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Abstract

This dissertation investigates novel concepts and methods for the automatic recognition of dy-
namic user properties using statistical supervised learning and for the integration of these prop-
erties into the dialogue management process. The aim is to model the course of the dialogue
adaptive to the user.

Current commercial spoken dialogue systems usually do not account for dynamic user prop-
erties like the user’s satisfaction level. Even in state-of-the-art research systems, this type of
adaptation is usually missing. However, if the system was aware of these properties, it would be
able to have a better understanding of the current situation and thus to react more appropriately.
Therefore, the goal of this work is to introduce this type of user-centred adaptation by separating
the problem into two sub-problems: recognising the user state, i.e., the dynamic user properties,
and integrating its estimation of the user state into the dialogue management process.

Before these individual sub-problems are approached, first, the necessary background, which
is important for understanding the content of this thesis, is described containing relevant informa-
tion about spoken dialogue systems and supervised machine learning. Following this description
of the background, research of others which aims at solving similar research problems is de-
scribed including a clear distinction of their work to ours.

For the first sub-problem of deriving the user state, we consider four different user states: the
user satisfaction (US), the perceived coherence of the system reaction, the emotional state, and
the intoxication level. Automatic recognition of these user states is based on supervised statisti-
cal learning. As US is a universal property, an emphasis is put on its automatic recognition with
a focus on how temporal information may be used for this recognition process. Here, we pro-
pose three novel approaches on how to improve the US recognition performance: introducing an
error correction module into the classification process, exploiting temporal learning algorithms
by using a modified Markovian model, and optimising the feature set used as input to statistical
classification models. While all of our proposed approaches result in a significant performance
improvement, the best performance boost is achieved with an optimised feature set. With this
feature set, we are able to improve the performance achieving a high correlation.

Research on the recognition of the remaining three user states have also resulted in significant
contributions to the state-of-the-art. For the automatic recognition of the perceived coherence
of the system reaction, we are to our knowledge the first to connect aspects of the interaction
with coherence. Exploiting this relationship, the problem is modelled as a statistical classification
task. In order to improve the performance of speech-based emotion recognition, we propose two
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novel approaches which add information about the speaker to the recognition process. Here, we
show that having speaker-dependent emotion recognition has the potential to improve the overall
recognition accuracy. With a comparative study on intoxication recogntion, we compare the re-
congition performance of machines with humans showing that machines may outperform humans
on this task.

For the second sub-problem of rendering the dialogue management adaptive to the user state,
we propose three novel approaches. The first approach uses rules to select the next system action.
These rules are based on the current user state. Here, we are able to outperform non-adaptive
strategies for a bus information dialogue system in terms of task success / dialogue completion
as well as dialogue length and user satisfaction. Our second approach introduces the user state
into a POMDP-based dialogue manager by either extending the user state or utilising the user
state for modelling the reward function. For the latter, the resulting dialogue policy achieves a
better task success rate / dialogue completion rate than conventional reward functions. While
these two approaches incorporate mechanisms which are common for dialogue management, our
third approach proposes a two-stage model: in the first stage, any dialogue manager may be used
to create an ordered list of possible system actions. In the second stage, the possible change of
the user state induced by each system action is predicted. The final system action is then selected
accordingly. In a simulated experiment, we are able to show that our proposed approach results in
an significant improvement in dialogue coherence reducing the number of non-coherent system
actions.

During the work on these two problems, we have created open-source implementations of
a Conditioned Hidden Markov Model library as well as the POMDP-based dialogue manager.
Both implementations have been made accessible to the public. Furthermore, we have created an
annotated corpus for the recognition of user satisfaction as used in this thesis as well as for the
recognition of the perceived coherence.
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Introduction

In today’s high-tech world, computers and technical systems may be found everywhere to help
humans in their daily routine, e.g., booking flights, getting information about bus schedules, or
finding desired information in general. However, the ways of operating these devices and com-
municating with them are often quite artificial, i.e., a special communication language must be
learned. Some of these communication languages are merged over time into our regular set of
communication skills, e.g., swiping on the touch screen. Still, communicating with fellow hu-
mans instead of a technical device is usually much easier and consequently it would be desirable
if the same communication means would be available for technical systems. Moreover, enabling
human-machine communication to be natural is a prerequisite for providing easy access and
allowing non-experts to use complex services. While natural communication skills comprise,
among others, gestures, eye gaze, and facial expressions, speech is by far the most universal and
the most flexible of those skills. Many times, using speech results in faster and more efficient
communication. Furthermore, using speech also allows to communicate with a technical system
even though the user is doing something else, e.g., driving a car or preparing food. For both, the
user is able to focus on the primary task easily. (Also, using a touch screen device with fingers
covered in flour is undesirable.)

For integrating the capabilities of speech communication into a technical device, the concept
of spoken dialogue system (SDS) has been developed. These systems are designed to process the
speech input, identify the relevant content which is passed to the application and generate system
responses. While initial systems were quite restrictive, the performance of SDSs has improved
over time, extending restricted initial application domains to more complex information retrieval
and question answering applications (Raux et al., 2003; D’Mello et al., 2012; Metze et al., 2014),
e-commerce systems (Tsai, 2005), surveys applications (Stent et al., 2006), recommendations
systems (Chai et al., 2002), e-learning and tutoring systems (Kopp et al., 2012; Litman and Silli-
man, 2004), in-car systems (Hofmann et al., 2014; He et al., 2013), remote control of devices and
robots in smart environments (Skantze et al., 2014; Minker et al., 2010), healthcare and ambient
assisted living systems (Bickmore et al., 2010; Saz et al., 2009), or embodied dialogue systems
and companions (Horchak et al., 2014; Qu et al., 2014).
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1.1 Motivation

With the vision of enabling spoken human-machine interaction to be as efficient and natural as
human-human interaction, recent work focuses on improving and augmenting the capabilities
of spoken dialogue systems (SDSs) to increase the acceptance of speech interfaces. Here, the
following two key aspects have been found to be of special importance:

1. Unrestricted user behaviour: The SDS must not put any restrictions (or at least as few as
possible) on the style and content of the user behaviour, e.g., the dialogue domain or the turn
taking model.

2. User-centred modelling: The SDS must account for user aspects of the interaction, e.g., the
user state, in addition to its linguistic content.

Recent advances rendering the dialogue systems statistical (e.g., (Lemon and Pietquin, 2012;
Thomson and Young, 2010; Young et al., 2010)) have already achieved major improvements
towards reducing the restrictions put on the user behaviour. Still, there are restrictions on the
style of the interaction mostly realising strict turn-taking behaviour where one system action is
followed by one user action.

Solely enabling human-computer-interaction to be as flexible as possible, however, is not
sufficient to achieve natural human-like communication. As stated in key aspect two, the dialogue
system should also take account for additional user-specific aspects of the interaction, i.e., the
user state, to further increase the naturalness of the interaction. However, although there is high
potential, not much research has been conducted yet in the field of user-adaptive dialogue where
the system is able to change its behaviour according to the user state. This change may be a
change in the speaking style, in the word order and the word choice of the utterance, in the choice
of content provided in the utterance, or in the strategy in general, e.g., when to provide help, how
to prevent errors, etc.

For better illustration of the high potential, an example dialogue is shown in Figure 1.1 where
somebody is calling a bus information system to get the info about a bus leaving from “West North
Avenue”. Unfortunately, the system (S) does not recognise correctly what the user (U) is saying
and acts on the assumption that the user said “Eighth Avenue”. To identify situations like that, the
system employs a grounding strategy by restating the user’s input while asking for the destination
(lines 5,7,9). The user realises that the system has not correctly understood the destination and
corrects the system instead of providing information about the destination (lines 6,8,10). In line
10, though, the user is already unsatisfied with the system (and probably also a bit angry) which
changes the speaking style. These changes, though, result in the system not understanding the
word “no” and the system understands that the user provided input for the destination. Thus,
the system regards “West North Avenue” as confirmed origin, “Eighth Avenue” as unconfirmed
destination and continues with asking for the departure time. Here, a system which was more user
aware would have had the option to change the error prevention strategy.

The same dialogue in an adaptive version is shown in Figure 1.2. Here, the system tracks the
user state and recognises that the user is frustrated, angry, and not satisfied with the interaction.
Hence, it adapts the dialogue by changing the error preventing strategy: instead of restating the
understood user input and asking for information at the same time, a closed question is posed
asking the user to confirm the understood information explicitly (line 9). As this restricts the
user input to only be affirmation or rejection (yes or no), the system is much less prone to errors
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Utterance
(1) S: Welcome to the bus information system. What can I do for you?
(2) U: 54c Schedule.
(3) S: The 54C. Where do you want to leave from?
(4) U: West North Avenue.
(5) S: Leaving from EIGHTH Avenue. Where do you want to go to?
(6) U: No, leaving from West North Avenue.
(7) S: Leaving from EIGHTH Avenue. Where do you want to go to?
(8) U: No, leaving from West North Avenue.
(9) S: Leaving from EIGHTH Avenue. Where do you want to go to?
(10) U: [No.] West North Avenue.
(11) S: Going to West North Avenue. When do you want to travel?
(12) U: I want to leave from West North Avenue.
(13) S: Sorry, I did not get that. When do you want to travel?
(14) U: I need the next bus.
(15) S: The next bus from eighth avenue to west north avenue leaves as 12.06 pm.

Fig. 1.1: A non-adaptive dialogue example with implicit confirmation prompts. As is indicated
by the emoticons, the user is unhappy and unsatisfied in the end.

in the recognition of the user’s input. Hence, the user is only able to respond with a “no” (line
10) allowing the system to ask for the origin again. This dialogue is, without question, a simple
example. This concept of adaptation, though, may easily be transferred to more complex dialogue
situations (and user states).

Utterance
(1) S: Welcome to the bus information system. What can I do for you?
(2) U: 54c Schedule.
(3) S: The 54C. Where do you want to leave from?
(4) U: West North Avenue.
(5) S: Leaving from EIGHTH Avenue. Where do you want to go to?
(6) U: No, leaving from West North Avenue.
(7) S: Leaving from EIGHTH Avenue. Where do you want to go to?
(8) U: No, leaving from West North Avenue.
(9) S: Leaving from EIGHTH Avenue. Is this correct?
(10) U: No.
(11) S: Where do you want to leave from?
(12) U: West North Avenue.

...

Fig. 1.2: An adaptive dialogue example starting with implicit confirmation prompts (1-7) and the
switching to explicit confirmation (9). In contrast to Figure 1.1, the user does not get completely
unsatisfied with the interaction due to the strategy change.

To equip a dialogue system with the ability to react differently according to the user state, the
system needs to be enhanced in two ways: means of identifying the user state and means of taking
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into account the user state must be integrated into the system. Consequently, in this thesis, we
will conduct research in both fields, automatic user state recognition and user-adaptive dialogue
modelling, where approaches on dialogue modelling will be built upon knowledge gained form
recognising the user state. For user state recognition, we have selected the dynamic user states
user satisfaction, perceived coherence, emotions and even intoxication. The former two states are
very general and may be applied to almost all types of dialogue. Furthermore, to enable more
natural interaction, it is crucial for the dialogue system to be able to identify more vague states
like the user’s emotion or even their intoxication level. If the system was aware of these states, it
would be able to tailor its reactions accordingly.

For all states, we will provide novel work on recognising these user states. Furthermore, we
will propose methods of using the user state information to influence the decision of selecting
the next system action. The contributions we intend to provide with this thesis in both fields are
described in the following.

1.2 Thesis Contributions

For advancing towards the goal of rendering the human-machine interaction natural by means
of user-centred adaptive dialogue, the overall problem is divided into the fields of user state
recognition and user-adaptive dialogue modelling.

In the field of user state recognition, we will provide novel approaches which aim at im-
proving the recognition performance for all four user states under consideration. For recognising
the user satisfaction, we will investigate if there is a strong link between the user satisfaction and
temporal context, i.e., previous interaction steps and the user’s satisfaction at those points, and
present work on exploiting this relation to improve the overall recognition performance.

Furthermore, to recognise the perceived coherence of the system behaviour, we will examine
if the coherence may be related to events of the interaction by statistical modelling. Here, we will
employ a classification approach taking into account the system action, the current dialogue, and
parameters reflecting events of the interaction. For speech-based emotion recognition, we will
conduct research on whether information about the speaker may be included into the recognition
process with the perspective of improving the recognition performance.

Within the field of user-adaptive dialogue modelling, we will develop and evaluate ap-
proaches on introducing user-state adaptivity into the process of selecting the next system ac-
tion. Here, we will provide evidence for rule-based and statistical systems that this is worthwhile
and will lead to improvement of the overall dialogue performance given the user state as well
as objective performance measures. More precisely, we will investigate if there is a correlation
between the user satisfaction and task success or average dialogue length. Moreover, we are
interested in the usability and applicability of user satisfaction for dialogue systems based on re-
inforcement learning where the system learns what good actions are by getting a reward. Here,
we are especially interested if the user satisfaction may be used to model that reward. Within
several evaluations of adaptive dialogue, we will show that both rule-based adaptation as well as
using the user state for modelling the reward result in an significant improvement of the dialogue
performance.

Finally, we will investigate how the perceived coherence may be used to improve the dia-
logue. Here, we will present a novel approach on selecting the next system action by taking into
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account the expected change in perceived coherence on the user. By modelling this as a two-stage
process, the coherence-based modifications may be added to virtually any dialogue system. The
validity of this approach will be evaluated within a corpus-based experiment.

1.3 Outline

The structure of this thesis is as follows: for readers who are not familiar with the general con-
cepts of dialogue systems, dialogue management, or machine learning, the relevant background is
described in Chapter 2. In Chapter 3, we place this work within the work by others. There, we will
both present related work on user state recognition for the four user states user satisfaction, per-
ceived coherence, emotions, and intoxication and present related work on adaptive user modelling
taking into account the user state. The first part of our main contribution comprising approaches
on recognising the user state will be described and evaluated in Chapter 4. For each of the four
investigated user states, our proposed approaches together with their appertaining experiments
will be presented in their respective own section. The second part of our main contribution—
approaches on user-adaptive dialogue modelling—will be thoroughly described and evaluated in
Chapter 5. There, we will present our approaches on adapting the course of the dialogue to the
recognised user state and evaluate their viability for adapting basic dialogue strategy concepts.
Furthermore, we will present work on using the perceived coherence for selecting the next sys-
tem dialogue act. Finally, this thesis will conclude in Chapter 6 with a discussion of all results
along with a prospect on related work in the field of statistical modelling of user-centred adaptive
spoken dialogue.





2

Relevant Background

For understanding the presented work on user-adaptive speech interfaces which is described in
this thesis, we first have to establish a common background and explain all relevant basics. This
includes, of course, a detailed description of how a Spoken Dialogue System (SDS) and its com-
ponents work. In fact, the operation method of an SDS is important throughout the thesis even
for identifying the user state, where information about the interaction is used which is directly
derived from specific modules of the SDS. Along with a general description of the SDS, a closer
look is taken at the dialogue manager which relies at the core of a human-machine speech inter-
face (Minker et al., 2009). While we briefly touch important approaches to dialogue management,
two are described in more detail as they are used for adaptive dialogue modelling: the Informa-
tion State (IS) approach by Larsson and Traum (2000) and the Hidden Information State (HIS)
approach by Young et al. (2007). These two have been chosen as they are based on the same idea.
In fact, the latter is an extension of the former one providing probabilistic dialogue management
functionality. We will use these two approaches to adapt the course of the ongoing dialogue based
on a predefined dialogue strategy taking into account the user state. Common dialogue strategies
may incorporate fundamental strategy concepts. The two most important concepts, which are also
relevant in this thesis, are grounding and the dialogue initiative. In order to understand how well a
dialogue system—more precisely the employed strategy—is working, the system should be eval-
uated. Here, fundamentally different concepts are used: objective measures like the length of the
dialogue versus collecting the user’s opinion. Candidates from both concepts are used within this
thesis and are also discussed in detail.

For providing a user-centred adaptive dialogue flow, the user state needs to be known. Usu-
ally, it is impossible to ask the users about their state (e.g., this would disturb the interaction).
Instead, the user state may be estimated. A common approach to solve estimating tasks like the
one at hand is to formulate the problem as a classification or supervised machine learning task.
There, a discrete set of classes is estimated based on a set of features. Hence, the approaches used
within this thesis are described in detail. They are all based on the general concept of statistical
machine learning. These machine learning algorithms will be applied to several user state esti-
mation approaches and evaluated. These user states are described in Chapter 4. For evaluating
the estimation performances, four different metrics are used presented in this chapter. The met-
rics provide different characteristics and thus offer insights into the performance of the machine
learning approaches from different angles.
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Before we present details about statistical machine learning, though, the general concept of
Spoken Dialogue Systems will be described in the following.

2.1 Spoken Dialogue Systems

Spoken Dialogue Systems are multidisciplinary systems—even from a technical point of view—
and have a long history. While there have been several non-speech dialogue systems around, the
first system dates back to the early 1990s with the VOYAGER system (Zue et al., 1991). Enabled
by the advent of automatic speech recognition and language processing capabilities, the VOY-
AGER system provides information for urban exploration in Cambridge, Massachusetts, USA in
a very simplistic and restricted manner. Since then, the capabilities of spoken dialogue systems
have increased considerably. State-of-the-art systems are able to handle uncertainty efficiently
using probabilistic models or even allow for incremental processing. Regardless, even today’s
systems are still based on the same general architecture.

2.1.1 General Architecture of Spoken Dialogue Systems

To provide speech interaction between an application and the user—having a speech audio signal
as input and output—the SDS solves several sub-tasks. The input audio signal is pre-processed
and transferred into written words. These words are then semantically interpreted and put in con-
text to the previous interaction in order for the system to decide how to react. This reaction may
include both the communication with the user and the communication with the back-end appli-
cation. For generating a system response, the system generates an utterance (words or sentences
of what to say) which is then in turn transformed into a speech signal. As all problems may
be tackled separately, a modular technical system is created—employing the divide-and-conquer
paradigm—having each module independent and specialised on the respective sub-task.

The modular architecture of an SDS is presented in Figure 2.1 and contains the following
modules:

Speech Recognition Based on pre-processed audio speech input, the speech signal is trans-
formed into the most likely sequence of words.

Language Understanding Completely independent from the audio signal, the sequence of words
is semantically interpreted and annotated with the most likely meaning.

Dialogue Management The core component of the SDS interprets the semantically annotated
input based on the previous interaction. The dialogue manager then
decides with respect to the task at hand which system action to execute.

Text Generation The abstract system action is transformed into a sequence of words:
the actual system utterance.

Speech Synthesis To generate the audio response and provide it to the user, the speech is
synthesised by transforming the words into an audio signal.

While speech recognition and language understanding are on the input side of the SDS, lan-
guage generation and speech synthesis form the output of the system. In the following, we will
give a more detailed description of each component based on the execution order.
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Fig. 2.1: The general architecture of an SDS as in (Lamel et al., 2000): speech recognition and
language understanding on the input side, language generation and speech synthesis on the output
side, and in between the dialogue manager handling the complete interaction with the user and
the application.

Automatic Speech Recognition

The goal of Automatic Speech Recognition (ASR) is to transform spoken words into written
form. More precisely, based on a sequence of feature vectors x, the most likely word sequence ŵ
is estimated. The ASR pipeline contains an initial pre-processing step including the feature ex-
traction generating the vectors x followed by the actual speech recognition. This overall pipeline
depicted in Figure 2.2 will be explained module by module in the following.

Acoustic
Preprocessing

Feature
Extraction

Preprocessing

Acoustic
Model

Dictionary Language
Model hello

Speech Recognition

Fig. 2.2: The pipeline for automatic speech recognition1: after preprocessing, the feature vector is
used for speech recognition to map the input audio signal to a sequence of words (here: “hello”).

Starting from the digitalised speech signal, acoustic pre-processing methods may be applied,
e.g., a Wiener Filter (Wiener, 1949) to preform noise reduction. Based on this pre-processed sig-
nal, the features needed for speech recognition are extracted. Feature extraction is necessary to
only preserve the information of the speech signal relevant for speech recognition and discard
the rest. Here, the most important information lies within the dominant frequencies in the speech
signal (vocals, e.g., are identified by the first and second formant, a harmonic of the fundamental

1 Wave form in Figures 2.2, 2.4, 3.2, 4.26, 4.27 from www.freesound.org under CreativeCommons license 3.0:
http://creativecommons.org/licenses/by/3.0/legalcode

http://creativecommons.org/licenses/by/3.0/legalcode
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frequency). Hence, a frequency analysis is performed using Fourier transformation calculating
the spectrum of the signal. As the human ear is receptive for certain frequencies bands, a Mel
filter is applied condensing the frequencies of the spectrum to 13 remaining frequency features.
These features are further projected into the cepstrum space by applying an inverse cosine trans-
formation. The resulting features are the Mel Frequency Cepstral Coefficients (MFCCs), which
are then used for speech recognition2.

State-of-the-art automatic speech recognition systems use statistical models. Based on the
vectors x containing MFCCS, the most likely word sequence ŵ is estimated by calculating the
probabilities p(w|x) for all possible word sequences and taking the word sequence with the max-
imum probability

ŵ = argmax
w

p(w|x) . (2.1)

As p(w|x) is hard to be estimated directly, the Bayes rule is applied:

argmax
w

p(w|x) = argmax
w

p(x|w)P(w)
p(x)

. (2.2)

As p(x) is independent of the argument w to maximise over, this equation can be further reduced
to

argmax
w

p(w|x) = argmax
w

p(x|w)P(w) . (2.3)

Using this simplified equation, only the probability models p(x|w) and P(w) have to be estimated.
Here, the former is known as the acoustic model representing the actual mapping from the audio
signal to the word sequence under consideration of a dictionary. The latter is the language model
which allows to incorporate probabilities for certain word sequences applying restrictions induced
by grammar and syntactic rules.

Acoustic Model The acoustic model calculates the probability p(w|x) by calculating the most
probable sequence of phonemes3 which best represent the input vectors. Using
a dictionary, the phoneme sequence is then mapped to actual words.
Most state-of-the-art commercial speech recognisers use Hidden Markov Mod-
els (HMM) (Rabiner, 1989). As we will use HMMs to estimate the user state
within this thesis, those are not described here. Instead, a detailed description
may be found in Section 2.2.2. To understand how HMM are used for acoustic
modelling, it is sufficient to know that the goal is to identify the most probable
state sequences which represent the audio signal best. As each state is then tied
to a phoneme, possible sequences of phonemes may be identified. The most
likely sequence is then selected with respect to the entries in the dictionary:
only phoneme sequences which have an entry in the dictionary are recognised.

Language Model To further add language specific information the word sequence, the language
model is used. Conventional systems may use a context-free grammar to define
which word sequences (or sentences) may be recognised simply by setting a
probability of 1.0 for sequences modelled by the grammar and 0.0 for all oth-
ers. However, spoken language is often not very grammatical so it is a nearly

2 The MFCCs may also be used for estimating emotions or intoxication. There, however, they are only a small part
of all used input variables

3 Phonemes are the basic unit of speech.
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impossible task to generate a grammar modelling each possible valid user in-
put. Hence, many advanced ASR systems nowadays use statistical models. So
called n-grams model the probability of a word sequence containing n words.
Hence, a tri-gram (n = 3) models the probability p(wn|wn�1,wn�2) of a se-
quence of three words. Such a model is based on the Markov assumption which
states that the current state only depends on a finite number of previous states
(for n = 3 on two previous states, i.e., words). This simplification is reasonable
(and even necessary) as modelling each possible word sequence would result
in a model which would not generalise very well. To create the n-grams for the
language models (usually, bi- or tri-grams are used), training data may be used
to easily compute the probabilities based on the respective occurrences in the
training data.

Now having seen how the individual modules work, it may still be unclear how they collabo-
rate to generate the final hypothesis. To create the search space, for each entry in the dictionary, an
HMM with the respective phoneme states is created. Furthermore, the HMMs are connected ac-
cording to the n-grams. Evidently, this will result in many paths and a huge space where it is very
time consuming to find the most probable word sequence. To handle this complexity, advanced
search methods like beam search are used. Here, only the most promising paths are regarded
and paths with a probability below a certain threshold are pruned. Based on this, a confidence
is calculated representing the certainty of the algorithm that the estimated word sequence ŵ is
correct.

However, the estimation is not always correct and the correct word sequence is not always
the one with the highest confidence but, e.g., the estimated with the third highest confidence. To
allow following modules to take account for this, most state-of-the-art systems allow for creating
n-best-lists as result. An n-best-list contains the n estimated word sequences with the highest
confidence. This list containing the conversion from spoken language to text is then used within
the Language Understanding module to extract meaning.

Language Understanding

Having a text representation of the spoken input, it is still unclear what the actual meaning is.
This task of extracting the meaning is fulfilled by the natural or spoken language understanding
(NLU/SLU) module by doing a linguistic analysis to extract the semantics of the text repre-
sentation by using grammatical relations, rule-based semantic grammars, template matching, or
statistically driven techniques (Allen, 1995; Jurafsky and Martin, 2008). One approach often used
in commercial systems is to have a context-free grammar shared with the language model of the
ASR. Here, each rule is associated with one or more tags which allow the grammar designer to
add semantic information to each rule. The example in Figure 2.3 in the Java Speech Grammar
Format4 (JSGF) shows a set of grammar rules which allow the user to provide information about
a destination. Based on the tags, the rules also provide the semantic interpretation, e.g., with
orig="value".

In general, McTear (2004) identifies syntactic and semantic approaches for the process of
language understanding or semantic analysis. Syntactic approaches aim at gaining information

4 http://www.w3.org/TR/jsgf/

http://www.w3.org/TR/jsgf/
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public <root> = I want leave from <origin>;

<origin> = West North Avenue {orig="west north avenue"}

| Eighth Avenue {orig="eighth avenue"};

Fig. 2.3: An example for a JSGF grammar with added tags for semantic interpretation.

about the meaning by analysing the syntactic structure. By identifying subsequently phrases,
e.g., verb or noun phrases, using context-free grammars, a syntactical tree is created allowing for
associating content words with their semantic function. However, this association is not trivial.
Hence, recent approaches apply data-driven methods and machine learning algorithms like hidden
understanding models (Miller et al., 1994; Minker et al., 1999). Semantic approaches also use
grammars. However, the grammar rules aim not at identifying the syntactic role of the words or
phrases. Instead, they model the semantic structure directly. A simple instance of those grammars
has already been described in the beginning of this section.

The extracted meaning is then directly fed into the dialogue manager for further processing.

Dialogue Management

Having a semantic interpretation, the system needs to provide access to the back-end application
and to decide about the next system action. While this is a simple task for non-complex question-
answer systems where one system reaction follows one user input without keeping context infor-
mation, this is more complex for real task-oriented dialogues: the system needs to know about
the task to solve and about the information which is needed for this. Being able to keep context
information over multiple queries, the system is able to easily collect missing information with-
out the need for the user to restate anything. To provide this type of functionality, a dedicated
module is needed. This dialogue manager processes the semantic input of the user and interprets
it with respect to the context of the current dialogue. Usually, keeping this context information
over a sequence of turns is achieved with a dialogue state capturing relevant information. Based
on this dialogue state—updated with on the semantics of the user input—and the task to solve,
the system decides about the next system action. For this decision, however, different strategies
may be executed, which may all follow the same goal in different ways. This is elaborated in
Section 2.1.3. The selected system action is then provided to the language generation module.

To manage the interaction, several approaches have been proposed. The simplest approach is
a finite state based dialogue manager. The course of the dialogue is pre-set and very inflexible.
This also restricts the user to a very rigid communication style. More flexible approaches include
a slot-filling approach. In a task-oriented dialogue, the task may be decomposed into several slots,
i.e., grouped information belonging to one semantic concept. For our example of a bus schedule
dialogue (Chapter 1), the slots may be departure place, destination, departure time, and bus route.
Now the user is free to address any slot. Dependent on the user input, the system may then only
address slots with missing information. Of course, there are more advanced dialogue management
methods. The approaches relevant for this thesis will be presented in detail in Section 2.1.2.
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Natural Language Generation

The output of the dialogue manager output is an abstract system action, e.g., welcome() or
request(slot), possibly with an associated parameter as in the latter example. However, for
giving feedback to the user in a natural way using speech, this abstract representation first needs
to be transferred into a sequence of words. To generate this text is the task of the natural language
generation module.

A simplistic approach but well functioning for most systems currently deployed is template
filling. A template of the text for each system action is stored, e.g., Welcome to the bus schedule
system. How may I help you? for the system action welcome(). These templates may also
contain placeholders for content specified by the parameters of the system action. For the system
action request(slot), the corresponding template might be What is your <slot>? (What is
your destination? for request(destination)). Of course, this approach highly depends on
the system designer and does not offer a lot of variety which might bore the user at some point.

For text-based systems, i.e., simply showing the system response on a display, the dialogue
system’s turn would be finished. However, having speech output, the response need to be trans-
formed into spoken words which will be described in the following.

Speech Synthesis

To have a spoken language response to the user, the first systems used recorded utterances: each
abstract system action from the DM triggered the playback of a audio file. For this, of course,
no NLG component was used. As using audio playback is a very inflexible approach, modern
systems generate a speech signal out of text. These text-to-speech (TTS) systems are usually
designed as a two-part problem as depicted in Figure 2.4: first, the parts of the text (words etc.)
are translated to a sequence of phonemes. This grapheme to phoneme (g2p) mapping may use a
dictionary in the simplest case. However, words which are not contained in the dictionary may
not be processed. Hence, modern systems use machine learning approaches, e.g., decision trees
(Andersen et al., 1996), to automatically generate the phoneme sequence out of words.

The second part of the TTS is the actual synthesis based on a sequence of phonemes. One
approach is to use a database of audio recordings for each phoneme. To generate the speech
signal, the respective audio phoneme snippets are selected and simply concatenated. To generate
a more natural speech flow, the hard transitions are smoothed. Other approaches generate the
speech signal for each phoneme artificially (in a reverse manner compared to ASR). Using both
approaches simply as described would result in a very monotone voice. Hence, prosody is added
to generate more natural and interesting voices. As speech synthesis does not play a major role
within this thesis besides its plain usage, it is not described in more detail.

hello g2p Synthesis

Fig. 2.4: The pipeline for text-to-speech modules: first, the text sequence must be translated into
a sequence of phonemes (g2p). Based on these phonemes, the speech is synthesised.
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Up to his point, the basic functionality of all modules of the SDS has been described. As one
main aspect of this thesis lies in the area of dialogue management, a more detailed look is taken
at two approaches to dialogue management.

2.1.2 Relevant Approaches to Spoken Dialogue Management

As described above, the dialogue manager resides at the core of an SDS being responsible for
maintaining or tracking the current state of the dialogue, selecting the next system action based
on the current state and the task at hand by following a strategy or policy, and providing access to
the back-end application. Starting from simple state-based approaches, more advanced methods
have been developed, e.g., frame-based dialogue management (Seneff and Polifroni, 2000) or
agent-based dialogue management (Bohus and Rudnicky, 2003). All management approaches
have their strengths and weaknesses depending on the task to solve.

In this thesis, we are interested in adapting the course of the dialogue to the user state. More
specifically, we want to compare rule-based adaptation to more complex techniques where the
optimal adaptive strategy is automatically learned in a probabilistic system. For this, we utilise
two dialogue management approaches which are based on the same idea. The only difference
is in the way they maintain the dialogue state and the resulting options of deriving the next
system action. By that, we will be able to create one unified dialogue management software
which uses the same dialogue description for both. The shared idea of the used approaches is
called Information State and will be elaborated in the following.

The Information State Approach to Dialogue Management

The term Information State (IS) dates back to 1996 as an extension to the finite-state based dia-
logue modelling theory common at that time. The IS is defined as all information which is needed
to proceed with the dialogue (Ginzburg, 1996). As this allows for dialogues with no predefined
execution sequence, IS-based systems are capable of generating dialogues which are more flexi-
ble than finite-state based systems.

Larsson and Traum (2000) have further specified the IS theory in order to provide a common
theory actual dialogue management approaches may be mapped onto, including finite-state based
systems5. For IS-based systems, all relevant information within a dialogue may be identified
as well as how this information is updated and how the updated is regulated. Larsson and Traum
(2000) emphasise the update of the IS triggered by abstract system and user actions as key aspects.
Even more so, the IS theory defined by Larsson and Traum (2000) consist of five main pillars
which are explained in the following.

Informational components The informational components describe all components relevant for
the dialogue which carry information. Here, relevant information is
defined as being necessary in order for the system to create the desired
behaviour. This may be information about the context or information
about the interaction itself. Examples for this are the user’s internal
state (e.g., user’s belief, intention, or goal) or information related to

5 Matching finite-state based systems to IS is trivial while it may be impossible to find an IS formulation for a given
finite-state based dialogue (Larsson and Traum, 2000).
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the structure of the dialogue (e.g., grounding status). Furthermore, the
components of information state may also be grouped into dynamic
and static information. Static information does not change during the
course of the dialogue and may thus be handled differently than dy-
namic information.

Formal representation To model the informational components, a formal representation is
used. There, the data structure for the components may be defined,
e.g., OWL ontologies (Antoniou and van Harmelen, 2004) or typed
feature structures (Carpenter, 1992). Furthermore, the accessibility of
the information may be defined, e.g., a FIFO queue, a LIFO stack, or a
random access structure. Both, the data structure and the accessibility
should match the implemented theory of the dialogue manager.

Dialogue moves As in natural language spoken dialogue an almost infinite number of
different utterances may possibly refer to the same concept, dialogue
moves are meant to form an abstraction layer. More precisely, the dia-
logue moves modelling abstract user actions trigger the state updates.
Hence, the number of dialogue moves is limited by the number of
different updates necessary to model the problem as well as by natu-
ral language understanding capabilities. In addition, dialogue moves
may also model abstract system actions which can be executed.

Update rules Updating the information state is subject to a set of predefined rules.
Conditioned on aspects of the current information state, the rules are
executed and change the information state as the dialogue progresses.

Update strategy Having a set of update rules, the update strategy defines which rules
are applied to update the IS if the conditions of more than one rule are
met, e.g., always selecting the first rule. Further detailed definitions
are possible, e.g., having different strategies for processing user input
and selecting the system move.

In addition to defining these five components of the IS theory, Larsson and Traum (2000) also
introduced their realisation of the theory. They describe the tool kit TrindiKit providing a general
installation framework for IS-based dialogue managers. More precisely, they provide the general
architecture so that only the five IS components need to be realised. Hence, the framework con-
sists of the Information State itself, a dialogue move engine containing the update mechanisms of
the IS as well as the selection mechanism for the next system move, interfaces to other relevant
modules of the dialogue system (e.g., language understanding or language generation), and a con-
trol module linking all components together. The TrindiKit has been used to implement several
actual dialogue managers, e.g., (Bohlin et al., 1999; Matheson et al., 2000), showing the general
viability of the approach.

However, the TrindiKit is very heavy-weighted and inflexible. Due to its purpose of providing
a general framework applicable to all kinds of dialogue managers, TrindiKit needs to introduce
a lot of computational and implementational overhead. Furthermore, it needs an extensive rule
base to model the dialogue flow defining update and selection mechanisms. Here, the rule base
has to be kept in a coherent state. For complex dialogues, achieving this is a very complex task.
Thus, TrindiKit does not provide easy extensibility.
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As an extension to the information states, hidden information states have been introduced
which will be described in the following.

The Hidden Information State Approach to Dialogue Management

In general, Spoken Dialogue Systems have to deal with uncertainty, e.g., regarding the actual
user action. This uncertainty is accumulated over multiple stages of the dialogue cycle. To handle
this uncertainty, the concept of the Information State approach has been extended resulting in the
Hidden Information State (HIS) approach proposed by Young et al. (2007) which is based on the
formal concept of Partially Observable Markov Decision Processes (POMDPs). In the HIS, the
uncertainty is accounted of by handling several information states with associated probability.
Thus, the “real” state is hidden (comparable to HMMs, see Sec. 2.2.2).

Formally, a POMDP (Kaelbling et al., 1998) is defined as the 6-tuple (S,O,A,T,Z,b0). It
consists of a set S of state variables s, a set A of system actions a, and a set O of all possible
observations o of the system. Furthermore, transition probabilities P(s0|s,a) 2 T and observation
probabilities P(o0|s0,a) 2 Z model the uncertainty. As the state of the underlying process cannot
be determined exactly, a probability distribution over all possible states, called the belief state
b(s) with b0 as the initial state, is used instead. There are two tasks associated: to update b(s)
based on a new observation and to identify the best action to take with respect to the current
belief state. The latter is done by finding the optimal policy p⇤(b) which maximises an overall
reward (to each action a and state s, a reward r(s,a) is associated). This is usually done using
reinforcement learning techniques.

Williams and Young (2007) introduced this concept into the world of spoken dialogue systems
as POMDPs offer a unified mathematical model to handle uncertainty. Three features of POMDPs
applied to SDSs are of particular interest:

• input result lists with confidence scores
• parallel state hypotheses
• automated action selection.

By using multiple hypotheses of what was said by the user, the generated result list in combina-
tion with associated confidence scores constitute an n-best-list containing the n best hypotheses
of what was said by the user (instead of just the most likely one). These are incorporated into
parallel state hypotheses representing multiple possible dialogue states at the same time. By this,
misunderstandings of the system do not automatically cause other information to be lost. Auto-
mated action selection based on a probability distribution over all state hypotheses is executed.
An optimal policy is trained based on example dialogues to automatically find the best system
action for each dialogue state.

To cast a dialogue system as a POMDP, first, the state s is decomposed into (u,g,h) represent-
ing user action u, user goal g, and dialogue history h as proposed by Williams and Young (2007),
who also introduce reasonable independence assumptions. Hence, the general POMDP equation
for updating the belief b(s) of state s

b0(s0) = p(o0|s0) ·Â
s

P(s0|s,a) ·b(s) , (2.4)

where o0 is the current observation and a the last system action, is transformed to
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b0(u0,g0,h0) = k ·P(o0|u0) ·P(u0|g0,a) ·Â
g

P(g0|g,a) ·Â
h

P(h0|u0,g0,h,a) ·Â
u

b(u,g,h) . (2.5)

The observation probability P(o|u) is estimated by P(o|u)⇡ P(u|o). Moreover, P(u|o) is directly
estimated by taking the confidence scores of the n-best list entries provided as result from the
ASR and NLU modules.

However, casting an SDS as a POMDP yields the problem that computing a probability dis-
tribution over all dialogue states is intractable. Hence, Young et al. (2007) combined the ideas of
POMDPs in SDSs and the Information State approach resulting in the Hidden Information State
(HIS) approach to dialogue management. Instead of modelling the complete state space, only
partitions are used. Each partition may then be regarded as on representation of an individual
information state.

More precisely, assuming a slot-filling dialogue, the user goal space is partitioned into equiva-
lence classes, or partitions p, according to the possible values a slot can take. Introducing further
simplification, for each slot, a partition represents either all possible slot values, one specific slot
value, or the partition may exclude a set of values for the respective slot.

When new user input arrives, the belief state is updated in two phases. First, the partitions
are split according to the new user input. This includes distributing the probability mass of the
originating partition to the resulting partitions. In the second phase, the belief is updated according
to equation

b0(u0, p0,h0) = k ·P(o0|u0) ·P(u0|p0,a) ·Â
h

P(h0|u0, p0,h,a) ·Â
u

P(p0|p) ·b(u, p,h) . (2.6)

Here, P(p0|p) denotes the probability of partition p0 originating from partition p or, in other
words, the fraction of probability mass which is transferred from p to p0 if p is split into p0 and
p� p0.

According to Williams (2010b), the splitting probability

P(p0|p) = b0(p0)
b0(p)

(2.7)

is computed as the ratio of the prior probability of the new partition b0(p0) to the prior probability
of the originating partition b0(p). Williams (2010b) compute the prior probability by counting
all possible user goals, i.e., combinations of slot values, the partition represents and dividing this
number by the total number of distinct user goals.

For better illustration of the partitioning approach, an example in the bus schedule information
domain (the domain from the dialogue examples in Chapter 1) is shown in Figure 2.5 with a
reduced number of slots and slot values. Initially, there is only one partition containing all values
for the two slots origin and destination. If new user input arrives, the partition is split
according to the slot the user input belongs to. In this example, the n-best list entries target the
slot destination and comprise two entries. Therefore, the root partition is split and two new
partitions are created, each one containing one of the two values in the slot destination.
The range of slot-values the original partition is representing has been reduced to exclude the two
destinations provided by the user. Following that, the new belief values are determined. In order to
select the next system action, the summary belief is computed. Based on this, the policy is applied
and the resulting system action is refined and executed. For computing the prior probabilities for



18 2 Relevant Background

origin: (all)
destination: ⌐{downtown, airport}

                
prior: 0.33                  belief: 0.3

origin: (all)
destination: airport

                  
prior: 0.33                   belief: 0.1

origin: (all)
destination: downtown

                 
prior: 0.33                   belief: 0.6

[destination] 
downtown  0.6
airport 0.1

origin: (all)
destination: (all)

prior: 1.0                 belief: 1.0

1

2

Fig. 2.5: An example of partition splitting with three possible destinations originally published
in (Ultes et al., 2014a): “airport”, “downtown”, and “train station”. First, there is only one par-
tition subsuming all values for the two slots. After splitting the partition on the user input, two
new partitions are created each representing all goals containing “airport” or “downtown”, re-
spectively, as destination, while the original partition excludes both values.

this example with three possible values for origin and destination respectively, the total number
of distinct goals is 9. Therefore, by limiting the destination in all three partitions of step 2 to one
single value, each remaining partition represents 3 remaining goals. Hence, the prior probability
of all partitions is 0.33.

For policy execution, the belief state (the partition tree) is transformed into a summary belief
space only containing information about the two most probable partitions. Reducing the dimen-
sions of the state space is necessary to render the optimisation process more tractable. Based on
this, a summary system action is selected according to the trained policy. The summary system
action then has to be refined using heuristics. The resulting action is then executed by the system.

In order to find an optimal policy, reinforcement learning is applied based on the value func-
tion V p(bt) which models the expected reward if applying policy p when being in belief state
bt at time t. An optimal policy is then found by maximising V p to yield V ⇤ which is iteratively
defined by

V ⇤(bt) = max
at

[r(bt ,at)+ g Â
ot+12O

P(ot+1|bt ,at)V ⇤(bt+1)] (2.8)

For an exact solution, the value iteration algorithm (Monahan, 1982) may be used. However,
the algorithm becomes intractable already for a minimal configuration. Hence, other approaches
have been investigated. Young et al. (2010) proposed a grid based method: only points within
the summary space are stored and an optimal action is learned. During execution of the dialogue
system, the current belief state is mapped into the summary space and the action of the closest
grid point is executed. The complete algorithm is depicted in Algorithm 1. In the first part—the
exploration phase—one dialogue is executed and at each turn, a random action is taken with some
probability e . The dialogue finally ends with a cumulative reward R. In the second part, the policy
is updated: if there is a grid point already existing which is less then d away from the grid point
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Algorithm 1: Grid-based policy learning as published by Young et al. (2010)
Data: B a set of summary belief grid-points b̂k in summary belief space, initial belief state

b0
Result: Updated policy p(b̂k) for all grid-points within the summary belief space b̂k

1 repeat
2 t 0
3 â0 initial greet action
4 b b0 // all states in single partition
5

6 repeat
7 t t +1
8 Get user turn ut and update belief state b
9 b̂t  toSummaryState(b)

10 ât =

(
RandomAction withprobabilitye
p(closest(b̂,B)) otherwise

11 record hb̂t , âti
12 T  t
13 until dialogue terminates with cumulative reward R from user simulator
14

/* Scan dialogue and update B, Q, and N */
15 for t T downto 1 do
16 if 9b̂k 2B : |b̂t � b̂k|< d then
17 Q(b̂k, ât) Q(b̂k,â)·N(b̂k,ât)+R

N(b̂t ,hatat)+1

18 N(b̂t ,hatat) N(b̂t ,hatat)+1

19 else
20 add b̂t to B

21 Q(b̂k, ât) R
22 N(b̂t ,hatat) 1

23 R gR

24

/* Update policy */

25 foreach b̂k with updated Q(b̂k, â) for any â do
26 p(b̂k) argmaxa Q(b̂k, â)

27 until converged

at hand, the expected cumulative reward Q is updated. Otherwise, a new grid point is generated.
Finally, based on the expected reward Q, the policy is updated.

While this grid-based approach is straightforward to implement, the downside of this learning
technique is that hundreds of thousands of dialogues are needed as all relevant sub-spaces of the
summary space must be populated with reference grid points. Another optimisation algorithm
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based on Gaussian processes (GPs) (Engel et al., 2005) need less data but are more complex.
Hence, within this thesis, we are more interested in applying policy-optimisation based on Gaus-
sian processes.

GPs for their usage in SDS has been originally proposed by Gačić et al. (2010). The general
idea is to use a GP for approximating the Q-function representing the expected cumulative reward
Q given the summary state c and a system action a:

Q(c,a) = Ep(
T

Â
t=t+1

gt�t�1rt |ct = c,at = a) . (2.9)

Here, rt is the reward obtained at time t , T the length of the complete dialogue and g 2 (0,1]
a discount factor. Based on the Q-function, the system action a out of all system actions A may
then be selected by

p(c(b)) = argmax
a2A

Q(c,a) . (2.10)

For estimating the parameters of the Gaussian distributions of the Q-function, a common
method is using GP-SARSA depicted in Algorithm 2. Based on training data, the parameters are
updated at time t using st�1, at�1, rt , at , at (hence SARSA) having s = c. However, for the update,
all dialogue turns up to the current time t are needed and referenced to in a quadratic matrix which
has to be inverted. This matrix inversion in the learning algorithm has a complexity of O(t3).
Thus, the GP-SARSA algorithm is computational intractable. Hence, Engel (2005) proposed an
alteration based on kernel span sparsification which we will use within this thesis. The general
idea is that instead of maintaining all previous turns, only relevant turns are stored in a dictionary.
Based on this dictionary content, the probability distributions may be restored. To measure the
relevance of a turn modelled as a state-action-pair (b,a), a kernel function k((b,a)(a0,b0)) is used.
Hence, for applying the learning algorithm for optimising a dialogue strategy, the kernel must be
adjusted with respect to the dialogue domain. The full algorithm for its application in dialogue
optimisation has thoroughly been described and evaluated by Gačić and Young (2014).

While the basic principles of IS and HIS have been presented, we will further introduce an
actual implementation of a dialogue manager in the following section. It is based on the IS and
will be extended within this thesis to also include HIS functionality (Section 5.2).

Information State Modelling with the OwlSpeak Dialogue Manager

To overcome the problems identified in Section 2.1.2 for the TrindiKit, the dialogue manager
OwlSpeak has been created offering an alternative implementation of the IS paradigm. Hein-
roth et al. (2010a)’s OwlSpeak is based on the model-view-presenter design pattern (Potel, 1996)
allowing for a strict separation of data management, dialogue logic and dialogue interface. By
design, it allows for persistent dialogues which conveys multitasking functionality inherently
(cf. Heinroth and Denich (2011)). Furthermore, OwlSpeak is implemented as a Java Servlet al-
lowing for easy communication with speech devices. The general architecture is shown in Fig-
ure 2.6. In the following, the main aspects of OwlSpeak are briefly described. This is arranged as
outlining the model, view, and presenter separately.
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Algorithm 2: Episodic GP-SARSA policy learning as published by Gačić et al. (2010)
Data: A kernel function k((b,a)(a0,b0)), an initial policy p based on an initial Q

approximation
Result: Updated policy p based on an updated Q approximation

1 for each episode do
2 Initialise bt
3 if first episode then
4 Choose at arbitrarily
5 rt  [ ]
6 Bt  [(b,a)]
7 Kt  [k((b,a),(b,a))]
8 Ht  

⇥
1 �g

⇤

9 Initialise Q-function

10 else
11 if initial step then
12 Choose at  p(bt) (using p derived from Q)

13 for each step in the episode do
14 Take action at
15 Observe reward rt+1
16 Observe next state bt+1
17 if non-terminal step then
18 Choose next action at+1 p(bt+1)

19 Bt+1 
⇥
Bt (bt+1,at+1)

⇤

20 Kt+1 


Kt kt(bt+1,at+1)
kt(bt+1,at+1) k((bt+1,at+1),(bt+1,at+1))

�

21 Ht+1 


Ht 0
uT �g

�
, where u =

⇥
0 1
⇤T

22 else
23 Bt+1 Bt
24 Kt+1 Kt

25 Ht+1 


Ht
uT

�
, where u =

⇥
0 1
⇤T

26 rt+1 
⇥
rt rt+1

⇤

27 Update Q-function
28 if non-terminal step then
29 Update bt  bt+1
30 Update at  at+1
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Fig. 2.6: The general architecture of OwlSpeak originally published by Heinroth et al. (2010a)
following the model-view-presenter paradigm. OwlSpeak is implemented as a Java servlet pro-
viding VoiceXML output. By that, a voice browser may call the servlet and interpreting the re-
turned VoiceXML document establishing communication between OwlSpeak and the user using
Speech Synthesis and Recognition.

Spoken Dialogue Ontology (Model)

For designing the model of OwlSpeak, the Web Ontology Language (OWL) (Antoniou and van
Harmelen, 2004) is used. In general, ontologies consist of classes, relations between classes, and
instantiated class individuals. For dialogue management, a set of classes and relations has been
predefined to establish spoken dialogue ontologies (SDOs). They contain both the static descrip-
tion of the dialogue as well as the current dialogue state. The schematic description is shown in
Figure 2.7. The Speech part contains the static concepts of the dialogue. The five concepts are
described in the following (note that the terms class and concept are used interchangeably):

Utterance The Utterance concept encapsulates one system utterance, i.e., one or more sentences
the system may utter at one system turn. This represents the output of the system.

Grammar OwlSpeak uses grammars. The grammar belonging to one Grammar concept describes
what input the user may provide and the system is able to understand.

Semantic A Semantic individual represents one information snippet important for the dialogue,
i.e., the meaning of what was said by the system or the user.

Variable In contrast to Semantics, Variables are used for information which may take one out
of several values provided during the dialogue, e.g., time information or destination.
In addition, variables may also be used for system internal values.

Move The Move concept may either be a grammar move (system) or an utterance move
(user) representing one atomic dialogue step. Furthermore, a grammar move repre-
sents the semantic representation of the user action. The semantic and contrarySeman-
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tic relations define Semantics which are set, or unset respectively, when the move is
performed.

DialogueDomain

Speech State

grammar

utterance

semantic

requires

semantic

next

variable
Default

mustNot

Belief BeliefSpace

HistoryWorkSpace

hasBelief

inWorkspace

inWorkspace

Agenda

Utterance Variable

Move

Grammar Semantic

forAgenda

contrarySemantic

has

Fig. 2.7: A scheme of the Spoken Dialogue Ontology (SDO) originally published by Heinroth
and Denich (2011). The static dialogue description is shown on the left side of the picture within
the Speech class while the concepts belonging to the dynamic State of the system is shown on the
right side.

By separating the utterances, grammars, and semantics from the moves, the individuals may
be reused for other moves as well.

The current State of the dialogue system is stored in the dynamic part of the SDO. It is updated
after each dialogue turn resulting in a persistent dialogue, i.e., after interrupting the dialogue, it
may be picked up at the same position. The important concepts are described in the following
while a more extensive description of the SDO also including the History concept can be found
in (Heinroth et al., 2010b):

Belief While the semantics are static, a Belief represents a Semantic which is valid in the
current dialogue state, i.e., if a move is performed, its semantics are transformed into
a belief. Furthermore, as Belief may also represent a Variable with corresponding
value valid in the current dialogue state.

BeliefSpace The BeliefSpace contains all instances of beliefs which are valid in the current dia-
logue state.
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Agenda A system action is represented by the concept Agenda. In each system turn, an
agenda is selected and executed. An agenda may contain zero or one utterance
moves and several grammar moves. Furthermore, preconditions which have to be
true are defined by the relations requires and mustNot. They define the Semantics
which must (or must not) exist as a Belief in the BeliefSpace necessary for this
agenda to be executed. Additionally, also Variables can be part of the precondi-
tions. Furthermore, the next relation defines a set of agendas which are written into
workspace after the agenda has been executed enabling their execution in following
system turns.

WorkSpace A WorkSpace contains all agendas scheduled for execution. Note that the precondi-
tions of those agendas do not have to be true in order to be scheduled. This remains
the task of the policy.

Voice Document (View)

Communication between OwlSpeak and the input/output of the dialogue system (speech recog-
niser and speech synthesiser) is based on VoiceXML (Oshry et al., 2007). VoiceXML defines a set
of tags which can be interpreted by a voice browser—comparable to HTML and a web browser—
which in turn manages the links to ASR/NLU and TTS. It will be described in more detail in
Section 3.2.1. OwlSpeak itself is implemented as a Java Servlet providing a new VoiceXML-
document at each turn. The dynamically created document is based on the selected agenda where
the utterance move provides the system prompt and all grammar moves are combined to form
one big grammar.6 By using the move names as a grammar tag, the user utterance can be mapped
back to its corresponding move. Using a submit-tag, the input to the voice browser is passed back
to OwlSpeak.

Dialogue Control (Presenter)

The dialogue control logic of OwlSpeak is located in the presenter. The entry point to the dialogue
is defined by a flag of the Agenda class marking it as master agenda. Naturally, there may only
exist one entry point per SDO. This master agenda contains in its next relation the initial set of
agendas to be written to the workspace.

To select the next agenda to be executed, the preconditions of all agendas currently in the
workspace are checked. If there is more than one agenda whose preconditions are fulfilled,
the agenda is selected by relying on an additional priority score. The priority may be prede-
fined and/or increase dynamically according to the amount of time the agenda is already in the
workspace.

Based on the selected agenda, a view is created. It eventually passes new user input back to
the presenter. In OwlSpeak, only the part of the user input which is necessary to identify the
corresponding user move, i.e., the move name, arrives at the presenter. After determining the cor-
responding ontology, its belief space is updated by creating new Belief individuals and removing
obsolete ones. Furthermore, the agenda is removed from the workspace while all agendas in the
next relation are written into the workspace. Now the process starts anew: an agenda is selected,
a view is created, and new user input is processed.

6 Combining grammars may result in conflicts. This is taken care of by special conflict resolution algorithms which
are not covered here.
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Dialogue managers like OwlSpeak are designed to control the dialogue flow based on pre-
defined strategies. These strategies are usually very domain specific. However, they incorporate
general concepts which are briefly outlined in the following.

2.1.3 General Concepts of Dialogue Strategies

The strategy of a dialogue is the answer of the question “what is the best action to take given
the current dialogue state and dialogue history?” Obviously, this is the same problem as outlined
before for the dialogue manager. However, here, the problem is viewed from an interaction point
of view (instead of the technical part).

The answer to this question is highly dependent on the actual task the SDS is designed to
fulfill. However, some general concepts are common for most systems which are the dialogue
initiative and grounding which will both be discussed in more detail in the following.

Dialogue Initiative

According to McTear (2004), the dialogue initiative models who of the two dialogue partners
holds which role in the interaction between the user and the system, e.g., who is questioner and
who is questionee. Hence, there are three categories:

System-directed For system-directed dialogues, the SDS is in control of the dialogue and asks
questions to the user, e.g., to collect information. Here, the user has no flexibility
on what to say or to change the course of the dialogue. By restricting the valid
user inputs, classification errors may be minimised and the goal of the interac-
tion is very likely to be achieved. However, the interaction is not very natural
and user-friendly.

User-directed A dialogue which implements purely user-directed initiative has usually the
character of a Q&A interaction: the user poses a question which the system
answers. After the answer, the user may ask further questions. Hence, the user
decides the topic of the dialogue and is in control while the system simply reacts
to the user input. While the user is free to formulate any question whose topic is
covered by the system, the user has no guidance at all, i.e., the system does not
provide any clue to the user to deduce what is acceptable user input.

Mixed-initiative In a dialogue which implements a mixed-initiative, “either participant can take
the initiative to ask questions, initiate topics, request clarifications” (McTear,
2004). Hence, both participants are able to influence the course of the dialogue.
Naturally, this is closest to natural interaction. However, mixed-initiative dia-
logues are very complex and not easy to model.

Grounding

The concept of grounding describes the mechanisms which are used within the conversation to
establish a common ground between the interaction partners. This is, e.g., to get confirmation for
some piece of information which has previously been shared.

In an ideal dialogue system where each user input is understood correctly, this would not
be necessary. However, like in human-human-interaction, sometimes, the user utterance is not
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understood correctly, e.g., due to speech recognition errors. Here, the system may want to clarify
if the information understood by the system is correct. A common practice for dialogue systems
is to use confirmation prompts, i.e., restating the information and allowing the user to confirm or
decline.

Here, two main differences regarding the confirmation strategy are known:

Explicit Confirmation If the system asks the user explicitly to confirm a piece of information, a
separate system utterance is created, e.g., “Did you say West North Av-
enue?”, allowing the user only to confirm or negate. In some systems, the
user is further allowed to provide corrected information. However, this
also depends on the implemented dialogue initiative.

Implicit Confirmation By implicitly asking for confirmation, the piece of information to be
grounded is solely restated and embedded in a system prompt. This
prompt’s main focus is on some other relevant piece of information, e.g.,
the departure time in “So West North Avenue. When do you want to
leave?”. To negate, the user may say something like “that is wrong” or
even provide corrected information. Each input which does not address
“West North Avenue” and provides a valid response to the question of the
departure time is then regarded as confirmation.

While implicit confirmations clearly allow for smoother dialogues, inexperienced users may
not understand the mechanisms thus accidentally confirming something which has actually not
been understood correctly. If every piece of information is confirmed explicitly, though, this may
not happen. However, these dialogues are quite long and monotonous.

In order to identify which grounding strategy is more applicable for the given context—or
how well a dialogue strategy performs in general—, the system should be evaluated. Hence, we
give a brief overview over evaluation methods in the following.

2.1.4 Evaluation of Spoken Dialogue Systems

In order to compare different dialogue systems or dialogue strategies, measures for the evaluation
of SDSs must exist. However, the best way to evaluate spoken dialogue systems is still unknown.
Often times, objective criteria are used.

Within this thesis, three objective metrics are used to evaluate the dialogue performance: the
average dialogue length (ADL), the dialogue completion rate (DCR) and task success rate (TSR).
The ADL is modelled by the average number of system or user utterances per completed dialogue.
A dialogue is regarded as being completed if the system provides a result—whether correct or
not—to the user. Hence, DCR represents the ratio of dialogues for which the system was able to
provide a result:

DCR =
#completed

#all
.

TSR is the ratio of completed dialogues where the user goal matches the information the system
acquired during the interaction:

T SR =
#correctResult

#completed
.
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Another way of evaluating SDSs is to get the user’s opinion about the interaction. This is
usually done using questionnaires. While there exist a multitude of standardised questionnaires
(e.g. (ITU, 2003) for telephone-based speech applications or (Hassenzahl et al., 2003) for attrac-
tiveness and general usability of technical systems), the SASSI questionnaire (Hone and Graham,
2000) has emerged to be the quasi-standard for purely speech-based dialogue systems. It consists
of 34 statements about the system and the interaction which may be rated on a Likert scale con-
sisting of 5 or 7 ratings. The SASSI questionnaire has been designed to be applicable to a wide
range of dialogue systems still providing easy means of collecting and evaluating the subjective
user ratings. An example of the SASSI questionnaire is shown in Figure A.2. Moreover, Engel-
brecht (2012) has provided a thorough discussion of the SASSI questionnaire in comparison to
other questionnaires.

Naturally, collecting the user’s opinion entails the necessity to conduct user studies with real
users. Here, real users is emphasised as another option exists for evaluating dialogue systems
without real users by applying user simulation techniques. Generally speaking, these user sim-
ulators are designed to mimic the user behaviour (including the variance induced by different
users). While user simulation clearly has its limits as it will not be able to capture all variation
in user behaviour, the obvious advantage is that thousands of dialogues may be performed easily
without much effort in a short amount of time. In the simplest cases of user simulation, a statis-
tical model is created based on a set of sample data to model the probability p(su|sa) of the user
action au given the system action as. Of course, more elaborated approaches are also known, e.g.,
hidden agenda user simulation (Schatzmann and Young, 2009).

While we have provided a thorough overview over the relevant aspects of spoken dialogue
systems, for rendering such systems user-centred, the user state must be derived. Here, statistical
machine learning approaches will be used. In the next section, the approaches used in this thesis
along with other relevant information regarding machine learning will be introduced.

2.2 Statistical Machine Learning Approaches
To render a spoken human-machine interaction user-centred, the system should be capable of
changing its behaviour based on the user state. As the user state is not know, mechanisms are
required which enable to estimate the user state. Here, machine learning techniques are used.
While background on Spoken Dialogue Systems and all associated relevant aspects has been
described in the previous section, we will give an overview over the machine learning in this
section covering several different classification approaches.

Pattern classification according to Duda et al. (2001) is

the act of taking in raw data and making an action based on the “category” of the pattern.

Within this work, the categories or classes are the different user states. Designing and applying
classification approaches comprises many different sub-tasks and sub-challenges. In general, the
classification process starts with extracting a set of features from the raw data which are relevant
to the classification task. The colour of a car, for example, is not relevant for classifying the make
and model. Furthermore, the features may undergo a pre-processing and normalisation step (e.g.,
rotation, translation, scaling) to remove information irrelevant to the classification task.

Having defined the set of features, a classification model is created. Based on sample data,
the model is designed to reduce the cost of misclassification. Here, the classification is associated
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with a cost function defining the cost of estimating the class ŵ for a sample while the true class
is wc. Having this cost function, the model’s classification decisions are based on minimising the
total costs based on the training data. Thus, the model defines decision boundaries in the feature
space effectively creating partitions having each associated with one of the target classes. Here,
the problem is to find a decision function which minimises the costs not only on the training data
but also on unseen data. This generalisation is usually tested by dividing the complete data into
a training and evaluation set where the latter is only used for testing the classification model and
its generalisation capabilities.

For training the model, i.e., learning from the sample data, three different methodologies may
be applied according to Duda et al. (2001):

Supervised Learning This method may be compared to learning with a teacher: for each sam-
ple to be learned on, the teacher provides the correct answer. To learn,
the estimation may then be compared to the correct answer to improve
the estimation model, e.g., using gradient descent.

Unsupervised Learning Here, no teacher is present and hence the correct answer is unknown.
Therefore, only natural categories may be found, i.e., using clustering
approaches. The downside is that the clusters still lack a semantic inter-
pretation: what class may be represented?

Reinforcement Learning Similar to supervised learning, a teacher knows the correct answer.
However, the correct answer is not provided but only information about
whether the estimation is correct or not.

Within this thesis, only supervised learning and reinforcement learning are applied. Reinforce-
ment Learning-based dialogue policy optimisation has been briefly touched in Section 2.1. For
estimating the user state, supervised learning approaches are used. As the user state is modelled
consisting of several categories, the classes are known. Thus, unsupervised learning approaches
are not of interest.

Summarised, to solve a problem using statistical pattern classification, three questions must
be answered: what is the best model to use, what are the best features, and does the training data
cover all relevant aspects of the problem.

The field of supervised learning may be further divided into static and sequential approaches.
While the former regards each sample data as an independent individual, sequential approaches
model each sample belonging to a sequence of samples thus not being independent. Clearly, a
human-machine dialogue consisting of subsequent system and user actions (or utterances) which
depend on the previous actions thus comprising a sequence in the sense described above. On the
other hand, handling each dialogue action as being independent thus reducing complexity may
also be a valid approach. Hence, we have selected static and sequential approaches for our work
which will be described along with methods for testing their performance in the following.

2.2.1 Static Supervised Classification

For static supervised classification, each data sample is regarded as not belonging to any data
sequence. This is a very common problem thus many different classification approaches have
been developed and analysed. For this work, though, we are focusing on approaches reflecting
three different characteristics: probability modelling, linear discrimination, and rule learning.
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Probability Modelling with Naı̈ve Bayes

For modelling the classification problems using probability functions, the task may be described
as finding the class ŵ which maximises the posterior probability P(w|o) given an observation
vector o:

ŵ = argmax
w

P(w|o) . (2.11)

For deriving the posterior probability, the Naive Bayes classifier may be used. It calculates the
posterior probability P(w|o) of having class w when seeing the n-dimensional observation vector
o by applying Bayes rule (Duda et al., 2001):

P(w|o) = p(o|w) ·P(w)

p(o)
. (2.12)

In general, observations, i.e., elements of the observation vector, may be correlated with each
other and introducing independence assumptions between these elements usually does not reflect
the true state of the world. However, correlations are often not very high thus simplifying the
Bayes problem has proved to result in reasonable performance for many problems. This is utilised
by the Naı̈ve Bayes classifier by assuming said independence thus calculating

p(o|w) =
n

’
i=1

p(oi|w) . (2.13)

Thus, only the parameters of the n probability functions p(oi|w) have to be estimated based
on the training data. For modelling these probability functions with Gaussians, for example, 2n
parameters have to be estimated (the statistical means µi and the variances s2

i ).
While the Naı̈ve Bayes classifier is based on predefined models where only the optimal pa-

rameter configuration must be found, approaches based on linear discrimination will be described
in the following.

Linear Discrimination with Artificial Neural Networks and Support Vector
Machines

Linear discrimination is based on the idea of separating the classes by parametric linear decision
functions ki(o) which are directly learned from the training data. Hence, no previous knowledge
about the actual probability distribution is necessary. In Figure 2.8, an example is shown for a
two-dimensional two class problem which may be separated by a single linear function k(o). The
decision for feature vector o is then made based on this decision function k(o):

ŵ = ŵ(o) :=

8
><

>:

w1 if k(o)> 0 ,

w2 if k(o)< 0 ,

unde f ined else .

(2.14)

A widely-used approach to learn a linear discrimination decision function are multi-layer
perceptrons (MLPs) (Rosenblatt, 1958) being a subset of artificial neural networks (ANN). The
idea is to mimic the structure of the brain and create a set of connected artificial neurons. One
neuron of such an MLP models a function k j which linearly weights the elements of the input
vector oi and calculates the result by comparing the weighted sum to a threshold q j:
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x1

x2

k(o)

Fig. 2.8: Example for linear discrimination.

k j(o) =

(
1 if Âi ai joi > q j ,

�1 else .
(2.15)

The final decision is then made by combining the output of these neurons within an output
neuron. In this output neuron, the decision function k(o) may be modelled, e.g., by

k(o) = Â
j

w jk j(o)+b (2.16)

weighting all k j with a weighting factor w j and adding a bias b. The final decision for a two class
problem may then be made as described in Equation 2.14.

A general graphical representation with one input layer, one hidden layer and one output
neuron is shown in Figure 2.9. Of course, to allow for more complex decisions to be made,
additional layers may be introduced between the input and output layer.

To learn the parameters ai j, q j, w j, and b from data, the back-propagation algorithm (Rumel-
hart et al., 1986) is used. The error between the estimated and the true value is calculated and
propagated through the network to all neurons to optimise the parameters, e.g., using gradient
descent.

A different approach for linear discrimination has been proposed by Vapnik (1995) called
Support Vector Machine (SVM). For a two class problem, an SVM is based defining a hyperplane
separating the two classes with maximum margin. The model is then defined by the support
vectors which define the margin for both classes. This is illustrated in Figure 2.10 (using the
same example for linear discrimination as in Figure 2.8) having the support vectors in bold.

The decision function k(o) representing the hyperplane is then defined as

k(o) =
N

Â
i=1

aiziK(mi,o)+b , (2.17)
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o1

...

oi

{�1,1}

k1(o)

k2(o)

...

k j(o)

k(o)

w1

w2

w j

Fig. 2.9: The generic architecture of a multi layer perceptron.

x1

x2

k(o)

Fig. 2.10: Example for linear discrimination using a support vector machine. The support vectors
are drawn in bold.

where mi represent support vectors defining the hyper plane (together with b), zi the known class
mi belongs to, ai the weight of mi, and K(·, ·) a kernel function. The kernel function is defined as

K(m,m0) = hj(m),j(m0)i , (2.18)

where j(m) represents a transformation function mapping m into a space F of different di-
mensionality and h·, ·i defines a scalar product in F . By using the kernel function, the linear
discrimination may happen in a space of high dimensionality without explicitly transforming the
observation vectors into said space.

Again, the estimated class ŵ for observation vector o is based on the sign of the decision
function k(o) as described in Equation 2.14.
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According to Beyerer (2008), to train an SVM, the problem is stated as finding the configura-
tion which minimises the equation

L(w,b,a) =
1
2
hw,wi�

N

Â
i=1

ai[zi(K(mi,o)+b)�1] (2.19)

using the method of Lagrange multipliers. All non-support vectors result in an a-value of 0.
A completely different approach to defining a discriminating hyperplane is to find a set of

rules which will be explained next.

Rule Learning with the RIPPER Algorithm

Creating a classifications with rule learning is based on the idea of defining a set of rules to
assign classes ŵ to observation vectors o. Additionally, a definition is needed on how the set of
rules are applied. The RIPPER (Repeated Incremental Pruning to Produce Error Reduction) has
been proposed by Cohen (1995) as a well-functioning and computationally efficient algorithm to
define the set of rules. There, each rule consists of conjunctions of An = v, where An is a nominal
attribute, or Ac � q ,Ac  q , where Ac is a continuous attribute. An example rule for the attributes
colour and length is depicted in the following:

if colour = green and length� 3.2m then ŵ = w1 .

Each part of the observation vector o is reflected by one of the attributes. The rules are then
ordered and executed according to the following rule: unless a rule is evaluated successfully,
move to the next rule; else apply the rule and stop.

The basic process of the algorithm for generating rules is divided into three steps: First, rules
are grown by adding attributes to the rule. Second, the rules are pruned. If the resulting rule set is
not of sufficient performance, all training examples which are covered by the generated rules are
removed from the example set and a new rule is created.

Until now, probability modelling, linear discrimination and rule learning have been described
as candidates for static classification. For regarding the problems of user state recognition in
dialogues as a sequential problem, further algorithms may be considered.

2.2.2 Sequential Supervised Classification

While several approaches for static supervised classification have been presented where each data
sample is regarded as being independent, sequential approaches regard each samples belonging to
a sequence of data samples and thus being dependant of their preceding samples within the same
sequence. For such problems, special classification algorithms have been developed. Within this
thesis, a Hidden Markov Model (HMM) and a Conditioned HMM (CHMM) are applied. Both
will be described in the following.

Hidden Markov Model

The idea of the Hidden Markov Model has initially been proposed by Rabiner (1989) for solving
the problem of speech recognition (see Sec. 2.1).
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Informally, an HMM consists of several states and—based on observations made—it models
the progress through these states over time. However, the states may not be observed directly (the
states are hidden). Instead, only uncertain observations of the current state are available. Given
an unseen sequence of observations, the HMM may either be used to compute a probability of
this sequence given the model parameters, which is called evaluation, or to find the most likely
state sequence, which is called decoding. For the latter, each state is associated to a class. Speech
recognition is an example for decoding where each state is tied to a phoneme.

Formally, an HMM is defined by the 5-tuple (S,O,A,B,p), where S is the set of states s, O the
set of multi-dimensional observation vectors o, A the transition matrix containing the probabilities
ai j = p(s(t) = s j|s(t�1) = si) of transitioning from state i to state j in time step t, B the matrix
of probabilities b j(o) = p(o(t)|s(t) = s j) of observing o in state j at time t, and p the initial
probability distribution over all states with pi = p(s(1) = si) being the probability of starting in
state i.

An example model with three hidden states si is shown in Figure 2.11 illustrating the state
transitions ai j, the observation models bi(o), and the initial probabilities pi.

s1

s2

s3

b1(o) b2(o) b3(o)

p1

p2

p3

a12

a13

a21

a23
a31

a32

Fig. 2.11: This is an example of a HMM with three hidden states which are fully connected.
Furthermore, each state has a connected observation probability model.

To compute the probability p(o|l ) of observing a sequence o for an HMM l representing
the evaluation task, the forward algorithm is used. For each time step t the current probability
distribution over all states at(s j) is iteratively computed by

at(s j) =

(
b j(o(1)) ·p j if t = 1 ,

b j(o(t)) ·Âi2s ai j ·at�1(i) else .
(2.20)

The probability p(o|l ) is then computed by

p(x(n)|l ) = Â
i2S

aT (i) . (2.21)
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To find the most likely state sequence for decoding, the Viterbi (1967) algorithm may be used.
It is similarly defined to the Forward algorithm: instead of using the sum over all previous values,
only the maximum is used.

For training of an HMM, Baum-Welch algorithm is usually used. It is based on the Forward-
Backward algorithm (cf. (Rabiner, 1989)).

While the HMM may only be used for multi-class problems indirectly, the CHMM presented
next accounts for that by allowing the estimation of a class probability directly.

Conditioned Hidden Markov Model

The Conditioned Hidden Markov Model (CHMM) is an extension of the classical HMM and
has been originally published by Glodek et al. (2011). The main difference is that it directly
introduces the concept of classes w into the model. Hence, like the classical HMM, the CHMM
also consists of a discrete set of hidden states si 2 S and a vector space of observations O ✓
Rn. A separate emission probability bi(o(t)) is linked to each state defining the likelihood of
observation o(t) 2O at time t while being in state si. Further, ai j,w = p(s(t) = s j|s(t�1) = si,w(t) =
w) defines the transition probability of transitioning from state si to s j. In contrast to the classical
HMM, the transition probability distribution also depends on the class label w 2 W . This results
in the transition matrix A2R|S|⇥|S|⇥|W |. Furthermore, the meaning of the initial probability pi,w =
p(s(1)) = si|w(1) = w) for state si is altered. It additionally represents the class probability for
class w at any time with the corresponding matrix p 2R|S|⇥|W |. A schematic example of a CHMM
with two classes and three hidden states is illustrated in Figure 2.12.

y1 y2

w1

w2

w3

Fig. 2.12: This is an example of a CHMM with two labels and three hidden states originally
published in (Ultes et al., 2012a). The dashed lines represent the label dependence of the hidden
states, while the full lines illustrate state transitions. Please note that state transitions also depend
on the labels which is not shown here.

In contrast to the classical HMM—computing the probability p(o(n)|l ) of observing the se-
quence o(n) thus multi-class recognition may only be performed by instantiating a model for each
class separately or by tying classes to hidden states—, the CHMM allows for directly computing
a class probability p(w|o(n),l ). Similar to the evaluation of an HMM, this is done for the CHMM
using a modified Forward algorithm by altering the definition of at,w (see Eq. 2.20):
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at,w(s j) =

(
b j(o(1)) ·p j,w if t = 1 ,

b j(o(t)) ·Âi2S ai j,w ·at�1,w(i) else .
(2.22)

Naturally, this alteration also entails the modification of the Baum-Welch algorithm used for
training.

To identify the estimated class ŵ , the posterior probabilities p(w|o(n)) are computed:

ŵ = argmax
w

p(w|o(n)) = argmax
w

p(o(n),w)

Âw p(xo(n),w)
. (2.23)

Here p(o(n),w) = p(o(n)|w)p(w), p(w) is the prior probability over all labels and

p(o(n)|w) = Â
si2S

aT,w(si) (2.24)

the probability for observation sequence o(T ) given w .
Until now, we have presented several static and sequential classification methods which we

will apply for user state estimation. The goal in our thesis is to find out how the approaches
perform for estimating the respective user state. To do this, we additionally rely on methods for
evaluating these approaches. These evaluation methods will be describe in the following section.

2.2.3 Evaluation Methods for Classification

While several different classification approaches—static or sequential—may be applied for the
same problem in general, the question remains which approach performs best. Here, best is quite
relative as this highly depends on the applied evaluation metric. The most common metric is the
accuracy—the ratio of correctly classified samples with respect to all tested samples. However,
the accuracy does not account for unbalanced data, i.e., data which is not equally distributed over
the classes. In a two-class example where 90% of the data belongs to class a and the rest belongs
to class b, a simple classifier always assigning the majority class would result in an accuracy of
90% but would in fact not work at all. Hence, other metrics are within this thesis when dealing
with unbalanced data. These metrics will be described in the following.

Another problem is the data which is used for training and evaluation. In general, training and
evaluating on the same data is not advisable: the classification algorithm might simply “memo-
rise” the correct answer. If the same sample is then used for evaluation, it is very likely to be clas-
sified correctly. However, these results do not show how the classifier would perform on unseen
data. In other words, a classification algorithm should be tested with respect to generalisation.
This aspect is also discussed within this section.

Evaluation Metrics

For evaluating the classification task within this thesis, we rely on four different metrics which
all reflect different aspects. As outlined above, the accuracy is not suitable. A similar metric
which regards effects of unbalanced data is the Unweighted Average Recall (UAR) or unweighted
accuracy. The UAR is defined as the sum of all class-wise recalls rc divided by the number of
classes |C|:
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UAR =
1
|C| Â

c2C
rc . (2.25)

Recall rc for class c is defined as

rc =
1

|Rc|

|Rc|

Â
i=1

dhiri , (2.26)

where d is the Kronecker-delta, hi and ri represent the corresponding hypothesis-reference-pair
of rating i, and |Rc| the total number of all ratings of class c. For the previous two-class example
having a majority-class-classifier, the UAR would be 0.5 thus much better reflecting the weakness
of the classifier.

Another metric originally developed by Cohen (1960) is Cohen’s Kappa. It measures the
relative agreement between two corresponding sets of ratings and may also be applied to evaluate
classification tasks. This relative agreement is defined as the number of agreements corrected by
the chance level of agreement divided by the maximum proportion of times the ratings could
agree at all. Hence, k is defined as

k =
p0� pc

1� pc
, (2.27)

where p0 is the rate of agreement and pc is the chance agreement.
Of course, both UAR and Cohen’s Kappa are very strict: both only reward exact matches and

penalise all other estimates. While this behaviour is unproblematic for nominal classes, classes
which have a natural order may be evaluated differently. Some estimates might be closer to the
true estimates than others thus a different penalty might be better. Thus, Cohen (1968) introduced
a weighting factor into the kappa formula allowing for weighted penalties based on the relative
distance to the true class. Thus, the weighting factor w reduces the discount of disagreements the
smaller the difference is between the two ratings:

w12 =
|r1� r2|

|rmax� rmin|
. (2.28)

Here, r1 and r2 denote the rating pair and rmax and rmin the maximal and minimal rating. This
results in w = 0 for agreement and w = 1 if the ratings have maximal difference.

The weighting factor is then used within the computation of Cohen’s Kappa:

k = 1� Âi2C Â j2C wi j · ri j

Âi2C Â j2C vi j · r·i·r j·
N

. (2.29)

Here, C is again the set of all classes and wi j the weighing factor for estimating class i while the
true class is class j. ri j is the number of times i has been estimated while j is the true class. Thus,
r·i is the total number of times class i has been estimated, r j· the total number of times the true
class j is present in the data set of size N.

Another method for comparing classification results for ordinal classes is Spearman’s Rank
Correlation Coefficient. It measures the correlation between the reference classes and their es-
timates or, more general, the correlation between two ordinal variables. The correlation of two
variables describes the degree by that one variable can be expressed by the other. Spearman’s
Rank Correlation Coefficient, or short Spearman’s Rho is a non-parametric method assuming a
monotonic function between the two variables (Spearman, 1904):
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r =
Âi(xi� x̄)(yi� ȳ)p

Âi(xi� x̄)2 Âi(yi� ȳ)2
, (2.30)

Here, xi and yi are corresponding ranked ratings and x̄ and ȳ the mean ranks. Thus, two sets of
ratings can have total correlation even if they never agree. This would happen if all ratings are
shifted by the same value, for example.

In cases where a numerical representation of the classes exist, another evaluation metric is the
root mean squared error (RMSE) usually applied in regression tasks. By calculating the error and
comparing each estimated class ŵi with the reference ri—the known ground trough—for all N
evaluation samples, RMSE is defined as

rmse =

s
1
N

N

Â
i=1

(ŵi� ri)2 . (2.31)

While four different evaluation metrics which will be used within the thesis to evaluate the
user state recognition approaches have been presented, a reasonable separation of the data is
also very crucial for generating valid results. A very common approach to separate the data into
different sets for training and evaluation will be described in the next section.

Generalisation and Cross-Validation

For creating statistical classification models, usually, only a limited amount of annotated data is
available. However, for most algorithms, the more data you have the better the trained model will
perform and generalise on unseen data. The latter is very crucial as, to test the performance of
the classification method, unseen data is of special importance as argued before. This is, as the
goal of classification is to find a model which is able to find the correct class with minimal error
on unseen data. A common method is to statically split the data into a training and evaluation set,
e.g., using 70% of the data for training and testing its performance on the remaining 30%. The
downside of statically splitting is that, usually, random splits are used and neither of both sets
may reflect the data distribution of the complete data set.

One way to remedy this effect is to use a method called m-fold cross-validation. Here, the data
is split into m partitions of equal size. For evaluation, one partition is selected and the classifier
which was trained on the remaining m�1 partitions is evaluated on this selected partition. Next,
another partition is selected which has not been used for evaluation before. Again, the newly
trained classifier is evaluated on this partition. This is repeated until all partitions have been
used for evaluation. An example for this partitioning is shown in Figure 2.13 for 5-fold cross-
validation. In the shown situation, P2 has been selected for evaluation. Hence, the classifier will
be trained on partitions P1, P3, P4, and P5.

To get a final performance value, one way is to calculate the performance for each fold sep-
arately and then taking the average of these results for each fold. Another way to get a final
performance value is to store the results for each fold and calculate the performance measure
afterwards using the complete data.

P1 P2 P3 P4 P5

Fig. 2.13: An example for 5-fold cross-validation: partition P2 is selected for evaluation while the
remaining partitions are used to train the statistical model.
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2.3 Summary of Relevant Background

For this chapter, our goal was to provide all background information necessary in order to under-
stand the work which will be described in the content of this thesis. Knowing about the general
modular pipeline architecture of a spoken dialogue system as well as the general operation of the
single modules is important to understand how the human-computer interaction is executed and
how the user state may be taken account of. For adapting to the user state, especially the different
dialogue strategy concepts are also of interest. Finally, in order to understand the dialogue man-
agement approaches (and their implementation) for introducing adaptivity to the user state, the
information state and hidden information state approaches have been explained. The extension of
the presented approaches will be described in Chapter 5 along with experiments on user-adaptive
dialogue modelling.

For deriving the user state automatically, various machine learning algorithms or statistical
classification methods will be applied. In this chapter, we have described our selection of classi-
fiers used to detect the user state automatically along with methodologies and measures to evalu-
ate their performance. In Chapter 4, these classifiers will be employed to four different user states
which depicts the first step to enable user-adaptive dialogue modelling.

While we have only provided an overview over the relevant aspects of both fields, further
reading on spoken dialogue system technology has been presented by McTear (2004) an in-depth
explanation of all relevant aspects. For further reading on statistical machine learning, we would
like to refer to Duda et al. (2001).

Before we continue with user state recognition, we would like to introduce related work on
both fields—user state and adaptive dialogue—and explain in detail the differences and the added
value of our own work.
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Related Work

The overall goal of the presented work in this thesis is to render human-machine dialogue more
user-centred by incorporating information about the user into the dialogue manager. As has been
described before, this goal may be divided into two problems: automatically recognising the user
state and adapting the ongoing dialogue. Naturally, we are not the first having pursued this goal
and, actually, many researchers have worked on either of the two fields. Hence, while we have laid
the basis for understanding the contents of this thesis in the previous chapter, we will continue in
this chapter by presenting related work in the two fields of user state recognition and user-adaptive
dialogue management.

In order to adapt the dialogue to the user’s state, the state has to be estimated first. Following
this natural order, we will start with presenting the user states which we focus on in this thesis,
describe the work of other research groups on how to automatically recognise them and explain
the differences between their work and ours. Subsequently, we present related work on adaptive
dialogue modelling by either extending the dialogue state or using the user information within the
reward function of reinforcement learning approaches and again state the fundamental differences
rendering our work as novel.

3.1 User State Recognition

For adapting the dialogue, a multitude of user states may be taken into account. Schmitt and
Minker (2013) have identified several user states which are suitable for adaptation and grouped
them into dynamic and static user states. Static user states describe states which do usually not
change over the course of a dialogue, e.g., age, gender, or preferences. While many researchers
have focused on these static properties (Schmitt et al., 2009a; Metze et al., 2007), in this thesis,
we focus on dynamic user states. Adapting to a static state like age, for example, the dialogue
may be tailored for different age groups by pre-selecting according dialogue strategies. However,
for adapting to dynamic user states which will change during the interaction, more elaborated
adaptation mechanisms are necessary to provide the flexibility needed. And for the system to
deal with theses fluctuations and changing values during the dialogue, simply pre-selecting a
suitable strategy is not sufficient.

In this work, we have selected four dynamic user states: user satisfaction, perceived coher-
ence, emotion, and intoxication. These are ordered according to their relevance to the dialogue
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interaction. For virtually all dialogues, the user may be satisfied or unsatisfied with the interac-
tion. As this is a general concept, most of our work will focus on user satisfaction (US) both for
recognising US as well as using US for influencing the dialogue flow. Next, the perceived coher-
ence of the system behaviour is considered. Coherence is also very general potentially occurring
in all interactions: whether the user perceives the system’s reactions, i.e., the system’s behaviour
as being coherent. A bit less frequently occurring in human-machine interaction are emotions.
While those play without question a very important role in human-human interaction, still, ma-
chines are not yet capable of providing this fine-grained level of interaction capabilities. For some
scenarios, adapting to emotions may be very beneficial for an SDS, e.g., cheering up sad users in
a counselling dialogue. Finally, a very specialised (or exotic) user state is intoxication. Obviously,
its potential application is limited to dialogues where the intoxication level is of interest, e.g., if
the user is about to operate a motorised vehicle.

In the remainder of this section, we will introduce related work on the four before mentioned
user states having in mind their application within the domain of spoken dialogue interaction.

3.1.1 User Satisfaction Recognition

User satisfaction in spoken dialogue represents a very general state occurring in almost all types
of dialogue. Hence, many researchers have been involved in creating means of automatically
identifying user satisfaction in spoken dialogue systems. Here, the work may be divided into two
major directions: dialogue-level user satisfaction and exchange-level user satisfaction. A system-
user exchange is defined as one unit of the dialogue. Hence, a dialogue consists of a sequence of
system-user-exchanges which defined as one system turn followed by one user turn1:

s u s u s u s u…s1 u1 s2 u2 s3 u3 sn un…

e1 e2 e3 en

Dialogue-level user satisfaction deals with the question whether the user is satisfied with the
complete dialogue after the interaction has finished. User satisfaction on the exchange-level or
turn-level, however, deals with the question of how the user is satisfied during the interaction
with the dialogue up to the current point.

For creating models identifying the satisfaction of the user automatically in a supervised learn-
ing manner, data is needed which is annotated with the ground truth. Hence, how this ground truth
is created is a problem which is diametrical to exchange-level vs. dialogue-level user satisfaction.
The US annotations may be collected in general either by

• users during or right after the dialogue or
• experts by listening to recorded dialogues.

Here, users or user raters are people who actually perform a dialogue with the system and
apply US ratings (single value ratings or questionnaires) while doing so. There is no constraint
about their expertise in the field of human-computer interaction or Spoken Dialogue Systems: the
users may be novices or have a high expertise. With experts or expert raters, we refer to people

1 Figure originally published in (Schmitt et al., 2012)
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who are not participating in the dialogue thus constituting a completely different set of people.
Expert raters listen to recorded dialogues after the interactions and rate them by assuming the
point of view of the actual person performing the dialogue.

For User Satisfaction, ratings applied by the users seem to be clearly the better choice over
ratings applied by third persons. However, determining true User Satisfaction is only possible by
asking real users interacting with the system. Ideally, the ratings are applied by users talking to a
system employed in the field, e.g., commercial systems, as these users have real concerns.

For such Spoken Dialogue Systems, though, it is not easy to get users to apply quality rat-
ings to the dialogue—especially for each system-user-exchange. The users would have to rate
either by pressing a button on the phone or by speech, which would significantly influence the
performance of the dialogue. Longer dialogues imply longer call durations which cost money.
Additionally, most callers only want to quickly get some information from the system. Therefore,
it may be assumed that most users do not want to engage in dialogues which are artificially made
longer. This also inhabits the risk that users who participated in long dialogues do not want to call
again. Therefore, collecting ratings applied by users are considered to be expensive. One possible
way of overcoming the problem of rating input would be to use some special installation which
enables the users to provide ratings more easily (cf. (Schmitt et al., 2011b)). However, this is also
expensive and the system’s usability would be very restricted. This setup could most likely only
be used in a lab situation.

Expert raters, on the other hand, are able to simply listen to the recorded dialogues and to
apply ratings, e.g., by using a specialised rating software. This process is much easier and does
not require the same amount of effort needed for acquiring user ratings. Furthermore, as already
pointed out, we refer to experts as people who have some basic understanding of dialogue systems
but are not required to be high-level experts in the field. That is why we believe that these people
can be found easily.

Naturally, this lead to a trade-off decision for creating the ground truth between users and
experts. In this section, we will give examples for both expert and user ratings. And while we
focus on exchange-level user satisfaction in this thesis, we will start with presenting work on
dialogue level user satisfaction with the PARADISE framework.

Dialogue-level User Satisfaction Recognition

Fundamental work on the US recognition after the interaction has been presented by Walker
et al. (1997, 1998b, 2000) with the PARADISE (PARAdigm for Dialogue System Evaluation)
framework, which is—to our knowledge—the first work dealing with the automatic recognition
of user satisfaction.

PARADISE is based on a simple concept: information about the dialogue costs and the task
success is used to create a linear regression model which targets user satisfaction. This general
structure is depicted in Figure 3.1: with the ultimate goal of maximising user satisfaction, the task
success rate is also maximised while minimising the associated costs of the dialogue at the same
time. In the following, all measures will be described:

Task success For maximising user satisfaction, task success should also be maximised. It is mea-
sured using the kappa function already presented in the context of evaluating sta-
tistical classification (Sec. 2.2.3):
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maximise user satisfaction

maximise task success minimise costs

efficiency measures quality measures

k

e.g., # utterances e.g., # repair utterances

Fig. 3.1: PARADISE’s structure of objectives as in (Walker et al., 1997).

k =
P(A)�P(E)

1�P(E)
. (3.1)

Again, P(A) represents the probability of agreement and P(E) the probability of
agreeing by change. The k-function is applied to a confusion matrix for attribute-
value pairs. Within this matrix, collected information of real dialogues are com-
pared to predefined optimal dialogue scripts. By calculating the kappa value, the
overall agreement between these two may be calculated.

Costs To minimise the costs of the dialogue, both efficiency measures and quality mea-
sures are considered. Efficiency measures are a straight forward concept, e.g., the
number of utterances per dialogue representing the dialogue length. Then, cost c1
would represent the dialogue length. For quality related measures, e.g., the number
of repair utterances c2 may be used in a similar manner.

For calculating a final user satisfaction measure us, both task success and costs are combined.
To achieve a maximum value us, the costs, which should be minimised, are subtracted from the
task success, which should be maximised:

us = (a ·N (k))�
n

Â
i=1

wi ·N (ci) , (3.2)

where N (·) represents a normalising function and a and wi weighting factors. These weights
have to be learned using linear regression. Here, the user’s satisfaction with the dialogue is col-
lected using questionnaires and used as target variable for the regression model.

Evanini et al. (2008) proposed a different measure for dialogue-level user satisfaction which
they call “caller experience” (CE). They use a decision tree (Quinlan, 1992)—a concept similar to
rule learning (cf. Sec. 2.2.1)—which uses parameters about the dialogue to automatically classify
the caller experience. In a telephone-based hot-line setting, these parameters where chosen to be
the “most informative in determining the CE” (Evanini et al., 2008): “the classification status of
the call (how well the system determined the reason for the call), the number of speech recognition
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errors during the call, the number of operator requests from the caller, and the exit status of the
call (whether the callers task was completed, or where the caller was subsequently transferred).”
While this setup seems to be similar to PARADISE where also a classificator is trained to identify
the user satisfaction based on dialogue parameters, the big difference lies in the target variables:
while for PARADISE, the user satisfaction is acquired using questionnaires, the caller experience
is annotated by expert raters. This allows for using real dialogue data. The expert raters annotated
each dialogue of the training set with a value ranging from one to five where five depicts the
best rating. Their setup achieved an average agreement between the learned system and the rater
annotations of k = 0.8 using Cohen’s weighted kappa as described in Section 2.2.3.

Unfortunately, both approaches are quite domain-dependent. For generating the regression
model in PARADISE, weighting factors have to be computed for each system anew (Möller
et al., 2008). This generates high costs as dialogues have to be performed with real users where
each user further has to complete a questionnaire after completing the dialogue. While there is
no information about the cross-domain capabilities of CE, it is very likely that the decision tree
must be learned anew for each domain. Moreover, for rendering the dialogue system adaptive to
the user’s satisfaction, dialogue-level approaches are not suitable: the decision of how to continue
the dialogue have to be made within each system-user exchange. Hence, we will present work on
exchange-level ratings in the following.

Exchange-level User Satisfaction Recognition

Measuring the user satisfaction on the exchange-level means that anytime the system makes a
decision about the next system action, the user satisfaction is determined anew. In this setting,
using questionnaires is obviously not applicable. This is why only single-rated values are used.
The following work is grouped by the way these values are applied: either by the users themselves
or by experts.

Work comprising user ratings directly has been presented by Engelbrecht et al. (2009). They
used Hidden Markov Models (HMMs) (see Sec. 2.2.2) to model the SDS as a process evolving
over time. User Satisfaction was predicted at any point within the dialogue on a five-point scale
comprising the ratings bad, poor, fair, good, and excellent. Each state of the HMM was tied to
one of these five values. The progress through the model was based on observing six dialogue
events like understanding errors. In a Wizard-of-Oz setting, six dialogues in the BoRIS domain
(Bochum Restaurant Information System (Möller, 2005)) were scripted to ensure similar condi-
tions for each participant. The participants applied user satisfaction ratings during the dialogue
using a number pad after each turn. The dialogue was on hold until they finished rating. Eval-
uation was performed based on these user applied labels. For unseen data of two scenarios, the
HMM achieved a performance of an average mean squared error of 0.086 and 0.037.

Hara et al. (2010) derived turn level ratings from an overall score applied by the users after
the dialogue. The users applied ratings on a five-point scale which has been extended for the
recognition task by indicating unsuccessful dialogues leading to six classes. Within the domain of
a music retrieval system, they used n-gram models reflecting the dialogue history to estimate the
user satisfaction after each turn. By testing different values for n, they achieved best performance
for tri-grams (n = 3) which was only hardly above chance.

Work by Schmitt et al. (2011b) deals with determining User Satisfaction from ratings applied
by the users themselves during the dialogues. Within the domain of Let’s Go, a bus schedule



44 3 Related Work

information system, the users performed predefined dialogues in the lab. During the interaction,
each user applied user satisfaction ratings on a 5-point scale by indicating an increase or decrease
in their satisfaction using a remote controller. Based on interaction parameters capturing impor-
tant events and aspects of the interaction2, a Support Vector Machine to automatically predict the
user satisfaction for each turn achieving an MR/R of 0.49.

User ratings, though, have critical downsides: they are subject to strong variations and biased
judgements. Furthermore, the problem of collecting these ratings exist: usually, only artificial
dialogues are reasonably used to collect this data3. These problems are solved by using expert
raters. They are able to listen to recorded dialogues of real world dialogue systems and have a
more objective view on the dialogue. With this regard, related work on user satisfaction annotated
by experts will be presented in the following.

Using experts instead of users for applying the user satisfaction ratings, Higashinaka et al.
(2010a) proposed a model to predict turn-wise ratings for human-human dialogues (transcribed
conversation) and human-machine dialogues (text from chat system). Ratings ranging from 1-7
were applied by two expert raters labelling “Smoothness”, “Closeness”, and “Willingness” not
achieving a Match Rate per Rating (MR/R)4 of more than 0.2-0.24 applying Hidden Markov
Modes as well as Conditioned Random Fields. These results are only slightly above the random
baseline of 0.14. Further work by Higashinaka et al. (2010b) used ratings for overall dialogues
to predict ratings for each system-user-exchange using HMMs. Again, evaluating in three user
satisfaction categories “Smoothness”, “Closeness”, and “Willingness” with ratings ranging from
1-7 achieved best performance of 0.19 MR/R.

Further work on user satisfaction recognition using expert annotations has been presented
by Schmitt et al. (2011a) with their Interaction Quality (IQ). They connected interaction-related
events to user satisfaction resulting in more robust and overall better performance than all the
approaches presented before. Their general idea is to automatically derive a set of interaction
parameters for each system-user-exchange and to use these as input to a statistical classifier which
predicts the user satisfaction. Hence, each system-user exchange was annotated by three different
expert raters using strict guidelines. These ratings ranging from 1-5 are used as target variable
to train a support vector machine. They achieve a MR/R of 0.58. El Asri et al. (2014) applied
ordinal regression thus exploiting the ordinal nature of the Interaction Quality ratings. On the
same problem, they were able to further improve the recognition performance.

Based on the good performance results of the Interaction Quality and the benefit of using
expert raters, our work on user satisfaction recognition will also be based on IQ. Thus, the Inter-
action Quality paradigm will be presented in detail in Section 4.1.1. While Schmitt et al. (2011a)
and El Asri et al. (2014) already provided satisfying results modelling the problem as a static
classification approach, their approaches lack in taking account for the temporal aspects of the
problem: the user’s satisfaction does not change suddenly but depends on how satisfied the user
has felt before within the same interaction. Therefore, we will focus on these temporal aspects.
For this, we will propose a plug-in sequential recognition architecture. There all types of state-
of-the-art static classification approaches may be plugged-in. Finally, we will also compare this
novel approach to state-of-the art static and sequential classifiers

2 The parameters are the same as for the Interaction Quality paradigm described in Section 4.1.1
3 For more details on user ratings for user satisfaction, please refer to Section 4.1.
4 MR/R is equal to Unweighted Average Recall (UAR) which is explained in Section 2.2.3.
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Aside from the user’s satisfaction level, we are also considering three other user states. Here,
the perceived coherence of the system behaviour is doubtless very important. Hence, approaches
on coherence recognition will be presented in the following.

3.1.2 Perceived Coherence Recognition

Creating coherent dialogues is a very important task, not only because there is a relationship
between the coherence of system actions and the degree of the user trusting the system (Muir,
1994). However, for identifying whether the dialogue partner views a conversation with a system
as coherent, only limited related work exists. Gandhe and Traum (2008) presented a general study
on how different models of dialogue coherence correlate with human judgments. They suggest
to use n-gram statistics that are sensitive to linguistic features for modelling coherence. Their
objective was to find an automatic mechanism that reduced the effort of human annotation to
evaluate dialogue systems. Moreover, when the calculation of coherence is done not only once for
each complete dialogue but consecutively throughout the dialogue for each turn, this information
may also be used to change the course of the ongoing interaction.

In contrast to the general notion of discourse coherence where a complete dialogue is con-
sidered as being coherent or non-coherent (see, e.g., (Prakken, 2005; Purandare and Litman,
2008; Gandhe and Traum, 2008)), we are more interested in identifying coherence for each sin-
gle system reaction. Furthermore, our aim is to be able to use coherence information for dialogue
management, so we are interested in using dialogue acts information rather than linguistic fea-
tures in order to make our approach general and suitable for any application domain. Hence, in
contrast to the general notion of discourse coherence where a complete dialogue is considered as
being coherent or non-coherent, we focus on analysing the coherence of each system dialogue act
separately.

With the same aim, Noh et al. (2011) presented an approach to compute dialogue act coher-
ence taking into account the dialogue structure. They introduce a measure called Discourse Co-
herence Indicator (DHI) for dialogue acts based on perplexity used to rank dialogue acts. Based
on a sequence of dialogue acts, their approach takes into account task completion with different
ASR error levels. While Noh et al. (2011) mainly base their approach on the dialogue sequence,
interaction-related events may also strongly influence the coherence. Hence, our approach is not
based on the actual dialogue sequence, but on the information provided by the user during the
conversation and the live performance of relevant modules such as ASR and NLU.

While user satisfaction and coherence are more interaction-related user states, the user’s emo-
tion or intoxication may be derived from the speech signal directly. Here, the emotional state of
the user has a long-standing research history. In the following, we will give a brief overview over
relevant related work on speech based emotion and intoxication recognition.

3.1.3 Speech-based Recognition of Emotion and Intoxication

As emotions have shown to actually occur in human-machine spoken dialogue interaction (Reeves
and Nass, 1996; Schmitt and Minker, 2013), we are also considering the emotional state of the
user. However, several different ways of defining the term emotion exist. Plutchik (1980) define a
set of eight emotions arranged in a circle (emotion wheel). Others rely on the “big six” emotions
happiness, anger, disgust, sadness, surprise, and fear (Cornelius, 1996). While both previous def-
initions categorise and label the emotions, the pleasure arousal dominance (PAD) (Mehrabian,
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1996) scale aims at creating a three-dimensional emotion space. Hence, occurring emotions need
not be labelled but may simply be represented as a point within this space. Work on automatically
estimating this point has been presented, e.g., by Grimm et al. (2007).

Our work, though, is focusing on emotion categories and this is already a hard problem. For
approaches on automatically classifying emotions, one problem is to gather the training and eval-
uation data. Here, the distinction can be made between acted corpora, i.e., the emotions have
been created by professional or amateur actors, or corpora containing real emotions. For the for-
mer, Schuller (2006) and Pittermann et al. (2009) have provided experiments on the Berlin cor-
pus (Burkhardt et al., 2005) and on the Danish emotional speech database (Enberg and Hansen,
1996). For spontaneous emotions, a challenge has been organised by Schuller et al. (2009a) on
the AIBO corpus (Batliner et al., 2004).

While the above stated work deals with emotion recognition in general, other people have laid
the focus on speech-based telephone services, so called interactive voice response (IVR) systems.
Petrushin (1999) recognised emotions of non-professional actors. Furthermore, Lee et al. (2001,
2002), Lee and Narayanan (2005), Batliner et al. (2000), Schmitt et al. (2010a), and Polzehl et al.
(2011) presented work on recognising emotions in a deployed IVR system.

All classification approaches have in common that they use features extracted from the speech
signal directly or features containing linguistic information (e.g., (Schmitt et al., 2010a; Polzehl
et al., 2011; Lee et al., 2002)). However, as emotions are very personal, we aim at personal-
ising the emotion recognition process by adding a speaker identification module to the overall
recognition process. While a similar experiment adding the gender has already shown to increase
the recognition performance (Vogt and André, 2006), we believe that a further personalisation
yields in an even better overall recognition performance. The complete approach is described in
Section 4.3.

A similar problem to emotion recognition represents the problem of automatically determin-
ing the user’s intoxication state. While intoxication clearly poses a different target than emotions,
approaches for both are based on extracting information from the speech signal and using it to
train a statistical classification algorithm. In this context, Schuller et al. (2011) started the par-
alinguistic challenge at the Interspeech conference in 2011 dealing with intoxication recognition.
There, a multitude of different approaches have been presented. Some modified the feature set
(Bocklet et al., 2011; Bone et al., 2011; Hönig et al., 2011) for static classification approaches
while others applied Hidden Markov Models (Nogueiras Rodrı́guez, 2011) for intoxication recog-
nition or used multiple classifiers in a fusion-based approach (Montacié and Caraty, 2011).

While all presented approaches perform better or worse for automatically recognition the in-
toxication level of the user, a human baseline has not been defined yet. Hence, in our contribution
to the challenge (Ultes et al., 2011b), we were aiming at comparing a standard static classification
approach with the performance of human raters. While Schiel (2011) have presented a similar ex-
periment in a lab situation, we present work on human performance in a more realistic scenario.
This will be elaborated on in Section 4.4.

So far, we have presented the four user states we will consider in this thesis and have presented
related work on automatically recognising those user states. As the general intention of our work
is to render the dialogue user-centred, we will continue with describing work on user-adaptive
dialogue management in the following.
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3.2 User-Adaptive Dialogue Management

For rendering the dialogue manager user-adaptive, the user state should first be recognised au-
tomatically and then used in the dialogue manager to alter the course of the dialogue. While we
have presented work on the former in the previous section, we will continue with describing the
related work in the field of adaptive dialogue management.

Adaptive dialogue spans over many different types of adaptation. While some systems adapt to
their environment (e.g., (Heinroth et al., 2010a)), the focus within this work lies on systems which
adapt to the user and their characteristics. Here, a distinction can be made for static adaptation and
dynamic adaptation. Static adaptation is based on a user model that contains static information
which does not change over time, e.g., the user’s age or the cognitive capabilities (Müller and
Wasinger, 2002). However, within this work, an emphasis is placed on dynamic adaptation to the
user during the ongoing dialogue (where the user state will likely change during the dialogue). We
have identified two major research streams and grouped the related work accordingly: extending
the dialogue state and modelling the reward function in a reinforcement learning setting.

3.2.1 Adaptation through Dialogue State Extension

One way to render a dialogue management system adaptive to the user state is to extend the dia-
logue state with the respective user state. Commonly, the dialogue strategy may then be modified
in a rule-based manner (e.g., (Nothdurft et al., 2012; Gnjatović and Rösner, 2008; Litman and
Pan, 2002; Conati and Maclaren, 2005)). However, some approaches also consider the dialogue
system as a POMDP (cf. Sec. 2.1.2) where an optimised policy (dialogue strategy) is learned
based on the extended dialogue state (Bui et al., 2009).

For rendering the dialogue adaptive to the user’s knowledge or expertise with respect to a
given task, Nothdurft et al. (2012) created a dialogue for the task of connecting a Blue-ray player
with an amplifier using an HDMI cable. The multi-modal system provides explanations on how
to solve the task presenting text, spoken text, or pictures. The system makes assumption over
the user knowledge by observing critical events within the dialogue (e.g., failed tries). Based
on this knowledge model, the system generates explanations and selects the appropriate type of
explanation so that the user can be expected to be capable of solving the task. The knowledge is
stored in the knowledge model on a five-step scale where the knowledge fades over time. Earlier,
Jokinen and Kanto (2004) also adapted the course of the dialogue to the user’s expertise. In a
dialogue system providing access to emails for the visually impaired, the system prompts where
tailored according to the estimated expertise level of the user. The expertise was derived based
on online and offline parameters on three levels distinguishing between novices, intermediate
users and experts. Based on this, the amount of help included in regular system utterances was
determined.

More than the user’s expertise, the user’s affective or emotional state is widely considered in
dialogue system adaptation. Gnjatović and Rösner (2008) presented work on affective dialogue.
For solving the Tower-of-Hanoi puzzle with an SDS, they identify the emotional state of the user
in order to recognise if the user is frustrated or discouraged. The dialogue is adapted by answering
the questions “When to provide support to the user?”, “What kind of support to provide?”, and
“How to provide support?” depending on the emotional state of the user. By that, the system is
capable of providing well adapted support for the user which helps to solve the task.
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Aside from task-oriented dialogues, adapting to the affect is very prominent in intelligent tu-
toring systems (ITS) where the learning path is adapted according to the identified affect (Conati
and Maclaren, 2005; Klein et al., 2002; Litman and Forbes-Riley, 2014; Forbes-Riley and Litman,
2011, 2012).

Within this thesis, a major emphasis is laid on adaptivity to user satisfaction or, in a wider
context, aspects which may be attributed to events occurring during the interaction. Here, a basic
mechanism is provided by VoiceXML (VXML) (Oshry et al., 2007). VoiceXML is a definition
of a mark-up language based on XML with the purpose of creating voice applications. VXML
defines a set of tags which may then be interpreted by a voice browser in order to provide access
to the speech front-end (speech recognition and speech synthesis). By interpreting the user input,
different paths may be taken (by loading different VXML documents) for fulfilling the dialogue
goal. Adaptivity to interaction-related events may by introduced by, e.g., counting the number of
ASR performance events like the number of “nomatches” or “noinputs”. Based on these counts,
a suitable strategy may be selected.

Similar to this mechanism, prominent work has been presented by Litman and Pan (2002).
They identify problematic situations in dialogues by analysing the performance of the speech
recogniser (ASR) and use this information to adapt the dialogue strategy. Each dialogue starts
off with an user initiated strategy without confirmations. Depending on the ASR performance,
may eventually employ a system-directed strategy with explicit confirmations. Applied to TOOT,
a system for getting information about train schedules, they achieved significant improvement in
task success compared to a non-adaptive system.

Following a slightly different approach, the dialogue initiative is adapted within the MIMIC
(Mixed-Initiative Movie Information Consultant) system used for information queries about
movies and movie theatres (Chu-Carroll, 2000). To select the type of initiative of the system
action, cues from the dialogue interaction are extracted These cues are related to the discourse,
e.g., TakeOverTask which may be identified by interpreting the semantic input together with
the dialogue history. A second category are analytical cues, e.g., InvalidAction, which re-
quire domain knowledge. Based on the detected cues, appertaining probability distributions are
updated which are then used to infer the type of initiative of the next system action thus allowing
for multiple initiative shifts during the ongoing interaction.

Litman and Pan (2002), Chu-Carroll (2000) and the mechanisms provided by VXML use in-
teraction related parameters like the ASR performance or discourse cues for adapting the dialogue
flow. In our work, we go one step beyond by using the user satisfaction for dialogue adaptation.
While our notion of user satisfaction—the Interaction Quality—is also based on interaction re-
lated parameters, this parameter-satisfaction relationship is quite complex and may not easily
be modelled using rules (Ultes and Minker, 2013c). Hence, the resulting adaptation rules used
by Litman and Pan (2002), Chu-Carroll (2000), and VXML merely result in a dialogue strategy
which aims at improving the user satisfaction.

While all work described so far on extending the dialogue state models the dialogue man-
agement as some variant of a rule-based model, Bui et al. (2007, 2009) proposed an extension
of a statistical dialogue manager with an affective state. They extended the state of a POMDP
with a component modelling the stress-level of the user to enable the system to select strategies
based on the stress of the user. In contrast to other work on POMDP for dialogue management
(cf. Sec. 2.1.2), Bui et al. introduced Dynamic Decision Networks to make belief-update tractable.
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Evaluation on route navigation in an unsafe tunnel showed that with rising stress level this ap-
proach outperforms three simple handcrafted strategies and one random strategy.

Unfortunately, Bui et al. (2009) only used evaluated their approach in a setting where the
user state, i.e., the stress level, was simulated. Having a module actually deriving the user state
during the dialogue interaction may lead to different behaviour, as the recognition of the user
state may be error-prone. Furthermore, while the stress level is a worthwhile user state for certain
situations, it is not as general as, e.g., the user satisfaction. In our work, though, we will introduce
a real estimation module for adapting the dialogue to user satisfaction.

Naturally, not only the dialogue state may be extended with the user state to achieve user-
adaptive dialogue management. For statistical dialogue management like employing a POMDP,
reinforcement learning is usually applied to find an optimal strategy automatically. To achieve
this, reinforcement learning is based on a manually defined reward function indicating which
dialogues are considered good or bad examples. Here, the user state may also be considered as
has been shown by the work presented in the following.

3.2.2 Reward Modelling

In reinforcement learning approaches for dialogue management, an optimal policy has to be found
automatically. For this, a reward function is used for rewarding good dialogues and penalising bad
ones. While most dialogue systems rely on a handcrafted reward function (e.g., a small negative
reward per regular turn and in the end a high positive reward for successful and a high negative
reward for failing dialogues), many researchers work on finding a suitable reward function auto-
matically. Here, the idea of inverse reinforcement learning (Russell, 1998) has been applied for di-
alogue management with the goal to learn a reward function from human-human dialogues (Paek
and Pieraccini, 2008) or simulated dialogues in a Wizard-of-Oz setting (Boularias et al., 2010).

In this work, though, we are interested in using the user state for reward modelling. Naturally,
not all types of user state are equally applicable. User satisfaction, which we will focus on, rep-
resents a plausible option. Others have also presented work on using a user satisfaction score to
model the reward function.

Here, beginning with Walker et al. (1998a), many teams have employed a reward function
based on the idea of the PARADISE framework (Walker et al., 1997). Walker et al. (1998a) and
Walker (2000) applied RL to the MDP-based dialogue system ELVIS for accessing emails over
the phone. By modelling the reward function using PARADISE, they were able to show that the
resulting policy improved the system performance in terms of user satisfaction significantly. The
resulting best policy indicated, among other aspects, that the system-initiative strategy was found
to work best.

Rieser and Lemon (2008b,a) picked up the idea of using PARADISE for modelling the reward
function. Within their multimodal in-car interface to a music database, they used reinforcement
learning to automatically identify the best strategy to present query results to the user (speech
or screen). For modelling the reward function, they concentrated on a subset of PARADISE la-
belled as task ease. The authors created a linear regression model to automatically determine the
task ease of the current dialogue taking into account the task completion, dialogue length and a
multimodal score (i.e., how the users liked the selected presentation variant of the results). Rieser
and Lemon proofed their hypothesis that the learned strategy outperforms a handcrafted one with
simulated and real users.
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While both approaches use real users at some point to create the linear regression model,
El Asri et al. (2013, 2012) used expert raters instead to instantiate the PARADIS-like reward
function. They presented work on learning a local reward function based on performance scores
for complete dialogues (El Asri et al., 2012). For this, they use reward shaping and distance
minimisation for modelling the reward. The performance score ranging between�1 and +1 have
been annotated using questionnaires. During the training, these scores have been automatically
determined using a linear regression model. They compared the two reward modelling methods
with only using the scores as reward function (El Asri et al., 2013) thus also comparing dialogue-
level reward modelling with turn-level modelling. They showed that applying reward shaping
works best in their setting.

Others have also used user satisfaction scores for dialogue-level reward modelling. Meguro
et al. (2010), for example, modelled the reward based on user satisfaction annotated by expert
raters in a listening-oriented dialogue system. For task-oriented dialogue, Gačić et al. (2013a)
proposed a reward function model also based on user ratings on the dialogue level. For their
POMDP-based dialogue manager in the restaurant information domain, Gašić et al. used ratings
which are have been acquired using Amazon Mechanical Turk. They show that their approach
converges much faster than conventional approaches, e.g., using a user simulator.

For modelling the reward incorporating some variant of user satisfaction, all presented work
rely on ratings—either from users or experts—which have been applied for one complete dia-
logue. In our work, though, we will use the Interaction Quality which provides user satisfaction
ratings for each exchange. This will allow us for the first time to introduce user satisfaction into
the reward function for each single exchange.

3.3 Conclusion on Related Work
In this chapter we have presented related work on modelling the dialogue adaptive to the user
state. This includes both work on automatically recognising the user states as well as incorporat-
ing the user state into the dialogue manager.

For user state recognition, we have presented work on recognising the four user states user
satisfaction, perceived coherence, emotion, and intoxication. To model user satisfaction, we have
identified the Interaction Quality as the best performing metric as it relates events of the inter-
action with the satisfaction of the user. While already satisfying performance has been achieved
for automatically recognising Interaction Quality, previous work does not take into account the
temporal dependencies inherent in dialogue interaction. Hence, we will contribute to the state
of the art by performing a deep analysis of these temporal dependencies. This includes a novel
approach for Interaction Quality recognition based on Markov models and error correction.

While there is only limited work on coherence recognition on the exchange level, some have
already tackled the problem using dialogue act sequences. However, we belief that the coherence
should additionally be related to events of the interaction. Hence, we will present novel work on
coherence recognition taking into account interaction parameters.

Automatically recognising emotions is a well investigated field within the speech community.
However, while several classification approaches and feature combinations have been investi-
gated, a personalisation of the recognition process has not been considered yet. Therefore, we
will be the first to present an approach successfully including speaker information into the recog-
nition process.
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Intoxication recognition is a very specialised research area which has mostly been considered
within a special challenge. Again, many different approaches have been successfully applied.
Here, we will contribute to the state of the art by comparing the intoxication recognition perfor-
mance of machines to humans.

In the field of user-adaptive dialogue management, we have identified two major fields of
adaptivity: by extending the dialogue state and by modifying the reward function. While many
have adapted the dialogue by extending the state, e.g., with emotions, expertise, or stress, oth-
ers have taken into account parameters of the interaction, e.g., the performance of the speech
recogniser. However, we will be the first to extend the user state with user satisfaction directly.
For reward modelling, though, many have modelled the reward taking into account some means
of user satisfaction. However, their satisfaction was only determined at the end of the dialogue.
Here, we will contribute to the state of the art by using a notion of user satisfaction which allows
to incorporate the user satisfaction into the reward at the exchange level.

Furthermore, unlike all presented work on user-adaptive dialogue management which uses the
user state as a basis for selecting the next system action, we will present novel work on predict-
ing the influence of the selected system action on the user state and selecting the system action
accordingly. We will present an example for this taking into account the perceived coherence.

Summarising the above statements, all modules where we will introduce novelty within this
thesis is depicted in Figure 3.2. Here, introducing user state recognition into the dialogue system
will be one major part of our contribution (Chapter 4). This includes proposing new concepts
for creating the recognition module for the user states user satisfaction, perceived coherence,
emotion, and intoxication. Some of the concepts will require a full implementation of the model.
Furthermore, we will contribute to the state-of-the-art by providing two corpora with annotated
data for user satisfaction and perceived coherence.

User State

Speech
Recognition

Speech 
Synthesis

Annotated 
Data

Recognition 
Model

Language
Understanding

Dialogue 
Management

Language
Generation

Fig. 3.2: The novelty of our work. All parts of the SDS addressed by the novelty of this thesis are
displayed on the right hand side including the User State and the Dialogue Management.
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The second major part of the novelty contained in this thesis lies within the dialogue man-
agement (Chapter 5). We will propose concepts for incorporating the user state into the dialogue
management process using rule-based as well as fully statistical approaches. Again, these con-
cepts also required a complete redesign and implementation of the dialogue manager itself.

With the general goal user-centred adaptive spoken dialogue modelling where the course of
the dialogue is adapted based on the recognised user state, we will present our own work on user-
adaptive dialogue management in Chapter 4. First, though, we will continue in the next chapter
with our work on user state recognition.



4

User State Recognition

Proposing novel approaches for automatically recognizing the user state represents the first major
contribution of this work. With the ultimate goal of rendering communication between humans
and machines to be human-like, the interaction needs to be more user-centered. To achieve this,
the system should not only understand what the user is saying. On top of this, the system should
be aware of the user state, e.g., the user’s emotions, intoxication level, or satisfaction level. In
this chapter, we will propose new concepts and methods for recognizing four different types of
user state, which are User Satisfaction, Perceived Coherence of System Actions, Emotion, and
Intoxication.

To have those user states as input to adaptive dialogue management, they should meet certain
criteria which have been outlined for Interaction Quality (Ultes et al., 2012c) but most translate
to all user states:

• exchange-level user state recognition,
• automatically derivable features,
• domain-independent features,
• consistent labelling process,
• reproducible labels, and
• unbiased labels.

As dialogue management is performed after each system-user exchange, dynamic adaption of
the dialogue strategy to the user state requires exchange-level user state recognition. Therefore,
approaches which derive a user state over a complete dialogue are of no use.

Features serving as input variables for a statistical classification model need to be automati-
cally derivable from the dialogue system modules. This is important because semi-automatic or
manually derivable features, e.g., manually annotated dialogue acts, produce high costs and are
also not available immediately during run-time in order to use them as additional input to the
dialogue manager. Furthermore, for creating general user state recognition modules, the features
should be domain-independent, i.e., not depending on the task domain of the dialogue system.

Another important issue is the consistency of the labels. Labels applied by the users them-
selves are subject to large fluctuations among the different users (Lindgaard and Dudek, 2003).
As this results in inconsistent labels, which do not suffice for creating a generally valid model
for the user state, ratings created in controlled conditions yield more consistency. One example
would be to use expert raters which are asked to annotate the respective user state following pre-
viously established annotation guidelines. This also minimises the risk of being influenced by
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certain aspects of the SDS which are not of interest in the respective context, e.g., the character
of the synthesised voice. Therefore, expert raters create less biased labels.

The four user states which are regarded within this chapter all suffice these criteria. Therefore,
we will propose novel approaches for recognising these user states using supervised learning
techniques and statistical classification methods and investigate the viability of those approaches
with extensive evaluation and performance tests in various configurations. Moreover, we will
present two annotated corpora which have been created within the scope of this thesis. Both
corpora will be used for evaluating our approaches on recognising the respective user state.

The remainder of the chapter is grouped by user state. Hence, each section starts with a de-
scriptions of the respective user state followed by our contribution to the state of the art: for
each user state, we will propose novel recognition approaches, describe the implementation of
the used statistical models, and provide a thorough evaluation. An emphasis is placed on user
satisfaction recognition in the first section describing several novel approaches—both static and
sequential—with the main focus on analysing and exploiting the temporal nature of user satisfac-
tion recognition. The other user states are described in the subsequent sections in the order of their
importance for adaptive dialogue modelling: perceived coherence, emotions, and intoxication.

4.1 User Satisfaction Recognition in Spoken Dialogue
Systems

One condition which may occur in almost all types of human-system interaction is whether the
user of the system is satisfied or not. This is even more prominent in task-oriented applications
where the interaction has a well-defined goal: to get the task done. If the system behaves in an
uncooperative manner, the user might get frustrated and will most likely not be satisfied with
the interaction. One possible way of dealing with these situations is to automatically detect the
satisfaction level of the user in order to use this information to adapt the course of the dialogue. To
do so, machine learning methods may be applied. In this section, we will propose several novel
classification approaches to automatically predict the user satisfaction level.

However, first, a better understanding of the term user satisfaction is necessary. Unfortunately,
there is no rigorous definition of the term “user satisfaction” in the literature as already addressed
by Schmitt and Ultes (2015). Doll and Torkzadeh (1991) describe user satisfaction as the opinion
of the user about a specific computer application. Other terms for user satisfaction are common,
e.g., “user information satisfaction”, which is defined as “the extent to which users believe the
information system available to them meets their information requirements” (Ives et al., 1983).
For Larcker and Lessig (1980) address user satisfaction as “perceived usefulness of informa-
tion”. User satisfaction and usability are closely interwoven. (ISO, 1998) defines “usability” by
subsuming a compound of efficiency, effectiveness and satisfaction. Yet user satisfaction is often
seen as a by-product of great usability in the HCI literature (Lindgaard and Dudek, 2003).

While the definition of user satisfaction represents a completely subjective metric based on
user judgements, the term quality includes both, subjective and objective characteristics: Möller
et al. (2009) presented a taxonomy of quality criteria related to HCI describing quality as a bipar-
tite issue consisting of Quality of Service (QoS) and Quality of Experience (QoE). QoS is defined
as “the collective effect of service performance, which determines the degree of satisfaction of
the user” (ITU, 1994) and depicts an objective view on quality. Thus, it can be determined by the
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system developer. In contrast to this stands QoE, which is defined as “the overall acceptability
of an application or service, as perceived subjectively by the end-user.” (ITU, 2007). This defini-
tion implies that QoE requires a subjective judgement process by the user and can thus only be
measured with user surveys (Möller et al., 2009). However, measuring QoE, i.e., subjective user
judgements about the interaction, turns out to be difficult, for three reasons:

Strong variations Different users have a different understanding (and thus expectation)
of a functioning interaction. Some might perceive a dialogue behaviour,
e.g., a perpetual posing of the same question, as very disturbing whereas
others would not even take notice of it. Hence, this implies that user
satisfaction is user-specific and requires models trained on data from a
specific user (cf. Engelbrecht et al., 2009).

Biased judgements Users judging the interaction with the system may be biased by unre-
lated events. Here, Engelbrecht and Möller (2010) have shown that peo-
ple’s emotions influence their perception of user satisfaction. The user
having a hard day at work, for instance, might reflect on the judgement
of the interaction thus not generating a fair rating.

Data collection problem Tracking real user satisfaction online, i.e., throughout a spoken inter-
action, with the aim to create user-specific models is only possible un-
der laboratory conditions. The users will then pursue a fake task in an
artificial environment. It can hardly be examined to which extent this
scenario differs from a real-life scenario with disturbing environmental
factors and a real user need. It should be further noted that a user will
have to synchronously interact with a system and adjusting his satisfac-
tion at the same time. However, this depicts a high cognitive load for
the test subject and in the worst case could falsify the user’s judgement
about the interaction.

To overcome these problems, employing expert raters to judge the interaction proposes one
solution. Having a third person observing the interaction allows for using data of real, live systems
thus solving the data collection problem. Furthermore, strong variations within the judgements
are evened out and the experts are less likely to be biased by unrelated events. Here we have
shown that this also results in a less cost-intensive annotation process (Ultes et al., 2013b).

A metric representing user satisfaction and at the same time accounting for the before men-
tioned problems is defined within the Interaction Quality paradigm described and analysed in
detail by Schmitt and Ultes (2015) and originally presented by Schmitt et al. (2011a). Hence,
before we continue with our own work on user satisfaction recognition, we will briefly describe
the work of Schmitt et al. by presenting the Interaction Quality paradigm.

4.1.1 Interaction Quality Paradigm

Interaction Quality (IQ) has been proposed by Schmitt et al. (2011a) as an alternative and more
objective measure of user satisfaction. It overcomes the problems stated above by introducing
expert raters instead of using real users for assigning the satisfaction label. Here, we were able to
show that ratings applied by experts are suitable for substituting user ratings and that both have a
high correlation (Ultes et al., 2013b).
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The Interaction Quality paradigm describes a general scheme shown in Figure 4.1 including

not only the annotation of IQ but also the creation process of a statistical model for recognising

IQ for each system-user exchange within human-machine dialogue interaction.

IQ itself is defined for each system-user-exchange with values on a scale from five to one: 5

(“satisfied”), 4 (“slightly unsatisfied”), 3 (“unsatisfied”), 2 (“very unsatisfied”), and 1 (“extremely

unsatisfied”). Each dialogue starts with the rating “satisfied” as the metric only models whether

problems occur within a dialogue. In the beginning of the dialogue, nothing unsatisfying has

happened yet though. An example for an annotated dialogue is presented in Figure 4.2.

To automatically estimate IQ, the paradigm describes beside the annotation of the training

dialogue with IQ the automatic extraction of parameters describing the current status of the in-

teraction. These parameters are then used as input variables to a statistical classification model

which predicts the IQ level of the ongoing interaction at the current system-user-exchange.

The input variables called interaction parameters are rendered on three levels as shown in Fig-

ure 4.3: the exchange level, the window level, and the dialogue level. The exchange level com-

prises parameters derived from SDS modules Automatic Speech Recogniser, Spoken Language

Understanding, and Dialogue Management directly, e.g., whether the user input was understood

or rejected by the speech recogniser. Parameters on the window and the dialogue level are sums,

means, frequencies or counts of exchange level parameters, e.g., the count of how often the user

input was rejected by the speech recogniser. While dialogue level parameters are computed out

of all exchanges of the dialogue up to the current exchange, window level parameters are only

computed out of the last m exchanges.

Fig. 4.1: The Interaction Quality scheme originally published by Schmitt and Minker (2013) de-

scribing the overall process. Dialogues between the user and the system are logged and annotated

with IQ by expert raters. Interaction Parameters are automatically extracted from the logs and

used as input variables to train a statistical model targeting IQ.
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Utterance
(1) S: Welcome to the CMU Let’s Go bus information system.
(2) U: IQ = 5
(3) S: To get help at any time, just say Help or press zero.
(4) U: IQ = 5
(5) S: What can I do for you?
(6) U: PENN AT BUTLER TIME IS . . . IQ = 5
(7) S: Leaving from OAKLAND . Is this correct?
(8) U: OAKLAND IQ = 4
(9) S: Leaving from OAKLAND . Is this correct?
(10) U: YES IQ = 4
(11) S: Right
(12) U: — IQ = 4
(13) S: Where do you want to go?
(14) U: SQUIRREL HILL OF FIFTH AVENUE IQ = 4
(15) S: Going to FIFTH AVENUE . Is this correct?
(16) U: YES IQ = 5
(17) S: Alright
(18) U: — IQ = 5
(19) S: When do you wanna travel?
(20) U: SUNDAY IQ = 4
(21) S: At what time do you wanna travel?
(22) U: AT FIVE FOUR VERY ABOUT ELEVEN O’CLOCK IQ = 4
(23) S: Leaving at IQ = 11 a.m. . Is this correct?
(24) U: YES IQ = 5
(25) S: Right
(26) U: — IQ = 5
(27) S: Hold on. Let me check that for you.
(28) U: — IQ = 5

Fig. 4.2: Excerpt from a dialogue annotated with Interaction Quality for each system-user-
exchange. (CallID 2061123000 of the LEGO corpus.)

en… en-1en-2e1 e2 e3 en+1 … exchange level parameters

window level parameters

dialogue level parameters

Fig. 4.3: The interaction parameters consist of three levels originally published in (Schmitt et al.,
2012): the exchange level containing information about the current exchange, the window level,
containing information about the last m exchanges (in this example, m = 3), and the dialogue
level containing information about the complete dialogue up to the current exchange.

A list of all automatically derived features along with a brief description may be found in
Table B.1. For a more elaborated description, refer to Schmitt and Ultes (2015).
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As we have presented the general notion of Interaction Quality by Schmitt et al. (2011a), the
remaining section describes solely or own original work on Interaction Quality recognition and
related aspects. Consequently, by applying the Interaction Quality paradigm, two corpora have
been created. Their annotation process is described in detail in Section 4.1.5. These corpora are
also used to evaluate the different approaches for estimating IQ. These approaches—representing
our contribution to the state of the art in Interaction Quality recognition—are described in detail
in the following.

4.1.2 Static Methods for Interaction Quality Recognition

For automatic estimation of Interaction Quality, we have applied several approaches rendering
the problem as a supervised classification task. In this work, we distinguish between static and
sequential approaches. Having a structure where each system-user-exchange is part of a sequence
of exchanges, i.e., the dialogue, the act of estimating IQ for each exchange may be viewed as a
static task by regarding each exchange independently of all other exchanges. Thus, the exchange
is not embedded in the dialogue it belongs to. Having the exchange being embedded, though,
results in a sequential approach which is based on the fact that the value of the current exchange
highly depends on the value of the previous exchange. In this section, though, we will only look
at the static approaches having the sequential approaches being described in Section 4.1.3.

Standard Machine Learning Methods

The initial approach by Schmitt et al. (2011a) was to apply a Support Vector Machine (SVM, see
Sec. 2.2.1) to estimate IQ. Hence, we will also apply a SVM with the general framework being
depicted in Figure 4.4: having a training set of m vectors f containing n interaction parameters
each, the SVM is trained in a supervised learning setting using the IQ references ri corresponding
to each vector. The resulting SVM model is then used in the estimation phase to estimate a
hypothesis hIQ for IQ based on one sample of interaction parameters.

SVMs are based on linear discrimination: to find a hyper plane in space which discriminates
two classes with a maximum margin. While many classifiers use this concept, we are also inter-
ested in how classifiers with other characteristics perform. Hence, we also apply a Naı̈ve Bayes
method (see Sec. 2.2.1) which models the problem using probability distributions. Finally, a rule
learner (see Sec. 2.2.1) is applied deriving a set of rules to cover the classification problem. Both
approaches follow the same pattern of SVM classification depicted in Figure 4.4: in the training
phase, samples with IQ references are used to train the model. The trained model is then used in
the evaluation phase to estimate the IQ hypothesis for a given interaction parameter vector.

These static standard machine learning techniques form the basis for more elaborated recog-
nition methods like the Hybrid Hidden Markov Model (Sec. 4.1.3) and a Hierarchical Error
Correction approach described in the following. The performance evaluation of these standard
approaches will be presented in Section 4.1.6.

Hierarchical Error Correction

Applying statistical classification algorithms for estimating IQ will always result in less than
100% accuracy. In fact, almost all classifiers applied for almost any problem will not always
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f1,1 . . . f1,n r1

...
. . .
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fm,1 . . . fm,n rm

Interaction
Parameters

IQ
Reference

SVM

SVMf1 . . . fn hIQinput recognize

training
input

trained
model

Interaction
Parameters

IQ Hypothesis

Training

Estimation

Fig. 4.4: To create a statistical model for IQ recognition (here an SVM), a set of m interaction
parameter vectors fm,n—consisting of n interaction parameters each—along with their annotated
IQ references rm are used. To estimate the hypothesis hIQ, the trained model is used to evaluate
one input sample.

estimate the correct class. Hence, we propose to estimate the error the classifier makes when esti-
mating a hypothesis and correct this hypothesis by the estimated error (Ultes and Minker, 2013b).
Furthermore, the proposed error correction approach is extended by a confidence model which
allows for several different ways of deriving the final hypothesis. This plug-in architecture may
provide a general approach on improving the estimation performance regardless of the underlying
standard machine learning algorithm.

Error correction

To apply error correction for the process of statistical classification, a hierarchical two-stage ap-
proach is proposed, depicted in Figure 4.5.

At the first stage, a statistical classification model is created using interaction parameters as
input and IQ as target variable. At the second stage, the error er of the hypothesis h0 of the
classifier is calculated by

er = h0� r , (4.1)

where the reference r denotes the true IQ value. In order to limit the number of error classes, the
signum function is applied. It is defined as

sgn(x) :=

8
><

>:

�1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 .

(4.2)

Therefore, the error is redefined as

er = sgn(h0� r) . (4.3)

Next, a statistical model is created similarly to stage one but targeting the error er. The dif-
ference is that the input parameter set is extended by the IQ hypothesis h0 of stage one. For the
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Fig. 4.5: The complete IQ estimation process including error correction originally published
in (Ultes and Minker, 2013b). After estimating IQ in Stage 1 (upper frame), the error is esti-
mated and the initial hypothesis is corrected in Stage 2 (lower frame).

model creation, two approaches are applied: creating one model which discriminates between all
error classes (�1,0,1) at the same time and creating two models where one estimates the positive
(0,1) and one the negative error (�1,0). For the latter variant, the error of the class which is not
estimated by the respective model is mapped to 0. By this, the final error hypothesis he may be
calculated by simple addition of both estimated error values:

he = he�1 +he+1 . (4.4)

Combining the hypothesis of the error estimation he with the hypothesis of the IQ estima-
tion h0 at stage one produces the final hypothesis h f denoting the Interaction Quality estimation
corrected by the estimated error of the statistical model:

h f = h0�he . (4.5)

As the error estimation will not work perfectly, it might recognise an error where there is none
or—even worse—it might recognise an error contrary to the real error, e.g., �1 instead of +1.
Therefore, the corrected hypothesis might be out of range. To keep h f within the defined bounds
of IQ, a limiting functions is added to the computation of the final hypothesis resulting in

h f = max(min(h0�he),bu),bl) , (4.6)

where bu denotes the upper bound of the IQ labels and bl the lower bound.

Confidence Model

To extend the error correction approach with a confidence model, we regard the confidence scores
of the static classification methods as probabilities for the respective IQ value1 and compute the

1 In general, confidence scores and probabilities not necessarily exchangeable entities.
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confidences of the error estimator using probability theory. Hence, we refer to the confidence of
h0, e.g., as P(h0).

These prior probabilities are directly taken from the confidences of the stage one classifier.
Therefore, we need to find a suitable model for the posterior P(h f |h0,he). For this, the set Ciq is
defined as

Ciq := {(h0,he) : max(min(h0�he),bu),bl) = iq} (4.7)

containing all (h0,he) pairs which result in the same final hypothesis hdi f f
f . For hdi f f

f = 5, bu = 5,
and bl = 1, for example, the set would be

C5 = {(5,+1),(5,0),(4,�1)} . (4.8)

Using this set, the posterior is defined by

P(h f |h0,he) =

(
P(he|h0)P(h0) if (h0,he) 2Ch f ,

0 otherwise .
(4.9)

Here, the confidence of the error classifier P(he|h0) may also be directly taken from the applied
error IQ model. For the case of using two classifiers at stage two discriminating between the error
classes (�1,0), and (+1,0) separately, the confidence scores of both classifiers are combined
using

P(he|h0) = P(he+1 |h0)+P(he�1 |h0) , (4.10)

where (he+1 ,he�1) 2 Ehe . The error set Ee for error class e is similarly defined to Ciq:

Ee := {(he+1 ,he�1) : he�1 +he+1 = e} . (4.11)

For E0, for instance, this set would contain two pairs:

E0 := {(0,0),(+1,�1)} . (4.12)

Finally, the confidences of the final hypotheses for a given IQ value iq are calculated out of
the posterior P(h f |h0,he) by

Pf (h f = iq) := P(h f ) = Â
(h0,he)

P(h f |h0,he) . (4.13)

Confidence-based Hypothesis Generation

Based on the confidence measures, multiple ways of generating the final hypothesis h f exist in
addition to just taking the bounded difference in Equation 4.6. The first option is to assign the IQ
value with the highest confidence:

hmax
f = argmax

iq
Pf (iq) . (4.14)

This way of deriving the final hypothesis is equal to the way the final hypothesis is derived in
regular classification approaches like the applied SVM.

A second way of utilising the confidence measures is to calculate the weighted sum based on
the confidence scores:
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Fig. 4.6: The simple hierarchical model first estimates IQ in Stage 1 classification (upper frame)
and then using this hypothesis for a second classification model in Stage 2 (lower frame) also
targeting IQ directly.

hwSum
f = round(Â

iq
Pf (iq) · iq) , (4.15)

where round(·) represents the regular rounding function.
To evaluate how the different variants of error correction perform, experiments have been

conducted which are presented in Section 4.1.6 and compared to a simple hierarchical approach
which will be explained in the following.

Simple Hierarchical Approach

The previously described error correction approach offers means of estimating IQ with a two-
stage approach by estimating the error in the second state. In addition, we are interested in
whether this two-stage set-up may be used in a simpler way by targeting IQ directly in the second
stage (Ultes and Minker, 2013b).

The overall scheme is presented in Figure 4.6. Similar to the error correction approach, the
first stage contains the plain application of a statistical method as described in Section 4.1.2. Also,
the feature set to the second-stage model is again extended by the hypothesis of the first model.
In contrast to error correction, this feature set is then used to directly estimate IQ. Here, the hopes
are first that the hypothesis of the first classifier encodes information about the problem which
may help the second model to decide. Second, by applying two different types of classifiers, each
model might grasp different aspects of the classification problem.

As already stated, modelling the problem of estimating the Interaction Quality for each
system-user-exchange in a static way, i.e., regarding each exchange being independent of the
dialogue it belongs to, is only one way of tackling the problem of estimating IQ. The problem
may also be viewed as a sequential task which will be elaborated on in the next section.
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4.1.3 Sequential Methods for Interaction Quality Recognition

While previously presented approaches for estimating the Interaction Quality for each system-
user-exchange regard each exchange independently, in fact, it is part of a sequence: the conversa-
tion between the system and the user. This dialogue comprises multiple system-user-exchanges
in a fixed order and the current exchange’s content depends on all previous exchanges. The same
is true for the IQ value: the quality of the current exchange depends on how the interaction has
evolved until then. Hence, we apply classification models which are able to reflect this property of
the Interaction Quality estimation problem. Most prominently, this is the Hidden Markov Model
(HMM, see Sec. 2.2.2) which is widely known and applied for such types of problems. Further-
more, a Conditioned Hidden Markov Model (CHMM, see Sec. 2.2.2) and a hybrid version of the
regular HMM are considered. In the following, we will describe how those may be applied for IQ
estimation.

Hidden Markov Model

When attempting to estimate the IQ value of a sequence of exchanges, only observations o at a
certain time can be made. Here, the observations are the interaction parameters derived for each
exchange. However, the hidden sequence of IQ values is of interest. Hence, for modelling the IQ
estimation using an HMM, the IQ values are regarded to be the hidden random variables (Ultes
et al., 2012a). Thus, each hidden state is tied to exactly one IQ value. Within the described work,
a model with five states has been chosen. The model is depicted in Figure 4.7. Each hidden state
is associated with an own observation probability model reflecting the probability of observing o
at the current time t in the connected hidden state s, i.e., having iq being the current quality of the
dialogue which is tied to s. The observation probability b j(o) is modelled using regular Gaussian
mixture models (GMMs).

1IQ 2IQ 3IQ 4IQ 5IQ

GMM1 GMM2 GMM3 GMM4 GMM5

Fig. 4.7: The ergodic model of an HMM used for modelling the sequential IQ estimation problem.
For five hidden states, each state is tied to one IQ value and the observation probability is modelled
using GMMs.
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To evaluate this model the probability p(qt |Ot ,l ) of seeing observation sequence Ot =
(o1,o2, . . . ,ot) while being in state qt at time t given the HMM l is calculated using the For-
ward Algorithm:

p(qt = s j|Ot ,l ) = at( j)

=
|S|

Â
i=1

at�1(i)ai jb j(ot) . (4.16)

Here, ai j describes the transition probability of transitioning from state si to state s j. To find a
suitable model l , the HMM is trained, for example, by using the Baum-Welch algorithm.

For determining the most likely class ŵt at time t, where each state j 2 S is associated with
one class w , the following equation is used:

ŵt = argmax
j

at( j) . (4.17)

In addition to GMMs, there are further options for modelling the observation probability. One
interesting option is to use confidence scores of static classifiers resulting in a hybrid approach
which will be described next. The evaluation of the HMM will be presented in Section 4.1.6.

Hybrid Hidden Markov Model

While the observation probability of a Hidden Markov Model is classically modelled with
GMMs, we are also proposing another approach combining static classification approaches with
HMMs resulting in something which we call Hybrid Hidden Markov Model (Ultes and Minker,
2014a). To take advantage of existing static classification approaches, the Hybrid-HMM is mod-
elled as a plug-in structure where virtually any static classification algorithm may be used.

For applying an HMM while exploiting existing statistical classification approaches, the ob-
servation function b j(ot) is modelled by using confidence score distributions of statistical clas-
sifiers, e.g., a Support Vector Machine. Furthermore, the transition function ai j is computed by
taking the frequencies of the state transitions contained in the given corpus. Therefore, an ergodic
HMM is used comprising five states with each representing one of the five IQ scores. The model
is depicted in Figure 4.8.

Moreover, in SDSs, a system action act is performed at the end of each system turn. This can
be utilised by adding an additional dependency on this action to the state transition function ai j.
By augmenting Equation 4.16, this results in

at( j) =
|S|

Â
i=1

at�1(i)ai j,actb j(ot) . (4.18)

This refinement models differences in state transitions evoked by different system actions, e.g.,
a different transition probability is expected if a WAIT action is performed compared to a CON-
FIRMATION. Therefore, two versions of the Hybrid-HMM are evaluated: an action-independent
version as in Equation 4.16 and an action-dependent version as in Equation 4.182.

2 Equation 4.18 is equal to the belief update equation known from the Partially Observable Markov Decision Process
formalism (Kaelbling et al., 1998).
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1IQ 2IQ 3IQ 4IQ 5IQ

P(1IQ) P(1IQ) P(1IQ) P(1IQ) P(1IQ)

Fig. 4.8: The ergodic model for a Hybrid-HMM used for modelling the sequential IQ estimation
problem. As for the classical HMM, all five hidden states are each tied to one IQ value. However,
in contrast to the HMM, the observation probability is modelled by confidence scores of static
classifiers.

Finally, computing the frequencies of the state transitions contained in the given corpus for
modelling the transition probability may not be adequate as this highly depends on the section
of the data which is available. However, for having action independent transitions, the transition
function is only a 5x5 matrix which can easily be defined manually. Hence, we will also analyse
the performance of the Hybrid HMM using handcrafted transition matrices. To reflect the rating
guidelines which do not allow for transitions to IQ values being non-neighbours, the model is
further restricted as shown in Figure 4.9.

1IQ 2IQ 3IQ 4IQ 5IQ

P(1IQ) P(2IQ) P(3IQ) P(4IQ) P(5IQ)

Fig. 4.9: The Hybrid HMM with a restricted transition function allowing only transitions between
neighboring IQ values. This restriction is applied for the case of modelling the transition probabil-
ity manually. Being a Hybrid HMM, the observation probability is modelled by using confidence
measures of static classifiers.

As the two approaches based on the classical HMM only yield a class probability indirectly by
tying the IQ values to the hidden states, the Conditioned HMM is also employed for IQ estimation
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as it combines the advantage of the HMM inherently modelling sequential data while providing a
class probability directly. Hence, the Conditioned HMM will be described in the following while
the performance of the Hybrid-HMM may be found in Section 4.1.6.

Conditioned Hidden Markov Model

Classical Hidden Markov Models estimate a probability p(o|l )of observing the observation se-
quence o given the model parameters l . Unfortunately, there is no straight-forward way of using
an HMM for classification tasks where each observation is related to one class. In our task of esti-
mating IQ, for example, this is resolved by tying each state to one of the classes and determining
the most likely state sequence3. The Conditioned Hidden Markov Model (CHMM) compensates
for that by introducing a new set of nodes which represent the classes thus allowing for a direct
class estimation. The general definition of a CHMM is elaborated in more detail in Section 2.2.2.

The model of a CHMM for estimating IQ is depicted in Figure 4.10 as originally applied
by Ultes et al. (2012a). Similar to the case of a classical HMM, an ergodic model has been
chosen which allows transitions from each hidden state si to any other hidden state s j. However,
an arbitrary number of hidden states is possible without a clear mapping to one of the target IQ
values. This is as IQ is represented by the class states. Hence, a class probability may be computed
directly for each part of the sequence. Again, Gaussian mixture models are used to estimate the
observation probabilities. The CHMM will be evaluated in Section 4.1.6.

1IQ 2IQ 3IQ 4IQ 5IQ

HRV1 . . . HRVN

GMM1 GMMN

Fig. 4.10: The ergodic model used for modelling the sequential IQ estimation problem with an
CHMM. For five label states, where each state is tied to one IQ value, an arbitrary number of
hidden states with corresponding GMM modelling the observation probability may be used.

While we have thoroughly described our proposed novel methods for estimating the Inter-
action Quality, we will continue with giving implementation details for all proposed statistical
models used within our concepts for IQ recognition.

3 Acoustic modelling for speech recognition using HMMs is also done this way, cf. 2.1
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4.1.4 Model Implementation for Interaction Quality Recognition

To evaluate the presented static and sequential approaches, mostly, existing implementations and
libraries have been used. All standard static machine learning methods (see Sec. 2.2) are part of
the analytic software RapidMiner4 which provides implementations for a wide range of statistical
models including Naı̈ve Bayes, the SVM library libSVM (Chang and Lin, 2011), the SVM imple-
mentation based on Sequential Minimal Optimisation (Platt, 1999), as well as a rule learner based
on RIPPER (Cohen, 1995). These classifiers were also used for the error correction approach.

For the evaluation of the Hidden Markov Model approach, we relied on the publicly available
JaHMMlibrary (Francois, 2006), an implementation of a Hidden Markov Model in Java. This
was not necessary for the Hybrid-HMM where the models are not trained. The transition model
is based on corpus frequencies or handcrafted and the observation model utilises confidence mea-
sures of static standard machine learning algorithms again implemented by RapidMiner. The
Forward-Backward algorithm used for calculating the probability distribution over all hidden
states was implemented within a Perl script.

Evaluating the Conditioned Markov Model approach was more challenging as there was no
library implementation yet. Hence, we created our own library JaCHMM (Ultes et al., 2013a)
based on JaHMM which we will give more details about in the following.

The JaCHMM5 implements a version of the CHMM equations (see Sec. 2.2.2) which intro-
duced an additional independence assumption having the transition probabilities being indepen-
dent of the class label. JaCHMM provides the following features:

Labels JaCHMM may be used for data where a label is related to a whole
sequence of observations as well as where a label is related to one
single observation.

Observations Observations may either be discrete or continuous. Therefore, differ-
ent types of observation probability distributions have been imple-
mented, i.e., discrete probabilities and Gaussian mixture models for
continuous observations.

Initialisation and Training Initialisation is implemented using the k-means algorithm, which can
also be used for training. Additionally, training can be performed by
using the traditional Baum-Welch algorithm.

Computational Efficiency In order to increase the computational efficiency of JaCHMM, reason-
able independence assumptions regarding the transition probability
ai j,y = p(w(t) = w j|w(t�1) = wi,y(t) = y) have been introduced, result-
ing in the simplified version ai j,y = p(w(t) = w j|w(t�1) = wi) · p(w(t) =
w j|y(t) = y). Within the JaCHMM library, both variants are imple-
mented.

Algorithms For their application in the Conditioned Hidden Markov Model, promi-
nent algorithms known from HMMs were adapted, e.g., the Viterbi,
Forward-Backward, Baum-Welch, or K-Means algorithm.

The command-line interface offers commands for creating, initialising, learning, and evaluat-
ing CHMMs enabling the library to work as stand-alone software.

4 http://www.rapidminer.com
5 The JaCHMM library is available online under the BSD license at http://nt.uni-ulm.de/ds-jachmm.

http://www.rapidminer.com
http://nt.uni-ulm.de/ds-jachmm
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Like the JaHMM, the JaCHMM is designed to achieve reasonable performance without mak-
ing the code unreadable. Consequently, it offers a simple way of applying the Conditioned Hidden
Markov Model in various tasks, e.g., for scientific or teaching purposes.

To generate performance measures in a proof-of-concept application of the JaCHMM library,
a three-class problem was chosen. Figure 4.11 shows the average time needed per observation
sequence in ms for training and evaluating using the JaCHMM and comparing it to JaHMM with
respect to the number of hidden states. While training of the HMMs (having one HMM per class)
was much faster for all configurations, for a small number of hidden states, evaluation of the
CHMM was faster than evaluating three HMMs. It should be noted, that for HMM performance,
the total number of hidden states as well as the training and evaluation time was summed up over
all HMMs.
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Fig. 4.11: Average time needed for training and evaluation of the CHMM and HMM per obser-
vation sequence originally published in (Ultes et al., 2013a). For the HMM, the total number of
hidden states and the time for training and evaluating summed up over all HMMs is used.

While we have already proposed a number of different static and sequential classification ap-
proaches, the question remains how they perform. Hence, all approaches are evaluated thoroughly
and compared against each other. However, for this, a defined data set is needed. Hence, two cor-
pora have been created which will be described in the following section along with a detailed
description of how the ground truth, i.e., the IQ labels, have been determined.

4.1.5 Creating the Interaction Quality Corpus

While we have proposed several novel approaches for estimating the Interaction Quality of a
dialogue—both static and sequential—, nothing has been said about their performance. To eval-
uate our approaches, experiments have been conducted using the same data. This is important as
producing comparable results is crucial. However, simply collecting dialogue data (including the
interaction parameters) is not sufficient as the IQ labels—the ground truth—also needs to be an-
notated. Here, expert raters may be used following a strict annotation procedure. In the following,
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the data used for all experiments on IQ estimation is presented. The data comprises an already
existing corpus as well as a newly created extension. The latter has been specially created and
annotated by us for our experiments and is publicly available6. For the extended corpus, we have
added a detailed description of how the IQ labels have been annotated and the final ground truth
has been derived from the single expert ratings.

The original corpus associated with the Interaction Quality paradigm is the LEGO cor-
pus (Schmitt et al., 2012) based on task-oriented human-machine-dialogues within a single do-
main. It consists of calls to the Let’s Go Bus Information System of the Carnegie Mellon Univer-
sity in Pittsburgh (Raux et al., 2005) which has been online since 2005. People are redirected to
Let’s Go if they call outside the operating hours of the human-operated service of the bus oper-
ating company to get information about the bus schedule in Pittsburgh. The domain consists of
four slots, which are the departure place, the destination, the departure time and optionally the
bus route. Table 4.1 shows an overview of the different slots and the number of possible values
for each slot to give a better impression of the complexity of the domain.

The LEGO corpus contains 200 calls to Let’s Go from 2006. These calls consist of 4,885
system-user-exchanges annotated with IQ by three different expert raters. They achieved an inter-
rater-agreement of k = 0.54 using Cohen’s Weighted Kappa7 (Cohen, 1960, 1968). An excerpt
of an example dialogue from LEGO including annotated final IQ values is depicted in Figure 4.2.
In order to extend the LEGO corpus, an additional 201 calls to the Let’s Go Bus Information
System from 2007 consisting of 4,753 exchanges have been annotated to constitute the LEGOext
corpus (Ultes et al., 2015b). Again, three different raters being advanced students of computer
science were asked to annotate each system-user-exchange with one out of five satisfaction labels
resulting in an inter-rater agreement of k = 0.5.

In the following, we will present in detail how the expert raters have annotated the dialogues
to generate the ground truth for the LEGOext corpus. The procedure was almost identical to
annotating LEGO.

Annotation Procedure

For the annotation of the LEGOext corpus, the expert raters were required to follow a strict pro-
cedure. To acquire IQ ratings, a web-based form was used (Figure 4.12). By that, providing the
labelling environment to the raters was very easy. The form was designed to provide all necessary
information the raters need to annotated the IQ labels. Hence, the complete dialogue has been
displayed with one system-user-exchange per line. While the system utterance could be provided
easily, this was different for the user turn: here, the ASR recognition result was used. As ASR is
known to not provide correct results, the audio recording for each user turn was also available.
Furthermore, as misalignments of user input and system output may occur, e.g., the user starts
talking while the system still talks, the audio recording of the complete call was also available.
By that, the raters had all information necessary to make a profound decision.

Following the same rating guidelines as in the original LEGO corpus (Schmitt et al., 2012),
the three raters achieved an overall inter-rater agreement of k = 0.5. The guidelines have been
established during the annotation process of the LEGO corpus to restrict the variations inherit

6 The may be downloaded from http://nt.uni-ulm.de/ds-lego.
7 The k is linearly weighted according to the distance between the numerical IQ values. See Section 2.2.3 for more

details.

http://nt.uni-ulm.de/ds-lego
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Table 4.1: User dialogue act categories (slots) as defined in the Let’s Go system (Thomson et al.,
2010) along with their size, i.e., the number of different values per slot.

Slot Category Size Example values

departure place

from 3 ftstop, ftmonument, ftneigh
fstop 328 455 “FORBES&MURRAY”, “ANYWHERE&FORBES”
fmon 52 “AIRPORT”, “CENTURY SQUARE”
fneigh 220 “DOWNTOWN”, “SQUIRREL HILL”

destination

to 3 tstop, tmonument, tneigh
tstop 328 455 “FORBES&MURRAY”, “ANYWHERE&FORBES”
tmon 52 “AIRPORT”, “CENTURY SQUARE”
tneigh 220 “DOWNTOWN”, “SQUIRREL HILL”

departure time

time 2 “NEXT”, time specific
hour 12 “ONE”, “TWELVE”
min 60 “ZERO”, “TEN”, “THIRTY FIVE”
pd 2 “AM”, “PM”
day 2 day 10, “TODAY”, “WEDNEDAY”, “TOMORROW”
tref 4 “ARRIVE BEFORE”, “LEAVE AFTER”

bus route bus 101 “64A”, “28X”

meta
meth 4 “RESTART”, “FINISHED”, constraints,
disc 9 “REPEAT”, “FOLLOWING”, “PREVIOUS”, none

in subjective ratings but allowing enough flexibility for the raters to express their opinion at the
same time. These rating guidelines are presented in Figure B.1.

Comparing the agreement k and correlation r of the individual IQ ratings between the two
corpora depicted in Table 4.2 shows that the annotation process using the guidelines results in
similar agreement.

Table 4.2: Agreement (k) and correlation (r) in IQ ratings of the three raters in LEGO and
LEGOext originally published in (Ultes et al., 2015b). Expert ratings show similar correlations
among each other.

LEGOext

R1/R2 R1/R3 R2/R3 Mean

k .59 .51 .40 .50
r .73 .66 .67 .69

LEGO

R1/R2 R1/R3 R2/R3 Mean

k .64 .48 .51 .54
r .79 .68 .70 .72

As there have been several annotations (from several raters) per exchange, these are combined
to one final label in order to be used for classification. This process is described in the following.

Label Definition—Candidate Selection

Since the aim is to model a general opinion on Interaction Quality, i.e., mirroring the IQ score
other raters (and eventually users) agree with, the final label is determined empirically. Majority
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Fig. 4.12: The online labelling form used by expert raters for annotating the LEGOext corpus
originally published in (Ultes et al., 2015b).

voting for deriving the final IQ label is not applicable since many exchanges are labelled with
three different ratings, i.e., each of the three raters opted for a different score, thus forming no
majority for either score. Therefore, the mean of all rater opinions is considered as possible can-
didate for the final class label:

ratingmean = b
 

1
R

R

Â
r=1

IQr

!
+0.5c . (4.19)

Here, IQr is the Interaction Quality score provided by rater r. byc denotes the highest integer
value smaller than y. Every value IQr contributes equally to the result that is finally rounded to
the closest integer value.

Furthermore, the median is considered, which is defined as

ratingmedian = select(sort(IQr),
R+1

2
) , (4.20)

where sort is a function that orders the ratings IQr of all R raters ascendingly and select(list, i)
chooses the item with index i from the list list. In other words, the IQ score separating the higher
half of all ratings to the lower half is selected as final IQ score.

Table 4.3 shows the agreement between the mean and median labels with the single user
ratings. Clearly, the median represents the better choice for deriving the final label given the
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higher values in k , r , and UAR. This validates the findings for the original experiments in the
LEGO corpus.

Table 4.3: Agreement of single rater opinions to the merged label when determined by mean and
median, measured in UAR, k , and r originally published in (Ultes et al., 2015b). On the left side
is LEGOext, on the right side LEGO.

LEGOext

Mean Label Median Label

UAR
Rater1 .657 .839
Rater2 .412 .660
Rater3 .556 .450

Mean .542 .650

Cohen’s weighted k
Rater1 .765 .878
Rater2 .697 .691
Rater3 .630 .655

Mean .697 .741

Spearman’s r
Rater1 .843 .891
Rater2 .905 .846
Rater3 .782 .799

Mean .843 .845

LEGO

Mean Label Median Label

UAR
Rater1 .653 .751
Rater2 .647 .735
Rater3 .516 .550

Mean .605 .679

Cohen’s weighted k
Rater1 .763 .815
Rater2 .767 .814
Rater3 .657 .658

Mean .729 .762

Spearman’s r
Rater1 .901 .900
Rater2 .911 .907
Rater3 .841 .814

Mean .884 .874

Hence, the chosen methods are used to create the final corpora LEGO and LEGOext. Details
on their statistics are shown in the next section.

Corpus Statistics

The distribution of the final IQ label is shown in Figure 4.13. For the LEGOext corpus, label
“satisfied” (5) has been assigned much more frequently while all others have been assigned less
often compared to the LEGO corpus. This increase in overall system performance may be a result
of an improved system as the 2007 version of Let’s Go represents an updated system.

Naturally, this performance increase also results in a higher average IQ score for the LEGOext
corpus: it achieves an average IQ of 4.46 while the LEGO corpus achieves 3.39 averaged over all
labelled system-user exchanges.

The statistics for both corpora as well as for the combined data set LEGOv2 are depicted in
the following table originally published in (Ultes et al., 2015b):

Corpus Year #calls #exchanges avg. Length k avg. IQ

LEGO 2006 200 4,885 25.4 .54 3.39
LEGOext 2007 201 4,753 22.6 .50 4.46

LEGOv2 401 9,638 24.0 .52 4.46
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Fig. 4.13: The distribution of the final label scores along with there absolute number of occur-
rences for the LEGO and the LEGOext corpus originally published in (Ultes et al., 2015b)

Having not only the implementation but also corpus data consisting of example dialogues with
extracted interaction parameters and annotated Interaction Quality values finally allows for com-
parable experiments evaluating the estimation approaches presented in Sections 4.1.2 and 4.1.3.
The evaluation procedure and the results will be presented in the following section.

4.1.6 Evaluation of Approaches for Interaction Quality Recognition

While we have presented our own ideas and approaches for estimating the Interaction Quality and
have also presented our newly created corpus used for evaluation data and how we have defined
the ground truth, in this section, we will present the setup and the results of the evaluation of those
approaches. First, we will give a description of the different sets of features used as input to the
statistical classifiers. As some approaches have different requirements on the characteristics of
the features, different sets have been created. Those are then applied to the proposed estimation
approaches. The results of these experiments are presented including a thorough discussion.

Feature Set Definition

The evaluation of the presented IQ estimation approaches is based on the LEGO and LEGOext
corpora (Schmitt et al., 2012; Ultes et al., 2015b) which define a set of interaction parame-
ters. These 51 parameters are automatically derivable textual and numerical values and contain
domain-specific as well as domain-independent features. As the presented approaches have dif-
ferent requirements on the characteristics of the features used as input variables, we define three
feature sets. The BASEall feature set contains all 51 parameters listed in Table B.1.

However, some parameters contain text values whereas some classification approaches require
the input variables to be strictly numerical. As the textual parameters have a high number of pos-
sible values, encoding those as numericals would not make sense. Furthermore, these parameters
are deemed to be very domain domain-specific as well. Hence, the domain-independent feature
set BASEdi is defined containing 46 numerical parameters.

Moreover, for applying the JaHMM and JaCHMM libraries, covariance matrices are created
which must be invertible. As some features do not change over one call, e.g., if the user does not
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request help, the covariance matrix would contain a row of zeroes and thus lose the property of
being invertible. To avoid this, a third feature set is created—BASE25—containing 25 features.
Those have been selected empirically.

A summary of all feature sets is depicted in Table 4.4 and the parameters for each feature
set is listed in Table B.2. Consequently, the defined feature sets are applied for all approaches
for IQ estimation which requirements are met. The results will be presented and discussed in the
following.

Table 4.4: The definition of feature sets used for experiments on automatic recognition of Inter-
action Quality.

ID # features value range domain-independence

BASE25 25 numerical yes
BASEdi 46 numerical yes
BASEall 51 textual & numerical no

The Baseline: Standard Machine Learning Methods

Previous work on IQ estimation relied on SVMs based on SMO for creating the statistical
model (Schmitt et al., 2011a; Schmitt and Ultes, 2015). As they used only a subset of the available
data for evaluation, we repeated the SVM experiments to create a baseline for our experiments.
Moreover, we are not only applying SVM estimation. As we are further interested how classifiers
of different characteristics perform, all standard machine learning approaches—which more elab-
orated methods are based on—form our baselines (see Sec. 4.1.2). As they are able to handle all
types of features, all feature sets are used for evaluation. The results are displayed in Table 4.5.
These experiments have been conducted using data only from the LEGO corpus in a 10-fold
cross-validation setting to ensure consistent results. For evaluation, the four metrics Unweighted
Average Recall (UAR), Cohen’s weighted k , Spearman’s r , and the root mean squared error
(RMSE) are shown8.

Clearly, the Rule Learner (RL) achieves the overall best performance in all four metrics for
BASEdi and BASE25. Only for r of BASEall it is beaten by the SVM. The overall performance
of the Naı̈ve Bayes classifier was the worst for all feature sets. Evidently, the problem of IQ
estimation may not be modelled using such a simple classification approach. As Naı̈ve Bayes does
not show good performance, it will not be regarded any further within this part of IQ estimation
evaluation.

It is interesting to see that the original baseline—the SVM with SMO—only performs second
best for almost all feature sets and metrics and that instead a rule learner provides better results.
The question is if this means that the problem of IQ estimation is rather simple and easy rules can
be applied. To answer this question, we have analysed the rules in more detail (Ultes and Minker,
2013c): one rule handles an average of 17 samples. Moreover, only 22 rules per fold cover more
than or equal to 30 exchanges while 289 cover less than 30 exchanges. This shows that there are

8 For a detailed explanation of these metrics, see Section 2.2.3.
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Table 4.5: Results for the standard static ML approaches for all three feature sets. The rule learner
achieves best performance having the SVM at the second place.

UAR k r RMSE

BASEall

SVM (SMO) 0.501 0.614 0.764 0.974
Naı̈ve Bayes 0.409 0.481 0.654 1.269
Rule Learner 0.560 0.642 0.756 0.934

BASEdi

SVM (SMO) 0.483 0.604 0.758 0.994
SVM (libSVM) 0.471 0.582 0.725 1.018
Naı̈ve Bayes 0.396 0.461 0.638 1.283
Rule Learner 0.602 0.685 0.794 0.883

BASE25

SVM (SMO) 0.469 0.590 0.752 1.015
Naı̈ve Bayes 0.422 0.516 0.685 1.126
Rule Learner 0.588 0.671 0.781 0.905

a high number of rules which cover outliers leading to the assumption that a rule learner does not
generalise well across data sets.

To test this hypothesis, cross-corpus experiments have been conducted where a rule learner
has been trained on LEGO and evaluated on LEGOext and vice versa (Ultes et al., 2015b). For
comparison reasons, the same experiments have also been conducted using a SVM (SMO). The
results in Table 4.6 show that the SVM performs better for both cases validating that the rule
learner’s ability to generalise are limited.

Table 4.6: Cross-corpus experiments for RL and SVM trained on one corpus and evaluated on the
other. The SVM clearly provides better cross-corpus performance.

Train Eval UAR k r RMSE

Rule Learner
LEGO LEGOext 0.327 0.265 0.437 1.315
LEGOext LEGO 0.288 0.235 0.513 1.641

SVM (SMO)
LEGO LEGOext 0.409 0.379 0.554 1.200
LEGOext LEGO 0.326 0.322 0.558 1.552

For a deeper analysis of the cross-corpus performance of the SVM (SMO), each feature group,
i.e., the group of features which originate from the same dialogue system module, has been in-
vestigated separately. The results are depicted in Figure 4.14. While the general performance is
lower compared to in-corpus classification, the results are clearly above the majority baseline9 for

9 Majority baseline means that the majority class is always predicted. This would result in an UAR of 0.2 for a five
class problem.
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all feature groups. While the best performance is achieved using all features, the DM parameters
contribute most to the generalisation ability of the IQ paradigm.
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Fig. 4.14: Results of cross-corpus SVM classification for each feature group (ASR, SLU, DM,
ALL) separately.

Comparing the performance measures on the different feature sets for all classifiers shows that
for the SVM, the more features are used the better results are achieved. However, the differences
are only minor meaning that the feature reduction represented by BASEdi and BASE25 is quite
reasonable and not a lot of information is lost (at least for the given data set). This is also shown
by the performances of the rule learner which even achieves worst performance using all features.
This may be a result of non-numerical features present in BASEall.

Finally, for BASEdi, two implementations of the SVM have been investigated. This is due
to the fact that the implementation of the SMO does not provide usable confidence values10

which we need for the confidence-based error correction and the Hybrid-HMM. Here, the libSVM
produces better values. Unfortunately, this switch is accompanied by a slight loss in performance
which may be attributed to the additional optimisation within the SMO algorithm.

The performance of the presented static classification approaches for the different feature sets
are used as the baseline for all following experiments. Furthermore, due to the plug-in nature of
the Hybrid-HMM and the error correction, the results are there of special importance.

Hierarchical Error Correction

Based on the standard machine learning approaches, the hierarchical error correction approach
(Sec. 4.1.2) has been evaluated. For stage one, the results computed on the LEGO corpus using
BASEdi as presented in the previous section are used. Based on those results, the error has been
calculated and used to train the error model. The performances of the two statistical classification
methods Rule Learner (RL) and SVM are compared, both applied for stage one and stage two.
However, for stage two, the libSVM implementation has been used. This is as the libSVM is able
to create a reasonable model, i.e., not always assigning the majority class, even if one class domi-
nates. Furthermore, a normalisation component is added performing a range normalisation of the
input parameters. This is necessary for using the implementation of the statistical classification
algorithms at hand.
10 The SMO computes for a five class problem always the confidence measures 0.4, 0.3, 0.2, 0.1, and 0.0.
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For error estimation, two variants are explored: using one combined model for all three error
classes (�1,0,+1) and using two separate models, one for distinguishing between �1 and 0 and
one for distinguishing between +1 and 0 with combining their results afterwards. While using
RL for error estimation yields reasonable performance results for the combined model, it is not
suitable for error estimation using two separate models as all input vectors are mapped to 0.
Hence, for the two model approach, only the SVM is applied.

Table 4.7: The results for error correction (using the bounded difference) and the simple hierar-
chical approach. The first column shows the classification algorithm used for stage one while the
second column shows the algorithm of the second stage.

UAR k r RMSE

Error Correction (hdi f f )

SVM (SMO)
SVM (libSVM) 0.472 0.597 0.754 0.983

Rule Learner 0.524 0.646 0.788 0.904
2xSVM (linear) 0.492 0.621 0.778 0.902

Rule Learner
SVM (libSVM) 0.573 0.687 0.811 0.828

Rule Learner 0.562 0.674 0.801 0.849
2xSVM (linear) 0.606 0.687 0.800 0.855

Simple Hierarchical Approach

SVM (SMO)
SVM (libSVM) 0.482 0.604 0.758 0.996

Rule Learner 0.585 0.674 0.792 0.891

Rule Learner
SVM (libSVM) 0.565 0.688 0.816 0.852

Rule Learner 0.584 0.680 0.798 0.871

Results for applying error correction (EC) calculating hdi f f
f (see Eq. 4.6) are presented in

Table 4.7 and compared to the simple hierarchical approach. First, we analyse the error correction
results compared to the one-stage results of Section 4.1.6. The relative improvements are depicted
in Figure 4.15. As can be seen, error correction may improve performance having either an SVM
or RL at stage one. Effects on the SVM performance are much stronger than on the rule learner for
all four metrics. While the effects of 2xSVM are not as strong as applying RL at stage two when
having the SVM at stage one, it may be considered as the overall best performing approach as it
achieves best results also improving RL performance. All differences are statistically significant
(p < 0.001), tested with the Wilcoxon test (Wilcoxon, 1945).

Furthermore, these results are compared to a simple hierarchical approach (SH) where the
hypothesis h0 of the stage one classifier is used as an additional feature for the stage two classifier
targeting IQ directly (see Sec. 4.1.2). Here, the performance of the stage two classifier is of most
interest since this approach can be viewed as one stage classification with an additional feature.
The results in Table 4.7 show that RL does not benefit from additional information (comparison
of respective last rows with one stage RL recognition of Table 4.5). SVM recognition at stage
two, though, shows better results. While its performance is reduced using the SVM hypothesis as
additional feature, adding the RL hypothesis improved UAR up to 17% relatively. However, there
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Fig. 4.15: Relative difference of Error Correction results using the bounded difference. The rel-
ative results are computed against the results of the BASEdi feature set in Section 4.1.6. The
horizontal axis represents the classifier at stage one grouped by the evaluation metrics.

is no reasonable scenario where one would not use the better performing RL in favour of using
its results as additional input for SVM recognition.

The question remains why SVM benefits from Error Correction as well as from adding ad-
ditional input parameters while RL does not. It remains unclear if this is an effect of the task
characteristics combined with the characteristics of the classification method. It may as well be
caused by low classification performance. A classifier with low performance might be more likely
to improve its performance by additional information or EC.

As the error correction approach using 2xSVM at stage two has been identified as the overall
best performing approach, we will only consider this approach for further analysis of confidence-
based error correction. Moreover, as SVMs have been shown to generalise better, only SVMs
for stage one are used. Here, the libSVM implementation has been used as it is crucial for the
confidence model to have usable confidence values of the stage one classifier. Again, the results
were obtained in a cross-validation setting.

Table 4.8 shows the results of using the confidences models for deriving the final IQ hypoth-
esis based on Equations 4.14 and 4.15. While using the bounded difference to compute the final
hypothesis hdi f f

f achieves much better results for the SVM based on libSVM, hmax
f further im-

proves the estimation performance. Figure 4.16 shows the relative differences between hmax
f and

hdi f f
f , and hmax

f and hmax
0 (the performance of the libSVM at stage one). Using the IQ value with

the maximum confidence for the final hypothesis clearly outperforms the bounded difference in
all four metrics. These differences are even significant (p < 0.001 with Wilcoxon test (Wilcoxon,
1945)).

To derive the final hypothesis, not only the maximum confidence may be used but also the
weighted sum over all confidences as defined by Equation 4.15. Here, the same results as for hdi f f

f
are used and only the confidences have been calculated additionally. The relative performance
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Table 4.8: Results of error correction having a linear SVM at stage one and two linear SVMs at
stage two. Here, different methods for deriving the final hypothesis are compared.

Stage 1 Stage 2 UAR k r RMSE

SVM (libSVM)

none
hmax

0 0.471 0.582 0.725 1.036
hwSum

0 0.468 0.584 0.749 0.890

2xSVM (libSVM)
hdi f f

f 0.507 0.633 0.782 0.862
hmax

f 0.517 0.646 0.798 0.830
hwSum

f 0.409 0.511 0.775 0.899
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Fig. 4.16: Relative difference of hmax
f to hmax

0 (SVM) and hdi f f
f (error bounded difference).

gain by using hwSum
f compared to the bounded difference hdi f f

f , the maximum confidence hmax
f ,

and computing the weighted sum for the initial SVM results hwSum
0 is presented in Figure 4.17.

The comparisons show that using a weighted sum to generate the final hypothesis results in
a decrease for almost all metrics: UAR drops by at least 12.6% and k by at least 12.5%. r and
RMSE show similar effects although not with the same magnitued. Hence, using a weighted sum
does not result in an increase in recognition performance.

While only evaluation of static approaches for IQ estimation have been described so far, we
are also interested in how the sequential approaches perform. Here, an emphasis is laid on the
Hybrid-HMM approach having the static approaches behave in a sequential setting. All of this
will be thoroughly evaluated and analysed in the following.

Hidden Markov Model-based Approaches

For evaluating the HMM and CHMM approaches described in Section 4.1.3, the feature set
BASE25 is used. Due to the special requirements of the models, domain-related, textual or quasi-
constant features are removed as this would have resulted in rows of zeros during computation of
the covariance matrices of the feature vectors. A row of zeros in the covariance matrix will make
it non-invertible, which will cause errors during the computation of the emission probabilities.
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ference), and hmax
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Results of the experiments are presented in Table 4.9 ranked according to the number of hid-
den states used for the CHMM. The accuracy of the CHMM decreased remarkably after passing
the threshold of 9 states, where the highest values for UAR, k , and r could be achieved (Ultes
et al., 2012a).

The results are computed using 6-fold cross validation on the dialogue-level. Best perfor-
mance for the CHMM was achieved for nine states with an UAR of 0.39, Cohen’s k of 0.43,
and Spearman’s r of 0.60. Applying the HMM using five hidden states, 6-fold cross validation
resulted in an UAR of 0.44, k of 0.56, and r of 0.72 this clearly outperforming the best CHMM
configuration.

Comparing the results of the HMM and the CHMM with the SVM baseline (see Sec. 4.1.6)
presented in Figure 4.18 clearly shows that both Markov model approaches were not able to
outperform the baseline. One possible reason for this is may be a lack of training data. For the
CHMM, for 9 hidden states, a total of 8,280 parameters (initial probabilities, transition prob-
abilities, and mean and covariance matrices of the emission probabilities) have to be learned.
Calculating these with a total of 3,908 training vectors (per fold) results in less than one vec-
tor per parameter on average. This has shown to be insufficient training data to create proper
estimates for the parameters.

In order to further evaluate the CHMM on this task, additional experiments have been con-
ducted with the complete data of the LEGOv2 corpus. However, the results are similar to the ones
obtained on the LEGO corpus (Ultes et al., 2015b). Hence, it is unlikely that the amount of data
is the reason for the performance drop. Another possible reason for the performance of the HMM
and the CHMM is the way the observation probability is modelled. For both Markov models, the
observation probability is defined by Gaussian mixture models. However, replacing GMMs with
confidence scores may result in better performance.

Hence, in contrast to the HMM where the observation probability is modelled using GMMs,
the Hybrid HMM uses confidence scores of static classifiers instead (see Sec. 4.1.3). More pre-
cisely, an SVM (SMO and libSVM implementations) and a Rule Learner have been used to
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Fig. 4.18: The relative performance change of HMM and CHMM compared to the SVM baseline.
Clearly, applying both approaches results in a loss in performance.

Table 4.9: Results for HMM experiment according to the number of hidden states along with
results for regular HMM and SVM classification originally published in (Ultes et al., 2012a). The
’⇤’ indicates the best result.

# states UAR Kappa Rho

HMM 5 0.44 0.56 0.72

CHMM

5 0.38 0.40 0.56
6 0.38 0.39 0.57
7 0.35 0.40 0.59
8 0.37 0.41 0.59
9⇤ 0.39 0.43 0.60
10 0.37 0.39 0.55
11 0.36 0.41 0.58

produce the confidence scores. Additionally, the introduction of a confidence model into the hier-
archical error correction approach makes error correction also usable for the Hybrid HMM. Here,
only having an SVM at stage one and two SVMs at stage two (discriminating between the error
classes +1 vs. 0 and -1 vs. 0) is regarded as this configuration showed to achieve the overall best
performance.

Results for applying all those approaches in a cross-validation setting using the BASEdi fea-
ture set are depicted in Table 4.10. Here, the conventional method of deriving the final hypothesis
as described in Equation 4.17 (which is equivalent to Eq. 4.14) has been applied. For computing
the transition probability, an action-independent (AI) and an action-dependent (AD) transition
model has been applied as described in Section 4.1.3 by calculating the transition frequencies in
the training data. Here, not the actual actions have been used but the type of action. This informa-
tion is represented by the interaction parameter ACTIVITYTYPE (see Table B.1). The parameter
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Table 4.10: Results of the Hybrid HMM using the maximum probability for deriving the final
hypothesis for different ways of modelling the transition probability: action-independent (AI),
action-dependent (AD) or with a handcrafted action-independent transition matrix (HC1 and
HC2).

UAR k r RMSE

AI

SVM (SMO) 0.486 0.595 0.767 1.060
SVM (libSVM) 0.484 0.586 0.735 1.032

Rule Learner 0.597 0.675 0.800 0.929
Error Correction (2xSVM) 0.494 0.567 0.785 0.991

AD

SVM (SMO) 0.473 0.608 0.774 0.923
SVM (libSVM) 0.452 0.559 0.713 1.079

Rule Learner 0.623 0.708 0.824 0.827
Error Correction (2xSVM) 0.505 0.630 0.788 0.852

HC

SVM (SMO) 0.502 0.633 0.785 0.908
SVM (libSVM) 0.461 0.570 0.720 1.075

Rule Learner 0.625 0.709 0.824 0.828
Error Correction (2xSVM) 0.521 0.641 0.801 0.856

HC2

SVM (SMO) 0.440 0.541 0.752 0.927
SVM (libSVM) 0.478 0.580 0.725 1.013

Rule Learner 0.624 0.706 0.823 0.824
Error Correction (2xSVM) 0.499 0.606 0.793 0.856

may take one out of four values: ’Question’, ’Announcement’, ’Confirmation’, and ’wait’. Hence,
a new transition probability matrix has been computed for each of the four action types.

Additionally to the above mentioned configurations, two handcrafted transition matrices have
been applied for the AI variant which are presented in Table 4.11. Both are designed to only
allow transitions between adjacent IQ labels. The first handcrafted matrix (HC1) has a higher
probability of staying in IQ value 5 or 1 than transitioning to another IQ value compared to the
IQ values 2, 3, and 4 while the second matrix (HC2) has always the same probability of remaining
in the same IQ value or transitioning to another.

The results for action-dependent and action-independent transition probabilities are compared
in Figure 4.19. Unfortunately, the overall performance could not be improved: neither for AI nor
for AD, an improvement in all metrics for all classifiers could be found11 compared to applying
only the base classifier. By looking at the individual classifiers more closely, though, shows that
for the SVM (libSVM), the performance could be improved for AI in all metrics. Furthermore,
the performance using the Rule Learner could also be improved for AD in all metrics.

11 For UAR, k , and r , an increase means improvement while for RMSE, a decrease means improvement.
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Table 4.11: The two handcrafted transition matrices HC1 and HC2 for modelling the transition
probability Pt based on empirical data. Both only differ in the transitions from 1 to 1 and 2 and
from 5 to 4 and 5 (HC1 / HC2).

HHHHHfrom
to

1 2 3 4 5
1 0.7/0.5 0.3/0.5 0 0 0
2 0.25 0.5 0.25 0 0
3 0 0.25 0.5 0.25 0
4 0 0 0.25 0.5 0.25
5 0 0 0 0.3/0.5 0.7/0.5

When comparing AD with AI, it becomes clear that for the base classifiers RL and EC, AD
achieves better performance measures in all metrics. This overall pattern of having better perfor-
mance when adding action dependency is not true for the SVM classifiers. Those are the only
approaches where AI performed better than AD. The difference between AI and AD is signifi-
cant for all classifiers and has been tested using the Wilcoxon test (Wilcoxon, 1945). As already
described, not the actual system actions have been used but the type of system action, i.e., the
interaction parameter ACTIVITYTYPE.
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Fig. 4.19: The relative difference in performance to the base classifier of the Hybrid-HMM using
action-dependent (AD) and action-independent (AI) transition probabilities. Significance (**:
p < 0.001, *: p < 0.05) has been tested with the Wilcoxon test (Wilcoxon, 1945).

Comparing the absolute performances of HC1 and HC2 with AI and AD shows that using a
handcrafted transition matrix may result in an overall better performance than frequency-based
transition matrices. However, which of the two proposed handcrafted matrices (HC1 or HC2) re-
sults in better performance is not clear and depends on the base classifier used. Hence, comparing
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the relative differences shown in Figure 4.20, HC2 shows higher improvement for the libSVM
but HC1 shows better performance for all other classifiers.
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Fig. 4.20: The relative difference in performance to the base classifier of the Hybrid-HMM using
handcrafted action-independent transition probabilities with different transition matrices (HC1
and HC2). Significance (**: p < 0.001) has been tested with the Wilcoxon test (Wilcoxon, 1945).

The overall best performance for applying a Hybrid-HMM could be achieved using a rule
learner as observation probability provider achieving an UAR of 0.625 (HC1), a k of 0.709
(HC1), a r of 0.824 (AD,HC1) and an RMSE of 0.824 (HC2). All these results also present
an improvement compared to plain RL performance for BASEdi. However, as already discussed
in Section 4.1.6, applying a rule learner does not generalise as well as applying an SVM-based
approach. If we look at the remaining SVM-based approaches, applying Error Correction for pro-
viding the observation probability model seems to be the best performing approach with an UAR
of 0.521 (HC1), a k of 0.641 (HC1), a r of 0.801 (HC1), and an RMSE of 0.852 (AD). Again, all
these values represent a significant performance improvement compared to only applying error
correction (p < .0001, Wilcoxon test (Wilcoxon, 1945)).

Analysing the improvements alone shows that the SMO could benefit most from thy Hybrid-
HMM approach among all SVM-based approaches: UAR +4.0% (HC1), k +4.8% (HC1), r
+3.5% (HC1), RMSE -8.6% (HC1). This may most likely be attributed to the way how the SMO
models its confidence scores. For a five-class problem, the classes get assigned the confidence
scores statically according to their order (here from most to least probable): 0.4, 0.3, 0.2, 0.1, 0.0.

While we have only regarded the results of deriving the final hypothesis by taking the IQ
value with the maximum probability so far, results for using the weighted sum are shown in
Table 4.12. The same phenomena as described previously are also valid for using the weighted
sum: the rule learner achieves best overall performance having the error correction approach at
second place. What can be noted is that, for some metrics and configurations, the performance
is improved (e.g., UAR for Rule Learner (AD, HC1, HC2)), while for others, the performance
drops drastically (e.g., UAR for SMO (AI, HC1, HC2)) by using the weighted sum. Having this
unclear situation, no profound conclusion may be drawn. The only statement is that the weighted
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Table 4.12: Results of the Hybrid HMM using the weighted sum over all state probabilities for
deriving the final hypothesis for different ways of modelling the transition probability: action-
independent (AI), action-dependent (AD) or with a handcrafted action-independent transition
matrix (HC1 and HC2).

UAR k r RMSE

AI

SVM (SMO) 0.409 0.503 0.756 1.021
SVM (libSVM) 0.469 0.550 0.742 0.981

Rule Learner 0.601 0.683 0.815 0.886
Error Correction (2xSVM) 0.442 0.484 0.790 1.027

AD

SVM (SMO) 0.485 0.619 0.781 0.888
SVM (libSVM) 0.458 0.572 0.723 1.039

Rule Learner 0.626 0.713 0.831 0.804
Error Correction (2xSVM) 0.504 0.632 0.794 0.840

HC

SVM (SMO) 0.461 0.574 0.768 0.897
SVM (libSVM) 0.475 0.586 0.731 1.024

Rule Learner 0.627 0.712 0.830 0.807
Error Correction (2xSVM) 0.520 0.635 0.804 0.843

HC2

SVM (SMO) 0.447 0.546 0.765 0.903
SVM (libSVM) 0.483 0.586 0.731 0.979

Rule Learner 0.627 0.710 0.829 0.805
Error Correction (2xSVM) 0.489 0.586 0.792 0.869

sum may be reasonable for some concrete configurations also regarding the goal of the specific
application.

For estimating the Interaction Quality of SDS, we have proposed and evaluated several static
and sequential novel classification approaches. Before drawing conclusions on IQ estimation, we
will continue with a more detailed analysis of the features itself as they already contain temporal
information. Bear in mind that this type of information is regarded to be of special importance
for a sequential problem like recognising the Interaction Quality

4.1.7 Analysis of Temporal Features

Modelling the Interaction Quality of spoken dialogue interaction may clearly be regarded as a
sequential task. However, while several static and sequential approaches have been tested and
evaluated, static approaches where very hard to beat by sequential approaches. While static ap-
proaches obviously do not reflect the dependence on previous IQ values, they comprise some
means of temporal modelling: the set of interaction parameters being modelled on three different
levels includes also temporal information. Our hypothesis is that those temporal features play a
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major role in the performance lead of static classifiers. This circumstance will be investigated in
more detail in the following by an analysis of the temporal interaction parameters.

%ASR-Success {#}ASR-Success

System DA User DA ASR-Status User System User System

1 [Welcome] - - 0.0 0.00 0 0
2 [Help info] - - 0.0 0.00 0 0
3 [Open] [Inform origin] complete 1.0 0.33 1 1
4 [Confirm origin] [Inform origin] complete 1.0 0.50 2 2
5 [Confirm origin] [Affirm] incomplete 0.66 0.40 2 2
6 [Filler] - - 0.66 0.33 2 1
7 [Ask destination] [Inform destination] complete 0.75 0.43 2 1

Fig. 4.21: The computation of dialogue level parameters %ASR-Success and window-level pa-
rameters {#}ASR-Success from the view of the user and the system.

The temporal effects of the dialogue are captured within the interaction parameters by the
dialogue and window levels (cf. Sec. 4.1.1). To get a better understanding, the dialogues are
analysed manually. The observation been made is that some system-user-exchanges contain only
a system turn, e.g., the “Welcome” message of the system (Figure 4.21, line 1). While the system
and the user have a different view on the interaction in general, this is especially the case regarding
the number of dialogue turns. However, as this information is used for computing parameters on
the dialogue and window level, both views should be reflected by the interaction parameters.
Hence, the parameters are computed with respect to the number of system turns as well as the
number of user turns. The original feature set is extended to contain both variants of parameters.

An example dialogue snippet showing parameters originating from the ASR-Status is illus-
trated in Figure 4.21. It shows both calculation variants for the window parameter {#}ASR-
Success and the dialogue parameter %ASR-Success. The differences are clearly visible: while
%ASR-Success is either 0 or 1 for the user’s view up until line 4 (only successful ASR events
occur), the numbers are different for the system’s view.

To reflect this system and user view for the complete corpus, a number of parameters are
calculated for both variants12. The window size remained the same with n = 3. This results in an
extended feature set consisting of 65 features. For the remainder of the paper, we will refer to the
original feature set as BASEall and to the extended feature set as EXTall.

To get a better understanding of the different parameter level and their contribution to the
overall estimation performance, experiments have been conducted using each combination of
parameter levels as a feature set, e.g., using only parameters on one level or using parameters
from all but one levels. Furthermore, to get a better understanding of the extension of the feature
set, the experiments are performed for the original and for the extended corpus. Some interaction
parameters with constant value and textual interaction parameters with a task-dependent nature
have been discarded resulting in the already known BASEdi feature set and the new EXTdi feature

12 Recalculated parameters: %ASRSuccess, %TimeOutPrompts, %ASRRejections, %TimeOuts ASRRej, %Barge-
Ins, MeanASRConfidence, {#}ASRSuccess, {#}TimeOutPrompts, {#}ASRRejections, {#}TimeOuts ASRRej,
{#}Barge-Ins, {Mean}ASRConfidence
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Table 4.13: Results in UAR, k and r for including and excluding different parameter levels for
LEGOorig and for LEGOext .

UAR k r

LEGOorig LEGOext LEGOorig LEGOext LEGOorig LEGOext

only exchange 0.328 0.328 0.310 0.310 0.456 0.456
only window 0.338 0.363 0.333 0.380 0.479 0.558
only dialogue 0.443 0.454 0.559 0.571 0.726 0.738
no exchange 0.466 0.494 0.584 0.611 0.747 0.764

no window 0.460 0.471 0.578 0.589 0.737 0.747
no dialogue 0.398 0.415 0.457 0.480 0.622 0.643

all 0.475 0.495 0.596 0.616 0.757 0.770

sets having 50 parameters for the latter. In conjunction to previous experiments, the results are
computed using a linear Support Vector Machine (SVM) in a 10-fold cross-validation setting.
The results are stated in Table 4.13 and visualised in Figure 4.22.

Best performance for both BASEdi and EXTdi in terms of UAR, k , and r is achieved by
using all parameters. However, it is highly notable that the results are very similar compared
to the results of using all but the exchange level parameters (no exchange). In fact, applying
the Wilcoxon test (Wilcoxon, 1945) for statistical significance proves the difference to be non-
significant (BASEdi: p = .152, EXTdi: p = .942). This is underpinned by the results of only
using the parameters on the exchange level (only exchange) being among the worst performing
configurations together with the no window results. However, comparing the all results to the no
window results (BASEdi: p = .088, EXTdi: p < .0001) reveals that the window parameters play
a bigger role in the overall performance.
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Fig. 4.22: SVM performance in UAR for including and excluding different parameter levels for
LEGOorig and for LEGOext .
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While the analysis above is true for both feature sets BASEdi and EXTdi, the results clearly
show that the extension of the feature set results in an increased performance on almost all levels.
The overall performance using all parameters has been relatively increased by 4.4% (p < .0001)
in UAR and the performance of no exchange has been relatively increased by 6.0% (p < .0001).
The results of the only exchange parameters are the same for both feature sets as the parameters
on this level are the same, i.e., have not been computed anew.

While the impact of the different parameter levels on the overall estimation performance is
of interest, we are also interested in how the window size influences the estimation performance.
Hence, experiments have been conducted with different window sizes. As the experiments above
showed that EXTdi performed significantly better than BASEdi, only the EXTdi feature set is
used. Again, all experiments are conducted applying 10-fold cross-validation using a linear SVM.
The results for UAR, k , and r are depicted in Figure 4.23. Table 4.14 shows also the relative
improvement compared to a window size of three used as baseline for this experiment.
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Fig. 4.23: SVM performance (left ordinate) for EXTdi using different window sizes from n = 1
(no window) to n = 20 (abscissa). The percentage of affected dialogue, i.e., which have a length
greater than the window size, is shown on the right ordinate.

A maximum performance is reached with a window size of 9 for UAR, k and r alike. In
fact, an UAR of 0.549 represents a relative improvement compared to a window size of 3 by
+10.82%. This clearly shows the potential hidden in these window parameters. If these results
are compared to the performance of the original feature set of BASEdi, the performance is even
relatively improved by +15.69%.

It is interesting, though, that the best window size is nine. We believe that this is system
dependent and, in Let’s go, related to the minimum number of system-user-exchanges necessary
to perform a successful dialogue. Looking at the corpus reveals that a minimum of nine exchanges
is needed.

4.1.8 Conclusions on User Satisfaction Recognition

Recognising User Satisfaction within spoken dialogue interaction for its usage in adaptive dia-
logue modelling is not a trivial task and encompasses several problems which we have identified
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Table 4.14: Results of different window sizes for IQ recognition in UAR, k , and r . In addition,
the relative improvement in UAR with respect to a window size of 3 is depicted. Significance is
indicated with * (p < 0.05) and ** (p < 0.01) determined using the Wilcoxon test (Wilcoxon,
1945). Best performance is achieved for a window size of 9.

Window UAR k r #dial.

1 0.471 - 4.93%** 0.589 0.747 100%
2 0.482 - 2.76%** 0.598 0.752 100%
3 0.495 – 0.616 0.770 100%
4 0.507 + 2.30% 0.633 0.787 99%
5 0.508 + 2.57%** 0.639 0.794 98%
6 0.526 + 6.16%** 0.656 0.804 96%
7 0.536 + 8.16%** 0.663 0.804 92%
8 0.546 + 10.22%** 0.675 0.809 90%
9 0.549 + 10.82%** 0.679 0.812 86%

10 0.543 + 9.61%** 0.673 0.808 85%
11 0.545 + 9.97%** 0.674 0.807 83%
12 0.544 + 9.76%** 0.672 0.804 79%
13 0.542 + 9.50%** 0.668 0.800 77%
14 0.535 + 7.99%* 0.663 0.797 75%
15 0.532 + 7.42%** 0.664 0.798 75%
16 0.530 + 6.90%** 0.663 0.796 73%
17 0.526 + 6.23%** 0.661 0.797 68%
18 0.529 + 6.75%* 0.662 0.796 66%
19 0.523 + 5.54%* 0.659 0.795 62%
20 0.519 + 4.66%* 0.654 0.792 55%

within this section. It already starts with the data acquisition where it is quite difficult to get
satisfaction information from real users in a realistic scenario. Using expert raters instead reme-
dies this problem. Based on the Interaction Quality paradigm, we have created our own corpus
data which has then been used as subject of multiple estimation approaches. There, we proposed
and evaluated novel static and sequential approaches having both groups showing adequate per-
formance. In particular, our best performing approaches have used a plug-in architecture where
virtually any static classification approach may be plugged in. Here, we were able to improve the
performance of any plugged-in classifier tested. Hence, if new methods for IQ estimation em-
ploying a static classifier are found, the expectation is that those approaches may even further be
improved by applying our proposed methods.

One important aspect for the analysis is to which degree the approaches are able to generalise
to similar but still different systems. While for static classification approaches, we identified the
rule learner to result in best performance on the available data, is has been found to not generalise
well. Here, we have shown that applying a support vector machine provides better generalisation
capabilities while still offering reasonable estimation performance. In general, our analysis of
the role of the different feature groups in generalisation revealed that the dialogue management
parameters are most important. This may most likely be attributed to the fact that those are very
general and the most independent form the actual dialogue system.
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Another important aspect when analysing the estimation performance is the contribution of
sequential or temporal information. Here, we analysed several Markovian approaches identifying
a significant improvement. Obviously, including information about the previous user satisfaction
state into the estimation process improves the overall performance achieving a relative increase
in performance of +7.87% compared to the baseline with an UAR of 0.521. However, modelling
the temporal dependencies and effects within the parameters used for the estimation is even more
promising improving UAR by +15.69% (0.549 UAR). Furthermore, the temporal parameter opti-
misation achieves also the best performance rates in Cohen’s Kappa (k = 0.679) and Spearman’s
Rho (r = 0.812).

In our experiments, the temporal information encoded in the parameters has clearly shown
to have a major effect on the estimation performance. In fact, the dialogue level parameters con-
tributing most may be interpreted as the satisfaction of the user mainly depends on the complete
dialogue and not on short-term events. However, putting this long-term information in the con-
text of a shorter more recent period modelled by the window level achieves an even better per-
formance. This increase is even more evident when further adjusting the window size. Hence, it
may be concluded that the user satisfaction does not solely depend on local effects but those local
effects should be interpreted within the context of the complete dialogue.

To sum up, temporal information is very important for recognising the Interaction Quality.
This may be represented implicitly within the statistical model or explicitly within the set of
features. Depending on the task at hand, both ways of representing the temporal information may
be beneficial for the overall recognition performance.

While the major part of this chapter covers our novel approaches for recognising the user sat-
isfaction, within this thesis, we will also propose novel concepts for the recognition of other user
states which are also important for adapting the course of the dialogue. Here, the user satisfaction
is clearly the most influential one. Still, the perceived coherence of a dialogue system is a general
concept which thus may be attributed to most systems. This is different to emotions or intoxica-
tion, which both do not occur very often in actual task-oriented human-machine conversations.
These effects will, of course, become more visible once the machine has emerged to be a social
companion.

Having this in mind, we will continue with presenting the three user states under consideration
and describe our work on predicting them in a dialogue context. After presenting all recognition
approaches, we will evaluate them on the respective user states following the same structure as in
the section on user satisfaction recognition.

4.2 Perceived Coherence Recognition

An important aspect of interaction is the coherence of the dialogue partners’ behaviours. For in-
stance, if you talk to someone and ask a question, if the response is not an answer to the question
but something totally different, this would be very strange. Hence, this will at least hinder the
conversation or even lead to a complete termination. The same is true for human-machine con-
versations where it is important for the machine to generate coherent responses. Hence, we aim
at detecting this coherence automatically. But first, the term coherence itself will be elaborated
on in the following.
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4.2.1 Perceived Coherence

As coherence may be a vague concept, we will first give more details on its meaning. It is defined
in general by the Longman Dictionary of Contemporary English (Lon, 2003) as “when something
[..] is easy to understand because its parts are connected in a clear and reasonable way”. Thus,
coherence may be seen as an objective concept13.

Other authors like Perrault et al. (1978) describe coherence in a dialogue context as “whether
a sequence of [...] acts were perceived as contributing to the achievement of an overall goal”.
Here, a subjective aspect is added to the understanding of coherence: the question of how acts are
perceived by the user. Within this thesis, the latter aspect is of special interest as we are focusing
on how users perceive a system’s behaviour. Therefore, we refer to this concept as perceived
coherence.

Hence, we propose an approach exploiting automatic methods to predict coherence of system
dialogue acts on the turn-level. In contrast to previous work, though, we aim at predicting the
coherence of the system dialogue act to be executed, i.e., looking into the future. This means
that given a dialogue situation, we aim at predicting the coherence of the next system dialogue
act scheduled for execution. For this, features both derived from the interaction and encoding the
dialogue state will be used. As we focus on perceived coherence, features only representing the
dialogue state are not able to model these effects adequately. Cues extracted from the interaction
itself, e.g., ASR performance, will be used additionally.

For this, we created an approach which aims at employing methods from static machine learn-
ing as presented in Section 2.2 and will be explained in the following.

4.2.2 Statistical Modelling of Recognising the Perceived Coherence of
System Dialogue Acts

For automatic recognition of the perceived coherence of system dialogue acts (SDAs), a super-
vised classification approach is used. Moreover, as already stated, we are interested in predicting
the SDA which will be executed next by the SDA. Here, the next SDA is the system act which the
strategy represented in the corpus has chosen to execute next. The coherence classes are “strongly
coherent”, “weakly coherent”, and “non-coherent”. We assume a relationship between the events
of the interaction and the coherence. These events are represented by the automatically derivable
interaction parameters as used for the Interaction Quality (see Sec. 4.1.1). Using the interaction
parameters along with a representation of the dialogue state called dialogue register as input pa-
rameters, a support vector machine (SVM, see 2.2.1) is used to predict coherence.

The overall recognition process is shown in Figure 4.24. A set of interaction parameters, the
dialogue state, and the next system dialogue act are used to train an SVM to predict coherence.
During evaluation, one single set of interaction parameters, dialogue state and SDA are fed into
the statistical model to create a coherence hypothesis.

To evaluate our approach, we rely on the same corpus as for our experiments on Interaction
Quality recognition which will be described next.

13 This corresponds to the understanding of coherence used in previous work on dialogue coherence (cf. Chapter 3)
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Fig. 4.24: General scheme of a static classifier for coherence estimation: to create a statistical
model for coherence estimation (here an SVM), a set of m interaction and dialogue state parameter
vectors fm,n—consisting of n parameters each—is combined with the next dialogue acts sm to
be analysed. Furthermore, the annotated coherence references rm are needed. To estimate the
hypothesis hcoherence, the trained model is used to evaluate one input sample.

4.2.3 Dialogue Coherence Data

For our experiments, we use the LEGO data already presented for IQ estimation in Section 4.1.5.
However, for the purpose of perceived coherence estimation, the data needs to be pre-processed.
The user dialogue acts (UDAs) have been clustered based on identical dialogue situations to de-
crease their dimensionality. For instance, arrival-covered-part, arrival-covered-monument, and
arrival-covered-neighbourhood are all instances of the general ARRIVAL UDA, as they all cor-
respond to situations in which the user provides a valid arrival place. The distinction is only im-
portant to query the database. An equivalent process has been applied to System Dialogue Acts.
Here, non-semantic concepts have also been discarded as they do not contribute to the progression
of the dialogue.

To represent the current dialogue state, a Dialogue Register (DR) similar to the one proposed
by Griol et al. (2008) is used. The structure encodes the dialogue state in predefined slots con-
taining information about the presence or absence of concepts and attributes (i.e., whether each
relevant piece of information has been correctly provided or not). For the LEGO corpus, the at-
tributes are arrival, departure, busRoute, and time and the concepts are yes, no, help, repeat, start,
and goodbye. Each slot may take one of the values “one” or “zero” indicating if the respective
concept is currently active or not. This is the same for the attributes. However, attributes may
additionally take the value “two” if the attribute value provided to the system has been grounded
with the user.

To augment the LEGO corpus with coherence information, an expert annotator rated each
system dialogue act with a coherence label which is one out of “strongly coherent”, “weakly
coherent”, and “non-coherent”. Here, the rater labels if the selected system dialogue act which
will be performed next by the system is coherent given the dialogue up to the current turn. In
order to do this, the dialogue is presented turn by turn. For example, in Figure 4.25, the rater is
deciding about the coherence of the third system turn and has already annotated the first two as
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“strongly coherent”. Per each turn, information about the user dialogue act (e.g., in turn 2, the
user provided a bus line), the dialogue act that the system generated in response (e.g., in turn 2,
the system confirmed the bus line), a generic user input, and a generic system message is shown.
The generic messages have been added for the raters so that they have a better understanding of
what the dialogue acts represent.

Fig. 4.25: The coherence labelling web form showing user acts and system messages along with
generic user inputs and system prompts to help the rater interpret the acts. The exchange to be
labelled is highlighted in light yellow.

To generate perceived coherence, it is very important for the labelling process that the rater
assumes the position of the system. That means, the question the rater asks himself each time
applying a rating is: “Given the accumulated information about the user’s intention and what has
been said in the dialogue by the user and the system so far: does it make sense for me (the system)
to perform this dialogue act now?”. The first SDA “Welcome” is always labelled as “strongly
coherent”.

The coherence label distribution of the labels applied to the LEGO corpus are presented in
Table 4.15. The vast majority has been labelled as coherent with only less than 10% being labelled
as non-coherent.

Based on this pre-processed corpus, our approach on predicting the coherence of the next
system action is evaluated in the next section.

Table 4.15: Distribution of coherence labels within the LEGO corpus in absolute amount and
percentage with respect to all exchanges.

strongly coherent weakly coherent non-coherent

2822 1005 395
(66.8%) (23.8%) (9.4%)

4.2.4 Evaluation of Perceived Coherence Recognition

For predicting the coherence, we relate the coherence to parameters of the interaction. As these
interaction parameters are derived from three different SDS modules, i.e., ASR, SLU, and DM,
the contribution of each of these modules to the overall performance is analysed as well as the
role of the dialogue register. Hence, several feature configurations are applied.

The basic feature set BASE contains three features: the exchange number, the previous dia-
logue act and the next dialogue act. These features represent the minimal information necessary to
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predict coherence of the next SDA. Thus, they are also part of all other feature sets. To investigate
the contribution of the interaction parameters, the feature sets ASR, SLU, DM, and IP are created.
The former three contain the interaction parameters (on all three levels) which are derived from
the respective SDS module while the latter combines all interaction parameters. Furthermore, the
contribution of the dialogue register is analysed in the REG feature set. The performance using
all parameters is represented in the IP+REG feature set.

The experiments are conducted employing a SVM with linear kernel in a 10-fold cross-
validation setting. The performance is measured using the unweighted average recall (UAR).
UAR is derived from the class-wise recalls by computing the arithmetic average.

The results are depicted in Table 4.16. As can be seen, all feature groups performed better
than the majority baseline of 0.33314. Using all features (IP+REG) achieved the best result of
0.623 UAR. This shows the viability of this approach. However, while it may be assumed that the
dialogue register, i.e., the encoded dialogue state, highly contributes to the overall performance,
it is quite the opposite: REG performs worst with an UAR of 0.366. Most surprisingly, the perfor-
mance is even worse than only using the BASE features. This may be attributed to the uncertainty
added by the number of features of the REG group compared to the information contained. Re-
gardless, this information is still beneficial as it increases the performance of the IP feature group
by 0.014. The most information, though, is encoded in the IP features with an UAR of 0.609.
Here, the DM and ASR features contribute most.

Table 4.16: The results in UAR of SDA coherence prediction for different feature groups applying
a linear SVM.

UAR # features

BASE 0.384 3
ASR 0.514 29
SLU 0.400 8
DM 0.587 18
IP 0.609 49
REG 0.366 13

IP+REG 0.623 59

4.2.5 Conclusion on Perceived Coherence Recongition

We have proposed and evaluated an approach on predicting the perceived coherence of the next
system dialogue acts. This approach may be utilised within the dialogue management module
for influencing the selection of the next system dialogue act. As it is based on an abstract rep-
resentation comprising dialogue acts and interaction parameters, it is generalizable to different
application domains.

Using interaction parameters and the encoded system state as input parameters to a statistical
classifier results in an UAR of 0.623. This may be considered as good performance given the
14 Majority baseline means that always the majority class is assigned. For 3-class problems, this always results in an

UAR of 0.333.
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complexity of the task. Furthermore, we analysed the contribution of different feature sub-groups
showing that interaction parameters derived from the dialogue management contribute most.

However, there are still some shortcomings which should be addressed in future work. First,
the data is highly unbalanced. Sampling methods or introducing a cost matrix may compensate
for that. Furthermore, as we intend to predict the coherence of the next system dialogue act given
a dialogue situation, the corpus should be extended by more SDAs given one dialogue situation.

Deriving the perceived coherence clearly may help to change the course of the dialogue in a
straight-forward way, this is different for emotions. Still, for rendering a system as social compe-
tent, emotions should be taken account of nonetheless. This will be described in the following.

4.3 Emotion Recognition

Recognising the current emotional state of the user is a hard task. And while emotions may
occur rarely in human-machine conversations, technical systems of the future should be equipped
with the capability of understanding emotions in order to be regarded as social competent. For
example, the system may apply strategies aiming at reducing the users’ anger level. For this, the
emotional state of the user needs to be identified or estimated, respectively.

In human-human communication, people are usually quite capable of identifying the emo-
tional state of the other person, while machines still do have a hard time recognising people’s
emotions with the same accuracy. State-of-the-art approaches for automatic emotion recognition
regard the problem independently of the speaker. However, while the basic emotions are shared
between all people and cultures (Scherer, 2002), humans have a fine-tuned emotional model of
people they know allowing for recognising their emotions more accurately. Furthermore, speaker-
specific models have shown to improve speech recognition as well (e.g., (Leggetter and Wood-
land, 1995)). Hence, we add speaker-specific information to the emotion recognition process and
evaluate if this may result in an increase performance in general (Sidorov et al., 2014b).

Consequently, we will first present two approaches on speaker-dependent emotion recogni-
tion. Here, we will focus on classification-based emotion recognition (opposed to estimating
points the PAD space, cf. Sec. 3.1.3). After describing the data we use for our tests, the eval-
uation procedure and the results will be described in detail.

4.3.1 Speaker-dependent Emotion Recognition

Incorporating speaker-specific information into the emotion recognition process may be done in
many ways. Within this thesis, we propose two ways: to add the speaker information to the set of
features and to create speaker-dependent models. While, for conventional emotion recognition,
one statistical model is created independently of the speaker, one may create separate emotion
model for each speaker. Both approaches result in two-stage recognition procedures (see Fig-
ure 4.26 and Figure 4.27): first, the speaker is identified. Then, this information is included into
the feature set directly by extending the feature vector resulting in one combined emotion model
(Feature Set Extension, FSE), or one out of several individual emotion models is selected de-
pending on the speaker (individual models, IM). Both hybrid systems for emotion recognition
and speaker identification (ER-SI) have been investigated and evaluated in this study.
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Fig. 4.26: Hybrid two-stage emotion recognition system FSE originally published in (Sidorov
et al., 2014b): the speaker information is added to the feature set resulting in one combined
emotion model for all speakers.
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Fig. 4.27: Hybrid two-stage emotion recognition system IM originally published in (Sidorov
et al., 2014b): an individual emotion model for each speaker is used selected based on the speaker
estimation.

4.3.2 Emotion Data

For testing the two proposed approaches on speaker-dependent emotion recognition, a number of
speech databases have been used which will be described in the following. These different data
sets were chosen as they offer a variety of different characteristics including database language,
acted vs. non-acted speech, and the number of emotions.

Berlin The Berlin emotional database (Burkhardt et al., 2005) was recorded at the Technical
University of Berlin and consists of labelled emotional German utterances which were
spoken by 10 actors (5 female). Each utterance has one of the following emotional
labels: neutral, anger, fear, joy, sadness, boredom, and disgust.

Let’s Go The Let’s Go database (see Sec. 4.1.5) does not only contain information about the user
satisfaction but also comprises emotion labels for the emotions angry, slightly angry,
very angry, neutral, friendly, and non-speech (critical noisy recordings or just silence).
The database contains non-acted American English utterances extracted from an auto-
mated bus information system of the Carnegie Mellon University in Pittsburgh, USA.

SAVEE Haq and Jackson (Haq and Jackson, 2010) recorded the SAVEE (Surrey Audio-Visual
Expressed Emotion) corpus for research on audio-visual emotion classification from
four native English male speakers. Each acted utterance has been labeled with an emo-
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tion from the standard set of emotions (anger, disgust, fear, happiness, sadness, surprise,
and neutral).

UUDB The UUDB (The Utsunomiya University Spoken Dialogue Database for Paralinguis-
tic Information Studies) database (Mori et al., 2011) consists of spontaneous Japanese
human-human speech. Task-oriented dialogue produced by seven pairs of speakers (12
female speakers) resulted in 4,737 utterances in total. Emotional labels for each ut-
terance were created by three annotators on a five-dimensional emotional basis (in-
terest, credibility, dominance, arousal, and pleasantness). For this work, only pleas-
antness (or evaluation) and the arousal axis are used. The corresponding quadrant
(counterclockwise, starting in positive quadrant, assuming arousal as abscissa) are then
assigned to emotional labels: happy-exciting, angry-anxious, sad-bored and relaxed-
serene (Schuller et al., 2009b).

VAM Based on the popular German TV talk-show ”Vera am Mittag” (Vera in the afternoon),
the VAM-Audio database (Grimm et al., 2008) has been created at Karlsruhe Institute
of Technology. The emotional labels of the first part of the corpus (speakers 1–19) have
been labelled by 17 human annotators. The remaining utterances (speakers 20–47) were
labelled by six annotators. All emotional labels are based on the three-dimensional PAD
emotion space. The emotional labelling was performed in a similar way to the UUDB
corpora, using pleasure and arousal axis.

While the Berlin and SAVEE corpora consist of acted emotions, the other three databases com-
prise real emotions. Furthermore, for the two languages English and German, acted and non-acted
emotions have been considered. Only for Japanese, solely non-acted emotions were available. A
statistical description of the used corpora may be found in Table 4.17. It should also be noted that
Let’s Go, UUDB, and VAM are highly unbalanced.

Table 4.17: Emotion database descriptions used for speaker-dependent emotion recognition orig-
inally published in (Sidorov et al., 2014b).

Database Language length # emotions Notes

Berlin German 24.7 min 7 Acted, single utterances
Lets Go English 118.2 min 5 Non-acted, human-machine
SAVEE English 30.7 min 7 Acted, single utterances
UUDB Japanese 113.4 min 4 Non-acted, human-human
VAM German 47.8 min 4 Non-acted, human-human

Emotions themselves as well as annotating emotions both have a subjective nature. That is
why it is important to have several people who apply the emotional labels. Even for humans, it is
not always evident to make a decision about a detected emotion. Each study which proposed an
emotional database provides also a confusion matrix and statistical description of the decisions
of the human annotators.

The presented databases having different difficulty levels are used to test and evaluate our
proposed speaker-dependent approaches. The evaluation process and the results will be described
in the next section.
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4.3.3 Evaluation of Speaker-dependent Emotion Recognition

For evaluation of the proposed speech-based emotion recognition approaches, the choice of a set
of appropriate speech signal features is still an open question, both for speaker identification and
for emotion recognition. As the focus of this study lies on improving emotion recognition by
adding speaker dependency (and not on tweaking the feature set to the max), no feature set opti-
misation has been applied and simply the most popular features have been chosen (cf. (Schmitt
et al., 2009b)). Hence, the feature vector includes average values of the following speech signal
features: power, mean, root mean square, jitter, shimmer, 12 MFCCs, and five formants. Mean,
minimum, maximum, range, and deviation of the following features have also been used: pitch,
intensity and harmonicity. This results in a 37-dimensional feature vector for one speech signal
file. To extract these speech signal features from the audio stream, the Praat system (Boersma,
2002) was used.

For each of the two proposed speaker-dependent emotion recognition approaches (FSE and
IM), the according statistical models have been used to detect emotions, or the speaker, respec-
tively, in a static mode. This means that each speech signal was parametrised by one single 37-
dimensional feature vector consisting of the corresponding average values. As this study is fo-
cused on the theoretical improvement of emotion recognition using speaker-specific information,
the usage of other speech signal features or modelling algorithms may improve the recognition
performance even further.

To investigate the theoretical improvement of using speaker-specific information for ER, the
true information about the speaker has been used. Then, in order to provide pilot experiments,
a real SI component has been applied. For both tasks (ER and SI), a multi-layer perceptron (see
Sec. 2.2.1), which is a baseline type of artificial neural networks (ANN), has been chosen as a
modelling algorithm for both speaker identification and emotion recognition.

As a baseline, an emotion recognition process without speaker-specific information has been
conducted. Dividing the data into training and test sets, the training set was used to create and
train the ANN-based emotion model. The test set was used to evaluate the model. Hence, one
single neural network has been created addressing the emotions of every speaker in the database.

In the first experiment, the focus was on investigating the theoretical improvement which may
be achieved by using speaker based adaptivity. For this, known speaker information (true labels)
was used for both approaches (FSE and IM). For FSE, the speaker information was simply added
to the feature vector. Hence, all utterances with the corresponding speaker information were used
to create and evaluate an ANN based emotion model. For IM, individual emotion models were
built for each speaker. During the training phase, all speaker utterances were used for creating
one emotion model for each speaker. During testing, all speaker utterances were evaluated with
the corresponding emotion model.

Additionally, a second experiment was conducted including a real speaker identification mod-
ule instead of using the ground truth speaker information. First, an ANN-based speaker identifier
was created during the training phase. Furthermore, for FSE, the known speaker information was
included into the feature vector for the training of the emotion classifier. The testing phase started
with the speaker identification procedure. Then, the speaker hypothesis was included into the
feature set which was in turn fed into the emotion recogniser. For IM, an ANN-based emotion
recogniser was created for each speaker separately. For evaluating this system, the speaker hy-
pothesis of the speaker recognition is used to select the emotion model which corresponds to
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Table 4.18: Evaluation Result of FSE in percent originally published in (Sidorov et al., 2014b):
Accuracy of baseline (Without SI), Experiment 1 (True SI) and Experiment 2 (ANN SI, having
SI accuracy in parentheses.)

Database Without SI True SI ANN SI

SAVEE 60.39 62.64 63.58 (99.06)
Berlin 73.76 77.74 74.61 (73.24)
VAM 68.73 71.48 69.00 (66.39)
UUDB 89.99 90.42 90.10 (72.85)
Let’s Go 76.37 78.95 77.50 (42.41)

Table 4.19: Evaluation Result of IM in percent originally published in (Sidorov et al., 2014b):
Accuracy of baseline (Without SI), Experiment 1 (True SI) and Experiment 2 (ANN SI, having
SI accuracy in parentheses.)

Database Without SI True SI ANN SI

SAVEE 60.39 66.08 65.69 (99.14)
Berlin 73.76 74.01 68.84 (74.06)
VAM 68.73 67.76 64.80 (66.73)
UUDB 89.99 89.91 89.46 (73.47)
Let’s Go 76.37 80.96 75.47 (44.03)

the recognised speaker to create an emotion hypothesis. In contrast to the first experiment, these
experiments using estimated speaker information are not free of speaker identification errors.

In order to generate more statistically significant results, the complete classification process
was run 25 times for each database and experiment. For each run, the databases were randomly
divided into training and test sets (70–30% correspondingly). While each database was stratified
into training and test sets by the emotion class, the Let’s Go database was stratified into subsets
by the speaker class, due to highly unbalanced distribution of the speaker class (IM only). For all
experiments, z-score normalisation has been applied for all features. The final results are shown
in Table 4.18 for FSE, where speaker-specific information is included into the feature set, and
in Table 4.19 for IM, where separate emotion models are created for each speaker. The results
are calculated taking the average of all runs. The first columns show the baseline of ANN-based
emotion recognition accuracy (without speaker-specific information). In the second column, the
accuracy of the emotion recognition systems using known speaker information is presented fol-
lowed by the emotion recognition accuracy based on ANN-based speaker identification. For the
latter, values within the parentheses depict the performance of the speaker identification module.

As a result, we can conclude that the addition of speaker-specific information in the emotion
recognition procedure may significantly improve the recognition performance. For all corpora,
the recognition accuracy has been improved by adding speaker information to the feature vector
(see Table 4.20). This improvement is even significant for almost all databases.
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Table 4.20: Improvement in ER performance using the true speaker information (True SI) and
using SI information of an ANN (ANN SI) originally published in (Sidorov et al., 2014b). Sig-
nificant differences are marked with ** (a < .05) and * (a < .01) using the T-test.

Database
SI in FS (Sys. A) Separate Models (Sys. B)

True SI ANN SI True SI ANN SI

SAVEE +3.72% * +5.28% ** +9.42% ** +8.77% **
Berlin +5.39% ** +1.15% +0.33% -6.67% **
VAM +4.00% ** +0.39% -1.41% -5.71% **
UUDB +0.47% ** +0.12% -0.08% -0.58% **
Let’s Go +3.37% ** +1.47% ** +6.01% ** -1.17% **

4.3.4 Conclusion on Speaker-dependent Emotion Recognition

It is evident that already a very simple method as extending the feature vector with additional
speaker-specific information may improve the ER accuracy. This has been shown for five different
databases even if using a real SI module. This improvement is significant when using true SI
information for most of the used corpora (see Table 4.17). These results are very encouraging
leading to further more sophisticated approaches on speaker-dependent emotion recognition, e.g.,
applying methods known from speaker-dependent speech recognition.

However, for building accurate individual emotion models, balanced databases are required.
In order to build one emotion model for each speaker, a high number of emotional samples per
speaker are needed. Hence, for some of the corpora (VAM and UUDB), the addition of speaker
information (as a building of separate emotion models) could not improve the recognition accu-
racy.

Moreover, decomposing a problem as proposed by us with the separation of speaker identi-
fication and emotion recognition favours the accumulation of errors as can easily be seen by the
complete probability formula for the probability P(em) of emotion em

P(em) = P(sp) ·P(em|sp)+P(sp) ·P(em|sp) . (4.21)

Here, P(sp) denotes the probabilities of recognising the correct speaker and P(sp) is the probabil-
ity of recognising the wrong speaker. Thus, P(em|sp) is a conditional probability for emotion em
given the correct speaker and P(em|sp) is the probability for emotion em given the false speaker.
In other words, estimating the emotion correctly may also happen when estimating the speaker
wrongly but still estimating the emotion correctly. This corresponds to the similarity of emotions
between speakers. Even if a high value of SI accuracy as 99.14% is achieved, there is still a
gap between emotion recognition using known speaker information (+9.42%) and an actual SI
module (+8.77%) (see Table 4.20).

While an ANN already provides reasonable results for speaker identification, we are still ex-
amining its general appropriateness. The usage of other—possibly more accurate—classification
approaches may improve the performance of our proposed hybrid system. Furthermore, dialogues
do not only consist of speech, but also of a visual representation. Hence, an analysis of picture or
even video recordings may also improve SI and ER performance.
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After introducing emotions as a speech-based user state which the dialogue may adapt to, a
more specialised user state may also be considered when designing dialogue systems: the intox-
ication level. Its estimation process is similar to the process of recognising emotions. This along
with a comparative user study will be presented in the next section.

4.4 Intoxication Recognition

Another aspect of the user state is intoxication, i.e., the degree by which the user is drunk. This
may be measured in blood alcohol concentration (BAC). The intoxication information may be
used within a spoken dialogue system, e.g., to deny specific services if the user is identified to be
drunk. Hence, within this section, we present work on automatically estimating the intoxication
level of users (Ultes et al., 2011b). As this is a hard task even for humans, we further perform
a study on humans to answer the question how well humans are able to identify if someone is
drunk. This is especially difficult as only the recorded speech of the users may be used for this
task (for both, humans and machine).

4.4.1 Statistical Classification

For creating a statistical classification approach to automatically classify intoxication, we will
employ a support vector machine—a standard supervised classification approach—for discrim-
inating between “intoxicated” and “non-intoxicated” rendering the problem as a binary classifi-
cation task. As input variables, we will use 4368 acoustic and prosodic features extracted from
the speech signal. Additionally, we extracted 19 features from the linguistic transcriptions. These
features included the total number of words per utterance plus number and rate of repetitions, hes-
itations, interruptions, corrections, word lengthenings, wrongly pronounced words, and pauses
(additionally split into short and long pauses). The overall estimation process is presented in
Figure 4.28.

The data which is used for training and evaluation of our approach will be described in the
following.

4.4.2 Intoxication Data

The data used for our experiments on intoxication recognition is based on the alcohol language
corpus (ACL) (Schiel et al., 2008) of the 2011 Interspeech Speaker State Challenge (Schuller
et al., 2011). The speech data contains recordings of speakers who read out loud a sequence of
utterances both while being sober and while being drunk. To get drunk, the participants were un-
der constant medical supervision. They had chosen their target intoxication level (Blood Alcohol
Concentration, BAC) and according to their physical condition, the medical team calculated the
amount of alcohol they needed to drink in order to achieve the target BAC.

For the challenge, the data was divided into three sets: a training set, a development set, and a
test set. While there were labels provided for the first two sets, the test set was used to create the
challenge performance measure15. As the audio samples were annotated with a concrete BAC,

15 The classification results could be uploaded to a web script which automatically computed the recognition perfor-
mance.
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Fig. 4.28: General scheme of a static classifier for intoxication estimation: to create a statistical
model for intoxication estimation (here an SVM), a set of m speech and language parameter
vectors fm,n—consisting of n parameters each—along with their annotated intoxication references
rm are used. To estimate the hypothesis hintoxication, the trained model is used to evaluate one input
sample.

we labelled all samples belonging to the class “intoxicated” with a BAC > 0. As the resulting
set was not balanced regarding “intoxicated” and “non-intoxicated” samples, the data set includ-
ing the linguistic features was balanced using the Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002).

This data set was then used for evaluating of our classification approach. The results of the
evaluation will be descried in the next section.

4.4.3 Evaluation of Intoxication Recognition

In order to evaluate our statistical model for recognising intoxication, a linear SVM was used
(cf. Sec. 2.2.1). As stated above, the speaker state challenge (Schuller et al., 2011) provided
a training set, a development set and a test set. Thus, two configurations were considered: the
training set was used for training having the development set used for evaluation and the training
set was combined with the development set for training having the testing set for evaluation.
Having these configurations, we ensured that no training data was part of the evaluation data. For
applying the SVM, the complexity parameter was heuristically optimised resulting in C = 0.05.
Using this configuration, the SVM achieved an UAR of 0.653. By comparing the performance
with the majority baseline of an UAR of 0.5 for a binary classification task, it is evident that
the problem of intoxication recognition is not easy to solve even when using 4387 acoustic and
linguistic parameters.

To improve the recognition performance, one way is to perform feature set optimisation by
identifying and selecting the most meaningful features. Hence, in a second step, feature selection
was performed on the training data. For this, all features were weighted using the information-
gain ratio (IGR). Through subsequent addition of the highest weighted feature, a learning curve
was generated. The current feature set was evaluated using the before mentioned setup using a
SVM with the optimal complexity of 0.05. This was done for the training data with the baseline
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feature set and the extended feature set alike. However, for the baseline, the complexity was 0.01
(cf. (Schuller et al., 2011)). The UAR was calculated after each evaluation and the resulting curves
can be seen in Figure 4.29. It is visible that classification using the extended feature set clearly
outperforms classification with the baseline feature set. The extended set yields a maximum UAR
of 0.661 with 3015 features versus a maximum UAR of 0.653 with 3839 features for the baseline
feature set.
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Fig. 4.29: Learning curve of feature selection using IGR originally published in (Ultes et al.,
2011b): learning using only acoustic and prosodic features (baseline feature set, red curve) is
clearly outperformed by using additional linguistic features (blue curve).

An overview over the results is presented in Table 4.21. Adding linguistic features alone does
not yield higher performance. Only with additional ranking using IGR and subsequent feature se-
lection, the performance increases significantly. Using the development and training data together
for training of the SVM with the identified optimal configuration (extended feature set, best 3105
features, C=0.05), the evaluation on the test set shows an improvement of the recognition rate of
0.7 percentage points.

In addition, we also applied another feature selection technique also based on IGR ranking.
Only features contributing to an increase of the learning curve were used. For that, the UAR uai
was compared with the UAR uai+1 on the same feature set but with addition of feature i+ 1.
Using that, we created two different feature sets: feature set A consisted of all features which
fulfilled uai+1 > uai. Set B consisted of all of the features of set A plus all features, which fulfilled
uai+1 = uai if and only if the weights of the features i+1 and i were equal. These sets were further
divided into two instances: instance all consisted of the features as described above. Instance opt
consisted only of these features up to the optimal number of features according to IGR ranking.
The UARs are presented in Table 4.22. It can be seen that even a feature set consisting of only
32% of the initial features (acoustic, prosodic, and linguistic) can compete against the full feature
set.

As we have presented results on intoxication classification for machines, the question remains
how humans are able to perform the same task. To figure this out, a human study has been per-
formed which will be presented in the following.
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Table 4.21: Results of intoxication classification originally published in (Ultes et al., 2011b):

feature selection on the combined feature set of acoustic, prosodic, and linguistic features using

IGR outperforms classification without feature selection or without linguistic features.

Feature set # features UAR

train vs. devel

acoustic 4368 0.653

acoustic + linguistic 4389 0.653

acoustic (IGR) 3839 0.653

acoustic + linguistic (IGR) 3105 0.661

train + devel vs. test

acoustic (challenge baseline) 4368 0.659
acoustic + linguistic (IGR) 3105 0.666

Table 4.22: Unweighted average recall of different feature sets based on IGR ranking and the

resulting learning curve originally published in (Ultes et al., 2011b).

Feature set # features UAR

A.all 2631 0.656

A.opt 1726 0.642

B.all 1714 0.653

B.opt 1392 0.654

4.4.4 Web-based Human Performance Study

Exploiting the alcohol language corpus (ACL) (Schiel et al., 2008) of the 2011 Interspeech

Speaker State Challenge (Schuller et al., 2011), a balanced set of 3200 audio samples was se-

lected randomly from the training set. Based on the assumption that the human raters’ attention

decreases the more samples they rate, the set was further divided randomly into subsets consisting

of only 50 audio samples each, whereat one subset was used three times in order to compensate

for different rating behaviour. Each rater was asked to assign each sample to one out of the two

categories drunk and sober. The samples were presented to the raters on a web-page presented in

Figure 4.30, which also allowed for easy distribution. By that, we were able to reach many raters

on short notice. Moreover, to motivate the participants we designed the study as a challenge. The

aim was to tell better than the other participants, whether a sample originates from an intoxicated

or non-intoxicated speaker. The four best participants were rewarded with book vouchers from

10-20e.

In total there were 79 participants forming a heterogeneous group with an average age of 34.2

years and a standard deviation of 12.6 years. The oldest person was 65 years old and the youngest

person was 20 years of age. Out of the 79 people, 48 were male and 31 female.

For the data, the accuracy (ACC) and unweighted average recall (UAR) (both, see Sec. 2.2.3)

were applied as measure of performance. These results are presented in Table 4.23. Table 4.24
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Fig. 4.30: The website for collecting the human ratings for the ALC originally published in (Ultes
et al., 2011b).

displays recall and precision of the different classes. It can be seen that the results are independent
from gender or age of the raters. Furthermore, the raters yielded a higher precision on recognising
intoxicated people but a lower recall on non-intoxicated ones.

Table 4.23: Statistics on the raters originally published in (Ultes et al., 2011b): No obvious dis-
tinction can be made about the rater performance with respect to gender or age.

Category # participants ACC UAR

total 79 0.555 0.558

male 48 0.564 0.566
female 31 0.542 0.546

age < 50 65 0.554 0.556
age � 50 14 0.561 0.568

Furthermore, not only the performance of the raters on the whole data set was analysed but
also subdivisions regarding the blood alcohol concentration (BAC) and the audio sample length.
With this, two assumptions should be validated: as, in general, the ability to speak flawlessly
decreases with rising BAC, people can tell better that a person is intoxicated. As an implication,
the highest uncertainty about the speaker state exists with a low but not zero BAC. Secondly, the
longer people listen to speech, the easier they can tell if this person is intoxicated. Thus, UAR is
supposed to rise with increasing segment length. The first assumption could be validated as can
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Table 4.24: Recall and Precision of the raters originally published in (Ultes et al., 2011b): Recall
for non-intoxicated people was better than for intoxicated, whereas intoxicated people generated
a higher precision.

Category intoxicated non-intoxicated

recall

total 0.452 0.664
male 0.461 0.671
female 0.438 0.655
age < 50 0.460 0.652
age � 50 0.414 0.722

precision

total 0.587 0.534

male 0.592 0.546
female 0.580 0.517

age < 50 0.581 0.535
age � 50 0.619 0.531

be seen in Figure 4.31. The curve shows that the accuracy for non-alcoholised speech samples is
high. It declines rapidly for low blood alcohol concentrations and rises again with rising BAC.
(As we only had very little data for 0.2, 0.3 and 1.5 per mill BAC in the corpus, these values can
be seen as outliers.)

As for the second assumption, we were not able to validate it. The curve in Figure 4.32 shows
no sign of regularity. This indicates that there is no correlation between human rater performance
and the duration of the audio material when classifying persons as intoxicated. It should be noted,
though, that most of the audio samples had a length less than 10 seconds. For longer sound file
durations definite assumptions about the UAR of human raters cannot be made.

Furthermore, we applied majority voting on the ratings. Since each audio sample was rated by
three raters and marked as intoxicated or non-intoxicated speech this could yield a clearer vote.
Table 4.25 shows the results. The UAR improved only slightly by 1.6 percentage points, which is
a first indication that the inter-rater reliability is low.

Table 4.25: Rater performance originally published in (Ultes et al., 2011b): Majority voting
slightly improves the overall UAR.

Category UAR

all 0.558

best rater 0.700
worst rater 0.383

maj. voting 0.574
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Fig. 4.31: Rater performance with respect to BAC originally published in (Ultes et al., 2011b):
Non-alcoholised and strongly alcoholised people are recognised best. Recognition of slightly
alcoholised people is harder. The blue curve describes the accuracy (left axis) and the red bars
the amount of examples (right axis). The labels on the horizontal axis denote the BAC per mill.
So, for instance, out of the 677 samples with a BAC of 0.0 per mill, 66% have been classified
correctly. Results for 0.2, 0.3 and 1.5 per mill can be seen as outliers as only limited data was
available.
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The inter-rater reliability was investigated using Cohen’s Kappa (Section 2.2.3. It was calcu-
lated for each subset by averaging over the Kappas of each rater pair. The resulting Kappa values
were further averaged creating the final Kappa value of this study. As can be seen in Table 4.26,
the ratings are very inconsistent with k = 0.15. It is notably much smaller than Kappa values
of other tasks, like recognition of emotion or age, indicating that even humans have a hard time
telling if a person is intoxicated or not. (It should be noted that the BAC range of the intoxicated
group started at 0.2 per mill.)

Table 4.26: Rater agreement originally published in (Ultes et al., 2011b): classification of intox-
ication is a hard task for humans and the results majorly depend on the raters. This is further
emphasised by comparison with Kappa values of other tasks (values taken from (Shafran et al.,
2003) and (Schmitt et al., 2010b)).

Task avg. k max. k min. k

Alcohol Language Corpus

intoxication 0.15 0.4 -0.5

How May I Help You

emotion 0.42 - -
age 0.5 - -
dialect 0.58 - -
gender 1.0 - -

SpeechCycle Broadband Agent

age 0.21 - -
anger 0.7 - -

We further compared the results of the statistical classification with the results of the human
raters displayed in Table 4.27. For both human and statistical classification, the recall of non-
intoxicated persons is higher than of intoxicated ones. Here, classifier and humans correspond.
In contrast to this the SVM recognises non-intoxicated persons better while humans are able
to recognise intoxicated persons better. Moreover, statistical classification outperforms human
performance considerably. The UAR of humans is 10.8 percentage points below the results of the
statistical classifier.

4.4.5 Conclusion on Intoxication Recognition

In this work, we investigated the complexity of the task of distinguishing between intoxicated
and sober people merely by speech. A study with human raters has been presented showing that
even humans do not agree with each other about whether a person is sober or drunk. This is indi-
cated by very low inter-rater agreement. Furthermore, we implemented a statistical classification
mechanism incorporating linguistic features and applying feature selection using IGR ranking
and comparing it to IGR ranking performed on the baseline feature set. We showed that only with
additional linguistic features better classification results may be achieved using IGR ranking. Fi-
nally, by comparing the statistical classifier with human performance, it can be noted that the
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Table 4.27: Intoxication recognition originally published in (Ultes et al., 2011b): recall and pre-
cision of human raters compared to statistical classification. Whereas recall of non-intoxicated
persons is higher than of intoxicated persons for both humans and the SVM, humans have a
higher precision on intoxicated and the SVM on non-intoxicated persons.

Classification intoxicated non-intox. average

recall

human 0.452 0.664 0.558
statistical 0.625 0.707 0.666

precision

human 0.587 0.534 0.561
statistical 0.645 0.689 0.667

statistical classifier yields better results than humans. However, it should be kept in mind that the
classifier has been trained with domain data before, whereas the participants have not seen spe-
cific samples of the corpus before rating. Since we anticipate that the participants are generally
able to determine drunk speakers, we consider this fact less important.

4.5 Conclusion on User State Recognition

Identifying the state of the user for rendering the dialogue management user-adaptive is a rather
difficult task. To solve it, we have proposed several novel approaches for automatically recognis-
ing different user states and have provide proof of their potential by their successfully application
improving the overall recognition performance. The potential, though, highly depends on the user
state, e.g., the user satisfaction (on a five-scale) is harder to estimate than the emotion of a person
(using only a well-defined subset of emotions).

Furthermore, the user states are estimated on different levels. User satisfaction and the per-
ceived coherence of system dialogue acts are estimated on a turn level using interaction parame-
ters as input variables. Emotions and intoxication, on the other hand, are closer related to speech
thus using speech parameters directly for the estimation process. This may be related to the diffi-
culty of the classification task, e.g., links between speech and emotions may be identified much
easier compared to user satisfaction and the overall interaction.

For user satisfaction, which we have put an emphasis on in this thesis, we identified two major
aspects which are important for the overall performance. Having interaction parameters derived
from different modules of the dialogue system, i.e., ASR, NLU, and DM, the DM parameters
offering the highest abstraction level contribute most to user satisfaction. This means that, while
attributes of the ASR and NLU influence DM, decisions made in the DM have a very high po-
tential to influence the user satisfaction. The second finding is that user satisfaction is not a local
phenomenon, i.e., only dependent on the current situation within the dialogue. The situation is
quite the opposite: we showed a connection of user satisfaction to the complete interaction up
to the beginning which is already reflected in the set of interaction parameters. By exploiting



110 4 User State Recognition

this relation, we were able to achieve a significant improvement in the recognition performance
compared to the state-of-the-art.

While working on user state recognition, it became clear that not all user states are equally
applicable for adaptive dialogue management (although all are desirable). While adapting to the
user satisfaction is reasonable in a multitude of systems and domains, adapting to the emotions
or the intoxication level has more restrictions. Adapting to emotions require a domain (or task),
where emotions occur frequently and play an important role in the interaction. For task-oriented
dialogues, e.g., getting information about the schedule of the public transit, this might not be
the case. This lack is even more evident for intoxication. Hence, for our research on adapting
the dialogue to the user state, we focus on the two remaining user states user satisfaction and
perceived coherence. Approaches on how to include these into the dialogue manager will be
described in the following chapter.



5

User-Adaptive Dialogue Management

With the ultimate vision of rendering human-machine communication more natural, rendering the
dialogue interaction user-adaptive by taking into account the information about the user is one the
main goals of this thesis. In the previous chapter, we have focused on the other main goal of how
to derive information about the user—the user state—automatically by presenting our work on
recognising four user states automatically. Within this chapter, we will propose novel concepts
on how to use this information to automatically adapt the course of the dialogue to the user state
by rendering the dialogue manager user-adaptive.

In general, two dialogue management adaptation types exist (Nothdurft et al., 2016): adap-
tation to statically and dynamically changing information. For the latter, the system’s behaviour
is usually statically influenced, e.g., by user preferences stored in a user model. However, the
user state falls into the category of dynamically changing information where the course of the
ongoing dialogue is influenced dynamically by the user state. Moreover, adapting the course of
the dialogue to the user offers two different types of adaptation:

Adaptation to the user state with short-term goal
This means adapting the dialogue to the user state derived from the ongoing dialogue and
modifying the course of the dialogue to improve the current interaction’s general perfor-
mance, e.g., success, or the user state, e.g., user satisfaction.

Adaptation to the user state with long-term goal
This means adapting the dialogue to the user state derived from the ongoing dialogue and
modifying the ongoing dialogue to reach a long-term goal, e.g., establishing human-computer
trust.

Both types have in common that the user state is derived from the interaction and used to influ-
ence the action selection. The difference is—for the first—the interaction is adapted to reflect an
increase in the target user state directly within the same interaction. For instance, if the user is not
satisfied with the interaction, the goal is to increase the satisfaction of the user for the same inter-
action. This is in contrast to a long-term goal. For example, if the long-term goal is to maintain
human-computer trust, it is not necessarily important that the current interaction is going well but
that the users feel they can trust the system nonetheless.

For adapting the course of the dialogue to the user state with short-term goal, several modes
exists. Ultimately, all lead to using the user state to influence the selection of the next system
action. Here, one mode of adaptation is to limit the the pool of system actions to the set of a
non-adaptive version of the SDS (Ultes et al., 2011a, 2014a). The user state may then be used
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to influence the dialogue strategy, e.g., to answer the question of when to apply explicit confir-
mation prompts. Of course, all different kinds of dialogue strategy aspects are possible, e.g., the
grounding strategy, the dialogue initiative, or the prompt design (cf. 2.1.3).

Another mode of adaptation is to use the user state to trigger special sub-dialogues which then
deal with a certain aspect of the user state. As an example, in an emotion-aware dialogue where
the user has found to be sad, the system may trigger a sub-dialogue which aims at cheering the
user up. Here, extra system actions need to be integrated compared to a non-adaptive version.
Other examples are help actions or error recovery strategies triggered by the user state. Within
this chapter, though, the focus lies on the former mode as its application possibilities are more
general. This is because there is less modelling needed compared to introducing sub-dialogues as
those need to be newly defined. For solely influencing the action selection based on an existing
pool of system actions, no additional modelling needs to be done.

Adapting the course of the ongoing dialogue to a dynamically derived user state (with a short-
term goal) entails certain requirements the user states should match as described in Chapter 4.
As all user states which we have considered for our experiments in Chapter 4 comply with the
identified requirements, all may be used for this kind of online adaptation.

Among these user states we used for our experiments on user state recognition are perceived
coherence of system dialogue acts and user satisfaction. For the latter, if the system detects that
the user is not sufficiently satisfied with the interaction, it may take measures to increase the
user’s satisfaction level. As user satisfaction and perceived coherence are domain-independent
entities which may occur in almost all types of dialogue, this section focuses on adaptation to
both. Here, we will propose three novel approaches which will be presented in the first section of
this chapter (Sec. 5.1). Following that, we will describe how we have implemented the proposed
dialogue management approaches. For this, we had to partially re-engineer an existing dialogue
manager which is described in Section 5.2. Afterwards, our novel approaches will be evaluated
with real user interaction as well as in a simulated environment for user satisfaction in Section 5.3
and perceived coherence in Section 5.4.

5.1 Approaches for User-Adaptive Dialogue Management

For rendering a dialogue system to be user-centred by taking into account the user state, poten-
tially all possible approaches may be subsumed into a common generic concept which may be
visualised with the general processing sequence of a spoken dialogue system. To that effect, the
sequence needs to be extended in order to realise any type of adaptation to dynamically chang-
ing information and may be viewed as a cyclic process involving the human as one part. For the
extension of this dialogue cycle to allow for user adaptation, a new module is introduced (see
Figure 5.1) which provides the current user state. Without loss of generality, the cycle may be
regarded to start with the system selecting the first system action. This can be seen as valid for
all situations if the set of system actions also includes the action of only waiting for user input
without producing any output. In general, based on the selected system action, output is cre-
ated. Based on this system action, the user response is fed as input into the system. Usually, this
involves automatic speech recognition and a semantic interpretation module (cf. Sec. 2.1)

For enabling the dialogue system to react adaptively, the user state is required. As thoroughly
discussed in Chapter 4, deriving the user state is done without human intervention and automatic
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Fig. 5.1: The adaptive dialogue processing cycle originally published in (Nothdurft et al., 2016):
for adapting to additional user states, the modules Parameter Extraction and Estimation are inte-
grated producing the estimation of the user state.

estimation approach like statistical classification are used. For this, parameters are needed as in-
put to the estimator and are derived from the interaction taking into account information from
all dialogue system components, i.e., speech recognition, semantic interpretation, dialogue man-
agement, and output generation. Based on these input parameters, the user state may then be
determined and fed into the action selection module of the dialogue management. This user state
along with the updated system state are then used to select the next system action and the cycle
starts anew.

Having this type of adaptation to dynamically changing information also encompasses several
issues. Adding the user state to the action selection may be regarded as an increase in dimension-
ality and complexity of the problem. This also results in an added uncertainty to the system
which should be handled adequately, e.g., using Partially Observable Markov Decision Processes
(POMDPs). Furthermore, having several adaptation modes, the question arises which mode is
suitable, taking into account the type of adaptation to dynamically changing information as well
as the dialogue situation. Finally, our dialogue management concepts which we will present in
this section are based on a system where the only modifications of the system state are due to user
input.

In the following, we will propose three different methods on how to integrate the user state
into the dialogue management process. The first method is based on rule-based policies which
entails an extension of the dialogue state. The second method uses the user state within a reward
function for reinforcement learning. Finally, we will propose a two-stage approach where the user
state is used to select the next system action by predicting the effect of that system action on the
user state itself.

5.1.1 User-Adaptive Dialogue Management with Rule-based Policies

Incorporating the user state into the action selection mechanisms of the dialogue manager may
be done in several ways—statistical and non-statistical. All have in common that at certain points
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within the interaction, the user state may branch the dialogue flow. This branching may be either
learned automatically (which will be discussed in the next section) or explicit rules may be de-
fined. These rules then take into account the user state for selecting the next system action. For
example, if the user is angry a different user action may be selected then when the user is sad.

Here, of course, different options exist at which point in the dialogue flow the user state may
be taken into consideration. While, in general, this may be done at arbitrary points, reasonably,
a specific aspect of the dialogue strategy is targeted for adaptation, e.g., the common aspects
dialogue initiative or grounding strategy as presented in Section 2.1.3.

In Figure 5.2, an example is shown for how to adapt the dialogue initiative based on some user
state. Here, three different options for the initiative are possible. For a high user state value—
whatever that may be or represent, e.g., the user’s happy state—a system action representing
user initiative may be selected. For low user state values, the system will decide to take over
the initiative for the following system action. And for all other user state values in between, a
mixed-initiative system action is selected.

user
initiative

system
initative

mixed
initative

else

US is high

else

US is low

Fig. 5.2: Adaptive rule-based dialogue initiative strategy: based on the user state (US), the type
of dialogue initiative for the next system action is selected.

This is similar to adapting the grounding strategy or, more precisely, the type of confirmation
prompt as presented in Figure 5.3. Here the type of confirmation prompt is selected based on
whether the user state is high, low, or something in between.

no
confirmation

explicit
confirmation

implicit
confirmation

else

US is high

else

US is low

Fig. 5.3: Adaptive rule-based grounding strategy: based on the user state (US), the type of confir-
mation prompts is selected.

For adapting the strategy to the user state with an information state based dialogue manager (as
presented in Section 2.1.2), including the user state and creating user-dependent rules for action
selection is straight forward. The user state is simply added to the information state itself. The
rules are then realised by adding conditions to the system actions to be executed: only if a certain
condition regarding the user state is fulfilled, the corresponding user action may be executed.
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Adding information about the user state to the HIS framework is more complex, though, as
it results in the need of altering the POMDP formalism. To realise this for SDS-POMDPs as
described in Section 2.1.2, the system state s = (u,g,h) is extended by M user states sm, resulting
in s = (u,g,h,s1, . . . ,sM). Following the concept of user acts, we further introduce the concept
of user state acts em, which come along with each user act. This leads to the system state s =
(u,g,h,e1, . . . ,eM,s1, . . . ,sM).

Having the new extended system state incorporating the user state also entails an alteration
of the belief update. Building upon the formalism described in Equation 2.5, user states and
user state acts are incorporated. Here, act em is associated with state sm. Furthermore, reasonable
assumptions about independence of variables are made in accordance to previous work (Williams
et al., 2005) leading to

b0(u0,g0,h0,e01, . . . ,e
0
M,s01, . . . ,s

0
M)

= k ·P(o0|u0) ·
M

’
m=1

P(o0|e0m) ·P(u0|g0,a) ·
M

’
m=1

P(e0m|s0m,a)

·Â
s1

P(s01|s1,a) · . . . ·Â
sM

P(s0M|sM,a) ·Â
h

P(h0|u0,g0,e01, . . . ,e0M,s01, . . . ,s
0
M,h,a)

·Â
g

P(g0|g,a) ·Â
u

M

Â
m=1

Â
em

b(u,g,h,e1, . . . ,eM,s1, . . . ,sM) , (5.1)

where k is a normalising constant.
While the formalism above describes how to introduce user states in general, having a dy-

namic user state yields to further simplifications: here, the user state and the user state act may
be regarded as relating to the same concept as, usually, the user state is estimated directly as de-
scribed in Chapter 4. Thus, by having sm = em, the system state is s = (u,g,h,s1, . . . ,sM) and the
belief update equation is reduced to

b0(u0,g0,h0,s01, . . . ,s
0
M) = k ·P(o0|u0) ·

M

’
m=1

P(o0|s0m) ·P(u0|g0,a)

·Â
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sM

P(s0M|sM,a) ·Â
h

P(h0|u0,g0,s01, . . . ,s0M,h,a)

·Â
g

P(g0|g,a) ·Â
u

M

Â
m=1

b(u,g,h,s1, . . . ,sM) . (5.2)

In accordance to the general notion of POMDPs for SDS, the observation probabilities can
easily be estimated using n-best-list input [(u1,cu1),(u2,cu2), . . .] where a confidence score cui

is assigned to each observed user act ui. This concept may easily transferred to observations
and user states: [(s1

m,cs1
m
),(s2

m,cs2
m
), . . .] represents the n-best-list where each user state si

m has a
confidence value csi

m
. The observation probabilities may then be estimated by P̃(o0|u0 = ui) = cui

and P̃(o0|s0m = si
m) = csi

m
, respectively.

As an example, we take a scenario where the speaker state is 1-dimensional consisting of
s1 = emo representing emotion with the values neutral, angry, sad, and happy.

The observation probability P(o0|emo0) for the user state emo is then represented by the n-
best-list of emotion state observations, e.g., the 2-best-list
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oemoAct = [(angry,cangry),(neutral,cneutral)] . (5.3)

Hence, the estimate of P(o0|emo0) is

P̃(o0|emo0 = angry) = cangry (5.4)
P̃(o0|emo0 = neutral) = cneutral (5.5)

P̃(o0|emo0 = remainder) = cremainder. (5.6)

Here, remainder combines all remaining emotions and has the remaining probability mass not
contained in cangry and cneutral: cremainder = 1� cangry� cneutral .

Having only one user state emo, belief update is reduced to

b0(u0,g0,h0,emo0) = k ·P(o0|u0) ·P(o0|emo0) ·P(u0|g0,a)
· Â

emo
P(emo0|emo,a) ·Â

h
P(h0|u0,g0,emo0,h,a)

·Â
g

P(g0|g,a) ·Â
u

b(u,g,h,emo) . (5.7)

Until now, we have shown how states may be included into the general formalism for SDS-
POMDPs. However, the problem still exists that the belief update is computational intractable,
especially if extending the system state with user states. Here, further simplifications based on
assumptions of independence are introduced: we assume that the user state sm is independent of
the user act u, the user goal g, the history h, and all other user states s j where j 6= m. While
the degree of independence varies depending on the user state, e.g., the emotion may be less
influenced by u, g, and h than the user satisfaction, the correlation may be regarded as not high
or being reflected somewhere else, e.g., within the interaction parameters used for recognising
the user state. This simplification finally leads to two equations for tracking the two belief states
b(u,g,h) and b(sm) where the former is identical to Equation 2.5. The latter is defined as

b0(s0m) = k ·P(o0|s0m) ·Â
sm

P(s0m|sm,a) ·b(sm) (5.8)

for m 2 {1, . . . ,M}. This equation is then identical to Equation 4.18 where the user satisfaction is
estimated using a Hybrid-HMM approach also taking into account the last system action.

By introducing this simplification, known approaches for rendering belief tracking tractable
may be applied without any problems. More precisely, we are using the HIS approach (see
Sec. 2.1.2) within this thesis which renders the belief update tractable by partitioning the user
goal space into equivalence classes or partitions. Each partition then has a probability associated
indicating their belief value. To apply rule-based adaptation within the HIS framework, simply
the partition with the highest probability is selected. Then, based on the partition’s content, the
rules may be applied.

Of course, besides applying rule-based adaptation techniques which are based on an extended
dialogue state, another major part of formulating the dialogue management problem as a POMDP
is to apply automatic approaches for learning an optimised policy. Hence, in the following section,
we propose our ideas of how the user state may be used within those methods.
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5.1.2 User-Adaptive Dialogue Management with Policy Optimisation

In contrast to our proposed approaches described in the previous section where rules have been
defined manually to adapt the dialogue to the user state, we focus in this section on methods which
automatically learn optimal strategies based on the user state. As already outlined in Section 2.1.2,
reinforcement learning techniques are used to automatically learn an optimal policy p⇤(b) for
each belief state b. For POMDPs, learning the optimal policy for each belief state, though, is
a very complex problem. Williams and Young (2005) proposed to map the belief state b on a
summary belief state b̂. For the HIS methodology, the summary belief state is extracted out of the
partition distribution (Young et al., 2010). More precisely, it consists of

• the belief value of the top partition,
• the belief value of the second-top partition,
• the last user action,
• the partition state, and
• the grounding state.

Partition and grounding state indicate the general status, e.g., if the partition is consistent with a
single unique matching entity or entities of the partition have been confirmed by the user.

Furthermore, Young et al. (2010) propose a grid-based policy optimisation algorithm. Here,
the policy is stored as a set of grid points within the summary belief space. During execution
time, for each belief state b, the next system action a is identified by mapping finding the closest
grid point and executing the associated action. However, as the grid points are in the summary
space, only summary actions â are selected, e.g., request without slot information. These sum-
mary actions are then transferred to a regular system action using a heuristic. Based on this, the
Algorithm 1 outlined in Section 2.1.2 may be used to learn an optimal policy.

Finding an optimal strategy using a grid-based approach, though, results in the need of huge
amounts of training dialogues (> 100.000). Hence, Gačić et al. (2010) proposed Gaussian process
learning. In contrast to the grid-based approach, the Q-function (Eq. 2.10) modelling the expected
cumulative reward for the current state-action pair is approximated by Gaussian distributions.
Hence, by sampling the distribution given the current summary state, the next summary action
may be derived. This has been described in more detail in Section 2.1.2.

For incorporating the user state into both learning algorithms, there exist two principle options.
The first option is—as described in the previous section—to add the user state to the system state.
To be reflected in the learning algorithm, it also needs to be part of the summary belief space.
Then, the learning algorithm will automatically take the user state into account when comparing
summary belief points and learn an optimal strategy accordingly.

The second option is to use the user state for reward modelling. For most state-of-the-art
POMDP-based dialogue systems, the reward function is defined to be rather simple: for each
system action, the reward is -1. This is to enforce short dialogues. In the end, a high positive or
negative reward is added depending on whether the dialogue was successful, e.g., +20 for success
or -50 for failure.

Using the user state offers further interesting options. For example, it may be used to define
whether the final reward is applied, i.e., whether the dialogue was successful or not thus offering
an alternate notion of success. While this decision may usually only automatically be taken when
learning with simulated dialogues, using an automatically derivable user state offers the same
functionality for interaction with real users. In the case of user satisfaction, e.g., the dialogue may
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Fig. 5.4: The adaptive dialogue cycle for learning an optimal strategy using GP-SARSA algorithm
described in Algorithm 2. At each turn the system action, the updated dialogue state distribution
and the reward are used by the optimiser (along with the system action and the dialogue state of
the previous turn) to update the policy model.

be regarded as successful if the user is satisfied up to a certain degree in the end, as unsuccessful
otherwise.

Another option for using the user state for reward modelling is to take it into account directly,
e.g., for rewarding each system action (thus replacing the generic -1 value). In the case of user
satisfaction, which is modelled on an integer scale from one to five, the value may be used di-
rectly, e.g., r = �6+ sus. Here, exchanges where the user is not completely satisfied (siq < 5)
are discounted. Furthermore, changes in the user state may also be used, e.g., if the user’s emo-
tion state changes from sad to neutral, this may be rewarded with a positive value. Naturally, the
reward highly depends on the general task of the dialogue system.

To include both types of reward modelling into the GP-SARSA algorithm, the adaptive di-
alogue cycle is altered for the learning phase. The overall scheme is depicted in Figure 5.4. In
the centre, the known cycle is depicted with added system action, user action, state, and reward.
Here, the state, the system action, and the reward are then used (along with the system action and
the dialogue state of the previous turn which have to be stored) directly to optimise the policy.
This updated policy may then be used for selecting the next system action directly. Furthermore,
the user state is identified for each system-user exchange and fed into the reward.

For both types of user state adaptation—extending the dialogue state and learning an opti-
mised policy—we will provide evidence for their potential in user-adaptive dialogue modelling
in Section 5.3. A third way of using the user state has also been explored: predicting the influence
of executing a candidate system action on the user state. This will be described in the next section.
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5.1.3 Re-ranking of System Actions Based on the User State

With the general goal of rendering the dialogue manager user-centred, we have already proposed
two approaches on incorporating the user state: by extending the dialogue state and by learning a
user state-based optimal policy. However, the user state may also be used to influence the selection
of the next system action, or system dialogue act, by predicting the influence of said system action
on the user state.

For the user state of perceived coherence, we propose a two-stage approach shown in Fig-
ure 5.5: first the dialogue manager produces an n-best list containing possibly suitable dialogue
acts for the next system response. Then, the final dialogue act is selected according to an esti-
mation of the coherence of all n dialogue acts taking into account the current dialogue situation.
We propose to use the procedure in Figure 3 to compute the final DA: if the best dialogue act
chosen by the dialogue manager is coherent, then it is selected as the next system response. Else,
the n-best list is re-ranked according to their estimated coherence. Finally, the first-best entry of
the re-ranked list is chosen.

This approach aims at addressing the problem of generating coherent system responses in
human-machine-communication, i.e., the system response should be coherent with the conver-
sation up to the current moment. Here, utilising the coherence information extracted from the
conversation may help. By rendering the approach as a two-stage process thus adding a succes-
sive component after the dialogue manager, virtually any approach for dialogue management may
be applied without limiting the applicability of our proposed method.
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Fig. 5.5: Schematic overview of the two-stage coherence-based dialogue management approach

Hence, this procedure is portable to different application domains and may involve a diversity
of dialogue managers and automatic coherence estimation approaches. Therefore, it can be easily
adopted in existing systems with the only requisite that the dialogue manager generates an n-best
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Algorithm 3: Enhanced dialogue management procedure
1 begin
2 DAs statical dialogue management() ;
3 DAs annotated coherence coherence estimator(DAs) ;
4 if DAs annotated coherence[0] = ”Stronglycoherent” then
5 return DAs[0] ;

6 else
7 return select most coherent(DAs annotated coherence) ;

list of system DAs and the coherence estimator receives this lists and assigns a coherence label to
each alternative.

Before we evaluate our proposed approaches for user-adaptive dialogue modelling, we will
continue with describing the implementation of the proposed methods by extending the used
dialogue manager with the hidden information state and the user state recognition module.

5.2 Implementation of the User-Adaptive HIS-OwlSpeak
Dialogue Manager

While we have proposed three genuinely different approaches of how to include the user state into
the dialogue manager in the previous sections, in this section, we will continue with a thorough
description of how the user state recognition module—necessary for including the user state in-
formation into the dialogue manager—as well as the hidden information state POMDP approach
are implemented. As basis for this implementation, we will use the dialogue manager OwlSpeak
presented in Section 2.1.2. To integrate our proposed methods, we will partially re-engineer and
re-design core components of OwlSpeak. The resulting dialogue manager will then offer different
control modes (thus being able to adapt internally to domains of different complexity, (cf. Ultes
and Minker, 2014b)). Furthermore, it will offer different internal system state representations by
implementing the HIS approach into OwlSpeak. As the basic OwlSpeak system is based on the
IS approach, applying the hidden information state approach—an extension of the IS—for intro-
ducing probabilistic dialogue into OwlSpeak seems natural. The resulting system will have the
capability of providing different operation modes concerning the number of state hypotheses and
the policy:

• Rule-Based Control + Single State Hypothesis
• Rule-Based Control + Multiple State Hypotheses
• Trained Policy-Control + One State Hypothesis
• Trained Policy-Control + Multiple State Hypotheses

In accordance to the presentation of the original OwlSpeak in Section 2.1.2, the re-design nec-
essary for our implementation of a user-adaptive dialogue manager is described by following the
Model-View-Presenter paradigm. Subsequently, we will describe how the user extraction module
was integrated into the dialogue manager.
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5.2.1 Spoken Dialogue Ontology (Model)

Integrating our proposed dialogue management approaches into OwlSpeak to include HIS func-
tionality, the model has to be partially re-designed by adding or altering ontology concepts leading
to a modified ontology description. The new ontology is shown in Figure 5.6 with all new con-
cepts and relations coloured dark grey. Analysing the spoken dialogue ontology (SDO) of OwlS-
peak reveals that most needed concepts already exist. This is not surprising as the HIS approach
is an extension of the IS approach. The BeliefSpace concept represents the same functionality
as a partition does. Only some relations are added: parent and children relations are necessary
in order to create the hierarchical structure of the HIS partition space. Furthermore, assuming a
slot-filling dialogue, the relation excludesBelief represents all slot values which are excluded in
this partition. A slot taking one specific value, on the other hand, is represented by the hasBelief
relation.
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Fig. 5.6: The scheme of the Extended Spoken Dialogue Ontology (SDO) originally published
in (Ultes et al., 2014a). Concepts belonging to the original SDO are light grey while concepts and
relations introduced for the HIS implementation are dark grey. The static dialogue description is
shown on the left side of the picture within the Speech class while the concepts belonging to the
dynamic State of the system are shown on the right side. Additionally, concepts belonging to the
Policy are shown at the top.

The basic version of OwlSpeak does not support slots directly. For realising a slot-filling dia-
logue in the basic implementation of OwlSepak as described in Section 2.1.2, the expert designing
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the dialogue needs to handle this, e.g., by using naming conventions. However, no relations be-
tween semantics or variables may be modelled explicitly within the ontology. For a dialogue in
the flight booking domain, for example, a semantic representing a concrete slot value for the slot
“destination” would be sem destination miami, representing the semantic expressing that
the desired destination is Miami. The slot is “destination” and only encoded in a textual manner.
Of course, a general semantic for the destination may be added as well. However, there is no way
of modelling any connection explicitly.

The HIS theory is based on a slot concept, though. Hence, the ontology class SemanticGroup
is introduced into the Speech class representing one slot. A semantic group may contain multiple
semantic objects. Furthermore, a semantic group may also be related to a Variable by the hasVari-
able and belongsTo relations. In order to reflect the slot mechanism using semantic groups in the
belief space, the semantic group may also be contained as a Belief individual in the belief space.
To accomplish this, each time a new Belief individual is written to the belief space containing
slot value information, the corresponding semantic group individual is also written to the belief
space if it does not already exist there.

With the presented structure for slot functionality in OwlSpeak, two modelling variants are
realised. First, each slot value may be represented with its own semantic individual all connected
to the same semantic group. By modelling these slot values explicitly, they all may easily be
collected out of the ontology. Furthermore, each semantic may contain further information, e.g.,
how to name this value in speech synthesis for multiple languages. The drawback of using the
Semantic concept is that, for slots with many values, many semantic individuals will be created
increasing the size of the ontology accordingly. The second variant accounts for that by utilising
the Variable concept to represent slot values. The value is then written into the variable reducing
the number of ontology individuals to one. However, no additional information for the respective
slot value may be stored. Thus, multi-linguality for speech synthesis as mentioned above, for
instance, is much harder to achieve.

Furthermore, the concept SummaryAgenda is added to the State class of the SDO. It groups
all agendas with similar type, e.g., “requesting information” or “asking for confirmation”. The
SummaryAgenda is related to a set of agendas, implemented by the summarises relation.

Finally, a new general class is added to the DialogueDomian called Policy. It is necessary for
enabling OwlSpeak to create optimised policies as outlined in Section 2.1.2 and described by
Young et al. (2010). The SummaryBelief class contains fields representing the belief values of
the two top partitions as well as the last grammar move, i.e., the last user action. Furthermore, by
mapping a computed temporary summary belief—representing a summary of the current partition
distribution of the running system—to a SummaryBelief belonging to the policy, a summary sys-
tem action is selected which is determined by the summaryAgenda relation of the policy summary
belief individual. Out of the related set of agendas, a suitable agenda is selected by applying a
heuristic. This is elaborated in Section 2.1.2. In order to enable the usage of methods for creating
optimised policies, a reward function needs to be defined. This is realised by the Reward class
defining a reward value for all agendas which are connected by the rewardingAgendas.

5.2.2 Voice Document (View)

While the implementation of OwlSpeak described in Section 2.1.2 is based on single user input
(even without regarding the confidence score of the ASR interpretation), implementing the HIS
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entails n-best list functionality for the user input. As VXML documents are used as interface
between the dialogue manager and the remaining dialogue system components, the created docu-
ments need to be altered to add n-best list functionality. Fortunately, VXML provides mechanisms
for using n-best list with confidences inherently. N-best-lists are activated by adding

<property name=‘‘maxnbest’’ value=n/>

to the element <form>. To access this new information, the VXML shadow variables

resultArray[i].interpretation

resultArray[i].confidence

are used. resultArray[i] refers to the i-th element of the n-best list of ASR interpretation
results. The collected n-best list is then added to the field list of the <submit> element.

As we will also conduct experiments where a user simulator (see Sec. 2.1.4) is used instead
of real users, the view is altered in order to allow communication with the user simulator.

5.2.3 Dialogue Control (Presenter)

Adding to OwlSpeak the ability of offering different control modes and different types of system
states entails serious modifications to the control system. While the original algorithm of Owl-
Speak may be used having only a single state hypothesis, handling multiple state hypotheses is
very complex. Therefore, the AT&T Statistical Dialogue Toolkit (ASDT) (Williams, 2010a) is
used.

The general idea of updating the system state with a single hypothesis has already been de-
scribed in Section 2.1.2. A formalisation of updating the state is shown in Algorithm 4. As only
one user input may be processed, first, the entry of the n-best list with the highest confidence
is selected. This user action is represented by a Move individual hence including semantic and
contrarySemantic relations as well as variable operators. All of these are handled: First, beliefs
containing semantics of the contrarySemantic relation are removed from the belief space, second,
new beliefs for semantics of the semantic relation are added, and finally the variables are han-
dled by creating belief individuals in the belief space and adding the variable value as well as the
variableDefault. Of course, corresponding SemanticGroup individuals are also added or removed
wherever applicable.

Algorithm 4: State update (single hyp.) as published in (Ultes and Minker, 2014b)
Data: Belief space bs, list of user actions ũ, their confidences c(u)
Result: Updated system state (belief space bs)

1 begin
2 u argmaxu2ũ c(u)
3 Remove contrarySemantics of u from bs Write semantics of u to bs
4 Set variables of u in bs

As already mentioned above, for handling multiple state hypotheses by using the Hidden
Information State approach, the ASDT is used. It contains all HIS concepts presented in Sec-
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tion 2.1.2 and further conveys additional efficiency for tracking multiple dialogue states by incre-
mental partition recombination as presented by Williams (2010b).

The general mechanism for updating the partition distribution is already provided by the
ASDT (see Algorithm 5). For each user action of the n-best list and each partition, the parti-
tion is split using Algorithm 6 followed by an update of the belief value, i.e., probability, of the
current partition. If the total number of partitions exceeds a predefined maximum number, all
leaf partitions with minimum probability are merged with their parents until the total number of
partitions is less than the predefined value.

Algorithm 5: State update (multiple hyp.) as published by Williams (2010b)
Data: Set of partitions p, their beliefs b(p), list of user actions ũ, parameter pmax
Result: Updated set of partitions p and beliefs b(p)

1 begin
2 for n 1 to |ũ| do
3 for m 1 to |p| do
4 If possible, split pm on um and add children to p
5 Calculate new belief b0(pm)

6 while |p|> pmax do
7 p argminp:p is leaf b0(p)
8 Recombine p with parent and remove from p

9 Normalise b0(p)

Partition splitting is rendered by Algorithm 6. It decides whether the partition is split, i.e.,
children are created, or the current partition is solely updated. The latter happens if the user
action does not represent new slot information but only a confirmation move. Then, if the user
action matches the information of this partition, the confirmation information is inserted into the
partition (represented as a Semantic). A partition matches a user action if they do not disagree,
e.g., if the slot value of the user action is not excluded by the partition.

A new child partition is created using Algorithm 7 if the user action does not represent a
confirmation move but contains new slot information. By definition, the slot value of the user
move is added to the excludes list of the parent partition while the slot in the newly created child
partition equals the value (cf. Section 2.1.2). Hence, a new belief is created in the child partition
and added to the hasBelief relation. All beliefs which do not relate to the given slot are left
untouched and simply copied to the child partition.

Furthermore, calculating the new belief value (Line 5 of Algorithm 5) is also mainly handled
by the ASDT. Only the probability p(u0|p0,a) of the user action given the partition and the system
action (cf. Equation 2.6) needs to be computed. Ideally, a real probability distribution should
be learned. However, implementations in real systems have shown that this is not necessary.
It usually suffices to use a general algorithm differentiating the important cases. The resulting
Algorithm 8 hence returns a probability of 0.0 if the user action disagrees with the partition and a
1.0 if the user action agrees. As a user action may address more than one slot, the likelihood for
each slot is determined separately and the final likelihood is normalised over all slots.
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Algorithm 6: Split partition as published in (Ultes and Minker, 2014b)
Data: User action u, current partition p
Result: Updated p, child partition pc

1 begin
2 if u is confirmation then
3 if u matches p then

// no split
4 Update p by inserting confirmation

5 else
6 if u matches p then

// split
7 Create new child partition pc

Algorithm 7: Create child as published in (Ultes and Minker, 2014b)
Data: Parent partition p, slot s with value v
Result: Newly created partition p0 and updated parent p

1 begin
2 p0  empty partition
3 Add v to exclude list of p for slot s
4 Add v of s to p0

5 B beliefs in p
6 foreach b 2 B do
7 if b does not belong to s then
8 Copy b to p0

Once the system state is updated, selecting the next system action, i.e., agenda, may be per-
formed. This selection process may be regarded as a function called policy defined by p(s) = a,
where s is the current system state and a the resulting system action. The system offers two pol-
icy variants. First, a rule-based policy and second an automatically trained and optimised policy
determined in a training phase with hundreds of thousands of example dialogues and associated
reward function.

The rule-based policy, as described in Algorithm 9, is identical to the policy created for the
original OwlSpeak dialogue manager. In case of having a partition distribution, the partition with
the highest belief is selected. For this partition or—in case of only having one state hypothesis—
the BeliefSpace individual, the set of active agendas from the workspace is checked. As described
in Section 2.1.2, each agenda has execution preconditions, e.g., semantics which must or must
not be present in the current system state. Out of the resulting set of agendas, the agenda with the
highest priority is selected.

As previously described, there are many different approaches known for creating an optimised
policy. However, the optimisation problem is complex and standard algorithms often lead to in-
tractable solutions domain which are more complex, e.g., than having two slots and three values.
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Algorithm 8: User action likelihood as published in (Ultes and Minker, 2014b)
Data: User action u, its slots su, current partition p, its slots sp, system action a
Result: Likelihood lh of u and a for partition p

1 begin
2 foreach s 2 su do
3 if s 6= /0 then
4 v valueOf(s)
5 sp corresponding slot in up
6 if a is confirmation request then
7 c f  con f irmationIn f o of s
8 if c f is con f irm then
9 if v 2 sp then

10 lh lh+1.0
11 else
12 lh lh+0.0

13 else if c f is re ject then
14 if v 2 sp then
15 lh lh+0.0
16 else
17 lh lh+1.0

18 else if a is slot request then
19 if v 2 sp then
20 lh lh+1.0
21 else if v excluded by p then
22 lh lh+0.0
23 else
24 lh lh+ 1.0

nbRemFieldVals

25 lh lh
nbFields

Therefore, a grid-based approximation method and a Gaussian process-based method are used.
Young et al. (2010) proposed the grid-based method and the according policy implementation
is presented in Algorithm 10. It is based on sample summary belief points representing a set of
optimal system actions. For selecting the next agenda to be executed, a temporary SummaryBelief
individual is created. Then, the closest sample from the SummaryBelief individuals stored in the
ontology is found and its corresponding SummaryAgenda is derived. As an heuristic for deriving
the Agenda individual to be executed, the agenda is selected out of those which are summarised
by the SummaryAgenda according to their preconditions and priorities. This works similarly to
the procedure described in Algorithm 9. However, the semantics of the mustNot relation are not
regarded. For testing these preconditions, again, the partition with the highest probability is se-
lected. For this implementation, the optimised policy only works with multiple state hypotheses.
Having only one system state hypothesis would result in a different configuration of the summary
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Algorithm 9: Rule-based policy as published in (Ultes and Minker, 2014b)
Data: Set of partitions p, their beliefs b(p), set of agendas available for execution W, their

priorities prio(a)
Result: Agenda ā 2 w with conditions fulfilled and highest priority

1 begin
2 A /0
3 p̄ argmaxp2p b(p)
4 foreach a 2W do
5 t false
6 t checkRequiresCond(a, p̄)
7 t checkMustNotCond(a, p̄)
8 t checkVariableCond(a,p̄)
9 if t then

10 Add a to A

11 ā argmaxa2A prio(a)

belief points which are not modelled in the current implementation. For learning this optimal
policy, Young et al. propose a Monte Carlo e-greedy algorithm as presented in Section 2.1.2.

Algorithm 10: Grid-based policy as published in (Ultes and Minker, 2014b)
Data: Set of partitions p, their beliefs b(p), set of agendas available for execution W, their

priorities prio(a), set of summary belief points of the trained policy SB
Result: Agenda ā with conditions fulfilled and highest priority

1 begin
2 tmpSB convertToSummaryBelief(p)
3 closestSB findClosestSB(tmpSB,SB)
4 summaryAgenda getFrom(closestSB)
5 A /0
6 p̄ argmaxp2p b(p)
7 foreach a 2 summaryAgenda do
8 if a 2W then
9 t false

10 t checkRequiresCond(a, p̄)
11 t checkVariableCond(a,p̄)
12 if t then
13 Add a to A

14 ā argmaxa2A prio(a)

For the experiments conducted in this work, though, we will rely on a learning method based
on Gaussian process function approximation as already described in Section 2.1.2. Here, we will
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use the GP-SARSA algorithm as presented by Gačić and Young (2014) for dialogue system policy
optimisation. The implemented policy is described in Algorithm 11. Based on a set of summary
beliefs, which are stored in the ontology, and two matrices, which are stored separately, the Q-
function is approximated. Based on this approximation, the summary agenda having the maximal
Q value is selected. It should be noted that, for this selection, only summary agendas are used
that are known to contain at least one agenda which requirements are fulfilled. Then, the final
agenda is selected randomly out of all agendas contained in the summary agenda with fulfilled
requirements.

Algorithm 11: GP-SARSA policy
Data: Set of partitions p, their beliefs b(p), set of agendas with conditions fulfilled W,

Gaussian process model for Q-function Q(c,a)
Result: Agenda ā with conditions fulfilled

1 begin
2 c convertToSummaryBelief(p)
3 SW extractSummaryAgendas(W)
4 summaryAgenda argmaxa2SW Q(c,a)
5 A /0
6 p̄ argmaxp2p b(p)
7 foreach a 2 summaryAgenda do
8 if a 2W then
9 t false

10 t checkRequiresCond(a, p̄)
11 t checkMustNotCond(a, p̄)
12 t checkVariableCond(a,p̄)
13 if t then
14 Add a to A

15 ā getRandomAgenda(A)

All control modes, i.e., the rule-based and the optimised policy, are designed to use the same
underlying dialogue description thus making it independent of the dialogue domain. Therefore,
the same dialogue may be executed using the mode which suits the specific needs of the task
best. Furthermore, if multiple tasks are handled by the system, the control mode for each task can
be defined separately and independently. Hence, internal adaptivity to the complexity of the task
is realised. Moreover, by being able to switch the control mode, the dialogue manager offers an
easy way of collecting data using a handcrafted strategy which may be used for policy training
afterwards.

While we have explained how the HIS was implemented and integrated into OwlSpeak, still,
no user-adaptivity has been achieved as there are no means yet for deriving the user state. Hence, a
user state recognition module is added. The implementation of this user state recognition module
into OwlSpeak will be described in the following.
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5.2.4 Introducing the User State into OwlSpeak

For employing user state adaptivity for dialogue management, which is necessary for changing
the course of the dialogue according to the user state, the ontology-based dialogue manager Owl-
Speak has been extended. In this section, we will describe this extension exemplary for the user
state user satisfaction represented by the Interaction Quality (IQ). This process is similar for other
user states.

To enable OwlSpeak to being able to adapt the dialogue to IQ dynamically, i.e., during the
ongoing interaction, a component deriving the interaction parameters is created. It is designed to
store all information which is necessary to derive all interaction parameters on all levels. In order
to compute window and dialogue level parameters, a data structure is used internally to store the
information for all exchanges up to the current one of the ongoing dialogue. The parameters are
computed just in time when they are needed as input to the IQ recognition module.

Comparing the adaptive dialogue cycle (Fig. 5.1) with the architecture of OwlSpeak leads
to the conclusion that the interaction parameter extraction module is placed between the “User
Input Processing” and “State Update”. Hence, it is either located at the end of the view layer or
at the beginning of the presenter layer. Out of implementation reasons, the interaction parameter
module is placed at the beginning of the presenter layer. There, the interpreted input from the
voice browser can immediately be used for updating and calculating the interaction parameters.

However, the information provided by the voice browser is not sufficient for extracting all
interaction parameters as some are not necessary for regular dialogue management (e.g., user turn
length or ASR confidence). Hence, the view layer is modified by altering the VXML-creation.
New variable tags are added and filled with the respective information. Furthermore, the submit
tags are altered to provide this information to the dialogue manager once the VXML document
is processed completely. This also describes the principle concept of how the VXML document
functions as interface between the voice browser and OwlSpeak.

Once the interaction parameters are extracted and calculated, the IQ estimation takes place.
The parameter vector is fed into a Support Vector Machine which has been chosen as statis-
tical model as described in Section 4.1.2. The classifier is based on the LibSVM implementa-
tion (Chang and Lin, 2011) using a linear kernel. The SVM model is created beforehand which is
an advantage as this creation process is time consuming. Hence, only evaluating the input vector
consisting of the interaction parameters happens during dialogue run-time.

For creating dialogues which are adaptive to IQ, the IQ value needs to be accessed during
creation time. For this, the ontology concept Variable is used. The variable “InteractionQuality“
is created which may be used within conditions for defining requirements of agendas. These
requirements are processed and evaluated during the action selection process and only agendas
may be executed whose requirements are fulfilled. Hence, IQ-adaptivity is achieved by adding
new preconditions to the system actions. During run-time, the result of IQ estimation is stored
within the variable before it is processed in the action selection module.

An example for a conditioned agenda can be seen in Figure 5.7. Having a dialogue in the train
booking domain, the agenda combines the concept of implicitly confirming the day of travel and
asking for the desired time of departure. It is only executed if the Interaction Quality variable
holds a value greater than one. This condition is shown in the “variablesOperator” field using a
REQUIRES function. Furthermore, other preconditions are visible (in the “mustnot” field) along
with a list of moves belonging to this agenda (in the “has” field).
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Fig. 5.7: An example of a conditioned agenda originally published in (Ultes et al., 2014a): the
variableOperator field contains the requirement that the Interaction Quality must be greater than
one for this agenda to be executed.

Now, the implementation and all necessary steps have been described for using the hidden
information state together with the user state information for adaptive dialogue management.
For the showcase of user satisfaction, we have conducted several studies using the implemented
dialogue manager which will be described in the next section. Afterwards, the re-ranking of
system actions based on perceived coherence will be evaluated.

5.3 Experiments and Evaluation of User Satisfaction
Adaptation

For evaluating the adaptation of the dialogue strategy to the user state, we have proposed several
potential user states in Chapter 4. As already stated, the user satisfaction poses the one with the
highest possible impact as the users may be satisfied of unsatisfied with the interaction in nearly
all human-machine communication settings. Hence, we use the user satisfaction and present ex-
periments in this section on adapting the course of the dialogue accordingly.

To model the dialogue user-adaptive, we have proposed approaches on how to include the
user state into the dialogue management process. Here, we have developed three different ideas:
applying a rule-based policy (Sec. 5.1.1, learning an optimal policy (Sec. 5.1.2), and re-ranking
of system actions (Sec. 5.1.3). In this section, we will present experiments and evaluation for the
former two approaches. We will start with a pilot user study on adapting the grounding strategy to
user satisfaction followed by an experiment on adapting the initiative. Finally, we will draw some
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implications on using user satisfaction for reward modelling in reinforcement learning strategy
optimisation.

5.3.1 Pilot User Study Adapting the Grounding Strategy

Introducing user satisfaction adaptivity into the dialogue manager for the first time has unknown
potential. While we expect this potential to be very high, still, this should be demonstrated.
Hence, we conducted a pilot user experiment introducing a simple adaptive strategy. Based on
the extended OwlSpeak dialogue manager described in the previous section, an adaptive dialogue
within a simple train booking domain has been created. Depending on the current user satisfaction
represented by the Interaction Quality value, the grounding strategy was adapted, i.e., each time
the system requests a confirmation about a certain slot value from the user, the user satisfaction
value represented by the Interaction Quality (IQ) value is used to decide whether the system uses
an explicit or implicit confirmation prompt. In the following, the design and setup of the study
will be presented before giving details about the results.

Design and Setup

For adapting the dialogue to the Interaction Quality, the confirmation strategy was selected out
of one simple reason: it is an easily adaptable concept which occurs in almost every dialogue in
which the user is requested to provide information. A dialogue in the train booking domain was
created asking the user for information about the origin, the destination, the day of the week and
the time of travel. The user could choose out of 22 cities which were used as origin and destination
alike. Furthermore, the time of travel was restricted to every full hour (1 pm, 2 pm, 3 pm, etc.).
Three different dialogues were created: one only applying explicit confirmation (all-explicit), one
applying only implicit confirmation (all-implicit), and one adapting the confirmation type to the
current IQ value (adapted). Besides these differences, the dialogues were the same. The complete
dialogue was system initiated and the course of the dialogue was predetermined, i.e., the order
of information the user was asked to provide was given. A sample for the adapted strategy is
illustrated in Figure 5.8. As only two different options for adapting the dialogue exist, i.e., either
selecting implicit or explicit confirmation, the IQ value has been limited to only two values: two
representing a satisfied user and one representing an unsatisfied user. If the user was recognised
as being satisfied with the dialogue (high IQ value), slot values were confirmed implicitly while
explicit confirmation was applied for unsatisfied users (low IQ value). In the end of the dialogue,
the user was provided with a dummy message stating that the reservation has been made.

Before the experiment, each participant was presented with a sheet of paper stating all options
they could say during the dialogue. This also included a list of all cities. Furthermore, each user
participated in three runs of the dialogue—one for each type of confirmation strategy. During
the experiment, the order of these dialogues has been alternated to get an equal distribution over
all combinations so that learning effects are taken account of. However, the user was not aware
about the different dialogue types. After each dialogue, the participants were asked to fill out
a questionnaire based (see Fig. A.1) on the SASSI questionnaire (Sec. 2.2.3) to evaluate their
overall impression with the dialogue. Each item was rated on a seven-point scale.

In total, there were 24 participants (8 female, 16 male) creating 72 dialogues with an average
number of turns of 33.58. They were between 19 and 38 years old with an average age of 26.42.
The participants were students from multiple disciplines.
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Welcome to voice-
enabled train ticket 
vending machine. 

Where do you want 
to go to?

To Stuttgart

IQ 
value

So you want to go 
to Stuttgart, right?

From which city do 
you want to go to 

Stuttgart?

IQ = 2IQ = 1
(Explicit Confirmation) (Implicit Confirmation)

rejectreject

That is right.

Where do you 
want to leave 

from?

IQ 
value

Ulm

So you want to 
leave from Ulm, 

right?

Which day do you 
want to leave from 

Ulm?

IQ = 1 IQ = 2

Fig. 5.8: The dialogue flow for the adaptive strategy originally published in (Ultes et al., 2014a):
depending on the IQ value, the provided information by the user is either confirmed explicitly or
implicitly within the next system question. (Please note: the original dialogue was in German.)

Results

To evaluate the user experiment of adapting the grounding strategy to the user satisfaction, the
questionnaires are analysed. The results for each question is depicted in Table 5.1. Each row
shows the average score for one of the three different strategies. It is a well known fact that,
for simple tasks like this, an all-implicit strategy is usually preferred over an all-explicit strategy
(Fraser (cf. 1994)). Hence, as expected, the all-implicit strategy performed best outperforming
the all-explicit strategy clearly: it achieved a better score for almost all questions. The difference
is even significant for 16 out of 25 values (a < .05 applying the Mann-Whitney U test (Mann and
Whitney, 1947)). Comparing the all-explicit to the adapted strategy gives a similar impression:
The scores for almost all questions are better for the adapted strategy. However, this is not as
significant having only 7 significant different values. More revealing is the conclusion drawn
from comparing the all-implicit with the adapted strategy. While the all-implicit strategy again
governs the scores, almost all results are not significantly different. Hence and in contrast to the
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Table 5.1: The average results of the user questionnaires originally published in (Ultes et al.,
2014b): each question could be answered by a 7-point scale being translated to scores from one
to seven. Significant differences are marked with a, e, and i marking significance with the adap-
tive, explicit, and implicit strategy respectively. (Please note: the original questionnaire was in
German.)
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Fig. 5.9: Results of adapting the grounding strategy to IQ originally published in (Ultes et al.,
2014b): the overall satisfaction with the dialogue (left bar, left y-axis) and the average dialogue
length in number of turns (right bar, right y-axis) according to questionnaire evaluation. Satisfac-
tion for implicit and adapted do not differ significantly while all other differences are significant.

expectations, the adapted strategy did not perform significantly worse despite the dialogue being
very simple.

This result is underpinned by looking at the users’ overall satisfaction score with the dialogue
as an emphasis was put on the question which strategy people liked best. A bar graph showing
the average outcome of the user ratings grouped by the respective dialogue strategy is depicted in
Figure 5.9. While the adapted strategy resulted in 45.6 % explicit and 54.4 % implicit confirma-
tions, it is very interesting that it was not rated significantly different compared to the all-implicit
strategy. That is even, although the ASR component made almost no errors (due to the limited
number of options). Moreover, calculating Spearman’s Rho (Sec. 2.2.3) shows significant cor-
relation (a < 0.01) with r = 0.6 between the users’ overall satisfaction of the all-implicit and
adapted strategy. Additionally, the dialogue length, which is one main indicator for user satisfac-
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tion in simple dialogues like this, is significantly higher for the adapted strategy compared to the
all-implicit strategy.

In other words, although the task was quite simple, there was no difference between the all-
implicit and adapted strategies already revealing the potential of quality-adaptation and spurring
the hope that for more complex dialogues, a quality-adaptive strategy will perform best.

Building upon these promising results, we have conducted further experiments for adapting
a different dialogue strategy aspect: the dialogue initiative. All details of this experiment will be
described in the next section.

5.3.2 Adapting the Initiative

While we were clearly able to show encouraging results for adapting the grounding strategy to
user satisfaction with the user experiment presented above, it is unclear if other aspects of a
dialogue strategy may also be positively affected. Hence, in this contribution, we investigate if
applying rules for adapting the dialogue initiative to the user satisfaction—again represented by
the Interaction Quality (IQ)—may also result in an increase in IQ and if other metrics like task
success rate or dialogue completion rate may correlate1.

To investigate this, we have designed an experiment having an IQ-adaptive dialogue strategy
adapting the dialogue initiative. Depending on the IQ score, the system chooses between three
initiative categories. Here, conventional dialogue initiative categories are user initiative, system
initiative, and mixed initiative (Sec. 2.1.3). As there are different interpretations of what these
initiative categories mean, we stick to the understanding of initiative as used by Litman and Pan
(2002): the initiative influences the openness of the system question and the set of allowed user
responses. The latter is realised by defining which slot values provided by the user are processed
by the system and which ones are discarded. Hence, for user initiative, the system asks an open
question allowing the user to respond with information for any slot. For mixed initiative, the sys-
tem poses a question directly addressing a slot. However, the user may still provide information
for any slot. This is in contrast to the system initiative, where the user may only respond with
the slot addressed by the system. For instance, if the system asks for the arrival place and the
user responds with a destination place, this information may either be used (mixed initiative) or
discarded (system initiative).

Design and Setup

For evaluating rule-based adaptation of the dialogue initiative, five different strategies are created.
Three basic non-adaptive strategies are compared against one adaptive and one random adaptive
strategy. All of these strategies can be generated from the flow diagram in Figure 5.10 by varying
the IQ value. In order to keep the strategies comparable, all have a similar structure: in each
strategy, the system starts with an open request allowing the user to respond with information for
all slots. The system first continues with confirming provided information before continuing in a
strategy-specific way.

For adapting the initiative based on IQ, the following strategies have been used:

1 Automatic optimisation aims at maximising a reward function. If IQ was contributing positively to this reward
function, optimisation would naturally result in an increase in IQ. As we do not perform optimisation within this
experiment, this correlation does not automatically exist
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User initiative strategy The initiative is completely on the user’s side. Hence, the system con-
tinues openly requesting information. If information is provided for
any slot, a confirmation is requested from the user. After that, the user
response is restricted: new values for already confirmed slots are dis-
carded. This continues until all mandatory slots have a confirmed value
or the user terminates the interaction.

Mixed initiative strategy Having a mixed initiative means that the system is in control of the
interaction in general while leaving the user room to change the course
of the dialogue proactively. To realise this, the system continues by
asking the user to provide information about specific slots. However,
the user is not restricted on giving information about the given slot
but is free to provide information for any slot. Again, if information is
provided, a confirmation is requested from the user restricting the slots
the user may refer to in future exchanges.

System initiative strategy In a strategy based on system initiative, the system is totally in control
of the interaction. Thus, the system asks for specific slots discarding
information about other slots the user might provide. Hence, the di-
alogue is less flexible. For provided slot information, a confirmation
action is immediately performed.

Adaptive strategy For adapting the initiative based on IQ, the strategy utilises the basic
concepts of the non-adaptive strategies. Hence, the way missing infor-
mation is requested depends on the Interaction Quality. For an IQ value
of five, an open request is placed. For an IQ value greater than two, in-
formation for all missing slots is allowed as user input (same behaviour
as in the mixed initiative strategy) while only the requested informa-
tion is allowed otherwise. Again, if unconfirmed slot information is
present, the strategy commands to first initialise grounding before re-
questing missing information. It should be noted that the thresholds be-
tween the different adaptation levels have been defined manually based
on human judgement. An example dialogue is depicted in Figure 5.11.

Random strategy The randomly adaptive strategy uses the same dialogue description as
the adaptive strategy. However, not the IQ value is used to select the
initiative. Instead, the initiative is selected randomly.

The dialogues of all strategies continue until all mandatory slots contain a confirmed value
or the user terminates the interaction. If the user responds with information about a slot which is
not in the set of allowed slot information, these values are discarded. This may lead to a ’Non-
Understanding’ (or ’out-of-grammar’ user input) even though the user has provided information.

For creating the user-adaptive dialogue, the Let’s go bus information domain has been chosen
(cf.4.1.1). For creating the user simulator LGUS, Lee and Eskenazi (2012) have reduced the set
of system and user actions.

The system actions are as follows:

Request With using request actions, the system requests information from the user (simulator).
Possible requests are ’Request(Open)’, ’Request(Bus number)’, ’Request(Departure
place)’, ’Request(Arrival place)’, and ’Request(Travel time)’. While the latter four di-
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Confirmation

Unconfirmed info?

Exit

Request(SLOT)
multiple input

Request(SLOT)
single input

IQ > 2?

no yes

All info confirmed?

no

yes

IQ > 4?

input ϵ {yes,no}

yes

no

non‐understanding

input ⊆ {BusRoute,
DeparturePlace,
ArrivalPlace,Time}

non‐understanding

input ϵ {DeparturePlace,
ArrivalPlace,Time}

input ⊆ 
{DeparturePlace,
ArrivalPlace,

Time} yes
non‐understanding

Request(Open)
multiple input

Start

no

Fig. 5.10: The flow chart describing the adaptive and non-adaptive initiative selection strategies
originally published in (Ultes et al., 2015a): for the adaptive strategy, the course of the dialogue
as well as the allowed user input are influenced by the IQ value. For the random strategy, the
IQ values are generated randomly. The non-adaptive strategies are realised by fixed IQ values:
IQ = 5 for the user initiative strategy always posing open requests, IQ = 3 and IQ = 1 for mixed
and system initiative explicitly requesting slot information. Provision of the bus route was not
mandatory.

rectly target a slot, the first request leaves the choice completely to the user which in-
formation to provide to the dialogue system.

Confirm With confirmation actions, the system elicits common ground between the system
and the user. Here, the Let’s Go User Simulator only provides asking for confirma-
tion explicitly for one slot at a time. Hence, possible actions are ’Confirm(Bus num-
ber:VALUE)’, ’Confirm(Departure place:VALUE)’, ’Confirm(Arrival place:VALUE)’,
and ’Confirm(Travel time:VALUE)’, where VALUE represents the slot value to be con-
firmed (or denied) by the user.

It is important to note that, in contrast to the number of user actions provided by the user simulator,
only one system action at a time may be proposed to the user simulator.

In contrast to this, the user is free to respond with an arbitrary number of user actions at one
time (out of the set of available user action). The user actions are:
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(1) S: Request(Open)
(2) U: Non-understanding IQ = 5
(3) S: Request(Open)
(4) U: Inform(Travel Time: 8pm) IQ = 5
(5) S: Confirm(Travel Time: 8pm)
(6) U: Deny IQ = 3
(7) S: Request(Departure place)
(8) U: Inform(Travel Time: now) IQ = 3
(9) S: Confirm(Travel Time: now)

...

Fig. 5.11: Example dialogue of the initiative adaptive strategy originally published in (Ultes et al.,
2015a): as the IQ value is 5 in the beginning, the system requests openly for information. After
the IQ value has dropped to 3, the mixed initiative is active. Hence, the system asks for specific
information directly still allowing input for other slots.

Inform For providing new information to the dialogue system, the user informs the system
about specific slot values. Hence, the corresponding user actions for informing the
system are ’Inform(Bus number:VALUE)’, ’Inform(Departure place:VALUE)’, ’In-
form(Arrival place:VALUE)’, and ’Inform(Travel time:VALUE)’. VALUE represents
the specific slot value.

Confirm When being ask to confirm the value of a given slot, the user may respond either with
an ’Affirm’ or a ’Deny’ action.

Any combination of the user actions is possible—even having contradicting information present,
e.g., informing about two different values of the same slot or affirming and denying a value at
the same time. As problems with the speech recognition and language understanding modules are
also modelled by LGUS, these effects are reflected by the user action ’Non-Understanding’.

Besides the system and user action, there is also a set of commands for communicating with
the user simulator. The command ’Start over’ causes LGUS to restart, i.e., creating a new user
goal, etc. To get the true user goal from LGUS, which is necessary for evaluating the system by
calculating task success, the command ’Get user goal’ is provided.

In order to evaluate the dialogue strategies, we use the adaptive dialogue manager OwlSpeak
extended for including quality-adaptivity (Sec. 5.2). As OwlSpeak is based on the Model-View-
Presenter paradigm, originally, the view is implemented as interface to a voice browser using
VoiceXML (Oshry et al., 2007). For connecting OwlSpeak to a user simulator, the view has been
replaced. The user simulator at hand, the LGUS (Lets Go User Simulator), is instantiated as a
server application communicating to other modules using JSON (Crockford, 2006). Furthermore,
the system has been extended to handle multi-slot user input.

For rendering the system adaptive, the interaction estimation module is used as presented in
Section 5.2.4. Interaction with real users requires a more complex system than an interaction
with a simulated user. Thus, some SDS modules are missing and not all parameters of the Inter-
action Quality paradigm are available and may be used. This results in a feature set of only 16
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parameters2. The trained model achieves an unweighted average recall3 of 0.55 on the training
data using 10-fold cross-validation which is comparable to our best-know approaches presented
in Section 4.1. All exchanges of the LEGO corpus have been used for training.

Evaluation of the dialogue strategies is performed by creating 5,000 simulated dialogues for
each strategy. Like Raux et al. (2006), short dialogues (less than 5 exchanges4) which are con-
sidered “not [to] be genuine attempts at using the system” are excluded from all statistics of this
experiment.

In addition to the three objective metrics average dialogue length (ADL), dialogue completion
rate (DCR) and task success rate (TSR) described in Section 2.2.3, which are used to evaluate the
dialogue performance, the average IQ value (AIQ) is also considered. It is used to investigate
a correlation between objective measures and IQ. AIQ is calculated for each strategy based on
the IQ values of the last exchanges of each dialogue. Furthermore, this measure is also used to
investigate if adapting the course of the dialogue to IQ also results in higher IQ values.

Results

Figure 5.12 shows the ratio of complete, incomplete, and omitted dialogues for each strategy with
respect to the total 5,000 dialogues. As can be seen, about the same ratio of dialogues is omitted
due to being too short. The DCR clearly varies more strongly for the five strategies.

The results for DCR, TSR, ADL, and AIQ are presented in Table 5.2 and Figure 5.14. TSR
is almost the same for all strategies, meaning that, if a dialogue completes, the system almost
always found the correct user goal.

Table 5.2: The results of the experiments for the five strategies given by dialogue completion
rate (DCR), task success rate (TSR), average dialogue length (ADL) and average Interaction
Quality (AIQ) rating the complete interaction for all completed dialogues originally published
in (Ultes et al., 2015a). All results for DCR and TSR are significantly different (chi-squared
test). Significant differences in ADL (unpaired t-test) and AIQ (Mann-Whitney U test) with the
respective column below are marked with ** for the level of a < 0.01 and with * for a < 0.05.
All other comparisons between non-neighbours are significant with a < 0.01

Strategy DCR TSR ADL AIQ

adaptive 54.27% 99.18% 11.86 3.47**

random 49.53% 99.22% 11.82** 3.44**

system initiative 29.48% 98.75% 13.30* 3.23
mixed initiative 22.91% 99.20% 14.40* 3.15**

user initiative 5.32% 97.92% 18.04 2.66

DCR, ADL and AIQ on the other hand vary strongly. They strongly correlate with a Pearson’s
correlation of r = �0.953 (level of significance a < 0.05) for DCR and ADL, r = 0.960 (a <

2 The parameters applied are ASRRecognitionStatus, ASRConfidence, RePrompt?, #Exchanges, Activity-
Type, Confirmation?, MeanASRConfidence, #ASRSuccess, %ASRSuccess, #ASRRejections, %ASRRejections,
{Mean}ASRConfidence, {#}ASRSuccess, {#}ASRRejections, {#}RePrompts, {#}SystemQuestions.

3 The arithemtic average over all class-wise recalls.
4 The minimum number of exchanges to successfully complete the dialogue is 5.
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Fig. 5.12: The ratio of omitted dialogues for adapting the initiative originally published in (Ultes
et al., 2015a). The bars show the dialogues omitted due to their length (< 5 exchanges), the com-
pleted dialogues (complete), and the dialogues which have been aborted by the user (incomplete)
with respect to the dialogue strategy. While the amount of short dialogues is similar for each
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Fig. 5.13: The dialogue completion rate (DCR), the task success rate (TSR), the average Interac-
tion Quality (AIQ), and the average dialogue length (ADL) for all rule-based dialogue strategies
originally published in (Ultes et al., 2015a). With decreasing DCR, also AIQ decreases and ADL
increases. (AIQ values are normalised to the interval [0,1].)
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0.01) for DCR and AIQ, and r = �.997 (a < 0.01) for ADL and AIQ. This shows that by
improving IQ, being a subjective measure, an increase in objective measures may be expected.

Comparing the performance of the adaptive strategy to the three non-adaptive strategy clearly
shows that the adaptive strategy performs significantly best for all metrics. With a DCR of
of 54.27%, the performance is comparable to the rate achieved on the training data of LGUS
(cf. (Lee and Eskenazi, 2012)). The non-adaptive strategies achieve a much lower DCR having
the system initiative strategy as second best with only 29.48%. This performance goes together
with shorter dialogues shown by the ADL. Furthermore, the results for DCR clearly show that
the user initiative strategy is unemployable. Thus, this strategy will not be analysed any further.

Furthermore, it is of interest if better objective performance also results in better IQ values
for the complete dialogue. This is especially important since it is imperative for the relevance of
the Interaction Quality. Adapting to IQ to improve the dialogue should also result in an increase
of the IQ value. This effect has been validated by these experiments. The adaptive strategy has a
significant higher average IQ (AIQ) value calculated from the IQ value for the whole dialogues,
i.e., the IQ value of the last system-user-exchange, than all other non-adaptive strategies.

The question remains if adapting to IQ is the actual reason for the improvement. Maybe, the
user only likes diversified initiative prompts better which is represented by the random strategy.
While this statement is true to some extent (see ADL), reasonably adapting to IQ further improves
the system performance significantly as shown by DCR and AIQ.

Besides the interest in the general performance of the quality-adaptive strategy, we are specif-
ically interested whether implications may be drawn from the experiments about the usage of IQ
in a reinforcement learning setting for modelling the reward function which will be presented in
the following.

5.3.3 Reward Modelling

For modelling the reward employing the user state, we have outlined two different approaches
in Section 5.1.2. One of these approaches describes how to use the user state to decide whether
the dialogue was successful or not to apply a high positive or negative reward accordingly. This
idea is investigated more closely in this experiment. Here, we start off with an analysis of the
results of the previous experiment with respect to the potential of IQ for reward modelling. Based
on these findings, a reward function using IQ for defining success is applied for POMDP-based
reinforcement learning in a follow-up experiment. The resulting policies are evaluated against
policies trained on state-of-the-art approaches to reward modelling.

Analysis: IQ for Reward Modelling

The presented results in Section 5.3.2 clearly show that AIQ and DCR are correlated. As almost
all completed dialogues were also successful, a correlation between AIQ and task success may
be assumed. In this section, we investigate if this correlation may be exploited for modelling
the reward function for reinforcement learning approaches to dialogue management. This would
be very beneficial, as for state-of-the-art reinforcement learning approaches to dialogue manage-
ment, e.g., (Lemon and Pietquin, 2012; Young et al., 2013), a positive or negative reward is added
at the end of each dialogue depending on the successful achievement of the task. However, to do
this, usually, the true user goal needs to be know. This is either possible by asking the user or by
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Table 5.3: Example of the task success rate with respect to IQ and the dialogue length (DL)
originally published in (Ultes et al., 2015a). Not regarding rows with less than 15 dialogues, there
is clearly a trend for higher task success rates if the IQ value increases as well.

DL IQ success failure # dialogues

9

1 0.0% 100.0% 487
2 0.0% 100.0% 40
3 37.2% 62.9% 253
4 93.8% 6.3% 512
5 0.0% 100.0% 2

10

1 0.0% 100.0% 452
2 0.0% 100.0% 38
3 42.4% 57.6% 172
4 96.6% 3.5% 406
5 0.0% 100.0% 3

11

1 0.0% 100.0% 405
2 2.9% 97.1% 35
3 47.8% 52.3% 178
4 84.0% 16.0% 100
5 - - 0

12

1 0.3% 99.7% 329
2 23.1% 76.9% 52
3 78.5% 21.6% 297
4 96.3% 3.7% 270
5 0.0% 100.0% 1

using a user simulator for training. Here, it has been shown that optimising the strategy with real
user dialogues yields better strategies (Gačić et al., 2013a) than using a user simulator. However,
asking the user to provide whether they consider the dialogue to be successful is time consuming
and interruptive thus only possible in artificial lab settings. If there was a metric which allowed
to automatically detect successful, or, more generally, good dialogues, this metric would be very
useful for the before described situation yielding the opportunity to optimise on real dialogues
without disrupting the users.

Therefore, the correlation of the final IQ value and task success is analysed. Based on all
strategies, the dialogues are evaluated regarding the success rate with respect to the final IQ value
and the dialogue length. An example for dialogue lengths of 9–12 is depicted in Table 5.3. To
compute those, again, dialogues with less than five exchanges are excluded. Clearly, a trend can
be identified for higher task success rates when having a high final IQ for all dialogue lengths5.

Based on this finding, an IQ threshold may be defined which separates dialogues regarded
as being successful and dialogues regarded as being not successful. For a threshold of four, for
example, all dialogues with a final IQ of five and four may be regarded as successful while all
other dialogues are regarded as failure. However, not all dialogues above the threshold are nec-
essarily actually successful and not all dialogues below the threshold are necessarily actually un-

5 Only rows with more than 15 dialogues are regarded as sufficient data is needed to compute reasonable task success
rates.
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Table 5.4: The precision of success and failure dialogues (along with the unweighted average
precision (UAP)) when setting all dialogue with final IQ greater or equal a given IQ value to be
successful and the remainder to be a failure originally published in (Ultes et al., 2015a).

Success Precision UAP
IQ � Success Failure

5 0.448 0.669 0.559
4 0.863 0.826 0.845
3 0.652 0.888 0.770
2 0.646 0.995 0.820
1 0.331 - 0.166

successful. Hence, to find an optimal threshold, the precision—representing this relationship—is
calculated for both success and failure dialogues for different thresholds. The results are depicted
in Table 5.4.

The best overall threshold indicated by a maximum unweighted average precision6 (UAP) is
four achieving a precision of 0.863 for success and of 0.826 for failure. While a threshold of four
is also the best threshold for success, the highest precision for failure is a threshold of two, i.e.,
regarding all dialogues as being a failure with a final IQ of one. Hence, to further maximise UAP,
two thresholds may be defined: four for success and two for failure. This results in an UAP of
0.929 not regarding all dialogues with a final IQ of two or three.

Defining a threshold based on precision yields the downside that some actually successful
dialogues are regarded as failure and vice versa. In fact, defining a threshold of four results in
a recall—representing the percentage of dialogues being regarded as successful out of all truly
successful dialogues—of 0.595 as shown in Table 5.5. This means that more than 40% of all
truely successful dialogues are regarded as failure which is not ideal. Additionally, a recall of
0.953 for failure means that less than 5% of all truly failing dialogues are regarded as success.
However, using the two thresholds defined above results in better rates. Still, 4.7% of all failing
dialogues are regarded as success. However, only 0.8% of all successful dialogues are regarded as
failure which is much better. Having two thresholds, though, results in the need for more training
dialogues: only 64% of all dialogues are used for training resulting in the need for 56% more
dialogues for training.

Design and Setup

While we have above argued for using the IQ value within a reward function, the proposed meth-
ods still have to be validated. Hence, we have designed an experiment where we use the IQ value
for deciding whether a dialogue is regarded as being successful. More precisely, we follow the
above findings by defining each dialogue with a final IQ value of � 4 as successful. This reward
function is evaluated against a reward function utilising true task success instead. Both reward
functions have in common that, for each turn, �1 is added to the total reward R of the respective
dialogue. In the end of each dialogue, a decision is made whether a reward of +20 is added to R.
Here, the following reward functions have been applied for calculating R:

6 The arithmetic average over all class-wise precisions.
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Table 5.5: The recall of success and failure dialogues (along with the unweighted average recall
(UAR)) when setting all dialogue with final IQ greater or equal a given IQ value to be successful
and the remainder to be a failure originally published in (Ultes et al., 2015a).

Success Recall UAR
IQ � Success Failure

5 0.008 0.995 0.502
4 0.595 0.953 0.774
3 0.798 0.789 0.794
2 0.992 0.730 0.861
1 1.000 - 0.500

RT S =T · (�1)+

(
+20 if task successful ,
0 otherwise ,

(5.9)

RIQ =T · (�1)+

(
+20 if dialogue completed & IQ � 4 ,

0 otherwise .
(5.10)

For the experiments, we have used the same dialogue setup as for the rule-based experiment
described in Section 5.3.2 and illustrated in Figure 5.8. However, the rules which have been used
for selecting the type of dialogue initiative have been removed. Instead, the best dialogue ini-
tiative strategy is determined automatically during the reinforcement learning process. Another
difference is that, while we have used one state hypothesis for the previous experiment, for this ex-
periment, HIS-OwlSpeak is used having multiple state hypotheses thus constituting a full-blown
POMDP. Its implementation in our OwlSpeak dialogue manager is described in Section 5.2.

Applying a Gaussian process-based learning algorithm as presented in Section 2.1.2 for the
Let’s Go domain also encompasses the definition of a suitable kernel function. The kernels pro-
posed by Gačić and Young (2014) resulted in numerical inconsistencies. Therefore, we have
defined our own kernel inspired by Lefevre et al. (2009) as

k((b,a),(b0,a0)) =
2

Â
d=1

ad · (1� |b(d)�b0(d)|)

+
5

Â
d=3

ad ·d (b(d),b0(d)

+aa ·d (a,a0) . (5.11)

Here, the as are weights and d 2 [1,5] represents the dimension of the belief state having d 2 [1,2]
referring to the continuous values and d 2 [3,5] referring to the discrete values of the belief state.
d (x,y) represents the Kronecker delta which evaluates to 1 only if x = y and 0 otherwise.

As we have proposed different variants of modelling IQ in Section 4.1, we will not only use
an SVM within the IQ estimation module (Sec. 5.2.4) but also a Hybrid-HMM (see Sec. 4.1.3)
approach using the SVM as classifier for providing the observation probability. Moreover, we will
also apply a random generator for generating the IQ value randomly. Consequently, four different
reward variants are investigated: RT S, RIQ�SV M, RIQ�HMM, and RIQ�RND. For each reward func-
tion, a policy is trained with 1,000 dialogues using the GP-SARSA algorithm (Sec. 2.1.2) and
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evaluated with 5,000 simulated dialogues. For training and evaluation, the Let’s Go User Simu-
lator (Lee and Eskenazi, 2012) is applied. As in the previous experiment, the evaluation metrics
TSR, DCR, ADL, and AIQ are used.

Results

The results for the policies trained using the four proposed reward functions are depicted in Fig-
ure 5.7 and Table 5.6. Evidently, the policy trained using RIQ�SV M outperforms all other policies
significantly in DCR, ADL, and AIQ. Even the differences to RT S, its closest competitor, are
significant (DCR: p < 0.001 using chi-squared test, ADL: p < 0.001 using unpaired t-test, AIQ:
p < 0.001 using Mann-Whitney U test). Moreover, achieving a DCR of 60.61%, the learned strat-
egy outperforms all rule-based strategies evaluated in the previous section. When comparing the
different ways of recognising IQ, using the SVM results in best performance. Thus, while the
Hybrid-HMM achieves a good overall correlation on the exchange-level it is not as suitable for
estimating the final IQ value compared to applyinig an SVM. Still, the resulting strategy performs
still better than using a randomly generated IQ value.
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Fig. 5.14: The dialogue completion rate (DCR), the task success rate (TSR), the average Inter-
action Quality (AIQ), and the average dialogue length (ADL) for all learned policies with HIS
dialogue management. Evidently, using the Interaction Quality for deciding which dialogue was
successful achieved best performance in all measures. (AIQ values are normalised to the interval
[0,1].)

Of most interest, though, is the difference between RIQ�SV M and RT S. As almost all dialogues
which are completed are also successful, using RIQ�SV M may be seen as an additional selection
process: out of all successful dialogues, only the ones with a high IQ value are selected as positive
examples for the learning process. The distribution of dialogues with a final IQ � 4 and IQ < 4
for all successful dialogues during the learning process using RIQ�SV M is depicted in Table 5.7.
Only 31.3% of the successful dialogues are actually used as positive examples. Hence, it may be
concluded that IQ encapsulates more information about positive dialogues than a simple measure
like task success is able to. This finding has also been made in a similar way by Gačić et al.
(2013a) using the rating of real users acquired through human interaction.
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Table 5.6: The results of the POMDP-based strategies using the different reward functions based
on task success (TS) or the final IQ value. The latter has been determined using either an SVM or
an HMM, or a random generator. The strategy which used the IQ value of SVM-based recognition
performs best.

DCR TSR AIQ ADL

IQ (SVM) 60.61% 99.90% 2.59 13.41
IQ (HMM) 40.62% 99.93% 1.54 16.51
IQ (RND) 38.66% 99.84% 1.52 16.70

TS 52.53% 99.89% 1.81 15.04

Table 5.7: Distribution of IQ values with respect to task success for the training using the IQ-
based reward function IQ (SVM). Only 31.3% of all truly successful dialogues have an IQ value
which was high enough to result in a high final reward.

IQ percentage

� 4 31.1%
< 4 68.9%

Up until now, we have presented the evaluation of adapting the course of the dialogue accord-
ing to the user satisfaction for rule-based systems. Furthermore, we have outlined and evaluated
the usability of user satisfaction for learning an optimised policy. For evaluating adaptation on
perceived coherence, we have chosen our approach on re-ranking system actions. This will be
described in detail in the following.

5.4 Experiments and Evaluation of Perceived Coherence
Adaptation

Having the user satisfaction as the most universal user state (out of all four presented user states in
Chapter 4), the perceived coherence clearly resides at the second position in our user state rank-
ing: it is comparable to the user satisfaction in terms of application generality and provides almost
the same potential on improving the dialogue. Hence, we present an experiment of adapting the
course of the dialogue to the perceived coherence. Out of our proposed adaptation methods pre-
sented in Section 2.1.3, we have selected the re-ranking of dialogue acts as appropriate approach
for our experiment which will be presented in the following.

5.4.1 Re-ranking of System Actions

As mentioned before, one important aspect of human-machine-communication poses the problem
of generating coherent system responses, i.e., the system response should be coherent with the
conversation up to the current moment. Here, utilising the coherence information extracted from
the conversation may help. In order to do so, our idea has been outlined in Section 5.1.3: by
estimating the perceived coherence of system dialogue acts (SDAs) of an n-best-list provided
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by the actual dialogue manager, the overall coherence of the dialogue system is improved by
selecting the SDA with highest coherence. The evaluation of our approach will be described in
this section starting with the experiment’s design and setup.

Design and Setup

A suitable setup was chosen for evaluation which is depicted in Figure 5.15. Here, the dialogue
manager, which is applied within the first step in our two-step process, generates the n-best-list
and is based on the approach of Griol et al. (2008). They created a statistical dialogue man-
ager employing supervised learning techniques. Based on a labeled corpus, a dialogue register
as described in Section 4.2.3 is used modelling the current dialogue state. Utilising a multi-layer
perceptron (MLP, see Sec. 2.2.1), a statistical model is trained determining the next system action
taking the current dialogue state, i.e., the dialogue register, as input. As we use the dialogue man-
ager not only to determine the one-best system action but to determine the n-best system actions,
this list is generated using the probabilities of each possible system action computed by the MLP.

Dialogue Register
Current System Dialogue Act

Interaction Parameters

Statistical
Dialogue Manager

Coherence
Estimator

1-best is
coherent?

Choose 1-best
Choose the

most coherent
from list

Next System Dialogue Act

Enhanced Dialogue Management Process

n-best list
of SDAs

Coherence of
each SDA

in n-best list

Fig. 5.15: Enhanced dialogue management process for a two-stage coherence-based system action
selection. The n-best list of system dialogue acts (SDAs) is tested for coherence. If the 1-best entry
is coherent, then it is selected. Otherwise, the most coherent alternative from the list is chosen.

Having an n-best-list of system dialogue act generated from the dialogue manager, each sys-
tem dialogue act is then evaluated whether being coherent or not given the conversation up to the
current turn. More precisely, only the top-ranked SDA is tested, which is the one conventionally
being executed. If this SDA is predicted to be coherent, it is directly executed7. Only if the top-
ranked SDA is predicted to be non-coherent, the remaining SDAs of the n-best-list are tested for
coherence. Based on the results, the n-best-list is re-ranked to have only coherent SDAs on top.
If there are multiple SDAs being predicted as coherent, the confidence scores from the estima-

7 This is even if other SDAs may be evaluated to be coherent with a higher confidence. The selection of this particular
SDA may then be an effect of the applied dialogue strategy.
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Table 5.8: Experimental results (absolute and relative) of coherence-based re-ranking of system
dialogue acts compared to a plain statistical dialogue manager without re-ranking as well as the
original system.

Re-ranked Non re-ranked Original LetsGo

Non-coherent 685 (16.2%) 717 (17.0%) 395 (9.4%)
Weakly coherent 876 (20.7%) 889 (21.1%) 1005 (23.8%)

Strongly coherent 2661 (63.0%) 2616 (62.0%) 2822 (66.8%)

tor, which are associated with the prediction quality, are also regarded having predictions with a
higher confidence on top of the list.

To evaluate this approach, the proposed method as been applied to compute an alternative
option from a 4-best list. For the initial test for coherence, a binary classifier was trained, i.e., the
classes of strongly and weakly coherent were combined to the class coherent. The resulting binary
classifier achieved an unweighted average recall of 62.2% based on 5-fold cross validation. If this
initial estimation resulted in a coherent SDA, then the SDA is executed directly. Otherwise, all
candidates of the 4-best-list are tested for coherence using our approach presented in Section 4.2
and the list is re-ranked.

Results

The resulting dialogue acts are again annotated with coherence allowing us to compute an overall
coherence rate. Table 5.8 shows the experimental results comparing the annotated coherence of
the responses selected by the original rule-based Lets Go system, the statistical dialogue manager
developed, and the statistical dialogue manager optimised by means of the proposed technique.

As can be observed, the statistical dialogue manager developed achieves coherence rates lower
than the original LetsGo system. That is, the original system—which is based on fine-tuned hand-
crafted rules—selects SDAs which are more coherent. One issue is that the training data of the
statistical dialogue manager, which is based on the LEGO corpus (see Sec. 4.1.5), does not pro-
vide coherent SDAs for all situations. This includes unseen situations as well as situations where
the original system chose a non-coherent SDA.

However, using the proposed technique, the statistical dialogue manager could be improved
by using the coherence estimator. Many of the non-coherent 1-best dialogue acts selected in the
first place were corrected, the number of non-coherent DAs could be reduced by 0.8% absolute
(4.45% relative) and increasing the number of strongly coherent SDAs by 1.0% absolute at the
same time.

For dialogue systems in a more complex domain, it may be expected that the impact of
coherence-based re-ranking is even higher. For such a system, it is quite hard to define a well-
performing set of rules. Thus, it may be expected that the overall coherence is also lower. Fur-
thermore, systems using statistical methods for creating policies have shown to perform better in
complex domains. Due to the nature of our proposed system to not be dependent on the actual
dialogue management approach, adding coherence-based re-ranking of SDAs may be considered
as being able to improve the DM output in general.
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For a better understanding, an example dialogue is shown in Figure 5.16 showing a dialogue
where the SDM chooses a non-coherent system action. However, by re-ranking the SDM list of
SDAs based on coherence, a coherent dialogue act is chosen.

Utterance
(1) S: Welcome to the CMU Let’s Go bus information system. What

can I do for you?
(SDA Welcome)

(2) U: CAN USE 16B FROM TELL ME TO DOWNTOWN PITTS-
BURGH

(3) S: Going to DOWNTOWN PITTSBURGH. Is this correct? (SDA Confirm destination)
(4) U: YES
(5) S: Okay. Where do you wanna leave from? (SDA Ask for origin)
(6) U: DOWN YES
(7) S: For example, you can say, FORBES AND MURRAY, DOWN-

TOWN, or MCKEESPORT.
(SDA Ask for origin)

(8) U: TOWN YES
(9a) S: Non re-ranked: — (SDA Confirm origin)
(9b) S: Re-ranked: Which neighbourhood do you want to leave from? (SDA Ask for origin neighbourhood)

Fig. 5.16: A dialogue example showing the difference of using SDM with and without coherence-
based re-ranking: at the end of the dialog, the former selects the non-coherent SDA Con-
firm origin. By re-ranking, the SDA Ask for origin neighbourhood is selected instead which is
strongly coherent.

5.5 Conclusion on User-Adaptive Dialogue Management
With the general goal of rendering the dialogue manager user-adaptive, we have presented three
approaches of introducing user state information into the dialogue management process: a rule-
based approach, an approach based on policy optimisation and an approach on selecting the sys-
tem action according to the prospective change in coherence.

For rule-based adaptation to user satisfaction, a pilot experiment has been conducted with real
users. In the study, we investigated dialogues whose confirmation strategy was adapted to the
user satisfaction represented by Interaction Quality (IQ). We could show that, even for simple
dialogues, the adaptive strategy was not significantly worse than an all-implicit strategy which
is known to work best for simple dialogues like the one applied. Therefore, we believe that for
more complex dialogues an adaptive strategy will perform best. For applying a similar approach
to adapting the dialogue initiative to the user satisfaction, we further analysed the performance of
an adaptive dialogue strategy. Furthermore, we were able to shed light on the question if IQ and
objective measures correlate in such a setting. By comparing five different strategies, we could
show that the dialogue completion rate, the average dialogue length, and the average Interaction
Quality strongly correlate. In addition, we could show that the adaptive strategy clearly outper-
forms all non-adaptive strategies as well as the random strategy. Hence, not only the grounding
strategy but also the dialogue initiative is suitable for rule-based quality-adaptive dialogue.

By performing a more detailed analysis of the correlation of task success and IQ within the
experiment on adapting the initiative to IQ, we were able to show that defining IQ thresholds sepa-
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rating dialogues regarded as success and failure is a reasonable approach achieving an unweighted
average precision of 0.845 for defining one threshold or 0.929 for defining two thresholds. This
is of special interest for reinforcement learning where this may be used to automatically detect
task success. In fact, modelling the reward accordingly using one threshold results in better per-
formance compared to using task success itself as shown in our experiment. Here, IQ functions
as an additional filter which is able to select positive dialogue examples better than task success.
While no experiments have been conducted for the case of having two thresholds, it should still
be noted that it remains unclear what to do with the dialogues which result in a final IQ between
the thresholds. If those dialogues are not used for training, this would result in the need for 56%
more training dialogues.

Finally, we also conducted an experiment for our novel approach on using coherence infor-
mation in the dialogue manager. To evaluate our proposal we have annotated a corpus of 200
dialogs with 4,222 system-user exchanges. The experimental results show that although the dia-
logue manager implemented obtained similar coherence rates than the original handcrafted Let’s
Go system, our technique made it possible to improve 4.46% of the DAs selected, which were
replaced by more coherent alternatives.
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Conclusion and Future Directions

In this thesis entitled “User-centered Adaptive Spoken Dialogue Modelling”, we presented work
on rendering the speech interaction between a machine and a human more user-centred by in-
troducing automatic user state recognition into the dialogue management process. More specifi-
cally, we divided the overall problem into two sub-problems and addressed them separately: (i)
recognising the user state using statistical models and (ii) adapting the course of the dialogue
accordingly.

For user state recognition, we investigated the four user states user satisfaction, perceived
coherence, emotion, and intoxication and were able to provide work which advances the state
of the art for all four user states. For user satisfaction, we were especially interested in adding
a temporal context to its recognition approaches which are based on statistical classification by
using Markovian approaches or a modified feature set. Here, we were able to prove our hypothesis
by showing that temporal information has a major influence on the recognition performance.
An optimised feature set which reflected the temporal information provided the highest overall
significant improvement compared to the state-of-the-art baseline achieving an UAR of 0.549
(+15.69%), a k of 0.679 (+12.42%), and a r of 0.812 (+7.13%).

From our work on recognising the perceived coherence, we were able to reveal that there
exists a relationship between events of the interaction and the coherence. This has been demon-
strated by creating a classification approach using interaction parameters together with the dia-
logue state and the system action resulting in an UAR of 0.623. Furthermore, we disclosed that the
performance of speech-based emotion recognition may be improved by taking the speaker into
account and creating speaker-dependent recognition models. Here, we were able to improve the
recognition rate significantly by up to +9.42% compared to speaker-independent state-of-the-art
approaches.

With our work on user-adaptive dialogue management, an emphasis was placed on adapting
the course of the dialogue to user satisfaction. Here, we achieved promising results: adapting
basic strategy aspects of the dialogue (the initiative or the confirmation prompts) may lead to
an increase in user satisfaction. This was demonstrated in three experiments. For adapting the
grounding strategy in a user experiment, the adaptive strategy selecting the confirmation prompt
based on the user satisfaction was under the two best performing strategies. For adapting the
initiative, we showed that the adaptive strategy significantly outperformed all other strategies in
terms of dialogue completion rate (54.27%), average dialogue length (11.86), and average Inter-
action Quality (3.47) compared to non-adaptive state-of-the-art strategies. Additionally, we were
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able to identify a correlation between this improvement in user satisfaction and an improvement
of other objective performance measures like completion rate or average dialogue length. Thus,
it may be expected that for adapting to more complex aspects of the strategy, the influence of
the user satisfaction may even be higher. Furthermore, we analysed the usability of user satisfac-
tion and showed the potential for modelling the reward function of reinforcement learning based
dialogue management. By applying our proposed approach, 92.9% of all dialogues regarded as
success or failure were actually successful of unsuccessful, respectively. In the following experi-
ment using our POMDP dialogue manager implementation comparing a reward function based on
task success with our proposed method of using the Interaction Quality value, the latter achieved
the best dialogue completion rate of 60.61%.

Finally, we proposed a novel approach on incorporating the coherence into the dialogue man-
agement by re-ranking an n-best-list of system actions provided by a dialogue manager according
to their perceived coherence and selecting the top coherent action. This approach has resulted in
a significant improvement in a simulated dialogue management task by replacing 4.46% of all
non-coherent system actions with more coherent ones.

While we have only outlined the major findings of this thesis, a more detailed description of
our contributions will be presented in the following.

6.1 Thesis Contributions

During our work on user-centred adaptive spoken dialogue systems which has been presented in
this thesis, we have achieved several contributions advancing the state of the art. Those may be
grouped into theoretical, practical and experimental contributions and will be described in this
section.

6.1.1 Theoretical

For our work on automatically identifying the user state, we formulated the problem of recognis-
ing the user satisfaction as a sequential problem using a Hidden Markov Model and a Conditioned
Hidden Markov Model (Ultes et al., 2012a,b). In this context, we created two novel approaches
for recognising the user satisfaction in both a static and a sequential setting. By introducing the
error correction approach thus automatically identifying the error of a standard static machine
learning approaches the hypotheses may be corrected accordingly (Ultes and Minker, 2013b).
Furthermore, modelling the observation probability of a Hidden Markov Model using static clas-
sifiers introduces temporal dependencies into the recognition process resulting in a Hybrid Hidden
Markov Model (Ultes and Minker, 2014a).

By connecting interaction-related events with the perceived coherence of the system reaction,
we were the first to formulate the problem of predicting the coherence as a static recognition task.
For emotion recognition, we were the first to propose two speaker-dependent emotion recognition
approaches using information about the speaker within the classification model (Sidorov et al.,
2014b,a).

To utilise the user state information within the dialogue management, we formulated a rule-
based approach and also built upon partially observable Markov decision processes (POMDPs)
for modelling uncertainty inherent in dialogue systems (Ultes et al., 2012c). For the latter, we
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extended the formalism to include user state variables and adapt all equations accordingly (Ultes
et al., 2011a). By this, a strategy optimised by reinforcement learning may also take into account
the user state information. Additionally, we proposed a reward modelling strategy which may be
employed to automatically finding the optimal policy using reinforcement learning (Ultes et al.,
2015a). In contrast to conventional reward modelling strategies, the (current) user state is utilised
for determining the reward during or at the end of the dialogue. Furthermore, a novel architecture
for dialogue management has been developed. This architecture allows to select the next system
action by predicting the change the system action may have on the user state.

6.1.2 Practical

For our experiments, the above described theoretical contributions have been implemented. For
recognising all user states, we implemented the investigated approaches using off-the-shelve algo-
rithms and frameworks. Furthermore, we have created an open source Java library implementing
a Conditioned Hidden Markov Model (Ultes et al., 2013a).

Within the context of user state recognition, we have created and published a complete corpus
for user satisfaction as well as for perceived coherence (Schmitt et al., 2012; Ultes et al., 2015b).

Evaluating adaptive dialogue modelling requires the integration of the proposed techniques
into an existing dialogue manager. Here, we re-engineered an already existing dialogue manager
by adding a module for automatically recognising the user state at hand (Ultes et al., 2014a).
To conduct experiments with a POMDP, the rule-based dialogue manager has partially been re-
designed to include the POMDP functionality which also entailed the extension of the POMDP
formalism with the user state (Ultes and Minker, 2013a, 2014b).

6.1.3 Experimental

With the proposed theories and practical implementations, several experiments for user state
recognition have been conducted. By focusing on temporal aspects for user satisfaction recog-
nition, i.e., taking into account dependencies of the current dialogue situation on the complete
dialogue, we have provided evidence to conclude that these temporal aspects are of great impor-
tance. For this, experiments with all proposed static and sequential algorithms have been executed
in various settings (Ultes et al., 2012a,b, 2013b; Ultes and Minker, 2013b,c, 2014a; Schmitt and
Ultes, 2015). Here, we were able to improve the baseline by up to 13.23%. For our experiments
on coherence prediction, we achieved a performance of 0.623 UAR. Within our experiments
on speaker-dependent emotion recognition, we were also able to show that personalised mod-
els yield better performance on different corpora increasing the recognition performance by up to
+9.42% (Sidorov et al., 2014b). Finally, we performed a study comparing the performance of ma-
chines on intoxication versus the performance of human raters. Here, we have shown that, under
certain circumstances, machines may even outperform humans (machines: 0.558 UAR, humans:
0.666 UAR) (Ultes et al., 2011b).

In our experiments on user-adaptive dialogue modelling, we were able to provide evidence
in a pilot user study that adapting aspects of the dialogue strategy to the user satisfaction may
result in an improved system performance (Ultes et al., 2014a,b). This finding was confirmed in
a follow-up study with a simulated user (Ultes et al., 2015a). Furthermore, we provided evidence
that using the user satisfaction for modelling the reward may be a reasonable approach and be
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favourable compared to standard techniques. We have confirmed this in a follow-up study with
a POMDP-based dialogue manager showing that our proposed approach for reward modelling
further improves the overall system performance. Finally, simulated experiments on modifying
the selection of the next system action by predicting the change in coherence also showed the
potential of this approach (Ultes et al., 2015a).

6.2 Future Directions
While we have already made a major step towards user-adaptive dialogue, there are still limi-
tations and open questions. The most important limitation of the presented results is that most
approaches have only been tested on one domain. While the approaches have been designed to be
domain-independent, it may be expected that applying those to a different domain will not result
in different behaviour. Still, this has not been shown yet and should therefore be part of future
work.

Regarding the recognition of the user satisfaction (or Interaction Quality), only parameters
about the interaction have been used. However, linguistic content in both the system and the user
utterances are likely to also have an influence on the user satisfaction. While adding this infor-
mation would result in a loss of the ability to generalise, it may further improve the recognition
performance.

For emotion recognition, we have presented a user-dependent approach taking into account the
speaker out of a known set of speakers. However, this assumption poses a considerable restriction
on the approach as there exist many situations where there is no fixed set of known speakers.
Finding approaches which are able to adapt to the speaker without exactly knowing who the
speaker is may therefore be regarded as crucial for further improving user-dependent emotion
recognition.

For future work on quality-adaptive dialogue, many adaptation techniques have only been
evaluated with a simulated user. However, the same adaptation techniques should be tested with
real users. While user simulators offer a good means of evaluating dialogues easily, real users
usually give new insight by showing unseen behaviour.

While working on quality-adaptive dialogue, it became clear that the effect of adaptive be-
haviour is much stronger if the capabilities of the SDS allow more complex dialogues. Thus,
within the key aspect of unrestricted user behaviour (see Chap. 1), increasing the complexity and
functionality of spoken dialogue systems poses an important field of research.

While introducing statistical methods into the dialogue management has already resulted in
a major improvement in the functionality and performance (e.g., (Lemon and Pietquin, 2012;
Young et al., 2013)), there are still a number of open issues. One is the complexity of the dia-
logue domain. State-of-the-art dialogue systems are still designed to solve a specific task or to
communicate in a pre-set domain. Having an open-domain system, however, is much more fa-
vorable. While recent approaches to extend the domain of the dialogue dynamically have shown
good results (Gačić et al., 2013b, 2014), they are limited as they only extend a known domain by
new attributes. Adding completely new domains (both in structure and content) is still an open
issue. Here, the user state information may be utilised, e.g., by automatically evaluating the newly
created models.

Furthermore, the interaction between the system and the user is still very rigid regarding the
turn-taking behaviour. Usually, only complete utterances are produced and processed. To make
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this more flexible, the idea of incremental dialogue systems has emerged allowing the produc-
tion and processing of partial results of the SDS modules (e.g., (Schlangen and Skantze, 2009)).
However, there are many timing issues associated to incremental dialogue: when should a partial
result be produced as output of the SDS module? When should a result be processed by the next
SDS module? Here, information about the user state may help in answering these questions.

With a vision of a personal assistant, pro-active system behaviour poses another hot topic of
research. The questions of if, how, and when pro-active system behaviour is desirable need to
be addressed (Nothdurft et al., 2015). The answer to these questions highly depends not only on
the linguistic content but also on additional user cues. Applying these questions to pro-activity
in multi-party interaction further adds a whole new dimension of complexity. For both, user state
information may play a key role in making these types of interaction feasible.
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Questionnaires

The questionnaire has been removed due to copyright limitations.

Fig. A.1: The SASSI-based questionnaire in German used for the pilot experiment on adapting
the grounding strategy to user satisfaction.

The questionnaire has been removed due to copyright limitations.

Fig. A.2: The SASSI questionnaire for evaluation of spoken human-machine interaction.
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1. The rater should try to mirror the user’s point of view on the interaction as objectively as
possible.

2. An exchange consists of the system prompt and the user response. Due to system design,
the latter is not always present.

3. The IQ score is defined on a five-point scale with “1=extremely unsatisfied’, “2=very
unsatisfied”, “3=unsatisfied”, “4=slightly unsatisfied” and “5=satisfied”.

4. The Interaction Quality is to be rated for each exchange in the dialog. The history of the
dialog should be kept in mind when assigning the score. For example, a dialog that has
proceeded fairly poor for a long time, should require some time to recover.

5. A dialog always starts with an Interaction Quality score of “5”.
6. The first user input should also be rated with 5, since until this moment, no rateable

interaction has taken place.
7. A request for help does not invariably cause a lower Interaction Quality, but can result in

it.
8. In general, the score from one exchange to the following exchange is increased or de-

creased by one point at the most.
9. Exceptions, where the score can be decreased by two points are, e.g., hot anger or sudden

frustration. The rater’s perception is decisive here.
10. Also, if the dialog obviously collapses due to system or user behaviour, the score can be

set to “1” immediately. An example therefore is a reasonable frustrated sudden hang-up.
11. Anger does not need to influence the score, but can. The rater should try to figure out

whether anger was caused by the dialog behaviour or not.
12. In the case a user realises that he should adapt his dialog strategy to obtain the desired re-

sult or information and succeeded that way, the Interaction Quality score can be raised up
to two points per turn. In other words, the user realizes that he caused the poor Interaction
Quality by himself.

13. If the system does not reply with a bus schedule to a specific user query and prompts
that the request is out of scope, this can nevertheless be considered as “task completed”.
Therefore this does not need to affect the Interaction Quality.

14. If a dialog consists of several independent queries, each query’s quality is to be rated
independently. The former dialog history should not be considered when a new query
begins. However, the score provided for the first exchange should be equal to the last
label of the previous query.

15. If a constantly low-quality dialog finishes with a reasonable result, the Interaction Quality
may be increased.

Fig. B.1: Rater guidelines for annotating Interaction QualityFig. B.1: Rater guidelines for annotating Interaction Quality as published in (Schmitt et al., 2012)



Table B.1: All automatically derivable features of the IQ paradigm along with the SDS module
they have been derived from (ASR, SLU, or Dialog Manager (DM)) for all three parameter
levels (cf. Fig. 4.3) as published in (Schmitt et al., 2012).

exchange level

ASR

ASRRECOGNITIONSTATUS one of ’success’, ’reject’, ’timeout’
ASRCONFIDENCE confidence of the ASR
BARGED-IN? did the user barge-in?
MODALITY one of ’speech’, ’DTMF’
EXMO the modality expected from the system (’speech’, ’DTMF’, ’both’)
UNEXMO? did the user employ another modality than expected?
UTTERANCE raw ASR transcription
WPUT number of words per user turn
UTD utterance turn duration

SLU SEMANTICPARSE semantic interpretation of utterance
HELPREQUEST? is the current turn a help request?

DM

ACTIVITY identifier of the current system action
ACTIVITYTYPE one of ’Announcement’, ’Question’, ’Confirmation’, ’wait’
PROMPT system prompt
WPST number of words per system turn
REPROMPT? is the current system turn a reprompt?
ROLENAME whether the role of the current system prompt is a confirmation to elicit common ground

between user and system
ROLEINDEX number of times the role of the current system prompt has remained the same
LOOPNAME name of the status of the current system prompt; corresponds with ROLEINDEX
DD dialog duration up to this point in seconds

dialog level

ASR

MEANASRCONFIDENCE average of ASR confidence scores
#ASRSUCCESS number of exchanges with ASRRECOGNITIONSTATUS ’success’
%ASRSUCCESS rate of exchanges with ASRRECOGNITIONSTATUS ’success’
#ASRREJECTIONS number of exchanges with ASRRECOGNITIONSTATUS ’reject’
%ASRREJECTIONS rate of exchanges with ASRRECOGNITIONSTATUS ’reject’
#TIME-OUTPROMPTS number of exchanges with ASRRECOGNITIONSTATUS ’timeout’
%TIME-OUTPROMPTS rate of exchanges with ASRRECOGNITIONSTATUS ’timeout’
#TIME-OUTREJECTIONS number of exchanges with ASRRECOGNITIONSTATUS ’timeout’ or ’reject’
%TIME-OUTREJECTIONS rate of exchanges with ASRRECOGNITIONSTATUS ’timeout’ or ’reject’
#BARGE-INS number of barge-ins
%BARGE-INS rate of barge-ins
#UNEXMO number of turns with unexpected modality
%UNEXMO rate of turns with unexpected modality

SLU #HELPREQUESTS number of turns with help request
%HELPREQUESTS rate of turns with help request

DM

#REPROMPTS number of turns being a reprompt
%REPROMPTS rate of turns being a reprompt
#EXCHANGES number of system-user exchanges
#SYSTEMTURNS number of system turns
#USERTURNS number of user turns
#SYSTEMQUESTIONS number of turns being a system question

window level

ASR

{MEAN}ASRCONFIDENCE average of ASR confidence scores
{#}ASRSUCCESS number of successfully parsed user utterances
{#}ASRREJECTIONS number of exchanges with ASRRECOGNITIONSTATUS ’reject’
{#}TIME-OUTPROMPTS number of exchanges with ASRRECOGNITIONSTATUS ’timeout’
{#}TIME-OUTREJECTIONS number of exchanges with ASRRECOGNITIONSTATUS ’timeout’ or ’reject’
{#}BARGE-INS number of barge-ins
{#}UNEXMO number of turns with unexpected modality

SLU {#}HELPREQUESTS number of turns where user requested help

DM {#}REPROMT number of turns with reprompt
{#}SYSTEMQUESTIONS number of turns where ACTIVITYTYPE is ’question’
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Table B.2: The three feature sets for IQ recognition and the parameters they contain grouped by
the corresponding SDS module and the parameter level.

BASEall BASEdi BASE25

exchange level

ASR

ASRRECOGNITIONSTATUS 5 5 5
ASRCONFIDENCE 5 5 5
BARGED-IN? 5 5
MODALITY 5 5
EXMO 5 5
UNEXMO? 5 5
UTTERANCE 5
WPUT 5 5 5
UTD 5 5 5

SLU SEMANTICPARSE 5
HELPREQUEST? 5 5

DM

ACTIVITY 5
ACTIVITYTYPE 5 5 5
PROMPT 5
WPST 5 5 5
REPROMPT? 5 5 5
ROLENAME 5 5 5
ROLEINDEX 5 5 5
LOOPNAME 5
DD 5 5 5

dialogue level

ASR

MEANASRCONFIDENCE 5 5 5
#ASRSUCCESS 5 5
%ASRSUCCESS 5 5
#ASRREJECTIONS 5 5 5
%ASRREJECTIONS 5 5 5
#TIME-OUTPROMPTS 5 5
%TIME-OUTPROMPTS 5 5
#TIME-OUTREJECTIONS 5 5 5
%TIME-OUTREJECTIONS 5 5 5
#BARGE-INS 5 5
%BARGE-INS 5 5
#UNEXMO 5 5
%UNEXMO 5 5

SLU #HELPREQUESTS 5 5
%HELPREQUESTS 5 5

DM

#REPROMPTS 5 5 5
%REPROMPTS 5 5 5
#EXCHANGES 5 5 5
#SYSTEMTURNS 5 5
#USERTURNS 5 5
#SYSTEMQUESTIONS 5 5 5

window level

ASR

{MEAN}ASRCONFIDENCE 5 5 5
{#}ASRSUCCESS 5 5 5
{#}ASRREJECTIONS 5 5 5
{#}TIME-OUTPROMPTS 5 5
{#}TIME-OUTREJECTIONS 5 5 5
{#}BARGE-INS 5 5
{#}UNEXMO 5 5

SLU {#}HELPREQUESTS 5 5 5

DM {#}REPROMPT 5 5 5
{#}SYSTEMQUESTIONS 5 5 5
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Batliner A, Fischer K, Huber R, Spilker J, Nöth E (2000) Desperately seeking emotions: Actors, wizards, and human
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