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Abstract

Person detection is a popular and still very active field of research in computer vision
[ZBO�16] [BOHS14] [DWSP12]. There are many camera-based safety and secu-
rity applications such as search and rescue [Myr13], surveillance [Shu14], driver
assistance systems, or autonomous driving [Enz11]. Although person detection
is intensively investigated, the state-of-the-art approaches do not achieve the per-
formance of humans [ZBO�16]. Many of the existing approaches only consider
Visual optical (VIS) RGB images. Infrared (IR) images are a promising source for
further improvements [HPK�15] [WFHB16] [LZWM16]. Therefore, this thesis pro-
poses an approach using multi-spectral input images based on the Faster R-CNN
framework [RHGS16]. Different to existing approaches only the Region Proposal
Network (RPN) of Faster R-CNN is utilized [ZLLH16]. The usage of two different
training strategies [WFHB16] for training the RPN on VIS and IR images separately
are evaluated. One approach starts using a pre-trained model for initialization, while
the other training procedure additionally pre-finetunes the RPN with an auxiliary
dataset. After training the RPN models separately for VIS and IR data, five dif-
ferent fusion approaches are analyzed that use the complementary information of
the VIS and IR RPNs. The fusion approaches differ in the layers where fusion is
applied. The Fusion RPN provides a performance gain of around 20 % compared
to the RPNs operating on only one of the two image spectra. An additional perfor-
mance gain is achieved by applying a Boosted Decision Forest (BDF) on the deep
features extracted from different convolutional layers of the RPN [ZLLH16]. This
approach significantly reduces the number of False Positives (FPs) and thus boosts
the detector performance by around 14 % compared to the Fusion RPN. Further-
more, the conclusions of Zhang et al. [ZLLH16] are confirmed that an RPN alone
can outperform the Faster R-CNN approach for the task of person detection. On the
KAIST Multispectral Pedestrian Detection Benchmark [HPK�15] state-of-the-art re-
sults are achieved with a log-average Miss Rate (MR) of 29.83 %. Thus, compared
to the recent benchmark results [LZWM16] a relative improvement by around 18 %
is obtained.
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1 Introduction

The field of computer vision provides many tasks of automizing visual perception
such as surveillance [Shu14], autonomous driving [Enz11]. Therefore, oject detec-
tion has received great attention during recent years. Person detection is a spe-
cialization of the more general object detection. While object detection deals with
detecting more than one object class, person detection only distinguishes between
person and background. Person detection is a very popular topic of research, espe-
cially in the fields of autonomous driving, driver assistance systems, surveillance,
and security. Despite extensive research on person detection, there is still a large
gap compared to the performance of humans as Zhang et al. [ZBO�16] evaluate
with establishing a human baseline on the popular Caltech Pedestrian Detection
Benchmark dataset [DWSP12]. In this thesis, the term person detection is used
instead of pedestrian detection, because the challenges are considered as general
detection problem not strictly related to the field of autonomous driving and driver
assistance systems. Obviously, all pedestrians are persons, but not all persons are
pedestrians.

Challenges of person detection are deformation and occlusion handling [OW13]
[OW12] [DWSP12], detecting persons at multiple different scales [ROBT16], illu-
mination changes [VHV�16], and the runtime requirements the algorithms should
meet to be used in real-time. Deformation handling describes the changing ap-
pearance of persons depending on the person’s pose and the point of view of the
camera, as well as how to model the changing appearance. Considering the exam-
ple of autonomous driving: while a car passes a person, the camera acquires the
person in many different poses, yielding to different appearances of the person in
the image. Occlusion means that the person is hidden by other objects. Persons
can be occluded by other persons, cars, or parts of the environment such as trees,
fences or walls. The person’s size in the image depends on the person’s distance to
the camera. Hwang et al. [HPK�15] provide a coarse categorization. They classify
the persons closer than 11 meters as near or large-scale persons. These persons
correspond to a height of around 115 pixels or more in the image. The medium-
scale persons are in a distance between 11 and 28 meters from the camera, and
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appear with a height between 45 and 115 pixels in the image. Far (small-scale)
persons have a distance of 28 meters or more, and a height smaller than 45 pixels
in the image.

VIS IR

VIS IR

Figure 1.1: (First row) Illustration of the Ground Truth (GT) bounding boxes (red) on
a VIS and IR image pair. (Second row) Plotted detection result bound-
ing boxes for one detector trained on VIS images only (cyan), one on
IR images only (magenta), and the other detector trained on both, VIS
and IR images (green). The multi-spectral image belongs to the KAIST
dataset [HPK�15].

An additional big challenge of person detection is to retain the algorithm’s robust-
ness for different environments including daytime and nightime scenes, different
weather conditions such as rain or fog, and illumination changes [VHV�16]. There-
fore, Hwang et al. introduce the KAIST Multispectral Pedestrian Detection Bench-
mark dataset [HPK�15] consisting of Visual optical (VIS) images and thermal In-
frared (IR) images. The additional use of the IR images increases the robustness
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and detection performance. This assumption is proved in this work. Figure 1.1
shows a pair of VIS and IR images of the KAIST dataset. In the image pair on the
top, the annotated Ground Truth (GT) bounding boxes are visualized by red boxes.
The image pair at the bottom shows GT boxes together with the detection boxes of
three different detectors. On the VIS image, the detections of a detector trained and
working only on VIS images are depicted with cyan boxes. In the IR image, the de-
tections of a detector only designed for IR images are illustrated by magenta boxes.
The green boxes in both images show the detection results of a detector using both
images (VIS and IR) for training and evaluation. The detections of the VIS detector
provide higher quality compared to the IR detector, which responds many boxes
predicting objects in the background. By considering the detector using both image
types, the improved localization of the detection boxes around the GT boxes can be
recognized. Furthermore, the false detections of the IR detector are suppressed.

One goal of this work is to show the synergy effect of using VIS and IR images
together instead of separately, as motivated with Figure 1.1. The complementary
information of VIS and IR images, which can be combined to enhance the detection
results is analyzed in this thesis. Wagner et al. [WFHB16] do similar evaluations in
their work. They use deep learning and implement two different fusion approaches
to fuse the information of VIS and IR images. Their architectures are explained
in Section 6.3. Deep learning is a class of machine learning algorithms that are
based on neural networks. Convolutional Neural Networks (CNNs) are very popu-
lar popular neural networks used for deep learning and have a large spectrum of
applications. Table 1.1 shows the results of Wagner et al., evaluated using a KAIST
testing subset. The CaffeNet-RGB detector describes a detector only trained and
evaluated on VIS images, analogously the CaffeNet-T detector is only trained on IR
images. Both detection results are comparable, the IR detector outperforming the
VIS detector. With fusing the two sub-networks and using VIS and IR data, Wagner
et al. achieve a significant performance boost showing the synergy effect of using
both image types, instead of only one of them.

In the work of Liu et al. [LZWM16], they present a fusion approach for fusing VIS and
IR information based on the popular detection framework Faster R-CNN [RHGS16]
(Section 6.2). Similar to Wagner et al., they train and evaluate the Faster R-CNN
sub-networks separately on VIS and IR data. The results of their approach are listed
in Table 1.2. The Faster R-CNN-C detector is based on only using VIS images,
whereas the Faster R-CNN-T detector is based on only using IR images. With
fusing the two sub-networks halfway, they are able to decrease the log-average
Miss Rate (MR) significantly. Furthermore, Liu et al. compare the detections of
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Benchmark Results [WFHB16] MR (%)

CaffeNet-RGB 56.52

CaffeNet-T 54.67

Late Fusion CNN 43.80

Table 1.1: Excerpt of the results of Wagner et al. [WFHB16] for comparing the re-
sults for using multi-spectral images instead of only VIS or only IR images
evaluated on the KAIST dataset.

the two detectors (Faster R-CNN-C and Faster R-CNN-T). They recognize that the
results of both detectors contain detections detected by both, but as well the results
contain detections, which are in each case not detected by the other detector. Thus,
their results additionally motivate the evaluation of using multi-spectral images for
person detection.

Benchmark Results [LZWM16] MR (%)

Faster R-CNN-C 50.36

Faster R-CNN-T 47.35

Halfway Fusion Faster R-CNN 36.22

Table 1.2: Excerpt of the results of Liu et al. [LZWM16] for comparing the results
for using multi-spectral images instead of only VIS or only IR images
evaluated on the KAIST dataset.

1.1 Multi-spectral Images

In this thesis, multi-spectral images are denoted as image pairs consisting of Visual
optical (VIS) images containing three channels (RGB), and thermal Infrared (IR)
images. The IR images are gray-scale images with values in the range between
0 and 255 representing the thermal radiation acquired by the IR camera. VIS im-
ages are highly sensitive to external illumination and contain fine texture pattern
details [ZWN07] [LRH07]. This yields to a high diversity and variance in person
appearance.
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In comparison, IR images have different image characteristics than VIS images.
The measured intensity of persons depends on clothing to some extend. Further-
more, the texture details are lost as the body temperature is usually relatively con-
stant [ZWN07] [PLCS14]. Teutsch et al. [TMHB14] state that person detection in
IR is commonly better than in VIS. There are multiple categorizations of IR radia-
tion. According to Byrnes [Byr08], the spectrum of wavelengths can be categorized
into five categories. Near Infrared (NIR) spans between wavelengths from 0.75 to
1.4 µm, Short-Wavelength Infrared (SWIR) from 1.4 to 3 µm, Mid-Wavelength In-
frared (MWIR) from 3 to 8 µm, Long-Wavelength Infrared (LWIR) from 8 to 15 µm,
and Far Infrared (FIR) from 15 to 1000 µm. NIR and SWIR depend on active light-
ing similar to images acquired in the VIS spectrum. MWIR is also called Intermedi-
ate Infrared (IIR). NIR and SWIR are sometimes called reflected infrared, whereas
MWIR and LWIR are referred to as thermal infrared. For comparison, the ISO di-
vision scheme (ISO 20473:2007) subdivides the wavelengths in three categories
only: Near Infrared (NIR), Mid Infrared (MIR) and Far Infrared (FIR). Especially the
LWIR spectral range from 8 to 12 µm is interesting for person detection, as the hu-
man body radiates with a LWIR wavelength of 9.3 µm [HPK�15] [GFS�16] [SlMP07].

1.2 Differentiation of Important Terms

This section introduces important computer vision terms for the remainder of this
thesis. The three terms classification, detection, and regression are discriminated.
In this thesis, approaches for person detection are analyzed. Thus, it is important
to review the meaning of detection compared to classification and regression. The
task of image classification means that the image content is analyzed and that the
image is labeled w.r.t. its content. For example, if there is an image showing a
dog, the resulting label should be dog. The image is categorized into a pre-defined
number of discrete classes. Recognition is often used synonymously to classifica-
tion. To give a second example for classification: We have an unknown fruit that
is yellow, 14 cm long, has a diameter of 2.5 cm and a density of X. What fruit is it?
For this kind of problem, classification is used to classify the object as a banana as
opposed to an apple or orange. In the field of machine learning, classification is
used to predict the class of an object (discrete values), whereas regression is used
to predict continues values. An example for regression is: We have a house with W
rooms, X bathrooms and Y square meter size. Based on other houses in the area
that have recently been sold, how much can we sell the house for? This problem
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is a regression problem, since the output is a continuous value. Another example
for regression is linear regression that models the relationship between two scalar
variables. For each value of the explanatory variable, the linear regression model
predicts the dependent variable w.r.t. the determined regression model. Regression
models a function with continuous output.

For classification it is not important where the object exactly is located in the image,
as long as the contained object can be classified correctly. Instead, for solving the
detection task, localization and classification have to be considered. In an image
that contains multiple objects, the task of detection is to know where each object
is situated and its class. For example, there is an image acquired by a driving car.
The driver assistance system has the task of finding the location of each person
the image contains. The difference between classification and detection is that the
detection additionally has to find the position of each object (localization) instead
of only categorizing objects (classification). The number of objects contained in an
image and therefore the number of detection outputs is variable, whereas classifica-
tion and regression output only one resulting value. For predicting object positions in
images there are CNNs that are trained for solving a regression problem [FGMR10]
[GDDM14] and can be used for localizing objects. The relationship of the three
terms is that object detection needs localization and classification, and localization
can be achieved and improved by using regression.

1.3 Outline

The remainder of this thesis is structured as follows. Recent approaches and
benchmarks are reviewed in Chapter 2. For choosing a deep learning frame-
work, Chapter 3 provides an overview of existing frameworks and defines criteria
for choosing a framework. An overview of popular person detection datasets is
provided in Chapter 4. The annotations and their characteristics of three datasets
of choice are analyzed. In Chapter 5, the filtered channel features based detec-
tors are reviewed, and implementation details are provided. Chapter 6 describes
the VGG-16 network and the Faster R-CNN framework that are the fundamentals
of this thesis. After reviewing some inspirational work, fusion approaches and the
additional usage of a boosted forest classifier are explained. In Chapter 7, the ap-
proaches of this work are evaluated and compared to recent baseline results. The
conclusion in Chapter 8 provides a summary of the thesis and proposes future work.

10



2 Related Work

In the last few years, diverse efforts have been made in order to improve the per-
formance of person detection. These efforts involve computational performance as
well as detection performance (localization and classification). This chapter pro-
vides an overview of different approaches for person detection in VIS and/or IR
images. In the first section three coarse concepts are introduced that can be used
to subdivide different person detection approaches. The remaining sections explain
different approaches and match them to one of the three base concepts.

2.1 Generic Person Detector

In Chapter 1, the difference between classification and detection are explained. In
Figure 2.1 the subdivision scheme for categorizing person detection concepts is
illustrated. The input image is processed from left to right and the output consists
of bounding boxes and their labels. The key processing elements are localization
and classification (inspired by [ZWN07]). The localization part is responsible for
finding and proposing Regions of Interest (RoIs), whereas the classification part
matches these RoIs with appropriate labels, that represent their content. While
the classification part is performed for each RoI separately, the localization part is
performed once on the entire input image.

The first row in Figure 2.1 represents the typical approach for object detection in
general as well as person detection. First, candidate regions are generated, also
called RoIs. The proposal generation part in its simplest form is represented by the
sliding window paradigm, where a window of fixed sizes and scales is shifted with
a fixed stride over the input image, and each position of the window corresponds to
one proposal. The goal of the proposed RoIs of an input image is, to use them for
processing highly discriminative features (feature extraction). Based on the gener-
ated feature pool for each RoI, its content is classified. In many approaches there
are some post-processing steps like non-maximum-suppression (NMS), regression
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Figure 2.1: Abstracted overview of the different architectures for person detection
and a possibility for categorizing the concepts into three categories.
Each row represents one concept for person detection. Person detec-
tion requires localization and classification.

(improvement of localization) or a part of the candidates is rejected depending on
the candidate score which gives a confidence measure estimate for the candidate
belonging to a certain class. By using a score threshold RoIs can be discarded. In
the case of person detection there are only two label classes (person/background).

The second row in Figure 2.1 is typical for deep learning approaches. The first
stage is similar to the first row. In order to meet real-time requirements, the sliding
window paradigm cannot be utilized to classify each sliding window with a complex
classifier. The third row in Figure 2.1 describes deep learning approaches that use
regression for simultaneously localizing and classifying objects. Therefore, these
approaches are considered as integrated object detection methods. In the following
section, some popular proposal generation approaches are presented. The last
type for categorizing detection approaches is based on deep learning, too. There
are some Convolutional Neural Network (CNN) architectures which can be trained
in an end-to-end fashion and use regression for localization to propose candidates
across the whole input image.

2.2 Proposal Generation

After introducing the subdivision scheme for categorizing object/person detectors,
this section introduces the different approaches for generating proposals. Some
of them are used for object detection in general rather than for person detection
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only. The goal of proposal generation is the reduction of candidate regions based
on objectness measures which are computationally efficient. The naïve method
is the exhaustive search approach, which is often called sliding window paradigm
[PP00][VJ01b] [FGMR10] [DT05]. Sliding windows are used with different scales
and aspect ratios and the windows are shifted across the input image with a fixed
number of pixels between two locations (stride). In the boundary regions padding
can be applied. Most of the recent object and person detectors are described and
evaluated by Hosang et al. [HBDS16]. They state that the reason for using a pro-
posal generator is to reach low miss rate with considerably fewer windows than
generated with an exhaustive search approach. The candidate reduction generates
a significant speedup and enables the use of more sophisticated classifiers. Since
a large number of windows have to be considered for proposal generation, these
algorithms have to be computationally efficient. Hosang et al. [HBDS16] catego-
rize the proposal algorithms into grouping, window scoring and some alternative
proposal methods.

The most popular region proposal approach belongs to the grouping methods and
is called Selective Search [UVGS13]. Selective Search uses a variety of color
spaces with different invariance properties, different similarity measures for group-
ing segmented regions, and varies the starting regions in order to generate class-
independent object proposals. Selective Search has been widely used as proposal
generator for many state-of-the-art object detectors, such as Regions with CNN fea-
tures (R-CNN) by Girshick et al. [GDDM14] and Fast R-CNN by Girshick [Gir16],
which can be applied for person detection as well. Another grouping proposal
method by Endres and Hoiem [EH10] utilizes hierarchical segmentation from oc-
clusion boundaries. They solve graph cuts with different seeds and parameters to
generate segments. Based on a wide range of cues, the proposals are ranked.

The window scoring proposal methods Edge Boxes by Zitnick and Dollár [ZD14] and
Objectness by Alexe et al. [ADF12] are among the most prominent approaches. Ob-
jectness rates candidate windows according to multiple cues whether they contain
an object or not. Cues are e.g. color contrast, edge density, superpixels straddling,
location and size of the candidate window. The Edge Boxes algorithm is similar to
Objectness and starts with a sliding window pattern. Zitnick and Dollár state that
the number of contours wholly enclosed by a bounding box indicates the likelihood
of that box containing an object. Based on an edge map neighboring edge pixels
of similar orientation are clustered together to form long continuous contours. The
score of a box is computed by considering the edges within the candidate window
and those straddling the window’s boundary.
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The Multibox method by Erhan et al. [ESTA14] is based on deep CNNs. They tailor
the AlexNet of Krizhevsky et al. [KSH12] towards solving the localization problem.
Here, object detection is formulated as a regression problem to the coordinates of
several given bounding boxes, where the proposals are class agnostic. The out-
put of Multibox is a fixed number of bounding boxes, with their individual scores
expressing the network’s confidence that this box contains an object. The succes-
sor of Multibox is Multi-Scale Convolutional Multibox MSC-Multibox by Szegedy et
al. [SRE�14]. In comparison to the predecessor, MSC-Multibox improves the net-
work architecture for bounding box generation by including multi-scale convolutional
bounding box predictors (prediction tree). Two similar approaches, the Region Pro-
posal Network (RPN) of Faster R-CNN by Ren et al. [RHGS16], and You Only
Look Once (YOLO) by Redmon et al. [RDGF15] (see Section 2.4) can be used
as proposal generators as well. Ghodrati et al. [GDP�15] introduce the coarse-to-
fine inverse cascade for their proposal generator. They exploit the high-level feature
maps well adapted for recognizing objects, as well as the feature maps of lower con-
volutional layers with simpler features, having a much finer spatial representation of
the image.

Filtered channel features such as Aggregate Channel Features (ACF) [DABP14]
or Checkerboards [ZBS15] in combination with a Boosted Decision Forest (BDF)
[DTPB09] trained with AdaBoost [FHTO00] are used as object [DABP14] and per-
son detectors [ZBS15]. The implementation of these detectors in Piotr’s Computer
Vision Matlab Toolbox [Dol] uses the soft cascade method of Bourdev and Brandt
[BB05] [ZV08]. The soft cascade threshold can be modified for increasing the num-
ber of False Positives (FPs), but simultaneously decreasing the number of False
Negatives (FNs). In other words, this modification lowers the miss rate of the given
detector. Additional FPs can be handled by the subsequent classification stage.
Li et al. [LLS�16] and Wagner et al. [WFHB16] e.g. use the ACF as proposal
generator.

2.3 Detection using Hand-Crafted Features

Considering Figure 2.1, in this section, mostly object and person detectors of the
first row are reviewed. Hand-crafted features are created by using manually de-
signed filters such as Sobel filter, or at least methods such as Histogram of Oriented
Gradients (HOG) [DT05], which are designed by humans and work according to a
fixed sequence of processing steps for generating a feature pool. As these methods
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are computationally efficient, most of them use the sliding window approach as pro-
posal generator. In the follow-up the extraction of discriminative features from the
proposed regions are explained and which algorithms are used for classification.
As stated by Zhang et al. [ZBS15], by knowing the classifier choice, the classifi-
cation quality cannot be deduced automatically; rather the features used as input
are of higher importance. In the remainder of this section, the mentioned methods
are based on Support Vector Machines (SVM) [VV98] [OFG�97] and/or boosted
classifiers [DTPB09] [BOHS14] trained using different boosting techniques (Dis-
crete AdaBoost, Real AdaBoost and LogitBoost) [FS96] [FS99] [FHTO00] [Bre01].
The weak classifiers of the boosted classifiers are usually decision trees [Qui86]
and therefore they are called BDF. In this work the name BDF is chosen, because
it consists of multiple decision trees which are trained by a boosting technique to
work as one strong classifier. Other names are boosted forests or boosted decision
trees. In Figure 2.1, SVM and BDF represent the object classification element in
the first row.

The first popular papers in the field of general visual object detection were published
by Viola and Jones [VJ01a] [VJ01b]. Their methods applied to person detection
were used for many years as benchmark results. By introducing integral images
they were able to achieve state-of-the-art results and real-time processing. Viola
and Jones use Haar-like features which can be easily calculated by using the inte-
gral images. Based on these features, a classifier is trained using AdaBoost [FS95].
AdaBoost selects a small number of discriminative features out of a big feature pool
and uses classifier cascades to reject background hypotheses with simple classi-
fiers in early stages and train more complex classifiers in higher stages. A few years
later, Dalal and Triggs introduced human detection by using Histograms of Oriented
Gradients (HOG) [DT05]. They generate a feature pool consisting of HOG features
and use a SVM for classification.

While the algorithms mentioned before are used for processing VIS images, Suard
et. al [SRBB06] adapt the approach of Dalal and Triggs for IR images. Zhang et
al. [ZWN07] evaluate the usage of Edgelet features [WN05] together with cascaded
classifiers trained using AdaBoost [VJ01a] or a cascade of SVM classifiers [CV95],
to HOG features [DT05] trained with a cascade of SVM classifiers only. Their re-
sults are evaluated on VIS and IR images. Davis and Keck [DK07] use a two-stage
approach for person detection in IR images. The first stage is a fast screening
procedure using a generalized template to find potential person locations. The sec-
ond stage evaluates the potential person locations by creating four feature images
(Sobel gradient operators for 0X, 45X, 90X and 135X orientations) and applying Ad-
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aBoost for training. Munder and Gavrila [MG06] use Haar Wavelets [PP00], Local
Receptive Fields (LRF) [JDM00] and PCA coefficients [JDM00] in combination with
a SVM classifier. Gerónimo et al. [GSLP07] use Haar Wavelets as well, but utilize
AdaBoost instead of a SVM for classification. Miezianko and Pokrajac [MP08] use
modified HOG features and a linear SVM for person detection in low resolution IR
images. Keeping Figure 2.1 in mind, the mentioned approaches all belong to the
first row, whereas generating the Edgelets, Haar or HOG features correspond to
the feature extraction stage. For evaluating VIS images, Wojek et al. [WWS09]
present a good evaluation overview of different feature extraction methods (HOG,
Haar and combination) in combination with different classifiers (SVM, AdaBoost and
MPLBoost [BDTB08]) on their own pedestrian dataset.

An impulse for new approaches was given with the introduction of the Caltech
dataset for pedestrian detection by Dollár et al. [DWSP09] [DWSP12]. The Cal-
tech dataset is explained in depth in Chapter 4. Based on this new dataset, Dollár
et al. evaluate existing methods based on HOG, Haar or gradient features, using
AdaBoost and SVM for classification. By introducing channel features, especially In-
tegral Channel Features (ICF), Dollár et al. [DTPB09] succeeded in creating a new
benchmark. The channel features detectors are described in detail in Chapter 5.
ICF uses a sliding window over multiple scales of the input feature channels. The
feature channels are computed by applying different linear and non-linear transfor-
mations (normalized gradient magnitude, histogram of oriented gradients and LUV
color channels) on the input image. LUV denotes the CIE (L*u*v*) color space
(CIELUV). Thus, the input image (3 channels) is used to get more discriminative
feature channels (e.g. 10 channels). Based on these feature channels, higher-
order features are randomly generated by applying weighted sums of the feature
channels. The generated feature pool is utilized for classification by training a BDF.
For improving the computational performance Dollár et al. [DBP10] examined the
approximation of multi-scale gradient histograms as well as multi-scale features.
Instead of computing the channel features for multiple scales separately, they com-
pute channel features for several scales and approximate the channel features for
the remaining scales. Another approach for improving the computational perfor-
mance of detectors based on channel features is introduced by crosstalk cascades
of Dollár et al. [DAK12]. They exploit the correlations by tightly coupling detector
evaluation of nearby windows. Using soft cascades [ZV08] [BB05], Benenson et al.
[BMTV12] are able to speed up the time for processing an image. The soft cascade
aborts the evaluation of non-promising detections if the score of a given stage drops
below a learned threshold. Benenson et al. [BMTV13] consider general questions
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like the size of the feature pool generated for classification, which training method
to use (Discrete AdaBoost, Real AdaBoost or LogitBoost), or whether to use data
augmentation or not. A good overview and evaluation of different data augmenta-
tion techniques for channel features detectors is provided by Ohn-Bar and Trivedi
[OBT16].

Based on the introduction of the ICF detector other detectors of the channel fea-
tures detector family are reviewed. Dollár et al. [DABP14] analyze how to construct
fast feature pyramids by approximation (similar to [DBP10]). Additionally, they cre-
ate a new benchmark detector with the very popular Aggregate Channel Feature
(ACF) detector. ICF and ACF differ in that the ACF creates the channel features like
ICF, but instead of computing the integral images and randomly summing patches
to create high-level features, the ACF uses the generated feature channels as sin-
gle pixel lookups which represent the feature pool. On the feature pool a cascaded
BDF is trained using AdaBoost. Nam et al. [NDH14] improve the detector perfor-
mance of ACF by replacing the effective but expensive oblique (multiple feature)
splits in decision trees by orthogonal (single feature) splits over locally decorre-
lated data. Instead of using the feature channels directly for training, decorrelating
filters are applied per channel generating the so-called Locally Decorrelated Chan-
nel Features (LDCF). Considering the channel features in a more generic way, is
introduced by Zhang et al. [ZBS15]. Based on the channel features of the ACF de-
tector they applied different filters to improve the discriminative power of the feature
pool (similar to LDCF). The following popular so-called filtered channel features
based detectors are presented: ACF, re-definition of InformedHaar filters as In-
formedFilters, SquaresChntrs, Checkerboards, RandomFilters, already mentioned
LDCF, and PcaForeground filters. These filters are applied on the channel features,
and the resulting channel features are classified using AdaBoost. A new filter to
be used like the other channel features filters is proposed by Cao et al. [CPL15].
For designing their filters they exploit some simple inherent attributes of persons (i.e.
appearance constancy and shape symmetry). They call the new features side-inner
difference features (SIDF) and symmetrical similarity features (SSF). Similar to the
simple HOG and Haar detectors, good performing approaches like the ACF detec-
tor are also used for person detection in IR images [BVN14][HPK�15]. Based on
the introduced filtered channel features, some improvements are proposed. Costea
et al. [DN16] generate multi-resolution channels and semantic channels to improve
the feature pool, resulting in an enhanced detector performance. Representing a
multi-resolution approach as well, Rajaram et al. [ROBT16] propose to train multi-
ple ACF models with different model sizes. While testing, all models are run on the
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corresponding scales of the feature pyramid and the derived bounding boxes of the
different models are accumulated.

There are two popular evaluations based on the Caltech dataset. Benenson et al.
[BOHS14] provide a good overview of different person detectors. Additionally, they
state that person detection can be enhanced by improving the featues, adding ad-
ditional context information (e.g. optical flow and/or disparity map), and by a more
diverse training dataset (i.e. few diverse persons are better than many similar ones).
The second evaluation is done by Zhang et al. [ZBO�16]. They compare the filtered
channel features based detectors (ACF, Checkerboards, LDCF, etc.) as well as
current deep learning architectures like AlexNet [KSH12] and the VGG-16 [Gir16].
Furthermore Zhang et al. provide a human baseline to evaluate the detector per-
formance compared to humans. The second contribution is the analysis of reasons
for detector failures such as small scale, occlusion or bad annotations. Some of the
results are considered in Chapter 4.

The first publications about using VIS and IR images in a complementary fash-
ion are given by Toressan et al. [Tor04], Ó Conaire et al. [ÓCO�05], Fang et al.
[FYN�03], St-Laurent et al. [SlMP07], and Choi et al. [CP10]. They fuse the VIS
and IR information/features on different levels. Hwang et al. [HPK�15] introduce the
very popular KAIST Multispectral Pedestrian Detection Benchmark dataset. They
also adapt the ACF detector for generating channel features based on multi-spectral
image data, which is explained later in Chapter 5. The KAIST dataset is described
in more detail in Chapter 4. Based on the ACF detector, Afrakhteh and Miryong
[AM17] analyze how a confidence measure can be defined, which can be used for
selecting either using the VIS ACF detector results or detections of the IR ACF de-
tector. They state that by choosing only the appropriate detector’s detections they
are able to reduce the Number of False Positives Per Image (FPPI).

2.4 Detection using Machine-Learned Features

In contrast to the previous section, this one presents methods that are able to learn
how to generate a feature pool depending on the training data, and not using pre-
defined features. The learning procedure not only learns to select and combine the
appropriate features, but also learns how to design the filters for generating discrim-
inative features. The feature extraction techniques in the remainder are based on
trained neural networks, while the channel features of the ACF detector are gener-
ated using pre-defined filters, independent of the dataset. CNNs are able to learn
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appropriate filters and therefore do not rely on manually designed features. Com-
pared to Figure 2.1, there are approaches of all three types. While representatives
of the first row are presented in Subsection 2.4.1, representatives of the second
and third row are described in Subsection 2.4.2 and Subsection 2.4.3, respectively.

2.4.1 Classification using SVM or BDF Classifiers

This subsection introduces Convolutional Neural Networks (CNN) for feature ex-
traction. Yang et al. [YYLL16] choose the sliding window paradigm as proposal
generator for person detection, to ensure comparability for evaluating different fea-
ture extraction methods. They compare several popular CNN models for feature
extraction, which are AlexNet [KSH12], Visual Geometry Group (VGG) nets [SZ15]
and GoogLeNet [SLJ�15]. The generated feature maps are used to train by a
BDF. They also evaluate the differences between using feature maps of different
hierarchical levels such as conv3_3 or conv4_3 of VGG-16. They show that the
mid-level feature maps perform best when used together with BDF and combin-
ing the machine-learned features with (hand-crafted) channel features, additionally
improves the classification performance.

Chen et al. [CWK�14] use a combination of ACF detector and CNNs. The ACF
detector is used for proposal generation due to its robustness towards changing
image quality such as image noise or altered image acquisition, compared to the
Selective Search algorithm. The candidate regions are warped to a fixed size, which
is required for using the proposal as CNN input. For the warped window, AlexNet
[KSH12] is utilized to perform feature extraction. The resulting feature vector serves
as input for the SVM that classifies the candidate window.

Hu et al. [HWS�16] do their experiments based on the results of Yang et al. They
state that compared to other applications in computer vision, CNNs are less effec-
tive on person detection. As possible reason they mention the non-optimal network
design for person detection. Based on the VGG-16 net, they extensively evaluate
the feature maps extracted from different levels of the network by training a BDF
like Yang et al. They finetuned the VGG-16 model on the Caltech dataset and dis-
covered improvements. The best results are achieved for the convolutional layers
between conv3_3 and conv5_1. With the feature maps of conv3_3, conv4_3 and
conv5_1 Hu et al. train separate BDF models and fuse the results by score averag-
ing. By additionally incorporating pixel labels they achieve a log-average Miss Rate
(MR) of 8.93 % on the Caltech dataset.
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Zhang et al. [ZLLH16] propose a similar approach. They utilize the RPN of Faster
R-CNN [RHGS16], which does proposal generation by solving a regression prob-
lem. The RPN is described in Subsection 2.4.3, in which regression methods are
reviewed. The regions of the feature maps corresponding to the individual propos-
als are extracted and used for training a BDF. Zhang et al. also combine feature
maps of different levels to improve detection performance instead of combining the
scores of different BDF models. Their final result on the Caltech dataset is 9.6 % log-
average miss rate. A very similar approach is presented by Zhang et al. [ZCST17].
Additionally they consider the RPN in combination with the BDF for infrared (IR)
data.

2.4.2 Classification using Neural Networks

Referring to Figure 2.1, this subsection introduces methods, which can be catego-
rized into the second row. Based on generated proposals, these algorithms per-
form feature extraction and classification combined within one architecture. All ap-
proaches are based on neural networks with fully connected and/or convolutional
layers. Ouyang and Wang [OW13] present a unified deep model for jointly learning
feature extraction, a part deformation model, an occlusion model, and classifica-
tion. With deformation and occlusion handling, they simultaneously tackle two main
challenges in person detection. Based on Felzenszwalb et al. [FGMR10], Luo et
al. [LTWT14] use the idea of Deformable Part-based models (DPM) and train a
Switchable Deep Network (SDN) which is able to learn mixtures of different body
parts and complete body appearances for person classification. This architecture
addresses the occlusion challenge of person detection.

Similar to Chen et al. [CWK�14], Wang et al. [WYL�15] use ACF for proposal
generation and instead of only using a CNN for feature extraction, they propose
a CNN for feature extraction and classification. Their approach is utilized for face
detection, but it can be easily adapted for person detection. For training, Wang
et al. use hard-negative mining and iteratively collect false positive samples from
the background images using the previously trained model. These samples are
appended to the training data. Verma et al. [VHV�16] adopt the idea of using
the ACF detector as proposal generator as well. Depending on the confidence
scores, the proposals are passed directly to the output if the score provides a clear
confidence, or to a Mixture of Expert (MoE) CNNs otherwise. The MoE consists of
several different CNNs each with a different architecture addressing different person
shapes and appearances.
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Tian et al. [TLWT15] address the problem of CNNs confusing positive with hard
negative samples. They give examples where a tree trunk or wire pole are similar to
persons considered from certain viewpoints. To tackle this problem they add person
attributes and scene attributes to the learning process using scene segmentation
datasets. Pedestrian attributes can be e.g. carrying backpack and scene attributes
are e.g. road or tree.

Hosang et al. [HOBS15] evaluate CNNs for the task of person detection in general.
They extensively analyze small and big CNNs, their architectural choices, parame-
ters, and the influence of different training data, including pre-training. Architectural
choices are for example the number and size of convolutional filters or the number
and type of layers. Popular CNN architectures such as AlexNet [KSH12], CifarNet
[Kri09] and R-CNN [GDDM14] are considered.

Based on the approaches of Felzenszwalb et al. [FGMR10] and Luo et al. [LTWT14],
Tian et al. [TLWT16] address occlusion handling for person detection by training
multiple different CNNs, each responsible for detecting different parts of a person.
These so-called part detectors generate a part pool, containing various semantic
body parts. The output of the part detectors is directly used without combining the
different scores by a SVM, BDF or an additional CNN. The method is called Deep-
Parts and is evaluated for three different network architectures used for the part
detectors: Clarifai [ZF14], AlexNet [KSH12], and GoogLeNet [SLJ�15].

One challenging task of pedestrian detection is the variance of different scales. Lu
et al. [LZL] propose a Scale-Discriminative Classifier (SDC) that contains numer-
ous classifiers to cope with different scales. Proposals are generated and a CNN is
applied fo feature extraction. But instead of just using the features after the highest
convolutional layer, they construct a high resolution feature map of fixed size that
combines high-level semantics feature maps (up-sampling) and low-level image fea-
tures (down-sampling). For each proposal, the appropriate classifier is selected and
its input is generated by RoI pooling on the high resolution feature map. This implies
that for each candidate window only one classifier is applied. Bunel et al. [BDX16]
particularly address the topic of detecting persons at a far distance. They analyze
the appearance of small persons and explicitly design their CNN for far-scale per-
sons by adapting the filter sizes to achieve appropriate receptive fields. They re-size
medium and near-scale persons by down-scaling to increase the amount of training
data. They also apply hard negative mining for training their CNN.

Lin and Chen [LC15] address the problem of hard negative samples, too. They
state that CNNs are easy to confuse. Therefore, they propose parallel CNNs: one
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CNN is trained with all available data (positive and negative samples); the other
CNN is trained for separating the hard negative samples from the positive samples.
Candidate windows are sampled by an ACF detector. Both CNNs are based on
GoogLeNet [SLJ�15]. To increase the precision of the detected region, bounding
box regression is performed, as suggested in R-CNN [GDDM14].

Up to now, only approaches for person detection on VIS images are considered.
For applying multi-spectral person detection two methods are presented. Choi et
al. [CKPS16] show that machine-learned features have more discriminative power
compared to hand-crafted features and that the combination of VIS and IR images
provide additional discriminability and are therefore complementary. For proposal
generation the Edge Box method is applied. Separately for VIS and IR inputs, two
individual Fully Convolutional Networks (FCNs) [LSD15] are trained. Each of them
provides a confidence map as result of the FCN. For feature maps of higher levels
the discriminative power increases, but its resolution decreases at the same time.
Therefore Choi et al. [CKPS16] extract and utilize the feature maps of intermediate
layers additionally to the output feature map (confidence map). For each proposal
a feature vector is extracted, using Spatial Pyramid Pooling (SPP) [HZRS15b]. This
feature vector serves as input for Support Vector Regression (SVR) [CL11] that
is trained to classify the candidate regions. For all positive classified proposals
an accumulated map is created. The accumulated map together with the con-
fidence maps are combined for finally localizing the person or rejecting the pro-
posal. A second approach for multi-spectral person detection is given by Wagner
et al. [WFHB16]. For proposal generation they use the multi-spectral ACF detector
[HPK�15], often referred to as ACF-T-THOG, according to the additional IR chan-
nel. They introduce two fusion architectures: the Early Fusion architecture fuses the
VIS and IR images (4-channel input) before putting them into CaffeNet [JSD�14] for
feature extraction and classification. The Late Fusion architecture trains two Caf-
feNets separately, one for VIS input images (3-channel) and the other for IR images
(1-channel). They first use ImageNet [RDS�15] as large auxiliary dataset for devel-
oping general low-level filters. Based on this pre-training step, they utilize the Cal-
tech dataset [DWSP12] for an additional pre-finetuning and use the KAIST dataset
[HPK�15] for the final finetuning.

2.4.3 Regression based Detection

This subsection presents methods for the third row in Figure 2.1. As explained in
Chapter 1, the classification output is described by discrete labels (person/no per-
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son), whereas the regression output has a continuous range (e.g., score and/or
bounding box coordinates). Instead of proposing RoIs and classifying them, a re-
gression outputs the coordinates directly together with a confidence score.

A simple approach by Szegedy et al. [STE13] is the formulation of object detection
as a regression problem to object bounding box masks. They use AlexNet [KSH12]
and re-design it for having a regression layer instead of a softmax classifier as last
layer. After re-sizing the input image, the resulting binary mask represents one
or several objects: 1 means the appropriate pixel lies within the bounding box of
an object of a given class, and 0 otherwise. This methods is strongly related to
semantic segmentation.

Sermanet et al. [SEZ�13] propose CNNs to use for classification, localization, and
detection. They show how a multi-scale sliding window method can be efficiently
implemented using a CNN based on AlexNet [KSH12]. The classification layers are
replaced by a regression network and are trained to predict object bounding boxes.
Since the complete input image is processed once, only the regression layers need
to be re-computed for each location and scale. Sermanet et al. call their approach
Overfeat.

According to Girshick et al. [GDDM14], Overfeat can roughly be seen as a special
case of their proposed R-CNN. R-CNN stands for Regions with CNN features, since
the features of region proposals are computed using CNNs. Their object detection
system consists of three modules: (1) category-independent region proposal gen-
eration, (2) CNN for feature extraction of fixed length, and (3) a set of class-specific
linear SVMs. Girshick et al. use Selective Search to find region candidates. For
each RoI, a fixed length feature vector is extracted, using a CNN (AlexNet). Since
the CNN requires a fixed size input, each proposed region is warped to a fixed size,
regardless of size and aspect ratio of the proposal. To reduce the localization error,
they train a linear regression model [FGMR10] to predict a new detection window,
improving the initial Selective Search region proposals.

The successor of R-CNN is proposed by Girshick [Gir16] and is called Fast R-CNN
because of its achieved computational performance gains. A bottleneck of the
R-CNN is that it has to perform the forward pass for each object proposal with-
out sharing computations. For proposal generation they analyze different methods,
but Selective Search performs best. In order to accelerate the approach, the Fast
R-CNN network takes as input an entire image and a set of object proposals. First,
the entire input image is processed with several convolutional and max pooling
layers to produce a stack of feature maps (conv feature maps). For each object
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proposal a RoI pooling layer extracts a fixed length feature vector from the feature
map. Each feature vector is fed into a sequence of fully connected layers that fi-
nally branch into two sibling output layers: one produces the softmax probability
estimates over the different object classes (classification) and another layer out-
puts four real-valued numbers representing the coordinates, for each of the object
classes (regression). Processing the time consuming convolutional layers just once
for each image, the already mentioned processing bottleneck is avoided. For this
approach, the RoI pooling layer is the key element, which is the special case of
SPP [HZRS15b]. By mapping the proposed regions of the input image to the conv
feature maps, they avoid the need for re-computing the convolutional layers for each
proposal. The RoI pooling layer is a good alternative to image warping and pools
the proposed regions of the conv feature maps to a fixed length input vector for
classification and bounding box regression.

Based on Fast R-CNN, Li et al. [LLS�16] adapted the general object detection
task to person detection. Their approach is called Scale-Aware Fast R-CNN (SAF
R-CNN). By considering the resulting feature maps (conv feature maps), they re-
alize that persons with different spatial scales exhibit very different features. This
fact of undesired large intra-category variance in features, makes them propose a
scale-aware network architecture. Therefore they use a trunk of convolutional lay-
ers, similar to the Fast R-CNN. After the trunk, the conv feature maps are split
into two branches. One branch is trained for detecting small person instances and
the other branch is responsible for large-size instances. Both branches consist of
several convolutional layers to produce feature maps for specific scales. On these
scale-specific feature maps, RoI pooling is applied to generate fixed length feature
vectors, used for classification and regression. The results of both sub-networks are
combined by scale-aware weighting. Another method is proposed by Shrivastava et
al. [Shr16]: they introduce online hard example mining for boosting the Fast R-CNN
training.

A similar approach using Fast R-CNN is proposed by Najibi et al. [NRD16] with
their muti-scale Grid of fixed bounding boxes with CNNs (G-CNN) method. They
work without proposal algorithms. Instead they start with a multi-scale grid of fixed
bounding boxes and train a regressor to iteratively move and scale elements of the
grid towards objects. The object detection problem is re-formulated as regression
problem, meaning to find the path from a fixed grid to boxes tightly surrounding the
objects. With this method they are able to reduce the number of boxes which have
to be computed compared to Fast R-CNN.
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An advancement of Fast R-CNN is the very popular Faster R-CNN approach for
object detection by Ren et al. [RHGS16]. Since this work is based on Fast R-CNN,
the approach is reviewed in short and details are explained in Chapter 6. One key
element of their work is the introduction of the RPN. They observe that the convo-
lutional feature maps used by Fast R-CNN can also be used for generating region
proposals. On top of these convolutional feature maps they construct the RPN
by adding a few additional convolutional layers that simultaneously regress region
bounds and determine objectness scores at each location on a regular grid. The
RPN is a FCN and can be trained in an end-to-end fashion. End-to-end learning
refers to omitting any hand-crafted intermediary algorithms and directly learning the
desired solution of a given problem from the sampled training data. The main differ-
ence compared to Fast R-CNN is that Selective Search as region proposal method
is replaced by the RPN. Instead of using pyramids of images or filters, Ren et al. in-
troduce anchor boxes that serve as references at multiple scales and aspect ratios.
Based on the conv feature maps that are the same for RPN and Fast R-CNN clas-
sification network, every point of the feature map represents one reference point
(anchor ). The computational performance gain is achieved by sharing the con-
volutional layers used for region proposal with the Fast R-CNN, leading to near
cost-free feature maps for the classification network. Zhang et al. [ZLLH16] state
with their observations that for person detection, the RPN as stand-alone achieves
comparable results to the Faster R-CNN (RPN + Fast R-CNN). Therefore Zhang et
al. propose to omit the Faster R-CNN classification network to improve the detec-
tor performance. While introducing a new pedestrian dataset called CityPersons,
Zhang et al. [ZBS17] analyze the Faster R-CNN architecture and state it fails to
handle small scale objects (persons). Thus, they propose five modifications: (1)
changing the anchor scales, (2) input up-scaling, (3) finer feature stride, (4) ignore
region handling, and (5) changing the solver used for training. Those modifications
yield to a performance boost.

Redmon et al. [RDGF15] propose a similar approach to Ren et al. called You Only
Look Once (YOLO). According to Figure 2.1 this architecture corresponds to the
third row. YOLO divides the input image into a squared grid. If the center of an
object is within a grid cell, that grid cell is responsible for detecting that object. Each
grid cell predicts a certain number of bounding boxes and confidence scores for
those boxes. These confidence scores represent the model’s confidence that the
predicted box contains an object. Like Faster R-CNN, YOLO is a FCN. Since there is
no separation into region proposal generation and region classification, the result is
achieved by forward passing the image only once, making this object detector very
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fast compared to other algorithms such as Faster R-CNN, which have to consider
each region proposal in order to process one image. The main drawback is that
each grid cell can only contain one object due to the architectural design.

Bappy and Roy-Chowdhury [BRC16] present a method of region proposal genera-
tion by considering a CNN that activates semantically meaningful regions in order
to localize objects. These activation regions are used as input for a CNN to extract
deep features. These features are utilized to train a set of class-specific binary clas-
sifiers to predict the object labels. In order to reduce the object localization error, the
regression method of Felzenszwalb et al. [FGMR10] is adopted for better training
results.

Cai et al. [CFFV16] propose an approach called Multi-Scale CNN (MS-CNN) in-
spired by the RPN of Ren et al. [RHGS16]. The MS-CNN consists of a proposal
sub-network and a detection sub-network. As they want to improve the ability of
the proposal sub-network to be more scale-invariant, they not only use the output
feature maps of the last convolutional layers, but the feature maps of different in-
termediate convolutional layers as well. For each branch of the convolutional trunk,
there are detection layers for bounding box regression and classifying class labels.
All proposals of the different branches make up the resulting set of proposals. For
training the branches in an end-to-end fashion a multi-task loss is introduced. Sim-
ilar to the Faster R-CNN, each proposal of the proposal sub-network is processed
by the object detection sub-network. Although the proposal network could work as
a detector itself, it is not strong enough, since its sliding windows do not cover ob-
jects well. To increase detection accuracy, the detection network is added. Similar
to Faster R-CNN, RoI pooling is utilized to extract fixed length feature vectors for
each proposal, which are classified by a small classification network. Compared to
Faster R-CNN, the feature maps are up-sampled before RoI pooling by using a de-
convolutional layer. They state that this is necessary because higher convolutional
layers respond very weakly to small objects.

An approach for using Faster R-CNN for multi-spectral person detection is proposed
by Liu et al. [LZWM16]. They adopt the Faster R-CNN framework for the KAIST
dataset [HPK�15]. Unlike the algorithms presented before, this one is based on the
KAIST dataset, which provides multi-spectral videos, each frame containing one
pair of VIS and IR images. Therefore, they introduce four different fusion architec-
tures, which fuse the feature maps at certain intermediate convolutional layers. The
Early Fusion fuses the feature maps after pool1, the Halfway Fusion after pool4 and
the Late Fusion after pool5. PoolX denotes the pooling layer of the Xth convolu-
tional layer. In Chapter 6, the different fusion options are described in detail. For
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fusing two types of feature maps, the two stacks of feature maps are concatenated
in channel dimension and for reducing the channel dimension, network-in-network
(NIN) [LCY13] is applied. A fourth option for fusion is the Score Fusion, where the
VIS and IR subnets are handled separately and the resulting scores are merged by
equally weighting. The Halfway Fusion outperforms the other approaches.
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3 Deep Learning Frameworks

This chapter introduces different frameworks used for deep learning. First, an
overview of available frameworks is provided. A list of criteria, which need to be
satisfied by a suitable framework is presented. Based on these criteria the most
suitable framework for this work is chosen.

In Table 3.1 eleven deep learning frameworks are listed. All frameworks have differ-
ent features that have to be taken into account. The first criterion is that the frame-
work of choice has to be open-source. Only frameworks satisfying this constraint
are considered in this table. A second important criterion is the core language of
the framework. The core language enables assumptions about the computational
performance of the appropriate framework. Additionally, it has to be considered
if there is parallel computing support for frameworks, especially for those written
in languages such as Python and Matlab, to reduce training runtime. Even if the
core language itself is slow, this can boost the performance to an acceptable level.
Computational performance is extremely important, especially for deep learning.
Even on parallel computing architectures and C++-based frameworks, training of
neural network models can last days, weeks, or months. The next column gives an
overview of available binding languages, also called wrapper. Wrapper enable us to
call the original framework functions via interfaces out of other languages. This can
provide many advantages for debugging and enables visualizing the trained mod-
els. For example, a Matlab wrapper can be used to forward an image through the
network and simultaneously visualize the filter weights and activations. In order to
understand a given network architecture this is essential.

The remaining columns give some additional information: CPU and GPU pro-
vide information if the framework supports the usage of Central Processing Units
(CPUs) and/or Graphics Processing Units (GPUs) for training and evaluating the
CNNs models. Efficient model training requires support for Graphics Processing
Unit (GPU). The column named Network Layers shows if all layers that are nec-
essary for creating common CNN architectures are available. Visualization Layers
indicates if all layers of a common CNN architecture can be visualized according to
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the techniques of Zeiler and Fergus [ZF14]. The last column (Pre-trained Models)
indicates the possibility whether pre-trained models are provided for the appropri-
ate framework or not. Pre-trained models are used for finetuning, to avoid training
from scratch. In this way the low-level convolutional filters can be re-used and the
weights adapted by training the filters of higher convolutional layers. Important is
that the models of common architectures are provided, such as AlexNet [KSH12],
GoogLeNet [SLJ�15], VGG-16, and VGG-19 [SZ15].

A green tick (3) means the functionality is available. Orange ticks (Z) indicate that
the functionality can be transferred from other implementations or git branches, but
is not implemented in the original implementation or master branch. A red cross (7)
signals that this functionality is not available and has to be implemented by yourself.

There are some minor decision criteria. Most of the frameworks enable their users
to define the network architecture in a declarative way and a few imperatively.
Declarative definitions mean that the network is defined by specifying blocks, which
have a certain functionality controlled by parameters and connecting them. For ex-
ample, a convolutional layer gets an input, applies filters on the input, and outputs
the resulting feature maps. Furthermore, it is able to perform backpropagation. The
behavior of the layer can be controlled and adapted by setting parameters such as
kernel size, stride and padding. For users, the convolutional layer is a black box
that can be parameterized. On the opposite, if the convolutional layer is defined im-
peratively, each instruction needed to perform the convolution operation has to be
written manually. Therefore the declarative strategy is considered as the most suit-
able, since one can define the convolutional network in an abstract manner without
caring about implementational details. All models except for Torch7 support declar-
ative model definitions. Therefore, the Torch7 framework of Collobert et al. [CKF11]
is rejected. MXNet by Chen et al. [CLL�15] is the only framework, which provides
both possibilities of network architecture definition.

The KAIST dataset [HPK�15] is a rather small dataset for training a CNN. That is the
reason why pre-trained models have to be used together with finetuning [WFHB16].
Therefore, all frameworks which do not provide the appropriate pre-trained mod-
els are discarded: cuda-convnet2 [Kri14], Decaf [DJV�14], Pylearn2 [GWF13], and
Theano [BLP�12]. The OverFeat framework of Sermanet et al. [SEZ�13] is re-
jected due to missing GPU support and lack of available pre-trained models. The
Darknet framework of Redmon [Red13] is not considered further due to sparse
documentation and a limited number of available pre-trained models such as YOLO
[RDGF15]. Since the baseline approach of Zhang et al. [ZLLH16], used in this work,
is implemented in Matlab, a framework is preferred that is implemented in Matlab
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Caffe [JSD�14] BSD C++ Python/Matlab 3 3 3 Z 3

cuda-convnet2 [Kri14] Apache License 2.0 C++ Python 7 3 3 7 7

Darknet [Red13] free use C - 3 3 3 7 Z

Decaf [DJV�14] BSD Python - 3 7 7 7 7

MatConvNet [VL15] BSD Matlab - 3 3 3 Z 3

MXNet [CLL�15] Apache License 2.0 C++ Python/R/Julia/Go 3 3 3 7 3

OverFeat [SEZ�13] unspecified C++ Python 3 7 7 7 Z

Pylearn2 [GWF13] BSD Python - 3 3 7 7 7

TensorFlow [AAB�16] Apache License 2.0 C++ Python 3 3 3 7 3

Theano [BLP�12] BSD Python - 3 3 Z 7 7

Torch7 [CKF11] BSD Lua - 3 3 3 7 7

Table 3.1: Comparison of current deep learning frameworks.

or provides an appropriate wrapper. This reason, and missing layers for network
visualization according to Zeiler and Fergus [ZF14], lead to excluding the MXNet
framework of Chen et al. [CLL�15] and the TensorFlow framework of Abadi et al.
[AAB�16].

The two remaining frameworks are the Caffe framework of Jia et al. [JSD�14] and
the MatConvNet of Vedaldi and Lenc [VL15]. Both frameworks can be used un-
der the Berkeley Software Distribution (BSD) license, have CPU and GPU support,
provide all layers that are required for the CNN approach, and the most common
pre-trained models are available. Although MatConvNet is implemented in Matlab,
its speed is comparable to Caffe when using the GPU support. The Caffe frame-
work is chosen for this work, as it provides C++, Python and Matlab interfaces and
offers more flexibility than the MatConvNet. Furthermore, Caffe has a large online
community, which can be very helpful for getting the framework started and for fur-
ther support. According to own experiences, questions in the Caffe user group are
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answered within a few days. Regarding the visualization layers, there is no unpool-
ing layer in the original version, but it is possible to get this functionality from another
source. This work is based on the source code of Zhang et al. [ZLLH16].
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4 Datasets

This chapter gives an overview of existing datasets for person and/or pedestrian
detection. First, the most important datasets and their characteristics are reviewed
in Table 4.1. Next, one VIS image dataset (Caltech [DWSP12]), one IR dataset
(CVC-09 [SRV�11]) and one multi-spectral dataset (KAIST [HPK�15]) are chosen
according to their characteristics. The KAIST dataset is the main training and
evaluation dataset, whereas the other two datasets are used for pre-finetuning
[WFHB16]. The remaining sections present the detailed characteristics of the cho-
sen datasets.

4.1 Dataset Overview

Table 4.1 lists all potential datasets. Several other datasets are not considered,
as they provide only gray-scale images instead of RGB VIS images or the number
of annotations is not sufficient. For training a CNN one wants to preferably use
datasets acquired by moving platforms. In this way there is a constantly changing
background and thus more variance when sampling negative samples. A static
background can bias the set of negative samples. The KAIST dataset, which is
the main evaluation dataset, has bounding boxes that are axis-aligned. Bounding
boxes are rectangular boxes that are related to a certain region of an image and
usually are labeled according to the content of that region. The bounding boxes are
axis-aligned if their edges are parallel to the coordinate axes and thus they are not
rotated. Datasets which are axis-aligned are preferred.

The following datasets are not considered due to their small number of annotation
labels: OSU Thermal Pedestrian dataset (IR) of Davis and Keck [DK07], INRIA
pedestrian dataset (VIS) of Dalal and Triggs [DT05]. The CVC-14 dataset (VIS+IR)
of González et al. [GFS�16] is a multi-spectral dataset, but instead of RGB images
only gray-scale images are provided. Hence, the dataset is discarded, as well as
the Daimler dataset (VIS) of Enzweiler and Gavrila [EG09]. The LSIFIR dataset (IR)
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Dataset Name Citation Number of VIS (RGB) IR Image Comments
Annotations Images Images Resolution

(in Pixels)

BU-TIV - Atrium [WFTB14] 13,544 7 3 512�512 fixed camera

BU-TIV - Lab [WFTB14] 87,485 7 3 512�512 fixed camera

BU-TIV - Marathon [WFTB14] 265,069 7 3 1,024�512 fixed camera
no occluded labels

Caltech [DWSP12] 223,798 3 7 640�480 moving camera

CVC-02 [GSPL10] 13,181 3 7 640�480 moving camera

CVC-09 [SRV�11] 48,917 7 3 640�480 moving camera
no occluded labels

ETH [ELSa08] 13,247 3 7 640�480 moving camera

FLIR [PLCS14] 6,743 7 3 324�256 hand-held camera

KAIST [HPK�15] 81,469 3 3 640�512 moving camera

KITTI [GLU12] 11,256 3 7 multiple moving camera

LSIFIR [OPN�13] 8,246 7 3 164�129 moving and fixed camera

TUD-Brussels [WWS09] 1,421 3 7 640�480 moving camera

Table 4.1: Popular public datasets for person and pedestrian detection.

provided by Olmeda et al. [OPN�13] has a very low resolution compared to other
IR datasets and is therefore excluded.

The listed datasets in Table 4.1 are considered and chosen according to several
criteria. As there is no other multi-spectral dataset, the KAIST dataset of Hwang et
al. [HPK�15] is chosen as main training and evaluation dataset. As VIS datasets
there are following possibilities: Caltech dataset of Dollár et al. [DWSP12], the
CVC-02 dataset of Gerónimo et al. [GSPL10], the ETH pedestrian dataset of Ess
et al. [ELSa08], the KITTI dataset of Geiger et al. [GLU12], and the TUD-Brussels
dataset of Wojek et al. [WWS09]. The Caltech dataset is chosen due to the large
number of labels, which is essential for achieving good training results. A second ar-
gument for choosing the Caltech pedestrian dataset is its usage a as training and/or
testing dataset in recent works [BOHS14] [ZBS15] [HWS�16] [ZLLH16] [ZBO�16]
[ZBS17]. The following IR datasets are listed in Table 4.1: the BU-TIV dataset
(MWIR) of Wu et al. [WFTB14], the CVC-09 dataset (LWIR) of Socarrás et al.
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[SRV�11], the FLIR dataset (LWIR) of Portman et al. [PLCS14], and the LSIFIR
dataset (LWIR) of Olmeda et al. [OPN�13]. As denoted in brackets, the remaining
datasets comprise of MWIR or LWIR images and since the KAIST dataset consists
of LWIR images, the BU-TIV datasets are rejected. The CVC-09 dataset is selected
for pre-finetuning due to the large number of annotated bounding boxes compared
to the other two IR datasets.

Pre-trained network models are used for training the CNNs of this work. As these
pre-trained models are commonly trained on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset of Russakovsky et al. [RDS�15], the
characteristics of this dataset are considered in short. This work performs object
detection, but pre-training on the large ImageNet dataset trains the CNN model for
the task of object classification. The training on such large datasets helps forming
suitable filter weights, which can be used as initialization for training a CNN, even
if the pre-training is performed for another task. The training set of the ImageNet
dataset consists of 1,281,167 images and each image has a label out of 1,000 pos-
sible classes. The validation set has 150,000 images labeled with one of the 1,000
object categories. Other object detection datasets are the PASCAL dataset of the
VOC challenge by Everingham et al. [EVW�10] and the COCO dataset of Lin et
al. [LMB�14]. Usually the CNN models pre-trained on the ImageNet dataset are
utilized.

4.2 KAIST Multi-spectral Pedestrian Dataset

The KAIST Multispectral Pedestrian Benchmark dataset introduced by Hwang et al.
[HPK�15] is used as main dataset for experiments and evaluations. In Table 4.2
different sub-datasets of the KAIST dataset, which are used in the remainder of
this thesis, are introduced. The KAIST dataset has a fixed image size of 640�512
pixels.

To prevent the channel features detectors from overfitting, Hwang et al. re-sample
the original dataset to reduce the amount of the training and testing data. The
original re-sampling by Hwang et al. is given with skip 20. This means that out
of 20 frames one image is added to the re-sampled smaller dataset. KAIST-test-
Reasonable is a testing sub-dataset, which is re-sampled with skip 20 and contains
persons with size equal to or larger than 50 pixels. In the original work of Hwang et
al. they use persons of height equal to or larger than 55 pixels. To provide the same
height threshold for Caltech, CVC-09 and KAIST dataset, the height threshold is
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KAIST [HPK�15] Number of Number of Annotation Density
(640�512) Annotations Images (Skip) (Annotations per Image)

KAIST-test-Reasonable 1,639 2,252 (20) 0.73

KAIST-test-All 2,019 2,252 (20) 0.90

KAIST-train 1,394 2,500 (20) 0.56

KAIST10x-train 13,853 25,086 (2) 0.55

Table 4.2: Overview of different KAIST sub-datasets and their characteristics.

adapted to 50 pixels. All testing subsets comprise of annotations of persons, which
are not occluded or partially occluded. Heavy occluded persons are excluded from
the testing data and handled as ignore region. As the detectors are analyzed for
a increased KAIST testing sub-dataset, containing small-scale persons, the KAIST-
test-All comprises all annotated persons equal to or larger than 20 pixels. The
training sub-datasets contain persons equal to and larger than 50 pixels, with only
non-occluded persons, to avoid confusing the detector during training with occluded
samples. Inspired by Nam et al. [NDH14] and applied by Hosang et al. [HOBS15]
for the Caltech dataset, Liu et al. [LZWM16] extended the training subset by reduc-
ing the skip from 20 to 2. This measure increases the number of images linearly by
factor 10. This bigger training sub-dataset is called KAIST10x-train according to the
naming of Hosang et al.. The KAIST dataset contains images acquired at daytime
and nighttime.

The distribution of the annotated bounding box heights is shown in the histogram
in Figure 4.1. The red line separates the bounding boxes with height smaller than
50 pixels from those that are equal to or larger than 50 pixels. There is an accumu-
lation of bounding boxes with a height around 60 pixels. The mean bounding box
height for KAIST-test-Reasonable sub-dataset is h � 88.31 pixels. According to the
height histogram, the height threshold of the KAIST-test-All sub-dataset is set from
50 pixels to 20 pixels to make use of the complete dataset except for the heavy
occluded labels.

In Figure 4.2, the bounding boxes of the KAIST testing subsets are categorized w.r.t.
their occlusion level. The following categories are used: with the label no occlusion
fully visible persons without any occlusions are tagged. Annotated persons, which
are labeled with partial occlusion are at least 65 % visible. The label heavy occlusion
denotes persons being visible by at least 20 %. Heavy occluded persons can be
occluded by up to 80 % such that only the head and shoulder parts or feet are
visible. Based on Figure 4.2, not only bounding box labels of 50 pixels height and
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Figure 4.1: The histogram shows the distribution of annotated bounding box height
for the KAIST-test-Reasonable sub-dataset.

higher should be considered. Thus, in this thesis small-scale persons are evaluated.
In order to include small-scale persons, the KAIST-test-All testing sub-dataset is
introduced.
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Figure 4.2: The occlusion histogram depicts the different fractions of the testing
dataset. The blue bars represent bounding box heights equal to or
larger than 50 pixels, whereas the grey bars stand for all bounding boxes
smaller than 50 pixels. The red-rimmed parts of the bars make up the
KAIST-test-Reasonable sub-dataset. All bounding boxes are catego-
rized w.r.t. their occlusion level.

4.3 Caltech VIS Pedestrian Dataset

The Caltech Pedestrian Detection Benchmark dataset is a popular dataset for per-
son detection in the field of autonomous driving and driver assistance systems. The
dataset has been published by Dollár et al. [DWSP09] [DWSP12]. Similar to the
previous section, the sub-datasets for training and evaluation are introduced in Ta-
ble 4.3. The Caltech dataset has a fixed image size of 640�480 pixels. With the
Caltech dataset, Dollár et al. also introduce the so-called ignore regions, which are
similar to annotation boxes, but mark regions in the image which contain informa-
tion that may confuse the detector training. An ignore region is for example a crowd
of persons which cannot be labeled separately or a bicyclist that has similar ap-
pearance but should have the label ’bicyclist’. There are two reasons to use ignore
regions. First, they are used to exclude critical regions for generating the training
samples. Thus, it is guaranteed to avoid data that confuses the training procedure.
The second reason affects the evaluation part. For matching between Ground Truth
(GT) and detection boxes, detections that match to ignore GT boxes do not count
as TPs and unmatched ignore GT boxes do not count as FNs.
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Caltech [DWSP12] Number of Number of Annotation Density
(640�480) Annotations Images (Skip) (Annotations per Image)

Caltech-test-Reasonable 1,076 4,024 (30) 0.27

Caltech-test-All 2,590 4,024 (30) 0.64

Caltech-train 1,631 4,250 (30) 0.38

Caltech10x-train 16,376 42,782 (3) 0.38

Table 4.3: Overview of different Caltech sub-datasets and their characteristics.

Dollár et al. define the Caltech-test-Reasonable sub-dataset to contain annotated
bounding boxes equal to or larger than 50 pixels. The labeled persons are not oc-
cluded or partially occluded. The testing set is extended by considering all bound-
ing boxes with size equal to or larger than 20 pixels. The height threshold of 20
pixels is set according to the extended KAIST sub-dataset. Thus, it is ensured
to have annoations of same height for training and evaluation on the KAIST and
Caltech dataset. The extended Caltech testing sub-dataset is called Caltech-test-
All. The standard training and evaluation sub-datasets consider one out of 30
images (Caltech-test-Reasonable, Caltech-test-All and Caltech-train). As for the
KAIST sub-datasets, the Caltech-train as well as the Caltech10x-train subset con-
tain bounding boxes equal to or larger than 50 pixels of persons that are non-
occluded. As done for the KAIST-dataset and inspired by Zhang et al. [ZBS15]
and Hosang et al. [HOBS15] the extended training sub-dataset (Caltech10x-train)
is created by reducing the skip from 30 to 3.

In Figure 4.3 the distribution of bounding box heights for the testing subset of the
Caltech dataset is visualized. The red line depicts the separation between the
Caltech-test-Reasonable and the rest of the testing subset. There is a peak of
bounding boxes with heights around 40 pixels. Compared to the KAIST dataset
this means a shift by around 20 pixels. The Caltech dataset consists of smaller
annotated bounding boxes compared to KAIST. This can be recognized as well
when considering the drop of the mean bounding box height from h � 82.96 pixels
(Caltech-test-Reasonable) to h � 54.33 pixels (Caltech-test-All). Furthermore, by
considering the whole Caltech dataset and adapting the detectors to better localize
and classify small-scale persons, the performance of person detection in general
would be improved.

As in Section 4.2 the bounding boxes of the Caltech dataset are categorized w.r.t.
their occlusion level. The following categories are considered: no occlusion, partial
occlusion and heavy occlusion. The occlusion histogram shows that the number of
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Figure 4.3: The histogram shows the distribution of annotated bounding box height
for the Caltech-test-Reasonable sub-dataset.
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Figure 4.4: The occlusion histogram depicts the different fractions of the testing
dataset. The blue bars represent bounding box heights equal to or
larger than 50 pixels, whereas the grey bars stand for all bounding
boxes smaller than 50 pixels, but larger than 20 pixels. The red-rimmed
parts of the bars make up the Caltech-test-Reasonable sub-dataset. All
bounding boxes are categorized w.r.t. their occlusion level.
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annotations of the dataset can be doubled by additionally using bounding boxes of
height smaller than 50 pixels. Recent works only consider the Reasonable testing
subset for evaluation. Thus, there is much space left for improvements, although
the MR of current baseline results is around 10 %. Using the bigger testing subset
should encourage to improve the detectors for small-scale person detection and
occlusion handling. A recently published dataset, which is compared to the Caltech
dataset is published by Zhang et al. [ZBS17] and is called CityPersons.

4.4 CVC-09 IR Pedestrian Dataset

Similar to the other two datasets the CVC-09 FIR Sequence Pedestrian Dataset of
Socarrás et al. [SRV�11] is introduced as well as the sub-datasets for training and
evaluation in Table 4.4. This dataset is a Long-Wave Infrared (LWIR) dataset with
daytime and nighttime scenes, similar to the KAIST dataset. The CVC-09 dataset
has a fixed image size of 640�480 pixels.

CVC-09 [SRV�11] Number of Number of Annotation Density
(640�480) Annotations Images (Skip) (Annotations per Image)

CVC-test-Reasonable 1,018 432 (20) 2.36

CVC-test-All 1,052 432 (20) 2.44

CVC-train 1,482 420 (20) 3.53

CVC10x-train 15,058 8,418 (2) 1.79

Table 4.4: Overview of different CVC-09 sub-datasets and their characteristics.

Since there is no pre-defined re-sampling of the dataset, the re-sampling similar
to the KAIST is adopted. To be comparable to the other two datasets, the goal is
to have approximately the same number of annotation labels. Experimentally an
appropriate skip is determined: one image out of 20 is sampled for the smaller
subset of the dataset. Similar to the Caltech and KAIST dataset, the CVC-test-
Reasonable sub-dataset is defined to contain annotated bounding boxes equal to
or larger than 50 pixels and the CVC-test-All subset consists of bounding boxes
equal to or larger than 20 pixels. By definition, both subsets have labels that contain
non-occluded or partially occluded persons, although the CVC-09 dataset does not
contain any occluded persons. Similar to the CVC-test-Reasonable sub-dataset,
the small training sub-dataset CVC-train has skip 20. For generating a ten times
bigger training subset that is called CVC10x-train, the skip is reduced from 20 to 2.
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The approximately same number of labels ensures us to consistently evaluate the
pre-finetuning approaches. In comparison to the other two datasets the annotation
density is much higher. While the KAIST and the Caltech dataset contain less than
one annotation label per image, the CVC-09 dataset contains more than two labels
on average.
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Figure 4.5: The histogram shows the distribution of annotated bounding box height
for the CVC-test-Reasonable sub-dataset.

With an average bounding box height h � 91.34 pixels for the CVC-test-Reasonable
sub-dataset, the bounding boxes are larger than those of the other two datasets.
Considering the histogram in Figure 4.5, it can be recognized that the distribution
peak is shifted towards larger bounding box heights of around 70 pixels. Nearly all
annotated bounding boxes belong to the CVC-test-Reasonable sub-dataset. This
may bias the training results.

Figure 4.6 evidently shows that there are no occluded persons contained in the
CVC-09 dataset. When analyzing this dataset visually, one recognizes that oc-
cluded persons are labeled as non-occluded persons or they are not labeled at all.
There are neither occlusion labels nor ignore regions like for the Caltech dataset.
This may harm the training procedure by generating occluded positive training sam-
ples or negative samples containing persons.
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Figure 4.6: The occlusion histogram depicts the different fractions of the testing
dataset. The blue bar represents bounding box heights equal to or
larger than 50 pixels, whereas the grey bar stands for all bounding boxes
smaller than 50 pixels. The red-rimmed part of the bar makes up the
CVC-test-Reasonable sub-dataset. All bounding boxes are categorized
w.r.t. their occlusion level.

4.5 Discussion

In the last section of this chapter, general challenges of the datasets are empha-
sized. Example images of the three datasets are used to illustrate these challenges.
Furthermore, several works dealing with a deeper analysis of the datasets are pre-
sented.

Zhang et al. [ZBO�16] provide a good overview of person detection challenges.
Therefore, they analyze the Caltech dataset. As reasons for False Positive (FP) de-
tections they e.g. mention multiple detections of the same person (bad localization),
vertical structures, or tree leaves (confusion). Possible sources of False Negatives
(FNs) are small-scale persons, side views of persons, cyclists, or occlusions. Most
likely sources are named first. Zhang et al. provide a human baseline for the
Caltech dataset as well as improved annotations. They categorize error sources
into three different error types: localization, background confusion, and annotation
errors. They state that poor annotation alignment, missing annotations, or false an-
notations can crucially harm the training procedure. As introduced by Dollár et al.
[DWSP09], Zhang et al. motivate the consistent usage of ignore regions. Hoiem et
al. [HCD12] analyze error sources for object detection in general and reach similar
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conclusions. They see occlusions, large intra-class variation, various object poses,
confusion with similar objects, localization errors, and textures in the background
as common sources for missed or false detections. Ponce et al. [PBE�06] state
that the limited range of object variability within the datasets is the reason for object
recognition errors. This object variablitiy comprises object appearance, different
camera viewpoints, object orientation and position in the image, as well as small
occlusions and background clutter. In their work, González et al. [GFS�16] argue
that the total number of pedestrians present in the sequences, the number of occlu-
sions, the distribution of the pedestrian distance to the camera (bounding box size
in pixels), the type of background (static or dynamic), the frame resolution, and the
frame rate are factors that clearly have an influence on the results. For comparing
datasets to each other, Torralba and Efros [TE11] perform cross-dataset general-
ization evaluation. They call the variance of different datasets the dataset bias, and
propose several evaluation techniques. Deng et al. [DDS�09] present a method for
analyzing the dataset diversity by computing an average image. They try to analyze
the constructed ImageNet dataset for the goal that objects in images should have
variable appearances, positions, view points, poses as well as background clutter
and occlusions. With computing the average image per class, in the best case (di-
verse images) the average image results in a blurrier average image or even a gray
image. If the image provides little diversity, the average image is more structured
and sharper.

Figure 4.7 shows four example images taken from the KAIST dataset. The red
boxes represent the ground truth bounding boxes. The green arrow in Figure 4.7
(a) points at a person that is not labeled (missing annotation). The red bounding
boxes of the persons on the stairs, are between 50 and 60 pixels in height. The
yellow arrow marks a sitting person with a missing bounding box. This person could
be labeled as an ignore region or as person, because on one side it is a person, but
on the other side this person has an atypical pose and therefore could confuse the
training process. Figure 4.7 (b) shows a difficult decision, whether to mark statues
as persons or as ignore regions. Zhang et al. [ZBO�16] define human shapes that
are not persons such as posters or statues as ignore areas. But they have to be
marked consistently.

Figure 4.7 (c) shows the usage of ignore regions due to groups of people or oc-
cluded persons (orange bounding boxes). The green arrows point at unlabeled
persons which should be labeled as ignore regions if the height is to small, and
as person otherwise. Figure 4.7 (d) conveys an impression of challenges in per-
son detection during nighttime. The main difference between the KAIST and the
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(a) (b)

(d)(c)

Figure 4.7: Example images of KAIST dataset. Red boxes show the GT data and
orange boxes ignore regions. Green arrows point at persons without
labels and yellow arrows at regions which should be marked as ignore
regions.

Caltech dataset if only considering the VIS images is that the KAIST dataset con-
tains scenes acquired at daytime and nighttime, whereas the Caltech dataset only
contains images acquired at daytime. Additionally, missing, bad located, or false an-
notations affect the model during training and the results during evaluation. Thus,
there is space for improving the annotations of the KAIST dataset.

For the Caltech dataset four example images are presented in Figure 4.8. Figure 4.8
(a) and (b) show small-scale persons. In Figure 4.8 (a), the orange bounding box
has a height of 45 pixels and the person is occluded behind the pole of the traffic
light, whereas the red box is 62 pixel high and therefore counts to the KAIST-test-
Reasonable sub-dataset. Figure 4.8 (b) shows bounding boxes of height between
22 and 79 pixels. Figure 4.8 (c) shows appearance differences between small-scale
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(a) (b)

(c) (d)

Figure 4.8: Example images of Caltech dataset. Red boxes show the GT data and
orange boxes ignore regions.

and large-scale persons. More details of the large-scale persons can be recog-
nized, whereas only the silhouettes of the small ones can be perceived. Figure 4.8
(d) is chosen for representing that even though the persons on the right and left side
of the image are heavily occluded by a car, they are labeled as ignore regions to
exclude this region from sample generation. It is stated that the Caltech dataset is a
well labeled dataset for person detection, even more with the improved annotations
of Zhang et al. [ZBO�16].

Some representative examples of the CVC-09 dataset are shown in Figure 4.9.
Figure 4.9 (a) and (b) demonstrate missing annotations. In Figure 4.9 (a), the two
small persons (marked with green arrows) should be tagged with a person label
as well as the two persons on right in Figure 4.9 (b). The motorcyclist marked
with the yellow arrow should be annotated as ignore region or should get the label
’motorcyclist’, since the motorcyclist has a very similar appearance compared to
persons, and therefore may affect the training process. In Figure 4.9 (b), the small
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(a) (b)

(c) (d)

Figure 4.9: Example images of CVC-09 dataset. Red boxes show the GT data and
orange boxes ignore regions. Green arrows point at persons without
labels and yellow ones at regions which should be marked as ignore re-
gions. The blue arrows indicate bounding boxes with occluded persons
inside, which are labeled as non-occluded.

persons on the left, marked by the yellow arrows, have to be labeled as persons,
too. Figure 4.9 (c) and (d) show occlusion situations (marked by blue arrows). In
Figure 4.9 (c), the two most left persons are partially occluded by the buggy, and
Figure 4.9 (d), there are two persons in the same label. The yellow arrow points at
persons that are heavily occluded and therefore should be marked as ignore regions
or heavily occluded. Compared to the other two datasets, the CVC-09 dataset is
lacking of occlusion labels for each bounding box as well as the definition of ignore
regions. Therefore, the models trained on this dataset may not perform as good as
on Caltech, but different to the KAIST dataset, the quality of the IR images is better
w.r.t. noise, and edge sharpness.
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VIS IR

Figure 4.10: Example image from the KAIST dataset, which shows the registration
error between VIS and IR images. This error increases towards the
border areas of the image. Green arrows point at persons without
labels and yellow ones at regions which should be marked as ignore
regions.

The KAIST dataset set has three color channels (VIS) and one thermal channel (IR)
per image. Figure 4.10 points out the challenge of image registration if images are
acquired by two cameras simultaneously. An example is given in Figure 4.10 and
marked with a yellow arrow. While in the VIS image the head and the second foot
cannot be recognized, nearly the complete head and the second foot are visible in
the IR image. Such imprecise registration can be recognized mostly towards the
image borders. Registration errors are most critical for small-scale persons: while
the bounding box fits exactly around the person in the VIS image, the bounding box
in the IR image only contains half of the person. So, while the additional usage
of the IR image generates complementary information to the VIS image, imprecise
registration of the two images can destroy this positive effect during training.
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5 Person Detection based on
Filtered Channel Features

This chapter presents the two filtered channel features based detectors Aggregate
Channel Features (ACF) and Checkerboards that are briefly introduced in Chap-
ter 2. First, the principles of filtered channel features based detectors are recapitu-
lated. Then, (1) the pipeline for pre-processing the input data for training the BDF
are explained, (2) the BDF training parameters, and (3) how to use the detectors for
proposal generation. The results of the filtered channel features based detectors
are used as baseline algorithm for person detection.

5.1 Filtered Channel Features

The fundament of filtered channel features are the Integral Channel Features (ICF)
by Dollár et al. [DTPB09]. Both methods (filtered channel features and ICF) gener-
ate a feature pool and a BDF is utilized for feature selection of the most discrimina-
tive features using AdaBoost [FS96] [FHTO00]. In literature, the terms BDF, boosted
forest, or boosted decision trees are often used synonymously. BDFs are motivated
by the Viola and Jones object detection framework [VJ01b]. The approach of orga-
nizing the different decision trees in a cascaded fashion is depicted in Figure 5.1.

A set of weak classifiers such as decision trees [Qui86] are used to evaluate the fea-
tures extracted from an RoI. The first classifier (number 1) in Figure 5.1 is trained
for the goal to eliminate a large number of negative examples with very little pro-
cessing effort. All candidates classified as False (F) are not considered by the
following weak classifiers and therefore are rejected as negative examples. The
candidates classified as True (T) are passed to subsequent layers that eliminate
additional negatives but require additional computation. The later the classifier is
applied, the more complex features are evaluated for making a decision. The result
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Figure 5.1: Schematic visualization of a classifier cascade [VJ01a].

of this cascaded structure is a strong boosted classifier consisting of a set of weak
classifiers.

The BDF in this work utilizes the variant known as soft cascade [ZV08] [AFD13].
Stages in the cascade are constructed by training classifiers using AdaBoost and
adjusting the cascade threshold to minimize FNs. Each stage in the cascade re-
duces the False Positive Rate (FPR), but also decreases the detection rate. With
adjusting the threshold of the cascaded boosted classifier, the classifier is tuned to
have a False Negative Rate (FNR) close to zero, but this increases the False Posi-
tive Rate (FPR) as well. This fact is exploited for using the filtered channel features
based detectors as proposal generators.

5.1.1 Aggregated Channel Features (ACF)

Based on the ICF [DTPB09], Dollár et al. [DABP14] propose the ACF detector for
object detection in general. ACF is the generalization of ICF. All detectors using
channel features together with a BDF are summarized as filtered channel features
based detectors.

In Figure 5.2 the ACF detector pipeline is illustrated by Rajaram et al. [ROBT16].
Given an input image I, several channels (feature channels) C � Ω�I� are com-
puted. The following feature channels are generated: three channels of CIE (L*u*v*)
color space (CIELUV) denoted by LUV (3 channels), normalized gradient magni-
tude M (1 channel) and gradient histogram O (6 channels), a simplified version of
histogram of oriented gradients (HOG) [DT05]. Thus, there are 10 feature chan-
nels. Before the channels are computed, I is smoothed with a Gaussian filter. The
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Figure 5.2: Pipeline of the ACF detector [DABP14]. LUV color channels, gradient
magnitude, and histogram of gradient orientations are computed from
the input image as C � Ω�I� [ROBT16].

processed 10 channels are sum pooled and passed through a Gaussian smooth-
ing filter again to generate ACFs of lower resolution (denoted by P in Figure 5.2).
The created ACFs are used as single pixel lookups. To generate a feature vec-
tor used for BDF training, the channel features are vectorized (denoted by ���). A
multi-scale sliding window approach is applied on the channel features pyramid to
detect objects of different scales. The feature pyramids are computed efficiently by
approximating channel features of intermediate scales [DABP14], instead of scaling
the input image and computing the channel features of each scale separately.

Dollár et al. [DABP14] use 2,048 depth-two decision trees and combine them by
training with AdaBoost on 128 � 64 � 10~16 � 5,120 candidate features (channel pixel
lookups) in each 128�64 window (model size). The model size specifies the size
of the sliding window used on different levels of the channel features pyramid. The
split nodes in the decision trees are simple comparisons between feature values
and learned thresholds. Usually, only a subset of the feature vector is used by
the learned decision forest. AdaBoost performs both, the feature selection and
learning the thresholds in the split nodes. For setting up a full image detection
framework, Dollár et al. [DABP14] use the previously mentioned sliding window
approach applied on multiple scales. NMS is applied to suppress multiple nearby
detections. The NMS approach [DTPB09] suppresses the less confident of every
pair of detections that overlap sufficiently w.r.t. the IoU overlap criteria [PBE�06].

5.1.2 Checkerboards Features

Starting from the ACF detector, Zhang et al. [ZBS15] generalize the basic architec-
ture of ACF [DABP14] for different filtered channel features based approaches and
therefore introduce the name of filtered channel features detectors. The input image
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is transformed into a set of feature maps as described in Subsection 5.1.1. The fea-
ture maps are sub-sampled by applying sum pooling over rectangular regions (ag-
gregation). The resulting feature maps are vectorized and fed into a decision forest
learned via AdaBoost. The key observation of Zhang et al. is that sum pooling of
the feature maps can be re-written as convolution with a filter bank. Hence, the ACF
detector consists of a single filter in its bank, corresponding to a uniform 4�4 pixels
pooling region. Another filter bank is called Checkerboards. The Checkerboards
filter bank is illustrated in Figure 5.3.

Figure 5.3: Illustration of the 39 4�3 filters belonging to the Checkerboards filter
bank. {Ì red, j white, Ì green} indicate {-1, 0, +1}.

The Checkerboards detector is very similar to the ACF detector. The only difference
is the applied filter bank used for generating the final feature pool that is used for
the BDF. Zhang et al. [ZBS15] [ZBO�16] evaluate several channel feature detectors
in their work. The Checkerboards detector outperforms the ACF detector by over
10 percentage points on the Caltech dataset.

5.1.3 Multi-spectral Channel Features

With introducing the KAIST dataset, Hwang et al. [HPK�15] also propose an adap-
tation of the ACF detector for multi-spectral images. As presented for the ACF
detector, there are three different transformation types to generate the channel
features: CIELUV color space (LUV), gradient magnitude (M), and histogram of
gradient orientations (O). Hwang et al. test three versions of the modified ACF
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detector: (1) ACF+T, (2) ACF+T+TM+TO, and (3) ACF+T+THOG. Here, ACF de-
notes the aforementioned channel features (LUV+M+O) calculated for the RGB
channels. T+TM+TO and T+THOG indicate the additional channel features ex-
tracted from the thermal channel. The T channel feature uses the thermal intensity
directly. TM corresponds to the normalized gradient magnitude and TO to the his-
togram of gradient orientations of the thermal image. Therefore TM and TO use the
same methods as already applied on color images for the standard color ACF. In-
stead, T+THOG uses the thermal image directly and the HOG feature [DT05] of the
thermal image (THOG). Compared to TO with 6 histogram bins, THOG computes
more gradient orientations and has additional normalization steps on the local his-
tograms. Thus, the dimensionality of the feature vector passed to the BDF is higher
for version (3) of the multi-spectral ACF. The ACF+T+THOG detector outperforms
the other approaches and therefore the additional T+THOG channel features are
used in the remaining work. Additionally, the Checkerboards method is adapted
for multi-spectral images using the same channel features as ACF+T+THOG. The
multi-spectral Checkerboards detector is denoted Checkerboards+T+THOG.

5.2 Implementation Details

This section provides implementation details and the parameters used for training
and evaluating filtered channel features based detectors. For this thesis, the code
provided by Hwang et al. [HPK�15] is used, which is based on Piotr’s Matlab Tool-
box [Dol]. For detection, the different channel features pyramid scales are computed
from the input image. On these channel features pyramid scales, the sliding win-
dow paradigm is applied. Whereas the padded model size modelDsPad specifies
the size of the sliding window on the channel features pyramid, the actual model
size modelDS is a smaller window that is used to calculate the resulting detection
coordinates. The coordinates of the detection results depend on the scales of the
channel features pyramid and model size modelDS. The use of two model sizes
allows to consider context information for classification [GDDM14] and simultane-
ously calculate the correct detection coordinates. The parameter stride specifies
the spatial shift between neighboring detection windows. cascThr and cascCal
parametrize the soft cascades and are described in detail later when using the fil-
tered channel features based detectors as proposal generators. nWeak defines the
number of weak classifiers (decision trees) per training stage and therefore implic-
itly determines the number of training stages (4 or 5 stages). nPos is the maximum
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number of positive windows to sample for each training stage and nNeg the max-
imum number of negative windows per stage. The parameter nPerNeg gives the
maximum number of sampled negative windows per image. The negative samples
are accumulated at each stage and the maximum number of accumulated negative
samples is defined by nAccNeg. The negative samples for the first training stage
are sampled randomly to provide diverse samples for training. The negative sam-
ples for the remaining training stages are sampled by applying the trained detector
model after each stage, and using these detections for generating the additional
negative samples for the next training stage. These detections are evaluated with
the Intersection over Union (IoU) [EVW�10] overlap. Each detection box that has
an IoU overlap of smaller than 0.1 is considered as negative sample. Since the
negative samples are generated by the detector model that is improved at every
training stage, this kind of generating negative samples is called hard negative min-
ing. Data augmentation is applied by flipping every positive sample horizontally.
Flipping as data augmentation is a popular technique to enlarge the training data
[VHV�16] [WYL�15] [MG06] [LTCFS16] [CSVZ14] [BMTV13].

The parameters pPyramid.nPerOct, pPyramid.nOctUp, pPyramid.nApprox, pPyra-
mid.smooth, and pPyramid.pChns.shrink affect the generation process of the chan-
nel features pyramid (channel features of different scales) w.r.t. the method pro-
posed by Dollár et al. [DABP14]. The idea is to avoid computing the channel fea-
tures on each scale of the input image pyramid separately. Instead, the channel
features of a few scales are computed and the others are approximated. Therefore,
the parameter pPyramid.nPerOct determines the number of scales per octave in
the input image pyramid. Dollár et al. define an octave as the set of scales up to
half of the initial scale. As a typical value, they suggest nPerOct = 8 so that each
scale in the pyramid is 2�1~8 � 0.917 times the size of the previous. The largest
scale in the pyramid is determined by pPyramid.nOctUp, which specifies the num-
ber of octaves computed above the original scale. pPyramid.nApprox determines
how many intermediate scales are approximated using the approximation technique
of Dollár et al. [DABP14]. Considering the previous example with nPerOct = 8 and
nApprox = 7, 7 intermediate scales are approximated and only power of two scales
are actually computed starting from a scaled input image. pPyramid.smooth defines
the radius for channel smoothing after the channel features are generated. pPyra-
mid.pChns.shrink determines the amount to sub-sample the computed channels.

For a BDF trained with AdaBoost, there is the parameter nWeak that sets the num-
ber of weak classifiers used. To choose between the discrete (1) and real AdaBoost
(0), the binary parameter pBoost.discrete is used. pBoost.pTree.maxDepth defines
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Filtered Channel Features Original Config1 Config2 Config3
Parameters Config [HPK�15] small / big model size small / big model size small / big model size

modelDs 20.5�50 20.5�50 / 36�96 20.5�50 / 36�96 20.5�50 / 36�96

modelDsPad 32�64 32�64 / 60�120 32�64 / 60�120 32�64 / 60�120

stride 4 4 6 4

cascThr -1 -1 -1 -1

cascCal 0.005 0.005 0.005 0.005

nWeak [32,128,512,2048] [32,512,1024,2048,4096] [32,512,1024,2048,4096] [32,512,1024,2048,4096]

nPos Inf Inf Inf Inf

nNeg 5,000 10,000 10,000 10,000

nPerNeg 25 25 25 25

nAccNeg 10,000 50,000 50,000 50,000

pPyramid.nPerOct 8 8 10 10

pPyramid.nOctUp 0 0 1 1

pPyramid.nApprox 7 7 0 0

pPyramid.smooth 0.5 0.5 0 0

pPyramid.pChns.shrink 4 4 6 4

pBoost.discrete 1 0 0 0

pBoost.pTree.maxDepth 2 4 4 4

pBoost.pTree.fracFtrs 0.0625 0.0625 1 1

pLoad.squarify aspect ratio = 0.41 aspect ratio = 0.41 aspect ratio = 0.41 aspect ratio = 0.41

pLoad.lbls person person person person

pLoad.ilbls people, person?, cyclist people, person?, cyclist people, person?, cyclist people, person?, cyclist

pLoad.hRng [55; Inf) [50; Inf) [50; Inf) [50; Inf)

pLoad.vType none occluded none occluded none occluded none occluded

Table 5.1: Different parameter configurations of filtered channel features based de-
tectors. The parameters of the three configurations, which differ from the
original configuration of Hwang et al. [HPK�15], are highlighted in red.

the maximal depth of each decision tree. If not all features are used to train each
node split of a decision tree, the fraction of features to be sampled from the com-
plete feature pool is specified by pBoost.pTree.fracFtrs.

The remaining parameters control the criteria for loading the training data. pLoad.lbls
defines the bounding box labels used for training or evaluation, whereas pLoad.ilbls
lists all labels of bounding boxes that are handled as ignore regions. pLoad.hRng
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specifies the height range of the considered bounding boxes. In Table 5.1 all an-
notations equal to or larger than 50 or 55 pixels are used. The height range is
extended from 55 to 50 pixels to be consistent to the Caltech dataset (see Sec-
tion 4.3). Bounding boxes with labels smaller than 50 pixels are marked as ignore
regions. pLoad.vType specifies the allowed occlusion levels. For training only an-
notated bounding boxes that contain non-occluded persons are used. In turn, for
testing person bounding boxes with no or partial occlusions are used. The reason
for only using sane bounding boxes is to avoid confusing the detector training with
corrupt data. As proposed by Dollár et al. [DWSP12], the bounding boxes (GT
and detections) are set to a fixed aspect ratio. The height of annotated persons is
an accurate reflection of their scale while the width also depends on the person’s
pose. To avoid undesired effects on the evaluation results, caused by the variability
of bounding box width, the standardization of the aspect ratio adapts the bounding
box width till the desired aspect ratio ar �

wbb

hbb

� 0.41 is reached. Without stan-

dardizing, the different aspect ratios have an positive or negative influence on the
IoU overlap. With a higher aspect ratio, the box is larger and therefore can have
a higher IoU overlap that improves the detection results. In turn, a smaller aspect
ratio decreases the detection performance.

After classifying each RoI of the sliding window approach, NMS is applied to reduce
nearby detections. The NMS uses the IoU overlap criteria [EVW�10]. In Piotr’s Mat-
lab Toolbox [Dol] a modified version of IoU is used. Instead of dividing the intersec-
tion area of both bounding boxes by the union of both boxes, the intersection area is
divided by the area of the smaller bounding box. For each pair of bounding boxes,
the IoU is calculated, and if their overlap is greater than a defined threshold such as
0.65, the bounding box with the lower score is suppressed. Once a bounding box is
suppressed it can no longer suppress other bounding boxes. The bounding boxes
are processed in order of decreasing score.

There are some evaluations about different parameters. Walk et al. [WMSS10] and
Zhang et al. [ZBO�16] analyze the usage of ignore regions. According to them,
areas covering crowds, human shapes that are not persons such as posters and
statues, and areas for which it cannot be decided certainly whether they contain a
person or not, need to be considered as ignore regions.

There are several methods for data augmentation that can be evaluated for the
channel features based detectors such as random bounding box rotation, Gaus-
sian blur, noise or gamma adjustment [LTCFS16], changing the brightness [SL11]
[KSH12] or the contrast [SL11] [HPK�15], random bounding box shifting [MG06]
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[LTCFS16], or random scaling of bounding boxes [KSH12] [RDGF15] [LTCFS16]. A
good overview and evaluation of current data augmentation approaches is given by
Ohn-Bar and Trivedi [OBT16].

5.3 Usage as Proposal Generator

The filtered channel features based detectors are usually designed for object/per-
son detection. However, they can be adapted for proposal generation of a certain
object class such as persons. The two parameters cascThr and cascCal are the
key parameters for tuning the expected number of FN occurences. The goal is
to reduce the number of FNs and thus lower the miss rate. At the same time, this
generates more FPs, which are assumed to be rejected during the subsequent clas-
sification step. Compared to the sliding window paradigm, the number of evaluated
windows can be reduced dramatically when using the filtered channel features base
detectors. This is the main goal of using them as a proposal generator. cascThr is
the constant rejection threshold and cascCal the calibration value used for the con-
stant soft cascades approach [BB05] [DAK12] [ZV08] [AFD13]. A recommendation
in the Piotr’s Matlab Toolbox [Dol] and also experimentally determined by Dollár et
al. [DAK12] is to set cascThr = -1 as a typical constant rejection threshold value and
adjust cascCal until the desired miss rate is reached. cascCal controls the trade
off between recall and speed by manipulating the rejection threshold of each weak
classifier, called re-calibration. For proposal generation, Li et al. [LLS�16] propose
cascThr = -70 with leaving cascCal = 0.005 unchanged (ACF detector). Another
proposed value for cascThr = -50 is given by Liu et al. [LZWM16] to adjust the ACF-
T-THOG for proposal generation. The miss rate can be decreased by increasing
the cascCal calibration value. This increases the number of FPs, but reduces the
number of FNs. Similar effect can be obtained by decreasing the constant rejection
threshold cascThr. It is recommended to leave cascThr unchanged and do finetun-
ing by using the cascCal only. It is analyzed that finetuning using cascCal can be
performed more accurately.
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6 Person Detection based on Deep
Learning

After introducing the filtered channel features based detectors for person detec-
tion, this chapter presents the deep learning approaches of this work. First, the
fundamentals are recapitulated. The proposed approaches are based on VGG-16
network and Faster R-CNN. The three works [ZLLH16] [LZWM16] [WFHB16] are
reviewed that serve as inspiration for CNN architecture design and training. In Sec-
tion 6.4 and Section 6.5 the proposed CNN architectures of this thesis are intro-
duced.

6.1 VGG-16 Network

The VGG-16 network is a CNN originally designed by Simonyan and Zisserman
[SZ15] for the task of image recognition. VGG originates from the abbreviation
of the research group of Simonyan and Zisserman called Visual Geometry Group
of the University of Oxford. The number 16 represents the number of trainable
layers: 13 convolutional (conv) layers and 3 fully connected (fc) layers. Together
with VGG-19 [SZ15], Clarifai [ZF14], AlexNet [KSH12], GoogLeNet [SLJ�15], or
ResNet [HZRS15a], VGG-16 is a widely used network architecture.

Figure 6.1 shows the VGG-16 architecture on the left. Convolutional layers with the
same layer parameters and therefore providing the same feature map resolution
are combined visually in a common conv block. conv1 and conv2 consist of two
convolutional layers depicted by the small line on both sides of the boxes. For
conv3, conv4, and conv5, each block has one additional convolutional layer with
its corresponding Rectified Linear Unit (ReLU) used as activation function. The
corresponding layers of each block are outlined in Table 6.2. The trainable layers
are highlighted in italic font. Rather than using relatively large receptive fields (large
kernel size and stride) [KSH12] [ZF14], the convolutional layers of VGG-16 have
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Figure 6.1: Structure of the VGG-16 network on the left side. Each red Ì block
on the left contains multiple layers as depicted on the right (convolution,
ReLU, and pooling layers), same for the yellow Ì blocks (fully connected,
ReLU, and dropout layers). The green Ì layer is a single fully connected
one.

a kernel size of 3�3 throughout the entire network. Those kernels are convolved
with the input image at every pixel (with stride 1). Therefore, a stack of two 3�3
convolutional layers without spatial pooling in between, has an Effective Receptive
Field (ERF) size of 5�5; three such layers have a 7�7 ERF size. The ERF size
corresponds to the size of the region in the input image that encompasses all pixels,
which contribute to the activation of one feature map pixel of a certain convolutional
feature map. ERF stride and feature stride are synonymously used and projects
the stride of one pixel of a specific feature map back to the input image. Simonyan
and Zisserman pursue the goal of making the decision function more discriminative
by using a stack of convolutional layers instead of one convolutional layer with a
larger ERF size. A second advantage is the reduction of the number of trainable
parameters [SZ15]. The stride and size of the ERF of each layer of the VGG-16 are
listed in Table 6.1. Yu et al. [YYB�16] analyze the difference between AlexNet and
VGG-16 network by considering the stride and size of the ERF.
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Layer Name conv1_1 conv1_2 pool1 conv2_1 conv2_2 pool2 conv3_1 conv3_2 conv3_3 pool3

Size of ERF 3�3 5�5 6�6 10�10 14�14 16�16 24�24 32�32 40�40 44�44

Stride of ERF 1 1 2 2 2 4 4 4 4 8

Layer Name conv_4_1 conv4_2 conv4_3 pool4 conv5_1 conv5_2 conv5_3 conv-prop

Size of ERF 60�60 76�76 92�92 100�100 132�132 164�164 196�196 128x128

Stride of ERF 8 8 8 16 16 16 16 16

Table 6.1: Overview of the VGG-16 layers, and the size and stride of the Effective
Receptive Field (ERF) their output feature maps provide [YYB�16]. The
size and stride values are measured in pixels.

VGG-16 layers conv1 conv2 conv3 conv4 conv5 fc6, fc7 fc8

layers conv1_1 conv2_1 conv3_1 conv4_1 conv5_1 fc6, fc7 fc8
(trainable) relu1_1 relu2_1 relu3_1 relu4_1 relu5_1 relu7, relu8

conv1_2 conv2_2 conv3_2 conv4_2 conv5_2 drop7, drop8
relu1_2 relu2_2 relu3_2 relu4_2 relu5_2
pool1 pool2 conv3_3 conv4_3 conv5_3

relu3_3 relu4_3 relu5_3
pool3 pool4 pool5

type convolution convolution convolution convolution convolution fully connected fully connected

kernel size 3�3 3�3 3�3 3�3 3�3 - -

number of filters 64 128 256 512 512 - -

stride 1 1 1 1 1 - -

pad 1 1 1 1 1 - -

number of - - - - - 4,096 1,000
output neurons

Table 6.2: Parameters of the trainable layers for the VGG-16 network.

In their work, Simonyan and Zisserman describe the training procedure using fixed
size 224�224 input images, which are randomly cropped from re-scaled training
images (data augmentation). Additionally, they do data augmentation by random
horizontal flipping of the cropped regions. As common for CNNs, they subtract the
mean image from the RGB input image. Since they use the Caffe toolbox [JSD�14],
they provide a Caffe model pre-trained on the ImageNet dataset [RDS�15] for the
task of image classification. This pre-trained model is used for initialization of the
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approaches in the remainder of this thesis, especially the shared convolutional lay-
ers as denoted in Figure 6.1.

VGG-16 blocks conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8 total

number of weights 38,592 221,184 1,474,560 5,898,240 7,077,888 102,760,448 16,777,216 4,096,000 138,344,128

number of biases 128 256 768 1,536 1,536 4,096 4,096 1,000 13,416

number of trainable 38,720 221,440 1,475,328 5,899,776 7,079,424 102,764,544 16,781,312 4,097,000 138,357,544
parameters

Table 6.3: Number of trainable parameters given for each block of the VGG-16 net-
work in Figure 6.1. See Equation 6.1 and Equation 6.2 for the calculation
approach.

To get an overview of how many weight and bias parameters are adapted during a
training procedure for each layer, the numbers are listed for each convolutional and
fully connected block of Figure 6.1 in Table 6.3. The number of weights denotes the
trainable filter weights of the convolutional layers or the weights of the neurons of
the fully connected layers. The number of biases means the trainable bias of each
filter or output neuron, which serves for shifting the activation function (ReLU) left
or right. Equation 6.1 shows how to calculate the number trainable parameters of
one convolutional layer.

Nconv � f 2
k � i � o � o (6.1)

Equation 6.1 calculates the number of trainable weights Nconv for one convolutional
layer such as conv1_1. The filter kernel size is denoted by fk. Square filters
for every convolutional layer are assumed. The variable i represents the number
of channels that the input feature map provides. Each convolution convolves a
three-dimensional input volume with a three-dimensional filter, to output one pixel
of the resulting feature map. The convolutional result is a two-dimensional feature
map. Repeating the convolution for all o filters of the convolutional layer, a three-
dimensional output feature map with o channels is obtained. As for each filter a bias
is adapted during training, o bias parameters are added to Nconv.

Nfc � i � o � o (6.2)

Calculating the number of trainable weights Nfc for one fully connected layer is
presented in Equation 6.2. Since every input neuron is connected to every output
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neuron (fully connected) the number of weights is calculated by multiplying the num-
ber of input neurons i by the number of output neurons o. As before, the additional
term contains the bias parameter for each output neuron.

6.2 Faster R-CNN

This section reviews the Faster R-CNN architecture of Ren et al. [RHGS16]. In
comparison to the predecessors R-CNN (Regions with CNN features) [GDDM14]
and Fast R-CNN [Gir16], Ren et al. introduce the Region Proposal Network (RPN)
for proposal generation instead of using Selective Search [UVGS13]. By sharing
the convolutional layers between RPN and the classification network they accel-
erate processing. The regions proposed by the RPN are processed by the Fast
R-CNN detector [Gir16]. Faster R-CNN is an approach originally proposed for ob-
ject detection in general, but can be adapted to many other domains.

As depicted in Figure 6.2, the input image is processed by the shared convolutional
layers having the same parameterization as the VGG-16 network in Figure 6.1. The
output of the shared convolutional layers are the conv feature maps, also called
output feature maps. Based on the conv feature maps, the RPN is applied to gen-
erate candidate windows (RoIs). For each proposed region, RoI pooling [Gir16]
[HZRS15b] is applied to the conv feature maps in order to get a fixed length feature
vector, which serves as input for the classification network.

The classification network is the same as used in Fast R-CNN [Gir16]. The fixed
length feature vector of each RoI, resulting from the RoI pooling layer, is fed into
two fully connected layers (each with 4,096 output neurons), denoted with FCs in
Figure 1 of [Gir16]. The resulting 4,096-dimensional feature vector is fed into two
sibling fully connected output layers. One output layer produces softmax probability
estimates over the object classes and background (classification). The other layer
outputs four real-valued numbers for each of the object classes, encoding the re-
fined bounding box positions for each class (regression). Therefore, simple bound-
ing box regression is used to improve localization [GDDM14] [FGMR10]. Details
about the training of the two sibling output layers with multi-task loss are provided
by [Gir16].

After reviewing the coarse structure of Faster R-CNN as well as the classifica-
tion part, now the RPN is presented, which is the main contribution compared to
Fast R-CNN. The RPN generates region proposals, confidence scores, and feature
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Figure 6.2: Structure of the Faster R-CNN framework [RHGS16] as a unified net-
work. Starting from the input image, using the shared convolutional
layers, the conv feature maps are computed, which represent the input
for the RPN. After applying RoI pooling on the conv feature maps using
the proposed regions of the RPN, the fixed length feature vectors are
fed into the classification network.

maps. Considering Figure 6.2 and Figure 6.3, both start with the input image that
is propagated through the shared convolutional layers, which are equal to those of
the VGG-16 network except for the last pooling layer (pool5) being omitted. As the
same parameters for the shared convolutional layers are used as for the VGG-16
network, these layers can be initialized by using a VGG-16 model pre-trained for
the task of image classification on the ImageNet dataset. The advantage of using
a model pre-trained on a large dataset (also called auxiliary dataset) is that useful
weights are available for the low-level filters. After the shared convolutional lay-
ers, the output feature maps are fed into an intermediate 3�3 convolutional layer
(conv-prop) followed by two sibling 1�1 convolutional layers. One of the sibling
layers is used for classification (cls-score), providing the objectness scores for each
RoI. Objectness measures the probability of the RoI to contain an object. The sec-
ond convolutional layer (bbox-pred) performs bounding box regression. Since the
RPN only consists of convolutional layers it is an FCN [LSD15] and can be trained
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Figure 6.3: Structure of the RPN showing the shared convolutional layers, which
are identical to those of VGG-16. The relation to the Faster R-CNN
approach in Figure 6.2 is given by the arrow pointing to the right (Clas-
sification). Afterwards there are three convolutional layers forming the
RPN network.

end-to-end. As the RPN is an FCN it can handle input images of any size. The
cls-score 1�1 convolutional layer has 2k output filters to generate two predictions
(person/no person) for each of the k anchor boxes (introduced later). Same with
the bbox-pred 1�1 convolutional layer: it has 4k output filters to account for the
four coordinates of each anchor box.

In Table 6.4 the number of weights that are trainable for the RPN architecture are
listed (compared to those of VGG-16 in Table 6.3). The shared convolutional part
is equal to the one of the VGG-16 network and therefore has the same number of
trainable weights. As the RPN is an FCN and only convolutional layers are utilized,
the total number of weights is dramatically reduced from 138,357,544 (VGG-16) to
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RPN blocks conv1 conv2 conv3 conv4 conv5 conv-prop cls-score bbox-pred total

number of weights 38,592 221,184 1,474,560 5,898,240 7,077,888 2,359,296 9,216 18,432 17,097,408

number of biases 128 256 768 1,536 1,536 512 18 36 4,790

number of trainable 38,720 221,440 1,475,328 5,899,776 7,079,424 2,359,808 9,234 18,468 17,102,198
parameters

Table 6.4: Number of trainable parameters given for each block of the RPN in Fig-
ure 6.3. See Equation 6.1 and Equation 6.2 for the calculation approach.

17,102,198 (RPN). When considering the number of weights for each block, one
recognizes a large number of trainable weights at the transition from the convolu-
tional part to the fully connected of VGG-16 (conv5 to fc6), making up 74 % of the
total number of trainable weights. This transition does not exist in the RPN archi-
tecture.

Using Figure 6.4, the usage of anchors for Faster R-CNN is explained, and there-
fore how to determine RoIs, based on the output feature maps. To generate region
proposals, a small network is shifted over the conv feature maps in sliding window
fashion. This network takes as input a 3�3 spatial window of the conv feature maps
(red box). Each sliding window is mapped to a lower-dimensional feature. The inter-
mediate layer corresponds to the convolutional layer called conv-prop (512 filters)
in Figure 6.3 and is used to map each sliding window to a 512-dimensional (512-d)
feature vector. This feature vector is fed into the two sibling layers, cls-score and
bbox-pred. The anchors are used to simultaneously predict multiple region propos-
als at each sliding window location. The maximum number of possible proposals for
each location is denoted as k and represents the number of anchor boxes for each
location. Thus, for each location on the conv feature map and its generated 512-d
feature vector, the bbox-pred layer (denoted as reg layer in Figure 6.4) encodes 4k

real-valued outputs for the bounding box coordinates, and the cls-score layer (de-
noted as cls layer in Figure 6.4) outputs 2k scores that estimate the probability of
object or background. The anchors are used during RPN training. The bounding
box prediction can be thought of as bounding box regression from an anchor box to
a nearby GT box. To account for varying sizes, a set of k bounding box regressors
is learned. Each regressor is responsible for one scale and one aspect ratio, and
the k regressors do not share weights. In their approach, Ren et al. propose three
different scales and three aspect ratios yielding to k � 9 anchors at each sliding
window position. When applying the method for each location of the conv feature
map with size W � H, in total there are W �H �k anchors. The three anchor aspect
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ratios are 1:1, 1:2 and 2:1. Three scales with box areas 1282, 2562, and 5122 pixels
are used. This means that an anchor is the reference to a certain location of the
conv feature map and for each reference/location there are k different anchor boxes
specified.

Figure 6.4: Visualization of the anchor scheme used for solving the regression prob-
lem of RPN [RHGS16]. The anchors enable multi-scale detection.

For RPN training, a binary class label (of being an object or not) is assigned to each
anchor. A positive label is assigned to two kinds of anchors: (i) the anchor/anchors
with the highest IoU overlap with a GT box, or (ii) an anchor that has an IoU overlap
higher than 0.8 with any GT box [RHGS16]. Thus, a single GT box can assign pos-
itive labels to multiple anchors. For the regression part, the offset from each anchor
box to the related GT box is prepared as label for learning the regression [Gir16].
The RPN is trained end-to-end by backpropagation and Stochastic Gradient De-
scent (SGD) [LBD�89]. Ren et al. use mini-batch training, i.e. a mini-batch arises
from a single image containing 120 positive and negative example anchors. As al-
ready mentioned, the shared convolutional layers are initialized with the pre-trained
VGG-16 ImageNet model. Details about the training parameters are provided in
[RHGS16].

Since utilized for the Faster R-CNN approach and necessary for subsequent ap-
proaches, RoI pooling is reviewed. RoI pooling is introduced by Girshick [Gir16] and
inspired by [HZRS15b]. The motivation for RoI pooling in Fast R-CNN is that there
are RoIs of arbitrary size proposed by Selective Search. As the fully connected
layers for classification and regression expect a feature vector of fixed length, a
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technique for transforming the arbitrarily sized RoIs to a fixed length is necessary.
Thus, Girshick uses max pooling to convert the features inside any valid region of
interest into a small feature map with a fixed spatial extent. RoI pooling works by di-
viding the arbitrarily sized wRoI � hRoI RoI window into a grid of sub-windows with a
fixed number of grid cells WRoI �HRoI , that is projected onto the RoI. For each sub-
window, the contained RoI values are max pooled into the corresponding cell of the
output grid (grid size is WRoI �HRoI). Pooling is applied spatially and independently
to each feature map channel just like in standard max pooling. The RoI pooling layer
is a special case of the spatial pyramid pooling layer used in SPP nets [HZRS15b],
in which there is only one pyramid level. Ren et al. propose WRoI � HRoI � 7 as
default hyper-parameters for the RoI pooling layer, leading to a 7 � 7 output grid
per feature map, and if vectorized to a feature vector of length 49. Since the RoI
coordinates are given in the image domain, but RoI pooling is applied on the conv
feature maps that have been sub-sampled several times (pooling or convolution), a
mapping strategy for mapping the window in the image domain to the conv feature
map domain is necessary. As described by He et al. [HZRS15b], the corner point
of a window is projected onto a pixel in the conv feature maps, such that this corner
point in the image domain is closest to the center of the receptive field of that conv
feature map pixel. The mapping is complicated by the padding of all convolutional
and pooling layers [HZRS15b]. In the Caffe framework the RoI pooling layer pro-
vides three parameters for adjustment. Two parameters define the pooled output
grid size WRoI � HRoI . The third parameter specifies the multiplicative spatial scale
factor to translate RoI coordinates from their input scale to the scale used when
pooling is performed. This factor is often referred to as the feature stride at a given
layer in the network.

6.3 Inspirational Work

The following subsections review three approaches that play a key role for the de-
tection approaches of this thesis. Zhang et al. [ZLLH16] apply the Faster R-CNN
framework to person detection. They reveal that the RPN without Fast R-CNN as
detection network (stand-alone) outperforms Faster R-CNN, and use a BDF for clas-
sification instead. For multi-spectral person detection, Liu et al. [LZWM16] present
four different fusion approaches based on Faster R-CNN. Wagner et al. [WFHB16]
propose two fusion architectures based on CaffeNet and an effective method for
training the subnets to improve performance.
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6.3.1 Region Proposal Network (RPN)

Zhang et al. [ZLLH16] perform person detection using the Faster R-CNN frame-
work. They use the Caltech10x-train sub-dataset for training and the Caltech-test-
Reasonable testing subset for evaluation. In Table 6.5, there is an overview of the
results. Compared to the original Faster R-CNN, Zhang et al. adapt the anchors to
use a single aspect ratio of 0.41 (width to height). This is the average aspect ratio
of persons as inspired in [DWSP12]. While decreasing the number of aspect ratios,
they increase the number of different anchor scales to 9. The 9 anchor boxes start
from 40 pixels height with a scaling stride of 1.3, resulting in bounding box heights
of 40, 52, 68, 88, 114, 149, 193, 251, and 326 pixels. As applied for the Faster
R-CNN, the shared convolutional layers are initialized by using a model pre-trained
on ImageNet. For training the RPN, an anchor is considered as a positive exam-
ple, if it has an IoU ratio greater than 0.5 with a GT box, and as negative example
otherwise. Other than Ren et al. (1:1), the ratio of positive and negative samples is
1:5 in a mini-batch. Each mini-batch consists of one image and 120 randomly sam-
pled anchors for computing the loss. The NMS applied on the RPN results is also
adapted with an IoU threshold of 0.5 to filter the proposal regions. The proposals
are ranked by their scores. The Faster R-CNN implementation of Zhang et al. is
used as code base for this thesis.

Zhang et al. consider the RPN as stand-alone detector and outperform Faster
R-CNN (RPN + Fast R-CNN in Table 6.5). The good performance of the stand-
alone RPN they explain by stating that RoI pooling suffers from small regions, but
RPN is essentially based on fixed sliding windows (in a fully convolutional fashion)
and thus avoids collapsing bins: if a RoI’s input resolution is smaller than the output
resolution after RoI pooling (i.e. 7�7), the pooling bins collapse and the features
become ’flat’ and not discriminative. The RPN predicts small objects by using small
anchors. After establishing a baseline, Zhang et al. introduce a BDF for classifi-
cation as depicted in Figure 6.5. The implementation is based on Piotr’s Matlab
Toolbox [Dol]. They bootstrap the training seven times, ending up with a BDF of
2,048 trees. Hard negative mining is applied by randomly sampling negative exam-
ples in the first training stage, mining additional 5,000 hard negative examples and
adding them to the training set. To guarantee comparability the classifiers (R-CNN,
Fast R-CNN and BDF) are all trained based on the same proposals given by the
stand-alone RPN.

For analyzing the difference in feature map resolution used as input for the clas-
sifiers, Zhang et al. train and evaluate the classifiers using different conv feature
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Methods RoI Features MR (%)

RPN stand-alone - 14.9

RPN + R-CNN raw pixels 13.1

RPN + Fast R-CNN conv5_3 20.2

RPN + Fast R-CNN conv5_3, à trous 16.2

RPN + BDF conv3_3 12.4

RPN + BDF conv4_3 12.6

RPN + BDF conv5_3 18.2

RPN + BDF conv3_3, conv4_3 11.5

RPN + BDF conv3_3, conv4_3, conv5_3 11.9

RPN + BDF conv3_3, (conv4_3, à trous) 9.6

Table 6.5: Excerpt of the results of Zhang et al. [ZLLH16], for using the RPN as
stand-alone and with different classifiers (R-CNN, Fast R-CNN and BDF).
The column RoI Features denotes the source of the features used for
classification. Evaluation is performed on the Caltech-test-Reasonable
sub-dataset.

maps. The results are listed in Table 6.5, and the different conv feature maps used
for generating features are provided in the second column. The RPN + R-CNN de-
tector uses the RPN instead of the Selective Search algorithm for proposal genera-
tion and passes the warped input RoI through the complete R-CNN pipeline: shared
convolutional layers for feature extraction, SVM for classification and regression for
improving the localization. This approach avoids RoI pooling and CNNs for classifi-
cation and improves the performance of the stand-alone RPN. This result suggests
that if reliable features can be extracted, the classifier is able to improve accuracy
[ZLLH16]. Training the Fast R-CNN classifier on the same set of RPN proposals ac-
tually degrades the results. Zhang et al. assume that the reason for the degrading
performance is partially because of the low-resolution feature maps in conv5_3. To
prove their assumption, they train a Fast R-CNN on the same set of RPN propos-
als with the à trous trick applied to conv5 convolutional layers, reducing the feature
stride from 16 pixels to 8. The à trous trick is explained together with Figure 6.6
later. When shifting the sliding window on a feature map exactly one pixel (stride
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1) and project this stride onto the input image, this is called feature stride. This
experiment proves that higher resolution feature maps are useful, but the detection
rate compared to the stand-alone RPN is still lower.

For using the BDF with the convolutional features, RoI pooling is applied to generate
a fixed length feature vector. The BDF is applied on different convolutional feature
maps separately, yielding good results for conv3_3 (feature stride of 4 pixels) and
conv4_3 (feature stride of 8 pixels). This shows that the featues of intermediate
convolutional layers provide better information than those of the last convolutional
layer. The concatenation of feature maps of multiple layers additionally boosts the
performance of the RPN. Finally, Zhang et al. end up by combining the feature
maps of conv3_3 with the à trous trick version of conv4_3. They state that the
features from different layers can be simply concatenated without normalization due
to the flexibility of the BDF classifier. In contrast, feature normalization needs to be
carefully addressed [LRB15] for CNN classifiers when concatenating features.

Figure 6.5: Pipeline for the approach of using an RPN combined with a BDF
[ZLLH16]. The RPN provides bounding boxes, objectness scores, and
the conv feature maps as input for the BDF.

The à trous trick, as applied by Zhang et al. for achieving feature maps of higher
resolution, is a popular method used for FCNs applied for semantic segmentation
[LSD15] [YK16] [CPK�14]. Another name for the à trous trick is filter dilation. For
motivating the à trous trick the initial situation is illustrated on the left of Figure 6.6.
The feature maps after the pooling layer pool3 are considered as the à trous trick is
applied for conv4 convolutional layers. The goal is to provide conv4 feature maps
of higher resolution. The red box in Figure 6.6 outlines the filter kernel (3�3) of
the subsequent convolutional layer conv4_1. The colored numbers represent the
nine trained filter weights of conv4_1. To increase the feature map resolution, the
stride of pool3 is reduced from 2 to 1, resulting in a four times bigger feature map
and a smaller feature stride of 4 instead of 8. But considering the proportion of
the filter kernel to the larger feature map, the receptive field is reduced in this step.
For adjusting the receptive field of conv4_1, the filter stride is increased from 1
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to 2, resulting in zero-padding of the filter kernel. The à trous trick enlarges the
filter and thus preserves the initial ratio between filter size and feature map size.
A larger feature map is provided with a smaller feature stride by simultaneously
preserving the receptive field of the convolutional layers and without re-training any
filter weights. Thus, applying the à trous trick to conv4 means changing the pooling
stride of pool3 from 2 to 1 and adapting the filter strides of all convolutional layers
(conv4_1, conv4_2, and conv4_3) from 1 to 2.

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

feature map
after pooling

change
pooling stride

(2 -> 1)

change
filter stride
(1 -> 2)

Figure 6.6: Illustration of the à trous trick that is used for generating denser features
maps. The red box depicts the filter kernel of the subsequent convolu-
tional layer.

6.3.2 Multi-spectral Fusion Architecture using Faster R-CNN

Based on the Faster R-CNN implementation of Zhang et al. [ZLLH16], which is
implemented for working with the Caltech dataset, an approach for using Faster
R-CNN for multi-spectral input images is required. Therefore the work of Liu et al.
[LZWM16] is reviewed. They evaluate the four fusion approaches based on the
Faster R-CNN framework in Figure 6.7.

As motivated in Chapter 1, Liu et al. separately train the Faster R-CNN-VIS and
Faster R-CNN-IR on VIS and IR images, respectively, to show the complemen-
tary information of both image types for person detection. Different to the original
Faster R-CNN approach, they remove the fourth max pooling layer (pool4). This
is motivated by the observation that larger feature maps are beneficial for detect-
ing persons of small image sizes. Faster R-CNN uses multi-scale (3 scales) and
multi-ratio (3 ratios) reference anchors to predict locations of region proposals. Liu
et al. discard the anchor aspect ratio of 2:1, due to the typical person aspect ratio
of 0.41 [DWSP12]. The shared convolutional layers are initialized as for the origi-
nal approach by using a VGG-16 model pre-trained on the ImageNet dataset. The
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(a) (b)

(c) (d)

Figure 6.7: Different Faster R-CNN fusion approaches [LZWM16]. (a) Early Fusion,
(b) Halfway Fusion, (c) Late Fusion, and (d) Score Fusion.

other layers are initialized randomly using a Gaussian distribution with variance of
0.01. For finetuning they use the KAIST10x-train sub-dataset.

The Early Fusion Faster R-CNN in Figure 6.7 (a) concatenates the feature maps
from VIS and IR branches immediately after the first convolutional layers. That is
this kind of fusion is later called Conv1 Fusion. The red rectangles represent the
different convolutional blocks such as conv1, conv2, and the fully connected layers
of the Faster R-CNN are depicted with yellow blocks. The intermediate layer of the
RPN is the red box branched to the right. The blue rectangle is a simple Caffe
concatenation layer, which concatenates the two feature maps of conv1-VIS and
conv1-IR in channel dimension. As consequence, this concatenation doubles the
number of feature map channels. As they use the VGG-16 pre-trained weights to
initialize the convolutional layers after the fusion block, a dimension reduction is
necessary. Therefore, Liu et al. introduce the Network-in-Network (NiN) layer after
feature concatenation, which is actually an 1�1 convolutional layer reducing the
number of channels from 128 to 64. On one side this additional layer is used to
learn fusing the feature maps based on different input images, but also the VGG-16
model can be used for initializing the layers after the fusion module. The NiN layer
is followed by a ReLU layer, enhancing the discriminability of local patches. The
Early Fusion fuses low-level visual features, such as corners and line segments.
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Fusion Architecture MR (%)

Early Fusion 40.44

Halfway Fusion 36.99

Late Fusion 40.46

Score Fusion 40.06

Table 6.6: Excerpt of the results of Liu et al. [LZWM16] for different fusion ap-
proaches evaluated on the KAIST-test-Reasonable sub-dataset.

The Halfway Fusion Faster R-CNN in Figure 6.7 (b), puts the fusion module after
the fourth convolutional layers (conv4). The fusion module consists of the concate-
nation and the NiN part as introduced for the Early Fusion. Features of conv4 are
of higher semantic abstraction than those of conv1. Hence, Halfway Fusion fuses
semantic features. The Late Fusion (c) concatenates the last fully connected lay-
ers for the classification part and the feature maps after conv5 layers for the RPN.
Differently to the fusion module of (a) and (b), the Late Fusion only concatenates
the feature maps without using NiN for learning the feature map fusion. Late Fusion
performs high-level feature fusion. The fourth fusion approach is the Score Fusion
Figure 6.7 (d). As explained by Liu et al., they first get detections from the Faster
R-CNN-VIS, which are sent into the Faster R-CNN-IR to obtain detection scores
based on the IR image, and vice versa. In practice, this can be accomplished by
using RoI pooling. The conv feature map is computed once and used to generate
proposals with the VIS RPN and the IR RPN. The RoIs of both RPNs are processed
with both classification networks (Fast R-CNN). Detection scores from the two clas-
sification networks are combined using equal weights such as 0.5.

As listed in Table 6.6 the different fusion approaches of Liu et al. lead to the re-
sults that Halfway Fusion outperforms the other approaches. Whereby the other
approaches, namely Early, Late and Score Fusion, have similar but worse results.
Their fusion approach is intuitively and therefore the fusion module is adopted for
the proposed fusion approaches.
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6.3.3 Pre-Training, Pre-Finetuning, and Finetuning

The third reviewed work, is from Wagner et al. [WFHB16], who point out a training
strategy consisting of pre-training, pre-finetuning, and finetuning. The CNN fusion
architectures are not the same as from Liu et al. in the previous section. This
work shows improvements by using their proposed training strategy. Wagner et al.
build up on the R-CNN detection framework, i.e. a proposal generator combined
with a CNN for classification. For generating the proposal regions they use the
ACF+T+THOG detector proposed by Hwang et al. [HPK�15]. The two proposed
architectures are based on the CaffeNet [JSD�14] architecture. The Early Fusion
network concatenates the VIS image (3 channel) and IR image (1 channel) before
feeding them into the network. The Late Fusion architecture trains two different
sub-networks separately (CaffeNet-VIS and CaffeNet-IR). These sub-networks are
combined by training two additional fully connected layers. Wagner et al. do some
minor parameter adjustments for CaffeNet-VIS and CaffeNet-IR.

The training strategy of Wagner et al. comprises three stages. As the target dataset
KAIST is a rather small dataset, the network cannot be trained from scratch [ZF14]
[TLWT16] [HOBS15]. When training from scratch, the trainable parameters are ini-
tialized by random values [SZ15]. The variance of the initialized values should be
high enough, otherwise no training will take place [HSK�12] [Ben12]. There are dif-
ferent available initialization methods. One popular method is the zero-mean Gaus-
sian initialization and the other is called Xavier initialization [GB10] also used for the
VGG-16 training [SZ15]. Another possibility for training is to use pre-trained models
as applied in many works [TLWT16] [GDDM14] [AGM14] [HOBS15] [TMB�16]. As a
consequence, the weights are usually not randomly initialized. Instead, the weights
of a pre-trained model are utilized as initialization and the weights are adapted by
training on the new dataset. This kind of training is often referred to as finetuning or
transfer learning. The dataset used for generating the pre-trained model is called
the auxiliary dataset. This auxiliary dataset commonly is a huge dataset able to
train well-formed (useful) weights.

The third method for training network architectures is called pre-finetuning. Pre-
finetuning uses a pre-trained model for initializing the weights. As the target dataset
KAIST is rather small the goal is to adapt these general weights towards the task
of person detection. The additional adaptation of the weights is performed with-
out the target dataset to maintain the generalization capability of the trained model.
Direct training with the target dataset could lead to overfitting [And13] [HSK�12].
The trick is to utilize a second auxiliary dataset, which can be used to train the net-
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Fusion Architecture Pre-Finetuning MR (%)

Early Fusion
7 57.96

3 53.94

Late Fusion
7 51.30

3 43.80

Table 6.7: Excerpt of the results of Wagner et al. [WFHB16] for two different training
strategies and two different architectures evaluated on the KAIST-test-
Reasonable sub-dataset.

work for the desired task. After this pre-finetuning step, the network is finetuned
on the target dataset. Wagner et al. use pre-finetuning to train their architecture.
First, they pre-train their networks on the large auxiliary dataset ImageNet. Then,
Wagner et al. apply pre-finetuning by using the Caltech dataset. Since the Cal-
tech dataset has no IR images, Wagner et al. use the red channel as approxima-
tion of the IR image. After finetuning the three networks (Early Fusion network,
CaffeNet-VIS and CaffeNet-IR) separately, they train the networks separately again
on the KAIST dataset (KAIST10x-train). For training the Late Fusion, the two sub-
networks (CaffeNet-VIS and CaffeNet-IR) are combined by two fully connected lay-
ers and trained a second time on the KAIST dataset while keeping the weights of
the sub-networks fixed.

The results in Table 6.7 compare the two approaches of training from scratch and
the use of pre-finetuning combined with pre-training and finetuning. Wagner et al.
performed the evaluations with training from scratch (7) with the KAIST dataset
only. In a second experiment they apply pre-training with ImageNet dataset, pre-
finetuning with Caltech dataset, and finetuning with the KAIST dataset (3). The
results evidently show for both network architectures that the pre-finetuning and
fine-tuning boosts the detection performance. In this thesis the use of auxiliary
datasets is analyzed in detail, as well as using an IR dataset for pre-finetuning the
IR sub-network.
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6.4 Proposed Multi-spectral Fusion Architectures

By reviewing the works of Ren et al. [RHGS16], Zhang et al. [ZLLH16], Liu et
al. [LZWM16] and Wagner et al. [WFHB16] the inspiration of this work has been
presented. The Faster R-CNN framework of Zhang et al. builds the fundament for
analyzing different fusion and training strategies. As a sanity check the results of
Zhang et al. are verified on the Caltech-test-Reasonable sub-dataset by training
and evaluation. Nearly the same results are achieved, and the minor deviations
result from the training procedure comprising random choices to generate each
mini-batch.

In Figure 6.8 the different fusion approaches inspired by Liu et al. are illustrated.
Instead of fusing the Faster R-CNN, RPN fusion is proposed. The fusion module
comprises the concat layer for concatenation of the VIS and IR feature maps, and
the NiN layer for dimension reduction. Figure 6.8 (a) is called Conv1 Fusion and
fuses after the conv1 RPN layers, (b) is fused after conv2 RPN layers and anal-
ogously the other layers are fused. Regarding the Conv5 Fusion, once the conv
feature maps of conv5 are fused by using the complete fusion module (e), but also
by only concatenating the conv feature maps without the NiN layer (f).

For training, the RPNs are trained on VIS and IR data separately, resulting in two
individual RPNs without fusion. The shared convolutional layers are always initial-
ized by using the VGG-16 model pre-trained on the ImageNet dataset. Inspired
by Wagner et al., the auxiliary datasets Caltech, CaltechR and CVC-09 are used
for pre-finetuning and evaluating the trained models. CaltechR is used for imitat-
ing training with an IR dataset by using only the red channel of the RGB images.
The red channel is utilized three times and stacked in channel dimension to ob-
tain 3-channel images. This is necessary, because the VGG-16 pre-trained model
is trained on 3-channel images and the conv1_1 layer expects three channels as
input. Otherwise, the VGG-16 model has to be pre-trained for 1-channel input im-
ages from scratch. Wagner et al. apply the same procedure. In the similar way, an
RPN is trained on the CVC-09 IR dataset. The RPNs initialized by the pre-trained
VGG-16 model are trained (pre-finetuning) on the training subsets (Chapter 4) of
each dataset (Caltech, CaltechR and CVC-09). Then, the performance on the test-
ing subsets of each dataset is evaluated to analyze the influence of the dataset
size (small or big training subset) as well as horizontal flipping of the training sam-
ples as data augmentation. Based on the pre-finetuned models, finetuning with the
KAIST VIS and IR images is applied separately on the related models. The pre-
finetuned CaltechR and CVC-09 models are trained with the IR images of KAIST.
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Figure 6.8: The proposed fusion approaches for RPN. (a) Conv1 Fusion RPN, (b)
Conv2 Fusion RPN, (c) Conv3 Fusion RPN, (d) Conv4 Fusion RPN, (e)
Conv5 Fusion RPN, and (f) Conv5 Fusion RPN without the NiN layer.

The pre-finetuned Caltech models are trained with VIS images of KAIST. Addition-
ally, the models are trained directly based on the VGG-16 initialization without the
pre-finetuning step. During training, the conv1 and conv2 layers are fixed due to
overfitting concerns and therefore not affected by training. Thus, only the higher
layers are affected by training. This is motivated by the observation that the earlier
features of a CNN contain more generic features such as edge detectors or color
blob detectors that should be useful for many tasks, but higher layers of the CNN
become more specific to the details of the training dataset [TS09]. The results of
this training stage are RPNs that can be applied on VIS or IR images of the KAIST
dataset separately (VIS RPNs and IR RPNs).
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The second training stage fuses the separately trained VIS and IR RPN models by
using the architectures illustrated in Figure 6.8. The layers denoted by convX-VIS
and convX-IR are initialized with the layers of the pre-finetuned VIS and IR RPN
models, respectively. For the NiN layer the weights are randomly initialized accord-
ing to a Gaussian distribution with standard deviation of 0.001 and the biases with
zeros. The same initialization is applied to the RPN layers conv-prop, cls-score, and
bbox-pred. The shared convolutional layers after the fusion module are initialized
with the pre-trained VGG-16 model parameters.

For training, Zhang et al. use SGD for about 6 epochs. The Learning Rate (LR) is
set to 0.001 and reduced to 0.0001 after 4 epochs. A value of 0.9 is used for the
momentum term that adds a fraction of the previous weight update to the current
one. For the weight decay factor, which causes the weights to exponentially decay
to zero, a value of 0.0005 is used. The input images are re-sized such that its larger
edge has 768 pixels for the KAIST dataset and 720 pixels for the Caltech and the
CVC-09 dataset. The orginial image size of the KAIST dataset is 640�512, and
the Caltech and CVC-09 dataset have an image size of 640�480 pixels. Thus,
the images fed into the RPN are re-sized by factor 1.5 to 960�768 for KAIST and
960�720 for Caltech and CVC-09. The idea of re-sizing is to have feature maps
of finer resolution (larger size). The size for re-sizing the input images is chosen
w.r.t. the feature stride of 16. Instead of subtracting the mean image as for the
VGG-16 training, the RGB mean values 123.68, 116.78, and 103.94 are used. For
training, only bounding boxes containing non-occluded persons, and persons of
height equal to or larger than 50 pixels are considered for generating positive sam-
ples. All other bounding boxes and the ones with labels different to ’person’ such
as ’people’, ’person?’, and ’bicyclist’ are treated as ignore regions. The bounding
box standardization proposed by Dollár et al. [DWSP12] is applied, i.e. for each
bounding box the width is adapted until its aspect ratio (width to height) is equal to
0.41. Furthermore, this aspect ratio is utilized to determine the anchors. Equally to
Zhang et al., one anchor aspect ratio of 0.41 is used and 9 different scales, starting
from 40 bounding box height with scaling stride 1.3. Each mini-batch consists of
one image with 120 randomly sampled anchors. The ratio of positive and negative
samples is 1:6 in a mini-batch. Defined by the chosen RPN architecture with fea-
ture stride 16 and the scaling of the input image to a size of 960�768 pixels, the
conv feature map of conv-prop layer has the size 60�48 pixels and the number of
anchors is 9. Since every pixel of the conv feature maps represents an anchor with
9 anchor boxes, there are a total of 25,960 anchor boxes for one input image of the
KAIST dataset. The anchor boxes have to be labeled whether they are foreground
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(person=1) or background (no person=0) boxes. An anchor box is considered as
foreground if the IoU overlap is equal to or larger than 0.5, otherwise the anchor box
is labeled as background. For evaluation, NMS is applied by using an IoU overlap
of 0.5 for suppressing regions ranked w.r.t. their score [ZLLH16]. After the NMS,
the 40 top-ranked detections make up the result of the fusion RPN. These training
parameters are applied to the non-fusion RPNs, too.

6.5 Fusion RPN and Boosted Decision Forest (BDF)

In the previous section the RPN fusion approaches for generating region proposals
for person detection based on multi-spectral images are proposed. In this section
the fusion RPNs are adopted for feature extraction and the extracted feature maps
are utilized for training a BDF using AdaBoost. The approach is similar to the filtered
channel features based detectors in Chapter 5, but instead of using the filtered
channel features, the deep features extracted from the RPN are used.

In Figure 6.9 the architecture for combining the Conv3 Fusion RPN with a BDF is
introduced. Based on the input images, the trained Conv3 Fusion RPN generates
region proposals (RoIs). In a slightly modified way, the Conv3 Fusion RPN archi-
tecture is used again to process the generated region proposals. As depicted in
Figure 6.9 the fusion network is truncated after the conv4_3 layer and the à trous
trick [LSD15] [ZLLH16] is applied to increase the resolution of the conv feature maps
resulting from conv4. Thus, the feature maps of the conv3 and conv4 layers have
the same size. Using the RPN region proposals, each RoI mapped to the output
feature maps of conv3-VIS, conv3-IR and conv4 is individually RoI pooled by the
three RoI pooling layers (orange). The resulting fixed length feature vectors are
concatenated to obtain one feature vector as input for the BDF.

As the Conv1 and Conv2 Fusion RPNs are outperformed by the other fusion ar-
chitectures they are not used together with a BDF (see Subsection 7.3.4). In Fig-
ure 6.10 the second approach of using the RPN feature maps with a BDF is shown.
The presented architecture can be used for both, the Conv4 or Conv5 Fusion RPNs.
Other than for the first architecture there is no fusion module since the Conv4 and
Conv5 Fusion RPNs are fused after conv4 and conv5 layers, respectively. For the
multi-spectral input images the RPNs propose regions (RoIs) that potentially con-
tain persons. Then, the trained RPN models are used and modified by truncating
the layers after conv4_3 and applying the à trous trick for larger conv feature maps.
Similar to Figure 6.9, using the RoIs and the model weights of the Conv4 or Conv5
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Figure 6.9: Conv3 Fusion RPN for feature extraction combined with a BDF. The RoIs
are proposed by the Conv3 Fusion RPN. The extracted conv feature
maps are RoI pooled to obtain a fixed length feature vector for the BDF.

Fusion RPN, each RoI is RoI pooled based on the conv feature maps of conv3-VIS,
conv3-IR, conv4-VIS (à trous), and conv4-IR (à trous). Thus, there are four fixed
length feature vectors that are concatenated and utilized as input for the BDF. To
give an impression of the number of features fed into the BDF, the ACF+T+THOG
detector with the small model size produces 5,504 features, the ACF+T+THOG with
big model size 19,350 features, and the Checkerboards+T+THOG with small model
size generates 214,656 features. In comparison, the BDF with Conv3 Fusion RPN
produces 12,544� 12,544� 25,088 � 50,176 and with Conv4 or Conv5 Fusion RPN
12,544 � 12,544 � 25,088 � 25,088 � 75,264 deep features as input feature vector.
The number of deep features depends on the RoI pooling output grid (7�7), and
the number of channels of each utilized conv feature map. As the output feature
maps after conv3 have 256 channels, one RoI is pooled to 7 � 7 � 256 � 12,544 deep
features. The output feature maps of conv4 have 512 channels and therefore pro-
duce 7 � 7 � 512 � 25,088 deep features. The same RoI resolution (7�7) as Faster
R-CNN is adopted, but these RoIs are used on higher resolution feature maps (e.g.,
conv3_3, conv4_3 or conv4_3 à trous) compared to Fast R-CNN or Faster R-CNN
(conv5_3).
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Figure 6.10: Conv4 or Conv5 Fusion RPN for feature extraction combined with a
BDF. The RoIs are proposed by the Conv4 or Conv5 Fusion RPN, re-
spectively. The extracted conv feature maps are RoI pooled to obtain
a fixed length feature vector for the BDF.

The BDF used for training the classification stage of the proposed person detection
framework is similar to the one from Chapter 5 and builds up on the Piotr’s Mat-
lab Toolbox [Dol]. First, the training data is generated by using the fusion RPNs
as proposal generator on the KAIST10x-train training sub-dataset. The generated
training data consists of the top-ranked 1,000 proposals of each image, after NMS
with IoU overlap of 0.7. As proposed by Zhang et al. [ZLLH16], seven stages of
bootstrapping are used (64, 128, 256, 512, 1,024, 1,536, and 2,048 per stage), re-
sulting in 2,048 weak classifiers with a maximum tree depth of 5. The BDF training
is performed using Real AdaBoost. The proposals of the Fusion RPN are used for
generating positive and negative samples based on the extracted fixed length fea-
ture vectors for each RoI as explained in this chapter. These feature vectors have
to be labeled w.r.t. their class (person/no person). A region proposal is regarded
as person, if the bounding box has an IoU overlap with the GT equal to or higher
than 0.8. These RoIs together with the GT boxes are used as positive samples.
For the first stage 30,000 negative samples are generated. In each following stage
5,000 new negative samples are added to a maximum number of 50,000 samples.
If the maximum number of samples is reached, the new training set comprises the
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5,000 newly acquired samples and 45,000 samples that are sampled from the ex-
isting set of 50,000 negative samples. Negative samples are generated similar to
the positive samples. A proposal of the Fusion RPN is marked as background (no
person) if the IoU overlap with the GT is less than 0.5. Overlaps in between 0.5
and 0.8 are ignored. After RoI pooling, the generated feature vectors are used as
the negative samples. As the number of available negative samples is larger than
the number that can be added every stage, the 5,000 new negative samples are
randomly sampled in the first. After the first stage of training, the BDF model is
used for hard negative mining. Only negative samples with a score higher than -1
are added as hard negatives to the training set. For the NMS applied on the BDF
detection results, an IoU overlap threshold of 0.5 is used.
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7 Experiments and Results

This chapter presents the evaluations and results of this thesis. First, the evaluation
metrics commonly used for person detection are reviewed. Then, the results for
the filtered channel features based detectors are showed that serve as a baseline
for the proposed CNN approaches. After presenting the results of the proposed
fusion RPNs and the RPNs combined with BDFs, the results are compared to ap-
proaches taken from literature. Finally, some qualitative evaluations are presented
with example detections and images taken from the KAIST dataset.

7.1 Evaluation Metrics

Before presenting the results, the commonly used evaluation metrics for person
detection are recapitulated. The detection results are classified into four different
categories as illustrated in Figure 7.1. For evaluation, there are the detections of the
applied detector and the GT data provided together with the dataset. All detections
provided by the detector are called predicted positives. Those detections contain
the actual True Positives (TPs) and False Positives (FPs), which are not contained
in the GT data. These FPs are either detections that do not contain a person or can
be missing annotations in GT data. Originally, this categorization stems from eval-
uating classification results. Therefore, the predicted negatives are sliding windows
or anchor boxes, which are labeled as non-persons. As for the predicted positives,
the predicted negatives can be divided into the category of True Negatives (TNs),
i.e. windows correctly classified as not containing any person, and the False Nega-
tives (FNs), which are windows containing persons, but marked as background by
the detector. The actual positives are equivalent to the set of GT data.

For determining a detection to belong to a certain category, the detections are
matched to the GT data. To decide whether a detection belongs to a given GT
bounding box, the score of the detection, and the so-called Intersection over Union
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Figure 7.1: Illustration of the confusion matrix used to classify the detection results
into True Positives (TPs), False Negatives (FNs), False Positives (FPs),
and True Negatives (TNs).

(IoU) overlap criterion are considered. The IoU is a measure resulting from the
PASCAL VOC Object Classification Challenge [EVW�10] (see Equation 7.1).

IoU�bbdt, bbgt� �
area�bbdt 9 bbgt�

area�bbdt 8 bbgt�
(7.1)

As the name reveals, the IoU is the ratio between the intersection of detection
bounding box bbdt and GT bounding box bbgt and the union of both bounding boxes.
In this way, every detection bounding box is compared to every GT box and their
IoU overlap is calculated. A commonly used IoU overlap threshold is 0.5, i.e. a
detection bounding box can be matched to a GT bounding box, if the IoU overlap is
greater than 0.5. For matching detection and GT boxes for an image, the detections
are sorted by their scores in descending order to prefer detections with high scores.
The GT boxes are re-arranged that the non-ignore boxes are matched first. Then,
each detection is compared to each GT box. The detection is matched to the GT
box with the highest IoU overlap, as far as the GT box is not already matched to a
detection with a higher score. Thus, the best detection for a bounding box is con-
sidered as TP. Detections that do not match to any GT bounding box are marked
as FPs. FNs are GT boxes without any matched detection bounding boxes. The
TNs correspond to the number of sliding windows or anchors used for detection
minus the number of FNs. This has to be applied for every image to get the total
number of TNs. The ignore regions [DWSP12] are handled similar compared to
GT boxes, but instead of matching maximally to one detection box, they can have
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multiple matched detection bounding boxes. Matches to non-ignore GT boxes are
preferred. Ignore regions that are not assigned to any detection are not considered
as FNs.

The evaluation metrics for person detection are based on the categorization of de-
tection results. The two commonly used curves are the Precision-Recall (PR) and
the Receiver Operating Characteristic (ROC) curves. Davis and Goadrich explain
both curves and their relationship [DG06]. For person detection the ROC curve is
often referred to as a curve showing the miss rate over the False Positives Per Im-
age (FPPI). This kind of ROC curve is applied in Piotr’s Matlab Toolbox [Dol], which
is used for evaluation. The miss rate and FPPI is easier to evaluate for humans
than the true positive rate and false positive rate of the orginial ROC curve. For
example, in automotive applications it is more intuitive to define the FPs per image
than a false positive rate. Equation 7.2, Equation 7.3, and Equation 7.5 describe
the related metrics that are utilized for creating the curves. For all evaluations in this
work, the evaluation scripts of Zhang et al. [ZLLH16] are used that are based on
Piotr’s Matlab Toolbox.

R �

TPs

TPs � FNs
�

TPs

#GTs

P �

TPs

TPs � FPs
�

TPs

#DTs

(7.2)

TPR �

TPs

TPs � FNs
�

TPs

#GTs

FPR �

FPs

FPs � TNs

(7.3)

M � 1 �R �

FNs

TPs � FNs
�

FNs

#GTs

FPPI �
FPs

#images

(7.4)

#GTs denotes the total number of GT bounding boxes and according to Figure 7.1
TPs�FNs � #GTs. The total number of detections is denoted by #DTs � TPs�

FNs and the total number of evaluated images by #images. For the PR curve the
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recall (R) is plotted over precision (P) (Equation 7.2). The original ROC curves plot
True Positive Rate (TPR) over False Positive Rate (FPR), where the TPR is equal to
R (Equation 7.3). The ROC curve that is used for the evaluations of this thesis plots
the Miss rate (M) over the FPPI (Equation 7.5). The miss rate can be calculated
from the recall and vice versa. For plotting the curves, these metrics are computed
by shifting the score threshold in small steps from the minimum available detection
score to the highest. For every small step the score threshold is shifted, a pair can
be calculated with the metrics (e.g., M and FPPI). Thus, a relatively continuous
curve can be plotted.

For comparing the results, two commonly used metrics are reviewed that summa-
rize the detector performance by a single reference value. The log-average Miss
Rate (MR) [DWSP12] is based on the ROC curve and the Average Precision (AP )
[EVW�10] is based on the PR curve. Both methods use nine reference points that
are evenly spaced in log-space in the interval between 10�2 and 100. For curves
that end before the end of the interval is reached, the missing reference points are
approximated by the value of the nearest reference point. Conceptually, MR is sim-
ilar to the AP. Equation 7.5 and Equation 7.6 describe the calculation for MR and
AP. The parameter N corresponds to the number of reference points and is set to
N � 9 [DWSP12].

MR � exp�
1

N

N

Q
i�1

ln�Mi � � (7.5)

Equation 7.5 describes the calculation for the MR. The miss rates Mi at the N �

9 reference points are averaged, after scaling them logarithmically by using the
natural logarithm. The reference points are FPPI rates in the interval between 10�2

and 100. The resulting average value is scaled by applying the natural exponential
function. For calculating the AP (Equation 7.6), the N � 9 precision values Pi are
averaged at the given reference points. These two reference values are commonly
used for evaluating the detector performance.

AP �

1

N

N

Q
i�1

Pi (7.6)

For evaluating proposal generators like the RPN, curves are used that plot recall
against IoU or recall against the number of proposals [ZLLH16] [LZWM16]. For
the curve, which plots recall against different IoU overlap thresholds, the recall is
calculated for various IoU thresholds commonly reaching from 0.5 to 1.0. These
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kinds of curves are used to evaluate the accuracy of the proposals. The second type
of curves that plots the recall against the number of proposals is used to compare
the proposal generators for their classification performance. The faster the curves
reach towards 1.0, the less FNs are contained in the detection sets.

7.2 Results of Person Detection based on Filtered
Channel Features

This section describes the experiments with the filtered channel features based de-
tectors. In Table 7.1, the results for three different parameter sets are presented that
are described in Table 5.1. The original ACF detector model provided by Hwang et
al. [HPK�15] achieves an MR of 54.40 %. Two model sizes of the ACF detector are
regarded for each parameter set (Config1, Config2 and Config3). There are small
(32�64 with padding) and big (60�120 with padding) model sizes. The smaller
model size is proposed by Rajaram et al. [ROBT16] for VIS detectors and also
used in the multi-spectral approach of Hwang et al. [HPK�15]. On the other side,
Ohn-Bar et al. [OBT16] and Zhang et al. [ZBS15] use the big model size for param-
eterization of their detectors.

With using the first parameter set Config1 the model capacity is enlarged by in-
creasing the number of weak classifiers, training stages, negative training samples,
and the maximal tree depth. Furthermore, Real AdaBoost is used for training in-
stead of the Discrete AdaBoost used by Hwang et al.. The increasing MR values
indicate that the increased model size is too large for only using KAIST-train for
training. A reduced MR is achieved for training with the larger KAIST10x-train sub-
dataset. Thus, for an enlarged model capacity an appropriate dataset is necessary,
which provides more training data.

For the second parameter set Config2 the stride and shrinkage parameter for the
channel features pyramid are increased. Furthermore, all scales of the channel
pyramid are computed instead of approximated. The results show an additional
increase of the MR. It is assumed that the increased MR results from the bigger
stride and shrinkage. Therefore, this two parameters are reset to the default values
for Config3. With this third parameter set, the performance of the filtered channel
features based detectors is improved compared to original ACF-T-THOG of Hwang
et al..
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Training Configurations MR (%)

Training Dataset Parameter Set
ACF ACF Checkerboards
(big) (small) (small)

KAIST-train

Config1 80.53 67.46 63.33

Config2 71.63 71.50 69.21

Config3 68.33 65.23 63.17

KAIST10x-train

Config1 74.98 47.21 46.57

Config2 47.59 58.60 59.43

Config3 44.31 42.57 39.12

Table 7.1: Evaluation of the filtered channel features based detectors for different
parameter sets (Table 5.1). The evaluation of the provided model of
Hwang et al. [HPK�15] yields to an MR of 54.40 % (model is trained
on KAIST-train).

The Checkerboards-T-THOG detector (denoted with Checkerboards) outperforms
both model sizes of the ACF-T-THOG detectors (denoted with ACF). But when con-
sidering the number of features used as input for the BDF, the ACF with the big
model size is assumed to outperform the small model size. The small ACF detector
computes 5,504 features, the big ACF detector 19,350 features and the Checker-
boards detector 214,656 features. For the implementation in Piotr’s Matlab Toolbox,
the number of features directly influences the time for performing a detector training
and the size of the Random Access Memory (RAM) required for storing the positive
and negative samples. During training they hold all positive and negative samples
constantly in RAM.

In Figure 7.2, the results of three detectors for Config3 are plotted and compared to
the original ACF-T-THOG model. Surprisingly, the IoU curve of the big sized ACF
detector always lies above the other curves. This means the big sized detector finds
more TPs with correct localization compared to the two smaller sized detectors. It is
assumed that the detectors with a larger model size have a larger sliding window on
each scale of the channel features pyramid than the detectors with a small model
size, and therefore the detections of the detectors with larger model size predict
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Figure 7.2: IoU vs. recall curve for the three detectors of parameter set Config3
compared to the original ACF-T-THOG model [HPK�15].

larger detection boxes. These assumptions explain the higher recall values, since
it is more likely that a larger detection box matches to a GT box. Rajaram et al.
[ROBT16] state: Choosing a smaller model size allows the detection of smaller
persons at the cost of lower detection accuracy. On the other side, a larger model
size yields better detection accuracy for large persons at the cost of missing smaller
ones. The IoU curve in Figure 7.2 is used to evaluate the localization accuracy of
the three detectors compared to the original ACF.

Figure 7.3 presents the ROC curve for the three parameter tuned filtered channel
features based detectors compared to the original ACF+T+THOG detector. The
Checkerboards detector outperforms the three other detectors, while the original
detector performs worst. It is assumed that the Checkerboard detector’s perfor-
mance results from the large and rich feature pool, and the small model size that
provides a low number of FNs. The assumption of using the big model size for gen-
erating larger detection boxes is that if a window contains a person, for the small
model size, the generated features mostly belong to the person. For the larger
model size the considered window additionally contains background features and
therefore it is harder to provide a correct classification result. Thus, the number of
FPs and FNs increases and the ROC curve is shifted to the right and upwards, re-
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Figure 7.3: ROC curve for the three detectors of parameter set Config3 compared
to the original ACF-T-THOG model [HPK�15].

spectively. The number of FPs and FNs increases stronger than the number of TPs
and therefore the ACF detector with small model size outperforms the one with the
big model size when considering the MR. Training the Checkerboards detector for
the big model size is not possible using this implementation due to lacking memory.

Compared to Hwang et al., the usage of the larger KAIST10x-train sub-dataset for
training is introduced, both model sizes are evaluated, a model of bigger capacity
(number of weak classifiers, tree depth and number of negative samples) is used
and the Checkerboards filterbank is applied to the multi-spectral ACF.

7.3 Results of Person Detection based on Deep
Learning

This section presents the results of pre-finetuning the RPN with the auxiliary datasets
without fusion. Different parameter sets are evaluated including the size of the
datasets used for training, and horizontal flipping as data augmentation. The RPN
is initialized with the VGG-16 model weights, pre-trained on the ImageNet dataset.

92



7.3.1 RPN Results on Auxiliary Datasets

The results for training the RPN on the Caltech dataset are presented in Table 7.2.
The parameter set normal represents the training of the RPN on the original Cal-
tech dataset as introduced by Dollár et al. [DWSP12]. The improved annotations
introduced by Zhang et al. [ZBO�16] are used for new-annotations. The parameter
set flipping means applying random horizontal flipping of the training samples to
perform data augmentation. Using the larger Caltech10x-train sub-dataset for train-
ing decreases the MR by about 4 percentage points. Surprisingly, the usage of the
improved annotations has no influence on the detector performance for the large
training subset. For the smaller training subset a performance gain of about 1 per-
centage point can be achieved, same for flipping used to augment the training data.
For the large training set the performance of the RPN is even deteriorated. With
the parameter set normal, an MR of 13.09 % is achieved for using the larger train-
ing subset. This is slightly better than the MR achieved by Zhang et al. [ZLLH16]
(14.9 %).

Caltech RPN

Training Dataset Parameter Set MR (%)

Caltech-train

normal 18.65

new-annotations 17.11

flipping 17.10

Caltech10x-train

normal 13.09

new-annotations 13.15

flipping 14.55

Table 7.2: Results for training the RPN model on two different training subsets
(Caltech-train and Caltech10x-train) and with three different parameter
sets.

The CaltechR dataset images contain the cloned red channels of the RGB Caltech
images. For the smaller subset a small gain can be reached when using hori-
zontal flipping as shown in Table 7.3. Training on the large training sub-dataset
(CaltechR10x-train) yields to a performance gain similar as for the Caltech dataset.
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CaltechR RPN

Training Dataset Parameter Set MR (%)

CaltechR-train
normal 23.75

flipping 22.21

CaltechR10x-train
normal 18.53

flipping 20.07

Table 7.3: Results for training the RPN model on two different training subsets
(CaltechR-train and CaltechR10x-train) and with two different parameter
sets.

The IR dataset CVC-09 consists of images with the single IR gray-scale image
cloned three times to achieve a 3-channel image analogously to the CaltechR
dataset. Other than for the CaltechR dataset, horizontal flipping results in a perfor-
mance gain for both training subsets. The decrease of the MR for the CVC10x-train
subset is significant. The results are listed in Table 7.4.

CVC RPN

Training Dataset Parameter Set MR (%)

CVC-train
normal 38.97

flipping 37.10

CVC10x-train
normal 37.27

flipping 30.67

Table 7.4: Results for training the RPN model on two different training subsets
(CVC-train and CVC10x-train) and with two different parameter sets.

Considering these results, improved annotations and horizontal flipping for data
augmentation yield to a decreased MR, especially for training datasets with an in-
sufficient amount of training data. As the models trained on the original training
subsets perform well and flipping causes an increased amount of training data, the
RPNs trained on the larger training subsets with the normal parameter set are used
for further experiments. Increased training data extends the time for training an
RPN model.
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7.3.2 RPN Results on the KAIST-VIS Dataset

Based on the auxiliary datasets used for pre-finetuning, finetuning of these RPN
models is performed on the KAIST-VIS dataset that consists only of the VIS images
of the KAIST dataset. The annotations remain unchanged. There are three pa-
rameter sets. The normal set represents training the RPN based on the pre-trained
VGG-16 ImageNet model and flipping denotes additional data augmentation by hor-
izontal flipping. The third option trains the RPN on KAIST-VIS but initializes the RPN
model pre-finetuned on the Caltech10x-train training subset (see Table 7.2).

KAIST-VIS RPN

Training Dataset Parameter Set MR (%)

KAIST-train
(VIS images)

normal 50.93

flipping 49.52

on Caltech10x model 49.74

KAIST10x-train
(VIS images)

normal 48.13

flipping 47.71

on Caltech10x model 49.07

Table 7.5: Results for training the VIS RPN model on two different training subsets
(KAIST-train and KAIST10x-train) using only the VIS images and with
three different parameter sets.

The results for the RPN trained on the KAIST-VIS data are presented in Table 7.5.
The smaller training subset yields worse results than can be achieved for the larger
training subset. The performance gain by applying flipping for data augmentation
can be recognized for both datasets. As reported by Wagner et al. [WFHB16],
a strongly decreased MR is expected by using the RPN model pre-finetuned on
the Caltech10x-train training set for initialization. Instead, the MR is slightly in-
creased when using the large training subset combined with pre-finetuning. For
the smaller training set, data augmentation and initialization with the pre-finetuned
model increases the performance slightly. For further experiments of this work the
parameter sets normal and on Caltech10x model are used.
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Figure 7.4: ROC curve of the VIS RPNs for the three parameter sets in Table 7.5
when using only VIS images of the KAIST10x-train subset for training.
The results are compared to those of Faster R-CNN-VIS [LZWM16].

As for the auxiliary datasets, the results show that the larger training subset leads
to a better performance. The ROC curves for the three parameter sets are plotted
in Figure 7.4 when using the larger training set. The results are compared to those
achieved by Liu et al. [LZWM16] for their Faster R-CNN-VIS. They also trained and
evaluated their approach using only VIS images of the KAIST dataset. By using the
same training subset, but the Faster R-CNN instead of only the RPN, they achieve
slightly worse results. In this way, the conclusions of Zhang et al. [ZLLH16] that
the RPN as stand-alone outperforms the Faster R-CNN with its additional classifi-
cation network, can be confirmed. Considering the stagnating curve of the Faster
R-CNN-VIS detector in Figure 7.4, the influence of the classification network, which
rejects TPs and discards too less FPs, are visible. Thus, the miss rate of the de-
tector increases. For the following experiments the influence of pre-finetuning is
analyzed and therefore the flipping approach is discarded. Furthermore, only the
models trained on the bigger training subsets are considered.
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7.3.3 RPN Results on the KAIST-IR Dataset

Similar to the previous subsection, this one evaluates the finetuning of the RPN
for the KAIST-IR subset. Only the IR images of KAIST-train and KAIST10x-train
sub-dataset are used to construct the KAIST-IR subset. The first two parameter
sets (normal and flipping) are analogous to the previous subsection and represent
training based on the pre-trained VGG-16 model. The third option (on Caltech10x
model) means using the RPN model pre-finetuned on the Caltech10x-train sub-
dataset for initialization. Based on the initialization, the RPN model is finetuned on
both KAIST-IR subsets. The fourth option (on CaltechR10x model) uses the RPN
model pre-finetuned on the CaltechR10x-train training set for initialization. The last
option (on CVC10x model) describes initialization with an RPN pre-trained on the
CVC10x-train training sub-dataset.

KAIST-IR RPN

Training Dataset Parameter Set MR (%)

KAIST-train
(IR images)

normal 47.03

flipping 46.65

on Caltech10x model 48.58

on CaltechR10x model 48.57

on CVC10x model 47.61

KAIST10x-train
(IR images)

normal 48.13

flipping 45.80

on Caltech10x model 46.91

on CaltechR10x model 44.17

on CVC10x model 44.26

Table 7.6: Results for training the IR RPN model on two different training subsets
(KAIST-train and KAIST10x-train) using only the IR images and with five
different parameter sets.
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Table 7.6 lists the results achieved for different parameter sets. As for all previous
experiments, the training on the smaller training subset is worse compared to the re-
sults of the larger one. Data augmentation by applying horizontal flipping improves
the RPN performance. For the pre-finetuned RPN models used for training on the
KAIST10x-train IR sub-dataset, improvements can be recognized compared to only
using the pre-trained VGG-16 models for initialization. For further experiments the
RPN models based on the pre-finetuned IR RPNs and the IR RPNs trained on the
pre-trained VGG-16 model are used.
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Figure 7.5: ROC curve of the IR RPNs for the five parameter sets in Table 7.6 when
using only IR images of the KAIST10x-train subset for training. The
results are compared to those of Faster R-CNN-IR [LZWM16].

Similar to Figure 7.4, the comparison of different parameter sets with the Faster
R-CNN-IR of Liu et al. [LZWM16] is plotted in Figure 7.5. The negative influence
of the classification network as described in the previous subsection can be rec-
ognized. With this results, the observation of Wagner et al. [WFHB16] can be
confirmed that using pre-finetuning improves the RPN performance. Furthermore,
the replication of IR gray-scale images for imitating an IR image, consisting of 3
channels leads to better results than using three different channels (compare RPN-
onCaltechR10x and RPN-onCaltech10x). When comparing the results of VIS and
IR RPNs (Table 7.5 and Table 7.6) there is a performance difference. The IR RPN
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outperforms the VIS RPN, although both RPNs are trained and evaluated with the
same annotations. This supports the statement of Teutsch et al. [TMHB14] that
person detection in IR images is commonly better than using VIS images.

7.3.4 RPN Results of Fusion Approaches on the KAIST Dataset

After training the RPNs without fusion in the previous subsections, results of differ-
ent fusion approaches from Section 6.4 are presented in this subsection. Based
on the different pre-finetuned RPN models for training the finetuned RPNs on VIS
and IR data separately, the three different configurations are numerated from 1 to
3 in Table 7.7. Option 1 is called KAIST Fusion RPN and is based on the two
RPNs initialized with the VGG-16 ImageNet model and trained on the KAIST10x-
train training set, for VIS and IR images separately. The second option called Cal-
techR consists of the RPNs using the pre-finetuned VIS RPN on Caltech10x model
and on CaltechR10x model as IR RPN. The third option is similar to the second
one, but on CVC10x model is used as IR RPN and named CVC. These training
options only determine the individual VIS and IR RPNs used for initializing the con-
volutional layers of the fusion models, located before the fusion module (Figure 6.8).
All shared convolutional layers after the fusion module are initialized using the pre-
trained VGG-16 model. Then, the initialized Fusion RPNs are trained (finetuned)
on the multi-spectral KAIST images (VIS+IR). In the previous subsections the re-
sults when using the smaller KAIST-train training sub-dataset are always worse than
compared to the RPN models trained with the larger KAIST10x-train training sub-
set. Therefore, only the KAIST10x-train sub-dataset is used in the remainder of this
work for training. For each training option there are five different fusion approaches
that are evaluated.

The results listed in Table 7.7 show that the fusion applied after the conv1 and conv2
layers are clearly outperformed by the other fusion approaches. The reason for this
observation is that for all the different finetunings and pre-finetunings, the layers of
conv1 and conv2 are not adapted by training and therefore have the same weights
as the pre-trained VGG-16 model. Thus, these low-level features respond to general
features in the input image without higher semantic meanings, and are difficult to
fuse. Furthermore, the ERF sizes of the convolutional layers (see Table 6.1) are
small compared to the persons that are considered. After the conv1 layers there is
an ERF size of 6�6 and after the conv2 layers the ERF size is 16�16 pixels. The
small ERFs also provide low-level features considering only parts of the persons.
The fusion approaches of conv3, conv4, and conv5 have similar results. The slight
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KAIST Fusion RPNs

Pre-finetuned RPN Model Fusion Approach

Training Option VIS RPN IR RPN Conv1 Conv2 Conv3 Conv4 Conv5

(1) KAIST KAIST-VIS KAIST-IR 45.21 40.99 36.46 36.11 36.23

(2) CaltechR Caltech + KAIST-VIS CaltechR + KAIST-IR 47.94 39.87 36.86 35.81 36.18

(3) CVC Caltech + KAIST-VIS CVC + KAIST-IR 44.71 41.49 35.50 36.42 35.52

MR (%)

Table 7.7: Results for different RPN fusion approaches (Figure 6.8) with different
training options. The results are evaluated by considering the MR on the
KAIST-test-Reasonable sub-dataset.

differences may result from the training procedure that contains randomly generated
mini-batches. The Conv5 Fusion approach in Figure 6.8 (e) leads to similar results
compared to the approach of Liu et al. in Figure 6.8 (f) and is not considered in
the remainder of this thesis. The approach in Figure 6.8 (f) is denoted with Conv5
Fusion RPN.
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Figure 7.6: IoU vs. recall curve for the Conv3 CVC Fusion RPN (training option (3)
and fusion after the conv3 layers) compared to the VIS and IR RPNs
used to initialize the training of this Fusion RPN.
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The IoU vs. recall curve in Figure 7.6 is used for evaluation. The plot shows the per-
formance of the most promising fusion architecture called the Conv3 CVC Fusion
RPN. Conv3 means that the fusion is applied after the conv3 layers (Figure 6.8).
CVC refers to training option (3) and means that the VIS RPN is pre-finetuned on
the Caltech10x-train sub-dataset. The IR RPN is pre-finetuned on the CVC10x-train
training set. As initially motivated, the goal is to show that VIS and IR data contain
complementary information. The VIS and IR RPNs have lower recall than the Fu-
sion RPN. Thus, it can be stated that the fusion enables the RPN to find more TPs.
Liu et al. [LZWM16] show that VIS and IR RPN do not provide only the same detec-
tions. Therefore, it can be stated that the VIS and IR RPNs provide complementary
information that can be fused to create features of higher discriminativity.
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Figure 7.7: Number of proposals vs. recall curve for the Conv3 CVC Fusion RPN
(training option (3) and fusion after the conv3 layers) compared to the
VIS and IR RPNs used to initialize the training of this Fusion RPN.

Additionally, Figure 7.7 shows that the curve of the Conv3 CVC Fusion RPN is
constantly above the other two curves. Independent of the number of proposals,
the Fusion RPN obtains a higher number of TPs (recall). This means that the RPN
layers (cls-prop and bbox-pred) have more discriminative features for performing
localization and classification. The Fusion RPN reaches a recall of 0.9 for only
10 considered proposals. Thus, it can be concluded that the fusion improves the
classification capability of the RPN, and increases the number of TPs compared to
the VIS and IR RPNs.

101



False Positives Per Image (FPPI)
10 -3 10 -2 10 -1 10 0 10 1 10 2

M
is

s 
R

at
e

.05

.10

.20

.30

.40

.50

.64

.80

1

35.50% Fusion RPN (proposed)
44.26% IR RPN
49.07% VIS RPN

Figure 7.8: ROC curve for the Conv3 CVC Fusion RPN (training option (3) and fu-
sion after the conv3 layers) compared to the VIS and IR RPNs used to
initialize the training of this Fusion RPN.

In both figures (Figure 7.6 and Figure 7.7), the recall lies above the recall of the two
separate RPNs (VIS and IR). This influences the ROC curve in Figure 7.8 and yields
to a better MR for the Fusion RPN. The fusion architecture generates a significant
performance boost, yielding to an MR of 35.50 % for the Fusion RPN compared to
44.26 % for the IR RPN and 49.07 % for the VIS RPN.

In Figure 7.9 the proposed fusion approach, the Conv3 CVC Fusion RPN, is com-
pared to the different Faster R-CNN approaches proposed by Liu et al. [LZWM16].
The RPN architecture achieves the same results as the Faster R-CNN framework.
With this subsection the complementary information of the VIS and IR images is
shown, and it is definitely confirmed that the RPN achieves similar results com-
pared to the Faster R-CNN approach on the KAIST dataset.
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Figure 7.9: Comparison of the proposed Conv3 CVC Fusion RPN to the Faster
R-CNN fusion approaches of Liu et al. [LZWM16] evaluated on the
KAIST-test-Reasonable sub-dataset.

7.3.5 Results of Fusion RPN and BDF on the KAIST Dataset

This subsection presents the results for using the Fusion RPNs together with a BDF
as proposed by Zhang et al. [ZLLH16]. The results of the architectures explained
in Section 6.5 are listed in Table 7.8. Similar to the previous section there are the
three testing options that define the Fusion RPNs used to provide the RoIs and
the conv feature maps for training and evaluation of the BDF. The testing options
describe the different RPN models used in the pre-finetuning stage for initializing
the VIS and IR RPNs for finetuning. All mentioned results use the RoI pooled conv3
and conv4 (with à trous trick) feature maps as input for the BDF classifier. The best
resulting detector is the Conv3 CVC Fusion RPN with BDF.

The following two histograms in Figure 7.10 show the TPs of (a) the Conv3 CVC
Fusion RPN and (b) the Conv3 CVC Fusion RPN with BDF. By comparing both
histograms a slight reduction of TPs resulting from the BDF can be recognized.
According to the histograms, the BDF classifier misclassifies especially small-scale
persons while classifying nearly all far and medium-scale persons correctly. The
detection results of the Fusion RPN consists of the 40 top-ranked detection boxes
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KAIST Fusion RPNs with BDF

Pre-Finetuned RPN Model Fusion Approach

Testing Option VIS RPN IR RPN Conv3 Conv4 Conv5

(1) KAIST KAIST-VIS KAIST-IR 29.94 30.19 30.68

(2) CaltechR Caltech + KAIST-VIS CaltechR + KAIST-IR 31.27 29.93 31.15

(3) CVC Caltech + KAIST-VIS CVC + KAIST-IR 29.83 30.58 30.92

MR (%)

Table 7.8: Results for different RPN fusion approaches (Figure 6.8) combined with
a BDF classifier. The results are evaluated by considering the MR on the
KAIST-test-Reasonable sub-dataset.

per image, whereas the number of detection boxes of the Fusion RPN with BDF
per image depend on the BDF, but are definitely less than those of the Fusion RPN.
This shows that the RPN works as proposal generator with high recall, and that
the recall is reduced by the application of the BDF. To improve the overall detector
performance, the BDF has to be improved for small-scale persons or another clas-
sifier has to be used for reducing the FPs. When checking the classification rate
of the BDF by comparing the TPs of the Fusion RPN (1,530 TPs) to those of the
Fusion RPN with BDF (1,365 TPs), the BDF classifier achieves a classification rate
of around 89 %, which is an acceptable performance for the BDF.

The ROC curve in Figure 7.11 is plotted for comparing the Conv3 CVC Fusion RPN
with BDF to the models it arises from: Conv3 CVC Fusion RPN, IR RPN based on
the CVC training subset, and VIS RPN based on Caltech training set. There is an
improvement of around 20 percentage points from the pure VIS RPN compared to
the proposed Fusion architecture with BDF. The ROC curve of the Fusion RPN with
BDF ends at a FPPI rate of around 100 as there are no more FPs left. This confirms
the significant reduced number of FPs, recognized when considering the FPs of the
Conv3 CVC Fusion RPN with and without BDF.
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Figure 7.10: Histograms of TPs for (a) the TPs of the Conv3 CVC Fusion RPN, and
(b) the TPs of the Conv3 CVC Fusion RPN with BDF, compared to the
GT data (KAIST-test-Reasonable).
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Figure 7.11: Comparison of the proposed Conv3 CVC Fusion RPN with BDF to the
RPNs without BDF. The results are evaluated by considering the MR
on the KAIST-test-Reasonable sub-dataset.
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7.4 Summary

In this section, the proposed methods are compared to baseline approaches taken
from the literature. The Conv3 CVC Fusion RPN with BDF, the Conv3 CVC Fu-
sion RPN, and the filtered channel features based detectors are compared to the
Halfway Fusion Faster R-CNN of Liu et al. [LZWM16] and the Late Fusion CNN
of Wagner et al. [WFHB16], who use an ACF+T+THOG detector for proposal gen-
eration. Additionally, the results of the ACF+T+THOG detector of Hwang et al.
[HPK�15] are shown. Compared to the Halfway Fusion Faster R-CNN an improve-
ment of 5 MR percentage points is achieved with the best proposed detector. With
adapting the Checkerboards detector for multi-spectral images and tuning the ACF-
T-THOG detector, it can be stated that there is still potential to improve the perfor-
mance of filtered channel features based detectors. The relative improvement of the
best proposed detector compared to the ACF-T-THOG detector of Hwang is 45 %.
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Figure 7.12: Comparison of the proposed Conv3 CVC Fusion RPN with BDF and
the Conv3 CVC Fusion RPN to baseline approaches taken from the
literature. The results are evaluated by considering the MR on the
KAIST-test-Reasonable sub-dataset.
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The two best proposed approaches are the Fusion RPN with 35.50 % MR and the
Fusion RPN with BDF with 29.83 % MR, followed by the Halfway Fusion Faster
R-CNN of Liu et al. with 36.22 % MR. The Checkerboards+T+THOG detector
is next, which achieves a remarkably MR of 39.12 %, and the parameter tuned
ACF+T+THOG detector with 42.57 % MR. Both filtered channel features based de-
tectors (hand-crafted features) are ranked before the Late Fusion CNN of Wagner
et al. with 43.80 % MR, which is based on deep learning. As baseline the original
ACF-T-THOG model of Hwang et al. is utilized that is evaluated with the evaluation
scripts taken from Zhang et al. [ZLLH16] and achieves an MR of 54.50 %.
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Figure 7.13: Comparison of the proposed Conv3 CVC Fusion RPN with BDF and
the Conv3 CVC Fusion RPN to baseline approaches taken from the
literature. The results are evaluated by considering the MR on the
KAIST-test-All sub-dataset.

As stated in Chapter 4, the detector performance can be improved towards small-
scale persons and therefore the proposed detectors are evaluated on the entire
KAIST dataset instead of the Reasonable subset only. The proposed detectors,
Conv3 CVC Fusion RPN with BDF and Conv3 CVC Fusion RPN, and the filtered
channel features based detectors are evaluated on the KAIST-test-All testing sub-
set, to provide results evaluating on the complete KAIST dataset. These results
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are compared to those of the baseline approaches. The ranking remains the same,
while the MRs are raised by around 10 percentage points. Similar to occlusion han-
dling, the detection of small-scale persons is still an active field of research. Thus,
this results are proposed as a new baseline on the KAIST dataset.

7.5 Qualitative Evaluations

In order to provide a visual impression, some qualitative evaluations are shown
in this section. Red bounding boxes represent the GT boxes, green boxes the
detections of the Conv3 CVC Fusion RPN with BDF detector, and orange boxes
refer to ignore regions. For each example, the VIS image (left) is plotted together
with its corresponding IR image (right).

VIS IR

Figure 7.14: Visualization of the GT and detection boxes of KAIST-test-Reasonable
testing subset for the Conv3 CVC Fusion RPN with BDF. GT boxes
are colored in red, detection boxes in green, and ignore regions are
marked by orange boxes.

The multi-spectral image pair in Figure 7.14 (frame 1,096) shows that all GT bound-
ing boxes have an equivalent detection box. On the right side of the images there
is an ignore region (orange). This box is marked as ignore region as in the back-
ground of the GT box there are two persons, which are very close to the actual
labeled person. The two persons can be recognized best in the IR image. These
additional persons can confuse the detector training. This figure is exemplary for
the difficulty in providing consistent annotations. In the VIS image it looks like the
most left person has a well aligned GT bounding box, whereas in the IR image the
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GT box is definitely too large and the person is not centered. Such annotations re-
sult from registration errors between the VIS and IR images especially at the image
border areas.

VIS IR

Figure 7.15: Visualization of the GT and detection boxes of KAIST-test-Reasonable
testing subset for the Conv3 CVC Fusion RPN with BDF. GT boxes
are colored in red, detection boxes in green, and ignore regions are
marked by orange boxes.

Figure 7.15 shows frame 1,306. The detection boxes are well aligned with the
GT boxes, especially the small person (child) in the image center. However, there
are detections on the left and right side of the image with missing annotations.
Considering the IR image, obviously the green boxes contain persons. For the
evaluation, these boxes are regarded as FPs although they are actually TPs. On
the left side there are two persons where one of them is heavily occluded. This
bounding box should by labeled as ignore region for avoiding to confuse the training
procedure.

Figure 7.16 provides an example for imprecise localization of the GT box. The an-
notated person is located in the upper right corner and thus covers only half of the
GT box. This can be a problem for the evaluation process as the detection box is
matched with the GT box w.r.t. the IoU overlap criterion. An even bigger problem
is the impairment of the training procedure since background covers much of the
bounding box area. Thus, it can happen that the detector learns parts of the back-
ground instead of the person.
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VIS IR

Figure 7.16: Visualization of the GT and detection boxes of KAIST-test-Reasonable
testing subset for the Conv3 CVC Fusion RPN with BDF. GT boxes
are colored in red, detection boxes in green, and ignore regions are
marked by orange boxes.

VIS IR

Figure 7.17: Visualization of the GT and detection boxes of KAIST-test-Reasonable
testing subset for the Conv3 CVC Fusion RPN with BDF. GT boxes
are colored in red, detection boxes in green, and ignore regions are
marked by orange boxes.

Figure 7.17 provides an image pair acquired at nighttime. The person on the left
of frame (1506) can be hardly recognized. Despite this rough conditions the night
scene provides, the proposed detector is able to localize and classify the person
correctly.

The goal of those visual example images is to visualize the challenges of the KAIST
dataset. The dataset provides difficult conditions with various illumination changes,
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nighttime scenes, and annotated persons of different sizes including small-scale
persons. Unfortunately, the annotations are not consistent throughout the dataset.
There are missing annotations, missing ignore regions, imprecise localization of the
annotations, and wrong annotations (e.g. bicyclists or statues should be labeled as
ignore regions instead of as persons). This not only affects the RPN and classifier
training, but also the evaluation leading to decreased TP rates or even increased
FP and FN rates. In this way, the goal is not to diminish the author’s great work
behind the KAIST dataset. Instead, prospective authors should be encouraged to
improve the annotations in the future.
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8 Conclusion and Future Work

The goal of this thesis is to perform all-day person detection. Challenging detec-
tion scenarios result from heavy illumination changes in the acquired images, such
as persons at night or in shady places. Previous works inspire the usage of multi-
spectral images [WFHB16] [LZWM16]. Therefore, this work analyzes the comple-
mentary information of VIS and IR data and confirms the synergy effect achieved
when using multi-spectral data. With parameter tuning of the ACF+T+THOG de-
tector [HPK�15] and the introduced Checkerboards+T+THOG detector, the perfor-
mance of current person detection approaches on the KAIST Multispectral Pedes-
trian Benchmark dataset is obtained. An RPN fusion approach is proposed to im-
prove person detection on the KAIST dataset [HPK�15]. For training individual VIS
and IR RPNs, auxiliary datasets are analyzed [WFHB16]. The Caltech Pedestrian
Detection Benchmark dataset [DWSP12] and the CVC-09 FIR Sequence Pedes-
trian Dataset [SRV�11] are utilized for the so-called pre-finetuning of the VIS and
IR RPNs. The Fusion RPN improves the MR by around 35 % compared to the
ACF+T+THOG baseline of Hwang et al. and has similar results compared to the
Faster R-CNN fusion approaches of Liu et al. [LZWM16]. The Fusion RPN out-
performs the detectors based on filtered channel features, but using the classifi-
cation CNN of the Faster R-CNN approach deteriorates the detection performance
[ZLLH16]. Further enhancement is achieved by applying a BDF classifier to the
proposals of the Fusion RPN and by using the feature maps of intermediate convo-
lutional layers for classification. This method attains an additional improvement of
the MR by 14 % compared to the Fusion RPN. Thus, a new baseline on the KAIST
Multispectral Pedestrian Benchmark dataset is established with an MR of 29.83 %,
using the Fusion RPN with a BDF.

As first further work, the usage of a better IR dataset than the CVC-09 dataset is
proposed for pre-finetuning, as the CVC-09 dataset does not match with the char-
acteristics of the Caltech and KAIST dataset. Additionally, other network architec-
tures than the VGG-16 net should be analyzed, such as VGG-19 [SZ15] or ResNet
[HZRS15a]. Furthermore, in-depth analysis of the RPN for person detection, es-
pecially for small-scale person detection is suggested. The anchor scales can be
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modified and their influence on the detection accuracy for different person heights
should be evaluated. Adding additional anchor scales for detecting small-scale per-
sons is assumed to improve the RPN’s performance. Thus, evaluations of the RPN
on the KAIST-test-All testing subset are aimed to reach similar results as for the
KAIST-test-Reasonable subset. The approach of Cai et al. [CFFV16] proposes two
separate RPN regression branches, one trained to find small-scale persons and
the other is responsible for detecting large-scale persons. As well they propose to
combine convolutional feature maps of intermediate layers with higher-level feature
maps to improve small-scale person detection. Instead of using the BDF for clas-
sifying the region proposals, the usage of a small classification CNN is proposed
similar to [HMWB16]. Additionally, visualization of the activations in different layers
is suggested. This should provide a better understanding of the neurons of different
layers and of the features in the input image these neurons respond to. The visu-
alization of the fusion layer (NiN) would be useful to assess whether the VIS or IR
features are higher weighted. Several further visualization methods are proposed
by Zeiler and Fergus [ZF14].
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