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Abstract—The on-board sensors’ view of an automated vehicle
(AV) can suffer from occlusions by other traffic participants,
buildings, or vegetation, especially in urban areas. However,
knowledge of possible other traffic participants in the occluded
areas is crucial for an energy and comfort optimizing control of
an AV. In such a case, information from infrastructure sensors
sent via vehicle to anything (V2X) communication can help
the AV. Fur such cases, we have developed and prototypically
implemented a concept where an infrastructure environment
model is generated from infrastructure sensors on a multi-access
edge computing (MEC) server of an LTE/5G mobile network.
This information extends the AVs’ field of view and is beneficially
integrated into their motion planning schemes. In this article,
after a description of the modules of our approach, we present
and discuss real-world results from our pilot site on a public
junction with prototype AVs.

Index Terms—Connected Automated Driving, Field Test,
Merging Scenarios, V2X

I. BACKGROUND AND MOTIVATION

OMPARED to other highly automated systems, e.g. shop

floor automation, where the environment is adapted or
simplified to support the automation system, automated vehi-
cles (AVs) in mixed traffic have to fulfill challenging tasks in
very complex and changing environments, which are designed
for human drivers. For example, the signalization of traffic
rules by signs, traffic lights, or markings on the road targets the
cognitive capabilities of human drivers. Thus, in AVs, video
cameras and other sensors, like lidars and radars, collect the
information around the vehicle as input for the algorithms
responsible for driving [46]. In addition, different system
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Fig. 1.
building occluding the priority road on the bottom right. The CAVs should
turn right on the priority road like the white vehicle in the center. The building
on the lower right occludes the CAVs’ on-board sensors FOV.

Photo of the junction with the side road on the top right and the

approaches exist to communicate important information, e.g.
the current state of a traffic light, to any connected vehicle
[1]. A connected automated vehicle (CAV) can make use of,
e.g., an ad-hoc network, like ITS-G5 (also called Dedicated
Short Range Communication, DSRC), or a cellular mobile
network, like LTE/5G. With that, it can retrieve important
information from other road users (vehicle to vehicle, V2V)
and/or other sources (vehicle to anything, V2X), like road-
side units (RSUs). Besides communicating perception data,
research has extensively studied approaches for cooperative
trajectory coordination [41] as well, mostly by simulations.
However, they are currently difficult to implement, as they
typically assume all road traffic being CAVs [47].

Extending the previously mentioned approaches to com-
municate information from traffic infrastructure or other road
users, in the German public funded project MEC-View!, we
have conducted research on an approach that supports the

I'Website: www.mec-view.de
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CAVs’ on-board perception system with information from
infrastructure sensors. Especially in urban areas, other traffic
participants, houses, trees, etc., can heavily occlude the on-
board sensors’ field of view (FOV). Thus, we extend the
CAV’s FOV by communicating the information on traffic
detected by infrastructure sensors. As automated driving poses
demanding requirements on communication latencies, since
up-to-date data are crucial for safe driving, our idea was
to use a multi-access edge computing (MEC) server within
a latency optimized mobile network. The server processes
the sensors’ data to an infrastructure environment model and
predicts the movement of all objects for a few seconds to
allow for predictive planning and to counteract latency. This
can additionally reduce the computational effort on-board the
CAVs.

To evaluate this approach in real traffic, a pilot installation
has been built up at a suburban T-junction in the city of
Ulm, Germany [3], see Fig. 1. There, a CAV approaching
the junction on the side road has to give right of way
when merging onto the priority road. However, the vehicles
approaching the junction on the priority road are only visible to
the on-board sensors when the CAV has already arrived at the
yield line due to a building on the corner of the junction. Thus,
the CAV has to slow down to (almost) stop before accelerating
again even when there is a free main road.

Receiving the environment model including the objects’
predictions from the MEC server, the CAV’s motion planning
can consider information from occluded areas as well as from
areas beyond its own FOV. Thus, the vehicle can plan its own
trajectory at the junction more smoothly, and the avoidance of
braking and re-accelerating can be more energy efficient [27].

In this article, we concentrate on the end of the processing
chain and compare two different methods of integrating the
external environment model into the data processing of the
CAV: One uses a track-to-track (T2T) fusion with the on-
board environment model as a basis for a hierarchical motion-
planning scheme. The other one solves the predictive motion
planning holistically on the external information, while the re-
active trajectory control uses the on-board environment model.
Each approach has been implemented into one prototype CAV.
We prove the feasibility of the overall system approach using
results from test drives with the two prototype CAVs at our
pilot site in real traffic. Based on that data, we evaluate the
impact on the maneuver time of the CAVs as well as the
influence on their energy consumption for different traffic
scenarios and compare them to a baseline without external
environment information.

II. RELATED WORK

Traffic surveillance at junctions has already been reported
in literature, as summarized in the survey [7]. However, many
approaches concentrate on detecting and analyzing the traffic
or, like [10], generating ground truth data for the evaluation
of AV driving functions. Thus, the communication between
infrastructure and CAVs is not in their focus and, if at all,
often only regarded in a very generic way.

In many of those approaches that include a communication
between infrastructure and the CAV, the sensor data or pro-

cessed information, like object detections, are communicated
directly. In contrast, our work includes a mobile network
featuring a MEC server, which provides fusion of the infras-
tructure sensors’ object detections into an overall environment
model as well as a prediction of these objects. This comes
with the advantage that the computational load for this fusion
and prediction tasks are not required in the vehicle [48]. Our
approach can be extended to hybrid communication supporting
cellular mobile networks as well as DSRC as shown in [4].
Other approaches, like [13], go further and move safety-
relevant functionality at least partly into the infrastructure.
In contrast, our approach assists the automated vehicle and
can improve efficiency and comfort, while safety is ensured
by the functionality on-board the vehicle, thus making it
more resilient with respect to failures on communication or
infrastructure side.

A first, but only very general overview on fusion and
tracking algorithms for the junction surveillance application
is already included in [7]. Today, Random Finite Sets (RFS)
have become state-of-the-art for multi-object tracking. Based
on the Finite State Set Statistics (FISST) theory [28], the
Generalized Labeled Multi-Bernoulli filter has been the first
closed form solution to the multi-object Bayes theorem that is
computationally tractable [29]. Further extensions and approx-
imations to reduce the computational effort and to allow for a
real-time application have been developed, like the Labeled
Multi-Bernoulli (LMB) filter [40]. Our approach presented
in this paper uses a centralized LMB Multi-Object Tracker
(MQT) [18], [19]. However, the application would also allow
for a distributed implementation of the Bayes-optimal GLMB
filter between the MEC server and the sensor processing units
(SPUs), as we show in [17]. Alternatively, sub-optimal track-
to-track schemes based on RFS are very popular, but suffer
from unresolved challenges [5].

Concerning motion planning methods for the automated ve-
hicles, the survey paper [47] includes an up-to-date summary.
The methods can be clustered into graph-based, learning-
based, and optimization-based methods. Graph-based meth-
ods discretize the state and action space and interpret the
discretized states as nodes in a graph. Then, graph-search
algorithms, such as the well-known A* algorithm [9], [15]
or rapidly exploring random trees [8], are used to determine
the optimal path from the ego state to the AV’s destination.
Learning-based methods comprise deep reinforcement learning
(deep RL) [16] and supervised end-to-end (E2E) learning
approaches [23]. Deep RL tends to generalize better than E2E
learning. However, both, graph-search methods and learning-
based methods typically suffer from high computational bur-
den. Optimization-based methods formulate the planning as
an Optimal Control Problem (OCP) [14], [45], [49]. The
OCP is then solved either analytically or numerically by
model predictive control methods. Analytical solutions often
solve the OCP up to some parameters, over which a grid
search is conducted to find the overall optimal trajectory. Both
approaches in this paper belong to this category.

The energy consumption of vehicles depends on traffic flow.
An overview of different energy consumption models can
be found in [2]. Some of the described models use current
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movement information of vehicles (e.g., velocity and accel-
eration) and are especially interesting because these signals
can be easily measured during field trials. Other approaches
use static information from digital maps (e.g., positions of
street signs or historical aggregated speed profiles) [22], [30].
However, these approaches are less flexible and more complex.
Since we compare the energy consumption of drives with
almost identical trajectories, in our case, the static setting is
also identical and not significant to our relative comparison.
To prove the traffic phase dependency of fuel consumption
based on measured data from vehicles and Kerner’s three
phase traffic theory [24], Koller [25] introduced a consumption
matrix which uses acceleration and velocity pairs. Rehborn
et al. [38] use the energy matrix approach to compare the
consumption of simulated automated and non-automated ve-
hicles. The application of the energy matrix investigates the
energy consumption with respect to traffic congestion using
data from a microscopic simulation based on a stochastic
Kerner-Klenov three-phase traffic flow model. The simulated
data shows that traffic in a congested state requires up to 40%
more energy (see also Rehborn et al. [39]). In contrast to these
simulation results, this paper reveals the differences of energy
consumption of CAVs with and without infratsructure support
based on measured data from a field trial.

III. SYSTEM OVERVIEW

Our main goal within the project MEC-View was to demon-
strate proof of concept for an infrastructure sensor based
assistance for CAVs with low latency. Additionally, to keep the
computational effort on-board the vehicle as low as possible,
a ready-to-use infrastructure environment model should be
provided to the CAVs, including the objects’ predictions for
some seconds. Especially for the prediction task, this comes
with the further advantage that the method can be highly
adapted to the special characteristics and conditions of the
local environment, while on-board the CAV, a generic method
would have to be applied.

Although the main goal was a proof of concept, we have
yet developed an system architecture that can serve as a basis
for later commercial developments or further research. This
architecture is shown in Fig. 2 and consists of the following
components: The infrastructure sensors with SPUs, a mobile
network (e.g. LTE or 5G), a MEC server with additional
connection to backend services (e.g. for an up-to-date high
definition (HD) map), and the CAVs. Except some control
and error handling commands, which are neglected within
the rest of this paper, the information flow is unidirectional
from the sensors via the MEC server to the CAVs. Despite
these simplifications for our proof of concept, our architecture
can be easily extended for bilateral information flows, e.g. to
incorporate information from the vehicles into the environment
model, and to other means of communication, e.g. DSRC/ITS-
G5, as shown in [4].

The sensors can be of different types, e.g. video cameras
or lidar sensors, each being connected to an SPU. The SPUs
perform an object detection on the sensors’ raw data to reduce
bandwidth requirements and transmission latencies. Based
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Sensors object detections MEC environment model cAv
with SPUs server + prediction

Fig. 2. Overall system architecture.

on a calibration of the sensors with respect to some world
coordinate frame, e.g. obtained from [34], and a synchronized
time, e.g. from GNSS, the detected objects’ information is
communicated to the MEC server. The MEC server is also
time-synchronized. As will be explained later in more detail,
our generic object interface of the MEC server allows for
independent and relatively cheap sensors of various types.

The MEC server expects the sensors to register via their
SPU once they are ready to send data. Within that registration,
the SPU transmits the frame rate for this sensor, i.e. the rate
in which new sensor data are expected. Since an empty object
message is sent if there are no detections, the MEC server
can perform a watchdog functionality for each sensor. Addi-
tionally, the MEC server can discard messages received above
some delay limit to avoid the use of outdated data. During
sensor registration, the SPU also transmits the respective FOV.
Thus, the MEC server can assess if a sensor extends the overall
FOV, or if it delivers redundant information to some other
sensors to improve accuracy. Furthermore, the MEC server
uses an HD map to detect whether the area under supervision
is insufficiently covered. If not, it switches to an error mode
instead of sending unreliable information to the CAVs.

The CAVs also register at the MEC server if they want
to receive the server’s environment information. Then, the
server supplies them with the environment model until they
de-register.

In the following two sections, the main components of our
system at the end of the processing chain, the infrastructure
environment model and the motion planning in the CAVs using
this model, are shortly summarized.

IV. ENVIRONMENT MODEL FROM INFRASTRUCTURE
SENSORS’ DATA

The environment model comprises information about dy-
namic objects, e.g., vehicles, pedestrians, and cyclists, within
the surveilled junction area. This information consists of a
state estimation with dynamic information, like the position,
orientation, and velocity of an object, as well as static infor-
mation, like the class and extent of an object. Any state is
modeled assuming a multi-variate normal error model, thus, a
covariance matrix completes the state information. Further, an
estimation of the existence probability and predictive informa-
tion about the most probable future trajectories of the objects
is appended. A detailed definition of the environment model
can be found in [18].

A. Information Fusion and Multi-object Tracking

The environment model uses measurements of distributed
sensors pre-processed by their associated SPUs, which are
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Fig. 3. 2D rectangular shaped box model with the object reference points
denoted by & and schematic visualization of estimating length [ and width
w solely from two object reference point measurements marked by .

fused on the MEC server using a centralized LMB MOT
[18]. The interface corresponds to the environment model,
which models dynamic objects using a rectangular shaped box
approximation and with the above given static and dynamic
state. However, the sensors are only required to measure
one of the anchors of the rectangle, which are its center
and its corners, as shown in Fig. 3, as well as a type
and type probability. All other features are optional in the
sensor interface. If an object is seen from multiple sensors
with different perspectives, and thus different object reference
points are reported, the developed LMB MOT is able to infer
the object’s extent as depicted in Fig. 3. This strategy allows a
plug-and-play installation of a wide variety of different sensor
kinds. As described in [18] in more detail, this is meant to
address the price-sensitive mass-market for a potential later
series application.

In cases where correct determination of an object reference
point is not possible, e.g. if a lidar sensor cannot distinguish
between front and rear of an object, an extended algorithm
enables the object reference point association over time [19].
Hereby, multiple hypotheses are generated and thinned using
statistical methods, which, however, increases computational
cost of the method. An additional downstream model-based
validation gate allows for simultaneous improvement of the
computational effort as well as the performance of the filter
by sorting out infeasible object states.

B. Prediction

In order to support CAVs in their behavioral decisions
further, a subsequent stage predicts the most probable future
trajectories of all dynamic objects, using a straightforward
map-based approach combined with simple process models,
as depicted in Fig. 4. Hereby, dynamic objects are associated
to appropriate lanes of a static HD map and predicted with
a Kalman filter based on the most probable object class. A
final stage associates a probability of occurrence based on the
actual distance between track and appropriate lanes.

Although relatively simple, this approach is computationally
very efficient and highly accurate if road participants adhere
to the lanes. A yet more flexible approach based on state-of-
the-art neural networks [43] could be used alternatively. For
this purpose, a synthetic image of the environment model is
compiled and fed to the network together with the current
probabilistic state of the dynamic objects and their past

Fig. 4. Schematic visualization of the prediction method implemented on the
MEC server: The measured object (red) is associated to the appropriate lane
(blue) and predicted along it with an appropriately parametrized Kalman filter
(shaded blue).

trajectories. This allows model-free inference of a set of
unconstrained future trajectories, which are augmented with
probabilistic measures. The method is proven to be highly
accurate, since it won the international Argoverse Motion
Forecasting Challenge 2019

V. MOTION PLANNING FOR CAVS WITH EXTERNAL
INFORMATION

One key concept of our overall system is leaving the re-
sponsibility of the decision making to the automated vehicles.
Thus, the infrastructure sensors and environment model are
not safety critical and can be realized much cheaper than if
safety certification was necessary. In turn, we have developed
a method [32] to assess the reliability of the incoming data
on-board the CAV. This avoids critical driving situations due
to erroneous data in the planning stage.

Whenever reliable external environment information is
available, it can help the CAV to extend its FOV even beyond
the normal limits. Accordingly, the motion planning of the
CAVs has to be adapted to make use of this additional
information. Within our work, we have developed two different
methods, which we will explain after a short introduction into
our reliability estimation scheme.

A. Reliability Estimation

As shown later, reliable external data can increase the traffic
efficiency in motion planning, whereas erroneous data may
result in harm. Thus, the CAVs need to know whether the
incoming data are reliable. The basic idea of estimating the
reliability of the information is to use redundancy in the data
to test for both, plausibility and consistency. If the data are
plausible and consistent, this indicates high reliability, whereas
low reliability is inferred otherwise.

Our reliability estimation scheme to govern this task bases
on two consistency checks and two plausibility tests [32]:

o A prediction test checks if former predictions are consis-

tent with current measurements;

2Website: https://www.argoverse.org/tasks.html#forecasting-link
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o A map test compares whether or not the reported objects
are consistent with the digital map of the CAV;

e An ego perception test judges the plausibility of the
reported objects by comparing them with the objects from
the ego perception;

e An ego localization test determines the data reliability
by measuring how plausible the transmitted uncertainties
(given in terms of covariance matrices) are, based on the
reported position of the CAV.

An important challenge for the reliability estimation is that,
usually, only very few measurements are available. Thus,
the statistical uncertainty plays an important role. To cope
with that, our method [32] bases on Subjective Logic (SL)
[21], which is a theory to handle small sample sizes. With
SL, we can describe the problem in terms of [S-distributions
representing the probability that the estimated reliability is
correct, from which the p-value from classical statistics can be
retrieved [31]. For possibly unreliable communication links,
the reliability of the communication channel can also be
assessed by our method [33]. This, however, can be omitted
if the communication link is known to be stable.

B. T2T Fusion-based Hierarchical Motion Planning

The first planning concept relies on a T2T fusion between
the infrastructure environment model and the CAV’s on-board
environment model as input for a hierarchical motion-planning
scheme. Although the CAV’s sensors on their own are not able
to observe the occluded priority road, they still provide the best
possible state estimate for visible objects close to the CAV. As
these objects are of highest importance for the CAV’s short-
time planning and safety evaluation, it can be mission critical
to get the best possible data basis for them. Therefore, the T2T
fusion essentially updates all objects seen by the infrastructure
with the most recent state estimated by the CAV, minimizing
any potential problems arising from aggregated infrastructure
calculation and transmission latencies.

The main idea of the hierarchical planning scheme is to
separate the problem into multiple sub-systems, which are
easier to solve, interpret, and evaluate. Initially, we use the
provided fusion output together with a highly precise map
to identify priority traffic and relations between individual
objects. This is possible due to the road geometry and priority
rules provided by the map. Based on this information, the
high-level planning component identifies gaps between priority
objects and selects one of these gaps as merge target for the
underlying motion planner. More details on this can be found
in [44].

We predict the relevant objects as well as the gap between
them to the intersection area by using a lane-based prediction
similar to the one shown in Fig. 4. From this, we can
implicitly define target variables for the following motion
planner. Essentially, we compute a tuple comprising of target
position, time, and velocity. Then, the motion planner provides
a trajectory reaching this state. For this, we use a map-driven
sampling-based approach to compute polynomial trajectories.

For simplification, we use the lane geometry provided by the
map to define the lateral motion and then sample longitudinally

Fig. 5. Trajectory bundle for a merging scenario. The image shows the
automated vehicle (black), objects (yellow), map (red), and a set of feasible
trajectories (green). The trajectories use the z-axis to visualize the velocity.
The selected trajectory is shown in blue.

in the 1D space along the lane. Usually, the 1D sampling
is rather straightforward, as we only have to match a target
velocity and possibly a position, e.g. when approaching a
stop point. Typically, the time when matching has to be
achieved is not defined. However, for the merging scenario,
we do not have this degree of freedom anymore, since the
merging time is relevant to meet the gap. Therefore, we
sample piecewise polynomials to reach the given end condition
within our vehicles kinodynamically constrained motion space.
We use a parametrized sampling range to sample different
intermediate velocities around the provided target velocity,
while considering the CAV’s current velocity. Essentially, our
piecewise trajectories follow the scheme: accelerate/decelerate
towards the intermediate velocity, hold it for some time and
finally decelerate/accelerate towards the target velocity. To
limit the required computational power, we heavily rely on
fast and lightweight pre-estimations to calculate a feasible set
of intermediate sampling points.

After the 1D sampling, we transform the trajectories into
the 2D space. After a violation check with respect to our
parametrized kinodynamic constraints, we rate all sampled tra-
jectories by a pre-defined cost function. As this is done in the
2D space, we can account for lateral safety (constraints) and
comfort (costs) measures, guaranteeing, e.g., that we will not
drive with maximum velocity into a sharp curve. Altogether,
the cost function will select a trajectory that minimizes the
required time by maximizing the velocity, while ensuring to
minimize both longitudinal and lateral acceleration and jerk.
Figure 5 shows a sampled trajectory bundle for our merging
scenario.

C. Fusion-free Motion Planning

Particularly in situations with heavy occlusion, the T2T
fusion of the external and ego environment model often
reduces to a concatenation of object lists and, thus, loses its
merits. Additionally, the ego perception is designed to feature
sufficient accuracy for the motion planning. Hence, the motion
planning might not profit from a possible increase in accuracy
by T2T fusion.

The key idea of the fusion-free planning is to use the
external and the ego environment model in parallel for de-
cision making [35]. Figuratively speaking, the planning uses
the infrastructure data to predictively synchronize the CAV’s
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motion such that it can merge into an oncoming traffic gap,
while the ego perception is used for reactive planning in case
of other traffic participants occurring on the road ahead.

As a first step, the planner samples suitable target points
according to the map and the dynamic situation context derived
from the environment models. In contrast to the hierarchical
planner, this planner samples in 1D over time rather than
position. The retrieved target points also comprise target
positions, velocities, and time. Due to the sampling approach,
the planning can easily consider multiple behavior options
in parallel and solve motion planning and behavior planning
holistically.

We formulate the trajectory planning as an OCP. The OCP’s
cost function accounts for jerk and the end time of the
maneuver. One specific effect that occurs when dealing with
external environment models containing uncertainties is that
the planning decision might frequently change while approach-
ing the intersection. To mitigate this effect, we consider a time
weighting of the jerk in the OCP’s cost function. With that,
the planning favors smoother trajectories in the near future at
the expense of potentially higher jerks far into the future. Our
approach allows calculating analytical solutions of the OCP
for the CAV’s motion from its ego state to the target states as
trajectory candidates.

Furthermore, the planning comprises a risk model, which
describes the residual risk of a planned trajectory and its
corresponding behavior. In a next step, we calculate the
residual risk for each trajectory candidate and add it to its dy-
namic cost. All candidates exceeding the maximum accepted
residual risk, which can be chosen arbitrarily, are discarded.
For the extreme choice of allowing zero residual risk, the
safety of the motion planning can be guaranteed formally. The
remaining candidates are checked for possible violations of
kinodynamical constraints. From this final set of candidates,
the one with minimal cost is chosen. A fail-safe strategy
ensures that there is always at least one feasible trajectory. A
more detailed description of the fusion-free motion planning
approach can be found in [35].

VI. EXPERIMENTAL SETUP

One important goal of our work was to prove and evaluate
our approach in real traffic. To do so, we have implemented
the overall functionality of the system architecture on a pilot
infrastructure installation and into two prototype CAVs, which
are described in more detail in the following. Additionally,
we shortly describe some regulatory needs and organisational
measures, e.g., to account for the prototype characteristic of
our setup during the experiments.

A. Pilot Site for Evaluation in Real Traffic

Together with further partners within the project MEC-View,
we built up a pilot site at an unsignalized T-junction in a
suburban area of the city of Ulm, Germany [3]. As shown
in Fig. 6, a side road ends at the priority road, and vehicles
entering the priority road have to give right-of-way. In this
work, we concentrated on merging scenarios for CAVs when
turning right onto the priority road, as shown in Fig. 1. As in

many urban areas, a building on the left at the end of the side
road occludes the on-board sensors’ view on the oncoming
traffic on the priority road nearly up to the yield line. Thus,
our pilot site comprises of video cameras and lidar sensors
surveilling the oncoming roads close to the T-junction. The
approximate FOVs on the side road and the priority road are
marked by blue and yellow areas in Fig. 6, respectively. Most
of the sensors have been mounted to five existing lampposts
along the roads. For some of the lidar sensors and video
cameras, two temporary poles have been placed on concrete
bases in the junction area, located on the opposite sides of
the street light poles. As can be seen in Fig. 1, they are
interconnected with one small auxiliary pole at the corner
of the occluding building via traverses, which are used for
cable routing and stability. One SPU per lamppost as well as
one SPU for the temporary poles have been placed in outdoor
housings on the sidewalks to avoid high wind loads except
for one case, where mounting on the pole was possible. They
serve for data acquisition, object detection and communication
to the MEC server via the mobile network with a frequency of
10 Hz for the cameras and 20 Hz for the lidars. For the SPUs
at our pilot installation, we use standard PCs with a graphic
processing unit (GPU) for object detection on camera images
and a USB modem with external antenna to connect to the
mobile network. The sensors are connected to their respective
SPU via cables, where multiple sensors can be connected to
one SPU.

For this work, we use the object detections from five monoc-
ular cameras and two lidars with 16 static beams mounted
on the lampposts only. This simple setup was chosen on
purpose to be close to a possible series setup in the future.
Both sensor types are restricted in their sensory abilities. The
lidar sensors have a highly restricted field of view, such that
the lidar beams never capture large objects completely, but
only their longitudinal profile. The monocular cameras, in
contrast, suffer from an ambiguity when transforming from the
image coordinate system to a real world Cartesian coordinate
system, so that an object’s center cannot be measured perfectly.
These problems are tackled by the ability of our generic
interface to allow position-only detections of one of the pre-
defined reference points of an object. The sensors used for
this work yield an average position error in the range of
0.34m to 1.54m. Those errors comprise a highly position-
dependent systematic error that has not been corrected. For
the cameras, this error mainly stems from the homography
that transforms the two-dimensional camera coordinates to the
three-dimensional Cartesian coordinates and assumes a flat
ground, which does not perfectly hold for the junction area.
For the lidar sensors, the error increases with higher distances
due to the beam widening.

A latency-optimized test mobile network then connects the
sensors’ SPUs, which perform the object detections, with the
MEC server. The same network connects the MEC server with
the prototype CAVs. For the ease of implementation for the
proof of concept, we have used a proprietary message format
between the MEC server and the CAVs. However, ETSI mes-
sages like the “’Collective Perception Message (CPM)” for the
environment model data are in the process of standardization
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Fig. 6. Drawing of the pilot site with approximate FOV of the infrastructures
on the priority road (yellow) and on the side road (blue), CAV (red), and
on-board FOV (green).

and could also be used, as described in [4].

B. Connected Automated Vehicles

For the experiments at our pilot junction, we have pre-
pared two prototype CAVs, one (CAV#1) operated by Robert
Bosch GmbH, the other one (CAV#2) by the Institute of
Measurement, Control and Microtechnology at Ulm Univer-
sity. To cover a broad spectrum of possible parameters and
implementations, the CAVs strongly differ in their setup and
parametrization.

1) CAV#1 operated by Robert Bosch GmbH: In this project,
we use an existing test vehicle of Bosch Research. The vehicle
is equipped with a Velodyne HDL-64 lidar, five Bosch radars,
and a Bosch stereo video camera for object detection, as well
as a GeneSys ADMA for highly precise ego localization based
on a real-time kinematic (RTK) system with differential GPS
(D-GPS) and gyro sensors. Additionally, we mounted a Bosch
Car Communication Unit (CCU) to enable communication
with the MEC-Server. For the environment modeling, we fuse
all on-board sensors into a vehicle-centric environment model.
Afterwards, track-to-track fusion is used to incorporate the
MEC information [11]. For our experiments, the T2T fusion-
based hierarchical motion planning is applied in CAV#1. A
sketched processing architecture and a picture of the vehicle
are presented in Fig. 7. The vehicle features a very strong
motorization. Accordingly, the parametrization of both, the
planning and control have been chosen to cover a sporty
driving style. Hence, the overall planning objective is the travel
time minimization by allowing higher vehicle dynamics where
possible. In the trade-off between time and energy efficiency,
fuel consumption is weighted less.

2) CAV#2 operated by Ulm University: The actual CAV of
Ulm University settles on the basics described in [26]. How-
ever, the CAV itself is a different vehicle and many subsystems
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o 1| Tracking 'V Planning =
Lateral -§
. era 2
[ Grid Map} [Stabilization]

Fig. 8. Image and architecture of the CAV#2 operated by Ulm University.

experienced major changes and updates. The sensor setup
was updated and, in this project, we use a Velodyne VLP-
32 lidar and three Continental ARS 408 radars. Furthermore,
the environment model [12] uses an efficient implementation
of the dynamic occupancy grid map (DOGMA) [36]. The
pre-processing algorithms for the sensors use state-of-the-art
detectors based on modern machine learning methods [6],
[20]. Moreover, the complete software stack was rewritten
and migrated to the ROS framework [37]. Finally, the AV
has been extended by the same Bosch CCU used for CAV#1
to allow for communications with the MEC server. CAV#2
uses the fusion-free motion planning in our experiments. An
image of this vehicle as well as an architecture overview are
given in Fig. 8. With respect to the parameterization, a more
conservative behavior is chosen, leading to an increased fuel
efficiency at the cost of increased travelling time.

C. Organisational and Regulatory Aspects

The two CAVs used in this project both have an approval
as automated test vehicles for public roads in Germany, which
requires an approval of the mechanical changes of the vehicle,
if, e.g., sensors have been integrated in potential crash zones,
as well as an approved safety concept including technical
measures, like the take-over systems described below, and
organisational measures, like training for the drivers and oblig-
atory technical tests before driving. As a result, this approval
comes with several requirements for the automated operation.
Since the systems and software for automation did not undergo
a homologation process, a trained safety driver is required to
supervise the driving behavior and has to be ready to take over
the control any time. This take-over can be initialized either by
moving the steering wheel manually or by pressing any of the
pedals. Additionally, the automation mode can be ended by an
emergency switch. Before starting test drives, the safety driver
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has to perform a take-over functionality test during standstill.
Furthermore, a co-driver is required to assist the driver, e.g., by
monitoring the automation system. Both, the safety driver and
the co-driver must be from the staff of the owning company
or institution and have to be familiar with the specific vehicle.
Thus, although testing L4 [42] automated driving functions on
public roads, from a legal perspective, the CAVs are still seen
as human driven with the safety drivers being responsible for
the vehicles’ maneuvers.

The installation and operation of a pilot site in real traffic
includes various organisational and regulatory aspects, from
which three are discussed in more detail. First, a permission
of the infrastructure owner, in our case, from the city of Ulm,
is required to operate the pilot site. The city has been involved
in our planning already since the proposal phase of the project
and supported our work as an associated partner of the MEC-
View project. Thus, the following requirements to retrieve such
a permission for our installation could directly be considered
in the design phase. All equipment installed on the sidewalks
had to be placed with a minimum distance of 0.5m to the
curb and marked with reflecting warning signs. A clear width
of at least 1 m had to remain on the sidewalk after placing
SPU housings and the temporary poles’ installation, which also
should not interfere with usual pedestrian routes. The traverses
of the temporary poles leave a clear height of at least 6.5m
to not restrict the passage even for high vehicles. Finally, the
power supply is realized via the street light supply to avoid
underground constructions. The city of Ulm has changed the
electrical connection of the street lights such that one phase is
freely available and always on for our equipment at the light
poles, while some of the poles share the same phase. Thus, the
components, especially the SPUs, had to be chosen carefully
to not exceed the maximum allowed overall power.

Secondly, data protection must be taken care of, particularly,
since video images of traffic participants are processed by
the infrastructure sensors and the CAVs. For the protection of
personal data, each of the partners involved in their processing
either already had or developed a data protection concept
according to the respective laws. Additionally, a common
explanation on our data processing was published on the
project’s website and all residents close to the pilot site have
been informed by a letter and by publications in local media.
Finally, pictograms as well as information displays with a link
to the project’s website and contact information also make
other traffic participants aware of the data processing and
further information sources.

Thirdly, special safety measures have been taken to account
for the prototype status of the implemented system. To reach
a reasonably high safety level, each component of the overall
system has been tested in simulation and preliminary tests
before employing it to the real world experiment. Still, the
implementation is only a prototype, lacking sophisticated auto-
mated diagnosis and failure detection measures. For example,
there is no tracking of possible sensor degradation or dynamic
adaptation of the sensors’ FOV. Also, we have not imple-
mented security measures like certificates to ensure the identity
of communication partners, since the tests are performed
in a private test mobile network. For our proof-of-concept,

no standardized testing like for the safety of the intended
functionality (SOTIF) has been addressed so far. Therefore,
for our test drives, we have voluntarily developed a safety
concept to reduce the risk of possible harm to any person in
this public area. Like for the CAVs, this safety concept relies
on trained humans to supervise the prototypical infrastructure
system. Since the CAVs should merge into a gap not visible
also to the safety drivers most of the time when approaching
the T-junction, we additionally included a safety marshal at
the junction. This safety marshal assesses the situation on its
own and signalizes clearance to the safety drivers. Finally, we
decided to have informed persons as drivers in the vehicles
at the back end of the gap. This is especially relevant when
considering the fact that human drivers would not expect any
vehicle entering the junction from the side road at high speed
due to the occlusions at the junction.

VII. EVALUATION

This section discusses the experimental results of our ap-
proach for infrastructure support of CAVs at our pilot site.
While the first two subsections shortly present evaluations of
the environment model and the reliability estimation, respec-
tively, the further sections contain the evaluation of the overall
system performance. For the latter, we performed several test
drives with both available CAVs to collect data in real traffic.
The test scenarios as well as the performance measures have
been designed and selected by ourselves based on the intended
functionality of our system and the research objectives of our
project, since there have been no regulations on specific tests.

A. Environment Model Evaluation

Independent from the test drives for the overall system
assessment, we have first evaluated the environment model.
This model is fed with the object detections of the five
monocular cameras and the two lidars via our own highly
generic interface. We have evaluated the environment model
on data from manual test drives with the CAVa using their
precise localization as ground truth. In that data, our envi-
ronment model shows an average position error of 1.14m. It
especially suffers from the biased measurements of the sensors
at positions where complimentary sensors show inconsistent
biases. However, since the infrastructure’s data are used in
addition to the CAVs on-board perception, the uncertainty in
the infrastructure environment model can be mitigated. In the
motion planning, the uncertainties are accounted for in terms
of safety margins.

B. Reliability Estimation Evaluation

The second evaluation performed independent from the
overall test drives addresses the new reliability estimation
method, which is performed on data from a subset of the
sensors at the pilot site. The method has been assessed on
14 sequences, which have been manually classified reliable
or unreliable. Figure 9 presents the respective results. The
reliability on the z-axis of Fig. 9 refers to the first order
probability that the received external information actually is
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Fig. 9. Evaluation of the reliability estimation scheme. It shows that for
all sequences where the infrastructure worked as expected, the estimated
reliability has a p-value above 90% for a confidence level of 90%.

correct. In turn, the statistical confidence of the y-axis is
a second order probability reflecting the statistical evidence,
which supports the assumed reliability. The evaluation shows
with almost certain confidence that no unreliable sequence
is rated with an estimated reliability above 70%. In turn,
all reliable sequences reach at least 90% estimated reliability
with a confidence above 90%. Hence, the two classes reliable
and unreliable are easily separable. Furthermore, it has been
evaluated in [31] that the reliability of the reliability estimation
scheme reaches a p-value of 95%. Accordingly, the proposed
method is well suited to further enhance the SOTIF.

C. Overall System Latency

Now, the results from the overall system evaluations are
reported. First, we analyzed the overall latency from the
sensor measurements until the CAVs receive the infrastructure
environment model. This latency includes the pre-processing
of the data on the SPUs, the delay of the communication
to the MEC server, the processing time on the MEC server,
and, finally, the communication delay between the MEC server
and the vehicle. The analysis of more than 4300 environment
model messages received during the test drives results in
an average latency of 242ms (minimum 152 ms, maximum
627ms). The number is higher than typical latencies on-
board CAVs, which we estimate to about 150 ms for similar
processing steps.

However, this has several reasons besides the accumulated
communication delays of approximately 20 ms to 30 ms. Due
to the high mounting positions, the video cameras potentially
see a much higher number of objects. Additionally, the overall
FOV at the pilot site is much larger than that of a CAYV,
leading to a higher number of objects to keep track of; and
the generic interface with object reference points requires more
computational effort, e.g., to resolve ambiguities. Finally, the
buffering mechanism of the fusion algorithm causes additional
variance in the overall latency, since the sensors’ capturing are
not necessarily synchronized. Considering all those, the overall
system performs very well with respect to latency, which is
additionally mitigated by the provided objects’ predictions.

D. Traffic Efficiency

To assess a possible gain in traffic efficiency for the CAVs,
we have clustered the test drives into different maneuver

TABLE I

EVALUATION DATA FROM TEST DRIVES WITH THE TWO CAV'S AT THE
PILOT SITE IN REAL TRAFFIC. THE NUMBERS BETWEEN THE TWO CAV'S

VARY IN GENERAL, SINCE THESE ARE OF DIFFERENT TYPE. A
SIGNIFICANT EFFICIENCY GAIN RESULTS FOR BOTH CAVS.

Maneuver CAV#1  CAVi#2
Free lane on priority road

(baseline w/o infrastructure)

Maneuver time 12.6s 17.7s
Free lane on priority road

Average no. of objects in V2X env. model 3.6 4.1
Maneuver time 8.3s 10.9s
Merging behind another vehicle

Number of evaluated maneuvers 6 3
Average no. of objects in V2X env. model 35 49
Maneuver time (mean) 11.0s 13.6s
Maneuver time (minimum) 9.4s 11.7s
Maneuver time (maximum) 12.4s 15.7s
Merging into a gap

Number of evaluated maneuvers 5 8
Average no. of objects in V2X env. model 4.0 52
Maneuver time (mean) 10.7s 12.2s
Maneuver time (minimum) 9.1s 10.8s
Maneuver time (maximum) 13.1s 15.3s
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classes. Table I summarizes the results. To give an idea of
the complexity of the situations, we noted the average number
of relevant objects in the infrastructure environment model
during the maneuvers. As a measure for efficiency, we use
the maneuver time measured from 40 m before to 20 m after
the yield line. The numbers between the two CAVs vary
in general, since these are of different type with different
vehicle dynamics and a different paramterization as described
in Section VI-B. Because the pilot site comprises public roads
with real traffic, test conditions vary and are not identically
reproducible for multiple tests. Thus, merging when turning
right onto the priority road with no other traffic on the target
lane is the only class with an approximately deterministic
behavior, where a fair comparison with a baseline experiment
without external information is possible. As can be seen in
Table I, both CAVs significantly gain from the knowledge
of a free lane, since they do not need to (almost) stop at
the yield line like in the case without infrastructure sensing.
As expected from the more sporty parametrization, CAV#1
is more dynamic and, thus, has a smaller total travelling
time than CAV#2. The more conservative parametrization of
CAV#2 leads to smaller accelerations and decelerations and,
thus, longer traveling times. As a results, this vehicle can gain
even more from the information provided by the infrastructure.

The remaining evaluated test drives constitute the two
maneuver clusters “merging behind a vehicle” and “merging
into a gap”. The varying times within one category result
mainly from the variation of the actual traffic situations on
the priority road. Note that without infrastructure sensors, the
vehicle would also have to drive almost to the yield line before
being able to see the oncoming traffic situation on the priority
road in both cases. To avoid any critical situation, the CAVs
would slow down as in the baseline scenario. Thus, with the
environment model from the infrastructure, the CAVs make
use of the extended FOV also in these cases and plan their
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Fig. 10. Visualization of the empirical fuel consumption matrix with the
parameters velocity and acceleration from [25]. Color indicates normalized
consumption per second.

motion in coordination with the oncoming traffic, as can be
seen from the maneuver times. This improves the efficiency
of the traffic flow and, additionally due to less braking and
acceleration, the comfort on-board the CAVs.

E. Energy Consumption

The energy consumption is computed using an empirically
measured and normalized consumption matrix [25], which was
built from 90h driving data collected in a mid-size vehicle
with a combustion engine by different drivers in various
traffic situations. In the consumption matrix, for each velocity-
acceleration pair, a normalized consumption value is assigned.
The consumption is stated as value per second and normalized
in the interval [0, 1], i.e., it has no unit and the maximum
consumption value is 1. These normalized consumption values
are sufficient to determine relative consumption differences
between two drives along comparable trajectories. The energy
consumption of each drive is computed by accumulating the
normalized consumption values of all measured acceleration-
velocity pairs. We choose 2km/h as interval width for the
velocity and 0.1m/s> for the acceleration. Figure 10 shows
a heat map visualization of the normalized fuel consumption
matrix. Consumption values near zero are visualized in dark
blue, while red elements indicate consumption values close to
the maximum. Acceleration-velocity pairs without a measured
consumption value are depicted in white. It can be seen that
the energy consumption is relatively small during deceleration
and increases strongly at 50 km/h for accelerations between
1m/s? and 3.5m/s%.

In Table II, the relative energy consumption values of all
test drive categories are shown with respect to the baseline.
Like for the traffic efficiency evaluation, we use the test
drive without infrastructure support as baseline. The different
parametrization and motorization of the two CAVs (cf. Sec-
tion VI-A) lead to different behaviors regarding velocity and
acceleration, as shown in Fig. 11 and Fig. 12, respectively.
Comparing the average velocities of each category, it is notice-

TABLE II
ENERGY CONSUMPTION IN EACH CATEGORY RELATIVE TO THE
CORRESPONDING BASELINE MANEUVERS OF EACH CAV. THE
DIFFERENCES BETWEEN CAV#1 AND CAV#2 STEM FROM DIFFERENT

PARAMETRIZATIONS.
Maneuver CAV#1  CAV#2
Free lane on priority road
(baseline w/o infrastructure)
Consumption 100% 100%
Free lane on priority road
Consumption (mean) 121% 59%
Merging behind another vehicle
Consumption (mean) 119% 85%
Consumption (minimum) 111% 55%
Consumption (maximum) 135% 104%
Merging into a gap
Consumption (mean) 121% 69%
Consumption (minimum) 72% 54%
Consumption (maximum) 145% 87%
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Fig. 11. Exemplary velocity and acceleration profiles of the CAV#1.

able that the CAV#1 drives between 1.4km/h and 5.2km/h
faster than CAV#2. This difference is especially noticeable in
the baseline (blue), where CAV#1 only decelerates to 10 km /h
and avoiding a full stop, while CAV#2 comes to a standstill.

The results show that CAV#1 consumes about 20% more
energy on average in all infrastructure supported categories
compared to the baseline. This is due to its more sportive
parametrization (cf. Section VI-A) for merging, which de-
creases the travel time as shown in Section VII-D. This
effect is further intensified by the fact that the reference run
contains a particularly comfortable and thus energy-efficient
braking towards the stop line, as can be seen from the
blue lines in Fig. 11. In contrast, with CAV#2, almost all
infrastructure supported maneuvers require less energy than
the baseline due to the higher priority of energy efficiency in its
parametrization. In many cases, this saving is significantly high
and comes with additional lower traveling times as reported
in Section VII-D. For both CAVs, it can be seen from the
variations in the velocity and acceleration profiles that the
complexity of the categories “merging behind another vehicle”
and “merging into a gap” is much more complex, because
time and velocity have to be adapted to reach the priority
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Fig. 12. Exemplary velocity and acceleration profiles of the CAV#2.

road at the right time with the required target velocity. For the
example of merging behind another vehicle given in Fig. 11
for CAV#1, the vehicle accelerates first and then decelerates
when approaching the junction. This can be explained by a
change in the velocity of the vehicle on the priority road. At
first, merging before the other vehicle seemed possible due to
its sporty parametrization, but after the velocity of the other
vehicle changed, the CAV#1 has to adapt its behavior in order
to prevent a collision and merges after the other vehicle. The
results of this work confirm the simulation results from [38],
according to which an infrastructure supported AV is able to
save about 25% of travel time and up to 50% of the energy
consumption.

VIII. CONCLUSION

In this paper, we proposed a communication-based approach
using an external environment model from infrastructure sen-
sors to extend the FOV for motion planning of CAVs at oc-
cluded intersections. We described the main components of our
proposed architecture, which have been implemented on a pilot
site in public traffic. Two motion planning algorithms using the
external information have been developed and implemented in
two prototypical CAVs. Test drives at the pilot junction have
demonstrated proof of concept of our approach. The evaluation
of these overall system tests showed very good latency results,
and both motion planning algorithms could benefit greatly
from the external information, improving traffic efficiency and
passenger comfort when merging onto the priority road at the
occluded T-junction. For the defensive parametrized CAV#2,
an additional reduction of the energy consumption could be
shown, while the sporty parametrization of CAV#1, despite
its considerably shorter time in the baseline, could improve
traveling times even further. Future work will address the
quality of the environment model and the underlying sensor
data pre-processing. Additionally, we will conduct research on
cooperative behavior of the traffic participants locally managed
on the MEC server.
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