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EXECUTIVE SUMMARY 
 

This document outlines a framework for the cloud workload and application models used in CactoOpt, the 

CACTOS infrastructure optimisation tool, and presents initial prototypes for cloud application behaviour 

models. The purpose of this deliverable is to demonstrate some of the prediction models built for different 

cloud workloads, and illustrate how they are integrated with the application and component models used in 

infrastructure and workload deployment optimization. For prediction modelling we give special focus to cloud 

application user behaviour modelling, including, e.g., workload burstiness and request arrival pattern 

modelling. To place this work in context, we also present a framework for application and infrastructure 

modelling focused on translation of workload and application behaviour to infrastructure load. 
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I. INTRODUCTION 
 

As has ďeeŶ Ŷoted ďǇ seǀeƌal aĐadeŵiĐ aŶd iŶdustƌǇ aĐtoƌs iŶ the field, foƌ eǆaŵple Google’s JohŶ Wilkes, 
aŶd BatteƌǇ VeŶtuƌes’ AdƌiaŶ CoĐkƌoft [8], there is currently a need for improvement of the predictability 

and resilience of cloud data center management tools. As the field of cloud computing transitions into 

deployment of more mission critical systems such as power and telecommunications infrastructure in 

heterogeneous data center environments, greater emphasis must be placed on application QoS, stability 

and predictability of platforms, and development of more advanced control and optimization of 

infrastructures. 

In line with this trend, the research agenda of CACTOS is designed towards exploration of models and 

optimization mechanisms that consider the broad perspective of multi-objective optimization of data 

centers, and the models developed and presented in this report are designed to facilitate this work. The 

end goal of these models is the development of optimization mechanisms that simultaneously target 

modeling and prediction of load behavior, quantification of load propagation, application and component 

capacity reservation, and control and optimization mechanisms for proactive and adaptive cloud resource 

management. 

Due to the wide applicability of cloud-based resource provisioning models, Cloud applications span a very 

wide range of software applications including, e.g., monolithic legacy applications, scientific simulation 

and data processing applications, distributed tiered applications, and cloud native applications. As such, 

modeling of cloud applications and their behavior is a complex task that needs to take into account 

multiple factors such as application composition, deployment configuration, and workload behavior 

patterns. 

In this work we use the following topological definitions: A cloud application is a distributed software 

system where one or more application components (software services or subsystems) are deployed in a 

cloud data center. Components are typically (but not necessarily) deployed in virtual hosts using some 

form of virtualization technology, e.g., hardware supported virtualization (virtual machines), process 

groups, or software containers, which in turn are mapped onto physical data center (hardware) resources 

using some kind of deployment constraints. Deployment constraints constitute rules for the placement 

and scheduling of virtual hosts on physical resources, and can include, e.g., affinity or anti-affinity 

constraints that regulate whether or not components can be co-hosted on the same physical resource, or 

constraints specifying limitations on the amount of hardware resources that can be assigned to 

components. 

In this setting, the main task of CactoOpt (infrastructure optimization) becomes the task of controlling the 

deployment (placement and horizontal elasticity of applications) and capacity / resource assignments 

(vertical elasticity) of cloud applications and components so that infrastructure resources maintain 

acceptable levels of resource utilization while meeting application performance and quality of service 

(QoS) requirements. To achieve this, it is very important to construct models that accurately capture 
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application behavior, i.e. how applications respond to external events (e.g., unexpected changes in 

incoming request patterns) as well as the load applications place on infrastructure resources. 

Towards this goal, we define a framework composed of three types of models that combined provide the 

information required to formulate high-level objective functions for infrastructure optimization: 

1. Workload prediction models capture the characteristics and variations of application user 

behavior and incoming request patterns. 

2. Application models describe the deployment and configuration information of applications in 

terms of component relationships. 

3. Component models define the relationships between incoming requests and internal load as well 

as outgoing requests at component level. 

This framework aims to facilitate modeling and translation of application component resource 

requirements, and structure these in a way so they can be used in the infrastructure optimization tools of 

CactoOpt. In particular focus in this work are the CACTOS application behavior prediction models that, 

ďased oŶ ǁoƌkload aŶalǇsis teĐhŶiƋues, leŶd pƌediĐtiǀe poǁeƌ to CaĐtoOpt’s ŵodeliŶg of appliĐatioŶ load. 

The remainder of this document is structured as follows: to give perspective on this work, Section II gives 

an introduction to the type of cloud application models used in CACTOS. After this, Section III goes into 

details about application behavior prediction models and their use in this type of modeling, and Section IV 

provides a brief survey of related resource management approaches. 
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II. PREDICTIVE CLOUD APPLICATION MODELLING 
 

The purpose of the CACTOS cloud application modeling work is to produce models that describe 

application composition and behavior as a means to model and predict the infrastructure resource 

requirements of cloud application components. The key challenge in such modeling is to find model 

representations that preserve the desired qualities to be modeled, capture behavioral patterns accurately 

enough to provide predictive power in the models, and also provide a structure that is understandable 

and lends itself to interpretation in modeling. In highly heterogeneous environments such as cloud 

environments, this proves highly challenging and typically requires composite models that are constructed 

using multiple types of models that individually capture different parts of systems. 

The perspective of prediction taken in this work is two-fold: prediction is based on both behavior modeling 

and simulation-based experimentation. For behavior modeling we employ statistical and time series 

analysis methods on both component and application level to build prediction models for different aspects 

of application behavior. On component level this translates to analysis of component behavior in internal 

load dimensions such as CPU and I/O usage patterns, and on application level we focus on user behavior 

and request patterns to identify and isolate trends (and other facets of predictability) in application 

behavior. To complement and support this approach, we also place focus on construction of model 

compositions that lend themselves well to computationally efficient simulation-based experimentation. In 

this work we use simulation for, e.g., in situ evaluation of optimization strategies (testing different 

simulation strategies as part of the optimization process) and semi-interactive scenario evaluation 

;siŵulatioŶ of ͞ǁhat if͟ sĐeŶaƌiosͿ. As suĐh, this ĐoŵďiŶed appƌoaĐh alloǁs foƌ iŶĐlusioŶ of ďoth 
prediction and evaluation in optimization: workload prediction and propagation modeling techniques can 

be used to predict the load of individual components, and simulation techniques can then be used to 

evaluate the impact of alternative optimization strategies, e.g., to select the optimal virtual machine 

migration destination based on simulation-based evaluation of how the predicted virtual machine load 

would interact with existing load on potential migration destinations (physical machines). 

To simultaneously capture application behavior and the impact application component load has on 

infrastructure resources, we here combine three types of models that interlinked model the main 

interactions of applications and resources in cloud data centers: prediction models, application models, 

and component models. To give perspective on why this type and level of modeling is used in CACTOS, we 

here give a brief introduction to the type of infrastructure optimization that is targeted in this work, as 

well as an overview of each type of model used, before going into detail about the prediction models. 

 

PROACTIVE INFRASTRUCTURE OPTIMIZATION 

 

Cloud infrastructure optimization, here defined as automated infrastructure mechanisms that regulate the 

provisioning of compute resources to applications in an optimized way, is a complex task. Such 
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optimization is concerned not only with maintaining optimized levels of resource utilization in data 

centers, but also in meeting or optimizing the QoS levels of applications. As such, infrastructure 

optimization a multi-objective optimization problem that requires knowledge and modeling of application 

composition and behavior, as well detailed modeling of the targeted cloud data center infrastructure. 

Proactive infrastructure optimization relies on resource management approaches that use prediction 

models to extrapolate from prior application or component behavior to predict (a finite time window of) 

future resource utilization levels[1]. This type of prediction can be done on multiple levels, ranging from 

application request patterns to internal resource (e.g., CPU) utilization patterns for individual components. 

The models used in this work are designed for two primary (optimization-related) purposes: to establish 

upper and lower bounds of the hardware resource assignments of application components (capacity 

bounds that are used in placement and scheduling of components), and to within these bounds accurately 

model and predict variations in resource usage patterns. 

The interpretation of the modeled upper and lower capacity bounds used here is the following: upper 

bounds of component capacity requirements define the maximum capacity (in some internal load 

dimension such as CPU, RAM, I/O, or storage) a component will need within a foreseeable time window, 

which thus defines a maximum size of a virtualized host (e.g., virtual machine or software container) for 

that component. Similarly, lower bounds of component capacity requirements defines the minimum 

capacity a component needs to be able to deliver some aspect of the desired QoS of the application. As 

the upper and lower bounds respectively represent a maximum and minimum size of a virtual host, they 

combined contain all the information needed to perform (coarse-grained) placement of virtual hosts. In 

addition, component resource capacity bounds also provide intuitive interpretations of how much 

(minimum) capacity needs to be reserved for a virtual host, as well as of how much spare capacity a 

physical resource has left (after the maximum capacity of the virtual hosts are allocated) for other 

components, and are thus suitable to be used as coarse-grained deployment constraints for virtual hosts. 

Within the upper and lower bound, actual resource consumption is tracked and modeled for prediction. 

This can as stated be done for individual components by directly tracking component performance in 

individual resource capacity dimensions, e.g., identify cyclic patterns or phases in execution patterns (as 

done in the Molpro case where CPU and I/O phases are modeled to predict execution phases and 

completion times), or by modeling the load propagation between application components in application 

models (further discussed the application model section). Regardless of method, the aim of this modeling 

is the same: to predict the load an application component places on its (virtual or) physical host to enable 

higher resource utilization or application QoS through optimization of deployment and configuration of 

components. Optimization approaches that utilize this kind of information range from, e.g., scheduler 

optimization approaches such as , overbooking approaches such as[28, 26], and adaptive controllers that 

regulate application QoS after available capacity[18]. In this modeling, formerly established upper and 

lower bound of capacity can also be used as triggers for detection of prediction errors. If a component 

consistently uses less than its lower bound allocated capacity it may indicate that the lower bound is set 

too high, and conversely if a component is repeatedly using all of its allocated capacity (i.e. hits its upper 

bound), it may indicate an opportunity to spawn additional instances of that component (horizontal 

elasticity). 
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Taken together, these types of modeling facets allow optimization mechanisms to address both spatial and 

temporal variations in load. Spatial variations (e.g., differences in sizes of virtual machines) can be 

addressed in placement optimization using the upper and lower bounds for component capacity 

requirements. Temporal variations (i.e. variations over time in the load components place on their hosts) 

can similarly be addressed using adaptive vertical elasticity optimization (control) routines that operate on 

the load predictions of individual components. Similarly, the predicted load patterns of components 

(combined with the application configuration information of the application models) also allows 

formulation of horizontal elasticity systems where autonomic application monitoring routines can identify 

application components or segments that are under- or over-utilizing their allocated resources. 

 

COMPONENT MODELS 

 

As mentioned in the previous section, coarse-grained scheduling and initial placement of (virtual hosts of) 

components can be done using upper and lower bounds for capacity requirements. For adaptive control 

and prediction of resource use however, more fine-grained modeling of the translation between incoming 

request patterns and internal as well as outgoing load is needed. In this work we define a component 

model designed to quantify the relationships between incoming request patterns and a) internal load in 

the dimensions of CPU, RAM, I/O, and storage; and b) outgoing request patterns. In this modeling we 

further make the observation that for each of these modeled entities there are significant differences 

between different types of applications in their load patterns. There are for example some applications 

that are load-wise driven directly by external requests, e.g., web servers where the needed resource 

capacity directly correlates to the type and amount of incoming requests (web servers are mostly idle 

when not processing HTTP requests), and other types of applications that are primarily driven by internal 

load factors, e.g., batch-oriented scientific processes that receive a few requests and then spend large 

amounts of time and resources performing computations that are not directly correlated to the incoming 

request patterns in any externally visible way. For this reason we also further decompose our component 

model to encompass the notion of foreground (load directly driven by incoming requests) and background 

(load not driven directly by incoming requests) load. 

 

Figure 1 Load can be driven by incoming requests or by background jobs. 

It is worth noting that upper and lower component capacity bounds can (for known applications) be set at 

deployment time, either explicitly by experienced system administrators or even implicitly by, e.g., 

inferring them from the QoS level a customer at a public cloud offering is paying for. A common pattern in 
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public IaaS cloud offerings is for example to distinguish between different service levels where a certain 

pƌiĐe leǀel ĐoƌƌespoŶds to a ĐeƌtaiŶ ͞size͟ of a ǀiƌtual machine, e.g., the Amazon Web Service (AWS) C4 

iŶstaŶĐes ǁheƌe a ͞Đϰ.laƌge͟ ǀiƌtual host has ;as of eaƌlǇ ϮϬϭϱͿ Ϯ ǀiƌtual CPUs aŶd ϯ.ϳϱGB RAM, ǁhile a 
͞Đϰ.ǆlaƌge͟ iŶstaŶĐe has ϰ ǀiƌtual CPUs aŶd ϳ.ϱGB RAM, etĐ. These liŵits ĐaŶ also ďe set ďǇ ďeŶĐhŵaƌking 

applications under representative settings, or be trained using machine learning approaches operating on 

historical usage information (when available). Naturally, such controls can also be assigned and controlled 

in run-time using similar approaches [29, 16]. 

These models must capture both the direct and indirect (e.g., co-hosting overhead and noise) 

relationships between incoming and propagated load, and optimization algorithms must also consider the 

effect this load has on component environments. For this reason, we here consider a type of grey-box 

modeling where component load is monitored in several dimensions (CPU, RAM, I/O, storage) at multiple 

levels (incoming and outgoing requests, load within components, load at virtual host level, as well as load 

at physical host level). 

As with all modeling approaches, there exists several trade-offs between the resolution and accuracy of 

the model and the predictive power and computational efficiency of the model. In this approach we are 

purposefully selecting a coarse-grained modeling approach that in its initial versions makes several 

simplifications, of which the most obvious probably is the assumption of homogeneity of incoming 

requests. We select this level of modeling to achieve high computational efficiency in order for the model 

to scale large data centers and still be useful in online simulations of the model. In later versions of the 

model we also intend to study how statistical modeling of non-homogenous request patterns can be 

incorporated in this model, as well as techniques for automatic training and parameterization of the 

model for different applications. 

 

APPLICATION MODELS 

 

For monolithic legacy applications that execute in a single virtual host, modeling of component behavior is 

enough to describe application behavior. For distributed systems such as cloud applications composed by 

multiple components deployed on different physical hosts however, some kind of modeling of the 

interrelationships and data flows between components is needed. To complement the component model 

described in the previous section, we here define a graph-based application model intended to capture 

the structure, configuration, and hierarchy of distributed applications. 

The overall purpose of this modeling is to quantify the propagation of load between components in 

applications, i.e. to build graph-based translation functions that allow modeling and quantification of the 

load incoming requests place on different components within an application. By viewing applications as 

sets of components that are linked over networks, and using the load propagation functions of the 

components in combination with the application graph link data, we construct models that allow 

quantification of both background and request-driven load placed on individual components over time. 
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Figure 2 Applications can be modeled as graphs 

As illustrated in Figure 2, applications are viewed as (potentially cyclic) directed graphs of software 

components where graph nodes model components, graph links indicate coupling between components, 

and link weights indicate load distribution patterns. Making the assumption that load propagation for 

request-driven load is instantaneous (e.g., occurs within a single time step of a discrete time simulation), 

application-level load propagation functions are derived from component load propagation functions and 

the graph link data. 

Central to cloud application deployment and management are application description templates that 

outline configuration and parameterization of components, e.g., OpenStack Heat, AWS CloudFormation, 

and Google deployment templates. As the purpose of these deployment descriptors is to enable 

management of applications (rather than individual virtual hosts), they naturally contain much of the 

graph link information needed in the CACTOS application models. Lacking such deployment descriptors, 

we envision that application models can also be trained using machine learning techniques based on 

network monitoring data (a topic for future study in CACTOS)[9]. 

Natural extensions to this model include, e.g., network modeling that (similar to the component resource 

capacity bounds estimation) quantify bandwidth capacity and link quality requirements between 

components. In infrastructure optimization, it is also envisioned that horizontal elasticity mechanisms can 

be effectively realized as autonomic components operating on application models, e.g., using monitoring 

data in combination with predicted upper and lower capacity bounds for components as triggers for 

horizontal elasticity adjustments (i.e. removal or instantiation of component instances). 

 

PREDICTION MODELS 

 



 

13 | P a g e  D 3 . 2  P r e d i c t i v e  C l o u d  A p p l i c a t i o n  M o d e l      C A C T O S  

Given application and component models that capture the interrelationships of cloud application 

components and the component-wise translation functions between incoming requests and (internal and 

external) load, it is possible to (based on the incoming request patterns of an application) formulate 

functions that in detail estimate the resource requirements and load impact of applications in cloud data 

center. Extending this capability with prediction models then formulates the basis of a framework for 

combined application and infrastructure modeling for infrastructure optimization. What the CactoOpt 

cloud application models aims to realize is exactly this, a model framework for prediction of application 

and component load behavior that can be used in both simulation and runtime environments. 

Prediction of application behavior is often done based on application workload pattern analysis as 

application characteristics such as user behavior and seasonal load patterns are preserved at this level. In 

this work we focus on statistical and time series based analysis of historical application behavior, e.g., 

analysis of request logs or workload traces to identify seasonal and trend patterns, to allow fine-grained 

modeling of application and user behavior that can be used in prediction of future workload patterns. As 

demonstrated in the following sections, such analysis for distributed cloud applications can be greatly 

beneficial in building knowledge of the structure and elasticity patterns of applications. 

For applications where the internal load is not primarily driven by external requests, e.g., monolithic batch 

processing applications, modeling of application request patterns is not very illustrative. For such 

applications we note that behavior prediction can be performed using similar time series analysis 

techniques on component level (i.e. looking directly at the resource usage patterns rather than the 

incoming request patterns). While use of application behavior knowledge can greatly assist in this process, 

this type of modeling can be done using a black-box perspective (i.e. without knowledge of the application 

internals) for, e.g., application classification for cloud autoscaling [4]. This technique is demonstrated in 

the scientific computing use case where we illustrate how phase analysis can be used to predict execution 

times and provide scheduling information for the Molpro application. 
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III. APPLICATION BEHAVIOR MODELING 
 

The performance of cloud applications can be considered as a function of three main factors: the design of 

the system, the implementation of the system, and the load on the system. When a system is designed, 

theƌe is tǇpiĐallǇ aŶ uŶdeƌlǇiŶg assuŵptioŶ of the sǇsteŵ’s opeƌatioŶal load ƌaŶge. Hoǁeǀeƌ, the aĐtual 
workload, and thus the performance, is only known when the system becomes operational, which can 

sometimes turn system design and workload analysis into a chicken-and-egg problem. A common 

approach to get around this issue is to analyze workloads of existing (similar) systems and draw similarities 

and possible discrepancies between the existing system and the new system. 

In this work we demonstrate how predictive workload models are developed and used in conjunction with 

(application and component) load propagation models for infrastructure optimization in the CACTOS 

infrastructure toolkits. The workload models are constructed using workloads acquired from project 

partners as well as publicly available workloads, and are used to understand the way (users of applications 

and) applications behave and the effect workload events (such as planned and unexpected workload 

peaks) have on infrastructure resources. 

The workload models presented here are based on six different workloads. The UULM workload 

represents an HPC application with alternating periods of I/O intensive and CPU intensive loads (Molpro) 

[31]. The second workload is a Video on Demand (VoD) application obtained from a major Swedish VoD 

provider [2]. The thiƌd ǁoƌkload is a ϲ Ǉeaƌs’ ǁoƌkload oďtaiŶed fƌoŵ the Wikiŵedia fouŶdatioŶ foƌ all the 
services running on their servers in all languages including Wikipedia, Wikibooks and Wiktionary [10]. For 

burstiness modeling we have also used traces from IR-Cache, a caching service consisting of approximately 

ten caching proxies located throughout the United States, a Google cluster workload, and a workload from 

the FIFA 1998 World Cup servers[3]. More information about the workloads used in this work can be 

found in Appendix A. 

 

 

 

MODELING USER BEHAVIOUR IN CLOUD APPLICATIONS 

 

One of the most direct ways to model user behaviour in cloud applications is to study cyclic and seasonal 

patterns in application request workloads, the distributions which generate the workload and the 

popularity of different objects between the users. To build understanding and models of user behaviour in 

these contexts we here study request arrival patterns in the Wikipedia workload, one of the largest 

publically available workload traces, a VoD workload from a Swedish VoD provider and a workload from 

the MolPro application. 
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ARRIVALS IN THE WIKIMEDIA WORKLOAD 

We used time-series analysis to model the hourly workload request flow. In the classical decomposition 

model [9], an observed time series {xt, t ∈ T} is modelled as a realization of a sequence of random variables 

{X t, t ∈ T}, X t = Tt +St +Rt, where Tt is a slowly changing function (the trend component), St is a periodic 

function with known period m (the seasonal component), and Rt is a random noise component (assumed 

to be a stationary time series). For modelling the request flow, we use (seasonal) Autoregressive 

Integrated Moving Average (ARIMA) models. 

 

The workload is clearly non-stationary due to changing mean of the arrival rate with time. Therefore, 

instead of building a single global model, we modelled smaller periods of the workload where there was 

no significant step. Figure 3 shows the decomposition of the request flow for the period between the 3rd 

of September till the 8th of October, 2013. The seasonality graph suggests high daily and weekly 

correlations between the number of requests during this period. The trend graph can be approximated 

with piecewise-linear functions. We fitted the remainder to a seasonal ARIMA (2, 0, 2) (0, 0, 1) model 

using the R forecast package.  

Figure 3 Time series decomposition of the hourly arrival rates for year 2013 Figure 3 Time series decomposition of the hourly arrival rates for year 2013 
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Figure 4 The residuals are tested in order to find the quality of the fitted time-

series model. 

Figure 4 shows some diagnostic plots of the fit, namely, the standardized residuals, autocorrelation for 

residuals, and p-values for Ljung-Box statistics for the fitted model [9]. While most of the standardized 

residuals are well inside the [-2, 2] interval, in some cases they are outside. The autocorrelation function 

(ACF) also suggests some daily correlation still present in the residuals, so the fitted model could still be 

improved. We leave this for future work. 

 

We have repeated similar analysis for different (regular) parts of the workload and summarized our results 

in Table 1. The first column is the period studied. The second column summarizes the trend characteristics. 

For most parts of the workload, the variance in the trend is less than 5% of the average value. The second 
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column summarizes the workload seasonality. For each seasonality plot, we have computed the FFT. The 

only two dominant frequencies are at 1 day and 1 week. Their amplitudes are also noted. The last column 

describes the fits for the remainders. The remainders are fitted using seasonal ARIMA models. We note 

that the models are of low order and are not too far from each other with even some models repeating, 

e.g., ARIMA (1,0,2)(0,0,1) is repeated 4 times. 

 

Table 1 Different time-series fits are obtained for different parts of the data 

 

 

 

To understand the differences between the load on the servers during weekends vs. weekdays, Figure 5 

shows box-plots for the aggregate hourly number of requests for all Wednesdays in 2011 and all Saturdays 

in 2011. A box-plot is a way to visualize the quartiles and the dispersion of the distributions of the data 

[19]. The medians and the means for the different hours are plotted. It is clear from the figure that the 

time of the day affects the number of requests significantly with the lowest activity at 5, 6 and 7 a.m. and 

the highest activity during the afternoons and the nights. The data dispersion is also affected by the time 

of the day and the day of the week. More accurate predictions can be done at times with lower dispersion. 
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Similar results were obtained for different days and years for both the number of requests and the sent 

data. 

 

BURSTS IN THE WIKIMEDIA WORKLOAD 

We now shift our focus towards studying the effect of major events on the workload. We focus on two 

major events, Michael JaĐksoŶ’s death aŶd the “upeƌ bowl XLV. For both events, we report results for the 

collateral load that accompanied the load on the main page. We define the collateral load as the load 

increase on pages associated with the page of the main event excluding the load on the page dedicated to 

that event. In order to extract the collateral load, we parse the ŵaiŶ eǀeŶt’s page for the webpages that it 

links to. Figure 6 shows the workload oŶ MiĐhael JaĐksoŶ’s page and the collateral load. When Michael 

Jackson died, the load on his page increased by around four orders of magnitude. This increase was 

accompanied by an increase in the load on all pages that his page linked to, but with a smaller yet 

significant amplitude. Both the load and the collateral load started decreasing shortly after a few hours 

but with the collateral load decreasing slower than the load. After 12 days, on the 7th of July, Michael 

JaĐksoŶ’s ŵeŵoƌial seƌǀiĐe took place, resulting in another significant load spike on the load on his 

Wikipedia entry, but in a much larger spike in the collateral load. 

Figure 4 Box plots of the hourly arrival rates on all 2011 Wednesdays and Saturdays 



 

19 | P a g e  D 3 . 2  P r e d i c t i v e  C l o u d  A p p l i c a t i o n  M o d e l      C A C T O S  

 

Figure 5 When Michael Jackson died, the traffic to his Wikipedia page 

increased by three orders of magnitude. The traffic on pages linked from his 

page also increased by more than two orders of magnitude. 

 

Figure 6 The Super Bowl causes a yearly spike that occurs on pages related to 

the event but not the main event's Wikipedia page 

Figure 7 shows the load on the Super Bowl XLV page and the collateral workload on the Wikimedia servers 

before and after the event. Although the main event was the Super Bowl, the load spike was in the 

collateral workload dwarfing the spike on the Super Bowl page. We obtained similar results for the FIFA 

2010 World Cup, the Eurovision 2010 and the Egyptian revolution articles where for all of them the 

collateral workload was typically orders of magnitude than the load on the main article. This phenomenon 

seems to be common for planned events, where the collateral load surpasses the load on the original 

item. We plan to study the collateral load effect in more details and find its implication on resource 

management problems such as placement and resource provisioning. 
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WIKIMEDIA CONTENT POPULARITY MODELING 

During peak hours, less thaŶ oŶe thiƌd of Wikiŵedia’s pages are accessed while during hours of lower 

activity around one sixth of all pages are accessed. This pattern did not change for the period of study. To 

better understand the dynamics of the workload on individual pages, we keep track of the top 500 pages 

having highest number of requests for the period of study. This is a highly dynamic list with over 650000 

pages joining the list for some time during the period of the study. The least accessed page in the top 500 

list had on average less than 1200 page views per hour for the period of the study, i.e. less than 20 page 

views per minute. On the other hand, the most popular pages in the list where usually general pages, e.g., 

the English Main Page. These pages had on average more than 500000 page views at the beginning of our 

study and around 20 Million views at the end.  

 

Figure 8 shows the histogram of the number of consecutive hours a page stays popular before leaving the 

list. Most pages have volatile popularity, with 41.58% of the top 500 pages joining and leaving the top 500 

list every hour, 87.7% of them staying in the top 500 list for 24 hours or less and 95.24% of the top-pages 

staying in the top 500 list for a week or less. The distribution has a long tail. Since there are some 

monitoring gaps in the workload, we were not able to infer which pages were in the top 500 list during 

these gaps. This adds some uncertainty to the preceding results. In order to reduce this uncertainty, we 

plot Figure 9 that shows the percentage of time a page is in the top list during the study period. The x-axis 

represents the ratio between the total time an object stays in the top 500 list and the total time of the 

study while the y-axis shows the frequency of objects with a certain ratio. Around 9 pages where in the 

top 500 list for the whole period of the study, these are mostly the main pages for different Wikipedia 

projects. On the other hand, Figure 8 confirms that most objects are popular for only short periods of 

time. 

 

Figure 7 Time a page stays in the top 500 popular Wikipedia articles 
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Figure 8 Ratio between the time a Wikipedia article stays among the most popular 500 

articles and the total time of the study 

 

 

VOD REQUEST ARRIVAL RATE MODELING 

The Probability Distribution Function (PDF) and the Cumulative distribution Function (CDF) of the hourly 

session arrival rate is shown in Figure 10 (in blue) on a Log-Log plot. An almost identical plot was also 

obtained for the user arrival rate since one user almost always does not start more than one session per 

hour. The PDF suggests that the arrival rate process can be modelled using a heavy tailed distribution. We 

have fitted the arrival rate data to different distributions and compared the goodness of fits in order to 

find a good fit. The data was fitted to lognormal, exponential, truncated power law, stretched exponential, 

gamma and power law distributions. 

The plots show that either a lognormal distribution, an exponential distribution or a stretched exponential 

distribution is a good fit. To choose the best fit, we used the Kolmogorov-Smirnov (KS) test. The p-value for 

both the lognormal distribution and the stretched-exponential distribution was greater than 0.05, the 

least significance level required to validate the null hypothesis that the empirical data does not follow the 

distribution. To be precise, the KS distance for the lognormal distribution is 0.077 with a p-value of 0.09, 

and the KS distance for the stretched exponential distribution is 0.059 with a p-value of 0.31. 
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Figure 9 Fitting the request arrival rate to different distributions 

Both the lognormal and the stretched exponential distributions are possible fits given the p-values of the 

KS test. To identify the better fit, we use the log-likelihood ratio between the distributions. The log-

likelihood ratio of the lognormal distribution was higher with a p-value of 0.01. We thus conclude that the 

lognormal distribution is the best distribution to fit our data from the distributions tested. The fitted 

lognormal distribution is different from the arrival rate distribution of the VoD service provided by China 

Telecom discussed by Yu et al.  Where the arrival rates follows a modified Poisson distribution [32]. 

Figure 11 shoǁs the PDF of the ǀideo sessioŶs’ iŶteƌ-arrival times (seconds) on a log-log scale. More than 

50% of the sessions start after one or less than one second from the arrival of the previous session and 

around 90% of the sessions start within a minute from a previous session. The maximum inter-arrival time 

is around 24 minutes. We have again tried fitting a distribution to the Inter-Arrival time following the 

 same steps described above. Again, the KS test showed that both the lognormal distribution (p-

value=0.08 > 0.05) and the stretched exponential distribution (p-value=0.08 > 0.05) to be two viable fits. 

Testing using the log-likelihood method described by Clauset et al. [7], the stretched-exponential 

distribution has a higher likelihood than the lognormal distribution with a p-value=0. While it is popular to 

model session and user arrival rates as Poisson processes in workload generators [25] [14], our results 

suggest that for different VoD services, different models of arrival might occur. Poisson processes require 

the inter-arrival time distribution to be exponential. Figure 10 shows also the best exponential distribution 

fit we could achieve for the inter-arrival data. The deviation clearly shows that the inter-arrival time 

distribution is not exponential, and thus the arrivals do not follow a Poisson process. Poisson processes 

were considered the defacto processes to model network arrivals until the seminal work by Paxson and 

Floyd [20]. It is thus worth investigating if Poisson processes fail also to model arrival processes for VoD 

systems. We unfortunately do not have sufficient data from enough VoD providers to come to such a 

conclusion. 

Since at least for the TV4 workload, the user and request arrival processes cannot be modelled using 

Poisson processes, many of the previously developed theories and models based on the assumption of 

requests/users generated from a Poisson process will either be inaccurate or will be wrong for systems like 



 

23 | P a g e  D 3 . 2  P r e d i c t i v e  C l o u d  A p p l i c a t i o n  M o d e l      C A C T O S  

TV4. Since VoD workloads are scarce, we cannot compare our results with systems other than the very few 

available in the literature. 

 

Figure 10 The inter-arrival rate cannot be fitted to an exponential 

distribution, i.e., the arrival rate does not follow a Poisson process 

 

TIME SERIES MODELS FOR VOD REQUEST ARRIVALS 

 

 

Figure 11 Time Series (multiplicative) decomposition of the VoD session 

arrivals 
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For the VoD workload, we show in this report another decomposition and modelling technique suitable 

for non-stationary time-series.  The multiplicative decomposition of the request arrival rate is shown in 

Figure 12. The multiplicative time-series decomposition again decomposes the time-series into three 

components the trend (T), the seasonality (S) and the random components (r). The difference is instead of 

decomposing the time-series into additive terms, it is decomposed in to multiplicative terms, X = T × S × r.   

 

In their seminal work to model non-stationary time series, Huang et al. introduced a novel empirical 

method to characterize the frequency variations in non-linear and non-stationary time-series [12], 

recently, known as the Hilbert-Huang Transform (HHT). At the core of the HHT is the Empirical Mode 

decomposition (EMD) method and its different variations [24].  

The EMD (and all its other variations) are methods with which any complicated data set can be 

decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that admit well-

behaved Hilbert transforms. The Hilbert spectrum can then be used to visualize the produced IMFs and 

frequency variations in the original signal. Since the number of IMFs produced is low, it is a more efficient 

way of spectral analysis compared to, for example, the Fourier transform which typically requires an 

Figur 13 The Hilbert-Huang transform is used to obtain the time-frequency 

representation of the workload 

Figur 12 The Hilbert-Huang transform is used to obtain the time-frequency 

representation of the workload 
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infinite number of sinusoidal frequencies to represent any time-series. Huang et al. and others have 

discussed the strengths and weaknesses of their proposed method and showed the superiority of the HHT 

compared to other available spectral analysis methods such as the wavelet transforms and Fourier 

transforms [24,12] . 

The Hilbert spectrum is shown in Figure 13. The X-axis is the time in days and the Y-axis is the frequency in 

weeks. The colours represent the intensity of the frequency component at any point in time. On top of the 

graph, the analysed time-series is plotted. The low frequency components dominate the time-series. The 

strongest of these components is the weekly component. At the times of the four major spikes in the VoD 

workload between 25 and 35 days, and 50 and 55 days in Figure 6, the spectral pattern is distorted. The 

spikes cause an increase in the power and dispersion of the spectrum of the time-series. This suggests that 

a possible way to detect spikes as they occur would be to use spectral analysis methods to detect the 

beginning of the spike [3]. We talk later about spike modelling in the report. 

 

VIDEO VIEWS PER USER 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 shows the CCDF of distribution of the number of videos viewed per user. More than 90% of the 

service users view less than 70 videos during the period of the study, i.e., less than one video per day. 

Many of these sessions last for less than 10 minutes. To see how long a user uses the VoD service, Figure 

15 shows the CCDF of the total time a user used the VoD service. Some users have used the service for just 

a few minutes, with more than 25% of the users using the service for 45 minutes or less. Other users have 

used the service heavily. The longest usage was by a customer who used the service for a total of 45 days 

and a few hours. This can be either a user who has the service running for over 15 hours per day, like a 

Figur 15 Most users do not use the 

service on daily basis 

Figur 144 Most users do not use the 

service on daily basis 
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restaurant using the service, or a customer who has multiple devices all connected to the service using the 

same ID. 

 

 

 

 

 

 

 

          

 

 

 

 

IMPATIENT USER BEHAVIOUR 

 

 

 

 

 

 

 

 

 

 

Figure 16 Most users use the service 

moderately. 

Figur 17 User sessions are quite short 

Figure 15 Most users use the service 

moderately. 

Figur 16 User sessions are quite short 
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Not all users who start viewing a video stream continue to watch until the end. Some users keep replaying 

the video, going back and forth in the video and pausing the video. This leads to sessions having very 

different length. Figure 16 shows the complementary CDF (CCDF) for the length of the VoD sessions. More 

than 90% of the sessions last for less than one hour, with more than 50% of the total sessions lasting less 

than 12 minutes. More than 20% of the sessions gets terminated within the first 30 seconds from their 

staƌt tiŵe. These Ŷuŵďeƌs ĐoŶfiƌŵ the ͞iŵpatieŶt useƌ behaviour͟ disĐussed iŶ pƌeǀious studies desĐƌiďed 
by Yu et al. [32]. Although the diffeƌeŶĐe ďetǁeeŶ ouƌ studǇ aŶd Yu et al.’s studǇ is aƌouŶd 6 years, the 

numbers we find here do not differ considerably from their study. For example, Yu et al. found that 50% of 

the users terminate a session within the first ten minutes from when they start it and that more than 90% 

of all sessions terminate within 60 minutes from when they start. The main difference between our study 

aŶd Yu et al.’s studǇ iŶ this ƌespeĐt is that the useƌs of the TVϰ VoD aƌe ŵoƌe likelǇ to staǇ thaŶ the useƌs iŶ 
Yu et al.’s studǇ if theǇ ŵake it past the fiƌst ϭϬ ŵiŶutes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 shows how the median session length changes with the popularity of the videos (number of 

ǀieǁsͿ. Foƌ eǆtƌeŵelǇ uŶpopulaƌ aŶd eǆtƌeŵelǇ populaƌ ǀideos, the ͞iŵpatieŶt useƌ behaviour͟ is Ƌuite 
high with the median session length of around 100 seconds. Videos with a medium popularity seem to 

have longer session times. CACTOS   will utilize this difference to be able to improve the QoS while 

reducing wasted resources. 

Figure 18 Users tend to be impatient 

for both extremely popular and 

extremely unpopular videos 

Figure 17 Users tend to be impatient 

for both extremely popular and 

extremely unpopular videos 
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To better understand why users abandon streams early, we investigated two hypotheses. The first 

hypothesis was that users abandon sessions due to low quality of the streaming, i.e., low bit-rate. Figure 

18 shows how the average median session length of all users changes with the average streaming bit-rate. 

The figure shows that across most of the seen average bit-rates, the behaviour of impatient users does not 

 change. Average bit-rates more than 3 Mbps are rare, and thus the variation seen when the bit-rates are 

more than 3 Mbps should not be interpreted as a change in the user-behaviour but rather as outliers. The 

second hypothesis was that users who use the service more will have a different average median session 

length. Figure 19 shows that the session length does not differ between users who use the service very 

often from those who do not. Thus, both hypotheses are not true. The session length distribution is an 

invariant in the system. 

 

 

 

 

 

 

 

 

Figure 20 Users impatience is not 

correlated with the bitrate of the 

video 

Figur 21 Heavy users of the service are generally more 

impatient than non-frequent users 

Figure 1819 Users impatience is not 

correlated with the bitrate of the 

video 

Figur 19 Heavy users of the service are generally more 

impatient than non-frequent users 
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THE MOLPRO APPLICATION  

 

The Molpro application from the scientific computation scenario offers a set of chemical algorithms to 

calculate or simulate chemical computations. Therefore a scientist defines the requested computation in 

an input file for Molpro that has direct influence on the hardware affinity of the application behaviour. 

Since Molpro is normally executed on high performance computing (HPC) clusters, it requests two main 

tasks towards CactoOpt: 

i. scheduling new incoming computations 

ii. improving cluster utilisation and computations during runtime 

Compared to the state of the art in HPC, the scheduling targets a more application aware placement of 

computations in a heterogeneous Cloud cluster. Improvements of hardware assignments during runtime 

are usually not available in common HPC clusters (cf. D7.1). 

Application Behaviour 

The application behaviour is directly influenced by two factors:  

i. The specified input file which defines e.g. the chemical algorithm 

ii. The used hardware for the computation and its utilisation by e.g. other applications 

Depending on the input file different phases occur during the overall execution: Disk I/O bound or CPU 

bound. The phases come from a changing demand of hardware resources during the computation and 

lead to different hardware bottlenecks (Disk or CPU). Since we focus on single machine computations, 

networking is not considered but would be a third dimension. 

The phases can be detected by looking at the ratio between CPU utilisation and disk I/O waiting time. 

Representing this ratio as a mathematical function offers possibilities like curve sketching to detect turning 

points in the ratio graph in order to define the beginning and ending of phases. 

With the same input file, those phases occur predictably but with a different length depending on the 

used hardware. Changing the disk speed e.g. by replacing a HDD with a SSD leads to smaller I/O bound 

phases and hence to a shorter overall execution time (c.f. Table x). Multiple runs of the same computation 

on the same setup shows a very small deviation of the execution time with a SSD and a small deviation 

with a HDD1. 

Having a deeper look at the metrics offer the creation of more hardware independent metrics like the 

number of reads/writes to the disk or the number of CPU computations. Comparing this metrics from a 

same application input on different hardware confirms the similarity of application behaviour. 

                                                                 
1 Larger deviation with HDD caused by unpredictable placing of data on disk and, compared to SSD, very long 

seek times for reading. 
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Since the application behaves depending on the current bottleneck, additional applications on the same 

hardware at the same time with the same hardware demand will kill the overall execution time. Hence 

CactoOpt should be aware of that. 

Table 1: Execution time and Deviation for Molpro with same Computation 

Setup Average [min] Deviation [min] # Runs 

Intel i5 3.2GHz, 16GB Ram, 

SSD 

385.14 0.36 3 

Intel i5 3.2GHz, 16GB Ram, 

HDD 

504.16 22.11 8 

 

 

Figure 20 CPU/IO time as captured by Ganglia 

monitoring from UULM(HDD) 

Figure 21 CPU/IO time as captured by 

Ganglia monitoring from UULM(SSD) 

 

 

 

Setup #1: CPU Bound #2: I/O Bound #3: CPU Bound #4: Mixed 

Intel i5 3.2GHz, 
16GB Ram, HDD 

94% CPU Usage 
16.4M IOs 
196m runtime 

1% CPU Usage 
40.9M IOs 
50m runtime 

89% CPU Usage 
23.2M IOs 
165m runtime 

25% CPU Usage 
96.3M IOs 
80m runtime 

Intel e5 2.6GHz, 
16GB Ram, HDD 

96% CPU Usage 
14.3M IOs 
219m runtime 

2.4% CPU Usage 
42.9M IOs 
55m runtime 

91% CPU Usage 
20.9M IOs 
185m runtime 

31% CPU Usage 
97.5M IOs 
85m runtime 

Inaccuracies caused by manual phase definition and rounding errors 
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Optimisations 

Main optimisation goals when running Molpro applications in a Cloud setup are both from a Cloud user 

and Cloud provider viewpoint. The Cloud user, who submits the Molpro computation, requests a shorter 

execution time. The Cloud provider aims at perfectly utilise his hardware with respect to energy efficiency. 

Therefore non-conflicting Molpro computations could be placed on the same hardware node if the 

peƌfoƌŵaŶĐe of the Useƌs’ ĐoŵputatioŶs aƌe Ŷot touĐhed ďut the oǀeƌall Đlusteƌ peƌfoƌŵaŶĐe Đould ďe 
improved. Additionally the assignment of Molpro computations to available hardware can optimise the 

energy efficiency. The main optimisation factors summarised are: 

i. Improve the (Cluster) Performance 

ii. Improve the (Application) Execution 

iii. Improve the (Overall) Energy Efficiency 

To achieve those optimisation factors the actual phases of running applications and also upcoming phases 

in future can be considered. Therefore online mining can detect the current phase of running applications. 

The input file plus historical footprint checking of previous application runs can predict the next kind of 

phase. This output can then be used with a potential hardware to predict the execution time in future. 

 

 

Figure 22 Steps to model and optimize the MolPro application. 
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I ELASTICITY MODELS AND PREDICTION 

TYPES 

 

To illustrate the need for (and type of) prediction models used in this work, we here categorize and discuss 

cloud infrastructure optimization in the three categories of: 

 Placement (allocation of virtual hosts to physical resources, including scheduling and migration). 

 Vertical elasticity (dynamic control of virtual host capacity, e.g., CPU and RAM, assignments) 

 Horizontal elasticity (dynamic control of instantiation of application components) 

While all of these types of actions can benefit from load prediction, the type of information needed for 

the individual types of optimization well illustrates the CACTOS perspective of prediction modelling. 

Placement of virtual hosts is typically done in two phases - upon admission of new applications (and thus 

initial instantiation and bootstrapping of virtual hosts) as well as periodically (when monitoring of existing 

placements indicate opportunities for improvements). As such placement of virtual hosts needs (at least) 

coarse-grained estimates of the load that will be placed on physical resources in internal load dimensions 

(e.g., CPU, RAM, and I/O). In the CACTOS work we use the aforementioned component model upper and 

lower load bound estimations, as well as prediction models that model seasons and trends in component 

capacity requirements (i.e. based on application trace logs when available), for virtual host placement and 

scheduling. 

Vertical elasticity techniques can be seen as feedback control based regulators of capacity, i.e. controllers 

that regulate what virtual host gets to use what capacity on a physical resource (i.e. what resources within 

a physical resource). Typically a set of virtual hosts are assigned to a physical resource and to enable these 

virtual hosts to be co-hosted without degraded application QoS, these controllers need accurate estimates 

of predicted component load. As vertical elasticity actuators typically are fast acting (i.e. with a short delay 

between control and action), the load prediction time window does not need to be very large for such a 

controller to be efficient. However, as vertical elasticity mechanisms by definition only control resource 

assignments for a single virtual host, vertical elasticity mechanisms have well defined limits for how much 

they can scale the capacity allocated to components. 

Horizontal elasticity mechanisms can be seen as controllers that control instantiation of virtual hosts, e.g., 

load balancer control of duplication of virtual machines. As such, horizontal elasticity can scale out and 

thus provide greater increases in the capacity allocated to applications than vertical elasticity techniques. 

However, as instantiation of virtual hosts can be time consuming [13] (due to delays in, e.g., virtual 

machine instantiation and trigger (or require) migration of existing workloads, horizontal elasticity 

mechanisms typically operate using longer time perspectives and on application-level behaviour patterns 

(e.g., request arrival patterns). For the same reasons (actuator delays), it is also important to detect 

unexpected load peaks as early as possible to be able to scale up application resources. 

Modelling of application and component behaviour is often done using time series analysis and signal 

processing techniques that operate on samplings of key performance indicator (KPI) values. As a number 

of user behaviour patterns (e.g., daily and weekly schedule patterns) often are evident at application level, 

user and application behaviour models are often based on analysis of application parameter data, e.g., 
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application-level requests for web applications. For analysis of component load patterns, similar 

techniques can be used at component level, e.g., analysing resource capacity KPIs such as CPU and I/O 

patterns in component and physical resource log traces. 

 

A Predictive Workload Model 

As seen in Figure 3, the workload (Yt) has a pronounced repetitive weekly pattern, which slowly varies over 

time. We call this the (weekly) pattern, P t, an estimate it by fitting cubic splines to the data [22]. Cubic 

splines are flexible and able to pick up the features of the pattern. The workloads’ deǀiatioŶ fƌoŵ the 
pattern (res t = Y t − P t) is called the residual and will typically have a positive auto correlated structure that 

also brings information about future values. It may be captured by an autoregressive model, e.g. in the 

simplest case with lag structure one, 

    res t+1 = a 0 + a 1 res t + e t+1,    (1) 

where e t is white noise. The workload is also characterized by occasional outliers, having extremely large 

or small values compared to the surrounding workload values. Outliers typically come in time consecutive 

groups. Downward outliers occur due to monitoring or system problems and do not reflect the true 

workload. Using bogus monitoring values for management decisions can lead to severe decrease in the 

application performance. They should therefore be ignored and the corresponding (unobservable) 

workload be predicted by the estimated pattern. Upward outliers (large values) on the other hand are real 

workload increases and should be predicted as accurately as possible. While it is not possible to predict a 

completely random event, i.e., foresee the first upward outlier in a group, it is important for the predictor 

to adapt quickly and start mitigating for the workload change. We thus predict 

 the next workload value by the estimated pattern plus the prediction error of the last workload, thus 

aiming at catching up as fast as possible to the͟eǆplosiǀe͟ Ŷatuƌe of the upǁaƌd outliers. If the last value 

was not an outlier, we predict the next workload by the estimated pattern plus the residual estimated 

from the autoregressive model in Equation 1. 

The repetitive weekly pattern slowly changes with time in amplitude, level and shapes. Thus, when 

estimating the pattern and the residual AR model, and when identifying outliers, it has to be done locally, 

say using only the two last weeks of workload. Moreover the pattern and the AR model should be 

estimated without the influence of outliers. We propose to do the following: Let Yt
∗ denote the true 

workload Yt if it is not an outlier (to be defined), and let it correspond to the estimated pattern Pt 

otherwise. Suppose we have chosen a two week window of workload data without outliers, Y *t−ϯϯϱ, ..., Y ∗
t 

and want to predict the workload at time t+1. Estimate the weekly pattern Y t, by first overlaying the two 

weeks of data on top of each other, such that there are two workloads for each hour over a week. Fit a 

cubic spline to these data, putting knots at every second hour of a week (87 knots in total over 168 

 hours of a week) and using B-splines as basis functions. Now compute the residuals,          

    res∗h = Y∗h − Ph, h = t − ϯϯϱ, ..., t, 
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noting that Ph = Ph+168, and estimate the coefficients of the AR model using Equation 1 by a least squares 

fit of 

                 res∗t+1 = a0 + a1 res∗t   

If the last workload, Y t, is not an outlier, predict the next workload, YT+1, by 

    YT+1 = Pt+1 + a0 + a1 (YT − Pt). 

If Y t is an upward outlier predict Y t+1, by 

    YT+1 = Pt+1 + (YT − Pt). 

If Y t is a downward outlier predict Y t+1, by 

    YT+1 = Pt+1. 

 

Figure 23 Using Cubic splines to predict the workload on Wikimedia servers 

Outliers are defined as follows. First compute the standard deviation sres of the residuals res ∗h, h = 

t−ϯϯϱ,..., t. Suppose that we go forward in time and observe Y t+1. Then Y t+1 is defined to be an upward 

outlier if Y t+1 is greater than the maximum value of the estimated pattern (over the last two weeks) plus 

4sres. Moreover, Y t+1 is defined to be a downward outlier if it is zero or less than the minimum value of the 

estimated pattern (over the last two weeks) minus 4sres. To predict the workload at time t + 2, having 

observed Y t+1, we slide the two week window one hour ahead in time and repeat the above algorithm. 

The predictive model was applied to both the flow of requests and the data flow for the Wikimedia 

workload.  
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Examples of prediction performance for the request flow can be seen in Figure 23. The actual workload is 

shown in blue solid lines, the predicted value in red dotted lines and the predicted value without 

compensation for the bursts in solid black lines. In Figure 23(a), there is a single short spike 

 where the workload almost doubled, while in Figure 23(b), the workload almost doubled but stayed like 

that. It is clear that using our corrective mechanism, the predictor is able to rapidly cope to the changing 

workload dynamics. Comparable results were obtained for predicting the data flow that we omit due to 

lack of space. We calculated the Mean Absolute Percentage Error (MAPE) for our predictions for both the 

requests flows and the data flows. When excluding outliers, the MAPE for the predicted request flow is 

2.2% while for the data flow is 2.3%, that is, on average we miss the true workload one step ahead by 

around 2% for both the data and request streams. When only considering spikes, the MAPE for the 

request stream is 4.6% and is 11% for the data stream. 
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II BURSTINESS MODELLING 

Woƌkload spikes aŶd ďuƌstiŶess deĐƌease oŶliŶe appliĐatioŶs’ peƌfoƌŵaŶĐe aŶd lead to ƌeduĐed Qo“ aŶd 
service disruptions [6]. We define a workload spike (sometimes referred to as a burst or a flash crowd[5]) 

to be a sudden increase in the demand on an object(s) hosted on an online server(s) due to an increase in 

the number of requests and/or a change in the request-type mix [29]. Some spikes occur due to a non-

predictable event in time with non-predictable load volumes while others occur due to a planned event 

but with non-predictable load volumes.  

A bursty workload is a workload having a significant number of spikes. The spikes make it harder to predict 

the future value of the load. Bursty workloads complicate cloud resource management since cloud 

providers host a multitude of applications with different workloads in their datacentres. Problems such as 

service admission control, Virtual Machine (VM) placement, VM migration and elasticity [17] are examples 

of resource management problems that are complicated due to workload spikes and burstiness. It is 

therefore important to be able to measure the burstiness of a workload in the CACTOS toolkit in order to 

be able to adapt the optimisation plans and perform resource management in an adaptive way. It is also 

interesting to be able to generate artificial workloads with different burstiness profiles that can be used by 

CactoSim to test what-if scenarios for deployment and optimization. 

We identified some requirements for a burstiness metric to be robust and work on a wide range of 

scenarios. 

1) The metric should be able to capture changes in a wide set of workload types. 

2) The parameters used for calculating the metric should be intuitive, and therefore easy to set. 

3) The metric should be able to operate on short data sequences and to be fast to compute. 

4) The metric should differentiate between a gradual workload increase and a sudden one. For example, 

techniques using entropy are not able to do that. 

Sample Entropy as a Burstiness Measure 

Sample Entropy (SampEn) is a robust burstiness measure that was developed by Richman et al. over a 

decade ago [23]. It is used to classify abnormal (bursty) physiological signals. It was developed as an 

improvement to another burstiness measure, Approximate Entropy, widely used previously to characterize 

physiological signals [21]. “aŵple EŶtƌopǇ is defiŶed as ͞the Ŷegatiǀe Ŷatuƌal logaƌithŵ of the ;eŵpiƌiĐalͿ 
conditional probability that sequences of length m similar point-wise within a tolerance r are also similar 

at the Ŷeǆt poiŶt .͟ It has tǁo adǀaŶtages oǀeƌ “haŶŶoŶ’s eŶtƌopǇ: iͿ ďeiŶg aďle to opeƌate oŶ shoƌt data 
sequences and, ii) it takes into account gradual workload increases and periodic bursts. These advantages 

make it an interesting potential measure for workload burstiness as a workload having periodic bursts, 

e.g., every weekend, is easier to manage compared to workloads with no repetitive bursts. 

Three parameters are needed to calculate SampEn for a workload. The first parameter is the pattern 

length m, which is the size of the window in which the algorithm searches for repetitive bursty patterns. 

The second parameter is the deviation tolerance r which is the maximum increase in load between two 
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consecutive time units before considering this increase as a burst. The last parameter is the length of the 

workload which can easily be computed. We therefore focus on m and r and their choice. The deviation 

tolerance defines what a normal increase is and what a burst is. When choosing the deviation tolerance, 

the relative and absolute load variations should be taken in account, For example, a workload increase 

requiring 25 extra servers for a service having 1000 VMs running can probably be considered within 

normal operating limits, while if that increase was for a service having only 3 servers running then this is a 

significant burst. Thus by carefully choosing an adaptive r, SampEn becomes normalized for all workloads. 

If SampEn is equal to 0 then the workload has no bursts. The higher the value for SampEn, the more 

bursty the workload is. 

Sample Entropy Implementation 

There is one main limitation of SampEn, it is expensive to calculate both CPU-wise and memory-wise. The 

computational complexity (in both time and memory) of SampEn is O (n2) where n is the number of points 

in the trace. In addition, workload characteristics might change during operation, e.g., when Michael 

Jackson died, 15% of all requests directed to Wikipedia were to the article about him creating spikes in the 

load. If SampEn is calculated for a long history, then recent changes are hidden by the history. 

To address these two points, we modified the sample entropy algorithm  by dividing the trace into smaller 

equal sub-traces. SampEn is calculated for each sub-trace. A weighted average, AvgSampEn, is then 

calculated for all SampEn values for the sub-traces. More weight can be given to more recent SampEn 

values. This way the time required for computing SampEn is reduced since n is reduced significantly. Our 

modification also enables online characterization of workloads since SampEn is not recomputed for the 

whole workload history but rather for the near past. 

Our algorithm is shown in Algorithm 1. T is the workload for which SampEn is calculated. The trace is 

divided into N sub-traces of length L (lines 1 to 3). For each sub-trace, W, SampEn is calculated. The first 

loop in the algorithm (lines 9 to 14) calculates Bm (r), the estimate of the probability that two sequences in 

the workload having m measurements do not have bursts. The second loop in the algorithm (lines 15 to 

19) calculates Am (r), the estimate of the probability that two sequences in the workload having m + 1 

measurements do not have bursts. Then SampEn for the sub-trace is calculated and is added to the sum of 

the SampEn values of all previous sub traces multiplied by a weighting factor a (line 20). The average 

SampEn for the whole trace is then calculated. 

In order to not make the length of this report very long, we point the interested reader to our recently 

published paper where more details on the evaluation of Sample Entropy and how it compares to the 

State-of-the-Art in burstiness quantification is presented [3]. 
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Algorithm 1 Sample Entropy modified algorithm 
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III RELATED WORK 
 

To further provide context to the work presented in this document, we here include a brief survey of 

workload modelling and resource management systems that are conceptually related to different aspects 

of the CACTOS approach to infrastructure optimization and modelling. 

 

MISTRAL: DYNAMICALLY MANAGING POWER, PERFORMANCE, AND ADAPTATION COST IN 

CLOUD INFRASTRUCTURES 

Goal: Mistral [15] is a holistic controller framework that optimizes trade-offs among power consumption, 

application performance, and adaptation costs. 

Application performance objective is specified in terms of a target mean response time. To include 

performance into optimization formula actual response time is compared with target one and reward for 

meeting it or penalty for missing it is applied.  

In order to calculate the total cost of applying an adaptation Mistral considers: adaptation duration, 

increased response time of applications during applying adaptation (both for involved and co-located 

applications), and increased power consumption during applying adaptation. 

Types of actions considered: Controller uses following adaptation actions to improve the data center 

configuration: increase/decrease VM's CPU capacity, add/remove VM, migrate VM, shut down/restart 

physical machine. 

Algorithm: Mistral controls the costs of search versus the potential benefits during generation of 

adaptation decisions. It considers its own power consumption and reduces the search space by using a 

heuristic to estimate adaptations costs and comparing the intermediate solutions with the ideal 

configuration. 

To handle large-scale infrastructures multi-level hierarchy of controllers is introduced, where lower-level 

controllers manage small number of physical machines at finer time granularity, while higher-level 

controllers coordinate work of lower-level controllers at coarse grained time granularity. 

SLA-BASED OPTIMIZATION OF POWER AND MIGRATION COST IN CLOUD COMPUTING 

Goal: The objective is to minimize the total operational cost of the system including power and migration 

costs, and penalties for violating response time constraints [11]. 

Power consumption is modelled as a sum of constant consumption for idle machine and variable part 

related to the utilization of the server. 

Types of actions considered: Types of optimization actions considered: switching physical machines 

on/off, migrating VM, vertical scaling of VM. 
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Algorithm: To find the best configuration of data center a heuristic algorithm based on convex 

optimization and dynamic programming is used. 

 

PMAPPER: POWER AND MIGRATION COST AWARE APPLICATION PLACEMENT IN 

VIRTUALIZED SYSTEMS  

Goal: pMapper is an application placement controller that dynamically places applications to minimize 

power while meeting performance guarantees. Hence, performance is not a metric to be maximized, but a 

constraint that has to be fulfilled [30]. 

Migration is characterized by a migration duration and a migration cost, where cost is revenue loss 

because of the decreased performance of applications during migration estimated by quantifying the 

decrease in throughput. 

Types of actions considered: Controller is designed to utilize following power management actions: CPU 

idling in the hypervisor, DVFS and throttling, and VM migration. 

Algorithm: min Power Parity (mPP) algorithm works in two phases: firstly, it determines a target utilization 

for each server based on the power model, and secondly, it places VMs on the servers using incremental 

First Fit Decreasing (iFFD). iFFD first identifies servers with current utilization different from the target one 

and divides them into two groups: receivers that are over utilized, and donors, that are underutilized. 

Then for each donor it selects the smallest applications to migrate and stores them on a VM migration list. 

Finally it decides where to migrate VMs using FFD with the spare capacity on the receivers as the bin size 

and the VM migration list as the balls. 

OMEGA: FLEXIBLE, SCALABLE SCHEDULERS FOR LARGE COMPUTE CLUSTERS  

Goal: Omega [25] is a cluster management system that coordinates parallel schedulers. It is built around 

shared state concept and uses lock-free optimistic concurrency control. Its main goal is to achieve both 

implementation extensibility and performance scalability. 

Types of actions considered: The system considers only initial placement decisions – once the tasks are 

placed they are not scaled or migrated. 

Algorithm: There is no central resource allocator in Omega, however to coordinate schedulers, a master 

copy of resource allocation is maintained. To increase parallelization, each scheduler has its own local and 

frequently-updated copy of resource allocation. Once a scheduler makes a placement decision, it updates 

the master copy. If necessary, conflicts are resolved and local copies of resource allocation are resynced. 

AGILE: ELASTIC DISTRIBUTED RESOURCE SCALING FOR INFRASTRUCTURE-AS-A-SERVICE. 

Goal: AGILE [19] dynamically and proactively adjusts the number of VM assigned to a cloud application in 

a way that minimizes the costs of infrastructure provisioning and penalties imposed due to SLO violations.  

Types of actions considered: AGILE uses pre-copy live cloning to replicate running VM to achieve 

immediate performance scale up. 



 

41 | P a g e  D 3 . 2  P r e d i c t i v e  C l o u d  A p p l i c a t i o n  M o d e l      C A C T O S  

Algorithm: AGILE predicts a future workload using a wavelet-based resource demand model, which looks 

ahead for up to 2 minutes – the time needed to clone a VM. Then, it uses an application-agnostic resource 

pƌessuƌe ŵodel to ŵap the appliĐatioŶ’s “LO ǀiolatioŶ ƌate taƌget iŶto a ƌesouƌĐe pƌessuƌe – the ration of 

resource usage to allocation. 

Nguyen, Hiep, et al. "Agile: Elastic distributed resource scaling for infrastructure-as-a-service." Proc. of the 

U“ENIX IŶteƌŶatioŶal CoŶfeƌeŶĐe oŶ Autoŵated CoŵputiŶg ;ICAC’ϭϯͿ. “aŶ Jose, CA. ϮϬϭϯ. 
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V APPENDIX A: WORKLOADS 
 

For reference, we here include more thorough information about the workloads used and why they have 

been selected for application behaviour modelling in this work. 

THE VOD WORKLOAD 

 

Figure 24 The VoD workload request pattern 

Over the past decade, Video on Demand (VoD) and Video sharing online services have been on the rise. A 

recent report estimated that more than 50% of the total downstream traffic during peak periods in North 

America originate from Netflix and YouTube. It is thus required to analyze and characterize VoD workloads 

in order to understand how to improve and optimize the network usage and the perceived Quality-of-

Service (QoS) by the service users. Many VoD service providers utilize the power of cloud computing to 

host their services. Since a typical cloud hosts multitudes of applications with differing workload profiles. 

Cloud service providers need to understand the workload characteristics of the running applications 

including the VoD workload dynamics. This understanding is crucial as application co-hosting can result in 

performance interference between collocated workloads. To better understand VoD workloads, we 
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obtained recent workload traces from TV4, a major Swedish VoD service provider, detailing the requests 

issued by the premium service subsĐƌiďeƌs to TVϰ’s VoD seƌǀiĐe. The VoD seƌǀiĐe is hosted oŶ a Ŷuŵďeƌ of 
cloud platforms.  

 

The traces contain logged data between December 31 2012 and March 18 2013 from two cities with a 

total population over half a million. The traces therefore represent a typical medium European city. Figure  

shows the video request arrival rate with time.  

THE WIKIMEDIA FOUNDATION WORKLOAD 

We analyze the workload of a large-scale website, representing a typical application for the cloud. The 

selected workload is from the Wikimedia foundation servers, mostly known for operating Wikipedia, the 

sixth most popular site on the web. While three months of this workload has been analyzed previously 

[27], we analyze a much larger data set spanning the period between June 2008 and October 2013, 

making this one of the largest workload studies we are aware of.  

At the beginning of our study, the foundation was operating all its projects including Wikipedia using 

around 300 Servers in Florida, which acted as the primary site, 26 in Amsterdam and 23 in Korea as shown 

in Figure 25. In January, 2013, the foundation was running around 885 servers and building a new cluster 

iŶ “aŶ FƌaŶĐisĐo that ǁeŶt iŶ pƌoduĐtioŶ iŶ MaƌĐh, ϮϬϭϯ. TodaǇ, the fouŶdatioŶ’s seƌǀeƌs aƌe distƌiďuted oŶ 
5 different sites; Virginia, which acts as a primary site, Florida and San Francisco in the United States and 

two cluster in Amsterdam, the Netherlands.  

 

The dataset studied consists of hourly logged files  where each file contains the total number of requests 

directed to a page hosted oŶ the Wikiŵedia fouŶdatioŶ’s seƌǀeƌs, the page’s Ŷaŵe, to ǁhiĐh pƌojeĐt it 

Figure 25 Wikipedia datacenters 
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belongs and the total amount of bytes transferred for the page. The files sizes are between 20 MB and 120 

MB of compressed data. While the logging started in December 2007  
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