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Research Context and Summary of
Research Papers

1 Field of Research

Variable annuities

Variable annuities are unit-linked life insurance contracts where typically an initial
investment amount is invested in one or several mutual funds. On top of this basic
structure, certain guarantee riders are offered by the insurer, adding different types
of financial protection to the contract. Therefore, variable annuities allow policyhold-
ers to benefit from the upside potential of the underlying fund investment and, at
the same time, offer some kind of protection when the fund loses value. Variable
annuities have experienced a growth in sales in US and Japan since the 1990s and
are also becoming increasingly widespread over Europe (cf. EIOPA, 2011).

Variable annuity providers offer a variety of guarantee riders: Besides guaranteed
minimum death benefit riders (GMDB), three main types of guaranteed living benefit
riders (GLB) exist: guaranteed minimum accumulation benefit riders (GMAB), guar-
anteed minimum income benefit riders (GMIB) and guaranteed minimum withdrawal
benefit riders (GMWB). GMAB and GMIB offer the policyholder some guaranteed
maturity value or some guaranteed annuity benefit, respectively, while GMWB allow
policyholders to (temporarily or lifelong) withdraw money from their account, even af-
ter the account’s cash value has dropped to zero. GMWB with a lifelong guarantee
are called "GMWB for life" or guaranteed lifetime withdrawal benefit riders (GLWB).
They offer policyholders a lifelong income and, thus, protection from outliving their
savings, with the invested amount still benefitting from potential fund growth and re-
maining under the control of the policyholder. In contrast to, for instance, traditional
life insurance in Germany, GLWB do not require the policyholder to annuitize their
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savings in order to hedge against longevity risk: The initial investment amount re-
mains in control of the policyholder and may be cashed out (via surrendering of the
contract) at any time during the contract’s lifetime. Also, beneficiaries will receive
a potential remaining account value in case of death of the policyholder. In other
words, this type of variable annuity embeds a variant of ruin-contingent life annuity
(cf. Huang et al., 2014), where the guarantee provider starts to pay a lifelong annuity
as soon as the account value (reduced by pre-defined withdrawals) hits zero. Mod-
ern GLWB riders typically also include a form of ratchet mechanism, through which
the guaranteed withdrawal amount may increase during the lifetime of the contract
if the underlying fund performs well.

In contrast to more traditional offers, variable annuity providers usually receive an
explicit compensation for the guarantees: Typically, they receive a guarantee charge
that is periodically deducted from the policyholder’s account, for instance a certain
percentage of the invested amount, annually.

Risk profile of variable annuities

From a risk manager’s perspective, the complexity of the guarantees offered within
variable annuities also means that there are several important risks that need to be
managed at the same time, including financial risk, behavioral risk, biometric risk, as
well as regulatory risk. These risks are accompanied by a variety of additional risks
that come with most insurance contracts (e.g. operational and reputational risk) and
are amplified by the usually very long term of typical (variable) annuity contracts.

Financial risk inherent in variable annuities with guarantees comes from the direct
exposure to market movements via the fund investment as well as from the impact
interest rates have on the present value of future benefits. A decrease of interest
rates, for instance, causes the present value of future guaranteed benefits to in-
crease, which could negatively affect the variable annuity provider’s (market value)
balance sheet if the provider is not hedged against such changes. Movements in
the spot prices of the underlying fund’s assets, like, for instance, equity shares, di-
rectly affect the likelihood (and the extent) of the guarantee coming into effect: An
increase in spot prices increases the account value and, thus, usually reduces the
likelihood of the variable annuity provider needing to make guarantee payments. If
the guarantee comes into effect, the extent usually is reduced by the increase in
the account value. As a consequence, the value of the guarantee (and therefore
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the value of liabilities on the variable annuity provider’s market-value balance sheet)
decreases with increasing spot prices. Vice versa, decreasing spot prices typically
result in a higher value of liabilities on the market-value balance sheet of a variable
annuity provider.

In order to lessen the impact market movements have on the balance sheet of the
provider, risk management typically also includes the administration and rebalanc-
ing of a so-called hedging portfolio on the asset side. The purpose of such a hedging
portfolio is to replicate changes in the value of liabilities on the liabilities side of the
balance sheet with according increases or decreases in value on the asset side of
the balance sheet. Ideally, with such a hedging program in place, the provider’s
(market-value) equity is not affected by changes in the value of liabilities. Such
hedging programs can be quite effective in mitigating the financial risks inherent
in variable annuity riders, but they usually do not allow for a perfect replication of
the changes in the value of liabilities, due to discrete rebalancing and other imper-
fections (cf. Ledlie et al., 2008). On top of imperfections in the hedging program,
there are risks that influence the provider’s profit and loss attribution (P&L) that are
not easily hedgeable, like for instance behavioral risks. Hence, the provider’s P&L
with regard to its variable annuity business remains subject to fluctuations, even if a
hedging program is implemented.

Policyholder behavior risk stems from the fact that variable annuities usually offer the
policyholder many choices, e.g. surrender, partial surrender, the decision whether
or not and when to annuitize (in GMIB products) or the decision whether or not and
how much to withdraw each year (in GMWB products). Several authors (cf. e.g.
Milvesky & Salisbury, 2006, or Bauer et al., 2008) come to the conclusion that in-
surers assume what they call "suboptimal" policyholder behavior when pricing the
guarantees. This means that (at least some) policyholders are assumed to not be-
have in a way that would maximize the value of the insurer’s liabilities arising from
the financial guarantees embedded in the products. From an insurer’s risk manage-
ment perspective, "optimal" policyholder behavior in this sense would constitute a
worst-case scenario with respect to policyholder behavior. Therefore, this kind of
behavior can also be described as "loss-maximizing" behavior from the viewpoint of
the provider of the guarantee (cf. Azimzadeh et al., 2014). Such behavior is to be
expected from institutional investors who buy policies in a secondary market and,
subsequently, optimize the options embedded in the policies.

Bauer et al., 2008, state in particular that the value of certain guarantees under
optimal policyholder behavior significantly exceeds typical prices charged in many
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insurance markets, whereas the value of the same guarantees assuming subopti-
mal behavior (using e.g. typical surrender probabilities and independence between
surrender behavior and financial markets) are in line with observed prices. This ap-
pears to bear significant risks for the insurers. There are several examples where
insurance companies had to update their policyholder behavior assumptions lead-
ing to significant increases in liabilities, for instance ING, Manulife Financial and Sun
Life Financial (cf. Knoller et al., 2016). Other insurers even completely stopped their
variable annuity business in certain markets, cf. for instance The Hartford, 2009.

On top of market and behavioral risks, variable annuity providers also face regula-
tory challenges: First, providers have to comply to capital requirements, which can
trigger the need for capital injections, lessen the return on equity of the company
and, as a result, can make it harder to run a profitable variable annuity business.
Capital requirements, in particular risk-based capital requirements, can also change
over time and may be market-dependent, such that difficult market conditions may
be accompanied by additional stress to the provider from a simultaneous increase
in capital requirements. Second, for reasons of consumer protection, regulators
may impose changes to the way some benefits of variable annuities are calculated,
for instance surrender benefits. Such mandatory changes that are stipulated by a
regulator can also apply to contracts that are already in force, i.e., effectively, the
product design of the variable annuity is changed after inception of the contract and,
therefore, was likely neither considered in the pricing nor the (initial) hedging of the
contract.

In conclusion, the risk management of variable annuities with guarantees covers
a variety of aspects and risks, which are hard to control and which are not easily
hedged against. Therefore, risk management of a variable annuity product already
starts in the product development process, where the design of the product’s fea-
tures has to be carefully analyzed and weight against different objectives, both, from
the provider’s perspective as well as from the perspective of a potential future cus-
tomer. To accommodate for the complexity of the product and its inherent risks,
usually a quantitative analysis is necessary to assess the consequences of certain
design choices. In this process, future risk management and the risk-mitigating ef-
fect of future hedging should be considered. While for the economic risk only the
true effectiveness of the hedging program seems relevant, for the calculation of (fu-
ture) capital requirements (and therefore, future capital costs) it is also relevant to
which extent this risk-mitigating effect is allowed to be considered in the calcula-
tion of future capital requirements. Also, possible future mandatory changes made
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to the product design of already existing contracts imposed by the regulator can
have a substantial impact on the profitability and should be assessed when design-
ing a new product. Behavioral risk is a main risk that risk managers of variable
annuities have to consider when assessing the risk profile and when setting up a
hedging portfolio. This risk can be intensified by the presence and actions of institu-
tional investors that try to profit from (from their perspective) underpriced contracts,
which they subsequently optimize – from the provider’s perspective this represents
loss-maximizing behavior, which should be assessed and considered in the risk
management of variable annuities.

2 Motivation and Objectives

The pricing and valuation of variable annuity contracts with guarantees have been
studied in great detail, with Milvesky & Salisbury, 2006, being the first to analyze the
valuation of guaranteed minimum withdrawal benefits, and with Bauer et al., 2008,
as well as Bacinello et al., 2011, providing general frameworks for the valuation of
variable annuities with all types of guarantees. Regarding the risk management of
variable annuities, Cathcart et al., 2015 provide schemes to efficiently calculate the
"Greeks" of a variable annuity liability via Monte Carlo simulation, while Coleman
et al., 2006, and Coleman et al., 2007, provide schemes to hedge variable annu-
ities under different assumptions regarding the capital market. Forsyth & Vetzal,
2014, present an optimal stochastic control framework, in which they analyze the
sensitivity of the cost of hedging a variable annuity with GLWB to various economic
and contractual assumptions. The hedging costs for variable annuities with com-
bined guaranteed lifelong withdrawal and death benefits (GLWDB) is analyzed in
Azimzadeh et al., 2014, in which the authors also argue that, when analyzing dy-
namic policyholder behavior from an insurer’s perspective, it is better to use the term
"loss-maximizing strategy" instead of "optimal strategy".

In Kling et al., 2011, the authors analyze the pricing and risk profile (from a provider’s
perspective) of GLWB riders with different product designs. In particular, they an-
alyze how results change if equity volatility is modeled stochastic instead of deter-
ministic. In their analysis, capital market models are used for several purposes:
First, they are used in the pricing of the contract, i.e. the calculation of a "fair" guar-
antee charge as compensation for the guarantee of a GLWB rider. Second, after
inception of a variable annuity contract, market models are used as a means to

5



Research Context and Summary of Research Papers

calculate the constitution of the hedging portfolio, i.e. to calculate the weights of
the (financial) instruments used for hedging. Depending on the considered hedging
strategy, the instruments they modeled in their analysis include a money market ac-
count, a position in the underlying equity fund and a position in a put option (with
the fund as underlying). Third, they use market models to calculate risk measures
of a stylized pool of policies of variable annuity contracts with GLWB riders. In their
simulation study, the considered hedging programs are projected over the lifetime of
the variable annuity contracts and risk measures of the provider’s resulting P&L are
computed.

For all three applications, Kling et al., 2011, analyze how the modeling of equity
volatility influences the results and how these results are affected by the differences
in the considered product designs. They find that both, the probability that guaran-
teed payments have to be paid and their amount vary significantly for the different
considered product designs. The development over time of delta, rho and vega –
i.e. the sensitivity of the value of liabilities with respect to changes in the under-
lying’s price, the interest rate level and the level of equity volatility, respectively –
was found to be also significantly different between the product designs, resulting
in both, the constitution of a hedging portfolio (following a certain hedging strategy)
and the provider’s risk after hedging to differ significantly for the different product
designs. Thus, risk management already starts during the development process of
a new variable annuity product. The authors also find that the fair prices of the con-
sidered guarantees hardly change when stochastic volatility is introduced, while the
provider’s risk changes dramatically. They analyze different hedging strategies (no
hedging, delta hedging, and delta and vega hedging) to deal with this risk and an-
alyze the distribution of the provider’s P&L and certain risk measures thereof. They
find that the provider’s risk can be reduced significantly by implementing suitable
hedging strategies. Risks caused by policyholder behavior, however, is not part of
their analysis.

The impact of policyholder behavior on the pricing of guarantees embedded in insur-
ance contracts has been analyzed by several authors, e.g. by Grosen & Jorgensen,
2000, Steffensen, 2002, Bacinello, 2003, Bacinello, 2005, Bacinello et al., 2010,
Bacinello et al., 2011, and Gao & Ulm, 2012, and with focus on the optimal stopping
time within the context of GMWB guarantees for example by Chen et al., 2008, and
Yang & Dai, 2013. Bernard et al., 2014, analyze so-called "optimal" policyholder be-
havior for variable annuities with GMAB riders. De Giovanni, 2010, uses a "Rational
Expectation" model describing the policyholder’s behavior in surrendering the con-
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tract, which also allows for irrational policyholder behavior (as opposed to "optimal"
behavior). Knoller et al., 2016, analyze individual policy data from a Japanese vari-
able annuity product and find evidence that confirms their "moneyness hypothesis":
In their statistical analysis, the fund performance and hence the value of the financial
options and guarantees has the largest explanatory power for the surrender rate.

However, to our knowledge, there exists no simultaneous analysis of the impact of
policyholder behavior on the pricing, hedging and hedge efficiency of GLWB riders
with particular emphasis on different product designs. Therefore, in our first re-
search paper, we extend the analysis conducted in Kling et al., 2011, with regard to
the modeling of policyholder behavior and with a special focus on the risks that arise
from behavior that differs from anticipated behavior. In our second research paper,
we perform a similar analysis for variable annuities with GMAB riders and analyze
the risks that arise if a regulator imposes certain guaranteed surrender benefits for
variable annuity contracts that are already in force. We also analyze the impact such
a mandatory change would have on the pricing and the risk profile of new variable
annuity contracts. The impact the presence of institutional investors has on the re-
sults is also part of the analysis in our second research paper. Finally, in our third
research paper, we have a closer look on the risk profile of a pool of variable an-
nuities with GLWB riders and analyze the corresponding capital requirements under
a risk-based regulatory regime like Solvency II in the European Union. In partic-
ular, we analyze the risk of simultaneous changes in the value of liabilities (which
are likely to be hedged) and changes in capital requirements (which are likely not
hedged against) und different assumptions regarding the extent to which the risk-
mitigating effect of the hedging program can be considered in the calculation of the
capital requirements.

In summary, the following research questions are considered in this thesis:

(1) From a variable annuity provider’s perspective, how does policyholder behav-
ior impact the risk profile (before and after hedging) of a pool of variable an-
nuities with GLWB riders under different assumptions regarding the product
design of the GLWB riders?

(2) What is the impact of regulator-imposed guaranteed minimum surrender ben-
efits on the risk profile of existing contracts with GMAB riders and how are
new contracts affected?

(3) How does the risk profile of variable annuities with GMAB and the impact
of mandatory guaranteed minimum surrender benefits change if institutional
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investors buy contracts from policyholders who are willing to surrender their
contract?

(4) How do risk-based capital requirements for a pool of variable annuities with
GLWB riders change depending on the market environment and the level of
recognition of the actual hedging program?

3 Summary of Research Papers

Research Paper 1:
The Impact of Policyholder Behavior on Pricing, Hedging, and
Hedge Efficiency of Withdrawal Benefit Guarantees in Variable
Annuities

The pricing of guarantees in variable annuities is usually performed under certain
assumptions for future surrender rates. Such assumptions can be, for instance,
deterministic surrender or (typically) path-dependent surrender (where assumed
surrender rates depend on market parameters and/or the value of the guarantee).
However, the pricing is usually not performed under the assumption of "optimal"
surrender. This reduces the price of such guarantees since – in simplified terms –
future profits the insurer expects from sub-optimal policyholder behavior are given
to the client by means of a reduced price for the guarantee. The possibility to allow
for sub-optimal policyholder behavior in pricing and hedging of such products is a
reason why these (often primarily financial) guarantees can be offered by insurers
at competitive prices when compared to similar products offered by banks. This
opens opportunities for institutional investors to purchase such policies in a sec-
ondary market at a price that exceeds the surrender benefit from policyholders who
are willing to surrender their contract. In this situation, selling the contract to the
institutional investor – instead of surrendering it – is beneficial for the policyholder.
After acquiring the contract, the institutional investor then maximizes (optimizes) the
value of the contract, which typically results in loss-maximizing behavior from the
insurer’s perspective.

In Kling et al., 2014, we extend the model used in Kling et al., 2011, and incorpo-
rate different models of dynamic, so-called path-dependent policyholder behavior.
The analyzed models include purely deterministic surrender rates, path-dependent
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surrender rates that are influenced by a certain observable quantity (for instance
the "moneyness" of the guarantee), as well as a model of "optimal" policyholder
behavior, i.e. behavior that maximizes the value of liabilities of the guarantee.

We find that the popular method of using the "moneyness", while being a huge im-
provement (from a risk manager’s perspective) over purely deterministic behavior,
is not enough to capture the full risk optimal behavior poses to the insurer. We also
found that the product design is a powerful tool to minimize behavior risk: with an
appropriate design of the ratchet mechanism of the GLWB rider, the guarantee is
never fully "out of the money" (i.e. with little value) and therefore, the value of liabil-
ities, from the provider’s perspective, is less sensitive to surrender rates. In these
cases, for pricing purposes, optimal behavior was very close to the assumption of
the policyholders not surrendering at all, as the surrender benefit and the value of
continuing the contract (the so-called continuation value) are more closely together.
However, in the analysis of the risk profile, a proper modeling of loss-maximizing
behavior – while certainly a worst-case scenario – seems indispensable for a full
risk analysis.

This paper is joint work with Alexander Kling and Jochen Ruß and has been pub-
lished in the European Actuarial Journal. It answers the first research question listed
above.

Research Paper 2:
Guaranteed Minimum Surrender Benefits in Variable Annuities:
The Impact of Regulator-Imposed Guarantees

Surrender risk is not only influenced by dynamic policyholder behavior, but also by
the way surrender benefits themselves are calculated. The product design of vari-
able annuities usually stipulates that the surrender value of such products coincides
with the policyholder’s account value (minus surrender charges, if applicable). The
"fair value" of the guaranteed benefits or the market value of certain hedge assets
is typically not part of the individual policyholder’s account value and thus, with the
usual product design, not part of the surrender value. This in consequence means
that the surrender value in general is different from a "fair" market value of the con-
tract. In particular, the surrender benefit will not be reduced if interest rates rise,
although both, the assets backing the contract and the "fair value" of the contract,
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would drop. The resulting risk has been discussed e.g. in Feodoria & Förstemann,
2015.

Additionally, regulator-imposed minimum surrender benefits, like they are discussed
and imposed in Germany, pose a relevant risk to the providers of variable annuities.
This is especially the case if the guaranteed minimum surrender benefits (GMSB)
are imposed after inception of the contracts and, thus, were not incorporated in the
pricing and (initial) hedging process of the product. We analyze the accompanying
risk in Kling et al., 2016, where we analyze different discussed and proposed mod-
els for determining a "time value" of the guarantee as a minimum for the surrender
benefit a policyholder would receive in case of surrendering their contract. For this
purpose, we analyze variable annuity contracts with a GMAB rider under different
assumptions regarding the GMSB as well as different policyholder behavior mod-
els. A model for determining a GMSB is especially harmful to the provider if it is
systematically utilized by an institutional investor like hedge funds in a potential sec-
ondary market (cf. e.g. Central Bank of Ireland, 2010). We introduce a model where
policyholders who are willing to surrender their contract sell them instead to an in-
stitutional investor, if they will receive a selling price that is higher than the current
surrender benefit. Of course, the institutional investor is only able to offer a higher
price in an economically sound way, if the continuation value of the contract exceeds
the surrender benefit.

We find that, while the impact of GMSBs on market risk is relatively low, the im-
pact on the fair guarantee charge, the value of liabilities and the risk resulting from
changes in policyholder behavior is substantial. If the GMSB is already considered
when pricing the contract, the resulting advantage for policyholders who surrender
the contract comes at the price of increased guarantee charges for all policyhold-
ers, adversely affecting especially those who keep the contract until maturity. As a
consequence, the same protection level with regard to old-age provision becomes
more expensive when GMSBs are in place.

If a GMSB is introduced after inception of the contract, e.g. because of a regulatory
change, the insurer will suffer an immediate loss on its market-value balance sheet.
While the value of the contract increases with the value added by the GMSB, the
sensitivity with regard to surrender rates decreases, as, from a valuation perspec-
tive, it becomes less important whether policyholders decide to surrender or not. As
a consequence, the potential for mispricing of the contracts with respect to incorrect
surrender assumptions is reduced.
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Our analyses with regard to the impact of a secondary market show that, in a mar-
ket without GMSBs, the presence of an institutional investor creates a loss for the
insurer and also increases market risk. At the same time, the impact of introduc-
ing GMSBs is reduced and the specific design of the GMSB is less relevant. On
the other hand, if GMSBs are already in place, the potential for a successful sec-
ondary market is reduced, since the difference between the surrender benefit of a
contract and its continuation value is typically lower and, thus, institutional investors
less likely are able to offer prices that exceed the surrender benefit.

This paper is joint work with Alexander Kling and Jochen Ruß and answers the
second and third research question listed above.

Research Paper 3:
Variable Annuities with Guaranteed Lifetime Withdrawal
Benefits: An Analysis of Risk-Based Capital Requirements

Under risk-based regulatory regimes like Solvency II in the EU and the Swiss Sol-
vency Test in Switzerland, the risk profile of a variable annuity directly affects the
amount of capital that providers are required to hold. Therefore, providers of vari-
able annuities not only face the challenge to hedge against changes in the value of
embedded guarantees (i.e. the value of liabilities), but are also exposed to poten-
tial additional capital needs due to changes in their capital requirements. Both, the
(market) value of liabilities as well as corresponding risk-based capital requirements,
are dependent on market parameters and, thus, subject to changes.

Therefore, under risk-based regulatory regimes, not only is the valuation and hedg-
ing relevant when designing and profit-testing new variable annuity products, but
also (future) capital requirements. Not only does the product design directly influ-
ence the risk profile and, thereby, the capital requirements under risk-based regula-
tory regimes, but it also influences the risk of changing capital requirements in the
future. A change in the value of the guarantee rider from the provider’s perspec-
tive, for instance, is likely to be accompanied by a change in the risk-based capital
requirements. Furthermore, while the hedging program might prove reliable in real-
ity, it is not clear to which extent it can be considered when calculating the capital
requirements. If certain regulatory requirements are not fulfilled it is likely that the
risk-mitigating effect of future hedging is only allowed to be partially considered in
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the calculation. While the change in the value of liabilities is likely (at least partially)
hedged, the change in capital requirements typically is not.

In Ruez, 2016, we analyze the risk profile and corresponding risk-based require-
ments of a pool of variable annuity policies with Guaranteed Lifetime Withdrawal
Benefit (GLWB) riders with regard to the pool’s key financial risk drivers: equity re-
turns, implied equity volatility and interest rates. In a simulation study, we analyze
the effectiveness of different stylized hedging programs over a one-year time horizon
and compute indicators for risk-based capital requirements. The approach we use is
comparable to an internal model type approach under Solvency II. We also analyze
the impact changing market environments have on risk profile, hedge effectiveness
and capital requirements, similar to a forward-looking analysis in the context of the
mandatory Own Risk and Solvency Assessment (ORSA) under Solvency II.

We find that, in addition to the stress from potentially unhedged increases in the
value of liabilities, changes in the market environment can have a substantial impact
on capital requirements. As a result, GLWB providers face the risk of increases
in their risk-based capital requirements and, thus, the need for capital injections
– even without pricing errors or malfunctioning of the hedging program. We also
find that, while the impact of the level of interest rates on the effectiveness of the
modeled hedging program is rather low, a higher volatility level has a distinct adverse
effect on the hedge effectiveness, leading to a further increase of risk-based capital
requirements. However, there are also cases where an increase in the value of
liabilities was accompanied by a decrease of capital requirements, reducing the
overall impact on the insurer. This is the case for some risk measures if no allowance
of the hedging program is made in the calculation of capital requirements and equity
volatility is increased.

As the sensitivity of capital requirements to market parameters is not easily assess-
able, thorough numerical analyses appear necessary for a proper assessment of
this risk. In such analyses, also the effect of a potentially reduced hedge perfor-
mance in adverse market environments and a reduced level of recognition of the
hedging program’s risk-mitigating effect should be considered, as this may lead to
substantial additional increases of capital requirements during the lifetime of the
variable annuity contract.

In summary, this research paper answers the fourth research question listed above.
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Abstract 

We analyze the impact of policyholder behavior on pricing, hedging and hedge efficiency of 

variable annuities with guaranteed lifetime withdrawal benefits. We consider different product 

designs, market models and approaches for modeling policyholder behavior in our analyses, 

covering deterministic behavior, behavior depending on the ‘moneyness’ of the guarantee, and 

optimal (value maximizing) behavior. First, we assess the risk of mispricing the guarantee due 

to inaccurate assumptions regarding future policyholder behavior. Comparing products with 

different ratchet mechanisms, we find that this potential for mispricing is the smallest for the 

product design with the most valuable ratchet mechanism. We further quantify the impact of 

different behavior models on the efficiency of the insurer’s hedging strategy and the risk that 

results if the insurer's assumption for policyholder behavior deviates from actual behavior. Our 

analyses indicate significant differences between the considered products in terms of 

hedgeability and the sensitivity of the guarantee’s value towards policyholder behavior and 

towards changes in the underlying asset’s volatility. Also, we show that a simple path-

dependent behavior model may not be suitable to fully assess the risk arising from policyholder 

behavior.  
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1 Introduction  

Variable annuities are fund-linked annuities where the policyholder typically pays a single 

premium into the policy and the money is then invested in one or several mutual funds. Variable 

annuities usually offer a wide range of investment options for the policyholder to choose from. 

On top of this basic structure, certain guarantee riders are offered by the insurer, adding different 

types of financial protection to the contract. There are several types of guarantee riders that 

come with variable annuities, including guaranteed minimum death benefits (GMDB) as well 

as guaranteed minimum living benefits, which can be categorized into three main subcategories: 

guaranteed minimum accumulation benefits (GMAB), guaranteed minimum income benefits 

(GMIB) and guaranteed minimum withdrawal benefits (GMWB). A GMAB guarantee provides 

the policyholder with some guaranteed value at one or several future points in time, while the 

GMIB guarantee provides a guaranteed annuity benefit, starting after a certain deferment 

period. With the GMWB rider, if certain conditions are met, the policyholders may continue to 

withdraw money from their account, even after the value of the account has dropped to zero. 

Such withdrawals are guaranteed as long as both, the amount that is withdrawn within each 

policy year and the total amount that is withdrawn over the term of the policy, stay within 

certain limits. 

Insurers also started to include additional features in GMWB products. The most prominent is 

called “GMWB for Life” (also known as guaranteed lifetime withdrawal benefits, GLWB). 

With this type of guarantee, the total amount of withdrawals is unlimited. However, the annual 

amount that may be withdrawn while the insured is still alive may not exceed some maximum 

value; otherwise the guarantee will be affected. The withdrawals made by the policyholder are 

deducted from their account value as long as this value is positive. Afterwards, the insurer has 

to provide the guaranteed withdrawals for the rest of the insured’s life. In return for this 

guarantee, the insurer receives guarantee charges, which are deducted from the policyholder’s 

account value (as long as this value is positive). These charges are typically calculated as a 

fixed annual percentage of the so-called withdrawal benefit base (explained below) or of the 

account value. In a few products, annual guarantee charges are calculated as a fixed percentage 

of the single premium. In contrast to a conventional annuity, where the assets covering the 

liabilities are owned by the pool of insured, in a GLWB policy, the fund units of the contract 

are owned by the individual policyholder and remain accessible to the policyholder even in the 

payout phase. The policyholder may access the remaining fund assets at any time by (partially) 

surrendering the contract. In case of death of the insured, any remaining fund value (or a 

guaranteed minimum death benefit if such a rider is included and the corresponding value 

exceeds the fund value) is paid out to the beneficiary. 

From an insurer’s point of view, such products contain an interesting and challenging 

combination of several risks, resulting from policyholder behavior (with regard to surrender 

and withdrawal), financial markets, and longevity, alongside a variety of additional risks that 

come with most insurance contracts (e.g. operational and reputational risk). This combination 

of risks makes these guarantees challenging to hedge and has been in the focus of both, 

academics and practitioners.  

Policyholder behavior risk stems from the fact that variable annuities usually offer the 

policyholder many choices, e.g. surrender, partial surrender, the decision whether or not and 

when to annuitize (in GMIB products) or the decision whether or not and how much to withdraw 

each year (in GMWB products). Several authors (cf. e.g. Milevsky and Salisbury, 2006, or 

Bauer et al., 2008) come to the conclusion that insurers assume what they call "suboptimal" 
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policyholder behavior when pricing the guarantees. This means that (at least some) 

policyholders are assumed to not behave in a way that would maximize the value of the insurer’s 

liabilities arising from the financial guarantees embedded in the products. From an insurer’s 

risk management perspective, “optimal” policyholder behavior in this sense would constitute a 

worst-case scenario with respect to policyholder behavior. Bauer et al. (2008) state in particular 

that the value of certain guarantees under optimal policyholder behavior significantly exceeds 

typical prices charged in many insurance markets, whereas the value of the same guarantees 

assuming suboptimal behavior (using e.g. typical surrender probabilities and independence 

between surrender behavior and financial markets) are in line with observed prices. This 

appears to bear significant risks for the insurers. There are several examples where insurance 

companies had to update their policyholder behavior assumptions leading to significant 

increases in liabilities, see e.g. ING (2011), Manulife Financial (2011), and Sun Life Financial 

(2011). Other insurers even completely stopped their variable annuity business in certain 

markets, cf. for instance The Hartford (2009). 

The effect of policyholder behavior not only on pricing but also – and much more importantly 

– on hedging and hedge efficiency of variable annuity guarantees should therefore be of interest 

to academics, product providers and regulators. The impact of policyholder behavior on the 

pricing of guarantees embedded in insurance contracts has been analyzed by several authors, 

e.g. by Grosen and Jørgensen (2000), Steffensen (2002), Bacinello et al. (2003, 2005, 2011) 

and Gao and Ulm (2012) and with focus on the optimal stopping time within the context of 

GMWB guarantees for example by Chen et al. (2008) and Yang and Dai (2013). Bernard et al. 

(2014) analyze optimal policyholder behavior for variable annuities with a GMAB. De 

Giovanni (2010) uses a ‘Rational Expectation’ model describing the policyholder’s behavior in 

surrendering the contract, which also allows for irrational policyholder behavior. Knoller et al. 

(2013) analyze individual policy data from a Japanese variable annuity product and find 

evidence that confirms their “moneyness hypothesis”: In their statistical analysis the fund 

performance and hence the value of the financial options and guarantees has the largest 

explanatory power for the surrender rate. They find that surrender rates increase with decreasing 

value of the guarantee and that policyholders’ apparent rationality increases with increasing 

contract volume. 

To our knowledge, there exists no simultaneous analysis of the impact of policyholder behavior 

on the pricing, hedging and hedge efficiency of GLWB riders with particular emphasis on 

different product designs. The present paper fills this gap: We extend the model presented in 

Kling et al. (2011) to incorporate non-deterministic policyholder behavior and – for different 

product designs – analyze the impact policyholder behavior has on pricing, hedging and hedge 

efficiency, and how results change if the capital market model incorporates stochastic instead 

of deterministic equity volatility. 

The remainder of this paper is organized as follows. In Section 2, we describe our model 

framework that consists of three parts: the financial model, where for the sake of comparison 

we use both, the classic Black-Scholes model (with deterministic equity volatility) and the 

Heston model for the evolution of an underlying with stochastic equity volatility; the liability 

model that describes the different considered variable-annuity contracts with different GLWB 

options; and the valuation framework including the policyholder-behavior model, which allows 

for different policyholder strategies with regard to surrendering the contract. We particularly 

consider “optimal” policyholder behavior, as well as several “suboptimal” strategies, where, in 

both cases, “optimal” as explained above denotes the behavior that maximizes the value of the 

insurer’s liabilities. In Section 3, we present the results of our analyses regarding the pricing of 

1 The Impact of Policyholder Behavior on Pricing, Hedging, and Hedge Efficiency

20



 

 

the guarantee. In particular, we analyze the differences in the option value for different product 

designs and how the option value depends on assumed policyholder behavior. This is a first 

indication for an insurer’s potential loss arising from an inaccurate assessment of policyholder 

behavior. Section 4 deals with hedging strategies and hedge efficiency. Here, we particularly 

analyze how the insurer’s expected profit and risk change if actual policyholder behavior 

deviates from the behavior assumed within the hedging strategy. Finally, Section 5 concludes. 

2 Model Framework 

In Bauer et al. (2008), a general framework for modeling and valuation of variable annuity 

contracts was introduced. Within this framework, any contract with one or several living benefit 

guarantees and/or a guaranteed minimum death benefit can be represented. In their numerical 

analysis however, only contracts with a rather short finite time horizon were considered. Holz 

et al. (2012) describe how GLWB products can be included in this model. In what follows, we 

apply the general framework of Bauer et al. (2008). However, in our concrete specification, 

additionally to the simple Black-Scholes model used in Bauer et al. (2008), we also consider a 

model which allows for stochastic equity volatility (Section 2.1). In Section 2.2, we introduce 

and define the specific product designs considered within our numerical analyses. Different 

models for policyholder behavior are introduced in Section 2.3, where also our valuation 

approach is summarized. 

2.1 Financial Market 

The valuation framework in this section follows in some parts the one used in Bacinello et al. 

(2010) and in others Bauer et al. (2008). We take as given a filtered probability space 

 PF ,,,  in which P is the real-world (or physical) probability measure and  
0


ttFF   is a 

filtration with   ,0F  and 0 tFt . We assume that trading takes place continuously 

over time and without any transaction costs or spreads. Furthermore, we assume that the price 

processes of the traded assets in the market are adapted and of bounded variation. For our 

analyses we assume two primary tradable assets: the underlying fund (or basket of funds), 

whose spot price at time t will be denoted by St, and the money-market account, whose value 

at time t will be denoted by Bt. We assume the money-market account to evolve at a constant 

risk-free rate of interest r: 

)exp(0 rtBB

dtrBdB

t

tt




 (1) 

For the dynamics of St, we use two different models. First, we assume the equity volatility to 

be deterministic and constant over time, and hence use the Black-Scholes model for our 

simulations. To allow for a more realistic equity volatility model, we also use the Heston model, 

in which both, the underlying and its (instantaneous) variance, are stochastic processes. These 

two models will be explained in the following two subsections. 

2.1.1 Black-Scholes Model 

In the Black-Scholes (1973) model, the underlying’s spot price St follows a geometric Brownian 

motion whose dynamics under the real-world measure P are given by 

0, 0  SdWSdtSdS ttBStt   , (2) 
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where µ is the (constant) drift of the underlying, σBS its constant volatility and Wt denotes a P-

Brownian motion. By Itō's lemma, St has the solution  

0,
2

exp 0

2

0 






















 SWtSS tBS

BS
t 


  . (3) 

2.1.2 Heston Model 

There are various extensions to the Black-Scholes model that allow for a more realistic 

modeling of the underlying's volatility. We use the Heston (1993) model in our analyses where 

the instantaneous (or local) volatility of the asset is stochastic. Under the Heston model, the 

market is assumed to be driven by two stochastic processes: the underlying’s price St, and its 

instantaneous variance Vt, which is assumed to follow a one-factor square-root process identical 

to the one used in the Cox-Ingersoll-Ross interest rate model (Cox et al., 1985). The dynamics 

of the two processes under the real-world measure P are given by the following system of 

stochastic differential equations: 

  ,0,

0,

0

2

0

1





VdWVdtVdV

SdWSVdtSdS

ttvtt

ttttt




 

 (4) 

 (5) 

where µ again is the drift of the underlying, Vt is the local variance at time t, κ is the speed of 

mean reversion, θ is the long-term variance, σv is the so-called “volatility of volatility”, and 
2/1

tW are correlated P-Brownian motion processes (with correlation parameter ρ). The condition 
22 v   ensures that the variance process will remain strictly positive almost surely (see Cox 

et al., 1985). 

2.1.3 Equivalent Martingale Measure 

Assuming the absence of arbitrage opportunities in the financial market, there exists a 

probability measure Q that is equivalent to P and under which the gain from holding a traded 

asset is a Q-martingale after discounting with the chosen numéraire process, in our case the 

money-market account. Q is called equivalent martingale measure. While – under the usual 

assumptions – the transformation to such a measure is unique under the Black-Scholes model 

(cf. e.g. Bingham and Kiesel, 2004), it is not under the Heston model. Within the Heston model, 

since there are two sources of risk, there are also two market-price-of-risk processes, denoted 

by 
1

t  and 
2

t  (corresponding to 1

tW  and 2

tW ). Heston (1993) proposed the following restriction 

on the market price of volatility risk process, assuming it to be linear in volatility,  

tt V 1
  . (6) 

Provided both measures, P and Q, exist, the Q-dynamics of St and Vt, again under the 

assumption that no dividends are paid, are then given by 
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where 1,Q

tW  and 2,Q

tW are two correlated Q-Brownian motion processes (with correlation 

parameter ρ) and where  

 
 v

v






  ,  (9) 

are the risk-neutral counterparts to κ and θ (cf., for instance, Wong and Heyde, 2006). 

2.2 Model of the Liabilities 

With variable annuities, the single premium P is invested in one or several mutual funds. We 

call the value of the policyholder’s individual portfolio the account value and denote its value 

at time t by AVt. All charges are taken from the account value by cancellation of fund units. 

Furthermore, the policyholder has the possibility to surrender the contract or to withdraw a 

portion of the account value.  

Products with a GMWB option give the policyholder the possibility to perform guaranteed 

withdrawals. In this paper, we focus on the case where such withdrawals are guaranteed lifelong 

(“GMWB for Life” or guaranteed lifetime withdrawal benefits, GLWB). The initially 

guaranteed withdrawal amount is usually a certain percentage xWL of the single premium P. In 

most products, xWL depends on the age when withdrawals start. Any remaining account value 

at the time of death is paid to the beneficiary as death benefit. If, however, the account value of 

the policy drops to zero while the insured is still alive, the policyholder can still continue to 

withdraw the guaranteed amount until death of the insured. The insurer charges a fee for this 

guarantee, which is usually a pre-specified annual percentage of the withdrawal benefit base, 

the account value or the single premium. In what follows, we will assume that the guarantee 

charge is a percentage of the account value and that withdrawals may only occur on the policy’s 

anniversary dates. 

Often, GLWB products contain certain features that lead to an increase of the guaranteed 

withdrawal amount if the underlying funds perform well. Typically, on every policy 

anniversary, the current account value is compared to a certain reference value, which we refer 

to as ‘withdrawal benefit base’. Whenever the account value exceeds the withdrawal benefit 

base, the guaranteed annual withdrawal amount is increased (step-up or ratchet). In our 

numerical analyses in Sections 3 and 4, we consider three different product designs that can be 

observed in the market: 

 No Ratchet (Product I): The first and simplest alternative is one where no ratchets exist 

at all. In this case, the guaranteed annual withdrawal amount is constant and does not 

depend on market movements.  

 Lookback Ratchet (Product II): The second alternative is a ratchet mechanism where 

the withdrawal benefit base at outset is given by the single premium paid. During the 

contract term, on each policy anniversary date, the withdrawal benefit base is increased 
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to the account value, if the account value exceeds the previous withdrawal benefit base. 

The guaranteed annual withdrawal amount is increased accordingly to xWL multiplied 

by the new withdrawal benefit base. This effectively means that the fund performance 

needs to compensate for charges and annual withdrawals in order to increase future 

guaranteed withdrawals. Increases in the guaranteed withdrawal amount are permanent, 

i.e. over time, the guaranteed withdrawal amount may only increase, never decrease. 

 Remaining WBB Ratchet (Product III): The basic idea of the third product is to provide 

a ratchet mechanism where, in order to increase guaranteed annual withdrawals, the 

fund performance needs to compensate only for charges, but not for annual withdrawals. 

In this product, the withdrawal benefit base at outset is also given by the single premium 

paid. However, at each withdrawal date, the withdrawal benefit base is reduced by the 

withdrawn amount (if this amount does not exceed the guaranteed withdrawal amount). 

If on a policy anniversary the current account value exceeds this reduced withdrawal 

benefit base by a certain amount , the guaranteed annual withdrawal is increased by 

xWL  After such an increase, the withdrawal benefit base is reset to the account value. 

This ratchet mechanism is therefore c.p. somewhat “richer” than the Lookback Ratchet. 

As a consequence, the initially guaranteed withdrawal amount should c.p. be lower than 

with a product offering a Lookback Ratchet. As with the Lookback Ratchet design, 

increases in the guaranteed amount are permanent. 

Throughout the paper, we assume that administration charges and guarantee charges are 

deducted at the end of each policy year as a percentage φadm and φguar of the account value. 

Additionally, we allow for upfront acquisition charges φacq as a percentage of the single 

premium P. This leads to  acqPAV  10 .  

We denote the guaranteed withdrawal amount at time t by guar

tW  and the corresponding 

withdrawal benefit base by WBBt. At inception, for each of the considered products, the initial 

withdrawal benefit base is set to P and hence the guaranteed withdrawal amount for the initial 

withdrawal is given by PxWBBxW WLWL

guar 

00 . The amount actually withdrawn by the 

client is denoted by Wt.
1 

Since we restrict our analyses to single premium contracts, policyholder actions during the life 

of the contract are limited to withdrawals and (partial) surrender.  

During the year, all processes are subject to capital market movements. As mentioned above, 

we allow for withdrawals at policy anniversaries only. Also, we assume that death benefits are 

paid out at policy anniversaries if the insured person has died during the previous year. Thus, 

at each policy anniversary Tt ,...,2,1 , we have to distinguish between the value of a variable 
 t)(  immediately before and the value  t)(  after withdrawals, (partial) surrender, and death 

                                                 

1 Note that the client can choose to withdraw less than the guaranteed amount, thereby increasing the probability 

of future ratchets. If the client wants to withdraw more than the guaranteed amount, any exceeding withdrawal 

would be considered a partial surrender. 
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benefit payments. For the latter, we assume that no additional guaranteed minimum death 

benefit rider is included in the policy, i.e. in case of death the remaining fund value is paid out. 

In what follows, in the spirit of Bauer et al. (2008), we describe the development between two 

policy anniversaries and the transition at policy anniversaries for the considered contract 

designs. From these, we are finally able to determine all benefits for any given policyholder 

strategy and any capital market path. This allows for an analysis of such contracts in a Monte-

Carlo framework. 

2.2.1 Development between two Policy Anniversaries 

We assume that the annual fees φadm and φguar are deducted from the policyholder’s account 

value at the end of each policy year. Thus, the development of the account value between two 

policy anniversaries is given by 

 guaradm

t

t

tt
S

S
AVAV   

 exp1

1
. (10) 

At the end of each year, the different ratchet mechanisms are applied after deduction of charges 

and before any other actions are taken. Thus guar

tW  develops as follows: 

 No Ratchet: PWBBWBB tt  

1
 and PxWW WL

guar

t

guar

t  

1
.  

 Lookback Ratchet:  





  11 ,max ttt AVWBBWBB  

and  









  111 ,max tWL

guar

ttWL

guar

t AVxWWBBxW .  

 Remaining WBB Ratchet: Since withdrawals are only possible on policy anniversaries, 

the withdrawal benefit base during the year develops like in the Lookback Ratchet case. 

Thus, we have  





  11 ,max ttt AVWBBWBB  and 

 0,max 11







  ttWL

guar

t

guar

t WBBAVxWW .  

2.2.2 Transition at a Policy Anniversary t 

At the policy anniversaries, we have to distinguish the following four cases: 

a) The insured has died within the previous year (t-1,t]  

If the insured has died within the previous policy year, the account value is paid out as death 

benefit. With the payment of the death benefit, the insurance contract matures. Thus, 0

tAV

, 0

tWBB , 0tW , and 0guar

tW . 

b) The insured has survived the previous policy year and does not withdraw any money 

from the account at time t 

If no death benefit is paid out to the policyholder and no withdrawals are made from the 

contract, i.e. 0tW , we get   tt AVAV ,   tt WBBWBB , and   guar

t

guar

t WW . 
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c) The insured has survived the previous policy year and at the policy anniversary 

withdraws an amount within the limits of the withdrawal guarantee 

If the insured has survived the past year, no death benefits are paid. Any withdrawal tW  up to 

the guaranteed annual withdrawal amount guar

tW  reduces the account value by the withdrawn 

amount. Of course, we do not allow for negative policyholder account values and thus get 

 ttt WAVAV   ;0max .  

For the alternatives “No Ratchet” and “Lookback Ratchet”, the withdrawal benefit base and the 

guaranteed annual withdrawal amount remain unchanged, i.e.   tt WBBWBB , and 
  guar

t

guar

t WW . For the alternative “Remaining WBB Ratchet”, the withdrawal benefit base 

is reduced by the withdrawal taken, i.e.  ttt WWBBWBB   ;0max  and the guaranteed annual 

withdrawal amount remains unchanged, i.e.   guar

t

guar

t WW . 

d) The insured has survived the previous policy year and at the policy anniversary 

withdraws an amount exceeding the limits of the withdrawal guarantee 

In this case again, no death benefits are paid. For the sake of brevity, we only give the formulas 

for the case of full surrender, since partial surrender is not analyzed in what follows.2 In case 

of full surrender, the complete account value is withdrawn. We then set 0

tAV , 0

tWBB , 
 tt AVW , and 0guar

tW  and the contract terminates. However, the policyholder does not 

receive the full asset value as surrender benefit, since surrender fees surr

t  are deducted from 

the cash amount exceeding the guaranteed withdrawal amount. 

2.3 Valuation 

Let Q be an equivalent martingale measure of the financial market (cf. section 2.1.3). Assuming 

independence between financial markets and mortality as well as risk-neutrality of the insurer 

with respect to mortality and behavioral risk, we are able to use the product measure of Q and 

the mortality measure. In what follows, we denote this measure by Q̂ . 

As mentioned earlier, for the contracts considered within our analyses, policyholder actions are 

limited to withdrawals and (partial) surrender. In our numerical analyses in Sections 3 and 4, 

we only consider two possible policyholder actions: withdrawal of the guaranteed withdrawal 

amount, i.e.  guar

tt WW , or full surrender, i.e.  tt AVW . This also means that we assume that 

withdrawals begin at the earliest anniversary possible and, hence, that there is no initial waiting 

period before the first withdrawal. To keep notation simple, we only give formulas for the 

considered cases (cf. Bauer et al. (2008) for formulas for the other cases).  

We denote by 0x  the insured’s age at the start of the contract, 
0xt p  the probability under Q̂  for 

a 0x -year old to survive the next t years, txq 0
 the probability under Q̂  for a )( 0 tx  -year old 

                                                 

2 For details on partial surrender, we refer the reader to Bauer et al. (2008). 
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to die within the next year, and let ω be the limiting age of the mortality table, i.e. the age 

beyond which survival is deemed impossible. The probability under Q̂  that an insured aged x0 

at inception passes away in the year (t,t+1] is thus given by 
txxt qp 

00
. The limiting age ω 

allows for a finite time horizon 10  xT  .  

For pricing purposes, we consider a pool of policyholders who hold identical contracts and in 

which each insured has the same age, same gender and same mortality probability. We assume 

the number of policyholders to be large enough such that the assumption that deaths occur 

exactly according to the probabilities 
txq 0
 is justified. The policyholders in the pool may 

however differ in their (surrender) behavior. 

We model the (surrender) behavior of the policyholders in the pool as a F̂ -adapted family of 

random variables  
Ttt ,...,1

  , where Ttt ,...,1,10  , represents the fraction of the 

remaining policyholders at time t who surrender their contract at time t. After the guarantee has 

been triggered, i.e.   t

guar

t AVW  for some t=1,…,T, there is no rational reason for a 

policyholder to surrender their contract, hence we set Gt t   ,0 , where G  represents a 

F̂ -stopping time indicating the policy anniversary at which the guarantee of the GLWB rider 

triggers, i.e. the smallest t=1,…,T for which   t

guar

t AVW  holds. If the guarantee does not 

trigger during the contract’s lifetime, we set TG  . 

For a given behavior assumption  
Ttt ,...,1

  , all contractual cash flows of the pool of policies 

are specified for any given capital market scenario. Thus both, the guarantee payments (i.e. 

payments made by the insurer after the account value has dropped to zero) at times 

 Ti ,...,2,1 , denoted by )(P

iG , and the guarantee fee payments )(F

iG  made by the 

policyholder (including surrender fee payments), again at times  Ti ,...,2,1 , are known. For 

any given  , the time-t value )(G

tV  of the GLWB rider is then given by the expected present 

value of all future guarantee payments )(P

iG ,  Ti ,...,2,1 , minus future guarantee fees 

)(F

iG ,  Ti ,...,2,1 , 

  







 





t

T

ti

F

i

P

i

tir

Q

G

t FGGeEV ˆ)()()(
1

)(

ˆ  . (11) 

In the following numerical section, this value is calculated using (nested) Monte-Carlo 

simulations. 

Within our numerical analyses, we consider five different assumptions regarding policyholder 

behavior: 
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a) No surrender 

Under this assumption, policyholders never surrender their contract, i.e. 

 
.,...,1,0

,

0

,...,1

00

Ttt

Ttt









 

b) Deterministic surrender 

Surrender under this assumption occurs according to pre-specified deterministic (time-

dependent) percentages   Ttss tTtt ,...,1,10,
,...,1




, as long as the guarantee has not been 

triggered. In formulas, 

 



 






else

ts Gtd

t

Tt

d

t

d

,0

1,
:

,
,...,1






 

c) Longstaff-Schwartz approximation to optimal surrender  

In order to compute the fair value of an American option using Monte-Carlo techniques, 

Longstaff and Schwartz (2001) introduced a method in which optimal behavior is approximated 

via least-squares regression of the conditional expectation of the option's payoff, given some 

path- and time-dependent variables. Essentially, when applied to pricing of the GLWB rider, 

their algorithm works as follows: 

1. Define a set of base functions that take some state variables of the contract and 

the scenario as argument and return a real number. 

2. Create a set of N scenarios under Q̂ . 

3. Starting at T-1, at each policy anniversary t, compute the present value of the 

cash flow between t and T for each scenario in which the guarantee has not been 

triggered at time t. Fit the linear least-squares regression with these present 

values as dependent variables and the base functions with the corresponding 

state variables of the contract and the scenario as input variables. 

4. Evaluate the resulting approximation of the GLWB rider's continuation value 

for each scenario and decide whether the policyholder should surrender or not. 

If they surrender, the cash flow following t is set to zero and the cash flow at t 

to minus the surrender fee paid. 

5. Repeat steps 3-5 for t-1 until t=0 is reached. 

 

As base functions we use weighted Hermite polynomials up to a degree of three for each state 

variable and cross products hereof, again up to a degree of three, as well as a constant. Before 

simulation and/or pricing, we first execute the Longstaff-Schwartz algorithm with a separate 

set of scenarios in order to avoid an upward bias. 

The surrender behavior of the policyholder can be considered optimal – in the sense that it 

maximizes the option value G

tV  of the GLWB rider – if the policyholder decides to surrender 

the contract whenever the benefit from discontinuing the contract (i.e. the negative of the 

continuation value) exceeds the surrender fees. 
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With G

tV̂  denoting the approximated continuation value of the GLWB rider at time t, the 

policyholder behavior is modeled as follows: 

 



 









else

tAVV Gt

surr

t

G

tLS

t

Tt

LS

t

LS

,0

1,ˆ,1
:

,
,...,1






 

In what follows, we refer to surrender behavior according to this algorithm as being “optimal”, 

although we have to keep in mind that it is only an approximation for the value maximizing 

strategy defined as )(maxarg 0

* 


GV


 , where   denotes the set of all admissible strategies. 

d) Function of moneyness 

Within this approach, we model the fraction of the policyholders who surrender their contract 

as a function of time and the “in-the-moneyness” of the guarantee (as, for example, described 

in American Academy of Actuaries, 2005). 

We define the moneyness t  of the guarantee at time t as the ratio of the surrender value 

(account value less surrender fees) and the ‘strike price’ of the guarantee, for which we use the 

net present value of an immediate annuity paying the current guaranteed withdrawal amount 

annually until the insured’s death. Because this annuity’s net present value is a lower limit for 

the sum of asset value and option value of the GLWB rider, t  will be upward biased and not 

reside around 1 ("at-the-money") as desired. To correct for this, we use 0 , the moneyness at 

inception of the contract, as benchmark and use the relative deviation of t  hereof as measure.  

The basis for the surrender function is a set of given pre-specified deterministic percentages 

  Ttss tTtt ,...,1,10,
,...,1




 (as in the deterministic surrender scenario). However, we now 

model the fraction of the surrendering policyholders at time t as ts  multiplied by a factor that 

depends on the moneyness-variable t . In detail, we model the behavior according to the 

following formulas: 

 

























 






15.1,5

15.105.1,3

05.195.0,1

95.0,3/1

:)(

,
,0

1),/(
:

,

1

01

,...,1

x

x

x

x

x

else

ts GttITM

t

Tt

ITM

t

ITM








 

e) Function of option value 

Here, we use a similar approach as for the ‘function of moneyness’, except that we now use the 

sum of the rider’s (approximated) continuation value and the surrender charge as decision 
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variable. Within the Longstaff-Schwartz algorithm, it is optimal for the policyholder to 

discontinue the contract whenever this value becomes negative. Using again pre-specified 

probabilities   Ttss tTtt ,...,1,10,
,...,1




, this modeling approach is defined as follows: 

 

























 









03.0,5

03.001.0,3

01.001.0,1

01.0,3/1

:)(

,0

1),)(ˆ(
:

2

0

2

,...,1

x

x

x

x

x

else

tAVVs Gt

surr

t

G

ttOV

t

Tt

OV

t

OV





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Note that the last two models for policyholder behavior, d) and e), allow for the following 

interpretation which appears to be the motivation for the use of such models in practice: If a 

certain percentage of the policyholders follow a more or less optimal strategy (in the sense that 

they intuitively or with the help of professional advisors aim at maximizing the value G

tV  of 

the embedded guarantee) and the rest of the policyholders are assumed to follow a suboptimal 

strategy with deterministic surrender rates, then a pool would show patterns similar to models 

d) and e).  

3 Contract Analysis  

3.1 Assumptions 

For all of the analyses we use the fee structure given in Table 1. 

Acquisition charges 4.00 % of single premium 

Management charges 1.50 % p.a. of AV 

Guarantee charges 1.50 % p.a. of AV 

Table 1: Fee structure for the considered contracts. 

We further assume the policyholder to be a 65 year old male. For pricing purposes, we use best-

estimate annuitant mortality probabilities given in the DAV 2004R table published by the 

German Actuarial Society (DAV). 

As described in Section 2.3, we use different assumptions for the policyholder behavior. In the 

case where surrender is assumed to be deterministic, we use the surrender pattern given in Table 

2. As observed for many products in many markets, we assume higher surrender rates in earlier 

years and some base surrender in later years. 
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Year Surrender rate pt
S 

1 6 % 

2 5 % 

3 4 % 

4 3 % 

5 2 % 

≥ 6 1 % 

Table 2: Assumed deterministic surrender rates. 

Besides deterministic surrender (in what follows denoted by DS), we also analyze the other 

types of policyholder behavior introduced in Section 2.3, i.e. Longstaff-Schwartz-optimal 

surrender behavior (optimal), surrender behavior depending on the option value (OV), and 

surrender behavior depending on the “in-the-moneyness” of the option (ITM). We also consider 

the case without any surrender (NS). 

3.2 Determination of the Fair Guaranteed Withdrawal Rate 

For the pricing of the contract, i.e. for the determination of the guaranteed withdrawal rate xWL 

that makes the contract fair at inception in the sense that 00 GV  holds, we perform a root 

search with xWL as argument and the value of the option GV0
 as function value, cf. e.g. Bauer et 

al. (2008) or Kling et al. (2011). In this process, GV0
 is computed via Monte-Carlo simulation, 

where 100,000 paths are used per valuation. 

3.2.1 Results for the Black-Scholes model 

In Table 3, we show the fair guaranteed withdrawal rates xWL for different ratchet mechanisms, 

volatilities, rates of interest, surrender fees and policyholder-behavior assumptions. Note that 

we here analyze the impact of the policyholder behavior assumptions used for pricing the 

contract. Effects resulting from a potential deviation between actual policyholder behavior and 

behavior assumed in pricing and hedging will be analyzed in Sections 3.3 and 4.  
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    Ratchet mechanism 

Product I 

(No Ratchet) 

Product II 

(Lookback) 

Product III 

(Remaining WBB) 

σBS, r Behavior 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 

σBS = 15%, 

r = 4% 

Optimal 4.75 4.95 4.69 4.77 4.45 4.45 

OV 5.13 5.23 4.86 4.90 4.51 4.53 

ITM 5.14 5.24 4.87 4.91 4.52 4.54 

NS 5.27 5.27 4.82 4.82 4.45 4.45 

DS 5.48 5.54 5.04 5.09 4.65 4.70 

σBS = 20%, 

r = 4% 

Optimal 4.23 4.49 4.17 4.26 4.02 4.02 

OV 4.75 4.87 4.36 4.40 4.09 4.10 

ITM 4.75 4.87 4.37 4.42 4.09 4.12 

NS 5.00 5.00 4.34 4.34 4.03 4.03 

DS 5.20 5.25 4.54 4.59 4.22 4.26 

σBS = 22%, 

r = 4% 

Optimal 4.03 4.31 3.96 4.06 3.84 3.86 

OV 4.59 4.72 4.17 4.21 3.92 3.93 

ITM 4.60 4.72 4.17 4.22 3.92 3.95 

NS 4.89 4.89 4.14 4.14 3.86 3.86 

DS 5.08 5.13 4.34 4.39 4.05 4.09 

σBS = 25%, 

r = 4% 

Optimal 3.74 4.04 3.67 3.78 3.59 3.61 

OV 4.37 4.51 3.88 3.92 3.67 3.69 

ITM 4.37 4.50 3.88 3.94 3.68 3.70 

NS 4.72 4.72 3.87 3.87 3.62 3.62 

DS 4.90 4.95 4.05 4.10 3.80 3.84 

σBS = 22%, 

r = 2% 

Optimal 3.11 3.33 3.08 3.18 3.06 3.10 

OV 3.56 3.67 3.28 3.32 3.16 3.18 

ITM 3.57 3.67 3.28 3.33 3.16 3.19 

NS 3.78 3.78 3.27 3.27 3.12 3.12 

DS 3.96 4.00 3.44 3.48 3.28 3.32 

σBS = 22%, 

r = 3% 

Optimal 3.55 3.80 3.51 3.61 3.45 3.48 

OV 4.06 4.17 3.71 3.75 3.53 3.55 

ITM 4.07 4.18 3.71 3.76 3.54 3.56 

NS 4.32 4.32 3.70 3.70 3.48 3.48 

DS 4.50 4.55 3.88 3.93 3.66 3.70 

σBS = 22%, 

r = 5% 

Optimal 4.53 4.85 4.44 4.55 4.24 4.25 

OV 5.16 5.30 4.65 4.69 4.31 4.32 

ITM 5.17 5.31 4.65 4.70 4.32 4.34 

NS 5.49 5.49 4.62 4.62 4.25 4.25 

DS 5.69 5.75 4.83 4.88 4.45 4.49 

Table 3: Fair guaranteed withdrawal rates xWL in percent under the Black-Scholes model for different 

ratchet mechanisms, policyholder behavior assumptions, volatilities, rates of interest and surrender fees.  

Obviously, the product design without any ratchet allows for the highest withdrawal rates 

throughout, while the remaining WBB ratchet (which constitutes the ‘richest’ type of ratchet) 

allows for the lowest. It is also obvious that fair withdrawal rates are decreasing with increasing 

volatility and/or decreasing interest rates, since the corresponding guarantees increase in value 
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with increasing volatility or decreasing interest rates. Our main focus, however, is on the 

analysis of different assumptions about policyholder behavior: 

As defined in Section 2.3, optimal surrender behavior maximizes the value G

tV  of the contract. 

Thus, the fair withdrawal rates are the lowest in this case. For all considered parameter 

combinations, the assumption of deterministic surrender rates leads to the highest fair 

withdrawal rate. The difference between the fair withdrawal rates in these two cases can exceed 

a full percentage point. For a volatility of 25%, for example, and in the product without ratchet, 

the fair withdrawal rate assuming deterministic surrender amounts to 4.90% in the case of a 

surrender fee of 1% (and 4.95% for a surrender fee of 3%) while for optimal policyholder 

behavior, the fair withdrawal rate is only 3.74% (4.04%). Hence, an insurer assuming 

deterministic behavior would be willing to provide policyholders lifelong guaranteed 

withdrawal amounts that are (c.p.) more than 30% higher than the rates offered by a more 

conservative insurer assuming optimal policyholder behavior. 

For the product design with no ratchet, this difference in withdrawal rates is increasing with 

increasing volatility and with increasing interest rates. Thus, the potential for mispricing 

resulting from too aggressive assumptions for policyholder behavior is also increasing. For the 

product designs with ratchet, the difference of the fair withdrawal rate assuming deterministic 

policyholder behavior and optimal policyholder behavior, respectively, is significantly smaller 

and much less sensitive to changes in volatility or interest rates. For the lookback ratchet, the 

difference is about 30 to 40 basis points, in the case of the remaining WBB ratchet, the 

difference amounts to 20 to 25 basis points. Thus, the potential for mispricing by assuming 

incorrect policyholder behavior is the smallest for the product design with the most valuable 

ratchet mechanism. 

One reason for this can be seen by comparing the fair withdrawal rate assuming no surrender 

and optimal surrender. If the ratchet mechanism is quite valuable (i.e. remaining WBB ratchet), 

there is very little or even no difference in the corresponding fair withdrawal rates. Thus, no 

surrender seems to be very close to an optimal policyholder behavior. Hence, by assuming some 

deterministic (and fairly low) surrender rate, the assumption basically is that almost all 

policyholders behave optimally (by not surrendering) and only very few behave suboptimally. 

For a product design without any ratchet on the other hand, surrender can become optimal if 

funds perform well. In all these scenarios, deterministic surrender rates imply the assumption 

of a high portion of customers behaving suboptimally by not surrendering and only a low 

portion of customers displaying optimal behavior. 

The two path-dependent assumptions about policyholder behavior (OV and ITM) show a rather 

similar pattern. For the product design without ratchet, both show a significant potential for 

mispricing. Even if volatility is only 15%, the difference in the fair withdrawal rates between 

path-dependent assumptions and optimal behavior is around 40 basis points (roughly 30 basis 

points for a surrender fee of 3%). Again, with increasing volatility or interest rates, this 

difference also increases. However, for this product design, the considered path-dependent 

assumptions lead to lower guaranteed withdrawal rates than assuming no surrender. Thus, in 

this case the potential for mispricing is lower if path-dependent assumptions are made. This 

changes if ratchets are included into the product. Then again, the differences in withdrawal rates 

decrease. At the same time, the fair withdrawal rates assuming no surrender are lower than the 

fair withdrawal rates assuming path-dependent surrender. Thus, within this modeling 

framework, even though an insurer assumes surrender behavior that is somehow linked to the 
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option value or the in-the-moneyness of the option, the potential for mispricing is higher than 

when assuming no surrender. 

Fair withdrawal rates obviously increase with increasing surrender fees. It is, however, worth 

noting that for product I the difference in fair withdrawal rates between a surrender fee of 3% 

and 1% increases with increasing “optimality” of the policyholders’ behavior. If a strong ratchet 

mechanism is included (e.g. product III), however, there is almost no difference if policyholders 

behavior optimally. This again is due to the fact that for this product design, not surrendering 

is close to optimal, even for the lower surrender fee.   

3.2.2 Results for the Heston model 

For the Heston model, we use the model parameters given in Table 4, that were derived by 

Eraker (2004), and stated in annualized form for instance by Ewald et al. (2007). 

Parameter Numerical value 

r 0.04 

θ  (0.22)2 

κ 4.75 

σv 0.55 

ρ -0.569 

V(0) θ 

Table 4: Parameters for the Heston model. 

One of the key parameters in the Heston model is the market price of volatility risk . Since 

absolute -values are hard to interpret, in the following table we show the values of the long-

term variance and the speed of mean reversion for different values of   

Market price of 

volatility risk 

Speed of mean 

reversion κ* 

Long-term 

variance θ* 

λ = 3 6.40 (0.190)2 

λ = 2 5.85 (0.198)2 

λ = 1 5.30 (0.208)2 

λ = 0 4.75 (0.220)2 

λ = -1 4.20 (0.234)2 

λ = -2 3.65 (0.251)2 

λ = -3 3.10 (0.272)2 

Table 5: Q-parameters for different values of the market price of volatility risk. 

Higher values of  correspond to a lower volatility and a higher mean-reversion speed, while 

lower (and negative) values of  correspond to high volatilities and a lower speed of mean 

reversion. E.g.,  = 2 implies a long-term volatility of 19.8% and  = -2 implies a long-term 

volatility of 25.1%. 

In the following table, we show the fair annual guaranteed withdrawal rates under the Heston 

model for all different product designs using the same assumptions regarding policyholder 

behavior and interest rates as for the Black-Scholes model, and values of  between -2 and 2. 
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λ, r 

 
Ratchet mechanism 

Product I 

(No Ratchet) 

Product II 

(Lookback) 

Product III 

(Remaining WBB) 

Behavior 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 

λ = 2, 

r = 4% 

Optimal 4.26 4.54 4.20 4.32 4.04 4.04 

OV 4.77 4.90 4.41 4.45 4.11 4.12 

ITM 4.78 4.91 4.42 4.47 4.11 4.14 

NS 5.02 5.02 4.39 4.39 4.05 4.05 

DS 5.21 5.27 4.59 4.64 4.24 4.28 

λ = 1, 

r = 4% 

Optimal 4.17 4.46 4.10 4.22 3.96 3.96 

OV 4.70 4.83 4.32 4.36 4.02 4.04 

ITM 4.71 4.83 4.32 4.37 4.03 4.06 

NS 4.96 4.96 4.30 4.30 3.97 3.97 

DS 5.16 5.21 4.50 4.55 4.15 4.20 

λ = 0, 

r = 4% 

Optimal 4.06 4.36 3.99 4.11 3.86 3.87 

OV 4.61 4.75 4.21 4.25 3.93 3.95 

ITM 4.62 4.75 4.21 4.27 3.94 3.97 

NS 4.90 4.90 4.19 4.19 3.87 3.87 

DS 5.09 5.14 4.39 4.44 4.06 4.10 

λ = -1, 

r = 4% 

Optimal 3.95 4.24 3.86 3.98 3.75 3.76 

OV 4.52 4.66 4.08 4.13 3.82 3.84 

ITM 4.52 4.66 4.09 4.14 3.83 3.86 

NS 4.82 4.82 4.07 4.07 3.77 3.77 

DS 5.01 5.07 4.26 4.31 3.95 3.99 

λ = -2, 

r = 4% 

Optimal 3.78 4.10 3.71 3.83 3.61 3.64 

OV 4.40 4.55 3.93 3.98 3.69 3.71 

ITM 4.40 4.54 3.94 3.99 3.70 3.73 

NS 4.73 4.73 3.92 3.92 3.64 3.64 

DS 4.91 4.97 4.11 4.16 3.82 3.86 

λ = 0, 

r = 2% 

Optimal 3.14 3.38 3.12 3.23 3.09 3.13 

OV 3.58 3.69 3.32 3.37 3.19 3.20 

ITM 3.59 3.69 3.32 3.37 3.19 3.22 

NS 3.79 3.79 3.32 3.32 3.14 3.14 

DS 3.97 4.01 3.49 3.53 3.31 3.34 

λ = 0, 

r = 3% 

Optimal 3.59 3.85 3.54 3.66 3.48 3.50 

OV 4.08 4.20 3.75 3.80 3.56 3.57 

ITM 4.09 4.21 3.76 3.81 3.56 3.59 

NS 4.33 4.33 3.74 3.74 3.50 3.50 

DS 4.51 4.56 3.93 3.97 3.68 3.72 

λ = 0, 

r = 5% 

Optimal 4.56 4.90 4.47 4.59 4.24 4.25 

OV 5.18 5.33 4.69 4.73 4.31 4.33 

ITM 5.19 5.34 4.69 4.75 4.32 4.35 

NS 5.51 5.51 4.66 4.66 4.25 4.25 

DS 5.71 5.77 4.87 4.93 4.45 4.50 

Table 6: Fair guaranteed withdrawal rates xWL in percent under the Heston model for different ratchet 

mechanisms, policyholder behavior assumptions, market price of volatility risk parameters λ, rates of 

interest and surrender fees. 
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The results under the Heston model are very similar to those observed within the Black-Scholes 

model: Fair withdrawal rates are higher for the product design without ratchet and for lower 

long-term volatility assumptions. The potential for mispricing is also higher for the product 

design without any ratchet. 

Comparing the results of the Heston model with the corresponding results using the Black-

Scholes model shows that the assumption of stochastic equity volatility seems to have only little 

influence on pricing results for GLWB riders (which is consistent to findings in Kling et al., 

2011). 

3.3 Quantifying the Risk resulting from Behavioral Assumptions 

In a next step, we analyze the loss potential an insurer faces if pricing assumptions for 

policyholder behavior deviate from actual policyholder behavior. 

3.3.1 Results for the Black-Scholes model 

Table 7 shows the GLWB rider’s value at inception from the insurance company’s perspective 

as a percentage of the single premium if the actual future policyholder behavior as well as equity 

volatility or interest rates differ from the pricing assumptions. Negative values therefore 

represent the equivalent of an immediate loss for the insurance company if the insurer charges 

a certain price for the guarantee that was calculated using assumptions that differ from actual 

behavior and/or market parameters in a negative way. The results in this table are given for a 

surrender fee of 3%. We assume that the products are priced assuming an equity volatility in 

the Black-Scholes model of 22% alongside an interest rate of 4%, and that the actual parameters 

are either 22% or 25% for the volatility and either 4% or 3% for the rate of interest. 
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Behavior 

 Pricing: 

σBS = 22%, r = 4% 

Actual: 

σBS = 22%, r = 4% 

 Pricing: 

σBS = 22%, r = 4% 

Actual: 

σBS = 25%, r = 4% 

 Pricing: 

σBS = 22%, r = 4% 

Actual: 

σBS = 22%, r = 3% 

Pricing Actual I II III I II III I II III 

Optimal 

Optimal 0.0 0.0 0.0 -1.3 -2.2 -2.5 -3.1 -4.0 -4.2 

OV 2.2 1.1 0.7 1.1 -1.2 -1.6 -0.9 -2.8 -3.2 

ITM 2.3 1.1 0.8 1.1 -1.0 -1.4 -0.8 -2.6 -2.9 

NS 4.3 0.7 0.0 3.1 -1.8 -2.5 0.1 -3.7 -4.2 

DS 4.9 2.2 1.8 3.9 0.3 -0.1 1.7 -1.1 -1.4 

OV 

Optimal -2.2 -1.1 -0.7 -3.7 -3.5 -3.3 -6.1 -5.4 -5.1 

OV 0.0 0.0 0.0 -1.2 -2.3 -2.3 -3.9 -4.2 -4.0 

ITM 0.0 0.1 0.1 -1.2 -2.1 -2.1 -3.6 -3.8 -3.7 

NS 1.3 -0.6 -0.7 0.0 -3.2 -3.3 -3.6 -5.2 -5.1 

DS 2.5 1.3 1.2 1.5 -0.8 -0.8 -1.2 -2.3 -2.1 

ITM 

Optimal -2.2 -1.2 -0.9 -3.7 -3.6 -3.5 -6.1 -5.6 -5.3 

OV 0.0 -0.1 -0.2 -1.3 -2.5 -2.5 -3.9 -4.3 -4.2 

ITM 0.0 0.0 0.0 -1.3 -2.2 -2.2 -3.6 -3.9 -3.8 

NS 1.3 -0.7 -0.9 0.0 -3.3 -3.5 -3.6 -5.4 -5.3 

DS 2.5 1.2 1.1 1.4 -0.9 -0.9 -1.2 -2.4 -2.2 

NS 

Optimal -3.2 -0.6 0.0 -4.7 -2.9 -2.5 -7.4 -4.8 -4.3 

OV -1.0 0.5 0.7 -2.3 -1.8 -1.6 -5.2 -3.6 -3.2 

ITM -0.9 0.6 0.8 -2.2 -1.6 -1.4 -4.8 -3.2 -2.9 

NS 0.0 0.0 0.0 -1.3 -2.6 -2.5 -5.2 -4.5 -4.3 

DS 1.5 1.7 1.8 0.4 -0.3 -0.2 -2.4 -1.7 -1.4 

DS 

Optimal -4.7 -2.5 -2.4 -6.3 -5.1 -5.0 -9.5 -7.3 -7.0 

OV -2.6 -1.5 -1.5 -3.9 -3.9 -3.9 -7.2 -6.0 -5.8 

ITM -2.4 -1.3 -1.3 -3.7 -3.5 -3.6 -6.6 -5.4 -5.3 

NS -2.0 -2.2 -2.3 -3.3 -4.9 -5.0 -7.6 -7.2 -7.0 

DS 0.0 0.0 0.0 -1.1 -2.1 -2.1 -4.3 -3.8 -3.5 

Table 7: GLWB rider value at inception as percentage of the single premium if actual policyholder 

behavior and/or parameters in the Black-Scholes model differ from pricing assumptions. 

Pricing assumption DS 

We first look at the case where deterministic surrender probabilities are assumed in the pricing 

of the contract. Clearly, the potential loss is the highest if policyholders behave optimally. In 

particular, if assumptions about equity volatility and interest rates are correct, the insurance 

company’s loss is 4.7% of the single premium paid if no ratchet is included, 2.5% of the single 

premium paid in the case of the lookback ratchet and 2.4% of the single premium paid for the 

remaining WBB ratchet. In line with the results from Section 3.2, the loss potential if only the 

assumption about policyholder behavior is incorrect is significantly lower if ratchets are 

included into the product and is the lowest for the product design with the most valuable ratchet 

mechanism. If policyholders in reality do not behave optimally but either surrender according 

to one of the path-dependent rules (OV or ITM) or do not surrender at all (NS), then the potential 

loss roughly lies between 1% and 3% of the single premium paid if the assumptions regarding 

the market parameters are correct. Again, the riskiest product design is the one without ratchet. 

However, the product designs with ratchets are more sensitive to changes in volatility: 
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If (additionally to policyholder behavior assumptions) volatility assumptions are also wrong 

(i.e. σBS = 25%), the insurance company’s loss increases by at least 2% for the products with 

ratchet, while for the product without ratchet, the increase is between 1.1% and 1.6% of the 

single premium paid.  

If (additionally to policyholder behavior assumptions) interest rate assumptions are also wrong 

(i.e. r = 3%), the insurance company’s loss increases by at least 3.5% of the single premium 

paid. This increase is rather similar across the three product designs. Losses can now go up to 

almost 10% of the premium paid if deterministic policyholder behavior is assumed and actual 

behavior is optimal. 

If policyholders in reality do not surrender at all (NS), independent of volatility and interest 

rates, the loss potential is higher than with any path-dependent behavior (OV and ITM) for the 

product designs with ratchets and lower for the product design without ratchet. At the same 

time, not surrendering seems to be very close to the optimal strategy for product III, which has 

a rich ratchet mechanism. Also, the interest rate sensitivity is the highest if policyholders do not 

surrender.  

Pricing assumption NS 

We now look at the case where no surrender is assumed in pricing. In this case (if assumed and 

actual market parameters coincide), for the products with ratchet, the insurer would realize a 

gain if any of the other non-optimal policyholder behavior patterns occurs, i.e. OV, ITM or DS. 

Thus, the insurance company can reduce the risk resulting from policyholder behavior by 

including a strong ratchet mechanism into the product and at the same time assuming no 

surrender in pricing the contract. A rich ratchet mechanism can prevent high values of the option 

to surrender under almost all circumstances. This can be a very effective means to manage 

policyholder behavior risk. 

The effect of wrong volatility assumptions on the insurance company’s loss is similar to the 

one observed when deterministic surrender is assumed: The loss increases by at least 2% for 

the products with ratchet, while for the product without ratchet the increase is between 1.1% 

and 1.5% of the single premium paid. Similar increases can also be observed for all other pricing 

assumptions. 

The absolute increase caused by wrong interest rate assumptions, however, is less pronounced 

than if deterministic surrender is assumed in pricing. The increase is still similar for the different 

product designs.  

Pricing assumptions OV and ITM 

A common path-dependent assumption about policyholder behavior suggests that surrender 

rates are influenced by the in-the-moneyness (as e.g. described in American Academy of 

Actuaries, 2005) or (more directly) the value of the guarantee. Although more conservative than 

assuming purely deterministic behavior, these assumptions can still be quite dangerous: If, for 

instance, a remaining WBB ratchet is in place and policyholders do not surrender at all, the 

potential loss amounts to almost 1% of the single premium paid even if assumed market 

parameters are correct. A slightly smaller loss occurs in case of a lookback ratchet, whereas if 

no ratchet is in place, there even is a profit. However, if policyholders behave optimally, the 

potential loss, again, is the highest for the product design without ratchet and amounts to 2.2% 

of the single premium paid. 
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If additionally actual market parameters deviate from assumed market parameters, potential 

losses increase up to over 5% of the single premium paid. The structure of the increase is similar 

to the effects observed previously, only the differences between the different product designs 

with respect to their interest rate sensitivity are now slightly higher. This also holds for the 

following optimal behavior assumption. 

Pricing assumption Optimal 

The most conservative assumption about the policyholders’ behavior is of course to assume that 

they follow an optimal surrender strategy. As a result, losses due to mispricing only occur if 

additionally to policyholder behavior also market parameters are different than assumed. In this 

case, the profit from the potentially over-conservative behavior assumption is reduced by these 

losses. Of course, the losses are the highest if actual behavior is either optimal or, in the case of 

the remaining WBB ratchet, where not surrendering yields very similar results to optimal 

behavior, if policyholders do not surrender at all. 

Summarizing, we find that the product design without ratchet shows the highest sensitivity to 

deviations from assumed policyholder behavior. On the other hand, it is the design with the 

least sensitivity to deviations from assumed volatility, while the negative effect of an 

overestimated level of interest rates is roughly the same for all three product designs. 
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3.3.2 Results for the Heston model 

Table 8 shows similar results to those presented in the previous section but now using the 

Heston model. For all results in this table, the surrender fee was set to 3% and, for pricing, the 

market-price-of-risk factor was set to λ=0 and a rate of interest of 4% was assumed. 

Behavior 

 Pricing: 

λ=0, r = 4% 

Actual: 

λ=0, r = 4% 

 Pricing: 

λ=0, r = 4% 

Actual: 

λ=-2, r = 4% 

 Pricing: 

λ=0, r = 4% 

Actual: 

λ=0, r = 3% 

Pricing Actual I II III I II III I II III 

Optimal 

Optimal 0.0 0.0 0.0 -1.2 -2.1 -2.4 -3.1 -3.9 -4.1 

OV 2.0 1.0 0.7 1.0 -1.1 -1.5 -1.0 -2.8 -3.1 

ITM 2.1 1.1 0.8 1.0 -0.9 -1.3 -1.0 -2.5 -2.8 

NS 4.0 0.6 0.0 2.8 -1.7 -2.4 -0.3 -3.7 -4.1 

DS 4.6 2.2 1.8 3.6 0.3 -0.1 1.4 -1.1 -1.3 

OV 

Optimal -2.0 -1.0 -0.7 -3.4 -3.3 -3.1 -5.9 -5.3 -5.0 

OV 0.0 0.0 0.0 -1.2 -2.2 -2.2 -3.8 -4.1 -3.9 

ITM 0.0 0.1 0.2 -1.1 -1.9 -1.9 -3.5 -3.7 -3.5 

NS 1.1 -0.5 -0.7 -0.1 -3.0 -3.1 -3.8 -5.1 -5.0 

DS 2.4 1.2 1.2 1.3 -0.7 -0.7 -1.3 -2.2 -2.0 

ITM 

Optimal -2.0 -1.1 -0.9 -3.4 -3.4 -3.3 -5.9 -5.4 -5.2 

OV 0.0 -0.1 -0.2 -1.2 -2.3 -2.4 -3.9 -4.2 -4.1 

ITM 0.0 0.0 0.0 -1.2 -2.0 -2.1 -3.6 -3.8 -3.7 

NS 1.1 -0.7 -0.9 -0.2 -3.1 -3.3 -3.8 -5.2 -5.2 

DS 2.3 1.1 1.1 1.3 -0.8 -0.8 -1.4 -2.3 -2.2 

NS 

Optimal -2.8 -0.5 0.0 -4.3 -2.7 -2.4 -7.1 -4.7 -4.1 

OV -0.9 0.5 0.7 -2.1 -1.7 -1.5 -5.0 -3.5 -3.1 

ITM -0.8 0.5 0.8 -2.0 -1.4 -1.3 -4.6 -3.1 -2.8 

NS 0.0 0.0 0.0 -1.3 -2.4 -2.4 -5.1 -4.4 -4.1 

DS 1.5 1.7 1.8 0.4 -0.2 -0.1 -2.4 -1.7 -1.3 

DS 

Optimal -4.4 -2.5 -2.3 -5.9 -4.8 -4.8 -9.1 -7.1 -6.8 

OV -2.4 -1.4 -1.5 -3.6 -3.7 -3.8 -7.0 -5.8 -5.6 

ITM -2.2 -1.2 -1.2 -3.4 -3.3 -3.4 -6.3 -5.2 -5.1 

NS -1.9 -2.1 -2.3 -3.2 -4.6 -4.8 -7.5 -7.0 -6.8 

DS 0.0 0.0 0.0 -1.1 -2.0 -2.0 -4.2 -3.7 -3.4 

Table 8: GLWB rider value at inception as percentage of the single premium if actual policyholder 

behavior and/or parameters in the Heston model differ from pricing assumptions. 

Again, the results observed under the Heston model are very similar to those observed under 

the Black-Scholes model. Thus, the potential for mispricing arising from wrong assumptions 

about policyholder behavior or a wrong level of volatility or interest rates seems to be much 

higher than the potential loss arising from ignoring the stochasticity of equity volatility. 

However, by solely calculating the rider value of the guarantee we implicitly assume perfect 

hedge effectiveness which is not given in reality.  
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Kling et al. (2011) have shown that the impact of stochastic volatility on hedge efficiency of 

such products is typically much higher than on pricing. Therefore, we now analyze how this 

result relates to different assumptions about policyholder behavior. 

4 Analysis of Hedge Efficiency 

In this section, we analyze the performance of a hedging program an insurer might apply in 

order to reduce the financial risk – and thus also the required economic capital – resulting from 

selling GLWB guarantees. We analyze this performance under different assumptions regarding 

policyholder behavior and particularly analyze the case where the policyholder behavior 

assumed by the insurer for pricing and hedging differs from the actual behavior of the 

policyholders.  

In what follows, we first describe the analyzed delta-hedging strategy; we then define the risk 

measures that we use to compare the (simulated) hedge performance, and finally, we present 

the simulation results in the last part of this section. The methodology we use is similar to the 

one used by Kling et al. (2011). 

4.1 Hedge Portfolio 

We assume that an insurer has sold a pool of policies with GLWB guarantees. We denote by Ψt 

the cumulative option value for that pool of guarantees, i.e. the sum of the option values 
G

tV  of 

each policy as defined in Section 2.3. We assume that the insurer cannot influence the value of 

Ψt by changing the underlying fund (e.g. changing the fund's exposure to risky assets or forcing 

the policyholder to switch to a different, e.g. less volatile, fund). We further assume that the 

insurer invests the guarantee fees as well as surrender fees in a hedge portfolio H

t and applies 

some hedging strategy within this portfolio. In case the guarantee of a policy is triggered, the 

guaranteed payments due are deducted from this portfolio. Thus,   

H

ttt  :           (12) 

is the insurer’s cumulative profit/loss (in what follows sometimes just denoted as the insurer’s 

profit) at time t stemming from the guarantee and the corresponding hedging strategy. We 

assume the value of the guarantee to be marked-to-model, where the same model the insurer 

uses for hedging is used for the valuation of Ψt. 

For the simulations in the following section, we assume that the insurer uses the Black-Scholes 

model for hedging purposes and applies a simple delta-hedging strategy within the hedge 

portfolio H

t : In order to immunize the portfolio against small changes in the underlying's spot 

price St (i.e. to attain delta-neutrality), the quantity of exposure to the underlying within the 

insurer’s hedge portfolio is determined as the delta of Ψt, i.e. the partial derivative of Ψt with 

respect to St. 

We assume that the hedge portfolio is rebalanced on a monthly basis, using central finite 

differences calculated via Monte-Carlo simulation as approximation for the partial derivative 

of Ψt with respect to St. 
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4.2 Risk Measures 

We use the following three measures to compare the different hedging strategies. All measures 

will be normalized as a percentage of the premium volume at t=0: 

  T

rT

P eE 
, the expectation of the discounted final value of the insurer’s profit under 

the real-world measure P. This is a measure for the insurer’s expected profit and 

constitutes the “performance” measure in our context. A value of 1 means that, in 

expectation, for a single premium of 100 paid by the client, the insurance company’s 

discounted profit from selling and hedging the guarantee is 1. 

  )()(1   VaRECTE P  , the conditional tail expectation of the random 

variable  , where  Tte t

rt ,...,1,0min    is defined as the minimum of the 

discounted values of the insurer’s profit/loss at all policy calculation dates and )(VaR

denotes the Value at Risk of the variable   at the level . This is a measure for the 

insurer’s risk resulting from a certain hedging strategy: it can be interpreted as the 

additional amount of money that would be necessary at outset such that the insurer’s 

portfolio would never become negative over the life of the contract, even if the market 

develops according to the average of the  (e.g. 10%) worst scenarios in the stochastic 

model. Thus a value of 1 means that, in expectation over the  worst scenarios, for a 

single premium of 100 paid by the client, the insurance company would need to hold 1 

additional unit of capital upfront. 

  )()(1 T

rT

T

rT

T

rT

PT

rT eVaReeEeCTE  

  , the conditional tail 

expectation of the discounted profit/loss’ final value. This is also a risk measure which, 

however, focuses on the value of the profit/loss at time T, i.e. after all liabilities have 

been met, and does not account for negative portfolio values over time. Thus, a value of 

1 means that, in expectation over the  worst scenarios, for a premium of 100 paid by 

the client, the insurance company’s expected loss is 1. By definition, of course, 

)()( 11 T

rTeCTECTE  

   .  

4.3 Simulation Results 

In the numerical analyses below, we set =10% for both risk measures and assume a pool of 

identical policies with parameters as given in Section 3. We assume that mortality within the 

population of insured occurs according to the best-estimate probabilities given in the DAV 

2004R table. As our analysis focuses on model risk rather than parameter risk, we use the 

parameters for the capital market models presented in Section 3 for both, the hedging and the 

data-generating model. The results are calculated using 10,000 Monte-Carlo paths for the 

simulation, 1,000 paths for each of the valuations used in the calculation of the central finite 

differences and 10,000 paths for each of the valuations of Ψt used to calculate  . 

4.3.1 Results for the Black-Scholes model 

Table 9 gives the results for different combinations of behavioral assumptions made by the 

insurer and actual behavior within the pool of policies. The Black-Scholes model with σBS=22% 
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and r=4% is thereby used as the hedging model of the insurer and as a model of the real-world 

progression of the capital market (with μ=7%).  

 

Behavior  Product I 

 

Product II 

 

Product III 

Pricing / 

Hedging 
Actual E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒
−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] 

Optimal 

Optimal -0.1 2.4 2.2 0.1 3.1 2.8 0.0 3.2 2.8 

OV 3.4 1.8 0.8 1.7 2.5 1.5 0.7 2.8 2.0 

ITM 3.5 1.9 0.9 1.7 2.3 1.4 0.8 2.3 1.6 

NS 8.7 2.5 1.8 1.9 3.1 2.3 0.1 3.4 2.8 

DS 7.8 1.8 0.9 2.9 2.1 0.9 1.8 2.0 0.9 

OV 

Optimal -2.7 7.5 7.5 -1.3 4.5 4.5 -0.7 3.4 3.3 

OV -0.1 1.6 1.4 0.0 2.7 2.3 0.0 2.6 2.2 

ITM 0.0 1.5 1.4 0.1 2.4 2.0 0.2 2.2 1.9 

NS 2.9 2.2 2.1 -0.3 3.2 2.9 -0.7 3.3 3.1 

DS 3.2 0.9 0.5 1.2 2.0 1.1 1.2 1.6 0.9 

ITM 

Optimal -2.8 7.5 7.5 -1.4 4.8 4.8 -0.9 3.7 3.6 

OV -0.1 1.7 1.5 -0.1 2.9 2.6 -0.2 2.9 2.5 

ITM 0.0 1.6 1.4 0.0 2.5 2.3 0.0 2.4 2.1 

NS 2.9 2.3 2.2 -0.4 3.3 3.1 -0.9 3.6 3.4 

DS 3.2 1.0 0.5 1.1 2.1 1.3 1.0 1.9 1.1 

NS 

Optimal -4.5 15.4 15.4 -1.0 5.1 5.0 -0.1 3.0 2.8 

OV -2.1 11.0 11.0 0.3 3.0 2.7 0.6 2.2 1.7 

ITM -2.0 10.8 10.8 0.3 2.6 2.3 0.8 1.9 1.4 

NS 0.0 1.3 1.2 0.0 3.0 2.6 0.0 2.7 2.4 

DS 0.8 3.9 3.8 1.4 2.1 1.3 1.7 1.4 0.7 

DS 

Optimal -5.5 13.3 13.3 -2.6 5.9 5.9 -2.3 5.1 5.1 

OV -2.9 8.0 8.0 -1.4 4.0 4.0 -1.4 3.9 3.8 

ITM -2.7 7.6 7.6 -1.1 3.6 3.6 -1.1 3.4 3.4 

NS -1.2 5.3 5.3 -1.9 5.0 5.0 -2.2 5.0 5.0 

DS 0.0 1.2 1.0 0.0 2.5 2.2 0.0 2.3 2.0 

Table 9: Hedge efficiency results using the Black-Scholes model as data-generating model. 

Pricing assumption DS 

We first look at the case where the insurer assumes deterministic surrender in pricing and 

hedging the contract. If, in reality, the pool of policyholders behaves exactly according to the 

same pattern, the insurer’s expected profit is close to zero for all different product designs. 

(Note that we assume that the insurer priced the contracts without incorporating any profit 

margin.) On average over the 10% worst scenarios, the present value of the insurer’s final loss 

averages to 1.0% of the single premium for product design I. The corresponding values are 

2.2% and 2.0% for product designs II and III, respectively. The CTE of the present value of the 

maximum loss over all policy calculation dates is slightly higher. Similar results are observed 

for other assumptions about the policyholder behavior as long as assumed policyholder 

behavior and realized policyholder behavior coincide. 

If the insurer assumes deterministic surrender but policyholders actually behave according to 

the considered function of the in-the-moneyness (ITM) or the considered function of the option 
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value (OV), the insurer’s expected loss significantly increases. The expected loss for the product 

design without ratchet is roughly 3% of the single premium paid and hence more than twice as 

high than for the product designs with ratchet. In the case of optimal surrender, the expected 

loss further increases to 5.5% of the single premium paid in the case without ratchet and about 

half that value for the products with ratchet. With the expected loss, also the risk increases. 

Assuming deterministic surrender for product I results in a CTE of final losses between 7.6% 

and 13.3% of the single premium paid if actual policyholder behavior is path-dependent or even 

optimal. This risk is reduced by roughly 50% by including ratchets into the product design. If 

policyholders do not surrender at all (NS), the risk is almost the same for all product designs. 

Consistent with the pricing results above, for product design III, the results for no surrender and 

optimal policyholder behavior are almost identical since optimal surrender for this product is 

close to no surrender. For product design I, the risk if policyholders do not surrender is lower 

than for any path-dependent behavior. 

Pricing assumption NS 

If no surrender is assumed in pricing and hedging, the results are rather diverse. Actual 

deterministic policyholder behavior leads to a positive expected profit for all product designs 

and rather limited risk for product designs II and III. However, risk measures for product design 

I are almost 4%. If policyholders actually behave according to the considered function of the 

in-the-moneyness (ITM) or the considered function of the option value (OV), the insurer’s 

expected profit is slightly positive for product designs II and III and around -2% for product 

design I. Interestingly, while for the product designs with ratchet, the risk also is rather limited, 

the risk measures for product design I exceed 10%. Thus, if no ratchet is included in the product 

design, the assumption of no surrender is rather risky. If policyholder behavior is optimal, the 

risk for this product even increases to 15%. 

Pricing assumptions OV and ITM 

If policyholder behavior is assumed to occur according to the considered function of the in-the-

moneyness (ITM) or the considered function of the option value (OV) and ratchets are included 

into the product design (products II and III), the expected loss for the insurer (even in the case 

of optimal policyholder behavior) is below 1.5% of the single premium paid. Furthermore, the 

considered risk measures remain below 5%. Again, for product design III, actual policyholder 

behavior without surrender turns out to be almost as risky as optimal policyholder behavior. 

For product design I, however, no surrender leads to expected profits of 2.9% of the single 

premium paid and risk measures below 2.3% while optimal behavior leads to a risk of 7.5% 

and a negative expected profit. Deterministic behavior under both assumptions and for all 

product designs leads to expected profits and rather low risk. 

Pricing assumption Optimal 

Not very surprisingly, the most conservative assumption of optimal policyholder behavior 

always leads to the highest expected profit. If actual behavior is deterministic or no surrender, 

for product design I the expected profit reaches 7.8% and 8.7%, respectively. Also, risk is rather 

limited and for all product designs below 3.4%. However, it is worth noting that the risk if 

policyholders do not surrender for product design III (3.4%) is slightly higher than in the case 

of optimal surrender. We attribute this to the fact that in the case of optimal surrender, all 

policyholders surrender at the same time. Thus, hedging is needed for a potentially shorter 

period of time, resulting in a reduced hedging error. Also, for product III, assuming optimal 

surrender results in a slightly higher risk than if no surrender is assumed. We attribute this to a 
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more stable hedging in the case of no surrender (as there are no decisions whether all of the 

policyholders either stay or leave) and some imperfections in the Longstaff-Schwartz algorithm 

we used. 

4.3.2 Results for the Heston model 

Table 10 shows the same results as in Table 9, but now using the Heston model as data-

generating model instead of the Black-Scholes model, with parameters as stated in Table 4 and 

with μ=7%. 

Behavior  Product I 

 

Product II 

 

Product III 

Pricing / 

Hedging 
Actual E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒
−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] 

Optimal 

Optimal 0.1 3.3 2.9 0.3 4.1 3.7 0.0 4.5 4.0 

OV 3.4 2.5 1.5 1.9 3.5 2.5 0.7 3.9 3.1 

ITM 3.5 2.7 1.6 1.9 3.4 2.4 0.8 3.5 2.7 

NS 8.7 3.5 2.8 2.2 4.3 3.6 0.1 4.6 4.0 

DS 7.8 2.4 1.1 3.1 3.0 1.4 1.7 2.9 1.7 

OV 

Optimal -2.4 6.4 6.4 -1.0 5.0 4.9 -0.7 4.9 4.7 

OV 0.1 2.5 2.2 0.3 3.9 3.4 0.0 4.1 3.6 

ITM 0.1 2.4 2.2 0.3 3.6 3.2 0.2 3.7 3.3 

NS 2.9 3.4 3.3 0.0 4.7 4.4 -0.7 4.9 4.7 

DS 3.2 1.7 0.8 1.4 3.1 2.0 1.1 3.0 2.0 

ITM 

Optimal -2.5 6.4 6.4 -1.1 5.1 5.1 -0.9 5.1 4.9 

OV 0.1 2.5 2.2 0.1 4.0 3.6 -0.2 4.3 3.8 

ITM 0.1 2.5 2.2 0.2 3.7 3.3 0.0 3.8 3.4 

NS 2.9 3.5 3.3 -0.1 4.8 4.5 -0.9 5.1 4.9 

DS 3.2 1.7 0.8 1.3 3.2 2.1 1.0 3.1 2.2 

NS 

Optimal -4.2 13.4 13.4 -0.7 4.8 4.6 -0.1 4.3 3.9 

OV -1.9 9.3 9.3 0.5 3.7 3.1 0.6 3.7 2.9 

ITM -1.8 9.2 9.2 0.6 3.5 2.9 0.7 3.3 2.6 

NS 0.0 2.3 2.0 0.3 4.2 3.7 0.0 4.3 3.8 

DS 0.8 3.3 3.2 1.6 3.0 1.8 1.6 2.7 1.5 

DS 

Optimal -5.2 11.7 11.7 -2.3 6.8 6.8 -2.3 6.7 6.7 

OV -2.8 6.8 6.8 -1.1 5.4 5.3 -1.4 5.5 5.4 

ITM -2.6 6.6 6.6 -0.9 5.0 5.0 -1.1 5.0 4.9 

NS -1.1 6.4 6.4 -1.5 6.7 6.6 -2.3 6.7 6.7 

DS 0.0 2.0 1.8 0.3 3.6 3.2 0.0 3.7 3.3 

Table 10: Hedge efficiency results using the Heston model as data-generating model. 

Changing the data-generating model from Black-Scholes to Heston does not have any 

substantial impact on the expected profit, independent of the product design and the assumed 

policyholder behavior. Also, the structure of the results, i.e. the relation between the results for 

the different products and the different client behavior patterns is very similar. However, the 

absolute values of the risk measures change. While product design I appears to be less risky in 

case of path-dependent behavior under the Heston model if deterministic or no surrender is 

assumed, the risk for product designs II and III increases. The results show that product designs 

II and III display a higher sensitivity to volatility than the design without ratchet (I). This is in 

line with the results of Section 3.3. 
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We can conclude that assumptions about policyholder behavior can bear significant risk for the 

insurer, especially if such assumptions are too aggressive, i.e. if policyholders’ behavior is 

closer to optimal behavior than assumed. However, this risk can be significantly reduced by 

means of product design and making appropriate behavioral assumptions. The latter, however, 

also increases the price of the product and may result in a lower competitiveness of the product. 

While the product designs with ratchet features (II and III) appear to be less sensitive to 

policyholder behavior, our results indicate that they may be harder to hedge and are more 

sensitive to changes in volatility and/or model risk, respectively. 

5 Conclusions 

In the present paper, we have analyzed the impact of policyholder behavior on pricing, hedging 

and hedge efficiency of different GLWB guarantees in variable annuities. We have considered 

several types of policyholder behavior ranging from deterministic surrender over path-

dependent surrender to optimal strategies. We have found that the price of the guarantee 

strongly depends on the assumed policyholder behavior and there is a significant potential for 

mispricing if actual policyholder behavior deviates from assumed behavior. Comparing 

products with different ratchet mechanisms, we find that this potential for mispricing is the 

smallest for the product design with the most valuable ratchet mechanism. 

Analyses of an insurer’s hedging strategy showed that both, the insurer’s expected profit and 

the insurer’s risk (quantified by CTE measures), depend heavily on the deviation between 

assumed and actual policyholder behavior as well as the chosen product design. We find that 

the product design without ratchet shows the highest sensitivity to changes in policyholder 

behavior. On the other hand, it is the design with the least sensitivity to changes in volatility 

and the potentially easiest one to hedge. We also find that the impact of stochastic volatility on 

hedging (and the insurer’s risk) is much higher than on pricing (and the insurer’s expected 

profit). 

In future research, it would be interesting to combine the analyses of model risk performed in 

Kling et al. (2011) with the analyses of policyholder behavior risk and quantify how the 

insurer’s risk depends on a simultaneous deviation from reality of assumptions regarding 

policyholder behavior and the capital market model. It might also be worthwhile to analyze 

different types of variable annuity guarantees and see whether different types of guarantees (e.g. 

GMAB or GMIB) display higher or lower behavioral risk than the GLWB designs considered 

in this paper. 

Our analyses so far have been performed on the level of an individual policy. Since hedging 

errors are not necessarily additive over a pool of policies, it would be worthwhile to analyze 

how the results with respect to risk management and hedge efficiency change for a 

heterogeneous pool of policies. 
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Abstract 

We analyze the impact of regulator-imposed minimum surrender benefits on variable annuities with a 

Guaranteed Minimum Accumulation Benefit (GMAB) rider. Based on recent discussions in the German 

market, we consider different models how these Guaranteed Minimum Surrender Benefits (GMSB) are 

determined: A minimum surrender benefit given by the present value of the GMAB calculated using 

market interest rates, the present value of the GMAB calculated using some technical rate of interest, 

and the market-consistent value of the GMAB. We look at the case where the GMSB is introduced 

before the contract is sold and considered in the pricing of the GMAB rider. We also consider the case 

if the GMSB is imposed after the contract has been sold and analyze the impact on the technical 

provisions and capital requirements of already existing contracts. Finally, we analyze how our results 

change in the presence of a secondary market. Our results show that (if considered in the pricing of the 

contract) a GMSB can significantly affect the fair guarantee charge of variable annuities. We also find 

a significant impact on the technical provisions and capital requirements of already existing contracts. 

Finally, our results indicate that a secondary market adversely affects the insurer’s profitability but 

reduces the impact of the considered GMSBs on the insurers. 
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1 Introduction 
Variable annuities are unit-linked life insurance contracts that often come with investment guarantees.  

Therefore, they allow policyholders to benefit from the upside potential of the underlying fund and, at 

the same time, offer protection when the fund loses value (cf. EIOPA, 2011). Such products offer a 

variety of guarantees. Besides guaranteed minimum death benefits (GMDB), three main types of 

guaranteed living benefits (GLB) exist: guaranteed minimum accumulation benefits (GMAB), 

guaranteed minimum income benefits (GMIB) and guaranteed minimum withdrawal benefits (GMWB). 

GMAB and GMIB offer the policyholder some guaranteed maturity value or some guaranteed annuity 

benefit, respectively, while GMWB allow policyholders to (temporarily or lifelong) withdraw money 

from their account, even after its cash value has dropped to zero. Variable annuities have experienced a 

growth in sales in US and Japan since the 1990s and are also becoming increasingly widespread over 

Europe (cf. EIOPA, 2011). 

The product design of variable annuities usually stipulates that the surrender value of such products 

coincides with the policyholder’s account value (minus surrender charges, if applicable). The “fair 

value” of the guaranteed benefits or the market value of certain hedge assets is typically not part of the 

individual policyholder’s account value and thus, with the usual product design, not part of the surrender 

value. 

The pricing of the guarantees in variable annuities is usually performed under certain assumptions for 

future surrender rates. Such assumptions can be, for instance, deterministic surrender or (typically) path-

dependent surrender (where assumed surrender rates depend on market parameters and/or the value of 

the guarantee). However, the pricing is usually not performed under the assumption of “optimal” 

surrender (in the sense of loss-maximizing behavior from the insurer’s perspective, cf. Azimzadeh et 

al., 2014). This reduces the price of such guarantees since – in simplified terms – future profits the 

insurer expects from sub-optimal policyholder behavior are given to the client by means of a reduced 

price for the guarantee. The possibility to allow for sub-optimal policyholder behavior in pricing and 

hedging of such products is a reason why these (often primarily financial) guarantees can be offered by 

insurers at competitive prices when compared to similar products offered by banks. This opens 

opportunities for institutional investors to purchase such policies in a secondary market at a price that 

exceeds the surrender benefit from policyholders who are willing to surrender their contract. In this 

situation, selling the contract to the institutional investor instead of surrendering it is beneficial for the 

policyholder. After acquiring the contract, the institutional investor then maximizes (optimizes) the 

value of the contract, which typically results in loss-maximizing behavior from the insurer’s perspective. 

Of course, this creates risks for the insurer, most notably the risk that policyholders behave differently 

than assumed. In Kling et al., 2014, the authors have analyzed the resulting risk in detail. 

In this paper, we use their model to additionally analyze a new, regulator-imposed risk that might arise 

in certain insurance markets: The risk arising from Guaranteed Minimum Surrender Benefits (GMSB). 

To analyze this risk, we use different exemplary approaches a regulator might choose for including 

GMSBs in variable annuities. The models result from discussions in Germany where different 

approaches have been discussed among consumer protection organizations, insurance companies and 

the local Actuarial Association. Even though the specific approaches are based on this discussion in 

Germany, the basic intuition behind each model could be introduced in any market.  

Since its revision in 2008, § 169 of the German Insurance Contract Law (Versicherungsvertragsgesetz) 

requires guaranteed minimum surrender values for all insurance contracts where both, in case of death 

or survival, an insurance benefit is paid. For traditional life insurance contracts with an interest rate 

guarantee, the law even prescribes how this guaranteed minimum surrender value has to be calculated: 
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it is given by the prospective policy reserve which is the present value of future benefits. As a discount 

rate, the technical rate used for the calculation of premiums and benefits of the contract has to be applied. 

Therefore, the surrender value does not allow for any kind of adjustments to changing market conditions. 

This in consequence means that the surrender value in general is different from a “fair” market value of 

the contract. In particular, the surrender value will not be reduced if interest rates rise, although both, 

the assets backing the contract and the “fair value” of the contract, would drop. The resulting risk has 

been discussed e.g. in Feodoria & Förstemann, 2015. For unit-linked contracts without guarantees, the 

law requires the surrender value to coincide with the net asset value of the fund. For unit-linked contracts 

with guarantees, however, the law is not very clear, since it uses the term “time value” of the contract, 

which is not properly defined. 

In particular, the question if and how this law has to be applied to guaranteed minimum benefits in 

variable annuities is controversially discussed. We consider four different potential interpretations of 

the law: First, there is a group of legal experts stating that the corresponding section of the insurance 

contract law defining guaranteed minimum surrender values is not applicable at all for typical “US-

style” variable annuities. Under this interpretation, the surrender value is given by the policyholder’s 

fund value and neither future guaranteed benefits nor guarantee charges are taken into account. Second, 

since the law uses the word “time value”, some market participants demand that a market-consistent 

value of the contract has to be paid out as surrender benefit. Third, the German Actuarial Association 

(Deutsche Aktuarvereinigung e.V.) has issued a paper introducing an easy-to-implement method that 

could serve as an approximation for this market-consistent value if the value of the guarantee has to be 

considered in the surrender benefit (see Deutsche Aktuarvereinigung e.V., 2011). Note that this paper 

does not give an opinion on the question whether the value of the guarantee has to be considered or not. 

Finally, based on the interpretation of minimum reserves required in the German Insurance Supervisory 

Law (Versicherungsaufsichtsgesetz) given in Herde, 1996, for certain other unit-linked insurance 

products with a maturity guarantee, a minimum reserve for the guaranteed maturity value (which is 

given by the guaranteed maturity value discounted with some technical interest rate) might also have to 

be paid out as a minimum surrender benefit. This technical interest rate is set when the contract is 

concluded and will not change with changing market interest rates – a similar approach as described 

above for traditional life insurance contracts. We therefore consider this minimum surrender benefit as 

a further GMSB-model in our analysis.  

We analyze the effect of the considered GMSB-models on pricing, profitability, and market as well as 

behavioral risk. We particularly consider the effect on an insurer’s profitability if a GMSB is imposed 

after a product has been sold. Furthermore, when assessing policyholder behavior and lapse risk, insurers 

are required to consider activity by institutional investors like hedge funds in a potential secondary 

market (cf. e.g. Central Bank of Ireland, 2010). Therefore, we also investigate the impact of the different 

types of GMSB on a secondary market for variable annuities. To our knowledge, such analyses, in 

particular with respect to variable annuities with regular premium payment, have not yet been 

performed.  

The paper is organized as follows. In Section 2, we present the model framework that we use to conduct 

our analyses, including the modeling of the pool of policies, the assumed hedging strategy of the insurer, 

and, of course, the considered models of the GMSB. In Section 3, we present our numerical results 

regarding the impact of the considered GMSBs on different key figures from the insurer’s perspective, 

such as market risk, sensitivity to changes in surrender rates and the guarantee value of the contract. In 

Section 4 we introduce institutional investors into our model framework. We first present an extension 

of the model given in Section 2 and, subsequently, present numerical results for the extended model. 

Finally, Section 5 concludes. 
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2 Model 

2.1 Product design of the considered variable annuity 

We consider a variable annuity contract that offers the policyholder a Guaranteed Minimum 

Accumulation Benefit (GMAB, see, e.g., Bauer et al., 2008), where the policyholder is entitled to a 

minimum account value 𝐵𝐴,𝑔 at maturity 𝑇 of the contract. We assume all transactions and events within 

the contract to happen at one of the contract anniversary dates, represented by the set  𝒯 =

{𝑡0, 𝑡1, … , 𝑡𝑁}, where 𝑡0 = 0 and 𝑡𝑁 = 𝑇. At these dates, potential premium payments are made by the 

policyholder or benefits are paid out by the insurer in case the policyholder decided to surrender the 

contract, the insured person has died or the contract has matured. 

At a contract anniversary 𝑡 prior to 𝑇, the premium 𝑃𝑡 is paid by the policyholder, provided the contract 

is still active (i.e. the insured person is still alive and the contract has not been surrendered) and the 

policyholder has not decided to surrender the contract at time 𝑡. For a single premium contract, we let 

𝑃0 > 0, 𝑃𝑡 = 0 ∀ 𝑡 > 0. 

The minimum accumulation benefit 𝐵𝐴,𝑔 guaranteed at maturity 𝑇 is defined as a percentage 𝛾 of the 

sum of premiums paid by the policyholder, i.e.  

𝐵𝐴,𝑔 ≔ 𝛾 ⋅ ∑ 𝑃𝑡𝑖

𝑁−1

𝑖=0

 

and the accumulation benefit 𝐵𝐴 is the larger of the account value 𝐹𝑇  and the guaranteed minimum 

accumulation benefit: 

𝐵𝐴 ≔ max(𝐹𝑇 , 𝐵𝐴,𝑔). 

In return for this guarantee, the insurer receives an ongoing guarantee charge as a percentage 𝜂𝑔 of the 

policyholder’s account value. The ongoing administration charges, also deducted from the account 

value, are denoted by the percentage 𝜂𝑎 . Additionally, acquisition and administration charges are 

deducted from each premium payment, denoted by the percentage 𝜂𝑎,𝑢. 

The account value directly after inception is therefore given by 

𝐹𝑡0
≔ 𝑃𝑡0

⋅ (1 − 𝜂𝑎,𝑢). 

At any contract anniversary 𝑡𝑖 ∈ 𝒯 ∖ {𝑡0}, the account value is calculated as 

𝐹𝑡𝑖
≔ (𝐹𝑡𝑖−1

+  𝑃𝑡𝑖−1
⋅ (1 − 𝜂𝑎,𝑢))  ⋅

𝑆𝑡𝑖

𝑆𝑡𝑖−1

⋅ 𝑒−(𝜂𝑎+𝜂𝑔)⋅(𝑡𝑖−𝑡𝑖−1), 

where 𝑆𝑡 denotes the price of one share of the variable annuity’s underlying fund at time t. 

In case of death of the insured, the policyholder receives the stipulated death benefit at the subsequent 

contract anniversary and the contract expires. In what follows, 𝐵𝑡
𝐷 denotes the death benefit paid at 𝑡 ∈

𝒯 and 𝜏𝐷denotes the first contract anniversary after the insured’s death. If  𝜏𝐷 > 𝑇 then the insured is 

still alive at the contract’s maturity. With the considered product design, 

𝐵𝑡
𝐷 ≔ 𝐹𝑡 , ∀ 𝑡 ∈ 𝒯.  
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We assume that the policyholder has the right to (fully) surrender the contract at any time during the 

contract’s lifetime. If the policyholder decides to surrender the contract, the stipulated surrender benefit 

𝐵𝑡
𝑆 is paid out by the insurer at the subsequent date 𝑡 ∈ 𝒯 and the contract expires. 

We assume that the policyholder always waits until a contract anniversary before deciding whether to 

surrender or continue the contract. This implies that the policyholder knows the exact amount of the 

potential surrender benefit before deciding on whether to surrender or not. The date at which the 

policyholder surrenders the contract is denoted by 𝜏𝑆 with 𝑡1 ≤ 𝜏𝑆 ≤ 𝑇. If the policyholder does not 

surrender the contract, we set 𝜏𝑆 = 𝑇. We also let 𝐵𝑇
𝑆 ≔ 𝐵𝐴.  

Note that the contract expires at the time 𝜏̃ ≔ min(𝜏𝐷 , 𝜏𝑆) with 𝑡1 ≤ 𝜏 ≤ 𝑇 and the cash flow to the 

policyholder (or the beneficiaries) is nonzero only at time 𝜏̃ and equals either 𝐵𝜏̃
𝑆 or 𝐵𝜏̃

𝐷. 

2.1.1 Guaranteed minimum surrender benefits 

We consider four different types of guaranteed minimum surrender benefit (GMSB). As explained in 

Section 1, these four approaches are based on ideas discussed in Germany. Since these ideas cover a 

wide range of potential ideas, the results may be of relevance for any market where the introduction of 

GMSBs is discussed. Even if in some market a different GMSB-model is being considered, qualitatively, 

the effects will likely be similar to our results.  

The GMSB at time 𝑡 (before deduction of surrender charges) is denoted by 𝐵𝑡
𝑆,𝑔,𝑗

, where the superscript 

𝑗 ∈ {1,2,3,4} indicates the type of the considered GMSB. In all four cases, the surrender benefit is 

calculated as follows: 

𝐵𝑡
𝑆 ≔ (1 − 𝜂𝑆) ⋅ max(𝐹𝑡 , 𝐵𝑡

𝑆,𝑔,𝑗
),   ∀ 𝑡 ∈ 𝒯 ∖ {𝑡𝑁}, 𝑗 ∈ {1,2,3,4}, 

where 𝜂𝑆 represents a time-constant surrender charge. 

In the first considered case, denoted as “no GMSB”, there is no guaranteed surrender benefit, i.e. 

𝐵𝑡
𝑆,𝑔,1

≡ 0,   ∀ 𝑡 ∈ 𝒯 ∖ {𝑡𝑁}. 

The second case is denoted as “market-rate GMSB”. This model is similar to the approximation for 

the fair value given by the German Actuarial Association. Here, the policyholder receives at least the 

discounted guaranteed accumulation benefit 𝐵̂𝑡
𝐴,𝑔

 that would result if all following premium payments 

𝑃𝑡 were zero, i.e. only premium payments made prior to 𝑡 are considered: 

𝐵̂𝑡
𝐴,𝑔

≔ 𝛾 ⋅ ∑ 𝑃𝑡𝑖
⋅ 𝟏𝑡𝑖<𝑡  

𝑁−1

𝑖=0

, 

where 𝟏𝑡𝑖<𝑡 denotes the indicator function. 

In order to calculate the guaranteed minimum surrender benefit, this hypothetical guaranteed minimum 

accumulation benefit 𝐵̂𝑡
𝐴,𝑔

 is discounted with the then-current market rate and multiplied by the 

probability of the insured to survive until maturity of the contract. Let 𝑍𝑡(𝑇 − 𝑡) denote the price of a 

riskless zero-coupon bond at time 𝑡  with maturity at time 𝑇  and let 𝑞(𝑠, 𝑡)  represent the expected 

percentage of the insured who are alive at time 𝑠 and die within the time interval ]𝑠, 𝑡]. The guaranteed 

minimum surrender benefit is then defined as 

𝐵𝑡
𝑆,𝑔,2

≔ 𝐵̂𝑡
𝐴,𝑔

⋅ 𝑍𝑡(𝑇 − 𝑡) ⋅ (1 − 𝑞(𝑡, 𝑇)),   ∀ 𝑡 ∈ 𝒯 ∖ {𝑡𝑁}. 
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The third version of the GMSB is denoted as “technical-rate GMSB”. This is the model that is based 

on the prospective minimum reserve using a technical interest rate. Here, again the present value of the 

hypothetical guaranteed minimum accumulation benefit 𝐵̂𝑡
𝐴,𝑔

 is used; however, it is now discounted 

with a technical, time-constant rate 𝜉 and again weighted with the survival probability. The guaranteed 

surrender benefit is then defined as 

𝐵𝑡
𝑆,𝑔,3

≔ 𝐵̂𝑡
𝐴,𝑔

⋅ 𝑒−(𝑇−𝑡)⋅𝜉 ⋅ (1 − 𝑞(𝑡, 𝑇)),   ∀ 𝑡 ∈ 𝒯 ∖ {𝑡𝑁}. 

In the fourth design, denoted as “MCV GMSB”, the GMSB is the market-consistent value of the GMAB 

from the insurer’s perspective, i.e. the market-consistent value of the guaranteed minimum accumulation 

benefit less the market-consistent value of the future guarantee charges to be received by the insurer (not 

considering the option to surrender at a future date). As with the previous two types of GMSB, the 

valuation implies that there are no future premium payments. 

In our analyses, this market-consistent value of the GMAB is approximated by the value of a European 

put option on the account value with strike price 𝐵̂𝑡
𝐴,𝑔

 minus the present value of future guarantee 

charges. Both, the guarantee at maturity as well as the future guarantee charges, are weighted with the 

corresponding survival probabilities of the insured. Let 𝐹̂𝑡,𝑠 denote the account value at time 𝑠 assuming 

that since 𝑡 < 𝑠 there were no more premium payments, i.e. 

𝐹̂𝑡,𝑠 ≔ 𝐹𝑡 ⋅
𝑆𝑠

𝑆𝑡
⋅ 𝑒−(𝜂𝑎+𝜂𝑔)(𝑠−𝑡). 

At a contract anniversary 𝑡 ∈ 𝒯, for the purpose of this GMSB, the value of the guarantee is calculated 

as 

𝑉̂𝑡
𝑔

≔ 𝔼𝑄 [
𝐶𝑡

𝐶𝑇
max (𝐵̂𝑡

𝐴,𝑔
− 𝐹̂𝑡,𝑇| t] ⋅ (1 − 𝑞(𝑡, 𝑇)) 

=
𝐹𝑡

𝑆𝑡
⋅ 𝑂𝑡

𝑃 (𝑇 − 𝑡,
𝐵̂𝑡

𝐴,𝑔

𝐹𝑡
⋅ 𝑆𝑡, 𝜂𝑔 + 𝜂𝑎) ⋅ (1 − 𝑞(𝑡, 𝑇)), 

where 𝐶𝑡 denotes the value of the cash account at time 𝑡 and 𝑂𝑡
𝑃(𝑠, 𝐾, 𝜙) denotes the price of a European 

put option on the underlying 𝑆𝑡 with time to maturity 𝑠, strike price 𝐾 and a drain 𝜙 due to charges (that 

are assumed to have the same effect on the option price as a dividend yield). 

At any time 𝑡 ∈ 𝒯, for the purpose of this GMSB, the value of the future guarantee charges deducted 

from the policyholder’s account value, denoted by 𝑉̂𝑡
𝑐, is defined as1  

𝑉̂𝑡
𝑐 ≔ ∑ (

𝜂𝑔

𝜂𝑔 + 𝜂𝑎
⋅ (𝔼𝑄 [

𝐶𝑡

𝐶𝑡𝑖

𝐹̂𝑡,𝑡𝑖
| 𝑡] − 𝔼𝑄 [

𝐶𝑡

𝐶𝑡𝑖+1

𝐹̂𝑡,𝑡𝑖+1
| 𝑡]) ⋅ (1 − 𝑞(𝑡, 𝑡𝑖)) ⋅ 𝟏ti>t) 

𝑁−1

𝑖=1

 

= ∑ (
𝜂𝑔

𝜂𝑔 + 𝜂𝑎
⋅ (𝐹𝑡 ⋅ 𝑒−(𝜂𝑎+𝜂𝑔)(𝑡𝑖−𝑡) − 𝐹𝑡 ⋅ 𝑒−(𝜂𝑎+𝜂𝑔)(𝑡𝑖+1−𝑡)) ⋅ (1 − 𝑞(𝑡, 𝑡𝑖)) ⋅ 𝟏ti>t) 

𝑁−1

𝑖=1

 

                                                      

1 The reasoning behind the term 
𝜂𝑔

𝜂𝑔+𝜂𝑎 is the following (cf. DAV 2011): 𝔼𝑄 [∫ 𝐹𝑠 ⋅ 𝜂𝑔 ⋅
𝐶𝑡

𝐶𝑠
𝑑𝑡

𝑡𝑖

𝑡𝑖−1
| 𝑡] =

𝐹𝑡 ⋅
𝜂𝑔

𝜂𝑔+𝜂𝑎 ⋅ (1 − 𝑒−(𝜂𝑎+𝜂𝑔)(𝑡𝑖+1−𝑡𝑖)).  
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= 𝐹𝑡 ⋅ ∑ (
𝜂𝑔

𝜂𝑔 + 𝜂𝑎
⋅ (1 − 𝑒−(𝜂𝑎+𝜂𝑔)(𝑡𝑖+1−𝑡𝑖)) ⋅ 𝑒−(𝜂𝑎+𝜂𝑔)(𝑡𝑖−𝑡) ⋅ (1 − 𝑞(𝑡, 𝑡𝑖)) ⋅ 𝟏ti>t) .

𝑁−1

𝑖=1

 

The market-consistent value of the GMAB, from the policyholder’s viewpoint, is then 𝑉̂𝑡
𝑔

− 𝑉̂𝑡
𝑐 , which 

is added to the account value 𝐹𝑡 in order to determine the fourth type of considered GMSB: 

𝐵𝑡
𝑆,𝑔,4

≔ 𝐹𝑡 + 𝑉̂𝑡
𝑔

− 𝑉̂𝑡
𝑐 ,   ∀ 𝑡 ∈ 𝒯 ∖ {𝑡𝑁}. 

This GMSB is a representation of an actual (market-consistent) “time value” of the GMAB. However, 

as the surrender benefit is the maximum of the fund value and GMSB less surrender charges, the GMSB 

only increases the surrender benefit if the time value is positive, but does not lead to a reduced surrender 

benefit if the time value is negative. Note also, that the actual liability of the insurer includes future 

premium payments, while this GMSB only considers the sum of premiums paid so far.  

2.2 Pool of policies 

For our analyses on a portfolio level, we assume a pool of policies with identical contract parameters 

with regard to inception and maturity date, guarantee level, charges, etc. We also assume the pool of 

insured to be homogeneous and large enough to justify the application of the law of large numbers such 

that mortality henceforth is only expressed as a percentage of the pool of insured. We denote the number 

of contracts in the considered pool of policies at time 𝑡 by 𝜋𝑡
 . 

 The total number of contracts that expire at time 𝑡𝑖 due to death of the insured person is given by 

𝜋𝑡𝑖

𝐷 ≔ 𝑞(𝑡𝑖−1, 𝑡𝑖) ⋅ 𝜋𝑡𝑖

 . 

The policyholders are assumed to surrender according to deterministic base probabilities, which are 

increased by a factor of 2 if the contract is “out-of-the-money”, i.e. if the contract’s discounted guarantee 

(assuming no future premium payments) is lower than the current surrender benefit. This represents 

policyholders who are not able or willing to “fully optimize” their contract, but will have an increasing 

tendency to surrender their contract if the guarantee appears less valuable.2  

The fraction of policyholders who surrender their contract at the end of the time interval ]𝑡𝑖−1, 𝑡𝑖] is 

given by 

𝑠𝑖
 ≔ {

2 ⋅ 𝑠̃𝑖,   if  𝐵𝑡𝑖

𝑆 > 𝐵̂𝑡
𝐴,𝑔

⋅ 𝑍𝑡𝑖
(𝑇 − 𝑡𝑖)

𝑠̃𝑖,   else                                    
, 

where 𝑠̃𝑖 represent the deterministic base surrender probabilities. The total number of policyholders who 

surrender their contract at time 𝑡𝑖 < 𝑇, is then given by 

π𝑡𝑖

𝑆 = 𝑠𝑖
 ⋅ (𝜋𝑡𝑖−1

 − 𝜋𝑡𝑖

 𝐷). 

In line with the approach in Section 2.1, we model the maturity of the contract as all remaining 

policyholders leaving the pool via “surrender”, i.e. we set 𝜋𝑇
𝑆 = 𝜋𝑡𝑁−1

 − 𝜋𝑡𝑁

𝐷 . 

The number of contracts immediately after 𝑡𝑖  is given by 

𝜋𝑡𝑖

 = 𝜋𝑡𝑖−1

 − 𝜋𝑡𝑖

𝐷 − 𝜋𝑡𝑖

𝑆 . 

                                                      
2 See Section 4 for an extension of this modeling approach, where “optimal” (loss-maximizing) behavior by 

institutional investors is explicitly modeled. 

2 Guaranteed Minimum Surrender Benefits in Variable Annuities

57



 

2.3 Hedging 

We assume the insurer to have a hedging program in place that aims at mitigating the effects the key 

financial risk drivers have on the insurer’s P&L. Guarantee charges from the pool of policies are used 

to finance the hedge portfolio. In return, guarantee payments are taken from the hedge portfolio’s funds. 

At inception, there is no cash flow to or from the hedge portfolio, i.e. 

𝛷𝑡0

𝜋 = 0 

The cash flow 𝛷𝑡𝑖

𝜋 at subsequent dates 𝑡𝑖 ∈ 𝒯, 𝑡𝑖 > 0 is given by 

𝛷𝑡𝑖

𝜋 = − 𝜋𝑡𝑖
⋅ 𝐹𝑡𝑖

⋅
𝜂𝑔

𝜂𝑔 + 𝜂𝑎
⋅ (1 − 𝑒−(𝜂𝑎+𝜂𝑔)(𝑡𝑖−𝑡𝑖−1)) +  𝜋𝑡𝑖

𝑆 ⋅ (𝐵𝑡𝑖

𝑆 − 𝐹𝑡𝑖
) 

If the surrender benefit is less than the account value (due to surrender charges), this is also used for 

financing the hedge portfolio.  

Let 𝛷̃𝑡
𝜋 denote the cash flow at an arbitrary time 𝑡 between inception and maturity, i.e. 0 ≤ 𝑡 ≤ 𝑇, 

𝛷̃𝑡
𝜋 = {

𝛷𝑡
𝜋, if 𝑡 ∈ 𝒯

0, else     
. 

We denote by 𝑉𝑡
𝜋 the market-consistent value at time 𝑡 of the cash flow {𝛷𝑢

𝜋, 𝑢 ∈ 𝒯, 𝑢 > 𝑡}, i.e. the 

value for which the pool’s guarantee-related cash flows at all future dates can be traded. 

In order to replicate the changes in the value of 𝑉𝑡
𝜋  due to movements in the underlying fund and 

changing interest rate environment, we assume a hedging strategy using three hedging instruments and 

the hedge portfolio to be rebalanced on a regular basis. The considered hedging instruments are: cash 

(overnight lending/borrowing), the underlying fund (long/short exposures) and a zero-coupon paying 

bond with the same maturity as the variable annuity contract. 

The value of the hedge portfolio at time 𝑡 is denoted by 𝛹𝑡. We assume the hedge portfolio to start with 

a value of zero, i.e.  

𝛹𝑡0
= 𝛷𝑡0

𝜋 = 0 . 

We assume a simple dynamic hedging strategy that aims at offsetting changes in the value of the pool’s 

liability resulting from changes in the underlying’s price (“Delta”) and shifts in the interest rate structure 

(“Rho”). For an arbitrary time 𝑡, let 𝜆𝑡
𝑆 denote the number of shares of the underlying fund in the hedge 

portfolio, 𝜆𝑡
𝑍 denote the corresponding number of zero-coupon bonds with maturity in 𝑇 and 𝜆𝑡

𝐶 denote 

the sum invested in a cash account. For a rebalancing date 𝑡 , let 𝑠  denote the time when the last 

rebalancing occurred. The value 𝛹𝑡 then calculates as 

𝛹𝑡 = 𝛹𝑠 +  𝛷̃𝑡
𝜋 + 𝜆𝑠

𝐶 ⋅
𝐶𝑡

𝐶𝑠
+ 𝜆𝑠

𝑆 ⋅
𝑆𝑡

𝑆𝑠
+ 𝜆𝑠

𝑍 ⋅
𝑍𝑡(𝑇 − 𝑡)

𝑍𝑠(𝑇 − 𝑠)
. 

At a rebalancing date 𝑡, the weights of the hedge positions in the underlying and the bond, 𝜆𝑡
𝑆 and 𝜆𝑡

𝑍,  

are calculated as follows: 

𝜆𝑡
𝑆 =

𝜕𝑉𝑡
𝜋

𝜕𝑆𝑡
  , 𝜆𝑡

𝑍 =

𝜕𝑉𝑡
π

𝜕𝑟𝑡

𝜕𝑍𝑡(𝑇 − 𝑡)
𝜕𝑟𝑡

  . 
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In the simulation, 𝜆𝑡
𝑆 and 𝜆𝑡

𝑍 are calculated numerically by computing the finite difference with respect 

to changes in the market-consistent value 𝑉𝑡
π.  

The position in cash, 𝜆𝑡
𝐶, is a function of the other two positions: 

𝜆𝑡
𝐶 = 𝛹𝑡 − (𝜆𝑡

𝑆 ⋅ 𝑆𝑡 + 𝜆𝑡
𝑍 ⋅ 𝑍𝑡(𝑇 − 𝑡)). 

We assume that the insurer neither injects nor extracts any money from the hedge portfolio, such that 

the final value of the hedge portfolio, 𝛹𝑇 gives an indication of the insurer’s profit or loss with regard 

to pricing and hedging the contracts’ guarantees. We assume that acquisition and administration charges 

and expenses are not part of this consideration. 

In the following analyses, we will analyze the probability distribution of 𝛹𝑇 and use corresponding 

(risk) measures as indicators for the market risk of the insurer.  

2.4 Financial market model 

For the valuation as well as the simulation, we need to project the price dynamics of the following assets: 

the price of one share of the variable annuity’s underlying fund, 𝑆𝑡; the price of a risk-free (with regard 

to default) zero-coupon bond with time to maturity of 𝜏, 𝑍𝑡(𝜏); the price of the cash account, 𝐶𝑡; and the 

prices of simple put options on the underlying fund, 𝑂𝑡
𝑃(𝜏, 𝐾, 𝜙), where 𝐾 denotes the strike level of the 

respective option and 𝜙 the drain due to charges (or the dividend yield, respectively). 

We use a similar approach and similar model as in Ruez, 2016. However, we use an extension of the 

Black-Scholes model ( Black & Scholes, 1973) with stochastic interest rates via the Cox-Ingersoll-Ross 

model (“CIR”, Cox et al., 1985). Therefore, the dynamics of the market’s state variables under the risk-

neutral measure 𝑄 are given by 

𝑑𝑟𝑡 = 𝜅𝑟
𝑄

(𝜃𝑟
𝑄 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟

𝑄
√𝑟𝑡𝑑𝑊𝑡

𝑄,𝑟, 

𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡𝑑𝑡 + 𝜎𝑆
𝑄𝑆𝑡𝑑𝑊𝑡

𝑄,𝑆  

𝑑𝐶𝑡 = 𝑟𝑡𝐶𝑡𝑑𝑡 

where 𝑊𝑡
𝑄,𝑟

 and 𝑊𝑡
𝑄,𝑆

 are two independent Wiener processes under the risk-neutral measure 𝑄. The fair 

value of a zero-coupon bond can be computed by closed-form formulas given in Cox et al., 1985. The 

value of the put option is approximated via the Black-Scholes formulas with the assumption of 

deterministic interest rates. 

For the real-world simulation used to project the hedging program of the insurer, we use the same system 

of stochastic differential equations for the dynamics under the real-world measure 𝑃, 

𝑑𝑟𝑡 = 𝜅𝑟
𝑃(𝜃𝑟

𝑃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟
𝑃√𝑟𝑡𝑑𝑊𝑡

𝑃,𝑟, 

𝑑𝑆𝑡 = (𝑟𝑡 + 𝜇)𝑆𝑡𝑑𝑡 + 𝜎𝑆
𝑃𝑆𝑡𝑑𝑊𝑡

𝑃,𝑆  

𝑑𝐶𝑡 = 𝑟𝑡𝐶𝑡𝑑𝑡 

where 𝑊𝑡
𝑃,𝑟

 and 𝑊𝑡
𝑃,𝑆

 are two independent Wiener processes under 𝑃. 

3 Numerical results 
In this chapter, we analyze the impact of the considered GMSB on the product’s pricing, expected profit 

and its risk profile with respect to market and lapse risk. The parameters for the interest-rate model used 

for valuation are taken from Bacinello et al., 2011. We use the same set of parameters for the real-world 
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projection – this implies a market that is risk-neutral with regard to interest-rate risk. For the equity 

process, we set the volatility to 10% for both, valuation and real-world projection, and we use 3% for 

the parameter 𝜇 in the real-world projection (as in Kling et al., 2014). Table 1 summarizes the parameters 

used for the market model in the base case (sensitivity analyses follow). 

Parameter Value 

𝑟0, 𝜃𝑟
𝑃 , 𝜃𝑟

𝑄
 0.03 

𝜅𝑟
𝑃 , 𝜅𝑟

𝑄
 0.60 

𝜎𝑟
𝑃 , 𝜎𝑟

𝑄
 0.03 

𝜎𝑆
𝑃 , 𝜎𝑆

𝑄
 0.10 

𝜇 0.03 

Table 1: Market parameters used in the base case. 

The parameters for the variable annuity contract are summarized in Table 2. 

Parameter Value 

𝑇 10 

𝛾 100.0% 

𝜂𝑎,𝑢 5.0% 

𝜂𝑎 1.0% 

𝜂𝑆 1.0% 

Table 2: Contract parameters used in the base case. 

The rebalancing of the hedge portfolio is assumed to happen on a monthly basis. 

We assume the insured person to be 60 years old and male. We use the best-estimate mortality 

probabilities for annuitants given in the DAV 2004R mortality table published by the German Actuarial 

Association (DAV). We assume a base surrender rate of 10% in the first year that is subsequently 

reduced by 1% per year until it reaches 2%, i.e. 

𝑠̃𝑖 = max(2%, 10% − (𝑖 − 1) ⋅ 1%) , 𝑖 = 1,2, … 

For the analyses with regard to surrender risk, we also use scenarios with increased and decreased lapse, 

where the base surrender rates are multiplied by 1.5 and 0.5, respectively, as well as a scenario where 

no surrender occurs at all. 

For the technical-rate GMSB, we use 𝜉 = 1.25%. 

We use 25,000 Monte Carlo paths for the valuations and 10,000 paths for the real-world simulation. 

Within the real-world simulation, we use 1,000 paths to compute the finite differences used in the 

modeling of the hedging program. 

3.1 Impact of the GMSB on contract pricing 

We start our analyses with a comparison of the fair guarantee charges for the four considered GMSBs 

(cf. Section 2.1.1). For the purpose of this analysis, the “fair guarantee charge” is the guarantee charge 

for which the market-consistent value 𝑉0
𝜋 of the variable annuity’s guarantee-related cash flow is zero, 

i.e. at inception of the contract, the value of the guarantee charges coincides with the value of the 

potential guarantee payments. In order to illustrate the sensitivity with regard to lapse, we use the 

different lapse assumptions defined above. 
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Note that in this section, the fair guarantee charge 𝜂𝑔 is calculated under the assumption that the type of 

GMSB is already known at the time the insurer prices the variable annuity, i.e. the product is being 

offered after the GMSB has been required by the regulator.  

Figure 1 shows the fair guarantee charges for a single premium product (left) and a regular premium 

product (right). 

 

Figure 1 Fair guarantee charges for the single-premium product (left) and the regular-premium product (right). 

Even though the fair guarantee charge significantly differs between the single premium and the regular 

premium contract, the pattern with respect to changes in surrender rates and the different types of GMSB 

is similar. 

As expected, if no GMSB is in place, the fair guarantee charge is the lowest for all considered surrender 

assumptions. Under the base-lapse assumption it amounts to 0.48% for a single premium contract and 

1.04% for regular premium payments. Surrender is on average profitable for the insurer and, thus, the 

fair guarantee charge decreases if the likelihood of surrender increases. 

The addition of a GMSB causes surrender to be less profitable for the insurer. Consequently, the fair 

charge increases by roughly 10 bp if a market-rate GMSB is enforced and by 20 bp if a technical-rate 

GMSB is enforced. In case of the MCV GMSB, the fair guarantee charge increases by more than 30 bp. 

Thus, if the regulator imposes a GMSB in order to treat surrendering customers better, the products will 

become more expensive for all customers.  

While a change in surrender assumptions has a considerable impact on the fair guarantee charge if no 

GMSB is in place, this sensitivity is reduced if a GMSB is in place. As a consequence, the “potential for 

mispricing” (by using incorrect surrender assumptions) is the highest if no GMSB is in place. Without 

GMSB, the fair guarantee charge changes by 15 bp for the single premium case and 20 bp for regular 

premiums if surrender rates are increased or decreased. 

In the case of the MCV GMSB, the fair guarantee charge is the highest out of all considered GMSBs 

and almost independent of surrender assumptions. In turn, the potential for mispricing with regard to the 

assumed future surrender rates is fairly low. For the single premium product, the fair guarantee charge 

with surrender is even higher than without surrender. This means that, on average, surrender with this 

GMSB means a loss for the insurer, despite the earned surrender charges. 

3.2 Impact of the GMSB on the guarantee value of existing contracts 

In a next step, we analyze how the value of the variable annuity contract changes if a certain GMSB is 

enforced by the regulator (immediately) after the contract has been sold. For this and all following 

analyses, we assume a fixed guarantee charge of 𝜂𝑔 = 1.0% p.a. for the single premium contract and 
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𝜂𝑔 = 1.5% p.a. for the regular premium contract has been used by the insurer when the contract was 

sold.  

We then analyze the change in the value 𝑉0
𝜋  caused by the introduction of a GMSB. This can be 

interpreted as an immediate loss (in case of an increase of 𝑉0
𝜋) or an immediate profit (in case of a 

decrease of 𝑉0
𝜋) for the insurer caused by the regulatory change. 

Figure 2 shows the value of the guarantee for the single-premium product (left) and for the regular-

premium product (right) assuming a fixed guarantee charge. Here and in all following figures, values 

are given as a percentage of the single premium or the sum of premiums, respectively. 

 

Figure 2 Value of the guarantee for the single-premium product (left) and the regular-premium product (right). 

We first have a look at the results for the base lapse rates. The initial value of the guarantee if no GMSB 

is in place is roughly -2% of the premium for the single-premium contract and roughly -0.65% of the 

sum of premiums for the regular-premium contract. The introduction of a market-rate GMSB 

immediately after the start of the contract causes an increase of the value of the guarantee and hence a 

loss for the insurance company of roughly 0.5% for the single-premium contract and almost 0.2% for 

the regular-premium contract. The loss caused by the introduction of a technical-rate GMSB is twice as 

high while that caused by the introduction of a MCV GMSB is roughly three times as high. 

Thus, requiring GMSBs for business in force can have a significant impact on the insurer’s profitability 

and can in particular immediately wipe out any safety loadings or profit margins.  

The loss caused by the introduction of a GMSB obviously depends on the surrender assumptions used 

when the contract was priced. The higher the assumed surrender rates, the higher the impact of a GMSB 

on the value of the guarantee, which is consistent with the results in the previous section. 

We finally analyze the sensitivity of the value of the guarantee with respect to changes in surrender 

rates, i.e. we consider the immediate loss / profit caused by higher / lower surrender rates. As with the 

fair guarantee charges (cf. Figure 1), the sensitivity to surrender differs significantly between the four 

GMSB models and also between single and regular premium payment. Without GMSB, surrender on 

average is profitable for the insurer. For regular premiums surrender is always profitable although any 

GSMB reduces the profitability. For the single premium product, this changes: if the most valuable 

GMSB, the MCV GMSB, is considered, additional surrender causes a loss for the insurer, i.e. the 

additional value of this GMSB outweighs the surrender charges.  

The difference between single premium and regular premium payments mostly results from the 

calculation of the GMSB in the regular premiums case. For the purpose of calculating the GMSBs, the 

contract is assumed to receive no more premiums after the surrender date. Simply put, if a flat guarantee 
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charge is used, then the guarantee is overpriced for early premiums while it is underpriced for later 

contributions. If future premiums are not considered and the guarantee charge remains the same, the 

contract tends to be overpriced and, thus, often becomes less valuable to the policyholder. This is 

reflected in the value of the MCV GMSB in the regular-premiums case and makes surrender less 

valuable for the policyholder than in the single-premium case.  

3.3 Impact of the GMSB on capital requirements 

In market-based solvency regimes, solvency capital requirements are often calculated as an immediate 

loss resulting from some stress scenario. The above sensitivities can therefore also be interpreted as an 

indication for solvency capital requirement (SCR) for lapse risk, where only the “direction of change” 

(increase or decrease of lapse rates) that causes the highest loss for the insurer has to be considered. 

Additionally, we will now give an indication for the SCR for market risk via the following approach:  

In contrast to e.g. the Solvency II standard formula, where only the risk resulting from an immediate (or 

one year) shock is being considered, we consider a full lifetime projection of the pool of policies in order 

to assess the market risk resulting from the total remaining lifetime of the contracts, cf. Section 164 in 

EIOPA, 2011 in connection with Article 122 of the Directive 2009/138/EC. This includes the risk from 

accumulated hedging errors, particularly hedging errors that occur close to maturity of the contracts. 

We account for the longer time horizon by setting the VaR level at 95% and consider the respective 

percentile of the real-world distribution of the (discounted) profit/loss 
𝛹𝑇

𝐶𝑇
 for the insurer after hedging is 

applied (cf. Section 2.3). We interpret the difference of this 95th percentile and the present value of the 

guarantee 𝑉0
𝜋 as (an indicator for) the SCR for market risk, cf. also Central Bank of Ireland, 2010. 

The resulting number shows how much solvency capital needs to be added on the value of the guarantee 

in order to meet all liabilities until the maturity of the contract with a probability of 95%. 

In Figure 3, we show the surrender sensitivities for lapse risk as well as the considered capital 

requirement for market risk for the single-premium product (left) and for the regular-premium product 

(right). 

 

Figure 3 Surrender sensitivities for lapse risk and capital requirement for market risk for the single-premium product (left) 

and the regular-premium product (right). 

For all considered GSMB models, the SCR for market risk remains below 1% of the sum of premiums. 

While for the regular-premium product market risk is more or less the same for all types of GMSB, it 

increases with the introduction of GMSBs for the single-premium product. This is in line with the 

findings regarding the impact on the guarantee value. For regular-premium products the SCR for market 
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risk is roughly 0.5% of the sum of premiums for all GMSBs. For the single premium product, it 

fluctuates between 0.6% and 0.8% of the single premium. 

The considered SCR for surrender risk overall is smaller, but depends more heavily on the GMSB. 

Again, we can observe that, depending on the GMSB type, the risk of the insurer can lie in either 

increased or decreased surrender. It is worth noting that the risk arising from the introduction of a certain 

GMSB after the product has been sold (see Figure 2) is significantly higher than the considered SCR for 

the risk arising from changes in surrender behavior once a GMSB is in force.  

3.4 Sensitivity to interest rates 

In a next step, we will perform capital market sensitivities. We start with an analysis of the impact of 

lower interest rates on the value of the guarantee and capital requirements. For this, we set 𝑟0, 𝜃𝑟
𝑃 and 

𝜃𝑟
𝑄

 to 1.5% (as opposed to 3.0% in the base case). As with the introduction of the GMSBs, we assume 

that the change happens after the variable annuity has been sold, i.e. the pricing is not adjusted to the 

new interest rate level. This represents a scenario in which, after the variable annuity has been sold with 

the guarantee charge used in the previous sections, the embedded guarantee (and also the modeled 

hedging portfolio) becomes rather valuable. In such a scenario, without a GMSB, it is highly profitable 

for the insurer if the policyholder decides to surrender, since in this case the value of the guarantee 

remains with the insurer. The addition of a GMSB reduces this effect and is thus potentially especially 

harmful for the insurer in such a scenario. 

Figure 4 shows the value of the guarantee for the single-premium product (left) and for the regular-

premium product (right) for low interest rates. In Figure 5, we show surrender sensitivities for lapse risk 

as well as the considered capital requirement for market risk for the single-premium product (left) and 

for the regular premium product (right) for low interest rates.  

 

Figure 4 Value of the guarantee for low interest rates, single-premium product (left) and regular-premium product (right). 
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Figure 5 Surrender sensitivities for lapse risk and capital requirement for market risk for low interest rates, single-premium 

product (left) and regular-premium product (right). 

Obviously, a change of interest rates has a tremendous effect on the results. We can see from Figure 4 

that the value of the guarantee has increased and is now positive, independent of the assumed surrender 

behavior and the GMSB model. This means the present value of future expected guarantee payments 

exceeds the present value of future expected guarantee charges. As such, surrender is highly profitable 

for the insurer. Overall, without a GMSB, the sensitivity with respect to surrender has strongly increased 

in comparison to the base case. While market risk has increased only slightly in comparison with the 

base case and still does not exceed 1% of the sum of premiums, surrender risk can be as high as 1.7% if 

no GMSB is in place. 

As expected, with the higher value of the guarantee, the immediate loss resulting from introducing a 

GMSB also increases. In the case of the single-premium product, the immediate loss from introducing 

the MCV GMSB is roughly 4% of the premium. Also the sensitivity for lapse risk is significantly 

reduced, i.e. from the insurer’s perspective it is now more or less irrelevant if the policyholders do 

surrender or not. This does not hold for regular premiums, again due to the assumption of a contract 

with no more future premium payments. With the other, less valuable, GMSB models, surrender is still 

profitable for the insurer. That means the corresponding guaranteed surrender benefits are below the 

market value of the contract. 

3.5 Sensitivity to equity volatility  

Finally, we perform a similar sensitivity analysis with respect to the equity volatility. We assume the 

equity volatility (i.e. 𝜎𝑆
𝑃  and 𝜎𝑆

𝑄
) to be 12.5% (as opposed to 10.0% in the base case). As with the 

scenario of lower interest rates, we assume the change to happen immediately after the variable annuity 

has been sold with the guarantee charge used in the previous sections. 

Figure 6 shows the value of the guarantee for the single-premium product (left) and for the regular-

premium product (right) for the increased equity volatility. In Figure 7, we show surrender sensitivities 

for lapse risk as well as the considered capital requirement for market risk for the single-premium 

product (left) and for the regular-premium product (right).  
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Figure 6 Value of the guarantee for increased equity volatility, single-premium product (left) and regular-premium product 

(right). 

 

Figure 7 Surrender sensitivities for lapse risk and capital requirement for market risk for increased equity volatility, single-

premium product (left) and regular-premium product (right). 

The value of the guarantee as well as both considered risk indicators increase with higher equity 

volatility. The considered SCR for lapse risk increases more strongly than the SCR for market risk and, 

for some GMSBs, both reach similar levels. 

The immediate loss caused by the introduction of a GMSB increases only slightly but, at the same time, 

sensitivity with respect to surrender increases. Changing volatility, therefore, not only has an impact on 

the insurer’s market risk, but can have an even higher impact on the insurer’s lapse risk. 

4 Impact of a secondary market  
In this section, we analyze the impact of a secondary market with “rational”, i.e. value maximizing, 

investors. We assume that those policyholders who are willing to surrender their contract have the 

possibility to alternatively sell their policy to some institutional investor in the secondary market. After 

purchasing the contract, the investor then acts “rationally”. 

We assume that the presence of a secondary market has not been considered in the pricing of the contract 

and therefore use the same contract and guarantee charges as in Chapter 3. 

4.1 Model description 

We use the model from Section 2 unless stated otherwise in this section.  
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We assume that the pool of policyholders consists of two groups: Policyholders of “type A” behave 

according to the model used in Section 2.2. We denote the number of contracts in this group at time 𝑡 

by 𝜋𝑡
𝐴. 

The policyholders of type “B” are the investors purchasing policies in the secondary market. They will 

surrender their contract as soon as the contract’s continuation value (assumed to be the market-consistent 

value of the contract) drops below the surrender benefit (after deduction of surrender charges). The 

market-consistent value includes the value of all guarantees, i.e. the GMAB as well as the GMSB. From 

the insurer’s perspective these investors represent a worst-case “loss maximizing” behavior (cf. 

Azimzadeh et al., 2014). We denote the number of contracts in this group at time 𝑡 by 𝜋𝑡
𝐵. 

The total number of active contracts at time 𝑡 is therefore given by πt ≔  𝜋𝑡
𝐴 + 𝜋𝑡

𝐵. 

The total number of contracts that expire at time 𝑡𝑖 due to death of the insured person is given by 

𝜋𝑡𝑖

𝐷 ≔ 𝜋𝑡𝑖

𝐴,𝐷 + 𝜋𝑡𝑖

𝐵,𝐷, where 

𝜋𝑡𝑖

∗,𝐷 = 𝑞(𝑡𝑖−1, 𝑡𝑖) ⋅ 𝜋𝑡𝑖

∗  , with ∗ = 𝐴, 𝐵. 

Similarly, let 𝑠𝑖
∗ = 𝑠∗(𝑡𝑖−1, 𝑡𝑖) represent the fraction of policyholders in the sub-pools 𝜋𝑡𝑖−1

𝐴  and 𝜋𝑡𝑖−1

𝐵 , 

respectively, who want to surrender their contract at the end of the time interval ]𝑡𝑖−1, 𝑡𝑖]. 

The policyholders in sub-pool A are assumed to be “willing to surrender” as explained in Section 2.2. 

However, we now assume that there exists a secondary market and a certain percentage 𝜆  of the 

policyholders of type A who are willing to surrender the contract, will instead sell the contract to an 

institutional investor (i.e. a policyholder of type B) if such an investor offers to pay more than the 

surrender benefit. Since an institutional investor would only offer a price exceeding the surrender value 

if the continuation value exceeds the surrender benefit, the number of transitioning contracts, denoted 

by π𝑡𝑖

𝐴→𝐵, then is given by  

π𝑡𝑖

𝐴→𝐵 ≔ {
𝜆 ⋅ 𝑠𝑖

𝐴 ⋅ (𝜋𝑡𝑖−1

𝐴 −  𝜋𝑡𝑖

𝐴,𝐷),   if 𝐵𝑡𝑖

𝑆 < 𝐶𝑉𝑡𝑖

                                 0,   else         
, 

where 𝐶𝑉(𝑡𝑖) represents the market-consistent continuation value of the contract at time 𝑡𝑖 (assuming 

loss-maximizing behavior of the policyholder). Note that, with regard to the pool of policies, surrender 

is assumed to happen right before the next contract anniversary and, thus, only contracts where the 

insured is still alive at the end of the interval can be surrendered. 

The total number of policyholders in sub-pool A that surrender their contract at time 𝑡𝑖 < 𝑇, denoted by 

π𝑡𝑖

𝐴,𝑆
, then is given by 

π𝑡𝑖

𝐴,𝑆 = 𝑠𝑖
𝐴 ⋅ (𝜋𝑡𝑖−1

𝐴 −  𝜋𝑡𝑖

𝐴,𝐷) − π𝑡𝑖

𝐴→𝐵. 

Policyholders in the sub-pool B surrender their contract if and only if the surrender benefit exceeds the 

continuation value: 

𝑠𝑖
𝐵 ≔ {

1,   if 𝐵𝑡𝑖

𝑆 > 𝐶𝑉𝑡𝑖

0,   else               
. 

The total number of policyholders in sub-pool B that surrender their contract at time 𝑡𝑖 < 𝑇, denoted by 

π𝑡𝑖

𝐵,𝑆
, then is given by 
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π𝑡𝑖

𝐵,𝑆 = (π𝑡𝑖−1

𝐵 − π𝑡𝑖

𝐵,𝐷 + π𝑡𝑖

𝐴→𝐵) ⋅ 𝑠𝑖
𝐵. 

The total number of contracts that expire at time 𝑡𝑖 < 𝑇 due to surrender, 𝜋𝑡𝑖

𝑆 ,  then is given by 

𝜋𝑡𝑖

𝑆 ≔ 𝜋𝑡𝑖

𝐴,𝑆 + 𝜋𝑡𝑖

𝐵,𝑆
 

The number of contracts in the two sub-pools immediately after 𝑡𝑖, i.e. after contracts that matured due 

to surrender or death of the insured have left the respective pool, are given by 

 

𝜋𝑡𝑖

𝐴 = 𝜋𝑡𝑖−1

𝐴 − 𝜋𝑡𝑖

𝐴,𝐷 − 𝜋𝑡𝑖

𝐴,𝑆 − 𝜋𝑡𝑖

𝐴→𝐵 and 

𝜋𝑡𝑖

𝐵 = 𝜋𝑡𝑖−1

𝐵 − 𝜋𝑡𝑖

𝐵,𝐷 − 𝜋𝑡𝑖

𝐵,𝑆 + 𝜋𝑡𝑖

𝐴→𝐵. 

4.2 Numerical results 

We use the parameters from Section 3 and set 𝜆 = 0.5 . This means we assume that half of the 

policyholders of pool A who are willing to surrender their contract would rather sell it to an institutional 

investor (if the investor offers a price that exceeds the surrender benefit). For the purpose of calculating 

the loss-maximizing behavior and the corresponding continuation value, we use the Longstaff-Schwarz 

method (cf. Longstaff & Schwartz, 2001 and Bacinello et al., 2011).  

We first compare the value of the guarantee with and without a secondary market. Figure 8 shows the 

value of the guarantee for the single-premium contract without secondary market (left) and with a 

secondary market (right). Figure 9 shows similar charts for the regular-premium contract.  

 

Figure 8 Value of the guarantee for the single-premium contract without secondary market (left) and with secondary market 

(right) 

 

Figure 9 Value of the guarantee for the regular-premium contract without secondary market (left) and with secondary 

market (right) 
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For both, the single premium and the regular premium contract, the value of the guarantee is significantly 

increased by the introduction of a secondary market. This means that – as expected – a secondary market 

can significantly reduce the insurer’s profitability.  

In the single premium case, the introduction of a secondary market leads to an immediate loss of almost 

1% of the sum of premiums for the insurance company if no GMSB is in place. For the market-rate 

GMSB and the technical-rate GMSB, the immediate loss caused by a secondary market is roughly 0.5% 

of the single premium. For all these GMSB models, there are situations where the insurer can profit 

from surrender if no secondary market exists. The introduction of the secondary market reduces these 

profits due to the “rational” behavior of the investor. 

A secondary market can only exist if surrender benefits are lower than the continuation value. Otherwise 

it is not possible to offer the policyholders a price that exceeds the surrender benefit. Since in case of 

the MCV GMSB the surrender value is rather close to the continuation value, the impact of a secondary 

market on the value of the guarantee is much lower.  

For the regular-premium product, the effects are similar but in general less pronounced. An exception 

is the MCV GMSB where (in contrast to the single premium case) the introduction of a secondary market 

has a relatively pronounced effect. This shows that in case of regular-premium payment the MCV 

GMSB does not fully represent the market-consistent value of the whole contract, which is consistent 

to the findings in Section 3.2.  

In Figure 10 we show surrender sensitivities for lapse risk as well as the considered capital requirement 

for market risk for the single-premium contract without secondary market (left) and with secondary 

market (right). Figure 11 shows similar charts for the regular-premium contract. 

 

Figure 10 Surrender sensitivities for lapse risk and capital requirement for market risk for the single-premium contract 

without secondary market (left) and with secondary market (right) 
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Figure 11 Surrender sensitivities for lapse risk and capital requirement for market risk for the regular-premium contract 

without secondary market (left) and with secondary market (right) 

Figure 10 and Figure 11 confirm the effects described above: lapse risk in general decreases if a 

secondary market exists with the exception of the MCV GMSB. 

Also, the investor typically does not surrender in scenarios where the guarantee is valuable and 

(absolute) hedging errors tend to be higher and vice versa. This emphasizes hedging errors and therefore, 

additionally increases market risk in the presence of a secondary market for both considered contracts 

and all considered GMSBs.  

5 Conclusion 
In the present paper, we have analyzed the impact of the introduction of GMSBs to a variable annuity 

contract with a GMAB. We have considered both scenarios: An introduction of GMSBs after a contract 

has been sold as well as offering new contracts in a market with mandatory GMSBs. We have analyzed 

the impact on key figures such as the fair guarantee charge of the contract, the guarantee value of the 

contract, capital requirements with respect to market risk and the sensitivity with regard to surrender 

rates. We found that, while the impact of GMSBs on market risk is relatively low, the impact on the fair 

guarantee charge, the guarantee value and the risk resulting from changes in policyholder behavior is 

substantial.  

If the GMSB model is already known and considered when pricing the contract, the resulting advantage 

for policyholders who surrender the contract comes at the price of increased guarantee charges for all 

policyholders, adversely affecting especially those who keep the contract until maturity. The fair charge 

increases only slightly if a market-rate GMSB is enforced, twice as much if a technical-rate GMSB is 

enforced and roughly three times as much in case of the MCV GMSB. As a consequence, the same 

protection level with regard to old-age provision becomes more expensive when GMSBs are in place. 

If a GMSB is introduced after inception of the contract, e.g. because of a regulatory change, the insurer 

will suffer an immediate loss on its market-value balance sheet. This loss is the highest if a MCV GMSB 

is introduced and the lowest if a market-rate GMSB is introduced. While the value of the contract 

increases with the value added by the GMSB, the sensitivity with regard to surrender rates decreases, 

as, from a valuation perspective, it becomes less important whether policyholders decide to surrender or 

not. As a consequence, the potential for mispricing of the contracts with respect to incorrect surrender 

assumptions is reduced. The market-rate GMSB shows the lowest potential for mispricing with respect 

to surrender assumptions. 

Our analyses with regard to the impact of a secondary market show that, in a market without GMSBs, 

the presence of an institutional investor creates a loss for the insurer and also increases market risk. At 
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the same time, the impact of introducing GMSBs is reduced and the specific design of the GMSB is less 

relevant. On the other hand, if GMSBs are already in place, the potential for a successful secondary 

market is reduced, since the difference between the surrender benefit of a contract and its continuation 

value is typically lower.  

With a GMSB in place, institutional investors less likely are able to offer prices that exceed the surrender 

benefit. On the other hand, after the investor has bought a contract, GMSBs offer them additional value 

that can be exploited by optimized surrender behavior. 

Our results strongly indicate that regulators considering the introduction of mandatory GMSBs should 

carefully analyze the potential impact – also on contracts with different forms of guarantees than the 

simple GMAB guarantee used in this paper. In particular, the following effects should be considered: 

For new business, GMSBs will cause increased guarantee charges for the policyholder. This creates 

redistribution effects from policyholders not surrendering their contract towards surrendering 

policyholders. Imposing mandatory GMSBs also on already existing contracts increases insurers’ risk 

and can have severe adverse effects on insurers’ profitability.  
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ABSTRACT 

Under risk-based regulatory regimes like Solvency II in the EU, the risk profile of a variable annuity 

directly affects the amount of capital that providers are required to hold. Therefore, providers of variable 

annuities not only face the challenge to hedge against changes in the value of embedded guarantees, but 

are also exposed to potential additional capital needs due to changes in their capital requirements. Both, 

the value of embedded guarantees as well as corresponding capital requirements, are dependent on 

market parameters and, thus, subject to changes. 

We analyze the risk profile of a pool of variable annuity policies with Guaranteed Lifetime Withdrawal 

Benefit (GLWB) riders with regard to the pool’s key financial risk drivers: equity returns, implied equity 

volatility and interest rates. In a simulation study, we analyze the effectiveness of different stylized 

hedging programs over a one-year time horizon and compute indicators for risk-based capital 

requirements. The approach we use is comparable to an internal model type approach under Solvency II. 

We also analyze the impact changing market environments have on risk profile, hedge effectiveness and 

capital requirements, similar to a forward-looking analysis in the context of the mandatory Own Risk 

and Solvency Assessment (ORSA) under Solvency II. 

We find that, in addition to the stress from potentially unhedged increases in the value of liabilities, 

changes in the market environment can have a substantial impact on capital requirements. As a result, 

GLWB providers face the risk of increases in their risk-based capital requirements and, thus, the need 

for capital injections – even without pricing errors or malfunctioning of the hedging program. However, 

there are also cases where an increase in the value of liabilities is accompanied by a decrease of capital 

requirements, reducing the overall impact on the provider. 

 

KEYWORDS 

Variable Annuity, Guaranteed Lifetime Withdrawal Benefits (GLWB), Hedge Performance, Risk-Based 

Capital Requirements, Stochastic Interest Rates, Stochastic Equity Volatility 
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1 INTRODUCTION 

Variable annuities with Guaranteed Lifetime Withdrawal Benefit (GLWB) riders provide policyholders 

an opportunity to combine fund investments with a protection against outliving their retirement savings. 

While the savings remain invested in funds, the GLWB gives them the right to lifelong regular 

withdrawals from their account, even after the invested amount is depleted and the account balance 

dropped to zero. Usually, variable annuity providers receive ongoing guarantee charges deducted from 

the policyholder’s account in compensation for this guarantee. In other words, this type of variable 

annuity embeds a variant of ruin-contingent life annuity (cf. Huang et al., 2014), where the guarantee 

provider starts to pay a lifelong annuity as soon as the account value (reduced by pre-defined 

withdrawals) hits zero. Modern GLWB riders typically also include a form of ratchet mechanism, 

through which the guaranteed withdrawal amount may increase during the lifetime of the contract if the 

underlying fund performs well. To counter the financial risks that come with this guarantee, insurers 

and other providers typically implement hedging programs, which aim to mitigate the influence market 

movements and changing market conditions have on the provider’s profit and loss (P&L). 

Hedging programs can be quite effective in mitigating the financial risks inherent in GLWB riders, but 

they usually do not allow for a perfect replication of the changes in the value of liabilities, due to discrete 

rebalancing and other imperfections (cf. Ledlie et al., 2008). Hence, the provider’s P&L with regard to 

its GLWB business remains subject to fluctuations, even if a hedging program is implemented. Since it 

is also not feasible to control for every single influencing market parameter, hedging programs normally 

only aim to control the influence of key risk drivers like the underlying fund’s return, interest rate levels 

and implied equity volatility up to a certain degree. Additionally, policyholder behavior can have a 

substantial impact on the variable annuity provider’s P&L (cf. Kling et al., 2014). As a consequence, 

variable annuity providers face considerable risks and, under risk-based regulatory regimes like 

Solvency II, need to equip their variable annuity business with adequate financial resources in order to 

meet capital requirements. 

In the context of GLWB, while the analysis of the impact of key financial risk drivers on the value of 

liabilities is rather straightforward, it is not entirely clear to which extent this impact transfers to the 

magnitude of the inherent risk and, thus, to the risk-based capital requirements stipulated by a regulator. 

To our knowledge, this has not yet been analyzed in the scientific literature, which is why this paper 

aims to fill this gap by analyzing and illustrating the risk profile and resulting risk-based capital 

requirements in the context of pools of variable annuity contracts with GLWB riders. The approach we 

use is comparable to an internal model type approach under Solvency II and the analyses of the impact 

changing market environments have on the risk profile, hedge effectiveness and capital requirements 

are comparable to forward-looking analyses in the context of the mandatory Own Risk and Solvency 

Assessment (ORSA) under Solvency II. 

The pricing and valuation of variable annuity contracts with guarantees have been studied in great detail, 

with Milvesky & Salisbury, 2006, being the first to analyze the valuation of guaranteed minimum 

withdrawal benefits, and with Bauer et al., 2008, as well as Bacinello et al., 2011, providing general 

frameworks for the valuation of variable annuities with all types of guarantees. Regarding the risk 

management of variable annuities, Cathcart et al., 2015 provide schemes to efficiently calculate the 

“Greeks” of a variable annuity liability via Monte Carlo simulation, while Kling et al., 2011, show that 

it is important to include stochastic volatility in the modeling when assessing the risk inherent in variable 

annuity contracts. The same authors analyze the impact of policyholder behavior on the valuation and 

risk assessment of GLWB (cf. Kling et al., 2014). Forsyth & Vetzal, 2014, present an optimal stochastic 

control framework, in which they analyze the sensitivity of the cost of hedging a variable annuity with 
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GLWB to various economic and contractual assumptions. The hedging costs for variable annuities with 

combined guaranteed lifelong withdrawal and death benefits (GLWDB) is analyzed in Azimzadeh et 

al., 2014, in which the authors also argue that, when analyzing dynamic policyholder behavior from an 

insurer’s perspective, it is better to use the term “loss-maximizing strategy” instead of “optimal 

strategy”. 

The paper is organized as follows. In Section 2, we describe the model framework we use for our 

analysis, including the product design of the considered GLWB (Section 2.1), the modeling of the pool 

of policies (Section 2.2), the used market models  (Section 2.3) and the modeling of the stylized hedging 

programs implemented by the insurer (Section 2.4). Our numerical results are presented in Section 3, 

where we first present the parameters and assumptions used in the numerical modeling of the pool of 

policies in Section 3.1 and present the results of our analysis regarding the risk profile of the modeled 

pool of policies and its sensitivity to different financial risk factors in Section 3.2. The results of our 

simulation study are presented in Sections 3.3 and 3.4, respectively, where we analyze the effectiveness 

of the stylized hedging programs and, based on the distribution of the provider’s resulting P&L, compute 

different indicators for risk-based capital requirements. Finally, Section 4 concludes. 

2 MODEL FRAMEWORK 

In this section, we describe the model used in our analysis of the risk profile of a pool of variable 

annuities with GLWB riders. Mainly, we follow the modeling approach used in Bacinello et al., 2011, 

and Bauer et al., 2008. We consider only two product designs of the GLWB rider: a GLWB rider with 

a ratchet mechanism, i.e. a product design where increases in the guaranteed withdrawal amount are 

possible and are regularly checked for, as well as a GLWB rider without ratchet mechanism. We use the 

product design without ratchet in order to illustrate and extract the effect the considered ratchet 

mechanism of the first product has on the results. We refer the interest reader to Kling et al., 2011, and 

Kling et al., 2014, for a broader analysis of different designs of the GLWB rider. 

Please note that, although we set surrender rates to zero in our computations in Section 3, we still give 

formulas for surrender in this section – for the sake of model completeness and in order to set the basis 

for potential subsequent analyses, where surrender might be considered. The reason we do not consider 

surrender in our computations is that we want to purely focus on the effect financial risk drivers have 

on risk-based capital requirements. Depending on the approach used to model dynamic policyholder 

behavior, results may show effects that are not easily interpretable and that are highly dependent on the 

specific parametrization of the used behavior model (for instance a model where surrender rates are 

modeled as a function of the “moneyness” of the contract). To consider this in our analyses would be 

out of the scope of this paper. However, we refer the interested reader to Forsyth & Vetzal, 2014, and  

Kling et al., 2014, for an analysis of surrender risk, especially due to dynamic and ”loss-maximizing” 

policyholder behavior. 

2.1 VARIABLE ANNUITY CONTRACT 

We consider a sequence of withdrawal (or “calculation”) dates, represented by the points in time (𝑡𝑖)𝑖=0
𝑁 , 

where 𝑡𝑖 ∈ ℝ≥0 and 𝑡0 = 0  represents the inception of the contract. While the number of such 

calculation dates is not limited by means of the contract, it is limited by (the assumption of) a limiting 

age, i.e. an age after which survival is deemed impossible. 
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Let 𝒯 ≔ {𝑡𝑖| 𝑖 = 0, … , 𝑁} denote the set of all calculation dates. On a calculation date after the inception 

of the contract, a potential ratchet mechanism is applied and the policyholder is allowed to withdraw 

money up to a specified amount (the guaranteed withdrawal benefit) from the account without affecting 

the guarantee of the contract. If the withdrawn amount exceeds the guaranteed withdrawal benefit, this 

is interpreted as partial surrender, which usually reduces the guarantee. Also, on a calculation date of 

the contract, a potential surrender of the contract is settled (by payout of the surrender benefit) and, in 

case the insured person has died, a death benefit is paid out to the beneficiaries. 

The value of the policyholder’s account at time 𝑡 is denoted by 𝐹𝑡 , where 𝐹0  represents the initial 

investment amount after deduction of acquisition and other upfront charges, i.e. 𝐹0 is the amount that is 

actually invested in the fund at inception of the contract. The amount of upfront charges (such as 

acquisition charges) is not relevant in our analysis and therefore not explicitly denoted in the formulas. 

For any calculation date 𝑡𝑖−1 , the account value 𝐹𝑡𝑖
 at the following calculation date 𝑡𝑖  (while the 

contract is still in force) is calculated as follows 

𝐹𝑡𝑖
≔ max (0, (𝐹𝑡𝑖−1

− 𝐵𝑡𝑖−1

𝑊 ) ⋅
𝑆𝑡𝑖

𝑆𝑡𝑖−1

⋅ 𝑒−(𝜂 
𝑚𝑐+ 𝜂 

𝑔)⋅(𝑡𝑖−𝑡𝑖−1)), 

where 

- 𝐵𝑡𝑖−1

𝑊  denotes the withdrawal amount paid out to the policyholder at time 𝑡𝑖−1, 

- 𝑆𝑡𝑖−1
 and 𝑆𝑡𝑖

 denote the share prices of the variable annuity’s underlying fund at time 𝑡𝑖−1 or 𝑡𝑖, 

respectively, 

- 𝜂 
𝑚𝑐  denotes the continuously deducted management charge as a percentage of the account 

value, and 

- 𝜂 
𝑔 denotes the continuously deducted guarantee charge as a percentage of the account value. 

We denote the guaranteed withdrawal benefit at time 𝑡 by 𝐵𝑡
𝑊,𝑔

 and, in the case of the product design 

with ratchet, define it as 

𝐵𝑡
𝑊,𝑔

≔ {
𝜔 ⋅ 𝑤𝑏𝑏𝑡 , if 𝑡 ∈ 𝒯, 𝑡 > 0  

0, else      
, 

where 

- 𝜔 is the guaranteed withdrawal rate stipulated at inception, and 

- 𝑤𝑏𝑏𝑡 denotes the “withdrawal benefit base”, which, at a calculation date 𝑡 ∈ 𝒯, 𝑡 > 0, is defined 

as 

𝑤𝑏𝑏𝑡 ≔ max
𝑠∈𝑇,𝑠≤𝑡,𝐹𝑠>0

{𝐹𝑠 + ∑ 𝐵𝑢
𝑊

𝑢∈𝒯,u<s

} .  

The withdrawal benefit base 𝑤𝑏𝑏𝑡  implements the ratchet mechanism of the GLWB rider, i.e. the 

potential for increases of the guaranteed withdrawal amount if the fund performs well. 

In words, the considered ratchet mechanism works as follows: At each calculation date where the 

account value is still positive, the then-current account value and the sum of withdrawals are added; The 

withdrawal benefit base then is defined as the highest of these values in the time span between inception 

and the current calculation date. Thus, the withdrawal benefit base is non-decreasing over time and can 
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only increase as long as the account value is positive – after the account value has fallen to zero no more 

increases of 𝑤𝑏𝑏𝑡 are possible, i.e. the guaranteed withdrawal amount remains the same until the insured 

person’s death. As a consequence, the guaranteed withdrawal amount 𝐵𝑡
𝑊,𝑔

 can only increase and never 

decrease (not considering the effects of partial surrenders on the guarantee). 

Note: an alternative product design to using ongoing guarantee charges that are proportional to the 

account value (i.e. 𝜂𝑔) are ongoing charges that are proportional to the withdrawal benefit base (e.g. 1% 

of the 𝑤𝑏𝑏𝑡, annually), but are still deducted from the account value. This way, the guarantee charges 

received by the insurer are non-decreasing (until the guarantee triggers) and only increase when a ratchet 

occurs. 

With regard to the fund performance needed to trigger an increase of 𝑤𝑏𝑏𝑡, in this product design, the 

fund performance only has to compensate for the charges of the variable annuity contract, but not for 

the withdrawals itself (as long as they remain within the limit of the guaranteed amount 𝐵𝑡
𝑊,𝑔

, which we 

assume to be the case in our analysis). 

In our analysis of the characteristics of a pool of GLWB policies, we also consider an alternative product 

design without a ratchet, in order to illustrate the effect of the considered ratchet mechanism. In this 

case, the withdrawal benefit base remains constant over the lifespan of the contract and takes the value 

of the initial investment: 

𝑤𝑏𝑏𝑡̂ ≔ 𝐹0, 𝑡 ∈  𝒯, 𝑡 > 0. 

All other formulas remain the same for this alternative product design without ratchet. 

With both product designs, we assume the policyholder to always withdraw exactly the guaranteed 

withdrawal benefit, i.e. the highest amount that can be withdrawn without negatively affecting the 

guarantee (in typical product designs the guarantee is reduced proportionally if the withdrawal amount 

exceeds the guaranteed withdrawal benefit). That is, we set 𝐵𝑡
𝑊 = 𝐵𝑡

𝑊,𝑔
 for all 𝑡 ∈ 𝒯, 𝑡 > 0  in our 

analysis. 

The considered variable annuity contract (irrespective of the ratchet mechanism) does not include a 

guaranteed minimum death benefit, but rather pays to the beneficiaries the remaining account value at 

the calculation date following the insured’s death. Therefore, the death benefit 𝐵𝑡
𝐷 at time 𝑡 ∈ 𝒯, 𝑡 > 0 

is defined as 

 𝐵𝑡
𝐷 ≔ 𝐹𝑡 . 

If the policyholder decides to surrender (i.e. “cash out”) the contract, surrender charges apply. The 

portion of the account value corresponding to the guaranteed withdrawal amount at that calculation date 

is not subject to surrender charges. The amount that exceeds the guaranteed withdrawal benefit, 

however, is reduced by a proportional surrender charge 𝜂𝑆. Therefore, the surrender benefit at time 𝑡 ∈

𝒯, 𝑡 > 0, denoted by 𝐵𝑡
𝑆, is given by 

𝐵𝑡
𝑆 ≔ 𝐹𝑡 − max(0, (𝐹𝑡 − 𝐵𝑡

𝑊,𝑔
) ⋅ 𝜂𝑆). 

2.2 POOL OF POLICIES 

For our analyses on a portfolio level, we assume a pool of policies with identical contract parameters 

with regard to inception date, underlying fund, age as well as gender of insured, guarantee, charges, etc. 

3 Analysis of Risk-Based Capital Requirements

78



 

We assume the pool of insured to be homogeneous and large enough to apply the law of large numbers 

such that mortality henceforth is only expressed as percentage of the pool of insured. 

We denote the total number of active contracts within the pool at time 𝑡 by π𝑡
𝐴. 

Let 𝑞𝑖 ≔ 𝑞(𝑡𝑖−1, 𝑡𝑖) represent the percentage of the insured who are alive at time 𝑡𝑖−1 and die within the 

time interval ]𝑡𝑖−1, 𝑡𝑖]. The total number of contracts where the insured person dies within the time 

interval ]𝑡𝑖−1, 𝑡𝑖], denoted by π𝑡𝑖

𝐷  , then is given by 

π𝑡𝑖

𝐷 = πti−1

𝐴 ⋅ 𝑞𝑖. 

Similarly, let 𝑠𝑖
 ≔ 𝑠  (𝑡𝑖−1, 𝑡𝑖)  represent the fraction of policyholders who want to surrender their 

contracts at the end of the time interval ]𝑡𝑖−1, 𝑡𝑖]. The total number of policyholders that surrender their 

contracts at time 𝑡𝑖, denoted by π𝑡𝑖

𝑆  , then is given by 

π𝑡𝑖

𝑆 = (πti−1

𝐴 − π𝑡𝑖

𝐷 ) ⋅ 𝑠𝑖
 . 

Immediately after the calculation date 𝑡𝑖, i.e. after contracts that were surrendered or that ended due to 

the death of the insured have left the pool of policies, the number of active contracts is given by 

 

πti

𝐴 = πti−1

𝐴 − π𝑡𝑖

𝐷 − π𝑡𝑖

𝑆 . 

Cash flow 

From the viewpoint of the insurer, the cash flows from and to the pool of policies with regard to the 

guarantee (the GLWB rider) are as follows.  

In order to define the guarantee charges received by the insurer at a calculation date 𝑡𝑖, we introduce an 

auxiliary variable that defines the hypothetical account value after fund performance, but without 

deduction of charges, denoted by  𝐹̂𝑡𝑖

 
 and given by 

𝐹̂𝑡𝑖
≔ max (0, (𝐹𝑡𝑖−1

− 𝐵𝑡𝑖−1

𝑊 ) ⋅
𝑆𝑡𝑖

𝑆𝑡𝑖−1

). 

Surrender charges are treated as a “contribution” to financing the guarantee, and therefore are counted 

towards the guarantee charges received by the insurer. At a calculation date 𝑡𝑖, the guarantee charges 

𝐺𝑡𝑖

𝐶 received by the insurer from the pool of policies are then given by 

𝐺𝑡𝑖

𝐶 = π𝑡𝑖

𝑆 ⋅ (𝐹𝑡𝑖
− 𝐵𝑡𝑖

𝑆 ) + π𝑡𝑖−1
𝐴 ⋅ (

𝜂 
𝑔

𝜂 
𝑚𝑐 + 𝜂 

𝑔
⋅ (𝐹̂𝑡𝑖

 
− 𝐹𝑡𝑖

)). 

In return, the insurer has to continue the guaranteed withdrawal payments for the lifetime of the insured 

person after the account value has fallen to zero (i.e. the guarantee has triggered). At a calculation date 

𝑡𝑖, the guarantee payment 𝐺𝑡𝑖

𝑃 to be made by the insurer with regard to the pool of policies is given by  

𝐺𝑡𝑖

𝑃 = π𝑡𝑖

𝐴 ⋅ max(0, 𝐵𝑡𝑖

𝑊,𝑔
− 𝐹𝑡𝑖

). 
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2.3 MARKET MODEL, VALUATION AND REAL-WORLD PROJECTION 

Market model 

For our simulation, we need to project the price dynamics of the following assets: the price of one share 

of the variable annuity’s underlying fund, denoted by 𝑆𝑡, the price of a risk-free (with regard to default) 

zero-coupon bond with time to maturity of 𝜏, denoted by 𝑍𝑡(𝜏), the price of the cash account, denoted 

by 𝐶𝑡, and the prices of simple put options on the underlying fund, denoted by 𝑂𝑡
𝑃(𝜏, 𝐾), where 𝜏 is the 

time to maturity and 𝐾 the strike level of the respective option. 

For the valuation of these assets, we use the same system of stochastic differential equations as in 

Cathcart et al., 2015, in which Heston’s stochastic volatility model ( Heston, 1993) is used for the equity 

process and combined with stochastic interest rates via the Cox-Ingersoll-Ross model (“CIR”, Cox et 

al., 1985). Therefore, the dynamics of the market’s state variables under the risk-neutral measure 𝑄 are 

given by 

𝑑𝑉𝑡 = 𝜅𝑉
𝑄

(𝜃𝑉
𝑄 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑉

𝑄
√𝑉𝑡𝑑𝑊𝑡

𝑄,𝑉 , 

𝑑𝑟𝑡 = 𝜅𝑟
𝑄

(𝜃𝑟
𝑄

− 𝑟𝑡)𝑑𝑡 + 𝜎𝑟
𝑄

√𝑟𝑡𝑑𝑊𝑡
𝑄,𝑟

, 

𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
𝑄,𝑆

  

𝑑𝐶𝑡 = 𝑟𝑡𝐶𝑡𝑑𝑡 

where 𝑊𝑡
𝑄,𝑉 , 𝑊𝑡

𝑄,𝑟
 and 𝑊𝑡

𝑄,𝑆
 are Wiener processes under the risk-neutral measure 𝑄. 

We assume the Wiener process 𝑊𝑡
𝑄,𝑟

 of the interest rate process to be independent of the two equity 

processes. The correlation between 𝑊𝑡
𝑄,𝑉

 and 𝑊𝑡
𝑄,𝑆

 is denoted by the correlation factor 𝜌𝑆,𝑉. 

The prices of the bond and the equity option are then given by the following expectations 

𝑍𝑡(𝜏) = 𝔼𝑄 [
𝐶𝑡

𝐶𝑡+𝜏
| 𝑡]  , 

𝑂𝑡
𝑃(𝜏, 𝐾) = 𝔼𝑄 [

𝐶𝑡

𝐶𝑡+𝜏
max(0, 𝐾 − 𝑆𝑡+𝜏)| 𝑡]. 

Within our simulation, the bond price 𝑍𝑡(𝜏) is calculated via the formulas given in Cox et al., 1985. For 

the Heston stochastic volatility model, Heston, 1993, found a semi-analytical solution for pricing 

European call and put options using Fourier inversion techniques. In our analyses, we use the numerical 

scheme proposed in Kahl & Jäckel, 2005, with the approximation that the interest rates are assumed to 

be deterministic when pricing the put option used for hedging. 

Valuation 

In order to determine the value of liabilities, we assume a market-consistent valuation of the guarantee 

within the considered pool of policies. We define this value of liabilities at time 𝑡, denoted by 𝑉𝑡
π, as the 

difference between the expected present value of future guarantee payments made by the insurer and the 

expected present value of future guarantee charges to be received by the insurer, i.e. 

𝑉𝑡
π ≔ 𝔼𝑄 [ ∑

𝐶𝑡

𝐶𝑠
𝑠∈𝒯,s>t

(𝐺𝑠
𝑃 − 𝐺𝑠

𝐶)|  𝑡]. 
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In our simulation, this expectation is approximated via Monte Carlo estimation, using the QE scheme 

developed by Andersen, 2008. See Chan & Joshi, 2013, for a further development of this scheme, 

allowing for long-stepping intervals. However, as we consider weekly rebalancing of the hedge 

portfolio, this would be not beneficial for our simulation. 

Real-world projection of the market 

In our simulation, we project the state of the market over time under the real-world measure 𝑃. The state 

of the market at time 𝑡 is given by the set of state variables (𝑉𝑡, 𝑟𝑡, 𝑆𝑡 , 𝐶𝑡). For this set of state variables, 

we assume the dynamics under the real-world measure 𝑃 to be 

𝑑𝑉𝑡 = 𝜅𝑉
𝑃(𝜃𝑉

𝑃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑉
𝑃√𝑉𝑡𝑑𝑊𝑡

𝑃,𝑉 , 

𝑑𝑟𝑡 = 𝜅𝑟
𝑃(𝜃𝑟

𝑃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟
𝑃√𝑟𝑡𝑑𝑊𝑡

𝑃,𝑟, 

𝑑𝑆𝑡 = (𝑟𝑡 + 𝜇)𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
𝑃,𝑆  

𝑑𝐶𝑡 = 𝑟𝑡𝐶𝑡𝑑𝑡 

where 𝑊𝑡
𝑃,𝑉 , 𝑊𝑡

𝑃,𝑟
 and 𝑊𝑡

𝑃,𝑆
 are Wiener processes under 𝑃. 

The correlation structure between the Wiener processes is assumed to be identical under both measures.  

2.4 HEDGING 

We assume the insurer to have implemented a dynamic hedging program in order to mitigate the 

financial risk resulting from the GLWB rider within the pool of policies. The hedge portfolio is assumed 

to consist of four instruments that are regularly reallocated: units of the underlying fund, put options on 

the underlying fund, zero-coupon paying bonds, and a cash position. Each position may be long (positive 

weight) or short (negative weight). The respective weights are determined according to the Greeks of 

the pool of policies, i.e. derivatives of 𝑉𝑡
π with regard to different variables. 

Note that this means we ignore basis risk, i.e. the variable annuity’s underlying fund and the equity 

indices used within the hedging program are assumed to be the same or to be at least perfectly correlated. 

At each hedging (or rebalancing) date, existing bonds in the portfolio are sold and replaced with zero-

coupon paying bonds that have a time to maturity of 𝑑𝑍. Similarly, put options in the portfolio are sold 

and replaced with “new” put options that have a strike price of 100% of the then-current spot price (i.e. 

𝐾𝑡 = 𝑆𝑡) and a time to maturity of 𝑑𝑂. 

The hedge portfolio’s value at time 𝑡 is denoted by 𝛹𝑡 . The inflows into the hedge portfolio are given 

by the guarantee charges paid by the pool of policies, 𝐺𝑡
𝐶, and its outflows by the guarantee payments 

𝐺𝑡
𝑃. We assume the hedge portfolio’s value to be zero at inception, i.e. we set 𝛹0 = 0. 

The weights of the hedge portfolio are calculated as follows, where 𝜆𝑡
𝑆 denotes the number of fund 

shares, 𝜆𝑡
𝑍  the number of zero-coupon bonds, 𝜆𝑡

𝑂  the number of options and 𝜆𝑡
𝐶  the amount that is 

invested in the cash account: 
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𝜆𝑡
𝑂 =

𝜕𝑉𝑡
π

𝜕𝑉𝑡

𝜕𝑂𝑡
𝑃(𝑑𝑂 , 𝐾𝑡)

𝜕𝑉𝑡

, 

𝜆𝑡
𝑆 =

𝜕𝑉𝑡
𝜋

𝜕𝑆𝑡
−  𝜆𝑡

𝑂 ⋅
𝜕𝑂𝑡

𝑃(𝑑𝑂 , 𝐾𝑡)

𝜕𝑆𝑡
, 

𝜆𝑡
𝑍 =

𝜕𝑉𝑡
π

𝜕𝑟𝑡

𝜕𝑍𝑡(𝑑𝑍)
𝜕𝑟𝑡

− 𝜆𝑡
𝑂 ⋅

𝜕𝑂𝑡
𝑃(𝑑𝑂 , 𝐾𝑡)

𝜕𝑟𝑡

𝜕𝑍𝑡(𝑑𝑍)
𝜕𝑟𝑡

, 

𝜆𝑡
𝐶 = 𝛹𝑡 − (𝜆𝑡

𝑆 ⋅ 𝑆𝑡 + 𝜆𝑡
𝑍 ⋅ 𝑍𝑡(𝑑𝑍) + 𝜆𝑡

𝑂 ⋅ 𝑂𝑡
𝑃(𝑑𝑍, 𝐾𝑡)). 

While it is used for controlling (implied) volatility risk, the option also gives exposure to the other two 

considered risk factors, the fund price 𝑆𝑡 and the short rate 𝑟𝑡. Therefore, with the amount of options in 

the hedge portfolio, 𝜆𝑡
𝑂, being calculated such that the current sensitivity of 𝑉𝑡

π to volatility is matched, 

𝜆𝑡
𝑆 and 𝜆𝑡

𝑍 have to be calculated considering the exposure already attained via the options in order for 

the hedge portfolio to match the current sensitivity of 𝑉𝑡
π to 𝑆𝑡 and to 𝑟𝑡, respectively. 

The derivatives of 𝑉𝑡
π are approximated via the “bump and revalue” approach (cf. for instance Cathcart 

et al., 2015), where we use the central finite difference with regard to the fund price 𝑆𝑡, and the forward 

and backward finite difference for 𝑉𝑡 and 𝑟𝑡, respectively. The same approach is used for the derivatives 

of the option value. 

3 NUMERICAL RESULTS  

In order to understand the risk profile of a pool of GLWB policies, it helps to analyze the inherent 

guarantees with regard to their sensitivity to several influencing factors, such as valuation assumptions, 

market movements, policyholder behavior and demographic risks like longevity. In our analyses, we 

focus on the purely financial risk drivers equity returns, equity (implied) volatility and interest rates. 

First, we present the parameters and assumptions used in the subsequent analyses in Section 3.1. In 

Section 3.2, we present the results of an analysis of the “Greeks” of 𝑉𝑡
π, i.e. the sensitivity of the value 

of liabilities to the considered financial risk drivers. In Section 3.3, we analyze the risk profile of the 

pool of policies by means of a simulation study and compute indicators for corresponding capital 

requirements with regard to the inherent market risk. How this risk profile and, thereby, capital 

requirements change with variations of interest and volatility levels is analyzed in Section 3.4.  

3.1 PARAMETERS AND ASSUMPTIONS 

For the remainder of this section, we use the following parameters and assumptions, unless stated 

otherwise. 

Market parameters 

Table 1 gives the values of the parameters used for the market model – for valuation purposes under the 

risk-neutral measure 𝑄 as well as the parameters used for the real-world projection (under the measure 

𝑃) of our risk analysis. The parameters under 𝑄 are those used by Bacinello et al., 2011, which we also 
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use for the parameters of the real-world projection – this implies the assumption of a market that is risk-

neutral with regard to interest-rate risk as well as equity volatility risk. The parameter 𝜇 for the equity 

process under 𝑃 is chosen similar to Kling et al., 2014. 

Parameter Value 

𝑟0, 𝜃𝑟
𝑃, 𝜃𝑟

𝑄
 0.03 

𝜅𝑟
𝑃 , 𝜅𝑟

𝑄
 0.60 

𝜎𝑟
𝑃 , 𝜎𝑟

𝑄
 0.03 

𝑉0, 𝜃𝑉
𝑃, 𝜃𝑉

𝑄
 (0.2)2 

𝜅𝑉
𝑃 , 𝜅𝑉

𝑄
 1.50 

𝜎𝑉
𝑃 , 𝜎𝑉

𝑄
 0.40 

𝜌𝑆,𝑉 −0.70 

𝜇 0.03 
Table 1: Values of the market and simulation parameters used in the base-case simulation. 

Contract parameters 

The assumptions regarding the parameters of the variable annuity contract are stated in Table 2. We use 

annual calculation dates in our analysis, i.e. the set 𝒯 represents anniversaries of the contract’s inception 

date.  

Parameter Value 

𝜂 
𝑚𝑐 1.50% 

𝜂 
𝑔 1.00% 

𝜔 3.25% 
Table 2: Values of the product parameters used in the simulation. 

Compare the results shown in Figure 3 in the following section for the relationship between the value 

of future guarantee charges (influenced by 𝜂𝑔) and the value of future guarantee payments (influenced 

by 𝜔). As we do not consider surrender in our analysis, the value of 𝜂𝑠 is not relevant and therefore not 

given here. Also, neither the initial investment amount of a single contract, 𝐹0, nor the number of active 

contracts at 𝑡 = 0, π0
𝐴 , is relevant, as we state all results as percentages of the pool’s total initial 

investment amount (π0
𝐴 ⋅ 𝐹0). 

Policyholder behavior and mortality parameters 

As stated in the beginning of Section 2, we assume that no lapses occur in the pool of policies – neither 

for the purpose of valuation of the liabilities nor for the projection of the pool of policies. That is, we 

set 𝑠𝑖
 = 𝑠  (𝑡𝑖−1, 𝑡𝑖) = 0 for all 𝑖 = 1, … , 𝑁.  

We also assume the policyholder to withdraw exactly the guaranteed withdrawal amount at each 

withdrawal date, i.e. we assume there is neither partial surrender nor any kind of deferral or similar 

delays in withdrawals (withdrawals begin immediately at the first withdrawal date 𝑡1, i.e. one year after 

inception).  

Regarding mortality, we use the best-estimate probabilities for both valuation and the projection of the 

pool of policies. The persons insured within the pool of policies are assumed to be male and aged 65 at 

the contract’s inception date. We use the best-estimate probabilities for annuities given in the DAV 

2004R table published by the German Actuarial Association (DAV). The mortality table has a limiting 

age (i.e. the age after which survival is assumed to be impossible) of 121, which leads to a maximum 
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projection horizon of 57 years (122 − 65), which also gives the value of 𝑁, the last index of the 

calculation dates. 

Hedging parameters 

As to the modeling of the hedge instruments, we use 𝑑𝑂 =
3

12
, i.e. 3 months for the option’s term to 

maturity, and 𝑑𝑍 = 10, i.e. 10 years for the bond’s duration. As stated in Section 2.4, the options used 

in the hedging program have a strike set at the spot price of the underlying fund at the time of buying 

them, i.e. they are bought “at the money”. 

In our simulation study, we consider rebalancing of the hedge portfolio (i.e. a hedge frequency) on a 

monthly and a weekly basis, as well as no hedging at all. The latter gives an indication for the capital 

requirements if the hedging program is not considered at all. 

3.2 ANALYSIS OF THE “GREEKS” 

In this first analysis of the risk profile of a pool of variable annuities with GLWB riders, we consider an 

exemplary pool of homogeneous policies and analyze the Greeks of the pool’s value of liabilities at 𝑡 =

0, i.e. 𝑉0
π. We also analyze how these Greeks at inception change if an instantaneous shock is applied 

to the variable annuity’s account value, i.e. if the account value changes a theoretical second after 

inception. This helps to get a better understanding of the pool’s risk profile, as it illustrates how the 

sensitivity of the pool’s value of liabilities changes with market movements. This sensitivity to (market) 

risk factors directly affects risk measures and, therefore, risk-based capital requirements. 

In order to illustrate the impact of the ratchet mechanism that is included in the modeled GLWB rider, 

we also show results for a stylized GLWB rider without a ratchet mechanism, i.e. a GLWB rider whose 

guaranteed withdrawal amount is constant and cannot increase after inception. For this GLWB rider 

without ratchet mechanism, we use the same parameters as given in Table 2, i.e., with the exception of 

the ratchet mechanism, both products are identical. Note also that this means that, in comparison to the 

product with ratchet, the product without ratchet is “overpriced”.  

For all computations in this section, we used 100,000 Monte-Carlo paths under the risk-neutral measure 

𝑄. In Figure 1, we show the expected trigger time of the guarantee (i.e. the contract year in which the 

account value hits zero) as a function of the account value immediately after inception. In other words, 

we analyze the impact an instantaneous shock to the variable annuity’s underlying fund has on the point 

in time when the insurer has to start guaranteed payments. Note that the analyzed expected trigger time 

is an expected value under the risk-neutral measure 𝑄, which is why the values are not to be taken as a 

best estimate, but rather as an explanatory aid to understand the characteristics of the value of liabilities 

and its corresponding risk profile. 

3 Analysis of Risk-Based Capital Requirements

84



 

Expected trigger time of guarantee (Q) – with ratchet 

 

Expected trigger time of guarantee (Q) – without ratchet 

 
Figure 1: Expected trigger time of the guarantee (time of ruin) in years after inception, analyzed in the context of the 

valuation under 𝑄 for different levels of the instantaneous shock applied to the fund value. With a ratchet mechanism as in 

the normal design of the GLWB (left-hand side) and, as variation, without ratchet (right-hand side). 

In the calculation of the expected trigger time, the trigger time of the guarantee is taken into account as 

57 (122 − 65) if the guarantee does not trigger before the insured person reaches the limiting age of the 

mortality table. For the variable annuity without ratchet (right-hand side in Figure 1), the higher the 

account value the later the guarantee triggers, i.e. the later the account value hits zero. For the design 

with ratchet (left-hand side in Figure 1), a higher account value also leads to higher guaranteed 

withdrawal benefits (due to the ratchet mechanism), which counteracts the prolonging effect and leads 

to a “top out” of the expected trigger time at around 23 years. 

In Figure 2, we show similar plots of the value of liabilities and its two components, the value of future 

guarantee payments (to be made by the insurer) and the value of future guarantee charges (to be received 

by the insurer). We also show plots of the derivatives of these values: the derivative with regard to the 

underlying fund’s share price (the Delta) multiplied by the share price (i.e. the “Dollar-Delta” or “EUR-

Delta” of  𝑉0
π), the derivative with regard to the short rate (similar to Rho in the Black-Scholes-Merton 

model) and the derivative with regard to the instantaneous volatility (similar to Vega in the Black-

Scholes-Merton model). All values are stated as a fraction of the initial investment amount, i.e. as a 

percentage of π0
𝐴 ⋅ 𝐹0. 

3 Analysis of Risk-Based Capital Requirements

85



 

Value – with ratchet 

 

Value – without ratchet 

 
EUR-Delta – with ratchet 

 

EUR-Delta – without ratchet 

 
Derivative with respect to 𝑟𝑡 – with ratchet 

 

Derivative with respect to 𝑟𝑡 – without ratchet 

 
Derivative with respect to 𝑉𝑡  – with ratchet 

 

Derivative with respect to 𝑉𝑡  – without ratchet 

 
Figure 2: Value and “Greeks” at 𝑡 = 0 as a function of the instantaneous shock applied to the account value. Charts on the 

left-hand side show the results for a GLWB design with a ratchet mechanism and charts on the right-hand side results for a 

GLWB design without ratchet (for comparison purposes). Values are stated as a fraction of the initial investment amount. 

Note that Figure 2 shows values as liabilities, i.e. future guarantee charges have a negative value, as they 

represent future earnings of the insurer. Intuitively, if the account loses value, the value of liabilities 

increases. When the account value increases, however, it is not intuitively clear what happens, as now 

the GLWB’s ratchet comes into play. Without a ratchet mechanism, the value of liabilities would strictly 

decrease, as future guarantee payments become less likely and future guarantee charges become more 

valuable. With a ratchet in place, however, positive fund returns can potentially lead to increases in the 
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value of future guarantee payments, due to an increase in the guaranteed withdrawal amount. Which of 

these two effects dominates the value of liabilities depends on several factors, including the pricing and 

the design of the GLWB rider, as well as other factors relevant for the valuation, e.g. interest rates and 

volatility. In the considered case, the value of future guarantee charges increases faster than the value of 

future guarantee payments. As a result, the total value of liabilities slightly decreases if the fund value 

increases. 

For the GLWB rider without ratchet, the EUR-Delta of the guarantee payments is similar to the EUR-

Delta of a simple put option. For the GLWB rider with a ratchet, however, the EUR-Delta of the 

guarantee payments becomes positive if the account value increases, reflecting the increase in value 

caused by the ratchet mechanism. In comparison, the ratchet also causes the value of future guarantee 

charges to increase (from the insurer’s perspective) less with higher account values, because over time, 

higher account values are also reduced by higher future withdrawal amounts. Therefore, the EUR-Delta 

of future guarantee charges is less pronounced for the rider with ratchet. Also, for the product with 

ratchet, the EUR-Delta of future guarantee charges more or less counter-balances the EUR-Delta of 

future guarantee payments for higher account values, resulting in a total EUR-Delta of near zero in good 

scenarios (as opposed to the product without ratchet, where the total EUR-Delta in good scenarios is 

dominated by the sensitivity of the value of future guarantee charges). The increase in value caused by 

the ratchet mechanism is also visible in the sensitivity to the short rate and the instantaneous volatility: 

in both cases, there is a slight increase in sensitivity at the positive end of the considered fund shocks. 

For both riders, the sensitivity to the short rate sharply increases with increasing “moneyness” of the 

guarantee, i.e. with declining account values. This is also similar to the pattern of the Rho of a simple 

put option. An adverse market movement therefore causes a simultaneous increase in the exposure to 

interest rate risk – and therefore likely an increase in corresponding risk-based capital requirements. 

However, in the base position with an unchanged account value, the sensitivity to the short rate seems 

rather low. This may also be due to the choice of parameters for the interest-rate model, where lower 

values for the speed of mean-reversion or higher interest-rate volatility could lead to significantly higher 

sensitivities to the short rate. 

The sensitivity of the value of liabilities to the instantaneous volatility shows the typical pattern of a 

bump around the “strike” of the guarantee. The sensitivity to the instantaneous volatility is similar for 

both considered riders if the account loses more than 50% (i.e. for shocks between -100% and -50%) 

but changes as soon as the likelihood for the ratchet having an effect increases, with the design with 

ratchet showing a much more pronounced sensitivity to volatility. This is in line with the findings in 

Kling et al., 2011, in which the impact of stochastic volatility on different product designs is analyzed. 

Also, for the rider with ratchet, the value of future guarantee charges shows a change of sign, causing 

an overall even higher sensitivity to volatility of the value of liabilities for moderate to positive shocks 

of the account value. 

Figure 3 shows a similar analysis, but now, instead of the account value, the GLWB’s guaranteed 

withdrawal rate 𝜔 is changed.  

3 Analysis of Risk-Based Capital Requirements

87



 

Value – with ratchet 

 

Value – without ratchet 

 
Figure 3: Value (as fraction of the initial investment amount) at 𝑡 = 0 for different levels of the guaranteed withdrawal rate 

𝜔.With a ratchet mechanism as in the normal design of the GLWB (left-hand side) and as a variation without ratchet (right-

hand side). 

Finding the level of 𝜔 for which the total value is (close to) zero is typically part of the pricing process. 

For instance, at a guaranteed withdrawal rate of 3.25%, the total value of liabilities (from the insurer’s 

perspective) amounts to -0.8% of the initial investment for the GLWB with ratchet, where the value of 

future guarantee payments of 9.2% is (more than) compensated by the value of future guarantee charges 

of -10.0%. This guaranteed withdrawal rate, 𝜔 = 3.25%, is the pricing assumption used in the following 

analyses of the risk profile (cf. Table 2). 

Of course, the value of the guaranteed payments is zero if 𝜔 is zero. For positive values of 𝜔, the impact 

of the ratchet is clearly visible: the value of future guarantee payments increases much faster if the 

GLWB has a ratchet mechanism. This results from the withdrawal rate affecting two components at 

once: the minimum guaranteed withdrawal amount at inception and the amplitude of potential future 

increases of the guaranteed withdrawal amount due to the ratchet. Note that with the considered ratchet 

design (cf. Section 2.1), the fund performance only has to compensate for charges, not for withdrawals 

(within the guaranteed limit), and, thus, the impact of higher withdrawal rates on the potential for future 

ratchets is reduced. 

3.3 ANALYSIS OF RISK PROFILE AND CAPITAL REQUIREMENTS 

In this section, we analyze the distribution of the insurer’s one-year P&L with regard to the modeled 

pool of GLWB policies. Using this distribution, we calculate risk metrics and, thereby, indicators for 

risk-based capital requirements, as, for instance, stipulated under Solvency II (99.5%-Value-at-Risk on 

a one-year basis) or the Swiss Solvency Test (99%-Tail-Value-at-Risk, also on a one-year basis). Using 

the results for the 99.5%-Value-at-Risk, our approach is comparable to a Solvency II internal model 

type approach (cf. e.g. Central Bank of Ireland, 2010). 

We assume different levels of consideration of the insurer’s hedging program, ranging from no credit at 

all (i.e. no allowance of the risk-mitigating effect of future hedging), over hedging with monthly 

rebalancing to weekly reallocations of the hedge portfolio. In reality, the “Future Trading Offset”, i.e. 

the difference in capital requirements calculated without and with (full) consideration of the risk-

mitigating effect of future hedging, is likely not allowed to be fully applied when calculating the capital 

requirements. Instead, it will likely only be partially considered, taking into account (amongst others) 

the effectiveness of the hedging program (considering e.g. basis risk) and how close to reality the 

modeling of the hedging program is (cf. e.g. Central Bank of Ireland, 2010). 

We used 10,000 runs (paths) under the real-world measure 𝑃 for each simulation in this section. Within 

each of these 10,000 real-world paths, we used 10,000 risk-neutral paths under the measure 𝑄 in order 
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to re-evaluate the liabilities at the end of the one-year projection as well as 1,000 risk-neutral paths for 

the calculation of the Greeks at each rebalancing date of the modeled hedging program. We only 

consider the product design with a ratchet mechanism in this analysis. 

Distribution of the present value of liabilities 

First, we have a look at the distribution of the (discounted) one-year change of the value of liabilities, 

stated as a fraction of the initial investment amount, i.e. the pool’s assets under management at the 

beginning of the year. In formal terms, we look at the distribution of 

𝐶0
𝐶1

𝑉1
π − 𝑉0

π

π0
𝐴 ⋅ 𝐹0 

. 

Figure 4 shows scatter plots in which this one-year change is plotted against the fund’s one-year return, 
𝑆1

𝑆0
− 1 , the short rate at the end of the year (𝑟1), and the instantaneous volatility at the end of the year 

(√𝑉1), respectively. 
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Change of the value of liabilities  

 
Change of the value of liabilities  

 

Change of the value of liabilities  

 

Figure 4: Scatter plots of the discounted absolute change (as percentage of the investment amount at the beginning of the 

year) of the present value of liabilities (value of future guarantee payments minus future guarantee charges) as a function of 

the one-year fund return, the short rate at the end of the year and the instantaneous volatility, also at the end of the year. 

10,000 paths of the base-case simulation. 

Of course, the value of liabilities is strongly affected by the underlying fund’s one-year return, with a 

maximum increase of around 30% of the initial AuM in the worst path. The value is strictly decreasing 

with respect to positive fund returns and shows the same pattern as in Figure 2.  

In comparison, the short rate at the end of the year, 𝑟1, seems to have a negligible effect, as there is no 

clear influence of 𝑟1 on the level of changes – the higher levels of changes around the mean-reversion 

level of 3% can be explained by the majority of the runs lying in that area. This is in line with the results 

in Section 3.2, where, at inception, the sensitivity of the value of liabilities to the short rate is rather low 

– as long as the fund value hasn’t decreased significantly. Also, note that, while the negative correlation 

between equity returns and instantaneous volatility has a systematic cumulative effect on risk, the 

Wiener process of the short rate is independent of the other two and, thus, there is no similar cumulative 

effect with equity returns and the short rate. 

Ceteris paribus, the higher the volatility, the higher the value of liabilities – the derivative with respect 

to the instantaneous volatility is non-negative, irrespective of the current account value (see Figure 2). 
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This dependence is also visible in the scatter plot against the instantaneous volatility at the end of the 

year, i.e. against √𝑉1 . Another contributing factor is the modeled negative correlation between the 

instantaneous volatility and equity returns, which increases both, the dependence between the value of 

liabilities and the instantaneous volatility at the end of the year as well as the dependence between the 

value of liabilities and the fund’s one-year return. 

Next, we analyze how well the modeled hedging programs are capable of replicating the observed 

changes in the value of liabilities. 

Hedge performance 

In order to assess the hedge performance, we look at the (discounted) P&L at the end of the projected 

year, stated as a percentage of the pool’s assets under management at the beginning of the year. We 

denote this value by 𝛱0,1 and define it as follows: 

𝛱0,1 ≔

𝐶0
𝐶1

(𝛹1 − 𝑉1
𝜋) − (𝛹0 − 𝑉0

𝜋)

π0
𝐴 ⋅ 𝐹0

. 

This means that 𝛱0,1 is the (discounted) net P&L at the end of the projection year, i.e. the (discounted) 

change of the difference in value of the hedge portfolio and the value of liabilities (as a percentage of 

the initial AuM). 

We also look at the absolute discounted change of the hedge portfolio separately, i.e. we consider the 

value 

𝐶0
𝐶1

𝛹1 − 𝛹0

π0
𝐴 ⋅ 𝐹0

. 

We assume two different rebalancing frequencies of the hedging program: monthly and weekly. We 

also consider the resulting P&L if no hedging program is in place or the existing hedging program is not 

recognized for the purpose of calculating the risk-based capital requirements. 
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Weekly rebalancing 

Figure 5 shows scatter plots of the one-year change in the value of the hedge portfolio with assumed 

weekly rebalancing of the hedge portfolio (left-hand side), as well as the scatter plots for the resulting 

P&L 𝛱0,1 (right-hand side). 

Change of the hedge portfolio's value 

 

P&L 

 

Change of the hedge portfolio's value 

 

P&L 

 

Change of the hedge portfolio's value 

 

P&L 

 

Figure 5: Scatter plots of the discounted absolute change (as percentage of the investment amount at the beginning of the 

year) of the hedge portfolio’s value over the one-year projection (left-hand side) and resulting discounted net P&L (right-

hand side), both as a function of the one-year fund return, the short rate at the end of the year and the instantaneous 

volatility, also at the end of the year. 10,000 paths of the base-case simulation with weekly rebalancing of the hedge 

portfolio. 

The modeled hedging program seems to effectively offset the change of the value of liabilities, resulting 

in no visible dependency between the P&L and the fund’s return. The resulting P&L also does not seem 

to be dependent on the short rate or the instantaneous volatility at the end of the year. 
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Monthly rebalancing 

Figure 6 shows scatter plots of the one-year change in the value of the hedge portfolio with assumed 

monthly rebalancing (left-hand side), as well as the resulting P&L 𝛱0,1 (right-hand side). 

Change of the hedge portfolio's value 

 

P&L 

 

Change of the hedge portfolio's value 
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P&L 

 

Figure 6: Scatter plots of the discounted absolute change (as percentage of the investment amount at the beginning of the 

year) of the hedge portfolio’s value over the one-year projection (left-hand side) and resulting discounted net P&L (right-

hand side), both as a function of the one-year fund return, the short rate at the end of the year and the instantaneous 

volatility, also at the end of the year. 10,000 paths of the base-case simulation with monthly rebalancing of the hedge 

portfolio. 

In comparison to the results for weekly rebalancing, the replication is less accurate, resulting in a broader 

distribution of the P&L. The overall impact of the considered risk factors still seems to be rather limited, 

but the higher variance of the P&L is noticeable when comparing the resulting risk measures (see next 

section). 

No Hedge 

We also analyze the resulting P&L if no hedging program is in place or an existing hedging program is 

not considered in the calculation of the capital requirements. In this case, the change of the hedge 

3 Analysis of Risk-Based Capital Requirements

93



 

portfolio’s (discounted) value is zero in all paths and the net P&L equals the (discounted) negative of 

the change in the value of liabilities (cf. Figure 4). 

Comparison of the P&L distribution and risk measures 

In Figure 7, we have a look at the empirical (cumulative) density functions of 𝛱0,1 for the three different 

modeled hedging programs. 

Cumulative density function of 𝛱0,1 

 

Density function of 𝛱0,1 

 
Figure 7: The (cumulative) density function of the discounted net P&L 𝛱0,1 for all three considered variations of the modeled 

hedging program (weekly rebalancing, monthly rebalancing and no hedging at all). Based on 10,000 paths of the base-case 

simulation. 

For the hedging programs with weekly and monthly rebalancing, most of the distribution’s mass is 

located between -2% and +2%, with the monthly rebalancing showing a higher deviation than the weekly 

rebalancing. If no hedging program is considered, around 10% of the paths result in a P&L of less than 

-3%, whereas most of the paths seem to result in a P&L that is located around +2%. 

These patterns can also be found in the results shown in Table 3, in which (risk) measures of 𝛱0,1, 

including the value-at-risk (VaR) and the conditional-value-at-risk (CVaR), are shown. 

Characteristics of 𝜫𝟎,𝟏 Weekly Hedge Monthly Hedge No Hedge 

mean 0.1% 0.1% 0.3% 

median 0.1% 0.1% 1.3% 

standard deviation 0.4% 0.8% 2.8% 

VaR99.5% 1.2% 2.1% 16.0% 

CVaR99.5% 1.4% 2.5% 20.2% 

VaR95% 0.5% 1.1% 5.0% 

CVaR95% 0.8% 1.6% 9.3% 

VaR90% 0.3% 0.7% 2.6% 

CVaR90% 0.6% 1.2% 6.5% 

VaR99.5% + 𝑽𝟎
𝛑 0.4% 1.3% 15.2% 

Table 3: Risk measures of the discounted net P&L, 𝛱0,1, for all three considered variations of the modeled hedging program 

(weekly rebalancing, monthly rebalancing and no hedging at all). Based on 10,000 paths of the base-case simulation. 

Depending on the chosen risk measure, the difference between monthly and weekly rebalancing makes 

up to a factor equal or greater than 2 (for a confidence level of 90% or 95%, respectively) and around 

1.75 for a confidence level of 99.5%. If no hedging program is considered, the risk measures are, of 

course, considerably increased. If we use the results for no hedging as a benchmark to compute a 

measure of hedge effectiveness, we obtain – using the value-at-risk at a confidence level of 99.5% – a 

hedge effectiveness of 93% for the weekly hedge ( 
16.0% − 1.2%

16.0%
, cf. Morrison & Tadrowski, 2015) and 

87% ( 
16.0% − 2.1%

16.0%
)  for the monthly hedge. 
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With regard to risk-based capital requirements, the results mean that – depending on the allowance of 

the risk-mitigating effect of future hedging – the insurer would be required to hold additional 1.2% to 

16.0% of the initial investment amount as capital for the considered market risks (using the value-at-

risk at a confidence level of 99.5%). If the rebalancing of the hedging program is only considered on a 

monthly basis (for instance due to delays in trading or an otherwise slow reaction time), the capital 

requirements are almost doubled in comparison to weekly rebalancing. Note that these measures only 

consider the three purely financial risk drivers equity returns, interest rates and equity implied volatility 

– the results, thus, only represent a part of the total capital requirements for all relevant risks. 

We also give the sum of the value-at-risk at a level of 99.5% and the value of liabilities (𝑉0
π) in the last 

row of Table 3, in order to provide a better understanding of the total impact on the balance sheet of the 

insurer – this will be relevant in the next section, where – in order to gain a better understanding how 

the results are influenced by the parameter assumptions made in Section 3.1 – we conduct similar 

analyses for different assumptions regarding the interest-rate level as well as the level of equity 

volatility. 

3.4 IMPACT OF INTEREST RATE AND VOLATILITY LEVELS ON THE RISK PROFILE 

After inception of the variable annuity, the insurer usually aims to offset the changes of the value of 

liabilities via a hedging program. However, even if a well-functioning hedging program – that is able to 

effectively offset the changes of the value of liabilities – is in place, the insurer still faces the risk of 

having to increase its capital resources due to changes in risk-based capital requirements, driven by 

changes in market parameters. Therefore, we analyze how the indicators for risk-based capital 

requirements examined in the previous section change with different levels of interest rates and 

volatility. 

We consider four variations of the market environment: higher and lower interest, as well as higher and 

lower equity volatility. In all four considered variations, we simultaneously change 𝑟0, 𝜃𝑟
𝑃 and 𝜃𝑟

𝑄
 (cf. 

Table 1) for different interest-rate levels and do the same with 𝑉0, 𝜃𝑉
𝑃 and 𝜃𝑉

𝑄
 in the variations with 

different levels of equity volatility. See Table 4 for the used parameter values. 

Variation Parameter New value 

Lower interest 𝑟0, 𝜃𝑟
𝑃, 𝜃𝑟

𝑄
 0.015 

Higher interest 𝑟0, 𝜃𝑟
𝑃, 𝜃𝑟

𝑄
  0.045  

Lower volatility 𝑉0, 𝜃𝑉
𝑃, 𝜃𝑉

𝑄
  (0.1)2  

Higher volatility  𝑉0, 𝜃𝑉
𝑃, 𝜃𝑉

𝑄
  (0.3)2  

Table 4: Values of the market and simulation parameters used in the variations. All other parameters are as in the base case. 

With the changed parameter values for interest rates and equity volatility, respectively, we conduct 

similar analyses as in the previous section. We also use the same pricing as previously, i.e. the same 

guarantee charge and the same guaranteed withdrawal rate as stated in Table 2, meaning that the value 

of the GLWB rider at inception changes. This represents either a situation where the market environment 

changes a theoretical second after inception of the contract (with the change in the value of liabilities 

potentially being hedged) or a situation where the pricing for the offered GLWB rider is only updated 

after a certain time period and hence does not (immediately) reflect changes in the market environment. 

In the latter situation, from the insurer’s perspective, the value of liabilities of newly sold contracts with 

otherwise identical parameters fluctuates. Table 5 gives an overview over the value of liabilities at 

inception, as well as its components, the value of future guarantee payments and the value of future 

guarantee charges.  
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Variation Value guar. payments Value guar. charges Total value (𝑽𝟎
𝝅) 

Base case 9.2% -10.0% -0.8% 

Lower interest 14.6% -9.7% 4.9% 

Higher interest 5.7% -10.2% -4.5% 

Lower volatility 3.2% -10.4% -7.2% 

Higher volatility  17.2% -9.6% 7.6% 
Table 5: Resulting values of liabilities at inception and its components for the considered parameter variations. Values are 

given as fraction of the invested amount at inception. 

For instance, in the variation with a lower interest-rate level, the total value of liabilities is 4.9% with 

the value of future guarantee payments of 14.6% not being compensated by the value of future guarantee 

charges of -9.7%. While the value of future guarantee charges is rather stable, the value of future 

guarantee payments shows noticeable differences between the considered variations, ranging between 

3.2% and 17.2% of the pool’s AuM at the beginning of the year. 

We do not show all scatter plots shown in Section 3.3, but instead only show the scatter plots for the 

change of the value of liabilities (Figure 8, Figure 9 and Figure 10), the comparison of the (cumulative) 

density functions (Figure 11 and Figure 12), as well as the resulting risk measures (Table 6 and Table 

7) for each variation. 

Distribution of the present value of liabilities – variations 

Figure 8 shows scatter plots of the one-year change of the value of liabilities plotted against the 

underlying fund’s one-year return in all four considered parameter variations (cf. Figure 4 for 

corresponding plots of the base-case parametrization). 

Change of the value of liabilities – lower interest 

 

Change of the value of liabilities – higher interest 

 

Change of the value of liabilities – lower volatility 

  

Change of the value of liabilities – higher volatility 

  

Figure 8: Scatter plots of the discounted absolute change (as percentage of the invested amount at the beginning of the year) 

of the present value of liabilities (value of future guarantee payments minus future guarantee charges) as a function of the 

one-year fund return. Based on 10,000 simulation paths for each parameter variation. 

The effect of the volatility’s parameterization on the distribution of the fund’s return is clearly 

observable, with the width of the fund returns significantly widening with higher volatility. With the 
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lower volatility level, the fund returns only reach around +50%, while they reach up to +150% in the 

simulation with a higher volatility level.  

In a lower interest-rate environment, the increase in future guarantee payments (due to the ratchet) is 

more valuable than the increase in future guarantee charges, resulting in an increase in the value of 

liabilities with positive fund returns. The opposite can be noticed in the variation with higher interest 

rates: here the ratchet has a lower value and, thus, the value of liabilities decreases with increasing fund 

returns. Similar effects can be observed with the volatility variations: While the change in value for 

negative fund returns is similar for both volatility levels, the value increases with positive fund returns 

for the higher volatility level and decreases for the lower volatility level. 

Change of the value of liabilities – lower interest 

 

Change of the value of liabilities – higher interest 

 

Change of the value of liabilities – lower volatility 

 

Change of the value of liabilities – higher volatility 

 

Figure 9: Scatter plots of the discounted absolute change (as percentage of the invested amount at the beginning of the year) 

of the present value of liabilities (value of the future guarantee payments minus future guarantee charges) as a function of the 

short rate at the end of the year. Based on 10,000 simulation paths for each parameter variation. 

The scatter plots against the short rate 𝑟1 (shown in Figure 9) show a much broader lateral scatter in the 

variation with higher interest rates, which illustrates the CIR model’s volatility structure, where (ceteris 

paribus) higher levels of interest are accompanied by higher levels of interest-rate volatility. Still, the 

influence of 𝑟1 on the overall distribution of the value of liabilities seems to be of secondary nature. 

Similarly, Figure 10 shows scatter plots of the one-year change of the value of liabilities with respect to 

the instantaneous volatility at the end of the projection year, √𝑉1. 
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Change of the value of liabilities – lower interest 

  

Change of the value of liabilities – higher interest 

  

Change of the value of liabilities – lower volatility 

 

Change of the value of liabilities – higher volatility 

 

Figure 10: Scatter plots of the discounted absolute change (as percentage of the invested amount at the beginning of the 

year) of the present value of liabilities (value of the future guarantee payments minus future guarantee charges) as a function 

of the instantaneous volatility at the end of the year. Based on 10,000 simulation paths for each parameter variation. 

For the two interest-rate variations, the scatter plots against the instantaneous volatility seem to be 

similar to the base case, with the importance of volatility in the “good scenarios” (reduction in the value 

of liabilities, i.e. the lower edge in the scatter plots), being higher if interest rates are low. 

Similar to the higher volatility of interest-rates in the variation with a higher level of interest, an increase 

of the level of volatility also causes an increase of the observed volatility of volatility (i.e. a wider lateral 

scatter of √𝑉1), potentially making hedging much harder. However, this effect does not seem to be very 

pronounced in the variation with a higher volatility level, with the highest observed values of √𝑉1 only 

shifting by around 10 percentage points in comparison to the base case (which is the same as the increase 

in the volatility level). 

It is noticeable that, in the variation with a lower volatility level, there seem to be quite a few paths 

where the instantaneous volatility reaches (or gets very close) to zero. This is to be expected, as the 

parameters in this variation clearly do not fulfill the condition under which 𝑉𝑡  cannot reach zero 

(𝜎𝑉
𝑃2

> 2𝜅𝑉
𝑃𝜃𝑉

𝑃), therefore zero is accessible (cf. Cox et al., 1985). 

Comparison of the P&L distribution and risk measures – variations 

The (cumulative) density functions given in Figure 11 show a considerably greater deviation if the 

interest-rate level is lower, accounting for the increase in the value of liabilities and the increase in the 

guarantee’s “moneyness”, as the fund’s performance now is less likely to be able to compensate for 

withdrawals and, thus, the guarantee is more likely to trigger. The opposite can be said for the variation 

with higher interest, where a narrower distribution of the P&L can be observed. Note that Π0,1 only 

measures the P&L after inception of the contract (i.e. the deviation) and does not reflect the initial impact 

on the balance sheet when the value of liabilities 𝑉0
𝜋 is added. Hence, a potential considerable loss or 
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profit from 𝑉0
𝜋 is not shown in the density functions and, as a consequence, there is no considerable shift 

to the left or right. 

Cumulative density function of 𝛱0,1 – lower interest 

 

Cumulative density function of 𝛱0,1 – higher interest 

 

Density function of 𝛱0,1 – lower interest 

 

Density function of 𝛱0,1 – higher interest 

 

Figure 11: The (cumulative) density function of the discounted net P&L 𝛱0,1 for all three considered variations of the 

modeled hedging program (weekly rebalancing, monthly rebalancing and no hedging at all). Based on 10,000 paths of the 

simulation with a lower (left-hand side) and a higher interest-rate level (right-hand side). 

Similar effects can be observed with the equity-volatility variations, with the higher volatility level 

leading to a significant broadening of the respective density functions (cf. Figure 12). Judging from the 

density functions in the lower volatility variation, the difference between monthly and weekly hedging 

seems much less pronounced than in the other considered market environments. However, as can be 

observed in Table 7, this is only true for the body of the distribution, and not for its tail. 
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Cumulative density function of 𝛱0,1 – lower volatility 

 

Cumulative density function of 𝛱0,1 – higher volatility 

 

Density function of 𝛱0,1 – lower volatility 

 

Density function of 𝛱0,1 – higher volatility 

 

Figure 12: The (cumulative) density function of the discounted net P&L 𝛱0,1 for all three considered variations of the 

modeled hedging program (weekly rebalancing, monthly rebalancing and no hedging at all). Based on 10,000 paths of the 

simulation with a lower (left-hand side) and a higher equity-volatility level (right-hand side). 

The risk measures given in Table 6 show that higher interest rates not only reduce the value of liabilities, 

but also reduce risk measures and, thereby, risk-based capital requirements. In the lower interest-rate 

environment, however, the greater deviation of the P&L is also noticeable in the resulting risk measures 

– meaning that, additionally to the value of liabilities increasing from -0.8% to 4.9% (see Table 5), the 

risk measures increase and, thus, lead to higher capital requirements. From the insurer’s perspective, 

this means a “double hit”, increasing both the value of liabilities and the corresponding capital 

requirements. For instance, the sum of the value-at-risk at a confidence level of 99.5% and the value of 

liabilities 𝑉0
𝜋 increases from 0.4% to 6.4% if weekly hedging is considered and from 15.2% to 23.3% 

without hedging. 

Characteristics 

of 𝜫𝟎,𝟏 

Weekly Hedge Monthly Hedge No Hedge 

Interest level lower base higher lower base higher lower base higher 

mean 0.2% 0.1% 0.1% 0.2% 0.1% 0.1% 0.3% 0.3% 0.3% 

median 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 1.4% 1.3% 1.1% 

std. deviation 0.6% 0.4% 0.3% 1.1% 0.8% 0.6% 3.2% 2.8% 2.6% 

VaR99.5% 1.5% 1.2% 0.9% 2.7% 2.1% 1.6% 18.4% 16.0% 13.7% 

CVaR99.5% 1.8% 1.4% 1.1% 3.2% 2.5% 1.9% 23.2% 20.2% 17.6% 

VaR95% 0.7% 0.5% 0.4% 1.5% 1.1% 0.8% 5.8% 5.0% 4.5% 

CVaR95% 1.1% 0.8% 0.6% 2.1% 1.6% 1.2% 10.9% 9.3% 8.1% 

VaR90% 0.5% 0.3% 0.2% 1.0% 0.7% 0.5% 2.8% 2.6% 2.5% 

CVaR90% 0.8% 0.6% 0.4% 1.7% 1.2% 0.9% 7.5% 6.5% 5.7% 

VaR99.5% + 𝑽𝟎
𝛑 6.4% 0.4% -3.6% 7.6% 1.3% -2.9% 23.3% 15.2% 9.2% 

Table 6: Risk measures of the discounted net P&L 𝛱0,1 for all three considered variations of the modeled hedging program 

(weekly rebalancing, monthly rebalancing and no hedging at all) and all three variations of the interest-rate level. Based on 

10,000 paths in each corresponding simulation. 
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The measured hedge effectiveness, again using the results for no hedging as a benchmark and the value-

at-risk at a confidence level of 99.5%, is only slightly affected by the change in interest rates, ranging 

around 92% (lower interest) to 93% (higher interest) for the weekly hedge and 85% (lower interest) to 

88% (higher interest) for the monthly hedge. 

Similar to the decrease in interest rates, an increase of the volatility level leads to a significant increase 

in the deviation of the P&L and, thereby, to an increase of the potential capital requirements derived 

from the considered risk measures. The value-at-risk at a level of 99.5%, for instance, increases from 

1.2% to 1.7% if a hedging program with weekly rebalancing is considered (cf. Table 7). This comes 

additionally to the increase of the value of liabilities from -0.8% to 7.6% (cf. Table 5). 

Characteristics 

of 𝜫𝟎,𝟏 

Weekly Hedge Monthly Hedge No Hedge 

Volatility level lower base higher lower base higher lower base higher 

mean 0.2% 0.1% 0.1% 0.2% 0.1% 0.1% 0.4% 0.3% 0.1% 

median 0.2% 0.1% 0.0% 0.2% 0.1% 0.0% 0.9% 1.3% 0.9% 

std. deviation 0.3% 0.4% 0.7% 0.4% 0.8% 1.3% 1.9% 2.8% 2.8% 

VaR99.5% 0.7% 1.2% 1.7% 1.3% 2.1% 3.1% 11.8% 16.0% 15.3% 

CVaR99.5% 1.1% 1.4% 2.0% 1.7% 2.5% 3.5% 16.7% 20.2% 19.6% 

VaR95% 0.2% 0.5% 1.0% 0.4% 1.1% 1.9% 2.6% 5.0% 5.0% 

CVaR95% 0.4% 0.8% 1.3% 0.8% 1.6% 2.4% 6.2% 9.3% 9.4% 

VaR90% 0.0% 0.3% 0.7% 0.2% 0.7% 1.5% 0.9% 2.6% 2.5% 

CVaR90% 0.2% 0.6% 1.1% 0.6% 1.2% 2.0% 3.9% 6.5% 6.4% 

VaR99.5% + 𝑽𝟎
𝛑 -6.5% 0.4% 9.3% -5.9% 1.3% 10.7% 4.6% 15.2% 22.9% 

Table 7: Risk measures of the discounted net P&L 𝛱0,1 for all three considered variations of the modeled hedging program 

(weekly rebalancing, monthly rebalancing and no hedging at all) and all three variations of the equity-volatility level. Based 

on 10,000 paths in each corresponding simulation. 

Also, in contrast to the change in interest rate levels, the measured hedge effectiveness is noticeably 

affected by the higher volatility. Using again the results for no hedging as a benchmark and the value-

at-risk at a confidence level of 99.5%, the hedge effectiveness decreases from 93% to 89% for the weekly 

hedge and from 87% to 80% for the monthly hedge if the higher volatility environment is considered. 

On the other hand, the effectiveness only slightly increases in the reduced volatility environment (to 

94% for the weekly hedge and to 89% for the monthly hedge). 

If no hedging is considered, the risk measures at a confidence level of 99.5% (as well as those at the 

90% level) actually decrease with higher volatility, meaning that, after the increase of the value of 

liabilities from -0.8% to 7.6% (see Table 5) and – if unhedged – a potentially significant loss for the 

insurer, the P&L in the subsequent year has a less pronounced downside risk as in the base case. 

Therefore, in comparison to a stand-alone comparison of the change in the value of liabilities, the overall 

impact on the insurer is reduced, with the sum of VaR99.5% and 𝑉0
π increasing only by 7.7 percentage 

points from 15.2% to 22.9%.  

4 CONCLUSION 

After inception of a variable annuity, the provider usually aims to compensate changes in the value of 

liabilities by means of a hedging program. However, even if a well-functioning hedging program is in 

place that is able to effectively replicate (most) changes in the value of liabilities, risk-based capital 

requirements can still fluctuate due to their dependence on market parameters. As a result, variable 
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annuity providers face the risk of increases in their risk-based capital requirements and, thus, the need 

for capital injections – even without pricing errors or malfunctioning of the hedging program. 

By means of a simulation study, we assessed the effectiveness of a stylized hedging program with 

different rebalancing frequencies over a one-year time horizon and analyzed the distribution of the 

insurer’s resulting P&L. Using this P&L, we computed different risk measures as indicators for risk-

based capital requirements. The resulting capital requirements highly depend on the degree to which the 

risk-mitigating effect of the hedging program is allowed for in the calculation, with our results showing 

an increase by a factor of more than ten if no allowance of the risk-mitigating effect is made. The 

approach we used is comparable to an internal model type approach under Solvency II and, thus, our 

results can be used as indicator for risk-based capital requirements (with respect to market risk) a 

variable annuity provider needs to meet in the EU (cf. Section 3.3). 

We analyzed how hedge effectiveness and the considered indicators for capital requirements change 

with different assumptions regarding the interest-rate and equity-volatility environment (cf. Section 3.4). 

We found that, additionally to the potentially unhedged changes of the value of liabilities that such a 

change in the market environment causes, the changed parameters also have a considerable impact on 

risk measures, meaning that in these cases, the insurer faces two stresses at once: the change in the value 

of liabilities (this might be hedged) and the change in capital requirements (likely unhedged). We also 

found that, while the impact of the level of interest rates on the effectiveness of the modeled hedging 

program is rather low, a higher volatility level has a distinct adverse effect on the hedge effectiveness, 

leading to a further increase of risk-based capital requirements. However, there are also cases where an 

increase in the value of liabilities was accompanied by a decrease of capital requirements, reducing the 

overall impact on the insurer. This is the case for some risk measures if no allowance of the hedging 

program is made and equity volatility is increased. 

In conclusion, if the insurer assesses its risk situation with regard to its (new) variable annuity business, 

it should also incorporate an analysis of future capital requirements, as those may pose an economic risk 

and can potentially reduce the profitability of the insurer’s variable annuity business. Under Solvency 

II, for instance, such analyses are mandatory in the context of the Own Risk and Solvency Assessment 

(ORSA). Furthermore, as the sensitivity of capital requirements to market parameters is not easily 

assessable, thorough numerical analyses appear necessary for a proper assessment of this risk. In such 

analyses, also the effect of a potentially reduced hedge performance in adverse market environments 

and a reduced level of recognition of the hedging program’s risk-mitigating effect should be considered, 

as this may lead to additional increases of the capital requirements.  

Regarding future research, it seems worthwhile to investigate ways to incorporate changes of risk-based 

capital requirements into the value that is being replicated by the hedging program, as well as ways to 

adequately account for future capital requirements in the profit testing of variable annuity products. 

Also, an analysis that extends the stand-alone analysis of a homogeneous pool of policies (as presented 

in this paper) to a model with different lines of businesses and heterogeneous pools of policies appears 

promising. The same applies to a potential analysis that incorporates surrender and/or biometric risk 

factors (for instance longevity risk), as well as additional market risk factors as, for instance, the level 

of interest-rate volatility. 
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