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Abstract

Quantitative phase imaging, i.e. the detection of the phase delay imposed by a
biological cell or thin transparent sample on the incoming electromagnetic wave,
allows not only to visualize the otherwise hidden structure of a sample under inves-
tigation but also, observe and study the dynamics of refractive index and thickness
fluctuation. One well-known approach toward phase reconstruction based on images
acquired at different planes of focus is to solve the transport of intensity equation
(TIE), which, owing to its simple mathematical formulation and straight forward
procedure of acquiring the corresponding experimental data, has gained attention
at different research communities over the past decades.

The TIE is a second order, elliptical, non-separable partial differential equation
which relates the intensity variation along the optical axis to a Laplace-like function
of the phase and yields a unique solution for the phase, provided the measured
intensity at the principle plane is strictly positive and the boundary conditions
are well defined. However, boundary conditions are not accessible in general and
therefore, the TIE is ill-conditioned and the solution is not unique. In order to get
around the problem of non-uniqueness and ill-conditionedness of the TIE, different
algorithm are presented throughout my thesis.

The first algorithm presented in this research work to solve the TIE is based on
the prior knowledge of free area in the image plane. This is realized by applying
Dirichlet boundary conditions on the perimeter of a polygon where the phase is
constant. The Neumann boundary condition is imposed to the boundary of the
padded area. The TIE is solved by the finite element method in which a multigrid
solver is employed in order to minimize the computation time.

The second approach towards phase retrieval from intensity measurements is
called the Gradient Flipping (GF) algorithm, in which the l0 norm of the gradient of
the phase. To accomplish this task, an algorithm devised to combine the well-known
fast Fourier transform (FFT) solution of the TIE with the constraint projection
principle adapted from the charge flipping algorithm. In an iterative manner, the
boundary condition is updated in such way that consistency between experimental
data and reconstructed phase is assured. The algorithm iterates until convergence
is reached. Experimental demonstration shows the superiority of the GF algorithm
over the conventional FFT solution to the TIE and a l1 minimization approach.

Finally, unlike the TIE which relies on defocused intensity measurements, a new
approach based on the astigmatic intensity equation (AIE) which relies on intensity
measurements at different angle of a rotating cylindrical lens is presented. The
AIE offers an over-determined system of equations . An iterative algorithm based
on a FFT-approach to solve the AIE has been developed. Numerical experiments
demonstrate its capability to reconstruct the phase of weakly scattering object.
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Chapter 1

Introduction

1.1 Introduction

The structure of most biological samples illuminated by visible light (e.g. light mi-
croscopy) or electrons (e.g. transmission electron microscopy) is not clearly visible
due to the intrinsic low contrast of the sample. Moreover, many samples illuminated
by neutrons show a weak intensity contrast which makes a difficult to observe the
hidden structure of the under investigation object [5]. Furthermore, in the context
of adaptive optics, i.e. a technology which aims at correcting the wave-front dis-
tortion, phase of incident light coming from far objects (e.g. stars, planets) suffers
from severe distortion which degrades the quality of acquired images and real time
observation [5] . Thus, phase measurement and visualization is a key step toward
revealing the hidden information.

An electromagnetic wave is defined uniquely at any position and time by its mod-
ulus and phase, however, the phase information is lost upon measurement. There-
fore, techniques and methods have been developed to retrieve the phase indirectly.
Generally speaking, approaches toward phase reconstruction subsume under two dis-
tinct categories, namely, phase-sensitive imaging and phase measurement [5]. The
approaches fallen in the first class are not capable of providing quantitative infor-
mation and therefore, are qualitative, although these methods portray an unknown
phase by transforming the intensity distribution to a phase map. Examples of this
class are Zernike phase contrast [6], differential interference contrast [7] and Hoff-
man phase contrast [8]. In contrast to the first class, the techniques fallen in the
second category not only visualize the phase distribution but also, provide quantita-
tive data for the corresponding phase distribution. Interferometry [9], through-focal
series [10, 11], transport of intensity equation [12] are examples of this class.In what
follows we restrict our attention to the transport of intensity equation approach
toward quantitative phase measurement.

The transport of intensity equation (TIE) approach is an active field of research
which has opened new vistas to the researchers of different disciplines. Fig.1.1(a)
shows the number of papers published per year concerning the TIE over the course
of the past 20 years. Moreover, Fig.1.1(b) illustrates the number of citations at
the same period which mirror the facts that not only, the TIE became a promising
approach with widespread application, but also, there is an ongoing research to
develop and extend the potential of the TIE [13].

TIE offers fairly easy experimental setup as well as straight-forward mathemat-
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(a) (b)

Figure 1.1: Publications on the TIE: a) Published papers in each year. b) Citations
in each year

ical description in which the phase of electromagnetic wave traversing through a
weakly absorbing object is related to the intensity variation along the optical axis
at the transverse plane from which the hidden structure is revealed. Assuming a
spatially coherent source and paraxial approximation, the TIE, first derived by M.
R. Teague, reads as [12],

~∇⊥ ·
[
I (~r⊥, z) ~∇⊥ϕ (~r⊥, z)

]
= −k∂I (~r⊥, z)

∂z
(1.1)

where k = 2π
λ

is the wavenumber, ~r⊥ is a vector in the plane perpendicular

to the z-direction and ~∇⊥ denotes the Laplacian operator in the transverse plane.
Furthermore, I (~r⊥, z) is the intensity in the principle (focused) plane and ϕ (~r⊥, z)
denotes the unknown phase map. For strictly positive intensities the second order,
non-separable and elliptical differential equation has a unique solution up to an ad-
ditive constant when appropriate boundary conditions met. However, the presence
of zeros in the intensity plane causes vortices in the phase distribution map from
which, generally, a unique solution can not be acquired [14].

1.2 Illumination Source

The TIE is derived under the coherent illumination source assumption, however,
most of the physically available sources are not perfectly coherent. Partially spa-
tially coherent sources such as the Shell-model-type [15] may prevent speckle noise
and reduce cross-talk effects[16], but they also, in some cases, neutralizes Fresnel
diffraction which degrades the reconstructed phase image quality[17].

Under the assumption of a perfect imaging system and within a small defocus
range, reconstructed phases are identical, independent of whether we have a coherent
or partially coherent illumination source [18, 19]. D. Paganin and K. A. Nugent
showed that it is possible to relate the scalar phase to the normalized transverse
energy flux from which the recovered phase of the TIE under coherent illumination
is interpreted as a real-valued scalar quantity whose gradient represents the Poynting
vector [20]. Later, T. E. Gureyev et al. extended the idea of the scalar phase as a
generalized eikonal to describe the evolution of the time-averaged intensity of the

8 Chapter 1 Amin Parvizi
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partially coherent field [21]. However, notably, the generalized eikonal [21] is an
approximate solution to the eikonal equation for fully coherent field in the limit of
the short wavelength [22, 23].

In the limit of first order approximation of the transfer cross coefficient [24] ,
a Gaussian enveloped is assumed to model the partial coherent illumination from
which A.V. Martin et al. in 2006 has derived a modified version of the TIE which is
non-linear to phase[25]. In 2008, C.T.Koch suggested an approach which preserves
the flux between images measured at different defoci from which the induced error
by partially coherent illumination on the reconstructed phase is reduced [26]. More-
over, this approach is insusceptible to the shape of the illumination source. Later,
Zysket al. employed the coherent mode decomposition [27] to decompose the cross-
spectral-density to the superposition of the weighted coherent modes from which
the TIE for partially coherent source has derived [28]. However, the modified TIE
reconstructs the phase of the sum of the coherent fields and the phase of individual
modes can not be retrieved from single TIE measurement[23]. Optical path length
of a thin sample illuminated by a partially coherent source can be determined by
the extended version of the TIE suggested by [23] which is valid for a small de-
focuse range provided the properties of the illumination source are know in prior.
Recently, a Kalman filter[29] based approach is suggested by [30] to incorporate the
characteristic of the illuminating source for large defocuse range in which convo-
lution operator acts to model the coherence effect. More recently, in contrast to
time-space representation of partially coherent illumination such as mutual inten-
sity and cross spectral function, the phase-space framework based on the Wigner
distribution function[31] is suggested by [32] from which the TIE is reformulated.
In the phase-space perspective, the phase of the incident partially coherent beam
can be deemed as a scalar potential whose gradient leads to an ensemble-averaged
transverse energy flux vector.

1.3 Solver and Boundary Conditions

The TIE relates the axial intensity variation along the optical axis orthogonal to
the direction of propagation to the Laplacian of the phase. Being a second order,
non-separable, elliptical partial differential equation, it has a unique solution (up
to an additive constant) for strictly positive measured intensities when appropriate
boundary conditions (BC) are met [33]. However, the presence of zeros in the inten-
sity plane entails singularities in the phase map [34]. L.J. Allen et al. introduced a
modified version of the TIE which accounts for first order vortices [14]. Later, A.
Lubk et al. suggested an algorithm in which the appropriate BC is defined based
on topological charge and large defocus acquired image intensities are employed to
ensure the accuracy of the reconstruction result [35].

Assuming the gradient of intensity is parallel to the gradient of the phase [36]
and Dirichlet BC , a Green’s function solution to the TIE first proposed by M.
Reed Teague [12]. Notably, the validity of Teague’s solution has been extensively
examined for various experimental scenarios and sufficient conditions have been de-
rived which ensure the accuracy of the reconstruction via Teague’s approach [37].
Although the application of the Zerinke polynomials has been known in optical
studies [38], T. E. Gureyev et al. provided a comprehensive understanding of the
mathematical solution of the TIE with respect to Zernike polynomials based on a

Chapter 1 Amin Parvizi 9
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decomposition of the TIE into a series of Zernike functions for the case of a uniform
illumination source[39]. This research work was extended further and suggested an
approach based on an orthogonal series expansion which helps not only, to recon-
struct the phase under non-uniform illumination source but it also, eliminates the
need for an explicit BC [40]. Although the orthogonal series expansion based ap-
proaches were capable to visualize the phase, the boundary slope measurement has
introduced serious difficulties [41, 42], however, in some cases, this measurement
might be neglected[43, 44].

F. Roddier and C. Roddier proposed an iterative scheme based on the Fast
Fourier transform (FFT) to reconstruct the phase in the context of adaptive optics
in astronomy [45]. Later, T.E. Gureyev and K.A. Nugent generalized the idea of
Fourier harmonics [46] and pointed out that the FFT alone can be applied to the
TIE which yields a unique solution under fairly general conditions [42]. Although the
FFT-based approach is computationally fast, the reconstructed phase suffers from
low spatial frequency artifacts due to the periodicity inherent to the FFT approach
in the case of non-periodic object. Furthermore, the quality of retrieved phase is
considerably degraded in the presence of noise [14, 42]. It is worth noting that for
the objects characterized by strong absorption, the solution of the FFT approach
for the TIE does not coincide with the exact one owing to the negligence of the
rotational flux vector which is inherent to the TIE derivation. Therefore, an extra
condition was suggested which results in the phase discrepancy elimination [47].
The FFT-based symmetrization approach to the TIE, proposed by V.V. Volkov et
al. suggests a symmetric extensions paradigm in which a recorded image extends
with respect to either the mirror plane or the intrinsic symmetry of the TIE, then
the FFT algorithm is employed to reconstruct the phase. Although for periodic
objects, the original FFT approach yields an exact solution , this symmetrization
scheme yields an approximate solution for the case of non-periodic object[4]. In
most experiments the assumption of periodic boundary conditions inherent to the
FFT approach is violated. Recently, C. Zuo et al. reformulated the TIE as an
inhomogeneous Neumann boundary value problem in the presence of a hard-edge
aperture which is valid for the case of uniform and non-uniform illumination source.
Furthermore, they showed rather than a direct attack to the TIE, applying the
discrete cosine transform to the Green’s function solution of the reformulated TIE
helps to eliminate the necessity of a detection-purpose scheme to differentiate the
boundary signal from the interior’s one [48].

Since the Laplacian operator is ill-conditioned near and at zero spatial frequency,
a Tikhonov regularization characterized by a regularization parameter α [49] was
suggested to improve the reconstruction quality by filtering out the low frequency
artifact at atomic resolution [50]. To do this, The regularization parameter is chosen
by comparing the reconstructed phases at different α−vlues. It was demonstrated
experimentally that although the Tikhonov regularization approach improves the
quality of the retrieved phase profile, a loss of phase detail was still evident [51]. An
alternative approach which not only reconstructs the phase profile, but also removes
the low frequency artifacts,suggested by L. Tian et al. at MIT [52], is to reformulate
the TIE in the context of a minimization problem which yields a partial differential
equation for non-linear diffusion (NLD) denoising. Furthermore, the sum of mag-
nitudes of the phase gradient is defined as the total variation and NLD denoising
thus helps to eliminate low spatial frequency artifacts. Bearing in mind that the
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NLD regularization approach is not a convex problem, the obtained phase is an ap-
proximate solution to the TIE. In the context of tomography, a discretized operator
is formed consisting of the TIE and a transform in the Fourier domain from which
a compressive reconstruction model is suggested [53]. A two-step iterative shrink-
age/thresholding algorithm then yields the solution [53, 54]. Rather than the phase
gradient, E. Froustey et al. suggested to define a regularization function base on
the eigenvalue of the structure tensor from which the acquired energy minimization
problem can be solved by applying the alternating direction method of multipliers
[55].

In contrast to the FFT approach which portrays an approximate solution to the
TIE, the multigrid solver results in an exact solution [14]. Multigrid algorithms
are based on a hierarchy of grids which speed up the convergence rate of iterative
solutions of the elliptical partial differential equation by iterating between fine and
coarse mesh thus reducing the residual error effectively[56]. In the context of the
TIE, however, the boundary condition is not known in prior and therefore, a periodic
boundary condition with a constant value is assigned to the rectangular perimeter of
the reconstruction phase map in [14]. Implementing the full multigrid algorithm as
the preconditioner of the conjugate gradient method leads a further acceleration in
convergence computation rate [57]. Recently, a finite-element discretization based
method was proposed in which not only the Dirichlet BC to a polygon outlining the
free area is imposed but also, a Neumann BC is defined on the padded perimeter of
the field of view. Furthermore, a multigrid solver was utilized to improve the speed
of convergence [58].

One major drawback of the direct reconstruction methods stems from the fact
that prior information which assists to reduce the possible solution space, is difficult
to be included [59]. Moreover, incorporating the TIE in iterative algorithms extends
the validity range of the TIE [59, 60]. It was shown that Gerchberg–Saxton– Fienup
type of algorithms [61] can be used to refine the TIE reconstructed phase[60]. In
contrast to aforementioned nonlinear iterative algorithms, TIE can be combined
with the first-order Born approximation from which a linear iterative approach has
been devised [59]. Furthermore, it was shown that in the limit of small distances for
mixed objects, the TIE solution does not match with that of the contrast transfer
function (CTF) and therefore, an extension to the CTF is required[62–64].

1.4 Estimation of axial intensity variation

Accurate estimation of the axial intensity variation occurring in the right hand
side of the TIE, plays a prominent role in a precise reconstruction of the phase
of the object under investigation. Since it is not possible to directly record the
intensity derivative along the optical axis, a finite difference scheme is employed.
Mathematically, the accurate estimation of the irradiance variation along the optical
axis is obtained when the defocus difference tends to zero. However, from a physical
perspective, although a small defocus provides high spatial frequency information,
the measurements tend to be noisy. In contrast to small defocus, images recorded at
large defoucs difference would be less influenced by noise at the cost of losing high
spatial frequency information.

As early as 1987, D.Van Dyck and W.Coene [65] have derived an analytical
formula in which the upper bound of defocus is estimated for the case of two images
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captured at equal distances with respect to the principle plane (focused plane) by
assuming a linear approximation to the defocus. However, for the same scenario, this
can be further improved by computing the residual error term between a derivative
and a finite difference formula [50]. The lower bound of the defocus is estimated
by assuming a minimum Michelson visibility of 3% [66]. The upper and lower
limit of defocus for the case of three symmetric images recorded with of coherent
and incoherent illumination are summarized in [25]. In addition, M.Soto et al.[67]
introduced the variance of the local axial derivative of the intensity as a function
of two distinct variables, namely, random noise and separation distance between
different state of focus. Assuming an uncorrelated random noise with zero mean, a
mathematical formula is presented to determine the optimum defocus value based
on the local phase analysis. Moreover, the error in the finite difference estimation of
intensity variation is sandwiched between lower and upper limit. It is worth noting
that the aforementioned analysis relies on the prior knowledge of phase. Later, they
improved the axial intensity derivative by using the first order terms in the Taylor
expansion [68]. This work has been expanded on recently by J. Martinez-Carranza
et. al. [69] in that an analytical expression is provided to determine the optimum
plane separation .

However, the two-image equally-spaced approach is a simple and straightforward
approach which has second-order precision. These calculations suffer from not only
non-linearity due to the higher order terms of the Taylor expansion but also, the
measurements are vulnerable to noise. Therefore, an optimum defocus distance is
needed to balance the noise effect on the measurements and the spatial frequencies
still being transferred. The group of L.Waller [70] at MIT published a research work
mitigating the non-linear effect of higher order intensity derivative by recording
images at multiple equally spaced planes. Two different approach to the first order
estimation of the axial intensity variation is brought to attention. The first method
which is susceptive to noise computes a weight to each distinct measurement in
such a way that higher order terms in Taylor series cancel out. To do so, the set
of linear equations is solved by exploiting the Vandemonde matrix as a coefficient
matrix. This work was extended later in [71] for the general case of unequally spaced
sample measurements. However, the second approach which outperforms the earlier,
relies on a higher order polynomial fit. Firstly the curve of intensity variation
along the propagation axis for each pixel in the image plane is obtained, then, a
higher order polynomial paradigm to accurately model the stack of provided curves
is employed. Hence, the first order derivation can be computed. Although including
higher order terms yields a more precise reconstruction, this comes at the cost of
higher computation time. Notably, using only the first order terms, the second
approach resemble the proposed technique in Ref. [68]. Further improvement of the
estimation of the axial intensity derivative has been carried out by minimizing the
mean squared error between estimated and measured intensity derivative. In order to
mitigate the effect of noise on the approximate axial intensity variation, a nonlinear
set of equation should be solved. A Lagrange multiplier approach is employed to
solve the nonlinear optimization problem [72]. Since the measurements sampled
unequally, this approach can be thought of as a generalization of an approach in [68]
which assumes an equally sampled measurement. Notably, some researchers propose
exponentially-spaced measurements [73]. It can be shown there is an optimal degree
of polynomial fit for the specified number of measurements in which a minimum
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error can be achieved [74].
Although the aforementioned approaches are capable of reasonably recovering

phase, but their performance depends strongly to the noise level and the spatial
frequency characteristics of the sample. From the digital signal and processing per-
spective, all the multiple-plane-based and two plane-based measurement approaches
can be categorized as a spacial form of Savitzky-Golay differentiation filter (SGDF )
[75]. Based on this perspective, two paradigms are presented in [76]. In the first
approach optimal degree of SGDF, equivalent to the optimum degree of a ploynom-
inal which reconstructs the measurements, is chosen in such a way that the variance
remains either constant or without considerable drop as the degree of ploynomial
is elevated. However, the main drawback of this method lies in the fact that the
fine structure of the retrieved phase image is degraded by the lower ploynomial or-
der and the higher polynomial order reconstructs cloudy phase images. A second
method relies an optimal frequency selection (OFS) thus overcoming the difficulties
of the first method. The OFS approach consist of three parts, firstly, the intensity
derivative is estimated with various degree of SGDF, then, the Fast Fourier trans-
form is utilized in conjunction with a complementary filter bank with a specified cut
off frequency for each respective degree of SGDF to reconstruct the phase. Finally,
summing up all the reconstructions lead to the final phase.

A recent research work [77] proposes an approach to compute the axial inten-
sity derivative without scanning along the propagation direction. To do this, a
pair of encoded images, produced by placing two patterns, namely, u pattern and
v pattern, in the aperture plane is recorded. Then, the partial derivatives along
the transverse direction of the captured pair images estimates the axial intensity
derivative. It is worth noting that a chromatic aberrations based approach based
on different irradiation wavelengths is capable of retrieving the phase without scan-
ning the propagation direction. However, a modified version of the TIE should be
employed for each respective method [78, 79].

1.5 Application

1.5.1 Phase Retrieval with neutrons

The neutron is a neutral subatomic particle which consist of one up quark and two
down quarks with a mass of almost one atomic mass unit. In contrast to X-ray
radiation which interacts with the shell of electrons of the atom, neutron scattering
is not related to the electron density of the object of interest. This is due to the
fact that neutron beam interacts with the core and the magnetic momentum of the
atoms [80]. The technique aiming at imaging an object of interest with neutrons is
known as ” Neutron imaging”.

Although neutron interferometry techniques have proven to be successful [81],
the associated technical complexity restricts phase imaging studies thus, introducing
non-interferometric techniques as a viable and feasible alternative. B.E. Allman
et al demonstrated experimentally that a TIE based neutron radiography phase
reconstruction approach provides quantitative phase at low radiation doses which
is difficult to be retrieved by other conventional methods [82]. Later, E. Lehmann
et al. pointed out that the TIE can be exploited to reconstruct the phase of each
slice of a neutron radiography tomographic data set which allows to assign a real
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and imaginary part of the neutron refractive index to each voxel from which the
separation of materials is possible when the conventional tomography methods fail
[83].

1.5.2 Phase Retrieval with Electrons

The TIE has been applied to images taken by modes of transmission electron
microscopy (TEM) that keep magnetic fields away from the specimen, known as
Lorentz microscopy mode, a technique which extensively has been exploited to inves-
tigate magnetic domains and vortices in thin magnetic films as well as superconductors[5,
84]. It is worth noting that the Laplacian of the phase of a magnetic structure is
related to the Ampèrian current density component in the direction parallel to the
incoming electron beam [85]. M. D. Graefa and Y. Zhu have applied the TIE to
a series of Lorentz images of Permalloy film acquired by a JEOL4000 EX TEM
operated at 400 keV and show that the reconstructed phase based on TIE is in
reasonable agreement with the input phase from which the magnetic components
were calculated [86]. Y.Zhu et al suggested to combine the TIE with holography to
overcome the limitation of holography, such as the necessity of being near a vacuum
area for a reference wave as well as the restricted field of view [87]. Later, V.Volkov
and Z.Zhu have derived the magnetic transport of intensity equation (MTIE) based
on the TIE from which the magnetization profile of a hard magnet sample (Nd-Fe-
B) was reconstructed [88]. Except for very small magnetic nano-particles as well
as neglecting electrostatic phase contribution to the total phase shift, the MTIE
offers an accurate insight into magnetic Lorentz microscopy [88]. In order to distin-
guish between the contribution of the electrostatic potential to the total phase shift
from that of the magnetic field, A. Kohn et al proposed an energy-dependent TIE
scheme [89]. Bearing in mind that the contribution of electrostatic potential to the
total phase shifts varies with kinetic energy of the incident electrons, the suggested
scheme recognizes the contribution of electrostatic potential thus subtracting it from
the retrieved phase, result in the magnetic induction field. This method not only
can be exploited to identify the features originated from magnetic potential but also,
successfully reconstructs the phase where the electrostatic potential is substantial
[89]. In addition to the approach suggested by A.Kohn et al, E.Humphrey et al
proposed two distinct TIE-like differential equation with associated Tikhonov regu-
larization parameter to differentiate between the electrostatic potential contribution
to the total electron phase shift from the magnetic one [90]. Later, L.A. Rodŕıguez
et al applied the TIE approach to a sequence of cobalt L-shaped nanowire images
recorded by Lorentz TEM to maximize the nucleation field by optimizing the width
and thickness of the nanowire [91]. Recently, the TIE was utilized to retrieve the
magnetic induction profile from a through focal series of cobalt antidot array with
fixed hole diameter acquired by high resolution in situ Lorentz microscopy [92].

Furthermore, T.C.Petersen et al applied the TIE to a through focal series of
images of a polyhedral nano cube namely, MgO, from which the morphology of the
nano particle was visualized [93]. Noticeably, it was experimentally demonstrated
that, despite the presence of experimental challenges such as charging of the non
particles as well as substrate degradation, the reconstructed phase is in good agree-
ment with that of electron holography. Later, T.C.Petersen et al suggested the TIE
based phase retrieval approach for mapping surface plasmon excitations of metal
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nanoparticles [94]. However, V. J. Keast et al pointed out that the subtle par-
ticle instabilities under the incident electron beam as well as diffraction contrast
fluctuations gave rise to discrepancies between the reconstructed phase distribution
computed from the experimental gold nano particles through focal series data set
and the expected theoretical profile [95].

1.5.3 Phase Retrieval with X-rays

In contrast to neutron and electron radiation, X-ray radiation interacts with the
electron shell of atoms [80]. Depending on the photon energy, X-ray radiation is
categorized into two distinct group namely, hard X-ray and soft X-ray. X-rays
with photon energies below 5-10 keV are known as soft X-rays which have low
penetrating capability and are highly absorbed in air. In contrast to soft X-ray,
hard X-ray photons possess energies above 5-10 keV which increase the capability
of penetration thus more easily capable of revealing the hidden structure of objects
[96]. It worth noting that, the TIE based phase reconstruction approach in hard
X-ray region is challenging on the account of the lack of suitable optical elements
such as lenses [79].

K. A. Nugent et al published the first experimental demonstration of quantitative
phase reconstruction from hard X-rays with beam energy of 16 keV using the TIE
formalism [5, 46]. Later, T. E. Gureyev et al reconstruct the phase of a polystyrene
sphere with negligible absorption using higher energy, 19.6 keV, hard X-ray radiation
[97]. In the context of medical science, A. F. T. Leong used the TIE based X-ray
phase contrast imaging approach to measure the air volume in a lung [98]. Using
high energy X-rays (20 keV photons) with an energy spread of 1e−4 the phase of
Xenopus laevis embryo at the 4-cell stage was retrieved via TIE and quasiparticle
approach in which the latter approach outperformed the TIE in retrieving high
spatial frequency information thus yielding increased spatial resolution [99].

Furthermore, the TIE has been applied to X-ray tomographic data to reconstruct
the 3D phase from which the refractive index of the object under investigation is
computed. M. Langer et al demonstrated numerically and experimentally that in
comparison to the CTF approach as well as Bronnikov method which combines the
TIE with the inverse Radon transform [100], TIE preforms better for noise free data
or where the low dose deposition is substantial due to that fact that fewer image
is needed [101]. However, mixed approach (CTF+TIE) [62] is robust against noise
on account of several images taken at different plane of focus which facilitate the
convergence. Assuming near a field approximation together with prior knowledge of
refractive index of each presented material as well as the thickness of the object at
distinct angle, M. A. Beltran et al suggested an iterative algorithm based on the TIE
which reconstructs the phase of a multi-material object from a single tomographic
data set [103, 104].
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1.6 A brief review of the wave theory of optical

image system

In the following sub-section, the mathematical backbone of the optical image system
is reviewed with the emphasize on the mathematical formulation of the Fresenel and
the Fraunhofer diffraction pattern. The material of this sub-section is based on [1].

The complex representation of a monochromatic wave traveling along the optical
axis, z , with the wave vector ~k, where ‖~k‖ = 2π

λ
and has direction cosines, as shown

in Fig. 1.2, may be written as

U (x, y, z; t) = exp
[
i
(
~k · ~r − 2πυt

)]
(1.2)

Figure 1.2: Graphical representation of direction angles.

where ~k = 2π
λ

(αx̂+ βŷ + γẑ) as well as ~r = xx̂+ yŷ + zẑ is the position vector.
Dropping the time dependence term of the complex representation, the complex
phasor amplitude representation across the z -constant plane along the direction of
propagation is given by

U (x, y, z) = exp
[
i~k.~r

]
= exp

[
i
2π

λ
(αx+ βy)

]
exp

(
i
2π

λ
γz

)
(1.3)

Notably, γ is related to α and β through the following relation

γ =
√

1− α2 − β2 (1.4)

The Fourier transformation of the function U across the (x, y) plane at z = 0 is
given by

A (fx, fy; 0) =

∫ ∫
U (x, y; 0) exp [−i2π (fxx+ fyy)] dxdy (1.5)

where fx and fy are the variables conjugate to x and y, respectively. Comparing
the exponential function exp [−j2π (fxx+ fyy)] with Eq. 1.3 suggests that the ex-
ponential function might be considered as a plane wave traveling along the optical
axis with the following parameters

α = λfx β = λfy γ =
√

1− (λfx)2 − (λfy)2 (1.6)
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Therefore, the Fourier transform of the function U is rewritten as

A

(
α

λ
,
β

λ
; 0

)
=

∫ ∫
U (x, y; 0) exp

[
−i2π

(
α

λ
x+

β

λ
y

)]
dxdy (1.7)

and the function A
(
α
λ
, β
λ
; 0
)

is called the angular spectrum of the optical wave
U(x, y; 0).

In order to draw a relation between the initial angular spectrum, A
(
α
λ
, β
λ
; 0
)
, and

the angular spectrum along the optical axis across the (x, y) plane at an arbitrary
distance z, A

(
α
λ
, β
λ
; z
)
, the optical disturbance U (x, y, z) is written

U (x, y, z) =

∫ ∫
A

(
α

λ
,
β

λ
; z

)
exp

[
i2π

(
α

λ
x+

β

λ
y

)]
d
α

λ
d
β

λ
(1.8)

In addition to the above relation, the optical wave U should also satisfy the source-
free Helmholtz equation; that is (

∇2 + k2
)
U = 0 (1.9)

Substituting Eq. 1.8 into the Helmholtz equation, namely Eq. 1.9, results in the
following second order differential equation for the unknown A

(
α
λ
, β
λ
; z
)
; that is

d2

dz2
A

(
α

λ
,
β

λ
; z

)
+

(
2π

λ

)2 [
1− α2 − β2

]
A

(
α

λ
,
β

λ
; z

)
= 0 (1.10)

the solution to the equatio 1.10 can be written in the form of the exponential func-
tion; that is

A

(
α

λ
,
β

λ
; z

)
= A

(
α

λ
,
β

λ
; 0

)
exp

(
i
2π

λ

√
1− α2 − β2z

)
(1.11)

which states that if the direction cosines condition, namely α2 + β2 < 1, is satisfied
then the various components of the angular spectrum experience a change of the
phase shift over the course of distance z.

However, when α2 + β2 > 1, the right most term turns to a real number and the
Eq. 1.11 can be written as

A

(
α

λ
,
β

λ
; z

)
= A

(
α

λ
,
β

λ
; 0

)
exp (−µz) (1.12)

where

µ =
2π

λ

√
α2 + β2 − 1

µ is a positive real valued number which indicates that the components of the wave
which do not satisfy the direction cosines condition will be swiftly attenuated over
the course of propagation where no energy is transported. Such a component of the
wave is called evanescent wave.

Considering Eq. 1.11, it is now possible to relate the disturbance U across any
arbitrary plan (x, y) at distance z to the initial angular spectrum; that is

U (x, y, z) =

∫ ∫
A

(
α

λ
,
β

λ
; 0

)
exp

(
i
2π

λ

√
1− α2 − β2z

)
×

circ
(√

α2 + β2
)

exp

[
j2π

(
α

λ
x+

β

λ
y

)]
d
α

λ
d
β

λ

(1.13)
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where the circ function is defined as

circ
(√

α2 + β2
)

=

{
1
√
α2 + β2 = 1

0 Otherwise.
(1.14)

which restricts the region of the calculation to the region where the direction
cosines condition is satisfied. In other words, only those component of the angular
spectrum which satisfies the direction cosines condition contributes to the optical
wave U and those which satisfy the evanescent wave condition will be eliminated
by the circ function.

Substituting Eq. 1.6 into the right-hand side of Eq. 1.14 results in

U (x, y, z) =

∫ ∫
A (fx, fy; 0) exp

(
i
2π

λ

√
1− (λfx)2 − (λfy)2z

)
×

circ

(√
(λfx)2 + (λfy)2

)
exp [i2π (fxx+ fyy)] dfxdfy

(1.15)

In addition, if we let the angular spectrum of U (x, y, z) to be shown again with
A (fx, fy; z), then U (x, y, z) may be written as

U (x, y, z) =

∫ ∫
A (fx, fy; z) exp [i2π (fxx+ fyy)] dfxdfy (1.16)

comparing Eq. 1.15 and Eq. 1.16 leads us to a formula which describes how the
angular spectrum evolves over the course of propagation; that is

A (fx, fy; z) =A (fx, fy; 0)circ

(√
(λfx)2 + (λfy)2

)
exp

(
i
2π

λ

√
1− (λfx)2 − (λfy)2

) (1.17)

Therefore, the transfer function of the angular spectrum can be written as

H (fx, fy) =

{
exp

(
i2πz
λ

√
1− (λfx)2 − (λfy)2

) √
f 2
x + f 2

y <
(

1
λ

)
0 Otherwise.

(1.18)

The propagation of the angular spectrum reveals itself as a linear, dispersive
spatial filter with a bandwidth restricted to the spatial frequencies which satisfy√
f 2
x + f 2

y <
(

1
λ

)
in which a frequency dependent phase shift is introduced with the

modulus of unity. High spatial frequency components result in a significant phase
dispersion while the spatial frequency components close to zero yield less phase
dispersion. Nevertheless, for a fixed pair of spatial frequencies, longer propagation
distances introduce higher dispersion in the optical system.

In order to simplify the transfer function of the angular spectrum, binomial
expansion is employed. Let q be a positive, real valued number and less than one.
Therefore, the binomial expansion of the expression

√
1 + q is given by√

1 + q = 1 +
1

2
q − 1

8
q2 + · · · (1.19)
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Direct application of the binomial expansion on the transfer function results the
following form of the transfer function

exp

(
i
2πz

λ

√
1− (λfx)2 − (λfy)2

)
= exp

(
i
2πz

λ

(
1− 1

2
(λfx)

2 − 1

2
(λfy)

2

))
= exp

(
i
2πz

λ

)
exp

(
−jπzλ

(
f 2
x + f 2

y

))
(1.20)

which is called Fresnel approximation and the region within which Fresnel approxi-
mation is valid, is called Fresnel diffraction region. The first exponential term on the
right hand side of the Eq. 1.20 signifies a constant phase shift which is experienced
by all the spatial frequency components. The second exponential term, introduces a
quadratic frequency-dependent phase shift which differs for various components of
the wave traveling along the optical axis. In order to complete the discussion of the
Fresnel approximation and Fresnel diffraction region, we will derive the Fresnel inte-
gral diffraction. To do so, we first apply inverse Fourier transform to the bandwidth
limited transfer function; that is

h (x, y) = F−1

(
exp

(
i
2πz

λ

)
exp

(
−iπzλ

(
f 2
x + f 2

y

)))
=

exp (ikz)

iλz
exp

(
iπ

λz

(
x2 + y2

)) (1.21)

Considering the function h (x, y) as the convolution kernel and employing con-
volution theorem, the Fresnel diffraction integral reads as

U (x, y) =
exp (ikz)

iλz

∫ ∫
U (ξ, η) exp

(
i
k

2z

[
(x− ξ)2 + (y − η)2]) dξdη (1.22)

in which U (ξ, η) is the wavefiled across the (ξ, η) plane located at origin, z = 0,
and U (x, y) is the wavefield across the (x, y) plane located at distance z from the
origin.If we factor the exponential term, exp

(
ik
2z

(x2 + y2)
)
, another form of the

Fresnel diffraction integral can be written as

U (x, y) =
exp (ikz)

jλz
exp

(
ik

2z

(
x2 + y2

))∫ ∫
U (ξ, η)

exp

(
ik

2z

(
ξ2 + η2

))
exp

(
−i2π
λz

(xξ + yη)

)
dξdη

(1.23)

Although we employ the result of angular spectrum calculation as well as convo-
lution theorem to yield an expression for Fresnel diffraction integral, it worth noting
that the most elegant way to prove the Fresnel diffraction integral formula originate
from first Rayleigh-Sommerfeld theorem. A close inspection of the quadratic term in
the integral suggests that if the following approximation which is called Fraunhofer
approximation is valid, the value of quadratic term over the aperture area would be
close to one. The Fraunhofer approximation reads as
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z � k
ξ2 + η2

2
(1.24)

the direct application of the Fraunhofer approximation on the Fresnel diffraction
integral shows that

U (x, y) =
exp (ikz)

jλz
exp

(
ik

2z

(
x2 + y2

))∫ ∫
U (ξ, η)

exp

(
−i2π
λz

(xξ + yη)

)
dξdη

(1.25)

which states that when the Fraunhofer approximation is valid, the observed
wavefiled across the (x, y) plane is simply (aside from the factors preceding the
integral) the Fourier transform of the aperture profile.

Figure 1.3: Frauenhofer diffraction pattern of a square aperture with side length
1µm.

Fig. 1.3 illustrates the Fraunhofer diffraction pattern of the square aperture.
However, it is worth pointing out that, employing the Fraunhofer approximation
in order to simplify the Fresnel diffraction integration, has eliminated the shift-
invariant property of the Fresnel diffraction which as a result, no transfer function
can be related to the Fraunhofer diffraction integral.

Since, We have employed a 4f-lens system to carry out the experimental inves-
tigations described in subsequent chapters, our discussion would not be complete if
we do not investigate the effect of the lenses on the incoming monochromatic optical
wave.

Fig. 1.4 illustrate a lens from front view as well as side view. As shown clearly,
∆0 denotes the on axis thickness of the lens and ∆ (x, y) signifies the thickness of
the lens at different points in the (x, y) coordinate plane. The phase shift induced
by the lens on the incoming plane wave is given by
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Figure 1.4: A typical lens a) Front view b)Side view.

φ (x, y) = kn∆ (x, y) + k (∆0 −∆ (x, y)) (1.26)

where n denotes the refractive index of the lens. The first term, Kn∆ (x, y) signi-
fies the amount of phase shift induced by the lens and the second term, k (∆0 −∆ (x, y)),
denotes the a amount of phase shift induced by the remaining free space region
bounded by two planes which is indicated by the broken line in Fig. 1.4. However,
the phase delay introduced by the lens can more elegantly be represented in the
form of multiplicative exponential function; that is

tl (x, y) = exp (ik∆0) exp (ik (n− 1) ∆ (x, y)) (1.27)

Figure 1.5: Graphical representation of a) ∆01 b)∆02 c)∆03 .
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It is worth noting that the complex field behind the lens is simply computed
by multiplying the complex field in front of the lens by the phase transformation
function of the lens which depends tightly on the geometry of the lens. Having
defined the lens phase transformation function, the thickness function should be
derived. In order to derive a mathematical representation for the thickness of a
lens, we divide the lens in to three different parts which are illustrated graphically
in Fig. 1.5. The total thickness of the lens is written as

∆ (x, y) = ∆1 (x, y) + ∆2 (x, y) + ∆3 (x, y) (1.28)

where the subscripts refer to different part of the lens. Considering Fig. 1.5a, the
thickness of the first part of the lens, ∆1 (x, y) can be written as

∆1 (x, y) = ∆01 −
(
R1 −

√
R2

1 − x2 − y2

)
= ∆01 −R1

(
1−

√
1− x2 + y2

R2
1

) (1.29)

where R1 is factored out of the square root in order to facilitate the analyti-
cal calculation. The thickness of the second part of the lens is simply a constant
∆02 (x, y). The thickness of the third component of the lens thickness function reads
as

∆3 (x, y) = ∆03 −
(
R2 −

√
R2

2 − x2 − y2

)
= ∆03 +R2

(
1−

√
1− x2 + y2

R2
2

) (1.30)

Therefore, the three expression is combined and finally, the thickness function of
the lens is seen to be

∆ (x, y) = [∆01 + ∆02 + ∆03]−R1

(
1−

√
1− x2 + y2

R2
1

)
+

R2

(
1−

√
1− x2 + y2

R2
2

) (1.31)

The lengthy formula for the thickness of the lens can be simplified by the paraxial
approximation. In the paraxial approximation, we direct our attention to the portion
of the complex wave field which either coincides with or travels close to the lens axis.
Hence, for the approximation to be valid, we assume small values of x and y and
therefore,

√
1− x2 + y2

R2
1

=1− x2 + y2

2R2
1√

1− x2 + y2

R2
2

=1− x2 + y2

2R2
2

(1.32)
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A close inspection of the formulas in Eq. 1.32 mirrors the fact that, by the
paraxial approximation in fact we approximate the spherical surface of the lens by
the parabolic surface. In other words, the rays which lie either on or close to the
optical (lens) axis see a parabolic surface. Therefore, the thickness function of the
lens under the light of the paraxial approximation reads as

∆ (x, y) = (∆01 + ∆02 + ∆03)− x2 + y2

2

(
1

R1

− 1

R2

)
(1.33)

Having derived the mathematical representation for the thickness variation of the
lens, we can then substitute Eq. 1.33 into Eq. 1.27 which results in the following
expression

tl (x, y) = exp (ik∆0) exp

(
−ik (n− 1)

x2 + y2

2

(
1

R1

− 1

R2

))
(1.34)

In order to rewrite Eq. 1.34 in a compact form, it is advisable to combine the
physical properties of the lens, namely R1,R2 as well as n, to a single number called
focal length, denoted by f here, which is defined as

f ≡ (n− 1)

(
1

R1

− 1

R2

)
(1.35)

Therefore, substituting focal number into Eq. 1.34 yields

tl (x, y) = exp

(
−i k

2f

(
x2 + y2

))
(1.36)

which serves as a basis for our future calculation. However, our derivation of the
lens transformation function which explains the effect of the lens on the incident
wave relies mainly on the paraxial approximation which is restricted to the portion
of the wave which lies close to or on the lens axis. Moreover, if the focal length, f ,
is positive then the emerging spherical wave tends to converge to a point on the axis
at the distance f and if the focal length is negative, then the emerging spherical
wave behind the lens tends to diverge which results in virtual focal point in front of
the lens at the distance f .

Figure 1.6: The geometry of a transparent input in front of a single positive lens.

Having derived the lens transform function as well as Fresnel diffraction integral,
we turn our attention on how these two phenomena are combined together to com-
pute the optical wavefield at the back focal plane of the lens in the presence of a
transparent object located immediately in front of the lens, as illustrated graphically
in Fig. 1.6. The amplitude transmittance is denoted by tA (x, y) and the amplitude
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of the incoming monochromatic is signified by A. Therefore, the amplitude of the
incident wave on the lens, denoted by U (x, y) is given by

U (x, y) = AtA (x, y) (1.37)

The Lens pupil function, P (x, y), is defined to reflect the finite extent of the
lens; that is

P (x, y) =

{
1 inside the lens aperture

0 Otherwise.
(1.38)

therefore, the amplitude of the disturbance immediately behind the lens using
the lens transform function, Eq. 1.36, can be written as

U ′l (x, y) = Ul (x, y)P (x, y) exp

(
−i k

2f

(
x2 + y2

))
(1.39)

To find the amplitude distribution at the back focal plane, Uf (u, v), we employ
the Fresnel diffraction integral, namely Eq. 1.23 and replace z with f . Therefore
the amplitude of disturbance reads as

Uf (x, y) =
1

iλf
exp

(
ik

2f

(
u2 + v2

))∫ ∫
U ′l (x, y)

exp

(
ik

2z

(
x2 + y2

))
exp

(
−i2π
λf

(xu+ yv)

)
dxdy

(1.40)

where a constant phase delay is dropped. Substituting Eq. 1.39 into Eq. 1.40 yields

Uf (x, y) =
1

jλf
exp

(
jk

2f

(
u2 + v2

))∫ ∫
Ul (x, y)P (x, y)

exp

(
−i2π
λf

(xu+ yv)

)
dxdy

(1.41)

Thus the amplitude of disturbance at the back focal plane is proportional to the
Fourier transform of the limited portion of the incoming wave by the aperture.
However, the factor of P (x, y) can be ignored if we assume that the diameter of the
incoming wave is smaller than the aperture. Therefore, we have

Uf (x, y) =
1

iλf
exp

(
ik

2f

(
u2 + v2

))∫ ∫
Ul (x, y) exp

(
−i2π
λf

(xu+ yv)

)
dxdy

(1.42)
Although the distance criteria of the Frauenhofer diffraction is not fulfilled, it is of
great importance to notice that the complex amplitude distribution of the field at
the back focal plane is just the Fraunhofer diffraction pattern of the incident wave
on the lens and it is determined by the input Fourier transform evaluated at fx = u

λf

and fy = v
λf
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1.7 Elements of Multigrid

Existing classes of numerical solution techniques for sparse systems of linear equa-
tions stemming from boundary value partial differential equations can be categorized
in two groups: direct methods and iterative methods. It is worth noting that this
sub-section is based on [2].

Direct methods, of which Gaussian elimination is an example, seek the exact
solution of a linear system of equations via a limited number of arithmetic oper-
ations. Much of the algorithms are not only fast due to being based on the fast
Fourier transform algorithm but also, computationally inexpensive compare to it-
erative algorithms. However, this class of numerical methods are rather specialized
and limited to a linear system of equations stemming from self-adjoint boundary
value problems.

In contrast to the direct methods, iterative algorithms begin from an initial guess
and then, aim to converge (ideally) to an exact solution. To do this, the current
approximation is improved through a sequence of iterative steps. In comparison to
most of the direct algorithms, the latter group of algorithms have broader range
of application and are easier to implement. However, iterative algorithms suffer
from smooth error which increase the convergence rate. Multigrid algorithms were
developed to overcome these obstacles.

The main idea behind the multigird algorithm stems from the fact that, low
frequency components of the error vector appear to be high frequency on the coarse
grid and high frequency components of the error vector disappear on the early few
iterations. To explain the algorithm, we assume that a partial differential equation
is represented by

Au = f (1.43)

where A denotes a tridiagonal, positive definite and symmetric matrix and u is the
exact solution. Moreover, f denotes the source term. If v is an approximation to
the exact solution and the residual r = f −Av then, the residual equation is given
by

r = Ae (1.44)

where e denotes the error defined by e = u−v. The residual relationship states that
e satisfies the same set of equations as the unknown solution u if f is replaced by
the residual r. This equation is of great importance owing to the fact that it assists
to correct the approximate solution.

A linear interpolation operator is employed on a coarse grid to produce the
correspondence vector on a fine grid. For example, for the case of 1-D, the interval
{t : 0 ≤ t ≤ 1} is partitioned on p subintervals with the distance h, where h = 1

p
,

results in grid points tj = jh on the domain Ωh.Therefore, the linear interpolation
operator denoted by Ih2h according to Ih2pv

2h = vh is defined as

vh2j =v2h
j

vh2j+1 =
1

2

(
v2h
j + v2h

j+1

)
, 0 ≤ j ≤ p

2
− 1 (1.45)
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which says for the even grid points the value on the fine grid is the same as the one
on the coarse grid, however, for the odd grid points the value on the fine grid is the
average of its neighbor values. This is shown graphically in Fig. 1.7.

Figure 1.7: Interpolation from coarse grid to a fine grid

In contrast to the linear interpolation operator which moves a vector from a
coarse grid to a fine one, restriction operators, of which injection operator is utilized
here donated by I2h

h , are employed to transfer the values from the fine grid to a
coarse grid. The injection operator is defined as

v2h
j = vh2j (1.46)

which simply states that the values on the coarse grid are the values of the even grid
points of the fine grid. This is demonstrated graphically in Fig. 1.8.

Figure 1.8: Restriction of a fine grid to a coarse grid

Having defined the interpolation operator as well as restriction operator and
residual equation, the V −cycle multigrid algorithm may be written for grid spacing
h, 2h, 4h, ..., Lh where L = 2l−1 and l is the grid points, as :

• Iterate on Ahuh = fh λ1 times with initial guess vh.

• Compute r2h = I2h
h r

h.

• Iterate on A2he2h = r2h λ1 times with initial guess e2h = 0.

• Compute r4h = I4h
2hr

2h.

• Iterate on A4he4h = r4h λ1 times with initial guess e4h = 0.

• Compute r8h = I8h
4hr

4h.
...
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• solve ALhuLh = fLh.
...

• Correct e4h ← e4h + I4h
8he

8h.

• Iterate on A4he4h = r4h λ2 with the initial guess e4h.

• Correct e2h ← e2h + I2h
4he

4h.

• Iterate on A2he2h = r2h λ2 with the initial guess e2h.

• Correct vh ← vh + Ih2hv
2h.

• Iterate on Ahvh = fh λ2 with the initial guess vh.

Figure 1.9: Graphical representation of V-cycle algorithm

Fig. 1.9 graphically illustrate the order of grids in which they are seen. Owing
to its V-shape pattern, the algorithm is called the V − cycle. Bearing in mind
that nested iteration algorithm suggested that to produce an improved initial guess,
coarse grid solution should be obtained as well as the V-cycle algorithm, one can
combine both of the algorithms which results in a Full multigrid algorithm (FMG).
Although FMG algorithm is more expensive than its V-cycle counterpart, the rate
of convergence is faster. Fig. 1.10 demonstrates the FMG pattern graphically .

Figure 1.10: Graphical representation of a FMG algorithm
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1.8 Derivation of TIE

We assume a scalar electromagnetic wave traveling along the optical axis, namely,
z axis, in the following form:

ψ (~r⊥, z) = A (~r⊥, z) exp (ikz) (1.47)

where ~r⊥ denotes the plane perpendicular to optical axis direction and k = 2π
λ

is
the wavenumber of the assumed electromagnetic wave. The Helmholtz equation in
three dimensional Cartesian coordinates for the propagation of a wave in free space
is given by

(
∇2 + k2

)
ψ (~r⊥, z) = 0 (1.48)

where ∇2 is the three-dimensional Laplace operator. Assuming that the complex
envelope A (~r⊥, z) changes slowly with respect to z within a wavelength distance
signifies that ∂2A

∂z2
<< k2A. Bearing in mind the slowly varying approximation as

well as substituting the right hand side of equation 1.47 into the equation 1.48 leads
to the following equation which is often called paraxial Helmholtz equation:

(
∇2
⊥ + 2ik

∂

∂z

)
[A (~r⊥, z) exp (ikz)] = 0 (1.49)

The complex envelope of electromagnetic wave in 1.47 may be defined in terms of
intensity I and phase ϕ as

A (~r⊥, z) =
√
I (~r⊥, z) exp (iϕ (~r⊥, z)) (1.50)

In order to derive the TIE, first we derive the required terms separately

∂2A

∂x2
=

1

2
× ∂2I

∂x2
× I

−1
2 × exp (iϕ)

+
1

2
× ∂I

∂x
× ∂I

∂x
× I

−3
2 × exp (iϕ)

+
1

2
× ∂I

∂x
× I

−1
2 × 1i× ∂ϕ

∂x
× exp (iϕ)

+ 1i× ∂2ϕ

∂x2
× exp (iϕ)× I

1
2

+ 1i× ∂ϕ

∂x
× 1i× ∂ϕ

∂x
× exp (iϕ)× I

1
2

+ 1i× ∂ϕ

∂x
× exp (iϕ)× 1

2
× ∂I

∂x
× I

−1
2

(1.51)
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∂2A

∂y2
=

1

2
× ∂2I

∂y2
× I

−1
2 × exp (iϕ)

+
1

2
× ∂I

∂y
× ∂I

∂y
× I

−3
2 × exp (iϕ)

+
1

2
× ∂I

∂y
× I

−1
2 × 1i× ∂ϕ

∂y
× exp (iϕ)

+ 1i× ∂2ϕ

∂y2
× exp (iϕ)× I

1
2

+ 1i× ∂ϕ

∂y
× 1i× ∂ϕ

∂y
× exp (iϕ)× I

1
2

+ 1i× ∂ϕ

∂y
× exp (iϕ)× 1

2
× ∂I

∂y
× I

−1
2

(1.52)

2ik
∂A

∂z
=ik × ∂I

∂z
× I

−1
2 × exp (iϕ)

− 2× ∂ϕ

∂z
× I

1
2 × exp (iϕ)

(1.53)

Having derived the necessary terms, we substitute the A (~r⊥, z) from 1.50 into
the left hand side of 1.49, considering just imaginary part on either sides lead us to
the so called TIE

~∇⊥ ·
[
I (~r⊥, z) ~∇⊥ϕ (~r⊥, z)

]
= −k∂I (~r⊥, z)

∂z
(1.54)

TIE which is first proposed by Teague [12] is a second order, non-separable and
elliptical partial differential equation which relates the intensity variation along the
optical axis to the Laplacian of the phase. For strictly positive intensity measure-
ment in the principle plane, the TIE yields a unique solution up to an additive
constant where an appropriate boundary condition is defined. However, the zeros
in the measurement plane results in the discontinuity in the phase plane in which a
unique information can not be retrieved.

1.9 TVAL3

As suggested by the name, TVAL3 was constructed to solve total variation (TV)
regularized compressed sensing problems by the augmented Lagrangian algorithm
as well as non monotone line search scheme in which the Barzilai-Borwein step [105]
is employed to accelerate the rate of convergence.

In order to elucidate the TVAL3 scheme, we assume the following compress
sensing problem with TV regularization, that is

min TV (u) ≡
∑
i

‖Diu‖, s.t. Au = b, (1.55)

where Di is the discrete gradient matrix at the pixel i as well as A denotes a linear
measurement matrix applied to u which results an observation matrix denoted by
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b. In other words, the solution to Eq. 4.3 features the lowest discontinuity among
other solutions in the solution space.

Variable splitting is then employed to rewrite Eq. 4.3 in the following form

minwi,u

∑
i

‖wi‖, s.t. Au = b and Diu = wi, for all pixels i . (1.56)

The augmented Lagrangian of the expression1.56 denoted by LA can be written
as

LA (wi, u) =
∑
i

(
‖wi‖ − νTi (Diu− wi) +

βi
2
‖Diu− wi‖2

)
− λT (Au− b) +

µ

2
‖Au− b‖2,

(1.57)

where ν as well as λ are the Lagrangian multipliers and β as well as µ are the
penalty parameters. It is worthy to note that the augmented Lagrangian differs
from the quadratic penalty function due to the presence of the Lagrange multiplier
term which restricts the penalty term. This results to alleviate the difficulties raised
by the large penalty term such as ill conditioning. On the other hand, owing to the
presence of the squared term, the augmented Lagrangian differs from his precursor,
namely the classical Lagrangian method. Therefore, the augmented Lagrangian
function is a combination of the squared penalty function and classical Lagrangian
function which overcomes the corruption of the numerical conditioning [106, 107].

Now we turn our attention to the new sub-problem, namely, minimization of
Eq. 1.57. In light of the optimality condition [106, 107], minimizing Eq. 1.57 with
respect to wi at the iteration results in an analytic expression for wi,k+1 which is
called shrinkage formula; that is [106]

wi,k+1 = max{‖Diuk −
νi
βi
‖ − 1

βi
, 0}

(
Diuk − νi

βi

)
‖Diuk − νi

βi
‖
. (1.58)

Moreover, the gradient of Eq. 1.57 with respect to u denoted by dk (u) can be
easily computed; that is[106]

dk (u) =
∑
i

(
βiD

T
i (Diu− wi,k+1)−DT

i νi
)

+ µAT (Au− b)− ATλ (1.59)

As it is demonstrated, rather than minimizing the augmented Lagrangian prob-
lem directly, we split it into two sub-problem, namely, minimizing Eq. 1.58 as well
as Eq. 1.59. An alternating direction scheme is then employed to solve the sub-
problems in which the implemented non-monotone line search algorithm ensures
the convergence. It worth pointing out that to increase the speed of convergence
as well as decreasing the iteration cost, Barzilai-Borwein method is used to select
the adjustable step length. Hence, the implemented TVAL3 scheme after variable
splitting reads as[106]

Algorithm (General TVAL3)
initialization
While ‖∇̃LA

(
uk, λk

)
‖ > tol Do
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set starting points wk+1
0 = wk and uk+1

0 = uk for the sub-problems ;
Find minimizer wk+1

0 and uk+1
0 of LA

(
w, u, λk;µk

)
using non-monotone alter-

nating direction;
Update the multiplier and non-decrease the penalty term;
End Do
It is worth mentioning that C.Li compared the performance of TVAL3 with

other packages such as l1-magic [108, 109] and TwIST [54] as well as NESTA[110]
for different scenarios [106]. It was demonstrated that TVAL3 outperforms other
stat-of-art implementations and reveal his potential to solve the compress sensing
problem with TV minimization in an affordable time with high accuracy[106, 111].
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1.10 Scope of this work

In chapter two, A finite element based approach is presented to solve the TIE where
we know the position of a free area in an image plane. Dirichlet boundary conditions
are defined on the perimeter of a polygon which covers partially the free area and
furthermore, the Neumann boundary condition is imposed to the perimeter of the
image area. Since TIE is a elliptical differential equation, a built-in multigrid solver
is employed to accelerate the convergence speed. finally, experimental demonstration
shows the superiority of the proposed method to the conventional method such as
fast Fourier transform (FFT) as well as the symmetrization method [3, 58].

A gradient flipping algorithm (GFA) is proposed in chapter three. The GFA
is constructed upon two column: sparsity and the charge flipping algorithm. The
charge flipping algorithm is a simple but yet, effective algorithm which is applied in
crystallography for solving the crystallographic phase problem [112]. In the context
of the TIE, charge flipping algorithm is applied to the gradient of the phase which
leads to a phase with sparse gradient. Experimental demonstration reveals the
potential of the GFA for the phase retrieval application [117].

In chapter four, we compare the proposed GFA algorithm with a TV- regular-
ization approach. The TVAL3 package is considered as routine to solve the TV-
regularization problem. Different scenarios are considered to highlight the limita-
tion, weakness and strength of each approach such as a partially piece-wise constant
object and piece-wise linear objects [132].

The astigmatic intensity equation (AIE) is presented in chapter five. AIE of-
fers an over determined system of equations to retrieve the phase shift of objects.
Moreover, unlike the TIE, the measurements are obtained by rotating a cylindrical
lens which helps to lessen the systematic error. An iterative algorithm is suggested
and simulated measurements are employed to verify the algorithm. A comparison
with the TIE shows that the AIE outperforms the TIE in low frequency information
reconstruction.

An overview of the different approaches presented in this work as well as potential
future work is presented in chapter six.
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Chapter 2

A Finite Element based approach

2.1 Overview

The transport of intensity equation (TIE) provides a very straight forward way to
computationally reconstruct wavefronts from measurements of the intensity and the
derivative of this intensity along the optical axis of the system. However, solving
the TIE requires knowledge of boundary conditions which cannot easily be obtained
experimentally. The solution one obtains is therefore not guaranteed to be accurate.
In addition, noise and systematic measurement errors can very easily lead to low-
frequency artefacts.

In this chapter, a new combination of flux-preserving and Dirichlet boundary
condition based on prior knowledge of regions of constant phase in the image plane
is introduced (e.g. a region not covered by the object, or a hole in the object). The
advantage of the proposed combination of boundary conditions lies in the ability
to reconstruct wave fronts also in case we cannot make any reasonable assumption
of the boundary conditions on the outer edge of the field of view (e.g. where the
assumption of periodic BCs is not justified). Comsol, a finite-element based software,
is employed to impose the above-mentioned boundary condition and furthermore,
the reconstructed phase by proposed method is compared with that of retrieved by
FFT approach as well as symmetrization method [3].

It should be noted that some of the material of this chapter are directly taken
from the manuscript [58] of which I am the first author.

2.2 Fourier Transform solution of TIE

An approximate solution of the TIE proposed by Teague [12] is based on the

Helmholtz’s decomposition theorem in which the vector field I (~r⊥, z) ~∇⊥ϕ (~r⊥, z)
can be decomposed as

I (~r⊥, z) ~∇⊥ϕ (~r⊥, z) = ~∇⊥ · Φ (~r⊥, z) + ~∇⊥ ×Ψ (~r⊥, z) (2.1)

where Φ (~r⊥, z) is a continuous scalar field and Ψ (~r⊥, z) is a vector potential. Con-
sidering equation 1.54 as well as assuming that the traveling electromagnetic wave
is divergence free, one gets

~∇2
⊥Φ (~r⊥, z) = −k∂I (~r⊥, z)

∂z
(2.2)
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which is a Poission type auxiliary function. Although Teague suggested to apply the
Green function theorem to equation 2.2, we will utilize the Fourier transform(FT)
approach denoted by F to determine the phase which was first proposed by [42].

The derivative identity in the Fourier space can be written as

∇⊥f (x, y) = ix̂F−1qxF [f (x, y)] + iŷF−1qyF [f (x, y)] (2.3)

where qx and qy denote the variable conjugate to x and y in Fourier space respectively
and x̂ and ŷ are the unit vectors along the x and y direction. It follows from equation
2.3

∇2
⊥f (x, y) =−F−1

(
q2
x + q2

y

)
F [f (x, y)]

≡ −F−1q2
⊥F [f (r⊥)]

(2.4)

where q⊥ denotes the magnitude of the variable conjugate to r⊥. Utilizing equation
2.4, the solution of equation 2.2 can be written as

Φ (~r⊥, z) = F−1q−2
⊥ F

(
k
∂I (~r⊥, z)

∂z

)
(2.5)

having derived the solution for Φ, one can reconstruct the following quantity from
equation 2.1

∇2
⊥ϕ (~r⊥, z) = ~∇⊥ ·

[
I−1 (~r⊥, z) ~∇⊥Φ (~r⊥, z)

]
(2.6)

then using equation 2.4, the solution of the TIE for the phase using FT approach is
given by

ϕ (~r⊥, z) = F−1q−2
⊥ F

[
I−1 (~r⊥, z) ~∇⊥Φ (~r⊥, z)

]
(2.7)

It worth noting that an implicit periodic boundary condition is assumed in the
above derivation. Later, we will show for the case of an object with non-periodic
boundary condition, the FT-phase retrieval approach suffers from low frequency
artifacts. Besides, owing to the fact that q−2

⊥ tends to infinity for very low special
frequency indicates that low special frequencies can not be fully recovered. However,
in order to compensate for the point close to zero, a cut-off parameter is defined.
The points in the principle plane with the value lower than cut-off value will be
replaced by cut-off value in the equation 2.7.

2.3 A Finite element based approach

The starting point of our discussion is the Poynting theorem which is given by

∇.~S =
∂W

∂t
(2.8)

where ~S denotes Poynting vector and W is the amount of energy stored in the
medium. Comparing equations 2.8 and 1.54 suggests that the quantity I (~r⊥, z) ~∇⊥ϕ (~r⊥, z)
expresses the intensity flux along the optical direction of propagation or the trans-
verse component of Poynting vector. Therefore, the transverse component of Poynt-
ing vector might be written as

~S⊥ = I (~r⊥, z) ~∇⊥ϕ (~r⊥, z) (2.9)
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Recall that Green’s theorem over the field of view D (x, y) bounded by perimeter P
for a vector field F is given by∫ ∫

D

(
~∇. ~F

)
dD =

∮
P

(
~F .n̂
)
dP (2.10)

where n̂ denotes the unit vector normal to the boundaries in the directional plane.
Hence, one can derive an equation for the amount of the lost and gained flux by
integrating both side of equation 1.54 and then, applying Green’s theorem to the
left hand side of the equation 1.54 which reads as∫ ∫

D

(
~∇.~S

)
dD =

∮
P

(
~S.n̂
)
dP

=

∫ ∫
D

∂zI (x, y) dD
(2.11)

Described already in the work of Tegue [12],conservation of intensity is assumed for
the TIE to have a unique solution∮

P

(
~S.n̂
)
dP =

∫ ∫
D

∂zI (x, y) dD (2.12)

which say that the conservation of intensity is valid if the amount of flux crossing
the boundaries is zero.Therefore, ∮

P

(
~S.n̂
)
dP =0∮

P

([
I (~r⊥, z) ~∇⊥ϕ (~r⊥, z)

]
.n̂
)

=0

∂ϕ

∂n̂
=0

(2.13)

which is the Neumann boundary condition for the phase.
As expressed in the literature review, there are different approaches toward es-

timation of intensity variation along the optical axis, however, here we employ the
simple first order finite difference method. Typically image intensities are detected
at the following three planes of focus: f = −∆f, 0,+∆f where f = 0 is the in-focus
image and ∆f is some fixed defocus step. In practice, when acquiring images under
different defocus values intensity is not preserved. Therefore, a straightforward so-
lution to the TIE does not generally exist. In order to overcome mentioned obstacle,
we pad the experimental images with the overall mean value of the experimental
data by embedding the images into much larger arrays. This kind of padding has
been applied by other groups as well [113]. It has been shown that when applying
padding in simulated focal series, even iterative algorithms are capable of recovering
also very low spatial frequencies of the phase shift, albeit at a prohibitively large
number of iterations [114].

We also take advantage of the fact that we can define an area of empty space
common to the different images. We define a polygon within this region. The
integrated intensity within this polygon can be used for normalizing the data, in case
of small variations in the exposure time or illumination flux during the experiment.
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The normalized images are then padded with the mean intensity of all three images
and since we can assume the phase to be constant in areas of free space, the Dirichlet
boundary condition ϕ = 0 can be imposed at the edge of the polygon. Imposing this
Dirichlet boundary condition leads to a constant phase in this area of free space and
also helps to constrain some very low spatial frequency components of the phase.

0.5

1

1.5

2

2.5

3

100 m m  

a)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100 m m  

b)

−600

−400

−200

0

200

400

600

800

1000

1200

1400

100 m m  

c)

Figure 2.1: Simulated images of a test phase object, a wavelength of λ = 500nm a
defocus step of ∆f = 1 mm, a pixel size of dx = 1µm, and a numerical aperture
of NA = 0.3: a) Over-foused image, b) Under-focused image, c) Intensity variation
computed by finite difference method.
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Figure 2.2: a) Original phase, b) Phase reconstructed by the method presented
here, c) Phase reconstructed by the FFT method, d) The plot of extracted data
along black line in original phase, e) The plot of extracted data along black line in
FEM-based approach, f)The plot of extracted data along black line in FFT method.

Figure 2.1 shows an over-focused image, an under-focused image, and the es-
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timation of intensity variation along the optical axis by means of finite difference
approach. From the same simulated data, Figure 2.2 compares phase maps recon-
structed by different methods. Figure 2.2a shows the original phase.

Figure 2.2c) shows the phase recovered by the Fourier method and our finite
element multigrid solution obtained by using the software package COMSOL is
shown in Figure 2.2b) in which the above mentioned Dirichlet boundary condition
is imposed to the yellow line. The line profile of the original phase shown in Fig.
2.2d), agrees better with that extracted from the FEM-based reconstruction (Fig.
2.2e) than with the line profile extracted from the phase obtained by the conventional
FFT method (Fig. 2.2f). Although COMSOL has been applied before to solve the
TIE in order to define branch cuts in the phase in the presence of vortices [115], to
our knowledge the present work describes the first application of FEM for solving the
TIE with the aim to improve the quality of reconstruction of low spatial frequencies
in the phase. In order to investigate the performance of the outlined technique in
the presence of noise, we added 10 % of Gaussian noise. Figure 4.3 shows the map
of reconstructed phase by the FFT and the FEM-based methods in the presence of
noise. To highlight the differences, line profiles extracted along the black lines are
shown in Figure 4.3b) and Figure 4.3c). Although both plots reveal some gradient
in areas where the phase should be constant, the FFT method features much more
severe deviations from the original phase used to simulate the input data set. We
thus conclude that adding some reasonable prior information may help to yield
much more realistic results. The padding applied in both of these reconstruction
has increased the image size by a factor of close to 2, i.e. from 624 × 624 pixels to
1224× 1224 pixels. The effect of padding on the FEM-based reconstruction will be
discussed in the next section.

2.4 Experiment and reconstruction

Based on a simple optical setup, light optical experiments were conducted in order
to investigate the performance of the outlined technique. The wavelength of the
collimated incident irradiation was 530 nm and a 4f lens system was adopted to
acquire images at different planes of focus. The wing of a fly was chosen as a quasi-
transparent object, positioned a distance r before the first lens of focal length f ,
where f < r < 2f . An iris aperture is positioned at the back focal plane to limit
the range of spatial frequencies of the wave producing the images. A 2k×2k camera
at the focal length of a second lens captures the images with size of 691×691 pixels.
Figure 2.4 shows the schematic of the experimental setup.

Estimation of the intensity variation by the finite difference method requires a
minimum of two images. Images with different defocus values were captured by
translating the camera along the optical axis with a step size of 1 mm. The raw
images suffer considerably from artifacts such as Newton rings and dust particles
on the lenses. All images were dark-current corrected and normalized by a gain
reference image acquired with no object in place. Figures 2.5a) and 2.5b) show the
under and over focused gain-referenced experimental images. As pointed out earlier,
the ∂zI (x, y) - map obtained by the finite difference approach is shown in Figure
2.5c).

We carried out our finite element method (FEM) reconstruction using the Comsol
Multiphysics ( Comsol Inc.) software package. This software has implemented the
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Figure 2.3: a)Phase reconstructed by FEM-based approach,the yellow line shows the
outline of the polygon used to identify an area of free space, b) Phase reconstructed
by the FFT method, c)The plot of extracted data along black line in FEM-based
approach, d) The plot of extracted data along black line in FFT method.
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Figure 2.4: schematic of experimental setup.
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Figure 2.5: Light optical experimental images of a fly’s wing: a) Under-focused image
b) Over-focused image c) Intensity variation approximated by the finite difference
method.

multigrid method as a fast, reliable and powerful method for solving elliptical partial
differential equations, The Multigrid method is based on iterating between a fine
and a coarse grid, making use of the fact that low frequency errors appear at higher
frequencies on the coarse grid. It is worth noting that the Multigrid algorithm has
linear complexity in time [116]. In our reconstruction, we took advantage of the full
Multigrid scheme as a solver.

To evaluate the effect of padding on both the proposed and conventional (FFT)
reconstruction algorithm, the three experimental images (underfocussed, in-focus,
and overfocussed) of size 691 × 691 pixels have been padded out to yield image
sizes of 891 × 891 and 1291 × 1291 pixels. In addition, we also considered the
case of the images without any padding. The reconstructed phases obtained for
these different scenarios are shown in Fig. 2.6. The phase maps obtained by the
FFT method exhibit stronger low spatial frequency artifacts than the FEM-based
reconstructions, however, also the FEM-based approach seems to benefit from an
increase in the amount of padding. This fact may become obvious when comparing
the region in the reconstructed phase pointed out by the blue arrows.

Since periodic boundary conditions are inherent to the FFT based approach,
the FFT solution to the TIE equation may work very well, if the boundary of the
image is a uniform support film, but in case of non-periodic objects severe artifacts
may arise. Notably, Volkov et al. extensively investigated the FFT approach in
connection with a special type of Neumann boundary condition [3]. It was argued
there that a new symmetrization of the data would implicitly impose Neumann and
periodic boundary conditions. However, mirror padding proposed by Volkov et al.
adds again extra information to the data - a procedure that is only justified in rare
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Figure 2.6: Phase maps reconstructed by a) the FEM-based method from the orig-
inal images of size 691× 691 pixels, b) the FEM-based method, for images padded
to 891 × 891 pixels, c) the FEM-based method, for images padded to 1291 × 1291
pixels, d) the FFT-based method applied to the original images, e) the FFT method,
applied images padded to 891 × 891 pixels, f) the FFT method applied to images
padded to 1291× 1291 pixels.

cases. This can be illustrated by looking at the phase map and extracted line profile
shown in Figs. 2.7c) and 2.7f): If the phase at the edge does not satisfy the Neuman
boundary condition, artefacts are expected to appear. Note that the dynamic range
of the phase reconstructed by the mirror padding method (Fig. 2.7c)) is much larger
than that of any of the other two reconstructions.

As clearly shown in Figure 2.6, the FFT solution of the TIE suffers effectively
from low-frequency artifacts due to imposing periodic boundary conditions. How-
ever, the phase retrieved by means of the method proposed in this work is free from
these artifacts. Figs. 2.7d) and 2.7e) show line profiles across the FFT and FEM-
based phase distribution map, respectively, and Fig. 2.7f) shows the reconstruction
obtained by the symmmetrization. These show, that the phase reconstructed by the
finite-element based method fluctuates around a constant value in the free space area
and is also relatively flat towards the center of the wing, while the FFT-reconstructed
phase maps feature severe slopes. We attribute this much more realistic profile of
the FEM-reconstructed phase to the Dirichlet boundary condition that was applied
to the boundary of the polygon in the free-space region. This greatly helped in
recovering low spatial frequency information much more reliably. A successful re-
construction of the hairs at the edge of the wing indicates the capability of this
method of retrieving also high frequency information rather well.

2.5 Summary

The TIE is a non-interferometric method for retrieving the phase of wave fronts of
optical or matter waves. The TIE has a relatively simple mathematical formulation,
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Figure 2.7: a) Phase map reconstructed by the FFT method (with padding), b)
Phase map reconstructed by the FEM-based method, c) Phase map reconstructed
by the symmetrized solution by Volkov et al. [3] (mirror padding) d), e), and f)
Line profiles extracted along the red lines in each of the phase maps shown above.
Note that in these line profiles the dynamic range differs between all three different
plots.

however; knowledge of the boundary conditions on the phase are necessary to solve
it.

In this chapter, I proposed a method for solving the TIE which makes use of
prior knowledge of regions of constant phase in the image plane. This is realized
by applying Dirichlet boundary condition to the perimeter of a polygon outlining
the area of free space. In addition, the experimental data was padded in order
to avoid imposing any boundary conditions to the perimeter of the field of view.
Neuman boundary conditions were imposed to the boundaries of the padded data.
A Multigrid based calculation minimizes the computation time. Application of
the proposed approach to a set of simulated and experimental optical data was
demonstrated. Comparison of the outlined method with FFT-based approaches as
well as symmetrization method reveals the fact that the suggested combination of
boundary conditions yields potentially more accurate result.
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Chapter 3

Gradient flipping algorithm

3.1 Overview

In this chapter, a new algorithm namely, the gradient flipping algorithm (GFA)
based on the charge flipping algorithm as well as the concept of sparsity is intro-
duced. The GFA combines the reciprocal space solution of the TIE with the charge
flipping algorithm in order to eliminate the need to explicit boundary conditions.
Due to the iterative nature of the algorithm, boundary values are updated in the
padded area such that consistency with the experimental measurement is assured.

Different scenarios are assumed to show the potential of the suggested method in
boundary value retrieval as well as low frequency information reconstruction. Appli-
cation of this algorithm to experimental data and comparison with conventionally
used algorithms demonstrates an improved retrieval of the low spatial frequencies
of the phase.

The material of this chapter is taken directly from the submited manuscript [117]
of which I am the first author.

3.2 Introduction

Wavefront sensing, i.e. the detection of relative phase shifts in propagating waves
provides essential information in imaging applications where the scattering process
affects the phase of the probing wave. Examples which highlight the importance
of being able to detect phase shifts of waves passing through transparent objects
include imaging of unstained cells under the optical microscope and imaging of
soft matter (e.g. DNA, viruses, proteins and other macromolecules, polymers, etc.)
in the transmission electron microscope (TEM). In 1953, Frits Zernike received the
Nobel Prize in Physics for the development of phase contrast microscopy, a technique
which allows part of the phase information carried by a wave to be converted into
an amplitude signal, making it detectable as part of the intensity variations in the
image. In 1971, Dennis Gabor received the Nobel Prize in Physics for developing
the holographic principle [118], a technique by which the phase of a wave could be
extracted by post-processing images. Gabor’s first holograms were inline holograms
recorded in the electron microscope. Later, iterative [119, 120] and deterministic
[12, 121–123] mathematical formulations and associated computer algorithms were
developed by which both phase and amplitude of a wave could be recovered from
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intensity measurements at different planes along the optic axis, a so-called focal
series.

One very popular approach toward wavefront reconstruction from intensity mea-
surements at different planes of focus is the transport of intensity equation (TIE)
[12, 124] which, due to its simple mathematical formulation and straight-forward
computational implementation, has attracted much attention in research communi-
ties as diverse as cold atom clouds [125], digital optical holography [126] and medical
X-ray imaging [98].

Many algorithms such as the fast Fourier transform [122], the finite element
method [58, 115], multigrid methods [97], a special symmetrization approach [4],
each requiring Neumann, Dirichlet, or periodic boundary conditions have been pro-
posed and applied for solving the TIE.

For wavefront reconstruction from focal series of images, the high spatial fre-
quency components of the phase are well-defined by the data, but the low spatial
frequency components are largely determined by the boundary conditions, which are
usually unknown. Gureyev et al. [39, 40] and later Zuo et al. [48] introduced hard-
edge apertures or, more generally non-uniform illumination during the experiment
and thus physically enforced Neumann boundary conditions, allowing orthogonal
series expansion based approaches to be used to solve the TIE. Such an approach to
make the boundary conditions physically accessible may be feasible in some setups,
but not generally. In the TEM, for example, the field of view is often so small that no
aperture with perfectly abrupt edges exists, in particular not at atomic resolution.

There have been attempts to improve the recovery of low spatial frequency infor-
mation in the context of the TIE by reformulating it as a total-variation optimization
problem, [52, 127]; however, these approaches require a piecewise constant phase.
Other approaches include the application of structured illumination [128]; the exper-
imentally much more complicated interferometric set-up [129]; or prior knowledge
of the measurement variation [73]. Therefore the problem of faithfully recovering
low spatial frequency components of arbitrarily shaped phases remains, at least for
a very large range of applications of wave front sensing.

In this work, we propose a simple iterative algorithm, gradient flipping (GF),
with an emphasis on objects that are non-periodic and non-piecewise linear. GF
imposes sparsity on the gradient of the phase by either driving a certain percentage
of the phase gradient to zero, or forcing all phase gradients below a certain positive
threshold to zero. By combining the conventional Fourier method to solve the TIE
with principles adapted from the charge flipping algorithm in crystallography, GF
determines boundary conditions on the phase, while preserving consistency with the
higher frequencies of the experimental data.

In Sec. 3.3 the TIE and its conventional Fourier solution are introduced; Sec.
3.4 details the gradient flipping algorithm; then, in Sec. 3.5 it is demonstrated
with simulations that the GF algorithm retrieves the boundaries and low spatial
frequencies of two test objects; experimental results on a fly wing are presented in
Sec. 3.6; and, finally, conclusions are drawn in Sec. 4.6.

3.3 The transport of intensity equation

The TIE is a second order elliptical, non-separable and inhomogeneous partial differ-
ential equation which relates the irradiance as well as the variation of the irradiance
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along the direction of propagation to a Laplacian-like function of the phase:

~∇⊥ ·
[
I (~r) ~∇⊥ϕ (~r⊥)

]
= −k∂I (~r)

∂z
(3.1)

where k denotes the wave number of the incident radiation, and ~r⊥ is a vector in
the plane normal to the optic axis. ∂I(~r)

∂z
denotes the variation of intensity along the

optical axis z. This quantity is most often approximated by the simple first order
finite difference approximation

∂I (~r)

∂z
≈ I (~r,+∆z)− I (~r,−∆z)

2∆z
(3.2)

Here ∆z is a small distance along the optic axis. If the image I(~r) is recorded in
the exact focus of the imaging system, then I (~r,+∆z) and I (~r,−∆z) are images
recorded under over-focus and under-focus condition respectively. Note that I (~r)
has to be non-zero, for this equation to have a well defined solution.

Expression (4.1) can be rewritten in the following form

ϕ (~r⊥) = −k∇−2~∇⊥ ·
~∇⊥∇−2 ∂I(~r)

∂z

I (~r)
(3.3)

where ∇−2 = (~∇⊥ · ~∇⊥)−1. A detailed discussion on the validity and range of
applicability of equation (3.3) can be found in [37].

The nature of this equation implies that boundary conditions must be applied
to solve it. Assuming different boundary conditions will yield different solutions for
the phase ϕ (~r⊥). A number of different algorithms have been developed to solve the
TIE (e.g. [4, 14, 39, 70, 72, 113, 122, 130]), many of which are based on the very
popular approach by Paganin and Nugent [122] which makes use of the fact that

∇−2f (~r⊥) = F−1
{
|~q⊥|−2F [f (~r⊥)]

}
(3.4)

where F and F−1 are the two-dimensional forward and inverse Fourier transform,
respectively, and ~q⊥ is the two-dimensional reciprocal space coordinate in the plane
of f (~r⊥). At |q⊥| = 0 this expression diverges, so at that reciprocal space point one
can simply multiply by zero instead. This is a physically legitimate procedure, since
this defines the mean value of the phase—a physically undefined quantity—as zero.

This expression is straightforward to implement computationally, since it makes
the expression (3.3) fully deterministic. However, by using discrete Fourier trans-
forms periodic boundary conditions are implicitly imposed. Also for iterative ap-
proaches, such as finite element [58, 115] or multigrid [14] methods the boundary
conditions must be specified and are often chosen to either be periodic, or of the
Neumann type, or even both [14].

In the context of wavefront sensing the investigated objects often have sparse
phase gradients

~G (~r) = ~∇⊥ϕ (~r) = −k
~∇⊥∇−2 ∂I(~r)

∂z

I (~r)
. (3.5)

This means they contain areas where the phase is rather flat. Examples of such
sparse objects include live cells in biological, biochemical, or biophysical applica-
tions, a large fraction of objects (e.g. nanoparticles) observed in the TEM, but
also objects that extend well beyond the detected field of view, but have regions of
constant optical thickness (e.g. the experimental example shown below).
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3.4 Gradient flipping

Gradient flipping (GF), is based off the charge flipping (CF) algorithm which was
originally developed for X-ray crystallography [112] where it is very effective in
finding sparse solutions of the charge density consistent with experimental diffraction
data.

GF pads the input data I(~r) with its mean value so that the padded image is
twice as large along each of its two dimensions as the original image [131]. Also
∂I (~r) /∂z is padded to the same size, with zeros around its perimeter. The data in
the padded area is then iteratively updated such that the phase gradient within the
area corresponding to the measurement either has a certain percentage driven to
zero, or has the gradient in all pixels the absolute value of which is below a certain
positive threshold minimized.

The GF algorithm iterates between ~G(~r) in Eq. 3.5 and the following expression
for ∂I (~r) /∂z:

D
(
~G′
)

=
−~∇ · I(~r)~G′(~r)

k
, (3.6)

where gradient flipping is applied as

~G′ ( ~r⊥) =

~G ( ~r⊥) if
∥∥∥~G ( ~r⊥)

∥∥∥
1
> δ

−β ~G ( ~r⊥) if
∥∥∥~G ( ~r⊥)

∥∥∥
1
≤ δ.

(3.7)

The parameter β is chosen slightly below 1, i.e. β = 0.97 in order to improve
convergence. Furthermore, δ defines a threshold between 5% and 20% of the maxi-
mum value of ‖~G ( ~r⊥) ‖1, this proved to keep the balance between perturbation and
algorithmic stability as suggested in [112].

At each iteration the left hand side of (3.6) is updated with the experimental
data dIexp.

z ( ~r⊥) by

dIz ( ~r⊥) =

D
(
~G′
)

if ~r⊥ ∈ padded area

F−1
[
hF
(
D
(
~G′
))

+ (1− h)F (dIexp.
z ( ~r⊥))

]
if ~r⊥ ∈ experimental area,

(3.8)

where h is defined in reciprocal space as

h (~q⊥) = exp
(
−R2

LP |~q⊥|
−2) . (3.9)

The mask h acts as a Gaussian low-pass filter for the flipped gradient ~G′(~r) with a
characteristic length of 2πRLP . This updating rule thus preserves the high spatial
frequencies from the measurements, which are generally well-defined by the experi-
ments, and lets the low-frequency information, which is only weakly present in the
measurements, be dictated by the gradient flipping.

dIz (~r) is initialized with the experimental values dIexp.
z (~r) and zero-padded.

Then it is fed into an iterative procedure which loops over the operations defined
in expressions (3.3), (3.5), (3.7), and (3.8), feeding the updated dIz ( ~r⊥) again into
expression (3.3). Convergence is reached when successive estimates of the phase are
sufficiently similar. Fig.3.1 shows a flowchart of the proposed algorithm.

Chapter 3 Amin Parvizi 45



Phase retrieval methods in inline-holography

Compute           from          and
according to (3) and (4)

Compute                  form
according to (5)

Compute                  form
according to (7)

Compute                  from
and                      according to (8)

Converged?

compute
according to (8) and pad it with zero
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Figure 3.1: The flowchart of the proposed TIE-based algorithm.

3.4.1 Free parameters δ and RLP

A careful selection of the threshold parameter δ is a matter of great importance owing
to its role as a trade-off between stabilization and perturbation of the algorithm.
The threshold is defined as δ = ζσ , where σ is the standard deviation of the phase
gradient and ζ is a constant. As shown in Fig.3.2, despite the variation of σ during
the initial iterations, it remains almost constant throughout the rest of the proposed
iterative algorithm. This confirms the eligibility of σ to be a reasonable basis for
the optimum choice of δ. Following the suggestion of Oszlányi et al. [112], we chose
the value of ζ between 1.0 and 1.2.

The characteristic length scale of the mask h in (3.8), RLP , is the second free pa-
rameter in the proposed algorithm and is determined entirely from the experimental
data by setting it to the value that minimizes χ2 in (3.10). The χ2 figure-of-merit
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Figure 3.2: Plot of σ as a function of iterations, an almost constant value of σ
furnishes a basis for selecting optimum δ.

is defined as,

χ2 =

∑
x,y,z [Isim (~r, z, RLP )− Iexp (~r, z, )]

2∑
x,y,z I

exp (~r, z, )

(3.10)

where the values of z being summed over are the under- and over-focus at which the
experimental images have been recorded, and x and y span the area of those images.
Furthermore, Isim(~r⊥, RLP ) are the images simulated from the phase ϕ(~r,RLP ) that
has been reconstructed with RLP and the amplitude A(~r) =

√
I(~r, z = 0). Iexp.

denotes the experimental data.

3.5 Simulations

In this section the performance of GF is demonstrated on simulations of two speci-
mens: the projection of a cube and a L-shaped membrane.

3.5.1 Projected cube

Images of a test object are simulated for a wavelength of λ = 500 nm, a defocus step
of ∆f = 1 mm, a numerical aperture of 0.3 and a pixel size of 1 µ m. Fig. 3.3 shows
an under focused, and an over focused image, as well as the finite difference estimate
of the intensity variation along the optical axis determined from those. The images
were padded by a factor close to 2, i.e. from 624× 624 to 1200× 1200 pixels.

The threshold δ was set to 6.64e−4, corresponding to a ζ of 1.2. From the graph
in Fig. 3.4 it is apparent that χ2 is minimal for values of RLP greater than 17.77 µ
m and RLP is thus set to this value.

Fig. 4.1(b) shows the retrieved phase by means of the proposed approach and
Fig.4.1(a) displays the original phase of the wave used to simulate the input data
shown in Fig. 3.3. In Fig. 4.1(c) the boundaries of the original phase and its
reconstruction are compared.
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Figure 3.3: a) Under-focused b) Over-focused c) Finite-difference estimate of the
intensity variation according (3.2).
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3.5.2 L-shaped membrane

To further investigate the performance of the proposed algorithm for properly re-
covering also slowly varying phases, we constructed a phase object with the phase
given by a continuous function that is not piecewise constant (Fig. 3.6(a)), namely
the L-shaped membrane; this function can be obtained by the MATLAB expression
’membrane()’. Fig. 3.6(c) shows the phase map retrieved by means of the FFT
approach, which assumes periodic boundary conditions, while Fig. 3.6(b) shows the
reconstruction obtained by the symmetrization method [4]. As clearly shown in
Fig. 3.6(d) , the proposed algorithm yields a more accurate reconstruction than
the aforementioned approaches. Furthermore, from Fig. 3.6(d) it is clear that GF
retrieves the boundaries much better.

For this reconstruction the parameter δ has been set such that the number of
pixels being flipped corresponded to one quarter of the total number of the pixels
in the field of view. And RLP has chosen to be 34.52µm by minimizing χ2.

3.6 Experiment

The GF algorithm is tested further using experimental data acquired from the simple
optical setup shown in Fig. 3.7. The system is comprised of a laser with integrated
collimator emitting green light at a wavelength of λ = 520 nm, two lenses with
a focal length of f = 150 mm, an iris diaphragm and a 2048 × 2048 pixel CCD
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Figure 3.5: a)Original phase. b) Reconstructed phase by proposed method. c)Line
profile extracted along the red line in each of the phase maps.

detector. The wing of a fly was used as a test object positioned at a distance r in
front of the first lens, with f < r < 2f . The diaphragm was placed at the back focal
plane of the first lens in order to limit the numerical aperture of the system to about
0.1. Images at the three focal planes z = −∆z, z = 0, and z = +∆z were acquired
by translating the camera along the optic axis with a defocus step of ∆z = 1 mm.

All three images were dark-current corrected, and a gain reference image with
no object in place was used for normalization. Since a difference in defocus leads to
a difference in contrast between these three images and motivated by the fact that
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Figure 3.6: Phase reconstructed by means of a)Original phase obtained by the Mat-
lab expression ’membrane()’, b) the symmetrization method (Neumann boundary
conditions), c) the FFT approach (periodic boundary conditions), d)and the ap-
proach proposed here. e)Line profile extracted along the red line shown at the top
of (a) in each of the phase maps.

I(~r,+∆z) + I(~r,−∆z) ≈ 2I(~r) the two defocused images I(~r,±∆z) were registered
to the focused image I(~r) by iterating the following two steps until convergence:

Step 1: Shift I(~r,+∆z) to the position of the maximum of the cross correlation of that
image with 2I(~r)− I(~r,−∆z), and

Step 2: Shift I(~r,−∆z) to the position of the maximum of the cross correlation of that
image with 2I(~r)− I(~r,+∆z),

each time using the shifted defocused image from the previous iteration for con-
structing the new reference.
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Figure 3.7: Experimental setup: the wing of a fly is imaged by a NA-limiting 4f-
system at a magnification of M ≈ 1. The focal series in Fig. 3.8 was acquired by
shifting the detector by ±1 mm.

The under-focused and over-focused image, as well as dIexp.
z ( ~r⊥) computed ac-

cording to (3.8) are shown in Fig. 3.8. Setting ζ = 1.2 converged to a δ-value of
5.22× 10−5.
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Figure 3.8: a) Under-focused image b) Over-focused image c) Finite difference esti-
mate of the intensity derivative along the optical axis.

Furthermore, the minimum of χ2 occurs at RLP = 91.2 µ m(see Fig. 3.9). The
algorithm was iterated for 20 epochs with the above-mentioned parameters.

Fig. 3.10 shows phase maps ϕ ( ~r⊥) reconstructed by three different techniques:
a) the conventional FFT method applying (3.3) and (3.4), b) the symmetrization
mirror padding approach proposed by Volkov et al. [4], and c) the GF scheme
proposed here. For both the conventional FFT method (a), as well as the proposed
GF algorithm (c) the experimental data were padded as described above to result
in data of twice the original image dimensions.

All three phase maps shown in Fig. 3.10 are consistent with the experimental
data, but the applied boundary conditions differ. The reconstructed phase maps
shown in Figs. 3.10a) and 3.10b) are unphysical, because in both cases the phase
shift inside the wing drops below the phase shift in the empty area. The FFT recon-
struction shown in Fig. 3.10a) also features a severe overall phase slope in the empty
area which cannot be deemed physical. The line profiles across the reconstructed
phase maps show good agreement between the three different reconstruction results
for fine details, but they also highlight the large differences at low spatial frequencies.
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extracted from each of the three reconstructions.

3.7 Conclusion

In this work, we proposed a simple iterative algorithm, gradient flipping (GF), which
imposes sparsity on the phase gradient by either driving a certain percentage of val-
ues to zero, or forcing all values below a certain positive threshold to zero. By
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combining the conventional Fourier method with these principles adapted from the
charge flipping algorithm in crystallography, GF determines boundary conditions on
the phase, while preserving consistency with the higher frequencies of the experi-
mental data.

It was shown with simulations and experiments of non-periodic and non-piecewise
linear objects that these boundary conditions contribute to GF’S much improved
lower spatial frequencies compared to that of the more conventional FFT method
and symmetrization method.
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Chapter 4

A non-convex constraint

4.1 Overview

As elucidated in the last chapter, the GFA forces the gradient of the phase below a
pre-determined threshold. This non-convex constraint is advantageous to eliminate
the low frequency artifact. In this chapter, the reconstructions obtained by the
GFA are compared with those of the total variation minimization approach which
enjoy the l1 minimization constraint. It will be shown that the introduction of the
non-convex constraint is necessary for special class of phase objects.

The material of this chapter is directly taken from [132] of which I am the first
author.

4.2 Introduction

The transport of intensity equation (TIE) is a second order elliptical, non-separable
and inhomogeneous partial differential equation which relates the irradiance and
the variation of the irradiance along the direction of propagation to a Laplacian-like
function of the phase:

∇
(
I ~∇ϕ

)
= −k∂I

∂z
. (4.1)

The symbol ~∇ denotes the gradient in the plane normal to the beam direction, I is
the image intensity at the plane of interest normal to the optic axis at z, ϕ is the
phase change induced by the sample, k is the wave vector and z is the coordinate
along the direction of propagation. Since the right-hand side, ∂I/∂z, is accessible
through experiment as a finite difference derivative in the defocus, the phase shift,
ϕ, can in principle, be retrieved by solving the TIE. Various authors have proposed
solutions to this problem [4, 39, 133, 134], see [117] for an overview.

For the TIE to have a unique solution, the boundary conditions of the problem
need to be specified. These are often taken as periodic [42], or Dirichlet or Neumann
boundary conditions are assumed on the measurements’ edges [4] or in a user-defined
region [58]. As it is often difficult to impose realistic boundary conditions, one might
opt to go without them and instead consider the TIE an underdetermined problem
and remedy its ill-conditionedness and non-uniqueness by imposing one or more
additional constraints to the solution. A limited degree of spatial coherence often
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causes the additional problem in many experimental setups that the low spatial
frequency information of the ∂I

∂z
measurement is either noisy (e.g. if the defocus

has been changed only over a limited range, or at spatial frequencies approaching
the lateral coherence length) and/or contains systematic errors (e.g. by some in-
coherent background signal or the neglect of image distortions when obtaining this
measurement by a finite difference approach). Both, problems, unspecified bound-
ary conditions, as well as unreliable low-frequency components of the measurement
can be addressed by introducing physically reasonable constraints to the solution.

Oftentimes, the sought-after solution is the one sparsest in a basis suitable for
the problem at hand. A naive implementation would then attempt to minimize the
`0-norm of the solution in said basis. However, the non-convexity of the `0 con-
straint makes gradient-based optimization nearly impossible. It is the compressed
sensing (CS) community’s great achievement to have shown that under general and
reasonable circumstances, minimization of the convex `1-norm leads to the spars-
est solution all the same, thus making the problem treatable with gradient-based
optimization techniques.

Total variation (TV) regularization, which aims at minimizing the `1-norm of
the x- and y-derivatives of the solution, (see (4.3)) seems to have been established
as a physically reasonable constraint for reducing low spatial frequency artefacts in
TIE phase retrieval [52, 127]. Since the resulting solutions exhibit sparse derivatives,
TV-regularization should only be considered for piece-wise constant objects.

In this work a variety of example problems is presented where conventional TV-
regularization falls short and where, as expected, especially the lower spatial fre-
quencies are problematic. It is then demonstrated that a substantial improvement in
reconstruction quality is obtained if instead the `0-norm of the x- and y-derivatives,
symbolically denoted ‖∇‖0 in this work, is driven to below a certain user-defined
threshold.

Since gradient-based optimization cannot be invoked to make the solutions fulfill
this non-convex constraint, the gradient flipping algorithm (GFA) is applied. GFA
has been inspired by a class of algorithms known in crystallography as charge flipping
(CF) algorithms [112], which have been shown to optimize problems with non-convex
constraint sets and are able to overcome stagnation at local optima [135].

Since in both TV-regularization and ‖∇‖0 regularization, the basis which is
constrained to be sparse, the gradient ∇ is the same, the improvements presented
in this paper may solely be attributed to GFA’s ability to deal with the non-convex
constraint imposed by ‖∇‖0 regularization.

In Section 4.3 the principle of TVAL3 , a state-of-the-art TV-constrained PDE
solver [106, 111], are summarized, and GFA is explained. In Section 4.4.1 the con-
vergence of GFA is verified by comparing reconstructions of piece-wise linear objects
to those obtained by TVAL3. In Section 4.4.3 the reconstruction of an object that’s
only partially piece-wise constant, TV-regularization contains significant low spatial
frequency artefacts, ‖∇‖0 yields a much improved result. The results in Section 4.4.4
show ‖∇‖0’s superiority over TV-regularization when piece-wise linear objects are
to be reconstructed. The same is true for our test on experimental data presented
in section 4.5. In Section 4.6 the conclusions are drawn.
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4.3 Reconstruction algorithms

In the following section, we explain the two distinct schemes to constrain the solu-
tion of the TIE, namely total variation minimization by the augmented Lagrangian
method [107] and alternating direction [136] algorithms (TVAL3) and the gradient
flipping algorithm (GFA) [117].

In the remainder of this paper (except for the experimental case presented in
section 4.5), pure phase objects are assumed, leading to in-focus images of uniform
intensity. Equation 4.1 thus simplifies to

∇2ϕ = −kdIz. (4.2)

4.3.1 TVAL3

In the TVAL3 scheme a compressed sensing problem with TV regularization is
considered. Rewritten for the notations used in this paper, it reads

min TV (ϕ) ≡
∑
i

‖Diϕ‖1, s.t. ∇2ϕ = −kdIexp
z , (4.3)

where Diϕ is the 2 × 1 discrete-gradient vector at pixel i and dIexp
z is the exper-

imentally measured derivative of the intensity with respect to defocus.The above
formulated objective may thus be described as ”Of all possible solutions ϕ, (4.3)
returns that with lowest TV”.

In TVAL3, this problem is solved by minimizing the augmented Lagrangian,
which is a combination of a squared penalty function and the classic Lagrangian
function [106, 107]. This alleviates difficulties in connection to large squared penalty
terms such as ill-conditioning and bias. As shown in [111], (4.3) can be solved fast
and efficiently with an alternating directions approach.

It is worth mentioning that C. Li compared the performance of the TVAL3
with other packages such as l1-magic [108, 109], TwIST [54] and NESTA [110] for
different scenarios [106]. It was demonstrated that TVAL3 outperforms other stat-
of-art implementations and has the potential to solve compressed sensing problems
with TV minimization in an affordable time with high accuracy [106, 111].

Since TVAL3 is open source, it can be adjusted to one’s specific needs. For
this paper, the measurement matrix, ∇2, was implemented implicitly as a two-
dimensional convolution with the kernel

1

4

1 2 1
2 −12 2
1 2 1

 (4.4)

to avoid high memory load. The need for explicit boundary conditions was circum-
vented by not computing the Laplacian at the edges of the image, so that an image φ
with dimensions N×N , yields∇2φ with dimensions (N−2)×(N−2). The estimated
phase image is now two pixels larger in both directions than the measurements, and
the boundary conditions are estimated along with the phase; in other words, TVAL3
now returns those boundaries yielding a minimum TV. For the reconstruction from
experimental data in Sec. 4.5, absorption needs to be accounted for and thus the
operator ∇I∇ from eqn.(4.1) is implemented implicitly in TVAL3. This was done
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as a three-stage process, first the x- and y-derivatives are approximated as a central
finite difference of second order accuracy, then both derivatives are multiplied with
I, and finally both the x- and y-derivatives are derived with respect to x and y,
respectively, and summed up. Again, the need for explicit boundary conditions was
circumvented by not computing the Laplacian at the edges of the image, so that an
image φ with dimensions N ×N , yields ∇(I∇φ) with dimensions (N −4)× (N −4).
The estimated phase image is now four pixels larger in both directions than the
measurements.

4.3.2 Gradient flipping algorithm

In this section the gradient flipping algorithm (GFA) developed to solve the ‖∇‖0

problem will be described. The general expression (4.1) of the TIE is used to for-
mulate the GFA. Reformulation for the special case (4.2) is trivial as one simply has
to set I = 1. The numerical experiments in Section 4.4 all assume the special case
(4.2) and thus no unfair advantage was given to ‖∇‖0 over TV-minimization.

The GFA is introduced to solve the ‖∇‖0-problem of finding the phase ϕ that
has a certain fraction ε of its gradients equal to zero whilst satisfying the TIE, i.e.

‖∇ϕ‖0 = (1− ε)N2 and ∇ (I∇ϕ) = −k∂I
∂z
, (4.5)

with N2 the number of pixels in the images. This goal is persued by iteratively
flipping the sign of ~∇ϕ wherever its `1-norm is below a certain positive threshold.

The GFA makes use of the following two quantities, obtained from rearranging
(4.1),

G = ∇ϕ = −k
I
∇∇−2∂I

∂z
and (4.6)

D =
∂I

∂z
= −1

k
∇ (I∇ϕ) , (4.7)

where ∇−2 is implemented as a division by q2 in reciprocal space, with q the absolute
value of the radial distance in reciprocal space. Furthermore, all arrays are padded
to larger a size than that of the experiments to avoid problems from the periodic
boundary conditions of the Fourier transforms.

At the `th iteration of the GFA, first the gradients are calculated

G(`) = −k
I
∇∇−2D(`−1); (4.8)

and then gradient flipping is applied,

G(`) =

{
G(`) if ‖G(`)‖1 > δ and

−βG(`) if ‖G(`)‖1 ≤ δ,
(4.9)

where β is slightly below 1 and δ is chosen such that a fraction ε of pixels fulfills the
second case; then D(`) is calculated,

D(`) = −1

k
∇
(
IG(`)

)
; (4.10)
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which is finally updated with the experimental measurements through

D(`) =

{
D(`) within the padding,

F−1
[
hF
(
D(`)

)
+ (1− h)F (dIexp

z )
]

within the measured area,
(4.11)

where F defines the Fourier transform and h is a Gaussian mask in reciprocal space:

h (q) = exp
(
−R2

LP q
2
)
. (4.12)

The free parameter RLP is chosen to minimize

χ2 =

∑[
Isim (RLP )− Iexp

]2∑
Iexp

, (4.13)

where Iexp are the experimental images, Isim (RLP ) are the images simulated from the
phases obtained from the reconstruction with mask-width RLP , and the summations
run over the defoci and the image pixels.

The iterations start at ` = 1 and D(0) is set to dIexp
z . When the algorithm is

stopped, at iteration `, the phase ϕ is calculated from

ϕ = −k∇−2∇1

I
∇∇−2D(`). (4.14)

The gradient flipping step in (4.9) is analogous to that in the charge flipping
algorithms [112, 135] in crystallography, where the somewhat counter-intuitive no-
tion was used that flipping the sign of entries with values below a certain positive
threshold, drives these values to zero. In this work the same notion is employed
to reach the goal in (4.5), with the small modification that the absolute value of
the entries is compared against the threshold. This class of algorithms has proven
to optimize problems with non-convex constraint sets and to be able to overcome
stagnation at local optima [135].

4.4 Numerical experiments

4.4.1 Validation of GFA for piece-wise constant phase ob-
jects

Choosing various numerical phase-objects, we aim to investigate the performance
of both algorithms namely, TVAL3 as well as GFA, for different scenarios namely,
periodic and non-periodic boundary condition, partially piece-wise, piece-wise linear
and the effect of noise. For all different scenarios, the intensity of the principal
(focused) plane is assumed to be unity over the entire plane to mimic the pure
phase-object condition. The right hand-side of eqn.(4.1) is computed by passing the
original phase to the implemented two dimensional Laplace operator which resembles
the ideal intensity variation along the optical axis.

A piece-wise constant head-phantom obtained by the Matlab expression ‘phan-
tom()’ is taken to be a pure phase-object with periodic boundary conditions as
illustrated in Fig. 4.1(a). The intensity variation is shown in Fig. 4.1(d) and the
reconstructed phase by means of GFA as well as TVAL3 are depicted in Fig. 4.1(b)
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Figure 4.1: Periodic piece-wise constant phase object: a) Head-phantom original
phase. b) Reconstructed phase by GFA. c) Reconstructed phase by TVAL3 d)
Intensity variation along the optical axis.

and Fig. 4.1(c), respectively. It worth noting that the free parameters of the TVAL3
were optimized in such a way that no further improvement of the result could be
observed.

In order to investigate the reconstruction ability of the algorithms in the case
of non-periodic phase-objects, a shifted head-phantom depicted in Fig. 4.2(a) has
been considered. The phases reconstructed by means of GFA as well as TVAL3 are
shown in Figs. 4.2(b) and 4.2(c), respectively. The graphical representation of the
measurement matrix is demonstrated in Fig. 4.2(d). Both algorithms retrieve the
phase information successfully.

4.4.2 Reconstruction from noisy images

In order to evaluate the capability of both algorithms reconstruct the phase infor-
mation in the presence of noise, we added 10% as well as 30% Gaussian noise. Figs.
4.3(a) and 4.3(b) show the reconstruction result of the head-phantom by means of
GFA. Furthermore, Figs .4.3(c) and 4.3(d) illustrate the retrieved phase information
employing the TVAL3 algorithm. The original phase is depicted in Fig. 4.3(e). In
order to compare the reconstructed phases for the same measurement matrix,the
root-mean-square error (RMSE) is used as a figure of merit. Table 4.1 shows the
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Figure 4.2: Non-periodic piece-wise constant phase object: a) Head-phantom origi-
nal phase. b) Reconstructed phase by GFA. c) Reconstructed phase by TVAL3. d)
Graphical representation of the measurement matrix.

RMSE for the aforementioned scenarios.

4.4.3 Partially piece-wise constant phase objects

To further investigate the performance of the GFA as well as the TVAL3 algorithm
for a proper recovery of low frequency information, we constructed the partially
piece-wise constant phase object shown in Fig. 4.4(a). This phase map can be
obtained by the Matlab expression ‘membrane()’. Fig. 4.4(b) and Fig. 4.4(c) il-
lustrates the reconstructed phase by means of GFA as well as TVAL3, respectively.
Fig. 4.4(d) depicts the intensity variation dIexp

z . It is worth noting that the TVAL3
parameters were optimized in multiple trials to obtain the best possible reconstruc-
tion , i.e. the one with the lowest RMSE. Moreover, the threshold parameter δ in
GFA is refined during the reconstruction such that the number of flipped pixels is
equal to one quarter of the field of view. The RMSE values of the reconstructed
phase maps are shown in Table 4.1.
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Figure 4.3: a) Reconstruction in the presence of 10dB noise by GFA. b) Reconstruc-
tion in the presence of 30dB noise by GFA. c) Reconstruction in the presence of
10dB noise by TVAL3. d) Reconstruction in the presence of 30dB noise by TVAL3.
e) Original phase.

4.4.4 Piece-wise linear phase objects

Finally, the cameraman phantom shown in Fig. 4.5(a) from the Matlab built-in
library of demo images was chosen as a piece-wise linear object to investigate and
evaluate the capability of both phase retrieval algorithms to deal with those types
of objects. Fig. 4.5(b) depicts the reconstruction phase by means of the TVAL3
approach in which µ = 25 and β = 24. Fig. 4.5(c) illustrates the retrieved phase
information by means of the GFA approach. The measurement matrix obtained by
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Figure 4.4: Partially piece-wise constant phase object: a) Original phase. b) Re-
constructed phase by GFA ( RMSE = 0.22). c) Reconstructed phase by TVAL3
(RMSE = 5.4) d) Intensity variation in transverse plane.

applying (4.4) to the original phase is shown graphically in Fig. 4.5(d). It worth
noting that again, for the TVAL3 based reconstruction the parameters have been
chosen to minimize the RSME (see Table 4.1).

4.5 Experiment

Illustrated graphically in Fig. 4.6, a simple optical setup is employed to evaluate the
performance of the two algorithms. The setup is comprised of a green laser emitting
coherent light at a wavelength of λ = 520 nm, two lenses with focal lengths f = 150
mm, an iris aperture and a 2048 × 2048 CCD camera as a detector. The wing of a
fly serves as a quasi-transparent object being placed at the distance r from the first
lens where f < r < 2f . The iris diaphragm is positioned at the back focal plane
of the first lens in order to limit the numerical aperture. Images were acquired at
three different focal planes namely, z = ∆z, z = 0 and z = −∆z where the defocus
step is ∆z = 1 mm. Fig. 4.7(c) depicts the intensity variation along the optical axis
which is computed from the under-focused (Fig. 4.7(b)) as well as the over-focused

Fig. 4.7(a) image by the finite difference dIexp
z = I(∆z)−I(−∆z)

2∆z
.

Fig. 4.8(b) shows the reconstructed phase images obtained by means of the
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Figure 4.5: Piece-wise linear phase object: a) Original phase. b) Reconstructed
phase by TVAL3 (RMSE = 1.7). c) Reconstructed phase by GFA (RMSE = 0.95)
d) Graphical representation of the measurement matrix.

(a)

Figure 4.6: Schematic of optical setup

GFA while Fig.4.8(a) shows a conventional FFT solution which included the same
padding used for the GFA but did not constrain the gradient of the phase. As clearly
shown, the FFT-based reconstruction suffers from low-frequency artifact due to the
periodicity of the field of view. The red line across the retrieved phase highlights
the fact that the FFT-based reconstruction experiences a steep slope in the empty
area where the phase should be flat (Fig. 4.8(d)) while the gradient-constrained
solution is reasonably constant in the absence of any object and also in places where
we expect a constant wing thickness, as shown in Fig. 4.8(e). The TVAL3 solution
(Fig. 4.8(c)) fails to recover any low spatial frequency information within the wing
at all.
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TV-regularization ‖∇‖0 regularization
10% noise 1.26 3.3
30% noise 5.1 5
Partially piece-wise constant phase object 5.4 0.22
Piece-wise linear phase object 1.7 0.95

Table 4.1: RMSE of the TV-regularization as well as ‖∇‖0 regularization for different
scenarios.
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Figure 4.7: Experimental images a)Under-focused, b)Over-focused, c) Intensity vari-
ation along the optical axis.

4.6 Conclusions

In this paper, we compared two algorithms for removing low spatial frequency arte-
facts in solutions of the TIE by constraining them to be sparse in either the l0 norm
or the l1 norm of their gradient, namely, gradient flipping and total variation min-
imization as implemented by TVAL3. While the latter imposes convex constraints
in the spirit of Compressed Sensing, the former solves a non-convexly strained opti-
mization problem. Both algorithms were able to recover piece-wise constant phase
maps with and without periodic boundary conditions. In the case of noisy mea-
surements, the GFA provided a solution which agreed slightly better with the input
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Figure 4.8: Reconstructed phase by a)FFT approach, b) GFA method, c)TV mini-
mization approach. (d),(e) and (f) Line profiles extracted along the red lines in each
of the phase maps graphically depicted above.

data at a high noise level of 30%, while performing slightly worse at a lower noise
level of only 10%. For only partially piece-wise constant and piece-wise linear test
objects, the GFA solution agreed much better with the original phase used to sim-
ulate the test data. In a test on experimental data the GFA provided a physically
very reasonable solution, while the TV-constrained solution did not seem physically
reasonable.

Chapter 4 Amin Parvizi 65



Chapter 5

Astigmatic Intensity equation

5.1 Overview

The focus of this research work was on the TIE up to here. However, in this chapter,
the astigmatic intensity equation(AIE) is presented which unlike the TIE relies on
the measurements obtained by rotating a cylindrical lens to distinct angles. This
leads to an over-determined system of equation which is of great importance. An it-
erative algorithm is devised to solve the AIE based on fast Fourier transform. Later,
periodic as well as non-periodic phase objects are chosen to investigate the perfor-
mance of the algorithm in boundary value retrieval. Finally, to evaluate the ability
of low as well as high frequency information reconstruction, the power spectrum of
the reconstructed phase by means of AIE is compared with that of the TIE-FFT
based approach as well as the original phase.

5.2 Derivation of Astigmatic intensity equation

In this section, the astigmatic intensity equation (AIE) which relates the variation
of intensity to the phase shift due to the object being investigated will be derived.

To start our derivation, wave function in the image plane denoted by ψi (xi, yi)
is given by

ψi (xi, yi) = F−1

{
P̃

(
−λb kx

2π
,−λb ky

2π

)
· F {ψo (xi, yi)}

}
(5.1)

where kx and ky are the wave vector in the transverse plane and ψo (xi, yi) denotes
the object plane wave function. P̃ represents the general pupil function which is
defined as

P

(
−λb kx

2π
,−λb ky

2π
, φA

)
= P

(
−λb kx

2π
,−λb ky

2π

)
exp

(
iλπ

((
k2
x − k2

y

)
cos (2φA) + 2kxkysin (2φA)

))
.

(5.2)

Denoting the Fourier transform of the object wave function by Ψ0 (kx, ky), it can
be written
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ψi (xi, yi) = F−1

{
P̃

(
−λb kx

2π
,−λb ky

2π

)
·Ψo (kx, ky)

}
(5.3)

= F−1 {Ψ (kx, ky)} (5.4)

where

Ψ (kx, ky) = P̃

(
−λb kx

2π
,−λb ky

2π

)
·Ψo (kx, ky) . (5.5)

Therefore, the object wave function can be written as

Ψ
(
~k⊥, A, φA

)
= Ψo

(
~k⊥

)
exp

(
iλπ

A

2

((
k2
x − k2

y

)
cos (2φA) + 2kxkysin (2φA)

))
,

(5.6)
where

~k⊥ =

(
kx
ky

)
. (5.7)

Computing the derivative with respect to A to the object wave function yields

∂

∂A
Ψ
(
~k⊥

)
= i

λπ

2

((
k2
x − k2

y

)
cos (2φA) + 2kxkysin (2φA)

)
·

Ψ0

(
~k⊥

)
· exp

(
iλπ

A

2

((
k2
x − k2

y

)
cos (2φA) + 2kxkysin (2φA)

))
= i

λπ

2

((
k2
x − k2

y

)
cos (2φA) + 2kxkysin (2φA)

)
Ψ
(
~k⊥

) (5.8)

To remind our-self, we consider a function g (v) with Fourier transform G(kv).
The following relation can be derived from the Fourier principle

F
(
∂N

∂xN
g(x)

)
= iNkNx · F (g(x)) (5.9)

i−NF−1

(
F
(
∂N

∂xN
g(x)

))
= F−1

(
kNx · F (g(x))

)
(5.10)

i−N
∂N

∂xN
g(x) = F−1

(
kNx ·G(kx)

)
. (5.11)

For the case of N = 2, it follows

− ∂2

∂x2
g(x) = F−1

(
k2
x ·G(kx)

)
. (5.12)

Employing Eq.5.12, inverse Fourier transform is applied to Eq.5.8 which results
(~x = (x, y))

F−1

(
∂

∂A
Ψ
(
~k⊥

))
= F−1

(
i
λπ

2

((
k2
x − k2

y

)
cos (2φA) + 2kxkysin (2φA)

)
Ψ
(
~k⊥

))
∂

∂A
ψ(~x) = −iλπ

2

((
∂2

∂x2
− ∂2

∂y2

)
cos (2φA) + 2

∂2

∂x∂y
sin (2φA)

)
ψ (~x)

∂

∂A
ψ(~x) = −iλπ

2
cos (2φA)

(
∂2

∂x2
− ∂2

∂y2

)
ψ(~x)− 2i

λπ

2
sin (2φA)

∂2

∂x∂y
ψ(~x).

(5.13)
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An arbitrary wave function can be written as

ψ(~x,A, φA) =
√
I(~x,A, φA)exp (iϕ(~x,A, φA)) , (5.14)

where the intensity is defined as I(~x,A, φA) = |ψ(~x,A, φA)|2.
Substituting Eq.5.14 into Eq.5.13, one should calculate the following relations

∂

∂A
ψ(~x) =

1

2
√
I

∂I

∂A
exp(iϕ) + i

√
I
∂ϕ

∂A
exp(iϕ) (5.15)

∂

∂x
ψ(~x) =

1

2
√
I

∂I

∂x
exp(iϕ) + i

√
I
∂ϕ

∂x
exp(iϕ). (5.16)

∂2

∂x2
ψ(~x) = − 1

4I
3
2

(
∂I

∂x

)2

exp(iϕ) +
1

2
√
I

∂2I

∂x2
exp(iϕ) +

i√
I

∂I

∂x

∂ϕ

∂x
exp(iϕ) +

+i
√
I
∂2ϕ

∂x2
exp(iϕ)−

√
I

(
∂ϕ

∂x

)2

exp(iϕ) (5.17)

∂2

∂x∂y
ψ(~x) = − 1

4I
3
2

∂2I

∂x∂y
exp(iϕ) +

1

2
√
I

∂2I

∂x∂y
exp(iϕ) +

i

2
√
I

∂I

∂x

∂ϕ

∂y
exp(iϕ)

+i
1

2
√
I

∂I

∂y

∂ϕ

∂x
exp(iϕ) + i

√
I
∂2ϕ

∂x∂y
exp(iϕ)−

√
I
∂2ϕ

∂x∂y
exp(iϕ)(5.18)

It should be mentioned that the derivation with respect to y is similar to that
of x. Substituting Eq.5.15 to Eq.5.18 into Eq.5.13 while keeping the real part and
dividing to exp(iϕ) leads to

1

2
√
I

∂I

∂A
= −iλπ

2
cos (2φA)

[
i√
I

∂I

∂x

∂ϕ

∂x
+ i
√
I
∂2ϕ

∂x2
− i√

I

∂I

∂y

∂ϕ

∂y
− i
√
I
∂2ϕ

∂y2

]
−2i

λπ

2
sin (2φA)

[
i

2
√
I

∂I

∂x

∂ϕ

∂y
+

i

2
√
I

∂I

∂y

∂ϕ

∂x
+ i
√
I
∂2ϕ

∂x∂y

]
. (5.19)

The above derivation can be further simplified by multiplying both side to 2
√
I

which results

1

2πλ

∂I

∂A
= cos (2φA)

[
∂I

∂x

∂ϕ

∂x
− ∂I

∂y

∂ϕ

∂y
+ I

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2

)]
+sin (2φA)

[
∂I

∂x

∂ϕ

∂y
+
∂I

∂y

∂ϕ

∂x
+ 2I

∂2ϕ

∂x∂y

]
, (5.20)

which is called AIE.
Assuming φA = 0◦, then we have

1

2πλ

∂I

∂A

φA=0◦
= 1 ·

[
∂I

∂x

∂ϕ

∂x
− ∂I

∂y

∂ϕ

∂y
+ I

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2

)]
(5.21)

= deriv1 (5.22)

therefore,

deriv1 =
∂I

∂x

∂ϕ

∂x
− ∂I

∂y

∂ϕ

∂y
+ I

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2

)
. (5.23)
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Furthermore, assuming φA = 45◦, then we have

1

2πλ

∂I

∂A

φA=45◦
= 1 ·

[
∂I

∂x

∂ϕ

∂y
+
∂I

∂y

∂ϕ

∂x
+ 2I

∂2ϕ

∂x∂y

]
(5.24)

= deriv2 (5.25)

therefore,

deriv2 =
∂I

∂x

∂ϕ

∂y
+
∂I

∂y

∂ϕ

∂x
+ 2I

∂2ϕ

∂x∂y
. (5.26)

5.3 Inversion of AIE

In this section, we will derived the inverse AIE by first writing it in matrix notation.

1

2πλ

∂I

∂A
=

∂I

∂x

[
cos (2φA)

∂ϕ

∂x
+ sin (2φA)

∂ϕ

∂y

]
+
∂I

∂y

[
−cos (2φA)

∂ϕ

∂y
+ sin (2φA)

∂ϕ

∂x

]
+I

[
cos (2φA)

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2

)
+ 2sin (2φA)

∂2ϕ

∂x∂y

]
(5.27)

=
(

∂I
∂x

∂I
∂y

)( cos (2φA) ∂ϕ
∂x

+ sin (2φA) ∂ϕ
∂y

−cos (2φA) ∂ϕ
∂y

+ sin (2φA) ∂ϕ
∂x

)

+I

[
cos (2φA)

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2

)
+ 2sin (2φA)

∂2ϕ

∂x∂y

]
. (5.28)

=
(

∂
∂x

∂
∂y

)
I

(
cos (2φA) ∂

∂x
+ sin (2φA) ∂

∂y

−cos (2φA) ∂
∂y

+ sin (2φA) ∂
∂x

)
ϕ (5.29)

with the operator ~∇A defined as

~∇A =

(
cos (2φA) ∂

∂x
+ sin (2φA) ∂

∂y

−cos (2φA) ∂
∂y

+ sin (2φA) ∂
∂x

)
(5.30)

=

(
cos (2φA) sin (2φA)
sin (2φA) −cos (2φA)

)(
∂
∂x
∂
∂y
.

)
(5.31)

Therefore, Eq.5.29 can be simplified in more compact form as following

1

2πλ

∂I

∂A
= ~∇I ~∇Aϕ. (5.32)

Solving Eq.5.32 for unknown ϕ leads to

ϕ =
1

2πλ
~∇−1
A

 ~∇−1
(
∂I(~x)
∂A

)
I (~x)

 . (5.33)

Now, we define the operator DA as following

DA =
∂

∂x
+ i

∂

∂y
. (5.34)
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Therefore, the inverse of DA represented by D−1
A is

D−1
A =

D∗A
|DA|2

=

∂
∂x
− i ∂

∂y

∂2

∂x2
+ ∂2

∂y2

=

(
∂

∂x
− i ∂

∂y

)
4−1, (5.35)

where 4−1 denotes the inverse Laplace. Employing the defined operator DA as
well as substituting in Eq.5.32 results

1

2πλ

∂I

∂A
= DAI DAϕ (5.36)

=

(
∂

∂x
+ i

∂

∂y

)(
I

[
∂ϕ

∂x
+ i

∂ϕ

∂y

])
(5.37)

=
∂I

∂x

∂ϕ

∂x
+ I

∂2ϕ

∂x2
+ i

∂I

∂x

∂ϕ

∂y
+ iI

∂2ϕ

∂x∂y

+i
∂I

∂y

∂ϕ

∂x
+ iI

∂2ϕ

∂y∂x
− ∂I

∂y

∂ϕ

∂y
− I ∂

2ϕ

∂y2
(5.38)

=
∂I

∂x

∂ϕ

∂x
− ∂I

∂y

∂ϕ

∂y
+ I

(
∂2ϕ

∂x2
− ∂2ϕ

∂y2

)
+i

(
∂I

∂x

∂ϕ

∂y
+
∂I

∂y

∂ϕ

∂x
+ 2I

∂2ϕ

∂x∂y

)
(5.39)

= deriv1 + i · deriv2. (5.40)

We then replace the term deriv1 and deriv2 with Eq.5.22 as well as Eq.5.25,
respectively. Therefore,

deriv1 =
1

2πλ

∂I

∂A

∣∣∣∣
φA=0◦

(5.41)

deriv2 =
1

2πλ

∂I

∂A

∣∣∣∣
φA=45◦

(5.42)

and hence, we have the following relation

∂I

∂A
=
∂I

∂A

∣∣∣∣
φA=0◦

+ i · ∂I
∂A

∣∣∣∣
φA=45◦

. (5.43)

Finally, the unknown phase can be computed by employing Eq.5.36

DAI DAϕ =
1

2πλ

∂I

∂A
(5.44)

DAI DAϕ = deriv1 + i · deriv2 (5.45)

I DAϕ = D−1
A (deriv1 + i · deriv2) (5.46)

ϕ = D−1
A

(
D−1
A (deriv1 + i · deriv2)

I

)
(5.47)

Of course, we want to idially average this for a number of different angles. This
equation will generally result in a complex quantity for the phase ϕ. However, ϕ
has to be real. The boundary conditions have thus to be adjusted to make ϕ real.
This is done by padding the arrays we are working with and iteratively projecting
between the constraints given by the experimental data and the constraint that ϕ
has to be real.
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5.4 Reconstruction algorithm

Intensity in the image plane denoted by I (x, y, A) = IA can be expanded utilizing
the Taylor series to the first order as following

IA = I0 + A
∂I

∂A

∣∣∣∣
A=0

, (5.48)

where I (x, y, A = 0) = I0 is the intensity when astigmatism is zero. Therefore,
the intensity variation with respect to the astigmatism amplitude reads as

∂I

∂A

∣∣∣∣
A=0

=
IA − I0

A
. (5.49)

Bearing in the mind that I−A (φA) = IA (φA + 90◦), therefore, Eq.5.49 is refor-
mulated as

∂I

∂A

∣∣∣∣
A=0

=
IA (φA)− IA (φA + 90◦)

2A
. (5.50)

Employing Eq.5.50, the term deriv1 and deriv2 is computed using the following
relations

deriv1 =
∂I

∂A

∣∣∣∣
φA=0◦

=
IA (φA = 0◦)− IA(φA = 90◦)

2A
(5.51)

and

deriv2 =
∂I

∂A

∣∣∣∣
φA=45◦

=
IA (φA = 45◦)− IA(φA = 135◦)

2A
. (5.52)

Therefore, the unknown phase is computed by substituting Eq.5.51 as well as
Eq.5.52 into Eq.5.47 which reads as

ϕ = D−1
A

D−1
A

(
IA(φA=0◦)−IA(φA=90◦)

2A
+ i · IA(φA=45◦)−IA(φA=135◦)

2A

)
I0

 . (5.53)

As mentioned earlier I0 is the intensity in the reference plane where the astig-
matism is zero. However, since removing the cylindrical lens in order to acquire
zero astigmatic image is not experimentally feasible, we compute the intensity in
reference plane from following relation

I0 =
1∑
φA

∑
φA

IA (φA) . (5.54)

Moreover, it is evident from Eq.5.53 that four images at distinct angles namely,
φA = 0◦, 45◦, 90◦ and 135◦, should be recorded to visualize the unknown phase map.

The reconstruction algorithm starts by padding the reference intensity in order
to prevent the periodic boundary condition effect inherent to Fast Fourier Trans-
form(FFT) approach which is employed to compute the inverse Laplacian. Then,
Eq.5.51 as well as Eq.5.52 are hired to compute the derive1 and derive2 quantities.
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Having calculated intensity variation with respect to astigmatic amplitude for two
distinct angle namely, φA = 0◦ and φA = 45◦, Eq.5.53 is used to compute the un-
known ϕ. It is of great importance to note that ϕ is complex quantity and since,
the phase is physical as well as real quantity, therefore, we keep the real part and
ignore the imaginary part of the reconstructed phase. Then, the reconstructed ϕ is
back-projected and substituted on the right hand side of Eq.5.45. Having computed
the new intensity derivative, the information in the padded area is kept while the
retrieved data is replaced by the experimental measurement in experimental area.
This is done to ensure the consistency between simulated data and experimental
information. We continue to iterate as long as the difference between subsequent
phase reconstruction falls below a pre-defined threshold.

5.5 Numerical experiments

In this section, we would like to investigate the performance of the proposed re-
construction algorithm for different scenarios namely, phase with periodic boundary
condition as well as non-periodic boundary condition and in the presence of the
different levels of noise.

5.5.1 Periodic boundary condition

The Matlab head phantom is used as phase of a phase object with periodic boundary
condition as shown in Fig.5.1(a). This phantom is obtained by Matlab command
’Phantom()’ with the pixel size of 0.01µm.

(a) (b)

Figure 5.1: a) Original phase. b) Reconstructed phase by proposed approach

The simulated images have been padded out from 256 × 256 pixels by a factor
of two to yield image size of 512 × 512. Fig.5.2 illustrates the simulated images at
the different angles with the astigmatic amplitude equal to 1mm. Having obtained
the simulated data for different angles, Eq.5.52 as well as Eq.5.51 are employed to
yield the derive2 and derive1 quantities.

Having fed the algorithm with the simulated measurements, Fig.5.1(b) shows
the reconstructed phase which visually resembles the original phase.
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(a) (b)

(c) (d)

Figure 5.2: Simulated intensity images at different angles a) φA = 0◦, b) φA = 45◦ ,
c) φA = 90◦, d) φA = 135◦

In order to evaluate the performance of the proposed algorithm in reconstruction
of low as well as high spatial frequencies, we compare the power spectrum of the
original phase with that retrieved by the proposed method as well as the TIE where
we employed the FFT approach. As shown in Fig.5.3, the power spectrum of the
reconstructed phase by proposed method based on the astigmatic set of equations is
closer to the original one in comparison to that of the reconstructed by solving TIE
via FFT approach especially, in very low as well as very high spatially frequencies.
However, it is worth noting that both of the approaches namely, TIE and AIE,
retrieved the middle range frequencies almost equally faithfully.

5.5.2 Non-Periodic boundary condition

In order to asses the performance of the proposed method in case of non-period
boundary condition phase object, we construct a piece-wise non-periodic phase ob-
ject which is shown in Fig.5.4(a). The size of the simulated test object is 624 × 624
pixels which is padded by a factor of two to yield a 1248 × 1248 image size with
pixel size of 1µm. Fig.5.5 illustrates the simulated images at the different angles
namely, φA = 0◦, φA = 45◦, φA = 90◦ and φA = 135◦ with the astigmatic amplitude
equal to 1mm.

Having provided the intensities at different angles, we let the algorithm iterate.
Fig.5.4(b) shows the reconstructed phase. Fig.5.4(c) shows the data extracted along
the red line to compare the retrieved boundary values of the reconstructed phase
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Figure 5.3: Power spectrum of the original phase as well as that of the reconstructed
by suggested method and TIE-FFT approach

(a) (b)

(c)

Figure 5.4: a)Original phase. b)Reconstructed phase. c)The line profile of the
extracted data along the red line.

with that of the original. As shown clearly, the proposed approach is capable of
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reconstructing boundary values. We attribute this feature to the mathematical
nature of the astigmatic equation which allow us to have over determined system of
equation in which there is more than one measurement data for each point.

(a) (b)

(c) (d)

Figure 5.5: Simulated intensity images at different angles a) φA = 0◦, b) φA = 45◦ ,
c) φA = 90◦, d) φA = 135◦

In order to further analyze the suggested approach toward the AIE, we compare
the power spectrum of the original phase with the reconstructed phase by the sug-
gested approach and that of the TIE-FFT based approach. As shown in Fig 5.6,
although both of the aforementioned algorithms are capable of reconstructing the
middle range frequencies, but the proposed approach reconstructs the low and high
spatially frequencies more precisely. Therefore, the proposed approach based on the
astigmatic equation outperforms the TIE based approach as well as reflecting the
superiority of the proposed approach to retrieve the low and high spatial frequencies.

5.6 Noise impact

In this section, we would like to evaluate the performance of the algorithm in the
presence of the noise. Therefore, we corrupted the images in such a way that
PSNR = 24.92 dB where PSNR is the peak signal to noise ratio defined as

PSNR = 10. log10

(
M2

MSE

)
(5.55)

where M is the maximum value of the image and MSE denotes the mean squared
error.
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Figure 5.6: Power spectrum of the original phase as well as that of the reconstructed
by suggested method and TIE-FFT approach

Having provided the measurements, we let the algorithm to iterate 1113 epochs.
The reconstructed phase as well as the original phase are shown in Fig.5.7. We
attribute the cloudy features of the reconstructed phase to the presence of the noise.

(a) (b)

Figure 5.7: a) Original phase. b) Reconstructed phase by proposed approach

5.7 Summary

A novel phase reconstruction method based on the astigmatic intensity equation
(AIE) is presented. AIE offers not only a simple experimental setup but also, an
over determined system of equation. However, like TIE, AIE suffers from the non-
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uniqueness as well as ill-conditionedness of the solution. An iterative algorithm
is suggested which benefits from the unique feature of AIE (i.e. over determined
system of equation) in which boundary values in the padded area updated until the
convergence criteria is fulfilled. Finally, numerical experiment shows that the AIE
is not only capable of retrieving the boundary values but also, in comparison to
the TIE, low frequency as well as high frequency information is reconstructed more
precisely.
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Summary and conclusion

The transport of intensity equation (TIE) owing to its simple mathematical formu-
lation as well as straight forward experimental procedure has applications across
many disciplines such as optical microscopy, X-ray imaging, electron microscopy,
etc. The TIE relates the intensity variation along the optical axis in transverse
plane to the phase of the unknown object. However, being a second order elliptical
partial differential equation, the need for boundary condition is inevitable in order
to obtain a unique solution which is difficult to obtained experimentally. Therefore,
the main focus of this research work is on proposing new algorithms to get around
the problem of ill-conditionedness and non-uniqueness.

In chapter 2, a new combination of flux preserving as well as Dirichlet boundary
conditions is presented. While flux preserving boundary conditions are applied to
the outer field of view, the Dirichlet boundary condition is imposed to the perimeter
of a polygon which covers the free area. A finite element based software namely,
Comsol, is employed to impose the above-mentioned boundary condition on the
experimental measurement to reconstruct the wave front of the wing of a fly as
a quasi-transparent object under investigation. Besides, due to the fact that the
TIE is an elliptical partial differential equation, the implemented multigrid solver
minimizes the computation time. Furthermore, the effect of padding on both the
proposed methods as well as the FFT approach is investigated. It is shown that
although the proposed approach my benefit from increasing amount of the padding
the FFT approach reflects strong low spatial frequency atifacts in the case of a non-
periodic object due to the fact that the FFT implicitly assumes periodic boundary
conditions which does not reflect the physical fact. Although the finite element
based method is applicable in many cases there exist scenarios where the free area
in the image plane is not accessible.

In chapter 3, the gradient flipping (GF) algorithm is presented. The GF com-
bines the well known FFT solution of the TIE with the principle adapted from the
charge flipping (CF) algorithm in order to find the sparsest solution in the gradi-
ent space. To accomplish the task, fist the intensity variation is padded to almost
two times the original size and then the phase is computed by means of the FFT
approach. Having computed the phase, the CF algorithm is implemented in the
gradient space either to force all values below a certain predetermined threshold to
zero or a certain percentage of values to zero. Later, the modified phase is utilized
to calculate the new intensity variation. The boundary information in the padded
area is kept while the simulated data is replaced by experimental data to assure
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the consistency between experimental data and boundary condition. Finally, the
modified intensity variation is back-projected and the procedure continues until the
convergence criteria is fulfilled. The application of the GF to experimental data and
comparison with the conventional method demonstrate an improved retrieval of the
low spatial frequencies of the phase especially where the phase is either non-periodic
or non-piecewise linear.

In chapter 4, the phase reconstructed by two approaches namely, GF algorithm
which introduced in the chapter 3 and the total variation minimization in which
the l1 norm of the gradient is minimized, for different scenarios are compared. It is
shown for periodic as well as non-periodic piece-wise constant phase objects, both
algorithm retrieve the phase information successfully. Furthermore, a partially piece-
wise constant phase object is chosen to evaluate the ability of a proper low frequency
reconstruction. As demonstrated in chapter 4, the GF’s reconstruction manifests
lower RMSE. While the TV-minimization based algorithm performs better in the
presence of 10% noise, the GF algorithm reconstruction outperforms that of the
TVAL3 in the presence of 30% noise. Finally, experimental demonstration reflects
that the GF reconstruction provides physically reasonable solution in comparison to
that of the TV-regularization based approach in which the low frequency information
is missing and thus, did not seem physically reasonable. It is of great importance
to note that the GF algorithm imposes a non-convex constraint, i.e. forcing the
gradient below a certain threshold, while the TV-minimization approach imposes
the convex constraint, i.e. minimization of l1 norm. Therefore, it is strongly believed
the introduction of the non-convex constraint will pave the way to increase the range
of applicability of the TIE.

In chapter 5, a completely new approach toward wave front reconstruction with
the astigmatic intensity equation (AIE) is presented. First, the derivation of the AIE
is presented. It is shown that the AIE offers an over-determined system of equations
which is of great importance. In other words, for each point on the phase map, more
than one point in the measurement map exist in which the number of corespondent
points depend on the number of measurements. It is worth noting that the AIE like
the TIE has a unique solution for strictly positive intensity up a constant additive.
An algorithm to solve the AIE is carefully devised and the performance of algorithm
is investigated by several numerical examples. Periodic as well as non-periodic phase
objects are chosen to evaluate the performance of the algorithm. It is shown that the
suggested algorithm is capable of a successful reconstruction. To further analyze the
ability of the AIE to reconstruct low as well as high spatial frequencies, the retrieved
phases are compared with that obtained by employing the TIE-FFT based approach.
The power spectrum of the reconstructed phases illustrate that the AIE reconstructs
the low frequency as well as high frequency information more precisely.

Although the proposed algorithm performs successfully for the case of the test
data, it is of great interest to investigate and evaluate the performance of the above-
mentioned algorithm for the case of experimental data. However, one of the possible
challenges would be the distortion due to the cylindrical lens. It needs further re-
search on how to characterize the distortion of a corresponding optical setup and
devise an algorithm to effectively remove the off-axis aberration and distortions.
Furthermore, the AIE is derived under the assumption of a coherent light, how-
ever, most of the practical sources are incoherent or partially coherent. Thus more
research is required to investigate the effect of different light sources on the AIE for-
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mulation. Moreover, accurate estimation of intensity variation plays a vital role in a
precise reconstruction. Although the proposed algorithm in chapter 5 benefits from
a simple finite difference method to estimate the intensity variation, more research
on developing new approaches to estimate an accurate intensity variation is needed.
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port of Intensity Phase Retrieval of Arbitrary Wave Fields Includ-
ing Vortices. Physical Review Letters, 111(17):173902–173905, October
2013. ISSN 0031-9007. doi: 10.1103/PhysRevLett.111.173902. URL
http://link.aps.org/doi/10.1103/PhysRevLett.111.173902.

[116] J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska. Effect of
Imposed Boundary conditions on the accuracy of Transport of Intensity based
solvers. SPIE Optical Metrology 2013, 8789:87890N–87890N, May 2013. doi:
10.1117/12.2020662. URL http://proceedings.spiedigitallibrary.org.

[117] A. Parvizi, W. V. den Broek, and C.T.Koch. Recovering low spatial frequencies
in wavefront sensing based on intensity measurements. advanced structural and
chemical imaging, Submitted, 2016.

[118] Dennis Gabor et al. A new microscopic principle. Nature, 161(4098):777–778,
1948.

[119] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determina-
tion of the phase from image and diffraction plane pictures. Optik, 35:237–246,
1972.

[120] Earl J Kirkland. Improved high resolution image processing of bright field
electron micrographs: I. theory. Ultramicroscopy, 15(3):151–172, 1984.

[121] P. Schiske. Zur frage der bildrekonstruktion durch fokusreihen. In Proc. 4th
Europ. Congr. on Electron Microscopy, Rome, Vol. 1, pages 145–146, 1968.

[122] D. Paganin and K. A. Nugent. Noninterferometric Phase Imaging with
Partially Coherent Light. Physical Review Letters, 80(12):2586–2589,
March 1998. ISSN 0031-9007. doi: 10.1103/PhysRevLett.80.2586. URL
http://link.aps.org/doi/10.1103/PhysRevLett.80.2586.

[123] D. Van Dyck, M. Op de Beeck, and W. Coene. A new approach to object
wave function reconstruction in electron microscopy. Optik, 93:103–107, 1993.

[124] N. Streibl. Phase imaging by the transport equation of in-
tensity. Optics communications, 49(1):6–10, 1984. URL
http://www.sciencedirect.com/science/article/pii/0030401884900798.

[125] DV Sheludko, AJ McCulloch, M Jasperse, HM Quiney, and RE Scholten. Non-
iterative imaging of inhomogeneous cold atom clouds using phase retrieval
from a single diffraction measurement. Optics express, 18(2):1586–1599, 2010.

[126] Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi. Direct continuous
phase demodulation in digital holography with use of the transport-of-intensity
equation. Optics Communications, 309:221–226, 2013.

90 Bibliography Amin Parvizi



Phase retrieval methods in inline-holography

[127] Alexander Kostenko, K Joost Batenburg, Heikki Suhonen, S Erik Offerman,
and Lucas J van Vliet. Phase retrieval in in-line x-ray phase contrast imaging
based on total variation minimization. Optics express, 21(1):710–723, 2013.

[128] Yunhui Zhu, Aamod Shanker, Lei Tian, Laura Waller, and George Barbas-
tathis. Low-noise phase imaging by hybrid uniform and structured illumina-
tion transport of intensity equation. Optics Express, 22:26696–26711, 2014.

[129] C Ozsoy-Keskinbora, C. B. Boothroyd, R. E. Dunin-Borkowski, P. A. van
Aken, and C. T. Koch. Hybridization approach to in-line and off-axis (electron)
holography for superior resolution and phase sensitivity. Scientific Reports, 4,
2014.

[130] Shirly V. Pinhasi, Roger Alimi, Lior Perelmutter, and Shalom Eliezer. Topog-
raphy retrieval using different solutions of the transport intensity equation. J.
Opt. Soc. Am. A, 27.

[131] Colin Ophus and Timo Ewalds. Guidelines for quantitative reconstruction of
complex exit waves in hrtem. Ultramicroscopy, 113:88–95, 2012.

[132] A. Parvizi, W. V. den Broek, and C.T.Koch. The gradient flipping algo-
rithm: introducing non-convex constraints in wavefront reconstructions with
the transport of intensity equation. Optics Express, Submitted, 2016.

[133] Michael Reed Teague. Deterministic phase retrieval: a Green’s function
solution. Journal of the Optical Society of America, 73(11):1434–1441,
November 1983. ISSN 0030-3941. doi: 10.1364/JOSA.73.001434. URL
http://www.opticsinfobase.org/abstract.cfm?URI=josa-73-11-1434.

[134] M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu. On the transport
of intensity technique for phase retrieval. Ultramicroscopy, 102(1):37–49, De-
cember 2004. ISSN 0304-3991. doi: 10.1016/j.ultramic.2004.08.004. URL
http://www.ncbi.nlm.nih.gov/pubmed/15556699.

[135] Lukas Palatinus. The charge-flipping algorithm in crystallography. Acta Crys-
tallographica Section B: Structural Science, Crystal Engineering and Materi-
als, 69(1):1–16, 2013.

[136] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of
nonlinear variational problems via finite element approximation. Computers
& Mathematics with Applications, 2(1):17–40, 1976.

Bibliography Amin Parvizi 91



Persönliche daten

Name Amin Parvizi

Geburts-
datum

21.09.1984

Staat-
sangehrigkeit

Iranisch

Studium

2016-heute Akademische mitarbeiter bei der Humboldt Universität zu Berlin
2015-2016 Fortsetzung der Doktorarbeit an der Humboldt Universität zu Berlin

2012-2015 Doktorand an der Universität Ulm - Thema: Phase Retrieval Algorithm in Inline
Holography

2008–2011 Elektrotechnik, M.Sc., University of Malaya, Malaysia

2002–2006 Elekronik, B.Sc., Azad University, Yazd, Iran

1998–2002 High School, Shiraz, Iran

Berufstätigkeit

2016-heute Akademische mitarbeiter bei der Humboldt Universität zu Berlin
2015-2016 Wissenschaftlicher Mitarbeiter an der Humboldt Universität zu Berlin

2012-2015 Wissenschaftlicher Mitarbeiter an der Universität Ulm

2006-2008 Projekt Manager bei Furuzan Niru in Shiraz, Iran

Sprachen

Deutsch Gute Kenntnisse (B1 Zertifikat)

Englisch Verhandlungssicher

Persisch Muttersprache

Türkisch Grundkenntnisse



Publications

2016 A. Parvizi, W. V. den Broek, and C.T.Koch. Recovering low spatial frequencies
in wavefront sensing based on intensity measurements. advanced structural and
chemical imaging, Submitted, 2016

2016 A. Parvizi, W. V. den Broek, and C.T.Koch. The gradient flipping algorithm: in-
troducing non-convex constraints in wavefront reconstructions with the transport
of intensity equation. Optics Express, Submitted, 2016

2015 Parisa Bakhtiarpour, Amin Parvizi, Martin Müller, Mohsen Shahinpoor, Othmar
Marti, and Masoud Amirkhani. An external disturbance sensor for ionic polymer
metal composite actuators. Smart Materials and Structures, 25(1):015008, 2015

2015 Kyung Song, Christoph T Koch, Ja Kyung Lee, Dong Yeong Kim, Jong Kyu
Kim, Amin Parvizi, Woo Young Jung, Chan Gyung Park, Hyeok Jae Jeong, Hy-
oung Seop Kim, et al. Correlative high-resolution mapping of strain and charge
density in a strained piezoelectric multilayer. Advanced Materials Interfaces, 2(1),
2015

2015 A Parvizi, J Müller, SA Funken, and CT Koch. A practical way to resolve ambi-
guities in wavefront reconstructions by the transport of intensity equation. Ultra-
microscopy, 154:1–6, 2015

2013 Peyman Jahanshahi, Amin Parvizi, and Faisal Rafiq Mahamd Adikana. Three-
dimensional modeling of surface plasmon resonance based biosensor. In European
Conference on Biomedical Optics, page 880109. Optical Society of America, 2013

2009 SW Harun, R Parvizi, XS Cheng, A Parvizi, SD Emami, H Arof, and H Ah-
mad. Experimental and theoretical studies on a double-pass c-band bismuth-based
erbium-doped fiber amplifier. Optics & Laser Technology, 42(5):790–793, 2010

2009 Amin Parvizi, Mehdi Hassani, Amir Hossein Mehbodnia, Saad Makhilef, and
MR Tamjis. Adaptive network-based fuzzy inference approach of estimating of
torque for 8 6 switched reluctance motor. In Technical Postgraduates (TECH-
POS), 2009 International Conference for, pages 1–4. IEEE, 2009


