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Abstract
Wepresent a newmethod of constructing a fully robust qubit in a three-level system. By the
application of continuous driving fields, robustness to both external and controller noise is achieved.
Specifically,magnetic noise and powerfluctuations do not operate within the robust qubit subspace.
Whereas all the continuous driving based constructions of such a fully robust qubit considered so far
have required at least four levels, we show that in fact only three levels are necessary. This paves theway
for simple constructions of a fully robust qubit inmany atomic and solid state systems that are
controlled by eithermicrowave or opticalfields.We focus on theNV-center in diamond and analyze
the implementation of the scheme, by utilizing the electronic spin sub-levels of its ground state. In
current state-of-the-art experimental setups the scheme leads to improvement ofmore than two
orders ofmagnitude in coherence time, pushing it towards the lifetime limit.We showhow the fully
robust qubit can be used to implement quantum sensing, and in particular, the sensing of high
frequency signals.

1. Introduction

The implementation of quantum technology applications and quantum information processing requires a
reliable realization of qubits that can be initialized,manipulated, andmeasured efficiently. In solid state and
atomic systems, ambientmagnetic field fluctuations constitute a serious impediment, which usually limits the
coherence time to several orders ofmagnitude less than the lifetime limit. Pulsed dynamical decoupling [1–3]
has proven to be very useful in prolonging the coherence time [4–11]. However, in order tomitigate both
external and controller noise, very rapid and composite pulse sequencesmust be applied [12–16], which are not
easily incorporated into other operations and require a lot of power [17]. Similarly, in continuous dynamical
decoupling [17–25], the effect of the controller noise can be diminished by either a rotary echo scheme [26, 27],
which is then analogous to pulsed dynamical decoupling, or by the concatenation of several driving fields [28–
30], which is limited by the reduction of the dressed energy gap, and results in slower qubit gates.However, a
multi-state system enables a different approach. In [31], a fully robust qubit; i.e., a qubit that is robust to both
external and controller noise, was realized by the application of continuous driving fields on a specific hyperfine
structure. Subsequently, a general scheme for the construction of a fully robust qubit was introduced in [32].

So far, all the continuous driving based implementations of a fully robust qubit have been investigated [32–
36] and experimentally realized [31, 37–40]with the application of on-resonance driving fields. This, however,
requires at least four energy levels onwhich the driving fields operate, and hence is not applicable to a three-level
system. In fact, togetherwith a three-level system, an additional hyperfine level was considered in [31]. In [34],
one of the excited states of theNV-center was used, but necessitated a cryogenic temperature, and in [32] twoΛ
systems (composed of six states)were employed.

In this paperwe showhow a fully robust qubit can be constructed by only utilizing a three-level system
through the application of continuous off-resonant driving fields. Ourmethod achieves robustness to driving
noise, which is the typical problemof continuous dynamical decoupling schemes. Three level-systems arewidely
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available and appear inmany atomic and solid state systems, such as trapped ions, rare-earth ions, defect centers,
and in particular, theNV-center in diamond. This scheme is applicable to both optical andmicrowave
configurations. The fact that only the three-level system ismanipulated facilitates the realization of the fully
robust qubit and its integration in the target application.Moreover, the construction by off-resonant driving
fields enables the implementation of fast, simple qubit gates. Our scheme is therefore aimed at enhancing the
performance of awide range of tasks in the fields of quantum information science and quantum technologies,
and in particular, quantum sensing, where due to the off-resonance construction, our scheme constitutes a
novelmethod for sensing high frequency signals.

2. Fully robust qubit

We start with an explicit definition of a fully robust qubit [32]. Let us denote by ñ{∣ }Ri the robust qubit states. In
what followsHd is the (continuous) drivingHamiltonian,HR is theHilbert subspace of the fully robust qubit,
and Ĥ is the complementaryHilbert space, that is,H H H= Å ^R .We define the fully robust qubit by (see
figure 1)

á ñ = "∣ ∣ ( )R S R i j0 , , 1i z j

lñ = ñ "∣ ∣ ( )H R R i. 2i
R

id

Thefirst equation ensures thatmagnetic noise does not operate within the subspace of the fully robust qubit; the
noise can only cause transitions between a robust state and a state in the complementary subspace.We assume
(by construction) that the energy of all states inHR is far from the energy of the states in Ĥ .More specifically,
we assume that n l l= -^∣ ∣mini i

R , where lR (l^
i ) is an eigenvalue of an eigenstate inHR (Ĥ ), ismuch larger

than the characteristic frequency of the noise, as in this case the lifetimeT1 would be inversely proportional to
the power spectrumof the noise at ν. This ensures that the rate of transitions fromHR to Ĥ due tomagnetic
noise is negligible.

The second equation indicates that the robust states do not collect a relative dynamical phase due toHd, and
are therefore immune to noise originating fromHd. Powerfluctuations of the driving fields result in identical
energyfluctuations of the robust states.

To summarize, the first equation ensures that the robust states are immune to external noise, while the
second equation ensures that the robust states are also immune to controller noise.

3. Fully robust qubit in a three-level system

The rationale for themethod is illustrated infigure 2.Driving a three-level system in aΛ configurationwith large
detunings results in Stark shifts of all three levels.We design the driving fields; i.e., their Rabi frequencies and
detunings, in such away that the new eigenstates are decoupled, infirst order, from the externalmagnetic field
(see equation (1)). In addition, up to the second order, two of the eigenstates have an identical Stark shift (see
equation (2)); hence,fluctuations in the energy gap between them aremitigated since noise in the driving fields
will cause onlyfluctuations due to the higher order terms of the Stark shifts. Specifically, we consider driving
fields in twoΛ configurations. In oneΛ configuration the drivingfields are red detuned and in the secondΛ
configuration the driving fields are blue detuned. Denote byΩ the Rabi frequency of the driving fields, and byΔ
the detuning. The red detuned driving fields, which correspond to (in the interaction picture (IP))

Figure 1. Fully robust qubit. By the application of continuous driving fieldswe create a robust qubit subspace.Magnetic noise and
power fluctuations of the driving fields do not operate within the robust qubit subspace. (a)Bare states,Hd (drivingHamiltonian). (b)
Fully robust qubit (blue),Ω (smallest energy gap between the robust qubit states and non-robust states.
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= W ñá- + ñá+ +- D - D(∣ ∣ ∣ ∣ ) ( )H 0 1 e 0 1 e h.c., 3t tred i i

result in the effectiveHamiltonian [41]

= -
W
D

+ -( ) ( )H S S 12 4 4 . 4x zeff
red

2
2 2

Similarly, the blue detuned driving fields, which correspond to

= W ñá- - ñá+ ++ +D D( )∣ ∣ ∣ ∣ ( )H 0 1 e 0 1 e h.c., 5t tblue i i2 2

result in the effectiveHamiltonian

= -
W
D

-( ) ( )H S S4 4 . 6x zeff
blue

2
2 2

Our construction therefore results in the effectiveHamiltonian

= + = -
W
D

-( ) ( )H H H S 16 4 , 7xeff eff
red

eff
blue

2
2

whose ñ = + ñ + - ñ∣ (∣ ∣ )B 1 11

2
and ñ∣0 eigenstates have a zero first order Zeeman shift and identical energies.

Hence, the two requirements for a fully robust qubit, equations (1) and (2), are fulfilled by the ñ∣B and ñ∣0 states

(with =H Hd eff ). Viewed in the ñ ñ ñ{∣ ∣ ∣ }B D, , 0 basis, where ñ = + ñ - - ñ∣ (∣ ∣ )D 1 11

2
, the red detuned

driving fields induce a positive (negative) Stark shift to the ñ∣0 ( ñ∣B ) state, while the blue detuned driving fields
induce a negative (positive) Stark shift to the ñ∣0 ( ñ∣D ) state. The driving fields are therefore tuned such that the
total Stark shift of the ñ∣0 statewill be equal to the Stark shift of the ñ∣B state (seefigure 2).

We assume a zero-field splitting between the ñ∣0 and  ñ∣ 1 states. In case that the  ñ∣ 1 states are split, due to a
staticmagnetic field, the on-resonance frequencies of the - ñ « ñ∣ ∣1 0 and + ñ « ñ∣ ∣1 0 transitions are not
identical, therefore, we consider the regimewhere m D Wg BB   . Hence, eachΛ system requires two
different (phase-matched) drivingfields and, in the case of amicrowave implementation (with linear
polarizations), corrections on the order of~

m
W

g BB

2

are introduced.

4. Robustness

Wefirst analyze the robustness of the scheme to environmental and controller noise, which are extremely crucial
to theNV-based implementation, and then refer to possible errors in the general experimental set-up.

With respect to environmental noise, dephasing of the dressed states is caused by two factors. Thefirst source
of dephasing is the high order coupling to the externalmagnetic field. By construction, thefirst order coupling is
eliminated, but higher order terms remain. This can be grasped bymoving to the time independent frame of the
dressed states. In the lab frame, and in the basis of the bare states, theHamiltonian of the noise is given by

m= ( ) ( )H g B t S , 8B znoise

whereB(t) is a randomly fluctuatingmagnetic field.Moving to the IPwith respect to the energies of the bare
states, and thenmoving to the basis of the dressed states,Hnoise is transformed to

Figure 2. Fully robust qubit in a three-level system. (a)TwoΛ systems are created via the same level with two unequal detunings of
opposite signs. (b)The driving fields of the twoΛ systems result in Stark shifts of the three levels, here described in the ñ ñ ñ{∣ ∣ ∣ }B D, , 0
basis. In the case where the ratio between the red detuning and the blue detuning is equal to 2 (and for the specific values of the Rabi
frequencies), the Stark shifts of the ñ∣B and ñ∣0 states are identical. At the same time, a large energy gap is formed between the ñ∣B and
ñ∣D states.
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m= ñá +( )(∣ ∣ ) ( )H g B t B D h.c. . 9Bnoise
I

Wecontinue bymoving to the time independent frame; that is, to the IPwith respect to
= -D ñá + ñáD∣ ∣ ∣ ∣H B B D D0

I
2

. This results in

m= ñá +- D( )(∣ ∣ ) ( )H g B t B D e h.c. . 10B
t

noise
II i 3

2

The Stark shifts obtained by the driving fields are accompanied by a small amplitudemixing between the ideal
ñ ñ ñ{∣ ∣ ∣ }B D0 , , states (i.e., the exact eigenstates), whichmeans thatHnoise

II is further (slightly) rotated to have both
diagonal and other off-diagonal terms.However, due to the high detuning of~ D3

2
, the effect of all of these

contributions is negligible. Therefore, the significant effect of the noise is due to the coupling between the ñ∣B
and ñ∣D states. In thefirst order, the noise induces a longitudinal relaxation (decay) rate of~ ( )S EBB BD , where SBB
is the power spectrumof the noise, and EBD is the energy gap between the ñ∣B and ñ∣D states. Hence, a largeEBD
ensures that the longitudinal relaxation rate is negligible (~ ( )S EBB BD T

1

1
 ). In this case, the noise does not

induce transitions between the ñ∣B and ñ∣D states, but does result in a second order fluctuating phase shift of

~ m( ( ))g B t

E
B

BD

2

. The resulting dephasing rate is considerably diminishedwith an increasing EBD (see appendix A).
The second source of dephasing is due to the counter-rotating terms of the driving fields, which induceminor
mixing between the ñ∣B and ñ∣D states via a Raman transition. In case that the  ñ∣ 1 states are Zeeman sub-levels,

this results in an additionalmixing termof~
m
W( )S

g B z
B

2

in the effectiveHamiltonian of equation (7), and the

mixing is of the order of~ =
m m
W W

D
D( ) ( )

g B g BB B

2 2

. This implies a dephasing rate of~
m
D ( )S 0

g B BB
B

, which is greatly

suppressed by enlarging the Zeeman splitting.
Regarding controller noise, in an ideal construction the (second order) Stark shifts of the ñ∣B and ñ∣0 states are

identical and therefore immunity to controller noise is obtained.However, while we can fix the second order
Stark shifts to be identical, the fourth order termsmight not be negligible, and in this case will introduce an
energy gap between the ñ∣B and ñ∣0 states. Fluctuations of this energy gap, due to driving amplitude noise, can be
significantly reduced by either an exact calculation of the fourth order energy shifts, or a numerical search for the
point of a non-zero second order shift, which is robust to driving fluctuations5. In appendix Bwe showhow
robustness could be further improved by utilizing a double-drive, where the first drive is on-resonance and the
second drive is off-resonance.

For the case of anNV-center in diamond, whichwe analyzed in detail (see below), our scheme achieves a
significant improvement in the coherence time under realistic conditions that take into account both
environmental noise and powerfluctuations of driving fields.

The robustness of the schememay also be affected by errors in the experimental set-up. An uncertainty, or a
drift, of the staticmagnetic field, dBz , shifts the bare + ñ∣ 1 and - ñ∣ 1 states, and therefore introduces two-photon
detunings. Compared to the effect of the fluctuatingmagnetic noise, the dominant effect here is afirst order
effect. The coupling between the ñ∣B and ñ∣D states results in an amplitudemixing and the ñ∣B state ismodified to

ñ ~ ñ + ñm d D
W

∣ ˜ ∣ ∣B B D
g BB z

2 . Hence, dBz inflicts a dephasing rate of~
m d D
W

( )S 0
g B

BB
B z

2 . This dephasing rate, however,

remains negligible as long as the energy gap between the dressed states ismuch larger than themagnetic field

uncertainty; that is, m dW
D

g BB z
2

 . In addition, there can be relative amplitude and relative phase errors between

the two driving fields of aΛ system. In both cases, a relative error of εwill introduce an amplitudemixing of~ eW
D

and an energy shift of~ e W
D

2 2

. For example, a relative amplitude error of ε in the red detunedΛ system introduces

(in the IP) the coupling term eW ñá +- D(∣ ∣ )D0 e h.c.ti 3
2 , which results in an amplitudemixing of~ eW

D
between

the ñ∣0 and ñ∣D states. Since themagnetic noise rotates at the same frequency as this coupling term (see
equation (10)) and because there is an amplitudemixing of~W

D
between the ñ∣0 and ñ∣B states, we have that

eá ñ ~ W
D

∣ ∣ ( )S0 0z
2 , and hence, the inflicted dephasing rate due to a relative amplitude error of ε is e~ W

D
( ) ( )S 0 .BB

2

5. Single qubit gates

In this sectionwe showhowprotected qubit gates can be implemented and discuss their application for sensing.
A sx gate can be realized by driving the ñ « ñ∣ ∣B 0 transition on resonancewith

w w= W ñá- + ñá+ +- +( ( )∣ ∣ ( )∣ ∣) ( )H t tcos 0 1 cos 0 1 h.c.. 11x g 1,0 1,0

5
Under a driving fluctuation, dW  W + W, there is always a point of the parameters such that the energy fluctuations of the ñ∣B and ñ∣0

states are equal, d d=E EB 0, in thefirst order in dW.We assume that we canfind a set of values of the parameters which is close enough to this
point.
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Note that while a concatenated on-resonance driving scheme allows for slow gates with W Wg n , where Wn is
the Rabi frequency of the last drivingfield, ourmethod enables fast gates, where Wg is limited solely by the
detuning, W Dg  (see figure 3). A sy gate can be realized by introducing a phase shift of

p
2
in the driving

frequencywith respect to the driving frequency of the sx gate. Alternatively, one can start with a polarization that
corresponds to the sy gate, and then add the

p
2
phase shift to get the sx gate. These realizations of sx or sy gates

require two (phase-matched) driving fields, which only couple the ñ∣B state to the ñ∣0 state (similar to the dressing
fields). A simpler implementation of the gates can be achieved by employing only one of the driving fields.

However, as this driving field couples both the ñ∣B and ñ∣D states to the ñ∣0 state, Wg is limited by W W
Dg

2

 .

6. Sensing

Sensing of high frequency signals is of great importance, especially in the case of classical fields sensing [42, 43],
in detection of electron spins in solids [44] andNMR [45]. To the best of our knowledge, to date, dynamical
decoupling techniques have not been incorporated in sensing schemes of high frequency signals, which are
therefore limited by *T2 . Our scheme enables enhanced sensing of high frequency AC signals, where a signal
induces rotations of the fully robust qubit. This can be accomplished by tuning the frequency of the ñ « ñ∣ ∣B 0
transition to the sensingfield frequency, as in this case the frequency corresponds to the energy gap between the
bare ñ∣0 and  ñ∣ 1 states. Since the sensing sensitivity scales, in the shot noise limit, like T2 , for the case of
sensingwith anNV-center our scheme predicts an improvement of∼1 order ofmagnitude in sensitivity.

Sensing of AC signals with lower frequencies can by done by a Raman transition.We assume that the AC
signal corresponds to a sz operation, which couples the ñ∣B and ñ∣D states, and its amplitude is denoted by g. A
Raman transition between the ñ∣B and ñ∣0 states is achieved by adding a control fieldwhose frequency is tuned to
match the same detuning as that of the AC signal, so a one-photon detuning is obtained (see figures 3 (c) and
(d)). Full oscillationwill then be observedwhenever W = g2 c , where Wc is the Rabi frequency of the control
field. In this case the sensing sensitivity is limited by the fluctuations of the (dressing)Rabi frequency,Ω, which
results influctuations of the one-photon detuning, δ. Ideally, the sensitivity scales like d WT

g 2 , where WT2 is the

coherence time induced by theRabi frequency fluctuations. Note that the sensitivity of low-frequency signal

sensing using the bare state scales like *T2 , while a scaling of WT2 is obtained by utilizing the ñ « ñ∣ ∣B D
transition of the dressed states.

7. Implementationwith theNV-center in diamond

The electronic ground state of theNV-center is a spin 1 state, where the  ñ∣ 1 states are separated from the ñ∣0
state by a zero-field splitting of =D 2.87 GHz [46, 47] (see figure 4(a)).We consider a staticmagnetic field,
which is applied along theNV axis, such that m »g B 20B GHz (note that a larger Zeeman spitting would result

Figure 3. Single qubit gate and sensing. A single qubit gate in the bare states basis (a), and in the dressed states basis (b). Red (green)

arrows correspond to a gatewith W Dg  (W W
Dg

2
 ). The green gate enables the sensing of high frequencyfields. (c)Controlfield

used for the sensing of low frequency fields via a Raman transition in the bare states basis. (d)The sensing Raman transition in the
dressed states basis, where g denotes the sensingfield. Dashed arrows in (a) and (c) represent the dressing driving fields.
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in a better decoupling from themagnetic noise). In this case level-crossing occurs and the energy gaps between
ñ∣0 and  ñ∣ 1 correspond to w »+ 23 GHz0, 1 and w »- 17 GHz0, 1 (see figure 4(b)).We assume that to have a

good decoupling of the robust qubit and themagnetic noise we need to create an energy gap of10 MHz
between the ñ∣B and ñ∣D states; hence, we set W = 70 MHz [48, 49]. This implies that the conditions for an ideal
construction, m w D Wg B,B 0   , are not fully satisfied and therefore the Stark shifts will have contributions
from all drivingfields aswell as from the counter-rotating terms. TheHamiltonian of the system is given by

w w
w w w w

w w w w

= +
+ W + - D + - - D
+ + + D - - + D

( [( ) ] [( ) ]
[( ) ] [( ) ]) ( )

H S S

S t t

t t

cos cos

cos cos , 12

z B z

x B B

B B

0
2

0 1 0 1

0 2 0 2

where w = D0 and w m= g BB B . Bymoving to the IPwith respect to w w= +H S Sz B z0 0
2 (but not taking the

rotating-wave approximation (RWA)), and thenmoving to the ideal dressed states basis , ñ ñ ñ{∣ ∣ ∣ }B D0 , , we
obtain = - †H U H Ue eH t H t

I
i i0 0 , fromwhichwe calculate, in the ideal dressed states basis, the energy shifts of the

dressed states (up to the second order)6 [41]. The energy shifts are given by7

w

w w w w

w w w w

w w w w

D = W
D

+
- D

+
+ D

-
- D

+
- D

-
+ D

+
- - D +

+
- D +

+
- + D +

+
+ D +

( )

⎛
⎝⎜

⎞
⎠⎟

E
1

8

4 4

2

1

2

1

2

1

2

1

2
1

2 2

1

2 2

1

2 2

1

2 2
, 13

B

B B B B

B B

B B

2

1 0 1

1 1 2 2

1 0 1 0

2 0 2 0

w

w w w w

w w w w

w w w w

D = W -
D

+
+ D

+
- D

-
+ D

+
+ D

-
- D

+
- + D +

+
+ D +

+
- - D +

+
- D +

( )

⎛
⎝⎜

⎞
⎠⎟

E
1

8

4 4

2

1

2

1

2

1

2

1

2
1

2 2

1

2 2

1

2 2

1

2 2
, 14

D

B B B B

B B

B B

2

2 0 2

2 2 1 1

2 0 2 0

1 0 1 0

D = -D - D ( )E E E . 15B D0

In an ideal scenario the terms~
w w
W W,

B

2

0

2

would be negligible, and hence, the requirementD = DE EB0 would

implyD = D
2 2

1 .

Figure 4. Implementationwith theNV-center. Ground state of theNV-center. (a)Without a staticmagneticfield. (b)With a static
magnetic field and driving fields. The ratio ofD1 toD2 is chosen such that robustness to power fluctuations of driving fields is
achieved.

6
Note that sincewe do notmake the RWA, the assumption of a narrow band of frequencies, w w w-∣ ∣N 1 1 , made in [41] does not hold in

this case. This, however, does not effect the validity of the calculation.
7
The energy shifts due to the effective coupling between the ñ∣B and ñ∣D states are ~

m
W D

( )g BB

2

2 , which is∼2 orders ofmagnitude smaller than the

leading contributions of the counter-rotating terms of ~
m
W

g BB

2
.We therefore neglect these terms in the calculation of the energy shifts.
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In order to achieve an energy gap of10 MHz between the ñ∣B and ñ∣D states, togetherwith W = 70 MHz,
we also setD = 500 MHz1 . ForD = DE EB0 , the energy gap between the ñ∣0 and ñ∣B states, due to the fourth
order energy shifts, is = - »E E E 0.25 MHzB B0 0 , whichmeans that driving fluctuationswill impose a
limitation on the coherence time.We therefore tune the energy shifts to a robust point at which
D - D »E E 0.63 MHzB0 , and »E 0.315 MHzB0 (see footnote 5). In this case we have thatD = 500 MHz1 ,
D » 209 MHz2 , and »E 17.96 MHzBD .

We verified the robustness of this scheme by simulating its performance when theNV spinwas subject to
magnetic noise and driving fluctuations.Wemodeled themagnetic noise, ( )B t , as anOrnstein–Uhlenbeck
process [50, 51]with a zero expectation value, á ñ =( )B t 0, and a correlation function

á ¢ ñ = t g- - ¢( ) ( ) ∣ ∣B t B t ec t t
2

. An exact simulation algorithm [52]was employed to realize theOrnstein–

Uhlenbeck process, which according to

t
+ D = + -- -t t

D D( )( ) ( ) ( )B t t B t n
c

e
2

1 e , 16
t t2

where n is a unit Gaussian randomnumber.We took the pure dephasing time to be m=*T 5 s,2 and the

correlation time of the noise was set to t m= =
g

15 s1 [53, 54], where the diffusion constant is given by

»
t*

c .
T

4

2
2 Driving fluctuationswere alsomodeled by an anOrnstein–Uhlenbeck process with a zero expectation

value.We chose a correlation time of t m=W 500 s, and a relative amplitude error of d =W 0.5% so the diffusion
constant is given by d t=W W Wc 2 . Figure 5 presents the outcome of the simulation of the fully robust qubit
under the effect ofmagnetic and driving noise. The plot shows oscillations between the y ñ = ñ  ñ∣ (∣ ∣ )B01

2
states averaged over 200 trials. The oscillations are not symmetric because fast oscillations due to counter-
rotating terms at (local)minimumvalues ofP are averaged to zero. The simulation confirmed our estimation of

mT 1820 s2  , an improvement ofmore than 2 orders ofmagnitude in the coherence time, pushing it towards
the lifetime limit. Note that the simulation does not take decoherence due to longitudinal spin relaxation (of the
bare states) into account, which is given by G = G

2 2
1 , where G =

T1
1

1
(since G( )S EBB BD 1 , the effect of the noise

on the life time of the dressed states is negligible).
The probability of remaining in the initial y ñ+∣ state is given by (green line infigure 5)

=
+ g g- -∣ ( ) ( )∣ ( )

( )
P

F t G t1 e e

2
, 17

t tm d
2

where

W =
+

g

x g
x

x( ) ( )
( )

( ) ( )F t,
exp

cosh sinh
, 18

t

t t

2

2

2

2

Figure 5.Coherence time. Simulation of anNV-center implementation of a fully robust qubit where =*T 52 μs, W = 70 MHz,
D = 500 MHz1 andD = 209 MHz2 . The graph is a result of average over 200 trails, and shows oscillations between the
y ñ = ñ  ñ∣ (∣ ∣ )B01

2
states. The theoretical dephasing rate is plotted in green and corresponds to a coherence time of mT 1820 s2  .
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g x
W =

W + x( )( )
( ) ( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟G t
g

, exp
2i

2 coth
19

t

2

2

and

x g
g

= -
W

( )g
4

16i
. 202

2

∣ ( ) ( )∣F t G t corresponds to the (second order)dephasing due to the coupling between ñ∣B and ñ∣D (see
appendix A), g = á ñ∣ ∣ ( )B S B S 0z BBm is the (first order)dephasing rate due to the amplitudemixing between ñ∣B
and ñ∣D , and g = d d WW

d 2
r is the dephasing rate due to driving fluctuations, where d = dW + W - W

W
∣ ( ) ( ) ∣

( )r
E E

E
B B

B

0 0

0
. In

our case we estimated that g » 200m Hz, g = 182d Hz, and the coherence time due to the coupling between ñ∣B
and ñ∣D alone is m3440 s . In appendix Cwe show the effect of these different sources of noise on the coherence
time, which together result inT2=1820 μs.

We used our theoreticalmodel to estimate the achievable coherence times in different scenarios. Figure 6
shows the estimated coherence times for the case of m=*T 3 s2 as function of the correlation time of the noise
and for various values of the Zeeman splitting. The parameters chosen for these estimations (see appendixD)
were not optimized and thus the obtainedT2 times constitute a lower bound estimation. Nevertheless, the
estimations imply that a significant improvement in the coherence time can be achieved under evenmore severe
conditions.

8. Conclusion

Wepresented a newmethod that enables the construction of a fully robust qubit utilizing a three-level system
alone. By the application of off-resonance continuous driving fields in aΛ configuration, robustness to both
external and controller noise is achieved.We analyzed theNV-center based implementation of the scheme and
showed that with current state-of-the-art experimental setups the scheme enables an improvement ofmore than
two orders ofmagnitude in the coherence time.Moreover, since the scheme allows for fast gates, it is
advantageouswith respect to on-resonance driving schemes, sincemore qubit operations in a givenT2 time
interval can be performed. Our analysis of theNV-center based implementation considered linearly polarized
fields. The performance of the scheme is likely to be further improved by the application of circularly polarized
fields [55]. This scheme is relevant tomany tasks in the fields of quantum information science and quantum
technologies, and in particular to quantum sensing of high frequency signals. The utilization of off-resonance
driving fieldsmakes the schememore robust to an inhomogeneous broadening than schemes that use
(continuous) on-resonance driving fields, and hence, it ismore attractive for ensemble-based sensing. Our
scheme is expected to perform even better in the optical regime, where large energy gaps, stronger driving fields,
and polarization dependent transitions allow formuch smallermixing amplitudes between the ideal dressed
states. Although herewe considered the case of a spin 1 system, the scheme is also applicable to systems of half-
integer spins. For example, in the case of the calcium ion, +Ca40 , one could consider aΛ system composed of the

+ ñ∣S ; 1 21 2 , - ñ∣D ; 1 23 2 , + ñ∣D ; 3 23 2 states. In this case a fully robust optical qubit can be realizedwith

ñ = + ñ∣ ∣S0 ; 1 21 2 and ñ = - ñ + + ñ∣ ∣ ∣B D D; 1 2 ; 3 21

8 3 2
7

8 3 2 .

Figure 6. Lower bound estimation ofT2. A theoretical (non-optimized) estimation of the coherence times for the case of =*T 32 μs as
function of the correlation time of the noise and for various values of the Zeeman splitting.
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AppendixA

Herewe analyze the dephasing of a strongly driven system.We consider the case of a two-level system (TLS)
under a single on-resonance driving andmagnetic noise. TheHamiltonian is given by

w
s w s s= + W +( ) ( )H t B t

2
cos ,z x z

0
0

whereB(t) is the randommagnetic noise (here in units of frequency).Moving to the IPwith respect to
s= wH z0 2

0 , taking the rotating-wave-approximation (RWA), andmoving to the dressed states basis, we get that

s s=
W

+ ( )H B t
2

.z xI

In the regime of a strong driving field, W ∣ ( )∣B t , the time evolution of the dressed states can be simplified
by the adiabatic approximation and hence, the dressed states accumulate a phasewhich is given by

ò òf =  ¢ ¢ + W »  ¢ W +
¢

W
( ) ( ) ( )⎛

⎝⎜
⎞
⎠⎟t t B t t

B t1

2
d 4

1

2
d

2
.

t t

0

2 2

0

2

Weassume that ( )B t is anOrnstein–Uhlenbeck randomprocess [50, 51], which is described by the stochastic
differential equation

g= - +B B t c Wd d d ,t t t
1
2

where g =
t
1 , τ and c are the correlation time and the diffusion constant of the noise, andWt is aWiener process.

In this case ( )B t2 is known as the square-root process, or theCox–Ingersoll–Ross (CIR) process [56], whose
stochastic differential equation is given by

g= - +( )B c B t c B Wd 2 d 2 d .t t t t
2 2 21

2

Denote the randomphase by òj = ¢ ¢
W

( ) ( )t t B td
t1

0
2 . The characteristic function of the square-root process is

explicitly given by [56, 57]

á ñ = W Wj ( ) ( )( ) F t G te , , ,t
B

i
t
2

where

g x

W =
+

W =
W +

g

x g
x

x

x( )

( ) ( )

( )

( )
( )

( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

F t

G t
g

,
exp

cosh sinh
,

, exp
2i

2 coth
,

t

t t

t

2

2

2

2

2

2

x g
g

= -
W

g
4

16i2
2

andwe assume that = = á ñ = = t( ) ( )B t B t g0 c2 2 2
2
.

We therefore conclude that in the strong driving regime, the probability to remain in the initial equal
superposition state of the dressed eigenstates is given by

=
+ W W

W ( ) ∣ ( ) ( )∣
P t

F t G t1 , ,

2
.

Wenumerically verified this by simulating the noise, ( )B t , as anOrnstein–Uhlenbeck process with a zero

expectation value, á ñ =( )B t 0, and a correlation function á ¢ ñ = t g- - ¢( ) ( ) ∣ ∣B t B t ec t t
2

. An exact simulation
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algorithm [52]was employed to realize theOrnstein–Uhlenbeck process, which according to

t
+ D = + -- -t t

D D( )( ) ( )B t t B t n
c

e
2

1 e ,
t t2

where n is a unit Gaussian randomnumber.We took the pure dephasing time to be m=*T 3 s,2 and the

correlation time of the noise was set to t m= 25 s. The diffusion constant was therefore given by »
t*

c .
T

4

2
2 In

figure 7 the pure dephasing (no driving) is plotted. Then, for two values of Ω, W = 50 MHz and W = 100 MHz
we simulated the time evolution of the TLS, which is initialized to  ñ∣ z , the equal superposition of the dressed
eigenstates. Figures 8 and 9 show the probability of remaining in the initial state as a function of time. The
analytical expression of W ( )P t is plotted in green. In addition, we numerically calculated this probability, which

by the adiabatic approximation is given by =
ò+ ¢ ¢ + W( )( )

P
t B t1 cos d 4

2

t1

2 0
2 2

. Infigures 10 and 11 P is plotted as a
function of time and agrees with the analytical expression of W ( )P t , which is plotted in green. Increasing Ω

increasesT2. Indeed, a m= { }T 167, 857, 2163, 4110, 6707 s2 is obtainedwith a driving of
W = { }10, 30, 50, 70, 90 MHz respectively. Iffigure 12we plotT2 as function of Ω.

Figure 7. Simulation of pure dephasingwith no driving fields.
+ -1 e

2

g t2 2

2
is plotted in green =

*
⎜ ⎟
⎛
⎝

⎞
⎠g

T
2 2

2
2 .

Figure 8. Simulation of the coherence time under a driving of W = 50 MHz. Average over 1000 trials. W ( )P t is plotted in green.
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Appendix B

The robustness of the scheme to external noise depends on the energy gap between the dressed states, and can, in
principle, be improved by increasing both theRabi frequency of the driving fields and the detuningΔ. As these
are limited, an improvement can be achieved by a double-drive, where in the first drive on-resonance driving
fields are applied. The energy gap of the dressed states, which are immune to external noise, is now~W
(compared to an energy gap of W

D

2

in the case of a single off-resonance driving) (see figures 6(a) and (b)). Next, we

add off-resonance driving fields, which results in an effective Sx
2 Hamiltonian of the dressed states, and thus

achieves robustness to controller noise as well (see figures 13(c) and (d)). In the IP, and taking the RWA, the
Hamiltonian of the on-resonance driving fields is given by

= W = W ñá + ñá(∣ ∣ ∣ ∣) ( )H S B B2 0 0 . B.1xI

Its eigenstates and eigenvalues are given by +ñ = ñ + ñ ñ -ñ = ñ + ñ{ }∣ (∣ ∣ ) ∣ ∣ (∣ ∣ )B D B0 , , 01

2

1

2
and

-W W{ }, 0,
2 2

respectively. Note that all three eigenstates are immune to external noise. In order to construct

an effective Sx
2 (or Sy

2) drivingHamiltonian of these dressed states, wefirst need to construct the couplings
-ñá+ + +ñá-∣ ∣ ∣ ∣and ñá+ + +ñá∣ ∣ ∣ ∣D D as building blocks, and then use these for the construction of two

Figure 9. Simulation of the coherence time under a driving of W = 100 MHz. Average over 1000 trials. W ( )P t is plotted in green.

Figure 10.Adiabatic approximationwith W = 50 MHz. Numerical calculation of =
ò+ ¢ ¢ + W( )( )

P
t B t1 cos d 4

2

t1

2 0
2 2

. Average over
10 000 trials. W ( )P t is plotted in green.
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off-resonanceΛ systems, as in the single-drive scheme (see figure 2). By adjusting the phases of the driving fields,
which correspond to the - ñ « ñ∣ ∣1 0 and + ñ « ñ∣ ∣1 0 transitions, the coupling - ñá + + ñá +(∣ ∣ ∣ ∣)i 1 0 1 0 h.c.
can be constructed.Moving to the dressed states basis, this results in a -ñá+ - +ñá-(∣ ∣ ∣ ∣)i coupling. Similarly,
by adjusting the phases, the ñá + ñá∣ ∣ ∣ ∣D D0 0 coupling is achieved, and adding a phased-matched Sz term results
in the desired ñá+ + +ñá∣ ∣ ∣ ∣D D coupling.Hence, an effective Sx

2 Hamiltonian for the dressed states can nowbe
obtained. Alternatively, it can be shown that the effectiveHamiltonian, which in the bare states basis is given by

=
W
D

W W

+
W

-- +( ) ( ) ( )

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

H S t S t

t
S S

cos
2

sin
2

sin 2

2 2
, B.2

z y

y y

eff
2
2

2 2 2 2

1 1

where = - - ñá +- ∣ ∣S i 1 0 h.c.y
1 and = + ñá ++ ∣ ∣S i 1 0 h.c.y

1 , results in = W
D

H SxII
22

2

in the dressed states basis,
whenmoving to the dressed states basis and to the IPwith respect to = WH SzI .Heff can be constructedwith off-
resonance driving fields, similar to the single-drive construction.

AppendixC

Infigure 14we show the effect of the different sources of noise on the coherence time, which together result
in m=T 1820 s2 .

Figure 11.Adiabatic approximationwith W = 100 MHz. Numerical calculation of =
ò+ ¢ ¢ + W( )( )

P
t B t1 cos d 4

2

t1

2 0
2 2

. Average over
10 000 trials. W ( )P t is plotted in green.

Figure 12.T2 as function of Ω. The coherence timeswhere deduced by setting =W
+( )P t e1 1

2
.

12

New J. Phys. 18 (2016) 123012 NAharon et al



AppendixD

Herewe give the values of the parameters used in the estimation ofT2 in the case of =*T 32 μs.We assume that
in all cases we can find a robust point such that g = 285 Hzd (compared to g = 182 Hzd of the simulation).

mg BB (GHz) Ω (MHz) D1 (MHz) gd (Hz)

10 60 300 285

20 60 300 285

30 75 400 285

40 85 450 285

50 100 500 285
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