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aus Ulm

2017



Amtierender Dekan

Prof. Dr. Alexander Lindner

1. Gutachter

Prof. Dr. Dieter Rautenbach

2. Gutachter

Prof. Dr. Henning Bruhn-Fujimoto

Tag der Promotion

25. September 2017



Preface

This cumulative dissertation contains four research papers.

The paper Relating domination, exponential domination, and porous exponential

domination [18] is about exponential domination in graphs, which is a variant of

domination in graphs. It contains results about various parameters in the context

of exponential domination, and the proofs include some linear programming argu-

ments. This paper is joint work with Michael A. Henning and Dieter Rautenbach

and has been published in the journal Discrete Optimization.

The paper Hereditary equality of domination and exponential domination [19] is

related to exponential domination, too. It contains a characterization of a heredi-

tary class of graphs in terms of forbidden induced subgraphs. The results have

been developed in collaboration with Michael A. Henning and Dieter Rautenbach

and will be published in the journal Discussiones Mathematicae Graph Theory.

The definition of exponential domination inspired us to introduce a similar concept

in the context of independence in graphs. In the paper Exponential independence

[20], we define such a concept, as well as show several results for the corresponding

parameter. This article has been created together with Dieter Rautenbach, and

it has been published in the journal Discrete Mathematics.

In the last paper of this dissertation, we consider the so-called clustering coef-

ficient. This parameter arises in the study of social networks. Motivated by a

question posed by Watts [26] in 1999, we determine the maximum clustering co-

efficients among special graph classes in the article Large values of the clustering

coefficient [14]. This paper is joint work with Michael Gentner, Irene Heinrich,

and Dieter Rautenbach, and it has been published in Discrete Mathematics.

This dissertation consists of two parts. The first contains an overview of the

attached research papers and the co-authors. Furthermore, we give a classification

of our work in the field of research, recall some notation, as well as summarize our

results. The second part contains the four research papers.
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• M.A. Henning, S. Jäger, D. Rautenbach, Relating domination, exponential

domination, and porous exponential domination, Discrete Optimization 23

(2017) 81-92.
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2 Summary

2.1 Field of Research

Domination in graphs is a very important and well-studied area in graph theo-

ry. In their famous book, Fundamentals of Domination in Graphs [16], Haynes,

Hedetniemi, and Slater distinguish different variations of domination in graphs.

A well-known example is k-domination, introduced by Fink and Jacobson [11] in

1985: for a positive integer k, a set D of vertices of a graph is k-dominating if every

vertex not in D has at least k neighbors in D. A version of domination involving

distances of vertices is distance-k-domination, defined by Henning [17] in 1998:

for a positive integer k, a set D of vertices of a graph is distance-k-dominating if

every vertex not in D has distance at most k from a vertex in D. Another version

of domination at a distance is broadcast domination, which was introduced by

Erwin [10] in 2004. There, a function f assigns to each vertex v of a graph a

nonnegative integer f(v), and v dominates all vertices at distance between 1 and

f(v). Slater [23] had studied a similar variant, where a vertex v is dominated by

a set S of vertices if the distance between v and a vertex in S is at most f(v). A

variant of domination that combines k-domination and domination at a distance

is disjunctive domination defined by Goddard et al. [15] in 2014: for a positive

integer b, a set D of vertices is b-disjunctive dominating if every vertex not in D

is adjacent to a vertex in D or has at least b vertices in D at distance 2 from

it. Apparently, disjunctive domination only considers distances of at most two.

Its definition was motivated by a more general variant of domination, exponential

domination, which had been introduced by Dankelmann et al. [7] in 2009. In this

variant of domination, the influence of the vertices in an exponential dominating

set decreases exponentially with distance but, in contrast to other variations, is

not bounded by distance. A related parameter is the so-called (total) influence

number [9]. It also deals with exponential decay with respect to distance but has

not been studied in the context of domination.

In the concept of exponential domination, each vertex in a set D of vertices sends
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2 Summary

some kind of signal that diminishes exponentially by the factor 1
2

with distance.

A vertex not in D is dominated if a sufficiently large amount of this signal ar-

rives at it. This can be attained by a single dominating neighbor or by multiple

dominating vertices at some distance. Dankelmann et al. [7] distinguish two ver-

sions: exponential domination, where vertices in the exponential dominating set

block the signals of each other, and porous exponential domination, where no such

blocking occurs.

Dankelmann et al. [7] are mainly interested in the first version. They prove lower

and upper bounds for the corresponding parameter, the exponential domination

number. In 2017, Bessy et al. [3] strengthen their results and provide further

bounds. In a second paper, Bessy et al. [4] consider exponential domination in sub-

cubic graphs. They describe an efficient algorithm to determine the exponential

domination number in subcubic trees and prove that the exponential domination

number is APX-hard for subcubic graphs. Besides that, exponential domination

has been studied only for some specific graphs [2]. The porous version and the cor-

responding parameter, the porous exponential domination number, have not been

studied extensively, yet. Thus, there are only few results for some special graphs

[1, 5], and even the complexity of the porous exponential domination number on

subcubic trees is unknown.

Another fundamental field in graph theory is independence in graphs. Many vari-

ants of domination in graphs have been analyzed in the context of independence in

graphs. Similar to k-domination, for example, a set S of vertices is k-independent

for some positive integer k if the maximum degree of the subgraph induced by S

is at most k − 1 [11]. A variant of independence in graphs related to distance-k-

domination is the so-called k-packing: for a positive integer k, a set P of vertices

of a graph G is a k-packing if every two distinct vertices in P have distance at least

k in G [21]. The introduction of exponential domination by Dankelmann et al. [7]

as a non-local variant of domination inspired us to the definition of exponential

independence in the third paper of this dissertation.

As an application of exponential domination, Dankelmann et al. [7] mention the

analysis of social networks. The exponential decay of signals can be seen as a

model for the spreading of information, whose influence diminishes every time it

is passed on. An important parameter for the analysis of graphs representing social

networks is the so-called clustering coefficient. It quantifies the transitivity of a

network, i. e. it measures the probability that neighbors of vertices are adjacent

themselves. The clustering coefficient of a graph was proposed by Watts and

Strogatz [24] in 1998. They considered so-called small-world networks, that is
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2.2 Notation

graphs that are locally highly clustered but globally keep properties of random

graphs. The clustering coefficient has been studied a lot in the field of social

network analysis [6, 22, 25, 26]. In 1999, Watts [26] posed a simple question:

among all connected graphs of given order and size, which one maximizes the

clustering coefficient? Fukami and Takahashi [12, 13] studied graphs that locally

maximize the clustering coefficient, i. e. graphs whose clustering coefficient cannot

be increased by switching edges. But Watts’ original problem is still unsolved.

2.2 Notation

We mainly use the notation from the book Graph Theory [8]. In this section, we

recall some basic terminology.

We consider finite, simple, and undirected graphs. Let G be a graph. The vertex

set and the edge set of G are denoted by V (G) and E(G), respectively. The order

n(G) of G is the cardinality of V (G), and the size m(G) of G is the cardinality of

E(G). The neighborhood of a vertex v in G is denoted by NG(v), and the degree

dG(v) of v is the cardinality of NG(v). If the degrees of all vertices in G are at

most 3, then G is subcubic. A vertex of degree at most 1 in G is an endvertex of

G. The distance distG(u, v) between two vertices u and v in G is the minimum

number of edges of a path in G between u and v. If no such path exists, then let

distG(u, v) = ∞. The diameter diam(G) of G is the maximum distance between

vertices of G. The minimum length of a cycle in G is the girth of G. A graph H

is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a subgraph of G

and H contains all edges xy ∈ E(G) with x, y ∈ V (H), then H is called induced.

If U ⊆ V (G) is a set of vertices, then G[U ] denotes the induced subgraph of G

with vertex set U . Let F be a set of graphs. If G does not contain any graph

from F as an induced subgraph, then G is called F-free. A set D of vertices of G

is a dominating set of G if every vertex of G not in D has a neighbor in D [16].

The domination number γ(G) of G is the minimum order of a dominating set of

G. A set S of vertices of G is independent if no two vertices in S are adjacent.

The independence number α(G) of G is the maximum order of an independent set

of G.
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2 Summary

2.3 Exponential Domination

Before summarizing the results of the first two articles in this dissertation, we

state the precise definitions of exponential domination, its porous version, and the

corresponding parameters from [7].

In order to model the above-mentioned blocking effects, Dankelmann et al. [7]

define a new type of distance. Let D be a set of vertices of a graph G. For two

vertices u and v of G, let dist(G,D)(u, v) be the minimum number of edges of a

path P in G between u and v such that D contains exactly one endvertex of P

but no internal vertex of P . If no such path exists, then let dist(G,D)(u, v) =∞.

The set D is an exponential dominating set of G if

∑
v∈D

(
1
2

)dist(G,D)(u,v)−1 ≥ 1 for every vertex u of G,

where
(
1
2

)∞
= 0, and the exponential domination number γe(G) of G is the mini-

mum order of an exponential dominating set.

Similarly, D is a porous exponential dominating set of G if

∑
v∈D

(
1
2

)distG(u,v)−1 ≥ 1 for every vertex u of G,

and the porous exponential domination number γ∗e (G) of G is the minimum order

of a porous exponential dominating set of G.

Relating Domination, Exponential Domination, and Porous

Exponential Domination

The domination number, exponential domination number, and porous exponential

domination number of a graph G satisfy

γ∗e (G) ≤ γe(G) ≤ γ(G).

In the paper Relating domination, exponential domination, and porous exponential

domination [18], we show results about the gaps in these inequalities and charac-

terize the graphs providing equality in some of these inequalities. We formulate the

integer linear program that corresponds to the problem of determining the porous

exponential domination number. For a graph G, the fractional porous exponential

8



2.3 Exponential Domination

domination number γ∗e,f (G) is defined as the optimum value of the relaxation of

this program. The results in our paper mostly concern subcubic graphs. The

reason for this is that Bessy et al. [4] provide a useful lemma, which implies that

the influence arriving at a vertex in a subcubic graph is bounded from above. In

general graphs, this is not true. Using the dual of the above-mentioned relaxed

program, we show that for a subcubic tree the fractional porous exponential domi-

nation number only depends on the order of the tree. In detail, we prove that for

a subcubic tree T with n vertices γ∗e,f (T ) = n+2
6

. This implies a result shown by

Bessy et al. [4] in 2016. Using another result of Bessy et al. [4], we conclude that

γe(T ) ≤ 2γ∗e,f (T ) for every subcubic tree T and show that this bound is tight. It

follows that γe(T ) ≤ 2γ∗e (T ) for every subcubic tree T . We believe that it is pos-

sible to replace the factor 2 by 3
2
, which would be tight. We formulate a conjecture

about the subcubic trees T with γ∗e (T ) = γ∗e,f (T ) and collect some properties of

these trees. After characterizing the subcubic trees T with γe(T ) = γ∗e,f (T ), we

prove lower bounds on the fractional porous exponential domination number for

more general graphs — again by using linear programming techniques. Finally,

we give a characterization of the subcubic trees T with γ(T ) = γe(T ).

Hereditary Equality of Domination and Exponential

Domination

For general graphs G, it is unknown how to decide efficiently whether γ(G) =

γe(G). In the paper Hereditary equality of domination and exponential domination

[19], we give a characterization of a large subclass of the graphs with γ(H) = γe(H)

for every induced subgraph H of G. We describe this class in terms of forbidden

induced subgraphs. Our results imply characterizations for trees and graphs of

girth at least 5. In our proofs, we identify sets F of graphs, such that a graph

G is F -free if and only if γ(H) = γe(H) for every induced subgraph H of G. In

order to prove our results, we show that every component of an F -free graph has

domination number at most 2. In 1965, Wolk [27] gave a characterization of the

largest hereditary class of graphs for which every component can be dominated

by one vertex. Our results contribute to a similar problem: the characterization

of the largest hereditary class of graphs for which every component can be domi-

nated by at most two vertices. At the end of our paper, we pose three conjectures.

First, that it is possible to characterize the graphs G with γ(H) = γe(H) for every

induced subgraph H of G by a finite set of forbidden induced subgraphs. Second,

that each of these forbidden induced subgraphs has exponential domination num-

9



2 Summary

ber 2 and domination number 3. Finally, we conjecture that a graph G satisfies

γ(H) = γe(H) for every induced subgraph H of G if and only if γ(H) = γ∗e (H)

for every induced subgraph H of G.

2.4 Exponential Independence

In the paper Exponential independence [20], we define a set S of vertices of a graph

G to be exponentially independent if

∑
v∈S\{u}

(
1
2

)dist(G,S\{u})(u,v)−1 < 1 for every vertex u in S,

where
(
1
2

)∞
= 0, and dist(G,S\{u})(u, v) refers to the modified version of distance

defined in section 2.3. The maximum order of an exponential independent set

is the exponential independence number αe(G) of G. After describing some basic

observations about exponential independence, we prove a lower bound on αe(G)

depending on the diameter of a graph G and characterize the trees for which this

lower bound holds with equality. We determine the exponential independence

number for some special graphs, present an upper bound on αe(G) depending on

the order of a graph G, and give a full characterization of the extremal graphs.

For subcubic trees T , we prove a lower bound on αe(T ) depending on the order of

T . Furthermore, we characterize the class of graphs with αe(H) = α(H) for every

induced subgraph H of a graph G in terms of forbidden induced subgraphs and

give a full description of the trees T with αe(T ) = α(T ). Our results motivate to

examine further problems related to exponential independence, such as an explicit

characterization of the graphsG with αe(G) = α(G) or hardness results concerning

the exponential independence number.

2.5 The Clustering Coefficient

When introducing the clustering coefficient, Watts and Strogatz [24] distinguish

between a local and a global clustering coefficient. The former, the clustering

coefficient of a vertex u, is defined as the number of edges in the neighborhood

of u divided by the maximum possible number of edges in this neighborhood. In
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2.5 The Clustering Coefficient

detail, the clustering coefficient Cu(G) of a vertex u in a graph G is

Cu(G) =





m(G[NG(u)])

(dG(u)
2 )

, if dG(u) ≥ 2,

0 , otherwise.

The global clustering coefficient is defined as the average of the local clustering

coefficients of a graph. More precisely, the clustering coefficient C(G) of a graph

G is

C(G) =
1

n(G)

∑

u∈V (G)

Cu(G).

The paper Large values of the clustering coefficient [14] was inspired by a question

posed by Watts [26], who asks for the connected graphs maximizing the clustering

coefficient for given order and size. We prove upper bounds on the clustering coef-

ficient for all connected regular graphs and for all connected subcubic graphs of a

given order. To answer Watts’ question in these cases, we give characterizations of

all graphs for which these upper bounds hold with equality. Finally, we determine

the value by which the clustering coefficient of a graph G increases at most when

adding a single edge to G and observe that it might change from 0 to nearly 1.
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a b s t r a c t

The domination number γ(G) of a graph G, its exponential domination number
γe(G), and its porous exponential domination number γ∗

e (G) satisfy γ∗
e (G) ≤

γe(G) ≤ γ(G). We contribute results about the gaps in these inequalities as well
as the graphs for which some of the inequalities hold with equality. Relaxing the
natural integer linear program whose optimum value is γ∗

e (G), we are led to the
definition of the fractional porous exponential domination number γ∗

e,f (G) of a graph
G. For a subcubic tree T of order n, we show γ∗

e,f (T ) = n+2
6 and γe(T ) ≤ 2γ∗

e,f (T ).
We characterize the two classes of subcubic trees T with γe(T ) = γ∗

e,f (T ) and
γ(T ) = γe(T ), respectively. Using linear programming arguments, we establish
several lower bounds on the fractional porous exponential domination number in
more general settings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The references for the present paper are [1–13]. In [5] Dankelmann et al. introduce exponential domination
as a variant of domination in graphs where the influence of the vertices in an exponential dominating set
extends to any arbitrary distance but decays exponentially with that distance. They consider two parameters
for a given graph G, its exponential domination number γe(G), corresponding to a setting in which the
different vertices in the exponential dominating set block each others influence, and its porous exponential
domination number γ∗

e (G), where such a blocking does not occur.
Unlike most other domination parameters [8], which are based on local conditions, exponential domination

is a genuinely global concept. Compared to exponential domination, even notions such as distance

∗ Corresponding author.
E-mail addresses: mahenning@uj.ac.za (M.A. Henning), simon.jaeger@uni-ulm.de (S. Jäger), dieter.rautenbach@uni-ulm.de

(D. Rautenbach).

http://dx.doi.org/10.1016/j.disopt.2016.12.002
1572-5286/© 2016 Elsevier B.V. All rights reserved.
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domination [10] appear as essentially local, because they can be reduced to ordinary domination by
considering suitable powers of the underlying graph. The global nature of exponential domination makes
it much harder, which might be the reason why there are only relatively few results about it [1–4]. While
Bessy et al. [4] show that the exponential domination number is APX-hard for subcubic graphs and describe
an efficient algorithm for subcubic trees, the complexity of the exponential domination number on general
trees is unknown, and a hardness result does not seem unlikely. For the porous version, even less is known.
There is not a single complexity result, and it is even unknown whether the porous exponential domination
number of a given subcubic tree can be determined efficiently. Partly motivated by such difficulties,
Goddard et al. define [7] disjunctive domination (see also [11–13]), which keeps the exponential decay of the
influence but only considers distances one and two. Further related parameters known as influence and total
influence [6] also have unknown complexity even for trees [9].

The two parameters of exponential domination and the classical domination number γ(G) [8] of a graph
G satisfy

γ∗
e (G) ≤ γe(G) ≤ γ(G).

In the present paper we contribute results about the gaps in these inequalities as well as the graphs for
which some of the inequalities hold with equality. In order to obtain lower bounds we consider fractional
relaxations and apply linear programming techniques.

Before stating our results and several open problems, we recall some notation and give formal definitions.
We consider finite, simple, and undirected graphs. The vertex set and the edges set of a graph G are denoted
by V (G) and E(G), respectively. The order n(G) of G is the number of vertices of G. If all vertex degrees
in G are at most 3, then G is subcubic. A vertex of degree at most 1 in G is an endvertex of G. A vertex
in a rooted tree T is a leaf of T if it has no child in T . The distance distG(u, v) between two vertices u and
v in G is the minimum number of edges of a path in G between u and v. If no such path exists, then let
distG(u, v) = ∞. The diameter diam(G) of G is the maximum distance between vertices of G. A set D of
vertices of a graph G is a dominating set of G [8] if every vertex of G not in D has a neighbor in D, and the
domination number γ(G) of G is the minimum order of a dominating set of G. Similarly, for some set X of
vertices of G, let γ(G, X) be the minimum order of a set D of vertices such that every vertex in X \ D has a
neighbor in D. Note that γ(G) = γ(G, V (G)). For positive integers n and m, let [n] be the set of the positive
integers at most n, let Pn, Cn, and Kn be the path, cycle, and complete graph of order n, respectively, and,
let Kn,m be the complete bipartite graph with partite sets of orders n and m.

In order to capture the above-mentioned blocking effects that are a feature of exponential domination, we
need a modified distance notion. Therefore, let D be a set of vertices of a graph G. For two vertices u and v of
G, let dist(G,D)(u, v) be the minimum number of edges of a path P in G between u and v such that D contains
exactly one endvertex of P but no internal vertex of P . If no such path exists, then let dist(G,D)(u, v) = ∞.
Note that, if u and v are distinct vertices in D, then dist(G,D)(u, u) = 0 and dist(G,D)(u, v) = ∞.

For a vertex u of G, let

w(G,D)(u) =


v∈D


1
2

dist(G,D)(u,v)−1
, (1)

where
 1

2
∞ = 0. Note that w(G,D)(u) = 2 for u ∈ D.

Dankelmann et al. [5] define the set D to be an exponential dominating set of G if

w(G,D)(u) ≥ 1 for every vertex u of G,

and the exponential domination number γe(G) of G as the minimum order of an exponential dominating
set. Similarly, they define D to be a porous exponential dominating set of G if

w∗
(G,D)(u) ≥ 1 for every vertex u of G,
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where

w∗
(G,D)(u) =



v∈D


1
2

distG(u,v)−1
, (2)

and they define the porous exponential domination number γ∗
e (G) of G as the minimum order of a porous

exponential dominating set of G. Note that the definition of w∗
(G,D)(u) involves the usual distance rather

than dist(G,D)(u, v), which reflects the absence of blocking effects. A dominating, exponential dominating,
or porous exponential dominating set of minimum order is called minimum.

The parameter γ∗
e (G) equals the optimum value of the following integer linear program

min


u∈V (G)

x(u)

s.t.


u∈V (G)


1
2

distG(u,v)−1
· x(u) ≥ 1 ∀v ∈ V (G)

x(u) ∈ {0, 1} ∀u ∈ V (G).

(3)

Relaxing (3), we obtain the following linear program

min


u∈V (G)

x(u)

s.t.


u∈V (G)


1
2

distG(u,v)−1
· x(u) ≥ 1 ∀v ∈ V (G)

x(u) ≥ 0 ∀u ∈ V (G).

(4)

Let the fractional porous exponential domination number γ∗
e,f (G) of G be the optimum value of (4).

Clearly,

γ∗
e,f (G) ≤ γ∗

e (G) ≤ γe(G) ≤ γ(G) (5)

for every graph G.
Most of our results concern subcubic graphs. While exponential domination number is APX-hard already

for subcubic graphs [4], there is the following fundamental lemma from [4], which will be an important
technical tool throughout our paper.

Lemma 1 (Bessy et al. [4]). Let G be a graph of maximum degree at most 3, and let D be a set of vertices
of G.

If u is a vertex of degree at most 2 in G, then w(G,D)(u) ≤ 2 with equality if and only if u is contained in
a subgraph T of G that is a tree, such that rooting T in u yields a full binary tree and D ∩ V (T ) is exactly
the set of leaves of T .

The next section contains all our results as well as many closely related conjectures and open problems.

2. Results

In order to organize our results for the reader, we split this section into subsections.
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2.1. Exact values and upper bounds for subcubic trees

Our first slightly surprising result is that the fractional porous exponential domination number of a
subcubic tree only depends on its order.

Theorem 2. If T is a subcubic tree of order n, then γ∗
e,f (T ) = n+2

6 .

Proof. Let T be a subcubic tree of order n. If T has only one vertex u, then x(u) = 1
2 = 1+2

6 is an optimum
solution of (4). Hence, we may assume that n ≥ 2. Let Vi be the set of vertices of degree i in T , and let
ni = |Vi| for i ∈ [3]. Let T ′ arise from T by adding, for every vertex u in V2, a new vertex pu as well as the
new edge upu. By construction, T ′ is a tree of order n + n2 that only has vertices of degree 1 and 3, and
D′ = V1 ∪ {pu : u ∈ V2} is the set of all endvertices of T ′.

Let v be an endvertex of T ′, and let u be the neighbor of v. Since T ′ − v rooted in u is a full binary
tree whose set of leaves is exactly D′ \ {v}, Lemma 1 implies that w(T ′−v,D′\{v})(u) = 2. Since v ∈ D′, this
implies w∗

(T ′,D′)(v) = 2 + 1 = 3. Similarly, if v is a vertex of degree 3 in T ′ whose neighbors are u1, u2, and
u3, then Lemma 1 implies that w(T ′−v,D′)(ui) = 2 for i ∈ [3], which implies w∗

(T ′,D′)(v) = 1 + 1 + 1 = 3.
Altogether, we obtain that w∗

(T ′,D′)(v) = 3 holds for every vertex v of T ′.

Let (x(u))u∈V (T ) be such that

x(u) =





1
3 , if u is an endvertex of T,

1
6 , if u has degree 2 in T, and
0, if u has degree 3 in T.

If u and v are vertices of T , then distT (u, v) = distT ′(u, v). Furthermore, if u ∈ V2, then distT (u, v) =
distT ′(pu, v) − 1.

This implies that


u∈V (T )


1
2

distT (u,v)−1
· x(u) = 1

3


u∈V1


1
2

distT (u,v)−1
+ 1

6


u∈V2


1
2

distT (u,v)−1

= 1
3



u∈V1


1
2

distT ′ (u,v)−1
+ 1

3


u∈V2


1
2

distT ′ (pu,v)−1

= 1
3



u∈D′


1
2

distT ′ (u,v)−1

= 1
3w∗

(T ′,D′)(v)

= 1 (6)

for every vertex v of T .

The dual linear program of (4) is

max


v∈V (T )

y(v)

s.t.


v∈V (T )


1
2

distT (u,v)−1
· y(v) ≤ 1 ∀u ∈ V (T )

y(v) ≥ 0 ∀v ∈ V (T ).

(7)
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Fig. 1. Lemma 1 easily implies that every exponential dominating set D of the trees T shown above intersects the closed
neighborhood of each endvertex. In fact, if u is an endvertex, v is the neighbor of u, w is the neighbor of v distinct from u,
and D contains neither u nor v, then w has degree 2 in the subcubic graph T − {u, v}, and Lemma 1 applied to T − {u, v} implies
w(T,D)(u) = w(T,D)(v)/2 = w(T,D)(w)/4 ≤ 1/2. Therefore, the encircled vertices form a minimum exponential dominating set,
and hence γe(T ) = n(T )+2

3 = 2γ∗
e,f (T ) for each shown tree T . Furthermore, it is easy to verify that γ∗

e (T ) = γe(T ) for the two
smallest trees T of orders 7 and 10.

Fig. 2. A tree T with γe(T ) = 6 and γ∗
e (T ) = γ∗

e,f (T ) = 4. The encircled vertices indicate a minimum exponential dominating set
while the boxed vertices indicate a minimum porous exponential dominating set.

Therefore, setting y(u) = x(u) for every vertex u of T , we obtain, by (6), that

• (x(u))u∈V (T ) is a feasible solution of (4),
• (y(u))u∈V (T ) is a feasible solution of (7), and that
• 

u∈V (T ) x(u) =


u∈V (T ) y(u),

that is, (x(u))u∈V (T ) and (y(u))u∈V (T ) are both optimum solutions of the respective linear programs.

Since n1 = n3 + 2, we obtain n + 2 = n1 + n2 + n3 + 2 = 2n1 + n2 and, hence,

γ∗
e,f (T ) =



u∈V (T )

x(u) = 1
3n1 + 1

6n2 = n + 2
6 ,

which completes the proof. �

Bessy et al. [4] show n+2
6 ≤ γe(T ) ≤ n+2

3 for every subcubic tree T of order n. Note that the first of these
two inequalities is an immediate consequence of Theorem 2, and that, combined with Theorem 2, the second
of these inequalities implies the following.

Corollary 3. If T is a subcubic tree of order n, then γe(T ) ≤ 2γ∗
e,f (T ).

Fig. 1 illustrates an infinite family of trees showing that Corollary 3 is tight. Another immediate consequence
of Corollary 3, namely γ∗

e (T ) ≤ 2γ∗
e,f (T ) for every subcubic tree T , is tight for the two smallest trees in

this family, which implies that the integrality gap between the integer linear program (3) and its linear
programming relaxation (4) is 2 for such trees. It seems possible that the integrality gap between (3) and
(4) is bounded for all graphs of bounded maximum degree. Yet another consequence of Corollary 3 is that
γe(T ) ≤ 2γ∗

e (T ) for every subcubic tree T . We believe that this estimate can be improved as follows.

Conjecture 4. If T is a subcubic tree, then γe(T ) ≤ 3
2 γ∗

e (T ).

The tree in Fig. 2 shows that the bound in Conjecture 4 would be tight.
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2.2. Equality with the fractional relaxation in subcubic trees

The special tree in Fig. 2 also plays a role in our next conjecture.

Conjecture 5. If T is a subcubic tree, then γ∗
e (T ) = γ∗

e,f (T ) if and only if T is either K1,3 or the tree
in Fig. 2.

We establish many quite restrictive properties of the trees considered in Conjecture 5.

Theorem 6. Let T be a subcubic tree with γ∗
e (T ) = γ∗

e,f (T ) > 1. Let Vi be the set of vertices of degree i in T

for i ∈ [3]. Let D be a minimum porous exponential dominating set of T .

(i) w∗
(T,D)(u) = 1 for every vertex u ∈ V1 ∪ V2.

(ii) D ⊆ V3 and NT (V1 ∪ V2) ⊆ V3 \ D.
(iii) T does not contain a vertex u in V1 and a vertex w in V2 at distance 2.
(iv) T does not contain two vertices u1 and u2 in V1 and a vertex v in V2 such that distT (u1, u2) = 2 and

distT (u1, v) ∈ {3, 4}.

Proof. Note that γ∗
e (T ) > 1 implies that T is not a star.

(i) Let (x(u))u∈V (T ) be such that

x(u) =


1, if u ∈ D, and
0, otherwise

and let (y(u))u∈V (T ) be as in the proof of Theorem 2. Since γ∗
e (T ) = γ∗

e,f (T ), we obtain that (x(u))u∈V (T )
is an optimum solution of (4), and (y(u))u∈V (T ) is an optimum solution of (7). By the dual complementary
slackness conditions, we obtain that y(v) > 0 for some v ∈ V (T ) implies

w∗
(T,D)(v) =



u∈V (G)


1
2

distT (u,v)−1
· x(u) = 1.

Since y(v) > 0 if and only if v ∈ V1 ∪ V2, the proof of (i) is complete.

(ii) Since v ∈ D implies w∗
(T,D)(v) ≥ 2, (i) implies D ⊆ V3. If u in V1 has a neighbor v in V2, then

w∗
(T,D)(v) = 1 implies the contradiction w∗

(T,D)(u) = 2. Hence, NT (V1) ⊆ V3.

Suppose that T contains a path uvwx with dT (v) = dT (w) = 2. Let Tv be the component of T − w

that contain v. Let α = w∗
(T,D∩V (Tv))(v), and β = w∗

(T,D\V (Tv))(v). Clearly, w∗
(T,D∩V (Tv))(w) = 1

2 α, and
w∗

(T,D\V (Tv))(w) = 2β. Since w∗
(T,D)(v) = α + β = 1 and w∗

(T,D)(w) = 1
2 α + 2β = 1, we obtain β = 1

3 . By the
definition (2) of w∗, we obtain that β is the finite sum of powers of 2, that is, β = 2p1 + · · · + 2pk for suitable
integers p1, . . . , pk. Let p = max{|p1|, . . . , |pk|}. Since 1

3 = 2p1 +· · ·+2pk , we obtain 2p = 3·(2p1 +· · ·+2pk )·2p.
Note that (2p1 + · · · + 2pk ) · 2p is an integer. While the right hand side of this equation is divisible by 3, the
left hand side is not, which is a contradiction. Hence, NT (V2) ⊆ V3.

If u ∈ V1 ∪ V2 has a neighbor in D, then |D| = γ∗
e (T ) > 1 implies the contradiction w∗

(T,D)(u) > 1. Hence,
NT (V1 ∪ V2) ⊆ V3 \ D.

(iii) Let v be the common neighbor of u and w. By (ii), we have v ∈ V3 \ D. Let Tv be the component
of T − w that contains v. Let α = w∗

(T,D∩V (Tv))(v) and β = w∗
(T,D\V (Tv))(w). By (i), we obtain

w∗
(T,D)(u) = 1

2 α + 1
4 β = 1 and w∗

(T,D)(w) = 1
2 α + β = 1, which implies α = 2 and β = 0. Since β = 0, we

obtain D \ V (Tv) = ∅. Now, if u′ is an endvertex of T in the component of T − v that contains w, then
w∗

(T,D)(u′) ≤ 1
4 α < 1, which is a contradiction.



M.A. Henning et al. / Discrete Optimization 23 (2017) 81–92 87

(iv) First, we assume that distT (u1, v) = 3. Let u1xyv be a path in T . By (ii), the vertices x and y belong to
V3 \D. Let Ty be the component of T −v that contains y. Let α = w∗

(T,D∩V (Ty))(y) and β = w∗
(T,D\V (Ty))(v).

By (i), we obtain w∗
(T,D)(u1) = w∗

(T,D)(u2) = 1
4 α + 1

8 β = 1 and w∗
(T,D)(v) = 1

2 α + β = 1, which implies
1
4 α + 7

8 β =
 1

2 α + β


−
 1

4 α + 1
8 β


= 0. Since, by definition, α and β are non-negative, we obtain the

contradiction α = β = 0.

Next, we assume that distT (u1, v) = 4. Let u1xyzv be a path in T . Let Ty be the component
of T − {xy, yz} that contains y, and let Tz be the component of T − {yz, zv} that contains z. Let
α = w∗

(T,D∩V (Ty))(y), β = w∗
(T,D∩V (Tz))(z), and γ = w∗

(T,D\(V (Ty)∪V (Tz)))(v). By (i), we obtain w∗
(T,D)(u1) =

w∗
(T,D)(u2) = 1

4 α + 1
8 β + 1

16 γ = 1 and w∗
(T,D)(v) = 1

4 α + 1
2 β + γ = 1, which implies 3

8 β + 15
16 γ = 0, and, hence,

β = γ = 0, and α = 4. Now, if u is an endvertex of T that lies in the component of T − z that contains v,
then w∗

(T,D)(u) ≤ 1
8 α < 1, which is a contradiction. �

Our next result would be an immediate consequence of Conjecture 5.

Theorem 7. If T is a subcubic tree, then γe(T ) = γ∗
e,f (T ) if and only if T is K1,3.

Proof. If T = K1,3, then γe(T ) = 1 = 4+2
6 = γ∗

e,f (T ), which implies the sufficiency. In order to prove the
necessity, let T be a subcubic tree with γe(T ) = γ∗

e,f (T ). By (5), we have γe(T ) = γ∗
e (T ) = γ∗

e,f (T ). If
γe(T ) = 1, then T ∈ {P1, P2, P3, K1,3}. By Theorem 2, the only tree T in this set with γ∗

e,f (T ) = 1 is
K1,3. Hence, we may assume that γe(T ) > 1, which implies γ∗

e (T ) = γ∗
e,f (T ) > 1. Let D be a minimum

exponential dominating set of T . Note that D is also a minimum porous exponential dominating set. Let
u be an endvertex of T , and let v be the neighbor of u in T . Theorem 6(i) and (ii) imply w∗

(T,D)(u) = 1,
dT (v) = 3, and u, v ̸∈ D. Now, 1 ≤ w(T,D)(u) ≤ w∗

(T,D)(u) = 1, which implies w(T,D)(u) = w∗
(T,D)(u) = 1.

Since u, v ̸∈ D, we obtain w(T,D)(v) = w∗
(T,D)(v) = 2. By Lemma 1 applied to the graph T − u and the

vertex v, which is of degree 2 in T − u, we obtain that the tree T − u contains a full binary tree T ′ rooted
in v such that V (T ′) ∩ D is exactly the set of leaves of T ′. Since v ̸∈ D, the tree T ′ has at least two
leaves. Let u′ be a leaf of T ′, and let v′ be the parent of u′ in T ′. By Theorem 6(ii), we have D ⊆ V3,
implying that no leaf of T ′ is an endvertex of T . In particular, u′ is not an endvertex of T . Let u′′ be an
endvertex of T in the component of T − v′ that contains u′. Since T ′ has more than one leaf, we obtain
w(T,D)(u′′) < w∗

(T,D)(u′′). Nevertheless, by Theorem 6(i), we obtain w∗
(T,D)(u′′) = 1, which implies the

contradiction 1 ≤ w(T,D)(u′′) < w∗
(T,D)(u′′) = 1. �

It follows immediately from Theorem 7 that K1,3 is the only subcubic tree T with γ(T ) = γ∗
e,f (T ).

2.3. Lower bounds on the fractional relaxation

Our next result gives lower bounds on the fractional exponential domination number in more general
settings. Again its proof relies on linear programming arguments.

Theorem 8. Let G be a graph of order n, maximum degree ∆, and diameter d.

(i) γ∗
e,f (G) ≥ d+3

6 .
(ii) If ∆ = 3, then γ∗

e,f (G) ≥ n
2+3d .

(iii) If ∆ ≥ 4, then γ∗
e,f (G) ≥


(∆−1

2 )−1
∆(∆−1

2 )d−3


n.



88 M.A. Henning et al. / Discrete Optimization 23 (2017) 81–92

Proof. (i) Let P : x0 . . . xd be a shortest path of length d in G. Let (y(u))u∈V (G) be such that

y(u) =





1
3 , if u is an endvertex of P,

1
6 , if u is an internal vertex of P, and
0, if u is in V (G) \ V (P ).

Let u ∈ V (G).

If u = xi for some i ∈ [d − 1], then



v∈V (G)


1
2

distG(u,v)−1
· y(v)

=


v∈V (P )


1
2

distP (u,v)−1
· y(v)

=


1
2

i−1
· 1

3 +
i−1

j=1


1
2

i−j−1
· 1

6
  

= 1
3

+


1
2

−1
· 1

6  
= 1

3

+
d−i−1

j=1


1
2

j−1
· 1

6 +


1
2

d−i−1
· 1

3
  

= 1
3

= 1.

Similarly, if i ∈ {0, d}, then we obtain


v∈V (G)
 1

2
distG(u,v)−1 · y(v) = 1.

Now, let u ∈ V (G) \ V (P ). By Lemma 4 in [5], there is a vertex u′ ∈ V (P ) with distG(u, v) ≥ distG(u′, v)
for every vertex v of P . This implies



v∈V (G)


1
2

distG(u,v)−1
· y(v) =



v∈V (P )


1
2

distG(u,v)−1
· y(v)

≤


v∈V (P )


1
2

distG(u′,v)−1
· y(v)

≤ 1.

Altogether, we obtain that (y(u))u∈V (G) is a feasible solution for the dual of the linear program (4) (cf. (7)
with “T” replaced by “G”), and, by weak duality, γ∗

e,f (G) ≥ 
v∈V (G) y(v) = d+3

6 .

(ii) and (iii) Let (y(u))u∈V (G) be such that y(u) = y for every vertex u of G and some y > 0. Let u ∈ V (G).
Since there are at most ∆(∆ − 1)i−1 vertices at distance i from u for i ∈ [d], we obtain



v∈V (G)


1
2

distG(u,v)−1
· y(v) ≤ 2y +

d

i=1
∆(∆ − 1)i−1


1
2

i−1
y

=





(2 + 3d)y, if ∆ = 3, and
∆


∆−1

2
d − 3

∆−1
2


− 1

y, if ∆ ≥ 4.

If ∆ = 3, then choosing y = 1
2+3d yields a feasible solution of the dual of (4), which implies γ∗

e,f (G) ≥ n
2+3d .

Similarly, if ∆ ≥ 4, then choosing y = (∆−1
2 )−1

∆(∆−1
2 )d−3

yields γ∗
e,f (G) ≥


(∆−1

2 )−1
∆(∆−1

2 )d−3


n. �

Since max


d+3
6 , n

2+3d


≥ 1

6


2n + 49

36 + 7
6


, the following corollary is immediate.
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Fig. 3. A family of trees T for which γe(T ) = γ(T ) and γ∗
e

(T )
γe(T ) ≤ 8

9 +o(n(T )). The encircled vertices indicate some porous exponential
dominating set.

Corollary 9. If G is a subcubic graph of order n, then γ∗
e,f (G) ≥ 1

6


2n + 49

36 + 7
6


.

Bessy et al. [4] proved that γe(G) ≥ n(G)
6 log2(n(G)+2)+4 for a connected cubic graph G, which is best possible

up to the exponent of the log-term in the denominator. It is conceivable that similar lower bounds hold for
γ∗

e (G) or even γ∗
e,f (G), which would greatly improve Corollary 9.

2.4. Subcubic trees T with γ(T ) = γe(T )

Our next goal is a characterization of the subcubic trees T with γ(T ) = γe(T ). As we have observed
in the introduction, no efficient algorithms are known to determine the exponential domination number of
general trees or the porous exponential number of subcubic trees. Therefore, it seems difficult to extend our
characterization to all trees, or to characterize the subcubic trees T with γ(T ) = γ∗

e (T ). The family of trees
obtained by repeating the pattern indicated in Fig. 3 shows that the subcubic trees T with γ(T ) = γ∗

e (T )
form a proper subset of those with γ(T ) = γe(T ).

Let G be a graph. For a vertex x of G, let τG(x) be the minimum real value τ such that there is a set D

of vertices of G with

• |D| < γe(G),
• x ̸∈ D,
• w(G,D)(u) +

 1
2
distG−D(x,u) · τ ≥ 1 for every vertex u in V (G) \ D.

Now, we define three operations on trees. Let T and T ′ be two trees.

• Operation 1
T arises from T ′ by applying Operation 1 if T has an endvertex y with neighbor x such that T ′ = T −y,

and x belongs to some minimum dominating set of T ′.
• Operation 2

T arises from T ′ by applying Operation 2 if T contains a path xyz such that τT ′(x) > 1 or
γ(T ′, V (T ′) \ {x}) < γ(T ′), where y has degree 2 in T , z is an endvertex of T , and T ′ = T − {y, z}.

• Operation 3
T arises from T ′ by applying Operation 3 if T contains a path wxyz such that x and y have degree 2

in T , z is an endvertex of T , T ′ = T − {x, y, z}, and τT ′(w) > 1
2 .

Let T be the family of subcubic trees that are obtained from P1 by applying finite sequences of the above
three operations.

Lemma 10. If T ′ is a subtree of a subcubic tree T , then γe(T ′) ≤ γe(T ).
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Proof. By an inductive argument, it suffices to consider the case that T ′ = T − y, where y is an endvertex of
T . Let x be the neighbor of y. Let D be a minimum exponential dominating set of T . If y ̸∈ D, then D is also
an exponential dominating set of T ′. If y ∈ D, then x ̸∈ D, because D is minimum. Let D′ = (D \{y})∪{x}.
Suppose that there is some vertex u with w(T,D′)(u) < 1. Clearly, u ̸= x. Let e be the edge of the path
P between u and x that is incident with x. Let Tx be the component of T − e that contains x, and let
Dx = D ∩ V (Tx). Since w(T,D′)(u) < w(T,D)(u), the path P does not intersect D. This implies

w(T,D′)(u) = w(T,D)(u) − w(T,Dx)(u) + w(T,{x})(u)

= w(T,D)(u) −


1
2

distT (u,x)
· w(Tx,Dx)(x) +


1
2

distT (u,x)−1
.

Since w(T,D′)(u) < w(T,D)(u), this implies w(Tx,Dx)(x) > 2, which contradicts Lemma 1. Hence, D′ is an
exponential dominating set of T ′. Altogether, we obtain γe(T ′) ≤ γe(T ). �

Lemma 11. If T ∈ T , then γe(T ) = γ(T ).

Proof. Note that γ(P1) = γe(P1). By an inductive argument, it suffices to show that γ(T ) = γe(T ) for every
tree T that arises from some tree T ′ with γ(T ′) = γe(T ′) by applying one of the above three operations.

First, let T arise from T ′ by applying Operation 1. Since x belongs to some minimum dominating set of
T ′, we have γ(T ′) = γ(T ). By Lemma 10, we obtain

γ(T ) = γ(T ′) = γe(T ′) ≤ γe(T ) ≤ γ(T ),

which implies γe(T ) = γ(T ).

Next, let T arise from T ′ by applying Operation 2.

First, we assume that τT ′(x) > 1. By Lemma 10, we have γe(T ′) ≤ γe(T ). Suppose that γe(T ′) = γe(T ).
Let D be a minimum exponential dominating set of T . By Lemma 1, the set D must contain either y or
z. Clearly, we may assume y ∈ D and z ̸∈ D. Let D′ = D \ {y}. Since |D′| < γe(T ′), the set D′ is not an
exponential dominating set of T ′, which implies that x ̸∈ D′. Since

w(T,D)(u) = w(T,D′)(u) +


1
2

distT −D′ (u,y)−1

= w(T,D′)(u) +


1
2

distT ′−D′ (u,x)
· 1

≥ 1,

for every vertex u ∈ V (T ′) \ D′, we obtain the contradiction that τT ′(x) ≤ 1. Hence, γe(T ′) + 1 ≤ γe(T ).
Note that γ(T ) ≤ γ(T ′) + 1. Now,

γ(T ) ≤ γ(T ′) + 1 = γe(T ′) + 1 ≤ γe(T ) ≤ γ(T ),

which implies γe(T ) = γ(T ).

Next, we assume that γ(T ′, V (T ′) \ {x}) < γ(T ′). Let D′ be a set of vertices of T ′ with |D′| =
γ(T ′, V (T ′) \ {x}) such that every vertex in (V (T ′) \ {x}) \ D′ has a neighbor in D′. Since D′ ∪ {y} is
a dominating set of T , we obtain γ(T ) ≤ γ(T ′, V (T ′) \ {x}) + 1 ≤ γ(T ′). By Lemma 10, we obtain

γe(T ) ≤ γ(T ) ≤ γ(T ′) = γe(T ′) ≤ γe(T ),

which implies γe(T ) = γ(T ).

Next, let T arise from T ′ by applying Operation 3. Clearly, γ(T ) = γ(T ′)+1. Suppose that γe(T ) ≤ γe(T ′).
Let D be a minimum exponential dominating set of T . By Lemma 1, the set D must contain either y or z.
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Clearly, we may assume y ∈ D and z ̸∈ D. Arguing similarly as in the proof of Lemma 10, we may assume
that x ̸∈ D. Let D′ = D \ {y}. Since |D′| < γe(T ′), the set D′ is not an exponential dominating set of T ′,
which implies that w ̸∈ D′. Since

w(T,D)(u) = w(T,D′)(u) +


1
2

distT −D′ (u,y)−1

= w(T,D′)(u) +


1
2

distT ′−D′ (u,w)
· 1

2
≥ 1,

for every vertex u ∈ V (T ′) \ D′, we obtain the contradiction that τT ′(w) ≤ 1
2 . Hence, γe(T ′) + 1 ≤ γe(T ).

Now,

γ(T ) = γ(T ′) + 1 = γe(T ′) + 1 ≤ γe(T ) ≤ γ(T ),

which implies γe(T ) = γ(T ). �

Theorem 12. If T is a subcubic tree, then γ(T ) = γe(T ) if and only if T ∈ T .

Proof. Lemma 11 implies the sufficiency. In order to prove the necessity, suppose that T is a subcubic tree
of minimum order such that γ(T ) = γe(T ) and T ̸∈ T . Considering three applications of Operation 1 to P1
implies P2, P3, K1,3 ∈ T , that is, T contains all subcubic trees of diameter at most 2. Hence, the tree T has
diameter at least 3. Let v be an endvertex of a longest path in T . The vertex v has a unique neighbor u

in T .

Claim 1. The vertex u has degree 2.

Proof of Claim 1. Suppose that u has degree 3 in T . This implies that u has a neighbor w that is an endvertex
of T distinct from v. Let T ′ = T − w. Clearly, u belongs to some minimum dominating set of T ′, which
implies γ(T ) = γ(T ′). Since u has degree 2 in T ′, and is adjacent to the endvertex v, arguing as above
(cf. Fig. 1), we obtain that T ′ has a minimum exponential dominating set D′ that contains u. Since D′ is
also an exponential dominating set of T , we obtain γe(T ) ≤ γe(T ′). By Lemma 10, we have γe(T ) = γe(T ′).
Now, γ(T ′) = γ(T ) = γe(T ) = γe(T ′). By the choice of T , we obtain T ′ ∈ T . Since T arises from T ′ by
applying Operation 1, we obtain T ∈ T , which is a contradiction. �

Let x be the neighbor of u distinct from v. Let T ′′ = T − {u, v}.

Claim 2. τT ′′(x) > 1 or γ(T ′′, V (T ′′) \ {x}) < γ(T ′′).

Proof of Claim 2. Suppose that τT ′′(x) ≤ 1 and γ(T ′′, V (T ′′) \ {x}) ≥ γ(T ′′). Arguing as above, we obtain
that the first condition implies γe(T ) = γe(T ′′), and that the second condition implies γ(T ) = γ(T ′′) + 1.
Now, we obtain the contradiction γe(T ) = γe(T ′′) ≤ γ(T ′′) < γ(T ). �

If γe(T ′′) = γ(T ′′), then, by the choice of T , we have T ′′ ∈ T , and, by Claim 2, the tree T arises from T ′′ by
applying Operation 2, which implies the contradiction T ∈ T . Hence, we may assume that γe(T ′′) < γ(T ′′).

Clearly, γe(T ) ≤ γe(T ′′) + 1, and we obtain

γ(T ) = γe(T ) ≤ γe(T ′′) + 1 ≤ γ(T ′′) ≤ γ(T ),

which implies γ(T ′′) = γ(T ) = γe(T ) = γe(T ′′) + 1.
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If x has degree 3, then, by the choice of v, either x has a neighbor that is an endvertex or there is a path
v′u′x, where v′ is an endvertex that is distinct from v. In both cases, T has a minimum dominating set
that contains u and either x or u′, which implies the contradiction γ(T ′′) < γ(T ). Hence, the vertex x has
degree 2.

Let y be the neighbor of x that is distinct from u.

Let T ′′′ = T − {x, u, v}. Clearly, γe(T ) ≤ γe(T ′′′) + 1.

Suppose that τT ′′′(y) ≤ 1
2 . By adding u to the set D of vertices of T ′′′ whose existence is guaranteed by

τT ′′′(y) ≤ 1
2 , we obtain γe(T ) ≤ γe(T ′′′). Since T ′′′ is a subtree of T ′′, Lemma 10 implies the contradiction

γe(T ′′′) + 1 ≤ γe(T ′′) + 1 = γe(T ) ≤ γe(T ′′′).

Hence, τT ′′′(y) > 1
2 , which implies γe(T ) = γe(T ′′′) + 1.

Since γ(T ) = γ(T ′′′) + 1, we obtain

γe(T ′′′) = γe(T ) − 1 = γ(T ) − 1 = γ(T ′′′).

By the choice of T , this implies that T ′′′ ∈ T , and that the tree T arises from T ′′′ by applying Operation 3,
which implies the contradiction T ∈ T . �

A drawback of the above characterization is the use of the values τG(u) and conditions such as “γ(T ′, V (T ′)\
{x})) < γ(T ′)” in the definition of Operation 2. It is conceivable that these technical complications can be
eliminated, and that a completely explicit (constructive) characterization is possible.
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1. Introduction

Domination in graphs is an important area within graph theory, and an astound-
ing variety of different domination parameters are known [6]. Essentially all of
these parameters involve merely local conditions, which makes them amenable to
similar approaches and arguments. In [5] Dankelmann et al. introduce a truly
non-local variant of domination, the so-called exponential domination, where the
influence of vertices extends to any arbitrary distance within the graph but de-
cays exponentially with that distance. There is relatively few research concerning
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exponential domination [1–4], and even apparently basic results require new and
careful arguments.

As follows easily from the precise definitions given below, the exponential
domination number of any graph is at most its domination number. Bessy et
al. [4] show that computing the exponential domination number is APX-hard for
subcubic graphs and describe an efficient algorithm for subcubic trees, but the
complexity for general trees is unknown. It is not even known how to decide
efficiently for a given tree T whether its exponential domination number γe(T )
equals its domination number γ(T ). In [8] we study relations between the different
parameters of exponential domination and domination. Next to several bounds,
we obtain a constructive characterization of the subcubic trees T with γe(T ) =
γ(T ). In view of the efficient algorithms to determine both parameters for such
trees, the existence of a constructive characterization is not surprising, but, as said
a few lines above, already for general trees all techniques from [3,4,8] completely
fail.

Note that, since adding a universal vertex to any graph results in a graph G
with γe(G) = γ(G), the class of all graphs G that satisfy γe(G) = γ(G) is not
hereditary, and does not have a simple structure. The difficulty to decide whether
γe(G) = γ(G) for a given graph G motivates the study of the hereditary class G
of graphs that satisfy this equality, that is, G is the set of those graphs G such
that γe(H) = γ(H) for every induced subgraph H of G. As for the well-known
class of perfect graphs, the class G can be characterized by minimal forbidden
induced subgraphs.

In the present paper we obtain such a characterization for a large subclass
of G, and pose several related conjectures.

Before we proceed to our results, we collect some notation. We consider
finite, simple, and undirected graphs, and use standard terminology. The vertex
set and the edge set of a graph G are denoted by V (G) and E(G), respectively.
The order n(G) of G is the number of vertices of G. For a vertex u of G, the
neighborhood of u in G and the degree of u in G are denoted by NG(u) and dG(u),
respectively. The distance distG(X,Y ) between two sets X and Y of vertices in
G is the minimum length of a path in G between a vertex in X and a vertex in
Y . If no such path exists, then let distG(X,Y ) = ∞.

Let D be a set of vertices of a graph G. The set D is a dominating set of
G [6] if every vertex of G not in D has a neighbor in D. The domination number
γ(G) of G is the minimum size of a dominating set of G. For two vertices u and
v of G, let dist(G,D)(u, v) be the minimum length of a path P in G between u
and v such that D contains exactly one endvertex of P but no internal vertex of
P . If no such path exists, then let dist(G,D)(u, v) = ∞. Note that, if u and v are
distinct vertices in D, then dist(G,D)(u, u) = 0 and dist(G,D)(u, v) = ∞. For a
vertex u of G, let
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w(G,D)(u) =
∑

v∈D

(
1

2

)dist(G,D)(u,v)−1

,

where
(
1
2

)∞
= 0. Dankelmann et al. [5] define the set D to be an exponential

dominating set of G if w(G,D)(u) ≥ 1 for every vertex u of G, and the exponential
domination number γe(G) of G as the minimum size of an exponential dominating
set of G. Note that w(G,D)(u) = 2 for u ∈ D, and that w(G,D)(u) ≥ 1 for every
vertex u that has a neighbor in D, which implies γe(G) ≤ γ(G).

The following Figure 1 contains forbidden induced subgraphs that relate to the
considered subclasses of G. Recall that Pk and Ck denote the path and cycle of
order k, respectively.

u u
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u
u u
K2,3

u

uu
@

@
@ �
�

�

u u u
u u u
P2�P3

u u
B

u

uu
u u
D

u
u

u u
K4

u
u

Figure 1. The graphs K3, K2,3, P2 �P3, B (bull), D (diamond), and K4.

Our main result is the following.

Theorem 1. If G is a {B,D,K4,K2,3, P2�P3}-free graph, then γ(H) = γe(H)
for every induced subgraph H of G if and only if G is {P7, C7, F1, . . . , F5}-free
(cf. Figure 2).
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Figure 2. The graphs F1, . . . , F5.
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Since all graphs in {B,D,K4,K2,3, P2�P3} ∪ {F2, . . . , F5} have girth at most 4,
where the girth of a graph is the minimum length of a cycle in it, Theorem 1 has
the following immediate corollary.

Corollary 2. If G is a graph of girth at least 5, then γ(H) = γe(H) for every
induced subgraph H of G if and only if G is {P7, C7, F1}-free.

For the trees in G, we achieve a complete characterization.

Corollary 3. If T is a tree, then γ(F ) = γe(F ) for every induced subgraph F of
T if and only if T is {P7, F1}-free.

All proofs and our conjectures are postponed to the next section.

2. Proofs and Conjectures

We split the proof of Theorem 1 into the triangle-free case and the non-triangle-
free case. The triangle-free case is considered in the following lemma.

Lemma 4. If G is a {K3,K2,3, P2�P3}-free graph, then γ(H) = γe(H) for every
induced subgraph H of G if and only if G is {P7, C7, F1, . . . , F5}-free.

Proof. Since γ(H) > γe(H) for every graph H in {P7, C7, F1, . . . , F5}, necessity
follows. In order to prove sufficiency, suppose that G is a {K3,K2,3, P2�P3} ∪
{P7, C7, F1, . . . , F5}-free graph with γ(G) > γe(G) of minimum order. By the
choice of G, we have γ(H) = γe(H) for every proper induced subgraph H of G.
Clearly, G is connected. Since γe(G) = 1 if and only if γ(G) = 1, we obtain
γe(G) ≥ 2 and γ(G) ≥ 3. Since G is {P7, C7}-free, either G is a tree or the girth
g of G is at most 6.

Suppose thatG is a tree. IfG has at most one vertex of degree at least 3, then,
since G is {P7, F1}-free, it arises from a path P : u1 · · ·uℓ with ℓ ≤ 6 by attaching
further endvertices to u2. Since ℓ ≤ 6, the set {u2, uℓ−1} is a dominating set of G,
which contradicts γ(G) ≥ 3. Hence, G has at least two vertices of degree at least
3. Let P : u1 · · ·uℓ be a shortest path in G between two such vertices. Since G is
F1-free, it arises from P by attaching at least two further endvertices to u1 and
at least two further endvertices to uℓ. Since G is P7-free, we obtain ℓ ≤ 4. This
implies that the set {u1, uℓ} is a dominating set of G, which contradicts γ(G) ≥ 3.
Hence, we may assume that G is not a tree. Let C : x1x2x3 · · ·xgx1 be a shortest
cycle of G, where we consider the indices modulo g. Let R = V (G) \ V (C).

Suppose g = 6. Since γ(C6) = γe(C6) = 2, some vertex y in R has a neighbor
xi on C. Since g = 6, the vertex y has no further neighbor on C, implying that
G[{y, xi−2, xi−1, xi, xi+1, xi+2}] = F1, contradicting the fact that G is F1-free.
Hence, g < 6.
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Suppose g = 5. This implies that no vertex in R has more than one neighbor
on C. If some vertex z has distance 2 from V (C) in G and xiyz is a path in G,
then G[{z, y, xi−1, xi, xi+1, xi+2}] = F1, which is a contradiction. Hence, every
vertex in R has a unique neighbor on C. Suppose that there is some i ∈ [5] such
that xi has a neighbor yi in R and xi+1 has a neighbor yi+1 in R. Since g = 5,
we note that yi 6= yi+1 and that the vertex yi is not adjacent to yi+1, implying
that G[{xi−2, xi−1, xi, xi+1, yi, yi+1}] = F1, which is a contradiction. This implies
the existence of some index i ∈ [5] such that {xi, xi+2} is a dominating set of G,
which contradicts γ(G) ≥ 3. Hence, g ≤ 4. Since G is K3-free, this implies that
g = 4.

Since G is {K3,K2,3}-free, no vertex in R has more than one neighbor on C,
and since G is F2-free, no vertex in R has distance more than 2 from V (C).

Suppose that some vertex z has distance 2 from V (C). Let x1yz be a path in
G. Suppose that x2 has a neighbor u in R. Recall that u is not adjacent to any
other vertex on C. Since G is P2�P3-free, the vertex u is not adjacent to y. If
u is not adjacent to z, then G[{u, x1, x2, x4, y, z}] = F1, which is a contradiction.
If u is adjacent to z, then G[V (C) ∪ {u, y, z}] = F3, which is a contradiction.
Hence, by symmetry, we obtain dG(x2) = dG(x4) = 2.

Suppose that x1 has a neighbor u in R \ {y}. Since G is {K3,K2,3}-free,
the vertex u is not adjacent to any vertex in {x2, x3, x4, y}. If u is not adjacent
to z, then G[{x1, x2, x3, u, y, z}] = F1, which is a contradiction. If u is adjacent
to z, then G[V (C) ∪ {u, y, z}] = F4, which is a contradiction. Hence, we obtain
dG(x1) = 3.

Since {x3, y} is not a dominating set of G, and no vertex in R has distance
more than 2 from V (C), the degrees of x1, x2, and x4 imply the existence of a
path x3uv, where v has distance 2 to V (C), and v is not adjacent to y. Since
G[{v, u, x3, x2, x1, y, z}] is neither P7 nor C7, the vertex u is adjacent to y or z. If
u is adjacent to z, then, because G is K3-free, G[{u, v, y, z, x3, x2}] = F1, which
is a contradiction. Hence, the vertex u is adjacent to y. If v is adjacent to z,
then G[{u, v, y, z, x1, x2, x3}] = F3, which is a contradiction. Hence, the vertex
v is not adjacent to z, and G[{u, v, y, z, x3, x2}] = F1, which is a contradiction.
Hence, every vertex in R has a unique neighbor on C.

Since γ(G) > 2, we may assume that xi has a neighbor yi in R for i ∈ [3].
Since G is P2�P3-free, the vertex y2 is not adjacent to y1 or y3. Since G is
F5-free, the vertex y1 is not adjacent to y3. Now, G[{x1, x2, x3, y1, y2, y3}] = F1,
which is a contradiction, and completes the proof.

With Lemma 4 at hand, we now proceed to the proof of Theorem 1.

Proof of Theorem 1. Necessity follows as above. In order to prove sufficiency,
suppose that G is a {B,D,K4,K2,3, P2�P3} ∪ {P7, C7, F1, . . . , F5}-free graph
with γ(G) > γe(G) of minimum order. By the choice of G, we have γ(H) = γe(H)
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for every proper induced subgraph H of G. Clearly, G is connected. Since
γe(G) = 1 if and only if γ(G) = 1, we obtain γe(G) ≥ 2 and γ(G) ≥ 3.

By Lemma 4, G is not K3-free, that is, the girth of G is 3.
We proceed with a series of claims. Let F be the graph that is obtained from

the triangle x1x2x3 and the path y1y2y3 by adding the edge x1y1.

Claim 1. F is not an induced subgraph of G.

Proof. Suppose that F is an induced subgraph of G. Since {x1, y2} is not a
dominating set of G, there is a vertex u at distance 2 from the set {x1, y2} in G.

We proceed with three subclaims.

Claim 1.1. The vertex u is not adjacent to x2 or x3.

Proof. Suppose that u is adjacent to x2. Since G is D-free, the vertex u is not
adjacent to x3, and, since G is B-free, u is adjacent to y1. If u is not adjacent to
y3, then G[{u, x1, x3, y1, y2, y3}] = F1, which is a contradiction. If u is adjacent
to y3, then G[{u, x1, x2, y1, y2, y3}] = P2�P3, which is a contradiction. Hence,
by symmetry, we obtain that u is not adjacent to x2 or x3.

Claim 1.2. The vertex u is not adjacent to y1.

Proof. Suppose that u is adjacent to y1. Since G is F1-free, the vertex u is
adjacent to y3. Since {x1, y3} is not a dominating set of G, there is a vertex v
at distance 2 from the set {x1, y3}. Suppose that v is adjacent to x2. Since G is
D-free, the vertex v is not adjacent to x3, and, since G is B-free, v is adjacent to
y1. If v is adjacent to u, then G[{u, v, x2, y1, y3}] = B, which is a contradiction.
Hence, v is not adjacent to u, and, by symmetry, v is also not adjacent to y2.
Therefore, G[{u, v, x1, x2, y1, y2, y3}] = F4, which is a contradiction. Thus, by
symmetry, v is not adjacent to x2 or x3. Next, suppose that v is adjacent to y1.
Since G is F1-free, the vertex v is adjacent to both u and y2, which yields the
contradiction G[{u, v, y1, y2}] = D. Thus, v is not adjacent to y1. Suppose that v
is adjacent to u. If v is adjacent to y2, then G[{u, v, y1, y2, y3}] = K2,3, which is a
contradiction. If v is not adjacent to y2, then G[{u, v, x1, x2, y1, y2}] = F1, which
is a contradiction. Thus, by symmetry, v is not adjacent to u or y2, implying
that v is at distance 2 from the set {u, x1, x2, x3, y1, y2, y3}.

Since the vertex v is at distance 2 from the set {x1, y3} in G, there is a
neighbor v′ of v, that is adjacent to x1 or to y3 or to both x1 and y3. First,
suppose that v′ is not adjacent to x1, implying that v′ is adjacent to y3. Suppose
that v′ is adjacent to y1. If v′ is adjacent to u, then G[{u, v′, y1, y3}] = D,
which is a contradiction. Thus, by symmetry, v′ is adjacent to neither u nor y2,
implying that G[{u, v′, y1, y2, y3}] = K2,3, which is a contradiction. Thus, v′ is
not adjacent to y1. Since G is B-free, v′ is not adjacent to u or y2, which yields
the contradiction G[{v, v′, x1, x2, y1, y2, y3}] = P7. Therefore, v

′ is adjacent to x1.
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Since G is {B,K4}-free, the vertex v′ is not adjacent to x2 or x3. Since G is
B-free, the vertex v′ is not adjacent to y1. Suppose that v′ is not adjacent to y3. If
v′ is not adjacent to u, then G[{u, v, v′, x1, x2, y1}] = F1, which is a contradiction.
Thus, by symmetry, v′ is adjacent to both u and y2, which yields the contradiction
G[{u, v′, y1, y2, y3}] = K2,3. Thus, v′ is adjacent to y3. Since G is F1-free, the
vertex v′ is adjacent to both u and y2, implying that G[{u, v, v′, y1, y3}] = B,
which is a contradiction. Therefore, u is not adjacent to y1.

Claim 1.3. The vertex u is not adjacent to y3.

Proof. Suppose that u is adjacent to y3. Since {x1, y3} is not a dominating set
of G, there is a vertex v at distance 2 from the set {x1, y3} in G.

Suppose that v is adjacent to x2. Since G is D-free, the vertex v is not
adjacent to x3. Since G is B-free, v is adjacent to y1. If v is not adjacent to y2,
then G[{v, x1, x3, y1, y2, y3}] = F1, which is a contradiction. If v is adjacent to y2,
then we get the contradiction G[{x2, v, y1, y2, y3}] = B. Therefore, by symmetry,
v is not adjacent to x2 or x3.

Next, suppose that v is adjacent to y1. If v is not adjacent to y2, then
G[{v, x1, x2, y1, y2, y3}] = F1, which is a contradiction. If v is adjacent to y2, then
G[{v, x1, y1, y2, y3}] = B, which is a contradiction. Thus, v is not adjacent to y1.

Next, suppose that v is adjacent to y2. If v is not adjacent to u, then
G[{u, v, x1, y1, y2, y3}] = F1, which is a contradiction. If v is adjacent to u,
then G[{u, v, x1, x2, y1, y2, y3}] = F2, which is a contradiction. Therefore, v is not
adjacent to y2, implying that v is at distance 2 from the set {x1, x2, x3, y1, y2, y3}.

If v is adjacent to u, then G[{u, v, x1, x2, y1, y2, y3}] = P7, which is a contra-
diction. Hence, v is not adjacent to u. Since the vertex v is at distance 2 from
the set {x1, y3} in G, there is a neighbor v′ of v that is adjacent to x1 or to y3 or
to both x1 and y3. Note that v′ 6= u.

First, suppose that v′ is not adjacent to x1, implying that v′ is adjacent to y3.
If v′ is not adjacent to y2, then analogous arguments as in Claim 1.1 and Claim 1.2
(with the vertex u replaced by the vertex v′) show that y3 is the only vertex in
the set {x1, x2, x3, y1, y2, y3} that is adjacent to v′. This in turn implies that
G[{v, v′, x1, x2, y1, y2, y3}] = P7, which is a contradiction. Hence, v′ is adjacent
to y2. If v

′ is adjacent to y1, then G[{v′, y1, y2, y3}] = D, which is a contradiction.
Thus, v′ is not adjacent to y1, implying that G[{v, v′, y1, y2, y3}] = B, which is a
contradiction. Therefore, v′ is adjacent to x1.

Since G is {D,K4}-free, the vertex v′ is not adjacent to x2 or x3. If v′ is
adjacent to y1, then G[{v, v′, x1, x2, y1}] = B, which is a contradiction. Thus, v′

is not adjacent to y1. If v
′ is not adjacent to y2, then G[{v, v′, x1, x2, y1, y2}] = F1,

which is a contradiction. Thus, v′ is adjacent to y2. If v′ is not adjacent to y3,
then G[{v, v′, x1, x2, y2, y3}] = F1, which is a contradiction. Thus, v′ is adjacent
to y3, implying that G[{v, v′, y1, y2, y3}] = B, which is a contradiction. Therefore,
u is not adjacent to y3.



8 M.A. Henning, S. Jäger and D. Rautenbach

We return to the proof of Claim 1. By Claims 1.1, 1.2 and 1.3, the vertex
u is at distance 2 from the set {x1, x2, x3, y1, y2, y3}. Since the vertex u is at
distance 2 from the set {x1, y2} in G, there is a neighbor u′ of u that is adjacent
to x1 or to y2 or to both x1 and y2. First, suppose that u′ is adjacent to x1.
Analogously as above, since G is {B,D,K4}-free, the vertex u′ is not adjacent
to x2, x3 and y1. If u′ is not adjacent to y2, then G[{u, u′, x1, x2, y1, y2}] = F1,
which is a contradiction. Thus, u′ is adjacent to y2. If u′ is adjacent to y3,
then G[{u, u′, y1, y2, y3}] = B, while, if u′ is not adjacent to y3, then G[{u, u′, x1,
x2, y2, y3}] = F1. Since both cases produce a contradiction, we deduce that u′ is
not adjacent to x1, implying that u′ is adjacent to y2. Since G is B-free, u′ is
not adjacent to y1. If u

′ is not adjacent to y3, then G[{u, u′, x1, y1, y2, y3}] = F1,
which is a contradiction. If u′ is adjacent to y3, then G[{u, u′, y1, y2, y3}] = B,
which is a contradiction. This completes the proof of Claim 1.

Claim 2. If C is an arbitrary triangle in G, then every vertex is within distance
2 from V (C).

Proof. Let C : x1x2x3 be a triangle in G. Suppose that there is a vertex y3 at
distance 3 from V (C) in G. Let x1y1y2y3 be a shortest path in G from y3 to
V (C). Since G is {D,K4}-free, the vertex y1 is adjacent to neither x2 nor x3,
implying that F is an induced subgraph of G, which contradicts Claim 1.

Claim 3. Every triangle contains at least one vertex of degree exactly 2 in G.

Proof. Let C : x1x2x3 be a triangle in G. Suppose that every vertex on C has
degree at least 3 in G. Let y1, y2, y3 ∈ V (G) \ V (C) be neighbors of x1, x2, x3,
respectively. Since G is {D,K4}-free, xi is the only neighbor of yi in V (C) for
i ∈ [3]. Since G is B-free, the vertices y1, y2 and y3 induce a triangle C ′ in G.
Suppose that there is a vertex y ∈ V (G) \ (V (C) ∪ V (C ′)) that is adjacent to a
vertex on C, say x1. Since G is {D,K4}-free, x1 is the only neighbor of y on C,
and y is non-adjacent to some vertex yj on C ′ with j ∈ {2, 3}, which implies the
contradiction that G[{x1, x2, x3, y, yj}] = B. Hence, each vertex on C has degree
exactly 3 in G. By symmetry, each vertex on C ′ has degree exactly 3 in G. Thus,
G = P2�C3, implying that γ(G) = γe(G) = 2, which is a contradiction. This
completes the proof of Claim 3.

Claim 4. Every triangle contains two vertices of degree exactly 2 in G.

Proof. Let C : x1x2x3 be a triangle in G and let R = V (G)\V (C). By Claim 3,
the triangle C contains at least one vertex of degree exactly 2 in G. Renaming
vertices if necessary, we may assume that x1 has degree 2 in G. Suppose that
both x2 and x3 have degree at least 3 in G. Since G is D-free, the vertices x2 and
x3 have no common neighbor in R. Further, since G is B-free, every neighbor of
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x2 in R is adjacent to every neighbor of x3 in R. Hence, since G is {D,K2,3}-free,
the degrees of x2 and x3 are exactly 3 in G. Let y2 and y3 in R be neighbors of
x2 and x3, respectively. Recall that γ(G) ≥ 3. Let w2 be a vertex not dominated
by {x2, y3}, and let w3 be a vertex not dominated by {x3, y2}. By Claim 2,
the vertex w2 is within distance 2 from V (C), implying that w2 is adjacent to
y2. Analogously, the vertex w3 is adjacent to y3. Note that w2 6= w3. If w2 is
adjacent to w3, then G[{w2, w3, x2, x3, y2, y3}] = P2�P3. If w2 is not adjacent
to w3, then G[{w2, w3, x1, x2, y2, y3}] = F1. Both cases produce a contradiction,
which completes the proof of Claim 4.

Let C : x1x2x3 be a triangle in G. By Claim 4, we may assume, renaming
vertices if necessary, that x2 and x3 have degree 2 in G. Since γ(G) ≥ 3, the
vertex x1 does not dominate V (G). Let D2 = V (G) \ NG[x1]. Claim 2 implies
that every vertex in D2 is at distance exactly 2 from x1 in G. Let D1 be the set
of neighbors in V (G) \ D2 of the vertices in D2. Note that D1 ⊂ NG(x1). By
Claim 4, the set D1 is independent.

Claim 5. Every vertex in D2 has exactly one neighbor in D1.

Proof. Since D1 is an independent set, and, since G is K2,3-free, every vertex in
D2 has at most two neighbors in D1. Suppose that a vertex w1 in D2 has two
neighbors y1, y2 in D1. Since {x1, y1} is not a dominating set of G, there is a
vertex w2 ∈ D2 that is not adjacent to y1.

Claim 5.1. The vertex w2 is not adjacent to y2.

Proof. Suppose that w2 is adjacent to y2. Since {x1, y2} is not a dominating set,
there is a vertex w3 in D2 that is not adjacent to y2. Suppose that w3 is adjacent
to y1. If w3 is not adjacent to w2, then G[{x1, x2, y1, y2, w2, w3}] = F1, which is
a contradiction. Hence, w3 is adjacent to w2. If w3 is adjacent to w1, then, since
G is D-free, w1 is not adjacent to w2, implying that G[{x1, y1, w1, w2, w3}] = B,
which is a contradiction. Thus, w3 is not adjacent to w1. If w1 is not adjacent
to w2, then G[{x1, x2, y1, w1, w2, w3}] = F1, while, if w1 is adjacent to w2, then
G[{x1, y2, w1, w2, w3}] = B. Since both cases produce a contradiction, we deduce
that w3 is not adjacent to y1. Since G is {D,P2�P3}-free, the vertex w3 is
therefore adjacent to at most one of w1 and w2.

Let y3 be a neighbor of w3 in D1. As observed earlier, every vertex in
D2 has at most two neighbors in D1. In particular, w1 is not adjacent to y3.
If w3 is not adjacent to w1, then G[{x1, x2, y1, y3, w1, w3}] = F1, which is a
contradiction. Thus, w3 is adjacent to w1, implying that w3 is not adjacent to
w2. If w2 is not adjacent to y3, then G[{x1, x2, y2, y3, w2, w3}] = F1, which is a
contradiction. Hence, w2 is adjacent to y3. If w1 and w2 are not adjacent, then
G[{x1, y1, y2, y3, w1, w2}] = P2�P3, which is a contradiction. Hence, w1 and w2
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are adjacent, implying that G[{x1, y2, w1, w2, w3}] = B, which is a contradiction.
Therefore, w2 is not adjacent to y2.

Recall that w2 is not adjacent to y1. By Claim 5.1, the vertex w2 is not
adjacent to y2. Let y4 be a neighbor of w2 in D1. Since every vertex in D2 has
at most two neighbors in D1, the vertex w1 is not adjacent to y4. If w1 is not
adjacent to w2, then G[{x1, x2, y1, y4, w1, w2}] = F1, which is a contradiction.
Hence, w1 is adjacent to w2. As {x1, w1} is not a dominating set of G, there is a
vertex w4 in D2 that is not adjacent to w1. Since G is F1-free, the vertex w4 is
adjacent to y1 or to y2 or to both y1 and y2. If w4 is adjacent to y1 and y2, then
G[{x1, y1, y2, w1, w4}] = K2,3, which is a contradiction. Hence, by symmetry, we
may assume that w4 is adjacent to y1, but not to y2. If w4 is adjacent to w2,
then we get the contradiction G[{x1, y1, y2, w1, w2, w4}] = P2�P3. If w4 is not
adjacent to w2, then G[{x1, x2, y1, y4, w2, w4}] = F1, which is a contradiction, and
completes the proof of Claim 5.

Let D1 = {y1, . . . , yk}, and, for i ∈ [k], let wi be a neighbor of yi in D2. If
k = 1, then {x1, y1} is a dominating set of G, which is a contradiction. Hence,
k ≥ 2. By Claim 5, the vertex yi is the only neighbor of wi in D1 for i ∈ [k].
Since G is F1-free, the vertices w1, . . . , wk induce a clique in G. Thus, by Claim
4, we obtain k ≤ 2. This implies k = 2. Since G is F1-free, each neighbor of yi
in D2 is adjacent to every neighbor of y3−i in D2 for i ∈ [2]. If y1 and y2 both
have only one neighbor in D2, then {x1, w1} is a dominating set of G, which is
a contradiction. Hence, by symmetry, we may assume that the vertex y1 has
two neighbors w1 and w′

1 in D2. Both w1 and w′
1 are adjacent to w2. Since G

is D-free, w1 and w′
1 are not adjacent. Since {x1, w2} is not a dominating set

of G, the vertex y2 has a neighbor w′
2 in D2 that is different from w2 and not

adjacent to w2. Thus, G[{w1, w
′
1, w2, w

′
2, y1}] = K2,3, which is a contradiction,

and completes the proof of Theorem 1.

We close with a number of conjectures.

Conjecture 5. There is a finite set F of graphs such that some graph G satisfies
γ(H) = γe(H) for every induced subgraph H of G if and only if G is F-free.

Conjecture 6. The set F in Conjecture 5 can be chosen such that γ(F ) = 3 and
γe(F ) = 2 for every graph F in F .

Our proof of Theorem 1 actually implies that every component of a graph that
is {B,D,K4,K2,3, P2�P3}∪ {P7, C7, F1, . . . , F5}-free has domination number at
most 2. Wolk [9] showed that the largest hereditary class of graphs for which
every component has domination number 1 is the class of {P4, C4}-free graphs.
A complete characterization of the largest hereditary class of graphs for which
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every component has domination number at most 2 in terms of minimal forbidden
induced subgraphs seems to be a challenging and interesting problem, to which
our results indirectly contribute.

Similar to the definition of an exponential dominating set, Dankelmann et
al. [5] define a set D of vertices of a graph G to be a porous exponential dom-
inating set of G if w∗

(G,D)(u) ≥ 1 for every vertex u of G, where w∗
(G,D)(u) =

∑
v∈D

(
1
2

)distG(u,v)−1
. They define the porous exponential domination number

γ∗e (G) of G as the minimum size of a porous exponential dominating set of G.
Clearly, γ∗e (G) ≤ γe(G) ≤ γ(G) for every graph G.

Conjecture 7. A graph G satisfies γ(H) = γe(H) for every induced subgraph H
of G if and only if γ(H) = γ∗e (H) for every induced subgraph H of G.
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a b s t r a c t

For a set S of vertices of a graph G, a vertex u in V (G)\S, and a vertex v in S, let dist(G,S)(u, v)
be the distance of u and v in the graph G − (S \ {v}). Dankelmann et al. (2009) define S to
be an exponential dominating set of G if w(G,S)(u) ≥ 1 for every vertex u in V (G) \ S, where
w(G,S)(u) =

∑
v∈S

( 1
2

)dist(G,S)(u,v)−1
. Inspired by this notion, we define S to be an exponential

independent set of G if w(G,S\{u})(u) < 1 for every vertex u in S, and the exponential
independence number αe(G) of G as the maximum order of an exponential independent
set of G.

Similarly as for exponential domination, the non-local nature of exponential inde-
pendence leads to many interesting effects and challenges. Our results comprise exact
values for special graphs as well as tight bounds and the corresponding extremal graphs.
Furthermore, we characterize all graphs G for which αe(H) equals the independence
number α(H) for every induced subgraph H of G, and we give an explicit characterization
of all trees T with αe(T ) = α(T ).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Independence in graphs is one of the most fundamental and well-studied concepts in graph theory. In the present paper
we propose and study a version of independence where the influence of vertices decays exponentially with respect to
distance. This new notion is inspired by the exponential domination number, which was introduced by Dankelmann et al. [5]
and recently studied in [1–4]. Somewhat related parameters are the well-known (distance) packing numbers [8–10] and the
influence numbers [6,7].

We consider finite, simple, and undirected graphs, and use standard terminology. The vertex set and the edge set of a
graph G are denoted by V (G) and E(G), respectively. The order n(G) of G is the number of vertices of G. The distance distG(u, v)
between two vertices u and v in a graph G is the minimum number of edges of a path in G between u and v. If no such path
exists, then let distG(u, v) = ∞. The diameter diam(G) of G is the maximum distance between vertices of G. A set of pairwise
non-adjacent vertices ofG is an independent set ofG, and themaximumorder of an independent set ofG is the independence
number α(G) of G.

Let S be a set of vertices of G. For two vertices u and v of G, let dist(G,S)(u, v) be the minimum number of edges of a path P
in G between u and v such that S contains exactly one endvertex of P but no internal vertex of P . If no such path exists, then
let dist(G,S)(u, v) = ∞. Note that, if u and v are distinct vertices in S, then dist(G,S)(u, u) = 0 and dist(G,S)(u, v) = ∞. For a
vertex u of G, let

w(G,S)(u) =

∑
v∈S

(
1
2

)dist(G,S)(u,v)−1

, (1)

where
( 1
2

)∞
= 0. Note that w(G,S)(u) = 2 for u ∈ S.

E-mail addresses: simon.jaeger@uni-ulm.de (S. Jäger), dieter.rautenbach@uni-ulm.de (D. Rautenbach).

http://dx.doi.org/10.1016/j.disc.2016.10.018
0012-365X/© 2016 Elsevier B.V. All rights reserved.
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Dankelmann et al. [5] define a set S of vertices to be exponential dominating if

w(G,S)(u) ≥ 1 for every vertex u in V (G) \ S,

and the exponential domination number γe(G) of G as the minimum order of an exponential dominating set. Analogously, we
define S to be exponential independent if

w(G,S\{u})(u) < 1 for every vertex u in S,

that is, the accumulated exponentially decaying influence w(G,S\{u})(u) of the remaining vertices in S \ {u} that arrives at
any vertex u in S is strictly less than 1. Let the exponential independence number αe(G) of G be the maximum order of an
exponential independent set. An (exponential) independent set of maximum order ismaximum.

Our results comprise exact values for special graphs as well as tight bounds and the corresponding extremal graphs.
Furthermore,we characterize all graphsG forwhichαe(H) equals the independence numberα(H) for every induced subgraph
H of G, and we give an explicit characterization of all trees T with αe(T ) = α(T ). We conclude with several open problems.

2. Results

We start with some elementary observations concerning exponential independence. Clearly, every exponential indepen-
dent set is independent, which immediately implies (i) of the following theorem. The quantity w(G,S\{u})(u) does not behave
monotonously with respect to the removal of vertices from S. Indeed, if G is a star K1,n−1 with center v, and S = V (G) for
instance, then w(G,S\{u})(u) = 1 for every endvertex u of G but w(G,S\{u,v})(u) =

n−2
2 , which can be smaller or bigger than 1. In

view of this observation part (iii) of the following theorem is slightly surprising.

Theorem 1. Let G be a graph.

(i) αe(G) ≤ α(G).
(ii) If H is a subgraph of G and S ⊆ V (H) is an exponential independent set of G, then S is an exponential independent set

of H.
(iii) A subset of an exponential independent set of G is an exponential independent set of G.

Proof. (i) follows from the above observation. Since dist(G,S\{u})(u, v) ≤ dist(H,S\{u})(u, v) for every two vertices u and v in S,
(ii) follows immediately from (1). We proceed to the proof of (iii). Let S be an exponential independent set of G. Let u and v

be distinct vertices in S. In order to complete the proof, it suffices to show

w(G,S\{u,v})(u) ≤ w(G,S\{u})(u). (2)

For

S∞ = {w ∈ S \ {u, v} : dist(G,S\{u,v})(u, w) = ∞},

S= = {w ∈ S \ {u, v} : dist(G,S\{u,v})(u, w) = dist(G,S\{u})(u, w) < ∞}, and
S> = {w ∈ S \ {u, v} : dist(G,S\{u,v})(u, w) < dist(G,S\{u})(u, w)},

we have S = {u, v} ∪ S= ∪ S> ∪ S∞. If S> = ∅, then (2) follows immediately from (1). Hence, we may assume that S> ̸= ∅.
Let T be a subtree of G rooted in u such that

• S= ∪ S> is the set of all leaves of T ,
• distT (u, w) = dist(G,S\{u,v})(u, w) for every w ∈ S= ∪ S>, and
• v is not an ancestor within T of any vertex in S=.

Such a tree can easily be extracted from the union of paths Pw forw ∈ S= ∪S>, where Pw is a path of length dist(G,S\{u,v})(u, w)
between w and u that intersects S \ {u, v} only in w, and that avoids v if w ∈ S=. Since S> ̸= ∅, the vertex v belongs to T ,
and the set of leaves of T that are descendants of v is exactly S>. The conditions imposed on T easily imply distT (u, v) =

dist(G,S\{u})(u, v). Let T> be the subtree of T rooted in v that contains v and all its descendants within T . Since S is exponential
independent, we obtain w(T>,S>)(v) ≤ w(G,S\{v})(v) < 1, which implies

w(G,S\{u,v})(u) = w(T ,S=)(u) + w(T ,S>)(u)

= w(T ,S=)(u) +

(
1
2

)distT (u,v)

w(T>,S>)(v)

< w(T ,S=)(u) +

(
1
2

)dist(G,S\{u})(u,v)

=

∑
w∈S=

(
1
2

)dist(G,S\{u})(u,w)−1

+

(
1
2

)dist(G,S\{u})(u,v)
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<
∑

w∈S=∪{v}

(
1
2

)dist(G,S\{u})(u,w)−1

≤ w(G,S\{u})(u),

which completes the proof. □

Our next result is a lower bound on the exponential independence number, for which we are able to characterize all
extremal trees.

Theorem 2. If G is a connected graph of order n and diameter diam, then

αe(G) ≥
2diam + 2

5
. (3)

Furthermore, if G is a tree, then (3) holds with equality if and only if G is a path and n is a multiple of 5.

Proof. Let P : v0v1 . . . vdiam be a shortest path of length diam in G. Let

S =

{
v5i : i ∈

{
0, . . . ,

⌊
diam
5

⌋}}
∪

{
v5i+2 : i ∈

{
0, . . . ,

⌊
diam − 2

5

⌋}}
.

Let vi ∈ S. Since P is a shortest path, we have dist(G,S\{vi})(vi, vj) ≥ |j − i| for every vj in S \ {vi}. By construction, the set S
contains no neighbor of vi, and S contains at most one of the two vertices vi−k and vi+k for every integer k at least 2. This
implies w(G,S\{vi})(vi) <

∑
∞

k=2

( 1
2

)k−1
= 1. Hence, S is an exponential independent set of G, and

αe(G) ≥ |S| = 1 +

⌊
diam
5

⌋
+ 1 +

⌊
diam − 2

5

⌋
≥

2diam + 2
5

.

Now, let G be a path and let n be a multiple of 5, that is, G = Pn, where Pn : v0v1 . . . vn−1. It is easy to verify that
αe(P5) = 2 =

2diam+2
5 . Furthermore, if n > 5 and S is amaximumexponential independent set ofG, then S∩{v0, v1, v2, v3, v4}

is an exponential independent set of P5 and S \ {v0, v1, v2, v3, v4} is an exponential independent set of Pn−5. By an inductive
argument, we obtain,

2n
5

≤ αe(G) = αe(Pn) ≤ αe(P5) + αe(Pn−5) = 2 +
2(n − 5)

5
=

2n
5

,

which implies that paths whose order is a multiple of 5 satisfy (3) with equality.
Finally, let G be a tree with αe(G) =

2diam+2
5 , and let P be as above. Since 2diam+2

5 is an integer, the order diam+ 1 of P is a
multiple of 5. Suppose that G is distinct from P . This implies that there is some vertex vk of P that has a neighbor u that does
not belong to P . Let k = 5r + s for some s ∈ {0, 1, 2, 3, 4}. By symmetry, we may assume that s ∈ {0, 1, 2}. Let

S0 = {vi : i ∈ {0, . . . , 5r − 1} with i mod 5 ∈ {0, 2}}
∪ {vi : i ∈ {5r + 5, . . . , diam + 1} with i mod 5 ∈ {2, 4}}.

If s = 0, then let S = {v5r+1, v5r+4, u} ∪ S0, and if s ∈ {1, 2}, then let S = {v5r , v5r+4, u} ∪ S0. The set S is an exponential
independent set of G of order more than 2diam+2

5 , which is a contradiction. Hence, G is a path and n is a multiple of 5, which
completes the proof. □

For later reference, we include a fundamental lemma from [4]. Recall that a full binary tree is a rooted tree in which each
vertex has either no or exactly two children.

Lemma 3 (Bessy et al. [4]). Let G be a graph of maximum degree at most 3, and let S be a set of vertices of G.
If u is a vertex of degree at most 2 in G, then w(G,S)(u) ≤ 2with equality if and only if u is contained in a subgraph T of G that

is a tree, such that rooting T in u yields a full binary tree and S ∩ V (T ) is exactly the set of leaves of T .

Our next result concerns the exponential independence numbers of some special graphs.

Theorem 4.

(i) If Pn is the path of order n, then αe(Pn) =
⌈ 2n

5

⌉
.

(ii) If Cn is the cycle of order n at least 5, then αe(Cn) =
⌊ 2n

5

⌋
.

(iii) If T is a full binary tree of order n, then αe(T ) =
n+1
2 . Furthermore, the set of leaves of T is the unique maximum exponential

independent set of T .

Proof. (i) By Theorem 2, αe(Pn) is at least
⌈ 2n

5

⌉
. For n ≤ 5, it is easy to verify that αe(Pn) is also at most

⌈ 2n
5

⌉
. Now, let n > 5.

Let Pn be the path v0v1 . . . vn−1. Let S be a maximum exponential independent set of Pn. Since S ∩ {v0, v1, v2, v3, v4} is an
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exponential independent set of P5 and S \ {v0, v1, v2, v3, v4} is an exponential independent set of Pn−5, we obtain, by an
inductive argument,

αe(Pn) ≤ αe(P5) + αe(Pn−5) = 2 +

⌈
2(n − 5)

5

⌉
=

⌈
2n
5

⌉
.

(ii) Let Cn be the cycle v1v2 . . . vnv1. For 5 ≤ n ≤ 10, it is easy to verify that αe(Cn) =
⌊ 2n

5

⌋
, and that some maximum

exponential independent set of Cn contains v1 and v3.
In order to show αe(Cn) ≥

⌊ 2n
5

⌋
for n at least 5, we prove, by induction on n, that Cn has an exponential independent

set Sn of order
⌊ 2n

5

⌋
that contains v1 and v3. For n ≤ 10, this was already observed above. For n > 10, the set Sn defined as

Sn−5 ∪ {vn−2, vn−4} is an exponential independent set of order
⌊ 2n

5

⌋
that contains v1 and v3, which completes the proof of

the lower bound.
In order to show αe(Cn) ≤

⌊ 2n
5

⌋
for n at least 5, suppose, for a contradiction, that n is the smallest order at least 5 with

αe(Cn) >
⌊ 2n

5

⌋
. As observed above n > 10, which implies αe(Cn) > 4. It is easy to see that Cn has a maximum exponential

independent set Sn that contains v1 and v3. Let k ∈ [n] be minimum such that Sn contains two vertices in {vn−k+1, . . . , vn}.
Clearly, vn−k+1 ∈ Sn, vn−k ̸∈ Sn, and k ≥ 5. If k = 5, then Sn ∩{vn−4, . . . , vn} = {vn−4, vn−2}. This implies that Sn \{vn−4, vn−2}

is an exponential independent set of Cn−5, which implies the contradiction αe(Cn−5) >
⌊ 2(n−5)

5

⌋
. Similarly, if k ≥ 6, then

Sn \ {vn−k+1, . . . , vn} is an exponential independent set of Cn−k, which implies the contradiction αe(Cn−k) >
⌊ 2(n−5)

5

⌋
. This

completes the proof of (ii).
(iii) Clearly, we may assume n > 3. Let L be the set of leaves of T . Note that n = 2|L| − 1. Let v ∈ L and let u be the

parent of u in T . If w(T ,L\{v})(v) ≥ 1, then w(T ,L\{v})(u) ≥ 2, and Lemma 3 implies that rooting T − v in u yields a full binary
tree. This implies the contradiction that T only has vertices of degree 1 and 3, while the root of T has degree 2. Hence, L is an
exponential independent set of T , which implies αe(T ) ≥ |L| =

n+1
2 .

Suppose that T is a full binary tree of minimum order n such that either αe(T ) > n+1
2 or αe(T ) =

n+1
2 but T has a

maximum exponential independent set distinct from L. In both cases, T has a maximum exponential independent set S
with S \ L ̸= ∅. Let v be a vertex in S \ L at maximum distance from the root of T . Let w and w′ be the two children of
v in T . Let Tw be the full binary subtree of T that contains w as well as all descendants of w in T , and is rooted in w. Let
Sw = S ∩V (Tw). By the choice of v, the set Sw contains only leaves of Tw . If Sw contains all leaves of Tw , then Lemma 3 implies
w(T ,S\{v})(v) ≥ w(T ,Sw )(v) =

1
2w(Tw ,Sw )(w) =

1
2 · 2 = 1, which is a contradiction. Hence, the set L \ S contains at least one leaf

of T that is either w or a descendant of w, and, by symmetry, the set L \ S also contains at least one leaf of T that is either w′

or a descendant of w′. Hence, if ℓv leaves of T are descendants of v, then S contains at most ℓv − 2 descendants of v. Let T ′

arise from T by removing all descendants of v. Since T ′ is a full binary tree of smaller order than T , the choice of T implies
that αe(T ′) =

n(T ′)+1
2 . Note that S ∩V (T ′) is an exponential independent set of T ′, and that v has exactly 2ℓv −2 descendants.

Therefore,

|S| ≤ |S \ V (T ′)| + |S ∩ V (T ′)|
≤ (ℓv − 2) + |S ∩ V (T ′)|

≤ (ℓv − 2) +
n(T ′) + 1

2

= (ℓv − 2) +
n − (2ℓv − 2) + 1

2

<
n + 1
2

,

which is a contradiction. □

Our next result is an upper bound on the exponential independence number, for which we achieve a full characterization
of the extremal graphs.

Theorem 5. If G is a connected graph of order n, then

αe(G) ≤
n + 1
2

with equality if and only if G is a full binary tree.

Proof. We show the upper bound by induction on n. By Theorem 1(ii), we may assume that G is a tree T . If n = 1, then
αe(T ) = 1 =

n+1
2 . Now, let n ≥ 2, and let S be a maximum exponential independent set of T . We root T in some vertex r . Let

v be a vertex in S at maximum distance from r . If v = r , then |S| = 1, and the statement holds. Hence, we may assume that
v and r are distinct. Let u be the parent of v.

First, we assume that v is the only descendant of u that belongs to S. Let T ′ arise from T by removing u together with all
descendants of u, and let S ′

= S \{v}. Clearly, S ′ is an exponential independent set of the tree T ′, andwe obtain, by induction,

αe(T ) = |S| = |S ′
| + 1 ≤ αe(T ′) + 1 ≤

n(T ′) + 1
2

+ 1 ≤
n(T ) + 1

2
.
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Next, we assume that S contains some descendant of u distinct from v. Let Su be the set of descendants of u that belong
to S. By the choice of v, all vertices in Su are children of u. Since S is exponential independent, we obtain |Su| = 2, and
u ̸∈ S. Let T ′′ arise from T by removing all descendants of u, and let S ′′

= (S \ Su) ∪ {u}. If w(T ′′,S′′\{u})(u) ≥ 1, then
w(T ,S\{v})(v) ≥

1
2w(T ′′,S′′\{u})(u) +

1
2 ≥ 1, which is a contradiction. If w(T ′′,S′′\{w})(w) ≥ 1 for some w ∈ S ′′

\ {u}, then
dist(T ′′,S′′\{w})(w, u) = dist(T ,S\{w})(w, x) − 1 for every x ∈ Su and |Su| = 2 imply

w(T ,S\{w})(w) = w(T ′′,S′′\{w})(w) −

(
1
2

)dist(T ′′,S′′\{w})(w,u)−1

+

∑
x∈Su

(
1
2

)dist(T ,S\{w})(w,x)−1

= w(T ′′,S′′\{w})(w)
≥ 1,

which is a contradiction. Hence, S ′′ is an exponential independent set of T ′′, and we obtain, by induction,

αe(T ) = |S| = |S ′′
| + 1 ≤ αe(T ′′) + 1 ≤

n(T ′′) + 1
2

+ 1 ≤
n(T ) + 1

2
,

which completes the proof of the upper bound.
Next, we show that we have equality if and only if G is a full binary tree. By Theorem 4(iii), we only need to show that

every connected graph Gwith αe(G) =
n+1
2 is a full binary tree. Therefore, suppose that G is a connected graph of minimum

order nwith αe(G) =
n+1
2 that is not a full binary tree.

Let T be a spanning tree of G. We will show first that T is a full binary tree. By Theorem 1(ii), we have n+1
2 = αe(G) ≤

αe(T ) ≤
n+1
2 , which implies αe(T ) =

n+1
2 . Let S be a maximum exponential independent set of G, and, hence, also of T . If the

diameter of T is at most 2, then it is easy to see that either αe(G) ̸=
n+1
2 or G is a full binary tree, that is, the diameter of T is

at least 3. Let w be the endvertex of a longest path P in T . Let v be the neighbor of w, and let u be the neighbor of v on P that
is distinct from w. Let T ′

= T − (NT [v] \ {u}), and let S ′
= S ∩ V (T ′). Note that all vertices in NT (v) \ {u} are endvertices of T .

First, we assume that v has degree 2 in T . Note that S ′ is an exponential independent set of T ′, the set S contains at most
one of the two vertices v andw, and n(T ′) = n−2. This implies n+1

2 = αe(T ) = |S| ≤ |S ′
|+1 ≤ αe(T ′)+1 ≤

n(T ′)+1
2 +1 =

n+1
2 ,

which implies that αe(T ′) = |S ′
| =

n(T ′)+1
2 , and that S contains either w or v. By the choice of G, this implies that T ′

is a full binary tree. By Theorem 4(iii), the set S ′ is exactly the set of leaves of T ′. If u is the root of T ′, then T is a full
binary tree with root v, which is a contradiction. Hence, u is not the root of T ′. Let u′ be a leaf of T ′ that is either u or a
descendant of u in T ′. Let u′ have distance d from the root r of T ′. Let u0 . . . ud with u0 = r and ud = u′ be a path in
T ′. For i ∈ [d], let u′

i be the child of ui−1 in T ′ that is distinct from ui, let T ′

i be the full binary subtree of T ′ that contains
u′

i as well as all descendants of u′

i in T ′, and is rooted in u′

i , and let S ′

i = S ′
∩ V (T ′

i ). Since S ′

i is exactly the set of leaves
of T ′

i , Lemma 3 implies w(T ′
i ,S

′
i )
(u′

i) = 2 for i ∈ [d]. Since the distance in T ′ between u′ and u′

i is d − i + 2, this implies

w(T ,S′\{u′})(u′) =
∑d

i=1

( 1
2

)d−i+2
w(T ′

i ,S
′
i )
(u′

i) =
∑d

i=1

( 1
2

)i
. Since the distance between w and u′ is at most d + 1, we obtain the

contradiction w(T ,S\{u′})(u′) ≥ w(T ,{w})(u′) + w(T ,S′\{u′})(u′) ≥
( 1
2

)(d+1)−1
+

∑d
i=1

( 1
2

)i
= 1. Hence, v has degree at least 3 in T .

If S contains at most one vertex from NT [v] \ {u}, then n(T ′) ≤ n − 3 implies the contradiction n+1
2 = αe(T ) = |S| ≤

|S ′
| + 1 ≤ αe(T ′) + 1 ≤

n(T ′)+1
2 + 1 =

n
2 . Since S is an exponential independent set of T , it cannot contain either v and a

neighbor of v or three neighbors of v. Hence, it follows that S contains exactly two vertices from NT (v) \ {u} but not v. Let
T ′′

= T − (NT (v) \ {u}), and let S ′′
= S ′

∪ {v}. Arguing as before, it follows that S ′′ is an exponential independent set of
T ′′. Since n(T ′′) ≤ n − 2, we obtain n+1

2 = αe(T ) = |S| = |S ′′
| + 1 ≤ αe(T ′′) + 1 ≤

n(T ′′)+1
2 + 1 ≤

n+1
2 , which implies

αe(T ′′) =
n(T ′′)+1

2 and n(T ′′) = n − 2. By the choice of G, it follows that T ′′ is a full binary tree, and that S ′′ is a maximum
exponential independent set of T ′′. Since v ∈ S ′′, Theorem 4 implies that v is a leaf of T ′′. Now, also in this case, the tree T is
a full binary tree.

Since T was an arbitrary spanning tree of G, it follows that every spanning tree of G is a full binary tree. This easily implies
that G = T , that is, G is a full binary tree, which completes the proof. □

Theorem2 implies thatαe(G) is at leastΩ(log2(n(G))) for every connected cubic graphG.We conjecture thatαe(G) actually
grows much faster than log2(n(G)). At least for subcubic trees, we obtain the following linear lower bound.

Theorem 6. If T is a tree of order n and maximum degree at most 3, then αe(T ) ≥
2n+8
13 .

Proof. Clearly, we may assume that n > 3. Let T have ni vertices of degree i for i ∈ [3]. Note that n1 ≥ n3 + 2.
If n2 > 0, then let S1 be the set of all leaves of T , and, if n2 = 0, then let S1 be the set of all leaves of T except for

exactly one. Arguing as in the proof of Theorem 4(iii), it follows that S1 is an exponential independent set in T , which implies
αe(T ) ≥ n1 − 1 ≥ n3 + 1.

Let V3 be the set of vertices of degree 3, and let T ′
= T −NT [V3]. Note that T ′ is a union of paths, and that n(T ′) ≥ n−4n3.

By Theorem 4(i), the forest T ′ has an exponential independent set S2 of order at least 2n(T ′)
5 ≥

2n−8n3
5 . We will show that S2

is also exponential independent within T . Therefore, let u be a vertex of degree 1 in T ′ that has a neighbor v in V (T ) \ V (T ′).
By construction, u and v have degree 2 in T , and v has a neighbor w of degree 3 in T . Let Tw be the component of T − v
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Fig. 1. The trees T1(k) for k ∈ [5].

Fig. 2. The trees Tk(3) for k ∈ {2, 3, 4, 5}.

that contains w, and let Sw = S2 ∩ V (Tw). If w(T ,Sw )(u) ≥
1
2 , then w(Tw ,Sw )(w) ≥ 2. By Lemma 3, this implies that Sw , and

hence S2, intersects NT [V3], which is a contradiction. Hence, w(T ,Sw )(u) < 1
2 . Similarly, if u is a vertex of degree 0 in T ′, then

w(T ,S2\{u})(u) < 1
2 if u has degree 1 in T , and w(T ,S2\{u})(u) < 1

2 +
1
2 if u has degree 2 in T . If P = v0 . . . vℓ is a component of T ′

with |V (P)∩S2| ≥ 2, and vi ∈ S2 is such that S2 ∩{v0, . . . , vi−1} = ∅, thenw(T ′,S2\{vi})(vi) ≤
1
2 . Combining these observations,

it follows easily that S2 is an exponential independent set in T , which implies αe(T ) ≥
2n−8n3

5 .

Altogether, we obtain αe(T ) ≥ max
{
n3 + 1, 2n−8n3

5

}
≥

2n+8
13 , which completes the proof. □

After the above bounds, exact values, and extremal graphs, we consider graphs G with αe(G) = α(G). We achieve full
characterizations of all graphs for which every induced subgraph has this property, and also of all trees that have this
property.

Recall that the bull is the unique graph B of order 5 with degree sequence 1, 1, 2, 3, 3.

Theorem 7. If G is a graph, then αe(H) = α(H) for every induced subgraph H of G if and only if G is {K1,3, P5, B}-free.

Proof. If H ∈ {K1,3, P5, B}, then αe(H) = 2 < 3 = α(H), which implies the necessity. In order to show the sufficiency, let G
be a {K1,3, P5, B}-free graph. It suffices to show that αe(G) = α(G). Let S be a maximum independent set of G. If |S| ≤ 2, then
S is also exponential independent, which implies αe(G) = α(G). Hence, we may assume that |S| ≥ 3. Possibly iteratively
replacing elements of S by one of their neighbors, wemay assume that S contains two vertices u and v at distance 2. Suppose
that S \ {u, v} contains a vertex w at distance 2 from u. If u, v, and w have a common neighbor, then the independence of S
implies that G contains K1,3 as an induced subgraph, which is a contradiction. Therefore, if uv′v and uw′w are shortest paths
in G, then v′

̸= w′ and vw′, wv′
̸∈ E(G), which implies the contradiction that {u, v, w, v′, w′

} induces P5 or B. Hence, wemay
assume, by symmetry, that no vertex in S has two vertices in S at distance 2 from it. Let w ∈ S \ {u, v}. Since G is P5-free,
the distance of u and w is 3. Let uv′v and uw′w′′w be shortest paths in G. Note that v is not adjacent to w′′. If v′

= w′, then
{u, v, v′, w′′

} induces K1,3, which is a contradiction. Hence, v′
̸= w′. By symmetry, we may assume that v is not adjacent

to w′ and that v′ is not adjacent to w′′. Now, {u, v, v′, w′, w′′
} induces P5 or B, which is a contradiction and completes the

proof. □
We proceed to the trees T with αe(T ) = α(T ).
For a positive integer k, let T1(k) be the tree illustrated in Fig. 1, that is, T1(k) has vertex set {x1, . . . , xk} ∪ {y1, . . . , yk},

contains the path x1 . . . xk, and xi is the only neighbor of yi for i ∈ [k].
Let T2(k) arise from T1(k) by adding a vertex a and the edge x1a. Let T3(k) arise from T1(k) by adding the vertices a, b, c ,

and d, and the edges x1a, ab, bc , and cd. For k ≥ 3, let T4(k) arise from T1(k) by adding the vertices a and b, and the edges x2a
and ab. Finally, let T5(k) arise from T1(k) by adding the vertices a, b, c , d, a′, b′, c ′, and d′, and the edges x1a, ab, bc , cd, xka′,
a′b′, b′c ′, c ′d′. See Fig. 2 for an illustration.

Let

T = {P1, P8} ∪

⋃
k∈N

{
T1(k), T2(k), T3(k), T5(k)

}
∪

⋃
k≥3

{
T4(k)

}
.
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Note that T contains the paths P1, P2 = T1(1), P3 = T2(1), P4 = T1(2), P6 = T3(1), and P8.

Lemma 8. Every tree T ∈ T satisfies αe(T ) = α(T ). Furthermore, if S is a maximum exponential independent set of T , then

(i) S ∈
{
{y1, . . . , yk}, {x1} ∪ {y2, . . . , yk}, {xk} ∪ {y1, . . . , yk−1}

}
if T = T1(k),

(ii) S = {a, y1, . . . , yk} if T = T2(k),
(iii) S = {b, d, y1, . . . , yk} if T = T3(k) with k ≥ 2,
(iv) S = {b, y1, . . . , yk} if T = T4(k) with k ≥ 3,
(v) S = {b, d, b′, d′, y1, . . . , yk} if T = T5(k),
(vi) S ∈

{
{y1, a, d}, {y1, b, d}

}
if T = P6 = y1x1abcd, and

(vii) S = {b, d, b′, d′
} if T = P8 = dcbaa′b′c ′d′.

Proof. Let T ∈ T . It is easy to see that αe(Pn) = α(Pn) for n ∈ {1, 2, 3, 4, 6, 8}. Furthermore, one easily checks that P6 has
only two distinct exponential independent sets of order 3, and that P8 has a unique exponential independent set of order 4,
which implies (vi) and (vii). Now, we may assume that T ̸∈ {P1, P6, P8}.

First, we assume that T = T1(k) for some positive integer k. Clearly, the set {y1, . . . , yk} is a maximum independent set,
which impliesα(T ) = k. Since this set is also exponential independent,weobtainαe(T ) = α(T ) = k. Now, let S be amaximum
exponential independent set of T . For k ∈ [2], it follows easily that S is as stated in (i). Now, let k ≥ 3. Since S contains at
most one of the two vertices xi and yi for each i ∈ [k], the set S necessarily intersects each of the sets {xi, yi} for i ∈ [k] in
exactly one vertex. If xi ∈ S for some i ∈ {2, . . . , k − 1}, this implies that yi−1, yi+1 ∈ S, which yields the contradiction that
w(T ,S\{xi})(xi) ≥

1
2 +

1
2 = 1. Hence, {yi : 2 ≤ i ≤ k− 1} ⊆ S. If x1, xk ∈ S, then w(T ,S\{x1})(x1) =

∑k−1
i=2

( 1
2

)i−1
+

1
2k−2 = 1, which

is a contradiction. Hence, the set S is stated as in (i).
Next, we assume that T = T2(k) for some positive integer k. Again, the set of leaves is a maximum independent set of T ,

which is also exponential independent, and, hence,αe(T ) = α(T ) = k+1. Now, let S be amaximumexponential independent
set of T . If a ̸∈ S, then S is an exponential independent set of T − a = T1(k), which contradicts αe(T1(k)) = k. Hence, a ∈ S,
which implies x1 ̸∈ S. For k ∈ [2], it follows easily that S is as stated in (ii). Now, let k ≥ 3. Since S \ {a} is a maximum
exponential independent set of T − a = T1(k), we obtain, by (i), that {y1, . . . , yk−1} ⊆ S. If xk ∈ S, then w(T ,S\{a})(a) ≥ 1
follows similarly as above, which is a contradiction. Hence, the set S is as stated in (ii).

Next, we assume that T = T3(k) for some positive integer k. Since T ̸= P6, we have k ≥ 2. As before, it follows easily that
the set specified in (iii) is a maximum exponential independent set of T , and, hence, αe(T ) = α(T ) = k + 2. Now, let S be a
maximum exponential independent set of T . Necessarily, |S \ {a, b, c, d}| = k and |S ∩ {a, b, c, d}| = 2, which implies that
S contains either a or b. If S contains a, then S \ {b, c, d} is a maximum exponential independent set of T2(k), which, by (ii),
implies S \ {b, c, d} = {a, y1, . . . , yk}. Now, we obtain the contradiction, w(T ,S\{a})(a) = w(T ,S\{a,b,c,d})(a) + w(T ,S∩{b,c,d})(a) ≥
1
2 +

1
4 +

1
4 = 1. Hence, b ∈ S, which implies S∩{a, b, c, d} = {b, d}, and x1 ̸∈ S. Since S \{a, b, c, d} is amaximum exponential

independent set of T − {a, b, c, d} = T1(k), we obtain, by (i), that {y1, . . . , yk−1} ⊆ S. If xk ∈ S, then w(T ,S\{a})(a) = 1, which
is a contradiction. Hence, the set S is as stated in (iii).

Next, we assume that T = T4(k) for some integer k at least 3. Since the set specified in (iv) is a maximum independent
set and an exponential independent set, it is a maximum exponential independent set, and αe(T ) = α(T ). Now, let S be
a maximum exponential independent set of T . Since S is a maximum independent set, it contains exactly one of the two
vertices a and b. Since T − {a, b} = T1(k), part (i) implies that the set S ′ defined as S \ {a, b} is a maximum exponential
independent set of T − {a, b}. If S ′

= {x1} ∪ {y2, . . . , yk}, then w(T ,S\{x1})(x1) ≥ w(T ,{y2,y3,b})(x1) = 1, which is a contradiction.
If S ′

= {xk} ∪ {y1, . . . , yk−1}, then w(T ,S\{xk})(xk) ≥ w(T ,{y1,...,yk−1,b})(xk) = 1, which is a contradiction. Hence, by (i),
S ′

= {y1, . . . , yk}. Furthermore, by symmetry between b and y1, we obtain S = {b, y1, . . . , yk}, that is, the set S is as stated
in (iv).

Finally, if T = T5(k) for some positive integer k, very similar arguments as above imply that αe(T ) = α(T ), and that every
maximum exponential independent set is as specified in (v). □

Theorem 9. If T is a tree, then αe(T ) = α(T ) if and only if T ∈ T .

Proof. In view of Lemma 8, it remains to show that every tree T with αe(T ) = α(T ) belongs to T . Therefore, suppose that T
is a tree of minimum order such that αe(T ) = α(T ) but T ̸∈ T . Let S be a maximum exponential independent set of T . Since
P1, P2, P3 ∈ T , and αe(K1,n−1) = 2 < n−1 = α(K1,n−1) for n ≥ 3, wemay assume that T has diameter at least 3. Therefore, if
w is an endvertex of a longest path in T , then the unique neighbor v of w has exactly one neighbor u that is not an endvertex
of T . Let T ′ be the component of T − v that contains u. Note that T ′ is not P1. We consider different cases.

Case 1 dT (v) ≥ 4.

Clearly, α(T ) ≥ α(T ′) + (dT (v) − 1) ≥ α(T ′) + 3. Since S contains at most 2 vertices from NT [v] \ {u}, and S ∩ V (T ′) is
an exponential independent set of T ′, we obtain αe(T ) ≤ αe(T ′) + 2, which yields the contradiction α(T ) ≥ α(T ′) + 3 ≥

αe(T ′) + 3 > αe(T ), which completes the proof in this case.

Case 2 dT (v) = 3.

Let NT (v) = {u, w,w′
}. As before, we obtain that α(T ) ≥ α(T ′) + 2 and αe(T ) ≤ αe(T ′) + 2, which implies α(T ) ≥

α(T ′) + 2 ≥ αe(T ′) + 2 ≥ αe(T ) = α(T ). Since equality holds throughout this inequality chain, we have α(T ′) = αe(T ′) and
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αe(T ) = αe(T ′) + 2. By the choice of T , the condition α(T ′) = αe(T ′) implies that T ′
∈ T . Furthermore, αe(T ) = αe(T ′) + 2

implies that S ∩ {v, w,w′
} = {w, w′

}, and that S ′
= S \ {w, w′

} is a maximum exponential independent set of T ′. Since
w(T ,{w,w′})(u) = 1, we obtain u ̸∈ S ′.

First, we assume that T ′
= P8 = dcbaa′b′c ′d′. By Lemma 8, we have S ′

= {b, d, b′, d′
}. By symmetry, we may assume that

u ∈ {a, c}. In both cases w(T ,{d,w,w′})(b) ≥ 1, which is a contradiction.
Next, we assume that T ′

= T1(k). Since u ̸∈ S ′, we obtain that either u = xi for some i ∈ [k] or u = yj for some j ∈ {1, k}.
If u = yj for some j ∈ {1, k}, then xj ∈ S ′, and w(T ,(S′\{xj})∪{w,w′})(xj) ≥ 1, which is a contradiction. Hence, u = xi for some
i ∈ [k]. If i ∈ {1, k}, then T = T2(k + 1) ∈ T , which is a contradiction. Hence, 2 ≤ i ≤ k − 1. Using Lemma 8, we obtain the
contradiction w(T ,S\{yi})(yi) ≥ 4 ·

1
4 = 1.

Next, we assume that T ′
= T2(k). By Lemma 8, we have S ′

= {a, y1, . . . , yk}. Since u ̸∈ S ′, we have u = xi for some i ∈ [k],
which implies the contradiction w(T ,S\{yi})(yi) ≥ w(T ,{w,w′})(yi) + w(T ,{a,y1,...,yi−1})(yi) = 2 ·

1
4 +

(
1
4 + · · · +

1
2i

+
1
2i

)
= 1.

Next, we assume that T ′
= T3(k). By Lemma 8, we have S ′

= {b, d, y1, . . . , yk} for k ≥ 2. For k = 1, that is,
T ′

= P6, Lemma 8(vi) implies that, after suitably renaming the vertices of T ′, we have S ′
= {b, d, y1, . . . , yk}. Since

u ̸∈ S ′, we have u ∈ {a, c} or u = xi for some i ∈ [k]. In the former case, w(T ,{d,w,w′})(b) ≥ 1, and in the latter case,
w(T ,S\{b})(b) ≥ w(T ,{d,w,w′})(b) + w(T ,{y1,...,yi})(b) =

1
2 + 2 ·

1
2i+2 +

(
1
4 + · · · +

1
2i+1

)
= 1.

Next, we assume that T ′
= T4(k) for some k ≥ 3. By Lemma 8, we have S ′

= {b, y1, . . . , yk}. Since u ̸∈ S ′, we have
u ∈ {a, x1} or u = xi for some i ∈ {2, . . . , k}. If u = a, then w(T ,S\{b})(b) ≥ w(T ,{w,w′,y1,y2,y3})(b) = 3 ·

1
4 + 2 ·

1
8 = 1. Similarly,

if u = x1, then w(T ,S\{y1})(y1) ≥ 1. Finally, if u = xi for some i ≥ 2, then w(T ,S\{yi})(yi) ≥ w(T ,{w,w′,b})(yi) + w(T ,{y1,...,yi−1})(yi) =

2 ·
1
4 +

1
2i

+

(
1
4 + · · · +

1
2i

)
= 1.

Finally, we assume that T ′
= T5(k). By Lemma 8, we have S ′

= {b, d, b′, d′, y1, . . . , yk}. Since u ̸∈ S ′, we have
u ∈ {a, c, a′, c ′

} or u = xi for some i ∈ {1, . . . , k}. If u ∈ {a, c}, then w(T ,S\{b})(b) ≥ w(T ,{d,w,w′})(b) = 1, if u ∈ {a′, c ′
}, then

w(T ,S\{b′})(b′) ≥ 1, and if u = xi, then w(T ,S\{b})(b) ≥ w(T ,{d,w,w′})(b) + w(T ,{y1,...,yi})(b) =
1
2 + 2 ·

1
2i+2 +

(
1
4 + · · · +

1
2i+1

)
= 1,

which completes the proof in this case.

Case 3 dT (v) = 2.

Let NT (v) = {u, w}. As before, we obtain that α(T ) ≥ α(T ′)+ 1 and αe(T ) ≤ αe(T ′)+ 1, which implies α(T ) ≥ α(T ′)+ 1 ≥

αe(T ′) + 1 ≥ αe(T ) = α(T ). Again, equality holds throughout this inequality chain, and we obtain that α(T ′) = αe(T ′),
αe(T ) = αe(T ′) + 1, T ′

∈ T , and S ′
= S \ {v, w} is a maximum exponential independent set of T ′. Clearly, we may assume

that S ∩ {v, w} = {w}.
First, we assume that T ′

= P8 = dcbaa′b′c ′d′. By Lemma 8, we have S ′
= {b, d, b′, d′

}. Regardless of which vertex in
{d, c, b, a, a′, b′, c ′, d′

} is u, either w(T ,S\{b})(b) ≥ 1 or w(T ,S\{b′})(b′) ≥ 1.
Next, we assume that T ′

= T1(k). If u ∈ {x1, xk}, then T = T1(k+1) ∈ T . If u ∈ {y1, yk}, then either k = 1 and T = P4 ∈ T ,
or k ≥ 2 and T = T3(k−1) ∈ T . If u ∈ {x2, xk−1}, then T = T4(k) ∈ T . If u = yi for some i ∈ {2, . . . , k−1}, then, by Lemma 8,
yi ∈ S ′ and w(T ,S\{yi})(yi) ≥ w(T ,{w,yi−1,yi+1})(yi) = 1. Finally, if u = xi for some i ∈ {3, . . . , k − 2}, then, by Lemma 8, yi ∈ S ′

and w(T ,S\{yi})(yi) ≥ w(T ,{w,yi−1,yi+1,yi−2,yi+2})(yi) = 1.
Next, we assume that T ′

= T2(k). If u ∈ {a, y1, . . . , yk}, then, by Lemma 8, w(T ,S\{u})(u) =
1
2 + w(T ,S′\{u})(u) ≥

1
2 +

1
2 = 1.

If u = xk, then T = T2(k + 1) ∈ T . Finally, if u = xi for some i ∈ [k − 1], then, by Lemma 8, yi ∈ S ′ and
w(T ,S\{yi})(yi) ≥ w(T ,{w,yi+1})(yi) + w(T ,{a,y1,...,yi−1})(yi) = 2 ·

1
4 +

(
1
4 + · · · +

1
2i

+
1
2i

)
= 1.

Next, we assume that T ′
= T3(k). If u ∈ {a, b, c, d}, then, by Lemma 8, w(T ,S\{b})(b) ≥ w(T ,{w})(b) + w(T ,{d,y1})(b) ≥ 1. If

u = xk, then T = T3(k + 1) ∈ T . If u = yk, then either k = 1 and T = P8 ∈ T , or k ≥ 2 and T = T5(k − 1) ∈ T . If
u = yi for some i ∈ [k − 1], then yi ∈ S ′ and w(T ,S\{yi})(yi) ≥

1
2 + 2 ·

1
4 = 1. Finally, if u = xi for some i ∈ [k − 1], then

w(T ,S\{b})(b) ≥ w(T ,{d,w})(b) + w(T ,{y1,...,yi+1})(b) =
1
2 +

1
2i+2 +

(
1
4 + · · · +

1
2i+2

)
= 1.

Next, we assume that T ′
= T4(k) for some k ≥ 3. If u ∈ {b, y1, . . . , yk}, then, by Lemma 8, u ∈ S ′ and w(T ,S\{u})(u) =

1
2 + w(T ,S′\{u})(u) ≥

1
2 +

1
2 = 1. If u = x1 and k = 3, then T = T4(4) ∈ T . If u = x1 and k ≥ 4, then w(T ,S\{y2})(y2) ≥

w(T ,{b,w,y1,y3,y4})(y2) = 3 ·
1
4 + 2 ·

1
8 = 1. If u = a, we obtain similar contradictions. If u = xk, then T = T4(k + 1) ∈ T .

Finally, if u = xi for some i ∈ {2, . . . , k − 1}, then yi ∈ S ′ and w(T ,S\{yi})(yi) ≥ w(T ,{yi+1,w})(yi) + w(T ,{b,y1,...,yi−1,w})(yi) =

2 ·
1
4 +

(
1
4 + · · · +

1
2i

+
1
2i

)
= 1.

Finally, we assume that T ′
= T5(k). If u ∈ {b, d, b′, d′, y1, . . . , yk}, then, by Lemma 8, u ∈ S ′ and w(T ,S\{u})(u) =

1
2 + w(T ,S′\{u})(u) ≥

1
2 +

1
2 = 1. If u ∈ {a, c}, then w(T ,S\{b})(b) ≥ w(T ,{d,w,y1})(b) = 1. If u ∈ {a′, c ′

}, we obtain a
similar contradiction. Finally, if u = xi for some i ∈ [k], then w(T ,S\{b})(b) ≥ w(T ,{w,d})(b) + w(T ,{yj:1≤j≤min{i+1,k}}∪{b′})(b) =

1
2 +

1
2i+2 +

(
1
4 + · · · +

1
2i+2

)
= 1, which completes the proof. □

3. Conclusion

Our results motivate several open problems. It seems interesting to characterize all extremal graphs for Theorem 2. In
view of Theorem 5, one can study upper bounds for graphs of larger minimum degree. As stated before Theorem 6, we
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conjecture that αe(G) grows faster than log2(n(G)) for cubic graphs. Can the graphs G with αe(G) = α(G) be recognized
efficiently? Are there hardness results concerning αe(G), and efficient algorithms for restricted graph classes such as trees?
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a b s t r a c t

A prominent parameter in the context of network analysis, originally proposed by Watts
and Strogatz (1998), is the clustering coefficient of a graph G. It is defined as the arithmetic
meanof the clustering coefficients of its vertices,where the clustering coefficient of a vertex
u of G is the relative density m(G[NG(u)])/

( dG(u)
2

)
of its neighborhood if dG(u) is at least 2,

and 0 otherwise. It is unknown which graphs maximize the clustering coefficient among
all connected graphs of given order and size.

Wedetermine themaximumclustering coefficients among all connected regular graphs
of a given order, as well as among all connected subcubic graphs of a given order. In
both cases, we characterize all extremal graphs. Furthermore, we determine themaximum
increase of the clustering coefficient caused by adding a single edge.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Watts and Strogatz [8] proposed the clustering coefficient of a graph in order to quantify the corresponding property of
networks. For a vertex u of a simple, finite, and undirected graph G, let the clustering coefficient of u in G be

Cu(G) =

⎧⎨⎩
m(G[NG(u)])( dG(u)

2

) , if dG(u) ≥ 2, and

0, otherwise,

where NG(u) denotes the neighborhood {v ∈ V (G) : uv ∈ E(G)} of u in the graph Gwhose vertex set is V (G) and whose edge
set is E(G), dG(u) denotes the degree |NG(u)| of u in G, G[NG(u)] denotes the subgraph of G induced by NG(u), andm(G[NG(u)])
denotes the size of this subgraph, that is,m(G[NG(u)]) equals exactly the number of triangles of G that contain the vertex u.

Furthermore, let the clustering coefficient of G be the average

C(G) =
1

n(G)

∑
u∈V (G)

Cu(G)

of the clustering coefficients of its n(G) = |V (G)| vertices.
For an integer ℓ, let [ℓ] denote the set of all positive integers at most ℓ.

While the clustering coefficient received a lot of attention within social network analysis [1,5–7], some fundamental
mathematical problems related to it are still open. It is unknown [4,7], for instance, which graphs maximize the clustering
coefficient among all connected graphs of a given order and size.

* Corresponding author.
E-mail addresses:michael.gentner@uni-ulm.de (M. Gentner), heinrich@mathematik.uni-kl.de (I. Heinrich), simon.jaeger@uni-ulm.de (S. Jäger),

dieter.rautenbach@uni-ulm.de (D. Rautenbach).
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Fig. 1. The unique graph G(3, 8) with the largest clustering coefficient among all connected 3-regular graphs of order 24.

Watts [6,7] suggested the so-called connected caveman graphs as a possible extremal construction. For integers k and
ℓ at least 2, these arise from ℓ disjoint copies G1, . . . ,Gℓ of Kk+1 − e, the complete graph of order k + 1 minus one edge,
arranged cyclically by adding, for every i in [ℓ], an edge between one of the two vertices of degree k − 1 in Gi and one of
the k − 1 vertices of degree k in Gi+1, where the indices are identified modulo ℓ. Actually, it is rather obvious that these
graphs do not have the largest clustering coefficient among all connected graphs of given order and size, because removing
the edge between G1 and G2, and adding a new edge between the two vertices of degree k− 1 in G1, increases the clustering
coefficient.

Fukami and Takahashi [2,3] considered clustering coefficient locally maximizing graphswhose clustering coefficient cannot
be increased by some local operations such as an edge swap.

In the present paper we determine the maximum clustering coefficients among all connected regular graphs of a given
order, as well as among all connected subcubic graphs of a given order. In both cases, we characterize all extremal graphs.
Furthermore, we determine the maximum increase of the clustering coefficient caused by adding a single edge.

2. Results

We introduce a slightly modified version of the connected caveman graphs. For integers k and ℓ with k ≥ 3 and
ℓ ≥ 2, let G(k, ℓ) be the k-regular connected graph that arises from ℓ disjoint copies G1, . . . ,Gℓ of Kk+1 − e arranged
cyclically by adding, for every i in [ℓ], an edge between a vertex in Gi and a vertex in Gi+1, where the indices are identified
modulo ℓ. Note that G(k, ℓ) is uniquely determined up to isomorphism by the requirement of k-regularity. See Fig. 1 for an
illustration.

Theorem 1. Let k and n be integers with n ≥ k + 2 and k ≥ 3. If G is a connected k-regular graph of order n, then

C(G) ≤ 1 −
6

k(k + 1)

with equality if and only if n/(k + 1) is an integer and G equals G(k, n/(k + 1)).

Proof. Let G be a connected k-regular graph of order n. For a non-negative integer i, let Vi be the set of vertices u of G with
m(G[NG(u)]) =

( k
2

)
− i. Since G is connected and has order at least k + 2, no vertex has a complete neighborhood, that is,

V0 is empty. For a set U of vertices of G, let σ (U) =
∑

u∈UCu(G). In order to obtain a useful decomposition of G, we consider
some special graphs. For k ≤ 4, one such graph suffices, while for k ≥ 5, two more are needed.

Let G1, . . . ,Gr be amaximal collection of disjoint subgraphs of G that are all copies of Kk+1 −e. Let A = V (G1)∪· · ·∪V (Gr )
and R = V (G)\A. Note that every vertex in A has at most one neighbor in R. Suppose that R contains a vertex u from V1. Since
every vertex in NG(u) has at least two neighbors in the closed neighborhood NG[u] of u, the subgraph Gr+1 of G induced by
NG[u] does not intersect A and is a copy of Kk+1−e. Now, G1, . . . ,Gr ,Gr+1 contradicts themaximality of the above collection,
which implies that R does not intersect V1.

Since each Gi contains k−1 vertices from V1 and two vertices whose neighborhood induces K1 ∪Kk−1, and |A| = r(k+1),
we have

σ (A) =

∑
i∈[r]

∑
u∈V (Gi)

Cu(G) = r

(
(k − 1)

( k
2

)
− 1( k
2

) + 2

( k−1
2

)( k
2

) ) = |A|

(
1 −

6
k(k + 1)

)
.
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Since R does not intersect V1, we have

σ (R) =

∑
u∈R

Cu(G) ≤ |R|

( k
2

)
− 2( k
2

) = |R|
(
1 −

4
(k − 1)k

)
.

First, let k ≤ 4. Since 1 −
4

(k−1)k < 1 −
6

k(k+1) in this case, we obtain

C(G) =
1

n(G)
(σ (A) + σ (R))

≤
1

n(G)
(|A| + |R|)

(
1 −

6
k(k + 1)

)
= 1 −

6
k(k + 1)

,

with equality if and only if A = V (G) and R = ∅, which implies that k + 1 divides n, and G equals G(k, n/(k + 1)).
Now, let k ≥ 5. In this case, we need to refine the partition of V (G) into A and R further. Let G1, . . . ,Gr , A, and R be exactly

as above, and recall that R does not intersect V1. Let H1, . . . ,Hs be a maximal collection of disjoint subgraphs of G[R] that
are all copies of the two possible graphs that arise from Kk+1 by removing two edges. Let B = V (H1) ∪ · · · ∪ V (Hs), and
S = V (G)\ (A∪B). Note that every vertex in A∪B has at most two neighbors in S. Suppose that S contains a vertex u from V2.
Since k ≥ 5, every vertex in NG(u) has at least three neighbors in the closed neighborhood NG[u] of u. Hence, the subgraph
Hs+1 of G induced by NG[u] does not intersect A ∪ B and is a copy of one of the two possible graphs that arise from Kk+1 by
removing two edges. Now, H1, . . . ,Hs,Hs+1 contradicts the maximality of the above collection, which implies that S does
not intersect V1 ∪ V2.

If Hi for some i in [s] is a copy of Kk+1 minus two non-incident edges, then Hi contains k − 3 vertices from V2 and four
vertices whose neighborhood induces a graph that arises from K1 ∪ (Kk−1 − e) by adding at most two edges, which implies

σ (V (Hi)) ≤ (k − 3)

( k
2

)
− 2( k
2

) + 4

( k−1
2

)
− 1 + 2( k
2

) =
k3 − 13k + 28

(k − 1)k
.

If Hi for some i in [s] is a copy of Kk+1 minus two incident edges, then Hi contains k− 2 vertices from V2, two vertices whose
neighborhood induces a graph that arises from K1 ∪ Kk−1 by adding at most one edge, and one vertex whose neighborhood
induces a graph that arises from K1 ∪ K1 ∪ Kk−2 by adding at most one edge, which implies

σ (V (Hi)) ≤ (k − 2)

( k
2

)
− 2( k
2

) + 2

( k−1
2

)
+ 1( k

2

) +

( k−2
2

)
+ 1( k

2

) =
k3 − 13k + 24

(k − 1)k
.

Using |B| = s(k + 1), we obtain

σ (B) =

∑
i∈[s]

σ (V (Hi)) ≤ |B|
k3 − 13k + 28
(k − 1)k(k + 1)

= |B|
(
1 −

12k − 28
(k − 1)k(k + 1)

)
.

Since S does not intersect V1 ∪ V2, we have

σ (S) ≤ |S|

( k
2

)
− 3( k
2

) = |S|
(
1 −

6
(k − 1)k

)
.

Since

max
{
1 −

12k − 28
(k − 1)k(k + 1)

, 1 −
6

(k − 1)k

}
< 1 −

6
k(k + 1)

for k ≥ 5, we obtain

C(G) =
1

n(G)
(σ (A) + σ (B) + σ (S))

≤
1

n(G)
(|A| + |B| + |S|)

(
1 −

6
k(k + 1)

)
= 1 −

6
k(k + 1)

,

with equality if and only if A = V (G) and B = S = ∅, which implies that k + 1 divides n, and G equals G(k, n/(k + 1)). This
completes the proof. □

Recall that the diamond is the unique graph with degree sequence 2, 2, 3, 3.
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Theorem 2. If G is a connected subcubic graph of order n at least 6, then

C(G) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7
12

+
12
12n

, if n ≡ 0mod 4,

7
12

+
13
12n

, if n ≡ 1mod 4,

7
12

+
14
12n

, if n ≡ 2mod 4, and

7
12

+
11
12n

, if n ≡ 3mod 4.

(1)

Proof. Let G be the set of all connected subcubic graphs of order n at least 6. We assume that G is chosen within G in such a
way that

(i) its clustering coefficient C(G) is as large as possible,
(ii) subject to condition (i), the sizem(G) of G is as small as possible, and,
(iii) subject to conditions (i) and (ii), the number of triangles in G that contain at most one vertex of degree 2 in G is as small

as possible.

We establish a series of structural properties of G.

Claim 1. Every subgraph D of G that is a diamond is induced and forms an endblock.

Proof of Claim 1. Let D be a subgraph of G that is a diamond. Since G is subcubic, connected, and of order more than 4,
the subgraph D is induced, that is, the two vertices of degree 2 in D are non-adjacent in G. If all vertices in D have degree 3
in G, then contracting D to a single vertex u, adding a new triangle xyz, and adding the new edge ux yields a graph G′ in G
with C(G′) ≥ C(G) +

1
3n , contradicting the choice of G. Note that the two neighbors of u in G′ that are distinct from xmay be

adjacent, in which case C(G′) > C(G) +
1
3n . In view of the order, this implies that D contains exactly one vertex of degree 2,

and, hence, forms an endblock of G. □

Claim 2. Every edge of G that lies in some cycle also lies in some triangle.

Proof of Claim 2. If the edge uv of G lies in some cycle but in no triangle, then removing uv yields a graph G′ in G with
C(G′) ≥ C(G) and m(G′) < m(G), contradicting the choice of G. Note that, if some triangle of G contains u or v, then
C(G′) > C(G). □

Claim 3. Every block of G is K2, K3, or a diamond.

Proof of Claim 3. Suppose, for a contradiction, that B is a block of G that is neither K2, nor K3, nor a diamond. Note that every
edge of B lies in some cycle, and, hence, by Claim 2, also lies in some triangle. Let uvw be a triangle in B. Since B is not K3, we
may assume that u has a neighbor x in V (B) \ {v, w}. Since the edge ux of B lies in some triangle, we may assume that x and
v are adjacent. Since B is not a diamond, we may assume, by symmetry, that x has a neighbor y in V (B) \ {u, v, w}. Since the
edge xy of B lies in some triangle, we obtain that y is adjacent to u or v, contradicting the assumption that G is subcubic. □

Let D be the set of blocks of G that are diamonds. For i ∈ {2, 3}, let Ii be the set of blocks of G that are triangles that contain
exactly i vertices of degree 3 in G. Let I = I2 ∪ I3. Finally, let S be the set of vertices of G that do not lie in some triangle and
have degree at most 2 in G.

The triangles in I are called inner triangles. By condition (iii), G has as few inner triangles as possible given the other
conditions.

If u ∈ S has degree 2, then resolving u means to remove u from G, and to connect its two neighbors by a new edge. If
u ∈ S has degree 1, then resolving u simply means to remove u from G. Note that resolving some vertex from S yields a
connected subcubic graph G′ of order n − 1 with C(G′) ≥ C(G).

Claim 4. Either D or I is empty.

Proof of Claim 4. Suppose, for a contradiction, that G contains a diamond D and an inner triangle T . By Claim 1, D contains
a vertex u of degree 2 in G. Let v be a neighbor of u. If T ∈ I2, then contracting T to a single vertex w, removing u, adding a
new triangle xyz, and adding the new edge xw yields a graph G′ in G with C(G′) = C(G) +

1
3n , contradicting the choice of G.

If T ∈ I3, then contracting T to a single vertex, removing u, adding a new triangle xyz, and adding the new edge xv yields a
graph G′ in G with C(G′) = C(G) +

1
3n , contradicting the choice of G. □
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Claim 5. |D| ≤ 2.

Proof of Claim 5. Suppose, for a contradiction, that G has three blocks B1, B2, and B3 that are diamonds. By Claim 1, these are
all endblocks, and removing the three vertices, say v1, v2, and v3, of degree 2 in G from B1, B2, and B3, adding a new triangle
xyz, and adding a new edge between x and one of the two neighbors of v1 in B1 yields a graph G′ in G with C(G′) = C(G)+ 2

3n ,
contradicting the choice of G. □

Claim 6. S is empty.

Proof of Claim 6. Suppose, for a contradiction, that S contains some vertex u.
If I2 contains a triangle T , then resolving u, contracting T to a single vertex v, adding a new triangle xyz, and adding the

new edge xv yields a graph G′ in G with C(G′) ≥ C(G) +
2
3n , contradicting the choice of G. If I3 contains a triangle T , then

resolving u, contracting T to a single vertex v, adding a new triangle xyz, and then replacing one of the edges incident with
v, say vw, with the two new edges xv and yw yields a graph G′ in G with C(G′) ≥ C(G) +

2
3n , contradicting the choice of G.

Hence, we may assume that G has no inner triangles.
If G has a block B that is a triangle, then B is an endblock, and resolving u, adding a new vertex v, and adding two new

edges between v and the two vertices of degree 2 in B yields a graph G′ in G with C(G′) ≥ C(G)+ 1
3n , contradicting the choice

of G. Hence, we may assume that G has no blocks that are triangles.
If G has two blocks B1 and B2 that are diamonds, then B1 and B2 are endblocks by Claim 1, and resolving u, removing the

two vertices, say v1 and v2, of degree 2 in G from B1 and B2, respectively, adding a new triangle xyz, and adding a new edge
between x and one of the two neighbors of v1 in B1 yields a graph G′ in G with C(G′) ≥ C(G)+ 1

n , contradicting the choice of G.
Hence, since G is not a tree, wemay assume that G has exactly one endblock B that is a diamond, and all other blocks of G are
K2 s. In this case C(G) =

8
3n . Since G contains a graph G′ with two endblocks that are triangles, we obtain C(G′) ≥

14
3n > C(G),

contradicting the choice of G. □

Recall that the paw is the unique graph with degree sequence 1, 2, 2, 3.

Claim 7. |I| ≤ 1.

Proof of Claim 7. Suppose, for a contradiction, that G has two inner triangles T1 and T2.
If T1, T2 ∈ I3, then contracting both triangles to single vertices u1 and u2, adding a new paw P , and then replacing one of

the edges incident with u1, say u1v, with the two new edges xu1 and xv, where x is the vertex of degree 1 in P , yields a graph
G′ in G with C(G′) = C(G) +

1
3n , contradicting the choice of G.

If T1 ∈ I2 and T2 ∈ I3, then contracting both triangles to single vertices u1 and u2, adding a new diamond D, and adding
the new edge xu1, where x is a vertex of degree 2 in D, yields a graph G′ in G with C(G′) = C(G),m(G′) = m(G), and less inner
triangles than G, contradicting the choice of G.

If T1, T2 ∈ I2, then replacing T1 with an edge between the two vertices, say a and b, outside of T1 that have neighbors in
T1, adding a new triangles xyz, and adding the new edge xu2, where u2 is the vertex in T2 of degree 2 in G, yields a graph G′

in G with C(G′) = C(G), m(G′) = m(G), and less inner triangles than G, contradicting the choice of G. Note that, in this last
construction, the vertices a and b are non-adjacent in G by Claim 3, and two triangles that contributed to I2 are replaced by
one that contributes to I3. □

For t(G) = (|D|, |I2|, |I3|), the above claims imply t(G) ∈ {(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 0, 1), (0, 1, 0)}. For each of these
cases, we can determine C(G) exactly. Let k be the number of vertices of G that do not lie in a triangle.

If t(G) = (i, 0, 0) for some i ∈ {0, 1, 2}, then G arises from a tree of order 2k + 2 with k vertices of degree 3 and k + 2
endvertices, by replacing k+2− i endvertices with triangles and i endvertices with diamonds, and we obtain n = 4k+6+ i,
and

C(G) =
1
n

(
7
3
(k + 2 − i) +

8
3
i
)

=
7
12

+
14 − 3i
12n

.

If t(G) = (0, 0, 1), then G arises from a tree of order 2k+4 with k+1 vertices of degree 3 and k+3 endvertices, by replacing
all endvertices as well as one internal vertex with triangles, and we obtain n = 4k + 12, and

C(G) =
1
n

(
7
3
(k + 3) + 1

)
=

7
12

+
1
n
.

If t(G) = (0, 1, 0), then G arises from a tree of order 2k + 3 with k vertices of degree 3, one vertex of degree 2, and k + 2
endvertices, by replacing all endvertices as well as the vertex of degree 2 with triangles, and we obtain n = 4k + 9, and

C(G) =
1
n

(
7
3
(k + 2) +

5
3

)
=

7
12

+
13
12n

.

Considering the different parities of nmodulo 4, the desired result follows. □
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Fig. 2. Some graphs in B0 of type (0, 0, 0), (1, 0, 0), (0, 1, 1), and (0, 3, 0).

Our next goal is the characterization of all extremal graphs for (1). Therefore, let B0 be the set of all connected subcubic
graphs G of order at least 6 such that

• every block of G is K2, K3, or a diamond,
• every block of G that is a diamond is an endblock of G, and
• every vertex of degree at most 2 lies in a triangle.

Note that the last condition implies that the set denoted by S above is empty.
Let the type t(G) of a graph G in B0 be the 3-tuple (d, i2, i3), where d is the number of blocks of G that are diamonds, and,

for j in {2, 3}, ij is the number of blocks of G that are triangles that contain exactly j vertices of degree 3 in G.
Let

B =

{
G ∈ B0 : t(G) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (0, 2, 0), (0, 3, 0)}

}
.

See Fig. 2 for some illustrations.

Theorem 3. If G is a connected subcubic graph of order at least 6, then G satisfies (1) with equality if and only if G ∈ B.

Proof. First, let G ∈ B. For t(G) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, we verified at the end of the proof of Theorem 2 that
(1) holds with equality. For t(G) ∈ {(0, 1, 1), (0, 2, 0), (0, 3, 0)}, very similar simple calculations imply the same.

Now, let G satisfy (1) with equality. Similarly as above, let G be the set of all connected subcubic graphs of order n(G).
We consider the claims from the proof of Theorem 2. Clearly, Claim 1 still holds. Suppose, for a contradiction, that Claim 2
fails, that is, G has some edge uv that lies in some cycle but in no triangle. Iteratively removing from G first the edge uv,
and then further edges that lie in cycles but not in triangles as long as possible yields a graph G′ in G with C(G′) ≥ C(G)
such that every edge of G′ that lies in some cycle also lies in some triangle. Now, the argument from the proof of Claim 3
applies, and, hence, G′

∈ B0 ⊆ G. By (1) for G′, we obtain C(G′) = C(G), which, as observed in the proof of Claim 2, implies
that u and v are vertices of G′ that do not lie in some triangle and have degree at most 2 in G′. Arguing as in the proof of
Claim 6, we obtain the existence of a graph G′′ in G with C(G′′) > C(G′) = C(G), which contradicts (1) for G′′. Hence, Claim 2
holds. Considering their respective proofs, it follows that also Claims 3, 4, 5, and 6 hold. Let the type t(G) of G be (d, i2, i3). By
Claim 5, d ≤ 2. If d = 2, then, by Claim 4, i2 = i3 = 0, and the calculation at the end of the proof of Theorem 2 implies the
contradiction that (1) does not hold with equality. Hence, d ∈ {0, 1}, and, if d = 1, then, by Claim 4, i2 = i3 = 0. If i3 ≥ 2,
then arguing as in the proof of Claim 7 yields the existence of a graph G′ in G with C(G′) > C(G), which is a contradiction.
Hence, i3 ≤ 1. If i2 ≥ 4, then arguing as in the proof of Claim 7 yields the existence of a graph G′ in G with C(G′) = C(G)
that is of type (d′, i′2, i

′

3) = (d, i2 − 4, i3 + 2). Now, as observed above, i′3 ≥ 2 implies the existence of a graph G′′ in G with
C(G′′) > C(G′) = C(G), which is a contradiction. Hence, i2 ≤ 3. Finally, if i2 ≥ 2 and i3 = 1, then arguing as in the proof
of Claim 7 yields the existence of a graph G′ in G with C(G′) = C(G) that is of type (d′, i′2, i

′

3) = (d, i2 − 2, i3 + 1). Again,
as observed above, i′3 ≥ 2 implies a contradiction. Hence, i3 = 1 implies i2 ≤ 1. Altogether, it follows that G ∈ B, which
completes the proof. □

Our final result shows that adding a single edge can increase the clustering coefficient of a graph from 0 to almost 1, which
means that it is a rather sensitive parameter.

Theorem 4. If G is a graph of order n at least 3, and u and v are non-adjacent vertices in G, then

C(G + uv) ≤ C(G) +

(
1 −

2
n

+
4

n(n − 1)

)
with equality if and only if G is K2,n−2, and u and v are of degree n − 2 in G.
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Proof. Since the statement is trivial if dG(u) = 0 or dG(v) = 0, we may assume that neither u nor v is isolated in G. Let
G′

= G + uv.
If w is a common neighbor of u and v in G, then the degree of w in G′ equals the degree of w in G but G′

[NG′ (w)] contains
exactly one edge more than G[NG(w)], which implies

Cw(G′) − Cw(G) =
1( dG(w)
2

) ≤ 1

with equality if and only if dG(w) = 2.
If dG(u) ≥ 2, then

Cu(G′) − Cu(G) =
m(G′

[NG′ (u)])(
dG′ (u)

2

) −
m(G[NG(u)])( dG(u)

2

)
=

m(G[NG(u)]) + |NG(u) ∩ NG(v)|( dG(u)+1
2

) −
m(G[NG(u)])( dG(u)

2

)
=

2(dG(u) − 1)|NG(u) ∩ NG(v)| − 4m(G[NG(u)])
(dG(u) + 1)dG(u)(dG(u) − 1)

≤
2(dG(u) − 1)dG(u) − 4m(G[NG(u)])

(dG(u) + 1)dG(u)(dG(u) − 1)

≤
2

dG(u) + 1
with equality if and only if NG(u) ⊆ NG(v) and NG(u) is independent.

If dG(u) = 1, then

Cu(G′) − Cu(G) ≤ 1 =
2

dG(u) + 1
with equality if and only if NG(u) ⊆ NG(v) and NG(u) is independent.

We obtain that

n(C(G′) − C(G)) = (Cu(G′) − Cu(G)) + (Cv(G′) − Cv(G)) +

∑
w∈NG(u)∩NG(v)

(Cw(G′) − Cw(G))

≤
2

dG(u) + 1
+

2
dG(v) + 1

+ |NG(u) ∩ NG(v)|

with equality if and only if NG(u) = NG(v) is independent and every vertex in NG(u) has degree 2 in G, that is, G is K2,n−2, and
u and v are of degree n − 2 in G. Since d := min{dG(u), dG(v)} ≤ n − 2 and the function f : N → R : d ↦→

4
d+1 + d is strictly

increasing, we conclude

n(C(G′) − C(G)) ≤
2

dG(u) + 1
+

2
dG(v) + 1

+ |NG(u) ∩ NG(v)|

≤
4

d + 1
+ d

≤
4

n − 1
+ n − 2,

which completes the proof. □
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