
The Cloud Application Modelling and Execution Language
(CAMEL)

Alessandro Rossini · Kiriakos Kritikos · Nikolay
Nikolov · Jörg Domaschka · Daniel Seybold ·
Frank Griesinger · Daniel Romero · Michal
Orzechowski · Georgia Kapitsaki · Achilleas
Achilleos

08 March 2017

Abstract Cloud computing provides ubiquitous networked access to a shared and virtu-
alised pool of computing capabilities that can be provisioned with minimal management
effort [27]. Cloud applications are deployed on cloud infrastructures and delivered as ser-
vices. The PaaSage project aims to facilitate the modelling and execution of cloud applic-
ations by leveraging model-driven engineering (MDE) and by exploiting multiple cloud
infrastructures. The Cloud Application Modelling and Execution Language (CAMEL) is
the core modelling and execution language developed in the PaaSage project and enables
the specification of multiple aspects of cross-cloud applications (i.e., applications deployed
across multiple private, public, or hybrid cloud infrastructures). By exploiting models at
both design- and run-time, and by allowing both direct and programmatic manipulation of
models, CAMEL enables the management of self-adaptive cross-cloud applications (i.e.,
cross-cloud applications that autonomously adapt to changes in the environment, require-
ments, and usage). In this paper, we describe the design and implementation of CAMEL,
with emphasis on the integration of heterogeneous domain-specific languages (DSLs) that
cover different aspects of self-adaptive cross-cloud applications. Moreover, we provide a
real-world running example to illustrate how to specify models in a concrete textual syn-
tax and how to dynamically adapt these models during the application life cycle. Finally,
we provide an evaluation of CAMEL’s usability and usefulness, based on the technology
acceptance model (TAM).

Keywords cloud computing, domain-specific language, model-driven engineering,
models@run-time

1 Introduction

MDE is a branch of software engineering that aims to improve the productivity, quality, and
cost-effectiveness of software development by shifting the paradigm from code-centric to
model-centric. MDE promotes the use of models and model transformations as the primary

SINTEF, Oslo, Norway, E-mail: alessandro.rossini@sintef.no · FORTH, Heraklion, Greece · SINTEF, Oslo,
Norway · University of Ulm, Germany · University of Ulm, Germany · University of Ulm, Germany · Inria,
Lille, France · AGH, Krakow, Poland · University of Cyprus · University of Cyprus



2 Rossini et al.

assets in software development, where they are used to specify, simulate, generate, and man-
age software systems. This approach is particularly relevant when it comes to the model-
ling and execution of cross-cloud applications (i.e., applications deployed across multiple
private, public, or hybrid cloud infrastructures). This solution allows to exploit the peculiar-
ities of each cloud service and hence to optimise the performance, availability, and cost of
the applications.

Models can be specified using general-purpose languages like the Unified Modeling
Language (UML) [30]. However, to fully unfold the potential of MDE, models are fre-
quently specified using domain-specific languages (DSLs), which are tailored to a specific
domain of concern. The PaaSage1 project exploits the latter approach and provides an in-
tegrated platform to support the modelling and execution of cross-cloud applications. To
achieve this goal, PaaSage developed the Cloud Application Modelling and Execution Lan-
guage (CAMEL). This DSL allows to specify multiple aspects of cross-cloud applications,
such as provisioning, deployment, service level, monitoring, scalability, providers, organ-
isations, users, roles, security, and execution.

CAMEL supports the models@run-time [6] approach, which provides an abstract rep-
resentation of the underlying running system, whereby a modification to the model is en-
acted on-demand in the system, and a change in the system is automatically reflected in the
model.

Reasoning engine

Models
@run-time

(1) (2)

Target	
model

Diff (3)

Adaptation
engine

(4)
(4)

Current	
model

Running	system

Figure 1: Models@run-time architecture

Fig. 1 depicts the architecture of models@run-time. A reasoning engine reads the cur-
rent model (step 1) and produces a target model (step 2). Then, the run-time environment
computes the difference between the current model and the target one (step 3). Finally, the
adaptation engine enacts the adaptation by modifying only the parts of the cross-cloud ap-
plication necessary to account for the difference and the target model becomes the current
model (step 4).

CAMEL was designed and implemented to allow the design-time specification of mod-
els by users as well as their run-time manipulation by reasoners. By exploiting models at
both design- and run-time, and by allowing both direct and programmatic manipulation of
models, CAMEL enables the management of self-adaptive cross-cloud applications (i.e.,

1 http://www.paasage.eu

http://www.paasage.eu


The Cloud Application Modelling and Execution Language (CAMEL) 3

cross-cloud applications that autonomously adapt to changes in the environment, require-
ments, and usage). This represents the main motivation for our research and contribution of
our work, since, to the best of our knowledge, no other integrated language in the literature
supports the management of self-adaptive cross-cloud applications (see Section 15).

Structure of the document: The remainder of the document is organised as follows.
Section 2 describes the role of CAMEL models in a self-adaptation workflow. Section 3
presents some technologies used to design and implement CAMEL. Section 4 describes the
integration of heterogeneous domain-specific languages in CAMEL. Sections 5–13 present
the various packages of the CAMEL metamodel along with corresponding sample models
in concrete syntax. Section 14 presents an evaluation of CAMEL based on the technology
acceptance model (TAM). Finally, Section 15 compares the proposed approach with related
work, while Section 16 draws conclusions and outlines plans for future work.

2 CAMEL and the Self-Adaptation Workflow

The components managing the life cycle of cross-cloud applications are integrated by lever-
aging CAMEL models. These models are progressively refined throughout the modelling,
deployment, and execution phases of a self-adaptation workflow based on the models@run-
time approach, as proposed in PaaSage [37].

Figure 2 shows the self-adaptation workflow. The white trapezes represent the activities
performed by the user. The white rectangles represent the processes executed by the PaaSage
platform. The coloured shapes represent the modelling artefacts, whereby the blue ones
pertain to the modelling phase, the red ones to the deployment phase, and the green ones to
the execution phase.

Provisioning	and	
deployment
modelling

Quality	of	
service	

modelling

Provisioning	and	
deployment	
requirements

Service-level	
objectives

Scalability	rules

Organisation	
modelling

Provider	
modelling

Organisation	
models

Provider	models

CAMEL
Cloud	provider-

independent	model
Profiler

Constraint	
problem Reasoner

CAMEL
Cloud	provider-
specific	model

Adapter

Deployment	plansExecutionwareInfrastructures

Monitoring	data

Modelling
phase

Deployment
phase

Execution
phase

Figure 2: CAMEL models in the self-adaptation workflow

In the remainder of the document, we adopt the Scalarm2 [25] use case as a real-
world running example to illustrate how to specify multiple aspects of cloud applications in

2 http://www.scalarm.com/

http://www.scalarm.com/


4 Rossini et al.

CAMEL, and how these specifications facilitate the deployment of cloud applications across
multiple clouds and their self-adaptation to changes in the environment, requirements, and
usage. Scalarm is a massively self-scalable platform for data farming. Data farming exper-
iments utilise high-performance and high-throughput computing to generate large amounts
of data via simulations. These data are analysed to obtain new insights into the studied
phenomena. The architecture of Scalarm is based on the principles of service-oriented ar-
chitecture (SOA) and consists of the following services:

– Experiment Manager provides a graphical user interface to coordinate the execution of
data farming experiments.

– Simulation Manager provides a wrapper to execute the simulations on multiple compu-
tational infrastructures.

As data farming experiments are often executed on a large amount of computational
infrastructures and across multiple data centres, the Scalarm use case is particularly suitable
to illustrate the features of CAMEL.

Modelling phase. The users design a cloud provider-independent model (CPIM), which spe-
cifies the deployment of a cross-cloud application along with its requirements and objectives
(e.g., on virtual hardware, location, and service level) in a cloud provider-independent way.

Figure 3(a) shows the CPIM of Scalarm in graphical syntax. It consists of an Experiment
Manager (represented by ExpMan) hosted on a GNU/Linux virtual machine (represented
by Linux). Moreover, the Experiment Manager communicates with a Simulation Manager
(represented by SimMan) hosted on a GNU/Linux virtual machine in a data centre in Norway.
Finally, the Experiment Manager has a service-level objective specifying that the response
time must be below 100 ms.

Amazon	EC2
[location =	EU]

SINTEF
[location	=	NO][location:	NO]

ExpMan
[resp. time
< 100 ms]

Linux

SimMan

Linux

expMan1

ubuntu1

simMan1

centos1

simMan2

centos2

CPIM CPSM

(a) (b)

Types

ExpMan

SimMan

Linux

Figure 3: Sample CAMEL models: (a) CPIM; (b) CPSM

Deployment phase. The Profiler component consumes the CPIM, matches this model with
the profile of cloud providers, and produces a constraint problem. The Reasoner compon-
ent solves the constraint problem (if possible) and produces a cloud provider-specific model
(CPSM), which specifies the deployment of a cross-cloud application along with its require-
ments and objectives in a cloud provider-specific way. The Adapter component consumes
the CPSM and produces deployment plans, which specify the platform-specific details of
the deployment.



The Cloud Application Modelling and Execution Language (CAMEL) 5

For instance, the Profiler could match the CPIM of Scalarm with the profile of cloud
providers, identify Amazon EC2, Google Compute Engine, and Azure as the three cloud
providers satisfying the virtual hardware requirements and service-level objectives of the
Experiment Manager (response time below 100 ms). Moreover, the Profiler could identify
SINTEF3 and EVRY4 as the two cloud providers satisfying the virtual hardware and loca-
tion requirements of the Simulation Manager (data centre in Norway), and produce a cor-
responding constraint problem. Then, the Reasoner could rank Amazon and SINTEF as the
best cloud providers to satisfy these requirements and produce a corresponding CPSM.

Figure 3(b) shows the CPSM in graphical syntax. It consists of an Experiment Manager
instance, which is hosted on a Ubuntu 14.04 instance at Amazon EC2 in the EU. Moreover,
the Experiment Manager instance communicates with two Simulation Manager instances,
which are hosted on two CentOS 7 virtual machine instances at SINTEF in Norway.

Execution phase. The Executionware consumes the deployment plans and enacts the de-
ployment of the application components on suitable cloud infrastructures. The PaaSage
platform records monitoring data about the application execution from the Executionware,
which allows the Reasoner to continuously revise the solution to the constraint problem to
better exploit the cloud infrastructures.

3 Technologies

In order to design and implement CAMEL, we adopted the Eclipse Modeling Framework
(EMF)5 along with Object Constraint Language (OCL) [31], Xtext6, and Connected Data
Objects (CDO).7 In the following, we outline these technologies and describe how they
facilitate the implementation of the PaaSage platform described in Section 2.

Eclipse Modeling Framework (EMF). In MDE, the abstract syntax of a DSL is typically
defined by its metamodel, which describes the set of concepts, their attributes, and their
relations, as well as the rules for combining these concepts to specify valid models con-
forming to this metamodel [30]. EMF is a modelling framework that facilitates defining
DSLs. It provides the Ecore metamodel, which is an Ecore model that conforms to itself
(i.e., it is reflexive). The CAMEL metamodel is an Ecore model that conforms to the Ecore
metamodel.

EMF allows to generate a Java class hierarchy representation of a metamodel. The Java
representation provides a set of APIs that allows the programmatic manipulation of models.

Object Constraint Language (OCL). EMF enables to check the cardinality constraints on
properties and to validate models against their metamodels. However, it lacks the express-
iveness required to capture all of the semantics of the domain. OCL is a declarative language
for specifying expressions on metamodels that are evaluated on models conforming to these
metamodels. Eclipse OCL8 is a tool-supported implementation of OCL that integrates with

3 https://www.sintef.no/en/
4 https://www.cloudservices.no/
5 https://www.eclipse.org/modeling/emf/
6 https://eclipse.org/Xtext/
7 https://www.eclipse.org/cdo/
8 http://wiki.eclipse.org/OCL

https://www.sintef.no/en/
https://www.cloudservices.no/
https://www.eclipse.org/modeling/emf/
https://eclipse.org/Xtext/
https://www.eclipse.org/cdo/
http://wiki.eclipse.org/OCL


6 Rossini et al.

EMF. The CAMEL metamodel is annotated with OCL expressions to capture part of the
semantics of cross-cloud applications and to guarantee the consistency, correctness, and in-
tegrity of CAMEL models at both design-time and run-time.

Xtext. In MDE, the concrete syntax describes the textual or graphical notation that renders
the concepts, attributes, and relations in the abstract syntax. The concrete syntax may vary
depending on the domain, e.g., a DSL could provide a textual notation as well as a graphical
notation along with the corresponding serialisation in XML Metadata Interchange (XMI) [32].
Xtext is a language development framework that is based on- and integrates with EMF. It fa-
cilitates the implementation of Eclipse-based IDEs providing features, such as syntax high-
lighting, code completion, code formatting, static analysis, and serialisation. The concrete
syntax of CAMEL is a textual syntax defined as an Xtext grammar. The textual syntax was
preferred over the graphical syntax by the early adopters of CAMEL (see Section 14).

Connected Data Objects (CDO). CDO is semi-automated persistence framework that works
natively with Ecore models and their instances. It provides a model repository where clients
can persist, share, and query their models. It provides features that satisfy the design-time
and run-time requirements of the self-adaptation workflow (see Section 2), such as abstrac-
tion from database management systems (DBMSs), validation, transactional processing, op-
timistic versioning [40], automatic notification, auditing, and role-based security [22].

Thanks to the combination of EMF, Eclipse OCL, and Xtext, we realised the CAMEL
Textual Editor, which allows users not only to specify CAMEL models but also to validate
them. Moreover, thanks to these technologies and CDO, we realised the models@run-time
approach, which allows multiple reasoners to progressively refine CAMEL models through-
out the various phases of the self-adaptation workflow (see Section 2).

4 Integration of Heterogeneous DSLs

CAMEL integrates and extends DSLs developed before the PaaSage project, namely Cloud
Modelling Language (CloudML) [14,12,13], Saloon [35,34,36], and the organisation part
of CERIF [19]. In addition, CAMEL integrates new DSLs developed within the PaaSage
project, such as the Scalability Rule Language (SRL) [21,10].

At the beginning of the PaaSage project, CAMEL consisted of a family of loosely
coupled and heterogeneous DSLs, each having their own abstract and concrete syntaxes.
Moreover, the models specified using these DSLs were persisted in a relational database,
the so-called Metadata Database (MDDB) [23].

This initial solution illustrates some of the challenges that are inherent to DSL integ-
ration and evolution [29]. First, the elements in the metamodels of the DSLs needed to be
matched to the elements in the schema of the MDDB using a custom mapping. Such a
mapping needed to be bi-directional, since the data persisted in the MDDB had to be trans-
formed back to the (abstract or concrete) syntax of the corresponding DSL. Second, the size
of the schema became cumbersome as it needed to cover a considerable number of concepts
from the DSLs—the last version had 70 tables and multiple referential integrity constraints.
Third, because of the complexity of the MDDB, the custom queries for reading and writing
data also became complex. Finally, both the DSLs and the MDDB needed to evolve to cope
with the changing requirements in the domain. This evolution affected the metamodels of
the DSLs, the schema of the MDDB, the data persisted in the MDDB, and the back-end code
managing this data. Therefore, we quickly realised that we needed a better solution than the



The Cloud Application Modelling and Execution Language (CAMEL) 7

time-consuming and error-prone custom mapping approach, and opted for an integration
approach, whereby the family of loosely coupled and heterogeneous DSLs was transformed
into a single language.

The integration approach had to overcome certain language-specific issues. First, sim-
ilar or equivalent concepts in the DSLs were duplicated. Second, concepts in the DSLs
were defined at different levels of granularity. Third, the abstract and concrete syntaxes of
the DSLs were defined using different formalisms and notations. Therefore, the integration
solution had to: (a) join equivalent concepts and separate similar concepts into respective
sub-concepts; (b) homogenise the remaining concepts so that they are defined at the same
level of granularity; (c) enforce a uniform formalism and notation for the abstract and con-
crete syntaxes; and (d) enforce the consistency, correctness, and integrity of the models.

deployment

VM VMRequirementSet

requirement

ProviderRequirement

organisation

CloudProvider

public : EBoolean = false

SaaS : EBoolean = false

PaaS : EBoolean = false

IaaS : EBoolean = false

CloudCredentials

name : EString

securityGroup : EString

publicSSHKey : EString

privateSSHKey : EString

username : EString

password : EString

Organisation

name : EString

www : EString

postalAddress : EString

email : EString

Provider

credentials : EString

login : EString

password : EString

[0..1] vmRequirementSet

[1..1] cloudProvider

[1..*] providers

[1..1] cloudProvider

[0..1] vmRequirementSet

[0..1] providerRequirement

[0..1] provider

Figure 4: Integrating and extending CloudML and CERIF into CAMEL

In CloudML, providers are only described in terms of user credentials, whereby the
attributes of providers do not reflect an actual cloud provider, but are instead used as a
simple means to access cloud infrastructures. In order to be able to describe providers in a
broader sense, we decided to integrate some relevant concepts from CERIF and CloudML
into CAMEL. First, we ported the abstract syntaxes of the two DSLs to the same technical
space of EMF. The abstract syntax of CloudML was already defined as an Ecore model,
while the abstract syntax of CERIF was defined as an XML Schema. In order to transform
the XML schema into an Ecore model, we used the importer provided by the XSD library
of the Model Development Tools (MDT) project9, which is integrated with the EMF stack.
Second, we included the concepts from CloudML in a separate package called deployment,
and a subset of the concepts from CERIF in a package called organisation. Third, we coupled
the concepts in the deployment package with the ones in the organisation package.

Figure 4 shows an example of how we coupled the two concepts of VM and Provider in
the deployment package with Organisation in the organisation package. Provider only allowed
for a partial definition of providers, so we deleted this concept and added CloudProvider as
an extension of Organisation in the organisation package. The association of cloud providers
with virtual machines is realised through the ProviderRequirement concept in the requirement

9 https://www.eclipse.org/modeling/mdt/

https://www.eclipse.org/modeling/mdt/


8 Rossini et al.

package. This solution allows for a comprehensive definition of providers as well as provider
requirements, while still reusing most of the original concepts from CloudML and CERIF.

In order to guarantee the consistency, correctness, and integrity of CAMEL models, the
CAMEL metamodel is annotated with various OCL expressions. Listing 1 shows an example
of an OCL constraint that refers to concepts in the deployment and organisation packages
and ensures that the deployment and requirement models only includes the requirements of
providers for which the respective cloud credentials exist in the organisation model of the
owning user.

Listing 1: OCL constraint checking that credentials exist for a requested provider
invariant credentials_exist_for_requested_provider:
deploymentModels ->forAll(p |
((p.globalVMRequirementSet <> null and p.globalVMRequirementSet.

providerRequirement <> null) implies (cloudCredentials ->exists(c | p.
globalVMRequirementSet.providerRequirement.providers ->includes(c.
cloudProvider))))

and
(p.vms->forAll(v | (v.vmRequirementSet <> null and v.vmRequirementSet.

providerRequirement <> null) implies (cloudCredentials ->exists (x | v.
vmRequirementSet.providerRequirement.providers ->includes(x.cloudProvider)
))))

);

5 CAMEL Design and Syntax

CAMEL has been designed based on the following requirements, among others:

– Cloud provider-independence (R1): CAMEL should support a cloud provider-agnostic
specification of multiple aspects of cross-cloud applications (i.e., provisioning, deploy-
ment, service level, monitoring, scalability, providers, organisations, users, roles, secur-
ity, and execution). This will prevent vendor lock-in.

– Separation of concerns (R2): CAMEL should support loosely-coupled packages (or
modules) corresponding to multiple aspects of cross-cloud applications. This will fa-
cilitate the development of models.

– Reusability (R3): CAMEL should support reusable types for multiple aspects of cross-
cloud applications. This will ease the evolution of models.

– Abstraction (R4): CAMEL should provide an up-to-date, abstract representation of the
running system. This will enable the reasoning, simulation, and validation of the adapt-
ation actions before their enactment.

CAMEL is inspired by component-based approaches, which facilitate separation of con-
cerns (R2) and reusability (R3). In this respect, deployment models can be regarded as as-
semblies of components exposing ports, and bindings between these ports.

In addition, CAMEL implements the type-instance pattern [1], which also facilitates
reusability (R3) and abstraction (R4). This pattern exploits two flavours of typing, namely
ontological and linguistic [26]. Figure 5 illustrates these two flavours of typing. SL (short for
Small GNU/Linux) represents a reusable type of virtual machine. It is linguistically typed
by the class VM (short for virtual machine). SL1 represents an instance of the virtual machine
SL. It is ontologically typed by SL and linguistically typed by VMInstance.



The Cloud Application Modelling and Execution Language (CAMEL) 9

VM	
   VMInstance	
  

SL	
   SL1	
  

linguistic 
typing 

ontological 
typing 

Metamodel 

Model 

Figure 5: Linguistic and ontological typing

CAMEL and the CAMEL Textual Editor are available under Mozilla Public License
2.010 in the Git repository at OW2.11 The CAMEL metamodel is an Ecore model organised
into packages, whereby each package reflects an aspect (or domain).

As mentioned, in the remainder of the document, we adopt the Scalarm12 [25] use case as
a real-world running example to illustrate how to specify CAMEL models in textual syntax.
The complete Scalarm CAMEL model in textual syntax can be downloaded from the Git
repository at OW2.13 This running example covers the most commonly used concepts in
CAMEL. The interested reader may refer to [39] for a complete description of the abstract
syntax of CAMEL.

Listing 2: Scalarm sample application
1 camel model ScalarmModel {
2

3 application ScalarmApplication {
4 version: ’v1.0’
5 owner: AGHOrganisation.morzech
6 deployment models [ScalarmModel.ScalarmDeployment]
7 }
8

9 organisation model AGHOrganisation {
10 ...
11 user morzech {
12 ...
13 }
14 }
15

16 deployment model ScalarmDeployment {
17 ...
18 }
19 }

Listing 2 shows an excerpt of the CAMEL model of Scalarm in textual syntax. An
element of a CAMEL model is specified by the name of the element followed by an identifier
in CamelCase and a block delimited by curly brackets. camel model ScalarmModel {...}
specifies the CAMEL model of Scalarm, where ScalarmModel represents the identifier of
this model. application ScalarmApplication specifies the Scalarm application itself.

A property is specified by the name of the property followed by a colon and a value.
version: ’v1.0’ specifies that the Scalarm application has version 1.0.

10 https://www.mozilla.org/en-US/MPL/2.0/
11 https://tuleap.ow2.org/plugins/git/paasage/camel
12 http://www.scalarm.com/
13 https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&f=examples/
Scalarm.camel

https://www.mozilla.org/en-US/MPL/2.0/
https://tuleap.ow2.org/plugins/git/paasage/camel
http://www.scalarm.com/
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&f=examples/Scalarm.camel
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob&f=examples/Scalarm.camel


10 Rossini et al.

A reference to a single element is specified by the name of the reference followed by a
colon and a fully qualified name conforming to the pattern: id1.id2.. . . .idn, where idi refers
to element at the ith level of the containment path and idn refers to the element at the leaf
level, which is the element under discussion. owner: AGHOrganisation.morzech specifies that
the application is owned by the user Michal Orzechowski by referring to the user morzech
in the organisation model AGHOrganisation (see Section 9, Listing 11).

Finally, a reference to a list of elements is specified by the name of the reference fol-
lowed by a comma separated list of fully qualified names delimited by square brackets.14

deployment models [ScalarmModel.ScalarmDeployment] specifies that the Scalarm applica-
tion has one deployment model by referring to the deployment model ScalarmDeployment
(see Section 6, Listing 3).

6 Deployment

The deployment package of the CAMEL metamodel is based on CloudML15 [14,12,13],
which was developed in collaboration with the MODAClouds project.16 CloudML consists
of a tool-supported DSL for modelling and enacting the provisioning and deployment of
cross-cloud applications, as well as for facilitating their dynamic adaptation, by leveraging
MDE techniques and methods. In the following, we exemplify the main concepts in the
deployment package.

Assume that we have to specify the Experiment Manager component of the Scalarm use
case. Listing 3 shows this specification in textual syntax.
internal component ExperimentManager specifies a reusable type of the component Ex-

periment Manager. provided communication ExpManPort specifies that the Experiment Man-
ager provides its features through port 443. required communication SimManPortReq spe-
cifies that the Experiment Manager requires features from the Simulation Manager through
port 80 (cf. Listing 5 for the corresponding specification of the communication binding). The
property mandatory of SimManPortReq specifies that the Experiment Manager depends on the
features of the Simulation Manager, and hence, that the Simulation Manager has to be de-
ployed and started before the Experiment Manager. required host CoreIntensiveUbuntuNor-
wayReq specifies that the Experiment Manager requires a virtual machine that provides a
large number of CPU cores, runs the operating system Ubuntu, and is located in Norway
(cf. Listing 4 for the specification of the VM and VM requirements, and Listing 6 for the
specification of the corresponding hosting binding).
configuration ExperimentManagerConfiguration specifies the commands to handle the

life cycle of the Experiment Manager. download, install, and start specify the OS-specific
shell scripts (in this case, Bash scripts) for downloading, installing, and starting the Ex-
periment Manager, respectively. Note that, although not shown in this example, it is also
possible to specify the configure and stop commands of a component.

The aforementioned commands are used by the Executionware during the execution
phase to enact the deployment of the application components and to manage their life cycles
(see Section 6.1).

Listing 3: Scalarm sample internal component

14 Note that the colon is not used in this case.
15 http://cloudml.org
16 http://www.modaclouds.eu

http://cloudml.org
http://www.modaclouds.eu


The Cloud Application Modelling and Execution Language (CAMEL) 11

1 deployment model ScalarmDeployment {
2

3 internal component ExperimentManager {
4 provided communication ExpManPort {port: 443}
5 required communication SimManPortReq {port: 80 mandatory}
6 required host CoreIntensiveUbuntuNorwayHostReq
7

8 configuration ExperimentManagerConfiguration {
9 download: ’wget http://www.scalarm.com/scalarm_exp_man.sh && chmod +x

scalarm_exp_man.sh’
10 install: ’./scalarm_exp_man.sh install’
11 start: ’./scalarm_exp_man.sh start’
12 }
13 }
14 ...

Then, assume that we have to specify the virtual machine on which the Experiment
Manager can be deployed. Listing 4 shows this specification in textual syntax.
vm CoreIntensiveUbuntuNorway specifies a reusable type for a virtual machine. require-

ment set refers to the aforementioned requirement set CoreIntensiveUbuntuNorwayRS. pro-
vided host CoreIntensiveUbuntuNorwayPort specifies that the virtual machine provides a
large number of CPU cores, runs the operating system Ubuntu, and is located in Norway
(cf. Listing 6 for the specification of the corresponding hosting binding).
requirement set CoreIntensiveUbuntuNorwayRS specifies a reusable set of requirements

for a virtual machine. quantitative hardware, os, and location refer to the requirements
CoreIntensive, Ubuntu, and NorwayReq, respectively, in the requirement model ScalarmRequi-
rement (cf. Listing 8), which in turn specify the hardware requirements encompassing a large
number of CPU cores, the operating system requirement of Ubuntu, and the location require-
ment of Norway, respectively.

Listing 4: Scalarm sample vm
1 ...
2 vm CoreIntensiveUbuntuNorway {
3 requirement set CoreIntensiveUbuntuNorwayRS
4 provided host CoreIntensiveUbuntuNorwayPort
5 }
6

7 requirement set CoreIntensiveUbuntuNorwayRS {
8 quantitative hardware: ScalarmRequirement.CoreIntensive
9 os: ScalarmRequirement.Ubuntu

10 location: ScalarmRequirement.NorwayReq
11 }
12 ...

Next, assume that we have to specify the communication binding between the Exper-
iment Manager and the Simulation Manager. Listing 5 shows this specification in textual
syntax.
communication ExperimentManagerToSimulationManager specifies a reusable type of com-

munication binding between the Experiment Manager and the Simulation Manager. The
from .. to .. block specifies that the communication binding is from the required commu-
nication port SimManPortReq of the component ExperimentManager to the provided commu-
nication port SimManPort of the component SimulationManager. type: REMOTE specifies that
the Experiment Manager and the Simulation Manager must be deployed on separate virtual
machine instances. Note that this property could have a value ANY (default) to specify that
the components at each end of the communication can be deployed on any virtual machine
instance(s), or LOCAL to specify that the components must be deployed on the same virtual
machine instance.



12 Rossini et al.

Listing 5: Scalarm sample communication
1 ...
2 communication ExperimentManagerToSimulationManager {
3 from ExperimentManager.SimManPortReq to SimulationManager.SimManPort
4 type: REMOTE
5 }
6 ...

Finally, assume that we have to specify the hosting binding between the Experiment
Manager and the virtual machine CoreIntensiveUbuntuNorway. Listing 6 shows this specific-
ation in textual syntax.
hosting ExperimentManagerToCoreIntensiveUbuntuNorway specifies a reusable type of

hosting binding between the Experiment Manager and the virtual machine CoreIntensive-
UbuntuNorway. The from .. to .. block specifies that the hosting binding is from the required
hosting port CoreIntensiveUbuntuNorwayPortReq of the component ExperimentManager to
the provided hosting port CoreIntensiveUbuntuNorwayPortReq of the virtual machine Core-
IntensiveUbuntuNorway.

Listing 6: Scalarm sample hosting
1 ...
2 hosting ExperimentManagerToCoreIntensiveUbuntuNorway {
3 from ExperimentManager.CoreIntensiveUbuntuNorwayPortReq to

CoreIntensiveUbuntuNorway.CoreIntensiveUbuntuNorwayPort
4 }
5 ...

The types presented above can be instantiated in order to form a CPSM. In PaaSage, the
instances within the deployment model are automatically manipulated during the deploy-
ment phase (see Section 2). In the general case, the instances could also be manipulated
manually. Note that different CPSMs can adopt different instantiation patterns for commu-
nications and hosting bindings, while still conforming to the same CPIM. The interested
reader may refer to [9] for an extensive discussion on the subject.

Listing 7 shows the specification of instances of the components, virtual machines, com-
munications, and hosting bindings from the previous examples (cf. Listings 3, 4, 5, and 6)
in textual syntax.
vm instance CoreIntensiveUbuntuNorwayInst specifies an instance of a virtual machine.

vm type and vm type value refer to the virtual machine flavour M1.LARGE in the provider
model SINTEFProvider (cf. Listing 12), which is compatible with the requirement set of the
virtual machine template CoreIntensiveUbuntuNorway (cf. Listing 7).
internal component instance ExperimentManagerInst specifies an instance of the com-

ponent ExperimentManager. The connect .. to .. typed .. and host .. on .. typed ..

blocks specify instances of the communication ExperimentManagerToSimulationManager and
the hosting ExperimentManagerToCoreIntensiveUbuntuNorway, respectively. typed refers to
the identifier of the corresponding type.

Listing 7: Scalarm sample instances of internal component, vm, communication, and hosting
1 ...
2 vm instance CoreIntensiveUbuntuNorwayInst typed ScalarmModel.ScalarmDeployment.

CoreIntensiveUbuntuNorway {
3 vm type: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
4 vm type value: ScalarmModel.SINTEFType.VMTypeEnum.M1.LARGE
5 provided host instance CoreIntensiveUbuntuNorwayHostInst typed

CoreIntensiveUbuntuNorway.CoreIntensiveUbuntuNorwayHost
6 }
7



The Cloud Application Modelling and Execution Language (CAMEL) 13

8 internal component instance SimulationManagerInst typed ScalarmModel.
ScalarmDeployment.SimulationManager {

9 provided communication instance SimManPortInst typed SimulationManager.
SimManPort

10 required host instance SimulationIntensiveUbuntuNorwayHostReqInst typed
SimulationManager.SimulationIntensiveUbuntuNorwayHostReq

11 }
12

13 internal component instance ExperimentManagerInst typed ScalarmModel.
ScalarmDeployment.ExperimentManager {

14 provided communication instance ExpManPortInst typed ExperimentManager.
ExpManPort

15 required communication instance SimManPortReqInst typed ExperimentManager.Si,
ManPortReq

16 required host instance CoreIntensiveUbuntuNorwayHostReqInst typed
ExperimentManager.CoreIntensiveUbuntuNorwayHostReq

17 }
18

19 connect ExperimentManagerInst.SimManPortReqInst to SimulationManagerInst.
SimManPortInst typed ScalarmModel.ScalarmDeployment.
ExperimentManagerToSimulationManager

20

21 host ExperimentManagerInst.CoreIntensiveUbuntuNorwayHostReqInst on
CoreIntensiveUbuntuNorwayInst.CoreIntensiveUbuntuNorwayHostInst typed
ScalarmModel.ScalarmDeployment.ExperimentManagerToCoreIntensiveUbuntuNorway

22 ...

6.1 Interplay with Executionware

In order to execute a cloud application, the Executionware provisions VMs, deploys one
or more component instances on these VMs, and starts these instances by relying on a
cross-cloud orchestration framework. In PaaSage, this cross-cloud orchestration framework
is Cloudiator [8]. Note the Executionware can solely rely on the information provided in
a CAMEL model. Hence, the Executionware does not make any assumptions besides the
information provided. In particular, the Executionware relies on life cycle handlers spe-
cified as script files, shell (e.g., Bash or PowerShell) commands, or Java commands, in the
configuration of a component in order to orchestrate the individual component instances.
These life cycle handlers are invoked in the following order: download, install, configure,
and start. Moreover, the Executionware relies on the communications specified in the de-
ployment model in order to derive the dependencies between components and hence the
correct order of deployment of component instances. This way, the provided communica-
tion instances are started before the required ones. The interested reader may refer to [39]
for a detailed description of how the Executionware invokes these commands.

7 Requirements

The requirement package of the CAMEL metamodel is not based on existing DSLs and has
been developed to enable the specification of requirements for cross-cloud applications. A
requirement can be hard, such as a service level objective (SLO) (e.g., response time < 100
ms), meaning that it is measurable and must be satisfied, or soft, such as a optimisation ob-
jective (e.g., maximise performance), meaning that it is not measurable. A soft requirement
has a priority from 0.0 to 1.0 that is used to rank these requirements when reasoning on the
application and generating a new CPSM. In the following, we exemplify the main concepts
in the requirement package.



14 Rossini et al.

Assume that we have to specify the requirements for the components of the Scalarm use
case. Listing 8 shows this specification in textual syntax.
quantitative hardware CoreIntensive specifies that a virtual machine must have from

8 to 32 CPU cores and from 4 to 8 GB of RAM. os Ubuntu specifies that a virtual machine
must run Ubuntu operating system 64-bit edition. location requirement NorwayReq specifies
that a virtual machine must be deployed in Norway. locations refers to the location NO in
the location model ScalarmLocation. The three requirements above are referred to by the
requirement set CoreIntensiveUbuntuNorwayRS in the deployment model ScalarmDeployment
(cf. Listing 4).
slo CPUMetricSLO specifies that the metric condition CPUMetricCondition is an SLO.

service level refers to the metric condition CPUMetricCondition in the metric model Sca-
larmModel (cf. Listing 10).
optimisation requirement MinimisePerformanceDegradationOfExperimentManager speci-

fies that the metric MeanValueOfResponseTimeOfAllExprimentManagersMetric of the compon-
ent ExperimentManager should be minimised and that this minimisation has a priority 0.8.
metric refers to the metric MeanValueOfResponseTimeOfAllExprimentManagersMetric in the
metric model ScalarmModel (cf. Listing 10), while component refers to the internal component
ExperimentManager in the deployment model ScalarmDeployment (cf. Listing 4). optimisation
requirement MinimiseDataFarmingExperimentMakespan specifies a similar optimisation re-
quirement with priority 0.2.
group ScalarmRequirementGroup specifies that the requirements CPUMetricSLO, Minimise-

PerformanceDegradationOfExperimentManager, and MinimiseDataFarmingExperimentMakespan
are logically connected through the AND operator. Note that a requirement group also allows
a requirement tree to be created. For example, a top-level requirement group could contain
two or more requirement groups logically connected by an OR operator. Each of the latter
requirement groups could in turn contain single requirements, such as SLOs, logically con-
nected by an AND operator.
horizontal scale requirement HorizontalScaleSimulationManager specifies that the

component SimulationManager can scale horizontally between 1 and 5 instances. component
refers to the internal component SimulationManager in the deployment model ScalarmDe-
ployment (cf. Listing 4).

Listing 8: Scalarm requirement model
1 requirement model ScalarmRequirement {
2

3 quantitative hardware CoreIntensive {
4 core: 8..32
5 ram: 4096..8192
6 }
7

8 os Ubuntu {
9 os: ’Ubuntu’ 64os

10 }
11

12 location requirement NorwayReq {
13 locations [ScalarmLocation.NO]
14 }
15

16 slo CPUMetricSLO {
17 service level: ScalarmModel.ScalarmMetric.CPUMetricCondition
18 }
19

20 optimisation requirement MinimisePerformanceDegradationOfExperimentManager {
21 function: MIN
22 metric: ScalarmModel.ScalarmMetric.

MeanValueOfResponseTimeOfAllExprimentManagersMetric



The Cloud Application Modelling and Execution Language (CAMEL) 15

23 component: ScalarmModel.ScalarmDeployment.ExperimentManager
24 priority: 0.8
25 }
26

27 optimisation requirement MinimiseDataFarmingExperimentMakespan {
28 function: MIN
29 metric: ScalarmModel.ScalarmMetric.MakespanMetric
30 component: ScalarmModel.ScalarmDeployment.ExperimentManager
31 priority: 0.2
32 }
33

34 group ScalarmRequirementGroup {
35 operator: AND
36 requirements [ScalarmRequirement.CPUMetricSLO , ScalarmRequirement.

MinimisePerformanceDegradationOfExperimentManager , ScalarmRequirement.
MinimiseDataFarmingExperimentMakespan]

37 }
38

39 horizontal scale requirement HorizontalScaleSimulationManager {
40 component: ScalarmModel.ScalarmDeployment.SimulationManager
41 instances: 1 .. 5
42 }
43 }

8 Metrics and Scalability Rules

The scalability and metric packages of the CAMEL metamodel are based on the Scalability
Rule Language (SRL) [21,10]. SRL enables the specification of rules that support complex
adaptation scenarios of cross-cloud applications. In particular, SRL provides mechanisms
for specifying cross-cloud behaviour patterns, metric aggregations, and the scaling actions
to be enacted in order to change the provisioning and deployment of an application. SRL is
inspired by the Esper Processing Language (EPL)17 with respect to the specification of event
patterns with formulas including logic operators and timing. SRL provides mechanisms for
(a) specifying event patterns, (b) specifying scaling actions, and (c) associating these scaling
actions with the corresponding event patterns. Moreover, in order to identify event patterns,
the components of cross-cloud applications must be monitored. Therefore, SRL provides
mechanisms for (d) expressing which components must be monitored by which metrics,
and (e) associating event patterns with monitoring data. In the following, we exemplify the
main concepts in the scalability and metric packages.

Assume that we have to specify scalability rules and metrics for the Scalarm use case.
The SimulationManager scales out when the following conditions are met: (a) all instances
have had an average CPU load beyond 50% for at least 5 min, and (b) concurrently at least
one instance has had an average CPU load beyond 80% for at least 1 min. These conditions
are represented by the following expression, where cpui and cpu j represent the average CPU
loads for instance i and j, respectively:

∀i | cpui ≥ 50 ∧ ∃ j | cpu j ≥ 80

To implement this scenario, we specified a scalability and a metric model that represent,
respectively: (a) the scalability rule along with the events used to trigger it, and (b) the
metrics and conditions that, when evaluated, trigger the action of the scalability rule.

17 http://esper.codehaus.org/

http://esper.codehaus.org/


16 Rossini et al.

Listing 9 shows the scalability model in textual syntax. non-functional event CPUAvg-
MetricNFEAll specifies the violation of a metric condition. metric condition refers to the
metric condition CPUAvgMetricConditionAll in the metric model ScalarmMetric (cf. List-
ing 10). non-functional event CPUAvgMetricNFEAny specifies a similar violation of a metric
condition.
binary event pattern CPUAvgMetricBEPAnd specifies that the non-functional events above

are logically connected through an AND operator.
horizontal scaling action HorizontalScalingSimulationManager specifies a scale-out

action. vm and internal component refer to the vm CPUIntensiveUbuntuNorway and the internal
component SimulationManager, respectively, in the deployment model ScalarmDeployment (cf.
Listings 4 and 3).
scalability rule CPUScalabilityRule refers to the binary event pattern and the ho-

rizontal scaling action above, along with the scale requirement HorizontalScaleSimula-
tionManager in the requirement model ScalarmRequirement (cf. Listing 8).

Listing 9: Scalarm scalability model
1 scalability model ScalarmScalability {
2

3 non-functional event CPUAvgMetricNFEAll {
4 metric condition: ScalarmModel.ScalarmMetric.CPUAvgMetricConditionAll
5 violation
6 }
7

8 non-functional event CPUAvgMetricNFEAny {
9 metric condition: ScalarmModel.ScalarmMetric.CPUAvgMetricConditionAny

10 violation
11 }
12

13 binary event pattern CPUAvgMetricBEPAnd {
14 left event: ScalarmModel.ScalarmScalability.CPUAvgMetricNFEAll
15 right event: ScalarmModel.ScalarmScalability.CPUAvgMetricNFEAny
16 operator: AND
17 }
18

19 horizontal scaling action HorizontalScalingSimulationManager {
20 type: SCALE_OUT
21 vm: ScalarmModel.ScalarmDeployment.CPUIntensiveUbuntuNorway
22 internal component: ScalarmModel.ScalarmDeployment.SimulationManager
23 }
24

25 scalability rule CPUScalabilityRule {
26 event: ScalarmModel.ScalarmScalability.CPUAvgMetricBEPAnd
27 actions [ScalarmModel.ScalarmScalability.HorizontalScalingSimulationManager]
28 scale requirements [ScalarmRequirement.HorizontalScaleSimulationManager]
29 }
30 }

Listing 10 shows the metric model in textual syntax. raw metric CPUMetric, along with
the elements referred by it, specify a raw (sensor) metric measuring CPU load. composite
metric CPUAverage, along with the elements referred by it, specify an average CPU load
metric. composite metric context CPUAvgMetricContextAll and composite metric context
CPUAvgMetricContextAny specify that the average CPU load metric is instantiated in two con-
texts, one with a window of five minutes and one with a window of one minute, respectively.
The aggregated composite metrics are instantiated as metric instances twice per virtual ma-
chine, and once per metric context.

Listing 10: Scalarm metric model
1 metric model ScalarmMetric {
2



The Cloud Application Modelling and Execution Language (CAMEL) 17

3 window Win5Min {
4 window type: SLIDING
5 size type: TIME_ONLY
6 time size: 5
7 unit: ScalarmModel.ScalarmUnit.minutes
8 }
9

10 window Win1Min {
11 window type: SLIDING
12 size type: TIME_ONLY
13 time size: 1
14 unit: ScalarmModel.ScalarmUnit.minutes
15 }
16

17 schedule Schedule1Min {
18 type: FIXED_RATE
19 interval: 1
20 unit: ScalarmModel.ScalarmUnit.minutes
21 }
22

23 schedule Schedule1Sec {
24 type: FIXED_RATE
25 interval: 1
26 unit: ScalarmModel.ScalarmUnit.seconds
27 }
28

29 sensor CPUSensor {
30 configuration: ’cpu_usage;de.uniulm.omi.cloudiator.visor.sensors.

CpuUsageSensor ’
31 push
32 }
33

34 property CPUProperty {
35 type: MEASURABLE
36 sensors [ScalarmMetric.CPUSensor]
37 }
38

39 raw metric CPUMetric {
40 value direction: 0
41 layer: IaaS
42 property: ScalarmModel.ScalarmMetric.CPUProperty
43 unit: ScalarmModel.ScalarmUnit.CPUUnit
44 value type: ScalarmModel.ScalarmType.Range0_100
45 }
46

47 raw metric context CPURawMetricContext {
48 metric: ScalarmModel.ScalarmMetric.CPUMetric
49 sensor: ScalarmMetric.CPUSensor
50 component: ScalarmModel.ScalarmDeployment.SimulationManager
51 schedule: ScalarmModel.ScalarmMetric.Schedule1Sec
52 quantifier: ALL
53 }
54

55 raw metric context CPUMetricConditionContext {
56 metric: ScalarmModel.ScalarmMetric.CPUMetric
57 sensor: ScalarmMetric.CPUSensor
58 component: ScalarmModel.ScalarmDeployment.SimulationManager
59 quantifier: ANY
60 }
61

62 composite metric CPUAverage {
63 description: "Average of the CPU"
64 value direction: 1
65 layer: PaaS
66 property: ScalarmModel.ScalarmMetric.CPUProperty
67 unit: ScalarmModel.ScalarmUnit.CPUUnit
68

69 metric formula FormulaAverage {
70 function arity: UNARY
71 function pattern: MAP



18 Rossini et al.

72 MEAN( ScalarmModel.ScalarmMetric.CPUMetric )
73 }
74 }
75

76 composite metric context CPUAvgMetricContextAll {
77 metric: ScalarmModel.ScalarmMetric.CPUAverage
78 component: ScalarmModel.ScalarmDeployment.SimulationManager
79 window: ScalarmModel.ScalarmMetric.Win5Min
80 schedule: ScalarmModel.ScalarmMetric.Schedule1Min
81 composing metric contexts [ScalarmModel.ScalarmMetric.CPURawMetricContext]
82 quantifier: ALL
83 }
84

85 composite metric context CPUAvgMetricContextAny {
86 metric: ScalarmModel.ScalarmMetric.CPUAverage
87 component: ScalarmModel.ScalarmDeployment.SimulationManager
88 window: ScalarmModel.ScalarmMetric.Win1Min
89 schedule: ScalarmModel.ScalarmMetric.Schedule1Min
90 composing metric contexts [ScalarmModel.ScalarmMetric.CPURawMetricContext]
91 quantifier: ANY
92 }
93

94 metric condition CPUMetricCondition {
95 context: ScalarmModel.ScalarmMetric.CPUMetricConditionContext
96 threshold: 80.0
97 comparison operator: >
98 }
99

100 metric condition CPUAvgMetricConditionAll {
101 context: ScalarmModel.ScalarmMetric.CPUAvgMetricContextAll
102 threshold: 50.0
103 comparison operator: >
104 }
105

106 metric condition CPUAvgMetricConditionAny {
107 context: ScalarmModel.ScalarmMetric.CPUAvgMetricContextAny
108 threshold: 80.0
109 comparison operator: >
110 }
111 }

8.1 Interplay with Executionware

In order to enact the scalability rules, the Executionware provides a monitoring and adapta-
tion engine for cross-cloud applications. In PaaSage, this monitoring and adaptation engine
is Axe [11]. In particular, the Executionware configures the monitoring probes based on
the specified metrics and evaluates the specified scalability rules. If a metric condition is
violated, the Executionware enacts the specified scaling action (e.g., scale-out), which may
include the provisioning of vm instances, the deployment of component instances, and the
wiring of these (see Section 6.1). Life-cycle handlers attached to the specified communic-
ations can wire existing component instances by reconfiguring them. The interested reader
may refer to [11] for a detailed description of how the Executionware enacts scaling actions.

9 Organisations

The organisation package of the CAMEL metamodel is based on the organisation subset of
CERIF [19]. CERIF is an EU standard18 for research information. In particular, the organisa-

18 http://cordis.europa.eu/cerif/

http://cordis.europa.eu/cerif/


The Cloud Application Modelling and Execution Language (CAMEL) 19

tion package of the CAMEL reuses the concepts from CERIF for specifying organisations,
users, and roles. In the following, we exemplify the main concepts in the organisation pack-
age.

Assume that we have to specify the organisation model for the Scalarm use case. List-
ing 11 shows this specification in textual syntax.
organisation AGH specifies the organisation AGH (Akademia Górniczo-Hutnicza, i.e.,

AGH University of Science and Technology), while user MichalOrzechowski specifies the
user Michal Orzechowski belonging to the organisation AGH and owning the application
Scalarm (cf. Listing 2).
role devop specifies the role development and operations (devop), while role assignment

MichalOrzechowskiDevop specifies the assignment of the role devop to the user Michal Orze-
chowski, which is valid from 1 March 2016 to 28 February 2017.

Listing 11: Scalarm organisation model
1 organisation model AGHOrganisation {
2

3 organisation AGH {
4 www: ’http://www.agh.edu.pl/en/’
5 email: ’info@agh.edu.pl’
6 }
7

8 user MichalOrzechowski {
9 first name: Michal

10 last name: Orzechowski
11 email: ’morzech@agh.edu.pl’
12 password: ’************’
13 }
14

15 role devop
16

17 role assignment MichalOrzechowskiDevop {
18 start: 2016-03-01
19 end: 2017-02-28
20 assigned on: 2016-02-29
21 user: AGHOrganisation.morzech
22 role: ScalarmModel.AGHOrganisation.devop
23 }
24 }

10 Providers

The provider package of the CAMEL metamodel is based on Saloon [34,35,36]. Saloon is a
tool-supported DSL for specifying the features of cloud providers and matching them with
requirements by leveraging feature models [4] and ontologies [18]. In the following, we
exemplify the main concepts in the provider package.

Assume that we have to specify the provider model for the Scalarm use case. Listing 12
shows an excerpt of the provider model for a SINTEF private cloud specified using the
CAMEL textual syntax.
root feature SINTEF is the root feature and specifies the attributes and sub-features char-

acterising SINTEF’s private cloud. attribute DeliveryModel specifies that SINTEF provides
a private cloud. attribute ServiceModel specifies that SINTEF provides a IaaS. attribute
Availability specifies that the guaranteed availability of SINTEF’s private cloud is 95%.
attribute Driver specifies that the provider uses an OpenStack Nova API. attribute End-
Point specifies the endpoint of the SINTEF’s OpenStack Nova API.



20 Rossini et al.

feature VM is a sub-feature and specifies the attributes characterising the virtual machine
flavours provided by SINTEF’s private cloud, such as type (attribute VMType), operating
system (attribute VMOS), size of RAM (attribute VMMemory), size of storage (attribute
VMStorage), and number of CPU cores (attribute VMCores). Each attribute has a value type,
and a unit type. For instance, VMMemory has MemoryList, a list of integer values (256, 512,
2048, etc.), as value type, and MEGABYTES as unit type. feature cardinality specifies that the
feature has a cardinality between 1 and 8.
constraints specifies the constraints characterising SINTEF’s private cloud. implies

M1LARGEMapping is an intra-feature constraint and specifies the mapping between the assigned
resources and the virtual machine flavours provided by SINTEF’s private cloud. For in-
stance, the first attribute constraint specifies that the size of RAM of the M1.LARGE virtual
machine flavour is 8192 (megabytes).

Listing 12: SINTEF provider model (excerpt)
1 provider model SINTEFProvider {
2

3 root feature SINTEF {
4

5 attributes {
6

7 attribute DeliveryModel {
8 value: string value ’Private’
9 value type: ScalarmModel.SINTEFType.StringValueType

10 }
11

12 attribute ServiceModel {
13 value: string value ’IaaS’
14 value type: ScalarmModel.SINTEFType.StringValueType
15 }
16

17 attribute Availability {
18 unit type: PERCENTAGE
19 value: string value ’95’
20 value type: ScalarmModel.SINTEFType.StringValueType
21 }
22

23 attribute Driver {
24 value: string value ’openstack -nova’
25 value type: ScalarmModel.SINTEFType.StringValueType
26 }
27

28 attribute EndPoint {
29 value: string value ’https://minicloud.modelbased.net’
30 value type: ScalarmModel.SINTEFType.StringValueType
31 }
32 }
33

34 sub-features {
35

36 feature VM {
37

38 attributes {
39 attribute VMType {value type: ScalarmModel.SINTEFType.VMTypeEnum}
40 attribute VMOS {value type: ScalarmModel.SINTEFType.VMOSEnum}
41 attribute VMMemory {unit type: MEGABYTES value type: ScalarmModel.

SINTEFType.MemoryList}
42 attribute VMStorage {unit type: GIGABYTES value type: ScalarmModel.

SINTEFType.StorageList}
43 attribute VMCores {value type: ScalarmModel.SINTEFType.CoresList}
44 }
45

46 feature cardinality {cardinality: 1 .. 8}
47 }
48 ...



The Cloud Application Modelling and Execution Language (CAMEL) 21

49 }
50

51 feature cardinality {cardinality: 1 .. 1}
52 }
53

54 constraints {
55 ...
56 implies M1LARGEMapping {
57

58 from: ScalarmModel.SINTEFProvider.SINTEF.VM
59 to: ScalarmModel.SINTEFProvider.SINTEF.VM
60

61 attribute constraints {
62

63 attribute constraint {
64 from: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
65 to: ScalarmModel.SINTEFProvider.SINTEF.VM.VMMemory
66 from value: string value ’M1.LARGE’
67 to value: int value 8192
68 }
69

70 attribute constraint {
71 from: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
72 to: ScalarmModel.SINTEFProvider.SINTEF.VM.VMCores
73 from value: string value ’M1.LARGE’
74 to value: int value 4
75 }
76

77 attribute constraint {
78 from: ScalarmModel.SINTEFProvider.SINTEF.VM.VMType
79 to: ScalarmModel.SINTEFProvider.SINTEF.VM.VMStorage
80 from value: string value ’M1.LARGE’
81 to value: int value 80
82 }
83 }
84 }
85 ...
86 }
87 }

11 Security

The security package of the CAMEL metamodel is not based on existing DSLs and has
been developed to enable the specification of security aspects of cross-cloud applications. It
enables the specification of high-level and low-level security requirements and capabilities
that can be exploited for filtering providers as well as adapting cross-cloud applications. In
the following, we exemplify the main concepts in the security package.

Assume that we have to specify the security model for the Scalarm use case. Listing 11
shows this specification in textual syntax.
domain IAM specifies the domain of Identity & Access Management (IAM). domain IAM_-

CLCPM and IAM_UAR specify two sub-domains of IAM, namely Credential Life Cycle/Provi-
sion Management (CLCPM) and User Access Revocation (UAR), respectively.
property IdentityAssurance specifies an abstract property of identity assurance associ-

ated with the domain IAM. security control IAM_02 specifies a security control associated
with the sub-domain (CLCPM) and the property IdentityAssurance. Similarly, security
control IAM_11 specifies a security control associated with the sub-domain (UAR) and the



22 Rossini et al.

property IdentityAssurance. Note that these security controls are part of the set of security
controls identified by the Cloud Security Alliance (CSA).19

security capability SecCap specifies a security capability associated with the security
controls IAM_02 and IAM_11. Finally, the organisation model AmazonExt refers to the security
capability SecCap, which specifies that the Amazon provider supports this security capability.

Listing 13: Scalarm security model
1 security model ScalarmSecurity {
2

3 domain IAM {
4 name: "Identity & Access Management"
5 sub-domains [ScalarmSecurity.IAM_CLCPM , ScalarmSecurity.IAM_CLCPM]
6 }
7

8 domain IAM_CLCPM {
9 name: "Credential Life Cycle/Provision Management"

10 }
11

12 domain IAM_UAR {
13 name: "User Access Revocation"
14 }
15

16 property IdentityAssurance {
17 description: "The ability of a relying party to determine , with some level of

certainty , that a claim to a particular identity made by some entity can be
trusted to actually be the claimant’s true, accurate and correct identity."

18 type: ABSTRACT
19 domain: ScalarmSecurity.IAM
20 }
21

22 security control IAM_02 {
23 specification: "User access policies and procedures shall be established , and

supporting business processes and technical measures implemented , for
ensuring appropriate identity, entitlement , and access management for all
internal corporate and customer (tenant) users with access to data and
organisationally -owned or managed (physical and virtual) application
interfaces and infrastructure network and systems components."

24 domain: ScalarmSecurity.IAM
25 sub-domain: ScalarmSecurity.IAM_CLCPM
26 security properties [ScalarmModel.ScalarmSecurity.IdentityAssurance]
27 }
28

29 security control IAM_11 {
30 specification: "Timely de-provisioning (revocation or modification) of user

access to data and organisationally -owned or managed (physical and virtual)
applications , infrastructure systems, and network components , shall be
implemented as per established policies and procedures and based on user’s
change in status (e.g., termination of employment or other business
relationship , job change or transfer). Upon request, provider shall inform
customer (tenant) of these changes, especially if customer (tenant) data is
used as part the service and/or customer (tenant) has some shared
responsibility over implementation of control."

31 domain: ScalarmSecurity.IAM
32 sub-domain: ScalarmSecurity.IAM_UAR
33 security properties [ScalarmModel.ScalarmSecurity.IdentityAssurance]
34 }
35

36 security capability SecCap {
37 controls [ScalarmSecurity.IAM_02, ScalarmSecurity.IAM_11]
38 }
39 }
40

41 requirement model ScalarmExtendedReqModel {
42

43 security requirement AllIAMsSupported {

19 https://cloudsecurityalliance.org/

https://cloudsecurityalliance.org/


The Cloud Application Modelling and Execution Language (CAMEL) 23

44 controls [ScalarmSecurity.IAM_02, ScalarmSecurity.IAM_11]
45 }
46 }
47

48 organisation model AmazonExt {
49

50 provider Amazon {
51 www: ’https://aws.amazon.com/’
52 email: ’contact@amazon.com’
53 PaaS
54 IaaS
55 security capability [ScalarmModel.ScalarmSecurity.SecCap]
56 }
57 }

12 Execution

The execution package of the CAMEL metamodel is not based on existing DSLs and has
been developed to enable the recording of historical data about the execution of cross-cloud
applications. Historical data, such as metric measurements and SLO assessments, can be
used for auditing purposes as well as for optimising the CAMEL model to better exploit
the available cloud infrastructures [24]. In PaaSage, the execution model is automatically
manipulated by the PaaSage platform during the execution phase (see Section 2), and so it
should be in the general case too. In the following, we exemplify the main concepts in the
execution package.

Assume that we have to record the execution of the Scalarm use case. Listing 14 shows
this specification in textual syntax.
vm binding ScalarmVMBinding specifies that the virtual machine instance CoreIntensive-

UbuntuNorwayInst (cf. Listing 7) is bound to the execution context EC1.
raw metric instance CPUMetricInstance specifies that the metric instance CPUMetricIn-

stance is an instance of the metric CPUMetric and is bound to the virtual machine instance
CoreIntensiveUbuntuNorwayInst and the execution context EC1 (cf. Listing 7).
execution context EC1 specifies the current execution context. It refers to the applica-

tion being executed, the deployment model of the application, the requirement group that
led to this deployment model, and an indication of the total cost of application execution
along with a reference to the corresponding monetary unit.
vm measurement VM1 specifies the virtual machine measurement for the CPU metric in-

stance. It refers to the execution context, the metric instance, the virtual machine instance
(cf. Listing 7), the measured value (95.0), and the timestamp of the measurement.

Similar to the vm measurement, the assessment A1 specifies the assessment for the CPU
metric SLO. It comprises the appropriate reference, the indication that the SLO has been
violated, and the timestamp of the assessment.

Listing 14: Scalarm execution model
1 metric model ScalarmMetric {
2

3 vm binding ScalarmVMBinding {
4 execution context: ScalarmExecution.EC1
5 vm instance: ScalarmModel.ScalarmDeployment.CoreIntensiveUbuntuNorwayInst
6 }
7

8 raw metric instance CPUMetricInstance {
9 metric: ScalarmModel.ScalarmMetric.CPUMetric

10 sensor: ScalarmMetric.CPUSensor



24 Rossini et al.

11 binding: ScalarmModel.ScalarmMetric.ScalarmVMBinding
12 }
13 }
14

15 execution model ScalarmExecution {
16

17 execution context EC1 {
18 application: ScalarmModel.ScalarmApplication
19 deployment model: ScalarmModel.ScalarmDeployment
20 requirement group: ScalarmRequirement.ScalarmRequirementGroup
21 total cost: 100.0
22 cost unit: ScalarmModel.ScalarmUnits.Euro
23 }
24

25 vm measurement VM1 {
26 execution context: ScalarmExecution.EC1
27 metric instance: ScalarmMetric.RawCPUMetricInstance
28 vm instance: ScalarmModel.ScalarmDeployment.CoreIntensiveUbuntuNorwayInst
29 value: 95.0
30 time: 2016-10-31 T 22:50
31 }
32

33 assessment A1 {
34 execution context: ScalarmExecution.EC1
35 measurement: ScalarmExecution.VM1
36 slo: ScalarmRequirement.CPUMetricSLO
37 violated
38 time: 2016-10-31 T 22:50
39 }
40 }

13 Locations, Units, and Types

The location package of the CAMEL metamodel is not based on existing DSLs and has been
developed to enable the specification of locations. A location can be a geographical region
(e.g., Europe) or a cloud location (e.g., Amazon EC2 eu-west-1). A geographical region
can refer to a parent region, which allows for the creation of hierarchies of geographical
regions (e.g., continent, sub-continent, and country). Similar to the geographical region, a
cloud location can refer to a parent location.

The unit package of the CAMEL metamodel is not based on existing DSLs and has been
developed to enable the specification of units that are adopted by the following packages: (a)
metric, where they are used to define the unit of measurement for a metric, (b) execution, where
they are used to define the monetary unit for the cost of a particular application execution,
and (c) the provider, where they are used to define the unit for a particular feature attribute.

The type package of the CAMEL metamodel is also based on Saloon [34,35,36]. It
provides the concepts to specify value types and values used across CAMEL models (e.g.,
integer, string, or enumeration).

The location, unit, and type models of the Scalarm use case have been omitted for brev-
ity. The interested reader may refer to [39] for a complete description of these models.

14 Evaluation

In order to evaluate its usability and usefulness, CAMEL was exposed to different prac-
titioners. The evaluation was performed in the context of the PaaSage use cases, namely



The Cloud Application Modelling and Execution Language (CAMEL) 25

automotive simulation, flight scheduling, enterprise resource planning (ERP), public ser-
vices, and eScience (the latter represented by Scalarm). The presentation of the use cases is
beyond the scope of this paper. The interested reader may refer to the PaaSage website20 for
more information about them. The evaluation was based on the following steps:

1. The use case providers were familiarised with different versions of CAMEL, repor-
ted bugs, requested features, and provided general feedback to the CAMEL developers
between October 2014 and September 2015.

2. The use case providers modelled their use cases with the final version of CAMEL (i.e.,
v2015.09) between October 2015 and March 2016.

3. The use case providers assessed multiple CAMEL capabilities through an online ques-
tionnaire21 between March and April 2016.

The evaluation procedure was based on the technology acceptance model (TAM) [7,2],
where the following dimensions were considered:

– Perceived Ease of Use (PEU): the degree to which a user believes that CAMEL reduces
the effort in the modelling tasks.

– Perceived Usefulness (PU): the degree to which a user believes that using CAMEL en-
hances the performance of the modelling tasks.

The participants in the questionnaire consisted of 23 individuals. Most participants were
male (73.9% compared to 26.1% female). Moreover, most participants were employed as
senior software engineers (52.2%), followed by junior software engineers (17.4%), and
senior system administrators (17.4%). This is also reflected by the years of experience in
IT, since most participants had been employed for more than 5 years (60.8%). Finally, most
participants were well acquainted with MDE and cloud (see Figure 6).

17.40% 

26.10% 

13% 

30.40% 

13% 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

Very	low 2 3 4 Very	high

How	do	you	rate	your	acquaintance	with	
model-driven	engineering	(MDE)?

(a)

4.30% 

17.40% 

26.10% 

34.80% 

17.40% 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	your	acquaintance	with	cloud	
computing?

(b)

Figure 6: Participants’ acquaintance with (a) MDE and (b) cloud computing

In general, most participants were satisfied with the completeness of CAMEL with re-
spect to the requirements of their use cases. In particular, most participants were very sat-
isfied with the completeness of CAMEL for specifying the deployment, organisation, and

20 http://www.paasage.eu/use-cases
21 https://goo.gl/forms/Fwr3Lc33SGqTJj832

http://www.paasage.eu/use-cases
https://goo.gl/forms/Fwr3Lc33SGqTJj832


26 Rossini et al.

requirement models (87%, 78%, and 65%, respectively). However, some participants indic-
ated that they did not need to specify security and type models in their use cases (48% and
30%, respectively).

In the following, we present the evaluation of the usability and usefulness of the follow-
ing CAMEL capabilities:

– CAMEL Textual Editor
– CAMEL Documentation
– CAMEL Deployment model
– CAMEL Requirement model
– CAMEL Metric model
– CAMEL Scalability model
– CAMEL Organisation model

Note that the CAMEL Textual Editor is evaluated on both the PEU and the PU, whereas
the remaining capabilities are evaluated on the PU only. Also note that the provider model
was not evaluated since the participants mostly reused the provider models built-in in the
PaaSage platform, so the sample for the evaluation would have been too small.

14.1 Textual Editor

Many participants rated the usability of the CAMEL Textual Editor and the effort required
for specifying models as neither high nor low (see Figures 7(a) and (b)).

4.30% 

17.40% 

43.50% 

26.10% 

8.70% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	usability	of	the
CAMEL	Textual	Editor?

(a)

8.70% 

21.70% 

43.50% 

26.10% 

0% 
0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	effort	required	for	
specifying	models	in	the
CAMEL	Textual	Editor?

(b)

Figure 7: Participants’ rating of (a) the usability of the CAMEL Textual Editor (b) the effort
required for specifying models

Nevertheless, most participants rated the usefulness of the CAMEL Textual Editor’s
features (e.g., syntax highlighting, input completion, error reporting) as very high or high
(see Figure 8).



The Cloud Application Modelling and Execution Language (CAMEL) 27

0% 
4.30% 

39.10% 

26.10% 
30.40% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	usefulness	of	the	CAMEL	
Textual	Editor's	features	(e.g.,	syntax	
highlighting,	input	completion,	error	

reporting)?	

Figure 8: Participants’ rating of the usefulness of the CAMEL Textual Editor’s features

14.2 Documentation

Most participants indicated that they consulted the CAMEL documentation in order to spe-
cify models (73.9% indicated that the documentation was necessary or very necessary,
whereas none indicated that it was not necessary).

Nevertheless, most participants found the answers to their questions in the CAMEL
documentation (see Figure 9(a)). In case they did not, they found the answers in the CAMEL
community (see Figure 9(b)), e.g., by consulting the CAMEL developers or other CAMEL
users.

0% 

8.70% 

21.70% 

47.80% 

21.70% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Strongly	
disagree:	1

2 3 4 Strongly	
agree:	5

I	found	the	answers	to	my	questions	in	the	
CAMEL	documentation.

(a)

0% 
4.30% 

34.80% 

26.10% 

34.80% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 

Strongly	
disagree:	1

2 3 4 Strongly	
agree:	5

When	the	documentation	was	not	
sufficient,	I	found	the	answers	to	my	
questions	in	the	CAMEL	community.	

(b)

Figure 9: Participants’ rating of (a) the CAMEL documentation and (b) the CAMEL com-
munity

14.3 Deployment model

Most participants rated the completeness of CAMEL for specifying internal components as
high (78.3% rated it high or very high, whereas the remaining 21.7% rated it neither high
nor low) as well as life cycle management scripts (82.6% rated it high or very high, whereas



28 Rossini et al.

the remaining 17.4% rated it neither high nor low). Some participants suggest to support
specifying instantiation workflow that is not based on the dependencies between the internal
components.

Similar results apply to the completeness of CAMEL for specifying virtual machines as
high (78.4% rated it high or very high, whereas the remaining 21.6% rated it neither high
nor low).

Most participants were satisfied with the completeness of CAMEL for specifying com-
munication between internal components (see Figure 10(a)). Some participants suggest to
support distinguishing between TCP and UDP communications. Note that one participant
did not provide any answers, which may indicate that she did not need to specify commu-
nications.

Similar results apply to the completeness of CAMEL for specifying hosting bindings
between components and virtual machines (see Figure 10(b)).

0% 0% 

18.20% 

50% 

31.80% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	communications	between	

components?

(a)

0% 0% 

21.70% 

43.50% 

34.80% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	hosting	bindings	between	
components	and	virtual	machines?

(b)

Figure 10: Participants’ rating of the completeness of CAMEL for specifying (a) commu-
nications and (b) hosting bindings

14.4 Requirement model

Most participants were satisfied with the completeness of CAMEL for specifying quantit-
ative and qualitative hardware requirements (see Figures 11(a) and (b). Some participants
suggested to extend CAMEL in order to support low-energy requirements, CPU pinning
requirements, NUMA tuning requirements, and containers.

Most participants rated the completeness of CAMEL for specifying internal OS require-
ments as high (65.2% rated it high or very high, 30.4% neither high nor low, and 4.3%—i.e.,
one participant—low). Three participants suggested to extend CAMEL in order to support
the selection of OS versions, e.g., in the form of a drop-down list.

Similar results apply to the completeness of CAMEL for specifying location require-
ments (47.8% rated it very high, 30.4% high, 17.4% neither high nor low, and 4.3% low).

Most participants rated the completeness of CAMEL for specifying optimisation re-
quirements as high (78.3% rated it high or very high, whereas 8.7% rated it low) and SLO
requirements (63.6% rated it high or very high).



The Cloud Application Modelling and Execution Language (CAMEL) 29

0% 0% 

34.80% 

26.10% 

39.10% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	quantitative	hardware	

requirements?

(a)

0% 0% 

30.40% 
26.10% 

43.50% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	qualitative	hardware	

requirements?

(b)

Figure 11: Participants’ rating of the completeness of CAMEL for specifying (a) quantitative
and (b) qualitative hardware requirements

Most participants were satisfied with the completeness of CAMEL for specifying scalab-
ility requirements (see Figure 12(a)).

However, many participants rated the completeness of CAMEL for specifying security
requirements as neither high nor low (see Figure 12(b)).

0% 0% 

17.40% 

34.80% 

47.80% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	level	of	completeness	of	
CAMEL	for	specifying	scaling	requirements	
(e.g.,	lower	and	upper	bounds	for	scaling)?

(a)

4.50% 4.50% 

50% 

31.80% 

9.10% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	security	requirements?

(b)

Figure 12: Participants’ rating of the completeness of CAMEL for specifying (a) scaling and
(b) security requirements

Finally, most participants rated the completeness of CAMEL for specifying provider
requirements as high (34.8% rated it very high, 26.1% high, 30.4% neither high nor low, and
8.7% low). Some participants suggested to extend CAMEL in order to support the selection
of providers, e.g., in the form of a drop-down list.

14.5 Metric model

Most participants were satisfied with the completeness of CAMEL for specifying metric
contexts and metric conditions (see Figure 13).



30 Rossini et al.

0% 

13% 

26.10% 

34.80% 

26.10% 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	metric	contexts	and	metric	

conditions?

Figure 13: Participants’ rating of the completeness of CAMEL for specifying metric contexts
and metric conditions

14.6 Scalability model

Most participants were satisfied with the completeness of CAMEL for specifying events and
(composite) event patterns (see Figure 14).

Even more encouraging results apply to the completeness of CAMEL for specifying
scaling actions (see Figure 15(a)) and scalability rules (see Figure 15(b)).

0% 
4.50% 

36.40% 36.40% 

22.70% 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	events,	event	patterns,	and	

composite	event	patterns?

Figure 14: Participants’ rating of the completeness of CAMEL for specifying events and
(composite) event patterns

14.7 Organisation model

Since four of the participants did not have to specify organisation models (e.g., they reused
existing organisation models), only 19 out of 23 participants provided answers to questions
on these models.

Most of the 19 participants rated the completeness of CAMEL for specifying users as
high (76.2% rated it high or very high, and 4.8% low) as well as role assignments (57.1%



The Cloud Application Modelling and Execution Language (CAMEL) 31

0% 0% 

21.70% 

47.80% 

30.40% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	scaling	actions?

(a)

0% 0% 

26.10% 

43.50% 

30.40% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

Very	low:	1 2 3 4 Very	high:	5

How	do	you	rate	the	completeness	of	CAMEL	
for	specifying	scalability	rules?

(b)

Figure 15: Participants’ rating of the completeness of CAMEL for specifying (a) scaling
actions and (b) scalability rules

rated it high or very high) and permissions (57.9% rated it high or very high, and 42.1%
neither high nor low).

Most participants also indicated that the basic roles of admin, DevOps and business
were sufficient to group most of the users in their organisation (72.8% rated them high or
very high).

Concerning access credentials (to their IaaS providers), most participants indicated that
they do not feel comfortable with providing them in organisation models (see blue bars in
Figure 16).

Nevertheless, most participants indicated that they would be comfortable to do so if
they were guaranteed that the platform handles access credentials securely (see orange bars
in Figure 16).

33.30% 

47.60% 

19% 

47.60% 

19% 

33.30% 

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

Yes No Not	sure

Are	you	comfortable	with	supplying	access	
credentials	in	organisation	models	(blue)?

Would	you	supply	such	information	in	organisation	
models	if	you	are	guaranteed	that	the	platform	

handles	it	securely	(organge)?

Figure 16: Participants’ view on access credentials

Some participants suggested to extend CAMEL in order to support granting or denying
permissions on particular types of models.



32 Rossini et al.

14.8 Analysis

Based on the answers to the questionnaire, we conclude that CAMEL and the CAMEL
Textual Editor satisfy the usability and usefulness requirements from the domain to a high
degree. Figure 17 shows a summary of the received feedback in terms of five dimensions
related to usability and usefulness, namely: effectiveness, understandability, satisfaction,
learnability, and integrability. As shown, satisfaction of CAMEL and the CAMEL Textual
Editor is rated highest, while learnability is rated lowest—even though the rating itself is not
low.

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0

Effectiveness

Understandability

SatisfactionLearnability

Integrability

Figure 17: Usability aspects of CAMEL and the CAMEL Textual Editor on five non-
functional dimensions.

The interested reader may refer to [20] for a complete description of this breakdown.
Nevertheless, we received feedback from the participants that requires particular atten-

tion. First, many participants rated the usability of the CAMEL Textual Editor and the effort
required for specifying models as neither high nor low. This datum could be explained by
the fact that specifying models in the CAMEL Textual Editor requires acquiring some back-
ground knowledge, e.g., by reading the CAMEL documentation.

Second, many participants rated the completeness of CAMEL for specifying security
requirements as neither high nor low. This datum could be explained by the fact that security
requirements are not completely supported by the PaaSage platform.

Finally, most participants indicated that they do not feel comfortable with providing
access credentials in organisation models. This datum was expected, given the sensitive
nature of access credentials.

14.9 Threats to validity

In terms of external validity—i.e., the extent to which the conclusions based on a study
can be generalised—the selected use cases cover all the identified aspects of self-adaptive
cross-cloud applications. However, extending the evaluation of CAMEL to other scenarios,
environments, or even demographics may alter the findings.



The Cloud Application Modelling and Execution Language (CAMEL) 33

Internal validity—i.e., the extent to which the conclusions based on a study are warrant-
ed—is not affected, since the data are unambiguous.

In terms of conclusions validity—i.e., the degree to which conclusions about the rela-
tionship among variables based on a study are correct—some questions in the questionnaire
were optional, since different use cases had different requirements and hence the correspond-
ing CAMEL models did not necessarily cover all aspects. However, some of the participants
may have selected the medium score (i.e., 3) for aspects they have not used, which may have
altered the conclusions.

Finally, construct validity—i.e., the degree to which a test measures what it claims—is
not affected, since all questions in the questionnaire were carefully prepared to cover all
capabilities of CAMEL and the CAMEL Textual Editor.

15 Related Work

In the following, we compare CAMEL with related work. We distinguish between tools (e.g.,
DevOps and cloud orchestration tools) to automate the deployment of cloud applications
and languages to model cloud aspects. For the latter category, we define six comparison
criteria and evaluate the languages according to these criteria. This comparison will validate
our claim that CAMEL advances the state-of-the-art in modelling and execution of cloud
applications.

15.1 Tools

In the cloud community, libraries such as jclouds22 or DeltaCloud23 provide generic APIs
abstracting over the heterogeneous APIs of IaaS providers. These libraries reduce the cost
and effort of deploying cloud applications and can be used by the platforms supporting
CAMEL. For instance, the PaaSage platform uses jclouds.

DevOps tools such as Puppet24 or Chef25 rely on scripting languages to specify the de-
ployment of cloud applications. These tools increase the automation in deploying cloud ap-
plications. However, the deployment scripts cannot be treated as deployment models, which
introduces a mismatch between the deployment topology of cloud applications and the tech-
nique used to represent them.

Cloud orchestration tools such as Cloudify26 or Apache Brooklyn27 rely on the TO-
SCA [33] (see below) to specify the topologies of cloud applications along with the pro-
cesses for their orchestration. These tools facilitate the provisioning, deployment, and mon-
itoring of cloud applications across multiple cloud infrastructures [3]. However, TOSCA
does not provide an instance model and hence does not support models@run-time, which
makes these tools unsuitable for reasoning on the models and hence enabling self-adaptive
cross-cloud applications.

22 http://www.jclouds.org
23 http://deltacloud.apache.org/
24 https://puppetlabs.com/
25 http://www.opscode.com/chef/
26 http://getcloudify.org/
27 https://brooklyn.apache.org/

http://www.jclouds.org
http://deltacloud.apache.org/
https://puppetlabs.com/
http://www.opscode.com/chef/
http://getcloudify.org/
https://brooklyn.apache.org/


34 Rossini et al.

15.2 Languages

In the research community, within the Reservoir28 EU project, Galán et al. [16] proposed a
service specification language for cloud computing platforms, which extends the DMTF’s
Open Virtualization Format (OVF) standard to address the specific requirements of these
environments.

Within the 4CaaSt29 EU project, Nguyen et al. [28] proposed a language to specify
Blueprint Templates—a uniform abstract description for cloud service offerings that may
cross different cloud computing layers, i.e., infrastructure and platform.

The MODAClouds project30 provides a family of DSLs collectively called MODACloud-
ML. MODACloudML relies on the following three layers of abstraction: (i) the cloud-
enabled computation independent model (CCIM) to describe an application and its data,
(ii) the CPIM (as in PaaSage) to describe concerns of cloud applications in a cloud-agnostic
way, and (iii) the CPSM (as in PaaSage) to describe concerns of cloud applications in a
cloud-specific way, so that they can be provisioned and deployed on specific clouds.

The ARTIST project31 provides the Cloud Application Modelling Language (CAML).
CAML consists of an internal DSL [15] realised as a UML library along with UML pro-
files [5] rather than an external DSL such as CAMEL. The main rationale behind the latter
stems from the goal of the ARTIST project to support the migration of existing applications
to the cloud, whereby UML models are reverse-engineered and tailored to a selected cloud
environment.

The ARCADIA project32 provides a methodology and a framework to support the de-
velopment of highly-distributed applications (HDAs) that are reconfigurable by design. The
ARCADIA Framework [38] relies on unikernel technology in order to bundle microservices,
and leverages on an extensible context model throughout the entire life cycle of HDAs. Sim-
ilar to CAMEL, the ARCADIA Context Model [17] has multiple facets, such as the compon-
ent model, the service graph model, the service deployment model, and the service run-time
model.

In the standards community, the Topology and Orchestration Specification for Cloud
Applications (TOSCA) [33] is a specification developed by the OASIS consortium, which
provides a language for specifying the components comprising the topology of cloud ap-
plications along with the processes for their orchestration.

15.3 Comparison

In the following, we define six comparison criteria and evaluate the aforementioned lan-
guages according to these criteria. These criteria were selected to evaluate the usefulness,
usability, and self-adaptation support of the lanugages. In particular, the abstract syntax and
aspect coverage, delivery model support, and models@run-time support reflect the useful-
ness of the language; the concrete syntax and integration level reflect the usability; and
models@run-time support also reflects the self-adaptation support.

28 http://www.reservoir-fp7.eu/
29 http://www.4caast.eu
30 http://www.modaclouds.eu/
31 http://www.artist-project.eu/
32 http://www.arcadia-framework.eu

http://www.reservoir-fp7.eu/
http://www.4caast.eu
http://www.modaclouds.eu/
http://www.artist-project.eu/
http://www.arcadia-framework.eu


The Cloud Application Modelling and Execution Language (CAMEL) 35

Abstract syntax. The abstract syntax of a language describes the set of concepts, their attrib-
utes, and their relations, as well as the rules for combining these concepts to specify valid
statements that conform to this abstract syntax. The abstract syntax can be defined using
formalisms that provide different capabilities. For instance, XML Schema are more suitable
for tree-based structures, while MOF-based formalisms are more suitable for graph-based
structures and offer better tool support and better integration with constraint languages such
as OCL. This criterion is used to identify which formalisms are used by a language. The
values for this criterion are “XML Schema” and “MOF”.33

Concrete syntax. The concrete syntax of a language describes the textual or graphical nota-
tion that renders the concepts of the abstract syntax, their attributes, and their relations. The
concrete syntax can be defined using notations that provide a trade-off between the intuitive-
ness and the effectiveness of the syntax. For instance, a textual syntax may be less intuitive
but more effective than a corresponding graphical syntax. This criterion is used to identify
which notations are supported by a language. The values for this criterion can be “XML”,
“txt” (textual), and “gra” (graphical).

Aspect coverage. A language may cover multiple aspects within the same domain or across
multiple domains. For instance, in CAMEL we specify the life cycle of cross-cloud ap-
plications using 11 aspects, namely deployment, requirement, location, metric, scalability,
provider, organisation, security, execution, unit, and type. This criterion reflects how many
of these aspects are covered by a language. The values for this criterion can be “low” if it
covers at most three aspects, “medium” if it covers at most six aspects, and “high” otherwise.

Integration level. A language that covers multiple aspects may provide different levels of
integration across these aspects, especially when these aspects include similar or equivalent
concepts. The integration solution has to: (a) join equivalent concepts and separate similar
concepts into respective sub-concepts; (b) homogenise the remaining concepts so that they
are defined at the same level of granularity; (c) enforce a uniform formalism and notation for
the abstract and concrete syntaxes; and (d) enforce the consistency, correctness, and integrity
of the models. Each of these steps is a precondition to the following step and requires an in-
creasing amount of effort. This criterion reflects how many of these steps have been adopted
to integrate the sub-languages. The values for this criterion can be “low” if the sub-languages
were integrated following only step (a), “medium” if they were integrated following steps
(a) and (b), “high” if they were integrated following all steps, and “N/A” if they were not
integrated. In the last case, each sub-language covers one aspect and is independent from the
other sub-languages. This independence leads to the following disadvantages: (a) it raises
the complexity of the language, since each sub-language has its own abstract and concrete
syntax; (b) it steepens the learning curve and increases the modelling effort for the same
reason; (d) it leads to the duplication of modelling for similar or equivalent concepts; (e) it
leads to the manual validation of cross-aspect dependencies.

Delivery model support. A cross-cloud application may exploit any of the cloud delivery
models, namely IaaS and PaaS. A language for specifying the life cycle of cross-cloud ap-
plications should support concepts for each of these cloud delivery models. This criterion
reflects how many of these delivery models are supported by a language. The values for this
criterion can be “IaaS” and “PaaS”.

33 Abstract syntaxes defined in Ecore fall into this category.



36 Rossini et al.

Models@run-time support. Models@run-time [6] provides an abstract representation of the
underlying running system, whereby a modification to the model is enacted on-demand in
the system, and a change in the system is automatically reflected in the model. Models@run-
time can be implemented using the type-instance pattern [1], which facilitates reusability and
abstraction. For instance, we implemented the type-instance pattern in two aspects, namely
deployment and metric. In the case of deployment, this allows to automatically adapt the
component- and virtual machine instances in the deployment model based on scalability
rules (e.g., scale out a Scalarm service along with the underlying virtual machine). In the
case of monitoring, this allows to automatically populate the metric model with metric in-
stances (e.g., CPU load measurements of the virtual machine hosting the Scalarm service).
This criterion reflects how many of these aspects implement the type-instance pattern. The
values for this criterion can be “deployment” and “metric”.

15.4 Analysis

Table 1 shows the comparison of the languages based on the criteria above. CAMEL scores
best in all criteria apart from the last one.

Language Abstract Concrete Aspect Integration Delivery Model Models@run-time
Syntax Syntax Coverage Level Support Support

Reservoir OVF Extension XML Schema XML low N/A IaaS N/A
4CaaSt Blueprint Template XML Schema XML low N/A IaaS, PaaS N/A

ModaCloudML MOF XML, gra, txt medium low IaaS, PaaS deployment
CAML MOF gra medium medium IaaS N/A

ARCADIA Context Model XML Schema XML high medium IaaS deployment
TOSCA XML Schema XML, txt medium medium IaaS, PaaS N/A
CAMEL MOF XML, gra, txt high high IaaS deployment, metric

Table 1: The cloud language comparison table

Compared to CAMEL, the Reservoir OVF Extension and the 4CaaSt Blueprint Tem-
plates do not cover the multiple aspects necessary for modelling and especially executing
cross-cloud applications.

MODACloudML and CAMEL achieve similar goals, but with different approaches:
MODACloudML is a family of loosely coupled DSLs, while CAMEL is a standalone lan-
guage. CAMEL has the advantage of providing a uniform abstract and concrete syntax,
which resulted from a process of coupling and homogenising multiple DSLs [29]. How-
ever, ModaCloudML supports both IaaS and PaaS while CAMEL only supports the former.
CAMEL will be extended to include support PaaS in future work.

CAML achieves a subset of the goals of CAMEL. CAML does not support aspects of
execution, while CAMEL provides full support for models@run-time.

The ARCADIA Context Model is less expressive than CAMEL with respect to specify-
ing complex conditions on composite metrics. However, the ARCADIA Context Model is
more expressive than CAMEL with respect to specifying adaptation actions, and provides
concepts for specifying unikernel and microservices aspects. CAMEL could possibly be
extended to support these aspects.

TOSCA supports the specification of types and templates, but not instances, in deploy-
ment models. CAMEL, in contrast, supports the specification of types, templates, and in-
stances. Note that CAMEL provides built-in types such as vm, internal component, communica-
tion, and hosting, while TOSCA offers similar types in a library of reusable types and allows



The Cloud Application Modelling and Execution Language (CAMEL) 37

to define arbitrary types. In its current form, TOSCA can only be used at design-time, while
CAMEL can be used at both design-time and run-time.

As part of the joint standardisation effort of MODAClouds, PaaSage, and ARCADIA,
SINTEF presented the models@run-time approach to the TOSCA technical committee (TC)
and proposed to form an ad hoc group to investigate how TOSCA could be extended to
support this approach. The TC welcomed this proposal and approved the formation of the
Instance Model Ad Hoc group in October 2015. The group is currently co-led by Alessandro
Rossini from SINTEF and Derek Palma from Vnomic. The work performed in this group
will guarantee that the contribution of CAMEL will partly be integrated into the standard.

16 Conclusion and Future Work

CAMEL allows to specify multiple aspects of cross-cloud applications, such as provision-
ing, deployment, service level, monitoring, scalability, providers, organisations, users, roles,
security, and execution. It supports models@run-time, which enables reasoning on CAMEL
models and hence managing self-adaptive cross-cloud applications.

In this paper, we described the design and implementation of CAMEL, with emphasis
on the integration of heterogeneous DSLs that cover different aspects of self-adaptive cross-
cloud applications. Moreover, we provided a real-world running example to illustrate how
to specify models in a concrete textual syntax and how to dynamically adapt these models
during the application life cycle. Finally, we provided an evaluation of CAMEL’s usability
and usefulness, based on TAM.

In the future, we will continue to develop CAMEL iteratively. In particular, we will ad-
apt and extend the capabilities of CAMEL to the changing requirements. In this respect, the
developers will provide feedback on whether the concepts in CAMEL are adequate to design
and implement their components. Similarly, the users will provide feedback on whether the
concepts in CAMEL are satisfactory for modelling the use cases. In addition to the PaaS-
age project, CAMEL has been adopted by the CACTOS34, CloudSocket35, and MUSA36

projects. This will guarantee the further development and validation of CAMEL in a wide
variety of cloud computing scenarios.

In addition, CAMEL models that conform to an old version of CAMEL often have
to be migrated to conform to its current version. In the future, we would like to integrate
a solution for the challenge of maintaining multiple versions and automatically migrating
CAMEL models [29] based on CDO and Edapt.

Finally, we will contribute to the Instance Model Ad Hoc group of TOSCA so that the
contribution of CAMEL will partly be integrated into the standard.

Acknowledgements. The research leading to these results was supported by the European
Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 317715 (PaaSage) and the European Commission’s Framework Programme Hori-
zon 2020 (ICT-07-2014) under grant agreement numbers 644690 (CloudSocket) and 645372
(ARCADIA). The authors would like to thank the use case providers and component de-
velopers in the above projects for the constructive feedback on CAMEL. Michal Orzechow-
ski is also grateful to AGH University of Science and Technology for their support under
grant number 15.11.230.212.

34 http://www.cactosfp7.eu/
35 https://www.cloudsocket.eu
36 http://www.musa-project.eu/

http://www.cactosfp7.eu/
https://www.cloudsocket.eu
http://www.musa-project.eu/


38 Rossini et al.

References

1. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions on Modeling and
Computer Simulation 12(4), 290–321 (2002). DOI 10.1145/643120.643123

2. Bagozzi, R.P., Davis, F.D., Warshaw, P.R.: Development and Test of a Theory of Technological Learning
and Usage. Human Relations 45, 659–686 (1992). DOI 10.1177/001872679204500702

3. Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser, C.B., Domaschka, J.: Cloud Orchestration
Features: Are Tools Fit for Purpose? In: I. Raicu, O.F. Rana, R. Buyya (eds.) UCC 2015: 8th IEEE/ACM
International Conference on Utility and Cloud Computing, pp. 95–101. IEEE Computer Society (2015).
DOI 10.1109/UCC.2015.25

4. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later: A literature
review. Inf. Syst. 35(6), 615–636 (2010). DOI 10.1016/j.is.2010.01.001

5. Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., Kappel, G.: UML-based Cloud Application Mod-
eling with Libraries, Profiles, and Templates. In: R.F. Paige, J. Cabot, M. Brambilla, L.M. Rose,
J.H. Hill (eds.) CloudMDE 2014: 2nd International Workshop on Model-Driven Engineering on and
for the Cloud, CEUR Workshop Proceedings, vol. 1242, pp. 56–65. CEUR (2014). URL http:
//ceur-ws.org/Vol-1242/paper7.pdf

6. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42(10), 22–27 (2009). DOI
10.1109/MC.2009.326

7. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Techno-
logy. MIS Quarterly 13(3), 319–340 (1989). DOI 10.2307/249008. URL http://www.jstor.org/
stable/249008

8. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: A Cross-Cloud, Multi-Tenant Deploy-
ment and Runtime Engine. In: SummerSOC 2015: 9th Workshop and Summer School On Service-
Oriented Computing 2015 (2015)

9. Domaschka, J., Griesinger, F., Baur, D., Rossini, A.: Beyond Mere Application Structure: Thoughts
on the Future of Cloud Orchestration Tools. Procedia Computer Science 68, 151–162 (2015). DOI
10.1016/j.procs.2015.09.231. Cloud Forward 2015: 1st International Conference on Cloud Forward:
From Distributed to Complete Computing

10. Domaschka, J., Kritikos, K., Rossini, A.: Towards a Generic Language for Scalability Rules. In: G. Ortiz,
C. Tran (eds.) Advances in Service-Oriented and Cloud Computing—Workshops of ESOCC 2014, Com-
munications in Computer and Information Science, vol. 508, pp. 206–220. Springer (2015). DOI
10.1007/978-3-319-14886-1_19

11. Domaschka, J., Seybold, D., Griesinger, F., Baur, D.: Axe: A Novel Approach for Generic, Flexible,
and Comprehensive Monitoring and Adaptation of Cross-Cloud Applications. In: A. Celesti, P. Leit-
ner (eds.) Advances in Service-Oriented and Cloud Computing—Workshops of ESOCC 2015, Com-
munications in Computer and Information Science, vol. 567, pp. 184–196. Springer (2016). DOI
10.1007/978-3-319-33313-7_14

12. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud systems with
CloudMF. In: A. Solberg, M.A. Babar, M. Dumas, C.E. Cuesta (eds.) NordiCloud 2013: 2nd Nor-
dic Symposium on Cloud Computing and Internet Technologies, pp. 38–45. ACM (2013). DOI
10.1145/2513534.2513542

13. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven provisioning, de-
ployment, monitoring, and adaptation of multi-cloud systems. In: L. O’Conner (ed.) CLOUD 2013:
6th IEEE International Conference on Cloud Computing, pp. 887–894. IEEE Computer Society (2013).
DOI 10.1109/CLOUD.2013.133

14. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: Applying MDE to Tame the Com-
plexity of Managing Multi-Cloud Applications. In: R. Bilof (ed.) UCC 2014: 7th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing, pp. 269–277. IEEE Computer Society (2014).
DOI 10.1109/UCC.2014.36

15. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
16. Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I., Gil, V., Vaquero, L.M.: Service specification in cloud

environments based on extensions to open standards. In: J. Bosch, S. Clarke (eds.) COMSWARE 2009:
4th International Conference on COMmunication System softWAre and MiddlewaRE, pp. 19:1–19:12.
ACM (2009). DOI 10.1145/1621890.1621915

17. Gouvas, P., Rossini, A., Chauvel, F., Zafeiropoulos, A., Fotopoulou, E., Vassilakis, C., Repetto, M.,
Tsagkaris, K., Koutsouris, N., Demesticha, K., Kovaci, S., Carella, G.: D2.2—Definition of the ARCA-
DIA Context Model. Arcadia project deliverable (2015)

18. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2),
199–220 (1993). DOI 10.1006/knac.1993.1008

http://ceur-ws.org/Vol-1242/paper7.pdf
http://ceur-ws.org/Vol-1242/paper7.pdf
http://www.jstor.org/stable/249008
http://www.jstor.org/stable/249008


The Cloud Application Modelling and Execution Language (CAMEL) 39

19. Jeffery, K., Houssos, N., Jörg, B., Asserson, A.: Research information management: the CERIF approach.
IJMSO 9(1), 5–14 (2014). DOI 10.1504/IJMSO.2014.059142

20. Kapitsaki, G., Achilleos, A., Papoutsakis, M.: D1.7.2—Results of Evaluation of developers related to the
use cases. PaaSage project deliverable (2016)

21. Kritikos, K., Domaschka, J., Rossini, A.: SRL: A Scalability Rule Language for Multi-Cloud Environ-
ments. In: J.E. Guerrero (ed.) CloudCom 2014: 6th IEEE International Conference on Cloud Computing
Technology and Science, pp. 1–9. IEEE Computer Society (2014). DOI 10.1109/CloudCom.2014.170

22. Kritikos, K., Kirkham, T., Kryza, B., Massonet, P.: Security Enforcement for Multi-Cloud Platforms—
The Case of PaaSage. Procedia Computer Science 68, 103–115 (2015). DOI 10.1016/j.procs.2015.
09.227. Cloud Forward 2015: 1st International Conference on Cloud Forward: From Distributed to
Complete Computing

23. Kritikos, K., Korozi, M., Kryza, B., Kirkham, T., Leonidis, A., Magoutis, K., Massonet, P., Ntoa, S.,
Papaioannou, A., Papoulas, C., Sheridan, C., Zeginis, C.: D4.1.1—Prototype Metadata Database and
Social Network. PaaSage project deliverable (2014)

24. Kritikos, K., Magoutis, K., Plexousakis, D.: Towards Knowledge-Based Assisted IaaS Selection. In:
CloudCom 2016: 8th IEEE International Conference on Cloud Computing Technology and Science.
IEEE Computer Society (2016)

25. Król, D., Kitowski, J.: Self-scalable services in service oriented software for cost-effective data farming.
Future Generation Comp. Syst. 54, 1–15 (2016). DOI 10.1016/j.future.2015.07.003

26. Kühne, T.: Matters of (meta-)modeling. Software and Systems Modeling 5(4), 369–385 (2006). DOI
10.1007/s10270-006-0017-9

27. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Special Publication 800-145, National
Institute of Standards and Technology (2011)

28. Nguyen, D.K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.P., van den Heuvel, W.: Blueprint Tem-
plate Support for Engineering Cloud-Based Services. In: W. Abramowicz, I.M. Llorente, M. Sur-
ridge, A. Zisman, J. Vayssière (eds.) ServiceWave 2011: 4th European Conference Towards a Service-
Based Internet, Lecture Notes in Computer Science, vol. 6994, pp. 26–37. Springer (2011). DOI
10.1007/978-3-642-24755-2_3

29. Nikolov, N., Rossini, A., Kritikos, K.: Integration of DSLs and Migration of Models: A Case Study in
the Cloud Computing Domain. Procedia Computer Science 68, 53–66 (2015). DOI 10.1016/j.procs.
2015.09.223. Cloud Forward 2015: 1st International Conference on Cloud Forward: From Distributed
to Complete Computing

30. Object Management Group: Unified Modeling Language Specification (2011). http://www.omg.org/
spec/UML/2.4.1/

31. Object Management Group: Object Constraint Language (2014). http://www.omg.org/spec/OCL/
2.4/

32. Object Management Group: XML Metadata Interchange Specification (2014). http://www.omg.org/
spec/XMI/2.4.2/

33. Palma, D., Spatzier, T.: Topology and Orchestration Specification for Cloud Applications (TOSCA).
Tech. rep., Organization for the Advancement of Structured Information Standards (OASIS) (2013).
URL http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf

34. Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configurations using feature
models and ontologies. In: MultiCloud 2013: International Workshop on Multi-cloud Applications and
Federated Clouds, pp. 21–26. ACM (2013). DOI 10.1145/2462326.2462332

35. Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with constraints: a pragmatic
approach. In: T. Kishi, S. Jarzabek, S. Gnesi (eds.) SPLC 2013: 17th International Software Product
Line Conference, pp. 162–166. ACM (2013). DOI 10.1145/2491627.2491638

36. Quinton, C., Rouvoy, R., Duchien, L.: Leveraging Feature Models to Configure Virtual Appliances. In:
CloudCP 2012: 2nd International Workshop on Cloud Computing Platforms, pp. 21–26. ACM (2012).
DOI 10.1145/2168697.2168699

37. Rossini, A.: Cloud Application Modelling and Execution Language (CAMEL) and the PaaSage Work-
flow. In: A. Celesti, P. Leitner (eds.) Advances in Service-Oriented and Cloud Computing—Workshops
of ESOCC 2015, Communications in Computer and Information Science, vol. 567, pp. 437–439.
Springer (2016). DOI 10.1007/978-3-319-33313-7

38. Rossini, A., Chauvel, F., Gouvas, P., Zafeiropoulos, A., Vassilakis, C., Fotopoulou, E.: D3.1a—Smart
Controller Reference Implementation. Arcadia project deliverable (2016)

39. Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D., Romero, D.: D2.1.3—
CAMEL Documentation. PaaSage project deliverable (2015)

40. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-merge approach to
version control in MDE. Journal of Logic and Algebraic Programming 79(7), 636–658 (2010). DOI
10.1016/j.jlap.2009.10.003

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/XMI/2.4.2/
http://www.omg.org/spec/XMI/2.4.2/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf

	Introduction
	CAMEL and the Self-Adaptation Workflow
	Technologies
	Integration of Heterogeneous DSLs
	CAMEL Design and Syntax
	Deployment
	Requirements
	Metrics and Scalability Rules
	Organisations
	Providers
	Security
	Execution
	Locations, Units, and Types
	Evaluation
	Related Work
	Conclusion and Future Work

