer initialen Stufe (V1) werden raum-zeitlich separierbare Filter-
komponenten zu raum-zeitlich nicht separierbaren Filtern zusammengesetzt, die
der Bewegungserkennung dienen. Die Arbeit führt hierbei die weiterführenden
Verarbeitungsschritte entlang des dorsalen Pfades auf, die auf physiologischen
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Erkenntnissen beruhen. Der Einfluss der Bewegungsintegration und ihr positiver
Effekt auf das enthaltene Rauschen in der initialen Schätzung wird aufgezeigt.
Die Arbeit präsentiert den Einfluss von frühen hemmenden Signalen auf das Blen-
denproblem mit Hilfe kontextueller Modulation. Die dichte zeitliche Abtastung
des DVS ermöglicht weiterhin eine Repräsentation von Bewegungsslinien (motion
streaks) in einem ursprünglich der Formverarbeitung zugeordneten Areal (V2). In
diesem Kontext wird eine mögliche Interaktion zwischen dorsalem und ventralem
Pfad aufgezeigt. Die Funktionalität unseres Modells wird mit mehreren Einga-
besignalen getestet. Das Kapitel schließt mit Details über eine algorithmische
Implementierung des Modells, das die einzigartigen Eigenschaften der ereignisba-
sierten Daten erhält. Zu diesen Eigenschaften zählt eine spärliche Datenhaltung
und kontinuierliche, auf einzelnen Ereignissen beruhende Abarbeitung, die ange-
passte Verarbeitungsschritte erfordern. Am Ende des Kapitels wird auf die Fra-
gestellung nach möglichen Verarbeitungsvorteilen mit einer Komplexitätsanalyse
eingegangen.

Kapitel 4 präsentiert ein Modell der Formverarbeitung entlang des ventralen Pfa-
des, das eine verteilte Repräsentation von Szenen in Form von lokalen Kompo-
nenten ermöglicht und diese zu einer Repräsentation von Oberflächen und proto-
typischen Objekten zusammenfasst. Mehrere miteinander verbundene Modella-
reale entlang des ventralen Pfades erhalten visuellen Input und extrahieren lokale
Formeigenschaften. Diese werden nachfolgend zu komplexeren, bedeutungsvolle-
ren Bildelementen zusammengefasst. Wir präsentieren einen Mechanismus, der in
einem verteilten Verarbeitungsnetzwerk die Repräsentation deutlicher Schwan-
kungen im Konturverlauf ebenso ermöglicht wie kleinere Veränderungen. Un-
ser rekurrentes Verarbeitungsnetzwerk nutzt hierarchisch verteile Formrepräsen-
tationen, um Oberflächen und Objektgrenzen über mehrere Skalen zu repräsen-
tieren. Wir benutzen hierzu die Verarbeitungseigenschaften früher und mittlerer
Areale im visuellen Kortex, die Areale V1 bis V4 und IT. In unserem Modell in-
teragieren mehrere spezialisierte Komponenten in einem hierarchischen, vorwärts
gerichteten Verarbeitungsschritt mit Repräsentationen, die durch rückwärts ge-
richtete Verbindungen aus späteren Verarbeitungsstufen stammen. Dadurch wer-
den globale, kontextuelle und lokale Informationen verfügbar, um Änderungen im
Konturverlauf festzustellen. Sobald der Konturverlauf fest steht wird kontextu-
elle Information benutzt, um die Zugehörigkeit einer Objektkante zum Vorder-
oder Hintergrund festzulegen. Unser Modell präsentiert dadurch die einzelne Me-
chanismen in einem hierarchischen Modell zur Objektrepräsentation beitragen.
Besonderes Augenmerk wird hierbei auf den Einfluss modulierender kontextuel-
ler Verbindungen gelegt und wie sich diese auf die Verarbeitung in verschiedenen
Stufen entlang der Verarbeitungskette auswirken.
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