

PƌediĐtiǀe Cloud
AppliĐatioŶ Model
PƌojeĐt Deliǀeƌaďle Dϯ.Ϯ

Ahŵed Ali-EldiŶ, P-O Östďeƌg, Jakuď KƌzǇǁda ;UMUͿ,
Chƌistopheƌ Hauseƌ, Jöƌg DoŵasĐhka ;UULMͿ,
HeŶŶiŶg GƌoeŶda ;F)IͿ

Due date: ϯϭ/ϭϮ/ϮϬϭϰ

DeliǀeƌǇ date: Ϯϳ/ϬϮ/ϮϬϭϱ

This pƌojeĐt is fuŶded ďǇ the
EuƌopeaŶ UŶioŶ uŶdeƌ gƌaŶt

agƌeeŵeŶt Ŷuŵďeƌ Ŷo. ϲϭϬϳϭϭ

;ĐͿ ϮϬϭϯ-ϮϬϭϳ ďǇ the CACTO“ ĐoŶsoƌtiuŵ

This ǁoƌk is liĐeŶsed uŶdeƌ a Cƌeatiǀe CoŵŵoŶs AttƌiďutioŶ-NoDeƌiǀatiǀes ϰ.Ϭ
IŶteƌŶatioŶal LiĐeŶse.

To ǀieǁ a ĐopǇ of this liĐeŶse, ǀisit http://ĐƌeatiǀeĐoŵŵoŶs.oƌg/liĐeŶses/ďǇ-Ŷd/ϰ.Ϭ/
oƌ seŶd a letteƌ to Cƌeatiǀe CoŵŵoŶs, ϭϳϭ “eĐoŶd “tƌeet, “uite ϯϬϬ, “aŶ FƌaŶĐisĐo,

CalifoƌŶia, ϵϰϭϬϱ, U“A.

DisseŵiŶatioŶ Leǀel

X PU PuďliĐ

 PP RestƌiĐted to otheƌ pƌogƌaŵŵe paƌtiĐipaŶts ;iŶĐludiŶg the CoŵŵissioŶ “eƌǀiĐesͿ

 RE RestƌiĐted to a gƌoup speĐified ďǇ the ĐoŶsoƌtiuŵ ;iŶĐludiŶg the CoŵŵissioŶ “eƌǀiĐesͿ

 CO CoŶfideŶtial, oŶlǇ foƌ ŵeŵďeƌs of the ĐoŶsoƌtiuŵ ;iŶĐludiŶg the CoŵŵissioŶ “eƌǀiĐesͿ

VeƌsioŶ Histoƌy

VeƌsioŶ Date ChaŶge Authoƌ

Ϭ.ϭ Ϭϴ/ϭϮ/ϮϬϭϰ IŶitial DoĐuŵeŶt “tƌuĐtuƌe Ahŵed Ali-EldiŶ ;UŵUͿ
Ϭ.Ϯ Ϭϴ/ϭϮ/ϮϬϭϰ EǆeĐutiǀe suŵŵaƌǇ Ahŵed Ali-EldiŶ ;UŵUͿ
Ϭ.ϯ ϭϬ/ϭϮ/ϮϬϭϰ Video-oŶ-DeŵaŶd ǁoƌkload ŵodel Ahŵed Ali-EldiŶ ;UŵUͿ
Ϭ.ϰ ϭϬ/ϭϮ/ϮϬϭϰ Wikipedia pƌediĐtiǀe ǁoƌkload ŵodel Ahŵed Ali-EldiŶ ;UŵUͿ
Ϭ.ϱ ϭϭ/ϭϮ/ϮϬϭϰ BuƌstiŶess ǁoƌkload ŵodel Ahŵed Ali-EldiŶ ;UŵUͿ
Ϭ.ϲ ϭϭ/ϭϮ/ϮϬϭϰ DoĐuŵeŶt stƌuĐtuƌe aŶd foƌŵattiŶg P-O Östďeƌg ;UŵUͿ
Ϭ.ϳ ϭϰ/ϭϮ/ϮϬϭϰ IŶteƌŶal ƌeǀieǁ HeŶŶiŶg GƌoeŶda ;F)IͿ
Ϭ.ϴ Ϯϳ/ϭϮ/ϮϬϭϱ IŶtƌoduĐtioŶ P-O Östďeƌg ;UŵUͿ
Ϭ.ϵ Ϯϴ/ϭϮ/ϮϬϭϱ PƌoaĐtiǀe iŶfƌastƌuĐtuƌe optiŵizatioŶ desĐƌiptioŶ P-O Östďeƌg ;UŵUͿ

Ϭ.ϵϭ Ϯϵ/ϭϮ/ϮϬϭϱ CoŵpoŶeŶt ŵodel desĐƌiptioŶs P-O Östďeƌg ;UŵUͿ
Ϭ.ϵϮ ϯϬ/ϭϮ/ϮϬϭϱ “ĐieŶtifiĐ ĐoŵputiŶg use Đase desĐƌiptioŶ Chƌistopheƌ Hauseƌ ;UULMͿ
Ϭ.ϵϯ ϯϭ/ϭϮ/ϮϬϭϱ AppliĐatioŶ ŵodel desĐƌiptioŶs P-O Östďeƌg ;UŵUͿ
Ϭ.ϵϰ ϯ/Ϯ/ϮϬϭϱ PƌediĐtioŶ ŵodel desĐƌiptioŶs aŶd ƌestƌuĐtuƌiŶg P-O Östďeƌg ;UŵUͿ
Ϭ.ϵϱ ϰ/Ϯ/ϮϬϭϱ RestƌuĐtuƌiŶg ǁoƌkload ŵodel seĐtioŶs P-O Östďeƌg ;UŵUͿ
Ϭ.ϵϲ ϱ/Ϯ/ϮϬϭϱ IŶteƌŶal ƌeǀieǁ Jöƌg DoŵasĐhka ;UULMͿ
Ϭ.ϵϳ ϱ/Ϯ/ϮϬϭϱ Related ǁoƌk Jakuď KƌzǇǁda ;UŵUͿ
Ϭ.ϵϴ ϱ/Ϯ/ϮϬϭϱ Woƌkload ŵodeliŶg P-O Östďeƌg ;UŵUͿ
Ϭ.ϵϵ ϵ/Ϯ/ϮϬϭϱ Woƌkload ŵodeliŶg iŶtƌo P-O Östďeƌg ;UŵUͿ

Ϭ.ϵϵ.ϭ ϭϬ/Ϯ/ϮϬϭϱ Woƌkload ŵodeliŶg ƌestƌuĐtuƌiŶg Ahŵed Ali-EldiŶ ;UŵUͿ
Ϭ.ϵϵ.Ϯ ϭϳ/Ϯ/ϮϬϭϱ IŶteƌŶal ƌeǀieǁ PapazaĐhos)afeiƌios ;QUBͿ
Ϭ.ϵϵ.ϯ ϭϵ/Ϯ/ϮϬϭϱ AddƌessiŶg ƌeǀieǁ ĐoŵŵeŶts P-O Östďeƌg ;UŵUͿ
Ϭ.ϵϵ.ϰ Ϯϲ/Ϯ/ϮϬϭϱ FiŶal polishiŶg Ahŵed Ali-EldiŶ ;UŵUͿ

ϱ | P a g e D ϯ . Ϯ P ƌ e d i Đ t i ǀ e C l o u d A p p l i Đ a t i o Ŷ M o d e l C A C T O “

ABBREVIATIONS

AďďƌeǀiatioŶ DesĐƌiptioŶ

CACTO“ CoŶteǆt-Aǁaƌe Cloud TopologǇ OptiŵizatioŶ aŶd “iŵulatioŶ

VM Viƌtual MaĐhiŶe

Qo“ QualitǇ of “eƌǀiĐe

API AppliĐatioŶ PƌogƌaŵŵiŶg IŶteƌfaĐe

POJO PlaiŶ Old Jaǀa OďjeĐt

VoD Video oŶ DeŵaŶd

Iaa“ IŶfƌastƌuĐtuƌe-as-a-“eƌǀiĐe

ARIMA Autoƌegƌessiǀe IŶtegƌated MoǀiŶg Aǀeƌage

KPI KeǇ PeƌfoƌŵaŶĐe IŶdiĐatoƌ

1 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

EXECUTIVE SUMMARY

This document outlines a framework for the cloud workload and application models used in CactoOpt, the

CACTOS infrastructure optimisation tool, and presents initial prototypes for cloud application behaviour

models. The purpose of this deliverable is to demonstrate some of the prediction models built for different

cloud workloads, and illustrate how they are integrated with the application and component models used in

infrastructure and workload deployment optimization. For prediction modelling we give special focus to cloud

application user behaviour modelling, including, e.g., workload burstiness and request arrival pattern

modelling. To place this work in context, we also present a framework for application and infrastructure

modelling focused on translation of workload and application behaviour to infrastructure load.

2 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1

TABLE OF CONTENTS 2

LIST OF FIGURES 4

ABBREVIATIONS 5

I. INTRODUCTION 6

II. PREDICTIVE CLOUD APPLICATION MODELLING 8

Proactive Infrastructure Optimization 8

Component models 10

Application models 11

Prediction models 12

III. APPLICATION BEHAVIOR MODELING 14

Modeling User Behaviour in Cloud Applications 14

Arrivals in the Wikimedia workload 15

Bursts in the wikimedia workload 18

Wikimedia Content Popularity Modeling 20

VoD request arrival rate Modeling 21

Time Series models for vod Request Arrivals 23

Video views per user 25

Impatient User behaviour 26

the Molpro application 29

Application Behaviour 29

Optimisations 31

I ELASTICITY MODELS AND PREDICTION TYPES 32

A Predictive Workload Model 33

II BURSTINESS MODELLING 36

Sample Entropy as a Burstiness Measure 36

Sample Entropy Implementation 37

III RELATED WORK 39

Mistral: Dynamically managing power, performance, and adaptation cost in cloud infrastructures 39

Sla-based optimization of power and migration cost in cloud computing 39

3 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

pMapper: power and migration cost aware application placement in virtualized systems 40

Omega: flexible, scalable schedulers for large compute clusters 40

Agile: Elastic distributed resource scaling for infrastructure-as-a-service. 40

IV REFERENCES 42

V APPENDIX A: WORKLOADS 45

The VoD workload 45

The Wikimedia foundation workload 46

4 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

LIST OF FIGURES

Figure 1 Load can be driven by incoming requests or by background jobs. .. 10

Figure 2 Applications can be modeled as graphs ... 12

Figure 3 Time series decomposition of the hourly arrival rates for year 2013 .. 15

Figure 3 Time series decomposition of the hourly arrival rates for year 2013 .. 15

Figure 4 Box plots of the hourly arrival rates on all 2011 Wednesdays and Saturdays.. 18

Figure 5 When Michael Jackson died, the traffic to his Wikipedia page increased by three orders of magnitude.

The traffic on pages linked from his page also increased by more than two orders of magnitude. 19

Figure 6 The Super Bowl causes a yearly spike that occurs on pages related to the event but not the main

event's Wikipedia page .. 19

Figure 7 Time a page stays in the top 500 popular Wikipedia articles .. 20

Figure 8 Ratio between the time a Wikipedia article stays among the most popular 500 articles and the total

time of the study ... 21

Figure 9 Fitting the request arrival rate to different distributions ... 22

Figure 10 The inter-arrival rate cannot be fitted to an exponential distribution, i.e., the arrival rate does not

follow a Poisson process .. 23

Figure 11 Time Series (multiplicative) decomposition of the VoD session arrivals.. 23

Figur 12 The Hilbert-Huang transform is used to obtain the time-frequency representation of the workload 24

Figur 13 The Hilbert-Huang transform is used to obtain the time-frequency representation of the workload 24

Figur 144 Most users do not use the service on daily basis... 25

Figur 15 Most users do not use the service on daily basis .. 25

Figure 16 Most users use the service moderately. .. 26

Figur 17 User sessions are quite short ... 26

Figure 18 Users tend to be impatient for both extremely popular and extremely unpopular videos 27

Figure 1819 Users impatience is not correlated with the bitrate of the video .. 28

Figure 20 Users impatience is not correlated with the bitrate of the video .. 28

Figur 21 Heavy users of the service are generally more impatient than non-frequent users 28

5 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

ABBREVIATIONS

Abbreviation Description

CACTOS Context-Aware Cloud Topology Optimization and Simulation

VM Virtual Machine

QoS Quality of Service

API Application Programming Interface

POJO Plain Old Java Object

VoD Video on Demand

IaaS Infrastructure-as-a-Service

ARIMA Autoregressive Integrated Moving Average

KPI Key Performance Indicator

6 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

I. INTRODUCTION

As has ďeeŶ Ŷoted ďǇ seǀeƌal aĐadeŵiĐ aŶd iŶdustƌǇ aĐtoƌs iŶ the field, foƌ eǆaŵple Google’s JohŶ Wilkes,
aŶd BatteƌǇ VeŶtuƌes’ AdƌiaŶ CoĐkƌoft [8], there is currently a need for improvement of the predictability

and resilience of cloud data center management tools. As the field of cloud computing transitions into

deployment of more mission critical systems such as power and telecommunications infrastructure in

heterogeneous data center environments, greater emphasis must be placed on application QoS, stability

and predictability of platforms, and development of more advanced control and optimization of

infrastructures.

In line with this trend, the research agenda of CACTOS is designed towards exploration of models and

optimization mechanisms that consider the broad perspective of multi-objective optimization of data

centers, and the models developed and presented in this report are designed to facilitate this work. The

end goal of these models is the development of optimization mechanisms that simultaneously target

modeling and prediction of load behavior, quantification of load propagation, application and component

capacity reservation, and control and optimization mechanisms for proactive and adaptive cloud resource

management.

Due to the wide applicability of cloud-based resource provisioning models, Cloud applications span a very

wide range of software applications including, e.g., monolithic legacy applications, scientific simulation

and data processing applications, distributed tiered applications, and cloud native applications. As such,

modeling of cloud applications and their behavior is a complex task that needs to take into account

multiple factors such as application composition, deployment configuration, and workload behavior

patterns.

In this work we use the following topological definitions: A cloud application is a distributed software

system where one or more application components (software services or subsystems) are deployed in a

cloud data center. Components are typically (but not necessarily) deployed in virtual hosts using some

form of virtualization technology, e.g., hardware supported virtualization (virtual machines), process

groups, or software containers, which in turn are mapped onto physical data center (hardware) resources

using some kind of deployment constraints. Deployment constraints constitute rules for the placement

and scheduling of virtual hosts on physical resources, and can include, e.g., affinity or anti-affinity

constraints that regulate whether or not components can be co-hosted on the same physical resource, or

constraints specifying limitations on the amount of hardware resources that can be assigned to

components.

In this setting, the main task of CactoOpt (infrastructure optimization) becomes the task of controlling the

deployment (placement and horizontal elasticity of applications) and capacity / resource assignments

(vertical elasticity) of cloud applications and components so that infrastructure resources maintain

acceptable levels of resource utilization while meeting application performance and quality of service

(QoS) requirements. To achieve this, it is very important to construct models that accurately capture

7 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

application behavior, i.e. how applications respond to external events (e.g., unexpected changes in

incoming request patterns) as well as the load applications place on infrastructure resources.

Towards this goal, we define a framework composed of three types of models that combined provide the

information required to formulate high-level objective functions for infrastructure optimization:

1. Workload prediction models capture the characteristics and variations of application user

behavior and incoming request patterns.

2. Application models describe the deployment and configuration information of applications in

terms of component relationships.

3. Component models define the relationships between incoming requests and internal load as well

as outgoing requests at component level.

This framework aims to facilitate modeling and translation of application component resource

requirements, and structure these in a way so they can be used in the infrastructure optimization tools of

CactoOpt. In particular focus in this work are the CACTOS application behavior prediction models that,

ďased oŶ ǁoƌkload aŶalǇsis teĐhŶiƋues, leŶd pƌediĐtiǀe poǁeƌ to CaĐtoOpt’s ŵodeliŶg of appliĐatioŶ load.

The remainder of this document is structured as follows: to give perspective on this work, Section II gives

an introduction to the type of cloud application models used in CACTOS. After this, Section III goes into

details about application behavior prediction models and their use in this type of modeling, and Section IV

provides a brief survey of related resource management approaches.

8 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

II. PREDICTIVE CLOUD APPLICATION MODELLING

The purpose of the CACTOS cloud application modeling work is to produce models that describe

application composition and behavior as a means to model and predict the infrastructure resource

requirements of cloud application components. The key challenge in such modeling is to find model

representations that preserve the desired qualities to be modeled, capture behavioral patterns accurately

enough to provide predictive power in the models, and also provide a structure that is understandable

and lends itself to interpretation in modeling. In highly heterogeneous environments such as cloud

environments, this proves highly challenging and typically requires composite models that are constructed

using multiple types of models that individually capture different parts of systems.

The perspective of prediction taken in this work is two-fold: prediction is based on both behavior modeling

and simulation-based experimentation. For behavior modeling we employ statistical and time series

analysis methods on both component and application level to build prediction models for different aspects

of application behavior. On component level this translates to analysis of component behavior in internal

load dimensions such as CPU and I/O usage patterns, and on application level we focus on user behavior

and request patterns to identify and isolate trends (and other facets of predictability) in application

behavior. To complement and support this approach, we also place focus on construction of model

compositions that lend themselves well to computationally efficient simulation-based experimentation. In

this work we use simulation for, e.g., in situ evaluation of optimization strategies (testing different

simulation strategies as part of the optimization process) and semi-interactive scenario evaluation

;siŵulatioŶ of ͞ǁhat if͟ sĐeŶaƌiosͿ. As suĐh, this ĐoŵďiŶed appƌoaĐh alloǁs foƌ iŶĐlusioŶ of ďoth
prediction and evaluation in optimization: workload prediction and propagation modeling techniques can

be used to predict the load of individual components, and simulation techniques can then be used to

evaluate the impact of alternative optimization strategies, e.g., to select the optimal virtual machine

migration destination based on simulation-based evaluation of how the predicted virtual machine load

would interact with existing load on potential migration destinations (physical machines).

To simultaneously capture application behavior and the impact application component load has on

infrastructure resources, we here combine three types of models that interlinked model the main

interactions of applications and resources in cloud data centers: prediction models, application models,

and component models. To give perspective on why this type and level of modeling is used in CACTOS, we

here give a brief introduction to the type of infrastructure optimization that is targeted in this work, as

well as an overview of each type of model used, before going into detail about the prediction models.

PROACTIVE INFRASTRUCTURE OPTIMIZATION

Cloud infrastructure optimization, here defined as automated infrastructure mechanisms that regulate the

provisioning of compute resources to applications in an optimized way, is a complex task. Such

9 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

optimization is concerned not only with maintaining optimized levels of resource utilization in data

centers, but also in meeting or optimizing the QoS levels of applications. As such, infrastructure

optimization a multi-objective optimization problem that requires knowledge and modeling of application

composition and behavior, as well detailed modeling of the targeted cloud data center infrastructure.

Proactive infrastructure optimization relies on resource management approaches that use prediction

models to extrapolate from prior application or component behavior to predict (a finite time window of)

future resource utilization levels[1]. This type of prediction can be done on multiple levels, ranging from

application request patterns to internal resource (e.g., CPU) utilization patterns for individual components.

The models used in this work are designed for two primary (optimization-related) purposes: to establish

upper and lower bounds of the hardware resource assignments of application components (capacity

bounds that are used in placement and scheduling of components), and to within these bounds accurately

model and predict variations in resource usage patterns.

The interpretation of the modeled upper and lower capacity bounds used here is the following: upper

bounds of component capacity requirements define the maximum capacity (in some internal load

dimension such as CPU, RAM, I/O, or storage) a component will need within a foreseeable time window,

which thus defines a maximum size of a virtualized host (e.g., virtual machine or software container) for

that component. Similarly, lower bounds of component capacity requirements defines the minimum

capacity a component needs to be able to deliver some aspect of the desired QoS of the application. As

the upper and lower bounds respectively represent a maximum and minimum size of a virtual host, they

combined contain all the information needed to perform (coarse-grained) placement of virtual hosts. In

addition, component resource capacity bounds also provide intuitive interpretations of how much

(minimum) capacity needs to be reserved for a virtual host, as well as of how much spare capacity a

physical resource has left (after the maximum capacity of the virtual hosts are allocated) for other

components, and are thus suitable to be used as coarse-grained deployment constraints for virtual hosts.

Within the upper and lower bound, actual resource consumption is tracked and modeled for prediction.

This can as stated be done for individual components by directly tracking component performance in

individual resource capacity dimensions, e.g., identify cyclic patterns or phases in execution patterns (as

done in the Molpro case where CPU and I/O phases are modeled to predict execution phases and

completion times), or by modeling the load propagation between application components in application

models (further discussed the application model section). Regardless of method, the aim of this modeling

is the same: to predict the load an application component places on its (virtual or) physical host to enable

higher resource utilization or application QoS through optimization of deployment and configuration of

components. Optimization approaches that utilize this kind of information range from, e.g., scheduler

optimization approaches such as , overbooking approaches such as[28, 26], and adaptive controllers that

regulate application QoS after available capacity[18]. In this modeling, formerly established upper and

lower bound of capacity can also be used as triggers for detection of prediction errors. If a component

consistently uses less than its lower bound allocated capacity it may indicate that the lower bound is set

too high, and conversely if a component is repeatedly using all of its allocated capacity (i.e. hits its upper

bound), it may indicate an opportunity to spawn additional instances of that component (horizontal

elasticity).

10 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Taken together, these types of modeling facets allow optimization mechanisms to address both spatial and

temporal variations in load. Spatial variations (e.g., differences in sizes of virtual machines) can be

addressed in placement optimization using the upper and lower bounds for component capacity

requirements. Temporal variations (i.e. variations over time in the load components place on their hosts)

can similarly be addressed using adaptive vertical elasticity optimization (control) routines that operate on

the load predictions of individual components. Similarly, the predicted load patterns of components

(combined with the application configuration information of the application models) also allows

formulation of horizontal elasticity systems where autonomic application monitoring routines can identify

application components or segments that are under- or over-utilizing their allocated resources.

COMPONENT MODELS

As mentioned in the previous section, coarse-grained scheduling and initial placement of (virtual hosts of)

components can be done using upper and lower bounds for capacity requirements. For adaptive control

and prediction of resource use however, more fine-grained modeling of the translation between incoming

request patterns and internal as well as outgoing load is needed. In this work we define a component

model designed to quantify the relationships between incoming request patterns and a) internal load in

the dimensions of CPU, RAM, I/O, and storage; and b) outgoing request patterns. In this modeling we

further make the observation that for each of these modeled entities there are significant differences

between different types of applications in their load patterns. There are for example some applications

that are load-wise driven directly by external requests, e.g., web servers where the needed resource

capacity directly correlates to the type and amount of incoming requests (web servers are mostly idle

when not processing HTTP requests), and other types of applications that are primarily driven by internal

load factors, e.g., batch-oriented scientific processes that receive a few requests and then spend large

amounts of time and resources performing computations that are not directly correlated to the incoming

request patterns in any externally visible way. For this reason we also further decompose our component

model to encompass the notion of foreground (load directly driven by incoming requests) and background

(load not driven directly by incoming requests) load.

Figure 1 Load can be driven by incoming requests or by background jobs.

It is worth noting that upper and lower component capacity bounds can (for known applications) be set at

deployment time, either explicitly by experienced system administrators or even implicitly by, e.g.,

inferring them from the QoS level a customer at a public cloud offering is paying for. A common pattern in

11 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

public IaaS cloud offerings is for example to distinguish between different service levels where a certain

pƌiĐe leǀel ĐoƌƌespoŶds to a ĐeƌtaiŶ ͞size͟ of a ǀiƌtual machine, e.g., the Amazon Web Service (AWS) C4

iŶstaŶĐes ǁheƌe a ͞Đϰ.laƌge͟ ǀiƌtual host has ;as of eaƌlǇ ϮϬϭϱͿ Ϯ ǀiƌtual CPUs aŶd ϯ.ϳϱGB RAM, ǁhile a
͞Đϰ.ǆlaƌge͟ iŶstaŶĐe has ϰ ǀiƌtual CPUs aŶd ϳ.ϱGB RAM, etĐ. These liŵits ĐaŶ also ďe set ďǇ ďeŶĐhŵaƌking

applications under representative settings, or be trained using machine learning approaches operating on

historical usage information (when available). Naturally, such controls can also be assigned and controlled

in run-time using similar approaches [29, 16].

These models must capture both the direct and indirect (e.g., co-hosting overhead and noise)

relationships between incoming and propagated load, and optimization algorithms must also consider the

effect this load has on component environments. For this reason, we here consider a type of grey-box

modeling where component load is monitored in several dimensions (CPU, RAM, I/O, storage) at multiple

levels (incoming and outgoing requests, load within components, load at virtual host level, as well as load

at physical host level).

As with all modeling approaches, there exists several trade-offs between the resolution and accuracy of

the model and the predictive power and computational efficiency of the model. In this approach we are

purposefully selecting a coarse-grained modeling approach that in its initial versions makes several

simplifications, of which the most obvious probably is the assumption of homogeneity of incoming

requests. We select this level of modeling to achieve high computational efficiency in order for the model

to scale large data centers and still be useful in online simulations of the model. In later versions of the

model we also intend to study how statistical modeling of non-homogenous request patterns can be

incorporated in this model, as well as techniques for automatic training and parameterization of the

model for different applications.

APPLICATION MODELS

For monolithic legacy applications that execute in a single virtual host, modeling of component behavior is

enough to describe application behavior. For distributed systems such as cloud applications composed by

multiple components deployed on different physical hosts however, some kind of modeling of the

interrelationships and data flows between components is needed. To complement the component model

described in the previous section, we here define a graph-based application model intended to capture

the structure, configuration, and hierarchy of distributed applications.

The overall purpose of this modeling is to quantify the propagation of load between components in

applications, i.e. to build graph-based translation functions that allow modeling and quantification of the

load incoming requests place on different components within an application. By viewing applications as

sets of components that are linked over networks, and using the load propagation functions of the

components in combination with the application graph link data, we construct models that allow

quantification of both background and request-driven load placed on individual components over time.

12 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Figure 2 Applications can be modeled as graphs

As illustrated in Figure 2, applications are viewed as (potentially cyclic) directed graphs of software

components where graph nodes model components, graph links indicate coupling between components,

and link weights indicate load distribution patterns. Making the assumption that load propagation for

request-driven load is instantaneous (e.g., occurs within a single time step of a discrete time simulation),

application-level load propagation functions are derived from component load propagation functions and

the graph link data.

Central to cloud application deployment and management are application description templates that

outline configuration and parameterization of components, e.g., OpenStack Heat, AWS CloudFormation,

and Google deployment templates. As the purpose of these deployment descriptors is to enable

management of applications (rather than individual virtual hosts), they naturally contain much of the

graph link information needed in the CACTOS application models. Lacking such deployment descriptors,

we envision that application models can also be trained using machine learning techniques based on

network monitoring data (a topic for future study in CACTOS)[9].

Natural extensions to this model include, e.g., network modeling that (similar to the component resource

capacity bounds estimation) quantify bandwidth capacity and link quality requirements between

components. In infrastructure optimization, it is also envisioned that horizontal elasticity mechanisms can

be effectively realized as autonomic components operating on application models, e.g., using monitoring

data in combination with predicted upper and lower capacity bounds for components as triggers for

horizontal elasticity adjustments (i.e. removal or instantiation of component instances).

PREDICTION MODELS

13 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Given application and component models that capture the interrelationships of cloud application

components and the component-wise translation functions between incoming requests and (internal and

external) load, it is possible to (based on the incoming request patterns of an application) formulate

functions that in detail estimate the resource requirements and load impact of applications in cloud data

center. Extending this capability with prediction models then formulates the basis of a framework for

combined application and infrastructure modeling for infrastructure optimization. What the CactoOpt

cloud application models aims to realize is exactly this, a model framework for prediction of application

and component load behavior that can be used in both simulation and runtime environments.

Prediction of application behavior is often done based on application workload pattern analysis as

application characteristics such as user behavior and seasonal load patterns are preserved at this level. In

this work we focus on statistical and time series based analysis of historical application behavior, e.g.,

analysis of request logs or workload traces to identify seasonal and trend patterns, to allow fine-grained

modeling of application and user behavior that can be used in prediction of future workload patterns. As

demonstrated in the following sections, such analysis for distributed cloud applications can be greatly

beneficial in building knowledge of the structure and elasticity patterns of applications.

For applications where the internal load is not primarily driven by external requests, e.g., monolithic batch

processing applications, modeling of application request patterns is not very illustrative. For such

applications we note that behavior prediction can be performed using similar time series analysis

techniques on component level (i.e. looking directly at the resource usage patterns rather than the

incoming request patterns). While use of application behavior knowledge can greatly assist in this process,

this type of modeling can be done using a black-box perspective (i.e. without knowledge of the application

internals) for, e.g., application classification for cloud autoscaling [4]. This technique is demonstrated in

the scientific computing use case where we illustrate how phase analysis can be used to predict execution

times and provide scheduling information for the Molpro application.

14 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

III. APPLICATION BEHAVIOR MODELING

The performance of cloud applications can be considered as a function of three main factors: the design of

the system, the implementation of the system, and the load on the system. When a system is designed,

theƌe is tǇpiĐallǇ aŶ uŶdeƌlǇiŶg assuŵptioŶ of the sǇsteŵ’s opeƌatioŶal load ƌaŶge. Hoǁeǀeƌ, the aĐtual
workload, and thus the performance, is only known when the system becomes operational, which can

sometimes turn system design and workload analysis into a chicken-and-egg problem. A common

approach to get around this issue is to analyze workloads of existing (similar) systems and draw similarities

and possible discrepancies between the existing system and the new system.

In this work we demonstrate how predictive workload models are developed and used in conjunction with

(application and component) load propagation models for infrastructure optimization in the CACTOS

infrastructure toolkits. The workload models are constructed using workloads acquired from project

partners as well as publicly available workloads, and are used to understand the way (users of applications

and) applications behave and the effect workload events (such as planned and unexpected workload

peaks) have on infrastructure resources.

The workload models presented here are based on six different workloads. The UULM workload

represents an HPC application with alternating periods of I/O intensive and CPU intensive loads (Molpro)

[31]. The second workload is a Video on Demand (VoD) application obtained from a major Swedish VoD

provider [2]. The thiƌd ǁoƌkload is a ϲ Ǉeaƌs’ ǁoƌkload oďtaiŶed fƌoŵ the Wikiŵedia fouŶdatioŶ foƌ all the
services running on their servers in all languages including Wikipedia, Wikibooks and Wiktionary [10]. For

burstiness modeling we have also used traces from IR-Cache, a caching service consisting of approximately

ten caching proxies located throughout the United States, a Google cluster workload, and a workload from

the FIFA 1998 World Cup servers[3]. More information about the workloads used in this work can be

found in Appendix A.

MODELING USER BEHAVIOUR IN CLOUD APPLICATIONS

One of the most direct ways to model user behaviour in cloud applications is to study cyclic and seasonal

patterns in application request workloads, the distributions which generate the workload and the

popularity of different objects between the users. To build understanding and models of user behaviour in

these contexts we here study request arrival patterns in the Wikipedia workload, one of the largest

publically available workload traces, a VoD workload from a Swedish VoD provider and a workload from

the MolPro application.

15 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

ARRIVALS IN THE WIKIMEDIA WORKLOAD

We used time-series analysis to model the hourly workload request flow. In the classical decomposition

model [9], an observed time series {xt, t ∈ T} is modelled as a realization of a sequence of random variables

{X t, t ∈ T}, X t = Tt +St +Rt, where Tt is a slowly changing function (the trend component), St is a periodic

function with known period m (the seasonal component), and Rt is a random noise component (assumed

to be a stationary time series). For modelling the request flow, we use (seasonal) Autoregressive

Integrated Moving Average (ARIMA) models.

The workload is clearly non-stationary due to changing mean of the arrival rate with time. Therefore,

instead of building a single global model, we modelled smaller periods of the workload where there was

no significant step. Figure 3 shows the decomposition of the request flow for the period between the 3rd

of September till the 8th of October, 2013. The seasonality graph suggests high daily and weekly

correlations between the number of requests during this period. The trend graph can be approximated

with piecewise-linear functions. We fitted the remainder to a seasonal ARIMA (2, 0, 2) (0, 0, 1) model

using the R forecast package.

Figure 3 Time series decomposition of the hourly arrival rates for year 2013 Figure 3 Time series decomposition of the hourly arrival rates for year 2013

16 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Figure 4 The residuals are tested in order to find the quality of the fitted time-

series model.

Figure 4 shows some diagnostic plots of the fit, namely, the standardized residuals, autocorrelation for

residuals, and p-values for Ljung-Box statistics for the fitted model [9]. While most of the standardized

residuals are well inside the [-2, 2] interval, in some cases they are outside. The autocorrelation function

(ACF) also suggests some daily correlation still present in the residuals, so the fitted model could still be

improved. We leave this for future work.

We have repeated similar analysis for different (regular) parts of the workload and summarized our results

in Table 1. The first column is the period studied. The second column summarizes the trend characteristics.

For most parts of the workload, the variance in the trend is less than 5% of the average value. The second

17 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

column summarizes the workload seasonality. For each seasonality plot, we have computed the FFT. The

only two dominant frequencies are at 1 day and 1 week. Their amplitudes are also noted. The last column

describes the fits for the remainders. The remainders are fitted using seasonal ARIMA models. We note

that the models are of low order and are not too far from each other with even some models repeating,

e.g., ARIMA (1,0,2)(0,0,1) is repeated 4 times.

Table 1 Different time-series fits are obtained for different parts of the data

To understand the differences between the load on the servers during weekends vs. weekdays, Figure 5

shows box-plots for the aggregate hourly number of requests for all Wednesdays in 2011 and all Saturdays

in 2011. A box-plot is a way to visualize the quartiles and the dispersion of the distributions of the data

[19]. The medians and the means for the different hours are plotted. It is clear from the figure that the

time of the day affects the number of requests significantly with the lowest activity at 5, 6 and 7 a.m. and

the highest activity during the afternoons and the nights. The data dispersion is also affected by the time

of the day and the day of the week. More accurate predictions can be done at times with lower dispersion.

18 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Similar results were obtained for different days and years for both the number of requests and the sent

data.

BURSTS IN THE WIKIMEDIA WORKLOAD

We now shift our focus towards studying the effect of major events on the workload. We focus on two

major events, Michael JaĐksoŶ’s death aŶd the “upeƌ bowl XLV. For both events, we report results for the

collateral load that accompanied the load on the main page. We define the collateral load as the load

increase on pages associated with the page of the main event excluding the load on the page dedicated to

that event. In order to extract the collateral load, we parse the ŵaiŶ eǀeŶt’s page for the webpages that it

links to. Figure 6 shows the workload oŶ MiĐhael JaĐksoŶ’s page and the collateral load. When Michael

Jackson died, the load on his page increased by around four orders of magnitude. This increase was

accompanied by an increase in the load on all pages that his page linked to, but with a smaller yet

significant amplitude. Both the load and the collateral load started decreasing shortly after a few hours

but with the collateral load decreasing slower than the load. After 12 days, on the 7th of July, Michael

JaĐksoŶ’s ŵeŵoƌial seƌǀiĐe took place, resulting in another significant load spike on the load on his

Wikipedia entry, but in a much larger spike in the collateral load.

Figure 4 Box plots of the hourly arrival rates on all 2011 Wednesdays and Saturdays

19 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Figure 5 When Michael Jackson died, the traffic to his Wikipedia page

increased by three orders of magnitude. The traffic on pages linked from his

page also increased by more than two orders of magnitude.

Figure 6 The Super Bowl causes a yearly spike that occurs on pages related to

the event but not the main event's Wikipedia page

Figure 7 shows the load on the Super Bowl XLV page and the collateral workload on the Wikimedia servers

before and after the event. Although the main event was the Super Bowl, the load spike was in the

collateral workload dwarfing the spike on the Super Bowl page. We obtained similar results for the FIFA

2010 World Cup, the Eurovision 2010 and the Egyptian revolution articles where for all of them the

collateral workload was typically orders of magnitude than the load on the main article. This phenomenon

seems to be common for planned events, where the collateral load surpasses the load on the original

item. We plan to study the collateral load effect in more details and find its implication on resource

management problems such as placement and resource provisioning.

20 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

WIKIMEDIA CONTENT POPULARITY MODELING

During peak hours, less thaŶ oŶe thiƌd of Wikiŵedia’s pages are accessed while during hours of lower

activity around one sixth of all pages are accessed. This pattern did not change for the period of study. To

better understand the dynamics of the workload on individual pages, we keep track of the top 500 pages

having highest number of requests for the period of study. This is a highly dynamic list with over 650000

pages joining the list for some time during the period of the study. The least accessed page in the top 500

list had on average less than 1200 page views per hour for the period of the study, i.e. less than 20 page

views per minute. On the other hand, the most popular pages in the list where usually general pages, e.g.,

the English Main Page. These pages had on average more than 500000 page views at the beginning of our

study and around 20 Million views at the end.

Figure 8 shows the histogram of the number of consecutive hours a page stays popular before leaving the

list. Most pages have volatile popularity, with 41.58% of the top 500 pages joining and leaving the top 500

list every hour, 87.7% of them staying in the top 500 list for 24 hours or less and 95.24% of the top-pages

staying in the top 500 list for a week or less. The distribution has a long tail. Since there are some

monitoring gaps in the workload, we were not able to infer which pages were in the top 500 list during

these gaps. This adds some uncertainty to the preceding results. In order to reduce this uncertainty, we

plot Figure 9 that shows the percentage of time a page is in the top list during the study period. The x-axis

represents the ratio between the total time an object stays in the top 500 list and the total time of the

study while the y-axis shows the frequency of objects with a certain ratio. Around 9 pages where in the

top 500 list for the whole period of the study, these are mostly the main pages for different Wikipedia

projects. On the other hand, Figure 8 confirms that most objects are popular for only short periods of

time.

Figure 7 Time a page stays in the top 500 popular Wikipedia articles

21 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Figure 8 Ratio between the time a Wikipedia article stays among the most popular 500

articles and the total time of the study

VOD REQUEST ARRIVAL RATE MODELING

The Probability Distribution Function (PDF) and the Cumulative distribution Function (CDF) of the hourly

session arrival rate is shown in Figure 10 (in blue) on a Log-Log plot. An almost identical plot was also

obtained for the user arrival rate since one user almost always does not start more than one session per

hour. The PDF suggests that the arrival rate process can be modelled using a heavy tailed distribution. We

have fitted the arrival rate data to different distributions and compared the goodness of fits in order to

find a good fit. The data was fitted to lognormal, exponential, truncated power law, stretched exponential,

gamma and power law distributions.

The plots show that either a lognormal distribution, an exponential distribution or a stretched exponential

distribution is a good fit. To choose the best fit, we used the Kolmogorov-Smirnov (KS) test. The p-value for

both the lognormal distribution and the stretched-exponential distribution was greater than 0.05, the

least significance level required to validate the null hypothesis that the empirical data does not follow the

distribution. To be precise, the KS distance for the lognormal distribution is 0.077 with a p-value of 0.09,

and the KS distance for the stretched exponential distribution is 0.059 with a p-value of 0.31.

22 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Figure 9 Fitting the request arrival rate to different distributions

Both the lognormal and the stretched exponential distributions are possible fits given the p-values of the

KS test. To identify the better fit, we use the log-likelihood ratio between the distributions. The log-

likelihood ratio of the lognormal distribution was higher with a p-value of 0.01. We thus conclude that the

lognormal distribution is the best distribution to fit our data from the distributions tested. The fitted

lognormal distribution is different from the arrival rate distribution of the VoD service provided by China

Telecom discussed by Yu et al. Where the arrival rates follows a modified Poisson distribution [32].

Figure 11 shoǁs the PDF of the ǀideo sessioŶs’ iŶteƌ-arrival times (seconds) on a log-log scale. More than

50% of the sessions start after one or less than one second from the arrival of the previous session and

around 90% of the sessions start within a minute from a previous session. The maximum inter-arrival time

is around 24 minutes. We have again tried fitting a distribution to the Inter-Arrival time following the

 same steps described above. Again, the KS test showed that both the lognormal distribution (p-

value=0.08 > 0.05) and the stretched exponential distribution (p-value=0.08 > 0.05) to be two viable fits.

Testing using the log-likelihood method described by Clauset et al. [7], the stretched-exponential

distribution has a higher likelihood than the lognormal distribution with a p-value=0. While it is popular to

model session and user arrival rates as Poisson processes in workload generators [25] [14], our results

suggest that for different VoD services, different models of arrival might occur. Poisson processes require

the inter-arrival time distribution to be exponential. Figure 10 shows also the best exponential distribution

fit we could achieve for the inter-arrival data. The deviation clearly shows that the inter-arrival time

distribution is not exponential, and thus the arrivals do not follow a Poisson process. Poisson processes

were considered the defacto processes to model network arrivals until the seminal work by Paxson and

Floyd [20]. It is thus worth investigating if Poisson processes fail also to model arrival processes for VoD

systems. We unfortunately do not have sufficient data from enough VoD providers to come to such a

conclusion.

Since at least for the TV4 workload, the user and request arrival processes cannot be modelled using

Poisson processes, many of the previously developed theories and models based on the assumption of

requests/users generated from a Poisson process will either be inaccurate or will be wrong for systems like

23 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

TV4. Since VoD workloads are scarce, we cannot compare our results with systems other than the very few

available in the literature.

Figure 10 The inter-arrival rate cannot be fitted to an exponential

distribution, i.e., the arrival rate does not follow a Poisson process

TIME SERIES MODELS FOR VOD REQUEST ARRIVALS

Figure 11 Time Series (multiplicative) decomposition of the VoD session

arrivals

24 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

For the VoD workload, we show in this report another decomposition and modelling technique suitable

for non-stationary time-series. The multiplicative decomposition of the request arrival rate is shown in

Figure 12. The multiplicative time-series decomposition again decomposes the time-series into three

components the trend (T), the seasonality (S) and the random components (r). The difference is instead of

decomposing the time-series into additive terms, it is decomposed in to multiplicative terms, X = T × S × r.

In their seminal work to model non-stationary time series, Huang et al. introduced a novel empirical

method to characterize the frequency variations in non-linear and non-stationary time-series [12],

recently, known as the Hilbert-Huang Transform (HHT). At the core of the HHT is the Empirical Mode

decomposition (EMD) method and its different variations [24].

The EMD (and all its other variations) are methods with which any complicated data set can be

decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that admit well-

behaved Hilbert transforms. The Hilbert spectrum can then be used to visualize the produced IMFs and

frequency variations in the original signal. Since the number of IMFs produced is low, it is a more efficient

way of spectral analysis compared to, for example, the Fourier transform which typically requires an

Figur 13 The Hilbert-Huang transform is used to obtain the time-frequency

representation of the workload

Figur 12 The Hilbert-Huang transform is used to obtain the time-frequency

representation of the workload

25 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

infinite number of sinusoidal frequencies to represent any time-series. Huang et al. and others have

discussed the strengths and weaknesses of their proposed method and showed the superiority of the HHT

compared to other available spectral analysis methods such as the wavelet transforms and Fourier

transforms [24,12] .

The Hilbert spectrum is shown in Figure 13. The X-axis is the time in days and the Y-axis is the frequency in

weeks. The colours represent the intensity of the frequency component at any point in time. On top of the

graph, the analysed time-series is plotted. The low frequency components dominate the time-series. The

strongest of these components is the weekly component. At the times of the four major spikes in the VoD

workload between 25 and 35 days, and 50 and 55 days in Figure 6, the spectral pattern is distorted. The

spikes cause an increase in the power and dispersion of the spectrum of the time-series. This suggests that

a possible way to detect spikes as they occur would be to use spectral analysis methods to detect the

beginning of the spike [3]. We talk later about spike modelling in the report.

VIDEO VIEWS PER USER

Figure 14 shows the CCDF of distribution of the number of videos viewed per user. More than 90% of the

service users view less than 70 videos during the period of the study, i.e., less than one video per day.

Many of these sessions last for less than 10 minutes. To see how long a user uses the VoD service, Figure

15 shows the CCDF of the total time a user used the VoD service. Some users have used the service for just

a few minutes, with more than 25% of the users using the service for 45 minutes or less. Other users have

used the service heavily. The longest usage was by a customer who used the service for a total of 45 days

and a few hours. This can be either a user who has the service running for over 15 hours per day, like a

Figur 15 Most users do not use the

service on daily basis

Figur 144 Most users do not use the

service on daily basis

26 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

restaurant using the service, or a customer who has multiple devices all connected to the service using the

same ID.

IMPATIENT USER BEHAVIOUR

Figure 16 Most users use the service

moderately.

Figur 17 User sessions are quite short

Figure 15 Most users use the service

moderately.

Figur 16 User sessions are quite short

27 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Not all users who start viewing a video stream continue to watch until the end. Some users keep replaying

the video, going back and forth in the video and pausing the video. This leads to sessions having very

different length. Figure 16 shows the complementary CDF (CCDF) for the length of the VoD sessions. More

than 90% of the sessions last for less than one hour, with more than 50% of the total sessions lasting less

than 12 minutes. More than 20% of the sessions gets terminated within the first 30 seconds from their

staƌt tiŵe. These Ŷuŵďeƌs ĐoŶfiƌŵ the ͞iŵpatieŶt useƌ behaviour͟ disĐussed iŶ pƌeǀious studies desĐƌiďed
by Yu et al. [32]. Although the diffeƌeŶĐe ďetǁeeŶ ouƌ studǇ aŶd Yu et al.’s studǇ is aƌouŶd 6 years, the

numbers we find here do not differ considerably from their study. For example, Yu et al. found that 50% of

the users terminate a session within the first ten minutes from when they start it and that more than 90%

of all sessions terminate within 60 minutes from when they start. The main difference between our study

aŶd Yu et al.’s studǇ iŶ this ƌespeĐt is that the useƌs of the TVϰ VoD aƌe ŵoƌe likelǇ to staǇ thaŶ the useƌs iŶ
Yu et al.’s studǇ if theǇ ŵake it past the fiƌst ϭϬ ŵiŶutes.

Figure 17 shows how the median session length changes with the popularity of the videos (number of

ǀieǁsͿ. Foƌ eǆtƌeŵelǇ uŶpopulaƌ aŶd eǆtƌeŵelǇ populaƌ ǀideos, the ͞iŵpatieŶt useƌ behaviour͟ is Ƌuite
high with the median session length of around 100 seconds. Videos with a medium popularity seem to

have longer session times. CACTOS will utilize this difference to be able to improve the QoS while

reducing wasted resources.

Figure 18 Users tend to be impatient

for both extremely popular and

extremely unpopular videos

Figure 17 Users tend to be impatient

for both extremely popular and

extremely unpopular videos

28 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

To better understand why users abandon streams early, we investigated two hypotheses. The first

hypothesis was that users abandon sessions due to low quality of the streaming, i.e., low bit-rate. Figure

18 shows how the average median session length of all users changes with the average streaming bit-rate.

The figure shows that across most of the seen average bit-rates, the behaviour of impatient users does not

 change. Average bit-rates more than 3 Mbps are rare, and thus the variation seen when the bit-rates are

more than 3 Mbps should not be interpreted as a change in the user-behaviour but rather as outliers. The

second hypothesis was that users who use the service more will have a different average median session

length. Figure 19 shows that the session length does not differ between users who use the service very

often from those who do not. Thus, both hypotheses are not true. The session length distribution is an

invariant in the system.

Figure 20 Users impatience is not

correlated with the bitrate of the

video

Figur 21 Heavy users of the service are generally more

impatient than non-frequent users

Figure 1819 Users impatience is not

correlated with the bitrate of the

video

Figur 19 Heavy users of the service are generally more

impatient than non-frequent users

29 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

THE MOLPRO APPLICATION

The Molpro application from the scientific computation scenario offers a set of chemical algorithms to

calculate or simulate chemical computations. Therefore a scientist defines the requested computation in

an input file for Molpro that has direct influence on the hardware affinity of the application behaviour.

Since Molpro is normally executed on high performance computing (HPC) clusters, it requests two main

tasks towards CactoOpt:

i. scheduling new incoming computations

ii. improving cluster utilisation and computations during runtime

Compared to the state of the art in HPC, the scheduling targets a more application aware placement of

computations in a heterogeneous Cloud cluster. Improvements of hardware assignments during runtime

are usually not available in common HPC clusters (cf. D7.1).

Application Behaviour

The application behaviour is directly influenced by two factors:

i. The specified input file which defines e.g. the chemical algorithm

ii. The used hardware for the computation and its utilisation by e.g. other applications

Depending on the input file different phases occur during the overall execution: Disk I/O bound or CPU

bound. The phases come from a changing demand of hardware resources during the computation and

lead to different hardware bottlenecks (Disk or CPU). Since we focus on single machine computations,

networking is not considered but would be a third dimension.

The phases can be detected by looking at the ratio between CPU utilisation and disk I/O waiting time.

Representing this ratio as a mathematical function offers possibilities like curve sketching to detect turning

points in the ratio graph in order to define the beginning and ending of phases.

With the same input file, those phases occur predictably but with a different length depending on the

used hardware. Changing the disk speed e.g. by replacing a HDD with a SSD leads to smaller I/O bound

phases and hence to a shorter overall execution time (c.f. Table x). Multiple runs of the same computation

on the same setup shows a very small deviation of the execution time with a SSD and a small deviation

with a HDD1.

Having a deeper look at the metrics offer the creation of more hardware independent metrics like the

number of reads/writes to the disk or the number of CPU computations. Comparing this metrics from a

same application input on different hardware confirms the similarity of application behaviour.

1 Larger deviation with HDD caused by unpredictable placing of data on disk and, compared to SSD, very long

seek times for reading.

30 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Since the application behaves depending on the current bottleneck, additional applications on the same

hardware at the same time with the same hardware demand will kill the overall execution time. Hence

CactoOpt should be aware of that.

Table 1: Execution time and Deviation for Molpro with same Computation

Setup Average [min] Deviation [min] # Runs

Intel i5 3.2GHz, 16GB Ram,

SSD

385.14 0.36 3

Intel i5 3.2GHz, 16GB Ram,

HDD

504.16 22.11 8

Figure 20 CPU/IO time as captured by Ganglia

monitoring from UULM(HDD)

Figure 21 CPU/IO time as captured by

Ganglia monitoring from UULM(SSD)

Setup #1: CPU Bound #2: I/O Bound #3: CPU Bound #4: Mixed

Intel i5 3.2GHz,
16GB Ram, HDD

94% CPU Usage
16.4M IOs
196m runtime

1% CPU Usage
40.9M IOs
50m runtime

89% CPU Usage
23.2M IOs
165m runtime

25% CPU Usage
96.3M IOs
80m runtime

Intel e5 2.6GHz,
16GB Ram, HDD

96% CPU Usage
14.3M IOs
219m runtime

2.4% CPU Usage
42.9M IOs
55m runtime

91% CPU Usage
20.9M IOs
185m runtime

31% CPU Usage
97.5M IOs
85m runtime

Inaccuracies caused by manual phase definition and rounding errors

31 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Optimisations

Main optimisation goals when running Molpro applications in a Cloud setup are both from a Cloud user

and Cloud provider viewpoint. The Cloud user, who submits the Molpro computation, requests a shorter

execution time. The Cloud provider aims at perfectly utilise his hardware with respect to energy efficiency.

Therefore non-conflicting Molpro computations could be placed on the same hardware node if the

peƌfoƌŵaŶĐe of the Useƌs’ ĐoŵputatioŶs aƌe Ŷot touĐhed ďut the oǀeƌall Đlusteƌ peƌfoƌŵaŶĐe Đould ďe
improved. Additionally the assignment of Molpro computations to available hardware can optimise the

energy efficiency. The main optimisation factors summarised are:

i. Improve the (Cluster) Performance

ii. Improve the (Application) Execution

iii. Improve the (Overall) Energy Efficiency

To achieve those optimisation factors the actual phases of running applications and also upcoming phases

in future can be considered. Therefore online mining can detect the current phase of running applications.

The input file plus historical footprint checking of previous application runs can predict the next kind of

phase. This output can then be used with a potential hardware to predict the execution time in future.

Figure 22 Steps to model and optimize the MolPro application.

32 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

I ELASTICITY MODELS AND PREDICTION

TYPES

To illustrate the need for (and type of) prediction models used in this work, we here categorize and discuss

cloud infrastructure optimization in the three categories of:

 Placement (allocation of virtual hosts to physical resources, including scheduling and migration).

 Vertical elasticity (dynamic control of virtual host capacity, e.g., CPU and RAM, assignments)

 Horizontal elasticity (dynamic control of instantiation of application components)

While all of these types of actions can benefit from load prediction, the type of information needed for

the individual types of optimization well illustrates the CACTOS perspective of prediction modelling.

Placement of virtual hosts is typically done in two phases - upon admission of new applications (and thus

initial instantiation and bootstrapping of virtual hosts) as well as periodically (when monitoring of existing

placements indicate opportunities for improvements). As such placement of virtual hosts needs (at least)

coarse-grained estimates of the load that will be placed on physical resources in internal load dimensions

(e.g., CPU, RAM, and I/O). In the CACTOS work we use the aforementioned component model upper and

lower load bound estimations, as well as prediction models that model seasons and trends in component

capacity requirements (i.e. based on application trace logs when available), for virtual host placement and

scheduling.

Vertical elasticity techniques can be seen as feedback control based regulators of capacity, i.e. controllers

that regulate what virtual host gets to use what capacity on a physical resource (i.e. what resources within

a physical resource). Typically a set of virtual hosts are assigned to a physical resource and to enable these

virtual hosts to be co-hosted without degraded application QoS, these controllers need accurate estimates

of predicted component load. As vertical elasticity actuators typically are fast acting (i.e. with a short delay

between control and action), the load prediction time window does not need to be very large for such a

controller to be efficient. However, as vertical elasticity mechanisms by definition only control resource

assignments for a single virtual host, vertical elasticity mechanisms have well defined limits for how much

they can scale the capacity allocated to components.

Horizontal elasticity mechanisms can be seen as controllers that control instantiation of virtual hosts, e.g.,

load balancer control of duplication of virtual machines. As such, horizontal elasticity can scale out and

thus provide greater increases in the capacity allocated to applications than vertical elasticity techniques.

However, as instantiation of virtual hosts can be time consuming [13] (due to delays in, e.g., virtual

machine instantiation and trigger (or require) migration of existing workloads, horizontal elasticity

mechanisms typically operate using longer time perspectives and on application-level behaviour patterns

(e.g., request arrival patterns). For the same reasons (actuator delays), it is also important to detect

unexpected load peaks as early as possible to be able to scale up application resources.

Modelling of application and component behaviour is often done using time series analysis and signal

processing techniques that operate on samplings of key performance indicator (KPI) values. As a number

of user behaviour patterns (e.g., daily and weekly schedule patterns) often are evident at application level,

user and application behaviour models are often based on analysis of application parameter data, e.g.,

33 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

application-level requests for web applications. For analysis of component load patterns, similar

techniques can be used at component level, e.g., analysing resource capacity KPIs such as CPU and I/O

patterns in component and physical resource log traces.

A Predictive Workload Model

As seen in Figure 3, the workload (Yt) has a pronounced repetitive weekly pattern, which slowly varies over

time. We call this the (weekly) pattern, P t, an estimate it by fitting cubic splines to the data [22]. Cubic

splines are flexible and able to pick up the features of the pattern. The workloads’ deǀiatioŶ fƌoŵ the
pattern (res t = Y t − P t) is called the residual and will typically have a positive auto correlated structure that

also brings information about future values. It may be captured by an autoregressive model, e.g. in the

simplest case with lag structure one,

 res t+1 = a 0 + a 1 res t + e t+1, (1)

where e t is white noise. The workload is also characterized by occasional outliers, having extremely large

or small values compared to the surrounding workload values. Outliers typically come in time consecutive

groups. Downward outliers occur due to monitoring or system problems and do not reflect the true

workload. Using bogus monitoring values for management decisions can lead to severe decrease in the

application performance. They should therefore be ignored and the corresponding (unobservable)

workload be predicted by the estimated pattern. Upward outliers (large values) on the other hand are real

workload increases and should be predicted as accurately as possible. While it is not possible to predict a

completely random event, i.e., foresee the first upward outlier in a group, it is important for the predictor

to adapt quickly and start mitigating for the workload change. We thus predict

 the next workload value by the estimated pattern plus the prediction error of the last workload, thus

aiming at catching up as fast as possible to the͟eǆplosiǀe͟ Ŷatuƌe of the upǁaƌd outliers. If the last value

was not an outlier, we predict the next workload by the estimated pattern plus the residual estimated

from the autoregressive model in Equation 1.

The repetitive weekly pattern slowly changes with time in amplitude, level and shapes. Thus, when

estimating the pattern and the residual AR model, and when identifying outliers, it has to be done locally,

say using only the two last weeks of workload. Moreover the pattern and the AR model should be

estimated without the influence of outliers. We propose to do the following: Let Yt
∗ denote the true

workload Yt if it is not an outlier (to be defined), and let it correspond to the estimated pattern Pt

otherwise. Suppose we have chosen a two week window of workload data without outliers, Y *t−ϯϯϱ, ..., Y ∗
t

and want to predict the workload at time t+1. Estimate the weekly pattern Y t, by first overlaying the two

weeks of data on top of each other, such that there are two workloads for each hour over a week. Fit a

cubic spline to these data, putting knots at every second hour of a week (87 knots in total over 168

 hours of a week) and using B-splines as basis functions. Now compute the residuals,

 res∗h = Y∗h − Ph, h = t − ϯϯϱ, ..., t,

34 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

noting that Ph = Ph+168, and estimate the coefficients of the AR model using Equation 1 by a least squares

fit of

 res∗t+1 = a0 + a1 res∗t

If the last workload, Y t, is not an outlier, predict the next workload, YT+1, by

 YT+1 = Pt+1 + a0 + a1 (YT − Pt).

If Y t is an upward outlier predict Y t+1, by

 YT+1 = Pt+1 + (YT − Pt).

If Y t is a downward outlier predict Y t+1, by

 YT+1 = Pt+1.

Figure 23 Using Cubic splines to predict the workload on Wikimedia servers

Outliers are defined as follows. First compute the standard deviation sres of the residuals res ∗h, h =

t−ϯϯϱ,..., t. Suppose that we go forward in time and observe Y t+1. Then Y t+1 is defined to be an upward

outlier if Y t+1 is greater than the maximum value of the estimated pattern (over the last two weeks) plus

4sres. Moreover, Y t+1 is defined to be a downward outlier if it is zero or less than the minimum value of the

estimated pattern (over the last two weeks) minus 4sres. To predict the workload at time t + 2, having

observed Y t+1, we slide the two week window one hour ahead in time and repeat the above algorithm.

The predictive model was applied to both the flow of requests and the data flow for the Wikimedia

workload.

35 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Examples of prediction performance for the request flow can be seen in Figure 23. The actual workload is

shown in blue solid lines, the predicted value in red dotted lines and the predicted value without

compensation for the bursts in solid black lines. In Figure 23(a), there is a single short spike

 where the workload almost doubled, while in Figure 23(b), the workload almost doubled but stayed like

that. It is clear that using our corrective mechanism, the predictor is able to rapidly cope to the changing

workload dynamics. Comparable results were obtained for predicting the data flow that we omit due to

lack of space. We calculated the Mean Absolute Percentage Error (MAPE) for our predictions for both the

requests flows and the data flows. When excluding outliers, the MAPE for the predicted request flow is

2.2% while for the data flow is 2.3%, that is, on average we miss the true workload one step ahead by

around 2% for both the data and request streams. When only considering spikes, the MAPE for the

request stream is 4.6% and is 11% for the data stream.

36 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

II BURSTINESS MODELLING

Woƌkload spikes aŶd ďuƌstiŶess deĐƌease oŶliŶe appliĐatioŶs’ peƌfoƌŵaŶĐe aŶd lead to ƌeduĐed Qo“ aŶd
service disruptions [6]. We define a workload spike (sometimes referred to as a burst or a flash crowd[5])

to be a sudden increase in the demand on an object(s) hosted on an online server(s) due to an increase in

the number of requests and/or a change in the request-type mix [29]. Some spikes occur due to a non-

predictable event in time with non-predictable load volumes while others occur due to a planned event

but with non-predictable load volumes.

A bursty workload is a workload having a significant number of spikes. The spikes make it harder to predict

the future value of the load. Bursty workloads complicate cloud resource management since cloud

providers host a multitude of applications with different workloads in their datacentres. Problems such as

service admission control, Virtual Machine (VM) placement, VM migration and elasticity [17] are examples

of resource management problems that are complicated due to workload spikes and burstiness. It is

therefore important to be able to measure the burstiness of a workload in the CACTOS toolkit in order to

be able to adapt the optimisation plans and perform resource management in an adaptive way. It is also

interesting to be able to generate artificial workloads with different burstiness profiles that can be used by

CactoSim to test what-if scenarios for deployment and optimization.

We identified some requirements for a burstiness metric to be robust and work on a wide range of

scenarios.

1) The metric should be able to capture changes in a wide set of workload types.

2) The parameters used for calculating the metric should be intuitive, and therefore easy to set.

3) The metric should be able to operate on short data sequences and to be fast to compute.

4) The metric should differentiate between a gradual workload increase and a sudden one. For example,

techniques using entropy are not able to do that.

Sample Entropy as a Burstiness Measure

Sample Entropy (SampEn) is a robust burstiness measure that was developed by Richman et al. over a

decade ago [23]. It is used to classify abnormal (bursty) physiological signals. It was developed as an

improvement to another burstiness measure, Approximate Entropy, widely used previously to characterize

physiological signals [21]. “aŵple EŶtƌopǇ is defiŶed as ͞the Ŷegatiǀe Ŷatuƌal logaƌithŵ of the ;eŵpiƌiĐalͿ
conditional probability that sequences of length m similar point-wise within a tolerance r are also similar

at the Ŷeǆt poiŶt .͟ It has tǁo adǀaŶtages oǀeƌ “haŶŶoŶ’s eŶtƌopǇ: iͿ ďeiŶg aďle to opeƌate oŶ shoƌt data
sequences and, ii) it takes into account gradual workload increases and periodic bursts. These advantages

make it an interesting potential measure for workload burstiness as a workload having periodic bursts,

e.g., every weekend, is easier to manage compared to workloads with no repetitive bursts.

Three parameters are needed to calculate SampEn for a workload. The first parameter is the pattern

length m, which is the size of the window in which the algorithm searches for repetitive bursty patterns.

The second parameter is the deviation tolerance r which is the maximum increase in load between two

37 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

consecutive time units before considering this increase as a burst. The last parameter is the length of the

workload which can easily be computed. We therefore focus on m and r and their choice. The deviation

tolerance defines what a normal increase is and what a burst is. When choosing the deviation tolerance,

the relative and absolute load variations should be taken in account, For example, a workload increase

requiring 25 extra servers for a service having 1000 VMs running can probably be considered within

normal operating limits, while if that increase was for a service having only 3 servers running then this is a

significant burst. Thus by carefully choosing an adaptive r, SampEn becomes normalized for all workloads.

If SampEn is equal to 0 then the workload has no bursts. The higher the value for SampEn, the more

bursty the workload is.

Sample Entropy Implementation

There is one main limitation of SampEn, it is expensive to calculate both CPU-wise and memory-wise. The

computational complexity (in both time and memory) of SampEn is O (n2) where n is the number of points

in the trace. In addition, workload characteristics might change during operation, e.g., when Michael

Jackson died, 15% of all requests directed to Wikipedia were to the article about him creating spikes in the

load. If SampEn is calculated for a long history, then recent changes are hidden by the history.

To address these two points, we modified the sample entropy algorithm by dividing the trace into smaller

equal sub-traces. SampEn is calculated for each sub-trace. A weighted average, AvgSampEn, is then

calculated for all SampEn values for the sub-traces. More weight can be given to more recent SampEn

values. This way the time required for computing SampEn is reduced since n is reduced significantly. Our

modification also enables online characterization of workloads since SampEn is not recomputed for the

whole workload history but rather for the near past.

Our algorithm is shown in Algorithm 1. T is the workload for which SampEn is calculated. The trace is

divided into N sub-traces of length L (lines 1 to 3). For each sub-trace, W, SampEn is calculated. The first

loop in the algorithm (lines 9 to 14) calculates Bm (r), the estimate of the probability that two sequences in

the workload having m measurements do not have bursts. The second loop in the algorithm (lines 15 to

19) calculates Am (r), the estimate of the probability that two sequences in the workload having m + 1

measurements do not have bursts. Then SampEn for the sub-trace is calculated and is added to the sum of

the SampEn values of all previous sub traces multiplied by a weighting factor a (line 20). The average

SampEn for the whole trace is then calculated.

In order to not make the length of this report very long, we point the interested reader to our recently

published paper where more details on the evaluation of Sample Entropy and how it compares to the

State-of-the-Art in burstiness quantification is presented [3].

38 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Algorithm 1 Sample Entropy modified algorithm

39 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

III RELATED WORK

To further provide context to the work presented in this document, we here include a brief survey of

workload modelling and resource management systems that are conceptually related to different aspects

of the CACTOS approach to infrastructure optimization and modelling.

MISTRAL: DYNAMICALLY MANAGING POWER, PERFORMANCE, AND ADAPTATION COST IN

CLOUD INFRASTRUCTURES

Goal: Mistral [15] is a holistic controller framework that optimizes trade-offs among power consumption,

application performance, and adaptation costs.

Application performance objective is specified in terms of a target mean response time. To include

performance into optimization formula actual response time is compared with target one and reward for

meeting it or penalty for missing it is applied.

In order to calculate the total cost of applying an adaptation Mistral considers: adaptation duration,

increased response time of applications during applying adaptation (both for involved and co-located

applications), and increased power consumption during applying adaptation.

Types of actions considered: Controller uses following adaptation actions to improve the data center

configuration: increase/decrease VM's CPU capacity, add/remove VM, migrate VM, shut down/restart

physical machine.

Algorithm: Mistral controls the costs of search versus the potential benefits during generation of

adaptation decisions. It considers its own power consumption and reduces the search space by using a

heuristic to estimate adaptations costs and comparing the intermediate solutions with the ideal

configuration.

To handle large-scale infrastructures multi-level hierarchy of controllers is introduced, where lower-level

controllers manage small number of physical machines at finer time granularity, while higher-level

controllers coordinate work of lower-level controllers at coarse grained time granularity.

SLA-BASED OPTIMIZATION OF POWER AND MIGRATION COST IN CLOUD COMPUTING

Goal: The objective is to minimize the total operational cost of the system including power and migration

costs, and penalties for violating response time constraints [11].

Power consumption is modelled as a sum of constant consumption for idle machine and variable part

related to the utilization of the server.

Types of actions considered: Types of optimization actions considered: switching physical machines

on/off, migrating VM, vertical scaling of VM.

40 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Algorithm: To find the best configuration of data center a heuristic algorithm based on convex

optimization and dynamic programming is used.

PMAPPER: POWER AND MIGRATION COST AWARE APPLICATION PLACEMENT IN

VIRTUALIZED SYSTEMS

Goal: pMapper is an application placement controller that dynamically places applications to minimize

power while meeting performance guarantees. Hence, performance is not a metric to be maximized, but a

constraint that has to be fulfilled [30].

Migration is characterized by a migration duration and a migration cost, where cost is revenue loss

because of the decreased performance of applications during migration estimated by quantifying the

decrease in throughput.

Types of actions considered: Controller is designed to utilize following power management actions: CPU

idling in the hypervisor, DVFS and throttling, and VM migration.

Algorithm: min Power Parity (mPP) algorithm works in two phases: firstly, it determines a target utilization

for each server based on the power model, and secondly, it places VMs on the servers using incremental

First Fit Decreasing (iFFD). iFFD first identifies servers with current utilization different from the target one

and divides them into two groups: receivers that are over utilized, and donors, that are underutilized.

Then for each donor it selects the smallest applications to migrate and stores them on a VM migration list.

Finally it decides where to migrate VMs using FFD with the spare capacity on the receivers as the bin size

and the VM migration list as the balls.

OMEGA: FLEXIBLE, SCALABLE SCHEDULERS FOR LARGE COMPUTE CLUSTERS

Goal: Omega [25] is a cluster management system that coordinates parallel schedulers. It is built around

shared state concept and uses lock-free optimistic concurrency control. Its main goal is to achieve both

implementation extensibility and performance scalability.

Types of actions considered: The system considers only initial placement decisions – once the tasks are

placed they are not scaled or migrated.

Algorithm: There is no central resource allocator in Omega, however to coordinate schedulers, a master

copy of resource allocation is maintained. To increase parallelization, each scheduler has its own local and

frequently-updated copy of resource allocation. Once a scheduler makes a placement decision, it updates

the master copy. If necessary, conflicts are resolved and local copies of resource allocation are resynced.

AGILE: ELASTIC DISTRIBUTED RESOURCE SCALING FOR INFRASTRUCTURE-AS-A-SERVICE.

Goal: AGILE [19] dynamically and proactively adjusts the number of VM assigned to a cloud application in

a way that minimizes the costs of infrastructure provisioning and penalties imposed due to SLO violations.

Types of actions considered: AGILE uses pre-copy live cloning to replicate running VM to achieve

immediate performance scale up.

41 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

Algorithm: AGILE predicts a future workload using a wavelet-based resource demand model, which looks

ahead for up to 2 minutes – the time needed to clone a VM. Then, it uses an application-agnostic resource

pƌessuƌe ŵodel to ŵap the appliĐatioŶ’s “LO ǀiolatioŶ ƌate taƌget iŶto a ƌesouƌĐe pƌessuƌe – the ration of

resource usage to allocation.

Nguyen, Hiep, et al. "Agile: Elastic distributed resource scaling for infrastructure-as-a-service." Proc. of the

U“ENIX IŶteƌŶatioŶal CoŶfeƌeŶĐe oŶ Autoŵated CoŵputiŶg ;ICAC’ϭϯͿ. “aŶ Jose, CA. ϮϬϭϯ.

42 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

IV REFERENCES
[1] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elasticity controller for cloud

infrastructures. In Network Operations and Management Symposium (NOMS), 2012 IEEE, pages 204–212,

April 2012.

[2] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. Analysis and characterization of a

video-on-demand service workload. In ACM MMSys, page to appear. ACM, 2015.

[3] Ahmed Ali-Eldin, Oleg Seleznjev, Sara Sjostedt-de Luna, Johan Tordsson, and Erik Elmroth.

Measuring cloud workload burstiness. In Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th

International Conference on, pages 566–572. IEEE, 2014.

[4] Ahmed Ali-Eldin, Johan Tordsson, Erik Elmroth, and Maria Kihl. Workload classification for

efficient autoscaling of cloud resources. Technical report, Technical Report, 2005.[Online]. Available: h

ttp://www8. cs. umu. se/research/uminf/reports/2013/013/part1. pdf, 2013.

[5] Ismail Ari, Bo Hong, Ethan L Miller, Scott A Brandt, and Darrell DE Long. Managing flash crowds on

the internet. In Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003.

MASCOTS 2003. 11th IEEE/ACM International Symposium on, pages 246–249. IEEE, 2003.

[6] Peter Bodik, Armando Fox, Michael J Franklin, Michael I Jordan, and David A Patterson.

Characterizing, modeling, and generating workload spikes for stateful services. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 241–252. ACM, 2010.

[7] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in empirical

data. SIAM review, 51(4):661–703, 2009.

[8] Adrian Cockcroft. Cloud native cost optimization, 2014.

[9] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware cluster

management. In Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, A“PLO“ ’ϭϰ, pages ϭϮϳ–144, New York, NY, USA, 2014.

ACM.

[10] Ahmed Ali Eldin, Ali Rezaie, Amardeep Mehta, Stanislav Razroev, Sara Sjostedt de Luna, Oleg

Seleznjev, Johan Tordsson, and Erik Elmroth. How will your workload look like in 6 years? analyzing

ǁikiŵedia’s ǁoƌkload. IŶ Cloud Engineering (IC2E), 2014 IEEE International Conference on, pages 349–354.

IEEE, 2014.

[11] Hadi Goudarzi, Mohammad Ghasemazar, and Massoud Pedram. Sla-based optimization of power

and migration cost in cloud computing. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, pages 172–179. IEEE, 2012.

43 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

[12] Norden E Huang, Zheng Shen, Steven R Long, Manli C Wu, Hsing H Shih, Quanan Zheng, Nai-

Chyuan Yen, Chi Chao Tung, and Henry H Liu. The empirical mode decomposition and the hilbert spectrum

for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, volume 454, pages 903–995. The Royal Society, 1998.

[13] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance variability of production

cloud services. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International

Symposium on, pages 104–113. IEEE, 2011.

[14] Shudong Jin and Azer Bestavros. G ismo: a generator of internet streaming media objects and

workloads. ACM SIGMETRICS Performance Evaluation Review, 29(3):2–10, 2001.

[15] Gueyoung Jung, Matti A Hiltunen, Kaustubh R Joshi, Richard D Schlichting, and Calton Pu. Mistral:

Dynamically managing power, performance, and adaptation cost in cloud infrastructures. In Distributed

Computing Systems (ICDCS), 2010 IEEE 30th International Conference on, pages 62–73. IEEE, 2010.

[16] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. Self-adaptive and self-

configured cpu resource provisioning for virtualized servers using kalman filters. In Proceedings of the 6th

International Conference on Autonomic Computing, ICAC ’Ϭ9, pages ϭϭϳ–126, New York, NY, USA, 2009.

ACM.

[17] Maria Kihl, Erik Elmroth, Johan Tordsson, Karl-Erik Årzén, and Anders Robertsson. The challenge

of cloud control. In 8th International Workshop on Feedback Computing, 2013.

[18] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez. Brownout:

Building more robust cloud applications. In Proceedings of the 36th International Conference on Software

Engineering, pages 700–711. ACM, 2014.

[19] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes. Agile: Elastic

distributed resource scaling for infrastructure-as-a-service. In Proc. of the USENIX International Conference

oŶ Autoŵated CoŵputiŶg ;ICAC’13Ϳ. SaŶ Jose, CA, 2013.

[20] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson modeling. IEEE/ACM

Transactions on Networking (ToN), 3(3):226–244, 1995.

[21] Steven M Pincus. Approximate entropy as a measure of system complexity. Proceedings of the

National Academy of Sciences, 88(6):2297–2301, 1991.

[22] James O Ramsay. Functional data analysis. Wiley Online Library, 2006.

[23] Joshua S Richman and J Randall Moorman. Physiological time-series analysis using approximate

entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology,

278(6):H2039–H2049, 2000.

44 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

[24] Gabriel Rilling, Patrick Flandrin, Paulo Goncalves, et al. On empirical mode decomposition and its

algorithms. In IEEE-EURASIP workshop on nonlinear signal and image processing, volume 3, pages 8–11.

NSIP-03, Grado (I), 2003.

[25] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega: flexible,

scalable schedulers for large compute clusters. In Proceedings of the 8th ACM European Conference on

Computer Systems, pages 351–364. ACM, 2013.

[26] L. Tomas and J. Tordsson. An autonomic approach to risk-aware data center overbooking. Cloud

Computing, IEEE Transactions on, 2(3):292–305, July 2014.

[27] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia workload analysis for

decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[28] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource overbooking and application

profiling in shared hosting platforms. ACM SIGOPS Operating Systems Review, 36(SI):239–254, 2002.

[29] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling applications in the

cloud. ACM SIGCOMM Computer Communication Review, 41(1):45–52, 2011.

[30] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power and migration cost aware

application placement in virtualized systems. In Middleware 2008, pages 243–264. Springer, 2008.

[31] Hans-Joachim Werner, Peter J. Knowles, Gerald Knizia, Frederick R. Manby, and Martin SchÃ¼tz.

Molpro: a general-purpose quantum chemistry program package. Wiley Interdisciplinary Reviews:

Computational Molecular Science, 2(2):242–253, 2012.

[32] Hongliang Yu, Dongdong Zheng, Ben Y Zhao, and Weimin Zheng. Understanding user behavior in

large-scale video-on-demand systems. In ACM SIGOPS Operating Systems Review, volume 40, pages 333–
344. ACM, 2006.

45 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

V APPENDIX A: WORKLOADS

For reference, we here include more thorough information about the workloads used and why they have

been selected for application behaviour modelling in this work.

THE VOD WORKLOAD

Figure 24 The VoD workload request pattern

Over the past decade, Video on Demand (VoD) and Video sharing online services have been on the rise. A

recent report estimated that more than 50% of the total downstream traffic during peak periods in North

America originate from Netflix and YouTube. It is thus required to analyze and characterize VoD workloads

in order to understand how to improve and optimize the network usage and the perceived Quality-of-

Service (QoS) by the service users. Many VoD service providers utilize the power of cloud computing to

host their services. Since a typical cloud hosts multitudes of applications with differing workload profiles.

Cloud service providers need to understand the workload characteristics of the running applications

including the VoD workload dynamics. This understanding is crucial as application co-hosting can result in

performance interference between collocated workloads. To better understand VoD workloads, we

46 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

obtained recent workload traces from TV4, a major Swedish VoD service provider, detailing the requests

issued by the premium service subsĐƌiďeƌs to TVϰ’s VoD seƌǀiĐe. The VoD seƌǀiĐe is hosted oŶ a Ŷuŵďeƌ of
cloud platforms.

The traces contain logged data between December 31 2012 and March 18 2013 from two cities with a

total population over half a million. The traces therefore represent a typical medium European city. Figure

shows the video request arrival rate with time.

THE WIKIMEDIA FOUNDATION WORKLOAD

We analyze the workload of a large-scale website, representing a typical application for the cloud. The

selected workload is from the Wikimedia foundation servers, mostly known for operating Wikipedia, the

sixth most popular site on the web. While three months of this workload has been analyzed previously

[27], we analyze a much larger data set spanning the period between June 2008 and October 2013,

making this one of the largest workload studies we are aware of.

At the beginning of our study, the foundation was operating all its projects including Wikipedia using

around 300 Servers in Florida, which acted as the primary site, 26 in Amsterdam and 23 in Korea as shown

in Figure 25. In January, 2013, the foundation was running around 885 servers and building a new cluster

iŶ “aŶ FƌaŶĐisĐo that ǁeŶt iŶ pƌoduĐtioŶ iŶ MaƌĐh, ϮϬϭϯ. TodaǇ, the fouŶdatioŶ’s seƌǀeƌs aƌe distƌiďuted oŶ
5 different sites; Virginia, which acts as a primary site, Florida and San Francisco in the United States and

two cluster in Amsterdam, the Netherlands.

The dataset studied consists of hourly logged files where each file contains the total number of requests

directed to a page hosted oŶ the Wikiŵedia fouŶdatioŶ’s seƌǀeƌs, the page’s Ŷaŵe, to ǁhiĐh pƌojeĐt it

Figure 25 Wikipedia datacenters

47 | P a g e D 3 . 2 P r e d i c t i v e C l o u d A p p l i c a t i o n M o d e l C A C T O S

belongs and the total amount of bytes transferred for the page. The files sizes are between 20 MB and 120

MB of compressed data. While the logging started in December 2007

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

