
Theory of the Free-Electron Laser:
From Classical to Quantum

Dissertation
zur Erlangung des Doktorgrades

Dr. rer. nat.
der Fakultät für Naturwissenschaften

der Universität Ulm

Vorgelegt von:
Peter Kling

aus
Günzburg

2017



Dekan: Prof. Dr. Peter Dürre

Erstgutachter: Prof. Dr. Wolfgang P. Schleich

Zweitgutachter: Prof. Dr. Peter Reineker

Tag der Promotion: 15.11.2017



Zusammenfassung

Alle bisherigen Realisierungen eines Freie-Elektronen-Lasers (FELs) können allein durch
klassische Physik beschrieben werden. In dieser Arbeit hingegen befassen wir uns mit einem
Parameterbereich, in dem Quanteneffekte wichtig werden. Wenn der diskrete Rückstoß, den
ein Elektron durch die Streuung an den Feldern erfährt, die bestimmende Größe der Dynamik
darstellt, sprechen wir vom ‘Quanten Regime’ oder von einem ‘Quanten FEL’. In diesem
Grenzfall besetzen die Elektronen nur zwei resonante Impulszustände.
Ziel dieser Arbeit ist es dabei, sowohl den Übergangsbereich zwischen klassischer Physik
und Quantenmechanik im FEL zu beleuchten, als auch bisherige Modelle für den extremen
Quantenbereich zu erweitern und dessen Eigenschaften mit denen des klassischen Grenzfalls
zu vergleichen.
Neben einem hohen Rückstoß benötigen wir eine sehr schmale Impulsverteilung der Elektronen,
um Quanteneffekte im FEL beobachten zu können. Um diese Aussagen zu beweisen, verwenden
wir zwei verschiedene Ansätze: Im Heisenberg Bild wird deutlich, dass die diskrete Dynamik
der Elektronen ihre Ursache in den nichtvertauschenden Orts- und Impulsoperatoren hat,
während der Ansatz im Phasenraum mit Hilfe der Wignerfunktion am besten dazu geeignet
ist, den Einfluss der Impulsbreite zu untersuchen.
Um die Resultate für die statistischen Eigenschaften des ausgesandten Lichts eines Quanten
FELs besser einordnen zu können, müssen wir erst die entsprechenden Merkmale eines klas-
sischen FEls kennen und dafür ein Modell entwickeln, in dem sowohl die Elektronen als auch
das Lichtfeld quantisiert sind. Durch Verwendung der Wignerfunktion und Vernachlässigung
des Rückstoßes leiten wir eine Fokker–Planck–Gleichung her, die sowohl den Drift als auch
die Diffusion der Laseramplitude beschreibt. Damit sind wir in der Lage, Ausdrücke für
die Photonenstatistik im stationären Zustand sowie für die intrinsische Linienbreite eines
klassischen FELs herzuleiten, die im Einklang mit bestehender Literatur stehen.
Erhöhen wir nun den Rückstoß, erreichen wir schließlich das Quanten Regime des FELs, in
dem die Dynamik der Elektronen durch ein Zwei-Niveau-Verhalten charakterisiert wird. Wir
beweisen dieses Verhalten durch asymptotisches Lösen der Schrödingergleichung, wobei wir,
die vom Rückstoß verursachten, schnellen Oszillationen vernachlässigen. Unsere Methode
gibt uns dabei die Möglichkeit, die zu Grunde liegenden Prozesse zu erkennen und erbringt
den Beweis, dass Mehr-Photonen-Prozesse sowie nicht-resonante Übergänge im Quanten FEL
unterdrückt sind.
Um die Strahlungseigenschaften des Quanten FELs zu berechnen, benutzen wir die Fock-
Darstellung der reduzierten Dichtematrix für das Laserfeld und machen von Standardmetho-
den aus der Lasertheorie Gebrauch. Wir finden unter anderem, dass die Photonenstatistik
im Quanten Regime schmäler ist als im klassichen Bereich und somit der Poisson-Verteilung
eines kohärenten Zustandes näher kommt.
Die wichtigste Leistung dieser Arbeit besteht jedoch darin, das bisherige Einzel-Elektron-
Modell auf die kollektive Wechselwirkung von vielen Elektronen mit dem Laserfeld zu
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verallgemeinern. Trotz experimenteller Schwierigkeiten, hinsichtlich der Impulsverteilung des
Elektronenstrahls und der benötigten Länge des Undulators, zeigen wir damit die Möglichkeit
auf, einen Quanten FEL in einem Parameterbereich zu betreiben, in dem ein einzelner
Durchgang von Elektronen ausreicht um eine hohe Verstärkung spontan emittierter Strahlung
zu erreichen. Dies ist vor allem dann wichtig, wenn wir uns in einem Bereich des Spektrums,
zum Beispiel dem Röntgenbereich, befinden, in dem keine hochwertigen Resonatoren zur
Verfügung stehen, um die Strahlung über mehrere Durchgänge von Elektronen zu speichern.
Wir finden für diesen Parameterbereich ein exponentielles Wachstum der Laserintensität, das
jedoch sättigt, wenn jedes Elektron maximal ein Photon ausgesandt hat im Gegensatz zu
den Mehr-Photonen Prozessen im klassischen FEL.
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1 Introduction

Since the advent of quantum mechanics in the early 20th century there is an ongoing quest
to observe quantum effects in experiments. This search was successful for several kinds of
physical systems: atomic physics, solid state physics, or the interaction between matter waves
and light, to name only a few of them.
In the field of free-electron lasers (FELs), however, classical physics is sufficient to explain all
important mechanisms of an experiment. Hence, the FEL is broadely viewed as the prime
example of a classical laser [1]. On the other hand, since quantum mechanics is the more
fundamental theory we expect that the range of parameters accessible to current experiments
is just one extreme limit. By going to a different regime we, indeed, should observe quantum
effects. The realization of this ‘quantum regime’ or ‘Quantum FEL’ [2, 3, 4] would lead to the
very remarkable situation that an FEL as huge facility consisting of a large accelerator and a
long undulator displays properties inherent to the microscopic world described by quantum
physics.
In this thesis we theoretically study the transition from the classical to the quantum regime
of an FEL. In short, we enter the quantum regime when the quantum mechanical recoil,
which the electron experiences during interaction, dominates the dynamics leading to a
discrete momentum ladder in contrast to the continuous trajectories in the classical regime.
In the extreme quantum limit the electron even occupies just two resonant momentum levels.
This reduction to only a few discrete levels quite naturally establishes the connection of the
Quantum FEL to an atomic laser.

1.1 Historical overview
In order to put this thesis into a broader context we briefly review in the following the history
of FEL theory with a particular emphasis on the quantum regime and quantum mechanical
models. Before it was discovered that the FEL can be described as a classical device its
properties were primarily derived by means of quantum electrodynamics [5] by John M. J.
Madey in 1971 who was inspired by stimulated inverse Compton scattering in astrophysics [6].
However, in the course of Madey’s calculations the Planck constant ~ dropped out of the
equations and one was left with completely classical expressions. The resulting confusion
whether the FEL is classical or quantum was resolved when in 1976 the first models, which
solely relied on classical physics, explained the gain mechanism of the FEL. While the
approach of Hopf et al. [7] was based on a distribution function for the electrons in phase
space, William Colson [8] considered the motion of each electron for which he derived the
famous FEL pendulum equation.
Nevertheless, quantum mechanics did not completely vanish from FEL theory. The quantum
mechanical models of the FEL [9, 10, 11] established in the 1980s investigated the emergence
of the classical limit of the FEL from a quantum point of view. Moreover, by quantizing the
electron motion as well as the laser field, genuine quantum mechanical properties of the light
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field like the photon statistics [12, 13] or the intrinsic linewidth [14, 15, 16] were derived. In
addition, the existence of a quantum regime was appreciated [9, 17, 18] which was, however,
far beyond the experimental possibilities at that time.
Parallel to the emergence of quantum models for the FEL there was a development in FEL
theory which had a larger effect on the experimental situation: the high-gain theory [19, 20, 21].
While earlier models considered the effective interaction of a single electron with the laser
mode in analogy to standard laser theory [22], the high-gain theory treated the collective
interaction of many electrons with the laser field. Due to the small intensity change in
the single-electron model one had to use a resonator to store the field in many passages of
electron bunches. In contrast, the many-electron approach leads to an exponential growth of
the laser intensity in a single passage of electrons through a very long undulator. Hence, it
became possible to operate an FEL in parts of the spectrum, where no high-quality mirrors
are available. More than 20 years after its appearance the high-gain theory thus has led to
the first lasing of an X-ray FEL [23, 24].
With a decrease of wavelength the quantum mechanical recoil, which is proportional to the
product of ~ and of the wave number, increases. Hence, the successful construction of X-ray
FELs made the quantum regime more feasible in experiments. Therefore, in the beginning
of the new millenium novel theoretical approaches [2, 3, 25] towards a Quantum FEL were
developed. These models considered the high-gain regime and predicted enhanced properties
of the emitted radiation when compared to its classical counterpart [25].
In Ref. [25], for example, first the full set of the dynamical equations for the FEL was solved
before the quantum and the classical regime were identified as two extreme limits. On the
other hand, in our approach in Refs. [4, 26, 27, 28, 29, 30, 31], which is the starting point
of the present thesis, we have first considered directly a limit in the equations of motion,
where only two levels of the momentum ladder are occupied, which is our definition of a
Quantum FEL [4]. Then, we have solved the simplified set of equations. By this procedure,
we have established the connection to the Jaynes-Cummings model [32] which describes the
interaction of a two-level atom with a quantized field mode.

1.2 Goals & results
In the present thesis we do not just follow the goal to refine and to extend the theory of
the quantum regime of the FEL put forward in Refs. [4, 26, 27], but we also try to gain
fundamental understanding of the transition from classical to quantum. Moreover, we want
to compare the properties of a Quantum FEL with the ones of its classical counterpart in
order to deduce consequences for possible experiments. These goals quite naturally serves as
a guideline for this thesis: we start by reviewing the classical FEL theory, then we study the
transition regime between classical and quantum, before we finally enter the deep quantum
regime.
Quantum effects in the FEL emerge due to the discreteness of momentum states in contrast
to the continuum of momenta in the classical case. This discreteness is induced by a high
value of the quantum mechanical recoil of the electrons interacting with the fields. However,
a high recoil is not the only constraint: the momentum spread of the electron beam has to be
small enough for quantum effects not be washed out. Guided by these intuitions we calculate
explicit expressions for quantum corrections to the classical regime of the FEL verifying our
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assumptions. Moreover, we identify the classical limit from a quantum point of view: a small
recoil and a ‘classical initial state’ [33] for the electrons which is characterized by a relatively
broad momentum spread.
In order to classify the quantum statistical properties of the radiation from a Quantum FEL
we first have to know the corresponding properties of a classical FEL. With the help of our
insights gained in investigating the emergence of quantum effects we develop a fully-quantized
description of the FEL in the classical regime and derive a Fokker–Planck equation [34]
for the dynamics of the laser field. Within this novel and intuitive approach we study the
photon statistics and the linewidth of the FEL radiation and are able to rederive the results
of Refs. [13, 14, 15, 16, 35].
Since the deep quantum regime of the FEL is defined as the limit, where the electron occupies
just two momentum levels, we employ standard methods [22] from laser theory to derive the
properties of the FEL radiation in this regime. A comparison to the corresponding quantities
from the classical regime reveals, for example, that the photon statistics of a Quantum FEL
is narrowed, a fact that we identify as a pure quantum effect.
The main result of this thesis, however, is the extension of our model for the Quantum FEL
from a single-electron theory to a many-electron model. This generalization is necessary to
understand the high-gain regime and, thus, to eventually construct an X-ray Quantum FEL
without the need of a resonator in this part of the spectrum. For the many-electron case
we identify the quantum regime as the collective interaction of many ‘two-level electrons’
with the radiation field. Similar to the classical high-gain regime we obtain exponential gain
for short times and saturation for longer times. While the classical FEL is characterized by
multiphoton processes each electron in the Quantum FEL maximally emits only one photon.

1.3 Outline
This thesis is structured in the following way: We begin our investigations in Chap. 2 with
a review of the classical FEL theory. After summarizing the basic scheme of an FEL we
establish the connection of the FEL to Lamb’s classical laser [1] and rederive the pendulum
equation [8] for the electron dynamics. In addition, we give an extensive overview of the
various gain regimes of an FEL and discuss their emergence and properties.
In Chap. 3 we study the transition from classical to quantum in the FEL by calculating
quantum corrections to the classical limit. In an illustrative approach [4] which compares
classical trajectories with discrete quantum levels we deduce two conditions for quantum effects
to emerge: (i) a high value for the quantum mechanical recoil and (ii) a small momentum
spread of the electron beam. We proceed by explicitly calculating quantum corrections to the
classical gain with the help of two different methods: first we solve the quantized pendulum
equation in the Heisenberg picture before we consider the dynamics of the Wigner function
for an electron in the FEL. By employing the Heisenberg picture it becomes most obvious
that the nonzero commutator of position and momentum for the electrons is responsible
for deviations from the classical theory. The Wigner function approach, on the other hand,
reveals that for the ‘true classical limit’, besides a small recoil, the preparation of a ‘classical’
initial state [33] is of utmost importance, that is we require a broad momentum spread in
accordance with our expectation from the illustrative model.
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We then extend the semiclassical model for the Wigner function in Chap. 3 to a fully quantized
theory for the FEL in Chap. 4, that is the electron motion and the laser field are quantized.
By considering the small-recoil limit and by eliminating the electron variables we derive a
Fokker–Planck equation [34] for the laser field of a classical FEL in an oscillator configuration.
Thus, we are in the position to derive explicit expressions for the steady-state photon statistics
and the intrinsic linewidth of such a device. Besides establishing the connection to existing
literature on the radiation properties of an FEL [13, 14, 15, 16, 35] the results of this chapter
serve as a reference when we later on compare the Quantum FEL to its classical counterpart.
After considering the classical limit as well as the transition regime between classical and
quantum we discuss the quantum regime of the FEL in Chap. 5. Based on the asymptotic
method of averaging [36] we derive in analogy to Ref. [4] two conditions for the operation of
a Quantum FEL: On one hand we require a small value for the quantum parameter α, which
is connected to a high value of the quantum mechanical recoil, and on the other hand we
demand for a small momentum spread of the electron beam in analogy to our discussions in
Chap. 3. Moreover, we define [4] the quantum regime as the limit, where only two resonant
momenta of the electrons are relevant for the dynamics leading to Rabi oscillations. In
addition, we study higher orders of the asymptotic expansion as well as other resonances
beyond the fundamental two-level system and observe that the corresponding multiphoton
processes are suppressed in the deep quantum regime, where single-photon transitions prevail.
In contrast to the approach in Ref. [4], we apply here a slightly different variant of the method
of averaging which is in operator form [37]. This procedure helps us to gain understanding of
the underlying processes.
The definition of the Quantum FEL as a two-level system enables us to calculate in Chap. 6
the radiation properties of a low-gain Quantum FEL oscillator in analogy to the theory for
a one-atom maser [38, 39, 40]. By employing the photon number representation we derive
explicit expressions for gain, steady-state photon statistics, and intrinsic linewidth. Despite
difficulties for the experimental realization, regarding undulator length and electron energy,
we deduce that the realization of a Quantum FEL oscillator would lead to a narrowed photon
statistics and thus to smaller intensity fluctuations compared to its classical counterpart. In
contrast to the self-amplified spontaneous emission (SASE) mode, considered in Refs. [2, 3],
the linewidth of an FEL oscillator is not narrowing when we enter the quantum regime.
Additionally, we study the effects of a nonzero momentum spread on the radiation properties
of a Quantum FEL and find novel conditions for the efficient operation of such a device.
Up to this point we have just considered a single-electron approach which yields a low-gain
theory for the FEL. In Chap. 7, however, we apply the ideas and concepts developed so far
in this thesis to a many-electron model leading to a description of the high-gain Quantum
FEL. For short times we observe an exponential growth of the laser intensity starting from
zero which is necessary to realize a Quantum SASE FEL. In this context, we establish the
connection of our approach and the model in Ref. [3]. Moreover, we study the dynamics for
longer times and obtain that at saturation each electron has emitted on average approximately
one photon.
We conclude the main body of this thesis in Chap. 8 by summarizing our results and giving
an outlook on possible extensions to expand our theory on the Quantum FEL. In order to
keep this thesis self-contained we add several appendices which explain our methods and
calculations in more detail.



2 The Classical Theory of the FEL

In this introductory chapter we review the classical theory of the FEL. For this purpose, we
first collect the main components of such a device and discuss the basic properties of the
radiation distinguishing an FEL from other radiation sources. To understand why the FEL
really constitutes a laser we review the concept of a classical laser as introduced in Ref. [1]
and compare the interaction in the FEL with this model. At the end of this chapter we
provide an overview of the different regimes of FEL operation.

2.1 What is an FEL?
A truly free electron cannot emit radiation [41] – this would violate energy-momentum
conservation. However, if the motion of the electron is modified by a uniform or periodic
structure emission of radiation can become possible. Thus, it would be more precise to speak
of ‘quasifree electrons’ [9].
There exist several possible realizations of a radiation source employing quasifree electrons:
Čerenkov radiation [42, 43], the Smith-Purcell effect [44], or the cyclotron-resonance maser [45],
to name only a few of them.
However, in this thesis we focus on one particular device: the free-electron laser (FEL) as
proposed in Ref. [5] and experimentally realized first in Ref. [46]. In the case of the FEL
a highly relativistic electron beam travels through an alternating array of magnets, called
‘wiggler’ or ‘undulator’. This scheme is shown in Fig. 2.1. Due to Lorentz force the electrons
oscillate (or ‘wiggle’) transversely to the wiggler axis and as accelerated charges they emit
radiation. We note, that the energy for the radiation does not come from the static magnetic
field of the wiggler but from the longitudinal motion of the electron. A fraction of the
longitudinal motion converts into a transverse one which creates the radiation.

N S N S N S N

S N S N S N S

e−
γ � 1

Figure 2.1: Basic components of an FEL: Relativistic electrons travel through the wiggler,
that is an array of alternating magnets. Due to Lorentz force the electrons
oscillate and thus emit radiation in forward direction.
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The main feature why the FEL is such interesting for many applications in material and life
science is its wide tunability up to the X-ray regime of the electromagnetic spectrum. This is
a purely relativistic effect which arises since the electrons are accelerated to a velocity v close
to the speed of light c before they enter the wiggler.
For highly relativistic electrons, where β ≡ v/c . 1, the relativistic factor

γ ≡ 1√
1− β2 , (2.1)

which characterizes the dimensionless kinetic energy of the electrons, becomes very large, that
is γ � 1. Suppose that the periodicity of the wiggler (the distance between two subsequent
poles of the same direction) is given by the length λW. In the rest frame of the electron λW
transforms due to length contraction to λ′W = λW/γ. In this frame of reference the electrons
oscillate perpendicular to the wiggler axis and emit radiation with the wavelength λL of their
excitation, that is λ′L = λ′W. When we go back to the lab frame we have take the Doppler
shift of this wavelength into account yielding λL ∼= λ′L/(2γ). Combining all transformations
and factors we finally obtain the wavelength [47, 48]

λL = λW
2γ2 (2.2)

of the radiation in the FEL which becomes shorter for increasing electron energies. Hence, we
are in the position to produce short-wavelength radiation from the long-‘wavelength’ structure
of the wiggler – with the cost of building large electron accelerators to achieve relativistic
electron energies.
Moreover, to produce a high gain in the FEL the electrons have to pass through many periods
of the wiggler [48]. Due to the relatively long periodicity λW of the magnets in the wiggler,
one has to build a very long wiggler to get many periods. For example, the X-ray FEL
FLASH1 at DESY in Hamburg operates with a wiggler that is 27m long with a periodicity
of 27.3mm [49].
At least this last problem could be overcome by the development of the so-called ‘Compton
laser’ [50]. This device basically uses the same scheme as the usual FEL with the difference
that the magnetostatic wiggler is replaced by a counterpropagating laser or microwave field.
This ‘optical undulator’ or ‘laser wiggler’ has of course a much smaller wavelength than the
magnetostatic one which would reduce the wiggler length by some orders of magnitude.
On the theory side there is no essential difference between the laser wiggler or the magnetostatic
one, since in the rest frame of the electron both kinds of wigglers can be modeled as a
counterpropagating electromagnetic wave. The main difference arises for the resonance
condition Eq. (2.2) in the laboratory frame. The first Lorentz transformation from the lab to
the co-moving frame has to be replaced by the Doppler shift λ′W ∼= λW/(2γ) and at the end
we arrive at λL = λW/(4γ2) [51].
In the experiment, however, an FEL with a laser wiggler is not achieved yet due to higher
requirements for the quality of the electron beam and the laser beam. Nevertheless, there is
a high amount of research on this topic [52] since it would be a huge step towards a table-top
FEL.
We emphasize that the resonance condition as written down in Eq. (2.2) is not the full story.
In a more extensive approach [48], which includes the transverse motion of the electron, one
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obtains the relation
λL = λW

2γ2 (1 + a2
0) (2.3)

where a0 is the dimensionless wiggler parameter [48] characterizing the strength of the wiggler
field. Thus, besides the periodicity of the wiggler λW and the kinetic energy γ of the electrons,
we have by changing the strength of the wiggler field a third possibility to tune the wavelength
of the FEL radiation.
In addition to the wide tunability, there is a second feature of the radiation that stands out:
it is mainly directed in forward direction. In its rest frame the electron emits radiation in an
isotropic way. However, this symmetric radiation pattern changes to a cone which is directed
into the forward direction if we transform to the laboratory frame. The opening angle of this
cone is proportional to 1/γ and thus decreases with higher electron energies [48]. Hence, this
focusing in the FEL is also a relativistic effect.
An FEL can be operated in three different modes [48]: The first possibility is given by an
amplifier where a seeded laser wave is amplified by the FEL interaction. Secondly, one can
build an FEL oscillator where the spontaneously emitted radiation is amplified with the
help of a resonator which stores the radiation during many passages of electron bunches in
the wiggler. The third option is given by the so-called SASE (‘self-amplified spontaneous
emission’) mode. In a SASE FEL, the spontaneous emission is amplified in a single pass
trough a very long wiggler making a resonator unnecessary. This mode of operation is up
to now the only possibility to build an X-ray FEL due to the lack of mirrors in the X-ray
regime [48].
Talking of amplification and resonators is quite naturally in the context of lasers. However,
why should the interaction of light and matter in the FEL be considered suitable for a laser?

2.2 FEL as classical laser
In this section we discuss the concept of a classical laser as introduced in Ref. [1], where the
interaction between a beam of particles, modeled as classical anharmonic oscillators, with a
single mode of the electromagnetic field is considered. We compare this model to the FEL
interaction which is characterized by the equation of motion for a classical pendulum.

2.2.1 Lamb’s classical laser
The term LASER stands for ‘light amplification of stimulated emission of radiation’. From
the viewpoint of quantum electrodynamics (QED) the emission of radiation is explained with
the help of the photon picture. According to QED the stimulated emission of a photon into
an initially occupied mode, that is the stimulating field, is more likely than the emission into
an empty mode and in this way the incident field is amplified [22, 40, 53].
In contrast, the dynamics of an FEL is purely classical and quite naturally the question arises,
if such a device really constitutes a laser. However, this question can be answered positively
by recognizing that the energy gain of an electromagnetic field due to its interaction with an
electrical charge or current can be understood by classical electrodynamics – without any need
for photons [54]. This fact even becomes more pronounced when we consider semiclassical
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laser-theory [22, 55, 56], which investigates the interaction of two-level atoms with a classical
electromagnetic field, and correctly predicts many properties of a laser.
The FEL even goes a step further: whereas the two-level atoms in ordinary laser theory [22]
have to be treated quantum mechanically, in FEL theory, both, the field and the electron
dynamics can be understood by classical physics alone. Already in 1972 M. Borenstein
and W. E Lamb jr. discovered the possibility of a ‘classical laser’ [1] by showing that the
the interaction of anharmonic oscillators with an electromagnetic field can give rise to an
amplification of this field. In this section we briefly review this theory and in this way we
introduce many concepts and arguments which we need for a large part of the whole thesis.
The dynamics of the electromagnetic field is given by Maxwell’s equations [41]. However, we
can equivalently employ a Hamiltonian formalism, where the Hamiltonian of the electromag-
netic field is given by its energy [40]

HField =
∫
d3x

[
ε0

2 E2(x, t) + µ0

2 H2(x, t)
]

(2.4)

with E denoting the electric and H the magnetic field, while ε0 represents the vacuum
permittivity and µ0 the vacuum permeability, which are fundamentally related to the speed
of light c via c−2 = ε0µ0 [40].
We can interpret the Hamiltonian, Eq. (2.4), as a sum of infinitely many oscillators [40]

HField =
∑

j

νja
∗
jaj (2.5)

for the radiation field in a cavity. The jth oscillator, represented by the complex amplitude
aj, gives the jth mode of the electromagnetic field. The dynamics of the field then has to be
calculated from the Hamiltonian equations of motion

ȧj = −i∂HField

∂a∗j
, (2.6)

where aj and a∗j represent conjugate variables. Although the interpretation of the field as sum
of harmonic oscillators is strictly speaking only valid for the field in a cavity, this approach is
also often suitable for situations in free space when we make the slowly varying amplitude
and phase approximation [57].
In our situation of interest we restrict ourselves to a single mode of the radiation field with
the Hamiltonian HL ≡ νa∗LaL, that is the laser mode. The electric field of this mode reads in
terms of the complex amplitude aL [40]

E(x) = Eu(x) (aL + a∗L) ex . (2.7)

The field is directed parallel to the x-axis and is characterized by the mode function u(x)
and the amplitude E .
The dipole interaction of a particle with the electric charge −e and the field is given by the
interaction Hamiltonian

Hint = −ex ·E(x) . (2.8)



2.2 FEL as classical laser 9

vz

center-of-mass

internal

electric field E
x

z

Figure 2.2: Scheme of a ‘classical laser’ according to Ref. [1]. A beam of particles is injected
into a resonator with a center-of-mass motion which is perpendicular to the
electric field E in the cavity. The internal motion of a particle is modeled as
the one of a classical anharmonic oscillator and couples to the radiation field via
dipole interaction according to Eq. (2.9).

This form is analogous to the formulation in terms of the vector potential A and gives us the
term p ·A which corresponds to x ·E and which arises from squaring the momentum of the
particle p coupled to the vector potential (p− eA)2. The additional term that goes with A2

is neglected here, but later becomes important, when we treat the FEL.
By considering just a single mode, Eq. (2.7), of the electric field E for the interaction,
Eq. (2.8), we of course neglect the effect that the charged particle, which is accelerated,
produces a field with a broad spectrum and interacts with this field. This self-interaction
would lead to damping and we could take this effect into account by introducing a damping
constant for the equation of motion of the particle [58].
Following the lines of Ref. [1] we model classical particles as oscillators and inject them
into a cavity perpendicular to the electric field E, that is the z-direction. We assume that
the oscillation occurs in x-direction, that is the direction of their excitation E, while their
center-of-mass motion is in z-direction, see Fig. 2.2, and stays approximately unaffected
by the interaction. If the amplitude of the oscillations in z-direction is small we assume
that the mode function is only a function of z, u(r) ∼= u(z), and since the center-of-mass
motion approximately decouples from the internal degree of freedom, we neglect it for our
considerations.
The interaction Hamiltonian for a single particle then reads

Hint = −eEu(z) (aL + a∗L)x (2.9)

which translates for N anharmonic oscillators into the total Hamiltonian

H = ν |aL|2 +
N∑

j=1

[
p2
j

2 + ω2

2

(
x2
j −

λ2

12x
4
j

)]
+ g
√

2ω (aL + a∗L)
N∑

j=1
xj , (2.10)
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where the xj and pj give the position and conjugate momentum, respectively, for the oscillators
which should be characterized by the same frequency ω. The coupling strength is denoted by g
and its explicit form is chosen because of convenience while λ characterizes the anharmonicity
of the oscillators.
The time evolution of the laser field is given by

ȧL = −i ∂H
∂a∗L

= −iνaL + igN
√

2ω 〈x〉 ,
(2.11)

where we have introduced the average position 〈x〉 ≡ N−1
N∑

j=1
xj of all oscillators. The

canonical equations for a particle lead to the equation of motion

ẍj + ω2
(
xj −

λ2

6 x
3
j

)
= −g

√
2ω (aL + a∗L) (2.12)

for a driven anharmonic oscillator which is known as the Duffing equation [59, 60].
The particles enter the cavity at different times at the same position and interact with the
field during the time T . Alternatively, we can interpret this situation such that the oscillators
enter the cavity at the same time t and possess different initial phases giving rise to the
initial condition xj(t) = x0 cos θ(in)

j . We assume uniformly distributed phases θ(in)
j while the

initial amplitude x0 should be the same for every oscillator.
We consider the dynamics of the system at a time t̄ during the interaction of the oscillators
with the laser field, that is t ≤ t̄ < t+T . Following the procedure of Ref. [1] we could directly
solve Eqs. (2.11) and (2.12). However, in order to clarify the calculations, we pursue an
equivalent but slightly different approach. For this purpose, we perform the transformation

bj ≡
√
ω

2

(
xj + i

ω
pj

)
(2.13)

which describes the complex amplitude of the jth oscillator subject to the initial condition
bj(t) =

√
ω

2A
(in) e−iθ

(in)
j .

Inserting Eq. (2.13) into Eqs. (2.11) and (2.12) yields

ḃj = −iωbj + i
λ2

24 (b+ b∗)3 + ig (aL + a∗L)

ȧL = −iνaL + igN 〈b+ b∗〉
(2.14)

for the dynamics of the system.
Resonant processes are fundamental for many fields in physics and in particular for lasers.
We assume that considerable energy transfer happens only close to resonance, that is for ω
being close to the driving frequency ν. Hence, we make the second transformation




bj ≡ e−iν(t̄−t) Bj

aL ≡ e−iν(t̄−t) AL ,
(2.15)
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where we have made sure that the transformed quantities coincide with the original ones at
the beginning of the interaction at t̄ = t. Transforming Eq. (2.14) according the prescription,
Eq. (2.15), leads to terms which are independent of time as well as to contributions which
are oscillating with ±2ν and multiples of it, that is 2(2ν).

In this context, we introduce the important concept that rapid oscillations are averaged out
during the interaction and can be neglected, which often is refered to as a rotating-wave
approximation [40]. For the nearly resonant case, where the detuning ∆ ≡ ω−ν is small, that
is ∆� ω+ν ∼= 2ν, we disregard rapidly varying contributions and just keep time-independent
terms. Hence, we arrive at

Ḃj = −i
(

∆− λ2

8 |Bj|2
)
Bj − igAL

ȦL = −igN 〈B〉 ,
(2.16)

for the dynamics of the system.

In the further course of this thesis neglecting rapidly varying terms often plays an important
role and we justify this kind of approximation by an asymptotic expansion, which is known
as ‘method of averaging’ [36, 59]. The rotating-wave approximation can be understood by
noticing that the integration of the differential equations would bring the frequency 2ν into
the denominator [40]. Thus, these rapid oscillations only yield small contributions to the
solution scaling with 1/(2ν).

Additionally to a small detuning we also require a small coupling g between the field and
the oscillators to employ the rotating-wave approximation. Later on we show that the
applicability of this approximation depends on the ratio of the coupling strength to the large
frequency scale, which in our example is given by g/(2ν). This parameter has to be much
smaller than unity to ensure that an asymptotic expansion converges and the rapidly varying
terms really are suppressed.

The solution of Eq. (2.16) would boil down to the diagonalization of an (N + 1)× (N + 1)
matrix. However, we apply another approximation which is commonly used in laser theory
and significantly reduces our calculational effort: We assume that the change of the laser field
during the interaction is small, that is AL(t̄) ∼= AL(t) = const. Thus, we solve the equation of
motion for the oscillators for a constant driving and insert the result for the oscillators into
the equation of motion for the laser field. By doing so we effectively arrive at a single-particle
theory, since the interaction between the oscillators, mediated by the laser field, vanishes
and the equations decouple. In ordinary laser theory this procedure often is called ‘adiabatic
elimination of atomic variables’ [56] while the FEL literature [48] identifies this limit of a
nearly constant field as the ‘low-gain regime’.

Similar to Ref. [1] we write the complex amplitude of the oscillator Bj = ρj e−iθ in terms of
modulus ρj and phase θj the dynamics of which are described by




ρ̇j = g|AL| sin (θj − ϕ)
θ̇j = ∆− λ2

8 ρ
2
j + g|AL|

ρj
cos (θj − ϕ)

(2.17)
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which follows from Eq. (2.16). Moreover, we have introduced the polar representation of the
amplitude of the laser field AL ≡ |AL| e−iϕ. We note that the gain of the field

G ≡ |AL(t+ T )| − |AL(t)|
|AL(t)| (2.18)

is defined as the relative change of the modulus |AL| during the interaction.
However, even by performing the low-gain approximation of a constant laser field AL we
cannot solve Eq. (2.17) in an analytic way. Hence, we restrict ourselves to the case, where
the laser field can be considered as a small perturbation for the dynamics of the electrons,
and we solve Eq. (2.17) perturbatively in powers of |AL| [1]. This regime is known as the
small-signal regime and should not be confused with the low-gain approximation which still
allows for a strong laser signal |AL|.
By setting g|AL| = 0 in Eq. (2.17) we obtain the zeroth-order solution

B
(0)
j =

√
ω

2 x0 e−iθ
(in)
j e−i∆̃(t̄−t) , (2.19)

where we have defined ∆̃ ≡ ∆ − λ2

16x
2
0ω. This solution of the free Duffing equation is

well-known in the literature [59].
To calculate the gain we have to average over the initial phases θ(in)

j according to Eq. (2.18).
Since these initial phases are distributed uniformly the mean value 〈e−iθ(in)〉 = 0 vanishes
and thus the zeroth-order solution, Eq. (2.19), does not contribute to a change of the laser
field. However, when we consider the first order in g|AL| we encounter terms of the form of
〈e−iθ(in) e+iθ(in)〉 = 1 which are responsible for the gain in the laser. These arguments which
are based on a uniform distribution of phases are important for the FEL as well and we use
similar arguments throughout a large part of this thesis.
We write the first-order solution for Bj as

B
(1)
j = e−iθ

(in)
j e−i∆̃(t̄−t)

(
ρ

(1)
j − iθ(1)

j ρ(in)
)
, (2.20)

where we have expanded the phase factor e−iθ(1) to first order in θ(1). Moreover, the contribu-
tion ρ(1)

j of the modulus

ρ
(1)
j = ρ(+) e+i(θ(in)

j −ϕ) +ρ(−) e−i(θ(in)−ϕ) (2.21)

constitutes a sum of a term ρ(+) with positive and one ρ(−) with negative phase factor. An
analogue distinction can be made for the phase θ(1) which splits into θ(+) and θ(−). With the
help of Eqs. (2.18) and (2.20) we obtain the expression

G = gN

|AL(t)|

t+T∫

t

dt̄ Im
{

e−i∆̃(t̄−t)
[
ρ(+) − iθ(+)ρ(in)

]}
(2.22)

for the gain where we have already averaged over the initial phases by keeping just terms
which are independent of θ(in)j .
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Figure 2.3: The two contributions sinc2(∆̃T/2) (blue lines) and ∂sinc2(x/2)/∂x
∣∣∣
x=∆̃T

(red
line) for the gain of the classical laser, Eq. (2.24), as functions of the detuning
parameter ∆̃T . For nonzero values of the anharmonicity d, for example d = 1,
the second contribution can exceed the first one for certain ranges of ∆̃T . In such
a case we obtain positive gain according to Eq. (2.24) and thus the radiation field
is amplified.

We have to solve 


ρ̇(+) = g|AL|

2i ei∆̃(t̄−t)

θ̇(+) = −λ2

4 ρ
(in)ρ(+) + g|AL|

2ρ(in) ei∆̃(t̄−t) (2.23)

and finally arrive with the help of Eq. (2.22) at [1]

G = (gT )2N

2

[
−sinc2

(
∆̃T
2

)
+ d

∂

∂x
sinc2

(
x

2

)∣∣∣∣∣
x=∆̃T

]
(2.24)

which is the gain of the ‘classical laser’ in the low-gain small-signal regime. Here, we have
defined the parameter

d ≡ λ2x2
0

16 (ωT ) (2.25)

in analogy to Ref. [1].
We emphasize that for the case of harmonic oscillators instead anharmonic ones, that is d→ 0
and ∆̃→ ∆ in Eq. (2.24), we never obtain a positive gain and hence there is no amplification.
However, for a nonzero value of d the gain can become positive as illustrated in Fig. 2.3. In
this case, we do observe amplification of the radiation field, justifying the term ‘laser’.
We note that this identification of a classical laser is just based on the possibility of amplifying
a field mode and not on the coherence properties of the radiation. In order to discuss these
properties the quantization of the electromagnetic field becomes necessary in analogy to
ordinary laser theory [22]. Hence, it might be possible that our system of consideration does
not possess the coherence of an ordinary laser. If we define a laser by the possibility of
amplification and its coherence properties the classical laser thus is not necessarily a laser.
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2.2.2 The FEL pendulum equation
In this section we investigate the classical dynamics of an FEL and discuss similarities and
differences to Lamb’s ‘classical laser’ which we have studied in the preceding section. Starting
from first principles we derive the pendulum equation for the electron dynamics [8, 48] and
the equation of motion for the laser field.

laboratory frame

λL

laser

λW

wiggler

e−

v ∼= c

z

x

λL = λW

2γ2

Bambini–Renieri frame

laser

λ

wiggler

λ

e−

v � c

z

x

λL = λw ≡ λ

Figure 2.4: Transition from the laboratory frame (left) to the co-moving Bambini–Renieri
frame. In the lab frame the electron travels close to the speed of light c. The
wavelength λL in this frame is connected to the periodicity λW of the wiggler and
to the relativistic factor γ of the electron via the resonance condition, Eq. (2.2).
In contrast, the motion of an electron close to resonance in the Bambini–Renieri
frame is nonrelativistic while λL and λW coincide. The two modes constitute a
standing wave in this frame of reference.

For this purpose, we consider an approach in the co-moving Bambini–Renieri frame [61].
This frame of reference is defined by the condition that the wave numbers of the laser kL
and the wiggler kW coincide, that is kL = kW ≡ k, which is illustrated in Fig. 2.4. Thus,
the electron effectively interacts with a standing light field. Moreover, this model has the
advantage that the motion of an electron close to resonance is always nonrelativistic which
considerably simplifies our theoretical investigations. A detailed treatment of the Lorentz
transformation from the laboratory to the Bambini–Renieri frame and the derivation of the
FEL Hamiltonian in this frame can be found in App. A.
The nonrelativistic Hamiltonian of N free electrons, characterized their positions xj , momenta
pj, and mass m, interacting with the radiation field is given by [41]

H =
N∑

j=1

[
pj −A(zj, t)

]2

2m . (2.26)

We assume that the radiation field consists of two counterpropagating plane waves, where the
laser field copropagates with while the wiggler field counterpropagates towards the electron.
The total vector potential A depends only on z, that is the direction along the wiggler axis,
and not on the transverse directions x, y. Hence, the Hamiltonian is also independent of these
variables, H 6= H(x, y), and by means of the Hamiltonian equations of motion the transverse
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momentum is constant and even vanishes if we inject the electrons parallel to the wiggler
axis, that is px = py = const ≡ 0.
Finally, we arrive at a one-dimensional theory for the position z and the conjugate momentum
p ≡ pz. If we write down explicitly the square in Eq. (2.26), we furthermore find that the term
p ·A = 0 is zero because the vector potential A is transversal. In contrast to the anharmonic
oscillators treated in the preceding section, or two-level atoms [40], the interaction in the
FEL is not characterized by the x ·E(or equivalently p ·A) term but by the contribution
arising from A2. We emphasize that the explicit time-dependency of the vector potentials
comes from the fact that we have already included the dynamics of the free field, that is of
the Hamiltonian of Eq. (2.4).
The explicit form of the vector potentials of the laser AL and the wiggler AW then reads

AL(z, t) = AL
(
aL(t)e e−iωt+ikz +a∗L(t)e∗ eiωt−ikz

)
(2.27)

and
AW(z, t) = ÃW

(
e e−iωt−ikz +e∗ eiωt+ikz

)
, (2.28)

respectively which we have modeled as two counterpropagating plane waves with the ampli-
tudes AL and ÃW, respectively. These two modes are characterized by the same frequency ω
and wave number k and both are circularly polarized with e · e∗ = 1 and e2 = e∗2 = 0. Since
the wiggler field is very strong we assume that it is constant during the interaction, while the
dynamics of the laser field is described by the dimensionless amplitude a(t) and its complex
conjugate a∗(t).
The total vector potential

A = AL + AW (2.29)
is the sum of the laser and the wiggler field and we obtain three contributions to the A2

potential, namely A2
L, A2

W and the cross term 2AL ·AW.
We neglect the effect of A2

L since A2
L � A2

W and we effectively incorporate A2
W into the mass

m of the electron (see App. A). Thus, the relevant term for the FEL interaction is given by
the cross term and we obtain the Hamiltonian

H =
N∑

j=1

p2
j

2m + e2

m

N∑

j=1
AL(zj, t) ·AW(zj, t) . (2.30)

With the explicit expressions for the vector potential, Eqs. (2.27) and (2.28) we arrive at [61]

H =
N∑

j=1

p2
j

2m + U0

2


aL

N∑

j=1
ei2kzj +a∗L

N∑

j=1
e−i2kzj


 , (2.31)

where
U0 ≡

e2ALÃW

m
(2.32)

is defined as the height of the potential. We note that the potential in Eq. (2.31) is independent
of time. This feature emerges since we have chosen circular polarization for the laser and the
wiggler field. However, even for another choice of polarization we would effectively obtain the
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Hamiltonian in Eq. (2.26) because the additional contributions give rise to rapid oscillations
which are suppressed.
The dynamics of the electron is dictated by the Hamiltonian equations of motion




żj = ∂H

∂pj
= pj

ṗj = −∂H
∂zj

= 2kU0
2i

(
aL ei2kzj −a∗L e−i2kzj

)
.

(2.33)

Four our investigations it is convenient to introduce the dimensionless variables




τ ≡ t
T

θj ≡ 2kzj
℘j ≡ 2kT

m
pj

κ ≡ (2kT )2U0
m

,

(2.34)

where θ is known as the ponderomotive phase and ℘ denotes the Doppler parameter. Moreover,
we write the amplitude aL ≡ |aL| e−iϕ of the laser field in terms of its modulus |aL| and its
phase ϕ and arrive at




θ̇j = ℘j

℘̇j = κ
2i

(
aL eiθj −a∗L e−iθj

)
= κ|aL| sin (θj − ϕ)

(2.35)

which are the equations of motion of Eq. (2.33) in a dimensionless form.
By differentiating θ̇j with respect to time τ we observe that the relations in Eq. (2.35) are
equivalent to

θ̈j = κ|aL| sin (θj − ϕ) (2.36)
which describes the motion of a mathematical pendulum, and therefore Eq. (2.36) is known
as pendulum equation for the FEL [8].
Hence, we finally observed that like Lamb’s ‘classical laser’ the dynamics of an electron in the
FEL is given by the equation of motion of an anharmonic oscillator, a fact which becomes
even more clear if we expand the sine in Eq. (2.36) yielding sin θ ∼= θ − θ3/(3!).
However, the situation of the FEL is still different from the one described in the preceding
section: while in the ‘classical laser’ the field couples only to the position x of the oscillator,
in the FEL the laser amplitude appears as a factor in the total potential making the FEL
similar to a parametric amplifier. This difference clearly arises from the corresponding kind
of interaction: in the ‘classical laser’ the laser field interacts via x ·E with the internal degree
of the oscillator, whereas the interaction in the FEL is characterized by the A2 term and the
external motion of the electron.
The dynamics of the laser field is given by the Hamiltonian equation of motion, Eq. (2.6),
with the FEL Hamiltonian, Eq. (2.31), yielding, Eq. (A.37),

ȧL = −igT
N∑

j=1
e−iθj (2.37)

which could also be derived with the help of Maxwell’s equations describing the laser and
wiggler field coupled to an electron current [62]. We note that that the coupling constant g
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solving

laser field
ȧL = −igT

N∑
j=1

e−iθj

pendulum equation
θ̈j = κ|aL| sin (θj − ϕ)

Figure 2.5: Scheme of a self-contained model for the FEL: for the dynamics of an electron we
have to solve the pendulum equation, Eq. (2.36), which depends on the amplitude
aL of the laser. The time evolution of |aL| is given by Eq. (2.37), which in turn
depends on the dimensionless positions θj of the electrons.

has the dimension of a frequency and is proportional to the potential height U0. Its specific
form depends on the way how we define AL and aL. In this thesis we always employ a scaling
where AL describes the amplitude of the vacuum field [40] which is best suited when we
later on consider a quantized laser field. When we exclusively deal with the classical regime
another scaling of the variables would be more reasonable, for example the ‘universal scaling’
for the classical high-gain FEL introduced in Ref. [21]. However, when we compare the
quantum with the classical regime our approach turns out to be useful.
In order to decide whether the FEL really is a laser with positive gain we have to solve the
pendulum equation Eq. (2.36) for the electrons and the equations of motion, Eq. (2.37), for
the laser field in a self-contained manner which is illustrated in Fig. 2.5. In this context, we
have to distinguish between different gain regimes which is the topic of the following section.

2.3 The different regimes of FEL operation
There exist several different limits of the FEL dynamics leading to different expressions for
the gain of the laser field. In the following we discuss this range covering the transition from
a low to a high gain as well as the distinction between the small-signal limit and a saturated
FEL. Moreover, we briefly study the influence of the ‘slippage’ of the radiation over the
electrons and we discuss the distinction of a ‘Compton’ and a ‘Raman’ FEL.

2.3.1 Madey gain: low gain and small signal
We begin our investigations concerning the different regimes of FEL operation with the one
that started it all: the low-gain FEL in the small-signal limit [5]. To avoid confusion we
emphasize that ‘low-gain’ means something different than ‘small-signal’.
In the low-gain FEL the gain of the field, that is its relative energy change during a single
passage of an electron bunch through the wiggler, is smaller than unity. Hence, the interaction
of a single bunch of electrons with the wiggler is not sufficient to operate a laser. However, if
we place the wiggler inside a resonator and subsequently send many bunches of electrons
through the wiggler, we observe a considerable amplification [48] and eventually steady state.
This device is sometimes called ‘FEL oscillator’ [48].
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We enter the low-gain regime by assuming that the amplitude of the laser field aL at a time
τ̄ during the interaction with a single electron bunch, with τ ≤ τ̄ < τ + 1, has not changed
appreciable from its value at time τ when the electrons have entered the wiggler. This means
that the electrons do not notice a change of the laser field, that is aL(τ̄) ∼= aL(τ) = const
while they are traveling through the wiggler. Thus, the equations of motion for the electrons
in the bunch, Eq. (2.36), decouple. This way we arrive at a single-electron theory which is no
longer justified for a high-gain FEL. This latter regime is characterized by a large interaction
time and a many-electron theory as we discuss later in this chapter.
Not just the amplitude |aL| = const, is approximately constant for the electron dynamics
in a single pass but also the phase ϕ ∼= const. Hence, without loss of generality we set the
phase equal to zero and arrive from Eq. (2.36) at the single-particle pendulum equation

θ̈j = κ|aL| sin θj (2.38)

for an electron and from Eq. (2.37) at the equation of motion

d
dτ̄ |aL| = −gTN 〈sin θ〉

(2.39)

for the modulus of the field amplitude.
When we compare Eq. (2.38) with Eq. (2.39) and use the relation ℘̇ = θ̈ for the dimensionless
momentum and position of an electron, we realize that the change of the laser field is
proportional to the change of mean momentum of the electrons. Hence, we easily derive the
relation

G ∝ −
(
〈℘〉 − 〈℘〉(in)

)
(2.40)

of the laser gain and the change of the mean momentum. If the electrons on average lose
momentum, the laser field is amplified.
As mentioned above we have to distinguish between the expressions ‘low-gain’ and ‘small-
signal’. Talking of a small signal means that the interaction time T is relatively short and
thus saturation effects can be neglected or are just included in lowest order. Analogously to
ordinary laser theory [22] we find in the low-gain regime of the FEL a linear small-signal gain,
that is G is independent of |aL|. Later on in this chapter we also observe a small-signal regime
for the high-gain FEL where the gain per pass grows exponentially with the interaction time
T .
There are basically two equivalent approaches towards the dynamics of an FEL: either we
follow each electron and solve the pendulum equation, Eq. (2.38), or we consider a distribution
function in phase space the dynamics of which is given by a Vlasov equation. We first present
the former approach [8, 63] and solve the pendulum equation in the low-gain small-signal
limit.

Pendulum equation

Formally, we enter the small-signal regime by treating the laser field as a small perturbation
to the motion of the electron, Eq. (2.38), [51] which is valid for κ|aL| � 1.
Setting κ|aL| = 0 in Eq. (2.38) we easily obtain the zeroth-order solution

θ
(0)
j = θ

(in)
j + ℘

(in)
j (τ̄ − τ) (2.41)
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which simply describes the free motion of an electron with the initial phase θ(in)
j and the initial

momentum ℘
(in)
j . We use this solution for the calculation of the average in Eq. (2.39) leading

to vanishing terms 〈sin θ(in)〉=〈cos θ(in)〉=0 and hence 〈sin θ(0)〉 = 0, where we have assumed
that the initial phases θ(in)

j are uniformly distributed. Thus, there is no gain in zeroth order.

To calculate the next higher order of our perturbative expansion we insert the free solution,
Eq. (2.41) into the pendulum equation, Eq. (2.38), that is

θ̈j = κ|aL| sin θ(0) . (2.42)

Straightforward algebra yields the expression

θ
(1)
j = κ|aL|

1
℘

(in)
j

2

{
℘

(in)
j (τ̄ − τ) cos θ(in)

j + sin θ(in)
j − sin

[
θ

(in)
j + ℘

(in)
j (τ̄ − τ)

]}
(2.43)

as first-order perturbation to the free motion of the electron due to the interaction with the
laser field.

With the help of elementary trigonometric identities and a Taylor expansion we obtain

sin
(
θ(0) + θ(1)

) ∼= sin θ(0) + θ(1) cos θ(0) . (2.44)

The second term in Eq. (2.44) is the first-order contribution to sin θ and we have to form
its expectation value with respect to the initial phases and momenta to calculate the gain
according to Eq. (2.39). In contrast to the procedure in zeroth order, we encounter terms
with cos2 θ

(in)
j = 1

2 + 1
2 cos 2θ(in)

j leading to a nonzero expectation value 〈cos2 θ(in)〉 = 1
2 . On

the other hand terms going with sin θ(in)
j cos θ(in) = 1

2 sin 2θ(in)
j give no contribution, that is

〈sin θ(in) cos θ(in)〉 = 0.

We assume that each electron initially possesses the same momentum ℘
(in)
j = ℘̄ and arrive by

means of Eqs. (2.39) and (2.44) at

G = −gTNκ 1
2℘̄2

τ+1∫

τ

dτ̄ {℘̄ (τ̄ − τ) cos [℘̄(τ̄ − τ)]− sin [℘̄(τ̄ − τ)]} (2.45)

for the gain of the laser field according to the definition in Eq. (2.18).

The final integration with respect to time yields the famous Madey gain [5, 51, 48]

G = gTNκ
1− cos ℘̄− ℘̄

2 sin ℘̄
℘̄3

= −gTNκ4
∂

∂℘
sinc2℘

2 |℘=℘̄

(2.46)

in the low-gain small signal regime which is shown in Fig. 2.6. We note that this gain function
is point-symmetric with respect to the origin and basically adopts positive values for positive
values of the initial Doppler parameter ℘̄ while being negative for ℘̄ < 0. While the gain
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vanishes at ℘̄ = 0, it is maximized at ℘̄ ∼= π. That is why we define ℘̄ = π as resonance for
the FEL in the low-gain small-signal limit.

−2π −π 0 π 2π

0

℘̄

G
ai

n
∝ d

d℘
sinc2

(
℘

2

)∣∣∣∣∣
℘=℘̄

Figure 2.6: Gain of a low-gain small-signal FEL as a function of the initial dimensionless
momentum ℘̄ ≡ 2kp̄T/m according to Eq. (2.46). The odd function reaches its
maximum at the positive momentum ℘̄ ∼= π and vanishes for ℘̄ = 0.

Of course, we could have also used Eq. (2.40) by calculating the average change of electron
momentum and equating it with the laser gain. A perturbative treatment in second order [51]
would have given the same result as in Eq. (2.46).
Not just the modulus |aL| of the field amplitude changes during interaction but also its phase
ϕ which is known as phase pulling [22, 55]. Taking the imaginary part of the equation of
motion for aL, Eq. (2.37), we find the relation

ϕ̇ = gTN

|aL|
〈cos (θ)〉 (2.47)

for the dynamics of the laser phase during a passage of electrons. After inserting the
perturbative solution θ(1), Eq. (2.43), into Eq. (2.47), integrating over time from t to t+ T ,
and averaging over the initial phases we arrive at

ϕ(t+ T )− ϕ(t) ∼= gTNκ
sin ℘̄− (℘̄/2)(1 + cos ℘̄)

℘̄3 (2.48)

for the change of the laser phase after interacting with the electrons. We note that this
expression is zero when we consider resonance, ℘̄ = π, in analogy to standard laser theory [22].
However, for higher orders in κ|aL| the change of the phase is nonzero at resonance, as we
show in Chap. 4, and which stands in contrast to an ordinary laser [22].
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Distribution function

The first approach towards the FEL which is exclusively based on classical physics was
developed by Hopf et al. [7] and relies on distribution functions in phase space. We sketch
this approach in the following, since we use elements of it later on in this thesis, when we
study the classical-quantum transition by means of the Wigner distribution function in the
next chapter.

The equation of motion for the distribution function f(θ, ℘; τ̄) for classical particles, subject
to the pendulum equation Eq. (2.38), is given by the collisionless Boltzmann – or Vlasov –
equation [64] (

∂

∂τ̄
+ ℘

∂

∂θ

)
f(θ, ℘; τ̄) = −κ|aL| sin θ

∂

∂℘
f(θ, ℘; τ̄) , (2.49)

where the right-hand side emerges since we have had to form the derivative of the cosine
potential with respect to the phase, that is ∂ cos θ/∂θ = − sin θ.

The dynamics of the laser field still is given by Eq. (2.39), but we have to rewrite this relation
in terms of the distribution function f(θ, ℘; τ̄) yielding

∂

∂τ̄
|aL| = −gTN 〈sin θ〉

= −gTN
2π∫

0

dθ
∫
d℘ sin θf(θ, ℘; τ̄) .

(2.50)

The electrons are again uniformly distributed in the θ-direction, but now we assume an
arbitrary distribution function g(℘) for the electron momentum. This way, we distinguish
between a cold and a warm electron beam depending on the width ∆℘ of g(℘). The total
phase space distribution function at the initial time τ reads f(θ, ℘; τ) = 1

2πg(℘) and we have
to solve Eq. (2.49) with respect to this initial condition.

Since we consider the low-gain small-signal regime we treat Eq. (2.49) in a perturbative
manner. The distribution function of a free particle is simply given by making the displacement
θ → θ − ℘(τ̄ − τ) according to the unperturbed trajectory of a single particle. Thus, the
zeroth-order solution of Eq. (2.49) reads

f (0)(θ, ℘; τ̄) = f(θ − ℘(τ̄ − τ); τ) = 1
2πg(℘) (2.51)

which reduces to the initial distribution function, because the electrons initially are distributed
uniformly in θ-direction. Again, we obtain that the zeroth-order solution does not contribute
to the gain and therefore we have to go to the next higher order.

In first order, Eq. (2.49) translates to
(
∂

∂τ̄
+ ℘

∂

∂θ

)
f (1)(θ, ℘; τ̄) = −κ|aL| sin θ

∂

∂℘
f (0)(θ, ℘; τ̄) . (2.52)
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Figure 2.7: First-order correction f (1) to the classical distribution function at time τ̄ = τ + 1,
according to Eq. (2.56), as a function of the ponderomotive phase θ and the
Doppler parameter ℘ for an initial momentum distribution g(℘) which is a
Gaussian with the mean value ℘̄ = π and variance ∆℘ = 1. The function is
normalized by the small parameter κ|aL| and the normalization constant N of
g(℘). We observe modulations of the distribution function in θ- as well as in
℘-direction. We emphasize that only these corrections take on negative values
while the total distribution function f (0) + f (1) is always positive if we choose
κ|aL| small enough.

This inhomogeneous differential equation can be solved with the help of Green’s function
Gfree(θ, τ̄ ; θ′, τ ′) and the formal solution reads

f (1)(θ, ℘; τ̄) = −κ|aL|
τ̄∫

τ

dτ ′
∫
dθ′Gfree(θ, τ̄ ; θ′, τ ′) sin θ′ ∂

∂℘
f (0)(θ′, ℘; τ ′) , (2.53)

where the Green’s function for the Boltzmann equation of a free particle has to be calculated
from (

∂

∂τ
+ ℘

∂

∂θ

)
Gfree(θ, τ) = δ(θ)δ(τ) . (2.54)

Inserting the explicit expression for Gfree [65]

Gfree(θ, τ̄ ; θ′, τ ′) = δ(θ − θ′ − ℘(τ̄ − τ ′)) (2.55)

into Eq. (2.53), evaluating the delta function by the integration over θ′ and performing the
integration over time τ ′ brings us to

f (1)(θ, ℘; τ̄) = −κ|aL|
cos [θ − ℘(τ̄ − τ)]− cos θ

℘

1
2π

∂

∂℘
g(℘) (2.56)
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Figure 2.8: Comparison of a cold (left) and a warm (right) electron beam. For a small
momentum spread ∆℘� 1 the distribution function acts like a delta function in
Eq. (2.58) and we easily evaluate the integral of ∂sinc2(℘/2)/(∂℘). In contrast, for
∆℘� 1 the sinc2-function behaves like a delta function for ∂g/(∂℘) in Eq. (2.58).

which is shown in Fig. 2.7. Due to the motion in the potential modulations of the distribution
function in position as well as in momentum have emerged which stand in contrast to the
uniform position distribution prior to interaction.
We calculate the gain of the laser field, Eq. (2.18), by integrating Eq. (2.50) with respect to
time τ̄ and obtain

G = −gTNκ
τ+1∫

τ

dτ̄
2π∫

0

dθ
∫
d℘ sin θ cos [θ − ℘(τ̄ − τ)]− cos θ

℘

1
2πg(℘) , (2.57)

where the averaging over the phase θ is performed by noting that the terms which include
〈sin θ sin θ〉θ(in) = 1/2 give the only nonzero contribution while the terms with 〈sin θ cos θ〉θ(in) =
0 vanish.
Hence, we are left with the expression

G = gTNκ

2

τ+1∫

τ

dτ̄
∫
d℘sin [℘(τ̄ − τ)]

℘

∂

∂℘
g(℘)

= gTNκ

4

∫
d℘ sinc2

(
℘

2

)
∂

∂℘
g(℘) ,

(2.58)

where we have explicitly performed the integration with respect to time in the second step.
So far, we have only considered the situation of a monoenergetic electron beam. However,
in the experimental situation, the electron accelerator always produces an electron beam
with a nonzero momentum width ∆℘. As we show later in this thesis this fact is of utmost
importance in order to observe quantum effects in the FEL.
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Our current approach is only justified in the limit of ∆℘� 1 which we define as the ‘cold
beam’ limit. In this case g(℘) acts like a delta function, g(℘) ∼= δ(℘− ℘̄), in the integral of
Eq. (2.58), as can be seen from Fig. 2.8, and we arrive at the same result for the gain as
before, that is

G = −gTNκ4
∂

∂℘
sinc2

(
℘

2

)
|℘=℘̄ , (2.59)

where we have integrated by parts, have applied trigonometric identities and have used the
fact that the momentum distribution function vanishes at infinity, that is g(℘→ ±∞) = 0.
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Figure 2.9: Gain of the low-gain small-signal FEL, Eq. (2.60), for a warm electron beam
as a function of mean momentum ℘̄ of the initial distribution g(℘) given by a
Gaussian. The extreme values for the gain are located at ℘̄ = ±∆℘.

The other extreme limit is the one of a ‘warm beam’, where we have a broad momentum
distribution with ∆℘� 1. In this case the function sinc2(x/2) can be approximated by a
delta function [51], that is sinc2(℘/2) ∼= δ(℘− ℘̄), in Eq. (2.58) (see Fig. 2.8) and we obtain

G = gTNκ

2
∂g(℘)
∂℘
|℘=0 (2.60)

which is drawn in Fig. 2.9 for a Gaussian distribution g(℘). At first sight, the form of this
curve is very similar to the one of the cold beam limit in Fig. 2.6. However, the maximum
and minimum gain occur at ℘̄ = ∆℘ and ℘̄ = −∆℘, respectively, instead of ℘̄ ∼= ±π for a
cold beam.
In conclusion, we have illustrated how two different approaches, that is (i) following the
trajectories of each electron and (ii) considering the distribution function for an ensemble
of electrons lead to the same result for the gain, Eq. (2.46), of the low-gain FEL in the
small-signal limit. Moreover, we have identified two different limits of this gain regime
depending on the momentum spread ∆℘ of the electrons.
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2.3.2 Saturated low-gain regime
In the small-signal regime the field acts like a small perturbation on the dynamics of the
electrons. When we increase the interaction time or the field strength this assumption is not
justified any longer. The electrons follow a periodic motion and at a certain time they do not
emit but absorb radiation from the field [57] and saturation of the field occurs. That is why
this regime is often referred to as ‘saturated FEL’ [51, 66].
According to Ref. [51] we interpret this situation such that the energy of the electrons is
much smaller than the height of the standing wave potential and the main contributions
to the change of the field come from the electrons close to the wells of the cosine potential.
Therefore, we perform the transformation

θj ≡ ψj + π (2.61)

shifting the origin of our coordinate to such a well. For a large potential height we make a
Taylor approximation of the potential and arrive from Eq. (2.38) at the equation of motion

ψ̈j = −µ sinψj ∼= −µψ
(

1− 1
6ψ

2
j

)
(2.62)

for an electron which is analogous to an anharmonic oscillator. In Eq. (2.62) we have defined
the saturation parameter µ ≡

√
κ|aL| which is large, that is µ� 1, in the limit of a saturated

FEL [51].
With the help of the transformations bj ≡ (2µ)−1/2(ψj + (i/µ)℘j) and b = B e−iµ(τ̄−τ) in
analogy to our procedure for the classical laser in Sec. 2.2.1 we arrive at the relation

Ḃj = i

8 |Bj|2Bj , (2.63)

where we have neglected rapidly varying contributions.
Similar to Eq. (2.19) the solution of Eq. (2.63) is given by Bj = B

(in)
j ei|B

(in)
j |2(τ̄−τ)/8 and the

back transformation to the initial variables yields the expression

℘j = −µψ(in)
j sin


µ− ℘̄2

16 − µ
θ

(in)
j

2

16


+ ℘̄ cos


 ℘̄

2

16 − µ
θ

(in)
j

2

16


 (2.64)

for the momentum of an electron right at the end of the interaction, where we have assumed
that the initial momentum is the same for all electrons, that is ℘(in)

j = ℘̄ while the initial
phases ψ(in)

j are uniformly distributed.
In order to calculate the gain we employ Eq. (2.40) and equate the change of the laser field
with the change of the average momentum of the electrons. By averaging over the initial
phases we find the nonzero contributions [67]

1
2π

∞∫

−∞
dθ(in) sin

(
µ
θ(in)2

16

)
= 1

2π

∞∫

−∞
dθ(in) cos

(
µ
θ(in)2

16

)
=
√

2
πµ

, (2.65)

where we have extended the limits of integration to minus and plus infinity.
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Figure 2.10: Change of the average momentum of the electrons as function of the saturation
parameter µ ≡

√
κ|aL| in the saturated regime, Eq. (2.67), that is µ� 1. Indeed,

the growth of the energy transfer to the field saturates and we obtain oscillations.

With the help of Eqs. (2.18) and (2.40) we arrive at

G = − gTN

µ2|aL|
〈℘(τ + 1)− ℘(τ)〉 (2.66)

and by employing the identity
√

2 cos(α− π/4) = sinα + cosα we finally obtain the expres-
sion [51]

G = − gTN

µ2|aL|
℘̄

{
1− 2√

πµ
cos

[
µ

(
1− ℘̄2

16µ2

)
− π

4

]}
(2.67)

for the saturated gain of the classical FEL in the low-gain regime. The average change of
electron momentum is drawn in Fig. 2.10 as a function of the saturation parameter µ. Indeed,
for increasing values of µ the energy transfer to the field saturates and eventually shows an
oscillatory behavior.
In accordance to Ref. [51] we estimate the magnitude of G in the saturated regime by setting
℘̄ = µ and neglecting the oscillatory part of Eq. (2.67). Hence, we obtain

G ∼= gTN√
κ|aL|3/2

(2.68)

which decreases for increasing magnitudes of the field amplitude.

2.3.3 High-gain FEL: the many-electron model
Up to now we have thoroughly discussed the low-gain regime for the FEL. However, many FELs
in experiment are operating in a different limit: the high-gain regime [19, 20, 21, 68, 69, 70].
Additionally, to achieve the SASE mode, and thus to build X-ray FELs [23], one has to
consider the high-gain case.
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N times

laser field

electron

laser field

N electrons

Figure 2.11: Difference between the single-electron limit (left) for the low-gain FEL and the
many-electron model (right) for the high-gain regime. In the former case we
just consider the interaction between a single electron with the laser field and
multiply the result with the number N of electrons in the bunch. In contrast,
the many-particle theory describes the collective interaction of all N electrons
with the laser field. Hence, the motion of an electron is affected by the dynamics
of all other electrons via the laser field. We emphasize that this collective effect
must not be confused with the effect of space charge due to the Coulomb force
between the electrons which is neglected here.
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From the theoretical viewpoint the main difference between a high and a low gain is that for
a high-gain FEL a many-electron theory is mandatory. The change of the laser field during
the interaction of a single electron bunch is not negligible any longer and this change of the
field couples to the motion of the electrons making a self-consistent approach necessary. So
to say the electrons interact via the laser field with each other, which is depicted in Fig. 2.11.

We emphasize that the collective effect described here is different from the effect of space
charge, that is the Coulomb force between the electrons, which is a direct interaction of
the electrons. For high densities we have to include this effect and find a slightly different
behavior. Therefore, one distinguishes between the ‘Compton regime’, without any space
charge effects, and the ‘Raman regime’, which includes these effects [62, 71]. For the time
being we concentrate on the Compton regime.

To reduce our calculational effort we first make a Galilei transformation into a frame of
reference which moves with the initial average velocity of the electrons, in dimensionless
variables given by ℘̄. Thus, by following the prescription





θj → θj − ℘̄τ
℘j → ℘j − ℘̄
aL → aL ei℘̄τ

(2.69)

Eqs. (2.35) and (2.37) transform to

θ̇j = ℘j

℘̇j = − κ2i
(
aL eiθj −a∗L e−iθj

)

ȧL = −igTN 〈e−iθ〉+ i℘̄ aL

(2.70)

which have to be solved self-consistently.

To make connection with the theory of the high-gain Quantum FEL, presented later in this
thesis, we follow the approach of collective variables introduced in Refs. [21, 72]. We define




B ≡ 〈e−iθ〉
P ≡ 〈℘ e−iθ〉 (2.71)

and by means of Eq. (2.70) we arrive at

Ḃ = −iP
Ṗ = − κ2iaL + κ

2ia
∗
L 〈e−i2θ〉 − i 〈℘2 e−iθ〉

ȧL = i℘̄ aL − igTNB
(2.72)

which has the disadvantage of not being a closed set of equations making it impossible to
find an analytic solution for the whole range of parameters.
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Small-signal regime

Just as for the low-gain case, we investigate specific limits of the interaction. If we consider
the small-signal limit, we make the approximation that the change of the variables during
the interaction is small, that is 




θj ∼= θ
(in)
j + δθj

℘j ∼= δ℘j

aL ∼= δaL

(2.73)

where δθj, δ℘j δaL are first-order quantities. We assume that the initial amplitude of the
laser field is small. Thus, in contrast to the low-gain case, the gain during a single pass of
electrons can reach comparable high values.
The collective variables, introduced in Eq. (2.71), then reduce to




B ∼= 〈−iδθ e−iθ(in)〉 ≡ δB

P ∼= 〈δ℘ e−iθ(in)〉 ≡ δP ,
(2.74)

where we have inserted the small-signal approximation, Eq. (2.73), expanded the exponential
e−iδθj to first order in δθj , have taken into account that 〈e−θ(in)〉 = 0 and have neglected terms
with δ℘jδθj.
Hence, the equations of motion for the collective variables, Eq. (2.72), read in this approxi-
mation

i
d
dτ



δB
δP
δaL


 =




0 1 0
0 0 κ/2

gTN 0 −℘̄


 ·



δB
δP
δaL


 , (2.75)

where we have again neglected second order terms and have encountered vanishing terms like
〈e−2iθ(in)〉.
We finally arrived at a linearized set of differential equations which can easily be solved with
the ansatz ∼ e−iλτ yielding the characteristic equation [21]

λ2(λ+ ℘̄)− gTNκ

2 = 0 . (2.76)

This cubic equation has three solutions, and for a certain range of values of ℘̄ two of them
possess a nonzero imaginary part. This imaginary part occurs in both solutions with a
different sign and the positive one is responsible for an exponential growing field ∼ e|Imλ|.
The positive imaginary part of λ depending on the initial momentum ℘̄ is shown in Figure 2.12
and we identify this curve as the gain function of the high-gain FEL. We observe that |Imλ|
reaches its maximum at ℘̄ = 0 and thus there the gain is also maximized. This stands in
strong contrast to the low-gain regime, where the largest gain is achieved at ℘̄ ∼= π and
even vanishes at ℘̄ = 0. Hence, we clearly identify here a substantive difference between the
single-particle and the many-particle approach.
For ℘̄ = 0, which we define as the resonance for the high-gain FEL, Eq. (2.76) simplifies and
we find the analytic solution

Imλ = ±
√

3
2

(
gTNκ

2

)1/3
(2.77)
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Figure 2.12: Normalized modulus of Imλ as a function of the initial Doppler parameter
℘̄ ≡ 2kp̄T/m. We interpret this curve as gain function of the high-gain FEL
since a nonzero value of Imλ is responsible for exponential gain. In contrast
to the low-gain small signal case, Eq. (2.46), the gain is maximized at ℘̄ = 0.
For the numerical solution of the characteristic equation, Eq. (2.76), we have
assumed gT

√
Nκ/2 = 10.

for the increment of the gain.

It is often convenient to rewrite the gain in terms of the position z ≈ ct of the electrons
instead of the time τ ≡ t/T . By this procedure we arrive at the form ez/Lg of the intensity
growth, where the gain length

Lg ≡ c

(
2m

(2k)2gNU0

)1/3
(2.78)

is a measure of how quick the laser field is amplified in the wiggler. We recognize that the
gain length scales with N−1/3. Thus, if we increase for a fixed wiggler length L the number
N of electrons the gain of the FEL also increases, which we would expect from intuition.

According to Refs. [21, 48] the exponential gain in the high-gain regime reduces to the linear
Madey gain for a short interaction time, yielding the condition

L� Lg (2.79)

for the length L of the wiggler. This constraint, thus, defines the range of validity for the
low-gain approximation.

We have studied the high-gain FEL within an approach [21] based on collective variables.
However, we could have also employed a model [48] in phase space, where the electron
dynamics is dictated by a Vlasov equation. Both approaches lead to equivalent results, that
is the cubic equation Eq. (2.76), just like in the low-gain, small-signal limit.
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Saturation

Similar to the low-gain case, at some point the laser field saturates. After a couple of
gain lengths the exponential growth vanishes and the laser intensity stays more ore less
constant [48]. For a growing laser field the height of the potential also increases. As a result,
the electrons follow a self-organization process and accumulate in the wells of this potential,
an effect which is known as microbunching [48]
To estimate the field intensity at saturation we assume that the electrons are perfectly
bunched at the potential wells, that is at θ = π, 3π, 5π, ..., leading to B = −1 in Eq. (2.72) for
the ‘bunching factor’ [70], defined in Eq. (2.71). Estimating the growth of the field amplitude
aL with the rate λ in the linearized regime, that is ȧL ∼= −iλaL, we arrive at [48]

λaL = −gTN . (2.80)

Thus, we obtain

|asatL |2 ∼=
(

2mg2

(2k)2U0

)2/3

N4/3 (2.81)

for the dimensionless intensity of the field at saturation which scales with N4/3. According
to Ref. [73] the saturation sets in at Lsat ∼= 4π

√
3Lg if the laser has started from vacuum.

Self-amplified spontaneous emission

For radiation in the X-ray regime there do not exist suitable mirrors to build cavities.
Moreover, it is difficult to realize a suitable seeding field which could be amplified by the
FEL [48]. That is why the realization of X-ray FELs in experiment [23] relies on the concept
of self-amplified spontaneous emission (SASE) [21, 68, 74, 75, 76].
In this mode of operation the laser field starts from vacuum due to spontaneous emission or
density fluctuations in the electron beam [48]. Since no cavity is present this radiation has to
be considerably amplified in a single passage of the electrons through a long wiggler, that is
the high-gain regime.
Instead of a perfectly uniform distribution of the electrons along the wiggler axis one has to
consider randomly distributed electrons [70]. Indeed, the electron beam has to be modeled
such that the initial mean value of B is zero, that is 〈B(0)〉 = 0, but not the second moment,
which gives 〈B〉 = 1/N , where the average is over all possible ensembles. Since randomness
is of major importance for a SASE FEL the emitted radiation shows a chaotic behavior with
a noisy and spiky spectrum [48, 75, 76].
In this context, we also mention the effect of slippage [62, 75, 77] of the radiation field over
the electrons. This slippage occurs since light is always faster than the electrons moving at a
velocity v . c and hence the light pulse slips ahead with the distance of NWλL in comparison
to the electrons, where NW is the number of wiggler periods. To obtain this effect in the
equations of motion for the electron and the laser field we have to consider a relativistic
theory and replace the total time derivative by [62]

d
dt →

∂

∂t
+ v̄

∂

∂z
(2.82)
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for the electron positions zj and momenta pj, respectively, where we have introduced the
mean velocity v̄ in the z-direction while we have to apply

d
dt →

∂

∂t
+ c

∂

∂z
(2.83)

for the dynamics of the amplitude aL of the laser field.
According to Ref. [75] we have to distinguish between a long and a short electron bunch due
to the influence of slippage. For this purpose, the authors of Ref. [75] defined the ‘cooperation
length’ Lc ≡ (λL/λW)Lg which has to be compared with the length Lb of the bunch. For
a long bunch, that is Lb � Lc, the exponential gain, discussed in the preceding section, is
observed which is not the case for the opposite limit Lb � Lc [75]. However, even for a long
bunch the slippage leads to fluctuations of the intensity and spikes in the spectrum [75].

2.3.4 Raman regime: effect of space charge

So far, we have neglected the Coulomb interaction between the electrons in the beam. However,
when the density of the electron beam is high enough this effect becomes relevant [20, 62,
71, 78, 79, 80]. In the high-density limit we obtain another regime of FEL operation, which
is sometimes called the ‘Raman regime’ to contrast it from the small-density case which is
known as ‘Compton regime’ [62].
An important quantity which we have to introduce in this context is the plasma frequency
for the electron beam [64]

ω2
p ≡

e2

ε0m
ne (2.84)

which depends on the electron density ne ≡ N/V of the electrons in the bunch.
For the investigation of the Raman regime an approach [20, 48] using the Vlasov equation
is best suited. The resulting characteristic equation for the high-gain small-signal regime
reads [20]

(λ− ωpT ) (λ+ ωpT )
(
λ+ ℘̄− ω2

pT

2ck

)
= gTNκ

2
(2.85)

which reduces to the one of the Compton regime when we let ωp → 0. The gain length in the
Raman limit can be estimated [20] by

Lram
g = (2

√
3)3/2

√
ωp

c

(
Lcom
g

)3/2
, (2.86)

where we have added the superscripts ram and com to distinguish Raman and Compton
regime, with Lcom

g given by Eq. (2.78).
For an X-ray FEL the effect of space charge usually is not of importance [48] and it thus
operates in the Compton regime. According to Ref. [48] neglecting Coulomb interaction is
justified when the condition

kp �
1

Lcom
g

(2.87)
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is satisfied. The parameter
kp ≡

1
γ0c

ω∗p (2.88)

is defined in the laboratory frame, where the expression for the plasma frequency ω∗p ≡√
nee2/(ε0γ0m0) differs from the one, Eq. (2.84), in the co-moving frame by the factor γ−1/2

0
due to relativistic length contraction.
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3 The Quantum–Classical Transition
Illustrated by the FEL Gain

In the preceding chapter we have studied in detail the classical theory of the FEL which is
sufficient to describe all operating devices. However, since quantum mechanics is the more
fundamental theory we expect that the range of validity of classical physics is just an extreme
limit of the FEL interaction and that at some point quantum effects have to appear.
We first discuss this transition from classical to quantum in an illustrative approach in phase
space [4] which compares classical trajectories with discrete momentum steps due to Compton
scattering. This procedure allows us to identify the important parameters for quantum effects
to emerge. In this context we demand (i) for a high value of the quantum mechanical recoil
the electron experiences due to the scattering with the wiggler and the laser field and (ii) for
a small momentum spread of the electron beam.
In the following discussion we restrict ourselves to the gain of the laser field and thus consider
a semiclassical approach where the electrons are quantized and the field is treated classically
in analogy to semi-classical laser theory [22, 55]. To calculate the gain including quantum
corrections we employ two different methods, that is (i) solving the quantized pendulum
equation in the Heisenberg picture and (ii) studying the dynamics of the Wigner distribution
function [40] for the electron in analogy to the classical distribution function in phase space.
Since we just consider the low-gain small-signal limit we are allowed to treat the dynamics in
a perturbative manner according to the preceding chapter. The results of these calculations
justify the predictions of our heuristic approach, namely, that we require, both, a high recoil
and a small momentum spread in order to obtain quantum effects in the FEL.

3.1 Classical trajectories vs. Compton scattering
Before we investigate the transition from classical to quantum in the FEL in a rigorous
manner and explicitly calculate the quantum corrections to the classical gain, we try to
understand this transition from a heuristic description in phase space. This discussion is
already presented in Ref. [4].
On a microscopic level the interaction in the FEL can be described as ‘stimulated Compton
scattering’ [50]. Either a wiggler photon with momentum ~kW is annihilated by the electron
and a laser photon with ~kL is created (‘emission’) while the electron is decelerated or the
opposite process occurs and a laser photon is annihilated (‘absorption’). Both processes are
shown in Fig. 3.1.
Whether emission or absorption, in any case the change of the electron momentum is given
by the quantum mechanical recoil

q ≡ ~(kL + kW) = 2~k , (3.1)
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Figure 3.1: Discrete momentum steps of the electron in the FEL: a wiggler photon with
momentum ~kW is annihilated and a laser photon is created, that is ‘emission’,
with the electron decelerating by a momentum recoil of ~(kL + kW) (left) and the
opposite process, that is ‘absorption’, where the electron gains the momentum
~(kL + kW).

where the second equality holds only true in the Bambini–Renieri frame, or by an integer
multiple of q. Hence, we expect a discrete momentum ladder to characterize the dynamics of
the electron in the FEL.
However, in the preceding chapter we have understood the gain mechanism in the FEL
completely in terms of classical physics and have described the electron motion by smooth
trajectories. How can we connect this classical approach with the discrete momentum steps
due to Compton scattering?
We answer this question by realizing that for the classical FEL the recoil q has to be small
and thus we obtain a continuum of momentum levels yielding the effectively continuous
trajectories as shown on the left-hand side of Fig. 3.2. During the interaction with the wiggler
each electron emits or absorbs many laser photons [51, 81] and hence the change of the
momentum occurs on a classical scale.
In contrast, for quantum effects to be visible the recoil q has to be very large and in the
deep quantum regime it even has to be the dominating momentum scale. This situation is
shown on the right-hand side of Fig. 3.2 where we obtain discrete momentum steps instead
of classical trajectories [4]. Moreover, we deduce that in this case, where quantum effects
become relevant, each electron emits or absorbs just a few photons.
We quantify our statement of a small or a large recoil by considering the magnitude of the
Doppler parameter ℘ ≡ 2kpT/m, defined in Eq. (2.34) as typical scale for the FEL dynamics.
When we set p = ~k in the definition for ℘ we arrive at the parameter ωrT where we have
introduced the recoil frequency

ωr ≡
2~k2

m
= 1

~
q2

2m
(3.2)

which is the energy q2/(2m) associated to the recoil divided by ~. Since ωrT is proportional to
~ we expect that for ωrT � 1 the classical description of the FEL is valid while for increasing
recoil, that is ωrT ∼ O(1), quantum effects start to emerge. This parameter ωrT was already
found in Ref. [35] by solving the Schrödinger equation and identifying the classical and the
quantum limit of the FEL.
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Figure 3.2: Dynamics of the electron in phase space (z, p) for the classical (left) and quantum
regime (right) of the FEL: in the classical limit the recoil q, Eq. (3.1), is small and
the electron follows continuous trajectories. In contrast, the electron momentum
changes by discrete steps, separated by q, when quantum mechanics become
relevant, that is for increasing values of q. The separatrix which divides bounded
from unbounded motion is indicated by the blue line and spans from −

√
2mU0|aL|

to +
√

2mU0|aL| along the momentum axis. This figure is adapted from Ref. [4].

When we even assume that the recoil is the dominating momentum scale and we enter the
quantum regime we have to compare q with the typical scale of the classical dynamics in the
FEL. From Fig. 3.2 we identify this quantity with the help of the separatrix which is the
border between bounded and unbounded motion. The maximum momentum that is covered
by the separatrix is given by

√
2mU0|aL|, which depends on the potential height U0|aL| of

the ponderomotive potential.
Hence, we define the ratio of the potential height and of the recoil energy q2/2m as the
quantum parameter

α ≡ U0|aL|/2
q2/2m (3.3)

in accordance with Ref. [4]. For α� 1 we expect to be in the deep quantum regime, where
classical physics does not matter any more.
It is convenient to rewrite the quantum parameter

α ≡ g
√
n

ωr
(3.4)

in terms of two frequencies, where we have defined the coupling strength g ≡ U0/~, have
identified the amplitude |aL| as the square root

√
n of the photon number n, or dimensionless

intensity, of the laser field and have employed the definition of the recoil frequency, Eq. (3.2).
This form of the quantum parameter, Eq. (3.4), is also found in Chap. 5 of this thesis by a
rigorous quantum mechanical approach. We note that this quantity, moreover, is analogous
to the parameter ρ̄ in Ref. [3] as discussed in Ref. [4].
However, just increasing the recoil q is not the full story. A second condition to observe
quantum effects for the FEL emerges when we consider the initial state of the electron beam.
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Figure 3.3: The phase space (z, p) describing the electron motion in the FEL in the regime
of high recoil q. In this limit the dynamics is given by a discrete momentum
ladder with steps separated by q. When the width ∆p of the initial momentum
distribution of the electron covers many steps of the ladder (left) there are no
quantum effects. Hence, we require a width ∆p (right) which is smaller than a
single step q, Eq. (3.5), to observe quantum effects in the FEL dynamics.

An electron bunch always possesses an energy spread when it leaves the accelerator which in
our model translates to a momentum distribution with a nonzero width ∆p.
When we assume that this width is large and covers many steps of the momentum ladder,
the situation on the left-hand side of Fig. 3.3 emerges. In this case, we argue that the large
width prevents the emergence of quantum effects since the discreteness of the momenta is
‘washed out’ [4].
Hence, to observe quantum effects we demand that the width ∆p of the initial momentum
distribution is confined to a single step of the momentum ladder characterized by the recoil q
and is shown on the right-hand side of Fig. 3.3. Thus, we require

∆p < q (3.5)

to observe quantum effects in the FEL in analogy to Ref. [4]. We note that the upper limit
for the momentum spread in Eq. (3.5) is the most difficult obstacle to obtain quantum effects
for the FEL in an experiment, at least in our one-dimensional model.
We emphasize that we have made use of the concept of photons in the discussion about
Compton scattering just because it is very intuitive, but for the description of quantum effects
in the FEL it is not necessary at all. It is even wrong to think that quantum mechanics
arises in the FEL due to the properties of a quantized light field: it is the electron dynamics
in which the transition from classical to quantum physics becomes apparent.
In contrast to the classical position z and momentum p of an electron, the quantum mechanical
operators ẑ and p̂, respectively, do not commute. It is the commutation relation [ẑ, p̂] = i~
for these operators that leads to quantum effects. We prove this statement in the later course
of this chapter when we compute the quantum corrections to the classical gain formula. The
quantized version of the single-electron Hamiltonian, Eq. (2.31), then reads

Ĥ = p̂2

2m + U0

2
(
aL ei2kẑ +a∗L e−i2kẑ

)
(3.6)

which describes a semiclassical model since the laser field is not quantized.
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When we investigate the action of the Hamiltonian, Eq. (3.6), on a quantum mechanical
state we observe terms of the form

e±i2kẑ |p〉 =
∫
dz 〈z|p〉 e±i2kz |z〉 , (3.7)

where we have expanded the momentum eigenstate |p〉 with eigenvalue p in terms of the
position eigenstates |z〉 satisfying ẑ |z〉 = z |z〉. Since momentum in position representation
constitutes a plane wave, that is 〈z|p〉 ∼ eizp [40], we obtain the relation [82]

e±i2kẑ |p〉 = |p± q〉 . (3.8)

This means that the operator e±i2kẑ shifts the momentum of the eigenstate |p〉 by the discrete
recoil ±q ≡ ±2~k and thus we identify e±i2kẑ/~ as a momentum-shift operator. Applying
this operator many times yields a change of total momentum which constitutes an integer
multiple of q.
Hence, we have obtained the discrete momentum ladder which we have already introduced
by hand in terms of energy-momentum conservation for Compton scattering. However, in
Eq. (3.6) the radiation field is classical and we do not require the ‘picture’ of a photon to
understand the discrete dynamics of the electron in the FEL. Instead, the motion of the
electron has to be quantized to observe quantum effects.

3.2 Quantum corrections: Heisenberg picture
In the preceding section we have discussed the transition from classical to quantum from
a rather heuristic or graphical point of view. Now, we derive explicit expressions for the
corrections to the classical gain when we leave the classical regime and quantum effects are not
negligible any longer. On the one hand we want to illuminate further the classical–quantum
transition in the FEL and on the other hand we try to find the conditions and the explicit
form of quantum corrections which are important for a possible experimental verification.
The first method to achieve this goal stands in close analogy to the solution of the pendulum
equation, Eq. (2.38), in Chap. 2 where we have considered the individual trajectories of
the electrons to calculate the FEL classical gain, Eq. (2.46), in the low-gain, small-signal
regime. In the Heisenberg picture of quantum mechanics position ẑ and momentum p̂ are
time-dependent operators instead of simple numbers. After solving the Heisenberg equations
of motion for these operators, in analogy to the Hamiltonian equations of motion for classical
variables, we use the resulting time-dependent expression to calculate expectation values
with respect to the initial state of the system.

3.2.1 Baker–Campbell–Hausdorff theorem
The main difference between classical variables and quantum mechanical operators is, that
latter ones in general do not commute with each other. That is for example the case for
position ẑ and momentum p̂ which fulfill the commutation relation

[ẑ, p̂] = i~ . (3.9)
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This fundamental identity includes the Planck constant ~ and is responsible for quantum
effects in the FEL [13] as we prove in the following. We again emphasize that it is the
quantized motion of the electron that brings us closer to the quantum regime and not the
laser field which is classical in the current discussion.
In our approach we restrict ourselves to the low-gain regime that is why we consider the
single-electron Hamiltonian Ĥ in its quantized form of Eq. (3.6). This Hamiltonian dictates
the dynamics of an arbitrary operator Ô via the Heisenberg equation of motion

i~
d
dtÔ =

[
Ô, Ĥ

]
(3.10)

which is the analogue to the Schrödinger equation in the Schrödinger picture, where one
considers time-dependent states and time-independent operators.
From the equation of motion, Eq. (3.10), and the Hamiltonian, Eq. (3.6), we obtain the
quantum analogue of the pendulum equation, Eq. (2.36),

d2

dτ 2 θ̂ = κ|aL|
2

(
eiθ̂− e−iθ̂

)
. (3.11)

In close analogy with the classical definition, Eq. (2.34), we have introduced the dimensionless
operators θ̂ ≡ 2kẑ for the ponderomotive phase and ℘̂ ≡ (2kT p̂)/m for the Doppler parameter.
In this scaling the fundamental commutation relation, Eq. (3.9), translates to

[
θ̂, ℘̂

]
= i2ωrT , (3.12)

after employing the definition Eq. (3.2) of the recoil frequency ωr.
In accordance with Eq. (2.37) the dynamics of the modulus |aL| of the laser field amplitude
is prescribed by the relation

d
dτ |aL| = −

gTN

2 〈eiθ̂− e−iθ̂〉 . (3.13)

On the right-hand side we calculate the expectation values of the quantum mechanical
operators eiθ̂ and e−iθ̂. In the low-gain regime the field amplitude |aL| in the pendulum
equation, Eq. (3.11), is considered as constant. Thus, we first solve the pendulum equation
for θ̂ and insert the result into Eq. (3.13) which is then simply integrated with respect to
time, analogously to the classical procedure presented in Chap. 2. Moreover, we assume that
the initial state of the electron is given by the momentum eigenstate |p̄〉 which gives us a
uniform distribution in z-direction but a sharp value of the momentum at p = p̄.
We restrict ourselves to the small-signal regime. Hence, we identify the right-hand side of the
pendulum equation, Eq. (3.11), as a small perturbation to the free motion

θ̂(0) = θ̂(in) + ℘̂(in)τ (3.14)

of the electron and similar to the classical case, Chap. 2, we use a perturbative expansion of
θ̂ which reads

θ̂ = θ̂(0) + θ̂(1) + θ̂(2) + ... . (3.15)
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Of course, this expansion is only valid for a small coupling κ|aL|. Moreover, the quantum
corrections which are quantified by the parameter ωrT according to Eq. (3.12) are small
but not negligible any more. That is why we assume that the coupling and the quantum
corrections are of the same order, that is κ|aL| ∼ ωrT .
We omit the details of the perturbative expansion and refer the reader to App. B where this
lengthy and cumbersome calculation is presented in all its ‘beauty’. Here, we just shortly
illuminate in which way the quantum corrections to the classical gain emerge.
In contrast to ordinary numbers, we cannot easily separate an exponential of the sum Â+ B̂
of two operators, but instead we have to pay attention to the Baker–Campbell–Hausdorff
theorem [82]

eÂ+B̂ = eÂ eB̂ e−
1
2 [Â,B̂] e

1
6(2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) ... , (3.16)

where Â and B̂ denote two arbitrary operators.
In our perturbative calculation we very quickly get contact to such exponentials. For example,
when we insert the zeroth-order solution from Eq. (3.14) into Eq. (3.11) we obtain terms like

eiθ̂(in)+i℘̂(in)τ = eiθ̂(in) ei℘̂(in)τ eiωrTτ (3.17)

according to Eq. (3.16). Since the commutator, Eq. (3.12), of θ̂ and ℘̂ yields a c-number all
nested commutators vanish resulting in the relatively simple form of Eq. (3.17). Moreover,
for a small value of ωrT we arrive at the expression

eiθ̂(in)+i℘̂(in)τ ∼= eiθ̂(in) ei℘̂(in)τ
(

1 + iωrTτ −
1
2(ωrT )2τ 2 + ...

)
, (3.18)

where we have expanded the exponential eiωrTτ in powers of ωrT .
Hence, we have found terms with ωrT in Eq. (3.18) which are the first contributions for the
quantum corrections to the classical FEL. In the further course of our perturbative solution
of the pendulum equation, Eq. (3.11), we obtain more such contributions, like for example
[θ̂(0), θ̂(1)] or [θ̂(0), [θ̂(0), θ̂(1)]] which all scale with powers of ωrT . Moreover, when we compute
expectation values it is convenient to order the operators in a specific way which also causes
terms depending on ωrT .
In conclusion, we have shown that the commutation relation, Eq. (3.9), between position
operator ẑ and momentum operator p̂ of the electron is responsible for quantum effects in
the FEL. This fact appears in our perturbative solution in the Heisenberg picture in form of
the Baker–Campbell–Hausdorff relation, Eq. (3.16).

3.2.2 Gain including quantum corrections

In App. B we derive the expression

|aL(T )| − |aL(0)| =
(
G

(1)
cl −G(3)

cl |aL|2 +G(3)
qm

)
|aL| (3.19)
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Figure 3.4: Characteristic functions Acl, Eq. (3.21), and Bcl, Eq. (3.23), for the classical gain
in the low-gain small-signal regime in first and third order, respectively, and Q,
Eq. (3.25), for the quantum corrections, all depending on the Doppler parameter
℘.

for the change of the laser field in the FEL including the lowest-order quantum corrections.
Here, we have introduced the classical linear gain, Eq. (B.59),

G
(1)
cl = gTNκ

2
π3Acl(℘̄) (3.20)

with the characteristic function, Eq. (B.60),

Acl(℘) ≡ π3

2
1− cos℘− ℘

2 sin℘
℘3 (3.21)

which simply represents the Madey gain, Eq. (2.46). Moreover, we have included the third-
order contribution, Eq. (B.62),

G
(3)
cl = gTN

4π5 κ
3Bcl(℘̄) (3.22)

together with, Eq. (B.63),

Bcl(℘) ≡ π5

℘7

(9
2 cos 2℘+ 12 cos℘− 33

2 + 11
4 ℘ sin 2℘+ 53

4 ℘ sin℘

−℘
2

2 cos 2℘− 13
4 ℘

2 cos℘− ℘2

4 sin℘
) (3.23)

of the classical result [43]. Due to the negative sign in front of this term and the proportionality
to |aL|2 in Eq. (3.19) we identify G(3)

cl as the self-saturation coefficient for the classical FEL
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in analogy to an ordinary laser [22]. This term is necessary to obtain steady state in an
oscillator configuration as we discuss in detail in Chap. 4.
In addition to these classical contributions, we observe the expression, Eq. (B.72),

G(3)
qm = −(ωrT )2 2gTN

π5 κQ(℘̄) (3.24)

characterized by, Eq. (B.73),

Q(℘) ≡ π5

4℘5

(
4 cos℘− 4 + 3℘ sin℘− ℘2 cos℘− ℘3

6 sin℘
)

(3.25)

which represents the lowest-order quantum correction to the classical gain in the low-gain
small-signal regime.
By inspecting Eqs. (3.20) and (3.22) we can relax the condition κ|aL| � 1 for the small-signal
regime. The comparison of the third-order classical term with the first-order one leads us to

G
(3)
cl

G
(1)
cl
∼ κ2|aL|2

8π2 . (3.26)

Thus, we obtain the condition
κ|aL| � 2

√
2π (3.27)

which follows when we demand that the ratio in Eq. (3.26) is much smaller than unity in
order to truncate our asymptotic expansion. In analogy, by considering the ratio

G(3)
qm

G
(1)
cl
∼
(
ωrT

π

)2
(3.28)

of classical gain in first order, Eq. (3.20), and of the lowest-order quantum correction,
Eq. (3.24), we deduce the second constraint

ωrT � π (3.29)

for the validity of our perturbative approach.
In Fig. 3.5 we have drawn the change of the field amplitude |aL| as a function of the initial
Doppler parameter ℘̄, according to Eq. (3.19), in comparison to the classical limit ωrT = 0.
For increasing values of ωrT the maximum gain decreases and the positions of the extreme
values are shifted outwards.
We emphasize that this result for the classical gain and its quantum corrections is not
new [17, 83]. Even the first article by Madey [5] towards the FEL in principle contained this
result. In the following we sketch the basic approach of these references.
With the help of first-order perturbation theory for the Schrödinger equation one obtains the
probabilities P+1 ∝ sinc2(℘/2− ωrT ) and P−1 ∝ sinc2(℘/2 + ωrT ) for single-photon emission
and single-photon absorption, respectively. The difference of emission and absorption

G ∝ 1
2ωrT

[
sinc2

(
℘

2 − ωrT
)
− sinc2

(
℘

2 + ωrT
)]

(3.30)
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Figure 3.5: Change of the laser field amplitude |aL|, according to Eq. (3.19), in a low-gain
small-signal FEL as a function of the initial momentum ℘̄. We compare the
classical limit (blue line), where ωrT = 0, with the case, where Eq. (3.19) includes
the lowest-order quantum corrections (red, dashed line) for ωrT = 1 (left side)
and ωrT = 2 (right side), respectively. We observe that for increasing values of
ωrT the positions of minimum and maximum are slightly shifted to the left and
to the right, respectively, while the magnitude of the gain decreases.

can be interpreted as the gain of the FEL [17]. When ωrT is small we are allowed to perform
a Taylor expansion

G ∝ − ∂

∂℘
sinc2

(
℘

2

)
− (ωrT )2

3!
∂3

∂℘3 sinc2
(
℘

2

)
... , (3.31)

where the first term is proportional to the linear gain G(1)
cl in the classical regime, according to

Eq. (2.46). By calculating the third derivative in Eq. (3.31) we further obtain the expression

1
3!

∂3

∂℘3 sinc2
(
℘

2

)
= 8
π5Q(℘) (3.32)

for the quantum corrections which is analogous to our result in Eq. (3.25).
However, as was stressed for example in Ref. [81], this procedure of employing standard
perturbation theory is only valid when just single-photon transitions occur and the corre-
sponding asymptotic expansion is allowed for gT

√
n � 1. In the classical regime of the

FEL, however, multiphoton processes are dominant [81]. In contrast, in our approach we
overcome this problematic interpretation of single-photon transitions and the small parameter
of the asymptotic expansion is given by κ|aL|. Instead, we identify the fact that position and
momentum of an electron do not commute in quantum mechanics as the origin of quantum
effects in the FEL which finally appear as quantum corrections to the classical trajectories.
Hence, our model gives a reasonable interpretation for quantum effects as well as for the
classical limit of the FEL. Alternatively, one can regard the situation from the point of view
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of Ref. [83]: despite the fact that the asymptotic expansion for the wave function cannot
be truncated when multiphoton processes are of relevance we are allowed to cut off the
corresponding expression for the gain and it mathematically gives the correct result.

3.3 Quantum corrections: Wigner function
We now present our second technique to obtain quantum corrections to the classical gain
in the FEL: a method based on the Wigner distribution function. First, we discuss the
properties of this function and introduce the Quantum Liouville equation which governs the
dynamics of the Wigner function for the example of the FEL. We proceed by perturbatively
solving the Quantum Liouville equation in analogy to our approach in Chap. 2 for the classical
distribution function. Finally, we derive explicit expressions for quantum corrections for
a cold and a warm electron beam, respectively, and we obtain that these corrections are
suppressed when the momentum spread ∆p of the electron beam increases. Finally, we
investigate realistically modeled electron beams as well as the scattering of wave packets.

3.3.1 Wigner function and Quantum Liouville equation
Contrarily to the Heisenberg picture the operators in the Schrödinger picture are independent
of time and the dynamics of the system is described by the state vector |Ψ(t)〉. In a more
general formulation of quantum mechanics, where we have to take into account the insufficient
information the observer possesses about the preparation of the quantum state, we have to
consider the density operator ρ̂(t) [40, 82].
The dynamics of ρ̂(t) follows from the von Neumann equation [82]

i~
d
dt ρ̂(t) =

[
Ĥ, ρ̂(t)

]
(3.33)

which is basically the extension of the Schrödinger equation to the concept of a density-
operator. We form the expectation value [82] for an observable Ô

〈Ô(t)〉 = Tr
{
ρ̂(t)Ô

}
(3.34)

by taking the trace of the product of density operator and observable.
Similar to the Heisenberg equation of motion, Eq. (3.10), the von Neumann equation,
Eq. (3.33), is an operator equation. Hence, when we solve Eq. (3.33) we have to pay attention
to the ordering of the involved operators in every single step of the calculations. However,
there exist several techniques to order the operators correctly from the beginning where we
transform the operator equation to an equation which only contains ordinary c-numbers [82].
The c-number equivalent of the density operator ρ̂ is given by so-called quasi-probability func-
tions. Besides the Glauber–Sudarshan P -function [84] and the Husimi–Kano Q-function [85]
we can cast the density operator into a third kind of representation: the Wigner func-
tion [33, 40, 86]. Like the other two examples of distribution functions it is defined as a
Fourier transform [82]

W (z, p; t) ≡
∫
dξ
∫
dζ e−izξ e−ipζ χρ̂(ξ, ζ; t) (3.35)
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of a specific characteristic function

χρ̂(ξ, ζ; t) ≡ Tr
{

eiξẑ+iζp̂ ρ̂
}
, (3.36)

where we have introduced the real parameters ξ and ζ. The arguments z and p of the
Wigner function are c-number versions of the position ẑ and momentum operator p̂ and hence
we interpret W (z, p; t) as phase-space distribution function which hints a similarity to the
classical distribution function f(z, p; t) introduced in Chap. 2. However, the interpretation as
a probability distribution is not fully correct since the Wigner function can take on negative
values [40] in contrast to its classical counterpart. We note that the operator ordering occurs
in the definition, Eq. (3.36), of the characteristic function χρ̂(ξ, ζ; t) and is also known as
Wigner–Weyl ordering [33].
The expectation value of an observable Ô has to be calculated from

〈Ô(t)〉 =
∫
dz
∫
dp Õ(z, p)W (z, p; t) , (3.37)

with
Õ(z, p; t) ≡

∫
dξ
∫
dζ e−izξ e−ipζ χÔ(ξ, ζ; t) (3.38)

denoting the Wigner–Weyl transform of Ô, where we have defined the characteristic function

χÔ(ξ, ζ; t) ≡ Tr
{

eiξẑ+iζp̂ Ô
}

(3.39)

in analogy to Eq. (3.36).
With the help of the von Neumann equation, Eq. (3.33), and the FEL Hamiltonian, Eq. (3.6),
we are in the position to derive the equation of motion for the Wigner function defined in
Eqs. (3.35) and (3.36). We omit here the explicit derivation and refer to App. C.1. There,
we obtain
(
∂

∂t
+ p

m

∂

∂z

)
W (z, p; t) = −2kU0|aL|

q
sin 2kz [W (z, p+ q/2; t)−W (z, p− q/2; t)] (3.40)

which is the Quantum Liouville equation for the FEL. In Refs. [25, 87, 88] an analogous
equation for the FEL dynamics was considered. However, these references are about the
high-gain regime and the Wigner function for the electrons there emerges from a collective
field operator approximated as classical field in analogy to Ref. [89].
Before we proceed we rewrite Eq. (3.40) in our usual dimensionless scaling, Eq. (2.34), which
yields

(
∂

∂τ
+ ℘

∂

∂θ

)
W (θ, ℘; τ) = −κ|aL| sin θ

1
2ωrT

[W (θ, ℘+ ωrT ; τ)−W (θ, ℘− ωrT ; τ)] .

(3.41)
The right-hand side of Eq. (3.41) consists of the difference of two Wigner functions where
the argument corresponding to the momentum ℘ is displaced by ℘+ ωrT and by ℘− ωrT ,
respectively. When we perform a Taylor expansion of these functions around ℘ in powers
of ωrT we obtain that all even derivatives vanish, due to the minus sign, and Eq. (3.41)
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transforms to
(
∂

∂τ
+ ℘

∂

∂θ

)
W (θ, ℘; τ) = −κ|aL| sin θ

∞∑

m=0

(ωrT )2m

(2m+ 1)!
∂2m+1

∂℘2m+1W (θ, ℘; τ) . (3.42)

Now, we find the most important similarity to the classical formulation in terms of the
distribution function f(θ, ℘; τ): by neglecting all terms with derivatives higher than first
order, similar to the procedure in Ref. [87], we obtain that no term with ωrT , that is with ~,
is present and we arrive at

(
∂

∂τ
+ ℘

∂

∂θ

)
W (θ, ℘; τ) = −κ|aL| sin θ

∂

∂℘
W (θ, ℘; τ) , (3.43)

which is equivalent to the Boltzmann equation, Eq. (2.49), for the classical distribution
function f .
Moreover, we show in the course of the following calculations that higher-order terms are
responsible for the quantum corrections to the gain. However, we emphasize that the
transition from quantum mechanics to classical physics in terms of the Wigner function is
more subtle than simply performing the limit ωrT → 0: Due to the derivatives with respect
to ℘ terms including ~ can appear in the denominator and eventually we are not allowed to
cut off the series [33].
The dynamics of the laser field is given by

∂

∂τ
|aL| = −gTN 〈sin θ(τ)〉 = −gTN

∫
dθ
∫
d℘ sin θW (θ, ℘; τ) , (3.44)

where we have written Eq. (3.13) in terms of the Wigner function according to the prescription
Eq. (3.37) for expectation values. The simple transformation of sin θ̂ to sin θ in the Wigner–
Weyl representation arises since this function depends only on ẑ and not on p̂. A more
involved ordering procedure would become necessary for combinations of ẑ and p̂.

3.3.2 Perturbative solution
By restricting ourselves to the low-gain small-signal regime we are allowed to apply pertur-
bation theory to solve the Quantum Liouville equation in analogy to the classical case in
Chap. 2. The structure of Eq. (3.42) is given by

L0W = L1W , (3.45)

where L0 includes the contribution from the kinetic energy of the electron and hence describes
its free motion, while L1 represents the perturbation due to the cosine potential.
We assume that the state of the electron initially is described by

W (θ, ℘; 0) = 1
2πg(℘) (3.46)

which means that the electron is again uniformly distributed in z-direction, but in contrast
to our calculations in the Heisenberg picture the distribution of momenta is given by the
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function g(℘) which possesses an arbitrary width ∆℘. This feature of the initial Wigner
function, Eq. (3.46), becomes crucial when we investigate the difference between a cold and a
warm electron beam.

We expand the solution of Eq. (3.42)

W = W (0) +W (1) +W (2) + ... (3.47)

and insert this expansion order by order into Eq. (3.42) which yields

L0W
(n) = L1W

(n−1) (3.48)

for n > 0. According to Chap. 2 we obtain in zeroth order, that is L0W0 = 0, the solution

W (θ, ℘; τ)(0) = W (θ − ℘τ, ℘; 0) = 1
2πg(℘) , (3.49)

which is identical to the initial Wigner function W (θ, ℘; 0) since it is independent of θ
according to Eq. (3.46).

The equation of first order reads

L0W
(1) = L(1)W (0) (3.50)

which has the formal solution

W (1)(θ, ℘; τ) = −κ|aL|
(∫

dτ ′
∫
dθ′Gfree(θ, τ ; θ′, τ ′) sin θ

) ∞∑

m=0

(ωrT )2m

(2m+ 1)!

(
∂2m+1

∂℘2m+1
1

2πg(℘)
)
,

(3.51)
where we have inserted W (0) from Eq. (3.49) and have used the Green’s function Gfree,
Eq. (2.55), for the free motion to solve the inhomogeneous differential equation. We emphasize
that the zeroth-order solution from Eq. (3.49) is independent of θ and τ and we can put
it outside of the integral. Hence, our procedure is analogous to the classical case and we
straightforwardly arrive at the expression

W (1)(θ, ℘; τ) = −κ|aL|
cos (θ − ℘τ)− cos θ

℘

∞∑

m=0

(ωrT )2m

(2m+ 1)!

(
∂2m+1

∂℘2m+1
1

2πg(℘)
)
, (3.52)

where we have recalled the explicit form of the Green’s function Gfree, Eq. (2.55), and have
performed the integrations over θ′ and τ ′ in analogy to the computations in Chap. 2.

In the following we illuminate why just setting ωrT to zero in Eq. (3.52) is not the correct
classical limit for the Wigner function, although it naively gives the result for the classical
distribution function from Eq. (2.56). Besides a small recoil the preparation of the initial
state is of utmost importance to observe the classical limit for the dynamics.

We assume that the initial momentum distribution g(℘) is given by the Gaussian

g(℘) = 1√
2π∆℘

e−
(℘−℘̄)2

2∆℘2 (3.53)
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described by its mean value ℘̄ and its variance ∆℘. The nth derivative of a Gaussian with
respect to the argument x

∂n

∂xn
e−x2 = (−1)nHn(x) e−x2 (3.54)

is proportional to the nth Hermite polynomial Hn(x) [90]. Thus, for a Gaussian distribution,
Eq. (3.53), the Wigner function can be cast into the form

W (θ, ℘; τ) =

1 + κ|aL|

cos (θ − ℘τ)− cos θ
℘



∞∑

m=0

H2m+1( ℘−℘̄√
2∆℘)

(2m+ 1)!
(ωrT )2m

(
√

2∆℘)2m+1




 1

2πg(℘)

(3.55)
which is equivalent to

W (θ, ℘; τ) =
{

1 + κ|aL|
cos (θ − ℘τ)− cos θ

℘
e−

(ωrT )2

2∆℘2 1
ωrT

sinh
[
ωrT

∆℘2 (℘− ℘̄)
]}

1
2πg(℘) .

(3.56)
In the second step we have used a fundamental identity for Hermite polynomials [90]. We
would also find this expression for W when we are using the Quantum Liouville equation
in the form of Eq. (3.41) instead of Eq. (3.42). By inspection of Eq. (3.56) we obtain that
the first-order term is proportional to the difference g(℘+ ωrT )− g(℘− ωrT ) of the initial
momentum distribution shifted by +ωrT and by −ωrT , respectively, in analogy to Eq. (3.41).
However, for our following procedure the form of the Liouville equation given in Eq. (3.42) is
more suitable.
For ωrT → 0 we would naively expect that the quasi-probability function W , Eq. (3.55),
reduces to the classical distribution function f from Eq. (2.56). We compare both functions
in Fig. 3.6, where we have chosen the parameters τ = 1, ℘̄ = π, ∆℘ = 0.05 and ωrT = 0.1.
We obtain that our expectation is not true: the classical and the quantum mechanical result
significantly differ.
As already mentioned this discrepancy arises since due to the derivatives with respect to ℘ in
Eq. (3.42) terms, which eventually can be small, appear in the denominator and in general
we cannot cut off the series. We can illuminate this statement when we write down the first
two terms of the expansion in Eq. (3.55) in the following way

W (1)(θ, ℘; τ) ∼= κ|aL|
cos (θ − ℘τ)− cos θ

℘∆℘


H1

(
℘− ℘̄√

2∆℘

)
+ 1

12

(
ωrT

∆℘

)2

H3

(
℘− ℘̄√

2∆℘

)
 g(℘)

2π .

(3.57)
The first contribution is independent of ~ and we identify it as the classical result, Eq. (2.56).
The second term, however, scales quadratic with the parameter ωrT/∆℘ = ~k/∆p where
we have recalled the definitions Eqs. (3.2), (2.34) and (3.1) of the recoil frequency ωr, the
Doppler phase ℘ and the recoil q, respectively.
Hence, the classical result, Eq. (2.56), is only obtained from the quantum mechanical one,
when the initial momentum spread ∆p is much larger than the recoil q/2. For example, by
assuming that the initial momentum is given by ℘ = ℘̄+ ∆℘ we find with the help of the
explicit expressions [90] of the Hermite polynomials, H1 and H3, the condition ωrT/∆℘�

√
3

to cut off the expansion in Eq. (3.55) after the first term. Moreover, we require κ|aL|/∆℘� 1
for the perturbation theory to be valid.
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Figure 3.6: Comparison of the first-order corrections f (1), Eq. (2.56), and W (1), Eq. (3.56),
of the classical distribution function (above) and of the Wigner function (below),
respectively, in phase space (θ, ℘) where θ denotes the dimensionless position and
℘ the dimensionless momentum of the electron. For our choice of parameters,
that is for τ = 1, ℘̄ = π, ∆℘ = 0.05 and ωrT = 0.1, the functions show a
different behavior which stands in contrast to the naive assumption that the
Quantum Liouville equation, Eq. (3.42), reduces to the classical Boltzmann
equation, Eq. (3.43), by neglecting the higher-order derivatives for ωrT → 0.
These derivatives with respect to ℘ bring powers of the initial momentum spread
∆p into the denominator and since ∆p is of the order of the recoil ~k, that is
~k/∆p = 2, we are not allowed to cut off the series in Eq. (3.43).
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Figure 3.7: Comparison of the first-order corrections f (1), Eq. (2.56), and W (1), Eq. (3.56),
of the classical distribution function (above) and of the Wigner function (below),
respectively, in phase space (θ, ℘), where θ denotes the dimensionless position
and ℘ the dimensionless momentum of the electron. In contrast to Fig. 3.6 both
functions agree when we choose the parameters τ = 1, ℘̄ = π, ∆℘ = 1 and
ωrT = 0.1. Since ~k/∆p = 0.1 is small we are allowed to neglect the higher
derivatives in Eq. (3.42) in accordance with Eq. (3.57). We identify this situation
as the ‘true classical limit’ of the FEL.
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Indeed, when we plot in Fig. 3.7 W (1) from Eq. (3.55) and f (1) from Eq. (2.56) for the
parameters τ = 1, ℘̄ = π, ∆℘ = 1 and ωrT = 0.1 both curves match since the ratio of recoil
~k and momentum spread ∆p is very small, that is ~k/∆p = 0.1.
Hence, we obtain the classical limit [33, 91] for the Wigner function when the terms with ~
are small and when the initial state is classical as well, that is the width ∆p of the momentum
distribution is large compared to the recoil. We call this situation the ‘true classical limit’ of
the FEL.
However, ultimately we are not interested in the explicit form of the Wigner function but
in the gain of the FEL which has to be calculated from the expectation value 〈sin θ〉 in
Eq. (3.44). Thus, we first consider the full series in Eq. (3.52) and form 〈sin θ〉 before we
investigate how the classical limit emerges for the gain.

3.3.3 Quantum corrections for cold and warm electron beam
To compute the gain of the laser field we insert the perturbative expansion of the Wigner
function into the equation of motion, Eq. (3.44). While the zeroth-order term W (0) does not
contribute to the gain since it is independent of θ we obtain in first order

〈sin θ〉 = −κ|aL|2

∫
d℘sin℘τ

℘

∞∑

m=0

(ωrT )2m

(2m+ 1)!
∂2m+1

∂℘2m+1 g(℘) , (3.58)

where we have used the explicit expression, Eq. (3.52), for W (1).
By integrating from 0 to 1 with respect to time τ we find the relation

G = 1
4gTNκ

∞∑

m=0

(ωrT )2m

(2m+ 1)!

∫
d℘ sinc2

(
℘

2

)
∂2m+1g(℘)
∂℘2m+1 (3.59)

for the gain G, Eq. (2.18). In the following we investigate this relation in the limits of a cold
and a warm electron beam, respectively.

Cold beam

In the cold-beam case we consider a very sharp momentum distribution g(℘) characterized
by a small width, that is ∆℘� 1, allowing us to make the approximation g(℘) ∼= δ(℘− ℘̄).
By integrating the expression in Eq. (3.59) by parts we obtain

G =− 1
4gTNκ

∞∑

m=0

(ωrT )2m

(2m+ 1)!

∫
d℘

[
∂2m+1

∂℘2m+1 sinc2
(
℘

2

)]
g(℘) , (3.60)

where we have assumed that g(℘) and its derivatives vanish for ℘→ ±∞. In the next step
we approximate g(℘) as delta function which yields the result

G = −1
4gTNκ

∞∑

m=0

(ωrT )2m

(2m+ 1)!
∂2m+1

∂℘2m+1 sinc2
(
℘

2

)∣∣∣∣∣
℘=℘̄

(3.61)

after evaluating the integral over ℘.
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By shifting the derivatives from g(℘) to the sinc2 function we get rid of any ∆℘ in the
denominator which for example becomes apparent by comparing Eq. (3.61) with Eq. (3.57).
Hence, we obtain the classical limit for a cold electron beam even for ∆p → 0, where the
ratio q/∆p becomes very large. Here, the quantum corrections indeed scale with powers of
ωrT , even when we are outside the true classical limit for the Wigner function.
We note that the expression in Eq. (3.61) corresponds to the Taylor expansion of the difference,
Eq. (3.31), of the two shifted sinc2 functions from standard-perturbation theory. However,
our approach does not rely on single-photon processes but is rather a generalization of the
solution of the classical Boltzmann equation in Chap. 2.
The lowest-order corrections to the classical gain are obtained when we consider just the first
two terms of the series, Eq. (3.61), yielding

G ∼= −1
4κgTN


 ∂

∂℘
sinc2

(
℘

2

)∣∣∣∣∣
℘=℘̄

+ (ωrT )2

6
∂3

∂℘3 sinc2
(
℘

2

)∣∣∣∣∣
℘=℘̄


 (3.62)

or equivalently

G = 2
π3κgTN

(
A(℘̄)−

(
ωrT

π

)2
Q(℘̄)

)
, (3.63)

where we have recalled the definitions Eqs. (3.21) and (3.25) for A and Q, respectively.
Hence, we have found the same results as in the preceding section, where we have considered
operators in the Heisenberg picture, at least for linear gain. That is not surprising since,
both, the Wigner function and the Heisenberg picture are equivalent descriptions of quantum
mechanics. However, the calculational effort for the Wigner function is much smaller and we
find the result in a straightforward way in contrast to the cumbersome computations for the
Heisenberg picture in App. B. This difference arises since for the Wigner function we have
ordered the operators from the beginning in a suitable way and have derived an equation
of motion, Eq. (3.42), for a c-number. On the other side, we have had to take care of the
ordering of the operators in every single step of the calculation in the Heisenberg picture.
In the cold-beam limit the quantum corrections scale with powers of ωrT , according to
Eq. (3.61), and they are independent of the momentum spread ∆℘. To be in this limit we
require ∆℘� 1 which we rewrite to

∆p� q

2ωrT
. (3.64)

In the classical regime where ωrT � 1 it is not difficult to satisfy this constraint.
However, when we consider the transition regime between classical and quantum physics we
assume that the quantum corrections are moderate, that is ωrT = O(1). Hence, we obtain
from Eq. (3.64) the relation

∆p� q (3.65)
which is analogous to the condition in Eq. (3.5) from the heuristic approach in Sec. 3.1. We
emphasize that Eq. (3.65) only makes a statement about the validity of the cold-beam limit.
In order to verify whether a large momentum width ∆p really suppresses quantum corrections
we have to go beyond this limit.
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Warm beam

The opposite limit to a sharp momentum distribution is given by a very broad one with
∆℘� 1, that is a warm electron beam. For this case we cannot approximate g(℘) by a Delta
function but instead the sinc2 function in Eq. (3.59), that is

sinc2
(
℘

2

)
≈ δ(℘) . (3.66)

Hence, the integration over ℘ in Eq. (3.59) yields

G = 1
4κgTN

∞∑

m=0

(ωrT )2m

(2m+ 1)!
∂2m+1g(℘)
∂℘2m+1

∣∣∣∣∣
℘=0

, (3.67)

where in contrast to Eq. (3.61) the derivatives with respect to ℘ are applied now on g(℘).
To obtain an explicit expression for the gain in the warm-beam case we assume that the
momentum distribution g(℘) is a Gaussian of the form of Eq. (3.53). When we insert this
distribution into Eq. (3.67) we arrive at

G = 1
4κgTN



∞∑

m=0

(ωrT )2m

(2m+ 1)!
H2m+1

(
℘̄√
2∆℘

)

(
√

2∆℘)2m+1


 g(℘) , (3.68)

where we have used Eq. (3.54) to calculate the derivatives of the Gaussian in terms of the
Hermite polynomials Hn.
We are interested in the limit where quantum corrections to the classical gain are moderate.
That is why we, similar to the cold beam case, consider just the first two terms of the series
in Eq. (3.68) yielding

G = 1
4κgTN


H1

(
℘̄√
2∆℘

)
+ 1

12

(
ωrT

∆℘

)2

H3

(
℘̄√
2∆℘

)
 g(℘) (3.69)

which is shown in Fig. 3.8 for ∆℘ = 10. We observe that for ωrT = 3 the quantum effects are
negligible since they are suppressed by the large momentum spread due to ~k/∆p = 0.3. This
result differs from the cold beam case, where already ωrT = 2 leads to noticeable quantum
corrections according to Fig. 3.5. However, increasing ωrT to ωrT = 7 effects the gain since
~k/∆p = 0.7. Similar to a cold beam we observe a decrease of the maximum gain and a shift
of the positions for maximum and minimum to the right and to the left, respectively.
Indeed, the procedure of cutting off the series in Eq. (3.67) is justified for

ωrT

∆℘ = q/2
∆p �

√
3 , (3.70)

where we have used the explicit expressions [90] for H1 and H3 at ℘̄ = ∆℘. Hence, the
quantum corrections scale with powers of the ratio of recoil q and momentum spread ∆p.
The inequality, Eq. (3.70), stands of course in contrast to the cold-beam case, where due
to Eq. (3.65) ∆p has to be much smaller than the recoil q. However, when we demand for
moderate quantum corrections in the transition regime, ∆p and q have to be of the same
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Figure 3.8: Quantum corrections for a warm electron beam in the low-gain, small-signal
regime: we have drawn the gain G, Eq. (3.69), including quantum corrections
as a function of the mean value ℘̄ of the initial momentum distribution g(℘),
Eq. (3.53), characterized by the width ∆℘ = 10. For ωrT = 3 (left side), leading
to ~k/∆p = 0.3, we only observe very small corrections (red, dashed curve) to
the classical gain, Eq. (2.60) (bue line). However, for ωrT = 7 (right side), that is
~k/∆p = 0.7, quantum effects lead to a shift of the positions of the maximum
and minimum to the right and to the left, respectively, while the height of this
curve decreases.
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order of magnitude, that is q . ∆p. Otherwise, for increasing ∆p the quantum corrections in
Eq. (3.69) are strongly suppressed and the classical limit, Eq. (2.60), is obtained.
In conclusion, in both limiting cases, that is a cold and a warm electron beam, we require a
narrow momentum distribution the width ∆p of which has to be of the order of the quantum
mechanical recoil q.

3.3.4 Realistic model for electron beam & wave packets
Up to now we have characterized the electron beam prior to interaction as a uniform
distribution in position space and an arbitrary, for example Gaussian, distribution g(℘) in
momentum space. In recent years, however, there was a rising interest [92, 93] in modeling
a more realistic electron beam as well as in including effects due to the interpretation of
electrons as wave packets. In the following, we shortly study these topics from a phase-space
point of view employing the Wigner function formalism.
In analogy to Ref. [93] we consider a Gaussian wave packet

|Ψz̃,p̃(0)〉 = 1
(√

2π∆pq
)1/2

∫
dp′ eip′z̃/~ exp

[
−(p′ − p̃)2

4∆p2
q

]
|p′〉 (3.71)

in momentum representation for the initial state of the electron which is characterized by the
mean values for position and momentum, z̃ and p̃, respectively, and the standard deviation
∆pq in momentum space.
According to Ref. [40] the Wigner function, Eq. (3.35), can equivalently be defined by

Wz̃,p̃(z, p; 0) ≡ 1
2π~

∫
dξ e−ipξ/~ 〈z + ξ/2|Ψz̃,p̃(0)〉 〈Ψz̃,p̃(0)|z − ξ/2〉 , (3.72)

where we have assumed the pure state described by the state vector in Eq. (3.71) instead
of an arbitrary density operator ρ̂. With the help of Eqs. (3.71) and (3.72) as well as the
relation

〈z ± ξ/2|p〉 = 1√
2π~

eip(z±ξ/2)/~ (3.73)

we obtain the Wigner function

Wz̃,p̃(z, p; 0) = 1
π~

exp
[
−(z − z̃)2

2∆z2
q

]
exp

[
−(p− p̃)2

2∆p2
q

]
(3.74)

corresponding to the state |Ψz̃,p̃(0)〉 which represents the product of a Gaussian in position
space and one in momentum space. Here, we have introduced the width

∆zq ≡
~

2∆pq
(3.75)

of the wave packet in z-direction which follows from Eqs. (3.71) and (3.72). We note
that ∆zq∆pq = ~/2 which is the minimum phase space volume a quantum state can occupy
according to the Heisenberg uncertainty principle. Therefore, we identify this state, Eq. (3.71),
as minimum uncertainty wave packet [82].
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However, besides the intrinsic uncertainty due to the widths ∆pq and ∆zq of the wave
packet, Eq. (3.71), the electrons have a statistical classical uncertainty when they leave the
accelerator. In analogy to our previous procedure we assume that the mean value z̃ of the
initial state, Eq. (3.71), is uniformly distributed along a certain length L when we model
a realistic beam of electrons. Moreover, the mean momenta p̃ of the electron wave packet
should be distributed according to the Gaussian

fcl(p̃; p̄) ≡
1√

2π∆pcl
exp

[
−(p̃− p̄)2

2∆p2
cl

]
(3.76)

which is characterized by the mean value p̄ and the ‘classical’ standard deviation ∆pcl.
Hence, the Wigner function of this statistical mixture has to be calculated via the prescription

W (z, p; 0) ≡ 1
L

∫
dz̃
∫
dp̃ fcl(p̄; p̃)Wz̃,p̃(z, p; 0) (3.77)

which yields

W (z, p; 0) = 1√
2π∆pL

exp
[
−(p− p̄)2

2∆p2

]
(3.78)

after using fundamental relations for Gaussian integrals [67]. We observe that W (z, p; 0) is
independent of position z while it constitutes a Gaussian in momentum space. We note that
the construction of a ‘classical’ state from a wave packet in Ref. [33] and, moreover, the
initial Wigner function, Eq. (3.46), of our previous procedure is analogous to the expression
in Eq. (3.78).
However, we can now identify the single contributions to the total variance

∆p ≡
√

∆p2
q + ∆p2

cl (3.79)

in analogy to Ref. [93] as (i) the width ∆pq of the wave packet and (ii) the momentum spread
∆pcl due to statistical uncertainty.
To obtain quantum effects in the FEL we require

√
∆p2

q + ∆p2
cl � ~k (3.80)

according to the preceding section. When we assume that, in principle, the classical statistical
uncertainty can be reduced to zero we still have to pay attention to ∆pq as a lower bound for
the momentum spread leading to the constraint ∆pq � ~k . We note that it is not clear how
large the width of an electron wave packet is when the electron leaves the accelerator. To
make statements about this magnitude we would have to develop a complete theory for the
electron dynamics in the accelerator.
In Ref. [93] an additional drift region between accelerator and the interaction region was
considered. This assumption leads to the evolved Wigner function

W (z, p; tD) = W
(
z − p

m
tD, p; 0

)
= 1
π~

exp




−
[
z −

(
z̃ + p

m
tD
)]2

2∆z2
q





exp
[
−(p− p̃)2

2∆p2
q

]
(3.81)
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corresponding to the unperturbed dynamics during the time tD in which the electron travels
through the drift region. While the width of the distribution in position space spreads,
according to the relation

∆zq(t) =

√√√√∆z2
q +

(
∆pq
m

tD

)2

, (3.82)

the corresponding width ∆p for the momentum does not change. Hence, the uncertainty
∆zq(t)∆pq of position and momentum in Eq. (3.81) is increased in comparison to its minimum
value in Eq. (3.71). However, since in the statistical mixture in Eq. (3.77) we have to integrate
over z̃ and since ∆p does not change due to the free evolution, the drift region does not have
an influence on the result for the statistical mixture in Eqs. (3.78) and (3.79).
However, it is still to be discussed under which conditions the assumption of a uniform
distribution in position space is justified and when we have to consider the wave packet
nature of the electrons. In Ref. [93] the time evolution of such a wave packet was calculated
for a Smith–Purcell FEL and it was found that under certain circumstances effects of using a
wave packet can emerge. To study this topic we therefore apply our perturbative treatment
of the Quantum Liouville equation in the following to the initial Wigner function, Eq. (3.71),
for a minimum uncertainty wave packet.
A crucial difference between a localized wave packet and a uniform distribution for the
positions already emerges in zeroth order of our perturbative expansion of the Wigner
function. The corresponding contribution

W (0)(θ, ℘; τ) = W (θ − ℘τ, ℘; 0) = 1
2πωrT

exp




−
[
θ −

(
θ̃ + ℘τ

)]2

2∆θ2
q





exp
[
−(℘− ℘̃)2

2∆℘2
q

]
,

(3.83)
where we have recalled our usual dimensionless variables from Eq. (2.34), now depends on θ
in contrast to Eq. (3.49) for a uniform distribution. Hence, we observe a nonzero mean value
when we perform the averaging over positions. With the help of Eq. (3.83) we obtain the
expression

|a(T )| − |a(0)| ∼= −gTN e−∆θ2
q/2

cos θ̃ − cos
(
θ̃ + ℘̃

)

℘̃
(3.84)

for the change of the laser field, where we have applied relations for Gaussian integrals as
well as fundamental trigonometric identities [67]. Moreover, we have assumed a cold electron
beam, that is ∆℘q � 1, leading to a Delta function g(℘) ∼= δ(℘− ℘̃) for the initial momentum
distribution.
When we the position uncertainty is also very small, that is ∆θq → 0 in Eq. (3.84), we arrive
at

|a(T )| − |a(0)| ∼= −gTN
cos θ̃ − cos

(
θ̃ + ℘̃

)

℘̃
. (3.85)

This expression equals the classical result emerging from the point-particle limit given by the
initial distribution W (θ, ℘, 0) = δ(θ − θ̃)δ(℘− ℘̃). On the other hand, the plane-wave limit
∆θq →∞ leads to a vanishing value for the change of the field amplitude.
In order to obtain explicit effects due to the wave-packet nature of the electrons we thus
require that ∆θq ∼ O(1). Since we consider a minimum uncertainty wave packet we arrive at
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the condition
∆θq = ωrT

∆℘q
= ~k

∆p ∼ O(1) , (3.86)

that is the recoil has to be of the order of the momentum spread. Since we consider a cold
electron beam ∆℘q � 1 we also demand for ωrT � 1. Further decreasing the recoil down to
~k � ∆p, however, suppresses this effect and gives rise to the classical result Eq. (3.85).
We note that the change of the field amplitude in Eq. (3.84) is independent of the initial
amplitude and hence we cannot identify stimulated emission as the origin of this change. In
order to observe effects corresponding to stimulated emission we would have to consider higher
orders of our perturbative approach in powers of κ|aL|. Moreover, the result in Eq. (3.84),
indeed, reduces to the correct point-particle limit, Eq. (3.85) , for ∆θq → 0 and ∆pq → 0 in
contrast to the results of Ref. [93].

3.4 Summary
In this chapter we have discussed the transition from classical to quantum for the FEL
dynamics. First, we have employed an illustrative model to deduce the two conditions for
quantum effects to emerge which are given by (i) a large quantum mechanical recoil, that is
ωrT ∼ O(1) or ωrT > 1 with the recoil frequency ωr defined in Eq. (3.2), and (ii) a small
momentum spread ∆p of the electron beam for which we require ∆p� ~k. Moreover, we
have discussed that the quantized motion of the electron, leading to a discrete momentum
ladder, is responsible for quantum effects in the FEL and not quantum mechanical properties
of the laser field.
In order to obtain explicit expressions for quantum corrections to the classical FEL gain we
have employed an approach based on the Heisenberg picture as well as one in phase space
in terms of the Wigner function. Needless to say, both procedures give analogous results.
Moreover, we arrive at expressions analogous to the ones due to standard perturbation theory
for the Schrödinger equation of Ref. [83]. However, in contrast to this model we do not
obtain the contradiction to describe multiphoton processes by single-photon probabilities,
but instead we identify the nonzero commutator of position and momentum of the electron
as the origin for quantum effects.
In analogy to the classical–quantum transition for arbitrary systems in Ref. [33] we have
discovered that the classical limit of the Wigner function only emerges for a ‘classical’ initial
state with a broad momentum spread illustrated in Figs. 3.6 and 3.7. Moreover, we have
investigated the limits of a cold, Fig. 3.5, and a warm electron beam, Fig. 3.8, and have
rigorously proved our assumption that a large momentum spread suppresses quantum effects.
At the end of the chapter we have briefly discussed the topic of realistically modeling electron
beams and the influence of wave packets. These topics where brought up in Refs. [92, 93]
and we have established the connection of our model to these articles. In this context, we
propose that our approach in terms of the Wigner function is well-suited to study the time
evolution of an electron-wave packet in the FEL.
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4 Quantum Statistical Properties of the FEL
Radiation in the Classical Regime

So far, we have only considered the gain of an FEL in a classical and in a semiclassical
approach, respectively. However, in order to study the statistical properties of the radiation,
we also have to quantize the laser field and by this procedure we arrive at a fully-quantized
model of the FEL dynamics. In this context, we derive the steady-state photon statistics
and the intrinsic linewidth of a low-gain, small-signal FEL oscillator in the classical regime
within a novel approach based on the ideas developed in the preceding chapter for the Wigner
distribution function. Later on in this thesis we use the results of this chapter as reference
when we study the corresponding statistical features of a Quantum FEL.
In order to bring our model into a broader context and distinguish it from other approaches
we first review the existing literature on a quantum theory for the FEL with emphasis on
the resulting statistical properties of the radiation. We then study the FEL dynamics in the
classical limit by employing the Wigner representation for the combined system of electron
and laser field and by expanding the Wigner function in powers of the quantum mechanical
recoil in close analogy to the procedure presented in the preceding chapter. After eliminating
the electron variables we obtain a Fokker–Planck equation for the laser field and thus are
in the position to calculate the steady-state photon statistics and the intrinsic linewidth in
analogy to standard laser theory [22, 34, 56, 82, 94, 95].

4.1 Review of existing literature
There exist many approaches regarding a quantum theory for an FEL in the classical
regime. Important to mention in this context are the contributions of M. Fedorov and J.
McIver [51, 81, 96]. These authors were the first to point out [96] that the multiphoton
processes in the FEL cannot be described by standard perturbation theory which only covers
single-photon transitions. Moreover, they calculated the saturated gain, Eq. (2.67), by solving
an effective Schrödinger equation with an anharmonic potential in analogy to the classical
theory of the saturated FEL [51]. However, their model did not include a quantized laser
field and thus it is not suitable to derive quantum statistical properties of the radiation.
Furhter crucial contributions to the quantum theory of the FEL came from W. Becker and
coworkers [12, 14, 35, 97, 98, 99, 100, 101]. In their first approach [97] based on a perturbative
treatment of the Dirac equation the authors also assumed a classical laser field and therefore
only could determine the gain of an FEL. Another semiclassical model [98] described the
FEL interaction by a Klein–Gordon equation coupled to two classical field modes giving rise
to a Mathieu equation similar to Ref. [102].
In the following years more sophisticated approaches were developed which did include
quantum mechanical effects of the radiation. For example in Ref. [99] the time evolution of a
quantized laser field coupled to a classical and fixed current of electrons was calculated. The
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momentum change of an electron by multiples of the recoil was put in by hand with the help
of energy-momentum conservation.
A more rigorous treatment was presented in Refs. [12, 101] in terms of the time evolution due
to a fully quantized Hamiltonian ĤI(t) in the interaction picture. The dynamics of the FEL
was solved with the help of a so-called ‘first-order recoil approximation’. In this technique
the time-evolution operator

U(T/2;−T/2) = T





exp


− i~

T/2∫

−T/2

dt ĤI(t)







, (4.1)

with T as the time-ordering operator, is expanded linearly in momentum p̂

U(T/2;−T/2) ∼= U(T/2;−T/2)|p=p0
+ (p̂− p0) ∂

∂p
U(T/2;−T/2)|p=p0

(4.2)

around a c-number p0. This expansion has to be performed such that the operator ordering
is correct. The authors of Refs. [12] considered the effects of a single pass of the electrons
on the laser field which initially is characterized by a Fock state. They deduced from their
results that the FEL cannot preserve a coherent state when gain is not negligible.
The first theoretical models that considered an FEL oscillator were developed by J. Gea-
Banacloche. In Ref. [83] standard perturbation theory and the photon number representation
were employed to derive properties of the radiation although perturbation theory does not
include multiphoton processes. Moreover, the same author presented in Ref. [13] an approach
which uses conditional probabilities and the classical equations of motion for the electrons to
derive a Fokker–Planck-like equation. According to this article the variance in the photon
number at steady state is larger than for an ordinary laser, that is the photon distribution of
an FEL is always much broader than the Poissonian of a coherent state. This result was later
confirmed [35] in terms of the first-order recoil approximation, where it was deduced that the
steady-state photon distribution is broadened as one goes deeper into the classical regime.
Another quantity of considerable interest was the intrinsic linewidth of an FEL. In Ref. [14]
the first calculation for the linewidth in the spirit of standard laser theory [22] was presented
which was based on the photon number representation and the first-order recoil approximation.
An illustrative approach which focused on the phase diffusion of the complex field amplitude
aL was pursued in Ref. [15]. The result of these references was that the linewidth of the FEL
is basically a classical quantity without any appearance of the Planck constant ~.
All of the mentioned quantum models of the FEL either used the photon number representation
or incorporated quantum effects into a classical theory by hand. In contrast, M. Orszag
considered the Glauber–Sudarshan P -representation [84] and derived in Ref. [16] a Fokker–
Planck equation. However, within this approach perturbation theory was employed and just
fluctuations were treated while drift terms were neglected. Thus, the theory in Ref. [16] does
not include gain and self saturation. Indeed, the resulting expression for the linewidth equals
the one of Refs. [14, 15], but the model cannot make a statement about the steady-state
photon number.
The novel approach which we present in the following is based on the Wigner representation
of the combined system of electron and laser field. After neglecting small recoil contributions
in accordance with the results of the preceding chapter we eliminate the electron variables by
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a perturbative calculation. However, this procedure differs from the ordinary perturbation
theory for the Schrödinger equation which in lowest order describes single-photon transitions.
Our perturbative approach is rather analogous to the solution of the classical Boltzmann
equation for the electrons described in Chap. 2.
This way, we derive a Fokker–Planck equation for the Wigner function of the laser field
which in contrast to Ref. [16] includes drift as well as fluctuations. We obtain analogous
results for the steady-state solution and for the intrinsic linewidth as in the mentioned
references, however, without the tedious calculations of the first-order recoil approximation
or the inclusion of quantum effects by hand.

4.2 Wigner representation for electron and laser field
In this section we derive the equation of motion for the quasiprobability function of the
combined system of electron and radiation field for the classical FEL in analogy to the
theory of an ordinary laser in Refs. [56, 103, 104]. For this purpose, we employ the Wigner
representation [40, 82] for the density operator.
In contrast to the semi-classical approach of the preceding chapter, we now consider the fully
quantized Hamiltonian, Eq. (A.45),

Ĥ = p̂2

2m + ~g
(
âL ei2kẑ +â†L e−i2kẑ

)
(4.3)

for a single electron, N = 1. The photon annihilation âL and creation operator â†L satisfy the
commutation relation

[
âL, â

†
L

]
= 1 and we have made the identification U0 ≡ 2~g.

In the preceding chapter we have introduced the Wigner function for the electron. We now
generalize this representation of the density operator ρ̂ for the combined system of electron
and laser field and arrive at [56]

W (z, p, α, α∗; t) ≡
∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗ χρ̂(ξ, ζ, β, β∗; t) , (4.4)

where
χρ̂(ξ, ζ, β, β∗; t) ≡ Tr

{
eiξẑ+iζp̂ eiβâL+iβ∗â†L ρ̂(t)

}
(4.5)

denotes the Wigner characteristic function. Moreover, z and p correspond to the position and
momentum of the electron, respectively, and α as well as α∗ describe the complex amplitudes
of the laser field.
The expectation value of an observable Ô has to be calculated from the integral

〈Ô〉 =
∫
dz
∫
dp
∫
d2α Õ(z, p, α, α∗)W (z, p, α, α∗; t) (4.6)

with the Wigner–Weyl transform [33, 82]

Õ(z, p, α, α∗) ≡
∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗ χÔ(ξ, ζ, β, β∗) (4.7)

of Ô where χÔ is defined in analogy to χρ̂ in Eq. (4.5) with ρ̂ replaced by Ô.
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Starting from the equation of motion, Eq. (3.33), for the density operator with the Hamiltonian
of Eq. (4.3) we derive with the help of the definitions Eqs. (4.4) and (4.5) the corresponding
equation of motion for the Wigner function. This derivation which is presented in detail in
App. C.2 yields, Eq. (C.30),
(
∂

∂t
+ p

m

∂

∂z

)
W (z, p, α, α∗; t) =

− 1
i

2k~g
2~k

(
α ei2kz −α∗ e−i2kz

)
[W (z, p+ ~k, α, α∗; t)−W (z, p− ~k, α, α∗; t)]

+ 1
2i

2k~g
2~k

(
∂

∂α∗
ei2kz − ∂

∂α
e−i2kz

)
[W (z, p+ ~k, α, α∗; t) +W (z, p− ~k, α, α∗; t)]

(4.8)
which is similar to the equation of motion, Eq. (3.41), in the semi-classical model. It
includes, however, additional terms proportional to the derivatives with respect to α and α∗,
respectively.

For the classical regime of the FEL it is sufficient to keep only the contributions which scale
with the lowest power of ~ according to our procedure in Chap. 3. Hence, we expand

W (z, p± ~k, α, α∗; t) ∼= W (z, p, α, α∗; t)± ~k
∂

∂p
W (z, p, α, α∗; t) + ... (4.9)

in powers of ~k. We emphasize that this approximation is not valid in general since, due to the
derivatives with respect to momentum, the quantum corrections to the classical distribution
function are not always negligible in accordance to our discussion regarding the semi-classical
model. However, our main interest lies in the dynamics of the laser field and we proceed by
eliminating the variables for the electron from the equations. For this purpose, we average
over positions and momenta of the electrons just as in the semi-classical calculation of the
gain in Chap. 3. Integration by parts would convince us that the quantum corrections are
also negligible for small momentum widths.

Alternatively, we could take the view that in the ‘true classical limit’ the width ∆p is larger
than the quantum mechanical recoil, that is ∆p � ~k. Then, according to the preceding
chapter, we are always allowed to neglect contributions of higher orders in ~k. In addition to
the classical regime, we consider a cold electron beam with ∆p� m/2kT and thus arrive at
the constraint

~k � ∆p� 1
ωrT

~k (4.10)

for the initial momentum spread. Here, we have recalled the definition, Eq. (3.2), of the
recoil frequency ωr. Since we consider the classical limit, where ωrT � 1, the condition in
Eq. (4.10)can be easily satisfied.
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By keeping only the lowest-order terms of the expansion, Eq. (4.9), we finally obtain the
equation of motion

(
∂

∂τ
+ ℘

∂

∂θ

)
W (θ, ℘, α, α∗; τ) =− 1

2iκ
[
α eiθ−α∗ e−iθ

] ∂

∂℘
W (θ, ℘, α, α∗; τ)

+ 1
2i
κ

2

[
1
ωrT

∂

∂α∗
eiθ− 1

ωrT

∂

∂α
e−iθ

]
W (θ, ℘, α, α∗; τ)

(4.11)
for the Wigner function of the classical FEL in terms of the dimensionless variables





τ ≡ t
T

θ ≡ 2kz
℘ ≡ 2kT

m
p

κ ≡ 2(2kT )2

m
~g

ωrT ≡ 2kT
m

~k

(4.12)

introduced in Eq. (2.34). We note the relation κ = 4(ωrT )(gT ) from the definition, Eq. (3.2),
of the recoil frequency.
The inspection of Eq. (4.11) further reveals that the dynamics of W is governed by three
different contributions: While the left-hand side of Eq. (4.11) describes the free motion of
the electron, the right-hand side includes the interaction between electron and laser field.
The first term on the right-hand side, proportional to the derivative with respect to the
momentum ℘ of the electron, corresponds to the classical Boltzmann equation, Eq. (2.49), for
the electron distribution. The second term, however, is an addition and includes derivatives
with respect to the field amplitudes α and α∗, respectively, but no derivative with respect to
℘.

4.3 Fokker–Planck equation
Our main focus lies on the properties of the radiation from a classical FEL. For this reason
we eliminate the variables θ and ℘ for the electron dynamics in the time evolution, Eq. (4.11),
of the system and keep only the dependency on the amplitudes α and α∗ of the laser field.
For this purpose, we employ perturbation theory in analogy to the treatment of the classical
Boltzmann equation in Chap. 2. This procedure restricts us to the small-signal limit. By
going to fourth order and including cavity losses we are able to derive a Fokker–Planck
equation for the reduced Wigner function

WL(α, α; τ) ≡
∫
dθ
∫
d℘W (θ, ℘, α, α∗; τ) (4.13)

for the laser field, which incorporates gain and self saturation as well as quantum mechanical
fluctuations in analogy to standard laser theory [22, 56, 94, 103, 104]
Let us consider the time t̄ which is during the interaction of an electron bunch with the laser,
that is t < t̄ ≤ t+ T which translates to τ < τ̄ < τ + 1 for the dimensionless time τ̄ . At the
beginning of the interaction at time τ the electron and the laser field should be uncorrelated,
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that is
W (θ, ℘, α, α∗; τ) = Wel(θ, ℘; τ)WL(α, α∗; τ) . (4.14)

Moreover, we assume that the phases θ of the electrons in a single bunch are uniformly
distributed prior to interaction, giving rise to

Wel(θ, ℘; τ) = 1
2πg(℘) , (4.15)

where g(℘) denotes the initial momentum distribution. This distribution can for example be
described by a Gaussian

g(℘) = 1√
2π∆℘

e−
(℘−℘̄)2

2∆℘2 (4.16)

with expectation value ℘̄ and standard deviation ∆℘. In the following we always consider a
cold electron beam, that is g(℘) ∼= δ(℘− ℘̄) which corresponds to a small width ∆℘→ 0 in
momentum space.
The equation of motion, Eq. (4.11), for the total system possesses the structure

L0W = L1W , (4.17)

where the operator L0 gives the free motion of the electron while L1 describes the interaction
between electron and field. In the small-signal regime, κ|α| � 1, we interpret L1 as
perturbation and thus expand the Wigner function

W ∼= W (0) +W (1) +W (2) + ... (4.18)

in an asymptotic series. Hence, we arrive at the equations



L0W

(0) = 0
L0W

(n) = L1W
(n−1) for n > 0

(4.19)

which we have to solve order by order.
The elimination procedure is presented in detail in App. C.3. We just sketch here the
basic ideas of these lengthy calculations. The free solution of Eq. (4.19) is given by W (0) =
W (θ − ℘τ̄ , ℘, α, α∗; τ) which reduces to the initial function W (0) = W (θ, ℘, α, α∗; τ) for our
case, Eq. (4.15), of a uniform distribution of the phases θ.
Since the first-order solution W (1), Eq. (C.47), contains only terms proportional to e±iθ the
averaging over θ in Eq. (4.13) yields a vanishing result. In second order, however, we obtain
terms which are independent of θ due to products of the form e±iθ e∓iθ = 1. The perturbative
solution, Eq. (4.19), and elimination of electron variables according to Eq. (4.13) then leads
to contributions which are proportional to ∂/(∂α)αWL and to ∂/(∂α∗)α∗WL as well as to a
term with ∂2/(∂α∂α∗)WL, as described in Eqs. (C.53) and (C.59), respectively. The former
ones correspond to drift while the latter one is responsible for fluctuations.
To obtain saturation we have to go to the fourth order [22] of the asymptotic expansion
in Eq. (4.18). In accordance with Ref. [22] we just consider contributions proportional to
(∂/∂α)|α|2α and its conjugate conjugate which correspond to drift in the Fokker–Planck
equation. In conclusion, the elimination procedure results in an explicit expression, Eq. (C.85),
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for the change of the Wigner function WL(α, α∗; τ + 1)−WL(α, α∗; τ) of the laser field due
to the interaction with a single electron in fourth order of our perturbative approach.
However, when we describe an FEL oscillator we have to consider many passages of electron
bunches and, moreover, we have to include cavity losses. Hence, the dynamics of the laser
oscillator occurs on a longer time scale than the interaction of a single electron bunch. In
order to derive an equation of motion for the laser field we separate the dynamics into two
parts yielding

∂

∂t
WL(α, α∗; t) =

(
∂

∂t
WL(α, α∗; t)

)

int
+
(
∂

∂t
WL(α, α∗; t)

)

loss
, (4.20)

where the first contribution emerges from the interaction of the electrons with the field while
the second one is due to cavity losses.
For the interaction term we employ the concept of a ‘coarse-grained derivative’ in analogy to
Ref. [22] and arrive at

(
∂

∂t
WL(α, α∗; t)

)

int

∼= N

τinj
(WL(α, α∗; τ + 1)−WL(α, α∗; τ)) , (4.21)

that is, we have approximated the continuous change of WL in time with the discrete one
due to a single passage of electrons. For this purpose, we have introduced the injection time
τinj which denotes the time interval between the injection of two subsequent electron bunches.
Moreover, we have multiplied the change of WL due to a single electron with the number N
of electrons in a single bunch to model the interaction with the whole bunch. This procedure
is justified when we consider the low-gain regime of the FEL, where the equations of motion
decouple resulting in a single-electron model for the interaction as described in Chap. 2.
Cavity losses, on the other hand, are responsible for a dynamics of the form [22, 56]
(
∂

∂t
WL(α, α∗; t)

)

loss
= ωL

2Q

(
∂

∂α
α + ∂

∂α∗
α∗
)
WL(α, α∗; t) + ωL

2Q
∂2

∂α∂α∗
WL(α, α∗; t) , (4.22)

where Q denotes the quality of the cavity. The derivation of Eq. (4.22) can be found in
App. C.4.
Combining the contribution for interaction, Eqs. (4.21) and (C.85), with the damping term
Eq. (4.22) in accordance with Eq. (4.20) we finally arrive at the equation of motion

∂

∂t
WL(α, α∗; t) =− ∂

∂α








G

(1)
cl
τinj
− ωL

2Q


− G

(3)
cl
τinj
|α|2


α + i

τinj

(
M

(1)
cl +M

(3)
cl |α|2

)
α





×WL(α, α∗; t) + c.c. +
(
δnsp

τinj
+ ωL

2Q

)
∂2

∂α∂α∗
WL(α, α∗; t)

(4.23)

for the reduced Wigner function WL of the laser field, which is analogous to a Fokker–Planck
equation [34].
In Eq. (4.23) we have defined the coefficients

G
(1)
cl ≡

2gTNκ
π3 Acl(℘̄) , (4.24)
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G
(3)
cl ≡

gTNκ3

4π5 Bcl(℘̄) , (4.25)

M
(1)
cl ≡

gTNκ

6 Mcl(℘̄) , (4.26)

M
(3)
cl ≡

gTNκ3

2π6 Rcl(℘̄) (4.27)

and
δnsp ≡ (gT )2NS(℘̄) , (4.28)

according to Eqs. (C.54), (C.81), (C.55), (C.82) and (C.60), respectively, where ℘̄ is the mean
value of the momentum distribution g(℘) for the electrons in the cold beam limit, that is
g(℘) = δ(℘− ℘̄).
Moreover, we have introduced the corresponding characteristic functions

Acl(℘) ≡ π3

2
1− cos℘− (℘/2) sin℘

℘3 , (4.29)

Bcl(℘) ≡ π5

℘7

(9
2 cos 2℘+ 12 cos℘− 33

2 + 11
4 ℘ sin 2℘+ 53

4 ℘ sin℘

−℘
2

2 cos 2℘− 13
4 ℘

2 cos℘− ℘3

4 sin℘
)
,

(4.30)

Mcl(℘) ≡ 12 sin℘− (℘/2)(1 + cos℘)
℘3 , (4.31)

Rcl(℘) ≡ π6

2℘7

(9
2 sin 2℘+ 27

2 sin℘− 25
4 ℘−

11
4 ℘ cos 2℘− 27

2 ℘ cos℘

−℘
2

2 sin 2℘− 13
4 ℘

2 sin℘+ ℘3

4 cos℘
) (4.32)

and
S(℘) ≡ 21− cos℘

℘2 = sinc2
(
℘

2

)
(4.33)

in accordance with Eqs. (C.56), (C.83), (C.57), (C.84) and (C.61), respectively.
The meaning of the individual terms in the Fokker–Planck equation, Eq. (4.23), becomes
most evident when we transform to the polar representation, α = % e−iϕ, where the amplitude
α is characterized by the modulus % and the phase ϕ. Hence, we obtain

∂

∂t
WL(%, ϕ; t) = −1

%

∂

∂%




G

(1)
cl
τinj
− ωL

2Q


 %2 − G

(3)
cl
τinj

%4


WL(%, ϕ; t)

+ 1
4

(
nsp

τinj
+ ωL

2Q

)
1
%

∂

∂%

(
%
∂

∂%
WL(%, ϕ; t)

)

+ 1
τinj

(
M

(1)
cl +M (3)

cl %
2
) ∂

∂ϕ
WL(%, ϕ; t) + 1

4

(
nsp

τinj
+ ωL

2Q

)
1
%2

∂2

∂ϕ2WL(%, ϕ; t)

(4.34)
for the dynamics of WL.
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The first line in Eq. (4.34) describes the drift of the modulus % of the field amplitude. We
note that the coefficients G(1)

cl and G
(3)
cl are given by the linear gain, Eq. (3.20), and the

self saturation, Eq. (3.22), respectively, of the classical FEL. We could have derived this
contribution of Eq. (4.34) from

%̇ =

G

(1)
cl
τinj
− ωL

2Q


 %− G

(3)
cl
τinj

%3 (4.35)

which is the classical equation of motion for % including the coarse-grained derivative and
cavity losses ωL/Q.
Similarly, the first term of the third line in Eq. (4.34) causes a drift of the phase ϕ, that is
mode pulling. The coefficient M (1)

cl was derived in Chap. 2, Eq. (2.48), by perturbatively
solving the pendulum equation, Eq. (2.36). In a similar way we would have found the
expression M (3)

cl by considering higher orders of this perturbative solution.
More interesting for the statistical properties of the radiation field are the diffusion terms
of Eq. (4.34). While the fluctuations of the modulus in the second line are crucial for the
variance of the steady-state distribution, the phase diffusion given by the second term of the
third line leads to a finite linewidth. In analogy to standard laser theory [22] we identify
spontaneous emission into the laser mode as the reason for these fluctuations. However, we
must not confuse this effect with spontaneous emission into the reservoir of infinitely many
modes of the radiation field. This latter effect is responsible for a decay of the momentum
states of the electron and is considered in Ref. [27] for the quantum regime of the FEL.
Our interpretation of the fluctuations can be justified with the help of the so-called ‘recoilless
approximation’ [35] to estimate the number δnsp of spontaneously emitted photons for the
FEL. This rather hand-waving procedure yields the same result as the rigorous approach in
the framework of the Fokker–Planck equation, Eq. (4.23).
To estimate the contribution from spontaneous emission we assume that the electron dynamics
in the Heisenberg picture is given by

θ̂(τ̄) = θ̂(in) + ℘̂(in)(τ̄ − τ) (4.36)

which corresponds to a free time evolution of the phase θ̂ which is determined by the initial
operators θ̂(in) and ℘̂(in) for for position and momentum, respectively. Moreover, we have
assumed the initial state |p〉 [35] for the electron, that is a momentum eigenstate with
momentum p.
On the other hand, we obtain the Heisenberg equation of motion

d
dτ̄ âL = −igT e−iθ̂(in) e−i℘̂(in)(τ̄−τ) (4.37)

for âL with the Hamiltonain, Eq. (4.3), where we have already inserted Eq. (4.36) and have
neglected all terms arising from the commutator of θ̂(in) and ℘̂(in). By integrating Eq. (4.37)
over time τ̄ it is straightforward to derive the mean number

δnsp ≡ 〈n̂(τ + 1)〉 − 〈n̂(τ)〉 = Ng2T 2sinc2(℘/2) (4.38)
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of spontaneously emitted photons for N electrons. In this derivation we have made use of
〈p| e±iθ̂(in) |p〉 = 0 and have neglected all recoil corrections. Moreover, we emphasize that the
result Eq. (4.38) is only prominent when we do not consider the contributions from stimulated
emission which scale with the initial photon number n � 1. We note that the recoilless
approximation in Ref. [35] is based on solving the Schrödinger equation for the state vector
while our derivation is based on the Heisenberg picture. However, both approaches lead to
equivalent results.
In Fig. 4.1 we have drawn the characteristic functions Acl, Eq. (4.29), Bcl, Eq. (4.30),Mcl,
Eq. (4.31), and Rcl, Eq. (4.32), corresponding to linear gain, self saturation, first-order and
third-order mode pulling, respectively, as functions of the Doppler parameter ℘. While Acl
and Bcl, which correspond to a change of the modulus, are odd functions, Mcl and Rcl,
which are responsible for a change of the phase, are even functions. Moreover, we obtain that
Mcl vanishes for resonance ℘ = π. In contrast, the higher-order term Rcl yields a nonzero
contribution at ℘ = π.
Before we proceed to calculate the steady-state distribution of the laser field we note that
an inspection of the Fokker–Planck equation, Eq. (4.34), justifies our procedure to consider
drift terms up to fourth order while keeping fluctuation terms only up to second order. The
second-order contribution to the drift, corresponding to linear gain, is reduced by cavity
losses and we have to go to fourth order in order to eventually obtain steady state. The
fluctuations in second order, however, are not reduced by losses and we consider only the
leading term.

4.4 Steady-state solution

A Fokker–Planck equation of the form of Eq. (4.34) allows for an analytic solution [56] when
we consider steady state, that is

∂

∂t
W

(ss)
L (%, ϕ) = 0 . (4.39)

Moreover, we assume, according to Ref. [56], that

∂

∂ϕ
W

(ss)
L (%, ϕ) = 0 (4.40)

which means that for steady state the probability for the field to be described by any phase
ϕ is uniform.
With the assumptions Eqs. (4.39) and (4.40) the Fokker–Planck equation, Eq. (4.34), takes
the form

∂

∂%

{[(
G

(1)
cl −

ωLτinj
2Q

)
%2 −G(3)

cl %
4
]
WL(%)

}
= 1

4

(
δnsp + ωLτinj

2Q

)
∂

∂%

(
%
∂WL(%)
∂%

)
(4.41)
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Figure 4.1: Characteristic functions Acl, Eq. (4.29), Bcl, Eq. (4.30),Mcl, Eq. (4.31), and Rcl,
Eq. (4.32), for linear gain, self saturation, first-order and third-order mode pulling,
respectively, all as functions of the Doppler parameter ℘. While Acl and Bcl are
odd functionsMcl and Rcl are even. In contrast toMcl, Rcl has a nonzero value
at resonance ℘ = π
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which only depends on the modulus %. By integrating both sides of Eq. (4.41) with respect
to % we arrive at

∂WL(%)
∂%

=




(
G

(1)
cl − ωLτinj

2Q

)
%−G(3)

cl %
3

1
4

(
δnsp + ωLτinj

2Q

)



WL(%) (4.42)

which is an ordinary differential equation of first order.
The solution of Eq. (4.42) in terms of the dimensionless intensity n ≡ |α|2 = %2, which we
can identify as number of photons, is represented by the Gaussian

W ss
L (n) = N2π exp

[
−(n− nsscl)2

2∆n2
cl

]
(4.43)

for positive n as drawn in Fig. 4.2. The mean value of this distribution is given by

nsscl =
G

(1)
cl − ωLτinj

2Q

G
(3)
cl

≡ ε
G

(1)
cl

G
(3)
cl

(4.44)

while
∆n2

cl =
δnsp + ωLτinj

2Q

2G(3)
cl

(4.45)

denotes its variance. The normalization constant N has to be chosen such that the the
integral over n and ϕ equals to unity, that is the constraint

2π∫

0

dϕ
∞∫

0

dnW (ss)
L (n) = 1 (4.46)

has to be satisfied.

4.4.1 Mean value

In order to obtain a nonzero mean value of the distribution, linear gain has to overcome the
losses which we define as threshold of a laser [22]. That is why we write

nsscl = ε
G

(1)
cl

G
(3)
cl

(4.47)

in terms of the relative deviation

ε ≡
G

(1)
cl − ωLτinj

2Q

G
(1)
cl

(4.48)

from threshold. To be above threshold we require 0 < ε < 1.
For the interpretation of nsscl as mean photon number we calculate the expectation value of
the number operator n̂ = â†LâL, according to the prescription in Eq. (4.6). We note that the



4.4 Steady-state solution 73

0 2 4 6 8

0.2

0.4

0.6

0.8

1

n [×106 ]

W
ss L

/(
N

/2
π

)

ε = 0.5 · 10−4

ε = 10−4

Figure 4.2: Steady-state Wigner distribution W ss
L , Eq. (4.43), for the laser field of a classical

FEL in the low-gain small-signal regime at resonance ℘ = π as function of the
photon number n. We have compared the situations for two different values of
the relative deviation ε, Eq. (4.48), from threshold, that is ε = 0.5 · 10−4 (blue
line) and ε = 10−4 (red line). We have chosen the parameters gT =

√
π3/8 · 10−3

and ωrT = 0.01 which lead in both cases to G(1)
cl = 0.1, according to Eq. (4.24)

with N = 109, while Eq. (4.52) yields nsscl = 2 · 106 and nsscl = 4 · 106, respectively.
The small-signal approximation is justified as κ√nsscl ∼= 0.056 and κ√nsscl ∼= 0.08,
respectively. Close to threshold the left wing of the Gaussian is cut off.
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Wigner–Weyl representation, Eq. (4.7), of n̂ is given by

ñ = |α|2 − 1
2

(4.49)

which emerges by ordering the operators in a symmetric way [82], that is

n̂ = 1
2(â†LâL + âLâ

†
L)− 1

2
(4.50)

and replacing the operators âL and â†L by the complex numbers α and α∗, respectively.

Hence, we have to compute the integral

〈n̂〉sscl = 2π
∞∫

0

dn
(
n− 1

2

)
W ss

L (n) ∼= nsscl −
1
2 , (4.51)

where we have assumed that the FEL operates well above threshold. This way we are allowed
to extend the lower limit of integration to −∞ since in this case the left wing of the Gaussian
is not cut off according to the red curve in Fig. 4.2. For nsscl � 1 we neglect the term 1/2 in
Eq. (4.51) and the expectation value of n̂L indeed equals the number nsscl .

We estimate the magnitude of the mean steady-state intensity by considering resonance, that
is ℘ = π, where Acl = 1 and Bcl ∼= 1/π. Inserting Eqs. (4.24) and (4.25) into Eq. (4.47) we
obtain the expression

〈n̂〉sscl ∼= ε
1

(ωrT )2
π3/2
(gT )2 (4.52)

for the mean photon number. This expression is just valid in the small-signal regime, defined
by κ√nsscl � 1 which translates with κ = 4(ωrT )(gt) to the necessary condition ε� 1 for the
deviation from threshold.

We note that the mean photon number scales with ~−1 according to Eq. (4.52). However, this
is no contradiction to the assumption of the classical regime of the FEL where the intensity
can be derived from the classical equation of motion, Eq. (4.35). Instead of the photon
number we have to consider the intensity, defined by [13]

Isscl ≡ 2ε0ω
2
LcA2

L 〈n̂〉sscl = ~ωL

V
〈n̂〉sscl , (4.53)

where ~ in the denominator of 〈n̂〉sscl cancels with the factor ~ωL. In terms of the laboratory
frame we obtain the expression, Tab. A.1,

Isscl = ε

32
γ2

0m0c
3

a2
0N

4
Wλ

2
Wre

, (4.54)

where we have made use of the transformation properties derived in App. A. Moreover, we
have introduced the number NW ≡ L/λW of periods of the wiggler and have employed the
definitions Eqs. (A.30) and (A.51) of the dimensionless wiggler parameter a0 and the classical
electron radius re, respectively. Indeed, Isscl is independent of ~.
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4.4.2 Variance

Up to now, we have only considered the mean value of the steady-state distribution, Eq. (4.43).
However, to characterize the statistical behavior of the laser field we require knowledge of
the variance

〈∆n̂2〉 ≡ 〈n̂2〉 − 〈n̂〉2 (4.55)
of the photon number. For this purpose, we first write n̂2 in a symmetrical ordered way
yielding

n̂2 = 1
6
(
â†Lâ

†
LâLâL + â†LâLâ

†
LâL + â†LâLâLâ

†
L + âLâ

†
Lâ
†
LâL + âLâ

†
LâLâ

†
L + âLâLâ

†
Lâ
†
L

)

−1
2
(
â†LâL + âLâ

†
L

)
,

(4.56)

where we have employed the commutation relation
[
âL, â

†
L

]
= 1 for the operators of the laser

mode. By replacing âL and â†L by the complex numbers α and α∗, respectively, we arrive at
the expression

ñ2 = |α|4 − |α|2 (4.57)

for the Wigner–Weyl transform of n̂2.

We calculate the variance, Eq. (4.55), of the photon number according to the prescription in
Eq. (4.6) and obtain

〈∆n̂2〉sscl = 2π
∞∫

0

dn
(
n2 − nsscl2

)
W ss

L (n)− 1
4 . (4.58)

Here, we have used the Wigner–Weyl representation, Eq. (4.57), of n̂2 as well as the result
for 〈n̂〉, Eq. (4.51). The integral in Eq. (4.58) results in the variance ∆n2

cl of the Gaussian,
Eq. (4.43), when we assume that the FEL operates well above threshold in analogy to our
procedure for 〈n̂〉sscl , Eq. (4.51). Finally, we arrive at the expression

〈∆n̂2〉sscl = ∆n2
cl −

1
4

(4.59)

for the variance of the photon number in the classical regime of the FEL with ∆n2
cl defined

in Eq. (4.45). We note that in the derivation which led to Eq. (4.58) it was crucial to keep
the contribution of 1/2 in Eq. (4.51). The cross term which arises by squaring 〈n̂〉sscl cancels
with the term due to |α|2 in the Wigner–Weyl transform, Eq. (4.57), of n̂2 and we are left
with the expression in Eq. (4.58) .

To classify our result, Eq. (4.59), for the variance of the photon number in a classical FEL we
compare it to the situation of a coherent state which is characterized by a Poisson distribution.
For this purpose, we define the normalized variance [40]

σ2 ≡ 〈∆n̂
2〉

〈n̂〉 (4.60)
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as the ratio of variance and mean value. In the case of a Poisson distribution σ2 equals
unity, σ2 = 1. We speak of a sub-Poissonian behavior when σ2 < 1 and of a super-Poissonian
statistics in the opposite case, σ2 > 1.
For the radiation of a classical FEL we obtain the normalized variance

σ2
cl
∼= 1

2ε

[
δnsp

G
(1)
cl

+ (1− ε)
]
, (4.61)

where we have used the definitions Eqs. (4.47) and (4.48) of the steady-state photon number
nsscl and the relative deviation from threshold ε, respectively. Moreover, we have made the
approximations 〈n̂〉sscl ∼= nsscl as well as 〈∆n̂2〉sscl ∼= ∆n2

cl.
When we estimate δnsp and Gcl by their values at resonance ℘ ∼= π we arrive at

δnsp

G
(1)
cl

∼= π

2
1
ωrT

� 1 (4.62)

after using the relations Acl = 1 and S = 4/π2. We identify the expression in Eq. (4.62)
as the leading term of Eq. (4.61) since it is much larger than unity. Hence, we obtain the
expression

σ2
cl
∼= π

4ε
1
ωrT

� 1 (4.63)

for the magnitude of the normalized variance.
Since we require ε� 1 for the small-signal limit and ωrT � 1 for the classical regime the
normalized variance σ2

cl is much larger than unity according to Eq. (4.63). Thus, the statistics
of a classical FEL displays a super-Poissonian behavior similar to an ordinary laser [22, 105]
in the small-signal limit. However, in contrast to the ordinary laser where σ2 scales with ε−1

the distribution of a classical FEL is additionally broadened by the factor (ωrT )−1 � 1.
This effect of a super-Poissonian photon statistics for the FEL was also derived in Refs. [13, 35]
employing different approaches. In Ref. [35] the lower bound

〈∆n̂2〉sscl ≥
1
ωrT
〈n̂〉sscl (4.64)

for the variance was derived with the help of the first-order recoil approximation of the
time-evolution operator. Here, the inequality sign already takes into account the broadening
due to ε−1, that is due to the deviation from threshold. We note that Eq. (4.64) agrees very
well with our result, Eq. (4.63), besides a numerical factor of π/4 which, however, is close to
unity.
Similarly, in Ref. [13] an expression for the photon-number variance in the small-signal limit
was derived which is analogous to Eq. (4.45). As mentioned in Sec. 4.1 the model of Ref. [13]
is based on classical equations of motion for the electron and a conditional probability for the
laser field. However, the approach in Ref. [13] is not restricted to the small-signal regime. A
numerical analysis reveals that the statistical behavior of the FEL radiation at steady state is
always super-Poissonian even when we enter the strong-signal regime. This behavior stands
in contrast to the ordinary laser which approaches the Poissonian statistics of a coherent
state for an increasing signal [22].
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We emphasize that our results are valid for an FEL oscillator at steady state. In Ref. [100]
it was reported that the FEL shows a sub-Poissonian behavior when we consider a single
passage of electrons in the negative gain regime, that is ℘ < 0. However, in the case of
negative gain no steady state emerges and it is questionable to talk about a laser when there
is no amplification. In principle, we can also study this effect with our approach when we
consider ℘ < 0 for the perturbative solution of WL and a suitable initial state.

4.5 Linewidth
In contrast to the steady-state photon statistics which relies on the modulus % of the field
amplitude α, the linewidth of a laser emerges due to fluctuations in the phase ϕ [22, 82].
Far above threshold the Wigner distribution WL is stabilized at steady state and we treat
|α|2 = nsscl

∼= const as a constant. Hence, the Fokker–Planck equation, Eq. (4.34), reduces to

∂

∂t
WL(ϕ; t) = Aϕ

∂

∂ϕ
WL(ϕ; t) + 1

2Dcl
∂2

∂ϕ2WL(ϕ; t) , (4.65)

with

Aϕ ≡
M

(3)
cl
τinj

nsscl (4.66)

denoting the drift coefficient for the phase. We note that this form, Eq. (4.66), arises since
we consider resonance, where ℘ = π and therefore M (1)

cl = 0. Thus, we have to go to the next
higher order, that is M (3)

cl . Moreover, we have introduced in Eq. (4.65) the quantity

Dcl ≡
1

2τinj
1
nsscl

[
δnsp + ωLτinj

2Q

]
(4.67)

which is the Diffusion constant for the phase.

Re α

Im
α

√
nss

√
δnsp

i

ϕi

δϕi

φi

Figure 4.3: Real part Reα and imaginary part Imα of the amplitude α =
√
nss e−iϕ (blue

line) of the laser field. Spontaneous emission leads in a single emission event to a
change of α of δα(i) =

√
δnspi e−iφi (red line). At steady state the modulus

√
nss

is approximately constant, while ϕ varies in each step from ϕi to δϕi resulting in
a diffusion [15] of the phase.

We can understand the form of the diffusion constant in Eq. (4.67) with the help of an
illustrative description following the lines of Ref. [15]. According to Fig. 4.3 the phase ϕ of
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the amplitude α = √nss e−iϕ of the radiation field undergoes a diffusive process, while the
modulus % ∼=

√
nss is stabilized at its value at steady state, when we consider a situation well

above threshold [22].

Spontaneous emission leads in the ith step to a change of the amplitude by δα =
√
δnspi e−iφi

where δnspi denotes the number of spontaneously emitted photons per event. The change δϕi
of the phase can be deduced with the help of simple geometry from Fig. 4.3 and we arrive at

δϕi =
√
δnspi
nss

sinφi , (4.68)

where we have approximated tan δϕi ∼= δϕi for a small angle ϕi, which is justified when the
steady-state photon number nss is approximately constant.

The diffusion constant [15]
D ≡ 1

τinj
〈δϕ2〉 (4.69)

is defined as the average of the phase fluctuations multiplied by the rate 1/τinj of injected
electron bunches. With the help of the identity sin2 φ = 1/2(1−cos 2φ) we obtain the relation

〈δϕ2〉 = 〈δn
sp〉

nss
〈sin2 φ〉︸ ︷︷ ︸

=1/2
(4.70)

for these fluctuations. Moreover, we have assumed that the photon number and the phase
evolve independently from each other according to Ref. [15].

Hence, we finally arrive at the expression

D = 1
τinj

δnsp

2nss
(4.71)

for the diffusion constant with the abbreviation δnsp ≡ 〈δnsp〉. This relation, Eq. (4.71), for
the diffusion constant is rather general and applies for any laser oscillator. The properties
of the FEL explicitly enter in form of the number 〈δnsp〉 of spontaneously emitted photons,
Eq. (4.28), and through the steady-state photon number nsscl in Eq. (4.44). The comparison
to Eq. (4.67) reveals that we have neglected in the derivation of Eq. (4.71) the influence of
cavity losses on the diffusion.

In analogy to standard laser theory [22] we identify the diffusion constant Dss
cl , Eq. (4.67), as

the linewidth of the FEL in the classical regime. In the following, we prove this statement by
following the lines of Ref. [82]. For this purpose, we consider the correlation function

〈â†L(t+ ∆t)âL(t)〉 ∼= nsscl eiωL∆t
2π∫

0

dϕ
2π∫

0

dϕ0 ei(ϕ−ϕ0) WL(ϕ, t+ ∆t;ϕ0, t)W ss
L (ϕ0) (4.72)

for âL in a time interval ∆t. To write nsscl outside of the integral we have assumed that the
modulus % ∼= √nsscl is constant in the interval ∆t. The expression in Eq. (4.72) describes
the fluctuation of the phase ϕ at time t+ ∆t with respect to an initial phase ϕ0 at time t,
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characterized by the distribution W ss
L , with WL(ϕ, t+ ∆t;ϕ0, t) denoting the propagator for

the Fokker–Planck equation, Eq. (4.65).

According to the preceding section the distribution of phases at steady state is uniform,
Eq. (4.40), yielding the expression

W ss
L (ϕ0) = 1

2π
(4.73)

which is independent of ϕ0. The propagator, on the other hand, is given by [82]

WL(ϕ, t+ ∆t;ϕ0, t) = 1
2π

∞∑

n=−∞
ein(ϕ−ϕ0) einAϕ∆t e−n2D∆t/2 (4.74)

which is derived in App. C.5 by solving the Fokker–Planck equation, Eq. (4.65), under the
condition that the propagator reduces to a delta function, that is WL(ϕ, t + ∆t;ϕ0, t) →
δ(ϕ− ϕ0), for ∆t→ 0.

By inserting Eqs. (4.73) and (4.74) into Eq. (4.72) and by making use of the identity

1
2π

2π∫

0

dϕ′ ei(n+1)ϕ′ = δn,−1 (4.75)

we obtain the expression

〈â†L(t+ ∆t)âL(t)〉 ∼= nsscl ei(ωL−Aϕ)∆t e−
Dcl∆t

2 (4.76)

for the correlation function of âL. The Fourier transform of Eq. (4.76) yields the spectrum of
the field which is a Lorentzian characterized by the width Dcl [22]. That is why we identify
Dcl as the linewidth of a classical FEL. Moreover, we find a small shift of the central frequency
ωL due to a nonzero value of Aϕ.

We emphasize that our result, Eq. (4.67), for the linewidth of the FEL in the classical regime
is in accordance with the results of Refs. [14, 15, 16]. To study Dcl more closely we first
note that in the small-signal limit, ε � 1, the losses are of the same order of magnitude
as the linear gain, that is (ωLτinj)/(2Q) ∼ G

(1)
cl . The ratio of gain G(1)

cl and number δnsp of
spontaneously emitted photons, Eq. (4.28),

G
(1)
cl

δnsp
∼= 2ωrT

π
� 1 (4.77)

is very small in the classical regime ωrT � 1 which was also appreciated in Ref. [14]. Hence,
we are allowed to neglect the contribution due to losses in Eq. (4.67) and are left with the
expression

Dcl ∼=
1

2τinj
δnsp

nsscl
(4.78)

for the laser linewidth.
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To estimate the magnitude of Dcl we consider resonance, that is ℘ = π, where δnsp =
(4/π2)(gT )2N and nsscl is given by Eq. (4.52). Hence, we find the estimate

Dcl = N

ετinj

4
π5 (gT )4(ωrT )2 (4.79)

for the intrinsic linewidth of the classical FEl which takes the form

Dcl = 1
τinj

1
ε

64a4
0N

6
Wλ

4
Wr

2
en

2
e

πγ6
0N

(4.80)

in the laboratory frame according to Tab. A.1 in App. A.3. We note that Dcl is independent
of ~ and thus can be interpreted as a classical quantity.

4.6 Summary
In this chapter we have studied the statistical properties of the radiation from a classical
FEL employing the Wigner representation for electron and laser field. This approach leads
to a Fokker–Planck equation, Eq. (4.23), for the laser dynamics which includes drift as well
as fluctuations. In contrast to many existing models, we consider a rigorous quantum theory
in which quantum effects are not included by hand and which does not rely on single-photon
processes as in standard perturbation theory.
Moreover, we exactly identify the steps in our calculations, where we (i) enter the classical
regime, Eq. (4.9), defined by the conditions ωrT � 1 and ∆p� ~k, and where we (ii) make
the small-signal approximation, Eq. (4.18), given by the constraint κ|aL| � 1. This stands in
contrast to the first-order recoil approximation of Refs. [35, 100], where both approximations
are performed in a single step, as can be seen from Eq. (4.2).
However, we recover the results of the existing literature for (i) the steady-state photon
statistics, Eq. (4.43), and (ii) for the intrinsic linewidth, Eq. (4.78), of an FEL oscillator in
the classical limit. Most remarkably is the fact, Eq. (4.63), that the photon statistics of a
classical FEL is broadened in comparison to a coherent state as well as to an ordinary laser.



5 The Quantum Regime of the FEL

In the preceding chapters we have considered the situation, where the quantum mechanical
recoil of the electron is negligible, or, where it becomes more and more important, but still is
a small quantity leading only to quantum mechanical corrections to the classical formulas.
Now we turn to the opposite case, where the recoil dominates the dynamics which is known
as the quantum regime of the FEL or simply ‘Quantum FEL’ [2, 3, 4, 18, 25, 26, 27, 28, 87,
88, 106, 107, 108, 109, 110, 111].

Many ideas and discussions in this chapter are based on Ref. [4]. There, we have defined the
Quantum FEL as the limit where the infinite momentum ladder characterizing the electron
dynamics in the FEL reduces to an effective two-level system. In this context, we have
employed in this article the asymptotic method of averaging [36] to derive the conditions for
entering the quantum regime and to find analytic expressions for the time evolution in this
limit.

In this thesis we follow a similar but slightly different path: instead of the standard method of
averaging [36, 59] we use the canonical variant of this method, developed in Ref. [37]. For this
purpose, we first have to rewrite the FEL Hamiltonian with the help of projection operators
for the momentum of the electron. By this procedure, we identify the two frequency scales
governing the dynamics of the FEL: (i) the coupling g

√
n between the electron and the fields

and (ii) the discrete recoil q ≡ 2~k of the electron characterized by the recoil frequency ωr.

When the quantum mechanical recoil is dominating we are in the deep quantum regime,
where the electron jumps between the two resonant momentum levels p = q/2 and p = −q/2.
Analogously to Ref. [4] we obtain two conditions for the Quantum FEL which are connected
to (i) a small value of the quantum parameter α, defined, Eq. (3.4), as the ratio of the
coupling strength and the recoil frequency, and (ii) to a small initial momentum spread of
the electrons when compared to the recoil q in analogy to our discussions in Chap. 3. We
proceed by calculating higher-order corrections to this ‘hard’ quantum limit and find that
these corrections scale with powers of α. Hence, we are allowed to neglect higher-order
contributions for decreasing values of α.

By also considering resonances different from the fundamental one at p = q/2 we add another
aspect to the discussion of the quantum regime untouched upon in Ref. [4]. With the help
of our asymptotic method we can explain the behavior of the electron for these ‘higher’
resonances and derive analytic expressions for the time evolution in contrast to the numerical
approach in Ref. [112]. These resonances also show a two-level behavior, but the dynamics
occurs on much longer time scales when compared to the fundamental one.
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5.1 Rewriting the Hamiltonian

For the time being we restrict ourselves to the low-gain regime. That is why we consider the
single-electron case, N = 1, where the quantized Hamiltonian, Eq. (A.41), reads

Ĥ = p̂2

2m + ~g
(
âL ei2kẑ +â†L e−i2kẑ

)
. (5.1)

In order to obtain the quantum regime of the FEL it is not necessary to quantize the light
field, which is characterized by the photon annihilation âL and creation operator â†L. As we
have shown in Chapter 3 quantum effects, indeed, arise since position ẑ and momentum p̂
do not commute in quantum mechanics. However, in the further course of this thesis we
derive expressions for the photon statistics and the intrinsic linewidth of the Quantum FEL
making a fully quantized theory necessary in analogy to our procedure for the classical FEL
in Chap. 4.
Applying the Hamiltonian, Eq. (5.1), on the state |n, p〉 consisting of a Fock state with photon
number n and a momentum eigenstate of the electron with momentum p we obtain

â†L e−i2kẑ |n, p〉 =
√
n+ 1 |n+ 1, p− q〉 , (5.2)

that is a photon is emitted into the field while the electron recoils by q ≡ 2~k as well as the
other way round, yielding |n− 1, p+ q〉, where a photon is absorbed and the electron gains
the momentum q. By repeating this procedure several times we recognize that the electron is
allowed to occupy only momenta which are separated by integer multiples of q. Hence, for a
given initial momentum the electron dynamics can be described by a discrete momentum
ladder, as argued in Ref. [4], which is connected to the corresponding number of emitted or
absorbed photons.
Thus, it is convenient to use the ‘scattering basis’

|µ〉 ≡ |n+ µ, p− µq〉 , (5.3)

introduced in Ref. [113]. This basis is characterized by the single parameter µ which indicates
the number of emitted or absorbed photons and at the same time the change of the electron
momentum as multiple of the recoil q.
In Ref. [4] a three-term recursion relation for the expansion coefficients

cµ ≡ 〈n+ µ, p− µq|Ψ(τ)〉 (5.4)

of the total state vector was derived. This three-term relation was then asymptotically solved
with the help of the method of averaging [36] and we identified the quantum regime as the
lowest order of the resulting asymptotic expansion.
In this thesis we take a slightly different route: With the help of the method of canonical
averaging [37] we derive an asymptotic expansion in operator form and then solve the
corresponding equations of motion. Although this procedure gives results equivalent to the
ordinary method [4] we find it convenient to work with this alternative form of the method in
this thesis, because of two reasons: (i) We show in Chap. 7 that the Heisenberg picture and
thus an operator formalism is more suitable when we consider a many-electron theory, where
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involved superposition states are created which are similar to Dicke states [114] in the field
of superradiance and amplified spontaneous emission. (ii) By obtaining explicit expressions
for an effective Hamiltonian we straightforwardly identify the underlying physical processes.

In the following we treat the momentum of the electron as a discrete variable, since this
discreteness is induced by the dynamics, according to Eq. (5.2). However, we restore the
continuous nature of momentum in the next chapter when we expand the initial state in
momentum eigenstates which we separately evolve in time before we weight them with the
initial distribution and integrate over all momenta. This procedure is only reasonable when
the initial momentum distribution does not cover more than one step of the momentum
ladder leading to the condition ∆p < q. However, since we show later that this constraint
is also necessary to operate a Quantum FEL we argue that we are allowed to follow this
procedure.

The method of averaging is based on the occurrence of two distinct frequency scales in the
dynamics. However, the form of the Hamiltonian, Eq. (5.1), is not convenient to recognize
these frequencies and we have to rewrite it in a more suitable form to make this dependence
visible. That is why we introduce the projection operator

σ̂µ,ν ≡ |p− µq〉 〈p− νq| (5.5)

for the electron momentum, where we have assumed that the initial state of the electron is
given by a momentum eigenstate with eigenvalue p. Thus, the operator σ̂µ,ν describes the
transition from p− νq to p− µq on the discrete momentum ladder.

The commutator between two of these operators reads

[σ̂µ,ν , σ̂ρ,η] = δν,ρσ̂µ,η − δη,µσ̂ρ,ν , (5.6)

where we have used Kronecker deltas for discrete states instead of Dirac delta functions for
continuous ones while

σ̂µ,ν σ̂ρ,η = δν,ρσ̂µ,η (5.7)
gives their product. We note that this last property constitutes a crucial difference of single-
electron and many-electron model. As we show in Chap. 7 a commutation relation analogous
to Eq. (5.6) can be found in the many-particle theory, however, a relation analogous to
Eq. (5.7) cannot be formulated in this case. While the commutation relation, Eq. (5.6),
can always be derived if the identity in Eq. (5.7) holds true, the opposite direction is not
necessarily allowed, since additional terms in the product of Eq. (5.7) can emerge which
cancel due to the minus sign in the commutator, Eq. (5.6).

With the help of the completeness relation for discrete eigenstates any operator

Ô = 1Ô1 =
∑

µ,ν

〈p− µq| Ô |p− νq〉 σ̂µ,ν (5.8)

describing the electron dynamics can be written in terms of the projection operators σ̂µ,ν .
We evaluate the corresponding matrix element 〈p− µq| Ô |p− νq〉 in Eq. (5.8) for the
contributions of the Hamiltonian in Eq. (5.1) by using the identities p̂2 |p〉 = p2 |p〉 and
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e±i2kẑ |p〉 = |p± q〉. Thus, we arrive at the expressions




p̂2 = ∑
µ

(p− µq)2 σ̂µ,µ

ei2kẑ = ∑
µ
σ̂µ,µ+1

e−i2kẑ = ∑
µ
σ̂µ+1,µ

(5.9)

for the kinetic energy term and the momentum-shift operators, p̂2 and e±i2kẑ, respectively.
Hence, we cast the Hamiltonian, Eq. (5.1), into the form

Ĥ =
∑

µ

(p− µq)2

2m σ̂µ,µ + ~g
(
âL
∑

µ

σ̂µ,µ+1 + â†L
∑

µ

σ̂µ+1,µ

)
, (5.10)

where the momentum of the electron does not appear explicitly as an operator but as the
c-number p− µq over which is summed.
The next step that leads us naturally to the identification of the different time scales of the
FEL dynamics is the transformation from the Schrödinger to the interaction picture. With
the usual definition [40] of an operator in this picture we obtain the transformed projection
operators 



σ̂µ+1,µ → σ̂µ+1,µ e−ikt[2p−(2µ+1)q]/m

σ̂µ,µ+1 → σ̂µ,µ+1 eikt[2p−(2µ+1)q]/m ,
(5.11)

where we have used the Baker–Campbell–Hausdorff theorem, Eq. (3.16), and the commutation
relation, Eq. (5.6), for the projection operators. This procedure leads us to the Hamiltonian

ĤI(t) = ~g
(
âL
∑

µ

eiωrt[
p
q/2−(2µ+1)] σ̂µ,µ+1 + â†L

∑

µ

e−iωrt[
p
q/2−(2µ+1)] σ̂µ+1,µ

)
(5.12)

in the interaction picture with the recoil frequency ωr ≡ q2/(2m~) according to Eq. (3.2).
Finally, we recognize which two frequencies govern the FEL dynamics: on the one hand there
is the coupling strength g and one the other hand we have to consider the recoil frequency ωr,
since the summands in Eq. (5.12) oscillate with multiples of this frequency. However, besides
the ratio of these two quantities the initial momentum p of the electron is also of importance
in our following discussion.

5.2 Two-level approximation
The initial momentum p of the electron has not been determined, yet. When we consider the
phases

±iωrt

[
p

q/2 − (2µ+ 1)
]

(5.13)

of the Hamiltonian, Eq. (5.12), resonances appear when the initial momentum p of the
electron is a multiple integer of q/2. For the time being we just consider the ‘lowest’ or
‘fundamental’ resonance, that is p ∼ q/2.
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Figure 5.1: Resonances in the Quantum FEL as consequence of energy-momentum conserva-
tion: Only processes are resonant which are separated in momentum by multiples
of the recoil q and at the same time lie on the parabola proportional to p2 which
correspond to conservation of energy. Due to these requirements resonances just
appear at momenta which are integer multiples of q/2, that is p = mq/2. The
dashed line correspond to an off-resonant process since energy and momentum
are not totally conserved and thus we expect that it is suppressed.

The physical meaning for this resonance [4] is shown in Fig. 5.1, where the parabola p2

corresponding to kinetic energy versus momentum p is shown. The processes which conserves,
both, energy and momentum, under the condition of discrete momentum steps of the size
of the recoil q, are indicated by horizontal arrows. We obtain that energy-momentum
conservation allows only momenta which are integer multiples of q/2 in analogy to Eq. (5.13).
Moreover, by assuming that in the quantum limit single-photon processes dominate we
deduce that transitions including resonances higher than the fundamental one, p = q/2, are
suppressed since they correspond to multiphoton transitions as visualized in Fig. 5.1. However,
we come back to this aspect at the end of this chapter, where we rigorously prove this last
statement and derive that these multiphoton processes occur on a longer characteristic time
scale.

Introducing the dimensionless variables




τ ≡ ωrt

ε ≡ g/ωr

∆ ≡ p/(q/2)− 1
(5.14)

which are more suitable for the quantum regime as the ones, defined by Eq. (2.34) in Chap. 2
for the classical FEL, we obtain the expression

ĤI(τ) = ε

(
âL ei∆τ

∑

µ

e−i2µτ σ̂µ,µ+1 + â†L e−i∆τ
∑

µ

ei2µτ σ̂µ+1,µ

)
(5.15)
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for the Hamiltonian, Eq. (5.12). We further write this expression as a Fourier series

ĤI(τ) ≡ ε
∑

µ

Ĥµ(τ) ei2µτ , (5.16)

where we have identified the terms



Ĥ0(τ) ≡ âL ei∆τ σ̂0,1 + â†L e−i∆τ σ̂1,0

Ĥµ(τ) ≡ âL ei∆τ σ̂−µ,−µ+1 + â†L e−i∆τ σ̂µ+1,µ
(5.17)

as the individual Fourier components. We emphasize that we have not made any approxi-
mation, yet. However, the Hamiltonian, Eq. (5.16), is now in a form that is suitable for the
asymptotic method of canonical averaging [37].
However, to apply this method, two conditions have to be satisfied. For an asymptotic
expansion to converge we require the expansion parameter to be small. For our method of
choice [37] this condition is given by

αn ≡ ε
√
n+ 1 = g

√
n+ 1
ωr

� 1 , (5.18)

where we have defined the quantum parameter αn in analogy to Ref. [4]. By inspection of
Eq. (5.18) we obtain that αn is the ratio of two frequencies: the coupling strength g

√
n+ 1 and

the recoil frequency ωr. As already predicted in Chap. 3 we now explicitly see that quantum
mechanics becomes important when the recoil exceeds the coupling strength, Eq. (3.4),
leading to a value of αn that is less than unity. We define this limit as the quantum regime of
the FEL in accordance with Ref. [4]. In this article we, moreover, established the connection
to the analogue parameter ρ̄ of Ref. [3] which reads α = ρ̄3/2/

√
2.

The method of averaging is based on the fact that rapid oscillations have only a small
influence on the dynamics. We can naively understand this argument by realizing that the
integration of the Schrödinger equations brings the large frequencies corresponding to these
rapid oscillations into the denominator and hence these contributions are suppressed [40].
Similarly, one could argue that for αn � 1 the coupling g

√
n defines the dominant time scale,

while the integration over time washes out the rapid oscillations with ωr.
This clear separation of slowly and rapidly varying terms leads to the second condition for
the method of averaging: The Fourier components Ĥµ(τ) have to be slowly varying in time
and by inspection of Eq. (5.17) we demand a small deviation [4]

∆ ≡ p

q/2 − 1� 1 (5.19)

of the initial momentum from the resonant momentum p = q/2. A process which starts
from a momentum close to but not equal to q/2 is indicated in Fig. 5.1 by the dashed line.
We expect that this transition is suppressed for an increasing value of ∆ since energy and
momentum are not conserved any longer.
Considering the Hamiltonian, Eq. (5.16), we recognize that the only contribution without
rapid oscillations is the component with µ = 0. Hence, in the lowest approximation,
which corresponds to the deep quantum regime, the dynamics is governed by the effective
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Hamiltonian
Ĥeff ∼= εH0(τ) = ε

(
âL ei∆τ σ̂0,1 + â†L e−i∆τ σ̂1,0

)
, (5.20)

where we have recalled the definition, Eq. (5.17), of Ĥ0.
The Hamiltonian in Eq. (5.20) is analogous to the Jaynes–Cummings Hamiltonian [32, 40]
which describes the interaction of a two-level atom with a quantized mode of the radiation
field. The projection operators σ̂0,1 and σ̂1,0 for the electron momentum correspond to the
atomic ladder operators σ̂ and σ̂†, respectively, in the notation of Ref. [40]. Additionally,
we have to deal with a detuning ∆ which leads to the time-dependence of the Hamiltonian,
Eq. (5.20).
We remove this time-dependence with the help of the transformation

|Ψ̃(t)〉 ≡ e−i∆τσ̂z/2 |Ψ(τ)〉 , (5.21)

where we have defined σ̂z ≡ σ̂0,0 − σ̂1,1 by recognizing the analogy to Pauli spin matrices.
Using the Baker–Campbell–Hausdorff formula, Eq. (3.16), and the commutation relation,
Eq. (5.6), for the σ̂µ,ν we arrive at the transformed Hamiltonian

H̃eff = ∆
2 σ̂z + ε

(
âLσ̂0,1 + â†Lσ̂1,0

)
(5.22)

which is now independent of time.
In analogy to Eq. (5.4) we expand the state |Ψ̃〉 in terms of the scattering basis leading to
the expansion coefficients

c̃µ(τ) ≡ 〈n+ µ, p− µq|Ψ(τ)〉 (5.23)
for which we introduce the vector notation c̃ = (c̃0, c̃1)T. From the Schrödinger equation
for the transformed state vector |Ψ̃〉, characterized by the Hamiltonian H̃eff, Eq. (5.22), we
derive the system of coupled differential equations [4]

i
d
dτ c̃ =

( ∆
2 αn
αn −∆

2

)
c̃ (5.24)

governing the dynamics of c̃.
Solving Eq. (5.24) is now straightforward: First, we insert the ansatz ∼ e−iλτ into Eq. (5.24)
and obtain

λ± = ±
√

α2
n + ∆2

4
(5.25)

for λ. In terms of the time t we thus find the solution [4]

c̃(t) =
[
cos Ωnt

(
1 0
0 1

)
− i ωr

Ωn

sin Ωnt

(
∆/2 αn
αn ∆/2

)]
c̃(0) (5.26)

for arbitrary initial conditions c̃(0). The amplitudes of Eq. (5.26) describe detuned Rabi
oscillations with

Ωn ≡
√√√√g2(n+ 1) +

(
∆
2

)2

ω2
r . (5.27)
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Figure 5.2: Detuned Rabi oscillations in the deep quantum regime of the FEL: We have
drawn the probability |c1|2, Eq. (5.29) , for single-photon emission as a function
of the dimensionless time g

√
n+ 1t for the resonant case, ∆ = 0, (blue line) and

for two nonzero values of the detuning, that is ∆ = 0.1 (green line) and ∆ = 0.3
(red line). We observe that for increasing values of the detuning ∆ the Rabi
frequency as well as the maximum probability decreases. This behavior is known
from ordinary two-level atoms [58].

denoting the Rabi frequency.
Initially, the momentum of the electron is close to the excited state p = q/2 of the two-level
system which corresponds to the initial condition cµ(0) = δµ,0. Hence, we find the probabilities

|c0(t)|2 = cos2 Ωnt+ (∆/2)2ω2
r

Ω2
n

sin2 Ωnt (5.28)

and
|c1(t)|2 = g2(n+ 1)

Ω2
n

sin2 Ωnt (5.29)

for the electron to occupy excited and ground state, p ∼ q/2 and p ∼ −q/2, respectively,
at time t. The back transformation from c̃µ to cµ leading to the expressions in Eqs. (5.28)
and (5.29) has been straightforward since the additional phase factors cancel when we
calculate the modulus square of the amplitudes.
The probability |c1|2 for the electron to be in the ground state −q/2, corresponding to the
emission of a single photon, is shown in Fig. 5.2 as a function of time for different values of
the deviation ∆ from resonance. We obtain that a higher value of ∆, indeed, suppresses the
probability for emitting a photon and increases the Rabi frequency in analogy to ordinary
two-level atoms [58].
In conclusion, we have defined the quantum regime as the limit where the electron dynamics
is given by a two-level system consisting of the excited state q/2 and the ground state −q/2.
We have achieved this identification in the framework of the asymptotic method of averaging
which is valid under the conditions in Eqs. (5.18) and (5.19).
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We want to stress that Eq. (5.19) for the deviation ∆ from resonance is not a condition for
the width ∆p of the initial momentum distribution for the electrons. When we assume a
broad distribution only the electrons with momenta close to resonant ones, that is multiples
of q/2, experience an effect due to the interaction while the momenta of the other electrons
are unchanged. In atomic diffraction [115, 116, 117] this effect is known as velocity selectivity.
However, while the resonance p = q/2 corresponds to photon emission and hence positive
gain its counterpart p = −q/2 gives rise to photon absorption, according to Fig. 5.1, and
thus negative gain. When the initial momentum distribution covers both resonances, both
effects, emission and absorption occur at the same time and the gain averages to zero. Hence,
we require a small width [4, 108]

∆p < q (5.30)
of the initial momentum distribution for the electrons, that is a small energy spread of the
electron beam. Again, a small momentum spread is crucial to obtain quantum effects in the
FEL dynamics similar to our investigations of the classical-quantum transition in Chap. 3.

5.3 Higher-order corrections

Up to now, we have only considered the lowest order of our asymptotic expansion. However, to
prove that the dynamics of the FEL really reduces to a two-level behavior for αn � 1 we have
to calculate the higher-order corrections to the Rabi oscillations given by the probabilities,
Eqs. (5.28) and (5.29), in the framework of the method of canonical averaging [37]. The
details of this derivation can be found in App. D while we sketch in the following only the
basic ideas. For the sake of simplicity we restrict ourselves to the resonant case, that is ∆ = 0.
In principle, however, we could have assumed any value of ∆ which can be written as a power
of ε.
As mentioned before the method of averaging [36, 59] is based on the idea that the dynamics
represented by a Hamiltonian of the form of Eq. (5.16) consists of slowly varying and rapidly
varying terms. Hence, we assume that the state vector

|Ψ(τ)〉 ≡ e−F̂ (τ) |Φ(τ)〉 (5.31)

can also be separated into a slowly varying part, given by |Φ〉, and a rapidly varying one,
denoted by F̂ (τ). For the transformed state vector we derive the Schrödinger equation,
Eq. (D.46),

i
d
dτ |Φ(τ)〉 = Ĥeff |Φ(τ)〉 (5.32)

governed by the effective Hamiltonian Ĥeff.
For ε

∥∥∥Ĥ
∥∥∥� 1 [37] we expand, both, the rapidly varying contribution

F̂ (τ) = εF̂ (1)(τ) + ε2F̂ (2)(τ) + ε3F̂ (3)(τ) + ... (5.33)

as well as the effective Hamiltonian

Ĥeff = εĤ
(1)
eff + ε2Ĥ

(2)
eff + ε3Ĥ

(3)
eff + ... (5.34)
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Figure 5.3: Resonant two-photon transitions corresponding to the effective Hamiltonian H(2)
eff ,

Eq. (5.36), of second order. In these processes a photon is emitted and then a
second one is absorbed (green arrows), or the other way round (red arrows), such
that the final momentum of the electron equals the initial one. We note that
the two-photon transition from q/2 via −q/2 back to q/2 (as well as from −q/2
via q/2 to −q/2) is excluded from H

(2)
eff since the corresponding single-photon

processes, from q/2 to −q/2 and from −q/2 to q/2, are resonant and already
included in the first-order Hamiltonian H(1)

eff , Eq. (5.35).

in powers of ε. In an iterative manner (for a detailed description see App. D), we then
determine F̂ and Ĥeff order by order in such a way that Ĥeff is independent of time. The
Schrödinger equation, Eq. (5.32), with the corresponding expression for Ĥeff is then solved
exactly. This procedure ensures that F̂ does not contain secular terms which eventually
would lead to an unphysical growth [59] in the solution of the Schrödinger equation.

The lowest order of the asymptotic expansion is identical to the two-level approximation of
the preceding section for resonance, ∆ = 0. Hence, we consider the effective Hamiltonian

Ĥ
(1)
eff = âLσ̂0,1 + â†Lσ̂1,0 (5.35)

while we completely neglect rapid oscillations given by F̂ . The higher orders of Ĥeff give rise
to a frequency shift, and F̂ is responsible for corrections to the amplitude.

Let us first consider the higher-order contributions of the effective Hamiltonian. According
to Eq. (D.38) we obtain

Ĥ
(2)
eff = −1

2 âLâ
†
Lσ̂1,1 −

1
2 â
†
LâLσ̂0,0 − âLâ†L

∑

ν 6=0,1

1
2ν σ̂ν,ν + â†LâL

∑

ν 6=0,1

1
2(ν − 1) σ̂ν,ν (5.36)

in second order of ε. This Hamiltonian describes the resonant two-photon processes, shown
in Fig. 5.3, where one photon is emitted and one absorbed and thus the momentum of the
electron after interaction is the same as before. However, the effect of this second-order
Hamiltonian cancels when we calculate the frequency corrections and thus we have to go the
next higher order.
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â†
Lâ2
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Figure 5.4: Resonant three-photon transitions corresponding to the effective Hamiltonian
H

(3)
eff , Eq. (5.37), of third order. We obtain (i) three-photon process from q/2 to
−q/2 (and the other way round) where the electron occupies an intermediate
level, either 3q/2 (red arrows) or −3q/2 (green arrows), and (ii) transitions from
3q/2 to −3q/2 and from −3q/2 to 3q/2 (purple arrows). Resonant processes
between q/2 and −q/2 where no intermediate level is involved, that is alternating
photon emission and absorption, are excluded from H

(3)
eff but correspond to the

dynamics due to the first-order contribution Ĥ(1)
eff , Eq. (5.35).

The third-order contribution, Eq. (D.40),

Ĥ
(3)
eff = −1

8
(
â†Lâ

2
L + â2

Lâ
†
L

)
σ̂0,1 −

1
8
(
âLâ

†
L

2 + â†L
2âL

)
σ̂1,0 + 1

4 â
3
Lσ̂−1,2 + 1

4 â
†
L

3σ̂2,−1 (5.37)

of the effective Hamiltonian describes the resonant three-photon processes as shown in
Fig. 5.4. On the one hand there are the transitions between the momenta p = q/2 and
p = −q/2, but now with an additional intermediate level. On the other hand we obtain
processes corresponding to a second two-level system consisting of the momenta p = 3q/2
and p = −3q/2. At first sight these momenta are not involved in the interaction when we
consider a resonant electron with p = q/2. However, due to the transformation, Eq. (5.31),
from |Ψ〉 to |Φ〉 a mixing occurs in the initial state making a transition to the momenta
p = 3q/2 and p = −3q/2 possible. Since F̂ , Eq. (5.33), is an expansion in powers of ε we
expect that the amplitudes of these processes are suppressed with powers of αn.
Introducing the expansion coefficients

dµ(τ) ≡ 〈n+ µ, p− µq|Φ(τ)〉 (5.38)

of the slowly varying state |Φ〉 and projecting on the Schrödinger equation, Eq. (5.32), for
the effective Hamiltonian, Eq. (5.34), with the contributions Eqs. (5.35), (5.36) and (5.37)
up to third order yields the coupled differential equations [4]

i
d
dτ d =




α2
n

4 0 0 1
4αn−1αnαn+1

0 −α2
n−1
2 αn

(
1− α2

n

4

)
0

0 αn
(
1− α2

n

4

)
−α2

n+1
2 0

1
4αn−1αnαn+1 0 0 α2

n

4




d , (5.39)
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Figure 5.5: Non-resonant single-photon transitions according to the rapidly varying contribu-
tion F̂ (1)(τ) of the dynamics. We note that the resonant processes involving q/2
and −q/2 are missing from F̂ (1) since they correspond to the slowly varying part
of the dynamics due to Ĥ(1)

eff , Eq. (5.35).

where we have used the vector notation d ≡ (d−1, d0, d1, d2)T.

The differential equations in Eq. (5.39) can be straightforwardly solved and according to
Eqs. (D.51) and (D.52) the solution [4] reads

d(τ) = U(τ)d(0) (5.40)

with

U≡




e− iα
2τ
4 cos

(
α3

4 τ
)

0 0 1
i

e− iα
2τ
4 sin

(
α3

4 τ
)

0 e iα
2τ
2 cos

[(
α− α3

4

)
τ
]

1
i

e iα
2τ
2 sin

[(
α− α3

4

)
τ
]

0
0 1

i
e iα

2τ
2 sin

[(
α− α3

4

)
τ
]

e iα
2τ
2 cos

[(
α− α3

4

)
τ
]

0
1
i

e− iα
2τ
4 sin

(
α3

4 τ
)

0 0 e− iα
2τ
4 cos

(
α3

4 τ
)



.

(5.41)
Here, we have made the approximation

αn−1 ∼= αn ∼= αn+1 ≡ α (5.42)

for a high photon number n� 1 which considerably simplifies the expression in Eq. (5.41).
For the states p = q/2 and p = −q/2 we obtain the Rabi oscillations already derived in the
preceding section with an additional frequency shift that scales with α3. Moreover, we find
oscillations for p = 3q/2 and p = −3q/2 with the frequency α3/4. Hence, the dynamics of
this second two-level system occurs on a much longer time scale than the time evolution of
the fundamental one.

While the slowly varying contributions of the dynamics represent resonant transitions which
can be deduced from Figs. 5.1, 5.3 and 5.4 the rapid-varying ones describe non–resonant
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processes. For example, the first-order term, Eq. (D.37),

F̂ (1)(τ) = −âL
∑

µ 6=0

e−i2µτ
µ

σ̂µ,µ+1 + â†L
∑

µ6=0

ei2µτ
µ

σ̂µ+1,µ (5.43)

includes all non-resonant single-photon transitions which is apparent from the exclusion of
the only resonant one between µ = 0 and µ = 1 from the summation and from Fig. 5.5, where
the underlying processes of F̂ (1) are visualized. Similarly, we obtain from Eq. (D.39) that

F̂ (2)(τ) =â2
L


1

4
(
σ̂−1,1 ei2τ −σ̂0,2 e−i2τ

)
+ 1

2
∑

µ6=0,−1

e−i2(2µ+1)τ

4µ(µ+ 1)(2µ+ 1) σ̂µ,µ+2




− â†L2


1

4
(
σ̂1,−1 e−i2τ −σ̂2,0 ei2τ

)
+ 1

2
∑

µ6=0,−1

ei2(2µ+1)τ

4µ(µ+ 1)(2µ+ 1) σ̂µ+2,µ


 ,

(5.44)

only contains two-photon processes which are non-resonant.
To obtain the transition-probabilities we first transform the initial state |Ψ(0)〉 to |Φ(0)〉 =
exp

{
F̂ (0)

}
|Ψ(0)〉, according to Eq. (5.31), and obtain the initial condition for d = d(0).

The solution for |Φ(τ)〉, Eq. (5.40) , in terms of d(τ) is then back-transformed via Eq. (5.31)
to an expression for |Ψ(τ)〉 with the corresponding expansion coefficients cµ, Eq. (5.4). At
the end we calculate the modulus square of the amplitudes and keep only terms up to the
order we desire. The explicit details of this procedure are presented in App. D. We note
that we have to go to the second order in α for the corrections to the amplitudes since these
contributions cancel in first order.
Here, we present the resulting probabilities [4]

|c1(τ)|2 = sin2 [(Ωn − χ) t]− α2

2 sin [(Ωn − χ) t]

×
{

sin [(Ωn − χ) t]− sin (χt) cos
[
2ωrt

(
1 + 3α2

8

)]} (5.45)

and
|c2(τ)|2 = α2

4
{

sin2 [(Ωn − χ) t] + sin2 (χt)

−2 sin (χt) sin [(Ωn − χ) t] cos
[
2ωrt

(
1 + 3α2

8

)]} (5.46)

for single-photon emission, from Eq. (D.65), and for two-photon emission, Eq. (D.66), respec-
tively. As before, we have considered the original variables and have introduced the Rabi
frequency Ωn ≡ g

√
n+ 1 for zero detuning, according to Eq. (5.27), as well as the shift

χ ≡ α2

4 Ωn (5.47)

due to higher orders. While |c1|2 corresponds to the ground state p = −q/2 of the two-level
system defining the Quantum FEL, |c2|2 gives the probability for the electron to occupy the
momentum p = −3q/2 and thus goes beyond the two-level approximation.
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Figure 5.6: Probability |c1|2 for the electron to occupy the momentum level −q/2 in the
Quantum FEL corresponding to single-photon emission as a function of the
dimensionless time ΩnT , where Ωn denotes the Rabi frequency, Eq. (5.27), for
∆ = 0. We compare the two-level approximation (blue line), Eq. (5.48), as well
as the solution of third order (green line), Eq. (5.45), of the method of averaging
to the numerical solution of Eq. (5.49) (red dashed line) for α = 0.1 (above)
and α = 0.5 (below), respectively. For the deep quantum regime, α = 0.1, the
two-level approximation agrees very well with the simulation while for α = 0.5 the
numerical solution shifts in frequency compared to the zeroth-order solution and
its amplitude is modulated. Hence, the two-level approximation is not accurate
for this latter case. However, the third-order solution shows the correct behavior
also for α = 0.5.
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Figure 5.7: Probability |c2|2 for the electron to occupy the momentum level −3q/2 corre-
sponding to two-photon emission in the Quantum FEL with α = 0.1 as function
of the dimensionless time ΩnT where Ωn denotes the Rabi frequency, Eq. (5.27),
for ∆ = 0. We obtain that the analytic solution, Eq. (5.46), of third order of the
method of averaging (green line) agrees rather well with the numerical simula-
tion (red dashed line) of Eq. (5.49). Moreover, we observe an oscillation of the
probability with the Rabi frequency Ωn and small wiggles on top corresponding
to rapidly varying corrections of the amplitude. Most importantly, however, the
magnitude of the two-photon emission is suppressed with α2 in comparison to
single-photon emission in Fig. 5.6.

By inspection of |c1|2 in Eq. (5.45) we recognize that the first term, the amplitude of which is
independent of α, contains the shift χ in the Rabi frequency which scales with α2, according
to Eq. (5.47). The amplitude of the second term scales quadratic with α and the time
dependency is characterized by rapid oscillations with the frequency 2ωr. For α → 0 the
probability |c1|2 in Eq. (5.45) reduces to

|c1|2 = sin2 Ωnt (5.48)

which is identical to the result of the two-level approximation, Eq. (5.29), for zero detuning
∆ = 0.

The probability |c2|2 for two-photon emission, Eq. (5.46), is proportional to α2. Hence, two-
photon emission corresponding to the transition to the momentum p = −3q/2 is suppressed
in the quantum regime due to α� 1.

Similarly, by using Eqs. (D.64) and (D.67) in App. D we deduce that for α� 1 the probability
|c0|2 for the electron to have momentum p = q/2 reduces to the expression, Eq. (5.28) with
∆ = 0, in the two-level approximation while the probability |c−1|2 for the electron to have
momentum p = 3q/2 is suppressed by α2. Moreover, since other transitions occur at even
higher orders of the method of averaging we assume that they are suppressed with the
corresponding order of α. Hence, the deep quantum regime of the FEL is indeed characterized
by the two momentum levels q/2 and −q/2.
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This fact is even more pronounced in Figs. 5.6 and 5.7, where we show the probabilities |c1|2,
Eq. (5.45), and |c2|2, Eq. (5.46), for single-photon and two-photon emission, respectively, as
a function of time t and compare them to a numerical solution. These figures correspond to
Figs. 6 and 7 of Ref. [4] where graphs for |c0|2 and |c−1|2 are presented.
The numerical solution is derived from the three-term recursion relation

i
dcµ(t)
dτ =

(
p

q/2 − µ
)2

cµ(t) + g
√
n+ µ+ 1 cµ+1(t) + g

√
n+ µ cµ−1(t) (5.49)

with p = q/2. This relation arises from the Schrödinger equation with the Hamiltonian,
Eq. (5.10), in the Schrödinger picture. For the initial photon number we assume the value
n = 1000 and we truncate the recurrence relation, Eq. (5.49), at µ = −49 and µ = 50 in
analogy to Ref. [4]. The solution is then obtained by diagonalizing a 100× 100 tridiagonal
matrix.
For α = 0.1 we observe from Fig. 5.6 that the two-level approximation, Eq. (5.29), already
gives an accurate expression for |c1|2. Increasing the value of the quantum parameter to
α = 0.5 gives us corrections in the amplitude as well a shift in the Rabi frequency. Indeed, the
two-level approximation, Eq. (5.29), deviates from the numerically computed curve. However,
already the solution, Eq. (5.45), of the next higher order is in very good agreement with the
numerical solution.
In Fig. 5.7 we have shown the result for |c2|2, Eq. (5.46), of the method of averaging in
comparison to the numerical solution with α = 0.1. Indeed, both curves match. Moreover,
we obtain that the two-photon process described by this probability is strongly suppressed
when compared to the single-photon emission, Eq. (5.45), as we have already expected from
the discussion above. The ‘wiggles’ on top the oscillations in Fig. 5.7 emerge from the rapid
oscillations in the Hamiltonian, Eq. (5.12).
In conclusion, we have proven that for the resonance p = q/2 the identification of the Quantum
FEL with a two-level system for the momentum of the electron is justified. Corrections to
the simple Rabi oscillations of the deep quantum regime, presented in the preceding section,
scale with higher orders of the quantum parameter α, in the amplitude as well as in the
frequency, and hence can be neglected for α� 1. However, we have not yet discussed the
situation for other resonances apart from p = q/2.

5.4 Higher resonances
The Hamiltonian, Eq. (5.12), shows resonances for integer multiples of q/2. Up to now we
have just considered the first resonance, p = q/2, where the dynamics of the FEL in the
quantum regime, α � 1, is analogous to a two-level system. In the following we discuss
which effects occur for other resonant momenta.

5.4.1 Second resonance
First, we turn to the next resonance, that is p = q. From Eq. (5.12) we obtain the Hamiltonian

ĤI(τ) = ε

(
âL
∑

µ

e−i2(µ−1/2)τ σ̂µ,µ+1 + â†L
∑

µ

ei2(µ−1/2)τ σ̂µ+1,u

)
. (5.50)
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Figure 5.8: Resonant two-photon processes for the second resonance p = q according to the
effective Hamiltonian Ĥ(2)

eff , Eq. (5.53) . The left-hand side shows the transition
from q to −q (purple arrows) and the vice-versa process (red arrows). On the
right-hand side processes are presented where the final momentum of the electron
equals the initial one either by first emitting and then absorbing a photon (green
arrows) or the reverse process (red arrows).

To bring ĤI into the desired form of the Fourier series in Eq. (5.16) we change the summation
index µ to k according to k = µ− 1/2. We note that we do not sum over integer numbers
but over odd multiples of 1/2. This change of summation indices corresponds to the fact that
we have shifted the discrete momentum ladder from odd multiples of q/2 to even multiples of
q/2. Thus, we arrive at

ĤI = ε
∑

k

Ĥk ei2kτ , (5.51)

where we have defined the components



Ĥ0 ≡ 0
Ĥk ≡ âLσ̂−k+ 1

2 ,−k+ 3
2

+ â†Lσ̂k+ 3
2 ,k+ 1

2
.

(5.52)

The Hamiltonian, Eq. (5.51) is now in a suitable form to apply the method of canonical
averaging. In the following we just sketch this calculation the details of which are presented
in App. D.
Since the first order of the effective Hamiltonian Ĥ(1)

eff = Ĥ0 vanishes according to Eq. (5.52)
we go to the next higher order in the method of averaging. In App. D we obtain, Eq. (D.75),
the expression

Ĥ
(2)
eff = â2

Lσ̂0,2 + â†L
2σ̂2,0 − âLâ†L

∑

µ

1
2µ− 1 σ̂µ,µ + â†LâL

∑

µ

1
2µ− 3 σ̂µ,µ (5.53)

in second order for the effective Hamiltonian. We can understand the form of this Hamiltonian
with the help of Fig. 5.8. In this figure we show the resonant processes for p = q. On the one
hand Eq. (5.53) describes a two-level system consisting of the momentum levels p = q and
p = −q and on the other hand it contains two-photon processes, where the final momentum
is identical to the initial one but with an additional intermediate level. In contrast to the
fundamental resonance p = q/2, there are no resonant single-photon transitions. For p = q
we require at least two photons, that is two discrete momentum steps, to obtain conservation
of energy and momentum.
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In analogy to the first resonance we consider the expansion coefficients dµ, Eq. (5.38), of |Φ〉
in the scattering basis. From the Schrödinger equation, Eq. (5.32), we arrive at, Eq. (D.79),

i
d
dτ d =




ηn 0 αnαn+1
0 −3ηn 0

αnαn+1 0 ηn


d (5.54)

for the dynamics of the dµ. Here, we have introduced the abbreviation

ηn ≡ α2
n −

α2
n−1
3

(5.55)

and have employed the vector notation d ≡ (d0, d1, d2)T.

The differential equation Eq. (5.54) can be straightforwardly solved and we thus obtain,
Eq. (D.83),

d(τ) =




e−iηnτ cos (αnαn+1τ) 0 −i e−iηnτ sin (αnαn+1τ)
0 ei3ηnτ 0

−i e−iηnτ sin (αnαn+1τ) 0 e−iηnτ cos (αnαn+1τ)


d(0) (5.56)

which describes Rabi oscillations between the momentum levels p = q and p = −q.

To obtain the transition probabilities |cµ|2 we first have to determine the initial conditions
for dµ via the transformation Eq. (5.31) and under the assumption that the electron initially
is at resonance, that is cµ(0) = δµ,0, before we apply Eq. (5.56). Then, we have to transform
back to the original state, according to Eq. (5.31), where rapid oscillations come into play
due to non-resonant processes. Finally, we take the modulus square of the amplitudes cµ
and keep terms up to second order in αn. This procedure was already explained for the first
resonance in the preceding section and is shown in detail in App. D.

When we assume a large photon number, that is n � 1, we set αn ∼= α and make the
identifications

ηnτ ∼=
2
3α

2ωrt (5.57)

as well as
αnαn+1τ ∼= αΩnt , (5.58)

where we have returned to the original variables and have recalled the definition Ωn ≡ g
√
n+ 1

of Rabi frequency for the first resonance. The expression in Eq. (5.58) displays the Rabi
frequency for the two-level system consisting of p = q and p = −q and is suppressed for
α� 1 in comparison to Ωn characterizing the fundamental resonance p = q/2. Hence, the
time evolution of the system at the second resonance p = q occurs on a much longer time
scale than in the case of the first resonance.

For example, we obtain the probability, Eq. (D.94),

|c2|2 = sin2 (αΩnt)− 2α2 sin (αΩnt)
{

sin
[
ωrt

(
1 + 3

8α
2
)]

+ 10
9 sin (αΩnt)

}
(5.59)
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for the electron to possess the momentum p = −q which corresponds to the emission of two
photons. When we let α→ 0 we find

|c2|2 = sin2 (αΩnt) , (5.60)

that is an oscillation between the momentum levels q and −q with Rabi frequency αΩn. We
emphasize that in Eq. (5.59) we have only considered corrections in the amplitude and not in
the frequency. However, since corrections in the Rabi frequency emerge due to higher orders
of the effective Hamiltonian we assume that they scale with higher orders of α and hence can
be neglected for α� 1.
In Fig. 5.9 we compare the asymptotic solutions, Eqs. (5.59) and (5.60), to the numerical
solution of Eq. (5.49). For α = 0.1 the frequency shift is negligible but increases for α = 0.5.
Moreover, we find that the oscillation of Eq. (5.60) occurs on a longer time scale when
compared to Eq. (5.45) and Fig. 5.6 for the first resonance, due to αΩn � Ωn. The wiggles
on top of the oscillations again correspond to rapid oscillations with frequency ωr.
For the non-resonant transition from p = q to p = 0, where a single photon is emitted, we
obtain

|c1|2 = 2α2
(

1− cos
[
ωrt

(
1 + 5

3α
2
)])

(5.61)

according to Eq. (D.94). Hence, the probability of this process is suppressed with α2 in
comparison to the resonant one, that is |c2|2, which we can also deduce from Fig. 5.4.1, where
the analytic result, Eq. (5.61), is compared to the numerical one.
In Ref. [112] a numerical analysis of Eq. (5.49) for different resonances was presented, with
results that are in accordance with our analytic expressions. The authors concluded that,
besides the case of the fundamental resonance at p = q/2, the Quantum FEL does not show
a two-level behavior. Moreover, they argued that the occurrence of higher resonances only
emerges in a fully-quantized theory, where the motion of the electron as well as the laser field
are quantized.
We disagree with these conclusions of Ref. [112]. Indeed, we have as well considered a
quantized laser field and to talk about emission or absorption of ‘photons’ is very illustrative.
However, as we have discussed in Chap. 3 it is the discrete motion of the electron that is
responsible for quantum effects in the FEL. We would have found the same resonances if
we have considered a classical laser field, which we have implicitly done by taking the limit
n � 1 at the end of our calculations. It is just important that the discrete momentum
steps simultaneously conserve energy and momentum of the electron which is for example
illustrated in Fig. 5.1.
Moreover, we still identify the dynamics of the electron at a higher resonance with a two-level
system, as we have shown for the example of the momentum levels p = q and p = −q.
However, the electron now has to take two discrete steps on the momentum ladder instead of
just one step which leads to Rabi oscillations which are slower as in the case of p = q/2.

5.4.2 Third and higher resonances

The situation for other resonances is very similar. Without going into detail we sketch in the
following the situation of the ‘third resonance’, that is p = 3q/2. According to Eq. (5.12) the
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Figure 5.9: Probability |c2|2 for the electron to occupy the momentum level p = −q, corre-
sponding to two-photon emission, for the second resonance p = q as a function
of the dimensionless time Ωnt with Ωn, Eq. (5.27), denoting the fundamental
Rabi frequency for ∆ = 0. We compare the analytic solution in lowest order
(blue line), Eq. (5.60), and the one of next higher order (green line), Eq. (5.59),
from the method of averaging to the numerical simulation (red, dashed line) of
Eq. (5.49) for two different values of α, that is α = 0.1 (above) and α = 0.25
(below), respectively. We observe that for the former case our analytic solution
agrees very well with numerics. Increasing α, however, leads to a discrepancy in
the frequency while the higher order of the method of averaging seems to predict
at least the correct behavior of the amplitudes in form of the wiggles on top. For
a better match of the frequency we would have to consider higher orders of the
effective Hamiltonian Ĥeff. For both values of α we obtain that the dynamics
occurs on a much longer time scale in comparison to the fundamental resonance
at p = q/2.
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Figure 5.10: Probability |c1|2 for the electron to occupy the momentum level p = 0, corre-
sponding to single-photon emission, for the second resonance p = q as a function
of the dimensionless time Ωnt with Ωn, Eq. (5.27), denoting the fundamental
Rabi frequency for ∆ = 0. For our choice of the quantum parameter, that is
α = 0.1, the solution (green line), Eq. (5.61), from the method of averaging
agrees rather well with the simulation (red, dashed line) of Eq. (5.49). We
observe that the amplitude of this non-resonant process is suppressed with
α2 � 1 while the oscillations occur on the small time scale, described by the
recoil frequency ωr.

phases of the Hamiltonian read

±iτ
(
p

q/2 − (2µ+ 1)
)

= ∓2iτ(µ− 1) , (5.62)

where we have set p = 3q/2.

From Eq. (5.12) we immediately obtain the resonant contribution

Ĥ
(1)
eff = âLσ̂1,2 + â†Lσ̂2,1 (5.63)

which we have identified as the effective Hamiltonian in first order. This Hamiltonian describes
the two level-system consisting of p = q/2 and p = −q/2 like in the case of the first resonance.
However, for the initial momentum p = 3q/2, that is cµ(0) = δµ,0, we do not obtain this
transition, at least for the lowest order in the amplitude, since here the slowly varying part
coincides with the total dynamics.

In analogy to Fig. 5.1 we deduce that the processes of lowest order are given by the transitions
from p = 3q/2 to p = −3q/2, where three photons are emitted and the vice-versa process,
where three photons are absorbed. Due to Eqs. (5.12) and (5.62) we can describe the
absorption of three photons by

â3
L e−2iτ(µ+ν+ρ−3) σ̂µ,−µ+1σ̂ν,−ν+1σ̂ρ,−ρ+1 = δν,µ+1δρ,µ+2 â

3
L e−6iµτ σ̂µ,−µ+3 , (5.64)
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Figure 5.11: Probability |c3|2 for the electron to occupy the momentum level p = −3q/2,
corresponding to three-photon emission, for the third resonance p = 3q/2
as a function of the dimensionless time Ωnt with Ωn, Eq. (5.27), denoting the
fundamental Rabi frequency for ∆ = 0. For our choice of the quantum parameter,
that is α = 0.1, the lowest-order solution (blue line), Eq. (5.67), from the method
of averaging agrees very well with the numerical solution (red, dashed line) of
Eq. (5.49). However, this transition occurs on a much longer time scale than
resonant processes of the first resonance p = q/2, Fig. 5.6, as well as the ones of
the second resonance, Fig. 5.9.

where we have used Eq. (5.7). By setting µ = 0 we arrive at the resonant contribution

δν,1δρ,2 â
3
Lσ̂0,3 (5.65)

which is the expression we would have expected for this kind of process.

With the help of Eq. (D.26) we find that the effective Hamiltonian in third order is of the
form

Ĥeff ∼
ε3

4
(
â3
Lσ̂0,3 + â†L

3σ̂3,0
)
. (5.66)

We are only interested in the leading term of our expansion, that is third order in the slowly
varying part and zeroth order in the rapidly varying contribution.

Solving the Scrödinger equation, Eq. (5.32), with the Hamiltonian in Eq. (5.66) we finally
obtain the probabilities 



|c0(t)|2 = cos2

(
α2

4 Ωnt
)

|c3(t)|2 = cos2
(
α2

4 Ωnt
) (5.67)

for the electron to occupy the momentum levels p = 3q/2 and p = −3q/2, respectively. These
probabilities describe Rabi oscillations with Rabi frequencies that are suppressed with α2 in
comparison to the first resonance p = q/2 and thus are much slower. In Fig. 5.11 we compare
our analytical solution Eq. (5.67) with the numerical one and find excellent agreement for
α = 0.1.
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We can even go a step further by assuming arbitrary multiples of q/2, that is p = mq/2. Due
to our preceding discussions we assume that for α� 1 the dynamics for the mth resonance
is dictated by combinations of operators of the form εmâmL σ̂0,m and the Hermitian conjugate.
Hence, we assume for m� n that the transition probabilities involving the momentum levels
p = mq/2 and p = −mq/2 describe Rabi oscillations with Rabi frequencies

Ω(m)
n ∝ αm−1Ωn (5.68)

that are suppressed with the corresponding power of α. Thus, the oscillations occur on a
much slower time scale than for the fundamental resonance, p = q/2.

5.5 Summary
In conclusion, we have defined the quantum regime of the FEL as the limit, where the electron
dynamics reduces to a two-level system of two resonant momenta in accordance with Ref. [4].
For this purpose, we have made use of the method of canonical averaging [37] with the help
of which we have identified the underlying transitions on the discrete momentum ladder
which can be straightforwardly interpreted in terms of energy-momentum conservation.
When the conditions on the quantum parameter, Eq. (5.18), and on the initial momentum
spread, Eq. (5.30), are both fulfilled the time evolution of the electron is characterized by Rabi
oscillations. For the fundamental resonance p = q/2 the probability oscillates between q/2
and −q/2, Fig. 5.6. Non-resonant transitions, for example from q/2 to −3q/2, are suppressed
with powers of α according to Fig. 5.7. Processes involving higher resonances, for example
from q to −q, on the other hand are also described by Rabi oscillations between probability
zero and one. However, these oscillations occur on a much longer time scale as the dynamics
of the fundamental resonance and, hence, are also suppressed.
In this context, we have discussed the statements of Ref. [112] that these higher-resonances
(i) arise due to a quantized laser field and (ii) do not show a two-level behavior. We disagreed
with both statements due to the insight into the underlying processes of the Quantum FEL
gained from our analytic approach in this chapter.
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6 The Quantum FEL Oscillator

After investigating the emergence of the quantum regime of the FEL in the preceding chapter
we now turn to the properties of an FEL oscillator operating in this limit. We expect the
realization of a Quantum FEL for very short wavelenghts, that is X-rays, where up to now
no high-qualtity mirrors exist. However, there already exist the first ideas [118] to construct
cavities also for this part of the spectrum eventually leading to the realization of an X-ray
FEL oscillator in the classical regime. Hence, we go one step further and propose a ‘Quantum
FEL oscillator’.
Due to the analogy with the one-atom maser [38, 39, 40, 119, 120] the calculation of features
like (i) gain, (ii) steady-state photon statistics, and (iii) intrinsic linewidth is straightforward.
To bring our results for the Quantum FEL into ab broader context we compare them with
the corresponding quantities of its classical counterpart derived in Chap. 4. We note that our
studies on the radiation properties in this chapter are based on Refs. [121, 122].
In principle, the gain in the quantum and in the classical regime can both take on arbitrary
high values – at least within the boundaries of our low-gain theory. However, for the gain
to be high enough to surpass cavity losses we show in this chapter that the experimental
requirements on wiggler length and electron energy are more strict for the Quantum FEL
than for the classical FEL.
The most striking feature of an FEL oscillator in the quantum regime is the possibility of
obtaining Poissonian or sub-Poissonian photon statistics which follows from the analogy to
the one-atom maser [40]. This fact was already pointed out in Ref. [26] and demonstrated
with the help of standard perturbation theory for short times. Moreover, by comparing
the width of the photon distribution to the corresponding quantity in the classical regime,
Chap. 4, we show that the broadening of the latter distribution does not exist in the quantum
case. Hence, the coherence properties of a Quantum FEL oscillator are closer to an ordinary
laser [22] than the ones of a classical FEL.
In contrast, the intrinsic linewidth does not show significantly enhanced properties since in
both regimes a high steady-state intensity stabilizes the phase fluctuations in the oscillator
configuration. We emphasize that this statement is not in conflict with the results of Ref. [3]
of a narrowed linewidth since there a SASE FEL was considered without a stabilizing cavity.
At the end of this chapter we investigate the influence of a nonzero momentum spread of the
electron beam which differs from the approach in Ref. [27] since we here study the effect on
the radiation properties and not on the final momentum distribution of the electrons. In this
context, we derive conditions to efficiently operate a Quantum FEL oscillator which are more
limiting than the fundamental constraint ∆p < q for the quantum regime to emerge.

6.1 Gain in the Quantum FEL
In the following we first calculate the gain of a low-gain Quantum FEL with the help of
the results of the preceding chapter. For that we consider the diagonal elements of the
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density operator for the laser field in photon number representation. To better understand
the physical meaning of our results we then investigate the limits of a small and a maximized
signal, respectively, and compare them to the corresponding quantities, Chap. 2, in the
classical regime. Finally, we take higher-order corrections to the gain into account when we
leave the deep quantum regime.

6.1.1 Diagonal elements of the density matrix

In the preceding chapter we have assumed for the sake of simplicity that the laser field
initially is given by a Fock state. Instead, we now explicitly calculate the properties of this
field and thus we first assume a more general state. For this purpose, we write the state vector
corresponding to the laser field as a superposition of photon number states with coefficients
cn(t) which translates to the initial condition

|Ψ(t)〉 =



q∫

0

dp φ(p) |p〉

⊗

∑

n

cn(t) |n〉 (6.1)

for the state vector |Ψ〉 of the total system at time t right before the electrons enter the
wiggler. Since electrons and laser field should be uncorrelated before interaction the state in
Eq. (6.1) constitutes a product of subsystems. Moreover, we have assumed that the electrons
are characterized by the initial momentum distribution |φ(p)|2 which is sharply peaked around
p = q/2, according to Eqs. (5.19) and (5.30).
After the interaction the state has evolved

|Ψ(t+ T )〉 =
∫
dp
∑

n

cn(p, t+ T ) |n, p〉+
∫
dp
∑

n

cn+1(p− q, t+ T ) |n+ 1, p− q〉 (6.2)

during an interaction time T . Since we consider the quantum regime the state vector is a
superposition of excited |p〉 and ground state |p− q〉 of the two-level system described in the
preceding chapter.
To derive the properties of the radiation field at a time t′ with t ≤ t′ < t+ T it is sufficient
to consider the reduced density operator

ρ̂L(t′) ≡ Trel{|Ψ(t′)〉 〈Ψ(t′)|} ≡
∑

n′,n′′
ρn′,n′′(t′) |n′〉 〈n′′| (6.3)

for the laser field, which emerges by taking the partial trace Trel over the subsystem of the
electron. In contrast to our discussions about the radiation field of the classical FEL in
Chapter 4, where we have used the Wigner representation, we now have chosen the photon
number representation of ρ̂L with matrix elements ρn′,n′′ .
We omit the details of the derivation of the radiation properties and instead refer to App. E.1.
In the following we summarize the main steps of our procedure. First, we calculate the
change of the diagonal elements ρn,n(t) during the interaction of the laser field with a single
electron bunch. However, to obtain steady-state in an oscillator configuration we require the
subsequent interaction of many electron bunches. We incorporate multiple bunches with the
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help of a coarse-grained derivative [22]

ρ̇n,n(t) ∼= N

τinj
[ρn,n(t+ T )− ρn,n(t)]− ωL

Q
nρn,n(t) + ωL

Q
(n+ 1)ρn+1,n+1(t) , (6.4)

where the discrete change of ρn,n due to interaction is approximated by the continuous limit.
Here, we have defined the injection time τinj of the bunches in analogy to Eq. (4.21) in
Chap. 4. Moreover, we have introduced the damping of the field due to a cavity with quality
Q [22], according to Eq. (E.9), and have multiplied the change of ρn,n caused by a single
electron with the number N of electrons in a bunch. This procedure is justified when we
consider the low-gain regime, where collective effects are neglected [21].
The gain of a laser describes the amplification of the field. That is why we calculate the
expectation value

〈n̂(t)〉 ≡
∑

nρn,n(t) (6.5)
of the photon number that corresponds to the intensity of the field. For the Quantum FEL
we obtain from Eqs. (E.10) and (6.5) the relation

d
dt 〈n̂(t)〉 = 2 1

τinj
〈Gn̂(t)(n̂(t) + 1)〉 − ωL

Q
〈n̂(t)〉 , (6.6)

where we have defined the gain, Eq. (E.8),

Gn ≡
1
2(gT )2N

∫
dp sinc2ΩnT |φ(p)|2 (6.7)

and have recalled the Rabi frequency Ωn from Eq. (5.27). The factor of two in Eq. (6.6)
appears, since we want to connect Eq. (6.7) to our usual definition of the gain, Eq. (2.18),
which describes the change of the amplitude of the field rather than of its intensity.
When the photon statistics is strongly peaked around its mean value [40], that is ρn,n(t) ∼=
δ(n− 〈n̂〉), we find

d
dt 〈n̂(t)〉 ∼= 2G〈n̂〉 〈n̂(t)〉 − ωL

Q
〈n̂(t)〉 , (6.8)

which for suitable G〈n̂〉 leads to an increasing photon number, and therefore to amplification.
We note that a semiclassical theory, where the laser field is treated classically but the two-level
behavior of the electron is taken into account, would lead to the same result for the gain.
However, to calculate the photon statistics and the intrinsic linewidth of a Quantum FEL
oscillator we require a quantized laser field.

6.1.2 Small-signal and strong-signal gain
To analyze the physical meaning for our result of the gain we investigate in the following the
limits of a small and a strong signal, respectively.

Small signal

Similar to ordinary laser theory [22] we define the small-signal regime of the Quantum FEL as
the limit where the change of intensity scales at most quadratically with the initial intensity.
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Figure 6.1: Characteristic functions A (left) for linear gain and B(right) for self saturation,

Eq. (6.11), in the small-signal regime, gt
√
n� 1, as functions of the momentum

p of the electron for ωrT = 5. Both functions are maximized at p = q/2, that is
exact resonance.

Hence, we perform the expansion

Gn (n+ 1) ∼= (Gn (n+ 1)) |ξ=0 + ∂

∂ξ
(Gn (n+ 1)) |ξ=0 ξ + ...

∼= g1n− g2n
2

(6.9)

in powers of ξ ≡ gT
√
n+ 1, where we have used Eq. (6.7). The truncation of this series

converges for ξ � 1.
In the second line of Eq. (6.9) we have defined




g1 ≡ 1

2(gT )2N
∫
dp |φ(p)|2A(p)

g2 ≡ 1
6(gT )4N

∫
dp |φ(p)|2 B(p) ,

(6.10)

with the characteristic functions



A(p) ≡ sinc2 [∆(ωrT )/2]
B(p) ≡ 3

2
1−cos [∆(ωrT )]−∆(ωrT ) sin [∆(ωrT )]/2

[∆(ωrT )/2]4 .
(6.11)

For a positive value of g1 the laser field is amplified and thus g1 corresponds to the linear
gain. On the other hand the negative sign in Eq. (6.9) leads to a sustained field for a positive
g2, which we therefore identify as the self-saturation coefficient [22]. We note that ordinary
perturbation theory, used in Refs. [4, 26] would lead to analogous results as presented here,
since perturbation theory implies the short-time limit gT

√
n� 1 from the beginning.

In contrast to the classical case, where the maxima of the characteristic functions for gain
and self saturation differ, A and B for the Quantum FEL are both maximized at resonance



6.1 Gain in the Quantum FEL 109

p = q/2 according to Fig. 6.1. For |φ(p)|2 = δ(p− q/2), that is a momentum eigenstate with
eigenvalue p = q/2, we obtain the maximum gain

g1 ∼=
1
2(gT )2N ≡ Gmax (6.12)

while
g2 ∼=

(gT )4N

6
(6.13)

gives the self saturation for this particular initial condition.
We have to ensure that the Quantum FEL (i) is in the low-gain regime and (ii) operates
above threshold. For a low gain we require that the change of photon number, which is
maximized by 2Gmax, is much smaller than unity, that is

(gT )2N � 1 , (6.14)

which describes the limit of a short wiggler similar to the constraint in Eq. (2.79) for the
classical FEL.
We are above threshold if

ωτinj
Q

< (gT )2N (6.15)

is satisfied. This inequality gives us a lower limit for the quality Q of the cavity.

Strong signal

By studying Fig. 5.2 we recognize that the probability for photon emission oscillates between
zero and one, at least in the resonant case, ∆ = 0. For ΩnT = π/2 this probability reaches
its maximum. Hence, we define the strong-signal regime of the Quantum FEL with the help
of the condition gT

√
n+ 1 ≡ π/2.

From Eq. (6.7) we derive the strong-signal gain

Gstr ∼=
N

2n

∫
dp |φ(p)|2 S2

π/2 (6.16)

with

S2
π/2 ≡

π2

4 sinc2



π

2

√√√√1 +
[

∆(ωrT )
π

]2

 (6.17)

as the characteristic function in this limit.
Similar to the small-signal regime the gain is maximized at resonance, p = q/2, yielding

Gmax = N

2n
(6.18)

which we could have already deduced from the fact that the probability for photon emission is
unity and hence each electron indeed has emitted one photon. We recognize from Eq. (6.18)
that the gain is suppressed for high photon numbers. However, the absolute intensity change
is maximized which justifies the term ‘strong-signal’ regime.
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When we demand for a low gain we require N << n, that is the photon number is higher
than the number of electrons, which certainly cannot be obtained in the first passages of
electron bunches if the field starts from vacuum. Hence, to achieve the strong-signal limit,
gT
√
n = π/2, we need many passages of electrons before saturation occurs. Alternatively, we

can also achieve saturation by a single passage of electrons when we consider the high-gain
regime as we later show in Chap. 7.

6.1.3 Comparison to classical gain

We are now in the position to compare the gain of the Quantum FEL to the one of the classical
FEL. Therefore, we first consider the small-signal limit before we turn to the strong-signal
case. In this context we discuss differences with respect to structure as well as to magnitude.

Small signal

The gain in the quantum regime is characterized by a sharp resonance which occurs at
p = q/2 and describes photon emission and thus positive gain. In Refs. [26, 4] also absorption
and negative gain was discussed which gave rise to the second resonance p = −q/2. By
subtracting absorption from emission we find the characteristic function

Aq(p) ≡ A(p)−A(−p) , (6.19)

where we have used, that according to Refs. [4, 26] absorption is characterized by A(−p) with
A defined in Eq. (6.11). We have discussed this difference of two sinc2-functions in Eq. (6.19)
already in Chap. 3, Eq. (3.31), for the transition from classical to quantum physics. However,
in contrast to Chap. 3 it is now admissible to use results of first-order perturbation theory
since in the quantum regime single-photon processes prevail.
The gain of the classical FEL, however, is described by the smooth function Acl, Eq. (4.29),
of the Doppler parameter ℘ ≡ 2kpT/m. In Fig. 6.2 we display both functions, Aq and Acl,
and obtain, as expected, separated peaks in the quantum regime and a continuous curve for
the classical regime.
Moreover, the maximum of Acl occurs at ℘ ∼= π, which is independent of ~, while the
maximum in the quantum regime is located at p = ~k. These ‘resonances’ correspond to two
different processes: in the classical case we observe the emission of many photons washing out
the discreteness of the electron dynamics as discussed in Chap. 3. In contrast, the Quantum
FEL is characterized by single-photon processes and the electron occupies only two levels of
the momentum ladder.
A naive comparison of the magnitude of g1, Eq. (6.12), in the quantum regime and

gcl1 ≡ G
(1)
cl = 8

π3ωrT (gT )2N (6.20)

in the classical regime, obtained from Eq. (4.24), yields

g1

gcl1

∼= π3

16
1
ωrT

� 1 . (6.21)
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Figure 6.2: Comparison of the characteristic functions for the small-signal gain in the quantum
and in the classical regime of the FEL. On the left-hand side Aq, Eq. (6.11) with
Eq. (6.19), for the Quantum FEL with ωrT = 10, is plotted as a function of
p/q and displays two sharp peaks at p = ±q/2. On the right-hand side we have
drawn the smooth function Acl, Eq. (4.29), for the classical FEL depending on
the Doppler parameter ℘ ≡ 2kpT/m.

Since ωrT � 1 in the quantum regime, the gain of a Quantum FEL is much smaller than
predicted by the classical theory. Although we identify this difference as a quantum effect, we
cannot deduce from Eq. (6.21) that the gain of the Quantum FEL is always smaller than
the one of the classical FEL. Each quantity g1 and gcl1 is only valid in the respective regime
of consideration and g1 as well as gcl1 can in principle take on any value, at least within the
limits of the low-gain approximation.
However, for amplification the gain in the classical as well as in the quantum regime should
satisfy the respective threshold condition.Thus, the gain should be still smaller but of the
order of unity, which we denote as 2Gmax . 1, in order to avoid unrealistic high values of the
quality Q of the cavity.
To show the experimental limitiations implied by a moderately low gain, we cast the condition
2Gmax . 1 in terms of the laboratory frame, App. A, and arrive at the constraint [122]

L .
2γ2

0√
π

√
λC/re

a0

√
1 + a2

0

1√
λWne

(6.22)

for the length L of the wiggler, where we have introduced the relativistic factor γ0, Eq. (A.47),
of the electron, the wiggler wavelength λW, the wiggler parameter a0, Eq. (A.30), and the
electron density ne ≡ N/V as well as the Compton wavelength λC, Eq. (A.50), of the electron
and the classical electron radius re, Eq. (A.51). On the other hand, we find for the classical
regime the condition

L .
(2π)1/3

4
γ0λ

1/3
W

(rea2
0ne)1/3

(6.23)
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which is derived from 2gcl1 . 1 in analogy to Eq. (6.22).
By comparing Eq. (6.22) with Eq. (6.23) we identify the difficulties that arise in the quantum
regime: the required wiggler length scales quadratically with the energy γ0 of the electrons and
thus increases with increasing energy and also increases with a decreasing wiggler wavelength
λW. In contrast, L is only linear in γ0 and decreases for a smaller λW. Moreover, the condition
ωrT � 1 of a large recoil can be rewritten to [122]

16πγ0
L

1 + a2
0

λC
λ2
W
� 1 , (6.24)

according to Tab. A.2, which means that we need a high γ0 and a small λW to be in the
quantum regime leading, however, to a large L according to Eq. (6.22). In contrast for small
γ0 and large λW we are in the classical regime and do not have to concern about this issue
due to Eq. (6.23).
In principle, both, quantum and classical gain can be high enough to satisfy the respective
threshold condition. However, the experimental realization of a Quantum FEL above threshold
is more challenging as in the classical case. We emphasize that this discussion concerns only
the low-gain limit. Nevertheless, we find a similar behavior in Chap. 7 for the high-gain
Quantum FEL.
Before we proceed, we note the peculiarity that the gain gcl1 , Eq. (6.20), in the classical regime
scales with T 3 [51], while the corresponding quantity g1, Eq. (6.12), in the quantum regime
just depends on T 2.

Strong signal

In the following we compare the strong-signal gain of a Quantum FEL with the saturated
gain in the classical regime [51]. According to Eq. (2.68) we estimate the magnitude of the
latter quantity by

Gcl ∼= αn
N

2n ,
(6.25)

where we have used the relation κ = 4ωrTgT , have identified the dimensionless intensity
n ≡ |aL|2 as the mean number of photons in the laser field and have recalled the definition,
Eq. (5.18), of the quantum parameter αn.
Since αn � 1 in the classical regime the gain of a classical FEL is higher than in the
quantum regime with G ∼ N/n, Eq. (6.18). We identify multiphoton processes in the
classical case opposing single-photon transitions in the quantum regime as origin for this
difference. However, by setting αn � 1 in Eq. (6.25) we obtain that the classical formula
would underestimates the gain of the Quantum FEL in contrast to the small-signal case,
where the classical result overestimates the one in the quantum regime. Moreover, we note
that Gcl scales with n−3/4 while the gain in the quantum regime is proportional to n−1.

6.1.4 Higher-order corrections
To conclude our discussion regarding the gain of a Quantum FEL we consider higher-order
corrections to the deep quantum regime in the framework of the method of averaging. In the
following we restrict ourselves to the resonant case p = q/2.
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Additional to the excited and ground state, |p〉 and |p− q/2〉, respectively, of the fundamental
two-level system in the deep quantum regime we have to consider, according to Eqs. (D.67)
and (D.66), the momentum levels |p+ q/2〉 and |p− 3q/2〉. Hence, the evolved state reads

|Ψ(t+ T )〉 =
2∑

µ=−1
cµ(t+ T ) |n+ µ, p− µq〉 , (6.26)

where we have recalled the notation cµ ≡ cn+µ(p− µq) from Chap. 5.

Calculating the diagonal elements ρn,n of the reduced density matrix of the laser field and
using Eq. (6.26), we find for the change in the mean photon number 〈n̂〉 the expression

〈n̂(t+ T )〉 − 〈n̂(t)〉 ∼= N
2∑

µ=−1
µ|cµ(t+ T )|2 . (6.27)

which emerges due to the interaction with a single electron bunch.

In the limit of a sharply peaked photon statistics, with mean value n� 1, we obtain

〈n̂(t+ T )〉 − 〈n̂(t)〉 ∼= δn(0)(T ) + α2δn(2)(T ) , (6.28)

with a contribution in zeroth order given by

δn(0)(T ) ≡ N sin2 [(Ωn − χ)T ] (6.29)

and one in second order which reads

δn(2)(T ) ≡ −N4
(
cos2 [(Ωn − χ)T ] + cos2 (χT )− 2 sin2 (χT )

−2 cos ΩnT cos
[
2ωrT

(
1 + 3

8α
2
)])

.
(6.30)

We have derived this result with the help of Eqs. (D.65), (D.67) and (D.66) and have
recalled the definitions Ωn ≡ gT

√
n+ 1 for ∆ = 0 and χ ≡ (α2/4)Ωn, Eqs. (5.27) and (5.47),

respectively. We note that for α→ 0 the result for the change in photon number, Eq. (6.28),
reduces to the corresponding expression, Eq. (6.8), of the deep quantum regime without
cavity damping.

In Fig. 6.3 we have drawn the change of mean photon number in the Quantum FEL as a
function of time, according to Eq. (6.28) for α = 0.2 and α = 0.4, respectively, and have
compared the resulting curve with the zeroth-order solution, Eq. (6.8). For increasing α
the higher-order solution is more accurate than the lowest-order one since it incorporates
a frequency shift as well as a modulation in amplitude up to the order of α2. We, further,
obtain that in contrast to the deep quantum regime a negative change of intensity becomes
possible due to the absorption transition from q/2 to 3q/2 which becomes more prominent
for increasing α. Moreover, for increasing α each electron emits on average at most slightly
less than one photon. A possible explanation for this effect is that the resonance shifts away
from p = q/2 when we leave the deep quantum regime. Hence, we expect a maximized gain
for a slightly different value of the momentum p than q/2.
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Figure 6.3: Change of mean photon number 〈n̂(t+ T )〉 − 〈n̂(t)〉 in a Quantum FEL at
resonance, p = q/2, due to a single electron, N = 1, as a function of the
dimensionless time ΩnT with Ωn, Eq. (5.27), denoting the Rabi frequency and T
being the interaction time. We have compared the zeroth-order solution, Eq. (6.8),
(blue line) as well as the higher-order solution, Eq. (6.28), (green line) of the
method of averaging with the numerical simulation of Eq. (5.49) (red, dashed
line) for two different values of α, that is α = 0.2 (above) and α = 0.4 (below).
While for growing α the zeroth-order solution deviates from the exact one in
frequency and in amplitude the higher-order result fits very well with numerics.
We note that the change of the mean photon number can become negative since
for increasing values of α absorption processes become more important. Moreover,
the maximum gain is decreased and we interpret this effect as originating from a
shift of resonance away from p = q/2.
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6.2 Steady-state photon statistics

After investigating amplification in the quantum regime of the FEL we now turn to the
statistical properties of a Quantum FEL oscillator. With the help of detailed balance [22] and
a Gaussian approximation [39] we derive an explicit expression for the steady-state photon
statistics. After that we compare mean value and variance of this distribution with the
corresponding quantities derived in Chap. 4 for the classical FEL. At the end of this section
we briefly discuss the influence of higher orders from the method of averaging on the photon
statistics.

6.2.1 Detailed balance and Gaussian approximation

For steady state we require for the diagonal elements

ρ̇n,n = 0 , (6.31)

which means that we have to set the right-hand side of Eq. (6.4) to zero. Moreover, by
employing the principle of detailed balance [22] we obtain

(gT )2Nn
(∫

dp sinc2Ωn−1T |φ(p)|2
)
ρn−1,n−1 −

ωL

Q
nρn,n = 0 . (6.32)

In this context, detailed balance means that each line of the three-term relation for ρn,n,
explicitly given in Eq. (E.10), equals to zero, corresponding to a vanishing probability flow
between two adjacent levels [22].
The expression in Eq. (6.32) is equivalent to the recurrence relation

ρn,n = Λnρn−1,n−1 (6.33)

with
Λn ≡

2Gn−1

ωLτinj/Q
(6.34)

which represents the ratio of gain Gn−1, Eq. (6.7), and losses. Since the dependency of Λn

on the photon number n is rather complicated, as apparent from Eq. (6.7), the iteration of
Eq. (6.33) does not yield a closed, analytic expression.
However, when the photon statistics is characterized by a single dominating peak a Gaussian
approximation provides us with a simple expression for ρn,n. This approximation is discussed
in detail in App. E.2 and results in the expression, Eq. (E.19),

ρssn,n = N exp
[
−(n− nss)2

2∆n2

]
(6.35)

for the steady-state photon statistics. This function is normalized such that the integral with
respect to n from zero to infinity is equal to unity, determining the normalization constant
N .
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In short, the derivation yielding Eq. (6.35) is based on a Taylor expansion in second order
around the maximum nss. This maximum can be found from the relation

Λnss ≡
2Gn−1n/τinj
nωL/Q

= 1 . (6.36)

An expression analogous to Eq. (6.36) for the steady-state intensity also emerges when we
set d 〈n̂〉 /dt = 0 in Eq. (6.8). Thus, our result, Eq. (6.36), is consistent with the one of a
semiclassical laser theory [22, 56].
A quantity which cannot be described by a semiclassical theory is the variance ∆n2 of the
photon statistics which in the Gaussian approximation is given by

∆n2 ≡ −
(
dΛn

dn

∣∣∣∣∣
n=nss

)−1
(6.37)

according to Eq. (E.20).
With the help of Eq. (6.34) we obtain the explicit expression

∆n2 =
[

(gT )2N

ωLτinj/Q

(∫
dp sinc2Ωnss−1T

(
1− cos Ωnss−1T

sincΩnss−1T

)
g2

Ω2
nss−1

|φ(p)|2
)]−1

(6.38)

which simplifies considerably to

∆n2 =



1−

cos
(
gT
√
nss
)

sinc
(
gT
√
nss
)


 1
nss



−1

(6.39)

by assuming exact resonance, that is |φ(p)|2 = δ(p − q/2). Moreover, we have used the
identity Λnss = 1 valid for steady state according to Eq. (6.36).
In Fig. 6.4 we have drawn the photon statistics ρn,n as a function of n exemplified by
the strong-signal case gT

√
nss = π/2 at exact resonance p = q/2. We obtain that our

approximation, Eq. (6.35), agrees very well with the numeric result which is derived by an
iteration of Eq. (6.33).
To bring our results for the Quantum FEL into a broader context we first recall that the
photon statistics of a coherent state [40] corresponds to a Poisson distribution, which means
that its mean value is equal to its variance. When the variance exceeds the mean value we
speak of a super-Poissonian statistics, which is for example given in the case of an ordinary
laser [22, 105], while the opposite case is called sub-Poissonian, which for example can be
observed in a one-atom maser [38, 39].
That is why we we define the normalized variance [40]

σ2 ≡ ∆n2

nss
(6.40)

as the ratio of variance ∆n2 and mean photon number nss in analogy to the definition,
Eq. (4.60), in Chap. 4. In the case of a Poisson statistics we have σ2 = 1 while we obtain
σ2 > 1 and σ2 < 1 for a super- and a sub-Poissonian statistics, respectively.
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Figure 6.4: Comparison of the Gaussian approximation for ρn,n, Eq. (6.35), with the numerical
solution of Eq. (6.33), both as functions of n and both in the strong-signal regime
gT =

√
nss = π/2 for resonance p = q/2. For the parameters gT = π

2 · 10−2,
N = 1000 and ωLτinj/Q = 0.1 we find that both curves agree.
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Figure 6.5: The normalized variance σ2
p=q/2, Eq. (6.41), as a function of gT

√
nss for a mo-

mentum eigenstate of the electron at resonance p = q/2. For gT
√
nss < π/2 we

obtain a super-Poissonian behavior, σ2 > 1, while for gT
√
nss > π/2 the statistics

is sub-Poissonian, σ2 < 1.
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For the Quantum FEL we derive with the help of Eq. (6.39) the expression

σ2
p=q/2 = 1

1−
(
gT
√
nss
)

cot
(
gT
√
nss
) (6.41)

which is only a function of gT
√
nss since we have assumed exact resonance, p = q/2. We

postpone the discussion of the influence from a nonzero momentum spread on σ2 to the end
of this chapter.
In Fig. 6.5 the normalized variance σ2

p=q/2 is drawn versus gT
√
nss. For gT

√
nss < π/2, and

in particular in the small signal limit, gT
√
nss << 1, the statistics is super-Poissonian, with

σ2
p=q/2 > 1, in analogy to a conventional laser. However, for gT

√
nss = π/2, which we have

defined as the strong-signal limit, the situation changes and we obtain σ2
p=q/2 = 1, that is a

Poisson distribution. For increasing values of gT
√
nss we even find a sub-Poissonian behavior

with σ2
p=q/2 < 1.

Since the Quantum FEL is analogous to the one-atom maser these results are not surpris-
ing [40]. We emphasize that, according to Ref. [39], we have to restrict ourselves to situations
where the condition

gT
√
N√

ωLτinj/Q
<

3
2π , (6.42)

is satisfied since otherwise the Gaussian approximation, Eq. (6.35), could break down.

6.2.2 Comparison to classical FEL
For the classical regime there exists no an analytic expression for the photon statistics beyond
the small-signal limit. Hence, we also restrict ourselves to this limit for the Quantum FEL
when we compare quantum with classical regime. In Fig. 6.6 we have displayed the photon
statistics of the Quantum FEL in the small-signal limit and observe that employing the
Gaussian approximation and the small-signal approximation yields correct results when we
take the numerical solution of Eq. (6.33) as a reference.

Mean photon number

From Eq. (6.9), valid for a small signal, that is gT
√
nss � 1, we obtain

Λnss
∼= 2g1 − 2g2n

ss

ωLτinj/Q
= 1 (6.43)

for the steady-state condition, Eq. (6.36). Solving Eq. (6.43) for nss yields

nss = ε
g1

g2
, (6.44)

where we have defined
ε ≡

g1 − 1
2
ωLτinj
Q

g1
(6.45)

as the relative deviation from threshold in analogy to Eq. (4.48).
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Figure 6.6: The steady-state photon statistics ρn,n of the Quantum FEL in the small-signal
limit as a function of the photon number n. On the left-hand side we have chosen
the parameters gT = 10−3, N = 105 and ε = 0.01 leading to the steady-state
photon number nss = 3 · 104 according to Eq. (6.46) and hence to gT

√
nss = 0.17.

The corresponding quantities on the right-hand side are given by gT = 1
3 ·

10−3, N = 9 · 105 and ε = 25
3 · 10−5 yielding nss = 2.25 · 104 and gT

√
nss =

0.05. For the case gT
√
nss = 0.05 on the right-hand side the analytic solution,

Eq. (6.35), together with Eqs. (6.46) and (6.54) which represent the small-signal
approximation, is closer to the numerical simulation of the recurrence relation
Eq. (6.33) as for the case gT

√
nss = 0.17 on the left, which we identify as a

higher-order effect form the expansion in powers of ξ ≡ gT
√
nss � 1.
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The structure of Eq. (6.36) is the same as of its classical counterpart Eq. (4.44). However, the
explicit expression for gain g1 and self saturation g2 differ for the quantum and the classical
regime. For the former one we find from Eqs. (6.12) and (6.13)

nss = 3ε
(gT )2 , (6.46)

where we have estimated the magnitude of g1 and g2 by their value at resonance p = q/2,
Eqs. (6.12) and (6.13). To be above threshold we require 0 < ε < 1. The small-signal
condition, gT

√
nss � 1, translates with the help of Eq. (6.46) to ε� 1.

After recalling Eq. (4.52)

nsscl = ε
π3

2
1

(ωrT )2
1

(gT )2 (6.47)

for the classical FEL, as well as the identity κ = 4(ωrT )gT , we make the comparison

nss

nsscl
= 6
π3ωrT � 1 (6.48)

for the steady-state intensity in the quantum and in the classical regime. Since ωrT � 1 for
the Quantum FEL the photon number nss in the quantum regime exceeds the one predicted
by the classical theory.
Following the arguments of Sec. 6.1 we consider another way of comparing classical and
quantum regime. For this purpose, we rewrite the expressions for the steady-state photon
number in terms of the respective maximum gain Gmax, Eq. (6.12), and Gcl

max, Eq. (6.20). By
this procedure we obtain

nss = 6εN
Gmax

(6.49)

and
nsscl = 1

ωrT

16εN
Gcl

max
, (6.50)

respectively.
Comparing the expressions Eqs. (6.50) and (6.49) makes of course only sense, if Gmax and
Gcl

max are of the same order of magnitude, despite of the experimental difficulties which we
have identified in Sec. 6.1. Moreover, we assume the same number N of electrons for both
regimes. Due to ωrT � 1 we obtain that the steady-state photon number of a classical FEL,
Eq. (6.50) is larger than the corresponding quantity, Eq. (6.49), in the quantum regime.
Indeed, we cannot derive an analytic solution for the photon statistics of the classical FEL
beyond the small-signal limit. However, in the following we at least determine the mean
intensity of a classical FEL in a completely classical theory by equating cavity losses with
the saturated FEL gain, Eq. (2.68), in analogy to Eq. (6.36). By this procedure we obtain
the relation

nsscl = (2gT )4/3N4/3

ωLτinj/Q
= √αn

N

ωLτinj/Q
(6.51)

for the dimensionless intensity n ≡ |aL|2 at steady state, where we have used in the second
step the identity κ ≡ 4(ωrT )gT . We note that the proportionality of the intensity on N4/3 is
similar to the classical high-gain FEL, Eq. (2.81).
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In contrast, since in the quantum regime each electron maximally emits one photon, Eq. (6.18),
the mean photon number reads

nss = N

ωLτinj/Q
(6.52)

in the strong-signal regime of a Quantum FEL oscillator. Due to αn � 1 in the classical
regime we expect from Eq. (6.51) a higher intensity in this limit when compared to the
Quantum FEL. However, since for αn � 1 the relation in Eq. (6.52) is valid, and not the one
in Eq. (6.51), we deduce that the steady-state intensity in the quantum regime is larger than
predicted from a classical theory.

Variance

Having discussed the mean value of the photon statistics in the quantum and classical regime
we finally turn to the variance of the corresponding statistics in the small-signal regime. For
this purpose, we consider the normalized variance σ2, Eq. (6.41), of the Quantum FEL in
the limit ξ ≡ gT

√
nss � 1. Expanding [121]

1− ξ cot ξ ∼= 1
3ξ

2 , (6.53)

the denominator in Eq. (6.41) in powers of ξ and using Eq. (6.46) yields the expression

σ2 ∼= 1
ε

(6.54)

for the normalized variance of the photon statistics of a Quantum FEL. As already predicted,
this statistics shows a super-Poissonian behavior in the small-signal regime, due to ε� 1.
According to Eq. (4.63) the normalized variance for a classical FEL is given by the expression

σ2
cl
∼= π

4ωrT

1
ε

(6.55)

which also describes a super-Poissonian statistics. However, due to ωrT � 1 in the classical
limit, the statistics is always broader than the one of a Quantum FEL characterized by the
expression in Eq. (6.54). In Fig. 6.7 we have contrasted a Poisson statistics with the photon
statistics ρn,n, Eq. (6.35) together with Eqs. (6.44) and (6.54), in the quantum regime and
the Wigner function WL, Eq. (4.43) together with Eqs. (4.44) and (4.45), in the classical
regime. Indeed, we obtain that ρn,n is closer to a Poisson distribution than WL and thus
more similar to a coherent state.
When we assume that the broadening of the photon distribution in the classical FEL is
also present beyond the small-signal limit, which is supported by the numerical analysis in
Ref. [13], we identify the Poissonian or sub-Poissonian statistics, according to Fig. 6.5, as
unique feature of the quantum regime. We emphasize that we have considered the situation
at steady state. In Ref. [100] the squeezing of an initial Fock state of the laser field in a
classical FEL was reported. However, this effect emerges for negative gain, where no steady
state can be realized.
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Figure 6.7: Photon statistics ρn,n of the Quantum FEL, Eq. (6.35), as well as the Wigner
function WL, Eq. (4.43), for the laser field in the classical regime with ωrT = 0.01,
compared to a Poisson distribution, all as functions of n. To visualize the
differences we have chosen the parameters such that all distribution have the same
mean value at nss = 3 · 104 and we have normalized the functions to unity. Both,
ρn,n and WL, deviate by ε = 0.01 from threshold. As predicted by Eqs. (6.54)
and (6.55) the width of the distribution in the quantum regime is much smaller
than the one in the classical regime and hence closer to a Poisson distribution.

6.2.3 Higher-order corrections

To conclude our studies on the photon statistics of a Quantum FEL oscillator we provide
a short discussion of higher-order effects in the framework of the method of averaging. For
increasing αn transitions outside the two-level system, consisting of |q/2〉 and |−q/2〉, become
important. In second order of αn we have to include single-photon absorption as well as
two-photon emission, corresponding to the final electron momenta p = 3q/2 and p = −3q/2,
respectively, according to Chap. 5. The detailed calculations for this problem can be found
in App. E.3.
Hence, we have four levels which leads to a recursion relation, Eq. (E.29), for the photon
statistics ρn,n at steady state with four different terms instead of the three-term recurrence
relation, Eq. (E.10), for the deep quantum regime. In this case we do not expect to solve
this recurrence relation in a closed analytic way with the help of a detailed balance condition.
However, in Ref. [123] an approximate approach was presented to obtain steady-state solutions
without detailed balance.
The method in Ref. [123] is based on the assumption [124] that the ratio

Rn ≡
ρn+1,n+1

ρn,n
(6.56)

of two subsequent coefficients is a slowly varying function on the photon number n, that is
Rn
∼= Rn−1 ∼= Rn−2 ≡ R. By this procedure, we derive in App. E.3 a quadratic equation for

R which can be easily solved yielding two solutions R± = R±(n). The photon statistics is



6.2 Steady-state photon statistics 123

0.0988

0.099

0.0992
δn(0)/n

ωLτinj/Q = 0.099

2 2.5 3 3.5 4

0.0664

0.0666

0.0668

n [×104]

δn/n
ωLτinj/Q ∼= 0.0666

Figure 6.8: Steady-state condition in zeroth order, Eq. (6.36), (up) and in second order,
Eq. (6.58), (below) of the method of averaging. We have drawn the change
δn(0), Eq. (6.29), and δn, Eq. (6.28) , respectively, divided by n as function of n
(blue and green line, respectively). The point of intersection with the red and
black line, respectively, corresponding to the loss parameter ωLτinj/Q, gives us
the steady-state photon number for which we have fixed the value nss = 3 · 104.
With the choice of parameters gT = 0.001, N = 105 and ωrT =

√
3, leading to

αnss = 0.1, we obtain the required values ωLτinj/Q ∼= 0.099 and ωLτinj/Q ∼= 0.066
for steady state in zeroth and second order, respectively. Since for both cases the
loss parameter itself is of the order of αnss the relative difference between the two
values for ωLτinj/Q is also of this order of magnitude. We note that the nonlinear
function δn/n seems to be linear in n since our parameters correspond to the
small-signal regime, where the nonlinear contributions of δn are small.

then calculated by iteration according to

ρn,n = ρ0,0

n∏

n′=1
R+(n′) (6.57)

where R+ is the positive branch of the solution. We note that for αn → 0 it follows that
R+ → Λn, according to the results in App. E.3. Therefore, Eq. (6.57) correctly reduces to
the corresponding relation, Eq. (E.13), of the two-level approximation.
In analogy to the deep quantum regime, Eq. (6.36), we calculate the mean photon number
by setting R = 1 in the quadratic equation, Eq. (E.34). According to App. E.3 we obtain the
relation, Eq. (E.39),

ω

Q
nss = δn(0)(nss) + α2

nssδn
(2)(nss) (6.58)

with δn(0) and δn(2) defined in Eqs. (6.29) and (6.30), respectively. We could have already
expected the form of Eq. (6.58) by simply equating the change of the mean photon number
〈n̂(t+ T )〉 − 〈n̂(t)〉, Eq. (6.28), with the losses ωL 〈n̂〉 /Q in analogy to semiclassical laser
theory [22].
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Figure 6.9: Steady-state photon statistics ρn,n of a Quantum FEL oscillator normalized to
unity as a function of the photon number n in zeroth order (blue line) and in
second order (red line) of the method of averaging, respectively. We have chosen
the parameters such that the mean photon number for both cases is at nss = 3 ·104

and that αnss = 0.1 in accordance with Fig. 6.8. The two curves follow from
numerical iteration of Eq. (E.13) with Λn from Eq. (6.34) and Eq. (6.57) with
R+(n) from Eq. (E.35), respectively. We observe that the photon distribution is
slightly broadened when we include the effects of higher orders in αnss .

In Fig. 6.8 we have visualized the steady-state condition, Eq. (6.58), for zeroth and second
order of the method of averaging, respectively. Surprisingly, we observe a rather high difference
in the required value for the loss parameter ωLτinj/Q to establish in both cases the same
mean photon number, even for αnss = 0.1. We identify the fact that the loss parameter itself,
ωLτinj/Q = 0.099 and ωLτinj/Q = 0.066, respectively, is of the order of αnss as the origin of
this difference. Moreover, the relative deviation of the second-order value from the zeroth
order one is at about 0.3 which again is of the order of αnss . However, the value 0.3 for this
deviation is still much smaller than unity and we assume that we are allowed to truncate
our asymptotic expansion after the second order which is not guaranteed when we further
increase αnss . We note that a more thorough investigation of the influence of higher orders
on the steady-state condition would be an interesting topic of future research.

The effect of including higher orders of αnss on the mean photon number is rather large. In
contrast, the width of the photon statistics is not affected very much when we are beyond
the two-level approximation which is illustrated in Fig. 6.9, where we have drawn ρn,n as a
function of n for zeroth and for second order of the method of averaging, respectively. We
have chosen the parameters such that both distributions possess the same mean value nss
and we obtain the value αnss = 0.1 for the quantum parameter. However, we observe a slight
broadening due to higher orders which is in accordance with the natural expectation that the
width of the distribution in Fig. 6.9 is in between the small value, Eq. (6.54), of the two-level
approximation and the high value, Eq. (6.55), for the classical FEL.
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6.3 Intrinsic linewidth
In contrast to gain and photon statistics which rely on the diagonal elements of the density
matrix, we have to consider off-diagonal elements to compute the linewidth. Again, we
compare the results of our calculations for the Quantum FEL with the classical regime.

6.3.1 Off-diagonal elements
The linewidth of a laser can be connected to the decay, or rather the fluctuations, of the
electric field. The expectation value of this quantity is proportional to [22]

〈âL(t)〉 ≡ Tr {ρ̂(t)âL} =
∞∑

n=0

√
n+ 1 ρn+1,n , (6.59)

that is the expectation value of the photon annihilation operator âL. Instead of the diagonal
elements ρn,n in the preceding sections we now have to consider the off-diagonal elements ρn+1,n
of the reduced density matrix according to Eq. (6.59). We note that a more suitable quantity
than 〈â(t)〉 to describe fluctuations of the electric field is given by the correlation function
〈â†L(t+ τ)âL〉 which was employed in Chap. 4. However, both approaches yield the same
results for the micromaser [40, 120, 125, 126] as well as for the ordinary laser [22, 127]. Hence,
we proceed by considering the decay of 〈â(t)〉 due to the simplicity of this procedure [40].
Above threshold the steady-state photon statistics is peaked around a nearly constant photon
number nss � 1. Hence, we write for the change of 〈âL〉 in time

d
dt 〈âL(t)〉 =

∞∑

n=0

√
n+ 1ρ̇n+1,n(t) ∼=

√
nss + 1

∞∑

n=0
ρ̇n+1,n(t) , (6.60)

which means that we simply have to determine the corresponding change ρ̇n,n+1 of the
off-diagonal elements. While the modulus of 〈âL〉 given by

√
〈n̂〉 ∼=

√
nss, is constant for

steady state its phase fluctuates due to spontaneous emission, which is the reason for the
linewidth of a laser [22], as discussed in Chap. 4.
In the following we just sketch the derivation of the linewidth and refer to App. E.4 for details.
In analogy to our procedure for the photon statistics, Eq. (6.4), we use for the off-diagonal
elements a coarse-grained derivative and obtain

ρ̇n+1,n(t) ∼= N

τinj
[ρn+1,n(t+ T )− ρn+1,n(t)]− ωL

Q

(
n+ 1

2

)
ρn+1,n(t)

+ωL

Q

√
(n+ 1)(n+ 2) ρn+2,n+1(t) ,

(6.61)

where we have added cavity losses in accordance with Ref. [22].
Employing the explicit expression, Eq. (E.42), for the time-evolved off-diagonal element
on the right-hand side of Eq. (6.61), inserting the result into Eq. (6.62), and shifting the
summation indices as described in App. E.4 yields

d
dt 〈âL(t)〉 = −

√
nss + 1

∞∑

n=0
µnρn+1,n(t) (6.62)
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with µn defined in Eq. (E.47).

When µn is a slowly varying function of n [40, 120] we can make the approximation

d
dt 〈âL(t)〉 ∼= −µnss 〈âL(t)〉 (6.63)

yielding a closed differential equation for 〈âL〉 Again, we have considered a sharp photon
statistics giving rise to 〈µn〉 ∼= µnss .

To solve Eq. (6.63) we make the ansatz

〈âL(t)〉 = e(−D+iL) t2 〈âL(0)〉 (6.64)

from which we immediately identify D as the linewidth of the laser field. This comes from
the fact that the Fourier transformation of 〈âL〉 yields a Lorentzian spectrum, characterized
by the width D [22].

With the help of Eq. (6.64) we obtain

D = 2Re (µnss) (6.65)

for the real part of the exponent, which translates to the explicit expression

D = 2N
τinj

∫
dp|φ(p)|2 (1− cos ΩnssT cos Ωnss+1T

−
g2
√

(nss + 1)(nss + 2) + ∆2(ωrT )2/4
ΩnssΩnss+1

sin ΩnssT sin Ωnss+1T




+2ωL

Q

[(
nss + 1

2

)
−
√
nss(nss + 1)

]

(6.66)

with the help of Eqs. (E.43) and (E.47) derived in App. E.4.

The expression for D in Eq. (6.66) is rather cumbersome. However, due to nss � 1 we can
make an expansion in terms of 1/nss � 1 which is discussed in detail in App. E.5. With the
help of Eqs. (E.48), (E.48), (E.51), and (E.52) we finally arrive at

D ∼= 4 N
τinj

∫
dp |φ(p)|2 sin2

[
g2

4Ωnss

]
− (gT )2N

4τinjnss
∫
dp |φ(p)|2 ∆2ω2

r
4Ω2

nss
sinc2ΩnssT + ωL

Q

1
4nss (6.67)

for the linewidth in the Quantum FEL. We could have expected the form of the first and
the third term in Eq. (6.67) from the solution [40] for the linewidth of a one-atom maser.
The second term, however, is solely due to off-resonant contributions in the momentum
distribution |φ(p)|2 of the electron.
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6.3.2 Comparison to classical FEL

To compare the linewidth of a Quantum FEL to the one of a classical FEL we again consider
the small-signal regime. For gT

√
nss � 1 the expression in Eq. (6.66) translates to

D ∼= N

τinj

(
gT
√
nss + 2− gT

√
nss + 1

)2 ∫
dp|φ(p)|2A(p)

−2ωL

Q

[(
nss + 1

2

)
−
√
nss(nss + 1)

]
,

(6.68)

where we have recalled the characteristic function A for the small-signal gain from Eq. (6.11).
The expression in Eq. (6.68) considerably simplifies to

D ∼= 1
τinj

1
4nss

[
(gT )2N

∫
dp|φ(p)|2A(p) + ω

Q

]
. (6.69)

by an expansion in powers of 1/nss � 1. A similar result for the linewidth of a Quantum FEL
was derived in Ref. [26] in terms of perturbation theory for short times. We note that a high
photon number in the resonator leads to a small linewidth and thus suppresses fluctuations
of the field.
To estimate the magnitude of D we consider resonance, p = q/2, and arrive at

D ∼= N

6ετinj
(gT )4 , (6.70)

where we have used Eq. (6.43) as well as Eq. (6.13), and have neglected a contribution with
ε/2� 1.
Again, we first make the naive comparison of D, Eq. (6.70), to its classical counterpart

Dcl = 2
π2

N

τinj

(gT )2

2nsscl
(6.71)

according to Eq. (4.79) and obtain

D

Dcl
= π5

24
1

(ωrT )2 � 1 , (6.72)

due to ωrT � 1 in the quantum regime.
The more reasonable way of comparing the intrinsic linewidth of the quantum and classical
regime emerges when we rewrite the expressions in Eqs. (6.70) and (6.71) with the help of
the maximum gain in the corresponding regime. By this procedure we find

D = 1
τinj

(Gmax)2

6εN
(6.73)

and

Dcl = 1
τinj

π

64

(
Gcl

max

)2

εN
. (6.74)
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Figure 6.10: Characteristic function A, Eq. (6.11), for linear gain in the small-signal regime
and the rescaled initial momentum distribution |φ|2/N , Eq. (6.75), plotted
against the momentum p of the electron. While for both cases we have chosen
ωrT = 10 on the left-hand side the width is ∆p = 0.05 q and on the right-hand
side it is ∆p = 0.2 q. In the latter case ∆p exceeds the width of A and we expect
a decreased gain.

Despite a different numerical pre-factor the order of magnitude of D and of Dcl is the same,
at least under the condition that Gmax and Gcl

max are comparable.
In contrast to a Quantum SASE FEL [25] we do not find the beneficial effect of a narrower
linewidth when compared to the classical FEL. In an FEL oscillator the cavity stores and
stabilizes the field, leading to small field fluctuations – in the quantum as well as in the
classical regime.

6.4 Velocity selectivity

In Chap. 5 we have required that the momentum spread of the electrons ∆p has to be smaller
than the recoil q, that is ∆p < q, since otherwise absorption cancels with emission. This
condition corresponds to population inversion in an atomic laser. However, we did not yet
consider the connection between ∆p and the width of a resonance which is described by the
corresponding characteristic function.
In the following we show how an increasing momentum spread reduces the gain in the Quanum
FEL and we derive conditions for the momentum spread which are even more limiting than
∆p < q. Moreover, we study the effect of ∆p on the steady-state photon statistics. We note
that a first approach on this topic is given in Ref. [27], however, without explicitly studying
the influence of ∆p on the radiation properties of the Quantum FEL.
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6.4.1 Gain

In the following discussion we again distinguish between the small-signal and the strong-signal
limit.

Small signal

The gain of a Quantum FEL is described by the characteristic function A and by the initial
momentum distribution |φ(p)|2. It is the product of both quantities integrated over p, which
gives us the total value for the gain, according to Eq. (6.10).
If the momentum distribution of the electron is described by the Gaussian

|φ(p)|2 = 1√
2π∆p

e−
(p−q/2)2

2∆p2 (6.75)

centered around the resonant momentum p = q/2, its width is characterized by the standard
deviation ∆p. However, when this width is larger than the one of the characteristic function
A, as on the right-hand side of Fig. 6.10, the wings of |φ(p)|2 do not contribute to the integral
in Eq. (6.10). Hence, the gain is reduced compared to its maximal value, Eq. (6.12). In order
to have a gain large enough to be above threshold, we require the opposite case, where ∆p is
smaller than the width of A which is shown on the left-hand side of Fig. 6.10.
To quantify this intuitive argument we have to estimate the typical width of the characteristic
function for the gain. Therefore, we require that the argument of A, Eq. (6.11),

∆(ωrT )
2 = ωrT

(
p

q
− 1

2

)
(6.76)

maximally is of the order of unity, that is ∆(ωrT )/2 ∼ O(1).
Hence, we deduce from Eq. (6.76) the condition

∆p < 1
ωrT

q (6.77)

for the initial momentum spread ∆p of the electron. Satisfying Eq. (6.77) ensures that the
gain of the Quantum FEL is close to its maximum and eventually above threshold.
Indeed, we obtain in Fig. (6.11), where g1, Eq. (6.10), is drawn as a function of ∆p/q, that
for small widths fulfilling the condition in Eq. (6.77) the gain still possesses a relatively large
value. Increasing ∆p, however, eventually leads to very small values of g1. We emphasize
that, due to ωrT � 1, Eq. (6.77) is an even stronger condition on the quality of the electron
beam than ∆p < q, Eq. (5.30).

Strong signal

Having discussed the small-signal limit we now turn to the case of a strong signal, that is
gT
√
n+ 1 = π/2 which is characterized by S2

π/2, Eq. (6.17). Similar to the small-signal case
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Figure 6.11: Linear gain g1, Eq. (6.10), of a Quantum FEL normalized to the maximum
gain Gmax, Eq. (6.12), as a function of the width ∆p of the initial momentum
distribution |φ(p)|2, Eq. (6.75), for ωrT = 10. As expected from Eq. (6.77) the
gain is still relatively high for ∆p/q < 0.1 (indicated by the dashed horizontal
line) but decreases for higher values of ∆p.

we consider the argument

gT
√
n+ 1

√√√√1 +
(

∆(ωrT )/2
gT
√
n+ 1

)2

∼ O(1) (6.78)

of the characteristic function S2
π/2 for which we again demand that it is maximally of the

order of unity. Moreover, we cast the term in parentheses into the form

∆(ωrT )
2gT
√
n+ 1

= 1
α

(
p

q
− 1

2

)
, (6.79)

where we have used the definitions of ∆ and α, Eqs. (5.19) and (5.18), respectively.
The comparison with the width ∆p of the momentum distribution for the electrons yields
the constraint

∆p < α

π/2 q (6.80)

to efficiently operate a Quantum FEL in the strong-signal regime gT
√
n+ 1 = π/2. Again,

we obtain a stronger requirement than ∆p < q, Eq. (5.30), since we consider the quantum
regime, where α� 1.
In Fig. 6.12, where the strong-signal gain Gstr, Eq. (6.16), is drawn versus the momentum
spread ∆p we obtain a similar behavior as for the small-signal regime, Fig. 6.11. For widths
satisfying Eq. (6.80) the gain is still relatively large while it decreases for increasing ∆p
Hence, we require a very small momentum spread to operate a Quantum FEL oscillator in
an efficient manner. Broadening this spread leads to a decreased value for the gain and thus
it becomes more difficult for the gain to overcome threshold. This problem is less important



6.4 Velocity selectivity 131

0 0.1 0.3 0.50

0.2

0.4

0.6

0.8

1

α = 0.1

∆p/q

G
st

r/
G

m
ax

Figure 6.12: The strong-signal gain gain Gstr, Eq. (6.16) normalized to the maximum gain
Gmax, Eq. (6.18), as a function of the width ∆p of the initial momentum
distribution |φ(p)|2, Eq. (6.75), for α = 0.1. The dashed vertical line indicates
the upper bound of the inequality, Eq. (6.80), characterizing the width ∆p up
to which the gain is till close to its maximal value.

in the classical regime since the characteristic functions are broad functions in contrast to
the sharp resonances in the quantum regime.

6.4.2 Photon statistics
The steady-state photon statistics of the Quantum FEL in the Gaussian approximation,
Eq. (6.35), is characterized by two quantities: the mean value nss and the variance ∆n2. In
the following we investigate the influence of a nonzero momentum spread ∆p on these two
quantities.
For the steady-state photon number we only consider the small-signal case as an example
with nss given by Eq. (6.44). In the following discussion we assume that the deviation ε from
threshold is fixed since else one would eventually be below threshold with ε < 0. Hence, we
just consider the ratio of g1 and g2, both given in Eq. (6.10).
We have drawn this ratio in Fig. 6.13 as a function of the momentum spread ∆p where we
have assume that the momentum distribution |φ(p)|2 is a Gaussian and given by Eq. (6.75).
We obtain that the effect of a growing ∆p is relatively small and the value of nss varies rather
slowly.
However, to be above threshold we still have to consider cavity losses. For a fixed value of ε
we deduce from its definition, Eq. (6.45),

ωLτinj
Q

= (1− ε)g1 , (6.81)

that is the required magnitude of ωLτinj/Q is proportional to the gain g1. The gain, however,
decreases for increasing values of ∆p according to Fig. 6.11 and so does ωLτinj/Q. Despite
the small direct influence of the momentum spread on the steady-state intensity, shown in
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Figure 6.13: The ratio of linear gain g1 and self saturation g2, given by Eq. (6.10) in the
small-signal regime as a function of the width ∆p of the momentum distribution
|φ(p)|2, Eq. (6.75).

Fig. 6.13, the experimental situation is thus more involved for an increasing momentum
spread, since the required quality of the cavity also increases.
Regarding the influence of the momentum spread on the variance of the photon statistics
we just discuss the example of a strong signal, that is gT

√
nss = π/2. With the help of

Eqs. (6.39) and (6.40) we obtain the expression

σ2 =
∫
dp |φ(p)|2 S2

π/2

∫
dp |φ(p)|2

1+[∆(ωrT )/π]2 S2
π/2 −

∫
dp |φ(p)|2

1+[∆(ωrT )/π]2Sπ/2 cos
[
π
2

√
1 +

[
∆(ωrT )

π

]2
]

(6.82)

for the normalized variance σ2, where we have recalled the definition Eq. (6.17), for the
characteristic function S2

π/2 of the strong-signal gain. According to Fig. 6.14, where σ2,
Eq. (6.82), is plotted versus ∆p, the influence of the momentum spread on σ2 is very small.
In conclusion, we have found that a broad momentum distribution of the electron reduces
the gain of the FEL. In this context, we have formulated conditions, Eqs. (6.77) and (6.80),
for ∆p which are even stronger than the fundamental requirement ∆p < q. Thus, for a
broader distribution it is more difficult to reach steady state. In principle, however, this can
be achieved by increasing the quality Q of the cavity leading to a statistical behavior of the
radiation field which differs just slightly from the one due to a small momentum spread of
the electrons.

6.5 Summary

In this chapter we have studied radiation properties of a Quantum FEL oscillator and have
compared them to the corresponding properties for a classical FEL. With the help of the
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Figure 6.14: Normalized variance σ2, Eq. (6.82), for the strong-signal case, gT
√
nss = π/2 and

for α = 0.1, as function of the width ∆p of the initial momentum distribution
|φ(p)|2 of the electron, Eq. (6.75). The effect of increasing values for ∆p on σ2

is relatively small.

photon number representation we have derived explicit expressions for gain, steady-state
photon statistics and intrinsic linewidth.
The experimental requirements to obtain a value for the gain which is high enough to surpass
threshold are more strict than in the classical regime. In particular, we need a high electron
energy to be in the quantum regime as well as a very long wiggler for a reasonable high gain.
However, when we overcome these obstacles we are rewarded with the outstanding statistical
properties of the radiation which we have identified by the possibility of a Poissonian or sub-
Poissonian photon statistics. In Fig. 6.7 we have illustrated that the photon distribution of a
Quantum FEL in the small-signal limit is always smaller than the corresponding distribution
in the classical regime and thus closer to a coherent state. In contrast to the results [25] for a
Quantum SASE FEL, a Quantum FEL oscillator does not possess a narrowed linewidth in
comparison to its classical counterpart since in both regimes a high photon number reduces
fluctuations of the phase.
At the end of this chapter we have investigated the effect of a nonzero momentum spread of
the electron beam on the properties of an FEL in the quantum regime. We have obtained
that the initial momentum spread has to be even lower than the limit ∆p < q in order to
efficiently operate a Quantum FEL.
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7 The High-Gain Quantum FEL

A large part of the existing literature on the Quantum FEL, for example Refs. [2, 3, 25, 88, 109],
does not concern the low-gain but instead the high-gain regime. A high recoil, required to
reach the quantum regime, corresponds to a short laser wavelength for which the experimental
realization of a resonator might be very involved. Hence, it is quite reasonable to consider
a Quantum FEL in the SASE mode, where a high gain in a single passage of electrons is
necessary.
To apply our ideas and methods also to the high-gain regime we first have to develop a
suitable many-electron model in analogy to the classical case discussed in Chap. 2. We do this
by generalizing the concept of projection operators for the electron momentum introduced in
Chap. 5 to collective projection operators and by employing the Heisenberg picture.
Similar to the single-electron case, Chap. 5, the deep quantum regime of the many-electron
description corresponds to a two-level behavior of the momentum states of the electrons.
However, the system now is analogous to the mutual interaction of many two-level systems
with the radiation field, that is to the Dicke model [114] instead of to the Jaynes–Cummings
model [32] in Chap. 5. As a result we obtain exponential gain for short times while for longer
times the field saturates when each electron has roughly emitted one photon.
At the end of this chapter we study higher-order corrections to the deep quantum regime in
the framework of the method of averaging [37]. By this procedure, we establish the connection
to the theory in Refs. [2, 3, 25] and derive analytic expressions for the numerical results of
these references. Some topics in this chapter were already presented in the proceedings of
the FEL conference 2014 in Basel [31].

7.1 Many-electron model
In the classical regime of the FEL, studied in Chap. 2, the transition from a low to a high
gain occurs when the collective effects due to the mutual interaction of the electrons with the
laser field are not negligible any longer. Hence, we expect this behavior for the Quantum
FEL, too.
In the collective description the equations of motion are not decoupled and we have to deal
with the many-particle Hamiltonian

Ĥ =
N∑

j=1

p̂2
j

2m + ~g


âL

N∑

j=1
ei2kẑj +â†L

N∑

j=1
e−i2kẑj


 (7.1)

describing the interaction of N electrons with a single laser mode. We note that this Hamil-
tonian describes distinguishable particles despite the fermionic nature of indistinguishable
electrons. According to Ref. [3] this approach is justified for reasonable parameters of realistic
electron beams. In short, the argument in Ref. [3] is based on the claim that the number N
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Figure 7.1: Creation of an entangled state for N = 2 electrons in Eq. (7.2). On the left-hand
side the first electron absorbs a photon and changes its momentum from p1 to
p1 + q, while the second electron does not interact with the field and maintains its
initial momentum p2. On the right-hand side the other possible path is sketched
with the final momenta p1 and p2 + q. Due to the superposition principle in
quantum mechanics we have to add up these two paths to arrive at the total state
of the evolved system.

of electrons in a bunch has to be smaller than the phase space volume of the bunch in units
of ~.
The difference between the single-electron and the many-particle model becomes most obvious
when we consider the action of the Hamiltonian, Eq. (7.1), on a quantum state. As discussed
in Chap. 5, the system in the single-electron case can always be described by the single
quantum number µ which simultaneously indicates the number of scattered photons and the
number of discrete momentum steps of the electron. Hence, we have expanded the total state
vector in terms of the scattering basis |µ〉 ≡ |n+ µ, p− µq〉.
However, we cannot carry out this procedure when we deal with many electrons. For example,
we obtain in the case N = 2 terms of the form

âL
(
ei2kẑ1 + ei2kẑ2

)
|n, p1, p2〉 =

√
n |n− 1〉 (|p1 + q, p2〉+ |p1, p2 + q〉) (7.2)

which is an entangled state. We can understand the behavior described by Eq. (7.2) with the
help of Fig. 7.1. When a single photon is absorbed from the laser field the system can follow
two different paths: Either the first electron, with initial momentum p1, absorbs the photon
and increases its momentum by the recoil q while the second electron does not interact with
the field and maintains its initial momentum p2, or the second electron is scattered while the
first one does not feel any effect of the interaction. Since these paths correspond to quantum
mechanical states we have to superimpose them and arrive at the expression in Eq. (7.2).
For an arbitrary number N of electrons we find the expression

âL
N∑

j=1
ei2kẑj |n, p1, p2, ..., pN〉 =

√
n |n− 1〉

N∑

j=1
|p1, ..., pj + q, ..., pN〉 , (7.3)

where the electron part is similar to a Dicke state [114] from the field of superradiance and
amplified spontaneous emission. However, in contrast to Dicke states where the atoms can
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only occupy a ground and an excited state, multiphoton processes in the FEL cause the
electrons to occupy in general more than just two momentum levels. This feature eventually
leads to expressions which are even more involved than the one in Eq. (7.3).

To avoid tedious calculations with these entangled states we do in the following not consider
the dynamics of states in the Schrödinger picture but instead the evolution of time-dependent
operators in the Heisenberg picture. Since we are not interested in the detailed behavior of
every single electron but in their total effect on the radiation field we treat the electrons in a
collective way. To this end, we introduce the collective projection operators

Υ̂µ,ν ≡
N∑

j=1
σ̂(j)
µ,ν =

N∑

j=1
|p− µq〉(j) 〈p− νq| (7.4)

for the electrons where we have recalled the definition, Eq. (5.5), of the projection operator
σ̂µ,ν for a single electron with µ and ν denoting integer numbers. The definition, Eq. (7.4), is
reasonable when we assume that every electron initially possesses the same momentum, that
is pj = pk ≡ p for any j and k. This statement implies that the initial state of the electrons
is given by a product |p, p, ..., p〉 of momentum eigenstates each with the same eigenvalue p.

The algebra of the collective projection operator is described by the commutation relation
[
Υ̂µ,ν , Υ̂ρ,η

]
= δν,ρΥ̂µ,η − δη,µΥ̂ρ,ν (7.5)

which is analogous to the one, Eq. (5.6), valid for a single electron. This analogy emerges
since operators for different electrons commute, that is

[
σ̂(j)
µ,ν , σ̂

(k)
ρ,λ

]
= 0 for j 6= k.

However, there exists an important difference to the single-electron case. The product of two
projection operators

Υ̂µ,νΥ̂ρ,η 6= δν,ρΥ̂µ,η (7.6)
does not equal to a single projection operator in contrast to Eq. (5.7). For one electron
the action of the projection operator σ̂µ,ν on a state shifts the momentum of the electron
and applying an additional projection operator results in an additional shift. In contrast, a
collective operator Υ̂µ,ν creates an entangled state in analogy to Eq. (7.3), where the shift
for a specific electron occurs with a certain probability and we cannot speak of a definite
momentum shift of the electron. The second operator now has to act on this entangled state
and again the momentum of each electron is shifted only with a certain probability. For
example, we obtain for N = 2 the expression

Υ̂1,0Υ̂1,0 |p, p〉 = Υ̂1,0 (|p− q, p〉+ |p, p− q〉) = 2 |p− q, p− q〉 (7.7)

while the corresponding product σ̂1,0σ̂1,0 |p〉 = 0 for N = 1 is zero, due to Eq. (5.7).
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We proceed by rewriting the Hamiltonian Eq. (7.1) in terms of the collective operators Υ̂µ,ν

and arrive at the expressions




N∑
j=1

p̂2
j = ∑

µ
(p− µq)2 Υ̂µ,µ

N∑
j=1

ei2kẑj = ∑
µ

Υ̂µ,µ+1

N∑
j=1

e−i2kẑ = ∑
µ

Υ̂µ+1,µ

(7.8)

which are analogous to the ones, Eq. (5.9), in the single-electron description. We note that we
do not sum over the different electrons any longer since they are described by the collective
operators. Instead, we now sum over different momenta which are not operators but numbers
and discrete multiples of the recoil q.

The Hamiltonian Ĥ ≡ Ĥ0 + Ĥ1 resulting from Eq. (7.8) can be split into two parts, that is a
a contribution

Ĥ0 ≡
∑

µ

(
∆ + 1

2 − µ
)2

Υ̂µ,µ (7.9)

for the free time evolution and a term

Ĥ1 ≡ ε

(
âL
∑

µ

Υ̂µ,µ+1 + â†L
∑

µ

Υ̂µ+1,µ

)
(7.10)

describing the interaction. For that purpose, we have used the dimensionless variables
introduced in Eq. (5.14).

The equation of motion for a Heisenberg operator Ô then reads

i
d
dτ Ô(τ) =

[
Ô(τ), Ĥ

]
=
[
Ô(τ), Ĥ0

]
+
[
Ô(τ), Ĥ1

]
. (7.11)

We note that the expectation value of the observable Ô has to be calculated via the relation

〈Ô〉 = 〈Ψ(0)| Ô(τ) |Ψ(0)〉 (7.12)

with respect to the initial state vector |Ψ(0)〉.

In analogy to the single-particle model in Chap. 5, we want to remove the contribution, Ĥ0,
of free time evolution and thus we perform the transformation

Ô′(τ) ≡ e−iĤ0τ Ô eiĤ0τ |Ψ′(τ)〉 ≡ e−iĤ0τ |Ψ(0)〉 (7.13)

leading due to Eq. (7.12) to the relation

〈Ô〉 = 〈Ψ′(τ)| Ô′(τ) |Ψ′(τ)〉 (7.14)

for the expectation value of Ô where the state vector is now time-dependent as well.
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According to Eq. (7.13) we arrive at the transformed equation of motion

i
d
dτ Ô

′(τ) =
[
Ô′(τ), Ĥ ′(τ)

]
(7.15)

for Ô′ with [82]
Ĥ ′(τ) ≡ e−iĤ0τ Ĥ1 eiĤ0τ (7.16)

as the Hamiltonian in the rotating frame. With the help of the Baker–Campbell–Hausdorff
formula, Eq. (B.13), and the commutation relations, Eq. (7.5), we obtain the explicit expres-
sion

Ĥ ′(τ) = ε

(
âL e−i∆τ

∑

µ

ei2µτ Υ̂µ,µ+1 + â†L ei∆τ
∑

µ

e−i2µτ Υ̂µ+1,µ

)
(7.17)

for Ĥ ′ which allows us to identify the different time scales of the dynamics in analogy to ĤI,
Eq. (5.12), in Chap. 5.
Before we proceed, we note that it is convenient to perform a second transformation

Ō(τ) ≡ e−i∆τn̂ Ô′(τ) ei∆τn̂ H̄(τ) ≡ e−i∆τn̂ Ĥ ′(τ) ei∆τn̂ |Ψ̄(τ)〉 ≡ e−i∆τn̂ |Ψ′(τ)〉
(7.18)

in order to eliminate the explicit dependence on the ‘slow’ time scale given by the relative
deviation ∆ ≡ (p − q/2)/(q/2) from resonance p = q/2. Hence, we finally obtain the
Hamiltonian

H̄(τ) = ε

(
âL
∑

µ

ei2µτ Υ̂µ,µ+1 + â†L
∑

µ

e−i2µτ Υ̂µ+1,µ

)
−∆n̂ (7.19)

governing the dynamics of the FEL.
Our main focus lies on the quantum regime of the FEL, where the oscillations with multiples
of the recoil frequency ωr, that is with µτ in Eq. (7.19), are rapid due to a large recoil q, and
hence can be neglected. In this limit, we expect that the method of averaging is again a
suitable technique to calculate the properties of a Quantum FEL. To apply this method we
rewrite the Hamiltonian as

H̄(τ) ≡ ε
∑

µ

Ĥµ(τ) ei2µτ (7.20)

with 


Ĥ0(τ) ≡ âLΥ̂0,1 + â†LΥ̂1,0 − ∆

ε
n̂

Ĥµ(τ) ≡ âLΥ̂µ,µ+1 + â†LΥ̂−µ+1,−µ
(7.21)

in analogy to Eqs. (5.16) and (5.17) in the low-gain regime. We emphasize that the inclusion
of the term proportional to ∆ in Ĥ0 in Eq. (7.21) which emerges due to the transformation,
Eq. (7.18), is only reasonable in this context when ∆ is of the order of ε and n̂ initially is
small.

7.2 Deep quantum regime
In the following we investigate the high-gain FEL in the deep quantum regime. Just like in
the low-gain limit, we obtain a two-level behavior for the momentum states of the electrons.
However, the suitable analogy is now the Dicke model [114], where many two-level atoms
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interact with a quantized mode of the radiation field rather than the Jaynes–Cummings
model [32] which is restricted to a single atom. For short times we obtain exponential gain,
similar to the classical case, justifying the term high-gain Quantum FEL. Moreover, we study
the dynamics for longer times and obtain conditions for a maximized signal depending on
the wiggler length and on the momenta of the electrons.

7.2.1 Dicke Hamiltonian

In the preceding section we have cast the FEL Hamiltonian into a suitable form, Eq. (7.20),
for the method of averaging. To apply this method we require ε

∣∣∣Ĥµ

∣∣∣� 1 [37]. This translates
to the condition

αN ≡ ε
√
N ≡ g

√
N

ωr
� 1 (7.22)

for the quantum parameter αN , where we have made the estimation
∣∣∣Ĥµ

∣∣∣ ∼
√
N . Moreover,

we demand ∆� 1 in analogy to the single-electron case, Eq. (5.19).

In lowest order of the method of averaging the effective Hamiltonian, Ĥeff ≡ εĤ
(1)
eff , is given

by
Ĥeff ∼= εĤ0(τ) = ε

(
âLΥ̂0,1 + â†LΥ̂1,0

)
−∆n̂ (7.23)

which is the only slowly varying component of the Hamiltonian, Eq. (7.19). Since we discard
all rapidly oscillating contributions we have performed a rotating-wave-like approximation [40].

From Eq. (7.23), we recognize that, just like in the single-particle case, Chap. 5, the deep
quantum regime is the limit where the electron dynamics is characterized by two momentum
levels, which are given by p and p− q. However, despite the similar form of Eq. (5.20) and
Eq. (7.23) both Hamiltonians describe different situations and thus lead to different dynamics.
Due to the corresponding algebras we expect a richer behavior in the collective case compared
to the single-particle model. While we have identified Eq. (5.20) with the Jaynes–Cummings
Hamiltonian, the expression in Eq. (7.23) is analogous to the Dicke Hamiltonian with detuning,
describing the simultaneous interaction of N two-level atoms with a quantized mode of the
radiation field [114].

As discussed in the preceding section we work with Heisenberg operators to avoid lengthy
calculations with Schrödinger state vectors. The time evolution of an operator Ô emerges by
solving the Heisenberg equation of motion

i
d
dτ Ô(τ) =

[
Ô(τ), Ĥeff

]
. (7.24)

Now, we obtain why it is favorable in the Heisenberg picture to use canonical averaging [37]
instead of the ordinary method [36]. This way we have found an explicit expression for
the effective Hamiltonian, Eq. (7.23), in operator form in contrast to the usual averaging
technique.
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Inserting Eq. (7.23) into Eq. (7.24) and employing the commutation relation, Eq. (7.5), yields
the system of differential equations

i
d
dτ Υ̂1,0 = −εâLΥ̂z

i
d
dτ Υ̂z = 2ε

(
âLΥ̂0,1 − â†LΥ̂1,0

)

i
d
dτ âL = −∆âL + εΥ̂1,0 ,

(7.25)

where we have defined
Υ̂z ≡ Υ̂0,0 − Υ̂1,1 (7.26)

in analogy to σ̂z in Chap. 5. In contrast to the single-electron case, where we have obtained an
exact solution of the Schrödinger equation in the deep quantum regime, Eq. (7.25) represents
a set of nonlinear coupled differential equations and cannot be solved in an analytic way [128].
That is why we have to search for suitable approximations or stick to a numeric solution.

We note that the analogy of the Quantum FEL and the Dicke model was also pointed out in
Ref. [129] employing a different approach. The author uses a formalism in second quantization
developed in Ref. [89] and obtains for the quantum regime a Hamiltonian which is trilinear
in bosonic ladder operators, analogously to a parametric amplifier [130, 131]. With the help
of the Schwinger representation of angular momentum [132] we can write

â†LΥ̂1,0 = â†Lb̂
†
1b̂0 , (7.27)

where b̂†1 as well as b̂0 fulfill bosonic commutation relations and we recognize that our
Hamiltonian, Eq. (7.23), for the Quantum FEL is analogus to the one in Ref. [129].

Although a sketch of a proof employing ordinary perturbation theory is presented in Ref. [129]
to connect the Quantum FEL to the Dicke Hamiltonian, a rigorous proof is missing. We close
this gap in Sec. 7.3 by calculating higher-order corrections of the method of averaging in
the exponential gain regime and obtain that these corrections scale with powers of αN � 1.
Moreover, we study the effect of a nonzero deviation ∆ from resonance p = q/2 in Eq. (7.23),
to derive a gain function and thus we are able to establish the connection to Ref. [25].

7.2.2 Exponential gain for short times

For short times the set of Heisenberg equations of motion, Eq. (7.25), can be solved in the
so-called parametric approximation [128]. For this purpose, we first rescale the operators in
Eq. (7.25) as 




Υ̃1,0 ≡ 1√
N

Υ̂1,0

Υ̃z ≡ 1
N

Υ̂z

ãL ≡ âL

(7.28)
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and arrive at
i
d
dτ Υ̃1,0 = −αN ãLΥ̃z

i
d
dτ Υ̃z = αN

N/2
(
ãLΥ̃0,1 − ã†LΥ̃1,0

)

i
d
dτ ãL = −∆ãL + αNΥ̃1,0 ,

(7.29)

where the quantum parameter αN appears in a rather natural way.

To apply the parametric approximation we first consider the initial state

|Ψ(0)〉 = |n〉 ⊗ |p, p, ..., p〉 → |Ψ̄(τ)〉 = e−i∆nτ e−iN(∆+1/2)2τ |n〉 ⊗ |p, p, ..., p〉 (7.30)

of the total system, where each electron possesses the same momentum p. Moreover, we have
assumed that the laser field initially is described by a photon number state with a photon
number n which is much smaller than the number N of electrons, that is n � N . When
we consider a SASE FEL the radiation starts from vacuum and we have to set n = 0. We
note that, due to the transformations Eqs. (7.13) and (7.18), additional phase factors have
emerged which, however, cancel when we calculate expectation values.

The operator Υ̂z is similar to an inversion operator for electrons in the excited state p and
the ground state p− q and its expectation value is bounded by −N < 〈Υ̂z(0)〉 < N . For the
initial state, Eq. (7.30), where every electron occupies the excited state p this expectation
value reaches its maximum and we find 〈Υ̂z(0)〉 = N or alternatively 〈Υ̃z(0)〉 = 1.

For short times, where only comparably few electrons switch to the ground state, we assume
that Υ̃z is approximately constant and thus we replace the operator Υ̃z in Eq. (7.29) by its
mean value, that is Υ̃z

∼= 〈Υ̃z(0)〉 = 1. Hence, we obtain the linearized equations

i
d
dτ

(
Υ̃1,0
ãL

)
=
(

0 −αN
αN −∆

)(
Υ̃1,0
ãL

)
(7.31)

which are analogous to the equations of motion of the quantum mechanical parametric
amplifier [130].

We solve Eq. (7.31) with the ansatz ∼ e−iλτ yielding

λ± = −∆
2 ± iαN

√
1− κ2/4 ≡ −∆

2 ± iαN ϑ(∆) . (7.32)

with ∆ ≡ καN being small, that is κ ∼ O(1). We note the occurrence of a nonzero imaginary
part of the frequency in Eq. (7.32). This contribution arises due to different signs of the
off-diagonal elements in Eq. (7.31) which stands in contrast to the dynamical equations,
Eq. (5.24), of the single-electron electron case, where the off-diagonal elements are both
positive. Instead of Rabi oscillations we observe exponential gain per pass in the many-electron
case, due to the nonzero imaginary part in Eq. (7.32). Hence, it is really possible to realize a
high-gain FEL in the quantum regime.
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The solution, Eq. (7.32), yields the time evolution of the laser field operator

ãL(τ) e−i∆τ/2 = 1
iϑ(∆) sinh [αNτϑ(∆)] Υ̃1,0(0)

+
(

cosh [αNτϑ(∆)]− ∆/(2αN)
iϑ(∆) sinh [αNτϑ(∆)]

)
ãL(0)

(7.33)

which depends on the values of ãL and Υ̃1,0 at time τ = 0.

Mean photon number

To calculate the gain of the Quantum FEL we consider the expectation value of the photon
number operator n̂ = â†LâL. With the help of Eq. (7.33) we arrive at

〈n̂(τ)〉 = 1
ϑ(∆)2 sinh2

[
gτ
√
Nϑ(∆)

]

+
(

cosh2 [αNτϑ(∆)] + ∆2/(2αN)2

ϑ(∆)2 sinh2 [αNτϑ(∆)]
)
〈n̂(0)〉 ,

(7.34)

where we have used that the expectation values 〈ã†L(0)Υ̃1,0(0)〉 = 〈Υ̃0,1(0)ãL(0)〉 = 0 vanish
due to our choice, Eq. (7.30), for the initial state of electrons and laser field.
In the derivation of Eq. (7.34) we have to calculate also the expectation 〈Υ̃0,1(0)Υ̃1,0(0)〉
which requires a little more effort. For this purpose, we write

〈Υ̃0,1(0)Υ̃1,0(0)〉 = 1
N

∑

j

〈p, p, ..., p| σ̂(j)
0,1σ̂

(j)
1,0︸ ︷︷ ︸

=σ̂(j)
0,0

|p, p, ..., p〉+ 1
N

∑

j 6=k
〈p, p, ..., p| σ̂(j)

0,1σ̂
(k)
1,0 |p, p, ..., p〉 ,

(7.35)
where we have recalled the definition, Eq. (7.4), of the collective procjection operators and
the relation Eq. (5.7) for products of single-electron operators. By applying the operators on
the state |p, p, ..., p〉

〈Υ̃0,1(0)Υ̃1,0(0)〉 = 1 + 1
N

∑

j 6=k
〈p, ..., (p− q)j, ..., p|p, ..., (p− q)k, ..., p〉︸ ︷︷ ︸

=0

= 1 (7.36)

we realize that only the first term in Eq. (7.36) gives a contribution to the expectation value
while each scalar product in the second term vanishes since the momentum eigenstates are
orthogonal.
The examination of Eq. (7.34) reveals that the time evolution of 〈n̂〉 consists of two contribu-
tions: While the second term depends on the initial photon number 〈n̂(0)〉, the first term
is independent of this quantity. Hence, the photon number changes, even if the field starts
from vacuum, that is 〈n̂(0)〉 = 0, which is the case for a SASE FEL. For this situation we
derive from Eq. (7.34) the expression

〈n̂(T )〉 = 1
1− (∆/(2αN))2 sinh2


gT
√
N

√√√√1−
(

∆
2αN

)2

 , (7.37)
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Figure 7.2: Mean value 〈n〉 of the photon number as function of the dimensionless time
gT
√
N/2 for four different values of the deviation ∆ from resonance ranging

from ∆ = 0 to ∆ = 1.9. The logarithmic scale reveals an exponential growth of
the photon number. Moreover, we obtain that the growth rate is maximized at
resonance, ∆ = 0, while it strongly decreases for increasing values of ∆.

where we have transformed back to the original variables and have introduced the interaction
time T . We note that Eq. (7.37) describes an exponentially growing photon number, which
constitutes, besides the start-up from vacuum, one of the two necessary ingredients for a
SASE FEL [21].

Gain function

In Fig. 7.2 we plot the photon number 〈n̂〉, Eq. (7.37), as a function of time for different values
of ∆. While the growth rate is small for a large deviation from resonance it is maximized for
exact resonance p = q/2.
Since the imaginary part of λ, Eq. (7.32), that is

Imλ = αN

√

1− κ2

4
(7.38)

is responsible for the exponential growth of the photon number we identify the dependency of
Imλ on the initial momentum p via ∆ ≡ καN as the gain function of the high-gain Quantum
FEL in analogy to the classical case, studied in Chap. 2.
We have drawn this function, Eq. (7.38), on the right-hand side of Fig. 7.3 and obtain that
the gain is maximized at resonance p = q/2 as already expected from Fig. 7.2. This behavior
stands in contrast to the corresponding function in the classical case, shown on the left-hand
side of Fig. 7.3, which has its maximum at p = 0. Moreover, the broad curve of the classical
FEL covers multiples of the recoil q while the gain function of the Quantum FEL is very
sharp.
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Figure 7.3: Comparison of the gain functions, that is Imλ over the initial momentum p, for
the classical (left) and the Quantum FEL (right) in the high-gain regime. While
in the classical regime, αN = 10, the numerical solution of Eq. (2.76) yields the
momentum for the maximum at p = 0, the gain of the Quantum FEL, αN = 0.2,
is maximized at p = q/2, according to Eq. (7.38). Moreover, the function in
the classical case is broad and covers multiples of the recoil q, which stands in
contrast to the quantum regime characterized by a sharp resonance.

In Ref. [25] a numerical approach revealed a similar structure of the gain function of a
high-gain Quantum FEL. In contrast, we have found a very simple analytic expression,
Eq. (7.38), for this gain function due to the identification of the effective electron dynamics
with a two-level system. At the end of this chapter we come back to this aspect when we
consider higher-order corrections to the deep quantum regime.

Gain length

The growth of the photon number 〈n̂〉 at resonance ∆ = 0 is proportional to exp
(
2gT
√
N
)
.

Therefore, we can define the gain length in accordance with the classical FEL theory [48] in
Chap. 2 as

Lg ≡
c

2g
√
N
, (7.39)

where we have set L ∼= cT . The naive comparison with the corresponding classical quantity
Lcl
g , Eq. (2.78), yields

Lg
Lcl
g

=
√

3
22/3

1
α

1/3
N

� 1 , (7.40)

that is the gain length of a Quantum FEL is much larger than expected from a classical
theory.
In order to clarify the experimental implications imposed by the expression in Eq. (7.39) for
the gain length of a Quantum FEL we write Lg in the following in terms of the laboratory
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frame. By this procedure we arrive at

Lg = γ2
0√
π

√
λC/re

a0

√
1 + a2

0

1√
λWne

, (7.41)

according to Tab. A.2. For the quantum regime we additionally require [4]

αN = 1
γ3

0

a0(1 + a2
0)3/2√rene

32
√
π

λ
5/2
W

λ
3/2
C
� 1 , (7.42)

as well as ∆p < q, which translates to [28]

∆γ0

γ0
<

4γ0

1 + a2
0

λC
λW

(7.43)

in the laboratory frame.
To achieve a small value for αN we need, according to Eq. (7.42), a high energy γ0 and a small
wiggler wavelength λW which makes it moreover easier to satisfy the condition, Eq. (7.43).
However, Lg scales with γ2

0 , that is, a high energy leads to an increasing gain length and
eventually to an unfeasible wiggler length. This problem does not arise in this form for the
classical case since the classical gain length [48]

Lcl
g = 1√

3
γ0λ

1/3
W

2π2/3(rea2
0ne)1/3 ,

(7.44)

which we have recalled from Tab. A.1, scales only linearly in γ0 and the constraints Eqs. (7.42)
and (7.43) do not have to be satisfied. We note that the present discussion about wiggler
lengths and experimental requirements in the quantum and in the classical regime is very
similar to the one in Chap. 6 for the low-gain FEL.

Variance of photon number

Having investigated the gain of a high-gain Quantum FEL we now briefly study the statistical
behavior of the radiation. In analogy to the low-gain regime, Chap. 6, we introduce the
dimensionless variance

σ2(T ) ≡ 〈n̂
2(T )〉 − 〈n̂(T )〉2
〈n̂(T )〉 (7.45)

as the ratio of the variance and the mean value of the photon number n̂.
When we start from vacuum, that is 〈n̂(0)〉 = 0, we obtain the expression

σ2(T ) = cosh2
[
gT
√
N
√

1− κ2/4
]

+ κ/2
1− κ2/4 sinh2

[
gT
√
N
√

1− κ2/4
]
, (7.46)

where we have inserted the solution for âL, Eq. (7.33), into the definition, Eq. (7.45), and
have caluclated the expectation values with respect to the initial state, Eq. (7.30). We note
that the expression in Eq. (7.46) emerges from a contribution with âL(0)â†L(0) = n̂(0) + 1
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Figure 7.4: Normalized variance σ2, Eq. (7.46), of the photon number for a high-gain Quantum
FEL in the exponential gain regime and for start-up from vacuum, 〈n̂(0)〉 = 0, as
a function of the wiggler length L. We observe an exponential growth of σ2, that
is, the super-Poissonian character of the radiation increases along the wiggler.
Moreover, we investigate the influence for nonzero values of the deviation ∆ from
resonance, by comparing the resonant case ∆ = 0 to two off-resonant situations
with ∆ = 1.25αN and ∆ = 1.75αN , respectively. Indeed, the growth of σ2 slows
down for higher values of ∆, but so does the growth of the photon number 〈n̂〉
according to Fig. 7.2.

which results in a nonzero expectation value, even for 〈n̂(0)〉 = 0. Moreover, we deal with
a term proportional to 〈Υ̂0,1Υ̂1,0Υ̂0,1Υ̂1,0〉0 = N2, which can be calculated analogously to
〈Υ̂0,1Υ̂1,0〉 in Eq. (7.35). This term proportional to N2 cancels with the contribution from
〈n̂(T )〉2 in the definition, Eq. (7.45), of σ2.

In Fig. 7.4 we have drawn the normalized variance σ2 as a function of the length L of the
wiggler. We obtain that σ2 exponentially grows with L and is of the order of 〈n̂〉. Hence, the
radiation from the high-gain Quantum FEL due to a single passage of the electrons shows a
chaotic behavior [130].

For increasing deviation ∆ from resonance the growth of σ2 becomes more slowly. However,
so does the growth of the mean photon number 〈n̂〉 according to Fig. 7.2. Indeed, we obtain
with the help of Eqs. (7.34) and (7.46) the asymptotic behavior

σ2(T )
〈n̂(T )〉 = coth2

[
gT
√
N
√

1− κ2/4
]

+ κ2

4
1

sinh2
[
gT
√
N
√

1− κ2/4
] → 1 (7.47)

for large T . Hence, the dimensionless variance σ2 is always of the order of the mean value
〈n̂〉, no matter how large the deviation from resonance is, and thus the light field can always
be considered as chaotic.
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Validity of parametric approximation

Before we turn to the time evolution of the Quantum FEL for longer times we emphasize
that the linearization of the Heisenberg equations, Eq. (7.29), is only valid for short times.
Physically, it is clear that an infinite growth of the photon number violates energy conservation.
In our approximation we have neglected that the electrons do not just emit but also absorb
photons from the field. Hence, we expect a saturation of the growth for longer times and
eventually an oscillatory behavior in rough analogy to the Rabi oscillations in Chap. 5.
We assume that our approximation breaks down when the number n of photons in the field is
of the order of the number N of electrons, which means that a great fraction of the electrons
has emitted a photon. Equivalently, our linearization procedure is valid as long as we can
consider the operator Υ̃z as a constant. To understand the dynamics of Υ̃z it is convenient
to use the Schwinger representation [132]. With the help of Eqs. (7.27) and (7.29) we obtain

d
dτ Υ̃z ∼

αN
N3/2 âLb̂

†
0b̂1 , (7.48)

where b̂†0 and b̂1 describe an effective population of the excited p and the ground state p− q/2,
respectively [128].
For short times only few photons have been emitted and the population of the laser mode
and of the ground state of the electrons is small, that is âL, b̂1 ∼ O(1). On the other hand,
nearly all electrons are in the excited state yielding b̂†0 ∼

√
N . From Eq. (7.48) we obtain

the scaling dΥ̃z/dτ ∼ αN/N , while the change of ãL and Υ̃1,0 scales with αN according to
Eq. (7.29). Hence, the dynamics of Υ̃z occurs with a rate that is suppressed with 1/N when
compared to ãL and Υ̃1,0 which justifies our assumption to treat Υ̃z as a constant.
Time evolution leads to a growth of the photon number, Eq. (7.37), and more electrons
switch to the ground state. At some point in time the number of excitations in the laser
mode and in the ground state becomes comparable with the number of excitations in the
excited state, that is âL, b̂1, b̂

†
0 ∼
√
N . From Eq. (7.48) we deduce dΥ̃z/dτ ∼ αN , which

means that the dynamics of Υ̃z now occurs on the same time scale as the one of ãL and Υ̃1,0,
respectively, and we cannot approximate Υ̃z as constant any longer. This analysis supports
our expectation that the linearization of Eq. (7.29) is valid only as long as the condition
〈n̂(τ)〉 � N is satisfied.

7.2.3 Long-time behavior
In order to study the dynamics of the high-gain Quantum FEL beyond the short-time limit
we apply two approaches in the following: (i) an analytic approach which gives us estimates
for gain and saturation of the FEL and (ii) a numerical one which confirms at least the
order of magnitude and the qualitative behavior derived from the analytic model. In this
context, we study the maximum intensity and the wiggler length corresponding to the first
local maximum as well as the influence of a deviation from resonance.

Analytic approach

Despite several approaches [128, 133, 134, 135, 136] in the literature the equations of motion
corresponding to the Dicke Hamiltonian cannot be solved in an analytic way, especially for
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our situation of interest, where the radiation field starts from vacuum and all two-level atoms
occupy the excited state. However, there exists an approximate solution which gives us, at
least qualitatively, the correct behavior for the dynamics. The derivation of this solution,
which we present in the following, is based on the ideas developed in Refs. [128] and [135]. In
addition to these approaches, we include off-resonant situations, that is nonzero values for ∆.

Again, we focus on the time evolution of the photon number of the laser field described by
the operator n̂ = â†LâL. When we differentiate n̂ with respect to time τ and take care of the
correct operator ordering we obtain the relation

d
dτ n̂ = iε

(
âLΥ̂0,1 − â†LΥ̂1,0

)
= −1

2
d
dτ Υ̂z , (7.49)

where we have used Eq. (7.25). Hence, we define the operator

B̂ ≡ n̂+ 1
2Υ̂z = const (7.50)

which is a constant of motion. Another constant operator is given by

Â ≡
(
Υ̂0,1Υ̂1,0 + Υ̂1,0Υ̂0,1

)
+ 1

2Υ̂2
z = const (7.51)

which can be verified by differentiating Υ̂0,1Υ̂1,0 +Υ̂1,0Υ̂1,0 with respect to time τ and applying
Eq. (7.25). We note that Â and B̂ commute, that is

[
Â, B̂

]
= 0. Due to the time-independence

of Ĥeff, Eq. (7.23), this Hamiltonian itself constitutes a third constant of motion.

By a further differentiation with respect to time τ and with the help of the constants of
motion Â, B̂ and Ĥeff we can decouple the dynamics of n̂ from the other time-dependent
operators. The resulting equation of motion for n̂ reads

d2n̂

dτ 2 = −2ε2


3n̂2 − 2


2B̂ −

(
∆
2ε

)2

− 1
2


 n̂−

(
1
2Â+ B̂ − B̂2 − ∆

2εĤ
(1)
eff

)
 , (7.52)

where we have used Eq. (7.25) as well as the definitions Eqs. (7.23) , (7.51) and (7.50) of
Ĥeff ≡ εĤ

(1)
eff , Â and B̂, respectively.

Although Eq. (7.52) only depends on n̂ it is nevertheless a nonlinear differential equation for
operators instead of numbers. Hence, we cannot find an analytic solution for Eq. (7.52) since
it is nontrivial to obtain the correct operator ordering. For example, n̂ and dn̂/dτ do not
necessarily commute with each other. However, by replacing the operators by numbers we
might get a rough estimate for the dynamics of the Quantum FEL.

Hence, we set the operators n̂, Â, B̂, and Ĥ(1)
eff in Eq. (7.52) equal to their corresponding

expectation values. Multiplying the resulting c-number equation with 2dn/dτ and integrating
by parts yields the first-order differential equation

(
dn
dτ

)2

= −4ε2n


n2 −


B −

(
∆
2ε

)2

− 1
2


n−

(
A

2 +B −B2 − ∆
2εH

(1)
eff

) 
 , (7.53)
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where we have introduced the abbreviations n ≡ 〈n̂〉, A ≡ 〈Â〉, B ≡ 〈B̂〉 and H(1)
eff ≡ 〈Ĥ(1)

eff 〉.
In addition, we have assumed that the laser field starts at vacuum, that is n(0) = 0, and have
assumed that the change of the photon number n with time τ initially as well is equal to zero,
that is (dn/dτ)τ=0 = 0. The second assumption is justified since the short-time solution,
Eq. (7.37), also shows this feature. We emphasize that this derivation is analogous to the one
presented in Ref. [128] for the Dicke model except that there the authors used the Schwinger
representation leading to different constants A and B and hence to a slightly different form
of Eq. (7.53). Moreover, they did not consider a nonzero deviation ∆ from resonance.

Since A, B, and H(1)
eff are constants of motion their magnitude does not change with respect

to their corresponding initial value. For the initial condition Eq. (7.30) we straightforwardly
calculate the expectation values at time τ = 0 yielding the expressions

A = 〈Â(0)〉 = N + N2

2 , (7.54)

B = 〈B̂(0)〉 = N

2 , (7.55)

and
H

(1)
eff = 〈Ĥeff(0)〉 = 0 , (7.56)

where we have used Eq. (7.36) to compute the value of A in Eq. (7.54). Inserting Eqs. (7.54),
(7.55) and (7.56) into Eq. (7.53) and factorizing finally leads us to

(
dn
dτ

)2

= 4ε2n(n+ − n)(n+ n−) (7.57)

with

n± ≡ ±
N

2

(
1− κ2

4

)
∓ 1

4 + N

2

(
1− κ2

4

)√√√√1 + 1
N

3 + κ2/4
1− κ2/4 + 1

4N2
1

1− κ2/4
(7.58)

as the roots of the right-hand side of Eq. (7.57).

By setting dn/dτ = 0 in Eq. (7.57) we identify the maximum photon number

nmax = n+ ∼= N

(
1− κ2

4

)
, (7.59)

where we have assumed that N � 1. For resonance, ∆ = 0, we obtain nmax = N , that is each
electron has emitted exactly one photon into the field. According to Eq. (7.59) the value of
this maximum decreases when we have a nonzero deviation ∆ from resonance. The other two
solutions of dn/dτ = 0, which are n = 0 and n = −n− ∼= −(1− κ2/4)−1, correspond to the
initial condition and to an unphysical negative photon number, respectively. The differential
equation, Eq. (7.57), can be recast as an elliptic integral

2αNτ =
n/N∫

0

dy√
(n+/N − y)y(y + n−/N)

(7.60)
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Figure 7.5: Number n of photons in the laser field as a function of the length L of the wiggler
in multiples of the gain length Lg, Eq. (7.39), according to the approximation in
Eq. (7.61), for three different values of the deviation ∆ ≡ καN from resonance
and with N = 106 electrons in the bunch. For exact resonance the maximum
photon number nmax equals the electron number N . For off-resonant situations
nmax is smaller than N as predicted by Eq. (7.59). Moreover, the length Lmax,
corresponding to the first maximum, increases with ∆.

which we solve in terms of Jacobian elliptic functions [128, 135, 137]. In App. F we derive
for N � 1 the expression

n(T ) ∼= N

(
1− κ2

4

)
cn2


gT
√
N

√

1− κ2

4 −K, k

 , (7.61)

where cn denotes an elliptic function with modulus

k ≡
(

1 + 1
N

1
(1− κ2/4)2

)−1/2
(7.62)

while

K ≡ K(k) ≡
π/2∫

0

dy√
1− k2 sin2 y

(7.63)

represents a complete elliptic integral of the first kind [137].
The square of the elliptic function cn oscillates between cn2(−K) = 0 and cn2(0) = 1 [137]
and thus we obtain the expected behavior for the photon number n: The field starts from
vacuum n(0) = 0 and undergoes an exponential growth, Eq. (7.37), for short times [135]. For
longer times this growth saturates leading to a local maximum with nmax = N(1− κ2/4),
which is already predicted in Eq. (7.59). This behavior is illustrated in Fig. 7.5, where we have
shown the estimation, Eq. (7.61), of n as a function of the wiggler length L. For increasing
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Figure 7.6: Left-hand side: the position Lmax (red line) and magnitude nmax of the first
maximum of the photon number n, Eq. (7.61), according to Eqs. (7.65) and (7.59)
as functions of the initial momentum p of the electrons. We observe that Lmax
increases and that nmax decreases when we increase the deviation from resonance
p = q/2. We have already expected this behavior from the inspection of Fig. 7.5.
Right-hand side: the position Lmax, Eq. (7.65), of the first maximum as a function
of the number N of electrons. We observe a logarithmic growth of Lmax reaching
values between 20 and 30 times the gain length Lg for more realistic numbers N
of electrons.

values of the deviation ∆ from resonance the maximum nmax of the photon number decreases
while its position Lmax along the wiggler axis increases.
The first maximum of Eq. (7.61) is obtained for

gTmax
√
N + 1

√

1− κ2

4 = K ∼= ln
[
4
√
N

(
1− κ2

4

)]
. (7.64)

The approximation in the second step is valid for k → 1, Eq. (F.5), [137] which, according to
Eq. (7.62), is satisfied for a high number N � 1 of electrons and a low-to-moderate value of
the deviation κ < 2

√
1−N−1/2 from resonance. In terms of the gain length Lg, Eq. (7.39),

we thus obtain the expression

Lmax

Lg
∼= 1√

1− κ2

4

[
lnN + 4 ln 2 + 2 ln

(
1− κ2

4

)]

(7.65)

for the length Lmax of the wiggler for which this first maximum of the photon number occurs.
Besides the dependency on the electron number N , Lmax is a function of the deviation
∆ = καN from resonance.
On the left-hand side of Fig. 7.6 we have illustrated the dependency of the maximum photon
number nmax and of its position Lmax along the wiggler axis on the initial momentum p of
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the electrons, according to Eqs. (7.59) and (7.65), respectively. Indeed, we find that nmax
is maximized and Lmax is minimized at resonance p = q/2, as already expected from the
inspection of Fig. 7.5. On the right-hand side of Fig. 7.6 we have shown the dependency of
Lmax on N which is logarithmic according to Eq. (7.65). For a realistic number N ∼ 109 of
electrons the position of this maximum is at about 20 to 30 gain lengths Lg.
Interpreting the dimensionless intensity, Eq. (2.81), of the saturated classical FEL in the
high-gain limit as maximum photon number, we obtain the expression

nclmax
∼= 21/3α

2/3
N

3 N (7.66)

in terms of the quantum parameter αN , Eq. (7.22). Due to αN � 1 we find that in the
classical FEL an electron emits many photons which stands in contrast to the Quantum
FEL where maximally one photon is emitted by an electron. However, if we let αN � 1 in
Eq. (7.66) we recognize that the classical theory would underestimate the maximum photon
number in the quantum regime which is given by nmax = N . We moreover note that the
direct proportionality of nmax to N in the quantum regime is a further difference to the
classical regime, where the maximum intensity scales with N4/3.
The position of the maximum intensity for the classical FEL is in Chap. 2 estimated by
Lcl
max
∼= 4π

√
3Lcl

g which is of the order of 10 to 20 gain lengths [73]. This behavior is similar
to the Quantum FEL by the inspection of the right-hand side of Fig. 7.6. However, the
explicit expressions for the gain length in the respective regimes differ.
We end this discussion by noting that it is questionable to talk about ‘photon numbers’
since we have switched to a kind of a semi-classical theory when we replaced the operators
by numbers. Moreover, the classical number nclmax is derived in a complete classical theory,
where the term ‘photon’ is not admissible. Instead, we should talk about ‘dimensionless
intensities’. However, the picture of photons is very helpful in the context of a comparison
between quantum and classical regime of the FEL which justifies our choice of words.

Numerical approach

In order to verify the estimates, we have derived in the preceding section in an analytic
manner, we proceed to solve the dynamics of the deep quantum regime numerically. For this
purpose, we rewrite the Schrödinger equation corresponding to the effective Hamiltonian,
Eq. (7.23), into a suitable form in analogy to Ref. [134]. Then, we straightforwardly solve
the resulting system of differential equations like in Ref. [138].
By considering the commutation relation, Eq. (7.5), for Υ̂0,1, Υ̂1,0 and Υ̂z, yielding for example[
Υ̂0,1, Υ̂1,0

]
= Υ̂z, we recognize that this operators algebra is equivalent to the one for angular

momentum [114, 134]. Indeed, we make the identifications




Ĵ+ = Υ̂0,1

Ĵ− = Υ̂1,0

Ĵz = 1
2Υ̂z ,

(7.67)
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where Ĵ+ and Ĵ− denote ladder operators while Ĵz represents the angular momentum in
z-direction [139]. Moreover, we obtain that the constant of motion Â, defined in Eq. (7.51),
corresponds to the total angular momentum Ĵ , that is, Â = Ĵ

2.
To derive a suitable expression for the dynamics of the system we expand the state vector
|Ψ〉 in terms of the basis |n,m, r〉, where |n〉 is a photon number state of the laser field
while |m, r〉 correspond to the total angular momentum and its z-component fulfilling the
relations [139] 




Ĵ
2 |m, r〉 = r(r + 1) |m, r〉

Ĵz |m, r〉 = m |m, r〉 .
(7.68)

Since the total angular momentum Ĵ
2, as well as B̂ = Ĵz + n̂, Eq. (7.50), are conserved the

dynamics is characterized by just a single quantum number. With the help of Eq. (7.68)
we deduce from Eq. (7.54) as well as from Eq. (7.55) the relations r = N/2 as well as
m+ n = N/2, respectively. Hence, we write the total state

|Ψ(τ)〉 ≡
N∑

n=0
cn(τ)

∣∣∣n,
N

2 − n,
N

2
〉
≡

N∑

n=0
cn(τ) |n〉 (7.69)

in terms of the photon number n which varies between n = 0 and n = N due to −N/2 ≤
m ≤ N/2. Here, cn denotes the expansion coefficient corresponding to the basis state
|n〉 ≡ |n,N/2− n,N/2〉.
The action of a ladder operator on a state |n,m, r〉 is described by the relation [139]

Ĵ± |m, r〉 =
√

(r ±m+ 1)(r ∓m) |m± 1, r〉 , (7.70)

that is, by a shift of the magnetic quantum number m while preserving the total angular
momentum r. Applying Eq. (7.70) to the Schrödinger equation with the Hamiltonian,
Eq. (7.23), and the state in Eq. (7.69) yields the set of differential equations [134, 138]

i
d
dτ cn(τ) = αN


−κn cn(τ) + (n+ 1)

√
1− n

N
cn+1(τ) + n

√

1− n− 1
N

cn−1(τ)

 (7.71)

which couples the expansion coefficients cn in a trilinear manner. The initial condition of
Eq. (7.71) is given by cn(0) = δn,0 which corresponds to the state |0, N/2, N/2〉.
For the time being we investigate the resonant case, ∆ = 0. In Fig. 7.7 we have drawn the
mean photon number 〈n̂〉 of the high-gain Quantum FEL as a function of the wiggler length
L for N = 103 (left) and N = 104 (right) electrons, respectively. In both cases the value of
the first maximum nmax ∼= 0.8N emerging from the numerical solution of Eq. (7.71) is lower
as predicted by the estimation from Eq. (7.59), that is nmax = N . Moreover, we obtain that
the second maximum is further suppressed compared to the complete revival predicted in the
approximation, Eq. (7.61). When we compare the actual positions of these maxima with the
estimated ones we also find a small shift.
In Fig. 7.8 we have presented the change of the maximum photon number nmax and the
position Lmax of this maximum when we vary the number N of electrons. The numerically
computed curve for Lmax is slightly higher than the estimated one, Eq. (7.65), but both
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Figure 7.7: Comparison of numerics and analytic approximation: we have plotted the expecta-
tion value 〈n̂〉 of the photon number in the high-gain Quantum FEL for resonance,
∆ = 0, against the wiggler length L for N = 103 (left) and N = 104 (right)
electrons, respectively. The analytic solution (red line), Eq. (7.61), overestimates
the maximum photon number which is in both cases at about nmax ∼= 0.8N ,
according to the numerical solution (blue line) of Eq. (7.71). Moreover, instead
of a complete revival of the first maximum as predicted by Eq. (7.61) the height
of the second peak is smaller than the first one. The estimated positions of the
first maxima, Eq. (7.65), are also slightly shifted to the left in comparison to the
exact ones.
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Figure 7.8: Above: we have drawn the position of the first maximum as a function of the
electron number N for resonance, ∆ = 0, and compare the analytic approximation
(red line), Eq. (7.65), to the numerical solution (blue line) of Eq. (7.71). Although
the numerical curve lies slightly above the analytic one, the growth with N is
very similar for both curves. Below: we have plotted the maximum number of
photons nmax from the numerical simulation of Eq. (7.71) against the number N of
electrons. The maximum photon number reaches the value nmax ∼= 0.78N already
for a small N which then approximately stays constant and thus is smaller than
the corresponding value nmax = N from the analytic approach. We emphasize,
that in both cases we have only considered values for the electron number up to
N = 104.
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Figure 7.9: Numerical simulation of the variance ∆n2 of the photon number in a high-gain
Quantum FEL for resonance p = q/2 as a function of the wiggler length L for
N = 1000 (blue lines) and N = 10000 electrons in the bunch, respectively. We
note that for increasing N the curve is shifted to the right similar to behavior
of the mean photon number, Fig. 7.7, where Lmax (dashed lines) increases for
larger N . In both cases the variance maximally is about ∆n2 ∼= 0.1N2 and due
to nmax ∼ N we deduce a nearly chaotic behavior of the radiation field.

quantities behave very similarly with increasing N . The maximum photon number, on the
other hand, reaches a constant value already for very low N . This number is given by
nmax ∼= 0.78N and thus is, at least, of the same order of magnitude as nmax = N from our
analytic approach. We have only considered values for N up to N = 104 in Fig. 7.8 since the
computational effort to diagonalize a (N + 1)× (N + 1) matrix increases drastically for higher
values of N . Hence, we recognize the importance of our approximate analytic approach:
since we obtain a matching of analytics and numerics for relatively low electron numbers we
can expect that the analytic solution, Eq. (7.61), also correctly predicts the dynamics of the
mean photon number for values of N inaccessible to numerics.
The numerical solution [138] of Eq. (7.71) gives us also the possibility to study the variance

∆n2 ≡ 〈n̂2〉 − 〈n̂〉2 (7.72)

of the photon number in the Quantum FEL for longer times. In Fig. 7.9 we have plotted
∆n2 against the length L of the wiggler for N = 103 and N = 104, respectively. We observe
that, the approximate value ∆n2 ∼= 0.1N2 of the variance around saturation, Lmax ∼= 10Lg.
Hence, the variance ∆n2 is roughly of the same order of magnitude as the square of the mean
value 〈n〉2 ∼= N2 which is a feature of chaotic light [130] and thus the statistical behavior of
the radiation is similar to the exponential gain regime.
We now turn to the more general situation of a nonzero detuning ∆ from resonance. In
Fig. 7.10 we have drawn the mean photon number 〈n̂〉 of the Quantum FEL as a function
of the wiggler length L for three different values of κ ≡ ∆/αN . Similar to the estimate in
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Figure 7.10: Mean photon number of the high-gain Quantum FEL as a function of the wiggler
length L, according to the numerical solution of Eq. (7.71), for three different
values of the deviation ∆ = καN from resonance and with N = 103 electrons.
In accordance with the analytic result, Fig. 7.5, the maximum photon number
nmax decreases when we increase ∆ while the position Lmax of this maximum
shifts towards the right. We emphasize, that the maximum photon number for
resonance, ∆=0, is already reduced when compared to Fig. 7.5.

Fig. 7.5 the maximum photon number decreases for an increasing deviation ∆ from resonance
while its position Lmax along the wiggler increases.
The position Lmax and magnitude nmax of the first maximum of the photon number is
displayed in Fig. (7.11) depending on the momentum p of the electrons. We observe that the
numeric and the analytic approach show the same behavior when we increase the deviation
from resonance p = q/2. However, the numeric and the analytic curves are normalized to
their respective value at resonance which differ according to Fig. 7.7.

7.3 Higher-order corrections

In the following we study the higher-order corrections to the deep quantum regime in the
exponential gain regime. The imaginary part of the frequency is responsible for the exponential
growth and its dependency on the initial momentum p can be considered as the gain function
of a high-gain FEL according to Chap. 2. Hence, we focus in the following discussion on this
quantity.
Indeed, we obtain that the higher-order corrections scale with powers of αN and thus reduce to
the corresponding expression, Eq. (7.38), in the deep quantum regime for αN → 0. Moreover,
we connect our results to the existing literature [2, 3, 25] on the Quantum FEL and find
excellent agreement.
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Figure 7.11: Position Lmax and magnitude nmax of the first maximum of the mean photon
number as a function of the initial momentum p of the electrons for N = 103.
We observe that the numerical results (dashed lines) agree very well with the
estimates from the analytic approach, Eqs. (7.65) and (7.59), respectively. We
emphasize, however, that the numerical and the analytic curves are normalized
to their respective value at resonance, p = q/2, which differ from each other.

7.3.1 Imaginary part

When we assume that ∆ is small we identify

Ĥ0 ≡ âLΥ̂0,1 + â†LΥ̂1,0 −
∆
ε
n̂L (7.73)

as the zeroth component of the Fourier decomposition, Eq. (7.20), of H̄ while the other
components are given by

Ĥµ ≡ âLΥ̂µ,µ+1 + â†LΥ̂−µ+1,−µ (7.74)
in analogy to the single-electron case. We note that this procedure is only valid when the
terms in Eq. (7.73) are of the same order of magnitude, that is ∆n̂L ∼ αN . In principle, we
could have chosen the magnitude of ∆ proportional to any power of αN , but we then had to
modify our method.

Now we are in the position to derive the contributions of the effective Hamiltonian Ĥeff order
by order in the framework of the method of averaging which we show in detail in App. D. The
time evolution of an observable Ô up to third order in ε is then dictated by the Heisenberg
equation of motion

i
d
dτ Ô = ε

[
Ô, Ĥ(1)

eff

]
+ ε2

[
Ô, Ĥ(2)

eff

]
+ ε3

[
Ô, Ĥ(3)

eff

]
, (7.75)
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where the first-order term Ĥ
(1)
eff is identical to Ĥ0 while the expressions in second and third

order, Ĥ(2)
eff and Ĥ(3)

eff , respectively, are given by the expressions in Eqs. (D.104) and (D.106),
respectively.
In analogy to the deep quantum regime, we linearize the resulting equations of motions by
setting Υ̂0,0 ∼= 〈Υ̂0,0(0)〉 = N and keeping only contributions which are linear in the ‘small’
quantities âL ∼= δâL and Υ̂µ,ν

∼= δΥ̂µ,ν , except when µ = ν = 0. This procedure, which is
discussed in more detail in App. D yields the linear system of differential equations

i
d
dτ

(
δΥ̃1,0
δãL

)
=




0 −αN
(

1− α2
N

8

)

αN

(
1− α2

N

8

)
−αN

(
κ + αN

2 −
κα2

N

4

)




(
δΥ̃1,0
δãL

)
, (7.76)

where we have introduced the rescaled operators



δΥ̃1,0 = 1√

N
δΥ̂1,0

δãL = δâL
(7.77)

in analogy to Eq. (7.28) in the deep quantum regime.
We solve Eq. (7.76) with the ansatz e−iλτ and obtain for λ the expression, Eq. (D.117),

λ ∼= −καN
2 − α2

N

4 + κα3
N

8 ± iαN
√

1− κ2

4


1− κ/2

1− κ2

4

αN
4 −

5− 3κ2 + κ4/2
(
1− κ2

4

)2
α2
N

32


 , (7.78)

where we have assumed that the deviation ∆ ≡ καN from resonance is of the order of αN
with κ ∼ O(1). Indeed, we observe that Eq. (7.78) reduces to the corresponding expression,
Eq. (7.32), in the deep quantum regime for αN → 0. Hence, the dynamics of the quantum
regime really turns to a two-level behavior when we decrease the value of the quantum
parameter to αN � 1.
For the time being we restrict ourselves to the resonant case, that is ∆ = 0. When we set
κ = 0 in Eq. (7.78) we arrive at

λ± ∼= −
α2
N

4 ± iαN
(

1− 5
32α

2
N

)
(7.79)

which leads to
〈n̂(t)〉 = sinh2

[
gT
√
N
(

1− 5
32α

2
N

)]
(7.80)

for the time evolution of the mean photon number, when the field starts from vacuum, that
is 〈n̂(0)〉 = 0.
In Fig. 7.12 we have compared the results for 〈n̂(t)〉 of the deep quantum regime, Eq. (7.37)
with ∆ = 0 and Eq. (7.80) including the lowest-order corrections. We observe that, for a
fixed value of gT

√
N , the increase of the photon number, given by Eq. (7.80), is slower than

predicted by the lowest-order approximation. In the next section we show that this effect
emerges since for increasing values of αN the momentum corresponding to a maximized gain
deviates from the usual resonance at p = q/2.
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Figure 7.12: Mean photon number 〈n̂〉 in the exponential gain regime of the high-gain
Quantum FEL as a function of the dimensionless time gT

√
N/2 in the resonant

case ∆ = 0 for αN = 0.5. We have drawn the solutions of first (blue line)
and third order (red line), Eqs. (7.37) and (7.80), respectively. We observe
that the growth rate slightly decreases when we take into account higher-order
corrections.

7.3.2 Connection to existing literature

In the following we connect our theory of the high-gain Quantum FEL, based on the method
of averaging, to the results of the existing literature on the Quantum FEL [25, 3, 2]. In this
context, we include effects of a nonzero deviation ∆ from resonance for different values of the
quantum parameter αN .
In contrast to our approach, in Ref. [25] the full set of equations was linearized first before
the quantum regime was identified as one extreme limit of the solution. For this purpose, the
authors introduced collective operators of the form





B̂ ≡ 1√
N

N∑
j=1

e−i2kẑj

P̂ ≡ 1√
N

N∑
j=1

1
2

(
p̂j e−i2kẑj + e−i2kẑj p̂j

) (7.81)

which correspond to the classical variables B and P , respectively, discussed in Chap. 2 and
introduced in Eq. (2.71). The symmetric form of P̂ was chosen since this form ensures that
the resulting characteristic equation asymptotically yields the cubic equation, Eq. (2.76), of
the classical case when we let αN →∞ [25].
We do not repeat the calculations of Ref. [25] but instead sketch an approach leading to the
same results for the characteristic equation employing the collective projection operators
Υ̂µ,ν . In terms of these operators the Heisenberg equation of motion, Eq. (7.24), for the field
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operator âL reads
i
d
dτ âL = ε

∑

µ

Υ̂µ+1,µ (7.82)

where we have used Eqs. (7.9) and (7.10). Analogously, we obtain

i
d
dτ Υ̂µ+1,µ = (∆− 2µ) Υ̂µ+1,µ + εâL

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

)
+ εâ†L

(
Υ̂µ+1,µ−1 − Υ̂µ+2,µ

)
(7.83)

for the dynamics of Υ̂µ+1,µ.
We can linearize the set of equations, Eqs. (7.82) and (7.83), by our usual procedure of
approximating Υ̂0,0 ≈ N and keeping only terms which are linear in all other occurring
operators. By inspection of the equation of motion for the laser field, Eq. (7.83), we observe
that the only prominent contributions are the ones with µ = −1 and µ = 1, that is, the
operators Υ̂0,−1 and Υ̂1,0, respectively.
With the help of the transformation





Ῡ1,0 ≡ 1√
N

Υ̂1,0 eiτ(1+∆)

Ῡ0,−1 ≡ 1√
N

Υ̂0,−1 eiτ(1+∆)

āL ≡ âL eiτ(1+∆)

(7.84)

we obtain the set of differential equations

i
d
dτ




Ῡ1,0
Ῡ0,−1
āL


 =



−1 0 −αN
0 1 αN
αN αN −(1 + κα)







Ῡ1,0
Ῡ0,−1
āL


 . (7.85)

Inserting the ansatz e−iλτ we arrive at the characteristic equation
(
λ2 − 1

)
(λ+ 1 + καN)− 2α2

N = 0 (7.86)

which is equivalent to the one in Ref. [25] besides a different scaling of the quantities.
In the limit αN � 1, Eq. (7.86) yields the correct classical result, that is Eq. (2.76), with
the identity ℘̄/(ωrT ) = 1 + καN . This asymptotic behavior is similar to the low-gain and
small-signal regime where considering only single-photon processes yields the correct classical
result for ~ → 0, although many photons are scattered [81]. In the present case we again
just include the transitions from p to p − q and from p to p + q, represented in Eq. (7.86)
by the operators Υ̂1,0 and Υ̂0,−1. However, in reality, the classical regime is characterized by
continuous changes of the electron momentum of the order of large multiples of q.
However, we are interested in the quantum regime of the FEL, where αN � 1. In Fig. 7.13
we draw the positive imaginary part Imλ, responsible for exponential gain, as a function of
the initial momentum p for αN = 0.1 and αN = 0.5, respectively. In this figure we compare
the analytic results of the deep quantum regime, Eq. (7.38), as well as

Imλ = αN

√

1− κ2

4


1− κ/2

1− κ2

4

αN
4 −

5− 3κ2 + κ4/2
(
1− κ2

4

)2
α2
N

32


 (7.87)
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Figure 7.13: Positive imaginary part Imλ as a function of the initial momentum p of the
electrons in the Quantum FEL for αN = 0.1 (left) and αN = 0.5 (right). We
compare our analytic results Eqs. (7.38) and (7.87), up to first and up to
third order in αN , respectively, to the numerical solution of the cubic equation,
Eq. (7.86), of Ref. [25]. We obtain good agreement of all three curves for the deep
quantum regime αN = 0.1. For αN = 0.5, however, only the higher-order solution,
Eq. (7.87), shows the same behavior as the results from Ref. [25]. Moreover, the
maximum of the third-order solution deviates from the one p = q/2 and has
moved in the direction of the classical resonance at p = 0.
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from Eq. (7.78) including higher-order corrections, to the numerical solution of Eq. (7.86).
The inspection of Fig. 7.13 leads to two important observations: (i) While the maximum
gain for the deep quantum regime, Eq. (7.38), always occurs at p = q/2, the corresponding
momentum of the higher-order solution, Eq. (7.87), moves to lower values when we increase
αN . This behavior indicates the beginning transition from the quantum resonance p = q/2
to the classical resonance p = 0.
(ii) For αN = 0.1 we obtain a good agreement between all three curves, with almost perfect
matching of the higher-order result, Eq. (7.87), and the numerical solution of Eq. (7.86).
When we increase the quantum parameter to αN = 0.5 the deep quantum regime does not
give a perfectly accurate description. However, the higher-order result, Eq. (7.87), and the
solution of the cubic equation, Eq. (7.86), agree very well, besides a slight deviation, which we
interpret as an effect arising from even higher orders of αN . Hence, our approach employing
the method of averaging and the one of Ref. [25] lead to equivalent results.
In the following we also prove this connection of our results to the ones of Ref. [25], deduced
from Fig. 7.13, in an analytic way. Since αN � 1 we are allowed to treat all contributions of
the cubic equation Eq. (7.86) which include αN as a perturbation. Hence, we can find an
asymptotic solution for λ by iterating Eq. (7.86). We here just sketch the basic steps of this
calculation and refer to App. G for a more detailed explanation of the underlying technique.
First, we cast the cubic equation, Eq. (7.86), into the form, Eq. (G.4),

λ(n+1) = −1− καN
2 ± iαN

√
2

1− λ(n) −
κ2

4 , (7.88)

where we have related the solution λ(n+1) of (n+ 1)th order to the nth-order solution λ(n).
Identifying λ(0) = −1 we straightforwardly recognize that the imaginary part of the first-
order solution λ(1) reproduces our result for the deep quantum regime, Eq. (7.38), that is
|Imλ(1)| = αN

√
1− κ2/4. Moreover, when we proceed with the iteration of Eq. (7.86) up

to third order in αN we obtain that Imλ(3) is identical to the corresponding expression,
Eq. (7.87), of the method of averaging. We note that we would have found analogous results
when we had expanded λ of Eq. (7.86) in powers of αN and had solved the resulting equations
order by order instead of employing the iteration procedure.
In conclusion, we have calculated higher-order corrections to the deep quantum regime of
the high-gain FEL in the framework of the method of averaging. For αN → 0 the resulting
expressions reduce to the ones of the deep quantum regime, which proves that the Quantum
FEL, defined by αN � 1, is analogous to a two-level system for the momenta of the electrons.
On the other hand, increasing αN to moderate values shifts the resonance from p = q/2 into
direction of the classical resonance p = 0 according to Fig. 7.13. Finally, we have established
the connection between our analytic results and the numerical ones of Ref. [25] in a graphical
and in an analytic way, respectively.

7.4 Summary
In this chapter we have generalized our previous single-electron theory to the case where
many electrons simultaneously interact with the laser field. Similarly to the classical case,
this step has enabled us to develop a high-gain theory for the Quantum FEL. In the deep
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quantum regime we have identified the FEL dynamics with the Dicke model describing the
collective interaction of two-level atoms with a light field.
For short times we observe a possible start-up from vacuum and an exponentially growing
photon number, Fig. 7.2, similar to the classical regime. However, the Quantum FEL is
described by a sharp resonance at p = q/2 in contrast to the continuous gain curve of its
classical counterpart, according to Fig. 7.3. Moreover, we have discussed the experimental
obstacles to realize a high intensity in the quantum regime which are given by the constraints
of a high electron energy and of a long wiggler due to Eqs. (7.41) and (7.42), respectively.
Saturation in a high-gain Quantum FEL occurs when each electron has emitted approximately
one photon in contrast to the multiphoton processes of a classical FEL. In order to obtain
this long-time behavior of the FEL dynamics we have employed an analytic approximation,
Fig. 7.5, as well as a numerical solution, Fig. 7.7, of the equations of motion. Although the
analytic solution slightly underestimates the maximum intensity both approaches qualitatively
give the same results.
At the end of the chapter, we have considered higher-order corrections to the deep quantum
regime in the exponential-gain limit by making use of the method of averaging. With the
help of this procedure we could establish the connection to Ref. [25] which is illustrated
in Fig. 7.13. Moreover, we have proven that both approaches lead to equivalent results by
asymptotically solving the cubic equation, Eq. (7.86), from Ref. [25].
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8 Conclusions and Outlook

After carefully studying the classical regime of the FEL and investigating the transition
from classical to quantum we finally have discussed the emergence and the properties of the
Quantum FEL, in a single-electron as well as in a many-electron description. To conclude
this thesis, we first summarize our most important results before we give a brief outlook on
possible extensions of our model and on consequential future subjects of research connected
to the Quantum FEL.

8.1 Conclusions
We have devoted this thesis to the transition from classical to quantum in the FEL with
special emphasis on the theory of the high-gain Quantum FEL. As a result, we have gained
a lot of understanding of the emergence of quantum effects in the FEL and of the changed
properties when we enter the quantum regime. In contrast to the continuous trajectories in
the classical regime, the Quantum FEL is characterized by two resonant momentum levels
and thus it is closely related to an ordinary atomic laser [22].
The ‘true classical’ limit of the FEL is achieved when the quantum mechanical recoil q is
small and the momentum spread ∆p of the electron beam is larger than the recoil, that is
∆p > q. The importance of both constraints is illustrated in Figs. 3.6 and 3.7. There, we have
studied the Wigner function of the electron which only reduces to the classical distribution
function if we consider the correct classical limit. Increasing the recoil and decreasing the
momentum spread, however, leads to quantum effects. We have presented the resulting
quantum corrections to the FEL gain in Figs. 3.5 and 3.8.
With the help of these insights of the classical limit from a quantum point of view we have
derived the Fokker–Planck equation, Eq. (4.34), for the laser field dynamics in a classical
FEL oscillator. For the first time, we could include all aspects of the field dynamics, that
is gain, self saturation, mode pulling and pushing, cavity losses, as well as fluctuations of
amplitude and phase, in a single equation. Moreover, within this novel approach we could
rederive the results for the steady-state photon statistics and the intrinsic linewidth of a
classical FEL in a straightforward manner.
When we increase the recoil to the point, where it dominates the FEL dynamics, we enter the
deep quantum regime which is characterized by a two-level behavior of the electrons. With
the help of an operator formalism for the method of canonical averaging we have identified the
underlying processes of the FEL dynamics as resonant transitions on a discrete momentum
ladder, as illustrated for example in Figs. 5.1, 5.3 and 5.4. For a small value of the quantum
parameter α, Eq. (5.18), corresponding to a high recoil, we indeed observe that non-resonant
processes, Fig. 5.7, as well as multiphoton transitions, Fig. 5.9, are suppressed in comparison
to the single-photon processes between the two resonant electron momenta. Moreover, we
have derived the radiation properties of a Quantum FEL oscillator and have observed that
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the photon statistics in a Quantum FEL is closer to the Poisson statistics of a coherent state
than the broadened photon distribution in the classical regime, as illustrated in Fig. 6.7.
The most important result of this thesis, however, is the extension of our model for the
Quantum FEL from a single-electron to a many-electron theory. With the concept of
collective projection operators and by employing the method of averaging we have identified
the quantum regime in the many-electron model as the collective interaction of many electrons
with the laser field, with each of the electrons behaving like a two-level atom.
For short times we have solved the dynamics of the Quantum FEL with the help a parametric
approximation, while we have employed an approximate approach based on Jacobian elliptic
functions as well as numerical simulations for a long-time solution. After an exponential
growth, Fig. 7.2, the laser intensity saturates, Fig. 7.7, when each electron has emitted
on average one photon. Moreover, we have deduced the typical length scales to observe
exponential growth, Eq. (7.39), as well as saturation, Eq. (7.65), respectively. We have
observed that the wiggler length required for amplification is increased compared to its
classical counterpart, which might be a challenging obstacle for the experimental realization
of a Quantum FEL. Finally, we have discussed the gain function of the Quantum FEL
and have demonstrated that our simple analytic expression, Eq. (7.38), is equivalent to the
numerical results of earlier approaches, in a graphical, Fig. 7.13, and in an analytic way,
respectively.
Despite the experimental obstacles concerning the energy spread of the electron beam and
the wiggler length the construction of a Quantum FEL would lead to the observation of
pure quantum effects and to a change of radiation properties. Moreover, the extension to a
many-electron model enables us to realize a high-gain Quantum FEL without the need of a
cavity in the X-ray regime.

8.2 Outlook
Although we have extended our model of the Quantum FEL to the collective interaction
of many electrons with the fields our theory is still a simplified description which does not
contain all possible influences on the FEL dynamics.
The most important step to develop a complete theory of a Quantum SASE FEL would
be the unification of the many-electron model in the present thesis with the multi-mode
approach in Refs. [27, 30]. In this context, one has to investigate the effects due to a ‘photon
cascade’ [31]: for an electron in the excited state p = q/2 the only resonant transition is the
one to p = −q/2 leading to the emission of a photon. In a multimode theory, however, besides
the transition from p = −q/2 back to p = q/2, the electron can ‘find’ another resonant mode
in which a second photon is emitted, which would eventually lead to a cascade of emission
processes.
In addition, since there is no cavity in a SASE FEL we have to study the slippage [75] of the
light over the electrons, and its influence on the operation of a Quantum SASE FEL. This
way, we hope to establish the connection to the existing literature [107, 140] on this topic.
So far, we have only considered a one-dimensional model for the theory of the Quantum
FEL. In the case of the classical FEL the one-dimensional theory [21] correctly describes
the qualitative behavior, but a three-dimensional model [74] is necessary for a quantitative
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analysis. Hence, we assume that we also have to take this step from one to three dimensions
for the the theory of the Quantum FEL.
Moreover, by assuming that the recoil q has to be the dominating momentum scale, we expect
that not only the momentum spread in the z-direction, but also the ones in the transverse
directions x and y have to be smaller than the recoil, that is ∆pj < q for j = x, y, z. As a
consequence we would require that the volume V of an electron bunch is large enough that the
phase space volume does not fall below N~3 yielding the necessary condition nel < 1/λ3

L for the
electron density ne. Else, we cannot consider the electrons as distinguishable particles [3] and
we would have to develop a theory for fermionic electrons in second quantization. However,
we have to prove these qualitative arguments concerning a three-dimensional theory of the
Quantum FEL in a rigorous way, which most likely can be achieved only by a numerical
analysis similar to Ref. [88].
In Chap. 7 we have studied the indirect interaction of the electrons with each other via the
laser field, but have neglected the effect of the direct interaction due to the Coulomb force
between the electrons [20]. For a low electron density we are allowed to discard this space
charge effect and similar to the classical case [48], Eq. (2.87), we expect that this procedure is
allowed as long as kp � L−1

g , where kp, Eq. (2.88), is proportional to the electron density ne
and Lg, Eq. (7.39), denotes the gain length of the Quantum FEL. However, these assumptions
again have to be verified by rigorous calculations.
Besides these elementary extensions of our model of the Quantum FEL, which are crucial
for a possible experiment, there are several aspects presented in this thesis which can be
developed further or studied in more detail. For example, we have only discussed the
statistical properties of the radiation from a classical FEL in the low-gain regime. In order to
compare the properties of a high-gain Quantum FEL, derived in Chap. 7, we have to develop
a fully-quantized theory for the classical high-gain FEL. Some approaches already exist, for
example in Ref. [141]. Moreover, one could extend our theory on the radiation properties
in the low-gain limit in Chap. 4 to include quantum mechanical corrections by taking into
account higher orders of the expansion in terms of the recoil.
In Chap. 3 we have investigated the transition from classical to quantum for a low-gain FEL
in the small-signal limit. One could also study this transition for the saturated FEL. In
Refs. [81, 51] this regime was treated by solving the Schrödinger equation, corresponding
to the Hamiltonian of an anharmonic oscillator, and identifying the classical limit in the
resulting dynamics. Since potentials higher than second order in position and momentum
are generally considered as non-classical, we expect to also find quantum corrections to the
classical regime of a saturated FEL. Moreover, it would be important to develop a fully
quantized description for this regime in order to prove that the broadening of the photon
statistics of a classical FEL is not just limited to the small-signal case.
We have only briefly discussed in Chap. 3 the topics of more realistic electron beams as well
as the scattering of electron wave packets brought up in Refs. [92, 93]. We propose that our
approach in phase space is well suited to gain more insight in these topics, for example by
considering higher orders of our perturbative expansion.
It comes to no surprise that not only the classical regime of the FEL poses some open
questions, but also the quantum regime: as discussed in Chap. 6 the effect of higher-order
corrections to the deep quantum regime on the steady-state condition can be rather large.
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This influence should be studied in more detail. Moreover, one can also include higher-order
terms in the result for the intrinsic linewidth which would be a straightforward procedure.
An important extension of the many-electron model of the Quantum FEL in Chap. 7 would
be achieved by allowing the electrons to possess different initial momenta. In this case, an
approach with the help of collective projection operators would not be possible and numerics
becomes necessary in order to really take the dynamics of each electron into account. However,
this procedure would allow us to study the effect of a nonzero momentum spread of the
electron beam on the emergence and properties of the high-gain Quantum FEL.
In conclusion, we have derived several crucial conditions and properties of the Quantum FEL
within our very fundamental approach. To extend this model to more realistic situations
it is very likely that in many cases extensive numerical computations become unavoidable.
However, the analytic results and thoughts developed in this thesis could serve as a guideline
for these future investigations.



A Classical and Quantum Theory in the
Bambini–Renieri Frame

In this appendix we study the fundamental model of our approach towards the FEL: the
classical as well as the quantized theory of the FEL in the co-moving Bambini–Renieri
frame [61]. For this purpose, we first investigate the Lorentz transformation for (i) a laser
wiggler and (ii) a magnetostatic wiggler which is in both cases constructed such that the
frequencies of the laser field and the wiggler field coincide. Close to resonance the motion of an
electron in this frame of reference is non-relativistic and we write down a simple Hamiltonian
for this dynamics which corresponds to a mathematical pendulum. Moreover, we quantize
the electron motion and the amplitude of the laser field which leads to a fully quantized
Hamiltonian [101]. To conclude this appendix we present a list of important parameters in
terms of the laboratory frame.

A.1 Lorentz transformation
In order to investigate the Lorentz transformation from the laboratory to the Bambini–Renieri
frame we first introduce the concept of contra- and covariant four-vectors. Then, we turn to
the explicit transformation for a laser wiggler and a magnetostatic wiggler, respectively.

A.1.1 Four-vectors
In the framework of special relativity space and time are treated on the same level. Hence,
we define the four-vector [41]

x ≡ xµ ≡ (ct, x, y, z) (A.1)
in Minkowski space where the time t is in the zeroth component while the spatial degrees
of freedom x, y, z corresponding to Euclidian space are contained in the remaining three
components. We note that the form, Eq. (A.1), of this four-vector is the contravariant
one. In contrast, the covariant vector is defined as xµ ≡ (ct,−x,−y,−z). The connection
between these two forms arises by the Minkowski metric gµ,ν = diag(1,−1,−1,−1) yielding
xµ = gµ,νx

ν . Here, we have employed the Einstein summation rule which means that we sum
over indices which occur twice.
A scalar product of two four-vectors

x · x ≡ xµx
µ = gµ,νx

µxν

= (ct)2 − x2 − y2 − z2 ,
(A.2)

exemplified by the product of x with itself emerges when we multiply a contravariant with a
covariant vector. When we change from an inertial frame I to another one I ′ a four-vector



172 A.1 Lorentz transformation

transforms according to
(x′)µ = Λµ

νx
ν , (A.3)

where the Lorentz transformation Λµ
ν has to be chosen such that any scalar product is not

affected [41].
When the frame I ′ is moving with a constant velocity v ≡ βcez with respect to I along the
z-direction we have to consider a Lorentz boost of the form [41]

Λµ
ν =




γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ


 , (A.4)

where
γ ≡ 1√

1− β2 (A.5)

denotes the relativistic factor corresponding to v. With the help of Eqs. (A.3) and (A.4) we
obtain the transformation rule





(ct)′ = γ(ct− βz)
z′ = γ(−βct+ z)

(A.6)

while the coordinates perpendicular to the direction of the boost do not change due to the
boost, that is x′ = x and y′ = y. We emphasize that the four-vector, Eq. (A.1), is just an
example for a four-vector. Other important examples, which also transform with Eq. (A.3),
are given by four-wave vectors or four-momenta.

A.1.2 Laser wiggler

We model a laser wiggler or ‘electromagnetic undulator’ by a plane wave which counterpropa-
gates towards the electrons while the laser field, that is the field which is amplified, is given
by a plane wave which copropagates with the electrons.
Hence, we characterize the laser field by the four-wave vector

kµL ≡ kL(1, 0, 0, 1) (A.7)

and the wiggler by
kµW ≡ kW(1, 0, 0,−1) (A.8)

with the respective wave numbers kL and kW. We note that the frequencies ωL ≡ kLc and
ωW ≡ kWc appear in the zeroth component and the respective three-dimensional wave vectors
are contained in the other components. We note that the scalar products kL · x = kL(ct− z)
and kW · x = kW(ct + z) correspond to the phases of a plane wave in positive an one in
negative z-direction, respectively. Moreover, the product of a four-wave vector with itself
vanishes, that is kL · kL = kW · kW = 0.
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When we change to a reference frame moving in the z-direction we obtain, according to
Eqs. (A.3) and (A.4), the transformed wave vectors

(k′L)µ = γ(1− β)kL(1, 0, 0, 1) (A.9)

and
(k′W)µ = γ(1 + β)kW(1, 0, 0,−1) (A.10)

which are Doppler shifted in comparison to the laboratory frame. For relativistic velocities,
that is β → 1 we find the approximate expressions (k′L)µ ∼= kµL/(2γ) and (k′W)µ ∼= (2γ)kµW,
where we have used 1 + β ∼= 2.

The Bambini–Renieri frame [61] is defined such that the frequencies coincide, that is

(k′L)0 = (k′W)0 ≡ k′ (A.11)

and with the help of the relation k′2 = (k′L)0(k′W)0 we obtain the transformed wave number

k′ =
√
kLkW (A.12)

which is the geometric mean of kL and kW in the laboratory frame.

Moreover, by setting (k′L)0 = (k′W)0 in Eqs. (A.9) and (A.10) we obtain the expression

βBR = kL − kW
kL + kW

(A.13)

for the dimensionless velocity of the Bambini–Renieri frame compared to the laboratory
frame and thus

γBR = kL + kW
2
√
kLkW

(A.14)

for the corresponding relativistic factor. Moreover, we find the relation

2k′ = 1
γBR

(kL + kW) (A.15)

with the help of Eqs. (A.12) and (A.14) .

Another important quantity is given by the relativistic four-momentum which reads

pµ = γmc(1, 0, 0, β) (A.16)

for a particle with rest mass m and the velocity βc in z-direction. The zeroth component
gives us the energy of the particle while the remaining components display the momentum
in the spatial directions. The scalar product of p with itself is a constant and connects
via the relation p · p = m2c2 to its mass. According to Eqs. (A.3) and (A.4) the Lorentz
transformation of the four-momentum yields





(p′)0 = γγBRmc(1− βBRβ)
(p′)3 = γγBRmc(β − βBR)

(A.17)
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while the momentum in the transverse directions remains zero.

For a particle which moves at a non-relativistic velocity in the Bambini–Renieri frame, that
is γ ∼= γBR, the energy can be approximated by p0 ∼= mc while the momentum p′ ≡ p′z in
z-direction reads

p′ ∼= γ2mc(β − βBR) ∼= mc

γBR
(γ − γBR) (A.18)

in terms of the laboratory frame.

A.1.3 Magnetostatic wiggler

In contrast an electromagnetic undulator, we characterize a magnetostatic wiggler by the
four-wave vector

kµW ≡ kW(0, 0, 0,−1) (A.19)
which does not possess a zeroth component and which corresponds to the time-independent
phase kW · x = kW z. The transformed version of kµW then reads

(k′W)µ = γkW(β, 0, 0,−1) , (A.20)

where we have employed Eqs. (A.3) and (A.4).

In analogy to the laser wiggler we calculate the transformed wave number by setting (k′L)0 =
(k′W)0 which leads to k′2 = (k′L)0(k′W)0. Hence, we obtain

k′ ∼= 1√
2

√
kLkW (A.21)

for the transformed wave number, where we have assumed β ∼= 1 and thus 1 + β = 2. As
a result the expression in Eq. (A.21) differs by a factor 1/

√
2 from the electromagnetic

case, Eq. (A.12). By setting (k′L)0 = (k′W)0 in Eqs. (A.9) and (A.21) we, moreover, find the
expressions

βBR = kL
kL + kW

(A.22)

for the velocity of the Bambini–Renieri frame and

γBR = kL + kW√
2kLkW + k2

W

∼= kL + kW√
2
√
kLkW

(A.23)

for the corresponding relativistic factor, where we have assumed that kW � kL. Although
these expressions, Eqs. (A.22) and (A.23), differ from the corresponding ones, Eqs. (A.13)
and (A.14), for the electromagnetic case we obtain the same relation for the wave number k′
as in Eq. (A.15). For the sake of simplicity we omit in a large part of this thesis the prime
labeling the quantities in the Bambini–Renieri frame except for the few cases, where we also
consider quantities in the laboratory frame.
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A.2 Hamiltonian & quantization

Having transformed to the Bambini–Renieri frame we now are in the position to derive
our model for the dynamics in an FEL. By recognizing that the electron motion in the
co-moving frame is non-relativistic we are allowed to make a Taylor expansion of the square
root characterizing the energy of the system and we arrive at the classical Hamiltonian for
the FEL within a one-dimensional single-mode model. Moreover, we quantize the electron
motion as well as the laser field amplitudes in order to establish a quantum theory of the
FEL.

A.2.1 Expansion of square root

The Hamiltonian of a classical particle with mass m0 and charge e interacting with the
electromagnetic field is given by [41]

H = c
√

(p− eA)2 +m2
0c

2 , (A.24)

where the field, characterized by its vector potential A, connects via minimal coupling
p→ p− eA to the momentum p of the electron.
In the case of an FEL the total field

A ≡ AL(z, t) + AW(z, t) (A.25)

consists of two modes, that is the laser field

AL(z, t) ≡ AL
(
aL e e−ik(ct−z) +a∗L e∗ eik(ct−z)

)
(A.26)

and the wiggler
AW(z, t) ≡ AW

(
aW e e−i(ct+kz) +a∗W e∗ eik(ct+z)

)
(A.27)

which are modeled as plane waves traveling in positive and negative z-direction, respectively,
that is parallel to the wiggler axis. Since we consider the dynamics in the Bambini–Renieri
frame the wave numbers of laser and wiggler coincide, that is kL = kW ≡ k. For both modes
we have chosen circular polarization which leads to the relations e2 = e∗2 = 0 and e · e∗ = 1
for the polarization vectors e and e∗. While AL and AW are constant aL and aW denote
slowly varying dimensionless amplitudes of the fields. The free dynamics of these amplitudes
which is already contained in the time-dependent phases, for example by aL → aL e−ickt, is
equivalent to the one of harmonic oscillators which follows by solving the Helmholtz equation
in a cavity [40].
By inspection of Eq. (A.24) as well as of Eqs. (A.26) and (A.27) we obtain that the Hamiltonian
is independent of the transverse directions x and y, that is H 6= H(x, y). By means of the
Hamiltonian equations of motion the momenta, px and py, conjugate to these directions are
thus constant. Moreover, by injecting the electrons parallel to wiggler axis the transverse
momenta px = py = 0 are always zero and we are left with a one-dimensional model
characterized by the position z along the wiggler and its conjugate momentum p ≡ pz.
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By explicitly multiplying the single contributions in Eq. (A.24) we arrive at

H = c
√
p2 + e2A2

L + 2e2AL(z, t) ·AW(z, t) + e2A2
W +m2

0c
2 , (A.28)

where no terms with p · A appear. Since the momentum of the electron is directed in
longitudinal direction and the polarization of the fields is transverse we obtain p ·A = 0.
While we neglect the contribution from A2

L due to its smallness we still have to consider the
term with A2

W. However, by assuming that the wiggler field is very strong and does not
change due to the interaction with the electrons we treat it as constant, that is aW ∼= const.
Hence we incorporate the amplitude ÃW ≡ AW|aW| of the wiggler into the effective mass,
according to the relation

m2c2 ≡ m2
0c

2 + e2A2
W = m2

0c
2 + 2e2Ã2

W . (A.29)

By introducing the dimensionless wiggler parameter [48]

a0 ≡
√

2eÃW

m0c
(A.30)

we obtain the simplified form
m = m0

√
1 + a2

0 (A.31)
for this effective mass.

In the non-relativistic case we are allowed to perform the Taylor expansion

H ∼= mc2 + p2

2m + e2

m
AL(z, t) ·AW(z, t) (A.32)

of the square root in Eq. (A.28) in powers of 1/(mc)2. This approximation is just allowed
when the motion of the electron is always non-relativistic resulting in the condition p� mc
for the momentum of the electron in the co-moving frame. The resonant initial momentum
for the classical FEL fulfills this condition as discussed in Chap. 2. Moreover, we estimate
the maximum momentum due to the interaction with the help of the interaction term
e2

m
|AL(z, t)| · |AW(z, t)| and hence we demand for e2|AL||AW| � (mc)2 which is satisfied for

reasonable strengths of the fields.

In the quantum regime of the FEL, however, the dynamics of the electrons is characterized
by the recoil q ≡ 2~k, according to Chap. 5, and we thus require q � 2~k. This constraint
translates to

q

mc
∼= 4γ0

λC
λW

1
1 + a2

0
� 1 (A.33)

in the laboratory frame. Here, we have employed Eq. (A.15) as well as the resonance
condition, Eq. (2.3), for the case of a laser wiggler and have used that γBRm ∼= γm0 according
to Ref. [28]. Since the Compton wavelength λC ≡ (h/m0c) ∼= 2 · 10−12m is very small
the condition, Eq. (A.33), is always fulfilled. Hence, we conclude that the non-relativistic
approach, Eq. (A.32), in the Bambini–Renieri frame is always justified, in the classical as
well as in the quantum regime.
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To investigate the simultaneous interaction of N electrons we simply sum over each electron
from j = 1 to N and arrive at the classical FEL Hamiltonian [61]

H =
N∑

j=1

p2
j

2m + U0

2


aL

N∑

j=1
ei2kzj +a∗L

N∑

j=1
e−i2kzj


 (A.34)

in the Bambini–Renieri frame, where we have explicitly calculated the product of AL and
AW in Eq. (A.32). Moreover, we have defined

U0 ≡
e2ALÃW

m
(A.35)

as the height of the potential. We note that H is independent of time since the fields are
circularly polarized. However, we can also assume other kinds of polarizations and effectively
arrive at a Hamiltonian of the form of Eq. (A.34). The additional terms due to another
choice of polarization represent rapid oscillations with 2ω which can be neglected.
The classical dynamics of the system is given by the Hamiltonian equations of motions

żj = ∂H

∂pj
= pj
m

ṗj = −∂H
∂zj

= U0

2i
(
aL ei2kzj −a∗L e−i2kzj

) (A.36)

for the electrons and
ȧL = {aL, H} = −ig

N∑

j=1
e−i2kzj (A.37)

for the laser field. The Poisson brackets {.., ..} from classical mechanics [142] can be calculated
by the analogy of the field amplitude to a harmonic oscillator. We note that the frequency g is
proportional to the potential height U0 and its explicit form depends on the exact definitions
of AL and aL.

A.2.2 Quantization

We quantize electrons as well fields by substituting the positions and momenta of the electrons
as well as the amplitudes of the fields by their operator versions which commute according to
the relations 




[ẑj, p̂j] = i~[
âL, â

†
L

]
= 1[

âW, â
†
W

]
= 1 .

(A.38)

Since we have performed the quantization in the Schrödinger picture the fundamental
operators are time-independent and we arrive at the expressions

ÂL(ẑj) ≡ AL
(
âL e eikẑj +â†L e∗ e−ikẑj

)
(A.39)
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and
ÂW(ẑj) ≡ AW

(
âW e e−ikẑj +â†W e∗ eikẑj

)
(A.40)

for the quantized vector potentials of the laser and the wiggler field, respectively.
The many-electron Hamiltonian operator then reads in analogy to Eq. (A.34)

Ĥ = ~ωâ†LâL + ~ωâ†WâW +
N∑

j=1

p̂2
j

2m + ~g̃


âLâ†W

N∑

j=1
ei2kẑj +â†LâW

N∑

j=1
e−i2kẑj


 , . (A.41)

The first two terms in Eq. (A.41) correspond to the free dynamics of the laser field and the
wiggler field, respectively, while

g̃ ≡ e2ALAW

~m
(A.42)

denotes the coupling constant of electrons and fields.
Similar to the classical case we incorporate the free motion of the fields into the phases and
thus make the unitary transformation

Ĥ → e−iωtâ
†
LâL e−iωtâ

†
WâW

(
Ĥ − ~ωâ†LâL − ~ωâ†WâW

)
eiωtâ

†
LâL e+iωtâ†WâW (A.43)

which yields the relations âL → âL e−iωt and â†W → â†W e−iωt [40] for the corresponding field
operators. We note that in the interaction part of the Hamiltonian, Eq. (A.41), just combi-
nations of the form âLâ

†
W are present which stay unchanged during the transformation since

the phases with different signs cancel. Hence, the transformed Hamiltonian is independent of
time just like in the classical case.
Moreover, we assume that the wiggler field is strong an thus we neglect its depletion, that is
âW ∼=

√
nW = const. Hence, we define the amplitude ÃW ≡ AW

√
nW of the wiggler while

the laser field is characterized by the vacuum amplitude [40]

AL ≡
√

~
2ε0ωLV

(A.44)

depending on quantities in the lab frame with ε0 and V denoting the vacuum permittivity
and the quantization volume, respectively.
Finally, we obtain the fully-quantized, many-particle Hamiltonian [101]

Ĥ =
N∑

j=1

p̂2
j

2m + ~g


âL

N∑

j=1
ei2kẑj +â†L

N∑

j=1
e−i2kẑj


 (A.45)

in the Bambini–Renieri frame with

g ≡ e2ALÃW

~m
(A.46)

denoting the coupling constant. The dynamics of the system can either be obtained by the
Schrödinger equation for a time-dependent state vector |Ψ(t)〉 or by Heisenberg equations
of motion for time-dependent operators Ô(t) in the Heisenberg picture. In both cases we
characterize the FEL dynamics with the Hamiltonian in Eq. (A.45).
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Table A.1: Important parameters for the classical FEL in the Bambini–Renieri frame (left)
and in the laboratory frame (right).

Bambini–Renieri frame laboratory frame
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A.3 Transformed parameters

In Tab. A.1 we have listed the most important parameters for the classical regime and in
Tab. A.2 we have presented the corresponding quantities for the Quantum FEL in terms
of the Bambini–Renieri frame (with prime) and of the laboratory frame (without prime),
respectively. In the derivation of the transformed parameters we have made use of the
prescriptions for the wave number k′, Eq. (A.15), and the momentum p′, Eq. (A.18), in a
laser wiggler.
However, we have to be cautious when we perform this transformation: when an electron
leaves the accelerator it is not characterized by the longitudinal dimensionless energy γ ∼= γBR
and the effective mass m, Eq. (A.31), but instead by the free energy γ0 and bare mass m0,
as discussed for example in Refs. [28, 143]. By the relation γm ∼= γ0m0 [28] we derive the
connection

γ ∼= γ0√
1 + a2

0
(A.47)

of γ to γ0. Moreover, we have to take time dilatation into account

T ′ = T

γ
= T

γ0

√
1 + a2

0 , (A.48)

where we have used Eq. (A.47) in the second step.
In an FEL with an electromagnetic undulator the wavelength λL of the laser field is connected
via the resonance condition, Eq. (2.3),

λL = λW
4γ2 = λW

4γ2
0

(1 + a2
0) (A.49)

to the wiggler wavelength λW, the dimensionless electron energy γ0, and the wiggler parameter
a0. In the derivation of Tabs. A.1 and A.2 we have always used Eq. (A.49) to express λL in
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Table A.2: Important parameters for the Quantum FEL in the Bambini–Renieri frame (left)
and in the laboratory frame (right).

Bambini–Renieri frame laboratory frame

ωrT
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N
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π
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terms of these three quantities. Additionally, we have assumed that kL � kW, for a high
value of γ0 in Eq. (A.49), and we thus have made the approximation (kL + kW) ∼= kL.
Besides the explicit expressions Eqs. (A.30), (A.44), and (A.46) for the wiggler parameter
a0, the vacuum amplitude AL, and the coupling constant g, respectively, we have also have
made use of the Compton wavelength

λC ≡
h

m0c
(A.50)

for the electron as well as the classical electron radius

re ≡
e2

4πε0m0c2 (A.51)

which are fundamental constants. Moreover, we have identified the ratio of the electron
number N and the volume V with the particle density ne ≡ N/V in the electron beam and
have recalled the identity κ ≡ 4(ω′rT ′)(gT ′). Finally, we note that an intensity I is related
by [13]

I ≡ ~ωLc

V
〈n̂〉 (A.52)

to the corresponding mean number of photons.



B Calculations in Heisenberg Picture

In this appendix we present the detailed calculations for the quantum corrections to the FEL
gain in the Heisenberg picture discussed in Chap. 3. We begin with the treatment of various
commutation relations which are helpful throughout these calculations. Then we search for
the perturbative solution of the operator version, Eq. (3.11), of the pendulum equation for
the electron motion. With this solution we are finally in the position to compute the classical
gain and its quantum corrections.

B.1 Commutation relations
The main difference between classical position z and momentum p and their quantum versions
ẑ and p̂ is that the latter ones are operators which do not commute, but instead behave
according to the relation

[ẑ, p̂] = i~ (B.1)
which is the reason for quantum effects in the FEL. We emphasize that this relation is only
valid for equal times, that is for ẑ(t) and p̂(t).
Written in terms of the dimensionless variables




θ̂ ≡ 2kẑ
℘̂ ≡ 2kT

m
p̂

(B.2)

introduced in Eq. (2.34) the commutation relation Eq. (B.1) transforms to
[
θ̂, ℘̂

]
= i2ωrT , (B.3)

where we have used the definition of the recoil frequency ωr from Eq. (3.2).
Two very general identities for products of operators and for inverse operators read

[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
(B.4)

and [
Â, B̂−1

]
= −B̂−1

[
Â, B̂

]
B̂−1 , (B.5)

respectively, where Â, B̂ and Ĉ denote arbitrary operators while B̂−1 is the inverse of B̂,
defined by B̂B̂−1 = B̂−1B̂ = 1. While the first relation, Eq. (B.4), can be proved in a
straightforward way the second one, Eq. (B.5), needs a bit more effort: By inserting the unity
operator and using Eq. (B.4) we obtain


Â, B̂−1 B̂−1B̂︸ ︷︷ ︸

=1


 =

[
Â, B̂−1B̂−1

]
B̂ + B̂−2

[
Â, B̂

]
. (B.6)
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Employing Eq. (B.4) a second time yields

0 = B̂−1
[
Â, B̂−1

]
B̂ + B̂−2

[
Â, B̂

]
(B.7)

where we have subtracted
[
Â, B̂−1

]
on both sides of the equation. The relation Eq. (B.5) is

now obtained straightforwardly.
These general identities show to be helpful in the calculations presented in the following
sections, for example for the commutator

[
θ̂, ℘̂−1

]
= −i2ωrT ℘̂

−2 (B.8)

which follows directly from Eqs. (B.1) and (B.5) or for the relation
[
θ̂, ℘̂−2

]
= −i4ωrT ℘̂

−3 , (B.9)

where we have additionally made use of Eq. (B.4).
In our investigations of the Heisenberg equations there frequently occur exponentials of the
operators θ̂ and ℘̂. Therefore, we need explicit expressions of commutators including these
exponentials. Specifically we often make use of the identities

[
℘̂, e±iθ̂

]
= ±2ωrT e±iθ (B.10)

and [
θ̂, e±i℘̂τ

]
= ∓2ωrTτ e±i℘̂τ = ∓2ωrT ℘̂

−1
(
℘̂τ e±i℘̂τ

)
(B.11)

which both emerge by expanding the corresponding exponential. The commutators
[
θ̂, ℘̂n

]

and
[
℘̂, θ̂n

]
, respectively, then are solved via induction and with the help of Eqs. (B.1)

and (B.4). Using Eq. (B.11) we obtain for example the relation
[
θ̂, ℘̂−2 e±i℘̂τ

]
= −2ωrT℘

−3
(
2 e±i℘̂τ ±℘̂τ e±i℘̂τ

)
, (B.12)

where we have additionally recalled Eqs. (B.4) and (B.9).
Another important property of operators is described by the Baker–Campbell–Hausdorff
theorem [82]

eÂ B̂ e−Â =
∞∑

m

1
m!

[
Â, B̂

]
m

(B.13)

including the nested commutators
[
Â, B̂

]
m+1
≡
[
Â,
[
Â, B̂

]
m

]
(B.14)

defined in a recursive way with [
Â, B̂

]
0
≡ B̂ (B.15)

for m = 0. We use this theorem to derive the identity

ei℘̂τ e±iθ̂ = e±i2ωrTτ e±iθ̂ ei℘̂τ . (B.16)
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We start the proof by rewriting Eq. (B.16) such that Eq. (B.13) can be applied yielding

ei℘̂τ e±iθ̂ =
(
ei℘̂τ e±iθ̂ e−i℘̂τ

)
ei℘̂τ

=
∞∑

m

(iτ)m
m!

[
℘̂, e±iθ̂

]
m

ei℘̂τ .
(B.17)

The commutator [
℘̂, e±iθ̂

]
= (±2ωrT )m e±iθ̂ (B.18)

is easily calculated via induction which brings us directly to Eq. (B.16). Moreover, we can
derive

e−i℘̂τ e±iθ̂ = e∓i2ωrTτ e±iθ̂ e−i℘̂τ (B.19)
in an analogous way as shown for Eq. (B.16).
The alternative form [82]

eÂ+B̂ = eÂ eB̂ e−
1
2 [Â,B̂] e

1
6(2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) ... (B.20)

of the Baker–Campbell–Hausdorff formula is also very important for our following calculations.
For example, we obtain the identity

e±iθ̂±i℘̂τ = e±iθ̂ e±i℘̂τ eiωrTτ

= e±i℘̂τ e±iθ̂ e−iωrTτ
(B.21)

which follows from Eqs. (B.1) and (B.20). We emphasize that this simple expression in
Eq. (B.21) arises because the commutator of Eq. (B.1) is a c-number and all nested commu-
tators are zero.

B.2 Perturbative solution
We proceed by explicitly performing the perturbative solution of the pendulum equation,
Eq. (3.11), for the electron dynamics in the Heisenberg picture. We have to go to the third
order of the expansion since the quantum corrections to the classical FEL gain cancel in
second order.

B.2.1 Free motion
According to Chap. 3 we have to solve

d2

dτ 2 θ̂ = κ|aL|
2

(
eiθ̂− e−iθ̂

)
. (B.22)

In the small-signal regime the right-hand side of Eq. (B.22) acts as a perturbation to the
free motion. Hence, we expand the solution in powers of the coupling strength κ|aL| which
has to be a small parameter for this expansion to converge. Moreover, we demand that the
quantum corrections are of the same order of the coupling, that is ωrT ∼ κ|aL|.
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The zeroth order of our perturbative expansion is described by the free motion

θ̂(0) = θ̂(in) + ℘̂(in)τ (B.23)

of the electron, where θ̂(in) and ℘̂(in) denote the operators for the dimensionless coordinate
and momentum at time τ = 0 prior to interaction.

B.2.2 First order

To find the next higher order for the solution of Eq. (B.22) we have to insert the zeroth-order
term back into the pendulum equation, Eq. (B.22). During this procedure we encounter the
expression

eiθ̂(0) ∼= eiθ̂(in) ei℘̂(in)τ +O(ωrT ) . (B.24)
Due to the Baker–Campbell–Hausdorff relation, Eq. (B.20), we have to consider the expo-
nential eiωrTτ . However, when we expand this exponential in terms of ωrT we find that this
procedure would lead to terms of higher order. Hence, for the first-order solution we can
neglect these contributions.
The equation in first order reads

d2

dτ 2 θ̂
(1) = κ|aL|

2i
(
eiθ̂(in) ei℘̂(in)τ − e−iθ̂(in) e−i℘̂(in)τ

)
(B.25)

which we solve by a double integration with respect to time from 0 to τ . This procedure
yields the expressions

θ̂(1) = κ|aL|
2

[
eiθ̂in ℘̂(in)−2h

(1)
+ (℘̂(in)τ) + e−iθ̂in ℘̂(in)−2h

(1)
− (℘̂(in)τ)

]
, (B.26)

where we have defined 


h

(1)
+ (℘τ) ≡ −1

i
(ei℘τ −1) + ℘τ

h
(1)
− (℘τ) ≡ 1

i
(e−i℘τ −1) + ℘τ

(B.27)

as characteristic functions for positive and negative phase iθ̂(in), respectively.
We emphasize that we ordered the operators in the first-order solution, Eq. (B.26), in such a
way that terms with θ̂(in) are left of the ones with ℘̂(in). This ordering is helpful when we
later calculate the gain.

B.2.3 Second order

The equation for second order arises by inserting the expressions θ̂(0) and θ̂(1), Eqs. (B.23)
and (B.26), into the pendulum equation, Eq. (B.22), and by keeping only terms of second
order. We obtain for the exponential

eiθ̂(0)+iθ̂(1) ∼= eiθ̂(0) eiθ̂(1) e
1
2 [θ̂(0),θ̂(1)]

= eiθ̂(in) ei℘̂(in)τ eiωrTτ eiθ̂(1) +O[(κ|aL|) · (ωrT )] ,
(B.28)
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where we have used in both steps the Baker–Campbell–Hausdorff theorem, Eq. (B.20). We
note that commutator between θ̂(0) and θ̂(1) is of the order of (κ|aL|) · (ωrT ) and hence would
lead to contributions of third order in the pendulum equation, Eq. (B.22). Hence, we neglect
this term due to the Baker–Campbell–Hausdorff formula for the time being.
Next we perform a Taylor expansion of the exponentials in Eq. (B.28) which include first
order quantities, namely θ(1) and ωrT . This procedure yields

(
eiθ̂
)(2) ∼= eiθ̂(in) ei℘̂(in)τ

[
iθ̂(1) + i(ωrT )τ

]
(B.29)

for the contribution of eiθ̂ in the second order of our perturbative expansion.
After calculating the corresponding expression for e−iθ̂ in an analogous way we obtain from
the pendulum equation, Eq. (B.22), the relation

d2

dτ 2 θ̂
(2) =κ

2|aL|2
4

{
℘̂(in)−2

[
h

(1)
− (℘̂(in)τ) ei℘̂(in)τ +h

(1)
+ (℘̂(in)τ) e−i℘̂(in)τ

]

+ ei2θ̂(in)
℘̂(in)−2

[
−ih(1)

+ (℘̂(in)τ) ei℘̂(in)τ
]

+ e−i2θ̂(in)
℘̂(in)−2

[
−ih(1)

− (℘̂(in)τ) e−i℘̂(in)τ
]}

+ ωrT
κ|aL|

2 ℘̂(in)−1
[
eiθ̂(in) (

℘̂(in)τ ei℘̂(in)τ
)

+ e−iθ̂(in) (−℘̂(in)τ e−i℘̂(in)τ
)]
,

(B.30)
where we have used Eqs. (B.26) and (B.29). We emphasize that we again have ordered the
operators such that all terms with θ̂(in) are on the left. Due to this ordering there emerges an
additional term since in Eq. (B.29) there is the exponential ei℘̂(in)τ on the left of the e±iθ̂(in)

of θ̂(1), Eq. (B.26). We bring this exponential with ℘̂(in) to the right according to Eq. (B.16)
and obtain corrections of the order of ωrT . However, these corrections are higher than second
order and we neglect them for the time being.
From Eq. (B.30) we deduce that θ̂(2) consists of a part proportional to κ2|aL|2 and one
including ωrT . While the first one is purely classical the latter one arises because the
operators do not commute and hence is a quantum mechanical contribution. That is why we
make the distinction

θ̂(2) = θ̂
(2)
cl + θ̂(2)

qm (B.31)

between the classical θ̂(2)
cl and the quantum part θ̂(2)

qm.
The classical contribution reads

θ̂
(2)
cl ≡

κ|aL|2
4

[
℘̂(in)−4h

(2)
0 (℘̂(in)τ) + e2iθ̂(in)

℘̂(in)−4h
(2)
+2(℘̂(in)τ) + e−2iθ̂(in)

℘̂(in)−4h
(2)
−2(℘̂(in)τ)

]
,

(B.32)
where we have integrated twice over time and have introduced the characteristic functions





h
(2)
0 (℘τ) ≡ 3

i
(ei℘τ − e−i℘τ )− ℘τ(ei℘τ + e−i℘τ )− 4℘τ

h
(2)
+2(℘τ) ≡ 1

4i ei2℘τ +1
i

ei℘τ − 5
4i − 1

2℘τ − ℘τ ei℘τ

h
(2)
−2(℘τ) ≡ − 1

4i e−i2℘τ −1
i

e−i℘τ + 5
4i − 1

2℘τ − ℘τ e−i℘τ
(B.33)

for the term without dependency on θ̂(in) and for the ones with the phase factors e±2iθ̂(in) ,
respectively.
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Similarly, we obtain

θ̂(2)
qm ≡ ωrT

κ|aL|
2

(
eiθ̂(in)

℘̂(in)−3q
(2)
+ (℘̂(in)τ) + e−iθ̂(in)

℘̂(in)−3q
(2)
− (℘̂(in)τ)

)
(B.34)

for the quantum corrections to θ̂(2) with



q

(2)
+ (℘τ) ≡ 2

i
ei℘τ −2

i
− ℘τ ei℘τ −℘τ

q
(2)
− (℘τ) ≡ 2

i
e−i℘τ −2

i
+ ℘τ e−i℘τ +℘τ

(B.35)

for the terms with positive and negative phase iθ̂(in), respectively.
Since we have found quantum mechanical terms in the phase θ̂ we would naively assume that
these corrections are sufficient to obtain quantum corrections to the gain. However, we later
on show that these contributions cancel when we compute the gain. Therefore, we have to go
to the next higher order of our perturbative treatment and eventually take care of saturation
terms.

B.2.4 Third order
Analogous to the procedure in first and second order, for the third order we insert the
expansion of θ̂ into the pendulum equation, Eq. (B.22), and keep only terms up to third
order. This yields

eiθ̂(0)+iθ̂(1)+θ̂(2) ∼= eiθ(in) ei℘̂(in)τ eiωrTτ eiθ̂(1)+θ̂(2) e
1
2 [θ̂(0),θ̂(1)] , (B.36)

where we have used the Baker–Campbell–Hausdorff relation, Eq. (B.20), two times. In
contrast to second order, the commutator between θ̂(0) and θ̂(1) does play a role here since it
scales with (ωrT )κ|aL|.
After expanding the exponentials in Eq. (B.36) we arrive at the third-order contribution

(
eiθ̂
)(3)

= eiθ̂(in) ei℘̂(in)τ
[
−1

2
(
θ(1)2

)
cl

+ iθ̂
(2)
cl

]

+ eiθ̂(in) ei℘̂(in)τ

(
iθ̂(2)

qm + iθ̃(1) − ωrTτ θ̂
(1) + 1

2
[
θ̂(0), θ̂(1)

]
− (ωrT )2 τ

2

2

) (B.37)

of eiθ̂. The first line in Eq. (B.37) contains all classical terms. The subscript cl of the square
of θ̂(1) is necessary because of the ordering of all θ̂(in) to the left. Quantum corrections due to
this ordering emerges since θ̂(in) and ℘̂(in) do not commute and thus they include an additional
ωrT . Hence, this quantum contribution is of fourth order and we can neglect it for the time
being.
For the quantum mechanical terms in the second line of Eq. (B.37) we have to compute the
commutator between θ̂(0) and θ̂(1). With the help of the identities Eqs. (B.8), (B.9), (B.10)
and (B.12) as well as with the explicit expression, Eq. (B.26), for θ̂(1) we obtain

1
2
[
θ̂(0), θ̂(1)

]
= ωrT

κ|aL|
2

(
eiθ̂(in)

℘̂(in)−3K+(℘̂(in)τ) + e−iθ̂(in)
℘̂(in)−3K−(℘̂(in)τ)

)
(B.38)
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with 


K+(℘τ) ≡ 2 ei℘τ −2 + 2

i
℘τ + (℘τ)2

K−(℘τ) ≡ −2 e−i℘τ +2 + 2
i
℘τ − (℘τ)2 (B.39)

as characteristic functions for positive and negative phase, respectively.

The next term in Eq. (B.37) that we have to discuss is given by θ̃(1). This term arises due to
the ordering of eiθ̂(in) ei℘̂(in)τ θ(1) with respect to the operators θ̂(in) and ℘̂(in) as discussed in
the preceding section. When we put all operators with ℘̂(in) to the left we arrive at

eiθ̂(in) ei℘̂(in)τ θ̃(1) = ωrT
κ|aL|

2

{
ei2θ̂(in)

℘̂(in)−3
[
−2
i
℘̂(in)τh

(1)
+ (℘̂(in)τ) ei℘̂(in)τ

]

+℘̂(in)−3
[2
i
℘̂(in)τh

(1)
− (℘̂(in)τ) ei℘̂(in)τ

]}
,

(B.40)

where we have recalled Eq. (B.16) and expanded the result in first order of ωrT and subtracted
the zeroth order which is the classical term. In an analogous procedure we derive with the
help of Eq. (B.19) the relation

e−iθ̂(in) e−i℘̂(in)τ θ̃(1) = ωrT
κ|aL|

2

{
℘̂(in)−3

[2
i
℘̂(in)τh

(1)
+ (℘̂(in)τ) e−i℘̂(in)τ

]

+ e−i2θ̂(in)
℘̂(in)−3

[
−2
i
℘̂(in)τh

(1)
− (℘̂(in)τ) e−i℘̂(in)τ

]} (B.41)

which becomes important when we consider e−iθ̂. Hence, the first-order ‘classical’ quantity
θ(1) is responsible for the second order ‘quantum’ contribution θ̃(1) due to the ordering of
non-commuting operators. We also have to order the other quantities in Eq. (B.37) in such
a way. However, theses corrections again include ωrT and become only important in the
next higher orders of our expansion. Moreover, we note that the term ωrT θ̂

(1) appears in
Eq. (B.37) which arises as a cross term originating from two different exponentials.

Due to the appearance of classical as well as quantum contributions in Eq. (B.37) we make
the distinction

θ̂(3) = θ̂
(3)
cl + θ̂(3)

qm (B.42)

similar to our procedure for θ̂(2).

We start with the discussion of the classical part θ̂(3)
cl . After calculating (e−iθ̂)(3) in an analogous

way that has led to Eq. (B.37), and by using the expressions, Eqs. (B.26) and (B.32), for θ̂(1)

and θ̂(1)
cl , respectively, in the pendulum equation Eq. (B.22) we obtain

d2

dτ 2 θ̂
(3)
cl = κ3|aL|3

8
{

eiθ̂(in)
℘̂(in)−4

[
h

(2)
0 (℘̂(in)τ) ei℘̂(in)τ +h

(2)
+2(℘̂(in)τ) e−i℘̂(in)τ

−1
i
h

(1)
+ (℘̂(in)τ)h(1)

− (℘̂(in)τ) ei℘̂(in)τ + 1
2ih

(1)
+

2(℘̂(in)τ) e−i℘̂(in)τ
]

+ ei3θ̂(in)
℘̂(in)−4

[
h

(2)
+2(℘̂(in)τ) ei℘̂(in)τ − 1

2ih
(1)
+

2(℘̂(in)τ) ei℘̂(in)τ
]

+ h.c.
}

(B.43)
for the dynamics of θ̂(3)

cl .
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When we integrate Eq. (B.43) over time τ we arrive at

θ̂
(3)
cl = κ3|aL|3

8
(
eiθ̂(in)

℘̂(in)−6h
(3)
+ (℘̂(in)τ) + e−iθ̂(in)

℘̂(in)−6h
(3)
− (℘̂(in)τ)

+ ei3θ̂(in)
℘̂(in)−6h

(3)
+3(℘̂(in)τ) + e−i3θ̂(in)

℘̂(in)−6h
(3)
−3(℘̂(in)τ)

)
,

(B.44)

where we have defined the characteristic functions h(3)
± corresponding to phase factors e±iθ̂(in)

and h
(3)
+3 corresponding to e±3iθ̂(in) . When we later calculate the gain only the terms for e±iθ̂(in)

are of importance while for the other contributions the expectation value vanish. Hence, we
restrict ourselves to the calculation of h(3)

± which yields

h
(3)
+ (℘τ) ≡ 1

4

(
−6
i

ei2℘τ −47
i

ei℘τ +31
i

e−i℘τ +22
i

+ 2℘τ ei2℘τ +32℘τ ei℘τ +14℘τ e−i℘τ

+42℘τ + 4
i
(℘τ)2 ei℘τ −2

i
(℘τ)2 e−℘τ

) (B.45)

while
h

(3)
− (℘τ) =

(
h

(3)
+ (℘τ)

)†
. (B.46)

We now proceed to the discussion of the quantum part θ̂(3)
qm. With the help of the expressions in

Eqs. (B.26), (B.34), (B.38) and (B.40) as well as Eq. (B.37) and the pendulum equation (B.22)
we obtain

d2

dτ 2 θ̂
(3)
qm=ωrT

κ2|aL|2
4

{
℘̂(in)−3

[(
q

(2)
− +K−

i
+ ℘̂(in)τ

i
h

(1)
−

)
ei℘̂(in)τ+

(
q

(2)
+ −

K+

i
+ ℘̂(in)τ

i
h

(1)
+

)
e−i℘̂(in)τ

]

+ ei2θ̂(in)
℘̂(in)−3

(
q

(2)
+ +K+

i
− 3℘̂(in)τ

i
h

(1)
+

)
ei℘̂(in)τ+e−i2θ̂(in)

℘̂(in)−3
(
q

(2)
− −

K−
i
− 3℘̂(in)τ

i
h

(1)
−

)
e−i℘̂(in)τ

}

+(ωrT )2κ|aL|
2

[
eiθ̂(in)

℘̂(in)−2
(
−(℘̂(in)τ)2

2i ei℘̂(in)τ

)
+ e−iθ̂(in)

℘̂(in)−2
(

(℘̂(in)τ)2

2i e−i℘̂(in)τ

)]

(B.47)
which we again solve by integrating twice over time. For the sake of simplicity we have
omitted in Eq. (B.47) the argument ℘̂(in)τ of the different characteristic functions.
Finally, we arrive the expression

θ̂(3)
qm = ωrT

κ2|aL|2
4

(
℘̂(in)−5q

(3)
0 (℘̂(in)τ) + ei2θ̂(in)

℘̂(in)−5q
(3)
+2(℘̂(in)τ) + e−i2θ̂(in)

℘̂(in)−5q
(3)
−2(℘̂(in)τ)

)

+(ωrT )2κ|aL|
2

(
eiθ̂(in)

℘̂(in)−4q
(3)
+ (℘̂(in)τ) + e−iθ̂(in)

℘̂(in)−4q
(3)
− (℘̂(in)τ)

)
,

(B.48)
where we have defined




q

(3)
+ (℘τ) ≡ −3

i
(ei℘τ −1) + 2℘τ ei℘τ +℘τ + 1

2i(℘τ)2 ei℘τ

q
(3)
− (℘τ) ≡ 3

i
(e−i℘τ −1) + 2℘τ e−i℘τ +℘τ − 1

2i(℘τ)2 e−i℘τ
(B.49)

which are the characteristic functions corresponding to e±iθ̂(in) , respectively. Again we have
refrained from explicitly writing down the characteristic functions q(3)

0 and q
(3)
±2 corresponding
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to terms independent of θ̂(in) and depending on e±i2θ̂(in) , respectively, since they do not
contribute to the gain.

B.3 Calculation of gain

Having found a perturbative solution of the pendulum equation, Eq. (B.22), we are finally in
the position to calculate the gain for the FEL by inserting this solution into Eq. (3.13) which
describes the dynamics of the laser field during a single pass of electrons, and expand this
expression up to third order. Besides classical gain and self saturation this procedure finally
yields the quantum corrections to the gain.

B.3.1 Expansion

In Eq. (3.13) we have to consider the exponentials e±iθ̂. That is why we have to insert
our perturbative expansion of θ̂ into these exponentials to calculate the change of the field
amplitude |aL| during a single pass of electrons. For the example of positive phase iθ̂ we
obtain

eiθ̂(0)+iθ̂(1)+iθ̂(2)+iθ̂(3) ∼= ei℘̂(in)τ eiθ̂(in) e−iωrTτ eiθ̂(1)+iθ̂(2)+iθ̂(3) e
1
2 [θ̂(0),θ̂(1)]+ 1

2 [θ̂(0),θ̂(2)] e−
i
6 [θ̂(0),[θ̂(0),θ̂(1)]] ,

(B.50)
where we have considered terms up to third order and have made use of the Baker–Campbell–
Hausdorff theorem, Eq. (B.20). We emphasize that the ordering is now a bit different from
the preceding section, where we have put all terms with θ̂(in) to the left. Here, we have written
the contribution from eiθ̂(0) such that ei℘̂(in)τ is on the left. However, all other contributions
are ordered with θ̂(in) on the left. In this way the term eiθ̂(in) from θ̂(0) directly meets e−iθ̂(in)

from the higher orders which gives unity and thus further ordering is unnecessary. These
terms independent of θ̂(in) are responsible for the gain. By assuming a momentum eigenstate
as initial condition for the electron, which has the feature of a uniform distribution in position,
all expectation values with 〈emiθ̂(in)〉 = 〈p|p+mq〉 are zero for m 6= 0.
We note that in Eq. (B.50) we had to take care of the nested commutator of θ(0) with [θ̂(0), θ̂(1)]
which emerges from Eq. (B.20) and scales with (ωrT )2κ|aL|. Moreover, we have to consider
the commutator of θ̂(0) with θ̂(2) which is also of third order.
Next, we perform a Taylor expansion of the exponentials in Eq. (B.50). While the zeroth
order of this expansion is simply given by ei℘̂(in)τ eiθ̂(in) we obtain

(
eiθ̂
)(1)

cl
= ei℘̂(in)τ eiθ̂(in)

iθ̂(in) (B.51)

and (
eiθ̂
)(1)

qm
= −iωrTτ ei℘̂(in)τ eiθ̂(in) (B.52)

for first order, where the first relation, Eq. (B.51), describes the classical part and the second
one, Eq. (B.52), gives the quantum part. In contrast to the latter expression, the first one
gives a nonzero contribution to the gain and is responsible for the classical gain of the FEL.
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In second order we obtain
(
eiθ̂
)(2)

cl
= ei℘̂(in)τ eiθ̂(in)

(
iθ̂

(2)
cl −

1
2
(
θ̂(1)2

)
cl

)
(B.53)

for the classical part and

(
eiθ̂
)(2)

qm
= ei℘̂(in)τ eiθ̂(in)

(
iθ̂(2)

qm −
(ωrT )2

2 τ 2 + 1
2
[
θ̂(0), θ̂(1)

]
+ ωrT θ̂

(1)τ

)
(B.54)

for the quantum mechanical one. Both terms do not contribute to the dynamics of the laser
field since there are no terms independent of θ̂(in).
We proceed by calculating the third order terms which read

(
eiθ̂
)(3)

cl
= ei℘̂(in)τ eiθ̂(in)

(
+iθ̂(3) − θ̂(1)θ̂

(2)
cl −

i

6 θ̂
(1)3

)
(B.55)

and
(
eiθ̂
)(3)

qm
= ei℘̂(in)τ eiθ̂(in)

(
iθ̂(3)

qm −
1
2
(
θ̂(1)2

)
qm
− θ̂(1)θ̂(2)

qm + i

6(ωrT )3τ 3 + 1
2
[
θ̂(0), θ̂

(2)
cl

]

+1
2
[
θ̂(0), θ̂(2)

qm

]
− i

6
[
θ̂(0),

[
θ̂(0), θ̂(1)

]]
− (ωrT )2

2 τ 2iθ̂(1) + iθ̂(1) 1
2
[
θ̂(0), θ̂1

]

+iωrTτ
1
2
(
θ̂(1)2

)
cl

+ ωrTτ θ̂
(2)
cl + ωrTτ θ̂

(2)
qm − iωrTτ

1
2
[
θ̂(0), θ̂(1)

])
,

(B.56)
where the classical term, Eq. (B.55), causes self saturation and the quantum mechanical
part, Eq. (B.56), gives us the first nonzero quantum corrections to the classical gain. The
underlined terms in Eq. (B.56) contain contributions which do not depend on θ̂(in) and
therefore give rise to non-vanishing expectation values in the calculation of the gain. We note
that in Eqs. (B.55) and (B.56) several cross terms occur which originate from the different
exponentials and their expansions.

B.3.2 Classical gain

The dynamics of the laser field is given by the differential equation, Eq. (3.13),

d
dτ |aL| = −

gTN

2i 〈e
iθ̂− e−iθ̂〉 . (B.57)

In our approach considering the low-gain and small-signal regime we insert the perturbative
expressions for e±iθ̂, developed in the preceding section, into Eq. (B.57) take the expectation
value and treat all |aL| on the right-hand side as constant. Then, the gain follows from a
straightforward integration over time t.
We assume that the initial state of the electron is given by the momentum eigenstate |p̄〉
which corresponds to a sharp momentum and a uniform distribution in position. Hence, all
contributions with emiθ̂(in) with m 6= 0 vanish as already discussed.
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With the help of Eq. (B.51) we arrive at
(

d
dτ |aL|

)(1)

cl
= −κ|aL|

1
4i℘̄2

[
h

(1)
− (℘̄τ) ei℘̄τ +h

(1)
+ (℘̄τ) e−i℘̄τ

]
(B.58)

for the dynamics of the laser field in first order. As stated in the preceding section the classical
part is the only first-order contribution to the gain. By inserting the explicit expressions,
Eq. (B.27) , for h(1)

± , integrating over time from 0 to T and using the definition of the gain,
Eq. (2.18), we obtain

G
(1)
cl = gTNκ

2
π3A(℘̄) , (B.59)

where we have defined
Acl(℘) ≡ π3

2
1− cos℘− ℘

2 sin℘
℘3 . (B.60)

This result constitutes the Madey gain, Eq. (2.46), which we have already derived in Chapter 2.
The second order, Eq. (B.53), of the expansion of eiθ̂ does not contribute to the gain since
there are no terms which do not depend on θ̂(in) and the expectation value vanishes. Hence,
we turn to the third order, Eq. (B.55), and obtain with the help of Eq. (B.57)
(

d
dτ |aL|

)(3)

cl
=− gTN

2
κ3|aL|3

8
1
℘̄6

[(
h

(3)
− ei℘̄τ +h

(3)
+ e−i℘̄τ

)
+
(
−h(1)
−

2h
(1)
+

ei℘̄τ
2 − h

(1)
+

2h
(1)
−

e−i℘̄τ
2

)

+
(
−1
i
h

(1)
+ h

(2)
−2 ei℘̄τ +1

i
h

(1)
− h

(2)
+2 e−i℘̄τ

)
+
(
−1
i
h

(1)
− h

(2)
0 ei℘̄τ +1

i
h

(1)
+ h

(2)
0 e−i℘̄τ

)]

(B.61)
for the change of |aL| in time. For the sake of simplicity we have omitted the argument
℘̄τ of the different characteristic functions in Eq. (B.61). Using the explicit expressions,
Eqs. (B.27) (B.33) and (B.45), (B.46), for the functions h(1)

± , h(2)
0,±2 and h

(3)
± , respectively, and

integrating over time yields
G

(3)
cl = −gTN4π5 κ

3|aL|2B(℘̄) (B.62)

with
B(℘) ≡ π5

℘7

(9
2 cos 2℘+ 12 cos℘− 33

2 + 11
4 ℘ sin 2℘+ 53

4 ℘ sin℘

−℘
2

2 cos 2℘− 13
4 ℘

2 cos℘− ℘2

4 sin℘
)
.

(B.63)

Due to the negative sign in Eq. (B.62) and the dependency on |aL|2 we can identify G(3)
cl as

the self saturation [22] of the classical FEL.

B.3.3 Quantum corrections

Finally, we are in the position to calculate the quantum corrections to the classical gain,
given by Eqs. (B.59) and (B.62). In first order, Eq. (B.52), of our perturbative expansion
there are no terms independent of θ̂(in) and hence the expectation value of e±iθ̂ vanishes.



192 B.3 Calculation of gain

The second order, Eq. (B.54), of the expansion, however, does not contribute to the gain due
to another reason: When we insert Eq. (B.54) into Eq. (B.57) we obtain
(
d|aL|
dτ

)(2)

qm
= −ωrT

gTN

2
κ2|aL|2

4℘̄3

[(
q

(2)
− + K−

i
+ ℘̄τ

i
h

(1)
−

)
ei℘̄τ +

(
q

(2)
+ −

K+

i
+ ℘̄τ

i
h

(1)
+

)
e−i℘̄τ

]

(B.64)
as quantum mechanical contribution to the laser dynamics in second order. However, by
inspection of the explicit expressions Eqs. (B.27), (B.35) and (B.39) for the functions h(1)

± ,
q

(2)
± and K±, respectively we find

q
(2)
− + K−

i
+ ℘̄τ

i
h

(1)
− = q

(2)
+ −

K+

i
+ ℘̄τ

i
h

(1)
+ = 0 (B.65)

that is the terms in second order cancel. Hence, there is no quantum correction to the gain
in second order and we have to turn to the next higher order.
When we investigate the quantum mechanical terms, Eq. (B.56), of the third-order expansion
of eiθ̂ we need an explicit expression for the commutator of θ̂(0) and θ̂(2)

qm, which reads

1
2
[
θ̂(0), θ̂(2)

qm

]
=
(
eiθ̂(in)

℘̂(in)−4L+(℘̂(in)τ) + e−iθ̂(in)
℘̂(in)−4L−(℘̂(in)τ)

)
. (B.66)

with 


L+(℘τ) ≡ −6 ei℘τ +6− 2

i
℘τ ei℘τ −4

i
℘τ − (℘τ)2

L−(℘τ) ≡ −6 e−i℘τ +6 + 2
i
℘τ e−i℘τ +4

i
℘τ − (℘τ)2 .

(B.67)

We have obtained this result by making use of the commutator relations Eqs. (B.1), (B.4),
(B.8), (B.10) and (B.11).
Moreover, we calculate nested commutator

1
6
[
θ̂(0),

[
θ̂(0), θ̂(1)

]]
=
(
eiθ̂(in)

℘̂(in)−4C+(℘̂(in)τ) + e−iθ̂(in)
℘̂(in)−4C−(℘̂(in)τ)

)
(B.68)

analogously to the derivation of Eq. (B.66). Here, we have defined



C+(℘τ) ≡ 4

i
ei℘τ −4

i
− 4℘τ + 2

i
(℘τ)2 + 2

3(℘τ)3

C−(℘τ) ≡ −4
i

e−i℘τ +4
i
− 4℘τ − 2

i
(℘τ)2 + 2

3(℘τ)3 (B.69)

as the characteristic functions for positive and negative phase iθ̂(in), respectively.
When we combine the expressions for the underlined terms of Eq. (B.56), namely Eqs. (B.26),
(B.35), (B.38), (B.48), (B.66) and (B.68), and insert them into Eq. (B.57) we find
(

d
dτ |aL|

)(3)

qm
= −(ωrT )2 gTN

4
κ|aL|
℘̄4

[(
q

(3)
− ei℘̄τ +q

(3)
+ e−i℘̄τ

)
+
(
K−
i

ei℘̄τ −K+

i
e−i℘̄τ

)

+
(
−C− ei℘̄τ −C+ e−i℘̄τ

)
+
(

(℘̄τ)2

2 h
(1)
− ei℘̄τ +(℘̄τ)2

2 h
(1)
+ e−i℘̄τ

)

+
(
− ℘̄τ

i
q

(2)
− ei℘̄τ − ℘̄τ

i
q

(2)
+ e−i℘̄τ

)
+
(
−℘̄τK− ei℘̄τ +℘̄τK+ e−i℘̄τ

)]

(B.70)
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as quantum contribution of the dynamics of |aL| in third order. With the help of the
definitions Eqs. (B.27), (B.35), (B.39), (B.49), (B.66) and (B.68) for h(1)

± , q(2)
± , K±, q(3)

± , C±
and L±, respectively, Eq. (B.70) simplifies to
(
d|aL|
dτ

)(3)

qm
= −(ωrT )2 gTN

4
κ|aL|
℘̄4

(
−2 sin ℘̄τ + 2℘̄τ cos ℘̄τ + (℘̄τ)2 sin ℘̄τ − (℘̄τ)3

3 sin ℘̄τ
)
.

(B.71)
Integration over time from 0 to T straightforwardly yields the quantum correction

G(3)
qm = −(ωrT )2 2gTN

π5 κQ(℘̄) (B.72)

to the classical gain, where we have used the definition of the gain Eq. (2.18) and have defined

Q(℘) ≡ π5

4℘5

(
4 cos℘− 4 + 3℘ sin℘− ℘2 cos℘− ℘3

6 sin℘
)

(B.73)

characterizing the dependency of the quantum corrections on the initial momentum ℘̄. We
note that Eq. (B.72) is independent of |aL| and hence it is a correction to the linear gain
G

(1)
cl , Eq. (B.59).
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C Operator Ordering and Wigner Function

This appendix about the Wigner function formalism for the FEL is structured in the following
way: After introducing the Wigner distribution function and the Wigner–Weyl ordering for
the semiclassical model in Chap. 3, where only the electrons are quantized, we generalize
this description to a situation, Chap. 4, where, both, laser field and electrons are quantized.
Then we eliminate the electron variables from the equation of motion in the classical limit
and introduce cavity losses. The elimination procedure and the losses are the two ingredients
to derive the Fokker–Planck equation, Chap. 4, governing the laser field dynamics of a
classical FEL oscillator in the small-signal regime. At the end of this appendix, we derive the
propagator corresponding to the phase diffusion of a classical FEL.

C.1 Wigner function for an electron

We first investigate the dynamics of the ‘semiclassical’ model of the FEL in Chapter 3, where
the electron motion is quantized while the laser field is classical. The von Neumann equation

i~
d
dt ρ̂ =

[
Ĥ, ρ̂

]
(C.1)

describes the time evolution of the density operator ρ̂. The Hamiltonian for our system of
consideration reads

Ĥ = p̂2

2m + U0|aL|
2

(
ei2kẑ + e−i2kẑ

)
(C.2)

according to Eq. (3.6).
In the following we consider the Wigner function W corresponding to ρ̂ which is defined [82]
as Fourier transform

W (z, p; t) ≡
∫
dξ
∫
dζ e−izξ e−ipζ χρ̂(ξ, ζ; t) (C.3)

of the characteristic function
χρ̂(ξ, ζ; t) ≡ Tr

{
Ôρ̂

}
. (C.4)

The operator Ô is given by [82]
Ô ≡ eiξẑ+iζp̂ (C.5)

for the case of the Wigner representation. Hence, we transform from an operator to a c-
number description, where we can interpret the variables z and p as position and momentum,
respectively, of the electron.
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When we apply the definition, Eq. (C.4), to the von Neumann equation, Eq. (C.1), with the
Hamiltonian, Eq. (C.2), and cyclically permute the operators in the trace we obtain

∂

∂t
χρ̂(ξ, ζ; t) = − i

~m
Tr
{(
Ô p̂

2

2 −
p̂2

2 Ô
)
ρ̂(t)

}
+ U0|aL|

~

[
Tr
{ 1

2i
(
Ô ei2kẑ − e−i2kẑ Ô

)
ρ̂(t)

}

−Tr
{ 1

2i
(
ei2kẑ Ô − Ô e−i2kẑ

)
ρ̂(t)

}]

(C.6)
for the dynamics of χρ̂.
Using the definition, Eq. (C.5), of Ô as well as the commutation relation, Eq. (3.9), for ẑ
and p̂ yields

Tr
{(
Ô p̂

2

2 −
p̂2

2 Ô
)
ρ̂(t)

}
= −~ξ ∂

∂iζ
χρ̂(ξ, ζ; t) , (C.7)

Tr
{ 1

2i
(
Ô ei2kẑ − e−i2kẑ Ô

)
ρ̂(t)

}
= 1

2i ei~kζ [χρ̂(ξ + 2k, ζ; t)− χρ̂(ξ − 2k, ζ; t)] , (C.8)

and

Tr
{ 1

2i
(
ei2kẑ Ô − Ô e−i2kẑ

)
ρ̂(t)

}
= 1

2i e−i~kζ [χρ̂(ξ + 2k, ζ; t)− χρ̂(ξ − 2k, ζ; t)] . (C.9)

Next, we perform the Fourier transformation according to Eq. (C.3) and obtain
∫
dξ
∫
dζ e−izξ e−ipζ

(
−~ξ ∂

∂iζ
χρ̂(ξ, ζ; t)

)
= − p

m

∂

∂z
W (z, p; t) , (C.10)

∫
dξ
∫
dζ e−izξ e−ipζ

{ 1
2i ei~kζ [χρ̂(ξ + 2k, ζ; t)− χρ̂(ξ − 2k, ζ; t)]

}
= sin 2kz W (z, p− ~k; t) ,

(C.11)
and
∫
dξ
∫
dζ e−izξ e−ipζ

{ 1
2i e−i~kζ [χρ̂(ξ + 2k, ζ; t)− χρ̂(ξ − 2k, ζ; t)]

}
= sin 2kz W (z, p+ ~k; t) .

(C.12)
Hence, we finally arrive at the Quantum Liouville equation

(
∂

∂t
+ p

m

∂

∂z

)
W (z, p; t) = −U0|aL|

~
sin 2kz [W (z, p+ ~k; t)−W (z, p− ~k; t)] (C.13)

which governs the dynamics of the Wigner function W for an electron in the FEL.

C.2 Wigner function for electron and laser field

In contrast to the preceding section we now derive the equation of motion for the Wigner
function for the combined system of electron and quantized laser field in the FEL, which
is the model in Chap. 4. We explicitly perform the operator ordering starting from the
Hamiltonian, Eq. (4.3), and the density operator ρ̂.
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The time evolution of the density operator ρ̂ for the electron and the laser field has to be
calculated from the von Neumann equation, Eq. (C.1), where we have to use the Hamiltonian

Ĥ = p̂2

2m + ~g
(
âL ei2kẑ +â†L e−i2kẑ

)
(C.14)

governing the dynamics for the FEL.
The Wigner function W (z, p, α, α∗; t) of the combined system is defined by the Fourier
transform

W (z, p, α, α∗; t) ≡
∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗ χρ̂(ξ, ζ, β, β∗; t) (C.15)

of the corresponding characteristic function χρ̂(ξ, ζ, β, β∗; t) of the density operator. The
variables z and p again play the role of electron position and momentum, respectively, while
α and α∗ can be interpreted as complex amplitudes of the laser field.
We obtain the characteristic function χρ̂ by the ordering procedure

χρ̂ ≡ Tr
{
Ôρ̂

}
= Tr

{
ÔelÔLρ̂

}
(C.16)

from the density operator, where Ôel and ÔL are given by

Ôel ≡ eiξẑ+iζp̂ (C.17)

and
ÔL ≡ eiβâL+iβ∗âL , (C.18)

respectively, for the particular choice of the Wigner representation [82].
We now transform the von Neumann equation, Eq. (C.1), for the Hamiltonian, Eq. (C.14),
into this representation and arrive at

∂

∂t
χρ̂(ξ, ζ, β, β∗, t) =− i

~
1
m

Tr
{(
Ô p̂

2

2 −
p̂2

2 Ô
)
ρ̂

}

− i

~
U0
(
Tr
{
ÔâL ei2kẑ ρ̂

}
− Tr

{
âL ei2kẑ Ôρ̂

})

− i

~
U0
(
Tr
{
Ôâ†L e−i2kẑ ρ̂

}
− Tr

{
â†L e−i2kẑ Ôρ̂

})
,

(C.19)

where we have inserted the Hamiltonian, Eq. (C.14), into the von Neumann equation Eq. (C.1),
have performed the operator ordering Eq. (C.16) and have made use of the possibility of
permuting operators cyclically in traces.
Inserting the definitions, Eqs. (C.17) and (C.18), for Ôel and ÔL, respectively, as well as
utilizing the Baker–Campbell–Hausdorff theorem, Eq. (3.16), and the commutation relations
[ẑ, p̂] = i~ and [âL, â†L] = 1 for the electron position ẑ and momentum p̂ and for photon
annihilation âL and creation operator â†L, respectively, we obtain the expressions

Tr
{(
Ô p̂

2

2 −
p̂2

2 Ô
)
ρ̂

}
= −~ξ ∂

∂iζ
χρ̂(ξ, ζ, β, β∗; t) , (C.20)
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Tr
{
ÔâL ei2kẑ ρ̂

}
=
(
∂

∂iβ
− iβ∗

2

)
ei~kζ χρ̂(ξ + 2k, ζ, β, β∗; t) , (C.21)

Tr
{
âL ei2kẑ Ôρ̂

}
=
(
∂

∂iβ
+ iβ∗

2

)
e−i~kζ χρ̂(ξ + 2k, ζ, β, β∗; t) , (C.22)

Tr
{
Ôâ†L e−i2kẑ ρ̂

}
=
(

∂

∂iβ∗
+ iβ

2

)
e−i~kζ χρ̂(ξ − 2k, ζ, β, β∗; t) . (C.23)

and
Tr
{
â†L e−i2kẑ Ôρ̂

}
=
(

∂

∂iβ∗
− iβ

2

)
ei~kζ χρ̂(ξ − 2k, ζ, β, β∗; t) . (C.24)

The Fourier transforms of these expressions, Eqs. (C.20)–(C.24) read
∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗

(
−~ξ ∂

∂iζ
χρ̂(ξ, ζ, β, β∗; t)

)

= −i~p ∂
∂z
W (z, p, α, α∗; t) ,

(C.25)

∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗

[(
∂

∂iβ
− iβ∗

2

)
ei~kζ χρ̂(ξ + 2k, ζ, β, β∗; t)

]

=
(
α + 1

2
∂

∂α∗

)
ei2kzW (z, p− ~k, α, α∗; t) ,

(C.26)

∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗

[(
∂

∂iβ
+ iβ∗

2

)
e−i~kζ χρ̂(ξ + 2k, ζ, β, β∗; t)

]

=
(
α− 1

2
∂

∂α∗

)
ei2kzW (z, p+ ~k, α, α∗; t) ,

(C.27)
∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗

[(
∂

∂iβ∗
+ iβ

2

)
e−i~kζ χρ̂(ξ − 2k, ζ, β, β∗; t)

]

=
(
α∗ − 1

2
∂

∂α

)
e−i2kzW (z, p+ ~k, α, α∗; t) ,

(C.28)
and
∫
dξ
∫
dζ
∫
dβ
∫
dβ∗ e−izξ e−ipζ e−iαβ e−iα∗β∗

[(
∂

∂iβ∗
− iβ

2

)
ei~kζ χρ̂(ξ − 2k, ζ, β, β∗; t)

]

=
(
α∗ + 1

2
∂

∂α

)
e−i2kzW (z, p− ~k, α, α∗; t) ,

(C.29)

where we have used the definition, Eq. (C.15), of the Wigner distribution function.
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Finally, we arrive at the equation

∂

∂t
W (z, p, α, α∗; t) =− p

m

∂

∂z
W (z, p, α, α∗; t)

− 1
i

2k~g
2~k

(
α ei2kz −α∗ e−i2kz

)

× [W (z, p+ ~k, α, α∗; t)−W (z, p− ~k, α, α∗; t)]

+ 1
2i

2k~g
2~k

(
∂

∂α∗
ei2kz − ∂

∂α
e−i2kz

)

× [W (z, p+ ~k, α, α∗; t) +W (z, p− ~k, α, α∗; t)]

(C.30)

for the time evolution of the Wigner function.

C.3 Elimination of electron variables
We now present the detailed calculations to eliminate the electron variables from the Quantum
Liouville equation, Eq. (4.11), in the classical limit of the FEL. Since we consider the low-gain
small-signal regime we employ a perturbative approach before we average over positions and
momenta of the electrons. For this purpose, we first outline our procedure before we derive
the explicit expressions in second and fourth order, respectively.

C.3.1 Outline
The structure of the Liouville equation, Eq. (4.11), can be written as

L0W = L1W (C.31)

where the free dynamics of the electron is given by

L0 ≡
∂

∂τ̄
+ ℘

∂

∂θ
(C.32)

while
L1 ≡ −

1
2iκ

[
α eiθ−α∗ e−iθ

] ∂

∂℘
+ 1

2i
κ

2

[
1
ωrT

∂

∂α∗
eiθ− 1

ωrT

∂

∂α
e−iθ

]
(C.33)

describes the interaction of electron and laser field.
By assuming that L1 just causes a small perturbation to the motion of the electron we write
the Wigner function

W ∼= W (0) +W (1) +W (2) + ... (C.34)
as an asymptotic expansion. When we insert this expansion into Eq. (C.31) we obtain




L0W

(n) = L1W
(n−1)

L0W
(0) = 0

(C.35)

which we have to solve order by order.
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Before the electrons enter the wiggler, electron and laser field are uncorrelated leading to an
initial Wigner function of the form

W (℘, α, α∗; τ) = 1
2πg(℘)WL(α, α∗; τ) , (C.36)

whereWL(α, α∗; τ) denotes the Wigner function for the field while the electrons are distributed
uniformly in position space and according to the function g(℘) in momentum space.
The zeroth-order solution of Eq. (C.35)

W (0)(θ, ℘, α, α∗; τ̄) = W (θ − ℘(τ̄ − τ), α, α∗; τ) = W (℘, α, α∗; τ) (C.37)

displaces the argument corresponding to θ of the initial distribution by ℘(τ̄ − τ) according
to the classical trajectories of a free particle. Since the electrons are uniformly distributed
in θ-direction according to Eq. (C.36) the zeroth-order solution equals the initial Wigner
function.
For all higher-order contributions to W (n) the formal solution of Eq. (C.35) reads

W (n)(θ, ℘, α, α∗; τ̄) =
τ̄∫

τ

dτ ′
∫
dθ′Gfree(θ, τ̄ ; θ′, τ ′)

{[
L1W

(n−1)
]

(θ′, ℘′; τ ′)
}
, (C.38)

where we have applied L1 on the solution W (n−1) of (n− 1)th order and have propagated the
resulting expression by the Green’s function [65]

Gfree(θ, τ̄ ; θ′, τ ′) = δ(θ − θ′ − ℘(τ̄ − τ)) (C.39)

for the free dynamics of the electron due to L0. To eliminate the electron variables from the
Wigner function of the total system we simply integrate our result W (n) with respect to θ
and to ℘ and arrive at

W
(n)
L (α, α∗; τ̄) =

∫
dθ
∫
d℘W (n)(θ, ℘, α, α∗; τ̄) (C.40)

for the reduced Wigner function for the subsystem of the laser field. By this procedure
we straightforwardly identify W (0)

L = WL(α, α∗; τ) because electron and field are initially
uncorrelated.
Since the operator L1 just contains terms with eiθ and e−iθ we obtain according to Eq. (C.38)
a first-order solution of the form

W (1) = w
(1)
+ eiθ +w(1)

− e−iθ , (C.41)

where the w(1)
± are functions of ℘ and τ̄ but independent of θ. Due to the uniform distribution

in θ the phase factors eiθ and e−iθ in Eq. (C.41) lead to a vanishing integral in Eq. (C.40)
and hence the reduced Wigner function for the laser field does not possess a contribution of
first order, that is W (1)

L = 0.
However, when we go to the solution in second order, that is

W (2) = w
(2)
0 + w

(2)
+2 ei2θ +w(2)

−2 e−i2θ (C.42)
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we recognize the occurrence of a term independent of θ characterized by w(2)
0 . Applying

L1 a second time leads to the contributions with e±i2θ but also to cross terms of the form
e±iθ e∓iθ = 1 responsible for w(2)

0 . Thus, we find, according to Eq. (C.40), the formal expression

W
(2)
L =

∫
d℘w(2)

0 (C.43)

for the reduced Wigner function in second order which is responsible for drift and diffusion
in lowest order in the Fokker–Planck equation of the laser field.
In order to obtain saturation we even have to go higher orders of our perturbative approach.
The third-order solution

W (3) = w
(3)
+ eiθ +w(3)

− e−iθ +w(3)
+3 ei3θ +w(3)

−3 e−i3θ (C.44)

is independent of θ and hence the reduced Wigner function vanishes for this order, that is
W

(3)
L = 0. However, when we consider the next higher order, cross terms, independent of θ,

emerge when we apply L1 on terms including eiθ and e−iθ. Therefore, we have to know w
(3)
+

and w(3)
− before we proceed. These terms arise from second-order contributions which are

independent of θ, characterized by w(2)
0 , but also from ones that go with e±i2θ and thus we

also have to consider w(2)
+2 and w(2)

−2.
The fourth-order solution then reads

W (4) = w
(4)
0 + w

(4)
+2 ei2θ +w(4)

−2 e−i2θ +w(4)
+4 ei4θ +w(4)

−4 e−i4θ (C.45)

and we obtain
W

(4)
L =

∫
d℘w(4)

0 (C.46)

for the reduced Wigner function in fourth order. These terms are responsible for higher-order
contributions for drift and thus for self saturation of the laser.

C.3.2 Second order

Inserting the zeroth-order solution, Eq. (C.37), into Eq. (C.38) for n = 1, evaluating the delta
function, Eq. (C.39), for θ′ and performing the integration over time τ ′ yields the solution

W (1)(θ, ℘,α, α∗; τ̄) = κ

{
1
2

[
α eiθ 1

℘
h

(1)
+ (℘, τ̄) + α∗ e−iθ 1

℘
h

(1)
− (℘, τ̄)

]
∂

∂℘

−1
4

[
1
ωrT

∂

∂α∗
eiθ h(1)

+ (℘, τ̄) + 1
ωrT

∂

∂α
e−iθ h(1)

− (℘, τ̄)
]}

1
2πg(℘)WL(α, α∗; τ)

(C.47)
in first order of κ with the coefficients




h

(1)
+ (℘, τ̄) ≡ 1− e−i℘(τ̄−τ)

h
(1)
− (℘, τ̄) ≡ 1− ei℘(τ̄−τ) (C.48)

as functions of ℘ and τ .
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For the second order we apply L1 on W (1), Eq. (C.47), and obtain four kind of contributions
independent of θ: ones which depend on (i) |α|2, (ii) on α

∂

∂α
or α∗ ∂

∂α∗
, (iii) on ∂

∂α
α or

∂

∂α∗
α∗ and (iv) on ∂2

∂α∂α∗
.

The terms (i) and (ii) do not contribute to W (2)
L , since the integration over momentum gives

rise to expressions of the kind
∫
d℘ ∂

∂℘
g(℘) = g(℘)|∞−∞ = 0 , (C.49)

where we assumed that the momentum distribution g(℘) (as well as its derivative) vanishes
at infinity.

For contributions of the type (iii) the integrations in Eq. (C.38) yield the expression

(
w

(2)
0

)
drift

= 1
2π

κ2

4
h

(2)
0 (℘, τ̄)
℘2

∂g(℘)
∂℘

(
1
ωrT

∂

∂α
αWL(α, α∗; τ)

)
+ c.c. (C.50)

with
h

(2)
0 (℘, τ̄) ≡ 1

2 (cos [℘(τ̄ − τ)]− 1) + i

2 (℘(τ̄ − τ)− sin [℘(τ̄ − τ)]) . (C.51)

In the averaging process over the momenta according to the prescription, Eq. (C.43), we
meet integrals of the form

∫
d℘ h

(2)
0 (℘, τ̄)
℘2

∂g(℘)
∂℘

= − ∂

∂℘


h

(2)
0 (℘, τ̄)
℘2



∣∣∣∣∣∣
℘=℘̄

(C.52)

which we calculate by integration by parts and the assumption of a cold electron beam, that
is g(℘) ∼= δ(℘− ℘̄).

Finally, we obtain the second-order contribution
(
W

(2)
L (α, α∗; τ + 1)

)
drift

= − 1
N

(
G

(1)
cl + iM

(1)
cl

) ∂

∂α
αWL(α, α∗; τ) + c.c. (C.53)

of the reduced Wigner function corresponding to drift at time τ + 1, where

G
(1)
cl ≡ (2/π3)gTNκAcl(℘̄) (C.54)

and
M

(1)
cl ≡

gTNκ

6 Mcl(℘̄) (C.55)

denote the real and imaginary part of the drift coefficient, respectively, characterized by the
momentum-dependent functions

Acl(℘) ≡ π3

2
1− cos℘− (℘/2) sin℘

℘3 (C.56)
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and
Mcl(℘) ≡ 12 sin℘− (℘/2)(1 + cos℘)

℘3 , (C.57)

respectively.
The terms of the kind (iv) give rise to the expression

(
w

(2)
0

)
fluc

= κ2

8
1− cos [x(τ̄ − τ)]

x2
1

2πg(℘) 1
(ωrT )2

∂2

∂α∂α∗
WL(α, α∗; τ) (C.58)

due to Eq. (C.38) and averaging over momentum ℘, according to Eq. (C.43), yields

(
W

(2)
L (α, α∗; τ + 1)

)
fluc

= 1
N
δnsp

∂2

∂α∂α∗
WL(α, α∗; τ) . (C.59)

Here, we have defined
δnsp ≡ (gT )2NS(℘̄) (C.60)

which equals the number of spontaneously emitted photons according to Chap. 4 with

S(℘) ≡ 21− cos℘
℘2 (C.61)

denoting the corresponding characteristic function.

C.3.3 Fourth order

For nonzero contributions in fourth order of our perturbative expansion we require that there
are no terms with ∂/∂℘ on the very left, since else integration by parts leads to vanishing
expressions when g(℘) and its derivatives are zero for ℘→ ±∞ in analogy to Eq. (C.52). By
inspection of L1, Eq. (C.33), thus only terms with ∂/∂α and ∂/∂α∗, respectively, remain.
Moreover, we just consider terms with ∂

∂α
α|α|2 and ∂

∂α∗
α∗|α|2 [22] since just these terms

are responsible for self saturation, while other terms including more than one derivative with
respect to α or α∗ give higher-order corrections to the fluctuations.
For second order we thus have to consider an expression of the form

W̃ (2) = |α|2w̃(2)
0 + α2 ei2θ w̃(2)

+2 + α∗2 e−i2θ w̃(2)
−2 , (C.62)

where a tilde denotes the relevant terms in our present discussion. With the help of
Eqs. (C.38), (C.39) and (C.47) we obtain

w̃
(2)
0 = 1

2π
κ2

2

[
℘(τ̄ − τ) sin [℘(τ̄ − τ)]− 2 (1− cos [℘(τ̄ − τ)])

℘3
∂g(℘)
∂℘

+1− cos [℘(τ̄ − τ)]
℘2

∂2g(℘)
∂℘2

]
WL(α, α∗; τ)

(C.63)
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and

w̃
(2)
+2 = 1

2π
κ2

4




1
2

(
e−i2℘(τ̄−τ)−1

)
− 1

i
℘(τ̄ − τ) e−i℘(τ̄−τ)

℘3
∂g(℘)
∂℘

+
1
2 e−i2℘(τ̄−τ)− e−i℘(τ̄−τ) +1

2
℘2

∂2g(℘)
∂℘2

]
WL(α, α∗; τ)

(C.64)

with w̃(2)
−2 =

(
w̃

(2)
+2

)∗
for the coefficients in Eq. (C.62).

The relevant contribution in third order reads

W̃ (3) = eiθ α|α|2w̃(3)
+ + e−iθ α∗|α|2w̃(3)

− . (C.65)

In order to calculate the coefficients in Eq. (C.65) we first have to apply L1 on W̃ (2) and
arrive, due to Eqs. (C.33) and (C.62) at the expressions

(
L1w̃

(2)
)

+
= − κ2iα|α|

2
(
w̃

(2)
0 − w̃(2)

+2

)
(C.66)

and (
L1w̃

(2)
)
−

= κ

2iα
∗|α|2

(
w̃

(2)
0 − w̃(2)

−2

)
. (C.67)

The solution, Eq. (C.38), in third order then leads to

w̃
(3)
+ = 1

2π
κ3

4

[
r1(℘, τ̄) + is1(℘, τ̄)

℘5
∂g(℘)
∂℘

+ r2(℘, τ̄) + is2(℘, τ̄)
℘4

∂2g(℘)
∂℘2

+r3(℘, τ̄) + is3(℘, τ̄)
℘3

∂3g(℘)
∂℘3

]
WL(α, α∗; τ)

(C.68)

with w̃(3)
− =

(
w̃

(3)
+
)∗
.

The coefficients in Eq. (C.68) read

r1(℘, τ̄) ≡ −5
4 cos [2℘(τ̄ − τ)]− 4 cos [℘(τ̄ − τ)] + 21

4 −
1
2℘(τ̄ − τ) sin [2℘(τ̄ − τ)]

− 17
4 ℘(τ̄ − τ) sin [℘(τ̄ − τ)] + 3

4℘
2(τ̄ − τ)2 cos [℘(τ̄ − τ)] ,

(C.69)

s1(℘, τ̄) ≡ 5
4 sin [2℘(τ̄ − τ)]− 1

4 sin [℘(τ̄ − τ)]− 1
2℘(τ̄ − τ) cos [2℘(τ̄ − τ)]

− 7
4℘(τ̄ − τ) cos [℘(τ̄ − τ)]− 1

4℘
2(τ̄ − τ)2 sin [℘(τ̄ − τ)] ,

(C.70)

r2(℘, τ̄) ≡ −3
4 cos [2℘(τ̄ − τ)] + 4 cos [℘(τ̄ − τ)]− 13

4 −
1
2℘(τ̄ − τ) sin [2℘(τ̄ − τ)]

+3
2℘(τ̄ − τ) sin [℘(τ̄ − τ)] ,

(C.71)

s2(℘, τ̄) ≡ 3
4 sin [2℘(τ̄ − τ)]− 3

2 sin [℘(τ̄ − τ)]− 1
2℘(τ̄ − τ) cos [2℘(τ̄ − τ)]

+1
2℘(τ̄ − τ) cos [℘(τ̄ − τ)] ,

(C.72)
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r3(℘, τ̄) ≡ 1
4 cos [2℘(τ̄ − τ)]− cos [℘(τ̄ − τ)] + 3

4 ,
(C.73)

and
s3(℘, τ̄) ≡ −1

4 sin [2℘(τ̄ − τ)] + 1
2 sin [℘(τ̄ − τ)] + 3

4
(C.74)

which we have derived with the help of Eqs. (C.63), (C.64), (C.66) and (C.67).

The reduced Wigner function in fourth order can be written as

W
(4)
L (α, α∗; τ + 1) = ∂

∂α
α|α2|$(4)

|α|2α + ∂

∂α∗
α∗|α2|$(4)

|α∗|2α (C.75)

with $(4)
|α∗|2α =

(
$

(4)
|α|2α

)∗
and has to be calculated by the integral

$
(4)
|α∗|2α = − κ4i

1
ωrT

∫
d℘

∫
dθ

τ+1∫

τ

dτ̄ w̃(3)
+ (℘, τ̄) (C.76)

according to Eqs. (C.38) and (C.46). The averaging procedure over momentum ℘ yields
∫
d℘ r1(℘, τ̄) + is1(℘, τ̄)

℘5
∂g(℘)
∂℘

= − ∂

∂℘

(
r1(℘, τ̄) + is1(℘, τ̄)

℘5

)∣∣∣∣∣
℘=℘̄

, (C.77)

∫
d℘ r2(℘, τ̄) + is2(℘, τ̄)

℘4
∂2g(℘)
∂℘2 = ∂2

∂℘2

(
r2(℘, τ̄) + is2(℘, τ̄)

℘4

)∣∣∣∣∣
℘=℘̄

(C.78)

and
∫
d℘ r3(℘, τ̄) + is3(℘, τ̄)

℘3
∂3g(℘)
∂3℘

= − ∂3

∂℘3

(
r3(℘, τ̄) + is3(℘, τ̄)

℘5

)∣∣∣∣∣
℘=℘̄

, (C.79)

respectively, where we have employed integration by parts and have again assumed a cold
electron beam, that is g(℘) ∼= δ(℘− ℘̄).

The final integration over time brings us to the contribution

W
(4)
L (α, α∗; τ + 1) = 1

N

(
G

(3)
cl − iM (3)

cl

) ∂

∂α
α|α|2WL(α, α∗; t) (C.80)

of the reduced Wigner function in fourth order, where we have introduced the coefficients

G
(3)
cl ≡

gTNκ3

4π5 Bcl(℘̄) (C.81)

and
M

(3)
cl ≡

gTNκ3

2π6 Rcl(℘̄) (C.82)
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which are characterized by the functions

Bcl(℘) ≡ π5

℘7

(9
2 cos 2℘+ 12 cos℘− 33

2 + 11
4 ℘ sin 2℘+ 53

4 ℘ sin℘

−℘
2

2 cos 2℘− 13
4 ℘

2 cos℘− ℘3

4 sin℘
) (C.83)

and
Rcl(℘) ≡ π6

2℘7

(9
2 sin 2℘+ 27

2 sin℘− 25
4 ℘−

11
4 ℘ cos 2℘− 27

2 ℘ cos℘

−℘
2

2 sin 2℘− 13
4 ℘

2 sin℘+ ℘3

4 cos℘
)
,

(C.84)

respectively. Combining Eqs. (C.37), (C.53), (C.59) and (C.80) we obtain the expression

WL(α, α∗; τ + 1)−WL(α, α∗; τ) =− 1
N

∂

∂α

{[(
G

(1)
cl −G(3)

cl |α|2
)

+ i
(
M

(1)
cl +M

(3)
cl |α|2

)]
α
}

×WL(α, α∗; τ) + c.c. + 1
N
δnsp

∂2

∂α∂α∗
WL(α, α∗; τ)

(C.85)
for the change of the reduced Wigner function of the laser field due to the interaction with a
single electron.

C.4 Cavity losses

In this section we study the dynamics of the laser field due to cavity losses in the Wigner
representation in analogy to Ref. [56], where the P -representation is employed. According to
Ref. [22] the time evolution of a field in a cavity with quality Q is given by

(
∂ρ̂(t)
∂t

)

loss
= ωL

2Q
([
âLρ̂(t), a†L

]
+
[
âL, ρ̂(t)a†L

])
, (C.86)

where we have set the number n̄ of thermal photons to zero, n̄ = 0, for the sake of simplicity.
The dynamics described by Eq. (C.86) arises when we couple the cavity to a reservoir, which
for example can consist of harmonic oscillators [57] or of two-level atoms [22]. Moreover,
we have to employ the Markoff approximation [57], where one assumes that the two-time
correlations characterizing the bath decay very fast.

With the help of the definition χρ̂ ≡ Tr
{
ÔLρ̂

}
of the characteristic function χρ̂ and by

cyclically permuting the operators in the trace we arrive at
(
∂

∂t
χρ̂(β, β∗, t)

)

loss
= ωL

2Q Tr
{(

2â†LÔLâL − ÔLâ
†
LâL − â†LâLÔL

)
ρ̂(t)

}
(C.87)
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with the operator ÔL, Eq. (C.18), for Wigner–Weyl ordering. In a similar procedure as in
Sec. C.2 we obtain that Eq. (C.87) is equivalent to

(
∂

∂t
χρ̂(β, β∗, t)

)

loss
= − ωL

2Q

[
(iβ∗) ∂

∂(iβ∗) + (iβ) ∂

∂(iβ) + |β|2
]
χρ̂(β, β∗, t) (C.88)

which is a closed equation for χρ̂.
The Fourier transformation,

WL(α, α∗; t) ≡
∫
d2β e−iαβ e−iα∗β∗ χρ̂(β, β∗; t) (C.89)

according to Eq. (C.15), yields the equation of motion
(
∂

∂t
WL(α, α∗; t)

)

loss
= ωL

2Q

(
∂

∂α
α + ∂

∂α∗
α∗
)
WL(α, α∗; t) + ωL

2Q
∂2

∂α∂α∗
WL(α, α∗; t) (C.90)

for the Wigner function of the laser field due to cavity losses. We note the occurrence of drift,
corresponding to an exponential decay of the field, as well as of fluctuations.

C.5 Phase diffusion
To conclude this appendix we derive the explicit form, Eq. (4.74), of the propagator for the
diffusion of the laser phase ϕ in Chap. 4. Here, we follow the lines of Ref. [82] and solve the
Fokker–Planck equation, Eq. (4.65),

∂

∂t′
WL(ϕ, t′;ϕ0, t) = Aϕ

∂

∂ϕ
WL(ϕ, t′;ϕ0, t) + 1

2Dcl
∂2

∂ϕ2WL(ϕ, t′;ϕ0, t) (C.91)

where only the phase ϕ of the amplitude α = % e−iϕ varies while the modulus % is stabilized
at its steady-state value. Moreover, we have introduced the drift coefficient Aϕ, Eq. (4.66),
as well as the Diffusion constant Dcl, Eq. (4.67).
According to Ref. [82] we make the ansatz

WL(ϕ, t′;ϕ0, t) =
∞∑

n=−∞
cn(t′) einϕ (C.92)

and obtain after inserting this expression into Eq. (C.91) the differential equation

ċn(t′) =
(
inAcl − n2Dcl

2

)
cn(t′) (C.93)

for the expansion coefficients cn. The solution of Eq. (C.93) is simply given by the exponential

cn(t′) = cn(t) einAcl(t′−t) e−n2Dcl(t′−t)/2 . (C.94)

Initially, that is t′ = t the propagator should reduce to a Delta function which maps the
phase ϕ to its initial values ϕ0. With the choice cn(t) = e−inϕ0 /(2π) as initial condition for
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cn we obtain the desired behavior, that is

WL(ϕ, t′;ϕ0, t)→
1

2π

∞∑

n=−∞
ein(ϕ−ϕ0) = δ(ϕ− ϕ0) for t′ → t . (C.95)

Hence, we arrive at the explicit expression

WL(ϕ, t′;ϕ0, t) = 1
2π

∞∑

n=−∞
ein(ϕ−ϕ0) einAϕ(t′−t) e−n2Dcl(t′−t)/2 (C.96)

for the propagator of the Fokker-Planck equation, Eq. (C.91) .



D Method of Canonical Averaging
In this appendix we describe the method of canonical averaging according to Ref. [37] which
is a special form of the Bogoliubov–Mitropolski method [36]. This variant has the advantage
that it offers an effective Hamiltonian in operator form which is needed for our approach in
the Heisenberg picture for the many-electron model of the FEL. We begin with the discussion
of the general method before we apply it to the FEL, for (i) the single-electron model for
different resonances as well as for (ii) the many-electron case.

D.1 Description of method
The method of averaging is suitable for systems with two different time scales [59]. In its
canonical form [37] we first separate the state vector into a slowly and a rapidly varying
term and thus obtain a transformed, effective, Hamiltonian for the slowly varying part. We
have to make sure that this effective Hamiltonian is independent of time so that it really
describes the slow part of the motion and secularly growing terms are absorbed into it. We
achieve this by performing a perturbative treatment and obtain an expression for the effective
Hamiltonian order by order.

D.1.1 Transformation of the Hamiltonian
The dynamics of a system described by a time-dependent Hamiltonian Ĥ(τ) is predicted by
the Schrödinger equation

i
d
dτ |Ψ(τ)〉 = Ĥ(τ) |Ψ(τ)〉 (D.1)

for the state vector |Ψ(τ)〉 of the system. We assume that the Hamiltonian is of the form

Ĥ(τ) ≡ ε
∑

µ

Ĥµ ei2µτ , (D.2)

where ε‖Ĥµ‖ � 1 represents the slow time scale, while the rapid one is given by the oscillations
with multiples of τ .
Since the Hamiltonian, Eq. (D.2), depends on two different time (or frequency) scales we
make the separation ansatz

|Ψ(τ)〉 ≡ e−F̂ (τ) |Φ(τ)〉 (D.3)

for the state |Ψ(τ)〉. While F̂ (τ) is rapidly varying, |Φ(τ)〉 is slowly varying. With the help
of the transformation, Eq. (D.3), and the Schrödinger equation, Eq. (D.1), we arrive at

i
d
dτ |Φ(τ)〉 =

((
i
d
dτ eF̂ (τ)

)
e−F̂ (τ) + eF̂ (τ) Ĥ(τ) e−F̂ (τ)

)

︸ ︷︷ ︸
≡Ĥeff

|Φ(τ)〉 ,
(D.4)
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where the effective Hamiltonian Ĥeff governs the dynamics of |Φ(τ)〉. In contrast to the
approach in Ref. [37] within the framework of the density operator ρ̂ and the von Neumann
equation, we develop the method for the state vector and the Schrödinger equation. However,
both approaches are equivalent and in the rest of the derivation we closely follow the lines of
Ref. [37].

While the second term of the effective Hamiltonian Ĥeff in Eq. (D.4) can be easily calculated
with the help of the Baker–Campbell–Hausdorff formula, Eq. (B.13), the first one, including
the derivative of a matrix exponential, needs a little more care. First, we write down the
expansion

d
dτ exp

{
F̂ (τ)

}
=
∞∑

m

1
m!

(
d
dτ F̂

m(τ)
)
. (D.5)

Hence, we need an explicit expression for the derivative of F̂m with respect to time τ for an
arbitrary power m.

With the help of induction we prove in the following the identity

d
dτ F̂

m(τ) =
m−1∑

j=0

(
m

j + 1

)[
F̂ (τ), d

dτ F̂ (τ)
]

j

(
F̂ (τ)

)m−(j+1)
, (D.6)

where we have used the definition, Eqs. (B.14) and (B.15), of the mth commutator. For
m = 0 and m = 1, the relation in Eq. (D.6) is easily verified. Performing the induction step
m→ m+ 1 we arrive at

d
dτ F̂

m+1 =
(
dF̂
dτ

)
F̂m +

m−1∑

j=0

(
m

j + 1

)
F̂

[
F̂ ,

dF̂
dτ

]

j

F̂m−(j+1) , (D.7)

where we have already assumed that Eq. (D.6) is valid. When we order the expression in
Eq. (D.7) such that all F̂ are on the very right we obtain

d
dτ F̂

m+1 =
(
dF̂
dτ

)
F̂m +

m−1∑

j=0

(
m

j + 1

)[
F̂ ,

dF̂
dτ

]

j

F̂ (m+1)−(j+1)

+
m−1∑

j=0

(
m

j + 1

)[
F̂ ,

dF̂
dτ

]

j+1
F̂m−(j+1) .

(D.8)

By shifting the summation indices appropriately the first sum in Eq. (D.8) can be cast into
the form
m−1∑

j=0

(
m

j + 1

)[
F̂ ,

dF̂
dτ

]

j+1
F̂m−(j+1) =

m−1∑

k=0

(
m
k

)[
F̂ ,

dF̂
dτ

]

k

F̂ (m+1)−(k+1) +
[
F̂ ,

dF̂
dτ

]

m

− dF̂
dτ F̂

m

(D.9)
and with of the help of the fundamental relation [67]

(
m
j

)
+
(

m
j + 1

)
=
(
m+ 1
j + 1

)
(D.10)
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for binomial coefficients we finally arrive at

d
dτ F̂

m+1 =
m∑

j=0

(
m+ 1
j + 1

)[
F̂ ,

dF̂
dτ

]

j

F̂ (m+1)−(j+1) (D.11)

which is according to Eq. (D.6) the desired expression for m→ m+ 1 and thus completes
our proof.
Inserting the identity, Eq. (D.6), into the expansion, Eq. (D.5), yields

d
dτ eF̂ =

∞∑

m=0

m−1∑

j=0

1
(j + 1)!(m− (j + 1))!

[
F̂ ,

dF̂
dτ

]

j

F̂m−(j+1)

=
∞∑

j=0

1
(j + 1)!

[
F̂ ,

d
dτ F̂

]

j

∞∑

k=0

F̂ k

k! ,
(D.12)

where we have changed the summation in the second step according to k ≡ m− (j + 1) and
have made use of the summation to infinity. Hence, we find

d
dτ eF̂ (τ) =

∞∑

j=0

1
(j + 1)!

[
F̂ (τ), d

dτ F̂ (τ)
]

j

eF̂ (τ) (D.13)

for the derivative of exp
{
F̂
}
with respect of time.

Finally, we obtain

Ĥeff =
∞∑

j=0

1
(j + 1)!

[
F̂ (τ), i ddτ F̂ (τ)

]

j

+
∞∑

j=0

1
j!
[
F̂ (τ), Ĥ(τ)

]
j
. (D.14)

For the first term on the right-hand side of Eq. (D.4) we have used Eq. (D.13) and for the
second one we have recalled the Baker–Campbell–Hausdorrf formula, Eq. (B.13).

D.1.2 Avoiding secular terms

In the ordinary perturbative treatment of the Schrödinger equation with a time-dependent
Hamiltonian, described by Eq. (D.2), there occur terms independent of time either because of
a nonzero component Ĥ0 in Eq. (D.2) or in higher orders due to products of terms, where the
rapidly varying phases cancel. An integration over time would lead to secular terms which
grow with powers of τ and diverge for large times. To get rid of these terms we absorb them
in the effective Hamiltonian

Ĥeff 6= Ĥeff(τ) (D.15)
which may not depend on time and which describes the slowly varying part of the dynamics.
In the following we pursue a perturbative approach to solve the dynamics, that is we expand
the rapidly varying part

F̂ (τ) = εF̂ (1)(τ) + ε2F̂ (2)(τ) + ε3F̂ (3)(τ) + ... (D.16)
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and the effective Hamiltonian

Ĥeff = εĤ
(1)
eff + ε2Ĥ

(2)
eff + ε3Ĥ

(3)
eff + ... (D.17)

in powers of ε and write down the resulting expressions order by order with the condition
that every order of Ĥeff is independent of time. We emphasize that although Ĥeff, Eq. (D.17),
itself is an asymptotic expansion we must not solve the equation of motion, Eq. (D.4), in a
perturbative manner since this procedure would lead to the secular terms we wanted to avoid.

First order

Insertion of the expansions Eqs. (D.17) and (D.16) as well as of the original Hamiltonian,
Eq. (D.2), into the effective Hamiltonian, Eq. (D.14), yields

Ĥ
(1)
eff = Ĥ0 +


i

d
dτ F̂

(1)(τ) +
∑

µ6=0
Ĥµ eiµτ




︸ ︷︷ ︸
=0

(D.18)

where we have only considered terms of first order in ε. For Ĥ(1)
eff to be time-independent the

expression in parentheses has to vanish and we obtain

Ĥ
(1)
eff = Ĥ0 (D.19)

for the effective Hamiltonian and

F̂ (1)(τ) =
∑

µ6=0

ei2µτ
2µ Ĥµ (D.20)

for the rapidly varying contribution in first order, where we have performed an integration
over time for the latter quantity.

Second order

By the same procedure as for the first order we obtain the relation

Ĥ
(2)
eff = i

d
dτ F̂

(2)(τ) + 1
2

[
F̂ (1)(τ), d

dτ F̂
(1)(τ)

]
+

F̂ (1)(τ),

∑

µ=0
Ĥµ eiµτ


 (D.21)

for the effective Hamiltonian in second order of ε which translates to

Ĥ
(2)
eff = 1

2
∑

ν 6=0

1
2ν
[
Ĥν , Ĥ−ν

]
+


i

d
dτ F̂

(2)(τ) + 1
2
∑

µ,ν 6=0
µ+ν 6=0

e2i(µ+ν)τ

2µ
[
Ĥµ, Ĥν

]
+
∑

µ6=0

ei2µτ
2µ

[
Ĥµ, Ĥ0

]



︸ ︷︷ ︸
=0

(D.22)
after inserting the expressions Eqs. (D.19) and (D.20) for Ĥ(1)

eff and F̂ (1), respectively. Again,
the term in parentheses has to be zero to exclude all rapidly varying terms from Ĥeff.
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Hence, we find the results
Ĥ

(2)
eff = 1

2
∑

ν 6=0

1
2ν
[
Ĥν , Ĥ−ν

]
(D.23)

and
F̂ (2)(τ) = 1

2
∑

µ,ρ 6=0
µ 6=ρ

ei2ρτ
4µρ

[
Ĥµ, Ĥρ−µ

]
+
∑

µ6=0

e2iµτ

4µ2

[
Ĥµ, Ĥ0

]
(D.24)

for the second order of our asymptotic expansion. In the derivation of F̂ (1), Eq. (D.24), we
have additionally integrated with respect to time τ and have changed the summation from ν
to ρ according to the relation ρ ≡ µ+ ν.

Third order

Collecting all third order terms in Eq. (D.14) we obtain

Ĥ
(3)
eff = i

d
dτ F̂

(3)(τ) + 1
2

[
F̂ (1)(τ), i ddτ F̂

(2)(τ)
]

+ 1
2

[
F̂ (2)(τ), i ddτ F̂

(1)(τ)
]

+1
6
[
F̂ (1)(τ),

[
F̂ (1)(τ), F̂ (1)(τ)

]]
+

F̂ (1)(τ),

∑

µ=0
Ĥµ e2iµτ




+1
2


F̂ (1)(τ),


F̂ (1)(τ),

∑

µ=0
Ĥµ ei2µτ






(D.25)

for the third-order contribution Ĥ(3)
eff of the effective Hamiltonian. In the following we omit

the explicit expression for F̂ (3) and just derive the result of Ĥeff. By inserting the identities
Eqs. (D.20), and (D.24) for F̂ (1) and F̂ (2), respectively, into Eq. (D.25) we find after a lengthy
but straightforward calculation the result

Ĥ
(3)
eff = −1

3
∑

µ,ρ 6=0
µ+ρ 6=0

1
4µ(µ+ ρ)

[
Ĥ−µ−ρ,

[
Ĥµ, Ĥρ

]]
− 1

2
∑

µ6=0

1
4µ2

[
Ĥµ,

[
Ĥ−µ, Ĥ0

]]
, (D.26)

where we have assumed that all rapidly varying terms are absorbed in F̂ (3).

D.1.3 Heisenberg picture

The application of the canonical averaging in the Heisenberg picture is rather analogous to
the procedure in the Schrödinger picture. That is why we highlight the differences of both
approaches emerging due to a different sign in the von Neumann equation, Eq. (3.33), (which
can be derived from the Schrödinger equation, Eq. (D.1)) and in the Heisenberg equation of
motion, Eq. (3.10).
In analogy to Eq. (D.3) we perform the transformation

X̂ (τ) ≡ eF̂ (τ) Ô e−F̂ (τ) (D.27)
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of an operator Ô, with X̂ denoting the slowly varying part. With the help of the Heisenberg
equation of motion, Eq. (3.10), we derive for this slowly varying part the dynamical equation

i
d
dτ X̂ (τ) =

[
X̂ (τ), Ĥeff

]
(D.28)

governed by the effective Hamiltonian

Ĥeff ≡
∞∑

j=0

1
(j + 1)!

[
F̂ (τ), i ddτ F̂ (τ)

]

j

−
∞∑

j=0

1
j!
[
F̂ (τ), Ĥ(τ)

]
j

(D.29)

for which we demand Ĥeff 6= Ĥeff(τ). We note that Ĥeff in Eq. (D.29) differs by a sign from
the corresponding expression, Eq. (D.14), in the Schrödinger picture.
By making the asymptotic expansions, Eqs. (D.16) and (D.17), for F̂ and Ĥeff, respectively,
in powers of ε we derive how the expressions in the Heisenberg picture (subscript H) differ
from the ones in the Schrödinger picture (subscript S). By this procedure we obtain





(
Ĥ

(1)
eff

)
H

=
(
Ĥ

(1)
eff

)
S(

F̂ (1)(τ)
)
H

= −
(
F̂ (1)(τ)

)
S

(D.30)

with
(
Ĥ

(1)
eff

)
S
and

(
F̂ (1)

)
S
from Eqs. (D.19) and (D.20), respectively, as well as





(
Ĥ

(2)
eff

)
H

= −
(
Ĥ

(2)
eff

)
S(

F̂ (2)(τ)
)
H

=
(
F̂ (2)(τ)

)
S

(D.31)

with
(
Ĥ

(1)
eff

)
S
and

(
F̂ (1)

)
S
from Eqs. (D.23) and (D.24), respectively, and

(
Ĥ

(3)
eff

)
H

=
(
Ĥ

(3)
eff

)
S

(D.32)

with
(
Ĥ

(1)
eff

)
S
from Eq. (D.26). Hence, the expressions for the effective Hamiltonian and the

rapidly varying contributions differ in both pictures at most by a sign.

D.2 Averaging applied to the FEL
In the preceding section we have derived the general equations describing the method of
canonical averaging. Now we apply them to the FEL for (i) the low-gain regime, that is the
single-electron case and (ii) the high-gain regime, where we need a many-particle model. This
procedure is crucial to obtain the quantum regime of the FEL as well as the corrections to it.

D.2.1 Single-electron model – first resonance
We begin our investigations for the FEL by applying the method of averaging to the
single-electron model with the fundamental resonance, p = q/2. In this context we derive
the higher-order contributions to the transition probabilities Eqs. (5.45) and (5.46) in the
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framework of the method of canonical averaging. While we consider the slowly varying terms
up to third order in α we calculate the contributions arising from the rapidly varying parts
in second order of α. In both cases these are the lowest nonzero corrections to the two-level
approximation.
We cast the single-particle Hamiltonian, Eq. (5.12), for the FEL into the form of Eq. (D.2),
where the Ĥµ are given by




Ĥ0 ≡ âLσ̂0,1 + â†Lσ̂1,0

Ĥµ ≡ âLσ̂−µ,−µ+1 + â†Lσ̂µ+1,µ , µ 6= 0
(D.33)

in accordance with Eqs. (5.16) and (5.17). Here, the operators σ̂µ,ν , defined in Eq. (5.5),
denote the momentum projection operators fulfilling the commutation relation, Eq. (5.6),

[σ̂µ,ν , σ̂ρ,λ] = δν,ρσ̂µ,λ − δλ,µσ̂ρ,ν (D.34)

as well as the identity, Eq. (5.7),

σ̂µ,ν σ̂ρ,λ = δν,ρσ̂µ,λ (D.35)

with the latter one being only valid in the single-electron case. The annihilation âL and
creation operator â†L for the laser field satisfy the relation

[
âL, â

†
L

]
= 1.

From now on, the procedure is straightforward: inserting the explicit expressions, Eq. (D.33),
for Ĥµ into the identities for the effective Hamiltonian and the rapidly varying corrections
derived in the preceding section and then use the commutation relations for the laser field
and for the electron Eq. (D.34), together with Eq. (D.35) to obtain the final expressions for
Ĥeff and F̂ up to third and second order in ε, respectively.
Then we search for the initial condition for |Φ〉 according the transformation, Eq. (D.3),
and solve the Schrödinger equation, Eq. (D.4), subject to this initial condition. To finally
calculate the transition probabilities we have to transform back to the original state |Ψ〉
giving rise to rapidly varying contributions.

First order

With the help of Eqs. (D.19) and (D.20) we find the first-order contributions

Ĥ
(1)
eff ≡ Ĥ0 = âLσ̂0,1 + â†Lσ̂1,0 (D.36)

and
F̂ (1)(τ) = −âL

∑

µ 6=0

e−i2µτ
2µ σ̂µ,µ+1 + â†L

∑

µ6=0

ei2µτ
2µ σ̂µ+1,µ (D.37)

for the effective Hamiltonian and for the rapidly varying corrections, respectively. While Ĥ(1)
eff

describes the resonant single-photon processes from excited p to ground state p− q and vice
versa, described by the operators σ̂1,0 and σ̂0,1, respectively, F̂ (1) includes all non-resonant
single-photon transitions.
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Second order

From Eqs. (D.23) and (D.24) we obtain in second order

Ĥ
(2)
eff = −1

2 âLâ
†
Lσ̂1,1 −

1
2 â
†
LâLσ̂0,0 − âLâ†L

∑

ν 6=0,1

1
2ν σ̂ν,ν + â†LâL

∑

ν 6=0,1

1
2(ν − 1) σ̂ν,ν (D.38)

and

F̂ (2)(τ) =â2
L


1

4
(
σ̂−1,1 ei2τ −σ̂0,2 e−i2τ

)
+ 1

2
∑

µ6=0,−1

e−i2(2µ+1)τ

4µ(µ+ 1)(2µ+ 1) σ̂µ,µ+2




− â†L2


1

4
(
σ̂1,−1 e−i2τ −σ̂2,0 ei2τ

)
+ 1

2
∑

µ6=0,−1

ei2(2µ+1)τ

4µ(µ+ 1)(2µ+ 1) σ̂µ+2,µ




(D.39)

for the effective Hamiltonian and the rapidly varying part, respectively. Two-photon transi-
tions, where the electron momentum is the same before and after the interaction, are resonant
and therefore contained in the effective Hamiltonian Ĥ

(2)
eff . On the other hand, all other

two-photon processes are non-resonant and appear in F̂ (2).

Third order

In third order we find for the effective Hamiltonian

Ĥ
(3)
eff = −1

8
(
â†Lâ

2
L + â2

Lâ
†
L

)
σ̂0,1 −

1
8
(
âLâ

†
L

2 + â†L
2âL

)
σ̂1,0 + 1

4 â
3
Lσ̂−1,2 + 1

4 â
†
L

3σ̂2,−1 , (D.40)

where we have used Eq. (D.26). We note that besides three-photon transitions in the
fundamental two-level system consisting of p and p− q other three-photon processes appear
for a two-level system with the momenta p and p− 3q.

Initial conditions

When we write down the initial state |Ψ(0)〉 of the system in terms of the scattering basis
|n+ µ, p− µq〉 we obtain

cµ(0) ≡ 〈n+ µ, p− µq|Ψ(0)〉 = δµ,0 (D.41)

which simply means that we describe the electron initially by a momentum eigenstate with
the resonant momentum p = q/2 and the laser field by a Fock state with the photon number
n. The condition Eq. (D.41) can be brought into alternative form by defining the vector
c ≡ (c−1, c0, c1.c2)T and thus reads c(0) = (0, 1, 0, 0)T. This notation will be convenient for
our further investigations.
However, before solving the differential equation, dictated by the effective Hamiltonian,
Eq. (D.17), we have to consider the initial condition for the slowly varying contribution |Φ〉
and not of the total state vector |Ψ〉. Due to Eq. (D.3) we have to calculate

|Φ(0)〉 = eF̂ (0) |Ψ(0)〉 ∼=
(
1 + εF̂ (1)(0) + ε2 1

2 F̂
(1)2 + ε2F̂ (2)(0)

)
|ψ(0)〉 , (D.42)
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where we have used Eq. (D.5) and have expanded the exponential up to second order in ε.
Defining the expansion coefficients

dµ(0) ≡ 〈n+ µ, p− µq|Φ(0)〉 (D.43)

and inserting the expressions Eqs. (D.37) and (D.39) for F̂ 1 and F̂ (2), respectively, at τ = 0
yields

dµ(0) =
(

1− α2
n−1
8

)
δµ,0 + αn−1

2 δµ,−1 + 1
4αnαn+1δµ,2 + 1

24αn−1αn−2δµ,−2 (D.44)

or

d(0) =
(
αn−1

2 , 1− α2
n−1
8 , 0, 1

4αnαn+1

)T
(D.45)

in vector form. We note that this expression, Eq. (D.45), derived with the help of canonical
averaging differs from the one derived in Eq. (D.6) of Ref. [4] which emerges in the standard
method. This comes from the fact that the transformation, Eq. (D.1) in this reference is
not an exponential like in Eq. (D.3), but a direct expansion in ε. However, both cases yield
equivalent results, when, at the end, the back transformation to |Ψ〉 and cµ is made.

Slowly varying terms

We now solve the Schrödinger equation

i
d
dτ |Φ(τ)〉 = Ĥeff |Φ(τ)〉 (D.46)

for the slowly varying part |Φ〉 of the state |Ψ〉 corresponding to the initial condition,
Eq. (D.45). Applying the expansion Eq. (D.17), of Ĥeff with the contributions Ĥ(1)

eff , Ĥ(2)
eff and

Ĥ
(3)
eff , from Eqs. (D.36), (D.38) and (D.40), respectively, we obtain two separate ‘two-level

systems’: the first one is the usual one which consists of the levels µ = 0 and µ = 1,
corresponding to the momenta p = q/2 and p = −q/2, respectively, while the other system is
given by µ = −1 and µ = 2, that is p = 3q/2 and p = −3q/2, respectively.
For the fundamental two-level system we obtain the system of coupled differential equations

i
d
dτ

(
d0
d1

)
=

 −α2

n−1
2 αn

(
1− α2

n

4

)

αn
(
1− α2

n

4

)
−α2

n+1
2



(
d0
d1

)
(D.47)

where the second order contributions appear on the diagonal and effectively give just a global
phase. That is why we need to include the third order contributions which appear on the
off-diagonal and later can be identified as a shift of the Rabi frequency.
With the ansatz e−iλτ we find from Eq. (D.47) the quadratic equation

λ2 + α2
nλ− α2

n +
(
α4
n

2 + 1
4α

2
n−1α

2
n+1

)
= 0 (D.48)
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which is solved by
λ± ∼= −

α2
n

2 ± (αn − χn) (D.49)

with
χn ≡

1
8

(
α3
n + α2

n−1α
2
n+1

αn

)
(D.50)

and we have neglected terms of fourth or higher order in αn. The solution of Eq. (D.47) then
reads

(
d0(τ)
d1(τ)

)
= eiα2

nτ/2
(

cos [(αn − χn) τ ] −i sin [(αn − χn) τ ]
−i sin [(αn − χn) τ ] cos [(αn − χn) τ ]

)(
d0(0)
d1(0)

)
, (D.51)

where we have not yet assumed specific initial conditions for d0 and d1.

The second two-level system evolves in time according to the differential equation

i
d
dτ

(
d−1
d2

)
=
(

α2
n

4
1
4αn−1αnαn+1

1
4αn−1αnαn+1

α2
n

4

)(
d−1
d2

)
(D.52)

which again can be solved with the ansatz ∼ e−iλτ . From the resulting quadratic equation
(
λ− α2

n

4

)2

−
(1

4αn−1αnαn+1

)2
= 0 (D.53)

we find
λ± = α2

n

4 ±
1
4αn−1αnαn+1 (D.54)

and hence
(
d−1(τ)
d2(τ)

)
= e−iα2

nτ/4


 cos

(
1
4αn−1αnαn+1τ

)
−i sin

(
1
4αn−1αnαn+1τ

)

−i sin
(

1
4αn−1αnαn+1τ

)
cos

(
1
4αn−1αnαn+1τ

)


(
d−1(0)
d2(0)

)
(D.55)

in analogy to Eq. (D.51).

Combining the expressions Eq. (D.51) and (D.52) and using the initial condition Eq. (D.45)
we obtain

d(τ) = eiα2
nτ/2

(
1− α2

n−1
8

)



0
cos [(αn − χn) τ ]
−i sin [(αn − χn) τ ]

0


+ αn−1

2 e−iα2
nτ/4




cos
(

1
4αn−1αnαn+1τ

)

0
0

−i sin
(

1
4αn−1αnαn+1τ

)




+1
4αnαn+1 e−iα2

nτ/4




−i sin
(

1
4αn−1αnαn+1τ

)

0
0

cos
(

1
4αn−1αnαn+1τ

)




(D.56)
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as the solution for the slowly-varying part. We note that the term in the second line of this
equation, corresponding to the second-order corrections to d−1 and d2, will later be of no
importance when we calculate the transition probabilities, since they only result in terms of
higher than second order in α. However, we have included this term in Eq. (D.56) for the
sake of completeness.
In the following it is convenient to write d, Eq. (D.56), as an expansion in α, that is

d(τ) ≡ d(0)(τ) + αd(1)(τ) + α2d(2)(τ) , (D.57)

where we have omitted the different indices of α, corresponding to different photon numbers,
in order to simplify our notation.

Rapidly varying terms

To obtain the full solution for the state |Ψ〉 we have to consider the rapidly varying terms
F̂ (τ) according to the transformation, Eq. (D.3). The arising corrections to the amplitude
scale with powers of α.
From Eq. (D.3) and the expansion, Eq. (D.16), of F̂ in powers of ε we obtain the evolved
state

|Ψ(τ)〉 = e−F̂ (τ) |Φ(τ)〉 ∼=
(
1− εF̂ (1)(τ) + ε2 1

2 F̂
(1)2(τ)− ε2F̂ (2)(τ)

)
|Φ(τ)〉 , (D.58)

where we have made a Taylor expansion of the exponential. We write this state again in
terms of the coefficients

cµ(τ) ≡〈n+ µ, p− µq|Ψ(τ)〉 (D.59)
of the scattering basis.
For the excited, µ = 0, and the ground state, µ = 1, of the Quantum FEL we consider terms
up to second order in α. Hence, we find with the help of Eqs. (D.37), (D.39), (D.56), (D.58),
and (D.59) the expressions

c0(τ) = d
(0)
0 (τ) + α2

(
d

(2)
0 (τ) + 1

2 e−i2τ d(1)
−1(τ)− 1

8d
(0)
0 (τ)

)
(D.60)

and
c1(τ) = d

(0)
1 (τ) + α2

(
d

(2)
1 (τ) + 1

2 e−i2τ d(1)
2 (τ)− 1

8d
(0)
1 (τ)

)
. (D.61)

When we later take the modulus square of theses amplitudes to calculate the probabilities
we obtain that the cross term consisting of the contribution of zeroth and the one in second
order scales with α2. That is why we cannot neglect the second-order terms in Eqs. (D.60)
and (D.61).
In contrast, according to Eq. (D.56), d−1 and d2 have no zeroth-order contribution and thus
neither have c−1 and c2. Hence, we can restrict ourselves to the first order in α and arrive at

c−1(τ) = α
(
d

(1)
−1(τ)− 1

2 ei2τ d(0)
0 (τ)

)
(D.62)
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and
c2(τ) = α

(
d

(1)
2 (τ)− 1

2 ei2τ d(0)
1 (τ)

)
, (D.63)

where we have performed an analogous calculation like in the case of c0 and c1.

Probabilities

To obtain the probabilities characterizing the processes in the Quantum FEL we simply have
to take the modulus square of the probability amplitudes cµ. This procedure yields with the
amplitudes in Eqs. (D.60) and (D.61) the expressions

|c0(τ)|2 =
(

1− α2
n−1
2

)
cos2 [(αn − χn) τ ]

+ α2
n−1
2 cos

[(
2 + 3

4α
2
n

)
τ
]

cos [(αn − χn) τ ] cos
(1

4αn−1αnαn+1τ
) (D.64)

and

|c1(τ)|2 =
(

1− α2
n

2

)
sin2 [(αn − χn) τ ]

+ 1
2αn−1αn+1 cos

[(
2 + 3

4α
2
n

)
τ
]

sin [(αn − χn) τ ] sin
(1

4αn−1αnαn+1τ
)
.

(D.65)

While |c0|2 describes a process where the initial momentum p = q/2 is re-obtained at the end
of the interaction, for |c1|2 the momentum has changed to p = −q/2.
The processes corresponding to a final momentum p = 3q/2 and p = −3q/2 are described by
the probabilities

|c−1(τ)|2 = α2
n−1
4

{
cos2 [(αn − χn) τ ] + cos2

(1
4αn−1αnαn+1τ

)

−2 cos
[(

2 + 3
4α

2
n

)
τ
]

cos [(αn − χn) τ ] cos
(1

4αn−1αnαn+1τ
)} (D.66)

and

|c2(τ)|2 = 1
4

{
α2
n+1 sin2 [(αn − χn) τ ] + α2

n−1 sin2
(1

4αn−1αnαn+1τ
)

−2αn−1αn+1 cos
[(

2 + 3
4α

2
n

)
τ
]

sin [(αn − χn) τ ] sin
(1

4αn−1αnαn+1τ
)}

,

(D.67)
respectively. Here, we have calculated the modulus square of the amplitudes given in
Eqs.(D.63) and (D.62) and have used Eq. (D.56). We obtain that these ‘two-photon’ processes
are suppressed with α2 compared to ‘single-photon’ processes in Eqs. (D.64) and (D.65).
Moreover, we note that the the sum of all probabilities gives unity which we should be
expected for a unitary time evolution.
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D.2.2 Single-electron model – second resonance

In the following we derive the transition probabilities for the FEL at the second resonance
p = q within the single-electron model. For this purpose, we again use the method of canonical
averaging for which we consider contributions up to second order in frequency and up to
second order in amplitude. We again find that for α� 1 the dynamics reduces to the one
of a two-level system which is, however, characterized by a decreased Rabi frequency when
compared to the case of the first resonance p = q/2.
For p = q the Hamiltonian, Eq. (5.12), is identical to

ĤI = ε

(
âL
∑

µ

e−i2(µ−1/2)τ σ̂µ,µ+1 + â†L
∑

µ

ei2(µ−1/2)τ σ̂µ+1,u

)
. (D.68)

To bring ĤI into the form of Eq. (D.2), which we need to perform canonical averaging, we
change the summation index to k ≡ µ− 1/2. We not that k covers the range

k = ...− 3
2 ,−

1
2 ,

1
2 ,

3
2 , ... ,

(D.69)

that is, k is an odd multiple of 1/2. In our notation we stick in the following to Latin indices
for this kind of summation while we use Greek letters for the usual summation over integer
numbers.
Finally, we find the desired expression

ĤI = ε
∑

k

Ĥk ei2kτ , (D.70)

where 


Ĥ0 = 0
Ĥk = âLσ̂−k+ 1

2 ,−k+ 3
2

+ â†Lσ̂k+ 3
2 ,k+ 1

2

(D.71)

give the single components.

First order

According to Eq. (D.71) the zeroth component Ĥ0 is zero, and thus we have

Ĥ
(1)
eff = 0 . (D.72)

Hence, we have to go to the next higher order of our perturbative expansion to find a nonzero
contribution to the slowly varying part of the dynamics.
With the help of Eqs. (D.20) and (D.71) we find

F̂ (1)(τ) = −âL
∑

µ

e−i(2µ−1)τ

(2µ− 1) σ̂µ,µ+1 + â†L
∑

µ

ei(2µ−1)τ

(2µ− 1) σ̂µ+1,µ (D.73)

for the rapidly varying contribution, where we have returned to the summation over integer
numbers.
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Second Order

The second-order contribution, Eq. (D.23), of the effective Hamiltonian reads

Ĥ
(2)
eff = 1

2
∑

k

1
2k
[
Ĥk, Ĥ−k

]
(D.74)

and by inserting the expression, Eq. (D.71), for Ĥk we arrive at

Ĥ
(2)
eff = â2

Lσ̂0,2 + â†L
2σ̂2,0 − âLâ†L

∑

µ

1
2µ− 1 σ̂µ,µ + â†LâL

∑

µ

1
2µ− 3 σ̂µ,µ . (D.75)

Hence, the slowly-varying dynamics at this order is described by a two-level system with the
momenta p = q and p = −2q, as apparent from the first two terms in Eq. (D.75).
According to Eq. (D.24) the rapidly varying part of the dynamics is given by

F̂ (2)(τ) = 1
2
∑

ν 6=0,k

ei2ντ
4kν

[
Ĥk, Ĥν−k

]
(D.76)

which yields

F̂ (2) = â2
L
∑

µ6=0

e−i4µτ
4µ(4µ2 − 1) σ̂µ,µ+2 − â†L2 ∑

µ6=0

ei4µτ
4µ(4µ2 − 1) σ̂µ+2,µ (D.77)

after inserting Eq. (D.71).
Having found explicit expressions for the effective Hamiltonian Ĥeff and for the rapidly varying
contribution F̂ (τ) we are in the position to asymptotically solve the dynamics of the FEL for
this resonance, that is p = q.

Initial conditions

We assume that the electron initially is described a momentum eigenstate with the resonant
momentum p = q while the laser field is given a Fock state with photon number n. This
choice leads to the initial condition cµ(0) = δµ,0 in terms of the scattering basis, Eq. (5.4).
However, to solve the dynamics governed by the effective Hamiltonian Ĥeff we have to consider
the initial condition for the transformed state vector |Φ〉 rather than for |Ψ〉. In a procedure,
analogous to the one described for the first resonance, p = q/2, we find the initial condition

dµ(0) =
(

1− α2
n

2 −
α2
n−1
18

)
δµ,0 − αnδµ,1 + αn−1

3 δµ,−1 −
1
2αnαn+1δµ,2 −

1
120αn−1αn−2δµ,−2

(D.78)
for the expansion coefficients dµ of |Φ〉 in the scattering basis, defined in Eq. (5.38).

Slowly varying terms

By projecting on the Schrödinger equation for |Φ〉 with the effective Hamiltonian, Eq. (D.75),
and introducing the vector notation d ≡ (d−1, d0, d1, d2)T we find the system of coupled
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differential equations

i
d
dτ d =




1
5

(
α2
n −

α2
n−1
3

)
0 0 0

0 α2
n −

α2
n−1
3 0 αnαn+1

0 0 −3
(
α2
n −

α2
n−1
3

)
0

0 αnαn+1 0 α2
n −

α2
n−1
3




d (D.79)

subject to the initial condition in Eq. (D.78). While the dynamics of the levels µ = −1 and
µ = 1, corresponding to the momenta p = 2q and p = 0, respectively, are decoupled, the two
levels µ = 0 and µ = 2, that is p = q and p = −q, respectively, are mixed.
We solve Eq. (D.79) with the ansatz e−iλτ . For the decoupled levels we straightforwardly find

λ−1 = 1
5

(
α2
n −

α2
n−1
3

)
≡ 1

5ηn (D.80)

and
λ1 = −3

(
α2
n −

α2
n−1
3

)
≡ −3ηn (D.81)

for µ = −1 and µ = 1, respectively.
The eigenvalues of the coupling of p = q and p = −q are given by

λ± = −
(
α2
n −

α2
n−1
3

)
± αnαn+1 ≡ −ηn ± αnαn+1 , (D.82)

where the second term can be identified with the Rabi frequency of this specific two-level
system. In contrast to the first resonance p = q/2 where the Rabi frequency is linear in α,
Eq. (D.49), the Rabi frequency in Eq. (D.82) scales now quadratically with α.
The solution of Eq. (D.79) then reads

d(τ) =




e− iηnτ5 0 0 0
0 e−iηnτ cos (αnαn+1τ) 0 −i e−iηnτ sin (αnαn+1τ)
0 0 ei3ηnτ 0
0 −i e−iηnτ sin (αnαn+1τ) 0 e−iηnτ cos (αnαn+1τ)




d(0) (D.83)

for arbitrary initial conditions.
Inserting the initial condition Eq. (D.78) into Eq. (D.83) yields

dµ(τ) = d(0)
µ (τ) + αd(1)

µ (τ) + α2d(2)
µ (τ) (D.84)

with the expressions in zeroth order

d(0)
µ (τ) ≡ e−iηnτ cos (αnαn+1τ)δµ,0 − i e−iηnτ sin (αnαn+1τ)δµ,2 , (D.85)

in first order
αd(1)

µ (τ) ≡ −αn ei3ηnτ δµ,1 + αn−1

3 e−
iηnτ

5 δµ,−1 , (D.86)
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and in second order of α

α2d(2)
µ (τ) ≡ e−iηnτ

[
−
(
α2
n

2 + α2
n−1
18

)
cos (αnαn+1τ) + i

2αnαn+1 sin (αnαn+1τ)
]
δµ,0

+ e−iηnτ
[
i

(
α2
n

2 + α2
n−1
18

)
sin (αnαn+1τ)− 1

2αnαn+1 cos (αnαn+1τ)
]
δµ,2

− 1
120αn−1αn−2δµ,−2 ,

(D.87)

respectively. In analogy to our procedure for the first resonance, Eq. (D.57) , we have omitted
in Eq. (D.84) the index of α indicating the respective photon number.

Rapidly varying terms

In order to obtain the full expressions for the probability amplitudes corresponding to the
processes in the FEL we have to make the back transformation from |Φ〉 with dµ to |Ψ〉 with
the coefficients cµ, according to Eq. (D.3). This procedure yields rapid oscillations which
arise from F̂ (τ).
In an analogous way as in the case of p = q/2 we find the amplitudes

c0(τ) = d
(0)
0 (τ) + α2

(
d

(2)
0 (τ)− d(1)

1 (τ) eiτ +1
3d

(1)
−1(τ) e−i3τ −1

2d
(0)
0 (τ)− 1

18d
(0)
0 (τ)− 1

2d
(0)
2 (τ)

)

(D.88)
and

c2(τ) = d
(0)
2 (τ) + α2

(
d

(2)
2 (τ)− d(1)

1 (τ) eiτ −1
2d

(0)
0 (τ)− 1

18d
(0)
2 (τ)− 1

2d
(0)
2 (τ)

)
(D.89)

for the two-level system of p = q and p = −q, respectively. Moreover, we find the expressions

c1(τ) = α
[
d

(1)
1 (τ) + e−iτ

(
d

(0)
2 (τ) + d

(0)
0 (τ)

)]
, (D.90)

as well as
c−1(τ) = α

[
d

(1)
−1(τ) + 1

3d
(0)
0 (τ) e3iτ

]
(D.91)

and
c3(τ) = −α3 d

(0)
2 ei3τ (D.92)

corresponding to the momentum levels p = 0, p = 2q and p = 3q, respectively, where we have
used Eqs. (D.73), (D.77) and (D.84). In the derivation of these expressions for the probability
amplitudes we have just kept terms in powers of α that are relevant when we calculate the
transition probabilities up to second order in α by squaring the corresponding amplitude.

Probabilities

Taking the modulus square of the amplitudes Eqs. (D.88), (D.89), (D.90), (D.91) and (D.92),
inserting the expressions, Eqs. (D.85), (D.86) (D.87) and neglecting all terms which are of
higher than second order in α gives us the transition probabilities for the FEL at the second
resonance p = q.
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For the two-level system we find the probabilities

|c0(τ)|2 = cos2 (αnαn+1τ) + 2α2
n cos (αnαn+1τ) {cos [τ(1 + 4ηn)]− cos (αnαn+1τ)}

+ 2
9α

2
n−1 cos (αnαn+1τ)

{
cos

[
τ
(

3− 4
5ηn

)]
− cos (αnαn+1τ)

}

(D.93)
and

|c2(τ)|2 = sin2 (αnαn+1τ)−
(
α2
n + α2

n+1

)
sin2 (αnαn+1τ)− 1

9
(
α2
n−1 + α2

n+2

)
sin2 (αnαn+1τ)

− 2αnαn+1 sin (αnαn+1τ) sin [τ (1 + 4ηn)]
(D.94)

for the electron to have the momentum p = q and p = −q, respectively, corresponding to
zero emitted or absorbed photons and the emission of two photons, respectively.
The non-resonant processes are described by the probabilities

|c1(τ)|2 = α2
n

[
1 + cos2 (αnαn+1τ)− 2 cos (αnαn+1τ) cos [τ(1 + 4ηn)]

]

+ α2
n+1 sin2 (αnαn+1τ) + 2αnαn+1 sin (αnαn+1τ) sin [τ(1 + 4ηn)] ,

(D.95)

as well as

|c−1(τ)|2 = α2
n−1
9

[
1 + cos2 (αnαn+1τ)− 2 cos (αnαn+1τ)

]
cos

[
τ
(

3− 4
5ηn

)]
(D.96)

and
|c3(τ)|2 = 1

9α
2
n+2 sin2 (αnαn+1τ) (D.97)

for the momentum of the electron to be p = 0, p = 2q and p = −2q, respectively, corresponding
to single-photon emission, single photon-absorption and two-photon emission, respectively.
Similar to the situation for the first resonance the probabilities for transitions ‘outside’ the
two-level system are suppressed with α2. We note that we did not calculate corrections
higher-order corrections to the Rabi frequency αnαn+1 which would arise when we consider
higher orders of the effective Hamiltonian Ĥeff. However, these corrections would scale with
higher powers of α and thus are small for α� 1.

D.2.3 Many-electron model

In our treatment of the method of averaging for the many-electron model of the FEL we
restrict ourselves to the first resonance p = q/2. According Chap. 7 the dynamics of the FEL
for this situation is described by the Hamiltonian, Eq. (7.19),

H̄(τ) = ε

(
âL
∑

µ

ei2µτ Υ̂µ,µ+1 + â†L
∑

µ

e−i2µτ Υ̂µ+1,µ

)
−∆ n̂L , (D.98)

where Υ̂µ,µ+1 and Υ̂µ+1,µ now represent collective projection operators. Moreover, we assume
that the deviation ∆ from resonance p = q/2 is of the order of αN , that is ∆ ∼ αN . We note
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that the sign in the phases of H̄, Eq. (7.19), is reversed when compared to ĤI, Eq. (5.15),
from the approach employing the Schrödinger equation.
To apply the method of averaging we have to cast Eq. (D.98) into the form of Eq. (D.2). By
this procedure we obtain the coefficients




Ĥ0 = âLΥ̂0,1 + â†LΥ̂1,0 − ∆

ε
n̂

Ĥµ = âLΥ̂µ,µ+1 + â†LΥ̂−µ+1,−µ
(D.99)

which are analogue to the ones, Eq. (D.33), in the single-electron case, but with a reversed
sign of the indices µ, that is µ → −µ for µ 6= 0, emerging from the different signs in the
phases of H̄ and ĤI. Despite the similar form of these coefficients, the different properties
of the collective Υ̂µ,ν and the single-particle operators σ̂µ,ν lead to a different dynamical
behavior. Indeed, the commutation relation, Eq. (7.5),

[
Υ̂µ,ν , Υ̂ρ,λ

]
= δν,ρΥ̂µ,λ − δλ,µΥ̂ρ,ν (D.100)

corresponds to Eq. (D.34) valid in the single-electron model, but the product, Eq. (7.6),

Υ̂µ,νΥ̂ρ,λ 6= δν,ρΥ̂µ,λ (D.101)

of two operators does not result in a closed expression, in contrast to Eq. (D.35), leading to
different expressions for the method of averaging.

First order

With the help of Eqs. (D.19), (D.20), (D.30), and Eq. (D.99) we identify

Ĥ
(1)
eff = âLΥ̂0,1 + â†LΥ̂1,0 −

∆
ε
n̂ (D.102)

and
F̂ (1)(τ) = −âL

∑

µ6=0

ei2µτ
2µ Υ̂µ,µ+1 + â†L

∑

µ6=0

e−i2µτ
2µ Υ̂µ+1,µ (D.103)

as the first-order contributions of the effective Hamiltonian and of the rapidly varying
corrections, respectively. Since no products of operators occur in the first order of the method
of averaging the resulting expressions, Eqs. (D.102) and (D.103), coincide for ∆ = 0 and for
τ → −τ with the ones, Eqs. (D.36) and (D.39), in the single-particle case.

Second order

Application of Eqs. (D.23), (D.20), (D.31), and (D.99) yields the expressions

Ĥ
(2)
eff = 1

2
(
â†LâL + 1

)∑

µ6=0

1
µ

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

)
−
∑

µ 6=0

1
µ

Υ̂µ+1,µΥ̂µ,µ+1

= 1
2 â
†
LâL

∑

µ 6=0

1
µ

Υ̂µ+1,µ+1 −
1
2
(
â†LâL + 1

)∑

µ6=0

1
µ

Υ̂µ,µ −
∑

µ6=0

1
µ

(
Υ̂µ+1,µΥ̂µ,µ+1 − Υ̂µ+1,µ+1

)

(D.104)
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and

F̂ (2)(τ) =â2
L


1

4
(
Υ̂−1,1 e−i2τ −Υ̂0,2 ei2τ

)
+ 1

2
∑

µ6=0,−1

ei2(2µ+1)τ

4µ(µ+ 1)(2µ+ 1)Υ̂µ,µ+2




− â†L2


1

4
(
Υ̂1,−1 ei2τ −Υ̂2,0 e−i2τ

)
+ 1

2
∑

µ6=0,−1

e−i2(2µ+1)τ

4µ(µ+ 1)(2µ+ 1)Υ̂µ+2,µ




+
∑

µ6=0

ei2µτ
4µ2 Υ̂µ,µ+1Υ̂1,0 −

∑

µ 6=0

e−i2µτ
4µ2 Υ̂µ+1,µΥ̂0,1

+
∑

µ,ρ 6=0
µ6=ρ

ei2ρτ
4µρ Υ̂µ,µ+1Υ̂µ−ρ+1,µ−ρ −

∑

µ,ρ 6=0
µ6=ρ

e−i2ρτ
4µρ Υ̂µ+1,µΥ̂µ−ρ,µ−ρ+1

(D.105)

for the effective Hamiltonian and the rapidly varying terms, respectively, in second order of
the method of averaging.
Due to Eq. (D.101) the results, Eqs. (D.102) and (D.105) differ from the ones, Eqs. (D.38)
and (D.39), in the single-electron description where we were allowed to apply Eq. (D.35)
for products of projection operators. However, replacing the Υ̂µ,ν by σ̂µ,ν and employing
Eq. (D.35) in Eqs. (D.104) and (D.105) lead to the correct single-electron limit for ∆ = 0
and τ → −τ .

Third order

In third order we derive from Eqs. (D.26), (D.32), and (D.99) the effective Hamiltonian

Ĥ
(3)
eff =1

4 â
†
L
∑

µ 6=0
µ6=−1

1
µ(µ+ 1)(2µ+ 1)Υ̂2µ+1,2µ+2Υ̂µ+2,µ

+ 1
4 âL

∑

µ6=0
µ 6=−1

1
µ(µ+ 1)(2µ+ 1)Υ̂2µ+2,2µ+1Υ̂µ,µ+2

− 1
8 â
†
L
∑

µ6=0

1
µ2

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

)
Υ̂1,0 −

1
8 âL

∑

µ6=0

1
µ2

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

)
Υ̂0,1

+ 3
8 âL

(
Υ̂0,−1Υ̂−1,1 − Υ̂0,2Υ̂2,1

)
+ 3

8 â
†
L

(
Υ̂1,−1Υ̂−1,0 − Υ̂1,2Υ̂2,0

)

− 1
4 â
†
L

(
â†LâL + 3

2

)
Υ̂1,0 −

1
4

(
â†LâL + 1

2

)
âLΥ̂0,1 + 1

4 âL
3Υ̂−1,2 + 1

4 â
†
L

3Υ̂2,−1

+ ∆
4ε



(n̂L + 1)

∑

µ6=0

1
µ2

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

)
−
∑

µ6=0

1
µ2 Υ̂µ+1,µΥ̂µ,µ+1





(D.106)

which is very cumbersome when compared to the corresponding expression, Eq. (D.40) in
the single-particle case. The replacement of the Υ̂µ,ν by σ̂µ,ν and application of the product
property Eq. (D.35), however, yields again the correct single-electron limit.
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Linearization

Despite the lengthy expression, Eqs. (D.104) and (D.106) of the effective Hamiltonian in
higher orders we can, indeed, find an analytic solution for the time evolution of the laser
field, at least in the short-time limit. In analogy to the deep quantum regime in Chap. 7 we
linearize the Heisenberg equations of motion by approximating Υ̂0,0 ∼= 〈Υ̂0,0(0)〉 = N .

The equation of motion corresponding to the slowly varying part of the dynamics reads

i
d
dτ Ô = −ε

[
Ĥ

(1)
eff , Ô

]
− ε2

[
Ĥ

(2)
eff , Ô

]
− ε3

[
Ĥ

(3)
eff , Ô

]
+ ... (D.107)

where Ô is an arbitrary operator. In first order we obtain with the help of Eq. (D.102) the
expressions [

Ĥ
(1)
eff , Υ̂1,0

]
= âLΥ̂z

∼= NâL (D.108)
and [

Ĥ
(1)
eff , âL

]
= −Υ̂1,0 + ∆

ε
âL (D.109)

for Υ̂1,0 and âL, respectively, leading to the linear set of equations, Eq. (7.31), of the deep
quantum regime.

For second order we derive from Eq. (D.23) the relations
[
Ĥ

(2)
eff , Υ̂1,0

]
= −1

2
(
Υ̂−1,0Υ̂1,−1 + Υ̂2,0Υ̂1,2 − Υ̂1,0

) ∼= 1
2Υ̂1,0 (D.110)

and [
Ĥ

(2)
eff , âL

]
= −1

2 âL
∑

µ6=0

1
µ

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

) ∼= 1
2NâL , (D.111)

where we have set Υ̂0,0 ∼= N . Moreover, we have treated âL ≡ δâL and Υ̂µ,ν ≡ δΥ̂µ,ν , expect
for µ = ν = 0, as small quantities. That is why we have neglected products like δâLδΥ̂µ,ν

and δΥ̂µ,νδΥ̂ρ,λ since they are of second order in our linearization scheme.

An analogous procedure yields with the help of Eq. (D.106) the third-order contributions

[
Ĥ

(3)
eff , Υ̂1,0

]
=− 1

8 âL


∑

µ 6=0

1
µ2 Υ̂µ+1,µ+1Υ̂z −

∑

µ 6=0

1
µ2 Υ̂µ+1,µ+1Υ̂z + 2Υ̂z − 2Υ̂0,1Υ̂1,0




− 3
8 âL

(
Υ̂z + Υ̂1,−1Υ̂−1,1 − Υ̂1,2Υ̂2,1 + Υ̂0,−1Υ̂−1,0 + Υ̂0,2Υ̂2,0

)

+ 1
4 (n̂+ 2) âLΥ̂z + 1

4 â
†
LΥ̂2

1,0 + 1
24 â

†
L

(
Υ̂−3,−2Υ̂1,−2 + Υ̂3,4Υ̂3,0

)

− ∆
2ε (n̂+ 1) Υ̂1,0 + ∆

4ε
(
Υ̂−1,0Υ̂1,−1 − Υ̂2,0Υ̂1,2 + Υ̂1,0

)

∼= N

8 (N + 1) âL −
∆
4εΥ̂1,0

(D.112)
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and
[
Ĥ

(3)
eff , âL

]
=− 1

4
∑

µ6=0
µ6=−1

1
µ(µ+ 1)(2µ+ 1)Υ̂2µ+1,2µ+2Υ̂µ+2,µ

− 1
8
∑

µ6=0

1
µ2

(
Υ̂µ,µ − Υ̂µ+1,µ+1

)
Υ̂1,0 + 1

2 n̂Υ̂1,0 + 1
4 â

2
LΥ̂0,1 −

3
4 â
†
L

2Υ̂2,−1

− ∆
4εâL

∑

µ 6=0

1
µ2

(
Υ̂µ+1,µ+1 − Υ̂µ,µ

)

∼=1
8 (N + 3) Υ̂1,0 −

∆
4εâL

(D.113)

to the dynamics of Υ̂1,0 and âL, respectively, in the short-time limit.
By rescaling the operators according to





Υ̃1,0 = 1√
N

Υ̂1,0

ãL = âL
(D.114)

and inserting Eqs. (D.108) – (D.113) into the corresponding Heisenberg equation, Eq. (D.107),
we finally arrive at the linearized equations of motion

i
d
dτ

(
Υ̃1,0
ãL

)
=




0 −αN
(

1− α2
N

8

)

+αN
(

1− α2
N

8

)
−αN

(
κ + αN

2 −
κα2

N

4

)




(
Υ̃1,0
ãL

)
(D.115)

for Υ̃1,0 and âL in the quantum regime. Here, we have assumed that the deviation ∆ ≡ καN
from resonance is of the order of αN , that is κ ∼ O(1), and have made the approximation
N + 3 ∼= N + 1 ∼= N due to the high number N of electrons in the bunch. Moreover, we
have neglected the term proportional to ∆ in Eq. (D.112) since it would scale with α3

N/N in
Eq. (D.115) and thus is suppressed with 1/N in comparison to the other contributions of
Eq. (D.115).
The ansatz ∼ e−iλτ yields the quadratic equation

λ2 + αN

(
κ + αN

2 −
κα2

N

4

)
λ+ α2

(
1− α2

N

8

)2

= 0 (D.116)

which has the solutions

λ ∼= −καN
2 − α2

N

4 + κα3
N

8 ± iαN
√

1− κ2

4 −
καN

4 − 5α2
N

4 + κ2α2
N

8

∼= −καN
2 − α2

N

4 + κα3
N

8 ± iαN
√

1− κ2

4


1− κ/2

1− κ2

4

αN
4 −

5− 3κ2 + κ4/2
(
1− κ2

4

)2
α2
N

32


 ,

(D.117)
where we have expanded in the second step the square root up to second order in αN � 1.
The imaginary part of the dimensionless frequency λ in Eq. (D.117) leads to exponential gain
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in the Quantum FEL and includes the corrections to the deep quantum regime, Eq. (7.32),
which scale with powers of αN .



E Photon Number Representation

In this appendix we present the detailed calculations for the Quantum FEL oscillator, Chap. 6.
In contrast to the Wigner representation for the classical FEL in Chap. 4 we here employ
the photon number representation for the reduced density matrix of the laser field. First,
we derive the equation of motion for the diagonal elements of this matrix leading to a
recurrence relation for the steady-state photon statistics in the deep quantum regime. We
solve this relation with the help of a Gaussian approximation [39]. After that, we incorporate
higher-order corrections of the method of averaging with the help of an approach developed
in Ref. [123] for situations without detailed balance. Finally, we consider the off-diagonal
elements of the reduced density matrix which are crucial to calculate the intrinsic linewidth
and we expand the occurring quantities in powers of 1/n� 1.

E.1 Diagonal elements

We consider the elements
ρn,m ≡ 〈n|Trel{ρ̂}|m〉 (E.1)

of the reduced density matrix ρ̂L for the laser field in photon number representation. For
the reduced density operator we have to take the partial trace ρL ≡ Trel{ρ̂} for the density
operator of the total system ρ̂ with respect to the electronic subsystem.
Similar to our considerations for the classical FEL in Chap. 4 and App. C we split the
equation of motion

ρ̇n,m =
(
∂ρn,m
∂t

)

int
+
(
∂ρn,m
∂t

)

loss
(E.2)

for the reduced density matrix into a contribution due to the interaction of electron and
fields and one due to cavity losses.
The interaction term is approximated by a coarse-grained derivative [22]

(
∂ρn,m
∂t

)

int

∼= N

τinj
[ρn,m(t+ T )− ρn,m(t)] , (E.3)

where τinj denotes the injection time of the electron bunches, each of them consisting of N
electrons, and T being the interaction time of the electrons in the wiggler.
According to Eq. (6.1) the state vector of the combined system of electron and laser field
prior to interaction can be described by the product

|Ψ(t)〉 =



q∫

0

dp φ(p) |p〉

⊗

∑

n

cn(t) |n〉 (E.4)
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with cn denoting the expansion coefficients for the laser field in the Fock basis and φ(p)
describing the wave function of the electron in momentum representation which should be
sharply peaked around p = q/2 in order to be in the quantum regime, Eq. (5.30). During the
interaction of electron and fields the state evolves to |Ψ(t+ T )〉 which is characterized by the
expansion coefficients

cn(p, t+ T ) = e−i∆ωrT φ(p)
(

cos ΩnT − i
∆ωr

2Ωn

sin ΩnT

)
cn(t)

cn+1(p− q; t+ T ) =− i ei∆ωrT φ(p)gT
√
n+ 1

Ωn

sin ΩnT cn(t)
(E.5)

in the combined |n, p〉 basis, where p corresponds to the excited state, Eq. (5.28), and p− q
to the ground state, Eq. (5.28), of the two-level system in Chap. 5.

By making the identification ρ̂ = |Ψ〉 〈Ψ| and using the initial state |Ψ(t)〉 in Eq. (E.4) we
find the simple relation ρn,n = |cn(t)|2 for the diagonal elements, given by n = m in Eq. (E.1),
before interaction. After interaction, we obtain the expression

ρn,n(t+ T ) =
∫
dp |cn(p; t+ T )|2 +

∫
dp |cn(p− q; t+ T )|2 (E.6)

which leads with the help of Eq. (E.5) and the coarse-grained derivative, Eq. (E.3), to
(
∂ρn,n(t)
∂t

)

int
= −(n+ 1)2Gn

τinj
ρn,n(t) + n

2Gn−1

τinj
ρn−1,n−1(t) , (E.7)

where we have defined
Gn ≡

1
2(gT )2N

∫
dp sinc2ΩnT |φ(p)|2 (E.8)

as the gain of the Quantum FEL. The identification of Gn with the gain is verified in Chap. 6
by explicitly calculating the change of the mean photon number 〈n̂〉 in time.

In App. C.4 we have introduced an equation of motion, Eq. (C.86), for the reduced density
matrix ρ̂L due to the cavity losses. By projecting on the diagonal elements of Eq. (C.86),
according to Eq. (E.1), we obtain

(
∂ρn,n(t)
∂t

)

loss
= −nωL

Q
ρn,n(t) + (n+ 1)ωL

Q
ρn+1,n+1(t) . (E.9)

Combining Eqs. (E.7) and (E.9) we finally arrive at the equation of motion

ρ̇n,n(t) = −(n+ 1)2Gn

τinj
ρn,n(t) + (n+ 1)ωL

Q
ρn+1,n+1

+n2Gn

τinj
ρn−1,n−1(t)− nωL

Q
ρn,n(t)

(E.10)

for the diagonal elements.



E.2 Gaussian approximation 233

For steady state we require [22] ρ̇n,n = 0. Moreover, by employing detailed balance, which
means that each line of Eq. (E.10) has to vanish separately, we obtain the recurrence relation

ρn,n = Λnρn−1,n−1 , (E.11)

where the parameter
Λn ≡

2Gn−1

ωLτinj/Q
(E.12)

constitutes the ratio of gain and losses.

E.2 Gaussian approximation

The recurrence relation, Eq. (E.11), is too complicated to find a closed analytic solution for
the steady-state photon statistics ρn,n. However, if the distribution is peaked around a single
dominant maximum we can approximate it by a Gaussian in analogy to the procedure in
Ref. [39].
By iterating Eq. (E.11) we can write down its formal solution

ρn,n
ρ0,0

=
n∏

n′=1
Λn′ = exp

(
n∑

n′=1
ln Λn′

)
. (E.13)

When we assume that n is approximately continuous we obtain the expression
ρn,n
ρ0,0
∼= eI(n) (E.14)

with

I(n) ≡
n∫

1

dn′ ln Λ(n′) , (E.15)

where we have replaced the discrete summation in Eq. (E.13) by a continuous integration.
Simple considerations show that ρn,n possesses an extreme value if Λn = 1. By differentiating
ρn,n with respect to n we observe that this derivative is always equal to zero if ln Λn = 0 or
Λn = 1. In the case, where the corresponding extreme value is a single dominating maximum
of the photon statistics, we identify n = nss for which

Λnss = 1. (E.16)

as the mean photon number at steady state.
For a Gaussian we just require the second moment of the distribution and hence we expand
I, Eq. (E.15),

I(n) ∼=
nss∫

1

dn′ ln Λ(n′) + ln Λ(nss) (n− nss) + 1
2

1
Λ(nss)

dΛ(n)
dn

∣∣∣∣∣
n=nss

(n− nss)2 (E.17)
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up to to second order in powers of (n− nss). Due to Eq. (E.16) the linear term is zero and
we, thus, obtain the approximation

I(n) ∼= I(nss) + 1
2
dΛ(n)
dn

∣∣∣∣∣
n=nss

(n− nss)2 (E.18)

for the integral I.
With the help of Eqs. (E.14), (E.16) and (E.18) we finally obtain the Gaussian approximation

ρssn,n
∼= N exp

[
−(n− nss)2

2∆n2

]
(E.19)

for the photon statistics, corresponding to the recurrence relation Eq. (E.11). The maximum
of this distribution is at nss, Eq. (E.16), while the variance is given by

∆n2 ≡ −
(
dΛ(n)
dn

∣∣∣∣∣
n=nss

)−1

, (E.20)

according to Eq. (E.18). We note that the normalization constant

N ≡ ρ0,0 eI(nss) (E.21)

has to be calculated by integrating ρn,n over n from one to infinity and setting the result
equal to unity.
We again emphasize that the Gaussian approximation is only allowed when the photon
statistics possesses a single dominant maximum. According to Ref. [39] this constraint is
always satisfied if the condition

gT
√
N√

ωLτinj/Q
<

3π
2 (E.22)

is fulfilled.

E.3 Photon statistics without detailed balance

When we leave the deep quantum regime and incorporate higher-order corrections due the
method of averaging we additionally have to consider two-photon emission yielding the final
momentum p = −3q/2 as well as single-photon absorption resulting in p = 3q/2 as discussed
in Chap. 5. Instead of a three-term recurrence relation as in Eq. (E.10) we have to take four
contributions into account. As a result we cannot solve the equation for the steady state
with the help of detailed balance. However, in Ref. [123] an approach is sketched to observe
an approximate steady-state photon statistics even without detailed balance.
For the sake of simplicity we misuse in the following notation and separate the coefficients

|cn+µ(p− µq; t+ T )|2 → |cn+µ(p− µq;T )|2ρn,n(t) (E.23)
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in two parts, that is a contribution from interaction and the initial diagonal element ρn,n(t)
for the laser field which is given by ρn,n(t) = |cn(t)|2. Moreover, we restrict ourselves to exact
resonance, p = q/2.

Similarly to the two-level case, Eq. (E.10), we obtain the equation of motion

ρ̇n,n = −ξ0ρn,n + ξ−1ρn−1,n−1 + ξ1ρn+1,n+1 + ξ−2ρn−2,n−2 (E.24)

for the diagonal elements including higher orders of the method of averaging. Here, we have
defined

ξ0 ≡
N

τinj

(
1− |cn(p;T )|2

)
− ωL

Q
n , (E.25)

ξ−1 ≡
N

τinj
|cn(p− q;T )|2 , (E.26)

ξ1 ≡
ωL

Q
(n+ 1) + |cn(p+ q;T )|2 , (E.27)

and
ξ−2 ≡ |cn(p− 2q;T )|2 . (E.28)

In addition to Eq. (E.10) for the deep quantum regime, a term proportional to ρn−2,n−2
appears in Eq. (E.24). For steady-state, ρ̇n,n = 0, Eq. (E.24) simplifies to

ξ0ρn,n = ξ−1ρn−1,n−1 + ξ1ρn+1,n+1 + ξ−2ρn−2,n−2 (E.29)

which is an algebraic equation.

Following Ref. [123] we rewrite Eq. (E.29) in terms of the ratio

Rn ≡
ρn+1,n+1

ρn,n
(E.30)

which yields
ξ0 = ξ−1

Rn−1
+ ξ1Rn + ξ−2

Rn−1Rn−2
. (E.31)

According to Refs. [124, 123] Rn is a slowly varying function with respect to n and by
approximating Rn

∼= Rn−1 ∼= Rn−2 ≡ R we obtain the cubic equation

ξ1R
3 − ξ0R

2 + ξ−1R + ξ−2 = 0 (E.32)

which can be easily solved. Moreover, we set n ∼= n± 1 ∼= n± 2 in the expressions for the
coefficients ξn, Eqs. (E.25), (E.26), (E.27), and (E.28), and arrive at

ξ0 = ξ1 + ξ−1 + ξ−2 (E.33)

which corresponds to the conservation of probabilities.

By inspecting Eq. (E.32) we find with the help of Eq. (E.33) the solution R = 1 which,
however, would lead to a distribution which cannot be normalized [123]. By polynomial long
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division by (R− 1) we obtain the quadratic equation

ξ1R
2 − (ξ−1 + ξ−2)R− ξ−2 = 0 , (E.34)

where we have used Eq. (E.33). The roots of Eq. (E.34) are given by

R± = −ξ−1 + ξ−2

2ξ1
±
√

(ξ−1 + ξ−2)2 + 4ξ1ξ−2

2ξ1
. (E.35)

Since R+ correctly reduces to Λn for αn → 0 we discard R− and use R+ in the further course
of our investigations. The definition of Rn in Eq. (E.30) gives us the prescription

ρn+1,n+1 = R+(n)ρn,n (E.36)

to calculate the steady-state photon statistics including higher-order corrections. For example,
this can be done by the numerical iteration of Eq. (E.36).
Alternatively, one can employ the Gaussian approximation introduced in the preceding
section. There we have required for steady state, Eq. (E.16), that Λn = 1. Hence, we find
the corresponding condition for the present approach when we set R = 1 in the quadratic
equation Eq. (E.34). By this procedure we obtain

ξ1 − ξ−1 − 2ξ−2 = 0 (E.37)

which translates to
ωL

Q
nss = N

τinj

∑

µ

|cµ(T )|2 (E.38)

when we use the definitions of the coefficients in Eqs. (E.25), (E.26), (E.27), and (E.28). By
inserting the expression for the probabilities |cµ|2, Eqs. (D.64), (D.65), (D.67) and (D.66) we
finally arrive at

ω

Q
nss = δn(0)(nss) + α2

nδn
(2)(nss) (E.39)

with δn(0) and δn(2) introduced in Eqs. (6.29) and (6.30), respectively.
Moreover, we can find an expression for the variance ∆n2, in analogy to Eq. (E.20) for the
two-level case, by differentiating Eq. (E.34) with respect to n. Thus, we obtain

(
dR
dn

)

n=nss
= − [ (ξ−1 + 3ξ−2)|n=nss ]

−1
[
d
dn(ξ1 − ξ−1 − 2ξ−2)

]∣∣∣∣∣
n=nss

(E.40)

and the inverse of this expression gives us the variance ∆n2 in accordance with Eq. (E.20).

E.4 Off-diagonal elements

In this section we derive in detail the intrinsic the linewidth D, Eq. (6.66), for an FEL in the
deep quantum regime. Hence, we require knowledge about the off-diagonal elements ρn+1,n
of the reduced density matrix of the laser field.
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Analogously to our procedure for the diagonal elements in Sec. E.1 we employ the expansion
of the state |Ψ(t+ T )〉 in the basis |n, p〉 and obtain with the coefficients in Eq. (E.5) the
expression

ρn+1,n(t+ T ) =
∫
dp cn+1(p; t+ T )c∗n(p; t+ T ) +

∫
dp cn+1(p− q; t+ T )c∗n(p− q; t+ T )

(E.41)
for the change of the off-diagonal elements during the interaction. Employing the coarse-
grained derivative, Eq. (E.3), we arrive at the continuous change

∂ρn+1,n(t)
∂t

= N

τinj
[−ζnρn+1,n(t) + χn−1ρn,n−1(t)] (E.42)

with




Re (ζn) ≡ ∫dp |φ(p)|2
(
1− cos ΩnT cos Ωn+1T − ∆2

4
(ωrT )2

ΩnΩn+1
sin ΩnT sin Ωn+1T

)

χn−1 ≡ ∫dp |φ(p)|2 g
2T 2
√
n(n+1)

Ωn−1Ωn sin Ωn−1T sin ΩnT .
(E.43)

Here, we have omitted the imaginary part of ζn since it is not of importance for the linewidth
as it later turns out.

Projecting on the off-diagonal elements in Eq. (C.86) for the losses we find
(
∂ρn+1,n(t)

∂t

)

loss
= −ωL

Q

(
n+ 1

2

)
ρn+1,n(t) + ωL

Q

√
(n+ 1)(n+ 2) ρn+2,n+1(t) (E.44)

and due to Eq. (E.2) we finally arrive at the equation of motion

ρ̇n+1,n = N

τinj
[−ζnρn+1,n(t) + χn−1ρn,n−1(t)]

− ωL

Q

(
n+ 1

2

)
ρn+1,n(t) + ωL

Q

√
(n+ 1)(n+ 2) ρn+2,n+1(t)

(E.45)

for the off-diagonal elements.

According to Eq. (6.60) we have to sum over the ρ̇n+1,n to calculate the linewidth. With the
help of Eq. (E.45) we obtain the relation

∑

n

ρ̇n+1,n =
∑

n

µnρn+1,n (E.46)

where we have defined

µn ≡
N

τinj
[ζn − χn] + ω

Q

[(
n+ 1

2

)
−
√
n(n+ 1)

]
(E.47)

after appropriately shifting the summation indices. The real part of this parameter µn
at steady state n = nss gives us then the intrinsic linewidth D = 2Re(µssn ) according to
Eq. (6.65).
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E.5 Expansion of square roots
In the following we present the details of the expansion in powers of 1/n which leads from
Eq. (6.66) to the simplified expression in Eq. (6.67) for the intrinsic linewidth D of a Quantum
FEL. For n� 1 we can expand [67] the square roots

√
n(n+ 1) ∼= n+ 1

2 −
1

8n ,
(E.48)

and √
(n+ 1)(n+ 2) ∼= n+ 3

2 −
1

8n
(E.49)

up to second order in 1/n.
The approximation in Eq. (E.48) is important for the cavity losses and by inspection of
Eq. (6.66) we observe that the terms with n + 1/2 cancel and only the contribution with
1/(8n) remains. With the help of the definition, Eq. (5.27), for the Rabi frequency Ωn we
obtain on the other hand that we require the second approximation, Eq. (E.49), for the
contribution

g2
√

(n+ 1)(n+ 2) + ∆2ω2
r

4 =
√

Ω2
nΩ2

n+1 + g2 g∆2ω2
r

2

[√
(n+ 1)(n+ 2)−

(
n+ 3

2

)]
. (E.50)

Hence, we arrive at

g2
√

(n+ 1)(n+ 2) + ∆2ω2
r

4
∼= ΩnΩn+1

[
1− ∆2

4
g2ω2

r
8(n+ 1)Ω2

nΩ2
n+1

]
, (E.51)

where the term in square brackets emerges from a further Taylor expansion due to 1/(Ω2
nΩ2

n+1)�
1.
With the help of trigonometric relations [67] we, moreover, derive the relation

1− cos ΩnT cos Ωn+1T − sin ΩnT sin Ωn+1T ∼= 2 sin2
[
g2

4Ωn

]
, (E.52)

where we have made the approximation

Ωn+1 − Ωn
∼= g2

2Ωn

(E.53)

which can be straightforwardly derived for 1/n� 1. The expression in Eq. (E.52) corresponds
to the leading term of the intrinsic linewidth D in Eq. (6.67).



F Jacobian Elliptic Functions

In the investigation of the approximate long-time behavior of the high-gain Quantum FEL in
Chap. 7 we have derived an elliptic integral, Eq. (7.60). This integral can be solved with the
help of Jacobian ellitptic functions [137, 144]. Therefore, we devote this appendix to this
kind of special functions. First, we summarize the definitions and properties of the elliptic
functions before we apply these concepts on the solution of Eq. (7.60).

F.1 Properties
In the following we just briefly review Jacobian elliptic functions with emphasis on the
properties required for solving Eq. (7.60). For a complete review on elliptic integrals and
Jacobian functions we recommend Ref. [137]. An elliptic integral of the first kind is given
by [137]

u =
ϕ∫

0

dϑ√
1− k2 sinϑ

, (F.1)

where k is referred to as ‘modulus’ and satisfies 0 < k < 1. It is convenient to introduce also
the parameter

k′ ≡
√

1− k2 (F.2)
which we call complementary modulus.
Moreover, we can define the inverse functions of the elliptic integral, Eq. (F.1), as [137]

am(u, k) ≡ ϕ

sn(u, k) ≡ sinϕ
cn(u, k) ≡ cosϕ

dn(u, k) ≡
√

1− k2 sin2 ϕ

(F.3)

which are the fundamental Jacobian elliptic functions. While am is sometimes called ‘ampli-
tude’, sn, cn and dn are known as ‘sine amplitude’, ‘cosine amplitude’ and ‘delta amplitude’,
respectively.
A special value for the argument u of the elliptic functions is given by the complete elliptic
integral

K ≡ K(k) ≡
π/2∫

0

dϑ√
1− k2 sinϑ

(F.4)

and integer multiples of it. We note the asymptotics [137]

lim
k→1

K = ln 4
k′

(F.5)
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−2K −K 0 K 2K
−1

0

1

u

sn
cn
dn
k′

Figure F.1: Jacobian elliptic functions: We have drawn the sine amplitude sn (blue line),
the cosine amplitude cn (red line) and the delta amplitude dn (red line) all as
functions of the argument u in units of the complete elliptic integral K, Eq. (F.4).
While sn and cn, both, are 4K-periodic and vary between 0 and 1, dn shows
2K-periodicity and just takes on values between k′ (black, dashed line) and 1.
Moreover, we observe that cn and dn, both, are even functions of u contrarily to
sn which is point symmetric with respect to the origin.

for k approaching unity.
From Fig. F.1, where we have drawn the fundamental elliptic functions depending on the
argument u, we obtain a similar behavior of sn and cn compared to the trigonometric
functions sin and cos. Both Jacobian elliptic functions vary between 0 and 1, are 4K-
periodic and change their sign at odd integers of 2K, that is for example cn(0, k) = 1 while
cn(2K, k) = −1. Moreover, sn is an odd function while cn is an even one. We note that dn
is an even, 2K-periodic, function with values between k′ and 1.
Another similarity to trigonometric functions arises by the identity [137]

sn2(u, k) + cn2(u, k) = 1 (F.6)

which relates sn and cn in an analogous way as sine and cosine. Moreover, sn and dn are
connected via

k2sn2(u, k) + dn2(u, k) = 1 . (F.7)
We note that there are two more similar identities for these elliptic functions which we do
not present here but can be found in Ref. [137].
Besides the four fundamental functions, Eq. (F.3), the various ratios of these quantities are
also defined as Jacobian elliptic functions giving rise to the total number of twelve possible
combinations. We only present here the ratio [137]

sd(u, k) ≡ sn(u, k)
dn(u, k) (F.8)



F.2 Solution of integral 241

of sn and dn. It is connected via [137]

cn(u+K, k) = −k′sd(u, k) (F.9)

to the cosine amplitude and the complementary modulus.
For our calculations we, moreover, need the relation [137]

[
d
dusn(u, k)

]2

=
(
1− sn2(u, k)

) (
1− k2sn2(u, k)

)
(F.10)

for the derivative of the sine amplitude.

F.2 Solution of integral

In Chap. 7 we have derived the integral, Eq. (7.60),

2αNτ =
n/N∫

0

dy√
(n+/N − y)y(y + n−/N)

(F.11)

for the dimensionless time τ as function of the photon number n. In the following we show
how to express the photon number n in terms of a Jacobian elliptic function depending on τ .
The roots of the denominator in Eq. (F.11) are given by, Eq. (7.58),

n± ≡ ±
N

2

(
1− κ2

4

)
∓ 1

2 + N

2

(
1− κ2

4

)√√√√1 + 1
N

3 + κ2/4
1− κ2/4 + 1

4N2
1

1− κ2/4 ,
(F.12)

with N � 1 and κ < 2. Thus, we obtain that n+/N ≥ n/N ≥ 0 > −n−/N .
According to Ref. [137] we solve this integral by performing the substitution

sn2(u, k) = (n+ + n−)y
n+(y + n−/N) ≡

y

k2(y + n−/N) , (F.13)

where we have defined in the second step the modulus

k2 ≡ n+

n+ + n−
. (F.14)

We note that
k′2 ≡ n−

n+ + n−
(F.15)

gives us the complementary modulus which is related by the simple connection

k2

k′2
= n+

n−
(F.16)

to k.
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With the help of this substitution, Eqs. (F.13) and (F.14), we obtain the relation

2
√
Ndu√

n+ + n−
= dy√

(n+/N − y)y(y + n−/N)
, (F.17)

where we have made use of the identity Eq. (F.10). The limits of the integration are given by

u(y = 0) = 0 (F.18)

and
u(y = n/N) = sn−1

[√
n

k2(n+ n−) , k
]

(F.19)

which follow from sn(0, k) = 0 and setting y = n/N in Eq. (F.13), respectively.
Hence, we arrive at the equation

1
1 + n−

n

= k2sn2


αNτ

√
n+ + n−

N
, k


 (F.20)

for the mean photon number n where we have solved for the argument of the inverse function
in Eq. (F.19). With the help of Eqs. (F.7) and (F.8) we obtain the expression

n = n+k
′2sd2


αNτ

√
n+ + n−

N
, k


 (F.21)

for the photon number. It is convenient to rewrite this result to

n = n+cn2


αNτ

√
n+ + n−

N
−K, k


 , (F.22)

where we have employed Eqs. (F.16) and (F.9) and have made use of the periodicity and
symmetry of cn.



G Iteration of Cubic Equation

In the following we present the detailed procedure to approximately solve the cubic equation,
Eq. (7.86), (

λ2 − 1
)

(λ+ 1 + καN) = 2α2
N (G.1)

of Ref. [3] in the limit αN � 1 with the help of the asymptotic method of iteration [145].

We note that for αN = 0 this equation has the roots λ = −1 and λ = 1 with the former one
being degenerate. Since the root λ = −1 gives us a nonzero imaginary part in higher orders
we first focus on this branch of the solution. In order to apply the iteration method it shows
to be convenient to cast Eq. (G.1) into the symmetric form

(
λ+ 1 + καN

2

)2
(λ− 1)− κ2α2

N

4 (λ− 1) = 2α2
N

(G.2)

which is still an exact relation.

We now proceed by taking the square root of Eq. (G.2) and solve the resulting expression for
λ. Hence, we arrive at the recurrence relation

λ(n+1) = −1− καN
2 ±

√
2α2

N

λ(n) − 1 + κ2α2
N

4
(G.3)

which connects the solution λ(n+1) of (n+ 1)th order in αN with the nth order solution λ(n).
Since the leading term of λ is given by λ = −1 we, moreover, recognize that the expression
in the square root is negative and we write

λ(n+1) = −1− καN
2 ± iαN

√
2

1− λ(n) −
κ2

4
(G.4)

which means that λ possesses an imaginary part for higher orders in αN .

We now iterate Eq. (G.4) by inserting the expression for λ(n) and keeping just terms of
(n+ 1)th power of αN to determine the result for λ(n+1). We start this procedure with the
zeroth-order solution

λ(0) = −1 (G.5)
which leads with the help of Eq. (G.4) to

λ(1) = −1− καN
2 ± iαN

√

1− κ2

4 , (G.6)

where we just have considered terms linear in αN .
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Inserting this expression, Eq. (G.6), for λ(1) into the recurrence relation, Eq. (G.4), and
performing a Taylor expansion up to α2

N leads to

λ(2) = −καN
2 − α2

N

4 ± iαN
√

1− κ2

4

[
1− κ/2

1− κ2

4

αN
4

]
. (G.7)

By repeating this procedure for λ(2), Eq. (G.7), we finally arrive at

λ(3) = −καN
2 − α2

N

4 + κα3
N

8 ± iαN
√

1− κ2

4


1− κ/2

1− κ2

4

αN
4 −

5− 3κ2 + κ4/2
(
1− κ2

4

)2
α2
N

32


 (G.8)

where we have considered terms up to α3
N .

For the sake of completeness we also discuss the third solution of Eq. (G.1) which corresponds
in zeroth order to λ = 1. From Eq. (G.2) we obtain the recurrence relation

λ(n+1) = 1 + 2α2
N

(λ(n) + 1 + καN/2)2 − κ2α2
N/4

. (G.9)

By inspection of this relation we recognize that the zeroth- and first-order solution coincide,
that is

λ(0) = λ(1) = 1 (G.10)
since there are no terms linear in αN on the right-hand side of Eq. (G.9).
In second order, however, we obtain

λ(2) = 1 + α2
N

2
(G.11)

and by substituting this expression into Eq. (G.9) and performing an expansion up to α3
N we

finally arrive
λ(3) = 1 + α2

N

2 −
κα3

N

4
(G.12)

for the third-order solution. We note that this solution of Eq. (G.1) is always real in contrast
to the other two solutions, Eq. (G.8), which possess a nonzero imaginary part.
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