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Abstract 

In order to understand population and community dynamics, many ecological studies require
comprehensive knowledge of the spatial distribution of individual organisms, but obtaining
this  data  is  a  time and  labor-intensive  process.  In  this  study we develop  a  workflow to
automatically  determine the species of  shrubs of  the Proteaceae family  in South Africa's
Fynbos  region  from  drone-based  photogrammetric  data.  We  applied  deep  learning  to
segment five species of shrub individuals from the background based on spectral and height
information. The spectral-height model achieved an average prediction accuracy of 74.4%,
compared  to  61.6%  when  using  spectral  information  alone.  Despite  the  challenge  in
distinguishing  sprawling  shrubs  from  the  background,  which  may  be  overcome  with
additional training data, the presented workflow holds promise for the efficient mapping of
shrub communities. 

1 Introduction
For ecologists, understanding the spatial distribution of individuals in populations and communities
within a study area is of critical importance. To obtain the most complete picture, individuals in a
given system must be detected, identified, and placed within a spatial context.  Traditionally, this
mapping is performed by hand via vegetation surveys, a time and labor-intensive process. Improving
this  process  with  automation,  e.g.  with  remote  sensing  techniques  such  as  obtaining  data  with
drones, would greatly increase the scale of future ecological research. Workflows involving drone-
obtained  data  have  seen  compelling  successes  such  as  detecting  individual  trees1 and  assessing
success of wetland restoration2.

Another technical arena of increasing relevance to ecology is deep learning. Before 2014, there were
less than a dozen papers applying deep learning for ecology, but between 2014 and 2019 over 50
were published3. Deep learning is a more advanced branch of machine learning, leveraging recent
improvements in computational capacity to build classifiers suitable to complex tasks. Convolutional
Neural Networks  (CNNs) are a typical deep learning architecture employed in image-recognition
problems. CNNs have been successfully employed at a variety of ecological scales: recognition of
wheat spikes4, describing plankton community composition5, and counting whale individuals within a
region6.  So  far,  most  species  identification applications  have  focused  on  using  solely  image,  i.e.
spectral,  data  for  classification,  yet  the  incorporation  of   structural  information  is  suggested  to
improve identification rates7.  
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In this study, we tested the efficacy of a workflow combining drone-based photogrammetric data and
deep learning for plant species identification. We did this in the Fynbos biome, which is a key part of
a  global  biodiversity  hotspot8 (the  South  African  Cape  Floristic  Region)  and  for  which  extensive
individual-based  community  maps  are  available.  Specifically,  we  ask  (1)  is  it  possible  to  reliably
identify Proteaceae shrubs using purely spectral information, (2) does inclusion of height information
improve species identification? 

2 Methods

2.1 Study System & Data

Our  study  site  is  located  in  the  Jonaskop  mountain  range  (33°  56’  S,  19°  31’  E).  The  site  is
characteristic of a montane Fynbos biome and has sandy and nutrient poor soils.   In this biome,
members  of  the Proteaceae  family  are  key  ecosystem members  and of  considerable  interest  in
research regarding biodiversity and the impacts of climate change9.

On  June  8th  2019,  a  DJI®  Mavic  Pro  Platinum  drone  flew  an  overhead  'grid  mission',  taking  a
series of overlapping photos of the site. The drone was flown at 30 meters above the starting point of
the mission, and photos were taken with a 70% overlap in both X and Y directions. Photogrammetry,
i.e. stitching of photos, was done using AgiSoft's  Metashape application producing first a 3d point
cloud and eventually an orthophoto containing spectral and height information. Guided by hand-
mapped ground-truth data obtained in 201110, we manually digitized polygons for Proteaceae shrubs
on the site, resulting in the following number of individuals: 396 Leucadendron laureolum, 342 L.
salignum, 408 Protea amplexicaulis, 88 P. lorifolia, and 732 P. repens (Fig. 1).

Figure 1: -a)  Field-recorded map of the study site produced in 2011 with each circle representing a shrub. b-f) 
2x2m  subsets of the orthophoto centered around an individual shrub. In both plots color indicates the species 
identity of an individual.  
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2.2 Deep Learning

In  order  to  obtain  spatially  representative information on individual  plants,  we require  a model
capable  of  "semantic  segmentation".  Semantic segmentation performs pixel-level  predictions  for
classes (i.e. species) and remains one of the more complex topics in computer vision. This complexity
arises from the requirement to  simultaneously extract class-specific features while also retaining
spatial  relationships  between pixels  (normally  lost  in  CNN convolution-pooling  layers).  Here,  we
employ a modified version of U-Net, a CNN  which uses an encoder-decoder architecture to segment
classes from background in images11.  The model was written in  R  and  python and uses the  keras
library12. 

CNN model input consists of 3d arrays containing different input channels for cells of a 2d grid. These
grids (or tiles) are usually randomly split into train/validation/test data-sets. We selected a tile size of
256 x 256 pixels (2.7 x 2.7 m²). As we are interested in identification of individuals rather than pixels,
we require predictions for a data-set be contiguous, i.e. tiles within a data-set should be adjacent.
This gives us tile sets which contain a higher proportion of complete shrubs, rather than cropping
shrubs at the tile edges. To meet this criterion, we first divide the site into subsites, each comprised
of  5x5  tiles,  and  semi-randomly  sort  them  into  train/validation/test.  We  then  manually  filtered
subsites out based on data distortions and/or insufficient (< 5%) shrub presence. Using a 80/10/10
ratio we end up with 1044 train, 141 validation, and 141 test tiles. 

Our label  data consists  of segmentation masks, generated from our digitized polygons.  Any non-
Proteaceae pixel is treated as "background", which ultimately describes over 80% of the pixels in the
training data.  To mitigate biased learning in an unbalanced data-set, we implemented a "double
focal"  loss  function  which  usually  outperforms  the  standard  "cross-entropy"  loss  used  for
multiclassification13. We tested two models, one using purely spectral (Hue-Saturation-Value) input
channels, and one which included height as an additional channel (HSV+Z). We chose the HSV color
space as it is considered more robust when handling variation in light conditions. We then tuned the
model by testing multiple combinations of dropout rate and number of filters in the network to
determine the appropriate model size for our data. 

With the best model selected, our ultimate performance metric is prediction of individual shrubs. As
a first step, we ran the predictions produced by our model through a conditional random field (CRF)
function14. CRF helps clean up prediction noise ("stray" pixels) and sharpen edges of the shrubs. We
then dissolved contiguous pixel segments into a polygon of the predicted species. Finally, for each
ground-truth polygon in the validation set we evaluate if 33% or more of its area was covered by a
predicted polygon of the same class (Fig.  2).  In the scope of this study, we did not worry about
separating monospecific clusters into individual shrubs. 

Tuning of  the U-Net  models  was  performed on  the BwUniCluster  2.0.  Our  workload required  a
JupyterHub instance with a single GPU (1 NVIDIA Tesla V100 32GB), 4-8 CPUs, and 32-64GB of RAM.
When training our spectral-height model, our Institute's workstation required 70s/epoch, whereas
the bw-hpc instance required only 10s, for a total training time of 10 minutes. This improvement in
efficiency greatly increased our capacity to test additional model configurations. 
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3 Results & Discussion
The spectral-height model performed better than a model using only spectral input. For the spectral-
height model, identification rates of individual shrubs ranged from 64% to 95% per species with an
average prediction accuracy of 74.4%, whereas the spectral model achieved an average of 61.6%
(Table 1). The spectral-height model also (mis-)predicted 52 additional shrubs at locations that were
classified as background in the ground-truthing (one Leucadendron laureolum, two L. salignum,
21 Protea amplexicaulis, 21 P. lorifolia, and seven P. repens). 

Investigating the (overhead) perspective of species growth form may hint as to why the accuracy
varies so dramatically across species. Of the species studied,  L. laureolum, L. salignum & P. repens
(Fig. 1bcf) could be broadly classified as spectrally vibrant. Our results show that L. laureolum is rarely
confused with background, but rather with the most common shrub species (P. repens). In the case of
L. salignum there is some confusion with background despite apparently distinct foliage. However,
when we compare L. salignum to the growth forms of the two species most commonly confused with
background, P. amplexicaulis and P.  lorifolia (Fig. 1de), we see that they have something in common.
All  three species  commonly  have a  sprawling  and a  rather  open canopy.  So,  it  may be that  the
spectral signals for certain  L. laureolum and  L. salignum individuals are strong enough for U-net to
recognize them as shrubs,  but due to the unbalanced data-set there is a bias for predicting P. repens.
To test this theory, we plan further missions across additional sites, greatly increasing the amount of
training data for all species (as well as including more species). 

Table 1: Confusion matrix of model predictions for the validation set. Bold face indicates the spectral-height 
model, and the normal face the spectral model. The rows represent ground-truth individuals, the columns are 
the predictions. Each cell is the proportion of observations categorized as that class, those highlighted in blue 
indicate correct identification. 

Current  research  recommends
the  use  of  geometric
information to improve species
identification  and  here  we
incorporated  pixel-level  height
as  model  input.  Although  the
results  are  slightly  nuanced
(increased  confusion  of  L.
laureolum  with  P.  repens), we
see a meaningful  improvement
in  overall  accuracy.  This
indicates that height data, as in
the case with spectral data,  will
be  most  useful  when  the
features of species (e.g. foliage
or  height)  are  significantly
distinct from each other and the

background. In this study system, that would imply older sites where the shrubs are mature (i.e. tall).
Nevertheless,  distinguishing  shorter  shrubs  (P.  amplexicaulis and  P.   lorifolia)  from  the  ground
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remains a challenge, which could be due to the following convoluting factors. First, a recent study
showed that drone-based data collection likely misrepresent the true heights of small to medium
sized shrubs15. Second, our study site is not only rugged, but full of non-shrub vegetation which can
reach heights similar to short Proteaceae, potentially leading to "background" pixels with relatively
large heights. Some methods to improve accuracy of height information would be to explore near-
ground  photogrammetry  (e.g.  with  a  stick-mounted  camera)  or  to  use  a  fine-resolution  digital
elevation model to assist in normalizing the site height values. 

Figure 2: -a) Orthophoto with ground-truth data for one subsite (13.5 x 13.5 m²) in the validation data-set; -b) 
Predictions of the spectral-height model for the same subsite. In both plots ground-truth shrubs are delineated 
by a dashed line. In b) model predictions are represented as shading. Both lines and shading are colored by 
species.

4 Conclusions
We tested the efficacy of using drone photogrammetry and deep learning to automatically identify
Proteaceae shrubs in South Africa's  Fynbos region.  The results  are promising and highlight what
factors will influence the success of such a workflow. Species with vibrant foliage and/or large size
(e.g. P. repens) will contrast strongly with the background and should be easily detected, but those of
a greyer color or more sprawling structure (e.g.  P. lorifolia) will likely be missed due to visual and
structural similarity with the background. We saw meaningful improvements in species identification
by including height  values,  and plan to  run the workflow on additional  sites  to  demonstrate  its
transferability. 

5 Acknowledgements
This work was funded by the German Research Foundation (DFG) grant SCHU 2259/3-3 to F.M.S. We
utilized the computational resources of BwUniCluster funded by the Ministry of Science, Research
and Arts Baden-Wurttemberg and the Universities of the State of Baden-Wurttemberg, Germany,
within the frame-work program bwHPC.

Nathaniel Allen, Huw Cooksley, Carsten Buchmann, et al. Article No. 3

15



References
1. Chen X, Jiang K, Zhu Y, Wang X, Yun T. Individual Tree Crown Segmentation Directly from UAV-

Borne  LiDAR  Data  Using  the  PointNet  of  Deep  Learning.  Forests.  2021;12(2):131.
doi:10.3390/f12020131

2. Dale J, Burnside NG, Hill-Butler C, Berg MJ, Strong CJ, Burgess HM. The Use of Unmanned Aerial
Vehicles to Determine Differences in Vegetation Cover: A Tool for Monitoring Coastal Wetland
Restoration Schemes. Remote Sens. 2020;12(24):4022. doi:10.3390/rs12244022

3. Christin S, Hervet É, Lecomte N. Applications for deep learning in ecology. Ye H, ed. Methods Ecol
Evol. 2019;10(10):1632-1644. doi:10.1111/2041-210X.13256

4. Pound MP, Atkinson JA, Townsend AJ,  et al.  Deep machine learning provides state-of-the-art
performance  in  image-based  plant  phenotyping.  GigaScience.  2018;7(7).
doi:10.1093/gigascience/giy042

5. Beijbom  O,  Hoffman  J,  Yao  E,  et  al.  Quantification  in-the-wild:  data-sets  and  baselines.
ArXiv151004811  Cs.  Published  online  November  28,  2015.  Accessed  February  20,  2021.
http://arxiv.org/abs/1510.04811

6. Guirado E, Tabik S, Rivas ML, Alcaraz-Segura D, Herrera F. Whale counting in satellite and aerial
images with deep learning. Sci Rep. 2019;9(1):14259. doi:10.1038/s41598-019-50795-9

7. Wäldchen J, Mäder P. Machine learning for image based species identification. Cooper N, ed.
Methods Ecol Evol. 2018;9(11):2216-2225. doi:10.1111/2041-210X.13075

8. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J.  Biodiversity hotspots for
conservation priorities. Nature. 2000;403(6772):853-858. doi:10.1038/35002501

9. Schurr  FM,  Esler  KJ,  Slingsby  JA,  Allsopp  N.  Fynbos  Proteaceae  as  model  organisms  for
biodiversity  research  and  conservation.  South  Afr  J  Sci.  2012;108(11/12):4  pages.
doi:10.4102/sajs.v108i11/12.1446

10. Schmid B, Nottebrock H, Esler KJ, et al. Responses of nectar-feeding birds to floral resources at
multiple spatial scales. Ecography. 2016;39(7):619-629. doi:10.1111/ecog.01621

11. Ronneberger  O,  Fischer  P,  Brox  T.  U-Net:  Convolutional  Networks  for  Biomedical  Image
Segmentation.  ArXiv150504597 Cs. Published online May 18, 2015. Accessed October 6, 2021.
http://arxiv.org/abs/1505.04597

12. Allaire  JJ,  Chollet  F.  Keras:  R  Interface  to  “Keras”.  R  Package  Version  2.3.0.0.;  2020.
https://CRAN.R-project.org/package=keras

13. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection. ArXiv170802002
Cs.  Published  online  February  7,  2018.  Accessed  November  18,  2021.
http://arxiv.org/abs/1708.02002

14. Krähenbühl  P,  Koltun  V.  Efficient  Inference  in  Fully  Connected  CRFs  with  Gaussian  Edge
Potentials. NIPS; 2011.

15. Swetnam TL, Gillan JK, Sankey TT, et al. Considerations for Achieving Cross-Platform Point Cloud
Data Fusion across Different Dryland Ecosystem Structural States.  Front Plant Sci. 2018;8:2144.
doi:10.3389/fpls.2017.02144

Automated mapping and identification of shrub individuals in South Africa’s Fynbos biome . . .

16


