

CACTOS Toolkit Version 2
Accompanying Document
for Prototype deliverable D5.2.2

Henning Groenda, Christian Stier (FZI),

P-O Östberg, Jakub Krzywda, Ahmed Ali-Eldin (UMU),

James Byrne, Sergej Svorobej, Gabriel Gonzales (DCU),

Zafeirios Papazachos (THE QUEEN’S UNIVERSI),

Craig Sheridan, Darren Whigham (Flexiant Limited),

Christopher Hauser, Athanasios Tsitsipas, Jörg Domaschka (UULM)

Due date: 31/03/2016

Delivery date: 31/03/2016

This project is funded by the
European Union under grant

agreement no. 610711

(c) 2013-2017 by the CACTOS consortium

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0

International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Dissemination Level

X PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

Version History

Version Date Change Author
0.1 27.10.2015 Creation of document based on D5.2.1 and feedback of

review
Henning Groenda (FZI)

0.2 27.10.2015 Information on Service Interfaces Henning Groenda (FZI)

0.2.5 18.12.2015 White-Box Application Support Henning Groenda (FZI)

0.2.8 20.01.2016 Storage Modeling Henning Groenda (FZI),
Christian Stier (FZI)

0.2.9 10.02.2016 Flavour Support Henning Groenda (FZI),
Christian Stier (FZI)

0.3 15.02.2016 White-Box Application Support Update Henning Groenda (FZI)

0.3.5 12.02.2016 Runtime Management and Infrastructure Integration Henning Groenda (FZI),
Christian Stier (FZI)

0.4 18.02.2016 Auto Scaling Henning Groenda (FZI)

0.5 29.02.2016 Completion of document and preparation for review Henning Groenda (FZI)

0.5.5 02.03.2016 Updates after internal review comments Henning Groenda (FZI),
Christian Stier (FZI)

0.6 05.03.2016 First review Ahmed Ali-Eldin (UmU)

0.7 07.03.2016 Addressed comments from first review Henning Groenda (FZI)

0.8 22.03.2016 Second review Jörg Domaschka (UULM)

0.9 24.03.2016 Addressed second review Christian Stier (FZI)

0.9.1 28.03.2016 Addressed PaaSage/CloudSocket integration Jörg Domaschka,
Christopher Hauser (UULM)

1.0 31.03.2016 Final document preparation Henning Groenda (FZI)

i | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

EXECUTIVE SUMMARY
This document is accompanying material for the prototype deliverable D5.2.2. It describes the changes for the

second version of the CACTOS Toolkit and provides details on the integration between the tools and toolkits. A

main focus is on showing updated models, as this is how information is passed between the tools. Identical models

are used during Runtime and Prediction time. Please refer to accompanying material for the prototype deliverable

(D5.2.1 CACTOS Toolkit Version 1) for an overview on the CACTOS toolkits and an exemplary use case.

Note that there are two CACTOS toolkits: The CACTOS Runtime Toolkit (label before year 1: CACTOS Toolkit) and

the CACTOS Prediction Toolkit. The CACTOS Runtime Toolkit contains the tools CactoScale and CactoOpt and is

described in this deliverable. The CACTOS Prediction Toolkit is described in (D6.4 CactoSim Simulation Framework

Final Prototype).

The major architectural additions to the CACTOS Runtime Toolkit since year 1 are added support for monitoring

and scaling of White-Box Applications. White-Box Applications allow for monitoring of application internals on top

of the VM-level metrics that CACTOS collects for all VMs. White-Box Applications such as PlayGen’s DataPlay can

use CACTOS AutoScaling services to let the CACTOS Runtime Toolkit adapt the degree of horizontal scaling based

on the current load. This document describes both the additions to the models and CACTOS Runtime Toolkit that

have been made to support monitoring and scaling of White-Box Applications.

Finally, the document provides detailed insight into the architecture and service structure of the CACTOS Runtime

Toolkit. This includes a detailed description of the Virtualisation Middleware Integration (VMI) and VMI Controller

that form the Cloud-specific connector CACTOS uses to translate its optimisation decisions to a running Cloud

environment’s API. Additionally, an overview over the Extensible Services Infrastructure architecture style is given.

This architecture style allows for a dynamic reconfiguration of used optimisation algorithms and policies. The style

also eases the coupling and analysis of optimisation algorithms in the CACTOS Prediction Toolkit.

ii | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

TABLE OF CONTENTS

EXECUTIVE SUMMARY I

TABLE OF CONTENTS II

LIST OF FIGURES III

LIST OF TABLES V

ABBREVIATIONS & TERMS VI

I. INTRODUCTION 1

II. ARCHITECTURE 2

1. DEPLOYMENT ARTEFACTS 4

A) AVAILABLE ARTEFACTS 4

B) EXAMPLE 5

2. INFRASTRUCTURE MODELS (UPDATE) 5

A) INFRASTRUCTURE MODEL 6

B) OPTIMIZATION PLAN MODEL 10

3. APPLICATION MODELLING 10

A) APPLICATION STRUCTURE 11

B) APPLICATION BEHAVIOUR 18

C) APPLICATION USER BEHAVIOUR (PREDICTION TOOLKIT ONLY) 23

4. INTEGRATION 25

A) STARTING INDIVIDUAL VIRTUAL MACHINES 25

B) STARTING WHITE-BOX APPLICATIONS 27

C) RUNTIME MANAGEMENT 28

5. EXTENSIBLE SERVICES INFRASTRUCTURE 28

B) AUTO SCALING 33

III. PROVISIONING OF THE CACTOS TOOLKIT 35

IV. EXAMPLE USE CASE 36

REFERENCES 42

iii | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

LIST OF FIGURES

FIGURE 1: CACTOS TOOLKITS ARCHITECTURE .. 2

FIGURE 2: AVAILABLE ARTEFACTS FOR THE CACTOS TOOLKITS .. 4

FIGURE 3: ARTEFACTS DEPLOYED IN THE UULM TESTBED ON OPENSTACK .. 5

FIGURE 4: LOGICAL DATA CENTRE MODEL ... 6

FIGURE 5: UPDATED STORAGE MODELLING - LIVE DATA CENTRE EXAMPLE... 7

FIGURE 6: UPDATED STORAGE MODELLING - DISK MODEL EXAMPLE ... 8

FIGURE 7: LOGICAL LOAD MODEL ... 9

FIGURE 8: OPTIMIZATION PLAN ACTION STEPS .. 10

FIGURE 9: APPLICATION TYPES OVERVIEW .. 11

FIGURE 10: MODELLING INFRASTRUCTURE FOR PROVIDING AND REQUIRING INTERFACES .. 12

FIGURE 11: MODELLING INFRASTRUCTURE APPLICATION INTERFACES .. 12

FIGURE 12: APPLICATION DESCRIPTION TEMPLATES (ASSEMBLY / CONFIGURATION TIME)... 14

FIGURE 13: APPLICATION INSTANCES (INSTANCES OF EXISTING TEMPLATES) .. 17

FIGURE 14: MODELLING INFRASTRUCTURE FOR APPLICATION BEHAVIOUR ON THE TEMPLATE LEVEL .. 18

FIGURE 15: MODELLING INFRASTRUCTURE FOR APPLICATION BEHAVIOUR ON THE INSTANCE LEVEL ... 18

FIGURE 16: BEHAVIOUR SPECIFICATION FOR BLACK-BOX APPLICATIONS ... 19

FIGURE 17: BEHAVIOUR SPECIFICATION FOR GREY-BOX APPLICATIONS .. 20

FIGURE 18: BEHAVIOUR SPECIFICATION FOR WHITE-BOX APPLICATIONS .. 21

FIGURE 19: APPLICATION USER BEHAVIOUR SPECIFICATION ... 23

FIGURE 20: EXEMPLARY SEQUENCE FOR PROCESSING INCOMING VM REQUESTS .. 26

FIGURE 21: EXEMPLARY SEQUENCE FOR PROCESSING INCOMING APPLICATION REQUESTS .. 27

FIGURE 22: RUNTIME MANAGEMENT INTERFACE .. 28

FIGURE 23: OPTIMISATION SERVICE TEMPLATE ... 29

FIGURE 24: OPTIMISATION SERVICE IMPLEMENTATION EXAMPLE ... 30

FIGURE 25: OPTIMISATION SERVICE REGISTRY .. 30

FIGURE 26: EXAMPLE OF COMPLEXITY FOR OPTIMISATION SERVICE ... 31

FIGURE 27: PLACEMENT SERVICE ARCHITECTURE ... 31

FIGURE 28: EXAMPLE OF COMPLEXITY FOR PLACEMENT SERVICE .. 32

FIGURE 29: BEHAVIOUR INFERENCE SERVICE ARCHITECTURE .. 32

FIGURE 30: EXAMPLE OF COMPLEXITY OF BEHAVIOUR INFERENCE SERVICE ... 33

FIGURE 31: INTERFACE FOR AUTO SCALER INTEGRATION IMPLEMENTATIONS .. 33

FIGURE 32: INTERFACE OF THE AUTO SCALER .. 34

FIGURE 33: DATAPLAY MODELLING REFERENCE .. 36

FIGURE 34: DATAPLAY RESOURCE REQUIREMENTS (ALL HAVE 20 GB STORAGE AND ARE BASED ON UBUNTU 15.10 IMAGES 37

FIGURE 35: DATAPLAY FLAVOURS IN THE MODEL ... 37

FIGURE 36: DATAPLAY STRUCTURAL ARCHITECTURE VIEW .. 38

FIGURE 37: DATAPLAY INTERFACES ... 38

FIGURE 38: DATAPLAY APPLICATION USAGE SCENARIO .. 38

FIGURE 39: DATAPLAY BEHAVIOUR TEMPLATE .. 39

FIGURE 40: DATAPLAY BEHAVIOUR INSTANCE AND TEMPLATE LEVEL... 40

FIGURE 41: DATAPLAY SEQUENCE EXAMPLE ... 40

iv | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

v | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

LIST OF TABLES

vi | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

ABBREVIATIONS & TERMS

Abbreviation Description

CACTOS Context-Aware Cloud Topology Optimisation and Simulation

CI Continuous Integration

COTS Commercial-Off-The-Shelf

EDP2 Experiment Data Persistency & Presentation

FCO Flexiant Cloud Orchestrator

FDL Flexiant Development Language

rpm revolutions per minute

SLA Service Level Agreement

SVN Apache Subversion

OSP OpenSourceProjects.eu

QoS Quality of Service

VM Virtual Machine

Flavour Virtual hardware templates defining storage, memory, and number of virtual

cores. Flavours can be tenant-specific.

1 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

I. INTRODUCTION
In Infrastructure as a Service (IaaS) cloud data centres, customers run their software on the virtualised

infrastructure of a data centre. Optimization is possible as VMs often stay idle and rarely use all available

resources. The efficient utilisation of the underlying physical infrastructure including management and topology

optimisation determines the costs and ultimately the business success for data centre operators.

The CACTOS Toolkit Version 2 described in this document provides the implementation for such an automated

infrastructure management in two Cloud middlewares – FCO and Open Stack.

This document is accompanying material for the prototype deliverable D5.2.2. Please refer to accompanying

material for the prototype deliverable (D5.2.1 CACTOS Toolkit Version 1) for an overview on the CACTOS

toolkits and an exemplary use case. There are two CACTOS toolkits: The CACTOS Runtime Toolkit (label before

year 1: CACTOS Toolkit) and the CACTOS Prediction Toolkit. The CACTOS Runtime Toolkit contains the tools

CactoScale and CactoOpt and is described in this deliverable.

The architecture is presented in section II with a focus on the updated parts of the models in section II.2, a focus

on application modelling in section II.3, and technical details on the implementation and integration in section II.4.

Section III references the guidelines on how to get the CACTOS tools provisioned in your tested. Section IV

presents an exemplary use case on how a complex VM-spanning application looks like in the models.

Related deliverables are (D5.2.1 CACTOS Toolkit Version 1), (D5.1 Model Integration Method and Supporting

Tooling), (D5.4 Evaluation Methodology for the CACTOS Runtime and Prediction Toolkit), and (D5.3 Operational

Small Scale Cloud Testbed Managed by the CACTOS Toolkit). The accompanying document for the prototype

deliverable (D5.2.1 CACTOS Toolkit Version 1) described the architecture of the CACTOS toolkit and is updated

by this deliverable. (D5.1 Model Integration Method and Supporting Tooling) describes the tools and scope in

detail, presents the data centre model, integration and interaction of tools, architecture, and development and

build infrastructure. This deliverable extends (D5.1 Model Integration Method and Supporting Tooling) and

provides an updated view on the models storing all information about a data centre and the architecture. (D5.4

Evaluation Methodology for the CACTOS Runtime and Prediction Toolkit) focussed on metrics and updated the

overview and architecture from (D5.1 Model Integration Method and Supporting Tooling). This deliverable

extends the description of (D5.4 Evaluation Methodology for the CACTOS Runtime and Prediction Toolkit). (D5.3

Operational Small Scale Cloud Testbed Managed by the CACTOS Toolkit) focussed on an operational version of

the CACTOS toolkit in a small-scale testbed. (D5.3 Operational Small Scale Cloud Testbed Managed by the

CACTOS Toolkit) described the provisioning and deployment in the testbeds FCO and Open Stack. This

deliverable updated the description in (D5.3 Operational Small Scale Cloud Testbed Managed by the CACTOS

Toolkit) with respect to the toolkit architecture and deployment artefacts.

This document is structured as follows. Section II shows the changes on the architectural level of CACTOS and

presents the models, which are used by all tools in order to exchange information, as well as Integration and 3rd

party extension points. Section III provides information on the provisioning of CACTOS. Section IV provides

information on examples of using CACTOS.

2 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

II. ARCHITECTURE

Figure 1: CACTOS Toolkits Architecture

Figure 1 shows the architecture of both CACTOS toolkits. It depicts the contents of the tool areas

CACTOS Runtime Toolkit, the CACTOS Prediction Toolkit, and the tools CactoScale, CactoOpt,

CactoSim, and Integration functionality.

The tool area CactoScale consists of the components CACTOS Chukwa Agent, CACTOS Chukwa

Collector, a Historic Database, Offline Analysis, Pig, Runtime Model Updater, the Runtime Model

Storage, and a SQL DB. Chukwa Agents gather data in the virtual and physical infrastructure and

send it to the Chukwa Collector. The collector stores the information in the Historic Database to

enable further analysis. It also provides the data to the Runtime Model Updated that stores the

information on the data centre in the Runtime Model Storage. The Runtime Model Storage uses an

CSE
Connector

COS Control

Open
Stack
API

FCO
API

IVMI
Service

Open
Stack
API

Runtime
Model Updater

Runtime
Model Storage

Prediction
Model Storage

Cyclic
Optimiser
Runtime

CactoSim Engine
CactoSim

IDE (Eclipse-based)

Historic
Database

SQL DB

SQL DB

Chukwa

CDO

Optimization
Engine

CACTOS
Chukwa Agent

CSE API

CVS, e.g.
SVN or GIT

Virtualisation
Middleware

Integration Controller

Control

FCO
API

Conforms Provides
Component Type (CPCT)

CPCT

CACTOS Runtime Toolkit

Control
CACTOS

Chukwa Collector

HBase

Pig

CactoScale

Infrastructure
Optimiser

Integration

CACTOS Prediction Toolkit

CactoSim

Offline
Analysis

VMI
Controller FCO

VMI Controller
OpenStack

VMI Controller
CactoSim

Cyclic
Optimiser
Simulation

Runtime
Management

VMI
FCO

VMI
OpenStack

Behaviour
Inference

CactoOpt

Power and
Behaviour
Extractor

Experiment
Scenario Executor

VMI
Simulation

Runtime
Management

Simulation

Auto Scaler
Integration
Simulation

Auto Scaler
Integration

Runtime

Auto Scaler

3 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

SQL DB for persisting the information. Offline Analysis uses Pig capabilities to analyse the Historic

Database.

The tool area CactoOpt consists of the components Cyclic Optimiser Runtime, Behaviour Inference,

Infrastructure Optimiser, and Auto Scaler. The Cyclic Optimiser Runtime is responsible for optimizing

a data centre in regular intervals and therefore calls the Infrastructure Optimiser. The Infrastructure

Optimiser suggests improved deployments and node states changes, e.g. switching unused nodes

off. It is also responsible to suggest placements for incoming virtual machines. The Behaviour

Inference allows to reason on the expected behaviour of incoming virtual machines, e.g. for

supporting the best placement. The Auto Scaler supports decisions on the scaling factor. The scaling

factor is the best number of an application’s connected virtual machines for a horizontally scaled

application instance.

The tool area Integration consists of the components Virtualization Middleware Infrastructure (VMI)

components, VMI Controller components, Runtime Management, Auto Scaler Integration Runtime,

and Auto Scaler Integration Simulation. The VMI components are proxy interfaces for supported VMI

platforms, e.g. FCO or Open Stack. Users issue their calls to those components and cannot

distinguish between CACTOS-enabled and not enabled data centres. They provide additional

functions to manage applications running in CACTOS-enabled VMIs. The VMI components translate

to information in CACTOS and forward relevant calls to the Runtime Management. The Runtime

Management is responsible to manage applications and VMs in CACTOS. It updates information in

the Runtime Model Storage, infers behaviour for incoming VMs using Behaviour Inference,

requesting placement suggestion for the Infrastructure Optimiser, ensuring that scalable connectors

are automatically scaled for white-box applications using Auto Scaler Integration Runtime, and

finally ensures that incoming user requests for applications or VMs are executed using the VMI

Controller. The VMI Controller are VMI specific and translate from CACTOS to the used VMI. Auto

Scaler Integration Runtime requests scaling improvement suggestions from the Auto Scaler using the

appropriate intervals specified in the application models for each connector.

The tool area CactoSim consists of the components Cyclic Optimiser Simulation, VMI Controller

CactoSim, Power and Behaviour Extractor, Auto Scaler Integration Simulation, CactoSim IDE,

CactoSim Engine, Experiment Scenario Executor, VMI Simulation, and Runtime Management

Simulation. The CactoSim IDE allows querying data centre models from a Runtime Model Storage.

The resulting models can be extended or modified according to the targeted simulation scenario and

required metrics. Power models and the Behaviour of Black-Box VMs can be retrieved from a

Runtime Model Storage as well using wizards of the Power and Behaviour Extractor. Models are

stored locally within the IDE and can be versioned and shared (including simulation results) using the

Prediction Model Storage. The Offline Analysis supports to include analyses of CactoScale in a model.

A data centre model can be simulated using the CactoSim Engine. The CactoSim Engine supports

dynamic incoming and leaving VMs and applications according to the specification in the Experiment

Scenario part of the data centre model. The Experiment Scenario Executor carries out the necessary

adaptations during the specified point in simulation time. It issues changes to the logical model part

using the VMI Simulation, analogously to the VMIs of the Runtime Toolkit. The physical model part is

modified directly. The VMI Simulation forwards requests to the Runtime Management Simulation. It

differs from the Runtime Management counterpart in two aspects. It uses simulation time instead of

real time and it has direct access to in-memory data centre models instead of using a Runtime

4 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Model Storage. The latter applies for the Cyclic Optimiser Simulation, VMI controller CactoSim, and

Auto Scaler Integration Simulation. Otherwise, the components of the Runtime Toolkit are re-used.

The Prediction Model Storage can be any file-based versioning system, such as SVN or GIT. The

CACTOS Prediction Toolkit works without this component. Therefore it is depicted outside of the

tool areas. It allows storing different version of data centre models including prediction results.

1. DEPLOYMENT ARTEFACTS
This section points out the available deployment
artefacts. Refer to section III for information on
provisioning CACTOS in your virtualisation
infrastructure.

a) AVAILABLE ARTEFACTS

Figure 2: Available Artefacts for the CACTOS Toolkits

Figure 2 shows the deployment artefacts for both toolkits and their contents with respect to the

components of the architecture. This information is relevant for developers. End users and data

centre operators should follow the guidelines presented in section III to provision the corresponding

artefacts. The Runtime Toolkit consists of the following artefacts: CACTOS Chuckwa Agent Package,

Historic Database Runtime Package, a Runtime Management Package for the used VMI, Runtime

<<artifact>>
CACTOS Chukwa
Agent Package

<<artifact>>
Historic Database
Runtime Package

<<artifact>>
Runtime Model
Storage Package

<<artifact>>
Runtime

Management
Package

<<artifact>>
Prediction Package

CACTOS
Chukwa Agent

<<manifest>>

HBase
Chukwa
Collector

Pig

Runtime
Model Storage

Infrastructure
Optimiser

Virtualisation
Middleware

Integration Ctrl.

Cyclic
Optimiser
Runtime

<<manifest>>

<<manifest>>

Power and
Behaviour
Extractor

CactoSim
IDE (Eclipse-based)

VMI
Controller
CactoSim

Cyclic
Optimiser
Simulation

<<artifact>>
VMI FCO
Package

VMI
Controller FCO

VMI
FCO

<<manifest>>

<<artifact>>
VMI OpenStack

Package

VMI Controller
OpenStack

VMI
OpenStack

<<manifest>>

Runtime
Management

Online
Analysis

<<artifact>>
Runtime Model

Updater Package

Runtime
Model Updater

<<manifest>>

<<manifest>>

<<artifact>>
Runtime Model

Storage DB
Package

SQL DB

<<manifest>>

<<manifest>>

<<artifact>>
Runtime

Management
OpenStack

Package

<<artifact>>
Runtime

Management FCO
Package

<<artifact>>
Runtime

Management
Package

<<artifact>>
VMI FCO
Package

<<artifact>>
Runtime

Management
Package

<<artifact>>
VMI OpenStack

Package

Auto Scaler
Integration

Runtime

Auto Scaler

Runtime
Management

Simulation

Auto Scaler
Integration
Simulation

CactoSim
Engine

VMI
Simulation

Experiment
Scenario
Executor

5 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Model Update Package, Runtime Model Storage Package, and Runtime Model Storage DB Package.

The Prediction Toolkit consists of the Prediction Package artefact only.

b) EXAMPLE

Figure 3: Artefacts deployed in the UULM testbed on OpenStack

Figure 3 provides an example how the artefacts for a full CACTOS-enabled virtualisation

infrastructure with both toolkits can look like. The depicted Compute Nodes are the nodes managed

by CACTOS and form the actual data centre.

2. INFRASTRUCTURE MODELS (UPDATE)
This section describes the infrastructure models
modified since D5.2.1. Exemplary model instance are
also linked in section IV.

Hadoop Cluster

CACTOS Runtime
Management Server

Runtime Model
Storage Server

Prediction
Workstation

ComputeNode
ComputeNode

ComputeNode

<<artifact>>
CACTOS Chuckwa

Agent Package

<<artifact>>
Historic Database
Runtime Package

<<artifact>>
Runtime Model
Storage Package

<<artifact>>
Runtime

Management
OpenStack

Package

<<artifact>>
Prediction Package

<<artifact>>
Runtime Model

Updater Package

<<artifact>>
Runtime Model

Storage DB
Package

6 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

a) INFRASTRUCTURE MODEL

Figure 4: Logical Data Centre Model

7 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 4 shows the final result of all changes on the logical data centre model for completeness and

to provide context. The individual changes are described in the following. The older elements are

described in (D5.1 Model Integration Method and Supporting Tooling) section IV.

MEMORY CONSUMPTION OF HYPERVISORS. In the previous version the memory consumption

of hypervisors was not stated explicitly. The consumption can now be specified for Hypervisor in the

same way as for VirtualMachines. The new abstract class VirtualMemoryConsumingEntity was

introduced to allow this consistent handling. Placement algorithm can now support Hypervisor with

different memory consumption.

CONFIGURATION OF THE CYCLIC OPTIMISER INTERVAL. There was no explicit statement in

the model. Now, the interval is stored in the models in the attribute cyclicOptimizationInterval of the

element LogicalDCModel. This attribute can be changed at runtime, e.g. by a data centre operator.

FLAVOUR SUPPORT. In the first version of the models, flavours (see Abbreviations and Terms)

were resolved in a VMI-specific way based on tags used in instantiation calls. Support for auto

scaling requires to automatically determine the right flavour for a new VM. Flavours are stored

directly at the LogicalDCModel (right-hand side, third form top). flavourRefVMI is a UUID and

references the Flavour id used in the virtualisation infrastructure. The other attributes

numberVirtualCores, sizeRam, sizeStorage are the typical properties of resource requirement

specifications in virtualisation infrastructures.

STORAGE MODELING. The older version only knew about volumes and didn’t take into account

the representation of VMImages and (Virtual) Disks, that root file systems of VMs could be remote

(see Figure 5 for a typical situation), and disk performance measurements should be easy to map

regardless if local or remote.

Figure 5: Updated Storage Modelling - Live Data Centre Example

Figure 5 shows a situation with two physical nodes: A Fat node with local disc storage using CEPH

storage distribution technology and a Diskless node without a local disk. The diskless node uses a

Network Attached Storage (NAS) that operates uses CEPH technology. VM 1 runs a Molpro VMImage

and the changed data of this specific virtual machine is stored in a LocalOverlay image. The

VMImage and the LocalOverlay are stored on the CEPH storage of the Fat node. The same applies for

Molpro
VMImage

VM 1 : Virtual
Machine

VM 2 : Virtual
Machine

VM 3 : Virtual
Machine

Molpro
VMImage

LocalOverlay
Image

Molpro
VMImage

LocalOverlay
Image

Molpro
VMImage

LocalOverlay
Image

Fat :
ComputeNode

Diskless :
ComputeNode

runs

runs

Ceph :
StorageSpec.

Ceph :
StorageSpec.

Ceph : NAS

remoteSharedDisk

VM root file system / disk

Concept Only

Element

Implicit
Element

named relation

storageLocation

VM root file system / disk

VM root file system / disk

8 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

VM 2. VM 3 runs on the Diskless node. It uses the Molpro VMImage stored on the CEPH storage of

the NAS. It adds a LocalOverlay as above to store local data and let the VMImage remain unchanged.

Figure 6: Updated Storage Modelling - Disk Model Example

Figure 6 shows a situation and focuses on how different overlays are represented in the

infrastructure model of the data centre. The LogicalDCModel is the top model element. The Molpro

VMImage is stored on the CEPH storage on the NAS node. VM1disk and VM2disk store their local

overlay information on the CEPH storage of the Fat node and are technically contained in the

VMImage model element. VM3disk is stored on the CEPH storage of NAS. It is still shown as

contained in the Molpro VMImage element because it’s based on it. The overall used capacity is the

capacity of VM1disk + VM2disk + VMImage on CEPH storage at the Fat node and the capacity of

VM3disk + VMImage on the CEPH sorage of NAS.

The update addresses all of these limitations. In the bottom right section of Figure 7, there is the

new VirtualDisk. A VirtualDisk has a capacity and usedCapacity. It contains ‘child’ disks that contain

the difference or delta when a virtual disk is mounted but modifications are written to a virtual disk

on top of that. This is modelled with the deltaOverlay reference. See also Figure 6 for a visualization.

An example model is also referenced in section IV. A VirtualDisk references the storageLocation

where it resides physically. A VMImage is a VirtualDisk but can also point to additionalSharedDisks

that will be made available when the VMImage itself is used. A VirtualMachine has exactly one

VMImageInstance. Modelling this as two separate classes is due to a separation of concerns. A

VMImageInstance must reference a root disk, which can be local or remote. It can additionally

specify vmSpecificDisks and sharedDisks. Write requests to the former one will end up in

deltaOverlay virtual disks. The second ones would be affected directly.

Ceph :
StorageSpec.

Ceph :
StorageSpec.

Concept Only

Element

Implicit
Element

named relation

storageLocation

Molpro :
VMImage

VM1disk :
VirtualDisk

VM2disk :
VirtualDisk

VM3disk :
VirtualDisk

LogicalDC
Model

Overall used capacity: VM1disk +

Fat :
ComputeNode

Ceph : NAS

Overall used capacity: VM2disk +

Overall used capacity: VM3disk + VMImage

VMImage

9 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 7: Logical Load Model

10 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 7 shows the final result of all changes on the logical data centre model for completeness and

to provide context. The individual changes are described in the following. The older elements are

described in (D5.1 Model Integration Method and Supporting Tooling) section IV.

UPDATED STORAGE MODELLING. The update lead to a removal of the VolumeMeasurement and

introduction of the VirtualDiskMeasurement (fourth from left) as replacement. It can now

additionally store delay information on read and write access.

ARRIVAL RATE MEASUREMENTS. Auto scaling support requires to know about arrival rates in

order to reason on the optimal amount of VMs. The elements RequestArrivalRateMeasurement and

ResponseArrivalRateMeasurement were introduced (right and second from right). The

measurements reference the connection for which they are measured and the application instance.

STARTUP TIME MONITORING. The boot times of physical machines and virtual machine images

could not be stated in the models. The following changes have been made: The update introduced

the StartupTime element to state the duration as a Stochastic Expression and the durationUnit. This

allows using distribution functions and proper units, e.g. seconds or minutes. StartupTime instance

can be contained in Hypervisor elements in order to state how long it took to boot a physical

machine including the hypervisor until it is ready. StartupTime instance can also be contained in

VMImage elements in order to state how long the image took to be started on a node.

b) OPTIMIZATION PLAN MODEL

Figure 8: Optimization Plan Action Steps

Figure 8 shows the final result of all changes on the optimization plan model for completeness and

to provide context. The individual changes are described in the following. The older elements are

described in (D3.1 Prototype Optimization Model) section IV.3.

Scaling actions for white-box applications were introduces (bottom right of Figure 8). ScaleIn allows

removing a VM from a horizontally scaled application and disconnecting it from its load balancer.

ScaleOut allows creating a VM according to the application specification and wiring it in the end, e.g.

with the load balancer, using the ConnectVmAction (third from left).

3. APPLICATION MODELLING
This section describes the extensions that support VM-
spanning applications. The modelling of single-VM-
based applications is extended in a consistent way with
single-VM applications. An exemplary VM-spanning
white-box model instance is presented in section IV.

11 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

a) APPLICATION STRUCTURE

Figure 9: Application Types Overview

Figure 9 shows the different application types that CACTOS supports. The White-Box application

type has been newly introduces since (D5.2.1 CACTOS Toolkit Version 1). The figure provides

information on how to get the required information to build a model, a rough effort estimate,

typical creation tasks, relevant application metrics, and advantages as well as limitations. The source

‘Historic trace’ means that a model can be automatically inferred based on information in the

Historic Database. The source ‘Manual analysis’ means that experts analyse an application including

information from the Historic Database but also additional analysis. This allows insights into the

application and specific measurement points depending on the application logic itself.

The following outlines more details on the typical tasks required for constructing application models

(Tasks for Creation in Figure 9):

 Load trace from Historic Database

o Use Wizard in CactoSim

o Alternative: Use Hbase API for direct access to historic data and analytics

 Analyse phases and resource consumption of application

o Reason on number of phases and resource consumption per phase based on

measurements in the Historic Database, application log files, and additional

analyses of the grey-box application, e.g. with code review and tracing tools

 Specify architecture

o State the interfaces in the control-flow of user requests across VMs

o State scaled VMs

o State default Flavours for each VM

 Analyze resource consumption and control flow

o State the resource consumption from a resource load perspective during user

request processing in each VM, e.g. based on the Historic Database, application log

files, or additional analyses of the application

 Analyse usage scenarios

12 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

o State user types and how they typically use the application from a resource load

perspective, e.g. based on the Historic Database, use case definitions, additional

analyses, or application log files

o State how often users of each type arrive, e.g. based on the Historic Database,

application log files or additional analyses

Supporting White-Box applications, which span several VMs, requires defining the structure of the

application and which VMs are required to run an instance. This specification is done via Application

Templates and is similar to a blueprint or deployment model if you are more familiar with those

non-CACTOS terms. Auto scaling further requires knowing about the interfaces of applications in

order to reason on throughput and optimal number of VMs.

Figure 10: Modelling Infrastructure for Providing and Requiring Interfaces

Figure 11: Modelling Infrastructure Application Interfaces

13 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 10 and Figure 11 show the modelling basics required to state interfaces for VMs. Interfaces

can be provided or required by a VM. A single VM can provide or require more than an interface.

The same interface can be used in different roles, e.g. accessing split user and media database both

use a SQL interface but need to be kept separate. CACTOS groups different sets of operations on the

same interface in ServiceInterfaces. A ServiceInterface consists of ServiceOperations, e.g. the http

interface of a get, post, put, and delete operation.

14 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 12: Application Description Templates (Assembly / Configuration Time)

15 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

16 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 12 shows all available templates for modelling applications in CACTOS – Black-Box (right),

Grey-Box (second from right), and White-Box Application Templates (third from right). Figure 4

shows on the top right the location of ApplicationTemplate and ApplicationInstance within the

LogicalDCModel. Black- and Grey-Box Application Templates consist only of a single VM and are

therefore very compact. You can find the description of the corresponding VMImageBehaviour

specifications below in the following Section Application Behaviour. White-Box Application

Templates specify the structure – the ComposedVMImages that are the parts and are required to

run the application and the VMImageConnectors to wire those composed images. White-Box

Application Templates furthermore point to the userFacingServices that are not used internally but

are accessible from the outside. White-Box Application Templates can have a (White-Box)

Application User Behaviour. This is relevant for Prediction Toolkit only and described below in the

Application User Behaviour section. ComposedVMImage can provide and require services, which is

visible by the generalization relation to InterfaceProvidingRequiringEntity. VMImageConnector

reference the provided and required service roles that are connected. VMImageConnector cannot

be scaled but ScalableVMImageConnector can, e.g. to represent a load-balanced connection.

ScalableVMImageConnector specify the minimal number of instances that should be connected, the

number of instances that should be connected on instantiation as a default, and the maximum

number of instances allowed. The autoScalingAnalysisInterval determines the interval for optimising

the number of connected VMs. Two LoadBalancingPolicy are supported: Round-Robin and Hash-

based. The former one is a statistical distribution across the VMs, the latter one allows binding to

specific VMs connected based on a hash tag in incoming requests. A typical use of hash-based

routing is that the same user’s requests are routed to the same VM.

17 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 13: Application Instances (Instances of existing Templates)

18 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 13 shows application instances. Instances always refer to their corresponding application

template. Black-Box (right) and Grey-Box Application Instance (second from right) reference the

single Virtual Machine that matches the instance. There is exactly one VM per instance. White-Box

Application Instance (third from right) can have a (White-Box) Application User Behaviour. This is

relevant for Prediction Toolkit only and described below in the Application User Behaviour section

below. The application template determines the possible wiring. The instance itself only tracks the

ComposedVMs that belong to the instance. They can change due to scaling of VMs. Each

ComposedVM references the VM running a composedVMImage, which is described in the template.

b) APPLICATION BEHAVIOUR

Figure 14: Modelling Infrastructure for Application Behaviour on the Template Level

Figure 14 shows the modelling infrastructure for application behaviour on the level of application

templates and VMImages. A VMImageBehaviour must reference the vmImage that shows the

specified behaviour. It can reference a defaultFlavour that is used when instantiating the VMImage

with this behaviour. There is one subclass for each application behaviour type. The application

behaviour types are described in the following paragraphs after the VMBehaviour descriptions.

Figure 15: Modelling Infrastructure for Application Behaviour on the Instance Level

Figure 15 show the modelling infrastructure for application behaviour on the level of instances and

VirtualMachines. A VMBehaviour must reference its template and therefor the VirtualDisk and

Flavour as well. This ensures navigation from instance to template and that all descriptions for an

application are available. There is one subclass for each application type. The application behaviour

types are described in the following paragraphs.

19 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 16: Behaviour specification for Black-Box Applications

Figure 16 shows behaviour specifications for Black-Box applications. Black-Box Behaviour can be

repeatable. This means that the behaviour pattern defined runs in a loop and restarts from the

beginning once it’s finished. A Black-Box Behaviour consists of Black-Box Workload specifications.

These specifications express the resourceDemandRates over time. The specification of the time unit,

e.g. seconds, and the rate is kept separate for technical reasons. A Black-Box Workload is specified

for a single resource, e.g. a processing unit or storage. The onResource reference points to that

resource. All blackBoxWorkloads of a Black-Box Behaviour run in parallel and cause load on the

resources. The Black-Box VM Behaviour (right) on the instance level is a Black-Box Behaviour. The

Black-Box VM Image Behaviour is a Black-Box Behaviour as well and must reference the resource

specifications used in the behaviour description. This is required as it cannot be guaranteed that the

resource specifications are available in a data centre description when a template is described. They

are available on the instance level as the instances actually run on the resource in the data centre.

20 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 17: Behaviour Specification for Grey-Box Applications

Figure 17 shows behaviour specifications for Grey-Box applications. As with Black-Box Behaviour,

Grey-Box Behaviour can be repeatable. This means that the behaviour pattern defined runs in a loop

and restarts from the beginning once it’s finished. A Grey-Box Behaviour consists of consecutive

Workload Phases. In each Phase, the resourceDemands and amount on the different Resources

(onResource) is expressed. A Workload Phase is finished if all resource demand specified for it has

been processed. The execution then continues with the next phase. It does not cause load if it is not

a repeatable behaviour and the last phase has finished. On the template level, Grey-Box

VMImageBehaviour (middle) are Grey-Box Behaviour and must reference the resource specifications

used in the behaviour description. This is required as it cannot be guaranteed that the resource

specifications are available in a data centre description when a template is described. They are

available on the instance level as the instances actually run on the resource in the data centre. On

the instance level, Grey-Box VMBehaviour are Grey-Box Behaviour. They can have information on

the progress made in processing. The Progress references the current WorkloadPhase as well as the

individual progress for specified resource demands within that phase using the

resourceDemandProgress reference. The Resource Demand Progress states the amount of

processing that has been done so far of the corresponding resourceDemand.

21 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 18: Behaviour Specification for White-Box Applications

22 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 18 shows behaviour specifications for White-Box applications, which consist for several VMs.

A White-Box Behaviour always states the Behaviour of a single VM (or VMImage when on the

template level). A White-Box Behaviour specifies the behaviour for each service it provides using the

serviceEffects reference. A Service Effect references the ServiceProvidedRole and ServiceOperation.

This allows that the same interface is provided with separate consumers and to specify the

behaviour for each service operation. The processing of an incoming service request is described

using the controlFlowActions reference. There are three types of Control Flow Actions: Start Action

marking the entry point, Internal Control Flow Action for processing the request, and Stop Action

marking that processing ended. There are four Internal Control Flow Actions: Resource Demand

Actions, Service Operation Call Actions, Application Call Actions, and SetVariableActions. Resource

Demand Actions specify the amount and unit request to be processed from a resource (onResource

reference). One Variable Resource Demand per resource. All demands are requested in parallel.

Service Operation Call Action allows calling required services, which are specified in the White-Box

application template. It references the outgoing role and operation of the interface within that role.

Application Call Action allows calling whole application based on the specified user-facing services in

the template. This action is only required if Application User Behaviour is specified (see

corresponding section below). Set Variable Action allows setting request and response parameters.

Available parameters are specified in Variable Assignment using the variable attribute. Options are

VALUE, BYTESIZE, and HASH for requests. VALUE can be an arbitrary value used in further control-

flow processing. BYTESIZE allows specifying the size and therefore load on the network. The HASH is

used for load-balancing (see also ScalableVMConnector above). Options for responses are VALUE

and BYTESIZE. After processing has completed, Response will be sent back to the User of VM that

made the call to the service (and control-flow processing continues at that point). On the template

level, White-Box VMImageBehaviour (middle) are White-Box Behaviour and must reference the

resource specifications used in the behaviour description. This is required as it cannot be guaranteed

that the resource specifications are available in a data centre description when a template is

described. On the instance level, White-Box VM Behaviour is simply a White-Box Behaviour (note

the missing VM in the term).

23 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

c) APPLICATION USER BEHAVIOUR (PREDICTION

TOOLKIT ONLY)

Figure 19: Application User Behaviour specification

Figure 19 shows the model for application user behaviour specifications. User behaviour specifications are used within the

Prediction Toolkit in order to specify how users are using White-Box applications. It is not required in the real data centre as

24 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

user use the applications directly and do not need to be specified.

25 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 12 and Figure 13 show how these specifications are connected to application templates and

instances using the Usage Scenario element. A Usage Scenario specifies the set of behaviours

experienced for different user types. A User Behaviour is specified for each user type. It shows the

behaviour itself (Figure 19, right hand side) using the controlFlowActions elements. Figure 18 shows

the differentControlFlowAction subtypes. The User Behaviour follows the same structure as the

Service Effect. Hence, replacing Service Effect with User Behaviour gives one a good idea how the

final User Behaviour model looks like. The Arrival Rate (Figure 19) specifies how often new users of a

type arrive. It can be a Close Workload setting. This means there are a predefined constant number

of users – the userPopulation. A user behaves as specified in the controlFlowActions and then

pauses for thinkTime, which is specified as Stochstic Expression in the separately provided timeUnit.

There are also Open Workload arrivals: Variable Open Workload and Constant Open Workload.

Constant Open Workload specified the interarrivalTime when a new user arrives using a Stoachstic

Expression. This can be a probability distribution, e.g. an exponential distribution. The timeUnit is

specified separately. Variable Open Workload extends Constance Open Workload and allows

changing the interarrival time over time. This arrivalRate is specified with a separate arrivalRateUnit

and samplingInterval to determine how often the arrival Rate is updated.

4. INTEGRATION
This section highlights the integration of tools and
toolkits. It is relevant for developers only.

CACTOS is already available for the OpenStack and FCO virtualisation infrastructure. The VMI is a

proxy in front of the platform, e.g. OpenStack. It forwards selected calls to the cloud API to CACTOS’

Runtime Management before handing them to the cloud platform for execution (boot and delete

requests to OpenStack and FCO). Other calls are directly relayed to the actual cloud API platform for

execution. The VMI additionally provides a service interface for managing White-Box Applications.

Applications that consist of several interconnected VMs and complex control flow.

a) STARTING INDIVIDUAL VIRTUAL MACHINES

This section exemplifies how incoming or leaving VMs are handled by the VMI and the other

components of the CACTOS infrastructure.

26 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 20: Exemplary sequence for processing incoming VM requests

Figure 20 illustrates the processing of a request for incoming VMs in the case of OpenStack (for

Flexiant Cloud Orchestrator the approach is equivalent): The VMI OpenStack and VMI Controller

OpenStack are the interfaces between CACTOS and the virtualisation infrastructure. The platform

itself is shown on the right-hand side as OpenStack Virtualisation Middleware. Incoming boot

requests are processed by VMI OpenStack and their parameters, e.g. flavours, translated to CACTOS

terms. The resulting information is sent to the Runtime Management via the startVM method

including all parameters. StartVM first creates the VM using the Runtime Model Storage without

assigning a physical node to it. It infers the probable behaviour of the VM by using the Online

Analysis. The Online Analysis allows plugging in different algorithms and replace them at runtime.

This part is not visualized to reduce complexity. Third, a placement suggestion is requested from the

Infrastructure Optimiser. This concludes the preparation steps and allows to continue with the

bundle and execute steps. The suggested change of deploying the VM is stored in an Optimisation

Model and executed by the VMI Controller OpenStack. This component translates from CACTOS to

OpenStack and issues the boot command on the real OpenStack Virtualisation Middleware. The call

returns instantiation information after completion, e.g. the VM ID in OpenStack. This information is

stored at the VM description in the model. This concludes the processing on the CACTOS side. The

instantiation information is passed back to the original boot call. This allows running a CACTOS-

enabled optimised data centre with its users to know about it.

Stopping VMs based on user requests are handled similarly.

Bundle and Execute

Prepare VM

:Runtime

Management

:Runtime Model

Storage

:Infrastructure

Optimiser

:VMI Controller

OpenStack
:Online Analysis

:OpenStack

Virtualisation

Middleware

forward to CACTOS

resolve
flavorname, image-ref,

availability_zone,
flavorRef, max_count,
min_count, metadata
(e.g. Molpro CCSD,
filename), key-name
(SSH key)

:Instantiation Information

server, OS-
DCF:diskConfig,
id, links (self,
bookmark),
adminPass

startVM(...)

create VM
CACTOS VM
resource sizes,
VM Image
(URI),
instantiation
parameters
(key-value
pairs from
nova call,
tenant ID)

create parameterized
unassigned VM

commit

infer Behaviour(VM)

commit

suggest Placement

place(VM)

:ComputeNode

execute(OptimisationPlan)

start VM

REST start VM

PUSH [...]/servers

:Instantiation Information

Virtualisation
Middleware started
VM on optimal node

infer Behaviour

write Behaviour

commit update VM
parameters

nova boot /
PUSH [...]/servers

:VMI OpenStack

27 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

b) STARTING WHITE-BOX APPLICATIONS

This section explains the starting of white-box applications. This includes the orchestration of several

components deployed on multiple virtual machines and wired with each other according to the

associated WhiteBoxApplicationTemplate (cf. Section II.3.c).

In order to support the feature of multi-VM application deployment, we exploit products and

artefacts produced by other projects: (i) The Cloudiator toolkit1 is an open-source cloud

orchestration tool developed as a key component in the PaaSage project (Domaschka, 2015). (ii) The

CAMEL language (Rossini, 2015) is a powerful and comprehensive modelling language to describe

the deployment of distributed applications over cloud infrastructures. (iii) The CAMEL adapter

(Jähnert & Liang, 2015) is a simple parser that reads CAMEL as input and outputs invocations to

Cloudiator.

As a general approach, whenever multi-VM applications shall be deployed, CACTOS creates a CAMEL

application model based on the WhiteBoxApplicationTemplate, passes this model to the CAMEL

adapter that applies the necessary invocations to Cloudiator. All of these steps have been integrated

in the CACTOS Runtime Management and are bundled with it.

Prepare Application

Prepare VM

Prepare VM

Bundle and Execute

Prepare VM

:Runtime
Management

:Runtime Model
Storage

:Infrastructure
Optimiser

:VMI Controller
OpenStack

:Online Analysis
:OpenStack

Virtualisation
Middleware

forward to CACTOS

CACTOS Application
Template reference,
metadata (e.g. tenant
id and key-name for
SSH key)

:Instantiation Information

startApplication(...)

CACTOS
Application
Template
reference,
metadata (e.g.
tenant id and
key-name for
SSH key)

Virtualisation
Middleware started
Application instance

:VMI OpenStack

create Application

Start and wire VMs

Add ConnectVmActions

:Auto Scaler
Integration

Runtime

enable Auto Scaling register(ApplicationInstance)

:VM
:VM

:VM

Figure 21: Exemplary sequence for processing incoming Application requests

Figure 21 illustrates the processing of a request for an incoming White-Box application consisting of

several interconnected VMs. Again, VMI OpenStack and VMI Controller OpenStack are the platform-

specific parts with CACTOS (and above tool chain) in between. This provides a coherent view and

entry point to users of the data centre. An incoming service request to start an application is

resolved to retrieve the CACTOS model elements and forwarded to the Runtime Management.

Here, the CAMEL model is loaded, the adapter and Cloudiator get invoked which eventually trigger

the deployment of individual virtual machines as shown in Figure 20. Cloudiator also takes care of

1 https://github.com/cloudiator/

28 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

the actual wiring of application components. Once this step has been completed, the respective

models are generated in the model repository.

After this step, for those applications that support it, auto scaling is enabled for the application

instance. The application instance is registered at the Auto Scaler Integration Runtime (cf.

Section II.5.b). This component is responsible to ensure the optimal amount of VMs serving each

load balancer given the intervals and settings in White-Box application descriptions. The detailed

process is not depicted to reduce complexity. The application is now ready and the control flow

returns to the initial request.

Stopping applications requests are handled similarly.

c) RUNTIME MANAGEMENT

Figure 22: Runtime Management Interface

Figure 22 shows the interface of Runtime Management. It allows starting and stopping VMs and

applications. The information is passed via the models. The method parameters only contain the

compact serializable identifiers and critical information.

5. EXTENSIBLE SERVICES INFRASTRUCTURE
The consortium identified the following requirements for Optimization, VM placement, and

Behaviour Inference algorithms:

 Lightweight extension

29 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

 3rd party extension support, e.g. for advanced or customized algorithms

 Hot (re-)deployable during data centre operation

 Identical packages and behaviour for both CACTOS toolkits

 Support polyglot programming for individual services

The technical infrastructure behind the solution is based on OSGi services. The interfaces and a

typical interaction are described in the following for both algorithm types.

OPTIMISATION SERVICE

Figure 23: Optimisation Service Template

Figure 23 describes the template for optimisation services. Each service must be configurable and

implement the IOptimisationConfigurable interface. Each service must provide the

IOptimisationAlgorithm interface in order to run the algorithm on CACTOS infrastructure models. A

default implementation is provided by AbstractOptimisationService in order to ease the

development for new services.

eu.cactosfp7.cactoopt.optimisationservice [...].optimisationservice.registry

+ generateOptimisationPlan(...) : OptimisationPlan

IOptimisationAlgorithm

+ generateOptimisationPlan(...) : OptimisationPlan
+ updated(...)

- algorithm : IOptimisationAlgorithm
- configurable : IOptimisationConfigurable

AbstractOptimisationService

[...].optimisationservice.linkernighan

LinKernighanOptimisationAlgorithmService

optimisationName : String = “LinKernighan“
service.pid : (Configuration) = „catoopt_opt_linkenighan“

+ SELECTED_OPTIMISATION : IOptimisationAlgorithm

OptimisationSettings

+ updated(properties)

IOptimisationConfigurable

LinKernighanOptimisationAlgorithm

Configurable

+ generateOptimisationPlan(...) : OptimisationPlan

OptimisationServiceRegistry

cactoopt_optimisation
algorithm.cfg:
optimisationName=“...“

Set via OSGi at runtime

Entry point for requests

30 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 24: Optimisation Service Implementation Example

Figure 24 illustrates how a new service implementation uses the template. The example depicts the

LinKernighanOptimisation service pre-shipped with CACTOS. The

LinKernighanOptimisationAlgorithmService uses the default implementation and registers itself as

OSGi service with the optimisationName LinKernighan and the service.pid

cactoopt_opt_linkernighan. It reacts on its own configuration via the

LinKernighanOptimisationAlgorithmConfigurable class. The configuration options should be set in

the file [service.pid].cfg, e.g. cactoopt_opt_linkernighan.cfg. Felix file install technology ensures that

the settings are updated and taken into account.

Figure 25: Optimisation Service Registry

eu.cactosfp7.cactoopt.optimisationservice [...].optimisationservice.registry

+ generateOptimisationPlan(...) : OptimisationPlan

IOptimisationAlgorithm

+ generateOptimisationPlan(...) : OptimisationPlan
+ updated(...)

- algorithm : IOptimisationAlgorithm
- configurable : IOptimisationConfigurable

AbstractOptimisationService

[...].optimisationservice.linkernighan

LinKernighanOptimisationAlgorithmService

optimisationName : String = “LinKernighan“
service.pid : (Configuration) = „catoopt_opt_linkenighan“

+ SELECTED_OPTIMISATION : IOptimisationAlgorithm

OptimisationSettings

+ updated(properties)

IOptimisationConfigurable

LinKernighanOptimisationAlgorithm

Configurable

+ generateOptimisationPlan(...) : OptimisationPlan

OptimisationServiceRegistry

cactoopt_optimisation
algorithm.cfg:
optimisationName=“...“

Set via OSGi at runtime

Entry point for requests

eu.cactosfp7.cactoopt.optimisationservice [...].optimisationservice.registry

+ generateOptimisationPlan(...) : OptimisationPlan

IOptimisationAlgorithm

+ generateOptimisationPlan(...) : OptimisationPlan
+ updated(...)

- algorithm : IOptimisationAlgorithm
- configurable : IOptimisationConfigurable

AbstractOptimisationService

[...].optimisationservice.linkernighan

LinKernighanOptimisationAlgorithmService

optimisationName : String = “LinKernighan“
service.pid : (Configuration) = „catoopt_opt_linkenighan“

+ SELECTED_OPTIMISATION : IOptimisationAlgorithm

OptimisationSettings

+ updated(properties)

IOptimisationConfigurable

LinKernighanOptimisationAlgorithm

Configurable

+ generateOptimisationPlan(...) : OptimisationPlan

OptimisationServiceRegistry

cactoopt_optimisation
algorithm.cfg:
optimisationName=“...“

Set via OSGi at runtime

Entry point for requests

31 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 25 shows how the single entry point for requesting an optimisation within a data centre. This

point is represented as singleton by the OptimisationServiceRegistry. It provides the

IOptimisationAlgorithm interface in order to allow seamless execution of the selected algorithm –

transparent to the caller. The algorithm can be selected via settings in the file algorithm.cfg. The

optimisationName must match the one of an available algorithm. This algorithm is stored internally

in the OptimisationSettings.

Figure 26: Example of Complexity for Optimisation Service

VM PLACEMENT SERVICE

Figure 27: Placement Service Architecture

Placement is realized similarly to the Optimisation Service. Figure 27 provides an all-in-one view on

the service template, a service example and the service registry. Because of the identical concept

and shown interfaces and methods in the figure detailed comments are left out due to brevity.

eu.cactosfp7.cactoopt.placementservice [...].placementservice.registry

+ determinePlacement(...) : String

IPlacementService

+ determinePlacement(...) : String
+ updated(...)

- placementAlgorithm : InitialPlacementAlgorithm
- configurable : IPlacementConfigurable

AbstractPlacementService

[...].placementservice.loadbalancing

LoadBalancingPlacementService

placementName : String = “loadBalancing“
service.pid : (Configuration) = „catoopt_placement_loadbalancing“

+ SELECTED_PLACEMENT : IPlacementService

OptimisationSettings

+ updated(properties)

IPlacementConfigurable

LoadBalancing

Configurable

Set via OSGi at runtime

+ determinePlacement(...) : String

PlacementServiceRegistry

Entry point for requests

+ generateOptimisationPlan(...) : OptimisationPlan

InitialPlacementAlgorithm

cactoopt_placement.cfg:
placementName=“...“

LoadBalancing

PlacementAlgorithm

32 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 28: Example of Complexity for Placement Service

BEHAVIOUR INFERENCE SERVICE

Figure 29: Behaviour Inference Service Architecture

Behaviour inference is realized similarly to the other two services. Figure 29 provides an all-in-one

view on the service template, a service example and the service registry. Because of the identical

concept and shown interfaces and methods in the figure detailed comments are left out due to

brevity. The only difference is that algorithms do not need an individual configuration but are

selected based on tags assigned to incoming VMs.

eu.cactosfp7.cactoopt.behaviourinference [...].behaviourinference.registry

+ inferBehaviour(...)

IBehaviourInferenceAlgorithm

[...].behaviourinference.molpro

MolproBehaviourInferrer

tags = „Molpro“

+ inferBehaviour(...)

BehaviourInferenceAlgorithmRegistry

Entry point for requests Set via OSGi at runtime
+ PROPERTY_VM_APPLICATION_TYPE_TAG =
„applicationType“

Constants

Property of instantiationProperties that provides hints on
the application type

Listens for IBehaviourInferenceAlgorithm OSGi services
with a property „tags“ providing a „ ,;“-separated list for
which tags they can infer behaviour

33 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 30: Example of Complexity of Behaviour Inference Service

b) AUTO SCALING

Auto Scaling ensures that the optimal amount of VMs is present for a scalable connection. Such a

connection is typically used for load balancers within White-Box applications.

Figure 31: Interface for Auto Scaler Integration implementations

The AutoScaler Integration Runtime and AutoScaler Integration Simulation are responsible to keep

track of all running application instances and issue calls to the AutoScaler for each scalable

connector and application instance according to their description. They have to implement to

IAutoScalerIntegration interface depicted in Figure 31.

34 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 32: Interface of the Auto Scaler

The Auto Scaler itself is responsible to determine the optimal number of connected VMs for an

individual scalable connection instance. The application instance, connector and load model with

request and response arrival rate measurements are used to suggest changes. An implementation of

the interface, see Figure 32, can use polyglot programming and distribute the processing internally.

There is only one implementation required (and shipped) as part of CactoOpt. This is used in both

toolkits.

35 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

III. PROVISIONING OF THE CACTOS TOOLKIT
Due to brevity, this document references other existing documents that provide provisioning instructions. You can

either start from the individual tools or the toolkits and artefacts.

Download the latest version of the CactoScale Guide from the bottom of the page

http://www.cactosfp7.eu/cactoscale/, CactoOpt Guide from the bottom of the page

http://www.cactosfp7.eu/cactoopt/, and CactoSim Guide from the bottom of the page

http://www.cactosfp7.eu/cactosim/.

The different artefacts listed in section II.1.a) are available at http://www.cactosfp7.eu/code/ including

documentation where required, e.g. the CactoSim Guide on how to provision the Prediction Package.

http://www.cactosfp7.eu/cactoscale/
http://www.cactosfp7.eu/cactoopt/
http://www.cactosfp7.eu/cactosim/
http://www.cactosfp7.eu/code/

36 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

IV. EXAMPLE USE CASE
The example use case presented in (D5.2.1 CACTOS Toolkit Version 1) is still valid for this iteration. Please refer

to the corresponding section in that document for further details and an explanation on how infrastructure

information is extracted, infrastructure models created, and optimisations triggered at runtime and how the

prediction complements this.

Application models for taking the prediction capabilities on a test drive without requiring the Runtime Toolkit in

your own data centre are available at:

 Black-Box Behaviour: https://svn.fzi.de/svn/cactos/code/sim/trunk/eu.cactosfp7.cactosim.demo.bba.2.0

 Grey-Box Behaviour: https://svn.fzi.de/svn/cactos/code/sim/trunk/eu.cactosfp7.cactosim.demo.gba.2.0

 White-Box Behaviour:

https://svn.fzi.de/svn/cactos/code/sim/trunk/eu.cactosfp7.cactosim.demo.wba.2.0

The White-Box application is oriented at the DataPlay application2 but does not contain the final resource

demands and the full control-flow. It is presented for demonstration purpose in the following.

Figure 33: DataPlay Modelling Reference

2 Available on https://github.com/playgenhub/DataPlay . Last retrieved: 22.03.2016.

https://github.com/playgenhub/DataPlay

37 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 34: DataPlay Resource Requirements (all have 20 GB storage and are based on Ubuntu 15.10 images

Figure 35: DataPlay Flavours in the model

The Flavours show the representation of resources in the virtualization infrastructure and in

CACTOS. The mapping is done via the flavourRefVMI, which is a Cloud-specific UUID.

Type Name #vCPU Memory

(GB)

Scaling per Application

(Min / Default / Max)

Load Balancer

Frontend

loadbalancer 2 2 1 1 1

Frontend frontend 2 1 1 1 3

Load Balancer

Master

loadbalancer 2 2 1 1 1

Master master 2 2 2 2 7

PgPool pgpool 2 4 1 1 1

Postgresql postgresql 2 2 2 2 5

Redis redis 1 1 1 1 1

Cassandra cassandra 4 8 1 1 1

+ name = „Small“
+ flavourRefVMI =
„XXXX-XXXX-XXXX-XXXX“
+ numberVirtualCores = 1
+ sizeRam = 1 GB
+ sizeStorage = 20 GB

FlavourSmall

:Flavour

+ name = „Medium“
+ flavourRefVMI =
„XXXX-XXXX-XXXX-YYYY“
+ numberVirtualCores = 2
+ sizeRam = 2 GB
+ sizeStorage = 20 GB

FlavourMedium

:Flavour

+ name = „Large“
+ flavourRefVMI =
„XXXX-XXXX-XXXX-ZZZZ“
+ numberVirtualCores = 4
+ sizeRam = 8 GB
+ sizeStorage = 20 GB

FlavourLarge

:Flavour

+ name = „Medium with larger Memory“
+ flavourRefVMI =
„XXXX-XXXX-XXXX-YYZZ“
+ numberVirtualCores = 2
+ sizeRam = 4 GB
+ sizeStorage = 20 GB

FlavourMediumLargeMemory

:Flavour

+ name = „Small but Powerful“
+ flavourRefVMI =
„XXXX-XXXX-XXXX-XXYY“
+ numberVirtualCores = 2
+ sizeRam = 1 GB
+ sizeStorage = 20 GB

FlavourSmallButPowerful

:Flavour

38 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 36: DataPlay Structural Architecture View

The structural architecture view specifies the VMs, their interfaces and connections used in the

control-flow when processing user requests. The response time of the operation of interfaces is

stored in the load model and supports auto scaling.

Figure 37: DataPlay Interfaces

The following sketches the structure of the White-Box Behaviour Models of DataPlay. The presented

models are based on DataPlay’s architecture and architecture but are still missing resource demand

estimations and a finer-grained control flow modelling. The purpose of White-Box Behaviour Models

is to simulate the demand and response times of individual user requests. The DataPlay interfaces

show the interfaces and the relevant operations for tracking request and response arrival rates. The

rates are stored in the load model and allow auto scaling. All have on default input and output

parameter by convention when modelled in CACTOS.

Figure 38: DataPlay Application Usage Scenario

The DataPlay application usage scenario is only required when running in the Prediction Toolkit. It

states the number of users and how they interact with user-facing services. This causes load across

the VMs and allows user experience metrics.

http
Load Balancer

Frontend
Frontend

http

cd DataPlay Application Template
Scalable
Round-Robin
60 Seconds

http
Load Balancer

Master
Master

http

Scalable
Round-Robin
60 Seconds

Cassandra Redis

generic genericsql

PgPoolPostgresql
sql

Scalable
Round-Robin
120 Seconds

User-facing service

FlavourMedium

FlavourLarge FlavourSmall

FlavourSmall
ButPowerful

Flavour
Medium
LargeMemory

+ get(REQUEST) : RESPONSE
+ put(REQUEST) : RESPONSE
+ push(REQUEST) : RESPONSE
+ delete(REQUEST) : RESPONSE

http

+ execute(REQUEST) : RESPONSE

sql

+ process(REQUEST) : RESPONSE

generic

ad User Type 01

set application call parameters

REQUEST.BYTESIZE=20

call application

Load Balancer Frontend.http.get

Open Workload
Constant
Exp(0.5) Users / Second

39 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

In the example, new users arrive with an inter-arrival time using an exponential distribution with

λ=0.5. This value could be calculated based on Historic Database and Load information for Requests

at Load Balancer Frontend. Within usage scenarios, application call parameters can be set. In this

case, the bytesize (causing load on the network) is set to 20 bytes. After that, the actual operation of

a user-facing interface is called, e.g. ‚get /status.html‘

Figure 39: DataPlay Behaviour Template

The behaviour template shows the resource demand when processing a user request. This can be

specified using parameters, e.g. ‚REQUEST.BYTESIZE * 2‘. Probability distributions available in the

Stochastic Expression language are supported.

set response parameters

RESPONSE.BYTESIZE=IntPMF...

ad Load Balancer Frontend

issue internal resource demand

(cpu, storage; parameterized)

call application

Frontend.http.get

ad Postgresql

issue internal resource demand

(cpu, storage; parameterized)

Bytes in MB

P
ro

b
a

b
ili

ty

40 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

Figure 40: DataPlay Behaviour Instance and Template Level

The instantiation of a behaviour template is depicted in Figure 40. This shows how instances and the

template differ. The difference is only important for the Prediction Toolkit, which needs to track the

individual instances settings during simulation.

Figure 41: DataPlay Sequence Example

ad Load Balancer Frontend

issue internal resource demand

(cpu, storage; parameterized)

Template

call application

Frontend.http.get

ad Postgresql

issue internal resource demand

(cpu, storage; parameterized)
set response parameters

RESPONSE.BYTESIZE=IntPMF...

ad LBFrontendA1:Load Balancer Frontend

issue internal resource demand

(cpu, storage; parameterized)

call application

FrontendA1I1:Frontend.http.get

Instance of
Template with 3
scaled Frontend
VMs, Round-Robin

call application

FrontendA1I1:Frontend.http.get

call application

FrontendA1I1:Frontend.http.get

ad Postgresql

issue internal resource demand

(cpu, storage; parameterized)
set response parameters

RESPONSE.BYTESIZE=IntPMF...

Instance

Template

:User Type 01
LBFrontendA1
:Load Balancer

Frontend

FrontendA1I1
:Frontend

LBMasterA1
:Load Balancer

Master

MasterA1I1
:Master

PgPoolA1
:PgPool

PostgresqlA1I1
:Postgresql

PostgresqlA1I2
:Postgresql

Application Instance 1 of Template

sql.execute
sql.execute

http.get

http.get

http.get
http.get

Direct delegation example. Multiple
calls per component are possible

Size: 20 Byte

Size:
IntPMF[...]
Byte

Size:
2*REQUEST.B
YTESIZE
Byte

Size:
70 Bytes

Two scaled
instances

MasterA1I2
:Master

41 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

The sequence example shows how one instance of the DataPlay template processes a single request

from a single user. The real or simulated application takes care about contention and parallel

execution but it is not shown for brevity. It’s shown how the network load and transferred bytes can

change along the control flow. This should give an impression of a typical processing flow.

42 | P a g e Accompanying document for D5.2.2 CACTOS Toolkit Version 2 C A C T O S

REFERENCES
Apache Hadoop. (2014, August 15). Retrieved August 29, 2014, from http://hadoop.apache.org/
Becker, M., Luckey, M., & Becker, S. (2013). Performance analysis of self-adaptive systems for requirements

validation at design-time. Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures (QoSA '13). Retrieved from dl.acm.org/citation.cfm?id=2465489

Becker, S., Koziolek, H., & Reussner, R. (2009). The Palladio component model for model-driven performance
prediction. Journal of Systems and Software, 82(1), 3-22.

CACTOS Consortium. (2014). D3.1 Prototype Optimization Model.
CACTOS Consortium. (2014). D4.1 Data Collection Framework.
CACTOS Consortium. (2014). D4.2 Preliminary offline trace analysis.
CACTOS Consortium. (2014). D5.1 Model Integration Method and Supporting Tooling.
CACTOS Consortium. (2014). D5.2.1 CACTOS Toolkit Version 1.
CACTOS Consortium. (2014). D5.3 Operational Small Scale Cloud Testbed Managed by the CACTOS Toolkit.
CACTOS Consortium. (2014). D5.3 Operational Small Scale Cloud Testbed Managed by the CACTOS Toolkit.
CACTOS Consortium. (2014). D6.1 CactoSim Simulation Framework Initial Prototype.
CACTOS Consortium. (2014). D7.2.1 Physical Testbed.
CACTOS Consortium. (2015). D5.4 Evaluation Methodology for the CACTOS Runtime and Prediction Toolkit.
CACTOS Consortium. (2016). D6.4 CactoSim Simulation Framework Final Prototype.
Domaschka, J. a. (2015). Product Executionware, Deliverable D5.1.2.
Flexiant. (2014, August 28). Flexiant Cloud Orchestrator Documentation - FDL Server. Retrieved August 28, 2014,

from http://docs.flexiant.com/display/DOCS/FDL+Server
Flexiant. (2014, August 28). Flexiant Cloud Orchestrator Documentation - Triggers. Retrieved August 28, 2014, from

http://docs.flexiant.com/display/DOCS/Triggers
Flexiant. (2014). Flexiant Developer Language System API Documentation. Retrieved August 28, 20014, from

http://docs.flexiant.com/display/DOCS/System+API
Godard, S. (2014, August 30). Sysstat. Retrieved September 12, 2014, from http://sebastien.godard.pagesperso-

orange.fr/
Jähnert, J., & Liang, Y. (2015). Initial Setup Report, Deliverable D5.1.
Rossini, A. a. (2015). CAMEL Documentation, Deliverable D2.1.3.
The Apache Software Foundation. (2014, June 21). Hadoop MapReduce Next Generation - Cluster Setup. Retrieved

August 29, 2014, from http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/ClusterSetup.html

