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Abstract

In this thesis we study various problems from the prominent area of graph colourings.
We provide a characterisation of t-perfect triangulations and quadrangulations of the

projective plane. For the latter class, a novel method to transform quadrangulations
of the sphere is developed. The involved operations are simple and minor-preserving,
in contrast to other known methods.
We conjecture that any graph with treewidth k and maximum degree ∆ ≥ k +

√
k

has chromatic index ∆. In support of the conjecture we prove its fractional version
by developing a new upper bound on the edge number of such graphs.
We further prove the list colouring conjecture for generalised Petersen graphs of the

form GP (3k, k) and GP (4k, k). In doing so, we discover an interesting connection
between the number of 1-factorisations of GP (3k, k) and the Jacobsthal numbers.
Finally, we develop new techniques to construct cycle decompositions. They work

on the common neighbourhood of two degree-6 vertices. With these techniques we
find structures that cannot occur in a minimal counterexample to Hajós’ conjecture
and verify the conjecture for Eulerian graphs of pathwidth at most 6. This is the first
time the conjecture has been verified for graphs that are not 4-degenerate.
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Introduction

Graph colourings are an important area of graph theory. Problems from various do-
mains such as logistics, finance, traffic, and communication systems can be expressed
in terms of graph colourings. Basically, this can be done whenever the problem at
hand is equivalent to partitioning the elements (eg vertices, edges or faces) of a graph
according to some given criteria. Consequently, considerable effort was put into re-
search of this area in the past. Interesting connections between colourings and various
other characteristics of graphs were discovered. Prominent examples include the Four
Colour Theorem and the Strong Perfect Graph Theorem.
This thesis examines the relation of specific graph properties with t-perfection

which is closely related to vertex colourings (Part I), with edge colourings, list edge-
colourings, and fractional edge colourings (Part II) as well as with colourings of the
edges such that every colour class is a cycle (Part III).

The original definition of a perfect graph is in terms of the graph’s vertex colouring:
A graph is called perfect if and only if every subgraph H has a vertex colouring with
clique number of H many colours. As early as 1960, Berge conjectured that this is
equivalent to the graph not containing an odd hole or an odd anti-hole. This was
finally proven in 2002 by Chudnovsky et al. and is nowadays known as Strong Perfect
Graph Theorem.
While looking for a proof of the Strong Perfect Graph Theorem another characterisa-

tion of perfect graphs was found: A graph is perfect, if an only if its stable set polytope
is completely determined by non-negativity inequalities and clique inequalities.
The definition of t-perfect graphs is inspired by the latter characterisation. A graph

is called t-perfect if and only if its stable set polytope is determined by non-negativity,
edge and odd-cycle inequalities.
A characterisation of t-perfect graphs similar to the Strong Perfect Graph Theorem

still seems far away. However, in Part I we provide such characterisations at least for
two classes of graphs: triangulations and quadrangulations of the projective plane.
In Chapter 3 we prove that a triangulation is t-perfect, if and only if it is perfect

and contains no clique of size 4.
In Chapter 2 we show that a quadrangulation of the projective plane is t-perfect,

if and only if it is bipartite. To prove this we devised a novel method. It allows
to transform every quadrangulation of the sphere into a quadrangle by deletions of
degree-2 vertices and so called t-contractions. The involved operations are simple and
minor-preserving, in contrast to other known techniques. Coming from a completely
different area of research, namely the theory of t-perfection, our method implies the
results of several works dealing with transformations of quadrangulations of the sphere.
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Introduction

Part II revolves around different variants of edge colourings.
In Chapter 6 we analyse graphs with bounded treewidth. We determine a novel

upper bound for the number of edges in graphs of maximum degree ∆ and treewidth
at most k. Using this bound, we prove that graphs of maximum degree ∆ ≥ k +

√
k

can not be overfull. This means that these graphs have fractional chromatic index ∆.
We conjecture that all graphs of treewidth k and maximum degree ∆(G) ≥ k +

√
k

also have chromatic index ∆.
Chapter 5 deals with list edge-colourings. The well-known list colouring conjecture

asserts that the chromatic index of any graph equals its choice index. This conjecture
remains wide open for most graph classes, among them cubic graphs. We prove that
the conjecture holds for two classes of cubic graphs: for generalised Petersen graphs
of the form GP (3k, k) and GP (4k, k).
Thereto we use the algebraic colouring criterion by Alon and Tarsi. It says that

a d-regular graph has choice index d if the numbers of its positive and negative
1-factorisations differ.
For graphs of the form GP (4k, k), we only need to consider the graphs with odd k.

For them, we show that all 1-factorisations have the same sign.
For graphs of the form GP (3k, k) we show that the number of 1-factorisations cor-

responds to the Jacobsthal number J(k) if k is odd. The Jacobsthal numbers are
closely related to the Fibonacci numbers. They match the count of various combinat-
orial objects, ie tilings of 3× (k− 1)-rectangles with 1× 1 and 2× 2-squares or certain
meets in lattices.

Finally, in Part III we consider decompositions of Eulerian graphs into cycles.
Hajós’ conjecture asserts that a simple Eulerian graph on n vertices can be decom-

posed into at most b(n− 1)/2c cycles. The conjecture is only proved for graph classes
in which every element contains vertices of degree 2 or 4, eg planar and projective-
planar graphs.
By regarding a cycle decomposition as a colouring of the edges in which every colour

class is a cycle we develop new techniques to construct cycle decompositions. The
techniques work on the common neighbourhood of two degree-6 vertices. Applying
them, we deduce various substructures for degree-6 vertices that cannot occur in any
minimal counter-example to Hajós’ conjecture.
This enables us to verify the conjecture for a class of graphs that is not 4-degenerate:

the class of Eulerian graphs with pathwidth at most 6. This implies that these graphs
satisfy another conjecture, the small cycle double cover conjecture.
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Part I.

On t-perfect Embeddings
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1. Introduction to Perfection and
t-Perfection

In this chapter, we provide basic definitions and knowledge about perfect and t-perfect
graphs that are required for Chapter 2 and 3.
All graphs considered in this thesis are finite and simple. We use standard graph

theory notation as found in the book of Diestel [Die00].
Perfect graphs received considerable attention in graph theory. A graph is perfect

if for every induced subgraph the chromatic number and the size of a largest clique
coincide. (The chromatic number of a graph is the smallest number of colours needed
to colour its vertices.) This purely combinatorial definition is equivalent to two other
characterisations.
First, it was conjectured by Berge in 1960 that a graph is perfect if and only if it

contains no odd hole or odd anti-hole. An odd hole Ck is an induced odd cycle on
k ≥ 5 vertices. An odd anti-hole Ck is the complement of an odd hole. This conjecture
remained open until 2002 when it was shown by Chudnovsky, Robertson, Seymour,
and Thomas [CRST06].

Theorem 1.1 (Strong Perfect Graph Theorem). A simple graph G is perfect if and
only if G contains no induced odd hole or odd anti-hole.

On the long way to prove this theorem, the second, polyhedral characterisation of
perfect graphs was found: Clearly, every colour class of a vertex colouring is a stable
set , ie a set of vertices that are pairwise non-adjacent. The characteristic vector of a
subset S ⊆ V (G) is the vector χS ∈ {0, 1}V (G) defined by χS(v) = 1 if v ∈ S and 0
otherwise. For a stable set S in G, the characteristic vector χS ∈ RV (G) satisfies the
linear inequalities

x ≥ 0, (1.1)∑
v∈V (C)

xv ≤ 1 for every clique C in G.. (1.2)

They are known as non-negativity inequalities and clique inequalities respectively.
We call the convex hull of the characteristic vectors of stable sets of a graph G the

stable set polytope SSP(G):

SSP(G) := conv ({χS : S stable set of G}) ⊆ RV (G)

Note that all vectors in the stable set polytope SSP(G) satisfy the above described
non-negativity inequalities (1.1) and clique inequalities (1.2).
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1. Introduction to Perfection and t-Perfection

Results of Lovász [Lov72], Fulkerson [Ful72], and Chvátal [Chv75] showed that G
is perfect if and only if non-negativity inequalities and clique inequalities suffice to
describe the stable set polytope SSP(G). This is the case if and only if the system (1.2)
is totally dual integral (see [Sch03, Vol. B, Ch. 65.4]). Thus,

G is perfect ⇔ the system of (1.1) and (1.2) is totally dual integral. (1.3)

Besides non-negativity inequalities and clique inequalities, the characteristic vector
χS ∈ RV (G) of a stable set S in a graph G satisfies∑

v∈V (C)

xv ≤ b|V (C)|/2c for every induced odd cycle C in G, (1.4)

the so called odd-cycle inequalities. The most simple clique inequalities consider cliques
of size 2, ie edges, and are thus called edge inequalities:

xu + xv ≤ 1 for every edge uv ∈ E (1.5)

A graph G is called t-perfect if its stable set polytope SSP(G) is described by non-
negativity inequalities (1.1), edge inequalities (1.5) and odd-cycle inequalities (1.4).
We define TSTAB(G) ⊆ RV as the polyhedron determined by these three types of

inequalities.

TSTAB(G) :=
{
x ∈ RV (G) : x satisfies (1.1),(1.5), and (1.4)

}
Note that G is t-perfect if and only if SSP(G) and TSTAB(G) coincide. Equivalently,
G is t-perfect if and only if TSTAB(G) is an integral polytope, ie if all its vertices are
integral vectors.

Evidently, the polytope TSTAB(G) is integral if the system of the linear inequalities
(1.1), (1.5), and (1.4) is totally dual integral. A graph for which this system is totally
dual integral is called strongly t-perfect . We want to emphasise that

strong t-perfection implies t-perfection. (1.6)

It is an open question whether a t-perfect graph is always strongly t-perfect. A brief
discussion of this question can be found in Schrijver [Sch03, Vol. B, Ch. 68].

It is easy to verify that vertex deletion preserves t-perfection. For every v ∈ V (G),
the polytopes TSTAB(G − v) and SSP(G − v) are lattice isomorphic to the facets
TSTAB(G)∩{x ∈ RV (G) : xv = 0} and SSP(G)∩{x ∈ RV (G) : xv = 0} of TSTAB(G)
and SSP(G) respectively. In contrast, edge deletion does not always keep t-perfection
(see [Sch03, Vol. B, Ch. 68] for an example).
Another operation that maintains t-perfection was found by Gerards and Shep-

herd [GS98]: whenever there is a vertex v, so that its neighbourhood is stable, we may
contract all edges incident with v simultaneously. Again, the two polytopes SSP(G′)
and TSTAB(G′) of the obtained graph G′ are faces of SSP(G) and TSTAB(G) re-
spectively. We will call this operation a t-contraction at v.
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Any graph obtained from G by a sequence of vertex deletions and t-contractions is
called a t-minor of G. Let us point out that

any t-minor of a t-perfect graph is again t-perfect. (1.7)

The same holds for strong t-perfection (see eg [Sch03, Vol. B, Ch. 68.4]).

The smallest t-imperfect graph is the complete graph K4. This graph is isomorphic
to the wheel W3. A wheel Wp is a graph consisting of a p-cycle w1, . . . , wp, w1 (with
p ≥ 3) and a center vertex v adjacent to wi for i = 1, . . . , p; see Figure 1.1. The wheel
Wp is an odd wheel if p is odd. It is well-known (see eg [Sch03, Vol. B, Ch. 68.4]) that

odd wheels are t-imperfect. (1.8)

Indeed, the vector (1/3, . . . , 1/3) is contained in TSTAB(W2k+1) but not in SSP(W2k+1)
for k ≥ 1. Another t-imperfect graph is the anti-hole C7 (see [BS12]):

C7 is not (strongly) t-perfect. (1.9)

Figure 1.1.: The odd wheels W3,W5 and W7

The knowledge about perfect graphs is often helpful for the study of t-perfect graphs.
This can be seen in the next lemma.

Lemma 1.2. [FG17] Every perfect graph without K4 is (strongly) t-perfect.

Proof. A perfect graph contains no odd hole by Theorem 1.1. Thus, for a perfect
graph G with no clique of size 4, the system of (1.1) and (1.2) is equivalent to the
system of (1.1) and (1.5) and (1.4). The first system is totally dual integral as G is
perfect (see (1.3)). This shows that G is (strongly) t-perfect.

A general treatment on t-perfect graphs may be found in Schrijver [Sch03, Ch. 68]
and in Grötschel, Lovász and Schrijver [GLS88, Ch. 9.1]. The class of t-perfect graphs
is of interest as the fractional stable set polytope (that is the polytope defined by
non-negativity inequalities and edge inequalities) of these graphs has Chvátal rank of
at most 1 (see [Sch03]). Finding a maximum-weight stable set of a t-perfect graph can
be done in polynomial time with a combinatorial algorithm described by Eisenbrand
et al. [EFGK03]. The problem whether a given graph is t-perfect belongs to Co-NP.
A polynomial-time algorithm for non-t-perfection is not known.

7



1. Introduction to Perfection and t-Perfection

Chvàtal [Chv75] conjectured the t-perfection of series-parallel graphs. This was
proved by Clancy in 1977 and by Mahjoub [Mah88] in 1988. Boulala and Uhry [BU79]
established the strong t-perfection of these graphs.
Gerards and Schrijver [GS86] showed that any graph not containing an odd K4-

subdivision is t-perfect. It was shown by Gerards [Ger89] that these graphs are also
strongly t-perfect. (An odd K4-subdivision is a subdivision in which each triangle has
become an odd cycle.)
Gerards and Shepherd [GS98] characterised the graphs with all subgraphs t-perfect,

while Barahona and Mahjoub [BM94] described the subdivisions of K4 that are not
t-perfect. Gerards and Shepherd [GS98] showed that any graph without such a K4-
subdivion is t-perfect. Schrijver [Sch02] showed that all graphs without such a subdi-
vision are strongly t-perfect.
Fonlupt and Uhry [FU82] proved that all almost bipartite graphs, ie graphs G hav-

ing a vertex v such that G − v is bipartite, are t-perfect. This was implicit in Sbihi
and Uhry [SU84]. Cao and Nemhauser [CN98] studied the t-perfection of line graphs.
Bruhn and Stein [BS12] characterised t-perfect claw-free graphs.

Bruhn and Benchetrit analysed t-perfection of triangulations of the sphere [BB15].
Against this background, in Chapter 2 of this thesis t-perfect quadrangulations of the
projective plane are characterised. Moreover, in Chapter 3 t-perfection of triangula-
tions of the projective plane is considered.

8



2. Quadrangulations of the Sphere and
the Projective Plane

The content of this chapter is based on the paper [FG16] by Elke Fuchs and the author
of this thesis.

We show that every quadrangulation of the sphere can be transformed into a quad-
rangle by deletions of degree-2 vertices and by t-contractions at degree-3 vertices.
A t-contraction simultaneously contracts all incident edges at a vertex with stable
neighbourhood. The operation is used mainly in the field of t-perfect graphs.
We further show that a non-bipartite quadrangulation of the projective plane can

be transformed into an odd wheel by t-contractions and deletions of degree-2 vertices.
This implies that a quadrangulation of the projective plane is (strongly) t-perfect if
and only if the graph is bipartite.

2.1. Introduction

A quadrangulation of a surface is a finite simple graph embedded on the surface such
that every face is bounded by a walk of four edges.
In this chapter, we consider quadrangulations of the sphere and the projective plane.

For characterising quadrangulations, it is very useful to transform a quadrangulation
into a slightly smaller one. Such reductions for quadrangulations of the sphere are
mainly based on the following idea: Given a class of quadrangulations, a sequence of
particular face-contractions transforms every member of the class into a 4-cycle; see
eg Brinkmann et al [BGG+05], Nakamoto [Nak99], Negami and Nakamoto [NN93],
and Broersma et al. [BDG93]. A face-contraction identifies two non-adjacent vertices
v1, v3 of a 4-face v1, v2, v3, v4 in which the common neighbours of v1 and v3 are only
v2 and v4 and deletes multiple edges.
A somewhat different approach was made by Bau et al. [BMNZ14]. They showed

that any quadrangulation of the sphere can be transformed into a 4-cycle by a sequence
of deletions of degree-2 vertices and so called hexagonal contractions. A hexagonal
contraction at a vertex x with neighbourhood {a1, a2, a3} deletes the edge xa1 and
contracts the edges xa2 and xa3. The obtained graph is a minor of the previous graph.
Both operations, hexagonal contractions and deletions of degree-2 vertices can be

obtained from face-contractions.

We provide a new way to reduce arbitrary quadrangulations of the sphere to a quad-
rangle. Our operations are minor-operations — in contrast to face-contractions. We
use deletions of degree-2 vertices and t-contractions. A t-contraction simultaneously

9



2. Quadrangulations of the Sphere and the Projective Plane

contracts all incident edges of a vertex with stable neighbourhood and deletes all mul-
tiple edges. The operation is mainly used in the field of t-perfection (see Chapter 1 for
more details). Face-contractions cannot be obtained from t-contractions. We restrict
ourselves to t-contractions at vertices that are only contained in 4-cycles whose interior
does not contain a vertex;

these t-contractions and deletions of degree-2 vertices
can be obtained from a sequence of face-contractions. (2.1)

Figure 2.1 illustrates this. Note that the restriction on the applicable t-contractions
makes sure that all face-contractions can be applied, ie that all identified vertices are
non-adjacent and have no common neighbours besides the two other vertices of their
4-face.

1
3 1

2 1

2

3
4

5

6

Figure 2.1.: Face-contractions that give a deletion of a degree-2 vertex, a t-contraction
at a degree-3 and a degree-6 vertex

We prove:

Theorem 2.1. [FG16] Let G be a quadrangulation of the sphere. Then, there is a
sequence of t-contractions at degree-3 vertices and deletions of degree-2 vertices that
transforms G into a 4-cycle. During the whole process, the graph remains a quad-
rangulation.

The proof of Theorem 2.1 follows directly from Lemma 2.7 and can be found in
Section 2.3. It is easy to see that both operations used in Theorem 2.1 are necessary.
By (2.1), Theorem 2.1 implies:

Any quadrangulation of the sphere can be transformed
into a 4-cycle by a sequence of face-contractions.

Via the dual graph, quadrangulations of the sphere are in one-to-one correspondence
with planar 4-regular (not necessarily simple) graphs. Theorem 2.1 thus implies a
method to reduce all 4-regular planar graphs to the multigraph on two vertices and
four parallel edges.

Besides quadrangulations of the sphere, we consider quadrangulations of the pro-
jective plane. We use Theorem 2.1 to reduce all non-bipartite quadrangulations of the
projective plane to an odd wheel. (See Chapter 1 for a definition of an odd wheel.)

10



2.2. Basic Definitions and Facts

Theorem 2.2. [FG16] Let G be a non-bipartite quadrangulation of the projective
plane. Then, there is a sequence of t-contractions and deletions of degree-2 vertices
that transforms G into an odd wheel. During the whole process, the graph remains a
non-bipartite quadrangulation.

The proof of this theorem can be found in Section 2.3. It is easy to see that both
operations used in this theorem are necessary.

Section 2.4 provides an application of Theorem 2.2 to the theory of t-perfect graphs.
It is shown that a quadrangulation of the projective plane is (strongly) t-perfect if and
only if the graph is bipartite.
Negami and Nakamoto [NN93] showed that any non-bipartite quadrangulation of

the projective plane can be transformed into a K4 by a sequence of face-contractions.
This result can be deduced from Theorem 2.2: By (2.1), Theorem 2.2 implies that
any non-bipartite quadrangulation of the projective plane can be transformed into
an odd wheel by a sequence of face-contractions. The odd wheel W2k+1 can now be
transformed into W2k−1 — and finally into W3 = K4 — by face-contractions (see
Figure 2.2).

vv
1

2

Figure 2.2.: An even embedding of W5 in the projective plane and face-contractions
that produce a smaller odd wheel. Opposite points on the dotted cycle
are identified.

Nakamoto [Nak99] gave another reduction method based on face-contractions and so
called 4-cycle deletions for non-bipartite quadrangulations of the projective plane with
minimum degree 3. Matsumoto et al. [MNY16] analysed quadrangulations of the pro-
jective plane with respect to hexagonal contractions while Nakamoto considered face-
contractions for quadrangulations of the Klein bottle [Nak95] and the torus [Nak96].
Youngs [You96] showed that all non-bipartite quadrangulations of the projective plane
have chromatic number equal to 4 and Esperet and Stehlík [ES15] gave bounds for
edge- and face-width of non-bipartite quadrangulations.

2.2. Basic Definitions and Facts

We begin by recalling several useful definitions related to surface-embedded graphs.
For further background on topological graph theory, we refer the reader to Gross and
Tucker [GT87] or Mohar and Thomassen [MT01].

11



2. Quadrangulations of the Sphere and the Projective Plane

An embedding of a simple graph G on a surface is a continuous one-to-one function
from a topological representation of G into the surface. For our purpose, it is con-
venient to abuse the terminology by referring to the image of G as the graph G. The
faces of an embedding are the connected components of the complement of G. An
embedding G is even if all faces are bounded by an even circuit. A quadrangulation
is an embedding in which each face is bounded by a circuit of length 4.
A cycle C is contractible if C separates the surface into two sets SC and SC where

SC is homeomorphic to an open disk in R2. Note that for the sphere, SC and SC are
homeomorphic to an open disk. In contrast, for the plane and the projective plane,
SC is not homeomorphic to an open disk. For the plane and the projective plane, we
call SC the interior of C and SC the exterior of C.
Using the stereographic projection, it is easy to switch between embeddings in the

sphere and the plane. In order to have an interior and an exterior of a contractible
cycle, we will concentrate on quadrangulations of the plane (and the projective plane).
Note that by the Jordan curve theorem,

all cycles in the plane are contractible. (2.2)

A cycle in a non-bipartite quadrangulation of the projective plane is contractible if and
only if it has even length (see e.g. [KS15, Lemma 3.1]). As every non-bipartite even
embedding is a subgraph of a non-bipartite quadrangulation, one can easily generalise
this result.

Observation 2.3. [FG16] A cycle in a non-bipartite even embedding in the projective
plane is contractible if and only it has even length.

Proof. Let G be an even embedding. We construct a quadrangulation G′ from G as
follows: In every face bounded by a circuit (v1, v2, . . . , vk, v1) with k ≥ 6 we insert a
smaller concentric cycle C = (w1, w2, . . . , wk, w1) and the edges v1w1, v2w2 . . . , vkwk.
Further, we add a vertex x into the interior of C and connect x with all vertices of
C that have an odd index. As the vertices w1, w2 . . . , wk are pairwisely different, the
obtained quadrangulation is a simple graph.
Because all cycles of G are contained in the constructed quadrangulation, we are

done by [KS15, Lemma 3.1].

In quadrangulations of the plane, we do not have to consider odd cycles. It is easy
to see that

all quadrangulations of the plane are bipartite. (2.3)

An embedding is a 2-cell embedding if each face is homeomorphic to an open disk.
It is well-known that embeddings of 2-connected graphs in the plane are 2-cell em-
beddings. A non-bipartite quadrangulation of the projective plane contains a non-
contractible cycle; see Observation 2.3. The complement of this cycle in the projective
plane is homeomorphic to an open disk. Thus, we observe:

Observation 2.4. [FG16] Every quadrangulation of the plane and every non-bipartite
quadrangulation of the projective plane is a 2-cell embedding.
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2.3. Quadrangulations and t-Contractions

This observation makes sure that we can apply Euler’s formula to all the considered
quadrangulations. A simple graph cannot contain a 4-circuit that is not a 4-cycle.
Thus, note that every face of a quadrangulation is bounded by a cycle.

We will now take a closer look at deletions of degree-2 vertices.

Observation 2.5. [FG16] Let G 6= C4 be a quadrangulation of the plane or the projec-
tive plane that contains a vertex v of degree 2. Then, G−v is again a quadrangulation.

Proof. Let u and u′ be the two neighbours of v. Then, there are distinct vertices
s, t such that the cycles (u, v, u′, s, u) and (u, v, u′, t, u) are bounding a face. Thus,
(u, s, u′, t, u) is a contractible 4-cycle whose interior contains only v and G−v is again
a quadrangulation.

2.3. Quadrangulations and t-Contractions

In this section, we take a closer look at t-contractions and prove the main theorems
of this chapter.

Lemma 2.6. [FG16] Let G be a quadrangulation of the plane or a non-bipartite
quadrangulation of the projective plane. Let G′ be obtained from G by a t-contraction
at v. If v is not a vertex of a contractible 4-cycle with some vertices in its interior,
then G′ is again a quadrangulation.

Proof. Let G′′ be obtained from G by the operation that identifies v with all its
neighbours but does not delete multiple edges. This operation leaves every cycle not
containing v untouched, transforms every other cycle C into a cycle of length |C| − 2,
and creates no new cycles. Therefore, all cycles bounding faces of G′′ are of size 4
or 2. The graphs G′ and G′′ differ only in the property that G′′ has some double
edges. These double edges form 2-cycles that arise from 4-cycles containing v. As
all these 4-cycles are contractible (see (2.2) and Observation 2.3) with no vertex in
their interior, the 2-cycles are also contractible and contain no vertex in its interior.
Deletion of all double edges now gives G′ — an embedded graph where all faces are
of size 4.

Lemma 2.6 enables us to prove the following lemma that directly implies The-
orem 2.1.

Lemma 2.7. [FG16] For every quadrangulation G of the plane, there is a sequence
of

• t-contractions at degree-3 vertices that are only contained in 4-cycles whose in-
terior does not contain a vertex and

• deletions of degree-2 vertices

that transforms G into a 4-cycle. During the whole process, the graph remains a
quadrangulation.

13



2. Quadrangulations of the Sphere and the Projective Plane

Proof. Let C be the set of all contractible 4-cycles whose interior contains some vertices
of G. Note that C contains the 4-cycle bounding the outer face unless G = C4.
Let C ∈ C be a contractible 4-cycle whose interior does not contain another element

of C. We will first see that the interior of C contains a vertex of degree 2 or 3: Deletion
of all vertices in the exterior of C gives a quadrangulation G′ of the plane. As G is
connected, one of the vertices in C must have a neighbour in the interior of C and
thus must have degree at least 3. Euler’s formula now implies that

∑
v∈V (G′) deg(v) =

2|E(G′)| ≤ 4|V (G′)|−8. As no vertex in G′ has degree 0 or 1, there must be a vertex of
degree 2 or 3 in V (G′)−V (C). This vertex has the same degree in G and is contained
in the interior of C.
We now use deletions of degree-2 vertices and t-contractions at degree-3 vertices

in the interior of the smallest cycle of C to successively get rid of all vertices in the
interior of 4-cycles. By Observation 2.5 and Lemma 2.6, the obtained graphs are
quadrangulations.
Now, suppose that no more t-contraction at a degree-3 vertex and no more deletion

of a degree-2 vertex is possible. Assume that the obtained graph is not a 4-cycle.
Then, there is a cycle C ′ ∈ C whose interior does not contain another cycle of C. As
we have seen above, C ′ ∈ C contains a vertex v of degree 3. Since no t-contraction can
be applied to v, the vertex v has two adjacent neighbours. This contradicts (2.3).

In the rest of the chapter, we will consider the projective plane.
A quadrangulation of the projective plane is nice if no vertex is contained in the

interior of a contractible 4-cycle.

Lemma 2.8. [FG16] Let G be a non-bipartite quadrangulation of the projective plane.
Then, there is a sequence of t-contractions and deletions of vertices of degree 2 that
transforms G into a nice quadrangulation. During the whole process, the graph remains
a quadrangulation.

Proof. Let C be a contractible 4-cycle whose interior contains at least one vertex.
Delete all vertices that are contained in the exterior of C. The obtained graph is a
quadrangulation of the plane. By Lemma 2.7, there is a sequence of t-contractions (as
described in Lemma 2.6) and deletions of degree-2 vertices that eliminates all vertices
in the interior of C. With this method, it is possible to transform G into a nice
quadrangulation.

Similar as in the proof of Theorem 2.1, Euler’s formula implies that a non-bipartite
quadrangulation of the projective plane contains a vertex of degree 2 or 3. As no nice
quadrangulation has a degree-2 vertex (see Observation 2.5), we deduce:

Observation 2.9. [FG16] Every nice non-bipartite quadrangulation of the projective
plane has minimum degree 3.

In an even embedding of an odd wheelW , every odd cycle must be non-contractible,
see Observation 2.3. Thus, it is easy to see that there is only one way (up to topological
isomorphy) to embed an odd wheel in the projective plane. (This can easily be deduced
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2.3. Quadrangulations and t-Contractions

from [MRV96] — a paper dealing with embeddings of planar graphs in the projective
plane.) The embedding is illustrated in Figure 2.2. Noting that this embedding is a
quadrangulation, we observe:

Observation 2.10. [FG16] Let G be a quadrangulation of the projective plane that
contains an odd wheel W . If G is nice, then G equals W .

Note that every graph containing an odd wheel also contains an induced odd wheel.
Next, we consider even wheels.

Lemma 2.11. [FG16] Even wheels W2k for k ≥ 2 do not have an even embedding in
the projective plane.

The statement follows directly from [MRV96]. We nevertheless give an elementary
proof of the lemma.

Proof. First assume that the 4-wheel W4 has an even embedding. As all triangles of
W4 − w3w4 must be non-contractible by Observation 2.3, it is easy to see that the
graph must be embedded as in Figure 2.3. Since the insertion of w3w4 will create an
odd face, W4 is not evenly embeddable.
Now assume that W2k for k ≥ 3 is evenly embedded. Delete the edges vwi for

i = 5, . . . , 2k and note that w5, . . . , w2k are now of degree 2, ie the path P =
w4w5 . . . w2kw1 bounds either two faces or one face from two sides.
Deletion of the edges vwi preserve the even embedding: Deletion of an edge bounding

two faces F1, F2 merges the faces into a new face of size |F1| + |F2| − 2. Deletion of
an edge bounding a face F from two sides leads to a new face of size |F | − 2. In both
cases, all other faces are left untouched.
Next, replace the odd path P by the edge w4w1. The two faces F3, F4 adjacent to

P are transferred into two new faces of size |F3| − (2k− 3) + 1 and |F4| − (2k− 3) + 1.
This yields an even embedding of W4 which is a contradiction.

v w4w3

w2w1

Figure 2.3.: The only even embedding of W4−w3w4 in the projective plane. Opposite
points on the dotted cycle are identified.

Recall that a t-contraction at a vertex v is only allowed if its neighbourhood is
stable, that is, if v is not contained in a triangle. The next lemma characterises the
quadrangulations to which no t-contraction can be applied.
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2. Quadrangulations of the Sphere and the Projective Plane

Lemma 2.12. [FG16] Let G be a non-bipartite nice quadrangulation of the projective
plane where each vertex is contained in a triangle. Then G is an odd wheel.

Proof. By Observation 2.9, there is a vertex v of degree 3 in G. Let {x1, x2, x3} be its
neighbourhood and let x1,x2 and v form a triangle.
Recall that each two triangles are non-contractible (see Observation 2.3). Con-

sequently each two triangles intersect. As x3 is contained in a triangle intersecting
the triangle vx1x2v and as v has no further neighbour, we can suppose without loss of
generality that x3 is adjacent to x1. The graph induced by the two triangles vx1x2v
and vx1x3v is not a quadrangulation. If x2x3 ∈ E(G), G contains a K4. By Observa-
tion 2.10, G then equals the odd wheel W3 = K4.
If x2x3 /∈ E(G), the graph contains a further vertex and this vertex is contained

in a further triangle T . Since v has degree 3, the vertex v cannot be contained in T .
If further x1 /∈ V (T ), then the vertices x2 and x3 must be contained in T . But then
x2x3 ∈ E(G) and, as above, v, x1, x2 and x3 form aK4. Therefore, x1 is contained in T
and consequently in every triangle ofG. Since every vertex is contained in a triangle, x1

must be adjacent to all vertices of G−x1. As |E(G)| = 2|V (G)|−2 by Euler’s formula,
the graph G − x1 has 2|V (G)| − 2 − (|V (G)| − 1) = |V (G)| − 1 = |V (G − x1)| many
edges. By Observation 2.9, no vertex in G has degree smaller than 3. Consequently,
no vertex in G − x1 has degree smaller than 2. Thus, G − x1 is a cycle and G is a
wheel. By Lemma 2.11, G is an odd wheel.

Finally, we can prove our second main result:

Proof of Theorem 2.2. Transform G into a nice quadrangulation (Lemma 2.8). Now,
consecutively apply t-contractions (as described in Lemma 2.6) as long as possible. In
each step, the obtained graph is a quadrangulation. By Lemma 2.8 we can assume
that the quadrangulation is nice. If no more t-contraction can be applied, then every
vertex is contained in a triangle. By Lemma 2.12, the obtained quadrangulation is an
odd wheel.

2.4. On t-Perfect Quadrangulations of the Projective
Plane

Theorem 2.2 allows a direct application to the theory of t-perfection.

Theorem 2.13. [FG16] For every quadrangulation G of the projective plane the
following assertions are equivalent:

(a) G is t-perfect

(b) G is strongly t-perfect

(c) G is bipartite
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Proof. If G is bipartite, then G is perfect and contains no K4. Lemma 1.2 implies
that G is (strongly) t-perfect.
If G is not bipartite, then Theorem 2.2 implies that G has an odd wheel as a

t-minor As odd wheels are not (strongly) t-perfect (see (1.8)), G is not (strongly)
t-perfect by (1.7).
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3. On t-Perfect Triangulations of the
Projective Plane

The content of this chapter is based on the paper [FG17] by Elke Fuchs and the author
of this thesis.

We prove that a triangulation of the projective plane is (strongly) t-perfect if and
only if the graph is perfect and contains no K4.

3.1. Introduction

As we have seen in Chapter 1, there is no structural characterisation for (strongly)
t-perfect graphs known. In this chapter, we give such a characterisation for triangu-
lations of the projective plane. We show:

Theorem 3.1. [FG17] For every triangulation G of the projective plane the following
assertions are equivalent:

(a) G is t-perfect

(b) G is strongly t-perfect

(c) G is perfect and contains no K4

(d) G contains no loose odd wheel and no C7 as an induced subgraph.

One of the main open questions about t-perfection is, whether a t-perfect graph can
always be coloured with few colours. Standard polyhedral methods assert that the
fractional chromatic number of a t-perfect graph is at most 3. Laurent and Seymour
as well as Benchetrit found examples of a t-perfect graph that is not 3-colourable
(see [Sch02, p. 1207] and [Ben15]).

Conjecture 3.2 (Shepherd, Sebő). Every t-perfect graph is 4-colourable.

The conjecture is known to hold in a number of graph classes, for instance in P6-
free graphs (Benchetrit [Ben16]), claw-free graphs (Bruhn and Stein [BS12]), and in
P5-free graphs (Bruhn and Fuchs [BF15]). In the last two classes, the graphs are even
3-colourable.
The verification of the conjecture for triangulations of the projective plane follows

directly from Theorem 3.1: A t-perfect triangulation is perfect without K4 and thus
3-colourable.
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3. On t-Perfect Triangulations of the Projective Plane

Corollary 3.3. [FG17] Every t-perfect triangulation of the projective plane is 3-
colourable.

In order to prove Theorem 3.1, we mainly study Eulerian triangulations, ie trian-
gulations where all vertices are of even degree1. Colourings of Eulerian triangula-
tions were studied by Hutchinson et al. [HRS02] and by Mohar [Moh02]. Suzuki and
Watanabe [SW07] determined a family of Eulerian triangulations of the projective
plane such that every Eulerian triangulation of the projective plane can be trans-
formed into one of its members by application of two operations (see Section 3.4 for
more details). Barnette [Bar82] showed that one can obtain each triangulation of the
projective plane from one of two minimal triangulations using two kinds of splitting
operation.

3.2. Triangulations

A triangulation G of the projective plane is a finite simple graph embedded on the
surface such that every face of G is bounded by a 3-cycle. A cycle C in the projective
plane is contractible if C separates the projective plane into two sets SC and SC
where SC is homeomorphic to an open disk in R2. We call SC the interior of C. A
triangulation is nice if no vertex is contained in the interior of a contractible 3-cycle.
As a contractible cycle separates G, the following theorem of Chvátal implies that

it suffices to analyse t-(im)perfection of nice triangulations. (3.1)

Theorem 3.4 (Chvátal [Chv75]). Let G be a graph with a clique separator X, and
let C1, . . . , Ck be the components of G−X. Then, G is t-perfect respectively perfect if
and only if G[C1 ∪X], . . . , G[Ck ∪X] are t-perfect respectively perfect.

Ringel [Rin78] showed that the neighbourhood of any vertex in a triangulation
contains a Hamilton cycle:

Theorem 3.5 (Ringel [Rin78]). Let G be a triangulation of a closed surface and let v
be a vertex with neighbourhood {v0 = vd, v1, . . . , vd−1} where vvivi+1v is a contractible
triangle for i = 0, . . . , d− 1. Then, the cycle v0v1 . . . vd−1v0 is a contractible Hamilton
cycle in NG(v).

We denote the contractible Hamilton cycle of v described in Theorem 3.5 by HC(v)
and observe:

Observation 3.6. [FG17] Let G be a nice triangulation with a non-contractible
cycle C. Let u, v, w be three consecutive vertices on C. Then the two paths between u
and w along the Hamilton cycle HC(v) are induced.

Proof. Suppose that the path P = v1v2 . . . vk with u = v1 and w = vk on the Hamilton
cycle of v is not induced. Then, there are vertices vi and vi+` of P with ` ≥ 2 that are
adjacent in G. As C is non-contractible, the triangle vvivi+`v must be contractible
and its interior contains the vertices vi+1, . . . , vi+`−1. This shows that G is not a nice
triangulation.

1Sometimes, an Eulerian triangulation is referred to as an even triangulation.
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3.2. Triangulations

A triangulation is called Eulerian if each vertex has even degree. The next obser-
vation implies that a t-perfect triangulation must be Eulerian.

Observation 3.7. [FG17] Let G be a triangulation of any surface and let G contain
a vertex whose neighbourhood is not bipartite. Then, G does not satisfy any of the
assertions given in Theorem 3.1.

Proof. Let the neighbourhood of v ∈ V (G) contain an odd induced cycle C. Then, C
and v form an odd wheelW andG is not (strongly) t-perfect by (3.3). If C is a triangle,
W is a K4; otherwise, C is an odd hole and G is imperfect (see Theorem 1.1).

In a triangulation, a vertex of odd degree has a non-bipartite neighbourhood (The-
orem 3.5). It thus follows from Observation 3.7 that in order to prove Theorem 3.1,

it suffices to consider Eulerian traingulations. (3.2)

The next theorem follows directly from a characterisation of t-perfect triangulations
of the plane given by Bruhn and Benchetrit [BB15, Theorem 2].

Theorem 3.8. Every triangulation G of the projective plane that contains a con-
tractible odd hole also contains a loose odd wheel.

A loose wheel W is a graph consisting of a cycle C = w1 . . . wpw1 and a center vertex
v /∈ V (C) where v has at least three neighbours in C. For a cycle C and three vertices
v1, v2, v3 ∈ V (C) we denote by PC,v1−v2,v3 the path connecting v1 and v2 along C that
does not contain v3. Figure 3.1 illustrates the definition; wiggly lines represent paths.
A path P in C between two neighbours x, y of v is a segment of the loose wheel W if
P equals PC,x−y,z for every neighbour z /∈ {x, y} of v (see also Figure 3.1). A cycle, a
path or a segment is odd if it has an odd number of edges.

PC,v1−v2,v3 PC,v1−v3,v2

PC,v2−v3,v1

v1

v3v2

Figure 3.1.: The paths PC,v1−v2,v3 , PC,v1−v3,v2 and PC,v2−v3,v1 on a cycle C

Let C be an odd cycle and let v /∈ V (C) be a vertex. Three vertices v1, v2, v3

are called three odd neighbours of v on C, if they are neighbours of v and the paths
PC,v1−v2,v3 , PC,v1−v3,v2 and PC,v2−v3,v1 on C are odd. A loose odd wheel consists of an
odd cycle C and a vertex v /∈ V (C) that has three odd neighbours on C. Evidently,
every odd wheel is a loose odd wheel and every graph that contains an odd wheel
as a subgraph also contains an odd wheel as an induced subgraph. Further, one can
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3. On t-Perfect Triangulations of the Projective Plane

see that every loose odd wheel has an odd wheel as a t-minor. From (1.7) and (1.8)
follows directly that

a t-perfect graph contains no loose odd wheel. (3.3)

To prove Theorem 3.1, we thus can assume (see Theorem 3.8 and (3.3)) that in the
considered triangulations

all odd cycles are non-contractible. (3.4)

There is another useful property of a graph that forces a loose odd wheel.

Observation 3.9. [FG17] Let G be a triangulation of the projective plane. If G
contains an odd hole with a vertex of degree 4, then G contains a loose odd wheel.

Proof. Let u, v, w be three consecutive vertices on an odd hole and let v have neigh-
bourhood NG(v) = {u,w, x, y}. As u and w cannot be adjacent, the Hamilton cycle
around v equals uxwyu and C forms a loose odd wheel together with x.

By (3.2), it suffices to analyse Eulerian triangulations of the projective plane in
order to prove Theorem 3.1. Suzuki and Watanabe [SW07] introduced the following
operations that modify Eulerian triangulations.

Definition 3.10. Let G be an Eulerian triangulation of the projective plane. Let x ∈
V (G) be a vertex with Hamilton cycle aba′b′a where the set of common neighbours of
b and b′ equals {a, a′, x}. An even-contraction at x together with b and b′ identifies
the vertices x, b, b′ to a new vertex y and removes loops as well as multiple edges.
The inverse operation is called an even-splitting at y.

x

b a

b′a′

y

a

a′ y

x z

w

u v

w

u v

Figure 3.2.: Even-contraction and deletion of an octahedron

Figure 3.2 shows an even-contraction. Note that the graph obtained from an Eu-
lerian triangulation by an even-contraction or an even-splitting is again an Eulerian
triangulation of the projective plane. An even-splitting is always unique: The em-
bedding directly yields the partition of the neighbours of y into neighbours of b and
of b′.

We put some useful observations down: If we can apply an even-contraction, then

NG(b) ∩NG(b′) = {a, a′, x}. (3.5)
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Further, not only the common neighbours of b and b′ are restricted. If bb′ ∈ E(G)
then {b, b′, a, x} induces a K4, thus

we may assume that bb′ /∈ E. (3.6)

Suzuki and Watanabe [SW07] pointed out that even-contraction and even-splitting
preserve 3-colourability. This leads to the following observation:

Observation 3.11. [FG17] Let G′ be obtained from G by an even-contraction. If G′

is perfect without K4, then G is 3-colourable.

Suzuki and Watanabe [SW07] defined one more operation:

Definition 3.12. Let G be an Eulerian triangulation of the projective plane. Let uvwu
be a contractible triangle in G whose interior contains only the vertices x, y, z and the
edges xy, xz, yz, ux, uy, vy, vz, wx,wz. The deletion of the vertices x, y, z is called a
deletion of an octahedron.

Figure 3.2 shows a deletion of an octahedron.
We call an Eulerian triangulation irreducible if no deletion of an octahedron and no

even-contraction can be applied. Suzuki and Watanabe [SW07] listed all irreducible
Eulerian triangulations. These graphs are treated in Section 3.4.

3.3. Proof of Theorem 3.1

In this section, we prove Theorem 3.1. The proof is inductive. Lemma 3.13 provides
the induction start. For the induction step, we consider a nice triangulation with
an odd hole to which we apply an even-contraction. Lemma 3.14, Lemma 3.15 and
Lemma 3.16 treat the different structures of the obtained graph.

Lemma 3.13. [FG17] Every irreducible triangulation G of the projective plane that
contains no loose odd wheel and no C7 as an induced subgraph is perfect and contains
no K4.

This lemma will be shown in Section 3.4.

Lemma 3.14. [FG17] Let G be a nice Eulerian triangulation and let G′ be obtained
from G by an even-contraction. If G contains an odd hole and G′ is perfect, then G
contains a loose odd wheel.

The proof of this lemma can be found in Section 3.6 . The proofs of the following
two lemmas appear in Section 3.5.

Lemma 3.15. [FG17] Let G be a nice Eulerian triangulation and let G′ be obtained
from G by an even-contraction. If G′ contains a loose odd wheel, then G contains a
loose odd wheel.

Lemma 3.16. [FG17] Let G be a nice Eulerian triangulation and let G′ be obtained
from G by an even-contraction. If G′ contains an induced C7, then G contains a C7

or a loose odd wheel as an induced subgraph.
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3. On t-Perfect Triangulations of the Projective Plane

Now, we are able to prove the main theorem.

Proof of Theorem 3.1. If a graph G is perfect without K4, then G is strongly t-perfect
and thus t-perfect by Lemma 1.2. Consequently, (c) implies (b) and (b) implies (a).
If a graph G is t-perfect, then G contains no loose odd wheel or C7; see (3.3)

and (1.9). Thus, (a) implies (d).
In order to show that (d) implies (c), we now consider an imperfect triangulation

G of the projective plane and prove that G contains C7 or a loose odd wheel as an
induced subgraph. Note that K4 is a loose odd wheel .
We can assume that G is a nice triangulation (see (3.1)). Further, as G is imperfect,

G contains an odd hole or an odd anti-hole (Theorem 1.1). The Euler characteristic of
the projective plane implies that 2|E(H)| ≤ 6|V (H)| − 6 for every embeddable graph
H. Thus, no odd anti-hole on nine or more vertices is embeddable. As the anti-hole
C5 is isomorphic to the hole C5, an imperfect graph in the projective plane contains
an odd hole or the anti-hole C7. If G contains an anti-hole C7, G is t-imperfect
by (1.9). Thus, suppose that G contains an induced odd hole C. If the odd cycle
C is contractible, G contains a loose odd wheel by Theorem 3.8. As G is a nice
triangulation, no deletion of an octahedron can be applied.
If no even-contraction can be applied to G, then the graph is irreducible and the

claim follows from Lemma 3.13. Assume that an even-contraction can be applied. If
G′ is perfect, G contains a loose odd wheel by Lemma 3.14. If the obtained graph
G′ contains an induced C7, then by Lemma 3.16, G contains a loose odd wheel or an
induced C7. If G′ contains an odd hole then by induction, G′ contains a loose odd
wheel. Thus, G also contains a loose odd wheel ; see Lemma 3.15.

3.4. Irreducible Triangulations

In this section, we analyse irreducible Eulerian triangulations of the projective plane, ie
Eulerian triangulations to which no deletion of an octahedron and no even-contraction
can be applied.

D

v

d

b

v

c

a

a

c

e1 e2

E

y x

x y

c1

a1

a2

c2

d

b
h1

e1 e2

h2

e2e1

h3

e1 e2

Figure 3.3.: The pieces D, E, h1, h2 and h3

Following Suzuki and Watanabe [SW07] we define three families of graphs.
The graph I16[s1, . . . , sn] with si ∈ {1, 2, 3} for i ∈ [n] is obtained from the graph

D by inserting the pieces h1, h2 and h3 (see Figure 3.3) into the hexagonal region
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3.4. Irreducible Triangulations

of D as follows: Insert hs1 , . . . , hsn one below the other into the hexagon e1bce2ad
(with e1 = e2). Then identify the paths between e1 and e2 in each pair of consecutive
pieces. Further, identify the path e1bce2 in D with the path connecting e1 and e2

in hs1 that has not been connected to another piece. Analogously, identify e1, d, a, e2

in D with the path in hsn that has not been connected to another piece. Figure 3.4
shows I16[1, 2, 3] as an example where the identified paths are dotted.

I16[s1, . . . , sn] I18[n](n ≥ 1) I19[m](m ≥ 1)

Figure 3.4.: The three infinite families of irreducible graphs. Opposite points on the
outer cycles are identified.

The graph I18[n], with n ∈ N is obtained from the graph E in Figure 3.3 by inserting
the pieces h2 and h3 of Figure 3.3 one below the other a total of n times alternatingly
into the hexagonal region a1bc1a2dc2 (with a1 = a2 and c1 = c2). The paths between
e1 = c1 and e2 = c2 in each pair of consecutive pieces are identified. Figure 3.4 shows
I18[1] as an example.
The graph I19[m] for m ∈ N is obtained from E (see Figure 3.3) by inserting m

copies of h2 and m copies of h3 alternatingly — starting with h2 — and identifying
c1 and e1 as well as c2 and e2. Each pair of consecutive pieces bounds a hexagonal
region. This region may be triangulated. Note that this happens in a unique way as
all vertices are required to be of even degree. Figure 3.4 shows I19[1] as an example.

Theorem 3.17 (Suzuki and Watanabe [SW07]). An Eulerian triangulation G of the
projective plane is irreducible if and only if G is one of the graphs in Figure 3.5 or
belongs to one of the families I16[s1, . . . , sn], I18[n], and I19[m].

This characterisation enables us to prove Lemma 3.13.

Proof of Lemma 3.13. The graphs I5, I8, I11, I13, I15 and I20 contain no loose odd
wheel (and thus no K4) and no C7. One can check that these graphs are perfect.

Figure 3.5 shows that I1, I2, I3, I4, I6, I7, I9, I10I12, I14 and I17 have a loose odd wheel
as subgraph.
Now consider I16[s1, . . . , sn]. First, suppose that the graph contains an even number

of copies of h1. The graphs D, h1, h2 and h3 are easily seen to be 3-colourable. The
colourings can be combined to obtain a 3-colouring of the vertices of I16[s1, . . . , sn].
Thus, the graphs contains no K4. One can check easily that every triangle-free sub-
graph of G can be coloured with two colours. Therefore, the clique number and the
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I1 I2 I3

I4 I5 I6

I7 I8 I9

I10 I11 I12

I13 I14 I15

I17 I20

Figure 3.5.: Some irreducible Eulerian triangulations of the projective plane. Opposite
points on the outer cycles are identified.
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chromatic number coincide for each subgraph of I16[s1, . . . , sn]. This shows that the
graph is perfect.
Second, let I16[s1, . . . , sn] contain an odd number of copies of h1. Consider the path

P from b to d consisting of the dotted edges in each copy of h1 and h2. This path is
induced and odd and forms a loose odd wheel together with v and a.
Next, consider I18[n] for n ∈ N. Each consecutive pair of pieces has exactly one

edge in common that is not adjacent to c1 = c2. The union of these edges forms an
induced odd path between b and d. (For an illustration see Figure 3.6.) This path
together with x and y gives a loose odd wheel.
Last, consider I19[m] for m ∈ N. An induced induced odd path from b to d together

with the vertices x and y forms a loose odd wheel in I19[m]. Such a path is eg dotted
in Figure 3.6 for I19[2]. For the general case take for the first pair of h1 and h2 the
dotted path from v1 to v2 which is odd. For all other pairs take the dotted path from
v2 to v3 which is even. Sticking these paths together gives an odd induced path from
b to d.

v3

v1

v2

Figure 3.6.: Two odd paths described in the proof of Lemma 3.13. Opposite points on
the outer cycles are identified.

3.5. Even-Contraction Creating a Loose Odd Wheel or a
7-Anti-Hole

In this section we prove Lemma 3.15 and Lemma 3.16.

Proof of Lemma 3.15. Let W be a loose odd wheel in G′ with central vertex v and
induced cycle C. Let the even-contraction in G be applied at x together with b and b′,
let NG(x) = {a, a, b, b′} and let V (G′) = V (G) \ {x, a, a, b, b′} ∪ {y}. We distinguish
between the different positions of y in the loos odd wheelW and show that G contains
a loose odd wheel in all cases.

Evidently, G still contains W if y /∈ V (W ).
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x bb′

z1

z2z3

x bb′

z1

z2z3

a

a′

Figure 3.7.: The situation after the splitting if y equals the central vertex v

Suppose that y ∈ V (C). Let u, u′ be the two cycle vertices adjacent to y. Let C ′

be the cycle obtained from C by deletion of y and addition of the edges ub, bu′ (if
ub, bu′ ∈ E(G′)) or ub, bx, xb′, b′u′ (if ub, u′b′ ∈ E(G)). C ′ is an odd induced cycle
in G′. If C ′ forms a loose odd wheel together with v, we are done. Otherwise, b is
adjacent to u and u′, but not to v. The vertex b′ is adjacent to v and neither adjacent
to u nor to u′ (or vice versa). But then, {u, u′} is different from {a, a′}, say u /∈ {a, a′}.
Since C ′ together with v does not form a loose odd wheel, there is a vertex z such
that the path PC′,b−z,u′ together with x and v forms an odd hole. By Observation 3.9
we obtain a loose odd wheel .

Next, suppose that y equals the center vertex v of W . Let z1, z2 and z3 be three
odd neighbours of y in W . If b respectively b′ is adjacent to all the three vertices
in G, then b respectively b′ forms a loose odd wheel together with C. Assume that
bz1, bz2, b

′z3 ∈ E(G) and b′z1, bz3 /∈ E(G) (see Figure 3.7). The paths PC,z2−z3,z1 and
PC,z1−z3,z2 form odd cycles C1 and C2 together with b, x, b′. By Observation 3.9, G
contains a loose odd wheel if C1 or C2 is induced. Thus, assume that C1 and C2 have
chords. Then, Ci yields an induced odd subcycle C ′i. If C

′
i contains b, x, b

′, it leads to a
loose odd wheel by Observation 3.9. Thus, x is contained in a chord of Ci for i = 1, 2.
As x has only four neighbours, the chords are of the form ax and a′x. Consequently,
b and b′ are also contained in chords of C1 and C2. (Note that it is possible that a
and a′ and coincide with vertices in {z1, z2, z3}.) See Figure 3.7 for an illustration. If
PC,a′−z1,z2 or PC,a−z2,z1 is odd, then b has three odd neighbours on the cycle C and
yields a loose odd wheel . Otherwise, the paths PC,z3−a′,z1 and PC,z3−a,z2 are odd and
consequently, b′ has three odd neighbours on C.

This shows that G always contains a loose odd wheel.

Proof of Lemma 3.16. Let the even-contraction in G be applied at x together with b
and b′, let NG(x) = {a, a, b, b′} and let V (G′) = V (G) \ {x, a, a, b, b′} ∪ {y}. Assume
that G′ contains an induced C7. Then, either G also contains an induced C7 (and we
are done) or y is one of the vertices of C7 in G′. Let u1u2u3v3v2v1yu1 be a cycle of C7

in G′ (see Figure 3.8). Then, NG′(y) ∩ V (C7) = {u1, u2, v1, v2} (see also Figure 3.8).
In G, the vertices u1, u2, v1, v2 are neighbours of b or b′. If a vertex is adjacent to both,
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x

u1

u2

u3 v3

v2

v1

b b′

G

y

u1

u2

u3 v3

v2

v1

G′

Figure 3.8.: Even-splitting at C̄7

b and b′, then this vertex equals a or a′. We now assume that G contains no loose odd
wheel and no induced C7 and deduce some useful observations:

At most three of the vertices in {u1, u2, v1, v2} are adjacent to b in G. (3.7)

Otherwise, b induces a C7 in G together with u1, u2, u3, v3, v2, v1.

If u1b and u2b
′ are edges in G, then {u1, u2} ∩ {a, a′} 6= ∅. (3.8)

Otherwise, the edges u1b
′ and u2b are not contained in G. Then, b, x, b′, u1, u2, b is an

odd hole that forms a loose odd wheel in G together with a.

If u1b and v1b
′ are edges in G, then {u1, v1} ∩ {a, a′} 6= ∅. (3.9)

Otherwise, the edges u1b
′ and v1b are not contained in G. Then, b, x, b′, v1, u1, b forms

a loose odd wheel in G together with a. Next, we note that

{u1, v2} 6= {a, a′}. (3.10)

Otherwise, u1, x, v2, v3, u2, u1 is an odd hole that forms a loose odd wheel inG together
with b.

If u1 and v2 are adjacent to b′ in G, then u2 is also a neighbour of b′. (3.11)

Otherwise, the vertices b′, u1, u2, u3, v3, v2 form a loose odd wheel in G with center
vertex u3.
Note that in all observations, we can exchange u and v as well as b and b′. We now

use our observations in order to get a contradiction:

First, we assume that u1 and v2 are neighbours of b′. Then, by (3.11), u2 is adjacent
to b′ and by (3.7), v1 is not adjacent to b′. Further, because of (3.8) and (3.9),
{u1, v2} = {a, a′}. This is a contradiction to (3.10). Consequently,

u1 and v2 do not have a common neighbour in {b, b′}. (3.12)
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Let u1b and v2b
′ be edges of G, and let u1b

′, v2b /∈ E(G).
First, assume that v1 ∈ NG(b′). Then by (3.9), v1 = a. If u2 is a neighbour of b′,
then u2 equals a′ by (3.8). This is a contradiction to (3.10). Thus, u2 ∈ NG(b) and
v2b ∈ E(G) by (3.11). This contradicts (3.12).
Now let v1 be adjacent to b but not to b′. This contradicts (3.8) because of (3.12).

3.6. Even-Contraction Destroying an Odd Hole

This section is dedicated to the proof of Lemma 3.14. To prove Lemma 3.14, let
C = v1v2 . . . vkv1 be an odd hole in G and let G′ be obtained by an even-contraction
identifying b, b′ and x. To the even-contraction applied at x together with b and b′ we
associate the map

γ : V (G) 7→ V (G) \ {x, b, b′} ∪ {y}

with γ(x) = γ(b) = γ(b′) = y and γ(v) = v for v ∈ V (G) \ {x, b, b′}. We will abuse
notation and will apply γ also to subgraphs of G and G′.
Our aim is to show that G′ contains an odd hole or G contains a loose odd wheel.

We split up this proof into several cases concerning the form of {a, b, a′, b′} ∩ V (C).

If x ∈ V (C), then G contains an odd wheel by Observation 3.9.
If {a, a′, b, b′} ∩ V (C) equals {b, b′}, then γ(C) consists of an odd and an even

induced cycle intersecting each other in the vertex y. G′ still contains an odd hole,
if the odd cycle has length at least 5. Otherwise, the cycle is a triangle y, v, w, y.
Then, b, v, w, b′, x form a 5-cycle. If this cycle is induced, G contains a loose odd
wheel by Observation 3.9. Otherwise, x has a neighbour among the cycle vertices
v, w. Such a neighbour must equal a or a′. This contradicts the assumption that
V (C) ∩ {a, a′, b, b′} = {b, b′}.
If {a, b, a′, b′}V (C) is of size 3, then x has three odd neighbours on C.
If a, b, a′, b′ are all contained in V (C), then C is not an induced odd cycle. This is

a contradiction.

If {a, b, a′, b′} ∩ V (C) ⊆ {a, a′} then C = γ(C) is an odd hole in G′. (3.13)

The cases where {x, a, a′, b, b′} ∩ V (C) equals {a′, b′} or {b′} are treated in Sec-
tion 3.6.1 and Section 3.6.2 respectively.

3.6.1. Even-Contraction if a’,b’ Are Contained in the Odd Hole

In this subsection, we prove the following lemma.

Lemma 3.18. [FG17] Let G be a nice Eulerian triangulation. Let G′ be obtained
from G by an even-contraction at x and let {x, a, a′, b, b′} ∩ V (C) equal {a′, b′}. If G
contains an odd hole C and if G′ is perfect, then G contains a loose odd wheel.

Proof of Lemma 3.18. Let G and G′ be as described. Appplication of the even-
contraction translates the odd hole C of G into a new odd cycle K in G′ with vertex
set γ(V (C)) = V (C) \ {b′} ∪ {y}.
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Suppose that G′ does not contain an odd hole. Then, K is not an odd hole, ie K
has chords. Further, all induced subcycles of K are triangles or even cycles.
Note that each chord splits an odd cycle into an odd and an even subcycle. There-

fore,
every odd cycle has an induced odd subcycle. (3.14)

If G′ does not contain an odd hole, the induced odd subcycle is a triangle.
As a′ and b′ are adjacent and both contained in the induced cycle C, the vertices

a′ and b′ consecutively appear on C. We define z, w, b′, a′ and v to be five consecutive
vertices of C.
As C is induced, each chord of K may have y and a vertex that is adjacent to b

in G as end vertices. Thus, the cycle K may only have three different triangles as
a subcycle: The vertex y can be contained in a triangle together with w, z (Case A)
or with a′, v (Case B) or with two other vertices that are adjacent on K (Case C).
Figure 3.9 shows these three cases and the associated configurations in G and G′. Note
that the cases are not exclusive.

G

G′

Case A

z
w b′ a′

C

a
b

x

z
w y a′

K

a

Case B

z
w b′ a′ v

C

a b

x

z
w y

a′ v

K

a

Case C

w
b′ a′

a b

x

C

w
y a′

a

K

Figure 3.9.: The three possible constellations in G which lead to triangles in K

In Case A, ie if ywzy is a triangle in G′, the vertices b, z, w, b′, a′ form a 5-cycle in
G. This cycle is induced as C is induced and as b can by assumption not be adjacent
to b′ or w. Thus, the 5-cycle forms a loose odd wheel together with x.
For the two other cases, we denote by v0 the vertex contained in a triangle with

y and a further vertex of K for which PK,a′−v0,y is of shortest odd length. This also
implies that

PC,a′−v0,b′ is of shortest odd length (3.15)
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and means that v0 equals v in Case B. In Case C, denote by v1 the neighbour of v0

on C respectively K that forms a triangle with v0 and y.
Note that b has three odd neighbours on C in G if the neighbour of v0 that is not

contained in PC,a′−v0,b′ is adjacent to y in G′. Thus, we may assume that v0 forms a
triangle together with y and its neighbour v1 that is contained in PC,a′−v0,b′ .
There are two paths connecting w and a′ on the Hamilton cycle of b′. Both of these

paths are induced (Observation 3.6) and have the same parity (Observation 3.7).
Depending on parity and length of these paths, we prove the statement of this

lemma independently. Claim 3.19 applies if the paths along HC(b′) connecting a′ and
w are even. If the paths are odd, see Claim 3.20 and Claim 3.21.
The proof strategy of all the three claims is as follows: Starting from the subgraph

of G described in Case B and Case C, we analyse the surrounding vertices and edges
until we find an odd cycle. We are done if such an odd cycle is an odd hole that is
not destroyed by the even-contraction or if this cycle is part of a loose odd wheel .
If the cycle we found is not induced, the chords lead to a new odd cycle in G. After
some steps, we always find a loose odd wheel or an odd hole that is not affected by
the even-contraction in G. This means, we show that in every possible triangulation
satisfying Case B or Case C, the graph G contains a loose odd wheel if G′ contains
no odd hole.

Claim 3.19. Let the two paths along HC(b′) connecting a′ and w be even. If G′ does
not contain an odd hole, then G contains a loose odd wheel.

Proof. We first analyse G. The path PHC(b′),w−a′,a forms an odd cycle together with
the path C−b′ in G. If this cycle is induced, G contains a loose odd wheel with center
b′. If the cycle contains chords, these chords have one end vertex in PHC(b′),w−a′,a and
one endvertex in C − b′. This comes from the fact that C − b′ and PHC(b′),w−a′,a (see
Observation 3.6) are induced. The chords lead to an induced odd subcycle (see (3.14)).
If a longest such cycle C̃ is not a triangle, G contains an odd hole that is not affected
by the even-contraction. Thus, suppose that C̃ is a triangle with either two vertices
of C − b′ and one vertex of PHC(b′),w−a′,a or vice versa.
If C̃ is a triangle with one vertex p of PHC(b′),w−a′,a and two vertices c, c′ of C − b′,

the vertex p either has three odd neighbours on C (namely the c, c′ and b′) or one of
the two neighbours of p, say c, is of the form c ∈ V (C)\{b′} where the path PC,v0−c,a′

is even and does not contain c′.

If p ∈ PHC(b′),w−a′,a and c ∈ C − b′ and pc ∈ E(G) and

PC,v0−c,a′ is even, then G contains a loose odd wheel (3.16)

by the following observations:
If PC,v0−c,a′ is even, then the path {c, p, b′, x, b, v0} together with PC,v0−c,a′ gives an
odd cycle C ′. If C ′ is induced, then G contains a loose odd wheel with center a. We
will now see that every possible chord of C ′ also yields a loose odd wheel: Since C is
induced, there is no chord between two vertices of C. Further, no chord may have x as
an endvertex. By (3.5) and (3.6), the vertices b and p are not adjacent and G contains
a loose odd wheel if b is adjacent to b′. If b or p is adjacent to a vertex of PC,v0−c,a′ ,
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then either b respectively p has three odd neighbours on C, or the corresponding odd
subcycle contains x, b, b′. In both cases, we obtain a loose odd wheel with a.
Let C̃ now be a triangle with two vertices p1, p2 of PHC(b′),w−a′,a and one vertex

c of C − b′. Without loss of generality, select c such that PC,v0−c,b′ is of minimal
length. By choosing p1 = p, it follows from (3.16) that G contains a loose odd wheel
if PC,v0−c,a′ is even. Otherwise, p1 and p2 form odd cycles C1, C2 together with the
path C −PC,c−b′,a′ ; see (3.16). If one of these cycles is induced, C −PC,c−b′,a′ , p1 and
p2 form a loose odd wheel. Assume that pi (i ∈ {1, 2) is adjacent to an inner vertex u
of C − PC,c−b′,a′ . Choose u in such a way that PC,u−w,b′ is of minimal length. Again
apply (3.16) where pi = p and u = c to see that G either contains a loose odd wheel
or the smallest induced odd subcycle of Ci contains the vertices w, b′, pi, u. This odd
cycle is induced and contains at least five vertices. As the cycle is not affected by the
even-contraction, the graph G′ contains an odd hole.

Note that we can assume that C is non-contractible (see (3.4)), but do not know
in which way the chords are embedded. Figure 3.10 shows all possible embeddings up
to topological isomorphy. In Case B, there are two ways to embed the edge bv: the
odd cycle ba′vb may be contractible (Case I) or non-contractible (Case II). Similarly,
there are four embeddings in Case C, differing in the (non)-contractability of the cycles
ba′PC,a′−v1,b′v1b and ba′PC,a′−v0,b′v0b.

B z w b′ a′ v
C

a b

x

I

z w b′ a′ v
C

a b

x

II

C w b′ a′ v1v0

a b

x

I

w b′ a′
v1v0

a b

x

II

w b′ a′ v1

v0

a b

x

III

w b′ a′
v1

v0

a b

x

IV

Figure 3.10.: Different ways of embedding the chords of K. (Opposite points on the
dotted cycle are identified.)

Claim 3.20. Let the a′-w-path along HC(b′) that contains a be odd and of length 3.
If G′ does not contain an odd hole, then G contains a loose odd wheel.

Proof. Note that in this case, the vertices a and w are adjacent.
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We first treat Case B, ie we suppose that v0 = v is adjacent to b. The path PC,w−a′,b′
forms a z′-b′-path together with the edges a′b, bx, xb′. This path and the path V (C)−w
form cycles CQ,x and CQ of different parity together with Q = PHC(w),b′−z,a. If the
arising odd cycle is induced, G contains a loose odd wheel with center w.

We analyse the different types of chords:
First, note that x cannot be an endvertex of a chord and that b /∈ V (Q) by (3.5). If b
is the endvertex of a chord, the chord must be of the form bq with q ∈ V (Q). Then, G
contains the 5-cycle q, w, b′, x, b, q. As bw, b′q /∈ E(G) by (3.5), either b is adjacent to
b′ or q, w, b′, x, b, q is induced. In both cases, G contains a loose odd wheel; see (3.6)
and Observation 3.9. If a′ is the endvertex of a chord, the chord must be of the form
a′q with q ∈ V (Q). This gives the 5-cycle w, a, x, a′, q, w. If this cycle is induced, it
forms a loose odd wheel with b. We are done unless aq is a chord.
In embedding II (Figure 3.10), the cycle obtained from C by replacing the edge a′v

with a′b, bv separates a from q. Thus, a and q cannot be adjacent. In embedding I, the
edge aq yields the contractible cycle w, a, x, a′, q, w. The interior of this cycle contains
the path Q′ = PHC(b′),w−a′,a. Note that Q′ is odd and that we are done if q ∈ V (Q′);
then {w, b′, a′} is a set of odd neighbours of q on C. Let Q′′ be the path joining w
and the other neighbour of z on C along the Hamilton cycle of z such that q is not
contained in V (Q′′). Then, V (C) \ {z} and Q′ ∪ V (C) \ {z, b′} form cycles C ′ and C ′′

of different parity together with Q′′.
We will now consider possible chords of the associated odd cycle. The vertices of Q′

are not adjacent to further vertices of C or to a vertex of Q′′ since they are contained
in the interior of the contractible cycle w, q, a′, b′, w. If a vertex of Q′′ is adjacent to a
vertex of C, take the smallest induced cycle in C ′ and C ′′ that contains w. Then, again
one of the cycles is odd. If the odd and induced cycle contains at least three vertices
of Q′′, then it forms a loose odd wheel with z. Otherwise, the neighbour q′′1 ∈ V (Q′′)
of w is adjacent to a vertex of C and forms an induced odd cycle. Then, either q′′1 has
three odd neighbours on C or the cycle using Q′ is odd. In both cases, we obtain a
loose odd wheel with center vertex b′.

We now treat Case C, ie we assume that v0 is not adjacent to b. Recall that v1 is the
vertex adjacent to v0 on PC,a′−v0,b′ . Let ṽ 6= a′ be adjacent to v on C. There are two
paths between a′ and ṽ along HC(v). In all of the four possible embeddings of bv0 and
bv1 (see Figure 3.10), one of the paths is contained in a region whose boundary does
not contain a. Depending on the embedding, denote this path by P = w0, w1, . . . , wk
with a′ = w0 and wk = ṽ. Let j ∈ {1, . . . , k} be the first index such that wj is
adjacent to a vertex of C − {a′, ṽ} (if such a chord exists, otherwise set j = k). Let
w′ be the vertex closest to v1 along PC,a′−v1,v0 that is adjacent to wj . Note that the
cycles formed by a′ = w0, w1, . . . , wj together with PC,w′−w,ṽ∪{a, x} respectively with
PC,w′−a′,ṽ are of different parity. The only possible chords of the two cycles are edges
between a and V (C). If ac is a chord with c ∈ V (C), then a has three odd neighbours
on C or the arising subcycle that contains x, a′ = w0, w1, . . . , wj is odd. This cycle
yields an odd wheel with center vertex ṽ if j ≥ 2. If j = 1, the cycle formed by a′ and
w1 together with PC,w′−w,ṽ ∪ {a, x} is odd or w1 has three odd neighbours on C. In
both cases, G contains a loose odd wheel .
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Claim 3.21. Let the a′-w-path along HC(b′) that contains a be odd and of length at
least 5. If G′ is perfect, then G contains a loose odd wheel.

Proof. The path PHC(b′),a−w,x connecting a and w along HC(b′) is odd and has length
at least 3. First note that we can assume that b is neither contained in PHC(b′),a−w,x
nor adjacent to a vertex of HC(b′) (see (3.6) and (3.5)). The path PHC(b′),a−w,x
together with b and PC,v0−w,b′ forms an odd cycle C ′. If C ′ is induced in G, it forms
a loose odd wheel together with b′.
Thus, suppose that the cycle has chords. With the same arguments as for (3.16)

we can show the following. Let p ∈ V (PHC(b′),a−w,x) \ {a} and c ∈ V (C) \ {b′} be
adjacent in G and let the path PC,v0−c,a′ be even. Then, G contains a loose odd wheel.
As before, G does not contain a loose odd wheel and we can conclude that

G has no triangle with vertices of V (PHC(b′),a−w,x) \ {a} and V (C). (3.17)

Suppose there is a chord from a to a vertex of C. Let c be the vertex adjacent
to a that is closest to b′ on PC,b′−v0,a′ . If PC,w−c,a′ is odd, we get an odd cycle with
a, V (PHC(b′),a−w,x) and V (PC,w−c,a′). If the cycle is induced we obtain a loose odd
wheel with center vertex b′. Otherwise, the smallest subgraph is an odd hole or a
triangle, and we are done by (3.17). Thus, we can assume that PC,w−c,a′ is even.
Let R be the path connecting b′ and z along HC(w) such that an edge between a

vertex of R and a always gives a contractible cycle. Let CR,a be the cycle formed by
V (PC,b′−c,a′) \ {w}, V (R) and a, and let CR,x be the cycle formed by V (R), x, b and
PC,v0−z,a′ . One of the cycles CR,a and CR,x is odd. If this cycle is induced, G contains
a loose odd wheel with w as center.
We now consider possible chords in the two cycles. The vertex b cannot be adjacent
to a vertex of R as ac ∈ E(G). Further, a cannot be adjacent to a vertex of C ∩CR,a,
by the definition of ac. The only possible chords are edges from R to C, edges from
R to a and edges from C to b. If there is a chord between C and b, then b has three
odd neighbours on C (and G has a loose odd wheel ) or there is still an induced odd
cycle containing b, x and V (R). A chord from a vertex of R to C leads to an odd hole
either in CR,a or in CR,x. If the odd hole contains three vertices of R, we are done.
Otherwise, the neighbour r1 of b′ on R is contained in a chord from R to C. But then,
either r1 has three odd neighbours in C or G has an odd hole that contains x. In both
cases we obtain a loose odd wheel (see Observation 3.9).
Assume that there is a chord from a to a vertex r of R. Recall that G has a 3-
colouring by Observation 3.11. Thus, in G, the colours of the vertices on a Hamilton
cycle HC(u) alternate for every u ∈ V (G). If PHC(w),r−b′,z is odd, this means that r
and b′ have different colours. As a and w are adjacent to r and b′, the vertices a and w
then have the same colour. This contradicts our assumption that the a′−w-path along
HC(b′) that contains a is odd and shows that PHC(w),r−b′,z is even. Consequently,
CR,a has an odd induced subcycle that contains a. This cycle is not affected by the
even-contraction and we are done if this cycle is of length at least five.
Assume that this odd cycle is a triangle. Then, there is a vertex r ∈ R with

ra ∈ E(G) and rc ∈ E(G) where c is the vertex adjacent to a that is closest to
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3. On t-Perfect Triangulations of the Projective Plane

b′ on PC,b′−v0,a′ (as described in the beginning of the subcase). Choose r such that
its distance to b′ on the path R is minimal. Since PC,b′−c,w is even, the vertices of
PC,b′−c,w together with the vertices of PR,b′−r,z form an odd cycle Cr,R. If this cycle is
induced, it yields an odd wheel with center vertex w. The vertices of Cr,R ∩C cannot
form chords, since C is induced. The vertices of R − r cannot be adjacent to further
vertices of Cr,R ∩ C since they lie in a contractible cycle which is closed by ra. If
there is a chord from r to a vertex of Cr,R ∩ C, then either this edge or the edge ac
form a contractible cycle that includes a part of the Hamilton cycle of z — the path
R′. Thus, in that case no vertex of R′ is adjacent to a or b. We obtain two cycles of
different parity: the cycle with vertices V (R′), b′, x, b and vertices of C, and the cycle
with vertices V (R′), b′, a and vertices of C. Both cycles can contain chords from R′

to C. But the, one of the induced cycles that includes b′ is odd and of length at least
5. Consequently, we obtain a loose odd wheel.

Finally, if there is no chord from a to a vertex of C, the only possible chords that
can occur in C ′ are edges from a vertex r ∈ V (PHC(b′),a−w,x) or from b to a vertex of
C. If there is a chord bc with c ∈ V (C), then b has either three odd neighbours on C
or there is still an odd cycle of length at least 5 containing V (PHC(b′),a−w,x), a and b.
Suppose there is a chord from r ∈ V (PHC(b′),a−w,x) to a vertex of C. If the in-

duced cycle in C ′ that contains a and b is even, there is an odd cycle with vertices
of PHC(b′),a−w,x and C. Then, as we have seen in (3.17), G contains a loose odd
wheel. If the induced cycle in C ′ that contains a and b is odd and contains at least
three vertices of PHC(b′),a−w,x, then it forms a loose odd wheel with center vertex b′.
Otherwise, there is a vertex r1 ∈ V (PHC(b′),a−w,x) with ar1 ∈ E(G) that is adjacent
to a vertex cr of C such that PC,cr−w,b′ is odd. Choose cr such that PC,cr−w,b′ is of
maximal length. The path PC,cr−v0,b′ is also odd and forms an odd cycle together with
b, a and r1. The vertex r1 cannot be contained in a chord of this cycle by choice of cr
and by (3.5). Further, there is no chord from a to a vertex of C. The vertex b can
be adjacent to vertices of C. But then, b either has three odd neighbours or there is
an odd hole that contains b, a and r1. If the hole is contractible, Theorem 3.8 assures
that G contains a loose odd wheel. Otherwise, the edge r1cr closes a contractible cycle
containing a part of the Hamilton cycle of w — the path R′′. Using the fact that the
vertices b and a′ do not lie in the interior of this cycle, we get a loose odd wheel with
R′′, the vertices of C, and a′ (respectively {x, b}) similar to the cases we have seen
before.

This finishes the proof of Lemma 3.18.

3.6.2. Even-Contraction if b’ Is Contained in the Odd Hole

Lemma 3.22. [FG17] Let G be a nice Eulerian triangulation. Let G′ be obtained
from G by an even-contraction at x and let {x, a, a′, b, b′} ∩ V (C) equal {b′}. If G
contains an odd hole C and G′ is perfect, then G contains a loose odd wheel.

Proof. Suppose that G′ is perfect. Then, every odd induced subcycle of γ(C) = K
in G′ is a triangle. As all chords of γ(C) contain b, there are two possibilities: the
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3.6. Even-Contraction Destroying an Odd Hole

triangle may contain one or two chords.
If the triangle contains one chord, then b is adjacent to a vertex v1 of distance 2

from b′ on C. The vertices y, v1 and the common neighbour v2 of v1 and y on K now
give a triangle. In this case, the vertices b′, x, b, v1 and v2 form an odd cycle in G.
Since C is induced and b is not adjacent to v2 (see (3.5)), this cycle is induced. It
forms a loose odd wheel together with a.
If the triangle is of the form y, c1, c2, y where yc1 and yc2 are chords of K, then, bc1

and bc2 are edges in G. Without loss of generality, we choose c1 and c2 in such a way
that PC,b′−c1,c2 is of minimal length. Note that this choice implies that

PC,b′−c1,c2 is odd. (3.18)

Otherwise, PC,b′−c1,c2 forms an odd cycle together with b and x which has an odd
subcycle of length at least 5.

I

b′ c1 c2

xa′ a

b

II

b′ c1 c2

xa′ a

b

III

b′ c1 c2

xa′ a

b

Figure 3.11.: The three possible embeddings of the edges bc1 and bc2 in G

There are three ways of embedding the edges bc1 and bc2 (up to switching the vertices
c1 and c2 and the vertices a and a′ and up to topological isomorphy). They are shown
in Figure 3.11 and treat the (non-)contractabilty of the cycles PC,b′−c1,c2∪{b′a, ab, bc1}
and PC,b′−c2,c1 ∪ {b′a, ab, bc2}. Note that C is non-contractible by Theorem 3.8. If a
and a′ have no common neighbour besides {b, b′, x}, then we can switch the roles of
b, b′ with the roles of a, a′. As we have seen in (3.13), this means C is not affected by
the even-contraction. Thus, we can assume that a and a′ have a common neighbour
besides b, x, b′.

First suppose that the graph is embedded as in III (see Figure 3.11). Then the
cycle PC,b′−c1,c2b

′xbc1 is contractible and contains a in its interior. Further the cycle
PC,b′−c2,c1b

′xbc2 is contractible and contains a′ in its interior. For this reason, a com-
mon neighbour of a and a′ must be contained in the intersection of both cycles, ie in
{b, b′} and a and a′ have no further common neighbour if the graph is embedded as
in III.

Next, suppose that the graph is embedded as in I (see Figure 3.11). Similar to the
arguments before, one can see that all common neighbours of a and a′ besides besides
b, x, b′ lie on the path PC,b′−c1,c2 .
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3. On t-Perfect Triangulations of the Projective Plane

First assume that there is a vertex v′ in PC,b′−c1,c2 that is adjacent to a and that
there is a vertex w on PC,v′−b′,c1 that is not adjacent to a. There are two paths
along HC(w) that connect v′ and z. Let P ′ be the path that lies in the contractible
cycle formed by PC,b′−v′,c1 and a. Consider the cycle C1 formed by P ′ together with
PC,b′−z,w, the vertices x, b and the path PC,c1−v′,w. Further, consider the cycle C2

formed by P ′ together with PC,v′−z,w. Notice that either C1 or C2 is odd. If the odd
cycle is induced, we get a loose odd wheel with center vertex x respectively w. Assume
that the odd cycle contains chords. If there is a chord from b to a vertex of PC,b′−c1,c2
(in the case if C1 is odd), the vertex b has three odd neighbours on C or there still
remains an induced odd cycle containing b, x. If there is a chord from a vertex p of P ′

to a vertex q of C, consider the induced cycle C ′i in Ci which contains v′ for i = 1, 2.
Either C ′1 or C ′2 is odd. If C ′1 is an odd induced cycle, we get a loose odd wheel by
Observation 3.9. Otherwise, C ′2 is an odd cycle. If w has at least three neighbours on
C ′2 we get a loose odd wheel. If w has only two neighbours on C ′2, it directly follows
that p has three odd neighbours on C, namely v′, w and q.
Now assume, that no vertex v′ as above exists. Then, either a has three odd

neighbours (and we get a loose odd wheel ) or the only vertex in the interior of
PC,b′−c1,c2 that is adjacent to a equals the neighbour v of b

′. But then b, a and PC,v−c1,c2
form an odd cycle C ′. Note that all chords of C ′ have b as an endvertex. Further,
either b has three odd neighbours on C (and G contains a loose odd wheel ) or all
chords bw satisfy that PC,c1−w,c2 is of even length. In the second case, every odd
induced subcycle of C ′ contains a and b. If the largest induced odd subcycle of C ′

is of length at least 5, then G has a further odd hole which contains a and b. Then,
G contains a loose odd wheel by Lemma 3.18. Otherwise, b is adjacent to v which
contradicts (3.5).

Last, suppose that the graph is embedded as in II (see Figure 3.11). In this case,
one can see that c1 or c2 are the only possible common neighbours of a and a′ besides
b, x, b′. If c1 is adjacent to a and a′, we obtain an odd cycle formed by a′ and PC,b′−c1,c2 .
This means that G has an odd hole which contains a′ and b′. If c2 is the common
neighbour of a and a′, we obtain the cycle consisting of PC,b′−c2,c1 and a that contains
a and b′. Both cycles are odd (see (3.18)), of length at least 5 (see (3.5)), and induced
(as C is induced and the embedding does not allow any chords). With Lemma 3.18,
the proof is finished.
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Part II.

On Edge Colourings
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4. Introduction to Edge Colourings and
Tree Decompositions

In this chapter, we provide basic definitions and knowledge about the types of edge col-
ourings addressed in Chapter 5 and 6. Additionally, we introduce tree decompositions
in Section 4.4.

4.1. Edge Colouring Basics

An edge colouring of a graph G is an assignment of colours to the edges of G such
that adjacent edges receive different colours. Of particular interest are minimum
edge colourings — edge colourings containing the smallest possible number of colours.
The chromatic index or edge chromatic number χ′(G) is the number of colours of a
minimum edge colouring.
It is clear that an edge colouring of G contains at least maximum degree ∆(G) many

colours. Perhaps the most celebrated and important result on edge colourings is the
following theorem due to Vizing.

Theorem 4.1 (Vizing [Viz65a]). For any graph G holds ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

We call G a class I graph if χ′(G) = ∆(G); if χ′(G) = ∆(G) + 1, then G is of class
II . It is a difficult algorithmic problem to decide whether G is of class I or class II.
For an edge colouring c : E(G) → {1, . . . , k} the colour class c−1(i) (with i ∈
{1, . . . , k}) is the set of all edges of G that are coloured with i. All colour classes of
an edge colouring are matchings. Thus, every colour class contains at most b|V (G)|/2c
edges. Consequently, a graph G with ∆(G) · b|V (G)|/2c < |E(G)| cannot have an edge
colouring with ∆(G) colours. Such a graph is called overfull . Note that the property
implies that an overfull graph has an odd number of vertices.
Chetwynd and Hilton [CH86] conjectured1:

Conjecture 4.2 (Overfull Conjecture). Let G = (V,E) be a simple graph with ∆(G) >
1/3 · |V |. Then G is of class II if and only if G contains an overfull subgraph H with
∆(H) = ∆(G).

The conjecture is verified for a few graph classes (see [Hil87]) such as graphs with
∆(G) ≥ |V | − 3.
To analyse classes of graphs with regard to their chromatic index, it is useful to

consider ∆-critical graphs. A graph G of maximum degree ∆ is ∆-critical, if all
proper subgraphs have an edge colouring using no more than ∆ colours.
Vizing’s popular adjacency lemma asserts:

1Originally, they conjectured a bound of 3/10.
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Theorem 4.3 (Vizing’s adjacency lemma). Let uv be an edge in a ∆-critical graph.
Then v has at least ∆− deg(u) + 1 neighbours of degree ∆.

Zhang [Zha00] and Sanders and Zhao [SZ01] supplemented this with slightly more
complicated adjacency lemmas:

Theorem 4.4 (Zhang [Zha00]). Let G be a ∆-critical graph, and let uwv be a path in
G. If deg(u) + deg(w) = ∆ + 2 then all neighbours of v but u and w have degree ∆.

Theorem 4.5 (Sanders and Zhao [SZ01]). Let G be a ∆-critical graph, and let v be
a common neighbour of u and w such that deg(u) + deg(v) + deg(w) ≤ 2∆ + 1. Then
there are at most deg(u) + deg(v)−∆− 3 common neighbours x 6= u of v and w.

A 1-factorisation of a graph G = (V,E) is a partition of the edge set into perfect
matchings. (A perfect matching is a set of |V |/2 edges, no two of which share an
endvertex.) Such factorisations are closely linked to edge colourings: indeed, a d-
regular graph G has a 1-factorisation if and only if its edge set can be coloured with
d colours. That is, the chromatic index is equal to d.

4.2. Fractional Edge Colourings

Fractional edge colourings can be seen as a relaxation of edge colourings. A fractional
edge colouring is an assignment of a non-negative weight λM to each matching M of
G such that for every edge e ∈ E(G) holds

∑
M3e λM ≥ 1. The fractional chromatic

index of a graph G is defined as

χ′f (G) = min

{ ∑
M∈M

λM : λM ∈ R+,
∑
M∈M

λM1M (e) = 1 ∀e ∈ E(G)

}
,

whereM denotes the collection of all matchings in G and 1M the characteristic vector
ofM . The fractional chromatic index satisfies χ′f (G) ≤ χ′(G). If χ′f (G) is greater than
∆(G) then clearly G is class II. It follows from Edmonds’ matching polytope theorem
that the fractional chromatic index of a graph on at least three vertices satisfies

χ′f (G) = max{∆(G),Λ(G)} where Λ(G) = max
H

2|E(H)|
|V (H)|−1

and the maximisation is over all induced subgraphsH ofG on an odd number |V (H)| ≥
3 of vertices that have maximum degree ∆(G) (see eg [Thm. 28.5] [Sch02]). With this,
it is not hard to see that a graph G that does not contain an overfull subgraph H
with ∆(H) = ∆(G) has fractional chromatic index χ′f (G) = ∆(G). For more details
on the fractional chromatic index, see for instance Scheinerman and Ullman [SU13].

4.3. List Edge-Colourings

List edge-colourings generalise edge colourings. Given lists Le of allowed colours at
every edge e ∈ E(G), the task is to colour the edges of G so that every edge e receives
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a colour from its list Le. The choice index (or list chromatic index ) of G is the smallest
number ` so that any collection of lists Le of size ` permits a list colouring.
Clearly, the choice index is at least as large as the chromatic index. The famous list

colouring conjecture asserts that the two indices are in fact the same:

Conjecture 4.6 (List colouring conjecture). The chromatic index of every simple
graph equals its list chromatic index.

Similar to list edge-colourings, one can define a list vertex colouring and a list
chromatic number. The analogue conjecture for list vertex colourings is not true. The
graph K3,3 is bipartite, ie has a 2-colouring. Nevertheless, there is a choice of lists of
size 2 for every vertex such that the graph cannot be coloured from these lists.

4.4. Tree Decompositions

For a graph G a tree decomposition (T,B) consists of a tree T and a collection B =
{Bt : t ∈ V (T )} of bags Bt ⊂ V (G) such that

(i) V (G) =
⋃

t∈V (T )

Bt,

(ii) for each edge vw ∈ E(G) there exists a vertex t ∈ V (T ) such that v, w ∈ Bt,
and

(iii) if v ∈ Bs ∩Bt, then v ∈ Br for each vertex r on the path between s and t in T .

A tree decomposition (T,B) has width k if each bag has a size of at most k + 1. The
treewidth of G is the smallest integer k for which there is a width k tree decomposition
of G.
A tree decomposition (T,B) of width k is smooth if

(iv) |Bt| = k + 1 for all t ∈ V (T ) and

(v) |Bs ∩Bt| = k for all st ∈ E(T ).

A graph with treewidth of at most k always has a smooth tree decomposition of
width k; see Bodlaender [Bod98].
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5. List Edge-Colouring in Generalised
Petersen Graphs

The content of Section 5.1, 5.2, and 5.3 is based on the paper [BGG17] by Henning
Bruhn, Jacob Günther, and the author of this thesis. Section 5.4 is inspired by the
previous sections. The results are unpublished and work by the author of this thesis.

The first three sections serve to prove that the number of 1-factorisations of a
generalised Petersen graph of the typeGP (3k, k) is equal to the kth Jacobsthal number
J(k) if k is odd and equal to 4J(k) if k is even. Moreover, we verify the list colouring
conjecture for GP (3k, k).
In the last section, we verify the list colouring conjecture for GP (4k, k).

5.1. Introduction

Often, combinatorial objects that on the surface seem quite different nevertheless
exhibit a deeper, somewhat hidden, connection. This is, for instance, the case for
tilings of 3 × (k − 1)-rectangles with 1 × 1 and 2 × 2-squares [Heu99], certain meets
in lattices [DKW79], and the number of walks of length k between adjacent vertices
in a triangle [Bar07]: in all three cases the cardinality is equal to the kth Jacobsthal
number. Their sequence

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341 . . .

is defined by the recurrence relation J(k) = J(k − 1) + 2J(k − 2) and initial values
J(0) = 0 and J(1) = 1. Jacobsthal numbers also appear in the context of alternating
sign matrices [FS00], the Collatz problem and in the study of necktie knots [FM00];
see [Slo, A001045] for much more.

Figure 5.1.: The Dürer graph GP (6, 2) and the generalised Petersen graph GP (9, 3)
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In this article, we add to this list by describing a relationship to certain generalised
Petersen graphs GP (3k, k). These graphs arise from matching k disjoint triangles to
triples of equidistant vertices on a cycle of 3k vertices; see below for a precise definition
and Figure 5.1 for two examples.

Theorem 5.1. [BGG17] For odd k, the number of 1-factorisations of the generalised
Petersen graph GP (3k, k) equals the Jacobsthal number J(k); for even k, the number
is equal to 4J(k).

The famous List colouring conjecture (Conjecture 4.6) asserts that the the choice
index of a graph equals its chromatic index. While the conjecture (Conjecture 4.6)
has been verified for some graph classes, regular planar graphs [EG96] and bipartite
graphs [Gal95] for instance, the conjecture remains wide open for most graph classes,
among them cubic graphs. We prove:

Theorem 5.2. [BGG17] The list-colouring conjecture is true for generalised Petersen
graphs GP (3k, k).

Our proof is based on the algebraic colouring criterion of Alon and Tarsi [AT92]. In
our setting, it suffices to check that, for a suitable definition of a sign, the number of
positive 1-factorisations differs from the number of negative 1-factorisations. In this
respect our second topic ties in quite nicely with our first, and we will be able to re-use
some of the observations leading to Theorem 5.1.
Generalised Petersen graphs were first studied by Coxeter [Cox50]. For k, n ∈ N

with k < n
2 , the graph GP (n, k) is defined as the graph on vertex set {ui, vi : i ∈ Zn}

with edge set {uiui+1, uivi, vivi+k : i ∈ Zn}. Generalised Petersen graphs are cubic
graphs. All of them, except the Petersen graph itself, have chromatic index 3; see
Watkins [Wat69], and Castagna and Prins [CP72]. In particular, this means that
the list colouring conjecture for them does not follow from the list version of Brooks’
theorem. We focus in the first three sections (Section 5.1, 5.2, and 5.3) on the graphs
GP (3k, k), the smallest of which, GP (6, 2), is called the Dürer graph. Section 5.4 will
deal with the graphs GP (4k, k) and will use the ideas explained and used in the first
three sections.

5.2. Counting 1-Factorisations

In the rest of the article we consider a fixed generalised Petersen graph GP (3k, k). The
outer cycle CO of GP (3k, k), the cycle u0u1 . . . u3k−1u0, and the spokes, the edges uivi
for i = 0, . . . , 3k − 1, will play a key role. The indices of ui and vi are taken modulo
3k. See Figure 5.2 for an illustration.
Our objective is to count the number of 1-factorisations of GP (3k, k). Rather than

counting them directly, we will consider edge colourings, and here we will see that it
suffices to focus on certain edge colourings of the outer cycle.
Let φ be an edge colouring with colours {1, 2, 3} of either the whole graph GP (3k, k)

or only of the outer cycle CO. We split φ into k triples

φi = (φ (uiui+1) , φ (uk+iuk+i+1) , φ (u2k+iu2k+i+1)) for i = 1, . . . , k.
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ui

u2k+i uk+i

vi

v2k+i vk+i

ui−1 ui+1

Figure 5.2.: A small part of GP (3k, k); the colours of the dotted edges make up φi

To keep notation simple, we will omit the parentheses and commas, and only write
φi = 123 to mean φi = (1, 2, 3). We define φk+1 = (φ (uk+1uk+2) , φ (u2k+1u2k+2) ,
φ (u1u2)), and note that φk+1 is obtained from φ1 by a cyclic shift.
It turns out that the colours on the outer cycle already uniquely determine the edge

colouring on the whole graph. Moreover, it is easy to describe which colourings of the
outer cycle extend to the rest of the graph:

Lemma 5.3. [BGG17] Let φ : E(CO)→ {1, 2, 3} be an edge colouring of CO. Then
the following two statements are equivalent:

(a) there is an edge colouring γ of GP (3k, k) with γ|CO
= φ; and

(b) there is a permutation (a, b, c) of (1, 2, 3) so that φi and φi+1 are for all i = 1, . . . , k
adjacent vertices in one of the graphs T and H in Figure 5.3.

Furthermore, if there is an edge colouring γ of GP (3k, k) as in (a) then it is unique.

abc

bca cab

T

aba

bccaab

cbc

baa ccb

H

Figure 5.3.: The graphs T and H capture the possible combinations of consecutive
colour triples

Proof. First assume (a), that is, that there is an edge colouring γ of GP (3k, k) with
γ|CO

= φ. Note that for all i ∈ Z3k

the spokes uivi, ui+kvi+k and ui+2kvi+2k receive distinct colours. (5.1)

Indeed, the three edges of the triangle vivi+kvi+2kvi need to be assigned three different
colours, which then also must be the case for the corresponding spokes.
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From (5.1) follows that no φi is monochromatic, i.e.,that φi /∈ {111, 222, 333}. If
there was such an φi, say φi = 111, then none of the spokes uivi, ui+kvi+k and
ui+2kvi+2k could be coloured with 1 under γ.
In particular, φ1 will contain at least two distinct colours and we can choose distinct

a, b and c so that φ1 ∈ {abc, aab, aba, baa}. Then φ1 is a vertex of either T or
H. Consider inductively φi to be such a vertex as well. By rotational symmetry of
GP (3k, k) and permutation of colours, we may assume that φi ∈ {abc, aab}.
If φi = {abc} then, by (5.1), the spokes uivi, ui+kvi+k and ui+2kvi+2k can only

be coloured b, c, a (in that order) or c, a, b. In the first case, the colour of the edge
ui+1ui+2 needs to be c, and so on, resulting in φi+1 = cab. In the other case, we
get φi+1 = bca. Both of these colour triples are adjacent to φi in T . The proof for
φi = aab is similar.

For the converse direction suppose now that (b) holds. Consider a pair of colour
triples φi and φi+1. By rotation symmetry of GP (3k, k) and by symmetry of the three
colours, we only need to check the cases that

(φi, φi+1) = (abc, bca) and (φi, φi+1) = (aab, cbc).

In the first case, the spokes uivi, ui+kvi+k and ui+2kvi+2k can be coloured with c, a
and b (in that order), which then permits to colour the triangle vivi+kvi+2kvi with
abc. Observe that neither for the spokes nor for the triangle there was an alternative
colouring. For the other case, colour the spokes with bca and then the triangle ac-
cordingly. Again, all the colours are forced. Extending the colouring φ in this way for
all i yields an edge colouring γ of all of GP (3k, k), and as all colours are forced, γ is
uniquely determined by φ.

The lemma implies : Any edge colouring γ of GP (3k, k) corresponds to a walk
γ1γ2 . . . γk+1 of length k in either T or in H. Where does such a walk start and end?
By symmetry, we may assume that the walk starts at γ1 = abc or γ1 = aab. It
then ends in γk+1, which is either bca or aba. Conversely, all such walks define edge
colourings of GP (3k, k).
To count the number of these walks, consider two vertices x, y of T , respectively of

H, that are at distance ` from each other in T (respectively in H). We define

tk(`) := ] {walks of length k between x and y in T}
hk(`) := ] {walks of length k between x and y in H}

Then every edge colouring of GP (3k, k) corresponds to a walk that is either counted
in tk(1) (as abc and bca have distance 1 in T ) or counted in hk(2).

Lemma 5.4. [BGG17] The number of 1-factorisations of GP = GP (3k, k) equals
tk(1) + 3hk(2).

Proof. First, we note that 1-factorisations are basically the same as edge colourings γ :
E(GP )→ {1, 2, 3} where colours of some edges are restricted. In more detail, there is
a bijection between the 1-factorisations and the edge colourings γ : E(GP )→ {1, 2, 3}
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where u1u2 is coloured with 1, u1+ku2+k coloured with 1 or 2, and u1+2ku2+2k is only
coloured with 3 if u1+ku2+k was coloured with 2. Note that 111 is no possible choice.
By Lemma 5.3, the number of such γ is equal to the number of edge colourings φ :
E(CO)→ {1, 2, 3} satisfying (b) of Lemma 5.3 and for which φ1 ∈ {123, 112, 121, 211}.
How many such edge colourings φ are there with φ1 = 123? Since φk+1 = 231,

Lemma 5.3 implies that this number is tk(1). Each of the numbers of edge colourings
φ with φ1 ∈ {112, 121, 211} is equal to h2(2), which means that, in total, we get
tk(1) + 3hk(2) edge colourings.

We need the closed expression of the Jacobsthal numbers:

J(k) = 1
3

(
2k + (−1)k+1

)
for every k ≥ 0. (5.2)

Lemma 5.5. For any k

tk(0) = 1
3(2k + 2(−1)k) and tk(1) = J(k)

The second equation can be found in [Bar07]. Since it follows directly from the first
one, we will still include a proof.

Proof. A classic question in algebraic graph theory is to count the number of pairs
(W, v) for a graph G, whereW is a closed walk of length k in a graph G and v the first
vertex of W . It turns out, see for instance [BW04, Section 1.4], that this number is
equal to λk1+· · ·+λkn, where λ1, . . . , λn are the eigenvalues of the adjacency matrix ofG.
For the triangle these eigenvalues are 2 and twice −1 (see eg [BW04, Section 1.2]). Our
aim, however, is to count the number of closed walks of length k that start at a specific
vertex, which means that we have to divide by 3. This gives tk(0) = 1

3(2k + 2(−1)k)
for every k, and thus the first assertion of the lemma.
Since every walk on k + 1 edges has to visit a vertex adjacent to the end vertex

after the k-th step, for which there are two possibilities, we obtain tk+1(0) = 2tk(1)
and thus

2tk(1) = tk+1(0) = 1
3

(
2k+1 + 2(−1)k+1

)
By (5.2), we get 2tk(1) = 2J(k) for every k.

For the next lemma, we label the vertices of T as x0, x1, x2 in clockwise order. The
vertices of H are y0, y1, y2, z0, z1, z2 in clockwise order.

Lemma 5.6. [BGG17] If k is even, there is a bijection between the set of walks of
length k from x0 to x2 in T and the set of walks from y0 to y2 in H. Moreover, the
`th edge of the walk in T is traversed in clockwise direction if and only if this is also
the case for `th edge of the corresponding walk in H.

The projection of the set {yi, zi} inH to the set {xi} in T for i ∈ Z3 yields a covering
map. The bijection between the considered walks of length k in T and H follows
immediately by the path lifting property for covering spaces (see eg [Hat02, Section
1.3]). We give, nevertheless, an elementary proof of the lemma.
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5. List Edge-Colouring in Generalised Petersen Graphs

Proof of Lemma 5.6. Every vertex with index i ∈ Z3 in H is adjacent to exactly one
vertex with index i + 1 in clockwise direction and one with index i − 1 in counter-
clockwise direction. Therefore, the following rule translates a walk W = w0 . . . wk in
T starting in x0 to a walk W ′ = w′0 . . . w

′
k in H starting in y0 while maintaining the

directions of edge traversals: let w′0 = y0; for ` = 1, . . . , k, if w` = xi then pick w′` to
be the neighbour of w′`−1 among yi, zi.
As wk = x2, the last vertex w′k of W ′ has to be one of y2, z2. Since k is even and

the distance between y0 and z2 in H is odd, W ′ must terminate in y2. Clearly, the
described rule yields a bijection.

Proof of Theorem 5.1. By Lemma 5.4 the number of 1-factorisations of GP (3k, k) is
tk(1) + 3hk(2). Lemma 5.6 yields that hk(2) equals tk(1) for even k. Since there is no
walk of odd length in H that connects two vertices of even distance, hk(2) is zero for
odd k. By Lemma 5.5 the number of 1-factorisations now equals J(k) + 3J(k) if k is
even and J(k) + 3 · 0 otherwise.

5.3. List Edge-Colouring

In order to show the list edge-colouring conjecture for GP (3k, k), we will use the
method of Alon and Tarsi [AT92], or rather its specialisation to regular graphs [EG96].
To define a local orientation, we consider GP (3k, k) always to be drawn as in Fig-

ure 5.1: the vertices ui for i = 1, . . . , 3k are placed on an outer circle in clockwise
order, the vertices vi for i = 1, . . . , 3k on a smaller concentric circle in such a way that
ui and vi match up, and all edges are straight. We define the sign of γ at a vertex w
as + if the colours 1, 2, 3 appear in clockwise order on the incident edges; otherwise
the sign is −. More formally,

sgnγ(ui) =

{
+ if (γ(ui−1ui), γ(uiui+1), γ(uivi)) ∈ {123, 231, 312}
− otherwise.

sgnγ(vi) =

{
+ if (γ(vk+ivi), γ(viv2k+i), γ(viui)) ∈ {123, 231, 312}
− otherwise

The sign of the colouring γ is then

sgn(γ) :=
∏

v∈V (GP (3k,k))

sgnγ(v).

Permuting colours in our context does not change the sign of an edge colouring.
This is true in all regular graphs, see for instance [EG96]:

Lemma 5.7. [BGG17] Let G be a d-regular graph, and let γ be an edge colouring of
G with d colours. If γ′ is obtained from γ by exchanging two colours, then sgn(γ) =
sgn(γ′).
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5.3. List Edge-Colouring

For d-regular graphs with odd d, such as cubic graphs, Lemma 5.7 is easy to see: the
signs of γ and γ′ differ at every vertex of G, and there is an even number of vertices
in total.
Lemma 5.7 allows to define a sign sgn(f) for any 1-factorisation f by fixing it to the

sign of any edge colouring that induces f . The Alon-Tarsi colouring criterion now takes
a particularly simple form in d-regular graphs; see Ellingham and Goddyn [EG96] or
Alon [Alo93].

Theorem 5.8. Let G be a d-regular graph with∑
f 1-factor of G

sgn(f) 6= 0.

Then, G is d-list-edge-colourable.

Applying Theorem 5.8 to GP (3k, k) with odd k, we can now see that the list edge-
colouring conjecture holds:

Corollary 5.9. [BGG17] For odd k, the graph GP (3k, k) has choice index 3.

Proof. By Theorem 5.1, GP (3k, k) has J(k) = 2k+1
3 distinct 1-factorisations, if k is

odd. Since this number is odd, the sum of the signs of all 1-factorisations cannot be
zero. Theorem 5.8 finishes the proof.

Unfortunately, for even k the number of 1-factorisations is even. That means,
we have to put a bit more effort into showing that the sum of the signs of all 1-
factorisations is not zero. In particular, we will need to count the positive and negative
1-factorisations separately.
As a first step, we refine the colour triple graphs T and H, and endow them with

signs on the edges. Figure 5.4 shows the graphs T± and H±, which we obtain from T
and H by replacing each edge by two inverse directed edges, each having a sign. Note
that in T± all edges in clockwise direction are positive, while clockwise edges in H±
are negative.

abc

bca cab

−

+

−

+

−

+

T±

aba

bccaab

cbc

baa ccb

+

−

+

−+

−

+

−

+

− +

−

H±

Figure 5.4.: Signs of the possible combinations of consecutive colour triples

Let x, y be two adjacent vertices in T± or in H±. We denote the sign of the edge
pointing from x to y by sgn(x, y). The next lemma shows that the signs on the edges
capture the signs of edge colourings.
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5. List Edge-Colouring in Generalised Petersen Graphs

Lemma 5.10. [BGG17] Let γ : E(GP ) → {1, 2, 3} be an edge colouring of GP =
GP (3k, k), and let (a, b, c) be a permutation of (1, 2, 3) so that γ1 is a vertex in T± or
in H±. Then

sgn(γ) =
k∏
i=1

sgn(γi, γi+1).

Proof. We partition the vertices of GP into k parts, namely into the sets

Vi := {ui, vi, uk+i, vk+i, u2k+i, v2k+i} for i = 1, . . . , k.

See Figure 5.2 for the vertices in Vi. Factorising

sgn(γ) =
∏
w∈V

sgnγ(w) =
k∏
i=1

∏
w∈Vi

sgnγ(w),

we see that the lemma is proved if∏
w∈Vi

sgnγ(w) = sgn(γi, γi+1) (5.3)

holds true for all i = 1, . . . , k.
That the total sign on Vi depends only on γi and γi+1 is clear from Lemma 5.3: γi

and γi+1 determine the colours of the edges incident with vertices in Vi. Therefore,
there is a function f on the edges of T± ∪H± to {+,−} so that∏

w∈Vi

sgnγ(w) = f(γi, γi+1)

Our task reduces to verifying that f(γi, γi+1) = sgn(γi, γi+1). In principle, we could
now check all edges in T± and H±, one by one, to see whether the signs are correct.
Instead, we exploit the fact that all vertices in T± (or in H±) are in some sense the
same.
A clockwise orientation of GP by k vertices induces a shift in a colour triple γi from

(γi1, γi2, γi3) to (γi2, γi3, γi1). Note that a rotation of GP obviously does not change
the sign of γ. Moreover, permutation of colours preserves the total sign of Vi since
swapping two colours changes the sign at all six vertices. Therefore we may assume
that {γi, γi+1} = {abc, bca} (if γ1 ∈ T±) or that {γi, γi+1} = {aab, bcc} (if γ1 ∈ H±).
This gives four configurations to check, as the sign can (and does) depend on the

direction of the edge from γi to γi+1. The four constellations are shown in Figure 5.5,
where we can see, for instance, that the edge from abc to bca has a net negative sign
under f , while the inverse edge is positive.
Since, on these four constellations, f coincides with the edge signs of T± and H±,

it coincides everywhere, which proves (5.3).

Lemmas 5.3 and 5.10 imply that every positive 1-factorisation corresponds to a
walk in either T± or H± whose edge signs multiply to +. We call such a walk positive;
whereas a walk whose signs multiply to − is negative.
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−
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+
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+
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−

− +

a

c

b

c

ba

b a

c

ac

b

bcc→ aab

Figure 5.5.: Signs of the vertices in Vi for some consecutive colour triples

To count such walks, we observe that a walk and its reverse walk might have different
signs. Not only the distance between two vertices has an influence, but also the
rotational direction of the shortest path.
For two vertices x and y for which the clockwise path from x to y is of length `, we

define

t+k (`) := ] { positive walks of length k from x to y in T±}
h+
k (`) := ] { positive walks of length k from x to y in H±}

and t−k (`) and h−k (`) analogously. Note that t+0 (0) = h+
0 (0) = 1 whereas t−0 (0) =

h−0 (0) = 0.
Similarly as in Section 5.2 for unsigned colourings, every positive edge colouring of

GP (3k, k) now corresponds to a positive walk in T± or in H±. Since all edge colourings
with the same associated 1-factorisation have the same sign, we thus have a way to
count positive and negative 1-factorisations via walks in signed graphs:

Lemma 5.11. [BGG17] The number of positive respectively negative 1-factorisations
of GP (3k, k) is equal to t±k (2) + 3h±k (2).

Proof. As before, in order to count 1-factorisations it suffices to count edge colourings γ
with γ1 ∈ {123, 112, 121, 211}. Lemma 5.10 in conjunction with Lemma 5.3 shows that
there is a one-to-one correspondence between positive (resp. negative) edge colourings
and certain positive (resp. negative) walks of length k in T± and in H±. Namely, these
are the t±k (2) walks in T± from 123 to 231 plus the 3h±k (2) walks in H± with starting
point 112, 121, 211, and respective end point 121, 211, 112.

As in Lemma 5.6 we can state a connection between walks in T± and H±.
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5. List Edge-Colouring in Generalised Petersen Graphs

Lemma 5.12. [BGG17] h±k (2) = t±k (2) for even k.

Proof. We can canonically extend the map of Lemma 5.6 to a bijection between walks
in T± and H±. Then the bijection maps walks counted by tk(1) = tk

+(2) + t−k (2)
to walks counted by hk(2) = h+

k (2) + h−k (2). Since the signs of the clockwise (resp.
anti-clockwise) arcs are different in T± and H±, any arc in a walk in T± has a different
sign from its image in H±. However, as we consider walks of even length k, the total
sign of the walks is preserved by the bijection, and the assertion follows.

In order to show that the numbers of positive and negative 1-factorisations differ,
it remains to compute t+k and t−k :

Lemma 5.13. For any integer k ≥ 1

t+k (2) = 1
6

(
2k − (−1)k

(
1 + (−3)d

k
2e
))

t−k (2) = 1
6

(
2k − (−1)k

(
1− (−3)d

k
2e
))

Proof. Every walk in T± from a vertex v to a vertex v′ induces a reflected walk from
v′ to v. In that walk, every arc is replaced by its reversed arc, which has opposite sign.
Furthermore, the shortest path from v to v′ in clockwise direction is of length 1 if and
only if the shortest path from v′ to v in clockwise direction has length 2. Therefore

t±k (1) =

{
t±k (2) if k is even
t∓k (2) if k is odd

(5.4)

Note that the signs swap for odd k.
In the same way follows for odd k that t+k (0) = t−k (0). Since t+k (0) + t−k (0) = tk(0)

we get t±k (0) = 1
2 tk(0) and thus with Lemma 5.5 that

t±k (0) = 1
3(2k−1 − 1) for odd k. (5.5)

We use Lemma 5.5 together with (5.2) and note for later that

t+k (`) + t−k (`) = tk(1) = J(k) = 1
3

(
2k − (−1)k

)
for ` ∈ {1, 2} (5.6)

Trivially, a walk of length k must visit a neighbour of its last vertex in the (k − 1)th
step, and a vertex adjacent to its penultimate vertex in the (k − 2)th step. Therefore

t±k (2) = t∓k−1(0) + t±k−1(1) for all k ≥ 1

t±k (2) = 2t∓k−2(2) + t±k−2(0) + t±k−2(1) for all k ≥ 2.

Applying (5.4) and (5.5), we obtain

t±k (2) = t∓k−1(0) + t±k−1(1)

= 1
3

(
2k−2 − 1

)
+ t∓k−1(2) if k is even. (5.7)
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For odd k we get a recurrence relation by using again (5.4), (5.5) and additionally (5.6)

t±k (2) = 2t∓k−2(2) + t±k−2(0) + t±k−2(1)

= 3t∓k−2(2) + 1
6

(
2k−2 − 2

)
= −3t±k−2(2) + 1

6

(
6
(

2k−2 + 1
)

+ 2k−2 − 2
)

= −3t±k−2(2) + 1
6

(
7 · 2k−2 + 4

)
if k is odd. (5.8)

It is straightforward to check that

t+k (2) = 1
6

(
(−3)

k+1
2 + 2k + 1

)
for odd k

satisfies the recurrence relation (5.8) and the initial condition t+1 (2) = 0.
Therefore, we deduce with (5.6) that

t−k (2) = 1
6

(
2k+1 + 2

)
− 1

6

(
(−3)

k+1
2 + 2k + 1

)
= 1

6

(
−(−3)

k+1
2 + 2k + 1

)
if k is odd.

The transition to even k is now made by using (5.7). We obtain

t+k (2) = 1
3

(
2k−2 − 1

)
+ t−k−1(2)

= 1
6

(
2k−1 − 2

)
+ 1

6

(
−(−3)

k
2 + 2k−1 + 1

)
= 1

6

(
−(−3)

k
2 + 2k − 1

)
if k ≥ 2 is even

t−k (2) = 1
3

(
2k−2 − 1

)
+ t+k−1(2)

= 1
6

(
2k−1 − 2

)
+ 1

6

(
(−3)

k
2 + 2k−1 + 1

)
= 1

6

(
(−3)

k
2 + 2k − 1

)
if k ≥ 2 is even.

The different values of (−1)k and
⌈
k
2

⌉
for odd and even k yield the formulas for t+k

and t−k .

We have finally collected all necessary facts to finish the proof of Theorem 5.2.

Proof of Theorem 5.2. By Corollary 5.9, it remains to consider the case of even k.
By Lemma 5.11, the number of positive/negative 1-factorisations is equal to t±k (2)+

3c±k (2), which is the same as 4t±k (2), by Lemma 5.12. Applying Lemma 5.13, we see
that t+k (2) 6= t−k (2), which shows that the sum of the signs of all 1-factorisations is not
zero. Thus, the Alon-Tarsi criterion, Theorem 5.8, concludes the proof.
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5.4. Generalised Petersen Graphs GP(4k,k)

In this section, we focus on generalised Petersen graphs of the form GP (4k, k). These
graphs arise from matching k disjoint quadrangles to 4-tuples of equidistant vertices
on a cycle of 4k vertices; Figure 5.6 shows two examples.

Figure 5.6.: The generalised Petersen graphs GP (8, 2) and GP (12, 3)

We show that every graph GP (4k, k) has choice index 4, ie:

Theorem 5.14. The list-colouring conjecture is true for generalised Petersen graphs
GP (4k, k).

It is easily seen that GP (4k, k) is bipartite for odd k. Thus, it follows from [Gal95]
that for odd k the graph GP (4k, k) has choice index 4 and it suffices to analyse the
graphs GP (4k, k) with even k.
The main ideas to prove the list-colouring conjecture for GP (4k, k) are the same

as those for Dürer-type graphs in the previous sections. While there are significantly
more ways to colour the spokes, we do not need to count the 1-factorisations. Instead,
we show that all 1-factorisations have the same sign.
First, we show that the colours of the outer cycle of GP (4k, k) determine the edge

colouring of the whole graph in a way. Next, we use the algebraic colouring criterion
of Alon and Tarsi [AT92] (see Theorem 5.8) to assert that GP (4k, k) is 3-list-edge-
colourable if the sum of the signs of its 1-factors is not zero.

vi vi+k

vi+2kvi+3k

ui ui+k

ui+2kui+3k

Figure 5.7.: The graph Gi ; the colours of the dotted edges define φi

To start with, we provide necessary definitions. Note that these definitions are
analogues of those for Dürer-type graphs.
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For every i ∈ {1, . . . , k}, our particular interest lies on the subgraph Gi of GP (4k, k)
shown in Figure 5.7. More precisely, we defineGi as the induced subgraph ofGP (4k, k)
whose vertex set consists of {vi, vi+k, v2i+k, v3i+k} together with its first neighbourhood
{ui, ui+k, u2i+k, u3i+k} and with its second neighbourhood that consists of the vertices
ui−1, ui−1+k, u2i−1+k, u3i−1+k and ui+1, ui+1+k, u2i+1+k, u3i+1+k.
The outer cycle CO of GP (4k, k), the cycle u0u1 . . . u4k−1u0, and the spokes, ie the

edges uivi for i = 0, . . . , 4k− 1, will play a key role in the following. All vertex indices
are taken modulo 4k.
Let φ be an edge colouring with colours 1, 2, 3 of either the whole graph GP (4k, k)

or only of the outer cycle CO. We split φ into k tuples

φi =


φ (uiui+1)

φ (ui+kui+k+1)
φ (ui+2kui+2k+1)
φ (ui+3kui+3k+1)

 for i = 1, . . . , k.

Figure 5.7 shows the edges whose colours are given in φi. Additionally, we define

φk+1 =


φ (uk+1uk+2)
φ (u2k+1u2k+2)
φ (u3k+1u3k+2)

φ (u1u2)


and note that φk+1 is obtained from φ1 by a cyclic shift.
In order to analyse the 1-factorisations of GP (4k, k) we must analyse its edge col-

ourings. Similar to Dürer-type graphs, the colours on the outer cycle determine the
edge colouring on the whole graph in a way. Moreover, it is easy to characterise the
colourings of the outer cycle that extend to the rest of the graph:

Lemma 5.15. Let φ : E(CO) → {1, 2, 3} be an edge colouring of CO. Then the
following two statements are equivalent:

(a) there is an edge colouring γ of GP (4k, k) with γ|CO
= φ; and

(b) there is a permutation (a, b, c) of (1, 2, 3) so that φi and φi+1 are adjacent vertices
in either Ga or in G0 (see Figure 5.8 and 5.9) for all i = 1, . . . , k .

To better understand the proof of Lemma 5.15, we introduce the Klein four-group

K = ({a, b, c, 0},+).

K is the group where two non-zero elements add up to the third element (eg a+b = c)
and the sum of an element with itself gives zero (eg a+a = 0). Note that the difference
of two elements always equals their sum.
As all considered graphs are cubic, it is convenient for us to use this group for

modelling 3-edge colourings. Let (a, b, c) be a permutation of (1, 2, 3) and let the
edges of a cubic graph be coloured with 1, 2, 3. Then, at each vertex, all three colours
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acba

cbcc

bcaa

cbbb

baac

cccb

aabc

bbcb

caab

bcbb

aacb

bccc

abca

bbbc

cbaa

ccbc

abac

baca

caba

acab

Figure 5.8.: The graph Ga

appear. Further, if the colours (say a and b) of two incident edges are known, then
the colour of the third edge is the sum of the other two colours, ie c = a + b.
The vertices of Ga and G0 are labelled with four elements, eg with baca. This

vertex corresponds to the tuple (b a c a)T . Note that all vertices in G0 are tuples
whose elements sum up to 0. Similarly, all vertices in Ga have sum a.
Note furthermore that the graphs Ga and G0 are both isomorphic to themselves

under cyclic shifts of the entries of the tuples associated with the vertices.

Proof of Lemma 5.15. First assume (a), ie there is an edge colouring γ of GP (4k, k)
with γ|CO

= φ where (a, b, c) is a permutation of (1, 2, 3) .
For a 4-cycle Qi+1 = vi+1vi+1+kvi+1+2kvi+1+3kvi (with i ∈ Z4k), there are only two

ways to colour its edges. Either the quadrangle is coloured with only two colours that
alternate, eg with 1, 2, 1, 2, or the quadrangle is coloured with three colours, eg with
1, 2, 3, 2. Figure 5.10 illustrates the two possible colourings for Qi+1.
We can deduce that the adjacent spokes need to be coloured either all with the same

colour or with exactly two colours such that spokes of the same colour are consecutive.
Up to cyclic shifts and permutation of colours, we can thus assume that

γ(ui+1vi+1)
γ(ui+1+kvi+1+k)
γ(ui+1+2kvi+1+2k)
γ(ui+1+3kvi+1+3k)

 ∈



3
3
3
3

 ,


3
3
1
1


 .

Suppose that all four spokes have the same colour 3 in γ. Then the adjacent outer
edges must be coloured with 1 and 2.
We thus have four possibilities (up to cyclic shifts and permutation of 1 and 2) for
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cccc

aabb

bbaa

abba
baab

bbbb

ccaa

aacc

caac

acca

aaaa

bbcc

ccbb

bccb

cbbc

acac

caca

abab

baba

bcbc

cbcb

Figure 5.9.: The graph G0

the colours of the adjacent outer edges and the matrix (φi|φi+1) is an element of

1 2
1 2
1 2
1 2

 ,


1 2
1 2
2 1
2 1

 ,


1 2
2 1
1 2
2 1

 ,


1 2
1 2
1 2
2 1


 .

The first three elements (φi|φi+1) correspond to adjacent vertices in G0. To see this,
set (a, b, c) = (1, 2, 3). The last element corresponds to two adjacent vertices in Ga;
set (b, c, a) = (1, 2, 3). One can easily verify that all pairs

(
φ′i, φ

′
i+1

)
emerging from

(φi, φi+1) by cyclic shifts in φi and φi+1 and by permutation of colours also correspond
to adjacent vertices of Ga or G0.
Can a tuple φi be contained in both, Ga and G0? No. The elements of the tuples

in G0 sum up to 0. Any permutation of a, b, c will again lead to a sum of zero. In
contrast, the elements in Ga have tuple sum a. Permutation of a, b, c can never yield
sum zero.
Why do the elements of adjacent φi and φi+1 always sum up to the same number?

Let x1, x2, x3, x4 ∈ {a, b, c} be the entries of φi. Then, the entries of φi+1 are c +
x1, c + x2, c + x3, c + x4 and add up to

(c+x1)+(c+x2)+(c+x3)+(c+x4) = (c+c+c+c)+(x1+x2+x3+x4) = x1+x2+x3+x4.
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Figure 5.10.: The two ways two colour a quadrangle Gi and the colours of the incident
spokes

Now, assume that the four spokes are coloured (3, 3, 1, 1). In this case, there are
slightly a few more possibilities for the matrix Mi = (φi|φi+1). In the first and in the
second row of Mi, the entries must be 1 and 2 while in the third and the fourth row
of Mi, the entries must be 2 and 3 . This means that Mi is contained in the set


1 2
1 2
2 3
2 3

 ,


1 2
1 2
2 3
3 2

 ,


1 2
1 2
3 2
2 3

 ,


1 2
2 1
2 3
2 3

 ,


2 1
1 2
2 3
2 3

 ,


2 1
2 1
2 3
2 3

 ,


1 2
2 1
3 2
2 3

 ,


1 2
1 2
3 2
3 2

 ,


2 1
1 2
3 2
2 3

 ,


1 2
2 1
2 3
3 2

 ,


2 1
1 2
2 3
3 2

 ,


2 1
2 1
3 2
2 3

 ,


2 1
2 1
2 3
3 2

 ,


2 1
1 2
3 2
3 2

 ,


1 2
2 1
3 2
3 2

 ,


2 1
2 1
3 2
3 2


 .

Similar to the above, the entries of φi and φi+1 must add up to the same number.
Again, one can check that all pairs (φi, φi+1) correspond (after suitable permutation
of colours) to adjacent vertices in G0 or Ga. The same holds for all pairs

(
φ′i, φ

′
i+1

)
emerging from (φi, φi+1) by cyclic shifts and permutation of a, b, c.

For the converse direction suppose now that (b) holds. First, consider a pair of
adjacent colour quadruples φi and φi+1 in Ga. To extend the colouring of CO to the
spokes, note that φi + φi+1 determines the colours of the spokes of Gi+1:

φi + φi+1 =


φ(ui+1vi+1)

φ(ui+1+kvi+1+k)
φ(ui+1+2kvi+1+2k)
φ(ui+1+3kvi+1+3k)


Note that φi+φi+1 equals a cyclic shift of bbcc if the edge is contained in the 4-cycle on
the left hand side of Figure 5.8. Further, φi+φi+1 equals aaaa or a cyclic shift of bbcc
if the edge connects a vertex of the inner and the outer cycle of the graph component
on the right hand side of Figure 5.8. If the edge connects two inner or two outer
vertices, then φi+φi+1 equals a cyclic shift of aabb or of aacc. In all cases, φi+φi+1 is
a colouring of the spokes that can be extended to the quadrangle vivi+kvi+2kvi+3kvi.
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5.4. Generalised Petersen Graphs GP(4k,k)

(Choose a suitable permutation and a suitable rotation of the quadrangle; then see
Figure 5.10.)
It remains to consider G0. Note that φi +φi+1 equals aaaa, bbbb or cccc if the edge

is contained in one of the three graphs on two nodes shown on the left hand side of
Figure 5.9. The graph on the right hand side of Figure 5.9 contains three different
kinds of vertices. Its vertices are arranged on three concentric cycles of different radius.
We call the vertices on the smallest cycle, ie the vertices aaaa, bbbb and cccc, the inner
vertices. The six vertices on the largest cycle are the outer vertices while the other
six vertices are called the intermediate vertices. Note that φi +φi+1 equals aaaa, bbbb
or cccc if the edge connects two inner vertices or if the edge connects an outer vertex
with an intermediate vertex. If the edge connects an inner vertex with an intermediate
vertex or an outer vertex, then φi + φi+1 equals a cyclic shift of baab, cbbc or acca.
If the edge connects two outer vertices or two intermediate vertices, then φi + φi+1

also equals a cyclic shift of baab, cbbc or acca. In all cases, φi + φi+1 is a colouring
of the spokes that can be extended to the quadrangle Qi+1. (Again, choose a suitable
permutation and a suitable rotation of the quadrangle; then see Figure 5.10.)
We have seen that any adjacent vertices φi and φi+1 in Ga and G0 permit to colour

the 4-cycle Qi. Extending the colouring φ in this way for all i yields an edge colouring
γ for GP (4k, k).

The graph G0 contains some double edges. For the end vertices φi and φi+1 of
these edges, all corresponding spokes have the same colour. Thus, there are two ways
to colour the associated quadrangle Qi+1. Therefore, Lemma 5.15 implies: Any edge
colouring γ of GP (4k, k) corresponds to a walk γ1γ2 . . . γk+1 of length k in either G0

or Ga.

Recall that we can concentrate on the graphs GP (4k, k) with even k. In this case,
the walk of length k cannot be in Ga (and therefore must be in G0): Assume that
there is an edge colouring γ of GP (4k, k) with even k with γ|CO

= φ so that φi and
φi+1 are for all i = 1, . . . , k adjacent vertices in Ga. Then, there is a walk of even
length k between φ1 and its cyclic shift φk+1 in Ga Taking a closer look at Ga, one
can see that the graph is bipartite. The two bipartition classes are represented by the
vertices of circular and rectangular shape. Further, for all vertices φ1, the vertex φ1

and its cyclic shift φk+1 are contained in different partition classes. This means, all
paths φ1, φ2 . . . φk+1 contain an even number k + 1 of vertices. This contradicts the
assumption that k is even. We can conclude:

Lemma 5.16. Let k be even and let φ : E(CO) → {1, 2, 3} be an edge colouring of
CO. Then the following two statements are equivalent:

(a) there is an edge colouring γ of GP (4k, k) with γ|CO
= φ; and

(b) there is a permutation (a, b, c) of (1, 2, 3) so that φi and φi+1 are adjacent vertices
in G0 (see Figure 5.9) for all i = 1, . . . , k.

We have just seen that all edge colourings respectively 1-factorisations of GP (4k, k)
can be obtained from paths in G0.
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Since we want to use the method of Alon and Tarsi (Theorem 5.8) we must first
define a local orientation: We consider GP (4k, k) always to be drawn as in Figure 5.6.
The vertices ui for i = 1, . . . , 4k are placed on a circle in clockwise order, the vertices
vi for i = 1, . . . , 4k are placed on a smaller concentric circle in such a way that ui and
vi match up, and all edges are straight. We define the sign of an edge colouring γ at
a vertex w as + if the colours 1, 2, 3 appear in clockwise order on the incident edges;
otherwise the sign is −. More formally,

sgnγ(ui) =

{
+ if (γ(ui−1ui), γ(uiui+1), γ(uivi)) ∈ {123, 231, 312}
− otherwise.

sgnγ(vi) =

{
+ if (γ(vk+ivi), γ(viv2k+i), γ(viui)) ∈ {123, 231, 312}
− otherwise

The sign of the colouring γ is then

sgn(γ) :=
∏

v∈V (GP (4k,k))

sgnγ(v).

As we have seen in Lemma 5.7, permuting colours in our context does not change the
sign of an edge colouring and we are able to define a sign sgn(f) for any 1-factorisation
f by fixing it to the sign of any edge colouring that induces f . As for Dürer-type graphs
we use Theorem 5.8 to show that GP (4k, k) is 3-list-edge-colourable.

Lemma 5.17. Let γ : E(GP (4k, k)) → {1, 2, 3} be an edge colouring of GP (4k, k)
with even k, and let (a, b, c) be a permutation of (1, 2, 3) so that γ1 is a vertex in G0.
Then

sgn(γ) = +.

Proof. We partition the vertices of GP (4k, k) into k parts, namely into the sets

Vi := {ui, vi, uk+i, vk+i, u2k+i, v2k+i, u3k+i, v3k+i}

for i = 1, . . . , k. Factorising

sgn(γ) =
∏
w∈V

sgnγ(w) =

k∏
i=1

∏
w∈Vi

sgnγ(w),

we see that the lemma is proved if∏
w∈Vi

sgnγ(w) = sgn(γi, γi+1) = + (5.9)

holds true for all i = 1, . . . , k.
It is clear from Lemma 5.15 that the total sign on Vi depends only on γi and γi+1:

γi and γi+1 determine the colours of the edges incident with vertices in Vi. Our task
narrows down to verifying that sgn(γi, γi+1) is positive for every pair (γi, γi+1) of
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Figure 5.11.: Signs of the vertices in each quadrangle

adjacent vertices in G0. In principle, we could check all edges in G0, one by one, to
see whether the sign is positive. Instead, we exploit the fact that there are only five
kinds of edges.
A clockwise rotation of GP (4k, k) by k vertices induces a shift in the colour quad-

ruple γi from (γi1 γi2 γi3 γi4)T to (γi2 γi3 γi4 γi1)T . Such a rotation of GP (4k, k) ob-
viously does not change the sign of γ. Moreover, permutation of colours preserves
the total sign of Vi since swapping two colours changes the sign at all eight vertices.
Therefore we may assume that (γi|γi+1) is contained in


a b
a b
a b
a b

 ,


a b
a b
a c
a c

 ,


b a
b a
c b
c b

 ,


b c
b c
c b
c b

 ,


a b
b a
a b
b a


 .
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These five constellations of (γi|γi+1) are shown in Figure 5.11. All of them have a
positive sign. This proves (5.9) and thus the lemma.

We have now collected all results necessary to prove Theorem 5.14.

Proof of Theorem 5.14. If k is even, the graph GP (4k, k) is bipartite. By [Gal95], the
graph satisfies the list-colouring conjecture.
If k is odd, every 1-factorisation of GP (4k, k) has the same sign (see Lemma 5.17).

Further, there exists at least one 1-factorisation; see Watkins [Wat69]. Thus, the
Alon-Tarsi criterion(Theorem 5.8) concludes the proof.
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6. Chromatic Index, Treewidth and
Maximum Degree

The content of this chapter is based on the paper [BGL16] by Henning Bruhn, Richard
Lang and the author of this thesis.

We conjecture that any graph G with treewidth k and maximum degree ∆(G) ≥
k +
√
k satisfies χ′(G) = ∆(G). In support of the conjecture we prove its fractional

version.

6.1. Introduction

The least number χ′(G) of colours necessary to properly colour the edges of a (simple)
graph G is either the maximum degree ∆(G) or ∆(G) + 1. But to decide whether
∆(G) or ∆(G) + 1 colours suffice is a difficult algorithmic problem [Hol81].
Often, graphs with a relatively simple structure can be edge-coloured with only

∆(G) colours. This is the case for bipartite graphs (König’s theorem) and for cubic
Hamiltonian graphs. Arguably, one measure of simplicity is treewidth, how closely a
graph resembles a tree. (See next section for a definition.)
Vizing [Viz65b] (see also Zhou et al. [ZN96]) observed a consequence of his adjacency

lemma (Theorem 4.3): any graph with treewidth k and maximum degree at least 2k
has chromatic index χ′(G) = ∆(G). Is this tight? No, it turns out. Using two
recent adjacency lemmas, the requirement on the maximum degree can be dropped
to ∆(G) ≥ 2k − 1 whenever k ≥ 4; see Section 6.3. This immediately suggests the
question: how much further can the maximum degree be lowered? We conjecture:

Conjecture 6.1. [BGL16] Any graph of treewidth k and maximum degree ∆ ≥ k+
√
k

has chromatic index ∆.

The bound is close to best possible: in Section 6.4 we construct, for infinitely many k,
graphs with treewidth k, maximum degree ∆ = k + b

√
kc < k +

√
k, and chromatic

index ∆+1. For other values k the conjecture (if true) might be off by 1 from the best
bound on ∆. This is, for instance, the case for k = 2, where the conjecture is known
to hold. Indeed, Juvan et al. [JMR99] show that series-parallel graphs with maximum
degree ∆ ≥ 3 are even ∆-edge-choosable.
In support of the conjecture we prove its fractional version:

Theorem 6.2. [BGL16] Any simple graph of treewidth k and maximum degree ∆ ≥
k +
√
k has fractional chromatic index ∆.
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The theorem follows from a new upper bound on the number of edges:

2|E(G)| ≤ ∆|V (G)| − (∆− k)(∆− k + 1)

The bound is proved in Proposition 6.3. It implies quite directly that no graph with
treewidth k and maximum degree ∆ ≥ k +

√
k can be overfull.

Thus, for certain parameters our conjecture coincides with the overfull conjecture
of Chetwynd and Hilton [CH86] (Conjecture 4.2) that asserts that every graph G on
less than 3∆(G) vertices can be edge-coloured with ∆(G) colours unless it contains
an overfull subgraph.
Because we can exclude that graphs with treewidth k and maximum degree ∆ ≥

k +
√
k are overfull, the overfull conjecture (as well as our conjecture) implies that

such graphs on less than 3∆ vertices can always be edge-coloured with ∆ colours.

Graphs of treewidth k are in particular k-degenerate (see Section 4.4 for the defini-
tion and some discussion). Indeed, Vizing [Viz65b] originally showed that k-degenerate
graphs, rather than treewidth k graphs, of maximum degree ∆ ≥ 2k have an edge col-
ouring with ∆ colours. We briefly list some related work on edge colourings and their
variants in k-degenerate graphs. Isobe et al. [IZN07] showed that any k-degenerate
graph of maximum degree ∆ ≥ 4k + 3 has a total colouring with only ∆ + 1 col-
ours. For graphs that are not only k-degenerate but also of treewidth k, a max-
imum degree of ∆ ≥ 3k − 3 already suffices [BLS16]. Noting that they are 5-
degenerate, we include some results on planar graphs as well. Borodin, Kostochka
and Woodall [BKW97a,BKW97b] showed that planar graphs have list-chromatic in-
dex ∆(G) and total chromatic number χ′′(G) = ∆(G) + 1 if ∆(G) ≥ 11 or if the
maximum degree and the girth are at least 5. Vizing [Viz65b] proved that a planar
graph G has a ∆(G)-edge-colouring if ∆(G) ≥ 8. Sanders and Zhao [SZ01] and inde-
pendently Zhang [Zha00] extended this to ∆(G) ≥ 7.

6.2. A Bound on the Number of Edges

Theorem 6.2 follows quickly from a bound on the number of edges:

Proposition 6.3. [BGL16] A graph G of treewidth k satisfies

2|E(G)| ≤ ∆(G)|V (G)| − (∆(G)− k)(∆(G)− k + 1). (6.1)

Before proving Proposition 6.3 we present one of its consequences:

Lemma 6.4. [BGL16] Let G be a graph of treewidth at most k and maximum degree
∆ ≥ k +

√
k. Then G is not overfull.

Proof. By Proposition 6.3 holds

2|E(G)|
|V (G)| − 1

≤ ∆|V (G)| − (∆− k)(∆− k + 1)

|V (G)| − 1
=

∆|V (G)| − (∆− k)2 −∆ + k

|V (G)| − 1
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and as ∆ ≥ k +
√
k we obtain

2|E(G)|
|V (G)| − 1

≤ ∆|V (G)| − k −∆ + k

|V (G)| − 1
= ∆.

This finishes the proof.

It follows from Edmonds’ matching polytope theorem that χ′f (G) = ∆(G), if the
graph G does not contain any overfull subgraph of maximum degree ∆; see [Sch03, Ch.
28.5]. (See Section 4.2 for more details.) As the treewidth of a subgraph is never larger
than the treewidth of the original graph, Theorem 6.2 is a consequence of Lemma 6.4.

The proof of Proposition 6.3 rests on two lemmas. We defer their proofs to the
end of the section. For a tree T we write |T | to denote the number of its vertices. If
st ∈ E(T ) is an edge of T then we let T(s,t) be the component of T − st containing s.
For any number k we set [k]+ = max(k, 0).

Lemma 6.5. [BGL16] For a tree T and a positive integer d ≤ |T | it holds that∑
(s,t):st∈E(T )

[d− |T(s,t)|]+ ≥ d(d− 1).

If T ∗ is a subtree of T then let δ+(T ∗) be the set of (s, t) so that st is an edge of T
with s ∈ V (T ∗) but t /∈ V (T ∗). (That is, δ+(T ∗) may be seen as the set of oriented
edges leaving T ∗.)

Lemma 6.6. Let T be a tree and let d ≤ |T | be a positive integer. Then for any
subtree T ∗ ⊂ T it holds that∑

(s,t)∈δ+(T ∗)

[d− |T(s,t)|]+ ≤ [d− |T ∗|]+. (6.2)

We introduce one more piece of notation. If (T,B) is a tree decomposition of the
graph G, then for any vertex v of G we denote by T (v) the subtree of T that consists
of those bags that contain v.

Proof of Proposition 6.3. Let (T,B) be a smooth tree decomposition of G of width k.
First note that for any vertex v of G, the number of vertices in the union of all bags
containing v is at most |T (v)| + k since the tree decomposition is smooth. Thus
deg(v) ≤ |T (v)|+ k − 1.
Set d := ∆ − k + 1 ≥ 1, and observe that d ≤ |V (G)| − k = |T | as the tree

decomposition is smooth. We calculate

∆− deg(v) ≥ [∆− k + 1− |T (v)|]+

= [d− |T (v)|]+ ≥
∑

(s,t)∈δ+(T (v))

[d− |T(s,t)|]+,

where the last inequality follows from Lemma 6.6.
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Consider an edge st ∈ E(T ). Since the tree decomposition is smooth there is exactly
one vertex v ∈ V (G) with v ∈ Bs and v /∈ Bt. Setting φ((s, t)) = v then defines a
function from the set of all (s, t) with st ∈ E(T ) into V (G). Note that φ((s, t)) = v
if and only if (s, t) ∈ δ+(T (v)). Summing the previous inequality over all vertices, we
get ∑

v∈V (G)

(∆− deg(v)) ≥
∑

v∈V (G)

∑
(s,t)∈φ−1(v)

[d− |T(s,t)|]+

=
∑

(s,t):st∈E(T )

[d− |T(s,t)|]+ ≥ d(d− 1),

where the last inequality is due to Lemma 6.5. This directly implies (6.1).

It remains to prove Lemma 6.5 and 6.6.

Proof of Lemma 6.5. We proceed by induction on |T | − d. The induction starts when
d = |T |. Then [d− T(s,t)]

+ = d− T(s,t) and thus∑
(s,t):st∈E(T )

[d− |T(s,t)|]+ =
∑

st∈E(T )

(
|T | − |T(s,t)|+ |T | − |T(t,s)|

)
=

∑
st∈E(T )

|T(t,s)|+ |T(s,t)| = (|T | − 1)|T |.

Now, let d ≤ |T | − 1, which implies in particular |T | ≥ 2. Then T has a leaf `. We
set T ′ := T − ` and note that d ≤ |T | − 1 = |T ′|.
Observe that for any edge st ∈ E(T ′) we get

|T(s,t)| =

{
|T ′(s,t)|+ 1 if ` ∈ V (T(s,t)),

|T ′(s,t)| if ` /∈ V (T(s,t)).

We denote by F the set of all (s, t) for which st is an edge in T ′ with ` ∈ V (T(s,t)) and
with |T ′(s,t)| ≤ d− 1. Then

[d− |T ′(s,t)|]
+ =

{
[d− |T(s,t)|]+ − 1 if (s, t) ∈ F,
[d− |T(s,t)|]+ if (s, t) /∈ F.

(6.3)

Among the (s, t) ∈ F choose (x, y) such that y maximises the distance to `. This
means, that st ∈ E(T ′(x,y)) for any (s, t) ∈ F \ {(x, y)}. Consequently, |T ′(x,y)| =

|E(T ′(x,y))|+ 1 ≥ |F | − 1 + 1.
Let r be the unique neighbour of the leaf `. Then |T(`,r)| = 1, and we obtain

[d− |T(`,r)|]+ = d− 1 ≥ |T ′(x,y)| ≥ |F |. (6.4)
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We conclude ∑
(s,t):st∈E(T )

[d− |T(s,t)|]+ = [d− |T(`,r)|]+ + [d− |T(r,`)|]+

+
∑

(s,t):st∈E(T ′)

[d− |T(s,t)|]+

(6.4)
≥ |F |+ 0 +

∑
(s,t):st∈E(T ′)

[d− |T(s,t)|]+

(6.3)
=

∑
(s,t):st∈E(T ′)

[d− |T ′(s,t)|]
+

≥ d(d− 1),

where the last inequality follows by induction.

Proof of Lemma 6.6. We proceed by induction on |T | − d. For the induction start,
consider the case when d = |T |. Then

[d− |T(s,t)|]+ = [|T | − |T(s,t)|]+ = |T(t,s)|,

which yields∑
(s,t)∈δ+(T ∗)

[d− |T(s,t)|]+ =
∑

(s,t)∈δ+(T ∗)

|T(t,s)| = |T | − |T ∗| = [d− |T ∗|]+.

Now assume |T | − d ≥ 1. If every vertex in T − V (T ∗) is a leaf of T then t is a leaf
for every (s, t) ∈ δ+(T ∗). This implies |T(s,t)| = |T | − 1 ≥ d and the left hand side
of (6.2) vanishes.
Therefore we may assume that there is a leaf ` /∈ T ∗ of T whose neighbour is not

in V (T ∗). Set T ′ = T − `, and observe that, by choice of `, the set δ+(T ∗) of edges
leaving T ∗ is the same in T and in T ′. Moreover, |T(s,t)| ≥ |T ′(s,t)| holds for every
(s, t) ∈ δ+(T ∗). The desired inequality∑

(s,t)∈δ+(T ∗)

[d− |T(s,t)|]+ ≤
∑

(s,t)∈δ+(T ∗)

[d− |T ′(s,t)|]
+ ≤ [d− |T ∗|]+

now follows by induction.

6.3. A Lower Bound on the Maximum Degree

Vizing [Viz65b] (see also Zhou et al. [ZN96]) proved that every graph of treewidth k
and maximum degree ∆ ≥ 2k has an edge colouring with ∆ colours. We show that
this is not tight.

Proposition 6.7. [BGL16] For any graph G of treewidth k ≥ 4 and maximum degree
∆(G) ≥ 2k − 1 it holds that χ′(G) = ∆(G).
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For the proof of Proposition 6.7 we use Vizing’s adjacency lemma (Theorem 4.3 ),
as well as two other adjacency lemmas (Theorem 4.4 and Theorem 4.5) that involve
the second neighbourhood.

Proof. Assume Proposition 6.7 to be wrong. Then there is a ∆-critical graph G of
treewidth at most k for ∆ = 2k − 1. Let (T,B) be a tree-decomposition of G of
width ≤ k. By picking an arbitrary root, we may consider T as a rooted tree. For any
s ∈ V (T ), we denote by dse the sub tree of T rooted at s, that is, the sub tree of T
consisting of the vertices t ∈ V (T ) for which s is contained in the path between t and
the root of T .
Set L := {v ∈ V (G) : deg(v) ≥ k + 2}, and choose a vertex v∗ ∈ L that maximises

the distance of T (v∗) to the root (among the vertices in L). Let q be the vertex of
T (v∗) that achieves this distance. For S := N(q) ∩ T (v∗) and any s ∈ S, define
Xs :=

⋃
t∈V (dse)Bt, and let X := Bq ∪

⋃
s∈S Xs. Note that by the definition of v∗

and q
N(v∗) ⊂ X and X ∩ L ⊂ Bq. (6.5)

Claim 6.8. All vertices of X \Bq have degree at most k.

Proof of Claim 6.8. Suppose the statement to be false. Then there is an s ∈ S for
which Xs \ Bq contains a vertex of degree at least k + 1. Fix a vertex w∗ ∈ {w ∈
Xs \Bq : deg(w) ≥ k + 1} =: L′ that maximises the distance of T (w∗) to s. Let p be
the vertex of T (w∗) that achieves this distance. Set Y =

⋃
t∈V (dpe)Bt. As in (6.5) we

have N(w∗) ⊂ Y and Y ∩ L′ ⊂ Bp. Since, moreover, w∗ has degree k + 1, it has a
neighbour u∗ outside Bp, which then has degree at most k (by choice of w∗).
Vizing’s adjacency lemma implies that w∗ has at least ∆ − deg(u∗) + 1 ≥ 2k −

1 − k + 1 = k neighbours of degree ∆. By (6.5), all vertices of degree ∆ of Y have
to be in Bq ∩ Bs. Since Bq ∩ Bs is a cutset of size at most k, the vertex w∗ is
adjacent to all vertices in Bq ∩ Bs. As w∗ is therefore adjacent to at most k vertices
of degree ∆ it holds deg(u∗) = k. By definition of S, the set Bs contains v∗, which
implies that v∗ is adjacent to w∗ and of degree ∆. As k ≥ 4, it follows that v∗ has
degree ∆ = 2k−1 ≥ k+3, which means by (6.5) that v∗ has at least three neighbours
of degree ≤ k + 1. Thus, v∗ has a neighbour of degree ≤ k + 1, which is neither u∗

nor w∗. This, however, contradicts Theorem 4.4 (applied to v∗, w∗, u∗).

By (6.5) and since v∗ has degree at least k+2, the vertex v∗ has a neighbour u /∈ Bq.
(In fact, v∗ has at least two such neighbours.) By Vizing’s adjacency lemma, applied
to uv∗, it follows that v∗ has at least ∆− deg(u) + 1 ≥ k neighbours of degree ∆. In
particular, by (6.5)

v∗ is adjacent to every vertex in Bq, each of which has degree ∆. (6.6)

Claim 6.9. Every u ∈ N(v∗)\Bq has exactly k neighbours, all of which are contained
in Bq.

Proof of Claim 6.9. By Vizing’s adjaceny lemma (applied to uv∗), u is of degree at
least k. By (6.6), every vertex in Bq has degree ∆ and thus u /∈ Bq. The set Bq is a
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cutset. This implies that u has all its neighbours in X. However, u cannot be adjacent
to any vertex w of degree ≤ k; otherwise we could extend any ∆-edge-colouring of
G−uw to G. It follows from Claim 6.8 that all of the k neighbours of u are in Bq.

Since the vertex v∗ has degree at least k+ 2, it has two neighbours u,w of degree at
most k+ 1 (again by (6.5)). By Claim 6.9, the degree of u and w is k. Thus, deg(u) +
deg(v∗)+deg(w) ≤ k+∆+k = 2∆+1. Moreover, by Claim 6.9 and (6.6), the vertices
v∗ and w have k− 1 common neighbours in Bq. As k− 1 > deg(u) + deg(v∗)−∆− 3,
we get a contradiction to Theorem 4.5. This finishes the proof of Proposition 6.7.

6.4. Discussion

Proposition 6.3 bounds the number of edges in a graph G of fixed treewidth and
maximum degree. A simpler bound – only considering the treewidth – is easily shown
by induction (see Rose [Ros74]):

2|E(G)| ≤ 2k|V (G)| − k(k + 1) (6.7)

For ∆ < 2k and |V (G)| > ∆ + 1 a straightforward computation shows that the bound
of Proposition 6.3 is strictly better than (6.7). The bounds are the same if ∆ = 2k
or if |V (G)| = ∆ + 1. For ∆ = 2k this is illustrated by the kth power P k of a long
path P .
The bound in Proposition 6.3 is tight. There are simple examples that show this:

Take the complete graph Kk on k vertices and add r ≥ 1 further vertices each adjacent
to each vertex of Kk. These graphs also demonstrate that Conjecture 6.1 (if true)
would be tight or almost tight. Indeed, if k+ bkc is even, and k not a square, then we
obtain for r = bkc+1 an overfull graph with maximum degree ∆ = k+bkc. If k+b

√
kc

is odd, then, by setting r = b
√
kc, we obtain an overfull graph with ∆ = k+b

√
kc−1.

These tight graphs, however, have a very special structure. In particular, they all
satisfy |V (G)| = ∆(G) + 1. Both, Conjecture 6.1 and Proposition 6.3, stay tight for
an arbitrarily large number of vertices:

Proposition 6.10. [BGL16] For every k0 ≥ 4 there is a k ∈ {k0, k0 + 1, . . . , k0 + 8}
such that for every n ≥ 4k there exists a graph G on n vertices with treewidth at most
k and maximum degree ∆ = k + b

√
kc < k +

√
k such that

2|E(G)| = ∆n− (∆− k)(∆− k + 1).

In particular, the graph G is overfull whenever n is odd.

We need the following lemma to prove the proposition.

Lemma 6.11. [BGL16] Let c, r ∈ N. Then there is a graph with degree sequence

d =
(
c, . . . , c︸ ︷︷ ︸
r+1

, c− 1, c− 2, . . . , 1
)
∈ Zc+r

if and only if 4 divides c(2r + c+ 1) and if r2 ≥ c.
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We defer the proof of Lemma 6.11 until the end of the section and only show
sufficiency. A closer look at the arguments in the proof yields necessity.

Proof of Proposition 6.10. We start by showing with a case distinction that there is a
k ∈ {k0, k0 + 1, . . . , k0 + 8} such that

k ≡
⌊√

k
⌋

(mod 8) and
⌊√

k
⌋
<
√
k. (6.8)

To this end, let i such that b
√
k0c ≡ k0 + i (mod 8) and 0 ≤ i ≤ 7.

Firstly, let us assume that i = 0. If k0 is not a square, then k = k0 satisfies (6.8).
Otherwise k = k0 +8 satisfies (6.8) as k0 ≥ 4 > 1, and consequently b

√
k0 + 8c =

√
k0.

Secondly, we consider the case that i 6= 0. If b
√
k0 + ic = b

√
k0c, then k = k0 + i

satisfies b
√
k0c ≡ k (mod 8) and

√
k >
√
k0 ≥ b

√
k0c = b

√
kc, which shows (6.8). If,

on the other hand, b
√
k0 + ic >

⌊√
k0

⌋
, then b

√
k0 + ic = b

√
k0c+ 1 = b

√
k0 + i+ 1c

as k0 ≥ 4. Set k = k0 + i+ 1. By choice of i, we have b
√
k0 + 1c ≡ k (mod 8). Thus,

we obtain b
√
kc ≡ k (mod 8) as desired. Moreover,

√
k >

√
k0 + i ≥ b

√
k0 + ic =

b
√
k0c+ 1 = b

√
kc.

In all cases an element of {k0, k0 + 1, . . . , k0 + 8} satisfies (6.8).
Next we show that for any n ≥ 4k, there is a graph G of treewidth k whose degree

sequence (degG(v1),degG(v2), . . . ,degG(vn)) equals

(k, k + 1, . . . ,∆− 1,∆, . . . ,∆,∆− 1, . . . , k + 1, k) (6.9)

with ∆ = k + b
√
kc. A computation similar to Lemma 6.4 shows that G is overfull if

|V (G)| is odd.
We construct G in three steps. First we take a power of a path, where all but the

outer vertices have the right degree. We increase the degree of the outer vertices by
connecting them to vertices towards the middle of the path. This will create some
degree excess for the used vertices. We balance this by deleting a subgraph H provided
by Lemma 6.11. The construction is illustrated in Figure 6.1. Note that for ease of
exposition the parameters k and ∆ are not as in this proof.

P 5 ...

10 10 10 10 10 10 10 108 9 11 12 13 13 13

Figure 6.1.: Extreme example for k = 8 and ∆ = 10. The graph H is dotted.

Let P be a ∆/2-th power of a path on vertices v1, . . . , vn. This means, vi and vj
are adjacent if and only if 0 < |i − j| ≤ ∆/2. As P is symmetric, and as G will be
symmetric as well, we concentrate on the part of P on the vertices v1, . . . , vdn/2e. We
tacitly agree that any additions and deletions of edges are also applied to the other
half of P .
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Comparing the degrees of P to (6.9) we see that all vertices have the target degree
except for the initial vertices v1, . . . , v∆/2, whose degree is too small. For i = 1, . . . ,∆−
k the vertex vi has degree ∆/2 − 1 + i but should have degree k − 1 + i. We fix this
by connecting vi to vi+∆/2+1, . . . , vi+k+1. For i = ∆ − k + 1, . . . ,∆/2, the vertex vi
should have degree ∆ but has degree ∆/2 − 1 + i. We make vi adjacent to each of
vi+∆/2+1, . . . , v∆+1.
Denote the obtained graph by P ′ and observe that its vertices in the range of

1, . . . , dn/2e have the following degrees

k, k + 1, . . . ,∆︸ ︷︷ ︸
1,...,∆−k+1

, ∆, . . . ,∆︸ ︷︷ ︸
∆−k+2,...,∆/2+1

,∆ + 1, . . . , k + ∆/2︸ ︷︷ ︸
∆/2+2,...,k+1

, k + ∆/2, . . . , k + ∆/2︸ ︷︷ ︸
k+2,...,∆+1

, ∆, . . . ,∆︸ ︷︷ ︸
∆+2,...,dn/2e

Hence all but the vertices vi with index i between ∆/2+2 and ∆+1 have the correct
degree. The difference between their degree in P ′ and the desired degree is

d =
(
1, 2, . . . , k − ∆/2− 1, k − ∆/2, . . . , k − ∆/2︸ ︷︷ ︸

∆−k+1

)
. (6.10)

Set c = k − ∆/2 = 1/2
(
k − b

√
kc
)
and r = ∆ − k. Note that k is chosen in such a

way (see (6.8)) that c is divisible by 4. As furthermore r2 = (∆ − k)2 = b
√
kc2 ≥

1
2

(
k − b

√
kc
)

= c, Lemma 6.11 yields that there is a graph H with degree sequence
d. Since the vertices v∆/2+2, . . . , v∆+1 induce a complete graph in P ′ there is a copy
of H in P ′, such that deleting its edges results in a graph G of the desired degree
sequence. Note that for any two adjacent vertices vi, vj in P ′ it holds that |i− j| ≤ k.
This implies that P ′ is a subgraph of a k-th power of a path. Thus the subgraph G of
P ′ has treewidth at most k. This finishes the proof.

To prove Lemma 6.11 we use the Erdős-Gallai-criterion:

Theorem 6.12 (Erdős and Gallai [EG60]). There is a graph with degree sequence
d1 ≥ · · · ≥ dn if and only if

∑n
i=1 di is even and if for all ` = 1, . . . , n

∑̀
i=1

di ≤ `(`− 1) +

n∑
i=`+1

min(di, `). (6.11)

Proof of Lemma 6.11. We check the conditions of Theorem 6.12 for the degree se-
quence d. The parity condition holds as 4 divides c(2r + c+ 1) and

c+r∑
i=1

di = cr +
c(c+ 1)

2
=
c

2
(2r + c+ 1).

Let us now verify (6.11). If ` > c, then

∑̀
i=1

di ≤ c` ≤ `(`− 1) ≤ `(`− 1) +

c+r∑
i=`+1

min(di, `).
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Thus we can assume that ` ≤ c. Two remarks: Firstly, min(di, `) = ` for i = 1, . . . ,≤
c+ r − `+ 1. Consequently, if 2` ≤ c+ r then

`(`− 1) +
c+r∑
i=`+1

min(di, `) = `(`− 1) + (c+ r − 2`+ 1)`+
`(`− 1)

2

= `
2(2r − 1− `) + c`. (6.12)

Secondly, if ` > r, then

∑̀
i=1

di = c`− (`− r − 1)(`− r)
2

= c`+ `
2(2r + 1− `)− 1

2(r2 + r). (6.13)

Now suppose that 2` ≤ c + r. For ` ≤ r, we have
∑`

i=1 di = c` and hence (6.11)
is easily seen to be satisfied in light of (6.12). On the other hand, for ` > r the
assumption of r2 ≥ c together with a comparison of (6.12) and (6.13) gives (6.11).
So let 2` > c + r. This implies that ` > r. Consequently, the right hand side

of (6.11) is

`(`− 1) +
c+r∑
i=`+1

min(di, `) = `(`− 1) +
c+r∑
i=`+1

di

= `(`− 1) + 1
2(c+ r − `)(c+ r − `+ 1).

It follows from equation (6.13) that (6.11) is satisfied if the following expression is
non-negative.

2`(`− 1) + (c+ r − `)(c+ r − `+ 1)− (2c`+ `(2r + 1− `)− (r2 + r))

= 4`2 − 4`(c+ r) + (c+ r)2 + (c+ 2r + r2)− 4`

= (2`− (c+ r))2 + (c+ r) + (r + r2)− 4`

= (2`− (c+ r))2 − 2
(

2`− (c+ r) + (r + r2)

2

)
(6.14)

First, let r2 = c. Then (6.14) equals

(2`− (c+ r))2 − 2(2`− (c+ r)) (6.15)

The term (6.15) is negative only if 2`− (c+ r) = 1. As c+ r = r2 + r is even (for any
integer r), (6.15) and thus (6.14) is non-negative.
Now let r2 > c. Then (6.14) is strictly greater than (6.15) and hence non-negative.

This shows that (6.11) is satisfied.
As (6.11) holds for all `, there is a graph with degree sequence d.

74



6.5. Degenerate Graphs

Figure 6.2.: The graph G5 with the vertices vi drawn in black; thick gray edges indicate
that two vertex sets are complete to each other; elimination order of the
vi is shown in dashed lines

6.5. Degenerate Graphs

Recall that a graph G is k-degenerate if there is an enumeration vn, . . . , v1 of the
vertices such that vi+1 has degree at most k in G−{vn, . . . , vi} for every i. By simple
induction following the elimination order we can obtain a bound with half the degree
loss of (6.1):

2|E(G)| ≤ ∆|V (G)| − 1
2(∆− k)(∆− k + 1). (6.16)

The bound in (6.16) turns out to be tight for some ∆, k as the construction be-
low shows. Consequently, Proposition 6.3 can easily be transferred: Any simple k-
degenerate graph of maximum degree ∆ ≥ k + 1/2 +

√
2k + 1/4 is not overfull and

therefore has fractional chromatic index χ′f (G) = ∆.
Consider a positive integer p and let Gp be the complement of the disjoint union

of p stars K1,1,K1,2, . . . ,K1,p; see Figure 6.2. Denote the centre of the ith star by vi,
and let W be the union of all leaves. The graph Gp has n = p(p + 1)/2 + p vertices
and satisfies deg(vi) = n − 1 − i for i = 1, . . . , p and deg(w) = n − 2 for w ∈ W . In
particular, the maximum degree of Gp is ∆ = n − 2. Setting k = n − 1 − p, we note
that Gp is k-degenerate as vp, vp−1, . . . , v1 followed by an arbitrary enumeration of W
is an elimination order. Finally, we observe that Gp satisfies (6.16) with equality.
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On Cycle Decompositions
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7. Cycle Decompositions of
Pathwidth-6 Graphs

The content of this chapter is based on the paper [FGH17] by Elke Fuchs, Irene
Heinrich, and the author of this thesis.

Hajós’ conjecture asserts that a simple Eulerian graph on n vertices can be decom-
posed into at most b(n− 1)/2c cycles. The conjecture is only proved for graph classes
in which every element contains vertices of degree 2 or 4. We develop new techniques
to construct cycle decompositions. They work on the common neighbourhood of two
degree-6 vertices. With these techniques we find structures that cannot occur in a
minimal counterexample to Hajós’ conjecture and verify the conjecture for Eulerian
graphs of pathwidth at most 6. This implies that these graphs satisfy the small cycle
double cover conjecture.

7.1. Introduction

It is well-known that the edge set of an Eulerian graph can be decomposed into cycles.
In this context, a natural question arises: How many cycles are needed to decompose
the edge set of an Eulerian graph? Clearly, a graph G with a vertex of degree |V (G)|−1
cannot be decomposed into less than b (|V (G)| − 1)/2c many cycles. Thus, for a general
graph G, we cannot expect to find a cycle decomposition with less than b (|V (G)| − 1)/2c
many cycles. Hajós’ conjectured that this number of cycles will always suffice.1

Conjecture 7.1 (Hajós’ conjecture (see [Lov68])). Every simple Eulerian graph G
has a cycle decomposition with at most b(|V (G)| − 1)/2c many cycles.

Granville and Moisiadis [GM87] showed that for every n ≥ 3 and for every i ∈
{1, . . . , b(n− 1)/2c} there exists a connected graph with n vertices and maximum degree
at most 4 whose minimal cycle decomposition consists of exactly i cycles. This shows
that — even if the maximal degree is restricted to 4 — the bound b(|V (G)| − 1)/2c is
best possible.
A simple lower bound on the minimal number of necessary cycles is the maximum

degree divided by 2. This bound is achieved by the complete bipartite graph K2k,2k

that can be decomposed into k Hamiltonian cycles (see [LA76]). In general, all graphs
with a Hamilton decomposition (for example complete graphs K2k+1 [Als08]) trivially
satisfy Hajós’ conjecture.

1Originally, Hajós’ conjectured a bound of b|V (G)|/2c. Dean [Dea86] showed that Hajós’ conjecture
is equivalent to the conjecture with bound b(|V (G)| − 1)/2c.
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Hajós’ conjecture remains wide open for most classes. Heinrich, Natale and Streicher
[HNS17] verified Hajós’ conjecture for small graphs by exploiting Lemma 7.6, 7.8,
7.10, and 7.11 of this chapter as well as random heuristics and integer programming
techniques:

Theorem 7.2 (Heinrich, Natale and Streicher [HNS17]). Every simple Eulerian graph
with at most 12 vertices satisfies Hajós’ Conjecture.

Apart from Hamilton decomposable (and small) graphs, the conjecture has (to our
knowledge) only been shown for graph classes in which every element contains vertices
of degree at most 4. Granville and Moisiadis [GM87] showed that Hajós’ conjecture is
satisfied for all Eulerian graphs with maximum degree at most 4. Fan and Xu [FX02]
showed that all Eulerian graphs that are embeddable in the projective plane or do
not contain the minor K−6 satisfy Hajós’ conjecture. To show this, they provided four
operations involving vertices of degree less than 6 that transform an Eulerian graph not
satisfying Hajós’ conjecture into another Eulerian graph not satisfying the conjecture
that contains at most one vertex of degree less than 6. This statement generalises the
work of Granville and Moisiadis [GM87]. As all four operations preserve planarity,
the statement further implies that planar graphs satisfy Hajós’ conjecture. This was
shown by Seyffarth [Sey92] before. The conjecture is still open for toroidal graphs.
Xu and Wang [XW05] showed that the edge set of each Eulerian graph that can be
embedded on the torus can be decomposed into at most b(|V (G)|+ 3)/2c cycles. Heinrich
and Krumke [HK17] introduced a linear time procedure that computes minimum cycle
decompositions in treewidth-2 graphs of maximum degree 4.
We contribute to the sparse list of graph classes satisfying Hajós’ conjecture. Our

class contains graphs without any vertex of degree 2 or 4 — in contrast to the above
mentioned graph classes.

Theorem 7.3. [FGH17] Every Eulerian graph G of pathwidth at most 6 satisfies
Hajós’ conjecture.

As graphs of pathwidth at most 5 contain two vertices of degree less than 6, it
suffices to concentrate on graphs of pathwidth exactly 6. All such graphs with at most
one vertex of degree 2 or 4 contain two degree-6 vertices that are either non-adjacent
with the same neighbourhood or adjacent with four or five common neighbours. We
use these structures to construct cycle decompositions.
With similar ideas, it is possible attack graphs of treewidth 6. As more substructures

may occur, we restrict ourselves to graphs of pathwidth 6.

A cycle double cover of a graph G is a collection C of cycles of G such that each
edge of G is contained in exactly two elements of C. The popular cycle double cover
conjecture asserts that every 2-edge connected graph admits a cycle double cover.
This conjecture is trivially satisfied for Eulerian graphs. Hajós’ conjecture implies a
conjecture of Bondy regarding the Cycle double cover conjecture.

Conjecture 7.4 (Small Cycle Double Cover Conjecture (Bondy [Bon90])). Every
simple 2-edge connected graph G admits a cycle double cover of at most |V (G)| − 1
many cycles.
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As a cycle double cover may contain a cycle twice, we can conclude the following
directly from Theorem 7.3.

Corollary 7.5. [FGH17] Every Eulerian graph G of pathwidth at most 6 satisfies the
small cycle double cover conjecture.

7.2. Reducible Structures

All graphs considered in this chapter are Eulerian.
In order to prove our main theorem, we consider a cycle decomposition of a graph

G as a colouring of the edges of G where each colour class is a cycle. We define a legal
colouring c of a graph G as a map

c : E(G) 7→ {1, . . . , b(|V (G)| − 1)/2c}

where each colour class c−1(i) for i ∈ {1, . . . , b(|V (G)| − 1)/2c} is the edge set of a cycle
of G. A legal colouring is thus associated to a cycle decomposition of G that satisfies
Hajós’ conjecture.
Using recolouring techniques, we show the following lemmas for two degree-6 vertices

with common neighbourhood N of size 4, 5 or 6. All proofs can be found in Section 7.4.

Lemma 7.6. [FGH17] Let G be an Eulerian graph with two degree-6 vertices u, v
with

N(u) = N ∪ {v} N(v) = N ∪ {u}.

Let all Eulerian graphs obtained from G− {u, v} by addition or deletion of edges with
both end vertices in N have a legal colouring.
If G[N ] contains at least one edge, or if G− {u, v} contains a vertex that is adjacent
to at least three vertices of N then G also has a legal colouring.

Lemma 7.7. [FGH17] Let G be an Eulerian graph with two degree-6 vertices u, v
with

N(u) = N ∪ {u, xv} N(v) = N ∪ {v, xu}.

Let P be an xu-xv-path in G − {u, v} − N . Further let all Eulerian graphs obtained
from G−{u, v} by addition and deletion of edges with both end vertices in N ∪{xu, xv}
and by optional deletion of E(P ) have a legal colouring.
If G[N∪{xu, xv}] contains at least one edge not equal to xuxv, or if G−{u, v} contains
a vertex that is adjacent to at least three vertices of N then G also has a legal colouring.

Lemma 7.8. [FGH17] Let G be an Eulerian graph with two degree-6 vertices u, v
with

N(u) = N(v) = N.

Let all Eulerian graphs obtained from G− {u, v} by addition or deletion of edges with
both end vertices in N have a legal colouring.
If G[N ] contains at least one edge, or if G− {u, v} contains a vertex that is adjacent
to at least three vertices of N then G also has a legal colouring.
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The next two results are not required for the proof of Theorem 7.3. We nevertheless
state them here.
The first lemma is useful for graphs with an odd number of vertices.

Lemma 7.9. [FGH17] Let G be an Eulerian graph on an odd number n of vertices
that contains a vertex u of degree 2 or 4 with neighbourhood N . Let G′ be obtained
from G − {u} by addition or deletion of arbitrary edges in G[N ]. If G′ has a legal
colouring, then G has a legal colouring.

If a graph G contains a degree-2 vertex v with independent neighbours x1, x2, then it
is clear that a legal colouring of G−v+x1x2 can be transformed into a legal colouring
of G. Granville and Moisiadis [GM87] observed a similar relation for a degree-4 vertex.

Lemma 7.10 (Granville and Moisiadis [GM87]). Let G be an Eulerian graph contain-
ing a vertex v with neighbourhood N = {x1, . . . , x4} such that G[N ] contains the edge
x1x2 but not the edge x3x4. If G− {vx3, vx4}+ {x3x4} has a legal colouring, then G
also has a legal colouring.

Generalising this idea, we analyse the neighbourhood of a degree-6 vertex.

Lemma 7.11. [FGH17] Let G be an Eulerian graph that contains a degree-6 vertex
u with neighbourhood NG(u) = {x1, . . . , x6} such that {x1, x2, x3, x4} is a clique and
x5x6 /∈ E(G). If G′ = G − {x5u, ux6} + {x5x6} has a legal colouring, then G has a
legal colouring.

7.3. Recolouring Techniques

In this section, we provide recolouring techniques necessary to prove Lemma 7.6, 7.7
and 7.8. For a path P or a cycle C we write c(P ) = i or c(C) = i to express that
all edges of P respectively C are coloured with colour i. We start with a statement
about monochromatic triangles.

Lemma 7.12. [FGH17] Let H be a graph with a clique {x1, x2, x3, y} and with a legal
colouring c. Then there is a legal colouring c′ of H in which the cycle x1x2x3x1 is not
monochromatic.

Proof. Figure 7.1 illustrates the recolourings described in this proof. Assume that
x1x2x3x1 is monochromatic of colour i in c. First assume that

an edge of colour j := c(y1y) is adjacent to y2 (7.1)

for two distinct vertices y1, y2 in {x1, x2, x3}. Without loss of generality, the path P ′

of colour j between y and y2 along the path c−1(j)−{yy1} does not contain the vertex
y3 (where {y3} = {x1, x2, x3}−{y1, y2}). Flip the colours of the monochromatic paths
y1y2 and y1yP

′y2, ie set c′(y1y2) = j, c′(y1yP
′y2) = c(y1y2) and c′(e) = c(e) for all

other edges e ∈ E(H). The obtained colouring is legal: By construction, all colour
classes are cycles and at most b(|V (H)| − 1)/2c many colours are used. Further, the cycle
x1x2x3x1 is not monochromatic.
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Figure 7.1.: The two possible cases in Lemma 7.12 to obtain a colouring in which
a fixed triangle is not monochromatic; the different styles of the edges
represent the colours

If (7.1) does not hold, we can get rid of one colour. Set c′(x1x2y) = c(x1y),
c′(x2x3y) = c(x2y), c′(x3x1y) = c(x3y), and c′(e) = c(e) for all other edges e ∈ E(H).
By construction, all colour classes are cycles and x1x2x3x1 is not monochromatic.

Figure 7.2 illustrates the following simple observation.

Observation 7.13. Let P1 be an x1-y1-path that is vertex-disjoint from an x2-y2-path
P2. Then there are three possibilities to connect {x1, y1} and {x2, y2} by two vertex-
disjoint paths that do not intersect V (Pi)−{xi, yi} for i = 1, 2. Two of the possibilities
yield a cycle — the third way leads to two cycles.

P1 P2 P1 P2 P1 P2

Figure 7.2.: The three possible ways to connect the end vertices of two paths P1 and
P2; the connection between the end vertices is drawn with jagged lines

Lemma 7.14, 7.15 and 7.16 are all based on the same elementary fact: Let G and G′

be graphs with |V (G)| = |V (G′)| + 2. If G′ allows for a cycle decomposition with at
most b(|V (G′)| − 1)/2c cycles, then any cycle decomposition of G that uses at most one
cycle more than the cycle decomposition of G′ shows that G is not a counterexample
to Hajós’ conjecture.
This fact leads us to the following inductive approach: Given a graph G with two

vertices u and v of degree 6, we remove u and v from G and might remove or add
edges to obtain a graph G′. If G′ has a cycle decomposition with at most b(|V (G′)| − 1)/2c
cycles we construct a cycle decomposition of G from it. We reroute some of the cycles
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in an appropriate way such that u and v are each touched by two cycles. Now, there
remain some edges in G that are not covered. If those edges form a cycle, we have
found a cycle decomposition of G. If a cycle is not rerouted to u or v twice, the cycle
decomposition of G satisfies Hajós’ conjecture.
To describe this inductive approach in a coherent way, we regard the cycle decom-

position of G′ as a legal colouring. Then we regard the above reroutings as recolourings
where we have to make sure that no colour appears twice at u or v. If the edges that
have not yet received a colour form a cycle, we associate the new colour b(|V (G′)| − 1)/2c
to this cycle. The obtained colouring of the edges then uses at most b(|V (G′)| − 1)/2c
many colours and each colour class is a cycle. Thus, we have constructed a legal
colouring.

Lemma 7.14. [FGH17] Let G be an Eulerian graph without legal colouring that
contains two adjacent vertices u and v of degree 6 with common neighbourhood N =
{x1, . . . , x5}. Define G′ = G− {u, v} and let c′ be a legal colouring of G′.

(i) If G[N ] contains a path P ′ = y1y2y3y4 of length 3 then P ′ is monochromatic in
c′.

(ii) Let G[N ] contain an independent set S = {y1, y2, y3} of size 3. If N is not an
independent set or if there is a vertex in G′ that is adjacent to y1, y2 and y3,
then G′′ = G′ + {y1y2, y2y3, y3y1} does not have a legal colouring.

(iii) If G[N ] contains an induced path y1y2y3y4 of length 3 then G′′ = G′ − {y2y3}+
{y2y4, y4y1, y1y3} does not have a legal colouring.

(iv) If G[N ] contains a triangle y1y2y3y1, a vertex y4 that is not adjacent to y1 and
y3 and a vertex y5 ∈ N −{y1, y2, y3, y4} adjacent to y4 then G′′ = G′ −{y1y3}+
{y1y4, y3y4} does not have a legal colouring.

Proof of (i). If y3y4 has a colour different from y1y2 and y2y3, then set

c(y1uy2) = c′(y1y2) c(y2vy3) = c′(y2y3) c(y3uvy4) = c′(y3y4).

If y2y3 has a colour different from y1y2 and y3y4, then set

c(y1uy2) = c′(y1y2) c(y2vuy3) = c′(y2y3) c(y3vy4) = c′(y3y4).

The case distinction makes sure that the modified colour classes remain cycles. By
further setting c(y1y2y3y4uy5vy1) = b(|V (G)| − 1)/2c and c(e) = c′(e) for all other edges
e we have constructed a legal colouring c of G.

Proof of (ii). Set {y4, y5} = N − {y1, y2, y3} and let c′′ be a legal colouring of G′′.
First assume that c′′(y1y2) /∈ {c′′(y2y3), c′′(y3y1)}. Then one can easily check that the
following is a legal colouring of G.

c(y2uvy1) = c′′(y2y1) c(y2vy3) = c′′(y2y3) c(y3uy1) = c′′(y3y1)

c(y4uy5vy4) = b(|V (G)| − 1)/2c
c(e) = c′′(e) for all other edges e (7.2)
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By symmetry, we are done unless the triangle y1y2y3y1 is monochromatic in c′′. By
Lemma 7.12, we can suppose that there is no vertex y in G′′ that is adjacent to y1,
y2 and y3. Suppose that N is not independent. Without loss of generality, we can
assume that G[N ] contains an edge, say y4y1 incident to one of the vertices of the
independent 3-set. (Otherwise, we can choose another suitable independent 3-set in
G[N ]). Then by construction the following is a legal colouring of G.

c(y1uvy4) = c′′(y1y4) c(y2uy3) = c′′(y2y3) c(y2vy3) = c′′(y2y1y3)

c(y1y4uy5vy1) = b(|V (G)| − 1)/2c
c(e) = c′′(e) for all other edges e

Proof of (iii). Let G′′ have a legal colouring c′′ and let y5 be the unique vertex in
N − {y1, y2, y3, y4}.
If c′′(y2y4) = c′′(y4y1) = c′′(y1y3), set

c(y1uy2) = c′′(y1y2) c(y2vuy3) = c′′(y2y4y1y3) c(y3vy4) = c′′(y3y4)

c(uy5vy1y2y3y4u) = b(|V (G)| − 1)/2c .

If c′′(y1y3) is different from c′′(y2y4) and c′′(y4y1), set

c(y1uvy3) = c′′(y1y3) c(y4vy1) = c′′(y4y1) c(y2uy4) = c′′(y2y4)

c(uy5vy2y3u) = b(|V (G)| − 1)/2c .

If c′′(y2y4) is different from c′′(y1y3) and c′′(y1y4), the colouring is defined similarly
by relabelling the vertices y1, . . . , y5.
If c′′(y4y1) is different from c′′(y1y3) and c′′(y2y4), set

c(y1vy3) = c′′(y1y3) c(y4vuy1) = c′′(y4y1) c(y2uy4) = c′′(y2y4)

c(uy5vy2y3u) = b(|V (G)| − 1)/2c .

Further set c(e) = c′′(e) for all other edges e in all cases. Again, the case distinction
makes sure that all colour classes are cycles and we have constructed a legal colouring.

Proof of (iv). Let c′′ be a legal colouring of G′′. First assume that c′′(y2y3)v is not
contained in {c′′(y3y4), c′′(y1y4)}. Then set

c(y2vuy3) = c′′(y2y3) c(y1uy4) = c′′(y1y4) c(y3vy4) = c′′(y3y4)

c(uy5vy1y3y2u) = b(|V (G)| − 1)/2c .

If c′′(y1y2) /∈ {c′′(y3y4), c′′(y1y4)}, the colouring is defined as above by interchanging
the roles of y1 and y3.
Now assume that c′′(y2y3), c′′(y1y2) ∈ {c′′(y3y4), c′′(y1y4)}. If c′′(y3y4) = c′′(y1y4),

then the cycle y1y2y3y4y1 is monochromatic. Set

c(y4uvy5) = c′′(y4y5)

c(y1vy3y2uy1) = c′′(y1y2y3y4y1) c(y1y3uy5y4vy2y1) = b(|V (G)| − 1)/2c .
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If c′′(y3y4) 6= c′′(y1y4), then either c′′(y2y3) = c′′(y3y4) or c′′(y2y3) = c′′(y1y4). If
c′′(y2y3) = c′′(y3y4), set

c(y2uy3vy4) = c′′(y2y3y4) c(y1vuy4) = c′′(y1y4)

c(y1uy5vy2y3y1) = b(|V (G)| − 1)/2c .

If c′′(y2y3) = c′′(y1y4), set

c(y2uy3) = c′′(y2y3) c(y1vy4) = c′′(y1y4) c(y3vuy4) = c′′(y3y4)

c(y1uy5vy2y3y1) = b(|V (G)| − 1)/2c .

By setting c(e) = c′′(e) for all other edges e we have constructed a legal colouring for
G in all cases.

If u and v are adjacent degree-6 vertices that have a common neighbourhood N of
size 4, we call the two vertices that are adjacent with exactly one of u, v the private
neighbours of u and v. Here, we denote them by xu and xv. If there is a xu-xv-path
P in G − {u, v} − N , it is possible to translate all techniques of Lemma 7.16. It
suffices to delete u, v and E(P ) to obtain another Eulerian graph: In all recolourings
of Lemma 7.16, the edges uy, vy for one vertex y ∈ N were contained in the new colour
class b(|V (G)| − 1)/2c. If we have two private neighbours xu and xv it suffices to replace
the path uyv by the path uxuPxvv in this colour class. This means, we can regard
xuPxv as a single vertex y.

Lemma 7.15. [FGH17] Let G be an Eulerian graph without legal colouring that
contains two adjacent vertices u and v of degree 6 with common neighbourhood N =
{x1, . . . , x4} and NG(u) = N ∪ {xu, v} as well as NG(v) = N ∪ {xv, u}. Let P be an
xu-xv-path in G − {u, v} − N . Define G′ = G − {u, v} − E(P ) and let c′ be a legal
colouring of G′.

(i) If G[N ∪ {xu, xv}] contains a path P ′ = y1y2y3y4 with y2, y3, y4 ∈ N of length 3
then P ′ is monochromatic in c′.

(ii) Let G[N ] contain an independent set S = {y1, y2, y3} of size 3. If G[N∪{xu, xv}]
contains an edge xixj 6= xuxv or if there is a vertex in G′ that is adjacent to y1,
y2 and y3 then G′′ = G′ + {y1y2, y2y3, y3y1} does not have a legal colouring.

(iii) If G[N ∪ {xu, xv}] does not contain the edges xuy1, y1y2, y2xv for two vertices
y1, y2 ∈ N but contains an edge with end vertex y1 or y2 then G′′ = G−{u, v}+
{xuy1, y1y2, y2xv} does not have a legal colouring.

(iv) If G contains the edges y1y2, y3y4, y1y5 with y1, y2, y3, y4 ∈ N and y5 ∈ {xu, xv}
but not the edges y1y3, y2y3 then G′′ = G′ − {y1y2}+ {y1y3, y3y2} does not have
a legal colouring.

(v) If G[N ∪ {xu, xv}] contains a triangle y1y2y3y1 with y1, y2, y3 ∈ N , a vertex
y4 ∈ N −{y1, y2, y3} that is not adjacent to y1 and y3 and a vertex y5 ∈ {xu, xv}
adjacent to y4 then G′′ = G′−{y1y3}+{y1y4, y3y4} does not have a legal colouring.
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Proof of (i). The proof is very similar to the proof of Lemma 7.14.(i) if we regard
xuPxv as one single vertex. We will nevertheless give a detailed proof. By symmetry
of u and v (and thus of xu and xv), we can assume that y1 is either contained in N or
is equal to xu. Suppose that P is not monochromatic.
If c′(y1y2) /∈ {c′(y2y3), c′(y3y4)}, then set

c(y1uvy2) = c′(y1y2) c(y2uy3) = c′(y2y3) c(y3vy4) = c′(y3y4).

If c′(y2y3) /∈ {c′(y1y2), c′(y3y4)}, then set

c(y1uy2) = c′(y1y2) c(y2vuy3) = c′(y2y3) c(y3vy4) = c′(y3y4).

If c′(y3y4) /∈ {c′(y1y2), c′(y2y3)}, then set

c(y1uy2) = c′(y1y2) c(y2vy3) = c′(y2y3) c(y3uvy4) = c′(y3y4).

If y1 ∈ N the following completes by construction a legal colouring c of G:

c(y1y2y3y4uxuPxvvy1) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Now suppose that y1 = xu and that x4, xv are not contained in the path y1y2y3y4.
Then, the following completes by construction a legal colouring c of G:

c(y1y2y3y4ux4vxvPy1) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Proof of (ii). The proof is very similar to the proof of Lemma 7.14.(ii) if we regard
xuPxv as one single vertex.

Proof of (iii). Assume that c′′ is a legal colouring of G′′ and let {y3, y4} = N−{y1, y2}.
By symmetry of u and v (and thus of y1 and y2) we can suppose that y1y4 ∈ E(G).
If y1xu has a colour different from the colour of y1y2 and y2xv, set

c(xuuvy1) = c′′(xuy1) c(y1uy2) = c′′(y1y2) c(y2vxv) = c′′(y2xv)

c(y3uy4vy3) = b(|V (G)| − 1)/2c .

An analogous colouring can be defined if xvy2 has a colour different from the colour
of y1y2 and xuy1.
If y1y2 has a colour different from the colour of y1xu and y2xv, then set

c(xuuy1) = c′′(xuy1) c(y1vuy2) = c′′(y1y2) c(y2vxv) = c′′(y2xv)

c(y3uy4vy3) = b(|V (G)| − 1)/2c .

Now suppose that all three edges xuy1, y1y2, y2xv have the same colour. Then, y1y4

has a different colour. Set

c(xuuy2) = c′′(xuy1y2) c(y1uvy4) = c′′(y1y4) c(y2vxv) = c′′(y2xv)

c(uy3vy1y4u) = b(|V (G)| − 1)/2c .

In all cases, set c(e) = c′′(e) for all other edges e. The case distinction now makes sure
that we constructed a legal colouring for G.
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Proof of (iv). Assume that c′′ is a legal colouring of G′′. Without loss of generality
let y5 = xu.
First suppose that all three edges xuy1, y1y3, y3y2 have the same colour. Then, y3y4

has a different colour and the following gives by construction a legal colouring for G:

c(xuuy1) = c′′(xuy1) c(y1vy2) = c′′(y1y3y2) c(y3uvy4) = c′′(y3y4)

c(uy2y1xuPxvvy3y4u) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Now suppose that xuy1, y1y3, y3y2 is not monochromatic.
If xuy1 has a colour different from the colours of y1y3 and y3y2, set

c(xuuvy1) = c′′(xuy1) c(y1uy3) = c′′(y1y3) c(y3vy2) = c′′(y3y2).

If y1y3 has a colour different from the colours of xuy1 and y3y2, set

c(xuuy1) = c′′(xuy1) c(y1vuy3) = c′′(y1y3) c(y3vy2) = c′′(y3y2).

If y3y4 has a colour different from the colours of xuy1 and y1y3, set

c(xuuy1) = c′′(xuy1) c(y1vy3) = c′′(y1y3) c(y3uvy2) = c′′(y3y2).

By setting c(uy2y1xuPxvvy4u) = b(|V (G)| − 1)/2c and c(e) = c′′(e) for all other edges e,
we obtain by construction in all cases a legal colouring for G.

Proof of (v). The proof is very similar to the proof of Lemma 7.14.(iv) if we regard
xuPxv as one single vertex.

In our last recolouring lemma, we consider two degree-6 vertices that are not adja-
cent but have six common neighbours x1, . . . , x6. Some of the recolouring techniques
of this lemma need a somewhat deeper look into the cycle decomposition. They rely
on a generalisation of the recolourings used in Lemma 7.14 and 7.12. We introduce
two pieces of notation. For two distinct vertices xi, xj ∈ N = {x1, . . . , x6}, a path
Pxixj always denotes an xi-xj-path that is not intersecting with N − {xi, xj}.
For a cycle C and two distinct vertices xi, xj ∈ N = {x1, . . . , x6} ∩ V (C) there are

two xi − xj-paths along C. If there is a unique path that is not intersecting with
N − {xi, xj}, we denote this path by Cxixj .

Lemma 7.16. [FGH17] Let G be an Eulerian graph without legal colouring and let G
contain two degree-6 vertices u and v with common neighbourhood N = {x1, . . . , x6}.
Define G′ = G− {u, v} and let c′ be a legal colouring of G′.

(i) If G′ contains two vertex-disjoint paths Py1y2Py2y3 and Py′1y′2Py′2y′3 with N =
{y1, y2, y3, y

′
1, y
′
2, y
′
3} where the four paths Py1y2 , Py2y3 , Py′1y′2 , Py′2y′3 are monochro-

matic in c′, then at least three of the four paths have the same colour in c′.

(ii) Let G′ contain a path P ′ = Py1y2Py2y3Py3y4Py4y5 with {y1, . . . , y5} ⊂ N where
Pyiyi+1 is monochromatic in c′ for each i ∈ {1, 2, 3, 4}. Then c′(Py1y2) = c′(Py3y4)
or c′(Py2y3) = c′(Py4y5).
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(iii) If G[N ] contains an independent set S = {y1, y2, y3} of size 3 and if G[N ] con-
tains at least one edge or there is a vertex in G′ that is adjacent to y1, y2 and y3

then G′′ = G′ + {y1y2, y2y3, y3y1} does not have a legal colouring.

(iv) If G[N ] contains a path P ′ = y1y2y3y4 of length 3, then P ′ is monochromatic in
c′.

Proof of (i). Suppose that less than three of the paths have the same colour. Then,
without loss of generality c′(Py′1y′2) 6= c′(Py1y2) and c′(Py′2y′3) 6= c′(Py2y3) and the
following is by construction a legal colouring of G:

c(y1uy2) = c′(Py1y2) c(y2vy3) = c′(Py2y3)

c(y′1uy
′
2) = c′(Py′1y′2) c(y′2vy

′
3) = c′(Py′2y′3)

c(y1Py1y2Py2y3y3uy
′
3Py′3y′2Py′2y′1y

′
1vy1) = b(|V (G)| − 1)/2c

c(e) = c′(e) for all other edges e

Proof of (ii). Suppose that c′(Py1y2) 6= c′(Py3y4) and c′(Py2y3) 6= c′(Py4y5) and let y6

be the vertex of N not contained in P ′. Then, the following is by construction a legal
colouring of G:

c(y1uy2) = c′(Py1y2) c(y2vy3) = c′(Py2y3)

c(y3uy4) = c′(Py3y4) c(y4vy5) = c′(Py4y5)

c(y1Py1y2Py2y3Py3y4Py4y5y5uy6vy1) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Proof of (iii). The proof uses ideas of the proof of Lemma 7.14.(ii).
Let c′′ be a legal colouring of G′′. First suppose that i := c′′(y1y2) is not contained

in {c′′(y2y3), c′′(y3y1)} and let C = c−1(i) be the monochromatic cycle in G′′ with
colour i.
If there is a vertex y4 ∈ N − {y1, y2, y3} that is not contained in C set {y5, y6} =

N −{y1, y2, y3, y4} and use the recolouring (7.2) where the edge uv is replaced by the
path uy4v.
Otherwise, {y4, y5, y6} := N −{y1, y2, y3} is a subset of V (C). Then without loss of

generality Cy3y4 and Cy4y5 exist. By construction, the following is a legal colouring of
G:

c(y2uy3) = c′′(y2y3) c(y1vy2) = c′′(y1y2) c(y1uy4vy5) = c′′(y3y1)

c(y3Cy3y4Cy4y5y5uy6vy3) = b(|V (G)| − 1)/2c
c(e) = c′′(e) for all other edges e.

Assume that the triangle y1y2y3y1 is monochromatic in c′′. By Lemma 7.12, there
is no vertex y in G′ that is adjacent to y1, y2 and y3. Suppose that N is not in-
dependent. Without loss of generality G[N ] contains the edge y4y1. Set {y5, y6} =
N − {y1, y2, y3, y4}.
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If there is a vertex in {y5, y6}, say y6, that is not contained in the cycle C = c−1(j)
of colour j := c′(y1y4), use the recolouring (7.2) where the edge uv is replaced by the
path uy6v.
If y5 and y6 are both contained in C, let S be the segment of C − {y1y4} that

connects y4 with y5. By symmetry of y5 and y6, we can suppose that y6 /∈ S. By
construction, the following is a legal colouring of G:

c(y1vy4) = c′′(y1y4) c(y5uy4) = c′′(S)

c(y2uy3vy2) = c(y1y2y3y1) c(y1y4Sy5vy6uy1) = b(|V (G)| − 1)/2c
c(e) = c′′(e) for all other edges e

Proof of (iv). Suppose that P is not monochromatic in c′ and set {y5, y6} = N −
{y1, y2, y3, y4}.

First assume that c′(y3y4) /∈ {c′(y1y2), c′(y2y3)}. Let C be the cycle of colour
c′(y3y4) in G′.
If there is a vertex in {y5, y6}, say y5, that is not in C, then by construction the
following is a legal colouring of G:

c(y1uy2) = c′(y1y2) c(y2vy3) = c′(y2y3) c(y3uy5vy4) = c′(y3y4)

c(y1y2y3y4uy6vy1) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Now assume that y5 and y6 are contained in C. If Cy5y1 , Cy6y1 , Cy5y4 or Cy6y4 exists
then we can apply (ii). Thus, Cy5y6 must exist and by symmetry Cy5y2 and Cy6y3

exist. We can apply (ii) to y1y2, y2y3, Cy3y6 and Cy5y6 .

Thus, for the rest of the proof we can assume that

c′(y2y3) =: i /∈ {c′(y1y2), c′(y3y4)}.

Let C ′ = c−1(i) be the cycle of colour i in G′. If there is a vertex in {y5, y6}, say y5,
that is not in C ′, then by construction the following is a legal colouring of G:

c(y1uy2) = c′(y1y2) c(y3vy4) = c′(y3y4) c(y2vy5uy3) = c′(y2y3)

c(y1y2y3y4uy6vy1) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Thus, we can assume that

y5 and y6 are contained in C ′.

Now, there are three cases up to symmetry: y1, y2 both are not contained in C ′, y1 is
contained in C ′ but y4 is not, and y1, y4 are both contained in C ′.

First assume that y1 and y4 are not contained in C ′. Then, by symmetry, C ′ is
the cycle consisting of y2y3, C

′
y3y6

, C ′y6y5
, C ′y5y2

. We are done by applying (i) to the
vertex-disjoint paths y1y2, C

′
y2y5

and y4y3, C
′
y3y6

.
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7.4. Proofs of Reducibility

Next assume that y1 is contained in C ′ and y4 is not contained in C ′. First suppose
that C ′y6y3

exists. As C ′y5y1
or C ′y5y2

must exist, we are done with (i).
By symmetry, we can now suppose that neither C ′y6y3

nor C ′y5y3
exists. Then C ′y3y1

exists. We can suppose without loss of generality that C ′ is the cycle consisting of
the paths C ′y1y3

, y3y2, C
′
y2y6

, C ′y6y5
, C ′y5y1

and by construction the following is a legal
colouring of G:

c(y1uy2) = c′(y1y2) c(y3vy4) = c′(y3y4)

c(y3y2vy1C
′
y1y5

C ′y5y6
y6uy4y3) = i

c(y3uy5vy6C
′
y6y2

y2y1C
′
y1y3

y3) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Last, assume that y1 and y4 are both contained in C ′. First suppose that Cy5y6 does
not exist. Without loss of generality, we can suppose that Cy5y1 exists. Now neither
C ′y6y3

nor C ′y6y4
exists; otherwise we are done with (i). Thus, Cy6y1 and Cy6y2 must

exist. Thus, C ′y5y4
exists and we are done with (i).

Now suppose that Cy5y6 exists. First suppose that Cy5y2 exists. Then, we are done
with (i) if Cy6y3 or Cy6y4 exists. As C ′ is a cycle, Cy6y1 and thus also Cy4y1 and Cy4y3

exist. The following is by construction a legal colouring of G:

c(y3uy4) = c′(y3y4) c(y1vy2) = c′(y1y2)

c(y5vy3C
′
y3y4

C ′y4y1
y2uC

′
y6y5

y5) = i

c(y2y3y4vy6C
′
y6y1

y1uy5C
′
y5y2

y2) = b(|V (G)| − 1)/2c
c(e) = c′(e) for all other edges e

Thus, we can suppose that none of Cy5y2 , Cy5y3 , Cy6y2 , Cy6y3 exists. Without loss of
generality, Cy5y1 exists. As Cy6y4 must exist we are done with (i).

7.4. Proofs of Reducibility

In this section we prove Lemma 7.6, 7.7, 7.8, 7.9 and 7.11. In the first three proofs,
we use the following observation:

Observation 7.17. [FGH17] Let x be a vertex of degree at least 3 in a graph H with
a legal colouring. Then the neighbourhood Nx of x contains an independent set of size
3 or G [{x} ∪Nx] contains a path of length 3 that is not monochromatic.

Proof of Lemma 7.6. If G[N ] contains a vertex of degree at least 3 we are done by
applying Observation 7.17 as well as Lemma 7.14.(i) and (ii).
Now, suppose that G[N ] contains a vertex, say x1 of degree 0. As we have seen,

G[N ] contains no vertex of degree 3 or 4. Thus, G[N ]−{x1} contains two non-adjacent
vertices, say x2 and x3. Then, {x1, x2, x3} is an independent set and we are done by
Lemma 7.14.(ii).
We can conclude that all vertices in G[N ] have degree 1 or 2. Consequently, the

graph is isomorphic to C5, K3∪̇P2, P3∪̇P2 or P5. The 5-cycle C5 contains an induced
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7. Cycle Decompositions of Pathwidth-6 Graphs

P4, the graph K3∪̇P2 contains a triangle and a vertex that is not adjacent to two of
the triangle vertices, the latter two graphs contain an independent set of size 3. Thus,
we are done by (iii), (iv), and (ii) of Lemma 7.14.

Proof of Lemma 7.7. If G[N ] contains a vertex of degree at least 3 we are done by
applying Observation 7.17 as well as Lemma 7.15.(i) and (ii). Thus, G[N ] must be
isomorphic to one of the graphs that we will treat now.
First suppose that the edge set ofG[N ] equals the empty set, {x1x2} or {x1x2, x1x3}.

Then, G contains an independent 3-set and has a legal colouring by Lemma 7.15.(ii).
Next suppose that the edge set of G[N ] equals {x1x2, x3x4} or {x1x2, x1x3, x3x4}.

If xu is adjacent to x2, apply Lemma 7.15.(iv) to get a legal colouring: the edges
xux2, x2x1, x3x4 exist while x4 is neither adjacent to x1 nor to x2. Similarly, we can
apply Lemma 7.15.(iv) if x3xv ∈ E(G). Thus, we can suppose that neither x2xu nor
x3xv exists in G and we are done with Lemma 7.15.(iii): the edges xux2, x2x3, x3xv
do not exist while x2x1 ∈ E(G).
Now suppose that the edge set of G[N ] consists of x1x2, x2x3, x3x1. If xu is ad-

jacent to x1, not all paths of length 3 can be monochromatic and we can apply
Lemma 7.15.(i). Thus we can suppose that xux1 /∈ E(G). If x4xv /∈ E(G) then
we can apply Lemma 7.15.(iii) to xux1, x1x4, x4xv /∈ E(G) and x1x3 ∈ E(G) to obtain
a legal colouring of G. If x4xv ∈ E(G) we are done by Lemma 7.15.(v).
Last suppose that the edge set of G[N ] consists of x1x2, x2x3, x3x4, x4x1. If the 4-

cycle is not monochromatic, the cycle contains a P4 that is not monochromatic and we
are done by Lemma 7.15.(i). Suppose that x1xu is an edge of G. Then, xux1x2x3 is a
P4 that is not monochromatic. By symmetry, we get that neither xu nor xv is adjacent
to a vertex of N . But then apply Lemma 7.15.(iii) to xux1, x1x3, x3xv /∈ E(G) and
x1x2 ∈ E(G) to obtain a legal colouring of G.

Proof of Lemma 7.8. If G[N ] contains a vertex of degree at least 3 we are done by
applying Observation 7.17 as well as Lemma 7.16.(iii) and 7.16.(iv).
Now, suppose that G[N ] contains a vertex, say x1 of degree 0. As we have seen,

G[N ] contains no vertex of degree at least 3. Thus, G[N ] − {x1} contains two non-
adjacent vertices, say x2 and x3. Then, {x1, x2, x3} is an independent set and we are
done by Lemma 7.16.(iii).
We can conclude that all vertices in G[N ] have degree 1 or 2. Thus, G[N ] is

isomorphic to one of the following graphs: C3∪̇C3, C6, C4∪̇P2, C3∪̇P3, P3∪̇P3, P4∪̇P2,
P2∪̇P2∪̇P2.
If G[N ] is isomorphic to C3∪̇C3, we can apply Lemma 7.16.(i). It is not possible

that all pairs of 3-paths have three edges of the same colour. In all other cases, we
can apply Lemma 7.16.(iii).

Proof of Lemma 7.9. The proof is based on the following observation: a legal colou-
ring c′ of G′ consists of at most b(|V (G)| − 2)/2c = b(|V (G)| − 3)/2c colours while a legal
colouring of G can consist of b(|V (G)| − 3)/2c+ 1 = b(|V (G)| − 1)/2c many colours. We will
now consider the neighbourhood of u in G.
If u has exactly two neighbours x1 and x2 that are non-adjacent, set G′ = G−{u}+
{x1x2} and set c(x1ux2) = c′(x1x2).
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If u has exactly two neighbours x1 and x2 that are adjacent, set G′ = G−{u}−{x1x2}
and set c(x1ux2x1) = b(|V (G)| − 1)/2c. Further, set c(e) = c′(e) for all other edges in
both cases to obtain a legal colouring.
If u has exactly four neighbours x1, . . . , x4 such that x1x2, x3x4 /∈ E(G) set G′ =

G − {u} + {x1x2, x3x4} and set c(x1ux2) = c′(x1x2) and c(x3ux4) = c′(x3x4). If
c′(x1x2) 6= c′(x3x4), setting c(e) = c′(e) for all other edges gives a legal colouring. If
c′(x1x2) = c′(x3x4), we again set c(e) = c′(e) for all other edges. Now, c is a colouring
of G where one colour class consists of two cycles intersecting only at u. We can split
up this colour class into two cycles to obtain a legal colouring of G.
By Lemma 7.10, we are done unless u has four neighbours x1, x2, x3, x4 that form a

clique. In that case, set G′ = G− {u} − {x1x3, x2x4}.
If x1x2 and x3x4 are of different colour, set

c(x1ux2) = c′(x1x2) c(x3ux4) = c′(x3x4) c(x1x2x4x3x1) = b(|V (G)| − 1)/2c .

If the cycle x1x2x3x4x1 is monochromatic , set

c(x1ux2x3x4x1) = c′(x1x2x3x4x1) c(x4ux3x1x2x4) = b(|V (G)| − 1)/2c .

If the cycle is not monochromatic but x1x2 and x3x4 are of the same colour i and
x1x4 and x2x3 are of the same colour j, we need to distinguish two cases. By Obser-
vation 7.13, there are two ways for the shape of the cycle Ci = c′−1(i) with colour i.
If Ci − {x1x2, x3x4} consists of a x1-x3-path and a x2-x4-path, set

c(x1ux4) = i c(x2x3) = i c(x2ux3) = j c(x1x2x4x3x1) = b(|V (G)| − 1)/2c .

If Ci − {x1x2, x3x4} consists of a x4-x1-path P41 and a x2-x3-path, set

c(x1ux4) = i c(x2ux3) = j c(x1x3x2x4P41x1) = b(|V (G)| − 1)/2c .

By setting c(e) = c′(e) for all other edges e, c is a legal colouring of G.

Proof of Lemma 7.11. We transform the legal colouring c′ of G′ into a legal colouring
c of G. For this, we first note that u has degree 4 in G′, ie {x1, x2, x3, x4} splits
up into two pairs {a, a′} and {b, b′} with c′(ua) = c′(ua′) and c′(ub) = c′(ub′) and
c′(ua) 6= c′(ub).
If the colour c′(x5x6) is not incident with u in G′, set c(x5ux6) = c′(x5x6) and leave

all other edge colours untouched to get a legal colouring.
Now suppose that c′(x5x6) is incident with u (say c′(aua′) = c′(x5x6)), but the

set {c′(ua), c′(aa′), c′(ub), c′(bb′), c′(x5x6)} consists of at least three different colours.
Then, there are two possible constellations. First, let c′(aa′) 6= c′(x5x6) and c′(aa′) 6=
c′(bub′). Then, set c(x5ux6) = c′(x5x6), flip the colours of the edges aua′ and aa′ and
leave all other edge colours untouched to get a legal colouring.
If c′(aa′) = c′(bub′) and c′(bb′) 6= c′(x5x6), set c(x5ux6) = c′(x5x6), flip the colours

of the edges aua′ and aa′ and the colours of the edges bub′ and bb′, and leave all other
edge colours untouched to get a legal colouring.
Thus, without loss of generality c′(x5x6) = c′(aua′) = c′(bb′) and c′(aa′) = c′(bub′).

That is, among the considered edges there are only two colours. We may assume
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that c′(a′b) 6= c′(x5x6) and c′(a′b′) 6= c′(x5x6). Because, if eg c′(a′b) = c′(x5x6), then
c′(ab) 6= c′(x5x6) and c′(ab′) 6= c′(x5x6). This is symmetric to the assumption.
If c′(a′b) = c′(bub′) and c′(a′b′) 6= c′(bub′) the following is a legal colouring for G:

c(aa′) = c′(aua′) c(a′ub′) = c′(a′b′)

c(auba′b′) = c′(aa′bub′) c(x5ux6) = c′(x5x6)

c(e) = c′(e) for all other edges e

If c′(a′b′) = c′(bub′), c′(a′b) 6= c′(bub′), the following colouring for G is legal:

c(aa′) = c′(aua′) c(a′ub) = c′(a′b)

c(aub′a′b) = c′(aa′b′ub) c(x5ux6) = c′(x5x6)

c(e) = c′(e) for all other edges e

Otherwise by Observation 7.13, one of the following is a legal colouring for G:

c1(aub′) = c′(aa′) c1(a′b) = c′(aa′)

c1(a′ub) = c′(a′b) c1(aa′) = c′(aua′)

c1(x5ux6) = c′(x5x6)

c1(e) = c′(e) for all other edges e

or

c2(aub) = c′(aa′) c2(a′b′) = c′(aa′)

c2(a′ub′) = c′(a′b′) c2(aa′) = c′(aua′)

c2(x5ux6) = c′(x5x6)

c2(e) = c′(e) for all other edges e

7.5. Path Decompositions

In Section 4.4 the notion of tree decomposition and treewidth was introduced. In this
section, we are interested in path decompositions and pathwidth. A path decomposition
of width k is a tree decomposition (P,B) of width k where P is a path. A path
decomposition is smooth if the corresponding tree decomposition is smooth. A graph
G of pathwidth at most k always has a smooth path decomposition of width k; see
Bodlaender [Bod98]. Note that this path decomposition has exactly n′ = |V (G)| − k
many bags.
If (P,B) is a path decomposition of the graph G, then for any vertex set W of G we

denote by P(W ) the subpath of P that consists of those bags that contain a vertex
of W . Further, if P(W ) is the path on vertex set {s, s+ 1, . . . , t− 1, t} with s ≤ t we
denote s by s(W ) and t by t(W ). For W = {v}, we abuse notation and denote P(W ),
s(W ) and t(W ) by P(v), s(v) and t(v).
We note: in a smooth path decomposition, for an edge st ∈ E(P), there is exactly

one vertex v ∈ V (G) with v ∈ Bs and v /∈ Bt. We call this vertex v(s, t). Thus for
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any vertex v of G, the number of vertices in the union of all bags containing v is at
most |P(v)|+ k and

deg(v) ≤ |P(v)|+ k − 1. (7.3)

Consequently,

for every i ∈ {1, . . . , b|V (G)|/2c} there are unique vertices
v(i, i+ 1) and v(n′ + 1− i, n′ − i) with degree at most k + i− 1 (7.4)

For the proof of Theorem 7.3 we last note a direct consequence of a theorem of Fan
and Xu [FX02, Theorem 1.1]:

Corollary 7.18. Let G be an Eulerian graph of pathwidth at most 6 that does not sa-
tisfy Hajós’ conjecture. Then there is a graph G′ of pathwidth at most 6 with |V (G′)| ≤
|V (G)| that contains at most one vertex of degree less than 6 and does not satisfy Hajós’
conjecture.

Based on (7.4) and on Lemma 7.6, 7.7 and 7.8 we finally show that Hajós’ conjecture
is satisfied for all Eulerian graphs of pathwidth 6.

Proof of Theorem 7.3. Assume that the class of graphs with pathwidth at most 6 does
not satisfy Hajós’ conjecture. Let G be a member of the class that does not satisfy
the conjecture with minimal number of vertices. By Theorem 7.2, G has at least 13
vertices. By Corollary 7.18

G contains at most one vertex of degree 2 or 4. (7.5)

Thus, the three vertices v(i, i+ 1) with i = 1, 2, 3 or the three vertices v(i, i− 1) with
i = n′, n′−1, n′−2 all have degree at least 6. Without loss of generality, suppose that

deg(u), deg(v),deg(w) ≥ 6 for u := v(1, 2), v := v(2, 3), w := v(3, 4) (7.6)

As u and v are both of degree 6, there are three possibilities.

(i) u and v have common neighbourhood N = {x1, . . . , x6}, or

(ii) u and v are adjacent with common neighbourhood N = {x1, . . . , x5}, or

(iii) u and v are adjacent with common neighbourhood N = {x1, . . . , x4} and private
neighbours xu and xv.

We will now always delete u and v and optionally some edges. Further, we optionally
add some edges in the neighbourhood of the two vertices. The obtained graph is still
of pathwidth 6 and consequently has a legal colouring.
First assume (i) or (ii). By Lemma 7.8 and Lemma 7.6, N is an independent set

and there is no vertex in G − {u, v} that has at least three neighbours in N . This is
not possible as w must have at least six neighbours in N ∪ {u, v} by (7.6).

Last assume (iii) and define u′ = v(n′, n′ − 1), v′ = v(n′ − 1, n′ − 2) and w′ =
v(n′−2, n′−3). By symmetry of the two sides of the path P of G’s path decomposition,
we can suppose that

95



7. Cycle Decompositions of Pathwidth-6 Graphs

(I) u′ and v′ are two adjacent degree-6 vertices with common neighbourhood N ′ =
{x′1, . . . , x′4} and private neighbours x′u and x′v and deg(w′) ≥ 6, or

(II) there is a vertex y of degree less than 6 among u′, v′, w′.

Our aim is now to find a path between xu and xv in G − R with R = N ∪ {u, v}
(respectively a path between xu′ and xv′ in G − R′ with R′ = N ′ ∪ {u′, v′}). Then
we can use Lemma 7.7 to see that N is an independent set and there is no vertex in
G − {u, v} that has at least three neighbours in N . This is not possible as w must
have at least six neighbours in R by (7.6).
We assume now that there is no path between xu and xv inG−R with R = N∪{u, v}

and denote the set of vertices in the component of xu in G − R by Vu. Similarly, we
define Vv. The vertex z of Vu respectively Vv that maximises s(z) is denoted by zu
respectively zv. Note that the neighbourhood of za (for a = u and a = v ) satisfies

N(za) ⊆
(
Bs(za) ∩ Va

)
. (7.7)

First assume that t(Vu) = t(Vv). Then, as (P,B) is smooth, t(Vu) = t(Vv) = n′.
By (7.7), the neighbours of zu and zv are contained in the sets Bs(zu)∩Vu and Bs(zv)∩Vv
that are both of size at most 5. This contradicts (7.5). Thus we can suppose that

t(Vu) < t(Vv)(≤ n′). (7.8)

Then, zv might have degree 6, but

zu has degree less than 6.

Now, we split up the proof. First assume that (I) holds. By symmetry, we can
apply the previous part of the proof and find a vertex z′u′ in the component V ′u′ 6= V ′v′
in G−R′ (with R′ = {u′, v′} ∪N ′). By (7.5), zu equals z′u′ .
As zu ∈ Vu, there is a path Pxu,zu from xu to zu in G−R. Further, by (7.8), there

is no xu-x′u′-path Pxu,x′u′ in G − R − R
′. This means that the path Pxu,zu contains a

vertex r′ of R′ ⊂ Bn′ which contradicts (7.8).

Now assume that (II) holds. As we have seen before, we can assume (7.8) and obtain
from (7.5) that y = zu
If zu = y = u′ or zu = y = v′, then all neighbours of zu (ie particularly a vertex of

Vu) are contained in Bn′ . This contradicts (7.8).
Thus suppose that zu = y = w′. Then u′ and v′ must be of degree 6. If u′ and

v′ have four common neighbours, then (I) holds and we are done. If u′ and v′ have
five common neighbours then note that v(n′ − 3, n′ − 4) must have degree at least 6
by (7.5). Thus we can apply Lemma 7.6 to get a legal colouring of G. Therefore, it
remains to consider that u′ and v′ are non-adjacent with common neighbourhood N ′

of size 6. Then all neighbours of zu (ie a vertex of Vu) are contained in N ′ ⊂ Bn′

which contradicts (7.8).
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Conclusion

In this thesis we have approached various prominent problems of graph theory includ-
ing the list-edge-colouring conjecture, the overfull conjecture, Hajós’ conjecture, and
the structural characterisation of t-perfect graphs. In each case, we went another step
on the long road to solving the problem.

First, we provided structural characterisations for t-perfect triangulations and quad-
rangulations of the projective plane. While the proof for triangulations turned out to
be rather technical towards the end leaving room for future improvement, the proof
for quadrangulations was quite beautiful.
We devised a novel method that transforms every quadrangulation of the sphere

into a quadrangle. This method is based on t-contractions and deletions of degree-2
vertices, ie on simple minor operations — in contrast to most other transformation
techniques.
Similar to our approach, one can try to characterise other classes of t-perfect, em-

beddable graphs. Our method gives a first clue on how to exploit the information
from an embedding for this purpose.

We verified the list-edge-colouring conjecture for two additional classes of graphs,
namely the generalised Petersen graphs GP (3k, k) and GP (4k, k). In the process,
we discovered an interesting connection between Dürer-type graphs and Jacobsthal
numbers.
Our fundamental idea was to show that a colouring of the outer cycle determ-

ines the colouring of the whole graph. This insight allowed us to count the (signed)
1-factorisations in order to verify the conjecture with the method of Alon and Tarsi.
While we may still be a long way from a generic proof of the list-edge-colouring

conjecture for the class of generalised Petersen graphs, one should be able to use
our approach to apply the method of Alon and Tarsi for other classes of generalised
Petersen graphs as well.

For graphs with fixed maximum degree and bounded treewidth we found an im-
proved upper bound for the number of edges. Based on this finding and the overfull
conjecture, we came up with our own, stronger conjecture for this particular class of
graphs. Proving our conjecture would imply proving the overfull conjecture for this
class.
Even though we were unable to prove that the conjecture holds for the proposed

bound of ∆ ≥ k +
√
k, we did improve the bound from ∆ ≥ 2k to ∆ ≥ 2k − 1.

The approach taken by our proof can probably be extended to show ∆ ≥ 2k − c for
a given small constant c. However, it is rather technical and extensive even for the
simplest case c = 1. Furthermore, it seems impossible to attain the desired bound of
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∆ ≥ k+
√
k this way. A fresh, completely different technique is probably required for

this.
Nevertheless, we did at least prove a weakened version of our conjecture and showed

that the involved bound is tight, if the conjecture holds true.

Finally, for the first time, Hajós’ conjecture was proved for graphs that do not
necessarily contain a vertex of degree 2 or 4. To this end, we devised a novel technique
to construct cycle decompositions for graphs with degree-6 vertices. Our technique
may be generalised and its basic ideas can be transferred to tackle further classes of
graphs with vertices of degree 6 or even higher. Thus, we have paved the way to
extend Hajós’ conjecture to a new range of graph classes.

In sum, we provided valuable insights by contributing to a broad range of colouring
problems touching on different areas of graph theory.
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