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Abstract— The collective perception service, which is in
progress of standardization by the European Telecommunica-
tion Standards Institute, allows to share perception information
among connected vehicles and road side units and thus can
increase both safety and traffic efficiency. However, based on
our practical experience from our research on infrastructure
support of automated vehicles on a pilot installation in real
traffic, in this work, we outline some drawbacks of the existing
draft when applied to real-world environments. We observe that
the strict cartesian representation does not fit well with typical
models used to predict the motion of vehicles in automated
driving applications. Thus, a transformation overhead as well as
a transformation error builds up that increases the uncertainty
about the perceived objects and, thus, the performance of the
collective perception service at all. In this work, we demonstrate
the effect of such transformation errors using simulations and
propose an extension of the standard to circumvent these.
Additionally, we show that the collective perception service
can further be enhanced, allowing the optional transmission of
motion predictions of perceived objects. This is, receivers benefit
from saving computation time for object predictions and from
the reception of high-quality motion predictions from road side
units that are more accurate due to their knowledge of local
peculiarities.

I. INTRODUCTION

Environment perception systems that allow the detection,
classification, and tracking of dynamic traffic participants
are a key module of advanced driver assistance (ADAS)
systems. The improvement of these systems is seen as a
key enabler of completely autonomous vehicles [1]. How-
ever, there are many circumstances that restrict the per-
formance of such systems, like sensory limits, occlusions,
weather conditions, or questions of cost. To overcome these
limitations, the idea of collaborative perception has been
investigated and a concept of collaborative perception was
already introduced in 2004 [2]. Although sensor manufac-
turers achieved tremendous improvements for the perception
on-board a vehicle, the idea of sharing information about
perceived objects among connected vehicles and RSUs re-
mains popular and is ascribed a high potential based on

∗ Part of this work has been conducted as part of ICT4CART project
which has received funding from the European Union’s Horizon 2020
research & innovation program under grant agreement No. 768953. Content
reflects only the authors’ view and European Commission is not responsible
for any use that may be made of the information it contains. This work
was financially supported by the Federal Ministry of Economic Affairs
and Energy of Germany within the program “Highly and Fully Automated
Driving in Demanding Driving Situations” (project LUKAS, grant number
19A20004F).

The authors are with the Institute of Measurement, Control and
Microtechnology, Ulm University, D-89081 Ulm, Germany
{first name.family name@uni-ulm.de},johannes-christian.mueller@uni-
ulm.de

simulation studies [3], [4]. Together with our partners within
the projects MEC-View (www.mec-view.de) and ICT4CART
(www.ict4cart.eu), we extended this idea to infrastructure
support of automated vehicles using infrastructure sensors
and a centralized local environment model generation on a
low-latency multi-access edge computing (MEC) server [5],
[6]. For practical evaluation, we operate a pilot installation
on public roads in Ulm, Germany, where we use the AVs’
handling of occlusions when merging on a priority road at a
T-junction as an exemplary use case for our research [5]. For
this, we have developed and implemented an infrastructure
environment model generation [7] together with a prediction
of the environment model [8], which counteracts latency and
additionally allows for predictive planning [9].

To enable the exchange of such environment model infor-
mation, the European Telecommunication Standards Institute
(ETSI) is developing a standard for the Collective Perception
Service (CPS) [10], which is accompanied by active research,
e.g. [11]–[14]. Based on publicly available information [15],
this service has its own message type, the Collective Per-
ception Message (CPM) [16], which can encode information
about perceived objects as well as a transmitter’s state, sensor
setup, detection accuracy, and position. Using information
exchange via the CPS, connected vehicles can enlarge their
effective field of view and/or improve the accuracy of their
environment model via information fusion methods.

In the currently published technical report about the CPS
[15], the CPM represents an object via the PerceivedOb-
ject data type, which basically consists of a state vector
and confidences for each state variable. The state vector
includes, among others, the position, velocity vx, vy, vz ,
acceleration ax, ay, az , orientation ϕ, and yaw rate ϕ̇, where
vz, ax, ay, az, ϕ and ϕ̇ are optional. The confidences encode
how large a 95% confidence interval for the respective value
is, which corresponds to 1.96 times the standard deviation
for a Gaussian distributed variable. However, this confidence
information determines only the diagonal of the covariance
matrix of the state vector, i.e., all state variables are mod-
eled as independent random variables. Real data, however,
reveals that this assumption hardly corresponds to reality,
which can introduce significant errors when information of
different sources is fused using information fusion methods
like covariance intersection.

To perform the information fusion correctly and efficiently,
the CAR 2 CAR Communication Consortium (C2C-CC)
has proposed changes to the work-in-progress message def-
inition, which aim to also include covariance data along
with each detected object [17]. Hence, each object state



is represented by the first two moments of its multivariate
distribution, which fully specifies it in the case of normal
distributions. The extension proposal of C2C-CC adds addi-
tional fields to the PerceivedObject data type that can encode
the information of the off-diagonal entries of the covariance
matrix as correlation values. Thus, the full covariance matrix
can be recovered in combination with the original confidence
information. Using this extension, reliable and accurate in-
formation fusion between an internal environment model of
the receiving vehicle and an environment model that was
shared via CPM becomes possible.

However, the strictly cartesian definitions used for repre-
senting velocities and accelerations in the CPM can lead to
large transformation errors, as we show in Section II using
simulated examples. Particularly, common tracking filters of-
ten use kinematic models from the constant turn-rate family
[18], which need to be transformed to the cartesian frame
to be represented by the current PerceivedObject data type
definition. Unfortunately, these transformations are nonlinear,
which leads to a different density representation. Then, a
transformed density has to be approximated by its original
type again, e.g. a normal density, which can introduce large
errors that we denote as transformation errors. To avoid these,
we propose a further change to the CPM definition.

Moreover, we present a possible extension of the CPM in
Section III, which adds the possibility to encode path predic-
tions for PerceivedObjects. Such predictions are commonly
required by automated vehicles during motion planning [9]
and can additionally account for latencies in the data pro-
cessing and communication chain of a CPM. A stationary
intelligent transportation system (ITS) station like an RSU
is not limited to detect objects via connected sensors, but it
can also predict the future trajectories of the respective road
users using e.g. modern deep learning approaches such as [8],
[19]. Due to their stationary nature, such RSU can potentially
have a much deeper knowledge of their surroundings than the
moving connected vehicles, and hence predict the behavior
of local traffic participants more accurately. Also, performing
the path prediction once on the RSU saves the receiving vehi-
cles the effort and computational time required to perform the
prediction themselves. However, the existing proposal of the
CPM does not allow to encode object predictions. Therefore,
we present a possible modification to the CPM definition to
incorporate this possibility.

Lastly, in Section IV, we evaluate the impact of our
modifications on the encoded size of PerceivedObjects in
order to confirm that the channel usage does not increase
inappropriately.

II. DISTRIBUTION TRANSFORMATION ERRORS

For multi-target tracking, commonly used kinematic mod-
els include the constant turn-rate and velocity (CTRV) and
constant turn-rate and acceleration (CTRA) models [18].
With these, velocity and acceleration are measured in po-
lar coordinates, where vpol and apol encode the (possibly
negative) magnitude in the direction of the orientation of
the object (specified by the yaw angle ϕ), instead of using

two-dimensional vectors in cartesian coordinates (i.e., v =
[vx, vy]T , a = [ax, ay]T ). That is, the parts of the densities
that are relevant for the velocity and the acceleration are
represented using a polar coordinate system, which is not
a perfect representation, but yet has been shown to often
outperform simpler models strictly relying on cartesian co-
ordinates [18]. Turning maneuvers can be represented using
the yaw rate ϕ̇, but drifting can not be represented, as it
is not modeled by CTRA/CTRV anyways. However, the
current CPM standard is not designed for the transmission
of polar values such as vpol, which renders the mentioned
transformation into cartesian values vx, vy necessary. This
leads to the possible problems we show below. We only
refer to velocity here, but the same reasoning applies to
acceleration analogously.

Common tracking algorithms like the Kalman filter as-
sume a multivariate normal probability distribution over
all state features of an object [20]. The joint probability
distribution over vpol and ϕ is then N ([v̄pol, ϕ̄]T ,Σvpol,ϕ),
where v̄pol and ϕ̄ denote the mean state values and

Σvpol,ϕ =

[
cov(vpol, vpol) cov(vpol, ϕ)
cov(ϕ, vpol) cov(ϕ,ϕ)

]
,

denotes the covariance matrix. This bivariate distribution can
be interpreted as an uncertainty ellipse in a polar coordinate
frame, as shown in Fig. 1a, that describes the uncertainty
about the velocity of an object. The example distribution in
this example is N ([v̄pol, ϕ̄]T ,Σvpol,ϕ) with

[v̄pol, ϕ̄]T = [10, 0]T , Σvpol,ϕ =

[
0.3 −0.1
−0.1 0.2

]
.

However, the CPM definition requires velocities to be en-
coded in cartesian coordinates. Hence, the uncertainty about
an object’s velocity is described by N ([v̄x, v̄y]T ,Σvx,vy ),
with mean [v̄x, v̄y]T and covariance

Σvx,vy =

[
cov(vx, vx) cov(vx, vy)
cov(vy, vx) cov(vy, vy)

]
.

This can be interpreted as an ellipse in a cartesian coordinate
frame. The transformation of the polar covariance ellipse into
a cartesian one is, however, generally not possible without
loss of information, which, e.g., has been analyzed in [21].

One method of approximation is to draw a large number
N of samples [vipol, ϕ

i]T , i ∈ 1..N from the distribution
N ([v̄pol, ϕ̄]T ,Σvpol,ϕ), to transform them using the nonlinear
function [vix, v

i
y]T = [vipol cos(ϕi), vipol sin(ϕi)]T , and finally

to estimate the statistics of the transformed samples to
obtain N ([v̄x, v̄y]T ,Σvx,vy ). A faster, yet potentially less
accurate method is to use an unscented transformation, which
effectively reduces the number of required sampling points,
but necessitates the same statistics estimation step. Then,
irrespective of the chosen method, an error results from
the fact that the resulting statistics are interpreted as being
normal distributed, but actually they are not. That is, the
ellipse in the polar coordinates does not correspond to an
ellipse in the cartesian coordinates, but becomes a differ-
ent shape due to the nonlinear transformation, sometimes
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Fig. 1. (a) shows an example bivariate normal distribution in polar
coordinates as an ellipse of the 3σ area. (b) shows the 3σ area after the
distribution has been transformed nonlinearly to cartesian space (green),
and after the subsequent approximation as a bivariate normal distribution
in cartesian coordinates (blue). When the approximated distribution is
transformed back to polar coordinates and approximated again, the red
distribution shown in (c) results. The original distribution is shown in green
again as reference.

referred to as uncertainty banana. However, performing the
statistics estimation to obtain a cartesian multivariate normal
distribution for CPM transmission reshapes the uncertainty
region into an ellipse, which then leads to an incorrect
uncertainty estimate (see Fig. 1b).

While the mentioned errors are unavoidable in the case of
mixed frames, they are unnecessary if the receiver reverses
the transformation from a cartesian to a polar coordinate
system, e.g., because a similar motion model is used. This
inverse conversion can be achieved using the inverse non-
linear transformation function, but at the cost of additional
approximation errors. The inverse transform, which accounts
for the sign of the polar velocity, is given by

ϕ̃i = ((ϕi − arctan2(viy, v
i
x) + π) mod 2π)− π

vipol =

−
√

(vix)2 + (viy)2 if |ϕ̃i| > π
2√

(vix)2 + (viy)2 otherwise.

Finally, the distribution is reconstructed by a subsequent
approximation of the statistics as a normal distribution, which
again causes a transformation error. Fig. 1c shows the result-
ing distribution compared to the original distribution. As can
be seen, the uncertainty about the state increased significantly
only due to the transformations and approximations, which
makes the reconstructed distribution less valuable.

The required transformations cause unnecessary inaccu-
racies in real-world applications, since constant turn-rate
kinematic models are widely used in tracking models for
automated driving. Our proposed solution is to allow the
sender to choose between a cartesian and a polar represen-
tation for encoding velocity and acceleration (see Fig. 2).
For the cartesian representation, we reuse the existing types
from the CPM draft, while for the polar values, we suggest
using new types with the shown precision. This renders the
conversion in the encoding step unnecessary. Naturally, if
the receiver uses a cartesian representation of velocities and
accelerations in its environment model, a conversion from
polar to cartesian is still unavoidable. But, the lossy conver-
sions across the data transmission are, however, reduced to
those that are really necessary.
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Fig. 2. Proposed modifications to the CPM definition from [15] enhanced
with [17]. We use “. . . ” to represent the (unmodified) fields, except for fields
that we remove (red areas). Areas shown in grey denote optional fields.

III. PREDICTIONS

CPMs are intended to transmit information about per-
ceived objects between ITS stations. Stationary ITS stations
can use tailored algorithms for the prediction of the future
motion of detected traffic participants, which is potentially
better than one in a moving ITS station that has less prior
knowledge of the surveilled area and has to use a more
generic method. Thus, we propose to allow the optional
transmission of motion predictions via CPMs, which is
shown in Fig. 2.

For the encoding, we propose to allow a maximum of three
predicted paths per perceived object, where each should be
assigned a probability, i.e., how likely it is that the respective
path will be taken. Providing multiple predictions per object
is important, since many situations, e.g., intersections, can
introduce multimodality in the possible driving behaviors.

For the representation of a predicted path, we suggest
encoding of up to 10 points per path. A point consists of
an [x, y] pair of predicted coordinates, as well as an optional
covariance matrix Σx,y , as it is generated by many modern
deep trajectory prediction models like [8], [19]. Such neural
networks generate output that describes the distribution of
the predicted path points, e.g., a bivariate normal distribution
for each path point. The covariance matrices can be used to
further assess the accuracy of the predicted path, which is
important, e.g., for calculating risks of collision [9].

For encoding this covariance data, we suggest using the
same format as proposed in [17], i.e., encoding the variances
using confidence values and an additional value for x-y-
correlation information. The path points shall be equally
spaced in time, and the path delta time shall be configurable
as a parameter with a restricted range of [100 ms, 500 ms] in
steps of 100 ms, which allows for both short-term predictions
as well as long-term predictions. For example, for latency
compensation, one second in steps of 100 ms could be
encoded, or for predictive planning, up to five seconds using
steps of 500 ms could be sent.



TABLE I
EVALUATION OF THE MAXIMUM ENCODED SIZE PER OBJECT.

Configuration CovarianceInfo polar/cartesian Encoded size per
PerceivedObject

No predictions — cartesian 763 Bits
1 Prediction no cartesian 1026 Bits
1 Prediction yes cartesian 1286 Bits
3 Predictions no cartesian 1546 Bits
3 Predictions yes cartesian 2326 Bits
No predictions — polar 557 Bits
1 Prediction no polar 820 Bits
1 Prediction yes polar 1080 Bits
3 Predictions no polar 1340 Bits
3 Predictions yes polar 2120 Bits

IV. MESSAGE ENCODING

To evaluate the impact of our proposal on the encoded
size per perceived object, we calculate the size for several
cases: sending no, one, or three predictions as well as with
or without covariance information for the predictions. We
also compare the size when using polar velocity/acceleration
values versus their cartesian counterparts and present the
results in Table I. For polar data, we use a state comprised
of position, vpol, apol, ϕ, ϕ̇, l, w, h, where l, w, h denote the
object length, width and height. The baseline is the case
with no predictions and with data that could be calculated
from the polar data using the nonlinear transformations, i.e.,
a state comprised of position, vx, vy, ax, ay, ϕ, ϕ̇, l, w and h.

Using polar velocity and acceleration leads to slightly
smaller sizes, since there are fewer state variables to transmit.
The size of the correlation information that is encoded
via the C2C-CC proposal increases also quadratically with
the number of state variables, making the reduction very
favorable. We can, however, see that encoding predictions
has a considerable impact on the message size, which we
justify by the possibly significant information gain due to the
improved predictions. To reduce the impact on the channel
usage, predictions could, for example, be sent at a lower
transmission rate than object detections, especially in case of
long-term predictions, since they can be useful for a longer
period of time.

V. CONCLUSIONS

In this work, we showed that large transformation errors
occur when encoding data from constant turn rate models
into CPMs and back, which decreases the value of the
data immensely. To alleviate this issue, we proposed a
simple modification to the CPM definition. Further, we
presented possible additions to the CPM definition in order
to incorporate multimodal predictions. We have analyzed
the impact of this additional data on the message size.
Using the additional optional fields for the improved velocity
and acceleration encoding by themselves does not increase
the message size, but can rather decrease it in practice by
omitting the cartesian values instead. Although the message
size can increase noticeably with the predictions, we still
think it can be reasonable to send them, because they can
provide a huge benefit to the receiver.
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