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Abstract. We describe a hybrid laser–microwave scheme to implement two-
qubit geometric phase gates in crystals of trapped ions. The proposed gates
can attain errors below the fault-tolerance threshold in the presence of thermal,
dephasing, laser-phase and microwave-intensity noise. Moreover, our proposal
is technically less demanding than previous schemes, since it does not require a
laser arrangement with interferometric stability. The laser beams are tuned close
to a single vibrational sideband to entangle the qubits, while strong microwave
drivings provide the geometric character to the gate, and thus protect the qubits
from these different sources of noise. A thorough analytic and numerical study
of the performance of these gates in realistic noisy regimes is presented.

1 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 083001
1367-2630/13/083001+38$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:andreas.lemmer@uni-ulm.de
http://www.njp.org/
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. Driven single-sideband geometric phase gates 3

2.1. Two-ion crystals as the hardware for quantum logic gates . . . . . . . . . . . . 3
2.2. Driven geometric phase gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Gate robustness against different sources of noise 14
3.1. Resilience to thermal noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. Resilience to dephasing noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3. Resilience to phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4. Partial resilience to intensity noise . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5. Doubly driven geometric phase gates . . . . . . . . . . . . . . . . . . . . . . . 21

4. Conclusions and outlook 27
Acknowledgments 28
Appendix A. Magnus expansion for the driven single-sideband Hamiltonian 28
Appendix B. Stochastic processes for the noise sources 31
References 37

1. Introduction

Quantum information processing (QIP) holds the promise of solving certain computational
tasks more efficiently than any classical device [1]. This prospect has stimulated an enormous
technological effort, whereby prototype quantum processors based on different technologies
have already been developed [2]. The promised supremacy of these processors relies on the vast
parallelism available at the quantum realm, which in turn rests on the quantum superposition
principle. Therefore, any quantum processor must be well isolated from environmental sources
of noise, since these tend to degrade quantum superpositions through the phenomenon of
decoherence. Additionally, to benefit from the large parallelism, quantum processors should
also allow for a very accurate manipulation of the information. Experimental imperfections in
such manipulation will also conspire to reduce the potential of QIP.

Hence, the design of QIP protocols that are robust to the most important sources of
environmental and experimental noise, is considered to be a task of primary importance. The
particular level of robustness required, which can be quantified by the maximal allowed error ε
per step of the routine, is determined by the possibility of implementing protocols of quantum
error correction that allow for fault-tolerant QIP [3]. The so-called fault-tolerance threshold
(FT), εFT, typically depends on the dominant source of noise, the particular error-correcting
scheme, technological limitations of the experimental platform and the particular purpose of
the routine (i.e. initialization, manipulating information or measurement). The manipulation
of the information is argued to hold the most stringent thresholds [4], and although some
error-correcting schemes with thresholds as high as εFT1 ∼ 10−2 exist, it is commonly agreed
that reducing errors below εFT2 ∼ 10−4 is a guiding principle for the development of quantum
processors. Since the information is usually stored in the so-called qubits (i.e. two-level
systems), these routines can be divided in prescribed sequences of one- and two-qubit gates
allowing for universal quantum computation [1]. Therefore, the quest is to reduce the error of
both types of gates below the FT in the presence of noise.
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Among the different existing platforms for QIP, small crystals of trapped atomic ions in
radio-frequency traps [5] are considered to be one of the most promising devices where these
demanding thresholds could be achieved in the future. In fact, one-qubit gates with errors
ε1q < εFT2 have already been demonstrated using trapped-ion hyperfine qubits subjected to
microwave radiation [6]. Additionally, two-qubit gates with errors as low as εFT2 < ε2q < εFT1

have also been demonstrated for trapped-ion optical qubits subjected to laser radiation [7]. Since
both qubits operate in a different frequency range (i.e. microwave/radio frequencies versus
optical) the reached accuracies have not been combined in a single device yet. Besides, it would
be desirable to lower the error of the two-qubit gates even further to achieve ε2q < εFT2 .

In this work, we describe theoretically a scheme capable of achieving the two
aforementioned goals. Our scheme is particularly designed for hyperfine trapped-ion qubits,
enjoying thus the advantages of using microwave radiation for one-qubit gates. In addition, we
introduce a scheme for a driven geometric phase gate acting on two qubits, which combines the
advantages of microwave and laser radiation. This hybrid laser–microwave scheme can attain
errors as low as ε2q < εFT2 in the presence of (i) thermal noise, (ii) dephasing noise, (iii) phase
noise in the lasers and (iv) intensity fluctuations of the microwave driving. In comparison to
our previous proposal [8], the protocol presented in this work allows us to increase the gate
speed by at least one order of magnitude as a result of working closer to particular resonances
of the laser-driven couplings. More importantly, such a near-resonance regime turns out to be
the parameter regime where the recent experimental demonstration [9] of the two-qubit gate [8]
has been performed2. Therefore, this work will be useful to provide a theoretical background for
the results presented in [9], where ε2q ≈ εFT1 was achieved. Our analytical and numerical results
show how the geometric character of these laser–microwave-driven gates underlies the gate
resilience to several sources of noise. Moreover, we optimize the laser–microwave parameters,
such that the errors can be reduced below the FT ε2q < εFT2 .

This paper is organized as follows. In section 2, we describe the mechanism for the
driven geometric phase gates by means of detailed analytical analysis supported by numerical
results. The relevant analytical calculations are presented in appendix A. In section 3, the
scheme is tested against several sources of noise (i.e. thermal, dephasing, phase and intensity
noise). Some of these noise sources can be modelled as a stochastic Hamiltonian term, whose
properties are described in appendix B. Finally, we present some conclusions and prospects in
section 4.

2. Driven single-sideband geometric phase gates

2.1. Two-ion crystals as the hardware for quantum logic gates

Let us start by describing the system under consideration: a two-ion (N = 2) crystal confined
in a linear Paul trap [10]. Under certain conditions [11], such radio-frequency traps provide
an effective quadratic confining potential, which is characterized by the so-called axial ωz, and
radial {ωx , ωy} trap frequencies. Moreover, when {ωx , ωy} � ωz, the ion equilibrium positions
arrange in a string along the trap z-axis. As customary in these cases, when the particles only

2 During the completion of this work, we became aware of the results of [9]. In this work, the authors have
also generalized the scheme described in [8] to the near-resonance regime where faster gates can be achieved.
Moreover, they have presented an experimental realization of these ideas, showing that two-qubit gates with errors
ε2,q ≈ 2.6 × 10−2 can be achieved using this hybrid laser–microwave scheme.
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perform small excursions around their equilibrium positions, their motion can be described
in terms of collective vibrational modes, whose quantized excitations lead to the well-known
phonons [12]. In the case of ions, the low temperatures provided by laser-cooling techniques
justify such a treatment [13], and the vibrations of the crystal are described by

Hp =

∑
α

N∑
n=1

ωα,na†
n,αan,α, (1)

where a†
n,α(an,α) are the creation (annihilation) phonon operators, ωα,n is the vibrational

frequency of the nth normal mode along the axis α = {x, y, z}, and we set h̄ = 1 throughout
this paper. According to equation (1), the vibrations along different axes are decoupled, which
allows us to focus our attention on the radial modes along the x-axis. However, we emphasize
that our proposal also holds for the other modes. To simplify notation, we write an,x → an,
ωn,x → ωn. Note that for a two-ion crystal there are two radial normal modes: the center-of-mass
(com) and the zigzag (zz) mode which we also shall denote modes ‘1’ and ‘2’, respectively.

In addition to the vibrational degrees of freedom, our two-ion crystal also has internal
(i.e. atomic) degrees of freedom. We consider ion species with a hyperfine structure, such that
we can select two levels from the ground-state manifold to form our qubit {|0i〉, |1i〉}. This
particular choice of qubit has two important properties: (i) spontaneous emission between the
qubit states is negligible (i.e. T1 times are much larger than experimental time scales), and
(ii) the typical qubit frequencies ω0/2π = (E1 − E0)/2π ∼1–10 GHz allow for microwave,
or radio-frequency, radiation to drive directly the qubit transition. To test our scheme with
experimental realistic parameters, we shall consider 25Mg+ in this work, although we remark
that our scheme also works for other ion species (see figure 1). We choose two hyperfine
states |0〉 ≡ |F = 3,M = 3〉 and |0〉 ≡ |F ′

= 2,M ′
= 2〉, where M and M ′ are the Zeeman sub-

levels of the F and F ′ levels of the electronic ground state manifold, which are separated by a
frequency ω0/2π ≈ 1.8 GHz.

By considering the standard Zeeman interaction between the atomic magnetic dipole and
an oscillating magnetic field from the microwave source, and using the standard rotating-wave
approximation in quantum optics [14], the qubit Hamiltonian can be written as follows:

Hq =

N∑
i=1

1

2
ω0σ

z
i +

1

2
(�dσ

+
i e−iωdt + H.c.), (2)

where we have introduced the qubit operators σ z
i = |1i〉〈1i | − |0i〉〈0i |, σ +

i = |1i〉〈0i | = (σ−

i )
†,

and the frequency (Rabi frequency) ωd(�d) of the microwave driving. Note that the rotating-
wave approximation requires ωd ≈ ω0, and |�d| � ω0, which still leaves the possibility of
achieving very strong drivings�d/2π ∼1–10 MHz, while benefiting from the intensity stability
of microwave sources. We also note that the large wavelengths of the microwave traveling
waves avoid any qubit–phonon coupling induced by the microwave, which would impose further
constraints on the strengths of the drivings. In this work, we exploit the possibility of obtaining
such strong microwave drivings to produce fast two-qubit geometric phase gates with robustness
to several sources of noise.

As done in previous two-qubit gate schemes [15–21], the main idea is to consider
an additional coupling between the qubits and the phonons, and use the latter to mediate
interactions between distant qubits in the ion trap. We follow [8], and consider laser-induced
qubit–phonon couplings [10], which have already been demonstrated in several laboratories.
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Figure 1. Ingredients for the driven geometric phase gate. For a generic ion
species with hyperfine structure, as determined by the quantum numbers n2LJ F ,
the qubit is chosen from the two hyperfine states F = I ±

1
2 of the ground-state

manifold n2S1/2. Additionally, a quantizing magnetic field splits the F-states into
Zeeman sub-levels, such that |0〉 ≡ |F = I + 1

2 ,M〉 and |1〉 ≡ |F ′
= I −

1
2 ,M ′

〉

define the hyperfine qubit. Two laser beams with Rabi frequencies�L1, �L2 drive
the first red-sideband transition of the qubit in a stimulated Raman configuration
|0〉 ⊗ |n〉 → |1〉 ⊗ |n − 1〉, where n is the number of phonons of a particular mode
of the two-ion crystal. Simultaneously, the qubit transition is driven directly by
a microwave �d.

Therefore, our work can be considered as an instance of a hybrid laser–microwave protocol. For
completeness, we remark that for specific qubit choices such qubit–phonon couplings can also
be achieved with microwave radiation. It has been shown that in the near field of microwave
sources, it is possible to obtain qubit–phonon couplings by producing either static [22, 23],
or oscillating magnetic-field gradients [24, 25]. The generality of the scheme presented in the
following subsection would allow us to use any of these approaches to achieve qubit–phonon
coupling and thus, also to implement the scheme in an all-microwave protocol. Note, however,
that we follow none of these approaches [22–25] and therefore, the microwave radiation does
not introduce any qubit–phonon coupling.

The qubit–phonon coupling is provided by a two-photon stimulated Raman transition via a
third auxiliary level. The transitions to the auxiliary excited state are driven by two far detuned
laser beams in a traveling-wave configuration, such that their detuning is much larger than the
excited-state decay rate (e.g. for 25Mg+ the linewidth of the excited state is 0/2π ≈ 41.4 MHz,
and thus a detuning of the order of 1/2π ≈ 10–100 GHz would suffice, see figure 1). In this
limit, the excited state can be adiabatically eliminated [26], and the qubit–phonon coupling
becomes

Hqp =

∑
i

1

2
�Lσ

+
i ei(kL·ri −ωLt) + H.c., (3)

where �L =�L1�
∗

L2
/21 is the two-photon laser Rabi frequency, and the two-photon

wavevector (frequency) kL = kL1 − kL2 (ωL = ωL1 −ωL2) are defined in terms of the
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corresponding parameters of the two laser beams3. By directing kL along the x-axis, and setting
the laser frequencies such that ωL ≈ ω0 −ωn, and the detunings δn = ωL − (ω0 −ωn), such that
δn � ωn and |�L| � ωn, a rotating-wave approximation leads to the so-called first red-sideband
excitation

Hqp =

∑
i,n

Finσ
+
i ane−iωLt + H.c. (4)

Here, we have defined the red-sideband coupling strengths

Fi1 = i
|�L|η1

2
√

2
, Fi2 = i(−1)i

|�L|η2

2
√

2
, (5)

where we have set the Raman-beam phase ϕL = 0, and used the Lamb–Dicke parameters ηn =

kL · ex/
√

2mωn � 1. We will refer to these couplings generically as forces, since Fin
√

2mωn

corresponds to a force applied on the harmonic oscillator representing the vibrational mode.
As explained below, equations (1), (2) and (4) form the driven single-sideband Hamiltonian

Hdss = Hp + Hq + Hqp (6)

which can be used to obtain the desired geometric phase gates for strong-enough microwave
drivings. At this point, it is worth commenting that strong qubit drivings have also been
realized experimentally in combination with a state-dependent force [27]. The driving in this
case endows the scheme with protection from dephasing noise, while the resilience to the
thermal motion of the ions is provided by the state-dependent force. However, this scheme
is prone to phase noise due to fluctuations in the laser-beam paths, or intensity fluctuations of
the qubit driving. In a different context, we should also mention that strong-driving-assisted
protocols for the generation of entanglement have also been considered theoretically for atoms
in cavities [28], where the driving may reduce errors due to thermal population of the cavity
modes [29].

2.2. Driven geometric phase gates

2.2.1. Introduction: geometric phase gates with a single sideband. In [8], we have analyzed
how the driven single-sideband Hamiltonian Hdss leads to an entangling gate capable of
producing two Bell states at particular instants of time:

|01〉 → |9−
〉 =

1
√

2
(|01〉 − i|10〉),

|10〉 → |9+
〉 =

1
√

2
(|01〉 + i|10〉),

(7)

in the far-detuned regime |Fin| � δn. In this limit, the weak qubit–phonon coupling (4) is
responsible for second-order processes where phonons are virtually created and annihilated.
This term alone leads to a flip-flop qubit–qubit interaction Hint ∝ J eff

i j σ
+
i σ

−

j + H.c. via virtual
phonon exchange, where the coupling strength is given by J eff

i j = −
∑

n FinF ∗

jn/δn with the
above introduced forces and detunings Fin and δn, respectively. At certain instants of time this

3 Note that some additional differential ac-Stark shifts also arise from the adiabatic elimination in equation (3),
but these can be carefully compensated in experiments.
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interaction can act as an entangling gate. However, we also showed there that the performance
of such a gate would be severely limited by thermal and dephasing noise. The main idea put
forward in [8] was to exploit a strong resonant microwave driving (2), fulfilling ωd = ω0 and
δn ��d ∈ R, as a continuous version [30, 31] of refocusing spin-echo sequences [32, 33],
to protect the two-qubit gate from these sources of noise. In this case, the virtual phonon
exchange leads to an Ising-type interaction Hint ∝ J̃ eff

i j σ
x
i σ

x
j + H.c., where we have introduced

σ x
i = σ +

i + σ−

i and J̃ eff
i j = J eff

i j /4. This qubit–qubit interaction can generate all of the four Bell
states:

|00〉 → |8−
〉 =

1
√

2
(|00〉 − i sgn( J̃ eff

12)|11〉),

|01〉 → |9−
〉 =

1
√

2
(|01〉 − i sgn( J̃ eff

12)|10〉),

|10〉 → |9+
〉 =

1
√

2
(|01〉 + i sgn( J̃ eff

12)|10〉),

|11〉 → |8+
〉 =

1
√

2
(|00〉 + i sgn( J̃ eff

12)|11〉).

(8)

Unfortunately, the explored far-detuned regime leads to gates that are more than one order of
magnitude slower than state-of-the-art implementations based on other schemes [34]. Therefore,
although both the simplicity of the gate and its resilience to different noise sources are
interesting advantages, its lower speed presents a considerable drawback.

In this work, we show how one can abandon the far-detuned regime, while still preserving
the nice properties of the driven single-sideband gate. Below, we show that by working in the
context of the geometric phase gates [17, 19, 35], our driven nearly resonant single-sideband
gate: (i) can attain speeds that are one order of magnitude faster than the far-detuned gate [8]
for comparable parameters. For the specific parameters considered in this paper (see table 1)
we can attain a gate speed of tg ∼ 63µs. Gate speeds in the range 10–100µs can be expected
for other parameters, or ion species; (ii) can minimize thermal and dephasing errors down to
εth, εd < 10−4, which improves by more than one order of magnitude the far-detuned gate [8];
(iii) can withstand fluctuations of the laser phase occurring on time scales longer than the 63µs,
such that εph < 10−4, which was outlined in [8], but not analyzed carefully; (iv) can also resist
relative fluctuation in the intensity of the microwave driving at the 10−4-level directly with errors
εI ∼ 10−3. Moreover, we show that by adding a secondary driving, the scheme can support
stronger intensity fluctuations, while providing smaller gate errors εI < 10−4.

2.2.2. Qualitative analysis: dressed-state interaction picture and rotating-wave approximation.
To understand the mechanism underlying the driven nearly resonant single-sideband gate,
let us make a small detour, and consider the so-called geometric phase gates by state-
dependent forces [17, 19, 35]. By combining the red-sideband (σ +

i an) term (4) with a blue
sideband (σ +

i a†
n) that has an opposite detuning but equal strength and adjusting the laser phases

appropriately [17], the qubit–phonon Hamiltonian becomes

Ĥ qp =

∑
i,n

Finσ
x
i an e−iδn t + H.c., (9)

where the ‘hat’ refers to the interaction picture with respect H0 = Hq + Hp, and we have switched
off the microwave driving�d = 0. This Hamiltonian (9) can be understood as a pushing force in
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a direction that depends on the qubit state in the x-basis σ x
i |±i〉x = ±|±i〉x . Since a single Pauli

matrix appears in the above equation, the time evolution under such a state-dependent pushing
force reduces to that of a forced quantum harmonic oscillator [36], which can be solved exactly
(see e.g. [37]). This leads to the following time-evolution operator:

Û (t)= e
∑

in

(
Fin
δn
(e−iδn t

−1)σ x
i an−H.c.

)
e+i

∑
i jn

FinF∗
jn

δn

(
t− sin(δn t)

δn

)
σ x

i σ
x
j . (10)

The first unitary corresponds to a displacement operator, which is well known in quantum
optics [14], with the peculiarity of being state dependent. In phase space, this term induces
periodic circular trajectories for the vibrational modes that depend on the collective spin state,
and thus leads to qubit–phonon entanglement. When tg = kn2π/δn, kn ∈ Z, the trajectories
close and the qubits and the phonons become disentangled, such that the evolution operator
becomes

Û (tg)= e−itg
∑

i j J MS
i j σ x

i σ
x
j , J MS

i j = −
∑

n

FinF ∗

jn

δn
. (11)

This unitary can be easily seen to provide the desired entangled states (8) when tg(2J eff
12 )= π/4.

Additionally, if the initial spin states are eigenstates of σ x
1 σ

x
2 , the gate gives the table

| + +〉x → | + +〉x ,

| + −〉x → ei π2 | + −〉x ,

| − +〉x → ei π2 | − +〉x ,

| −−〉x → | − −〉x

(12)

up to an irrelevant global phase. This corresponds to a two-qubit π/2-phase gate which, together
with single-qubit rotations, gives a universal set of gates for quantum computation. The fact that
the phase–space trajectory is closed at tg, allows for the interpretation of the π/2-phases as
geometric Berry phases determined by the area enclosed by the trajectory [35]. Let us remark
two properties of these gates: (i) they do not rely on any far-detuned condition |Fin| � δn, and
can be thus much faster and (ii) the geometric origin of the phase gate underlies its robustness
with respect to thermal motion of the ions (i.e. spin-phonon disentanglement occurs when the
trajectory closes regardless of the vibrational state).

After this small detour, it becomes easier to understand why a gate based only on a nearly
resonant single-sideband cannot lead to a geometric phase gate, and is thus very sensitive to
thermal noise. By rewriting the single sideband (4) in the interaction picture with respect to H0

for �d = 0, we obtain

Ĥ qp =

∑
i,n

1

2
Fin(σ

x
i + iσ y

i )an e−iδn t + H.c., (13)

where σ y
i = −iσ +

i + iσ−

i . Hence, it is clear that the red sideband yields a combination of two
state-dependent forces acting on orthogonal bases. This fact forbids an exact solution, such as
the one obtained for a single state-dependent force (10), and we inevitably lose the notion of
state-dependent trajectories that close independently of the vibrational state. Accordingly, the
qubit and phonons get more entangled as the far-detuned condition |Fin| � δn is abandoned,
and the gate fidelity drops severely for ions in thermal motion.
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If we now switch on a resonant microwave driving ωd = ω0, �d ∈ R, then the
Hamiltonian (13) changes into

H̃ qp =

∑
i,n

Fin

2
(σ x

i + iσ y
i cos(�dt)− iσ z

i sin(�dt))an e−iδn t + H.c. (14)

Here, the ‘tilde’ refers to the following ‘dressed-state’ interaction picture, namely H̃ qp =

Ũd(t)HqpŨ †
d (t), where

Ũd(t)= eit
∑

i
1
2�dσ

x
i eit

∑
i

1
2ω0σ

z
i eit

∑
n ωna†

nan . (15)

It is now possible to argue that the state-dependent σ y and σ z forces rotate very fast for
sufficiently strong drivings�d � δn, and can be thus neglected in a rotating-wave approximation
provided that |Fin| ��d. Under this constraint, the driven single-sideband Hamiltonian
becomes

H̃ qp ≈

∑
i,n

1

2
Finσ

x
i an e−iδn t + H.c. (16)

and thus a formal solution such as equation (10) becomes possible again, provided that we make
the substitution Fin →

1
2Fin.

According to this qualitative argument, a strongly driven single-sideband Hamiltonian can
also produce the desired geometric phase gate. Therefore, it seems possible to abandon the far-
detuned regime |Fin| � δn of our previous work [8], and obtain faster gates that are still robust
with respect to thermal noise. In the following sections, we will present a quantitative detailed
analysis to test the validity of this idea.

2.2.3. Quantitative analysis: Magnus expansion and numerical analysis. As discussed above,
the presence of different state-dependent forces in the Hamiltonian (13) avoids an exact solution
for the unitary time-evolution operator. However, since we are interested in the strong-driving
limit |Fin| ��d, we can use the so-called Magnus expansion (ME) [38], truncating it to the
desired order to obtain the leading contributions to the dynamics (see appendix A for details).
The time-evolution operator in the Schrödinger picture reads

Uapp(t)= Ũ †
d (t) e�(t), �(t)≈�1(t)+�2(t)+ O(ξ, χ) (17)

and ξ = (�Lηn)
2/�2

d, χ = (�Lηn)
2/�dδn are the small parameters in the ME. In this

expression, we have defined the anti-unitary operators containing the different state-dependent
displacements

�1(t)=

∑
i,n

Fin

2δn
(e−iδn t

− 1)σ x
i an +

∑
i,n

Fin

4(�d − δn)
(ei(�d−δn)t − 1)(−iσ y

i + σ z
i )an − H.c.

+
∑
i,n

Fin

4(�d + δn)
(e−i(�d+δn)t − 1)(iσ y

i + σ z
i )an − H.c. (18)

and the operators leading to the qubit–qubit interactions

�2(t)= i
∑
i, j,n

FinF ∗

jn

4δn
σ x

i σ
x
j

(
t −

sin δnt

δn

)

+it
∑
i,n

1�in

(
a†

nan −
1

2

)
σ x

i +
∑

i,n 6=m

( fnm(t)σ
x
i a†

man − H.c.), (19)
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Table 1. Values of trapped-ion setup for the numerical simulation.

ωz/2π (MHz) ωx/2π (MHz) δcom/2π (kHz) ηcom δzz/2π (kHz) ηzz �L/2π (kHz) �d/2π (MHz)

1 4 127 0.225 254 0.229 811 7.2

where we have introduced the coupling strengths

1�in = −
|Fin|

2

4

(
1

�d − δn
+

1

�d + δn

)
(20)

and the following time-dependent functions:

fnm(t)=
F jnF ∗

jm

8(δn − δm)

(
1

�d − δm
+

1

�d + δm

)
(e−i(δn−δm)t − 1). (21)

At this point, it is worth comparing the final expressions (18) and (19) to those
corresponding to a state-dependent force in equation (10). The first-order contribution, (18),
resembles the state-dependent displacement in (10), but we get in addition the contribution
of more state-dependent forces in different bases. From the first line of the second-order
contribution (19), we observe also a similarity with the qubit–qubit couplings in (10), but we get
additional residual qubit–phonon couplings in the second line of (19). We discuss below how all
these additional terms can be minimized, such that we are left with an effective time evolution
that is analogous to that of a state-dependent force.

Let us note that equations (18) and (19) correspond to the leading terms in the second-
order expansion of U (t), while the complete expression may be found in appendix A. Before
analyzing how the geometric phase gates arise from equations (18) and (19), let us check
numerically the validity of our derivation by comparing it to the time evolution under the
full-driven single-sideband Hamiltonian Hdss (6). To perform the numerics more efficiently, we
expressed Hdss in a picture where it becomes time independent, namely

H ′

dss =

∑
n

δna†
nan +

∑
i

�d

2
σ x

i +
∑
i,n

(Finσ
+
i an + H.c.), (22)

where H ′

dss = U ′(t)Hdss(U ′(t))†, and the unitary is

U ′(t)= eit
∑

n(ω0−ωL)a
†
nan eit

∑
i

1
2ω0σ

z
i . (23)

Accordingly, the time-evolution operator can be written as

Uexact(t)= (U ′(t))† e−iH ′

dsst . (24)

For the numerical simulations, we chose realistic parameters for ion-trap experiments, which
are summarized in table 1. The outcome of the simulations is shown in figure 2(a), which shows
a very good agreement between the ME and the exact time evolution for the qubit dynamics.
This supports the validity of our derivations, and allows us to carry on with the description of
the driven geometric phase gate.

The action of the first contribution �1(t) (18) to the time-evolution operator (17) can be
understood as follows: for each vibrational mode, three non-commuting state-dependent forces
aim at displacing the ions along circular paths in phase space, such that the specific direction
of each trajectory depends on the particular eigenstates |±x〉, |±y〉 and |0/1〉 of the operators
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Figure 2. Entangling σ x
1 σ

x
2 gate. The figure displays the exact dynamics

by numerical integration of the unitary evolution (24) (solid lines) with the
dynamics given by the approximated time-evolution operator (crosses). We
consider an initial state ρ0 = |10〉〈10| ⊗ ρth(n̄1, n̄2), where n̄1 ≈ n̄2 ≈ 0 are the
initial mean number of phonons for the cm and zz modes. Note that due to
the nearly resonant sideband, phonons are created during the gate, and we have
to set a high truncation nmax = 10 to the vibrational Hilbert spaces. In (a), we
represent the dynamics of local qubit operators 〈σ z

i 〉, which show the qubit flip
|10〉 → |01〉 after t = 126µs. In (b), we display the fidelity between the time-
evolved state and the Bell state |9+

〉 = (|01〉 + i|10〉)/
√

2. At t = 63µs, this
fidelity approaches unity. The agreement of both descriptions support the validity
of our analytical derivation.

σ x , σ y and σ z. For weak drivings, the combination of these forces will deform the circular
paths, and lead to phase-space trajectories that are not closed any longer (see figure 3(a)).
It is clear from the analytical expression (18) that by applying a sufficiently strong driving
�d � δn, |F jn|, the forces in the σ y/z-basis get suppressed, and, to a good approximation, we
are left with the desired single state-dependent force in the σ x -basis with a halved strength
Fin →

1
2Fin with respect to the standard Mølmer–Sørensen term (9). Accordingly, we should

recover the circular phase-space trajectories when the initial state of the qubits is an eigenstate
of the σ x

1 σ
x
2 operator. In figure 3(b), we analyze the strong-driving dynamics numerically, and

confirm the above prediction. Therefore, the qualitative description of the previous section is
put on a firmer ground by the use of the ME.

The ME also allows us to improve further the geometric character of the gate. By setting the
correct values to the detunings and intensities, it is possible to cancel exactly the qubit–phonon
entanglement introduced by all three state-dependent displacements in (18), and the residual
qubit–phonon entanglement introduced in the second term of the second line of equation (19).
In order to achieve this, we need to adjust the Hamiltonian parameters such that, at the gate time
tg, the following constraints are fulfilled:

tg = r
2π

δ1
, δ2 = kδ1, �d = pδ1, r, k, p ∈ Z,

r

k
∈ Z and |p|> |r | + |k|.

(25)

In other words, we need the detuning of the zz mode δ2 and the microwave Rabi frequency
�d to be an integer multiple of the com mode detuning δ1. Physically, the constraints can be
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Figure 3. Phase-space trajectories. Numerical analysis of the phase-space
trajectories under the full driven single-sideband Hamiltonian (6). (a)
Trajectories of the forced normal modes in the weak driving regime �d/2π =

200 kHz. In the left panel, the initial spin state is | + +〉 or | −−〉 while the
phonons initially are in a thermal state ρth(n̄1, n̄2)= ρth(n̄1)⊗ ρth(n̄2) with n̄2 ≈

n̄1 = 0.5, and according to the forces (5), only the com mode is driven in
phase space 〈x̃cm〉 = 1/

√
2〈a1 + a†

1〉, 〈 p̃cm〉 = i/
√

2〈a†
1 − a1〉. In the right panel,

the initial spin state is | + −〉 or | − +〉, such that only the zz mode develops a
driven trajectory in this case 〈x̃zz〉 = 1/

√
2〈a2 + a†

2〉, 〈 p̃zz〉 = i/
√

2〈a†
2 − a2〉. In

both cases, the trajectories are not closed. (b) Same as (a) but in the strong-
driving limit �d/2π = 5 MHz. As an effect of the strong driving, the trajectories
are closed, and the gate inherits a geometric character. In the numerics, we have
to set a truncation nmax = 15 to the vibrational Hilbert spaces.

understood in the following way. By fulfilling equation (25) the com mode performs r closed
loops in phase space during one gate cycle while the zz mode performs r/k loops in phase space.
Thus, in order to attain the geometric character of the gate r/k must be an integer for then the
phase-space trajectories of both normal modes close simultaneously at tg. The constraints on p,
however, lack a clear physical interpretation. They are motivated by the results of the ME.

For the above conditions, �1(tg)= 0 vanishes exactly. Moreover, we reduce considerably
the qubit–phonon entanglement due to the second-order term�2(tg)= −itg Hdss, where we have
introduced the Hamiltonian

Hdss =

∑
i, j

J dss
i j σ

x
i σ

x
j −

∑
i,n

1�in

(
a†

nan −
1

2

)
σ x

i (26)

and the following coupling strengths:

J dss
i j = −

∑
n

1

4δn
FinF

∗

jn. (27)

Note that a closer inspection of all the additional terms in the ME (see appendix A) shows that
they all cancel exactly under these constraints. Therefore, all the dynamics for the gate is exactly
described by Hamiltonian (26).

Finally, in the limit of very strong drivings �d � δn, the residual qubit–phonon coupling
is minimized as 1�in (20) decreases with increasing driving. Moreover, one can even cancel

New Journal of Physics 15 (2013) 083001 (http://www.njp.org/)

http://www.njp.org/


13

exactly the contribution of the second term in equation (26) by introducing a spin-echo pulse [8]
or, equivalently, a phase reversal [9] of the microwave driving at half the expected gate time.
As an additional benefit, this procedure guarantees the closure of phase-space trajectories in the
case of an imperfect detuning if the forces in the σ y/z bases can be neglected in a rotating-wave
approximation. This has been demonstrated in the recent experiment [9]. Therefore, the full
time evolution can be written approximately as

Uapp(tg)= Ũ †
d (tg)e

−iHdsstg, Hdss =

∑
i, j

J dss
i j σ

x
i σ

x
j . (28)

From this expression, we can extract the gate time to be (2J dss
12 )tg = π/4, which will give rise

to the entangling table (8), or to the phase-gate table (12), depending on the chosen basis for
the initial states. In figure 2(b), we check the validity of this description by computing the
fidelity of generating the Bell state |9+

〉 at the expected gate time, starting from the initial qubit
state |10〉. As seen from the figure, the agreement between the full ME and the exact dynamics
is very good, and we obtain the desired entangled state at tg with very high fidelities. It can also
be observed in the figure that the fidelity exhibits oscillations. These can be understood from
equation (10) which we realize to a good approximation with our choice of the driving strength.
The state |10〉 couples to the state-dependent forces on both modes and each of the modes is
displaced in phase space. In this process entanglement between the internal and motional states
is created and the fidelity of producing the Bell state drops. Whenever a trajectory is closed
the entanglement between qubit and motional states vanishes and the fidelity exhibits a local
maximum. The oscillations observed in the fidelity can then be understood as the beatnote of
the two state-dependent forces, each acting on a different mode.

Note that we have not made any assumption on the ratio between the sideband strengths
and the laser detunings |Fin|/δn, and thus we do not require to work in the far-detuned regime
|Fin|/δn � 1 of our previous proposal [8]. According to the expression of the gate coupling
strengths J dss

i j , this means that we can increase the gate speed considerably by working closer to
the resonance (i.e. tg ≈ 63µs). The conditions (25) also imply that the phase-space trajectories
of the vibrational modes are closed, providing a geometric character to the two-qubit gate, and
its resilience to the thermal noise.

In the following sections, we will analyze the speed and noise robustness of this driven
nearly resonant single-sideband gate. However, let us first address how the constraints (25) can
be met in practice. The detunings for the com and the zz modes are given by

δ1 = ωL − (ω0 −ω1), δ2 = ωL − (ω0 −ω2). (29)

By setting δ1 = cω1, such that c is a constant, and demanding that δ2 = kδ1 with k ∈ Z, we obtain

c =
ξ − 1

k − 1
, (30)

where ξ = ω2/ω1 < 1 is the ratio of the normal-mode frequencies. To make the gate as fast
as possible tg = 2π/(|c|ω1), the modulus of c should be as big as possible, and we thus
choose k = 2, so that |c| = 1 − ξ . According to these considerations, the gate time in units
of the trap frequency is tgωx = 2π/(1 − ξ), which is minimized by minimizing ξ (i.e. large
difference of the com and the zz modes). This occurs when approaching the linear-to-zigzag
instability.
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Finally, the laser intensities in J dss
12 have to be adjusted such that we can fulfill the following

condition:

tg =
π

8J dss
12

= r
2π

δ1
, (31)

where r ∈ Z is an integer that determines how many loops in phase space the com mode
performs. On the one hand, r should be as small as possible to maximize the gate speed.
On the other hand, it turns out that the smaller r is, the more fragile the gate becomes with
respect to dephasing noise (see sections below). Therefore, we optimize the value of r to find a
compromise between gate speed and gate fidelity.

Inserting expression (27) in the above equation, we obtain

|�L| =
|δ1|

η1

√
r
2

(
1 −

1
2ξ

) (32)

which fixes the laser intensities. Finally, we note that the microwave driving strength can be
modified in the experiment

�d = pδ1 (33)

with p ∈ Z being a very large integer to meet the strong-driving condition �d � δn. With these
expressions, the parameters of the setup are fixed in terms of two integers (r, p). In the following
section, we optimize the choice of these integers to maximize simultaneously the gate fidelity
and speed. We explore how such fidelities approach the FT in the presence of different sources
of noise as the microwave driving strength is increased.

3. Gate robustness against different sources of noise

In this section, we provide a detailed study of the behavior of the gate in the presence of noise.
We will analyze four different sources of noise. (i) Thermal noise, which is caused by the
thermal motion of the ions (i.e. we do not assume perfect ground-state cooling of the radial
modes). (ii) Dephasing noise, which is caused by fluctuating Zeeman shifts due to non-shielded
magnetic fields, or by fluctuating ac-Stark shifts due to non-compensated energy shifts caused
by fluctuating laser intensities. (iii) Phase noise, which is caused by fluctuations in the phases
of the laser beams. (iv) Intensity noise, which is caused by fluctuations in the microwave driving
strength. We will show that the driven single-sideband gate is intrinsically robust to noise of the
type (i)–(iii), whereas it will suffer from (iv) at very strong drivings. We propose to incorporate
an additional weaker driving to make the gate also robust with respect to intensity fluctuations.
To show all these properties, we integrate numerically the dynamics (24) given by the full
Hamiltonian (22) subjected to the additional noise sources. In the simulations, the parameter
r in (31) and (32) is set to r = 8, since we have found that it gives the best compromise between
fidelity and speed.

3.1. Resilience to thermal noise

One of the primary sources of gate infidelities in early trapped-ion proposals [15] was the noise
introduced by residual thermal motion of the ions after a stage of resolved sideband cooling.
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In order to consider such thermal noise, we consider an initial state ρ0 = |10〉〈10| ⊗ ρth(n̄1, n̄2)

for a thermal phonon state ρth(n̄1, n̄2)= ρth(n̄1)⊗ ρth(n̄2) characterized by the mean phonon
numbers {n̄1, n̄2} for each mode. Note that due to the small difference in frequency of the normal
modes in x-direction we have n̄1 ≈ n̄2. According to the table (8), the target state after the gate
is ρ(tg)= |9+

〉〈9+
| ⊗ ρth(n̄1, n̄2), where |9+

〉 = (|01〉 + i|10〉)/
√

2.
Based on the ME evolution operator (17), it is possible to derive a closed expression for

the gate fidelity

F|9+〉 = Tr{|9+
〉〈9+

| ⊗ 1phUM(tg)ρ0U †
M(tg)} (34)

in the strong-driving limit �d � δn (i.e. neglecting all terms that are suppressed with 1/�d).
After some algebra, the fidelity can be expressed as a sum of expectation values of the
displacement operator

〈D(αn)〉 = Trph{e
αna†

n−α∗
n anρth(n̄n)} = e

−|αn |
2
(

n̄n+
1
2

)
. (35)

Provided that the gate time fulfills tg�d = 4πp where p ∈ Z, the fidelity of the entangling
operation reads as follows:

F|9+〉 =
1

4
+

1

2
e−

∑
n κn(1−cos(δn tg)) +

1

8

∑
n

e−4κn(1−cos(δn tg)), (36)

where κn =
|F1n |

2

δ2
n
(2n̄n + 1). From this expression, it becomes clear that the fidelity would

decrease exponentially with the mean number of thermal phonons, unless the phase-space
trajectories are closed δntg = 2π . Under such condition, the gate fidelity is maximized
F|9+〉(tg = 2π/δn)= 1 in the limit of�d → ∞. This expression not only unveils the importance
of the geometric character of the gate, but will also be useful in understanding the effect of other
sources of noise.

In order to check how the fidelity approaches unity as the microwave driving �d is
increased, we study numerically the exact time evolution (24). To avoid timing errors due to
the fast oscillations induced by the strong microwave driving, we add the above-mentioned
refocusing spin-echo pulse at half the expected gate time, such that the total time evolution
is Ufull(tg, 0)= Uexact(tg,

tg
2 )(σ

z
1σ

z
2 )Uexact(

tg
2 , 0). We then compute numerically the fidelity of

producing the desired Bell state

F|9+〉 = Tr{|9+
〉〈9+

| ⊗ 1phUfull(tg, 0)ρ0U †
full(tg, 0)}. (37)

In order to integrate the full Hamiltonian numerically, we truncate each vibrational Hilbert space
to a maximum number of phonons of nmax = 25 per mode, which is sufficiently high so that no
appreciable error is introduced.

In figure 4, we represent the numerical results for the gate error ε = 1 − F for various
microwave driving strengths. By setting r = 8 in equation (31), we obtain a gate time of
tg ≈ 63µs, which improves the gate speed of our previous work [8] by one order of magnitude.
Besides, the results shown in figure 4, show that the gate errors surpass the FT εFT2 ∼ 10−4

for sufficiently strong drivings. This figure illustrates clearly the benefit of this nearly resonant
single-sideband gate in comparison to our previous scheme [8], since the gate error even for the
largest thermal phonon numbers n̄1 = 1 is reduced by several orders of magnitude.
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Figure 4. Thermal noise. Error ε = 1 − F of producing the Bell state |9+
〉

from the initial state |10〉 at the expected gate time tg as a function of the
applied microwave driving field �d. Note that each point of the figure fulfills
the condition �d = pδ1 for an integer p. The thermal phonon population of the
initial state n̄1 is increased from 0 to 1. Gate errors well-below the FT can be
achieved ε2q < εFT2 .

3.2. Resilience to dephasing noise

Another source of gate infidelities for several trapped-ion qubits is the noise caused by
fluctuating magnetic fields, or laser intensities, which lead to a shift in the resonance frequency
of the qubit through either the Zeeman shift, or an uncompensated ac-Stark shift (see
appendix B). On the time scales considered, these fluctuations can be modeled as

Hfluc(t)=

∑
i

1

2
1ω0(t)σ

z
i , (38)

where 1ω0(t) is a specific Markov process known as an Ornstein–Uhlenbeck (O–U) process,
and we have assumed that the fluctuating source acts globally on the two ions (e.g. global
fluctuating magnetic field).

The O–U process, which is defined by a relaxation time τ and a diffusion constant c [39],
is characterized by the following identities:

1ω0(t)= 0, 1ω0(t)1ω0(t − s)=
cτ

2
e−

s
τ , (39)

where the ‘bar’ refers to the stochastic average, and we assume a Markovian limit where the
time scales of interest greatly exceed the correlation time. The time evolution of the density
matrix in the so-called Born–Markov approximation

ρ̇ = −

∫
∞

0
ds[Hfluc(t), [Hfluc(t − s), ρ(t)]] (40)

can be expressed in the following Lindblad form:

ρ̇ = Ld(ρ)= 0d

(
SzρSz −

1

2
S2

z ρ−
1

2
ρS2

z

)
, 0d =

cτ 2

4
, (41)
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where we have introduced the collective operator Sα =
∑

i σ
α
i for α = z. By means of the

adjoint master equation [40], one finds that σ x
i (t)= eL †

d tσ x
i (0)= σ x

i (0)e
−tcτ 2/2, which allows

us to define the decoherence time as T2 = 2/cτ 2. This expression, together with the condition
of short noise correlation times, fulfilled by setting τ = 0.1T2, allows us to set the noise-model
parameters for the study of a variety of decoherence times T2 ∈ [15, 40]µs. We note that these
values are overly pessimist, and would only occur for a poor shielding of the magnetic fields, or
a bad stabilization of the lasers.

As we show below, even for these poor decoherence times, the strong microwave driving
suppresses the noise, and reestablishes a good coherent behavior. The qualitative argument is
again to move to the dressed-state interaction picture (15), where H̃ fluc(t)= Ũd(t)Hfluc(t)Ũ

†
d (t)

becomes

H̃ fluc(t)=

∑
i

1

2
1ω0(t)

(
cos(�dt)σ z

i + sin(�dt)σ y
i

)
. (42)

For a sufficiently strong driving, the noisy terms rotate very fast, and we can neglect them in a
rotating-wave approximation.

In order to put this argument on a firmer footing, let us use again the Born–Markov
approximation (40). We obtain a Lindlad-type master equation ˙̃ρ = L̃d(ρ̃), where the new
dephasing super-operator is

L̃d(ρ̃)= −i

[
1�d

2
Sx , ρ̃

]
+
0̃d

2

∑
α=z,y

(
Sαρ̃Sα −

1

2
S2
αρ̃−

1

2
ρ̃S2

α

)
(43)

and we have assumed that �dT2 � 1. Here, we have defined a dressed-state energy shift and a
renormalized dephasing rate:

1�d =
�dτ

4T2(1 + (�dτ)2)
, 0̃d =

0d

(1 + (�dτ)2)
. (44)

The adjoint master equation associated with such Liouvillian (43) yields the coherences decay
σ x

i (t)= σ x
i (0)e

−20̃dt . Accordingly, we obtain a renormalized decoherence time

T̃2 = T2(1 + (�dτ)
2) (45)

which increases quadratically with the driving strength [41].
We now address qualitatively the noise effects on the fidelity of the entangling operation in

the strong-driving limit. Note that both |10〉 and |9+
〉 lie in the ‘zero-magnetization’ subspace,

which can be easily checked to be a decoherence-free subspace of the original dephasing (38).
Therefore, the effects of the dephasing noise must be tested for another Bell state, such as
|8−

〉 = (|00〉 − i |11〉)/
√

2, which is generated from |00〉 (see equation (8)). We identify two
possible effects. (i) On the one hand, the qubit coherences are degraded on a timescale given
by T̃2 = T2(1 + (�dτ)

2). (ii) On the other hand, the state-dependent forces for the leading term
in (17) are damped according to Fin → Fine−t/T̃2 (i.e. recall σ x

i (t)= σ x
i (0)e

−20̃dt ). This avoids
the perfect closure of the phase-space trajectories, and thus decreases the gate fidelity.

To validate these predictions, we integrate the full Hamiltonian (22) incorporating the noise
term (38) and once again a refocusing spin-echo pulse at half the gate time. In appendix B, we
describe in detail the conditions under which the stochastic noise process can be numerically
propagated in time, and incorporated into the full time evolution. In figure 5, we show the
numerical results for the gate error as a function of the microwave driving strength, where we
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Figure 5. Dephasing noise. Error in the generation of the Bell state |8−
〉

from the initial state |00〉 ⊗ |n̄1, n̄2〉 with n̄n = 0, for a time evolution including
the dephasing noise (38). The results shown include a statistical average over
Nn = 103 realizations of the noise process per point. We set a truncation of the
vibrational Hilbert spaces to hold a maximum of nmax = 7 phonons per mode.
The error is shown as a function of the applied microwave driving strength, and
for different values of T2 ∈ [15µs, 40µs]. Gate errors ε2q below the FT can be
achieved ε2q < εFT2 .

have set n̄1 = n̄2 = 0 to distinguish clearly between the effects of thermal and dephasing noise.
This figure shows neatly how the dephasing error is considerably suppressed by increasing the
driving strength. Errors well below the FT can be achieved again for sufficiently strong drivings.
Additionally, this figure also shows the advantage of the near-resonant gates with respect to the
far-detuned ones [8], since the error is reduced by several orders of magnitude.

3.3. Resilience to phase noise

Another possible source of noise for trapped-ion gates are fluctuations in the laser phases at
the position of the ions. Such fluctuations become especially dangerous for the geometric phase
gates based on two non-copropagating Raman laser beams, which are more sensitive to laser
path fluctuations. This noise can be modeled by substituting the sideband couplings Fin →

Fin ei1ϕ(t), where 1ϕ(t) is again a stochastic variable. Therefore, the full Hamiltonian (22)
becomes

H ′

dss =

∑
n

δna†
nan +

∑
i

�d

2
σ x

i +
∑
i,n

(Fin ei1ϕ(t)σ +
i an + H.c.). (46)

However, in this case we model the noise as another normal stochastic process, namely a
Wiener process1ϕ ∈ [0, 2π ]. This stochastic process is fully characterized by a single diffusion
constant c and its initial value

1ϕ(t)=1ϕ(0)= 0, 1ϕ(t)1ϕ(t)= ct. (47)
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Figure 6. Phase noise. Error in the generation of the Bell state |8−
〉 from the

initial state |00〉 ⊗ |n̄1, n̄2〉 with n̄n = 0, for a time evolution including slow
noisy drifts in the laser phases. The results shown include a statistical average
over Nn = 103 subsequent realizations of the gate in the presence of the noise
process (47), and we set a truncation of the vibrational Hilbert spaces to hold a
maximum of nmax = 7 phonons per mode. The error is shown as a function of
the applied microwave driving strength, and for different values of the variance
of the noise associated to the parameter ζp. Gate errors below the FT can be
achieved ε2q < εFT2 .

As phase fluctuations typically occur on a much longer time scale as compared to the typical gate
times [42], they contribute with slow phase drifts. Therefore, we simulated Nn = 103 subsequent
realizations of the gate where the phase drifts were modeled as a Wiener process with

c =
(ζpπ)

2

103tg
, ζp ∈ [0.01, 0.1], (48)

where the parameter ζp determines how large the phase drifts are. A more detailed discussion
of the process, and the motivation for the choice of the diffusion constant, can be found in
appendix B.

Let us note that our analytical study (17) predicts that the gate is insensitive to such
slow phase drifts. In this regime, we can set the phase to be constant 1ϕ(t)=1ϕ0 during
the gate interval. Accordingly, we can use the analytic expression in equations (18) and (19)
after substituting Fin → Fin ei1ϕ0 , where1ϕ0 ∈ [0, 2π ] is a time-independent random variable.
From these expressions, one can see that: (i) the geometric character of the gate, and thus its
robustness to thermal noise, is not altered by any constant value of 1ϕ0 (i.e. the fulfillment of
the constraints (25), such that �1(tg)= 0, is independent of 1ϕ0); (ii) the effective qubit–qubit
interactions (27), which determine the gate time, J dss

i j =
∑

n(Fin ei1ϕ0)(F jn ei1ϕ0)∗/4δn =∑
n FinF ∗

jn/4δn are independent of the phase value. Therefore, we conclude that for strong-
enough drivings and sufficiently slow phase drifts, the gate should be robust against phase noise.

In figure 6, we present our numerical results for the resilience of the gate to slow drifts
in the phases of the lasers. From these results, we can conclude that for moderate drivings,
and phases with drifts as big as 1ϕ ≈ 0.1π over 103 gate realizations, the gate errors still lie
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Figure 7. Intensity noise. Error in the generation of the Bell state |8−
〉 from

the initial state |00〉 ⊗ |n̄1, n̄2〉 with n̄n = 0, for a time evolution including the
noise in the intensity of the microwave driving. The results shown include a
statistical average over Nn = 103 realizations of the noise process per point,
and we set a truncation of the vibrational Hilbert spaces to hold a maximum
of nmax = 7 phonons per mode. The error is shown as a function of the applied
microwave driving strength, and for different values of the relative noise intensity
ζI ∈ {0.7, 1.0, 1.3} × 10−4. Gate errors below the FT can be achieved ε2q < εFT1

for driving strengths �d/2π ≈ 7 MHz.

well below the stringent FT ε2q < εFT2 . We thus confirm that the proposed gate is indeed robust
against a realistic phase noise, where the phase drifts for the time scales of interest are well
below 1ϕ ≈ 0.1π (see the discussion in appendix B).

3.4. Partial resilience to intensity noise

Let us now discuss the impact of possible fluctuations of the microwave intensity on the gate
fidelities. This noise is modeled by substituting the microwave Rabi frequency �d →�d(t)=

�d +1�d(t), where 1�d(t) is a stochastic process representing the microwave intensity
fluctuations. Hence, the full Hamiltonian (22) should be substituted for

H ′

dss =

∑
n

δna†
nan +

∑
i

�d(t)

2
σ x

i +
∑

in

(Fi,nσ
+
i an + H.c.). (49)

A reasonable choice for the intensity fluctuations is to consider an O–U process, and set its
mean and variance to

1�d(t)= 0, 1�d(t)1�d(t)=
cτ

2
= ζ 2

I �
2
d (50)

such that ζI fixes the relative intensity fluctuations, which we vary in the range ζI ≈ 10−4. In
addition, we assume that the correlation time of the intensity fluctuations is longer than the gate
time, and set it to τ = 1 ms.

In figure 7, we integrate numerically the Hamiltonian with a fluctuating microwave
intensity (49) and a refocusing spin-echo pulse at half the gate time. As seen in this figure, for
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intensity stabilization within the ζI ≈ 10−4 regime, and intermediate drivings �d/2π ∈ [5, 10]
MHz, the gate error is still well below the higher threshold εFT1 , and approaches the FT εFT2

for optimal drivings and the smallest noise ζI = 0.7 × 10−4. In any case, however, the full
advantage of the strong-driving limit shown in figures 4, 5 and 6, where ε2q < εFT2 is attained for
sufficiently strong microwave intensities, is lost due to the associated increase of the intensity
fluctuations. Hence, it would be desirable to modify the scheme such that it becomes more
robust to intensity fluctuations, while preserving its resilience to thermal, dephasing and phase
noise. This is accomplished in the following section.

Let us point out that the specific form of the curve in figure 7 depends on our choice of
parameters. Still, it also describes qualitatively the behavior of the gate under driving-intensity
noise for other parameters. Let us recall that the microwave driving suppresses the unwanted
contributions of the forces in the σ y and σ z bases, while we minimize the detrimental effect
of the spin-dependent force in σ x by closing the phase-space trajectories. Thus, we expect the
gate error to decrease with increasing driving. However, by increasing the driving strength,
the noise will eventually become some percentage of the effective qubit–qubit coupling J dss

12 .
Since the noise acts in the same basis as the gate, it will eventually start to deteriorate the gate
performance outweighing the benefits of the driving. Hence, we expect a minimum error at a
certain driving after which the error increases with stronger drivings. Now, if we make faster
gates, the qubit–qubit coupling J dss

12 is larger, and we expect the minimum error to appear for
a stronger driving. This behavior is confirmed by figure 11, where we carried out a numerical
simulation of a faster gate with equal noise parameters, and found that the error minimum is
shifted to larger driving strengths. The same considerations can be applied for slower gates,
where the minimum would arise at slower drivings.

3.5. Doubly driven geometric phase gates

Inspired by recent results for prolonging single-qubit coherence times by means of continuous
drivings [43], we present a modification of the driven single-sideband Hamiltonian (6), which
will allow us to obtain two-qubit gates that are also robust to intensity fluctuations of the
microwave driving. We complement the qubit Hamiltonian (2) with a secondary microwave
driving, such that Hq → Hq,2, where

Hq,2 =

N∑
i=1

1

2
ω0σ

z
i +

1

2
(�d(t)σ

+
i e−iωdt + �̃d(t)σ

+
i e−iω̃dt + H.c.) (51)

and the secondary driving is characterized by a fluctuating Rabi frequency �̃d(t)= �̃d +
1�̃d(t), and a frequency ω̃d, fulfilling ω̃d ≈ ω0, and �̃d � ω0, where we have assumed again
that �̃d ∈ R and 1�̃d(t) is an O–U process. This yields the doubly driven single-sideband
Hamiltonian

H2dss = Hq,2 + Hp + Hqp, (52)

where the phonon Hp and qubit–phonon Hqp terms correspond to equations (1) and (4) described
above.

We show below that this doubly driven model leads to a geometric phase gate with an
additional property: it is robust to intensity fluctuations of the first microwave driving 1�d(t),
while being sensitive to intensity fluctuations of the secondary driving 1�̃d(t). This already
tells us that the secondary driving should be much weaker �̃d ��d, such that the impact of its
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intensity fluctuations on the gate performance is considerably weaker. However, in order to find
a more detailed parameter regime for the high-fidelity gates, we need to explore equation (52)
analytically.

Based on the experience gained from the analytical study of the single-driving geometric
phase gates (see section 2.2), we move to the ‘dressed-state’ interaction picture with respect to
the first driving (15), which is again assumed to be on resonance with the qubit ωd = ω0, and
�d ∈ R. By focusing first on the qubit part of the Hamiltonian, which parallels the discussion
in [43], we obtain the following expression:

H̃ q =

∑
i

1�d(t)

2
σ x

i +
∑

i

(
�̃d(t)

4
(σ x

i + iσ y
i cos(�dt)− iσ z

i sin(�dt))e−iδ̃dt + H.c.

)
, (53)

where we have introduced the detuning of the secondary driving δ̃d = ω̃d −ω0. If this detuning is
set correctly, the secondary driving will decouple the qubit from the intensity fluctuations in the
first driving, just as the dephasing noise is minimized by the first driving (see equation (42) in
section 3.2). In particular, this is achieved for δ̃d =�d, such that a rotating-wave approximation
for �̃d � 4�d leads to

H̃ q =
1

2

∑
i

1�d(t)σ
x
i −

1

4

∑
i

(�̃d +1�̃d(t))σ
z
i . (54)

If we now move to the dressed-state interaction picture of the secondary driving, which we shall
call the double dressed-state interaction picture

˜̃U d(t)= e−it
∑

i
1
4 �̃dσ

z
i eit

∑
i

1
2�dσ

x
i eit

∑
i

1
2ω0σ

z
i eit

∑
n ωna†

nan (55)

the qubit Hamiltonian can be rewritten as

˜̃H q =
1

2

∑
i

1�d(t)

(
cos

(
1

2
�̃dt

)
σ x

i + sin

(
1

2
�̃dt

)
σ

y
i

)
−

1

4

∑
i

1�̃d(t)σ
z
i . (56)

In this picture, it becomes clear that the noisy terms due to the first driving become rapidly
rotating even for a weaker second driving provided that ζI�d � �̃d � 4�d. Hence, we can
neglect them in a rotating-wave approximation, such that the qubit is only sensitive to the

fluctuations of the second driving ˜̃H q ≈ −
1
4

∑
i 1�̃d(t)σ

z
i , which have a weaker effect.

So far, we have only treated the qubit part of the doubly driven single-sideband
Hamiltonian (52). The crucial point to address now is whether the two strong drivings can be
combined with the qubit–phonon couplings responsible for the entangling gate. This question
is by no means trivial, since the secondary driving acting in the σ z-basis (54) will make the
σ x state-dependent force (16) rotate very fast, and can thus inhibit the required qubit–phonon
couplings. To find the correct parameter regime, let us express the qubit–phonon Hamiltonian
in the double dressed-state interaction picture

˜̃H qp=

∑
i,n

Fin

2
(σ x

i fx(t)+ σ y
i fy(t)− iσ z

i fz(t))an e−iδ̃n t + H.c., (57)

where we have introduced the following time dependences:

fx(t)= cos( 1
2�̃dt)− i sin(1

2�̃dt) cos(�dt),

fy(t)= sin( 1
2�̃dt)+ i cos( 1

2�̃dt) cos(�dt), (58)

fz(t) = sin(�dt).

New Journal of Physics 15 (2013) 083001 (http://www.njp.org/)

http://www.njp.org/


23

We now study all the possibilities. (i) If the laser-induced detunings fulfill δ̃n � �̃d ��d, then
all the terms in (57) become rapidly rotating, and the qubit–phonon coupling is inhibited by
the double driving. (ii) If δ̃n ≈ �̃d/2 � �̃d, such that 1

2 |Fin| � �̃d ��d, then only the σ z force
can be neglected in a rotating-wave approximation. Unfortunately, the σ x and σ y forces then
contribute equally, and we would lose the geometric character of the entangling gate (i.e. it
will be very sensitive to thermal motion of the ions). (iii) Finally, if �̃d � δ̃n ≈�d, such that
1
2 |Fin| � �̃d, �d, then both σ x/y forces become rapidly rotating and can be neglected, but the
σ z force preserves its nearly resonant character. To achieve this condition, instead of setting the
laser frequency close to the bare sideband ωL ≈ ω0 −ωn (see section 2.1), we need to adjust it
close to the dressed sideband resonance

ωL ≈ ω0 +�d −ωn, δ̃n = ωL − (ω0 +�d −ωn). (59)

In this regime, we obtain a single state-dependent force

˜̃H qp≈ −

∑
i,n

Fin

4
σ z

i an e−iδ̃n t + H.c. (60)

which will lead to a geometric phase gate in a different basis. We also note that the condition
for the laser Rabi frequency is modified in this case to |�L| � 8(ωn − |�̃d/2|).

Let us now support the above discussion by integrating numerically the dynamics induced
by the doubly driven single-sideband Hamiltonian in equations (57) and (58), such that the
laser is now tuned to the regime (59). From the above discussion, we know that by applying
a sufficiently strong secondary driving �̃d � |Fin|, we are left with a single state-dependent
force in the σ z-basis with a halved strength 1

2Fin →
1
4Fin with respect to the previous σ x -

force (16). In this regime, we should recover circular phase-space trajectories when the initial
state of the qubits is an eigenstate of the σ z

1σ
z
2 operator. In figure 8, we analyze the strong-driving

dynamics numerically. For weak secondary drivings (figure 8(a)), we observe how the different
phase-space trajectories are not closed. Conversely, for strong secondary drivings (figure 8(b)),
we recover circular orbits that close exactly at the expected gate time. These numerical results
support the validity of our arguments leading to equation (60).

Starting from the state-dependent force in the σ z-basis (60), we can apply once more the
ME to get the following approximation to the time-evolution operator:

Uz(tg)≈
˜̃U †

d(t)e
−iHddsstg, Hddss =

∑
i, j

J ddss
i j σ z

i σ
z
j , (61)

where the coupling strengths now are given by

J ddss
i j = −

∑
n

1

16δ̃n

FinF
∗

jn. (62)

Note that, in order to obtain this time evolution, it is necessary to neglect all other contributions
coming from the ME. This is possible by considering the strong-driving limit 1

2 |Fin| � �̃d �

4�d, where additional conditions similar to the single-driving case (25) are also fulfilled

tg = r
2π

δ̃1

, δ̃2 = kδ̃1, �d = pδ̃1, �̃d = q δ̃1, r, k, p, q ∈ Z. (63)

These conditions allow us to close exactly the phase-space trajectories (figure 8(b)) or,
equivalently, to minimize the residual qubit–phonon couplings that would make the gate
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Figure 8. Doubly driven phase-space trajectories. Numerical analysis
of the phase-space trajectories under the doubly driven single-sideband
Hamiltonian (57). (a) Trajectories of the forced normal modes for a weak
secondary driving �̃d/2π = 10 kHz, and a strong primary driving �d/2π =

10 MHz. Both of the phonon modes are in the vacuum state. In the left panel,
the initial spin state is |11〉 or |00〉, and according to the forces (5), only the com
mode is driven in phase space 〈x̃cm〉 = 1/

√
2〈a1 + a†

1〉, 〈 p̃cm〉 = i/
√

2〈a†
1 − a1〉.

In the right panel, the initial spin state is |10〉 or |01〉, such that only the zz
mode develops a driven trajectory in this case 〈x̃zz〉 = 1/

√
2〈a2 + a†

2〉, 〈 p̃zz〉 =

i/
√

2〈a†
2 − a2〉. In both cases, the trajectories are not closed. (b) Same as (a) but

in the regime where the secondary driving is also strong �̃d/2π = 6 MHz. As
an effect of the strong driving, the trajectories are closed, and the gate inherits a
geometric character. In the numerics, we have set a truncation of nmax = 5 to the
vibrational Hilbert spaces.

sensitive to the thermal motion of the ions. We have found that these conditions can be met
by imposing

|�L| =
2|δ̃1|

η1

√
r
2

(
1 −

1
2ξ

) (64)

in analogy to our older choice (32) for the single-driving gates. We use the same values for the
detunings as in table 1 with δ1/2 → δ̃1/2, but now set the parameter r = 32 to optimize the gate
fidelities, at the price of diminishing the gate speed. Note that the unitary evolution (61) leads
to the following table for tg = π/(8J ddss

12 ) :

| + +〉 → |8̃−
〉 =

1
√

2
(| + +〉 − i sgn(J ddss

12 )| −−〉),

| + −〉 → |9̃−
〉 =

1
√

2
(| + −〉 − i sgn(J ddss

12 )| − +〉),

| − +〉 → |9̃+
〉 =

1
√

2
(| + −〉 + i sgn(J ddss

12 )| − +〉),

| −−〉 → |8̃+
〉 =

1
√

2
(| + +〉 + i sgn(J ddss

12 )| −−〉).

(65)
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Figure 9. Entangling doubly driven geometric phase gate. We display the
dynamics by numerical integration of the unitary evolution induced by (57). We
consider an initial state |ψ0〉 = | + −〉 ⊗ |n̄1, n̄2〉, where n̄1 = n̄2 = 0 are the initial
mean number of phonons for the cm and zz modes, and |±〉 = (|0〉 ± |1〉)/

√
2.

We have to set a truncation nmax = 5 to the vibrational Hilbert spaces. In (a), we
represent the dynamics of local qubit operators 〈σ x

i 〉, which show the qubit flip
| + −〉 → | − +〉 after t ≈ 500µs. In (b), we display the fidelity between the time-
evolved state and the Bell state |9̃−

〉 = (| + −〉 − i| − +〉)/
√

2. At t ≈ 250µs, this
fidelity approaches unity, which supports the validity of the doubly driven single-
sideband two-qubit gates.

In figure 9(b), we represent the fidelity for the unitary generation of the entangled state |9̃−
〉

from the initially unentangled state | + −〉. It becomes clear from this figure, that the fidelities
that can be achieved are again close to 100%.

However, the fast and small-amplitude oscillations in the fidelity set an upper limit to the
achieved fidelities, which is below the desired FTs. In order to improve the gate fidelities, we
introduce a simple spin-echo refocusing pulse, such that the complete time-evolution operator
is Ufull(tg, 0)= Uz,noise(tg,

tg
2 )(σ

y
1 σ

y
2 )Uz,noise(

tg
2 , 0). In this expression, we have also included the

intensity fluctuations of the first driving, such that Uz,noise(t2, t1) is the time-evolution operator
induced by the noisy Hamiltonian

Hz,noise =
1

2

∑
i

1�d(t)

(
cos

(
1

2
�̃dt

)
σ x

i + sin

(
1

2
�̃dt

)
σ

y
i

)

+
∑
i,n

Fin

2
(σ x

i fx(t)+ σ y
i fy(t)− iσ z

i fz(t))an e−iδ̃n t + H.c., (66)

where all the parameters have already been introduced above. Note that due to the refocusing
pulse, the target entangled state obtained from | + −〉 is no longer |9̃−

〉, but rather |9̃+
〉.

In figure 10, we represent the achieved error of this doubly driven geometric phase gate
for the generation of the entangled state |9̃+

〉 in the presence of noise on the first driving. We
note that with our choice of parameters for the simulation displayed in figure 10 we do not
fulfill |�̃d| � |�d| but the analytic calculation showed that it is enough to fulfill |�̃d| � 4|�d|

to obtain the doubly driven gate in the σ z basis. The second, more relaxed constraint is met
here.
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Figure 10. Intensity noise in the doubly driven geometric phase gate. Error
in the generation of the Bell state |9̃+

〉 from the initial state | + +〉 ⊗ |n̄1, n̄2〉

with n̄n = 0, for a time evolution including the noise in the intensity of the
first microwave driving of strength �d/2π = 10 MHz, and relative noise of ζI =

10−4. We consider a secondary driving with �̃d/2π = 6 MHz and no intensity
fluctuations. The results shown include a statistical average over Nn = 103

realizations of the noise process. We set a truncation of the vibrational Hilbert
spaces to hold a maximum of nmax = 5 phonons per mode. The obtained error
for the doubly driven gate is represented as a red star, which is well below the
second threshold ε2q < εFT2 . The older errors for the single microwave driving
(figure 7) are also included in the background for comparison.

This numerical result displays the superior performance of this new gate, and its resilience
to the intensity fluctuations of the first microwave driving allowing for ε2q < εFT2 . At this point,
it might be worth emphasizing the benefit of the secondary driving. Noting that the scheme
also works for clock states, one might ask whether the impact of the intensity fluctuations
of the microwave driving could be reduced by making faster gates. In fact, assuming a clock
state, we can increase the gate speed by decreasing the parameter r from equation (25) without
compromising the error due to the dephasing noise. In figure 11, the error for a gate with r = 2
in the presence of relative intensity noise ζI = 0.7 × 10−4 on the microwave driving is shown.
As can be seen in the figure, the error reaches ε2q ≈ 1 × 10−4, while the error achieved with the
secondary driving is lower ε2q ≈ 5 × 10−5.

We remark that intensity fluctuations of the secondary driving have not been considered.
Such fluctuations will eventually be the limiting factor for the gate fidelity. However, since the
secondary driving is weaker than the first one, their effect will be smaller. Moreover, due to the
excellent fidelity obtained, it may also be possible to reduce the second driving further, making
the gate more insensitive to its fluctuations. Another possibility would be to introduce a tertiary
microwave driving, which would be now detuned by the Rabi frequency of the secondary one
˜̃ωd −ω0 = �̃d. This driving would act as a decoupling mechanism from intensity fluctuations of
the second driving. We believe it should be possible to modify the sideband resonance (59), such
that we obtain a triply driven geometric phase gate in a different basis (possibly the σ y basis)
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Figure 11. Intensity noise for a faster gate. Error in the generation of the Bell
state |8−

〉 from the initial state |00〉 ⊗ |n̄1, n̄2〉 with n̄n = 0, for a time evolution
including the noise in the intensity of the microwave driving with a relative noise
of ζI = 0.7 × 10−4. We set the parameter r from equation (25) to r = 2 which
corresponds to a gate time tg ≈ 16µs. The results shown include a statistical
average over Nn = 103 realizations of the noise process, and we truncated the
vibrational Hilbert spaces at a maximum phonon number nmax = 7 phonons per
mode. The gate error is displayed as a function of the applied microwave driving
strength. Gate errors of ε2q ≈ 1 × 10−4 can be achieved.

that enjoys a further robustness against all these sources of noise. Such concatenated schemes
can be followed until the desired fidelities are achieved.

4. Conclusions and outlook

In this paper, we have demonstrated theoretically a two-qubit entangling gate for trapped ions,
which relies only on a single red-sideband excitation and a strong microwave driving tuned to
the carrier transition. By properly choosing the laser and microwave frequencies, we have shown
analytically that the controlled dynamics corresponds to a geometric phase gate in the σx basis,
which we have called the driven geometric phase gate. We have shown numerically that the gate
is able to overcome the imperfections associated with thermal, dephasing and phase noise, while
achieving gate speeds comparable to state-of-the-art implementations. In particular, we have
shown that such a driven geometric phase gate can attain errors well below the FT εFT2 ∼ 10−4

for sufficiently strong microwave drivings.
We have also analyzed numerically how this gate is still sensitive to intensity fluctuations of

the microwave driving, which might be the currently limiting factor to its accuracy. To overcome
this drawback, we have devised a new scheme with a weaker secondary microwave driving,
which makes the gate robust against fluctuations in the first driving intensity. We have showed
both analytically and numerically that, by setting the laser and microwave parameters in a certain
regime, the dynamics correspond to a geometric phase gate in the σz basis. In this case, the
limiting factor for the gate fidelity will be the fluctuations in the secondary microwave driving.
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Appendix A. Magnus expansion for the driven single-sideband Hamiltonian

The Magnus expansion (ME) allows us to write the time-evolution operator of a system with
a time-dependent Hamiltonian H(t) as U (t, t0)= e�(t,t0), where �(t, t0) is an anti-Hermitian
operator that can be written in a perturbative series �(t, t0)=

∑
∞

k=1�k(t, t0) [38]. In this
work, we are interested in the ME to second order, where the first- and second-order terms are
given by

�1(t, t0)= −i
∫ t

t0

dt1 H(t1), (A.1)

�2(t, t0)= −
1

2

∫ t

t0

dt1

∫ t1

t0

dt2[H(t1), H(t2)]. (A.2)

In section 2.2, we used the results for the second-order ME for the qubit–phonon
Hamiltonian (14), namely

H̃ qp=

∑
j,n

F jn

2
(σ x

j + iσ y
j cos(�dt)− iσ z

j sin(�dt))an e−iδn t + H.c., (A.3)

which is expressed in an interaction picture with respect to the microwave driving. In this
appendix, we present a detailed derivation of the ME and discuss its more relevant terms.

Let us start by considering the first-order contribution, which is calculated directly from
integrals of the qubit–phonon Hamiltonian, and leads to the following result:

�1(t, 0)=

∑
j,n

F jn

2

[
(e−iδn t

− 1)
1

δn
σ x

j an + (ei(�d−δn)t − 1)
1

2(�d − δn)
(−iσ y

j an + σ z
j an)

+ (e−i(�d+δn)t − 1)
1

2(�d + δn)
(iσ y

j an + σ z
j an)

]
− H.c. (A.4)

which coincides with equation (18) in the main text, and contains the different state-dependent
forces. The second-order term can be split into three different parts, namely

�2(t, 0)=�a
2(t, 0)+�b

2(t, 0)+�c
2(t, 0). (A.5)

The first part �a
2(t, 0) contains the terms that are linear in time, and can be interpreted as a

spin–spin Hamiltonian generated by the three non-commuting state-dependent forces

�a
2(t, 0)= −it

∑
j,k

(
1

4
J eff

jk σ
x
j σ

x
k +

1

2

∑
n

1� jnσ
x
j δ jk +

1

8
Meff

jk σ
y
j σ

z
k +

1

16
K eff

jk (σ
y
j σ

y
k + σ z

j σ
z
k )

)
,

(A.6)
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where δ jk is the Kronecker delta and the coupling constants J eff
jk , Meff

jk , K eff
jk and the driving

corrections 1� jn are given by

J eff
jk = −

∑
n

1

δn
Re{F jnF

∗

kn},

K eff
jk =

∑
n

(
1

�d − δn
−

1

�d + δn

)
Re{F jnF

∗

kn},

Meff
jk =

∑
n

(
1

�d − δn
+

1

�d + δn

)
Im{F jnF

∗

kn},

1� jn = −
1

4

(
1

�d − δn
+

1

�d + δn

)
|F jn|

2.

(A.7)

At this point, let us note that our specific configuration considers a propagation direction
of the laser beams fulfilling kL · r0

j = 0, such that the forces F jn are purely imaginary (see
equation (5)), and the couplings Meff

jk vanish exactly. Moreover, in the strong-driving limit
δn ��d, we find that K eff

jk ∝ F jnF ∗

kn/�
2
d, which can be neglected to order O(ξ), with ξ =

(�Lηn)
2/�2

d � 1, as was done in equation (19) of the main text. Altogether, we conclude that
the most important part is

�a
2(t)≈ −it

∑
j,k

(
1

4
J eff

jk σ
x
j σ

x
k +

1

2

∑
n

1� jnσ
x
j δ jk

)
. (A.8)

Let us now move to the second part�b
2(t, 0), which contains oscillatory couplings between

the internal qubit states

�b
2(t, 0)= i

∑
j

J eff
j j

4�d

(
sin(�dt)σ z

j + (1 − cos(�dt)) σ y
j

)
−

∑
j,k,n

[
F jnF ∗

kn

8

(
â1

jkn(e
−iδn t

− 1)

+â2
jkn(e

i(�d−δn)t − 1)+ â3
jkn(e

−i(�d+δn)t − 1)
)
− H.c.

]
, (A.9)

where we have introduced the two-body spin operators

â1
jkn = −

1

δ2
n

σ x
j σ

x
k +

1

2δn(�d + δn)
(+iσ x

j σ
y

k − σ x
j σ

z
k )+

1

2δn(�d − δn)
(−iσ x

j σ
y

k − σ x
j σ

z
k ),

â2
jkn =

1

2δn(�d − δn)
(+iσ y

j σ
x
k − σ z

j σ
x
k ), (A.10)

â3
jkn =

1

2δn(�d + δn)
(−iσ y

j σ
x
k + σ z

j σ
x
k ).

Let us now discuss which are the leading terms in the above expression (A.9). The first
sum of equation (A.9) only contributes perturbatively since J eff

jk � 8�d. From the remaining
contributions to (A.9), note that most of the terms in (A.10) scale with F jnF ∗

kn/�dδn, and can
be thus neglected to order O(χ), where χ = (�Lηn)

2/�dδn � 1, as was done in equation (19)
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of the main text. Finally, considering again that the forces are purely imaginary in our setup, we
obtain the following leading contribution:

�b
2(t, 0)≈ −i

∑
j,k

F jnF ∗

kn sin(δnt)

4δ2
n

σ x
j σ

x
k . (A.11)

The third and final part �c
2(t) contains the residual spin–phonon couplings, and reads as

follows:

�c
2(t)= it

∑
j,n

1� jnσ
x
j a†

nan+
∑
j,m 6=n

( f̂ nm
1 j (t)a

†
man−H.c.)+

∑
j,m,n

( f̂ nm
2 j (t)aman− f̂ nm

3 j (t)a
†
man−H.c.),

(A.12)

where 1� jn was introduced in (A.7), and we have introduced the following time-dependent
single-qubit operators:

f̂ nm
1 j (t)=

F jnF ∗

jm

8(δn − δm)

(
1

�d − δm
+

1

�d + δm

)
(e−i(δn−δm)t − 1)σ x

j (A.13)

together with

f̂ nm
2 j (t)= b1

jmn(e
−iδn t

− 1)+ b2
jmn(e

−i(δn+δm)t − 1)+ b3
jmn(e

i(�d−δn)t − 1)+ b4
jmn(e

−i(�d+δn)t − 1)

+b5
jmn(e

i(�d−δn−δm)t − 1)+ b6
jmn(e

−i(�d+δn+δm)t − 1) (A.14)

and, finally,

f̂ nm
3 j (t)= c1

jmn(e
−iδn t

− 1)+ c2
jmn(e

i(�d−δn)t − 1)+ c3
jmn(e

−i(�d+δn)t − 1)

+c4
jmn(e

i(�d+δm−δn)t − 1)+ c5
jmn(e

−i(�d+δn−δm)t − 1). (A.15)

In these last two expressions, for notational convenience, we have introduced the following list
of single-qubit operators:

b1
jmn =

F jnF ∗

jm

8δn(�d − δm)
(iσ y

j − σ z
j )+

F jnF ∗

jm

8δn(�d + δm)
(σ z

j + iσ y
j ),

b2
jmn = −

F jnF ∗

jm

8(δn + δm)

(
1

�d − δm
+

1

�d + δm

)
σ x

j ,

b3
jmn =

F jnF ∗

jm

8δm(�d − δn)
(σ z

j − iσ y
j ),

b4
jmn =

F jnF ∗

jm

8δm(�d + δn)
(−σ z

j − iσ y
j ), (A.16)

b5
jmn =

F jnF ∗

jm

8δm(�d − δn − δm)
(−σ z

j + iσ y
j ),

b6
jmn =

F jnF ∗

jm

8δm(�d + δn + δm)
(σ z

j + iσ y
j )
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and also

c1
jmn =

F jnF ∗

jm

8δn(�d + δm)
(iσ y

j − σ z
j )+

F jnF ∗

jm

8δn(�d − δm)
(iσ y

j + σ z
j ),

c2
jmn =

F jnF ∗

jm

8δm(�d + δn)
(−σ z

j + iσ y
j ),

c3
jmn =

F jnF ∗

jm

8δm(�d − δn)
(σ z

j + iσ y
j ), (A.17)

c4
jmn =

F jnF ∗

jm

8δm(�d + δm − δn)
(−σ z

j + iσ y
j ),

c5
jmn =

F jnF ∗

jm

8δm(�d + δn − δm)
(σ z

j + iσ y
j ).

Once all the expressions of the ME have been described, let us analyze the leading-order
contribution to the dynamics. First of all, note that in the strong-driving limit �d � δn, all
the expressions in equations (A.16) and (A.17) scale as F jnF ∗

jm/�dδn, which is again of the
order of O(χ), where χ = (�Lηn)

2/�dδn � 1, and can be directly neglected. Hence, the leading
contribution to this part is

�c
2(t)≈ it

∑
j,n

1� jnσ
x
j a†

nan +
∑
j,m 6=n

( f̂ nm
1 j (t)a

†
man − H.c.). (A.18)

It is now easy to convince oneself that all the leading contributions to the second-
order (A.8), (A.11) and (A.18) form the expression (19) used in the main text.

Appendix B. Stochastic processes for the noise sources

In this part of the appendix, we present a more detailed discussion of the origin of the dephasing,
phase and intensity noise in ion trap setups. As described in the main text, all these noise sources
can be modeled by a particular stochastic Hamiltonian. We use this appendix to introduce the
particular stochastic models used in this work and their main properties.

We use two continuous memoryless stochastic processes, also known as Markov processes,
namely the Ornstein–Uhlenbeck (O–U) and the Wiener process. In the following, we introduce
briefly both processes, and present some of their properties that will be important for our
numerical simulations. Subsequently, we will describe how they are used to model the
fluctuations of a specific quantity in the trapped-ion setup.

(a) O–U process. The O–U process O(t) is determined by a diffusion constant c > 0 and a
correlation time τ , and evolves according to the following stochastic differential equation:

dO(t)

dt
= −

1

τ
O(t)+

√
c0(t), (B.1)
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where 0(t) is a Gaussian white noise. Remarkably, equation (B.1) is exactly solvable [39],
which allows us to show that the O–U process is a normal process with mean and variance

O(t)= O(0)e−t/τ , Var{O(t)} =
cτ

2
(1 − e−2t/τ ). (B.2)

As one can see in (B.2), the correlation time τ sets the time scale on which the asymptotic
values of the process are reached. Assuming a zero mean, the auto-covariance of the O–U
process is given by

O(t)O(0)=
cτ

2
e−t/τ (1 − e−2t/τ ), (B.3)

where one can see that τ also governs the time scale over which the noise is correlated.
Finally, the essential ingredient for the numerical simulations is the exact update formula

O(t +1t)= O(t)e−1t/τ +
[cτ

2
(1 − e−21t/τ )

]1/2
n, (B.4)

where n is a unit Gaussian random variable. We note that this formula is valid for any finite
time step 1t , which will turn out to be very useful for the numerical simulations.

(b) Wiener process. In the limit of very large correlation times τ → ∞, an O–U process with
diffusion constant c becomes another type of Markov process, which is known in the
literature as a driftless Wiener process W (t) [39]. The standard form Langevin equation
of the Wiener process W (t) reads as follows:

W (t +1t)= W (t)+ (c1t)1/2n, (B.5)

where n is again a unit Gaussian random variable. Note that this serves again as an update
formula that will be very useful for our numerical simulations. Introducing once more the
Gaussian white noise function 0(t), equation (B.5) can be recast as a stochastic differential
equation

dW (t)

dt
=

√
c0(t) (B.6)

which corresponds formally to equation (B.1) in the limit τ → ∞. The Wiener process is
also a Gaussian process and is characterized by a mean and variance

W (t)= W (0), Var{W (t)} = ct. (B.7)

In the following paragraphs, we will discuss the concrete application of the above
stochastic processes for the simulations of dephasing, phase and intensity noise. For the
numerical simulations, the values of O(t), W (t) are sampled according to the update formulas
in equations (B.4) and (B.5). Note that for all simulations, we set O(0)= W (0)= 0 for the
stochastic processes.

(i) Dephasing noise. The internal structure of the atomic ions can be perturbed by uncontrolled
electric or magnetic fields. Magnetic-field fluctuations are typically leading, and are
expected to be the major source of dephasing [10], which ultimately leads to the loss of
coherence. To understand the effect of a fluctuating magnetic field, note that the Zeeman
shift changes the qubit resonance frequency by an amount 1ω0 given by

1ω0 = ∂Bω0|B0(B − B0)+
1

2
∂2

Bω0|B0(B − B0)
2, (B.8)
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where the field B fluctuates around the average value B0. Many hyperfine transitions are
first-order field insensitive at B = B0 = 0, but the need to resolve the hyperfine structure
for the definition of our qubit (see figure 1) requires a finite external magnetic field.
Interestingly, there is a family of states/transitions, often referred to as clock states [44],
where the linear Zeeman shift vanishes at a certain value B0, yielding thus a higher
resilience to magnetic-field noise.

Although our scheme applies equally well to such clock states, we would like to consider
magnetic-field-sensitive states, and show that the strong driving also protects the qubits
from magnetic-field noise. Therefore, we will assume that 1ω0(t)= −gµB B(t), where g
is the hyperfine g-factor, µB the Bohr magneton and B(t) a randomly fluctuating magnetic
field. Thus, 1ω0(t) also fluctuates randomly, and the noise is described by a stochastic
Hamiltonian term

Hfluc =
1

2

∑
i

1ω0(t)σ
z
i (B.9)

as introduced in equation (38) of the main text. For clock states, 1ω0(t) will contain the
weaker quadratic Zeeman shift and the ac-Stark shifts due to fluctuating laser intensities.

In order to reproduce the exponential decay of the coherences typically observed in
experiments, we modeled the fluctuations of the resonance frequency 1ω0(t) as an O–U
process (B.1). According to equations (B.2) the fluctuations in the resonance frequency are
characterized by

1ω0(t)= 0, Var{1ω0(t)} =1ω2
0(t)=

cτ

2
(1 − e−2t/τ ) (B.10)

(recall that we set 1ω(0)= 0) and following (B.4) the update formula reads

1ω0(t +1t)=1ω0(t)e
−1t/τ +

[cτ

2
(1 − e−21t/τ )

]1/2
n. (B.11)

In our noise model, the temporal decay of the qubit coherences is given by

〈σ x
i (tf)〉 = 〈σ x

i (0)〉e
−

1
2〈Y

2(tf)〉, (B.12)

where Y (tf) is the integral of the O–U process [39]. The exact expression for 〈Y 2(tf)〉 is
given by

〈Y 2(tf)〉 =

∫ tf

0
dt ′

∫ tf

0
dt ′′

〈1ω0(t
′)1ω0(t

′′)〉

= cτ 2
(

tf − 2τ(1 − e−tf/τ )+
τ

2
(1 − e−2tf/τ )

)
. (B.13)

In the limit tf � τ , and using equation (B.13), we obtain 〈σ x
i (tf)〉 = 〈σ x

i (0)〉e
−tf/T2 , where

we have introduced the dephasing time

T2 =
2

cτ 2
. (B.14)

For all numerical simulations, we set τ = 0.1T2. Thus, after choosing T2 the positive
constant c is determined by equation (B.14). As we shall show in the following, it
is required that the time step 1t used in the numerical simulations be much smaller
than τ .
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Figure B.1. Dephasing noise process. Fluctuations of the qubit resonance
frequency 1ω0(t) during a single realization of the driven geometric phase
gate tg ≈ 63µs. The dashed lines represent the standard deviation that follows
from (B.10) of the O–U process that models the dephasing, while the solid line
represents the stochastic process itself. We set the decoherence time to T2 =

25µs, which fixes the correlation time τ = 2.5µs, and the diffusion constant
c = 2/(T2τ

2) of the O–U process.

Since time is discretized in the numerical simulations, the integral is approximated by a
sum

〈Y 2(tf)〉 ≈
cτ

2

N∑
n=1

1t e
−n1t
τ

n∑
n′=1

1t e
n′1t
τ +

cτ

2

N∑
n=1

1t e
n1t
τ

N∑
n′=n+1

1t e
−n′1t
τ , (B.15)

where N1t = tf. After some algebra, equation (B.15) gives

〈Y 2(tf)〉 ≈
cτ

2
1t2

(
N e−1t/τ

1 − e−1t/τ
−

N e1t/τ

1 − e1t/τ

)
+

cτ

2
1t2

( 1 − e−N1t/τ

1 − cosh(1t/τ)

)
. (B.16)

In the limits 1t � τ , and N1t = tf � τ , we can approximate equation (B.16) by

〈Y 2(tf)〉 ≈ cτ 2 (N1t − τ)≈ cτ 2tf (B.17)

giving a good approximation to the analytical result in equation (B.14). A similar result is
obtained for 1t ≈ τ . On the other hand, for the case 1t � τ , we obtain

〈Y 2(tf)〉 ≈
cτ

2
1t tf (B.18)

such that the exponential decay of the coherences will be much faster than expected.
Consequently, we chose the time step 1t in the numerical simulations to be 1t � τ .

In figure B.1, we represent the fluctuations of the qubit resonance frequency given by
an O–U process fulfilling the above requirements. The time scale in this figure corresponds
to a single realization of the driven geometric phase gate, and we typically average over
Nn = 103 gate realizations.
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(ii) Phase noise. Another source of noise in trapped-ion experiments is due to the fact that the
phases of the lasers at the positions of the ions are not constant, but rather subjected to slow
drifts [45]. To study the effects of phase fluctuations on the driven geometric phase gate,
we make the substitution Fin → Fin ei1ϕ(t) for the laser-induced sideband couplings such
that the qubit–phonon couplings (4) become

Hqp =

∑
i,n

(Fin ei1ϕ(t)σ +
i an e−iωLt + H.c.) (B.19)

as introduced in equation (46) of the main text. As reported in experiments [42], a phase
shift of 2π takes place on time scales on the order of ∼10 s. Since these drifts occur on a
very long time scale, it appears convenient to model these fluctuations as a Wiener process.
Therefore, the phase fluctuations evolve according to equation (B.5) as

1ϕ(t +1t)=1ϕ(t)+ (c1t)1/2n. (B.20)

The mean and the variance of the process are given by

1ϕ(t)=1ϕ(0)= 0, Var{1ϕ(t)} =1ϕ2(t)= ct. (B.21)

In the numerical simulations, we did not rely on the assumption that the phase of the
lasers is constant during one gate realization (see the qualitative discussion in the main
text). Since the fluctuations during one gate realization are very small, the relevant question
is if the phase fluctuations affect the gate performance for a large number of consecutive
gates. Therefore, we simulated Nn = 103 consecutive gate realizations with fluctuating
sideband couplings F jn ei1ϕ(t).

The stochastic process 1ϕ(t) describing the phase fluctuations is then fully
characterized by its diffusion constant c and its initial value 1ϕ(0)= 0. With the results
of [42], and an expected gate time tg ≈ 63µs, we can estimate c following equations (B.7)
as

c =
(ζpπ)

2

103tg
, ζp ≈ 0.01. (B.22)

The noise process 1ϕ(t) can then be generated using the update formula (B.20), which
demands that the time step 1t for the simulation be sufficiently small. This requirement
should be fulfilled for our particular choice of N = 200 steps per gate. In figure B.2,
we represent the phase fluctuations modeled by a Wiener process fulfilling the above
requirements.

(iii) Intensity fluctuations. The scheme for driven geometric phase gates introduced in this paper
achieves very high fidelities for entangled two-qubit states in the regime of very high
powers of the microwave driving. Unfortunately, in this regime, the output amplitude of
microwave sources cannot be held perfectly constant, and we should consider fluctuations
in the microwave intensity. This leads to a noisy qubit Hamiltonian

Hq =

N∑
i=1

1

2
ω0σ

z
i +

1

2
((�d +1�d(t))σ

+
i e−iωdt + H.c.), (B.23)

where 1�d(t) represents the fluctuations of the microwave Rabi frequency introduced in
equation (49) of the main text. We model these fluctuations by an O–U process (B.1),
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Figure B.2. Phase noise process. Fluctuations of the laser phases 1ϕ(t) leading
to a slow drift during subsequent repetitions of the driven geometric phase gate,
tf = 103tg ≈ 63 ms. The dashed lines represent the standard deviation that follows
from (B.21) of the Wiener process that models the phase drifts, while the solid
line represents the stochastic process itself. We set the relative phase fluctuations
to be ζp = 10−2, which fixes the diffusion constant of the process according to
equation (B.22).

Figure B.3. Intensity noise process. Fluctuations of the microwave driving
intensity 1�d(t) during a single realization of the driven geometric phase
gate tg ≈ 63µs. The dashed lines represent the standard deviation that follows
from (B.24) of the O–U process that models the intensity fluctuations, while
the solid line represents the stochastic process itself. We set the relative
intensity fluctuations to be ζI = 1.3 × 10−4 for a driving of �d/2π ≈ 7 MHz, the
correlation time was fixed to τ = 1 ms, which fixes the diffusion constant of the
process according to equation (B.26).
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characterized by

1�d(t)= 0, Var{1�d(t)} =
cτ

2
(1 − e−2t/τ ) (B.24)

(recall that we set 1�d(0)= 0) and the following update formula:

1�d(t +1t)=1�d(t)e
−1t/τ +

[cτ

2
(1 − e−21t/τ )

]1/2
n. (B.25)

We expect that typical correlation times for such microwave intensity fluctuations will
be much larger than the expected gate times. Accordingly, τ = 1 ms is set to be much larger
than the gate time tg = 63µs. Moreover, we have assumed relative intensity fluctuations on the
order of ζI =1�d/�d ≈ 10−4, which requires a very accurate stabilization of the microwave
sources, but is in principle possible. Identifying the relative fluctuations of the microwave with
the standard deviation of the O–U process, the diffusion constant c of the O–U process is
given by

c =
2(ζI�d)

2

τ
, ζI ≈ 10−4. (B.26)

In figure B.3, we represent the fluctuations of the microwave Rabi frequency given by an O–U
process fulfilling the above requirements. The time scale in this figure corresponds to a single
realization of the driven geometric phase gate, and we typically average over Nn = 103 gate
realizations.
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